
Lecture Notes in Artificial Intelligence 6069
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Julian Padget Alexander Artikis
Wamberto Vasconcelos Kostas Stathis
Viviane Torres da Silva Eric Matson
Axel Polleres (Eds.)

Coordination, Organizations,
Institutions, and Norms
in Agent Systems V

COIN 2009 International Workshops
COIN@AAMAS 2009, Budapest,Hungary, May 2009
COIN@IJCAI 2009, Pasadena, USA, July 2009
COIN@MALLOW 2009, Turin, Italy, September 2009
Revised Selected Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Julian Padget, E-mail: jap@cs.bath.ac.uk
Alexander Artikis, E-mail: a.artikis@iit.demokritos.gr
Wamberto Vasconcelos, E-mail: w.w.vasconcelos@abdn.ac.uk
Kostas Stathis, E-mail: kostas.stathis@cs.rhul.ac.uk
Viviane Torres da Silva, E-mail: viviane.silva@ic.uff.br
Eric Matson, E-mail: ematson@purdue.edu
Axel Polleres, E-mail: axel.polleres@deri.org

Library of Congress Control Number: 2010931699

CR Subject Classification (1998): I.2, H.4, D.2, C.2, H.5, H.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743

ISBN-10 3-642-14961-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-14961-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

This volume is the fifth in a series that started in 2005, collecting papers from
the Coordination, Organizations, Institutions and Norms (COIN) Workshops.
The papers in this volume are drawn from the three meetings that took place in
2009.

AAMAS

COIN@AAMAS 2009 took place on May 12, 2009, as a satellite event of the
8th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2009), in Budapest, Hungary. With 35 registered participants, the
workshop was an exciting and fruitful gathering where discussions followed the
papers presented by an international group of speakers. We had participants
from Australia, Italy, The Netherlands, New Zealand, Portugal, Spain, UK and
USA, to name a few. Of the 19 submissions, 12 were selected for presentation
and, subsequently, 10 were invited to be revised and included in the proceedings.

IJCAI

COIN@IJCAI 2009 took place on July 11, 2009, as a satellite event of the 21st In-
ternational Joint Conference on Artificial Intelligence (IJCAI 2009), in Pasadena,
California, USA. We had 15 submissions, 10 of which were selected for presenta-
tion at the workshop. The workshop sessions gave rise to a stimulating and pro-
ductive gathering with an invited talk from Maarten Sierhuis of NASA entitled
“Towards Organization-Aware Multi-Agent Systems,” followed by presentations
of accepted papers. An international audience from countries such as Australia,
Brazil, India, Canada, Spain, France, UK and USA participated in the work-
shop. From the 10 presented papers, 6 were invited to be revised and included
in the proceedings.

MALLOW

COIN@MALLOW 2009 took place September 7-11, 2009, as one of the federated
Multi-Agent Logics, Languages, and Organizations Workshops, in Turin, Italy.
The particular theme of this edition of COIN was to explore how the COIN topics
are manifested in on-line communities. To this end, Axel Polleres was invited as
co-organizer and there was an invited talk by Alexandre Passant entitled “Using
Semantics to Improve Corporate Online Communities.” In addition there were
nine presentations, comprising five regular papers and four project reports. Of
these, four regular papers and one project report were invited to submit revised,
extended versions for inclusion in this volume.

VI Preface

The papers in this volume are extended, revised versions of the best pa-
pers presented at the three workshops. The result is a balanced collection of
high-quality papers that really can be called representative of the field at this
moment. For this volume, the papers from the three workshops were re-grouped
around three themes: Building and Managing Organizations, Social Norms and
Semantics and Norms and Reasoning. We now summarize each of these themes
and present a synopsis of the papers in each.

Building and Managing Organizations

The papers in this section address issues covering requirements capture, policy
realization and both virtual and mixed human-agent organizations.

1. Boella et al. in “Conditional Dependence Networks in Requirements Engi-
neering,” present a way to extend dependence networks, a graphical notation
used in requirements analysis, to represent norms. Moreover, they show how
coalitions may be defined with the use of the extended dependence networks.

2. Criado et al. in “A Norm-Based Organization Management System,” de-
scribe a platform for virtual organizations that supports norm specification
and management, while accommodating (norm) change.

3. van Diggelen et al. in “Implementing Collective Obligations in Human-Agent
Teams using KAoS Policies,” explore the relationship between teamwork
models and collective obligations and use the scenario of a Mars mission to
show how team performance is affected by different teamwork models.

4. Lam et al. in “Building Multi-Agent Systems for Workflow Enactment and
Exception Handling,” propose a method for building norm-governed multi-
agent systems to enact workflows. The novelty here lies in having the agents
use organizational and domain knowledge, combined with task and capability
information, to identify appropriate remedial actions when exceptions arise.

5. Hormazabal et al., in “An Approach for Virtual Organizations’ Dissolution,”
tackle the problem of examining the conditions under which a virtual orga-
nization might be dissolved, by drawing parallels with circumstances that
apply in commercial law for real-world organizations. An agent-based sim-
ulation is used to explore the particular circumstance of the organizational
goals being unachievable and quantifies the benefits of timely dissolution.

6. Urovi and Stathis, in “Playing with Agent Coordination Patterns in MAGE,”
introduce the Multi-Agent Game Environment (MAGE), a logic-based frame-
work that uses games as a metaphor for agent activities within an artificial
society. They use their approach to specify the coordination patterns re-
quired to form a virtual organization in the context a scenario for oil-spill
detection.

7. Coutinho et al. in “A Model-Based Architecture for Organizational Interop-
erability in Open Multiagent Systems,” apply ideas from model-driven soft-
ware engineering to multi-agent systems by specifying organizational meta-
models and model transformations in order to address the problem of how
agents can access a particular organizational infrastructure and interpret its
underlying model without prior knowledge of the organization.

Preface VII

8. Hübner et al. in “Normative Programming for Organization Management In-
frastructures,” propose the Organization Modelling Language to define the
organizational function of a system and the capture of organizational prop-
erties. This specification is then translated to a simpler normative language,
thus avoiding the potential awkwardness — for the human designer — of a
purely normative approach.

Social Norms and Semantics

The second part of this volume highlights the theme that was a key topic for the
MALLOW workshop, although this thread was also apparent at other meetings
earlier in the year. Thus the topics in this section explore the modelling of social
attributes and of social structures, both in artificial environments and in virtual
worlds that reflect the physical world.

1. Cranefield and Li, in “Monitoring Social Expectations in Second Life,” dis-
cuss the formal definition of social expectations in temporal logic and their
subsequent on-line monitoring by means of model-checking. The idea is
demonstrated through Second Life, where a user can be notified whether
their expectations of others have been fulfilled or violated, subject to the
limitations of the Linden Scripting Language’s capacity to detect events of
(social) significance.

2. Lorini and Verdicchio, in “Towards a Logical Model of Social Agreement for
Agent Societies,” formalize the notion of agreement, as a bottom-up counter
to the more conventional top-down approach that organizational modelling
normally encourages. The key here is to focus on the agreement as the basic
building block and to define a modal logic that has agreement as its primitive
object and establishes relationships through the concept of preference, hence
leading to notions of norms and commitments.

3. Sadedin and Guttmann, in “Promotion of Selfish Agents in Hierarchical Or-
ganizations,” investigate the hypothesis that agents that misrepresent their
achievements for the purpose of promotion will achieve a more influential
status in an organization, in contrast to agents that report truthfully. An
agent-based simulation is used to explore the consequences for multi-layered
organizations over a range of employee populations, the main result being
that judgement of individual performance rather than team performance
appears to have the effect of promoting selfish behavior.

4. Passant et al. in “SIOC Project: Semantically Interlinked Online Commu-
nities,” describe how Semantic Web technologies can be used to express
information about the nature, structure and content of on-line communi-
ties. The information thus created—and maintained via human-centric social
interactions—becomes processable by software agents and can, for example,
enable interoperability between applications from the Social Web.

5. Stankovic et al. in “Directing Status Messages to their Audience in Online
Communities,” seek ways to govern the delivery of so-called status messages
(short text messages usually broadcast to a large audience). The user sur-
vey that begins the paper suggests adding the concept of audience to such

VIII Preface

messages and follows this with a discussion of the requirements for such a
mechanism and how it might be realized by Semantic Web technologies.

6. Sen and Sen, in “Effects of Social Network Topology and Options on Norm
Emergence,” study how and when norms emerge in social networks, depend-
ing on parameters such as the topology of the network, population size,
neighborhood size, and a number of behavior alternatives. The approach
outlined can be used to model and to analyze social networks such as those
generated by Facebook, Flickr and Digg and, it is posited, to predict how
norms emerge and spread in human societies.

Norms and Reasoning

Here we focus on a core topic of the COIN community, namely, norms, exploring
the formalization of obligations, how agents make sense of normative environ-
ments, handle incomplete information and might regulate themselves.

1. Cardoso and Oliveira, in “Directed Deadline Obligations in Agent-Based
Business Contracts,” use temporal logic to formalize directed contractual
obligations, as well as a mechanism for flexible deadlines of the obligations.
This latter is presented as a lifecycle for directed obligations with temporal
restrictions, based on authorizations and implemented by means of a rule-
based system.

2. Savarimuthu et al. in “Internal Agent Architecture for Norm Identification,”
propose an agent architecture that identifies the norms of a society using a
bottom-up approach, in that agents infer norms rather than being told them
explicitly. The paper demonstrates how a norm can be inferred by an agent
using the proposed architecture, via an illustrative case scenario, in which
an agent observes the actions of another and when sanctions occur.

3. Kemmerich, in “Influence of Communication Graph Structures on
Pheromone-Based Approaches in the Context of a Partitioning Task Prob-
lem,” has the goal of finding a cost-optimal, distance minimizing, and uni-
form partitioning of an agent set to a set of targets in a two-dimensional
world using an ant colony optimization algorithm. In particular it is shown
that new pheromone traces are unable to develop in the presence of establish
structures. Although the approach is proven non-optimal, it is also shown
that the solution quality is high.

4. Salazar et al. in “An Infection-Based Mechanism in Large Convention
Spaces,” describe a distributed regulation mechanism to handle emergent
social conventions. Intuitively, the size of the convention space should affect
emergence and in this paper, it is shown empirically how the problem of
finding a common vocabulary enables perfect communication and hence the
capacity to handle large convention spaces.

5. Swarup, in “The Classification Game: Complexity Regularization Through
Interaction,” shows that if a population of neural network agents is allowed to
interact during learning, so as to arrive at a consensus solution to the learn-
ing problem, then they can implicitly achieve complexity regularization. This

Preface IX

learning paradigm is called the classification game. Through experimenta-
tion, it is shown how low complexity equilibria are selected, leading to better
generalization.

6. Serrano and Saugar, in “Dealing with Incomplete Normative States,” put for-
ward a normative framework that enables the specification of incomplete the-
ories and their management through incomplete normative states—identified
as ‘pending.’ The framework lets designated agents resolve this category
through the speech acts allow and forbid. The proposal is formalized by
using the action language K, taking advantage of its support for incom-
pleteness, and subsequently illustrated with some scenarios drawn from the
management of university courses.

7. Burgemeestre et al. in “Towards an Architecture for Self-Regulating Agents:
A Case Study in International Trade,” use an example of norm-enforcement
from the physical world as inspiration for the virtual world, from which
they construct an architecture for self-regulating agents derived from BDI.
Validation of the approach is demonstrated through a study of the self-
certification EU customs regulations.

We are grateful to all the conference organizers who accepted our proposals
for COIN workshops and the workshop organizers who together created the fora
in which our discussions flourish. We are equally pleased to acknowledge the
continuing support of Springer, and Alfred Hofmann in particular, for the annual
publication of the COIN workshop series, providing both a research record and a
dissemination channel to reach those researchers not able to attend the meetings
in person.

March 2010 Julian Padget
Alexander Artikis

Wamberto Vasconcelos
Kostas Stathis

Viviane Torres da Silva
Eric Matson

Axel Polleres

Organization

Program Committee Members

COIN@AAMAS
Alexander Artikis NCSR “Demokritos”, Greece
Guido Boella University of Turin, Italy
Olivier Boissier ENS Mines Saint-Etienne, France
Stephen Cranefield Otago, New Zealand
Cristiano Castelfranchi ISTC, Rome, Italy
Virginia Dignum University of Utrecht, The Netherlands
Marc Esteva IIIA-CSIC, Spain
Nicoletta Fornara University of Lugano, Switzerland
Jomi Fred Hübner University of Blumenau, Brazil
Lloyd Kamara Imperial College, UK
Victor Lesser University of Massachusetts Amherst, USA
Christian Lemaitre Universidad Autonoma Metropolitana, Mexico
Eric Matson Purdue University, USA
John-Jules Meyer University of Utrecht, The Netherlands
Daniel Moldt University of Hamburg, Germany
Pablo Noriega IIIA-CSIC, Spain
Tim Norman University of Aberdeen, UK
Eugenio Oliveira Universidade do Porto, Portugal
Sascha Ossowski URJC, Spain
Julian Padget University of Bath, UK
Alessandro Ricci Università di Bologna, Italy
Antonio Carlos da

Rocha Costa UCPEL, Brazil
Juan Antonio

Rodriguez-Aguilar IIIA-CSIC, Spain
Jaime Sichman University of São Paulo, Brazil
Carles Sierra IIIA-CSIC, Spain
Kostas Stathis Royal Holloway, University of London, UK
Catherine Tessier ONERA, France
Wamberto Vasconcelos University of Aberdeen, UK
Leon Van Der Torre University of Luxembourg, Luxembourg
Harko Verhagen Stockholm University, Sweden
George Vouros University of the Aegean, Greece

COIN@IJCAI
Alexander Artikis NCSR “Demokritos”, Greece
Guido Boella University of Turin, Italy

XII Organization

Olivier Boissier ENS Mines Saint-Etienne, France
Rafael Bordini Durham University, UK
Anarosa Brandão USP, Brazil
Antonio Carlos da

Rocha Costa UCPEL, Brazil
Ricardo Choren IME, Brazil
Dan Corkill University of Massachusetts Amherst, USA
Stephen Cranefield University of Otago, New Zealand
Marina De Vos University of Bath, UK
Virginia Dignum University of Utrecht, The Netherlands
Nicoletta Fornara University of Lugano, Switzerland
Christian Guttmann Monash University, Australia
Scott Harmon Kansas State University, USA
Christopher Hazard North Carolina State University, USA
Henry Hexmoor Southern Illinois University, USA
Christian Hoareau National Institute of Informatics, Japan
Fuyuki Ishikawa National Institute of Informatics, Japan
Sachin Kamboj University of Delaware, USA
Christian Lemâıtre Universidad Autónoma Metropolitana, Mexico
Vincent Louis Orange Labs, France
John-Jules Meyer Utrecht University, The Netherlands
Daniel Moldt University of Hamburg, Germany
Pablo Noriega IIIA-CSIC, Spain
James Odell Odell Associates, USA
Sascha Ossowski URJC, Spain
Julian Padget University of Bath, UK
Eric Platon GMX Internet Services Inc., USA
Alessandro Ricci Università di Bologna, Italy
Juan A. Rodŕıguez-Aguilar IIIA-CSIC, Spain
Paul Scerri Carnegie Mellon University, USA
Christophe Sibertin-Blanc IRIT, France
Jaime Simão Sichman University of São Paulo, Brazil
Maarten Sierhuis NASA, USA
Carles Sierra IIIA-CSIC, Spain
Catherine Tessier ONERA, France
Walter Truszkowski NASA, USA
Wamberto Vasconcelos University of Aberdeen, UK
Harko Verhagen Stockholm University, Sweden
George Vouros University of the Aegean, Greece
Leendert van der Torre University of Luxembourg, Luxembourg

COIN@MALLOW
Alexander Artikis NCSR “Demokritos”, Greece
Sören Auer Universtät Leipzig, Germany
Guido Boella University of Turin, Italy

Organization XIII

Frances Brazier Vrije Universiteit Amsterdam, The Netherlands
Dan Brickley FOAF Project
John Breslin DERI, National University of Ireland
Antonio Carlos da

Rocha Costa UCPEL, Brazil
Stephen Cranefield University of Otago, New Zealand
Harry Halpin W3C
Jomi Fred Hübner University of Blumenau, Brazil
Joris Hulstijn Vrije Universiteit Amsterdam, The Netherlands
Lloyd Kamara Imperial College, University of London, UK
Eric Matson Purdue University, USA
Pablo Noriega IIIA-CSIC, Spain
Eamonn O’Neill University of Bath, UK
Alexandre Passant DERI, National University of Ireland
Jeremy Pitt Imperial College, University of London, UK
Juan Antonio

Rodriguez Aguilar IIIA-CSIC, Spain
Sascha Ossowski Universidad Rey Juan Carlos, Madrid, Spain
Sebastian Schaffert Salzberg Research, Austria
Jaime Simão Sichman University of São Paulo, Brazil
Maarten Sierhuis NASA, USA
Kostas Stathis Royal Holloway, University of London, UK
Harko Verhagen Stockholm University, Sweden
Niek Wijngaards THALES, Delft, The Netherlands

Additional Reviewers

Roberto Centeno University Rey Juan Carlos, Madrid, Spain
Luciano Coutinho University of Sao Paulo, Brazil
Sindhu Joseph IIIA, Spain
Rosine Kitio Ecole Nationale Superieure des Mines de Saint-

Etienne, France
Thomas Kurz Salzburg Research, Austria
Pieter De Leenheer Vrije Universiteit Amsterdam, The Netherlands
Henrique Lopes Cardoso Universidade do Porto, Portugal
Jan Ortmann University of Hamburg, Germany
Marco Remondino University of Turin, Italy
Birna van Riemsdijk Technical University of Delft, The Netherlands
Olga Streibel Free University of Berlin, Germany
Matthias Wester-Ebbinghaus University of Hamburg, Germany

XIV Organization

Workshop Organizers

COIN@AAMAS Alex Artikis Software & Knowledge
Engineering Laboratory, Institute
of Informatics &
Telecommunications National
Centre for Scientific Research
“Demokritos”, Athens, Greece.
a.artikis@iit.demokritos.gr

Wamberto Vasconcelos Department of Computing
Science, University of Aberdeen,
Scotland, UK.
w.w.vasconcelos@abdn.ac.uk

COIN@IJCAI Kostas Stathis Department of Computer Science,
Royal Holloway, University of
London, Egham, Surrey, UK.
kostas.stathis@cs.rhul.ac.uk

Viviane Torres da Silva Computer Science Department,
Universidade Federal Fluminente,
Rio de Janeiro, Brazil.
viviane.silva@ic.uff.br

Eric Matson M2M Laboratory, Department of
Computer and Information
Technology, Purdue University,
Indiana, USA.
ematson@purdue.edu

COIN@MALLOW Julian Padget Department. of Computer
Science, University of Bath, UK.
jap@cs.bath.ac.uk

Axel Polleres Digital Enterprise Research
Institute, National University of
Ireland, Galway, Ireland.
axel.polleres@deri.org

COIN Steering Committee

Guido Boella University of Turin, Italy
Olivier Boissier ENS Mines Saint-Etienne, France
Nicoletta Fornara University of Lugano, Italy
Christian Lemâıtre Universidad Autonoma Metropolitana, Mexico

Organization XV

Eric Matson Purdue University, USA
Pablo Noriega IIIA-CSIC, Spain
Sascha Ossowski Universidad Rey Juan Carlos, Spain
Julian Padget University of Bath, UK
Jeremy Pitt Imperial College London, UK
Jaime Sichman University of São Paulo, Brazil
Wamberto Vasconcelos University of Aberdeen, UK
Javier Vázquez Salceda Universitat Politècnica de Catalunya, Spain
George Vouros University of the Aegean, Greece

Table of Contents

Part I: Building and Managing Organizations

Conditional Dependence Networks in Requirements Engineering 3
Guido Boella, Leendert van der Torre, and Serena Villata

A Norm-Based Organization Management System . 19
Natalia Criado, Vicente Julián, Vicente Botti, and Estefania Argente

Implementing Collective Obligations in Human-Agent Teams Using
KAoS Policies . 36

Jurriaan van Diggelen, Jeffrey M. Bradshaw, Matthew Johnson,
Andrzej Uszok, and Paul J. Feltovich

Building Multi-Agent Systems for Workflow Enactment and Exception
Handling . 53

Joey Lam, Frank Guerin, Wamberto Vasconcelos, and
Timothy J. Norman

An Approach for Virtual Organisations’ Dissolution 70
Nicolás Hormazábal, Henrique Lopes Cardoso,
Josep Lluis de la Rosa, and Eugénio Oliveira

Playing with Agent Coordination Patterns in MAGE 86
Visara Urovi and Kostas Stathis

A Model-Based Architecture for Organizational Interoperability in
Open Multiagent Systems . 102

Luciano R. Coutinho, Anarosa A.F. Brandã, Jaime S. Sichman,
Jomi F. Hübner, and Olivier Boissier

A Normative Organisation Programming Language for Organisation
Management Infrastructures . 114

Jomi F. Hübner, Olivier Boissier, and Rafael H. Bordini

Part II: Social Norms and Semantics

Monitoring Social Expectations in Second Life . 133
Stephen Cranefield and Guannan Li

Towards a Logical Model of Social Agreement for Agent Societies 147
Emiliano Lorini and Mario Verdicchio

Promotion of Selfish Agents in Hierarchical Organisations 163
Suzanne Sadedin and Christian Guttmann

XVIII Table of Contents

The SIOC Project: Semantically-Interlinked Online Communities, from
Humans to Machines . 179

Alexandre Passant, Uldis Bojārs, John G. Breslin, and Stefan Decker

Directing Status Messages to Their Audience in Online Communities . . . 195
Milan Stankovic, Alexandre Passant, and Philippe Laublet

Effects of Social Network Topology and Options on Norm Emergence . . . 211
Onkur Sen and Sandip Sen

Part III: Norms and Reasoning

Directed Deadline Obligations in Agent-Based Business Contracts 225
Henrique Lopes Cardoso and Eugénio Oliveira

Internal Agent Architecture for Norm Identification 241
Bastin Tony Roy Savarimuthu, Stephen Cranefield,
Maryam A. Purvis, and Martin K. Purvis

Influence of Communication Graph Structures on Pheromone-Based
Approaches in the Context of a Partitioning Task Problem 257

Thomas Kemmerich

An Infection-Based Mechanism in Large Convention Spaces 273
Norman Salazar, Juan A. Rodriguez-Aguilar, and Josep Ll. Arcos

The Classification Game: Complexity Regularization through
Interaction . 289

Samarth Swarup

Dealing with Incomplete Normative States . 304
Juan Manuel Serrano and Sergio Saugar

Towards an Architecture for Self-regulating Agents: A Case Study in
International Trade . 320

Brigitte Burgemeestre, Joris Hulstijn, and Yao-Hua Tan

Author Index . 335

Conditional Dependence Networks
in Requirements Engineering

Guido Boella1, Leendert van der Torre2, and Serena Villata1

1 Dipartimento di Informatica, University of Turin
{boella,villata}@di.unito.it

2 Computer Science and Communication, University of Luxembourg
leendert@vandertorre.com

Abstract. In this paper we present a new model for the requirements analysis of
a system. We offer a conceptual model defined following a visual modeling lan-
guage, called dependence networks. TROPOS uses a visual modeling language
called dependence networks in the requirements analysis of a system, and in this
paper we propose a new conceptual model extending dependence networks with
norms. This improvement allows to define a new type of dependence networks,
called conditional dependence networks, representing a new modeling technique
for the requirements analysis of a system. Our model, moreover, allows the def-
inition of coalition depending on different kinds of networks. We illustrate our
model using the scenario of virtual organizations based on a Grid network.

1 Introduction

The diffusion of software applications in the fields of e-Science and e-Research under-
lines the problem to develop open architectures, able to evolve and include new software
components. In the late years, the process of design of these software systems became
more complex. The definition of appropriate mechanisms of communication and coor-
dination between software components and human users motivates the development of
methods with the aim to support the designer for the whole development process of the
software, from the requirements analysis to the implementation.

The answer to this problem comes from software engineering that provided numer-
ous methods and methodologies allowing to treat more complex software systems. One
of these methodologies is the TROPOS methodology [7], developed for agent-oriented
design of software systems. The intuition of the TROPOS methodology [7] is to couple,
together with the instruments offered by software engineering, the multiagent paradigm.
In this paradigm, the entities composing the system are agents, autonomous by defi-
nition [2], characterized by their own sets of goals, capabilities and beliefs. TROPOS
covers five phases of the software development process: early requirements allowing the
analysis and modeling of the requirements of the context in which the software system
will be inserted, late requirements describing the requirements of the software system,
architectural and detailed design of the system and, finally, the code implementation.

The TROPOS methodology [7] is based on the multiagent paradigm but it does not
consider the addition of a normative perspective to this paradigm. Since twenty years,
the design of artificial social systems is using mechanisms like social laws and norms

J. Padget et al. (Eds.): COIN 2009, LNAI 6069, pp. 3–18, 2010.
© Springer-Verlag Berlin Heidelberg 2010

4 G. Boella, L. van der Torre, and S. Villata

to control the behavior of multiagent systems [3]. These social concepts are used in the
conceptual modeling of multiagent systems, for example in requirements analysis, as
well as in formal analysis and agent based social simulation. For example, in the game
theoretic approach of Shoham and Tennenholtz [17], social laws are constraints on sets
of strategies. In this paper, we propose to add norms, presented thanks to the normative
multiagent paradigm, both to the requirements analysis phases and to the conceptual
meta-model. This paper addresses the following research question:

– How to apply a normative multiagent approach to the early and late requirements
analysis?

The research question beaks down in the following sub-questions: which ontology have
to be defined for the normative multiagent requirements engineering model? and how
to model sanctions, contrary-to-duty and coalition’s stability in dependence networks?.

Our approach is based, following the approach of TROPOS [7], on the semiformal
language of visual modeling called dependence networks and it is composed by the fol-
lowing components. First, we present our ontology that defines the set of concepts com-
posing our conceptual metamodel. The elements composing the ontology are agents,
goals, facts, skills, dependencies, coalitions with the addition of the normative notions
of roles, institutional goals, institutional facts, institutional skills, dynamic dependen-
cies and obligations, sanctions, secondary obligations and conditional dependencies.
Second, our model is defined as a directed labeled graph whose nodes are instances
of the metaclasses of the metamodel, e.g., agents, goals, facts, and whose arcs are in-
stances of the metaclasses representing relationships between them such as dependency,
dynamic dependency, conditional dependency. Finally, we have a set of rules and con-
straints to guide the building of the main concepts of the metamodel, e.g. the formation
of coalitions and their stability is constrained to the kind of dependencies linking its
members. In TROPOS [7], the requirements analysis phase is split in two main phases,
the early requirements and the late requirements. In our methodology, these two phases
share the same conceptual and methodological approach, thus we refer to them just as
requirements analysis. Dynamic dependence networks have been firstly introduced by
Caire et al. [9] and then treated in Boella et al. [5] in which the existence of a depen-
dency depends on the actions of the agents which can delete it.

We introduce the normative issue of obligations, representing them directly in de-
pendence networks. This introduction allows the definition of a third kind of modeling
called conditional dependency modeling based on the structure of conditional depen-
dence networks. This new kind of networks represent obligations as particular kinds of
dependencies and these obligations are related to notions by means of sanctions if the
obligation is not fulfilled and contrary to duty when the primary obligation, not fulfilled,
actives a secondary obligation. Moreover, we introduce the notion of coalition and we
propose to use methods of social order such as obligations and sanctions to efficiently
achieve the maintenance of the stability and the cohesion of these groups. Our model is
intended to support the requirements specification for high level open interaction system
where heterogeneous and autonomous agents may interact.

Our aim is not to present an new theorem that, using norms semantics, checks whether
a given interaction protocol complies with norms. We are more interested in consider-
ing, in the context of requirements analysis, how agents’ behaviour is effected by norms

Conditional Dependence Networks in Requirements Engineering 5

and in analyzing how to constrain the modeling of coalitions’ evolution thanks to a nor-
mative system. There are two main assumptions in our approach. First of all we assume
that norms can sometimes be violated by agents in order to keep their autonomy. The
violation of norms is handled by means of sanctions and contrary to duty mechanisms.
Second, we assume that, from the institutional perspective, the internal state of the ex-
ternal agents is neither observable nor controllable but the institutional state or public
state of these agents is note since connected to a role and it can be changed by the
other agents. Our model is not intended to support all analysis and design activities in
software development process, from application domain analysis down to the system
implementation as in the TROPOS methodology [7], but only the requirements analy-
sis phases which involve dependence networks. Of course, our model is not intended
for any type of software. For system software, e.g., a compiler, or embedded software,
the operating environment of the system-to-be is an engineering artifact, with no iden-
tifiable stakeholders. In such cases, traditional software development techniques may
be most appropriate. However, a large and growing percentage of software operates
within open, dynamic organizational environments. This paper is organized as follows.
Section 2 describes a Grid computing scenario. In Section 3, we present the depen-
dency and the dynamic dependency modeling while in Section 4 we present a new kind
of dependence network, called conditional dependence network. Related work and con-
clusions end the paper.

2 The Grid Scenario

The Grid Computing paradigm provides the technological infrastructure to facilitate
e-Science and e-Research. Grid technologies can support a wide range of research in-
cluding amongst others: seamless access to a range of computational resources and
linkage of a wide range of data resources. It is often the case that research domains and
resource providers require more information than simply the identity of the individual
in order to grant access to use their resources. The same individual can be in multiple
collaborative projects, each of which is based upon a common shared infrastructure.
This information is typically established through the concept of a virtual organization
(VO) [12]. A virtual organization allows the users, their roles and the resources they can
access in a collaborative project to be defined. In the context of virtual organizations,
there are numerous technologies and standards that have been put forward for defining
and enforcing authorization policies for access to and usage of virtual organizations re-
sources. Role based access control (RBAC) is one of the more well established models
for describing such policies. In the RBAC model, virtual organization specific roles are
assigned to individuals as part of their membership of a particular virtual organization.

As presented by Zhao et al. [22], obligations are requirements and tasks to be ful-
filled, which can be augmented into conventional systems to allow extras information
to be specified when responding to authorization requests. For example in [22], admin-
istrators can associate obligations with permissions, and require the fulfillment of the
obligations when the permissions are exercised. The general idea of the RBAC model
is that, permissions are associated with functional roles in organizations, and members
of the roles acquire all permissions associated with the roles. Allocation of permission

6 G. Boella, L. van der Torre, and S. Villata

to users is achieved by assigning roles to users. Failure of the fulfilling an obligation
will incur a sanction.

Some of the main features of a node in a Grid are reliability, degree of accepted
requests, computational capabilities, degree of faults and degree of trust for confiden-
tial data. These different features set up important differences among the nodes and the
possible kinds of coalitions that can be formed and maintained. Reciprocity-based coali-
tions can be viewed as a sort of virtual organizations in which there is the constraint that
each node has to contribute something, and has to get something out of it. The scenario
of virtual organizations based on Grid networks represents a case study able to under-
line the benefits of a normative multiagent paradigm for requirements analysis. First of
all, in the normative multiagent paradigm as well as in the common multiagent one, the
autonomy of agents is the fixed point of all representations, i.e., the Grid philosophy
imposes the autonomy of the nodes composing it. Second, the normative multiagent
paradigm allows a clear definition of the notion of role and its associated permissions,
i.e. the role based access control policy needs a design able to assign roles and repre-
sents to all the consequent constraints based on them. Third, the normative multiagent
paradigm allows the introduction at requirements analysis level of obligations able to
model the system. Fourth, the concept of coalition and the constraints introduced by
this concept can model the concept of “local network” in virtual organizations. Finally,
the presented modeling activities depict the system using structures similar to the Grid
network itself.

3 Dependency and Dynamic Dependency Modeling

Figure 1 shows the ontology on which is based our model containing a number of
concepts related to each other. We divide our ontology in three submodels: the agent
model, the institutional model, and the role assignment model, as shown in Figure 1.
Roughly, an institution is a structure of social order and cooperation governing the
behavior of a set of individuals. Institutions are identified with a social purpose and
permanence, with the enforcing of rules governing cooperative human behavior. The
Figure depicts, following the legend of Figure 2, the three submodels which group the
concepts of our ontology.

Such a decomposition is common in organizational theory, because an organization
can be designed without having to take into account the agents that will play a role
in it. For example if a node with the role of simple user becomes a VO administrator,
then this remains transparent for the organizational model. Likewise, agents can be
developed without knowing in advance in which institution they will play a role.

As shown in Figure 1, the agent view is composed by concepts like agent, goal and
skill or ability and they are represented by means of a social dependence networks
in which nodes are the agents and the edges are the representation of goal-based de-
pendencies. The institutional view, instead, is composed by the notion of role and its
institutional goals, skills and facts. As for the agent view, also the institutional one
is represented by means of a social institutional dependence network representing the
norm-based dependency relations between roles. The role assignment view associates
to each agent the roles it plays, depending on the organization in which the agent is play-
ing. All these notions are unified in the combined view where the dependence network

Conditional Dependence Networks in Requirements Engineering 7

Fig. 1. The conceptual metamodel

represents at the same time both goal-based dependencies and norm-based ones con-
necting the agents playing roles. In this way, early and late requirements can be based
both on agents and on roles. Models are acquired as instances of a conceptual meta-
model resting on the concepts presented in the following sections. For more details on
the three conceptual submodels, see Boella et al. [5] and Boella et al. [4].

3.1 Dependence Networks

Figure 2 shows the components of our model. Our model is a directed labeled graph
whose nodes are instances of the metaclasses of the metamodel, e.g., agents, goals,
facts, and whose arcs are instances of the metaclasses representing relationships be-
tween them such as dependency, dynamic dependency, conditional dependency.

Dependence networks [18] represent our first modeling activity consisting in the
identification of the dependencies among agents and among roles. In the early require-
ments phase, we represent the domain stakeholders using these networks while in the
late requirements phase, the same kind of approach is followed representing the agents
of the future system involved in the dependence network. Figure 2-(a) shows the graph-
ical representation of the model obtained following this modeling activity, the depen-
dency modeling. The legend describes the agents (depicted as white circles), the roles
(depicted as black circles), the agents assigned to roles (depicted as grey circles), the
agents’/roles’ goals (depicted as white rectangles) and the dependency among agents
(one arrowed line connecting two agents with the addition of a label which represents
the goal on which there is the dependency). The legend considers dependencies among
agents but they can be also among roles or agents assigned to roles.

3.2 Dynamic Dependence Networks

Concerning dynamic dependence networks [5], as shown in Figure 2-(a), here we dis-
tinguish “negative” dynamic dependencies where a dependency exists unless it is re-
moved by a set of agents due to removal of a goal or ability of an agent, and “positive”

8 G. Boella, L. van der Torre, and S. Villata

Fig. 2. Legend of the graphical representation of our model

dynamic dependencies where a dependency may be added due to the power of a third set
of agents. Dynamic dependency modeling represents our second modeling activity for
requirements analysis. A formal definition of dynamic dependence networks is given in
Boella et al. [4].

The legend of Figure 2-(a) describes the sign of the dynamic dependency (depicted
as a black square) and the dynamic dependency among agents (depicted as one arrowed
line connecting two agents with the addition of a label which represents the goal on
which there is the dependency and another arrowed dotted line with the sign’s label
connecting an agent to the arrowed plain line that can be deleted or added by this agent).
Figure 3 presents an example of dynamic dependence network on the Grid. In this
figure, each node plays a role inside a virtual organization and a number of goal-based
dependencies link the nodes to each other, making explicit the fact that a major number
of goals can be achieved thanks to cooperation. The dynamic dependency depicted in
the figure is related to the institutional goal of obtaining an authorization and it can be
removed or added due to the institutional power of the role played by agent n6. Thanks
to our model, we can represent portions or complete virtual organizations, explicating
what are the played roles, what are the goals of each node and what are its capabilities,
both from the agent point of view and from the institutional one.

A coalition can be defined in dependence networks, based on the idea that to be part
of a coalition, every agent has to contribute something and has to get something out of
it. The graphical representation of coalitions is depicted in Figure 2-(b) which describes
coalitions (depicted as sets of agents and dependencies included in a dotted circle) and
vulnerable and potential coalitions (depicted as sets of agents and dependencies in a
circle in which one or more of these dependencies can be added or deleted by another
agent with a labeled dynamic dependency). Definition 1 makes a distinction between
coalitions which are actually formed, vulnerable coalitions which can be destroyed by
the deletion of dynamic dependencies and, potential coalitions, which can be formed
depending on additions and deletions of dynamic dependencies.

Conditional Dependence Networks in Requirements Engineering 9

Fig. 3. An example of dynamic dependence network

Definition 1 (Coalition). Let A be a set of agents and G be a set of goals. A coalition
function is a partial function C : A → 2A × 2G such that {a | C(a, B, G)} = {b |
b ∈ B, C(a, B, G)}, the set of agents profiting from the coalition is the set of agents
contributing to it. Let 〈A, G, dyndep−, dyndep+,≥〉 be a dynamic dependence network,
and dep the associated static dependencies.

1. A coalition function C is a coalition if ∃a ∈ A, B ⊆ A, G′ ⊆ G such that
C(a, B, G′) implies G′ ∈ dep(a, B). Coalitions which cannot be destroyed by
addition or deletion of dependencies by agents in other coalitions.

2. A coalition function C is a vulnerable coalition if it is not a coalition and ∃a ∈
A, D, B ⊆ A, G′ ⊆ G such that C(a, B, G′) implies G′ ∈ ∪Ddyndep−(a, B, D).
Coalitions which do not need new goals or abilities, but whose existence can be
destroyed by removing dependencies.

3. A coalition function C is a potential coalition if it is not a coalition or a vulner-
able coalition and ∃a ∈ A, D, B ⊆ A, G′ ⊆ G such that C(a, B, G′) implies
G′ ∈ ∪D(dyndep−(a, B, D) ∪ G′ ∈ dyndep+(a, B, D)) Coalitions which could
be created or which could evolve if new abilities or goals would be created by
agents of other coalitions on which they dynamically depend.

Figure 3 presents two different coalitions. On the one hand, we have an actual coalition
composed by agents n1, n2 and n3. On the other hand, we have a potential coalition,
such as a coalition which could be formed if agent n6 really performs the dynamic
addition, making agent n5 dependent on agent n4.

4 Conditional Dependency Modeling

In this section, we answer to the question how to model sanctions, contrary-to-duty and
coalition’s stability in dependence networks by defining the conditional dependency
modeling. Normative multiagent systems are “sets of agents (human or artificial) whose
interactions can fruitfully be regarded as norm-governed; the norms prescribe how the
agents ideally should and should not behave. [...] Importantly, the norms allow for the
possibility that actual behavior may at times deviate from the ideal, i.e., that violations
of obligations, or of agents’ rights, may occur” [6]. In this paper, we represent general

10 G. Boella, L. van der Torre, and S. Villata

regulative norms. The notion of conditional obligation with an associated sanction is
the base of the so called regulative norms. Obligations are defined in terms of goals of
the agent and both the recognition of the violation and the application of the sanctions
are the result of autonomous decisions of the agent.

A well-known problem in the study of deontic logic is the representation of contrary-
to-duty structures, situations in which there is a primary obligation and what we might
call a secondary obligation, coming into effect when the primary one is violated [16]. A
natural effect coming from contrary-to-duty obligations is that obligations pertaining to
a particular point in time cease to hold after they have been violated since this violation
makes every possible evolution in which the obligation is fulfilled inaccessible. A clas-
sical example of contrary-to-duty obligations is given by the so called “gentle murder”
by Forrester [11] which says “do not kill, but if you kill, kill gently”. A contrary-to-
duty obligation is not a type of norm. A regulative norm represented by a rule “if a then
obliged x” is a contrary-to-duty if there is another norm of the kind “forbidden a”. Note
that this is not a property of the norm “if a then obliged x” and thus not a type of norm.

4.1 Conditional Dependence Networks

The introduction of norms in dependence networks is based on the necessity to adapt the
requirements analysis phases to model norm-based systems. An example of application
of this kind consists in the introduction of obligations in virtual Grid-based organiza-
tions [22] where obligations, as shown in Section 2, are used to enforce the authorization
decisions. On the one hand, in approaches like [22], obligations are considered simply
as tasks that have to be fulfilled when an authorization is accepted/denied while, on
the other hand, in approaches like [15], the failure in fulfilling the obligation incurs a
sanction but there is no secondary obligation.

The introduction of obligations brings us to introduce a new kind of goal, the nor-
mative one. These goals originate from norms and they represent the obligation itself.
We define a new set of normative concepts, based on Boella et al. [2] model of obli-
gations, and we group them in a new view, called the normative view. The normative
view is composed by a set of norms N and three main functions, oblig, sanct and ctd
representing obligation, sanctions and contrary-to-duty obligations. The UML diagram
of Figure 4 provides a unified vision of the presented concepts of the ontology repre-
senting our conceptual metamodel.

Definition 2 (Normative View). Let the institutional view 〈RL, IF, RG, X, igoals :
RL → 2RG, iskills : RL → 2X , irules1 : 2X → 2IF 〉, the normative view is a tuple
〈RL, RG, N, oblig, sanct, ctd〉 where:

– RL is a set of roles, RG is a set of institutional goals, N is a set of norms;
– the function oblig : N × RL → 2RG is a function that associates with each norm

and role, the institutional goals the agent must achieve to fulfill the norm. Assump-
tion: ∀n ∈ N and rl ∈ RL, oblig(n, rl) ∈ power({rl})2.

1 irules associate sets of institutional actions with the sets of institutional facts to which they
lead.

2 Power relates each role with the goals it can achieve.

Conditional Dependence Networks in Requirements Engineering 11

Fig. 4. The UML class diagram specifying the main concepts of the metamodel

– the function sanct : N × RL → 2RG is a function that associates with each
norm and role, the institutional goals that will not be achieved if the norm is
violated by role rl. Assumption: for each B ⊆ RL and H ∈ power(B) that
(∪rl∈RLsanct(n, rl)) ∩H = ∅.

– the function ctd : N×RL→ 2RG is a function that associates with each norm and
role, the institutional goals that will become the new institutional goals the role rl
has to achieve if the norm is violated by rl. Assumption:∀n ∈ N and rl ∈ RL,
ctd(n, rl) ∈ power({rl}).

We relate norms to goals following a twofold direction. First, we associate with each
norm n a set of institutional goals oblig(n) ⊆ RG. Achieving these normative goals
means that the norm n has been fulfilled; not achieving these goals means that the norm
is violated. We assume that every normative goal can be achieved by the group, i.e.,
the group has the power to achieve it. Second, we associate with each norm a set of
institutional goals sanct(n) ⊆ RG which will not be achieved if the norm is violated
and it represents the sanction associated with the norm. We assume that the group of
agents does not have the power to achieve these goals. Third, we associate with each
norm (primary obligation) another norm (secondary obligation) represented by a set of
institutional goals ctd(n) ⊆ RG that have to be fulfilled if the primary obligation is
violated.

We define a new modeling activity, called conditional dependency modeling, to sup-
port in the early and late requirements analysis the representation of obligations, sanc-
tions and contrary-to-duty obligations. Conditional dependence networks are defined as
follows:

12 G. Boella, L. van der Torre, and S. Villata

Definition 3 (Conditional Dependence Networks (CDN))
A conditional dependence network is a tuple 〈A, G, cdep, odep, sandep, ctddep〉 where:

– A is a set of agents and G is a set of goals;
– cdep : 2A× 2A → 22G

is a function that relates with each pair of sets of agents all
the sets of goals on which the first depends on the second.

– odep : 2A × 2A → 22G

is a function representing a obligation-based dependency
that relates with each pair of sets of agents all the sets of goals on which the first
depends on the second.

– sandep ⊆ (OBL ⊆ (2A × 2A × 22G

)) × (SANCT ⊆ (2A × 2A × 22G

)) is a
function relating obligations to the dependencies which represent their sanctions.
Assumption: SANCT ∈ cdep and OBL ∈ odep.

– ctddep ⊆ (OBL1 ⊆ (2A × 2A × 22G

)) × (OBL2 ⊆ (2A × 2A × 22G

)) is a
function relating obligations to the dependencies which represent their secondary
obligations. Assumption: OBL1, OBL2 ∈ odep and OBL1 ∩OBL2 = ∅.

Fig. 5. Legend of the graphical representation of the conditional dependency modeling

Figure 5 gives a graphical representation of the conditional dependency modeling.
It describes the obligation-based dependency (depicted as a dashed arrowed line), the
obligation-based dependency with the associated sanction expressed as conditional de-
pendency (depicted as a dashed arrowed line representing the obligation connected to
a common arrowed line representing the sanction by a dashed line) and the obligation-
based dependency with the associated secondary obligation (depicted as a dashed ar-
rowed line representing the primary obligation connected to another dashed arrowed
line representing the secondary obligation by a dashed line). The two functions ctddep
and sandep are graphically represented as the dashed line connecting the obligation to
the sanction or to the secondary obligation.

Example 1. Considering Grid’s nodes of Figure 3, we can think to add two constraints
under the form of obligations and we build the following conditional dependence net-
work CDN = 〈A, G, cdep, odep, sandep, ctddep〉 depicted in Figure 6:

Conditional Dependence Networks in Requirements Engineering 13

1. Agents A = {n1, n2, n3, n4, n5, n6};
2. Goals G = {g1, g2, g3, g4, g5, g6, g7, g8};
3. cdep({n1}, {n2}) = {{g1}}: agent n1 depends on agent n2 to achieve the goal
{g1}: to save the file comp.log;
dep({n2}, {n3}) = {{g2}}: agent n2 depends on agent n3 to achieve the goal
{g2}: to run the file mining.mat;
dep({n3}, {n1}) = {{g5}}: agent n3 depends on agent n1 to achieve the goal
{g5}: to save the file satellite.jpg;
dep({n4}, {n6}) = {{g3}}: agent n4 depends on agent n6 to achieve the goal
{g3}: to run the file results.mat;
dep({n6}, {n5}) = {{g4}}: agent n6 depends on agent n5 to achieve the goal
{g4}: to save the file satellite.mpeg;
dep({n5}, {n4}) = {{g6}}: agent n5 depends on agent n4 to achieve the goal
{g6}: to have the authorization to open the file dataJune.mat;
odep({n2}, {n1}) = {{g7}}: agent n2 is obliged to perform goal {g7} concerning
agent n1 : to run the file mining.mat with the highest priority;
odep({n4}, {n5}) = {{g8}}: agent n4 is obliged to perform goal {g8} concerning
agent n5 : to share results of the running of file dataJune.mat with agent n5;
odep({n4}, {n6}) = {{g8}}: agent n4 is obliged to perform goal {g8} concerning
agent n6 : to share results of the running of file dataJune.mat with agent n6;
sandep{(({n2}, {n1}) = {{g7}}, ({n1}, {n2}) = {{g1}})};
ctddep{(({n4}, {n5}) = {{g8}}, ({n4}, {n6}) = {{g8}})};

Fig. 6. Conditional Dependence Network of Example 1

Example 1 is depicted in Figure 6 which shows the network in the step after the
deletion and the insertion of the two dynamic dependencies of Figure 3. In Figure 6,
following the definition of coalition, we have two coalitions composing, e.g., two local
groups of a virtual organization. The first one is composed by nodes n1, n2, n3 and
the other one is composed by nodes n4, n5 and n6. Since these two subsets of the
virtual organization have to work with a good cohesion then it is possible to insert some
constraints, made clear by obligations. The first obligation consists in giving the highest
priority to, for example, a computation for an agent composing the same local coalition
as you. This first obligation is related to a sanction if it is violated. This link is made

14 G. Boella, L. van der Torre, and S. Villata

clear by the function sandep and it means the deletion of a dependency concerning a
goal of the agent that has to fulfill the obligation. We represent sanctions as avoiding the
achievability of a goal by the punished agent but a sanction would be represented also
by imposing something unpleasant, for example an additional goal, on an agent. In this
paper, we concentrate the discussion only on the first point and the second one is left
for future research. The second obligation, instead, is related to a secondary obligation
and it means that the agent has to share the results of a computation with a member of
its coalition but, if it does not fulfill this obligation then it has to share these results with
another member of its coalition.

Figure 7 shows the graphical representation of how an obligation in a conditional
dependence network can evolve toward the application of a sanction or of a secondary
obligation. In the first case, if the obligation is fulfilled and it is linked to a sanction then
the obligation can be removed and also the connection among the obligation and the
sanction can be removed. The only dependency that remains in the network is the one
related to the sanction that passes from being a conditional dependency to a common
dependency. If the obligation is not fulfilled then it is deleted and the deletion involves
also the conditional dependency representing the sanction. The sanction consists exactly
the deletion of this conditional dependency associated to a goal that the agent would
achieve. In the second case, if the obligation is fulfilled and it is linked to a secondary
obligation then the obligation is deleted and also the secondary obligation is deleted
since there is no reason to already exists. If the obligation, instead, is not fulfilled then
the primary obligation is deleted but the secondary obligation not. Note that in Figure 7
are depicted only the conditional dependencies and the obligational dependencies and
not all the other kinds of possible dependencies present in the network.

Summarizing, we represent obligations, sanctions and contrary-to-duty obligations
as tuples of dependencies related to each other. An obligation is viewed as a particular
kind of dependency and it is related to dependencies due to sanctions and dependencies

Fig. 7. The evolution of conditional dependence networks

Conditional Dependence Networks in Requirements Engineering 15

due to secondary obligations. In the first case, we have that sanctions are common
dependencies, already existing inside the system that, because of their connection with
the obligation, can be deleted. These obligations can be of different kinds depending
on the involved agents. For example, we can have a primary obligation linked to two
secondary obligations: a first case con involve the same agents, e.g., agent a has to pay
agent b for a service but he does not do the payment thus the secondary obligation is to
pay to agent b an additional cost, and second case can involve a third agent, e.g., agent
a continues to not pay you thus a third agent c is obliged to punish it for example with
the deletion of all the services he has to perform for this agent.

4.2 Coalitions in Conditional Dependence Networks

In Section 3, we presented a definition of coalition based on the structure of dynamic
dependence networks. In these dynamic coalitions we deal with conditional goals but
there is not the presence of obligations intended as sets of dependencies linked together
by a relation of the kind obligation-sanction or primary obligation-secondary obliga-
tion. Conditional dependence networks have to be taken into account when a system is
described in terms of coalitions, vulnerable coalitions and potential coalitions since they
can change depending on the conditional dependencies set by obligations. A coalition
has to consider sanctions and secondary obligations, according to these constraints:

Definition 4 (Constraints for Coalitions in Conditional Dependence Networks).
Let A be a set of agents and G be a set of goals. A coalition function is a partial
function C ⊆ A× 2A× 2G such that {a | C(a, B, G)} = {b | b ∈ B, C(a, B, G)}, the
set of agents profiting from the coalition is the set of agents contributing to it.

Introducing conditional dependence networks, the following constraints arise:

– ∀(dep1, dep2) ∈ sandep, dep2 /∈ C if and only if dep1 /∈ C. If the obligation,
associated to the dependency dep1 is not part of the coalition C then also the
sanction dep2 associated to the obligation is not part of the coalition C. If the
obligation, associated to the dependency dep1 is part of the coalition C then also
the sanction dep2 associated to the obligation is part of the coalition C.

– ∀(dep1, dep2) ∈ ctddep, dep2 ∈ C if and only if dep1 /∈ C. If the primary obli-
gation, associated to the dependency dep1 is not part of the coalition C then the
secondary obligation dep2 is part of the coalition C. If the primary obligation,
associated to the dependency dep1 is part of the coalition C then the secondary
obligation dep2 is not part of the coalition C.

Example 2. Let us consider conditional dependence network of Example 1, depicted
in Figure 6. Applying these constraints, we have that if the obligation on goal g7 is
fulfilled then the coalition composed by agents n1, n2 and n3 already exists since the
dependency associated to the sanction is not deleted. If the obligation on goal g7 is not
fulfilled then the obligation is deleted but also the sanction is deleted and the coalition
does not exist any more. Concerning the second coalition, if the obligation on goal g8

is fulfilled then both the primary and the secondary obligation are removed but if the
primary obligation is not fulfilled then the secondary obligation is part of the coalition
composed by agents n4, n5 and n6.

16 G. Boella, L. van der Torre, and S. Villata

5 Related Work

The idea of focusing the activities that precede the specification of software require-
ments, in order to understand how the intended system will meet organizational goals,
is not new. It has been first proposed in requirements engineering, specifically in Eric
Yu’s work with his i* model [21]. The i* model offers actors, goals and actor depen-
dencies as primitive concepts. The rationale of the i* model is that by doing an earlier
analysis, one can capture not only the what or the how, but also the why a piece of
software is developed. This supports a more refined analysis of system dependencies
and encourages a uniform treatment of system’s requirements. As stated throughout the
paper, the most important inspiration source for our model is the TROPOS methodol-
ogy [7] that spans the overall software development process, from early requirements
to implementation. Other approaches to software engineering are those of KAOS [10],
GAIA [20], AAII [14] and MaSE [13] and AUML [1]. The comparison of these works
is summarized in Figure 8.

Fig. 8. Comparison among different software engineering methodologies

The main difference between these approaches and our one consists in the intro-
duction of the notion of obligation with its related concepts of contrary-to-duty and
sanction to the requirements analysis and in the graphical modeling language based on
dependencies among agents. Moreover, these approaches do not consider the notion of
coalition, as group of actors with a common set of goals and the possible constraints on
their structure.

6 Conclusions

This paper provides a detailed account of a new requirements analysis model based
on the normative multiagent paradigm, following the TROPOS methodology [7]. The
paper presents and discusses the early and late requirements phases of systems de-
sign [19]. We present the key concepts of the ontology of our methodology, agents,
roles, skills, goals, as shown by the UML diagram of Figure 4. We divide our on-
tology in three submodels: the agent model, the institutional model, and the role as-
signment model. The modeling activities based on this ontology, the dependency and

Conditional Dependence Networks in Requirements Engineering 17

the dynamic dependency modeling, use a visual language in order to model the stake-
holders and their relationships. Moreover, we introduce in the ontology the notion of
coalition for dependence networks. The modeling of normative concepts is an improve-
ment to requirements analysis since it allows, first, to constrain the construction of the
requirements modeling and, second, to represent systems, as for example Grid-based
systems, in which there are explicit obligations regulating the behaviour of the compo-
nents composing it. We define a new modeling activity, called conditional dependency
modeling, to support in the early and late requirements analysis the representation of
obligations and contrary-to-duty obligations. This representation is realized as tuples of
dependencies related to each other where an obligation is viewed as a particular kind
of dependency, related to the dependencies due to sanctions and secondary obligations.
Moreover, we model the requirements analysis phases also in a context in which there
is the possible presence of coalitions in conditional dependence networks.

Concerning future work, we are interested in representing the coalitions’ evolution
process by means of our modeling techniques and in defining more powerful constraints
on coalitions with the aim to maintain, thanks to the application of norms, coalitions’
stability during this evolution process. In our opinion, this would be a relevant improve-
ment to the studies concerning coalitions’ stability because of the application, at the
same time, of a social network approach, providing measures and graph-based meth-
ods, and a normative multiagent approach, providing mechanisms like social laws and
norms. Finally, we are improving our conditional dependency modeling by adding also
the representation of prohibitions.

References

1. Bauer, B., Müller, J.P., Odell, J.: Agent UML: A formalism for specifying multiagent soft-
ware systems. Software Engineering and Knowledge Engineering 11(3), 207–230 (2001)

2. Boella, G., Caire, P., van der Torre, L.: Autonomy implies creating one’s own norms norm
negotiation in online multi-player games. Knowl. Inf. Syst. 18(2), 137–156 (2009)

3. Boella, G., van der Torre, L., Verhagen, H.: Introduction to normative multiagent systems.
Computational and Mathematical Organization Theory 12, 71–79 (2006)

4. Boella, G., van der Torre, L., Villata, S.: Changing institutional goals and beliefs of au-
tonomous agents. In: Bui, et al. (eds.) [8], pp. 78–85

5. Boella, G., van der Torre, L., Villata, S.: Social viewpoints for arguing about coalitions. In:
Bui, et al. (eds.) [8], pp. 66–77

6. Boella, G., van der Torre, L.W.N.: Regulative and constitutive norms in normative multia-
gent systems. In: Dubois, D., Welty, C.A., Williams, M.-A. (eds.) Principles of Knowledge
Representation and Reasoning (KR), pp. 255–266. AAAI Press, Menlo Park (2004)

7. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-
oriented software development methodology. Autonomous Agents and Multi-Agent Sys-
tems 8(3), 203–236 (2004)

8. Bui, T.D., Ho, T.V., Ha, Q.T. (eds.): 11th Pacific Rim International Conference on Multi-
Agents (PRIMA 2008). LNCS (LNAI), vol. 5357. Springer, Heidelberg (2008)

9. Caire, P., Villata, S., Boella, G., van der Torre, L.: Conviviality masks in multiagent sys-
tems. In: Padgham, L., Parkes, D.C., Müller, J., Parsons, S. (eds.) 7th International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1265–1268.
IFAAMAS (2008)

18 G. Boella, L. van der Torre, and S. Villata

10. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Sci.
Comput. Program. 20(1-2), 3–50 (1993)

11. Forrester, J.W.: Gentle murder, or the adverbial samaritan. Journal of Philosophy 81, 193–
197 (1984)

12. Foster, I.T.: The anatomy of the grid: Enabling scalable virtual organizations. In: First IEEE
International Symposium on Cluster Computing and the Grid (CCGRID), pp. 6–7. IEEE
Computer Society, Los Alamitos (2001)

13. García-Ojeda, J.C., DeLoach, S.A., Robby, W.H.O., Valenzuela, J.: O-maSE: A customizable
approach to developing multiagent development processes. In: Luck, M., Padgham, L. (eds.)
Agent-Oriented Software Engineering VIII. LNCS, vol. 4951, pp. 1–15. Springer, Heidelberg
(2008)

14. Kinny, D., Georgeff, M.P., Rao, A.S.: A methodology and modelling technique for systems
of bdi agents. In: Perram, J., Van de Velde, W. (eds.) Modelling Autonomous Agents in a
Multi-Agent World, MAAMAW 1996. LNCS, vol. 1038, pp. 56–71. Springer, Heidelberg
(1996)

15. Minsky, N.H., Lockman, A.: Ensuring integrity by adding obligations to privileges. In: Inter-
national Conference on Software Engineering (ICSE), pp. 92–102 (1985)

16. Prakken, H., Sergot, M.J.: Contrary-to-duty obligations. Studia Logica 57(1), 91–115 (1996)
17. Shoham, Y., Tennenholtz, M.: On social laws for artificial agent societies: Off-line design.

Artif. Intell. 73(1-2), 231–252 (1995)
18. Sichman, J.S., Conte, R.: Multi-agent dependence by dependence graphs. In: The First In-

ternational Joint Conference on Autonomous Agents & Multiagent Systems (AAMAS), pp.
483–490. ACM, New York (2002)

19. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Models to
Software Specifications. Wiley, Chichester (2009)

20. Wooldridge, M., Jennings, N.R., Kinny, D.: The GAIA methodology for agent-oriented anal-
ysis and design. Autonomous Agents and Multi-Agent Systems 3(3), 285–312 (2000)

21. Yu, E.: Modeling organizations for information systems requirements engineering. In: First
IEEE International Symposium on Requirements Engineering, pp. 34–41 (1993)

22. Zhao, G., Chadwick, D.W., Otenko, S.: Obligations for role based access control. In: AINA
Workshops (1), pp. 424–431. IEEE Computer Society, Los Alamitos (2007)

A Norm-Based Organization Management

System

Natalia Criado, Vicente Julián, Vicente Botti, and Estefania Argente�

Grupo de Tecnoloǵıa Informática - Inteligencia Artificial
Departamento de sistemas informáticos y computación

Camino de Vera S/N 46022 Valencia (Spain)
{ncriado,vingalda,vbotti,eargente}@dsic.upv.es

Abstract. Virtual organizations are conceived as an effective mechanism
for ensuring coordination and global goal fulfilment of an open system,
in which heterogeneous entities (agents or services) interact and might
also present self-interested behaviours. However, available tools rarely give
support for organizational abstractions. The THOMAS multi-agent archi-
tecture allows the development of open multi-agent applications. It pro-
vides a useful framework for the development of virtual organizations, on
the basis of a service-based approach. In this paper, the Organization Man-
agement System component of the THOMAS architecture is presented. It
is in charge of the organization life-cycle process, including the normative
management. It provides a set of structural, informative and dynamic ser-
vices, which allow describing both specification and administration fea-
tures of the structural elements of the organization and their dynamics.
Moreover, it makes use of a normative language for controlling the service
request, provision and register.

Keywords: Multi-Agent Systems, Normative Language, Virtual Orga-
nizations, Web Services.

1 Introduction

A promising approach in the multi-agent systems (MAS) area is the development
of open systems. The main features of open systems are: (i) they are populated
by heterogeneous agents which can enter or leave the system dynamically; and
(ii) they are situated in dynamic environments. Therefore, organizations are con-
ceived as an effective mechanism for coordinating the behaviour of heterogeneous
agents, imposing not only structural restrictions on their relationships, but also
normative restrictions on their behaviour [1,2]. Thus, organizations describe the
system functionality (i.e. roles, tasks, services), the norms that control agent
behaviours, the formation of groups of agents, the global goals pursued by these
� This work is supported by TIN2005-03395 and TIN2006-14630-C03-01 projects of the

Spanish government, GVPRE/2008/070 project, FEDER funds and CONSOLIDER-
INGENIO 2010 under grant CSD2007-00022, FPU grant AP-2007-01256 awarded to
N.Criado.

J. Padget et al. (Eds.): COIN 2009, LNAI 6069, pp. 19–35, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

20 N. Criado et al.

groups and the relationships between entities and their environment. Moreover,
the potential changes on the dynamic environment might require the adaptation
of the organizational structure and functionality.

The ”computing as interaction” paradigm [3] defines computation as an inher-
ent social activity that takes place by means of communication between comput-
ing entities. More specifically, large distributed systems are conceived in terms
of service provider or consumer entities [4]. Therefore, the relevant technological
approaches of this paradigm are service oriented architectures (SOA) and MAS.
On the one hand, services provide a standard infrastructure for the interaction
among heterogeneous software entities. On the other hand, MAS offer a more
general and complex notion of SOA; agents, due to their intelligent and social
capabilities, allow the redefinition of traditional services adding new features
such as dynamic service composition, negotiation about quality of service, etc.
In the last years, several works have focused on the problem of integrating these
two approaches, in order to model autonomous and heterogeneous computa-
tional entities in dynamic and open environments. Their main effort is directed
at masking services for redirection, integration or administration purposes [5].

Taking this integrating view into account, THOMAS has been defined as an
open architecture for large-scale open multi-agent systems, based on a service-
oriented approach [6]. This architecture provides agents with a set of services for
offering and discovering entities’ functionality and for managing the organiza-
tion life-cycle. With this purpose of achieving a better integration among MAS
and Web Services, all the functionalities (i.e. agent and also THOMAS func-
tionalities) are provided, required and published in THOMAS employing Web
Services standards (such as OWL-S), and they can also make use of traditional
Web Services.

One of the main components of the THOMAS architecture is the Organization
Management System (OMS), which is responsible for the management of the or-
ganizations and their constituent entities. In order to allow this management,
the OMS must provide a set of structural, informative and dynamic services for
describing both specification and administration features of the structural ele-
ments of the organization and their dynamics. In this sense, the OMS provides
adaptive mechanisms for creating organizational structures that allow optimiz-
ing the coordination in Virtual Organizations (VOs), taking into account the
heterogeneity of agents and services.

With the aim of allowing the organization management, the OMS requires a
normative language for controlling how services can be employed, i.e., when and
how agents can request, provide or publish not only their services, but also these
ones provided by the open architecture. In this sense, a normative language that
imposes a deontic control over agents for requesting, providing or publishing
services has been defined. Then the OMS provides regulatory mechanisms that
guarantee a globally efficient coordination in open systems taking into account
the impossibility of controlling (the majority of) the agents and services directly.

Following, a description of the proposed OMS component, in charge of the
organization management by means of organizational services is detailed. Its

A Norm-Based Organization Management System 21

norm management process, both with a description of its norm representation
language is detailed in section 3. The implementation of this OMS component is
explained in section 4. A case study is contained in section 5. Finally, discussion
and conclusions are detailed in sections 6 and 7, respectively.

2 Organization Management System

As previously mentioned, the THOMAS architecture has the aim of integrating
both multi-agent systems and service-oriented computing technologies as the
foundation of virtual organizations. This open architecture for large-scale open
multi-agent systems is composed of a range of services included on different
modules or components1. In this sense, agents have access to the architecture
infrastructure through the following components:

– Service Facilitator (SF). This component provides a mechanism and sup-
port by which organizations and agents can offer and discover services.

– Platform Kernel (PK). It maintains the basic management services for an
agent platform. It integrates the FIPA AMS and the FIPA communication
network layer.

– Organization Management System (OMS). This component is mainly
responsible of the management of the organizations and their entities. Thus,
it gives support to the organization life-cycle management.

The present paper is focused on this last component. It is in charge of controlling
the organizational life-cycle process. In THOMAS, organizations are structured
by means of Organizational Units (OU) [7] which represent a set of agents that
carry out some specific and differentiated activities or tasks, following a prede-
fined pattern of cooperation and communication. An OU is formed by different
entities along its life-cycle which can be either single agents or other OUs. They
represent a virtual meeting point because agents can dynamically enter and leave
organizational units, by means of adopting (or leaving) roles inside. An OU has
also an internal topology (i.e. hierarchical, team, plain), which imposes restric-
tions on agent relationships (for example, supervision, monitoring or information
relationships). A more detailed explanation of the OU concept and a description
of different topologies can be found in [7].

The OMS is in charge of controlling how the Organizational Units are created,
which entities are participating inside them, how these entities are related and
which roles they are playing through time. For this reason, the OMS offers agents
a set of services for organization life-cycle management, classified in:

– Structural services, which enable agents to request the OMS to modify the
structural and normative organization specification. They comprise services
for adding/deleting norms (RegisterNorm, DeregisterNorm), adding/deleting
roles (RegisterRole, DeregisterRole) and creating new organizational units or
deleting them (RegisterUnit, DeregisterUnit). Publishing these services en-
ables agents to modify the organization structure through its life-time.

1 http://www.fipa.org/docs/THOMASarchitecture.pdf

http://www.fipa.org/docs/THOMASarchitecture.pdf

22 N. Criado et al.

– Informative services, that provide information of the current state of the
organization, detailing which are the roles defined in an OU (InformUni-
tRoles), the roles played by an agent (InformAgentRoles), the specific mem-
bers of an OU (InformMembers), its member quantity (InformQuantity), its
internal structure (InformUnit), and the services and norms related with a
specific role (InformRoleProfiles, InformRoleNorms).

– Dynamic services, which allow defining how agents can adopt roles inside
OUs (AcquireRole, LeaveRole) or how agents can be forced to leave a specific
role (Expulse), normally due to sanctions. Publishing these services enables
external agents to participate inside the system.

This set of services for organization life-cycle management allows defining spec-
ification and administration features of the structural components of the orga-
nization (roles, units and norms) and their dynamics (entry/exit of entities).
However, a specific control on who can make use of these services and in which
conditions is needed. This type of control is defined by means of norms.

3 Norm Management

Normative systems have been defined as a mechanism for enabling cooperation
inside Open MAS. In this sense, norms are persuasive methods for obtaining the
desired behaviour from agents. In addition, norms can be viewed as a coordi-
nation skill for organizing MAS, since they specify the desired behaviour of the
society members [8]. Regarding this second conception of norms, our proposal
consists on employing norms for regulating agent organizations. More specifi-
cally, this work has the purpose of applying the normative theory for defining
the way in which agents may modify the structure of their organization (norms,
organizational units and roles) and its execution components, in order to adapt
it dynamically to environmental changes.

Recently, works on norms have focused on overcoming the gap between the-
oretical works on normative systems and practical MAS. They give a compu-
tational interpretation of norms that allows norm execution. However, none of
them raises the normative management problem or gives an infrastructure that
enables including the normative theory inside the implementation of real MAS
applications. With this aim, we have developed both a normative language for
controlling agent organizational dynamics and a normative management engine,
which are explained in the following sections.

3.1 Norm Representation Language

Before addressing the norm controlling problem, the definition of a formal lan-
guage for the representation of the normative concepts is needed. Our normative
language is mainly based on previous works for defining norms inside Electronic
Institutions (EI) [9,10]. These works define a normative language for control-
ling the communicative acts (illocutions) of agents inside an EI. In addition,

A Norm-Based Organization Management System 23

they propose an extension of this language for allowing the definition of norms
concerning non-dialogical actions. Our language takes these approaches as a
starting point and increases them in order to give support to functional and
organizational management. More concretely, it makes possible the definition of
constraints on agent behaviours in terms of actions related to service controlling
and organizational processes. The main contributions of the proposed language
are: (i) it allows the definition of consequences of norms by means of sanctions
and rewards; (ii) it gives support to organizational concepts such as roles or
organizational units and; (iii) the definition of agents’ functionality by means of
the OWL-S standard increases norm expressiveness, as will be argued lately.

Following, some issues about the developed normative language are com-
mented. For a more detailed description of this language see [11].

The proposed language is a coordination mechanism that attempts to: (i)
promote behaviours satisfactory to the organization, i.e. actions that contribute
to the achievement of global goals; and (ii) avoid harmful actions, i.e. actions that
prompt the system to be unsatisfactory or unstable. Norm semantics is based
on deontic logic since it defines obligations, permissions and prohibitions. Our
approach conceives norms as expectations that may not be fulfilled. Thus, norms
are not impositions (i.e. they are not automatically regimented on agents by their
designer), but they are methods for persuading agents to behave correctly by
means of the application of sanctions and rewards. For example, an agent would
be expelled from the organization as sanction if it violates norms systematically.
An analysis on the effectiveness of both sanctions and rewards as mechanisms for
enforcing norms is over the scope of this article. However, this work assumes that
agents are aware of norms, punishments and rewards. In this sense, a normative
reasoning process for norm-aware agents has been proposed in [12].

Norms define agent rights and duties in terms of actions that agents are
allowed or not to perform. Actions have been divided in two categories: actions
related to the organizational aspects of MAS; and actions concerning service
accessing. Hence, two main types of norms have been defined:

– Organizational Norms: related to services offered by the OMS to members
of the organization. They establish organizational dynamics, e.g. role man-
agement (role cardinalities, incompatibility between roles) and the protocol
by which agents are enabled to acquire roles.

– Functional Norms: related to services offered by the members of the or-
ganization or the SF. They define role functionality in terms of services
that can be requested/provided, service requesting order, service conditions,
protocols that should be followed, etc. They establish service management
according to previous service results, environmental states, etc.

Table 1 details the reduced BNF syntax of this language. A norm is defined
by means of a deontic operator (<deontic concept>), an addressed entity and
an action, that concerns organizational (<organizational action>) or functional
(<functional action>) management. The <temporal situation> field establishes
a temporal condition for the activation of the norm. It can be expressed as a
deadline, an action or a service result. A norm may also contain a state condition

24 N. Criado et al.

Table 1. On the left side, BNF syntax of norms is detailed. On the right side, its
semantics expressed by means of dynamic logic is given. α is an action description. β
is an state description. V , DO(α) and DONE(α) are the well-known predicates for
representing violation states, an action α that will be done next and an action α that
has been performed. Finally, φ represents a norm.

<norm>::=<deontic> <entity>
<action> [<temporal>]
[IF <if condition>] | norm id

<ext norm>::=<norm> [SANCTION(<norm>)]
[REWARD(<norm>)]

<deontic>::=OBLIGED | FORBIDDEN |
PERMITTED

<entity>::=<agent>: <role> [− <unit>] |
<role> [− <unit>] | <entity id>

<agent>::=?variable | agent id
<role>::=?variable | role id
<unit>::=?variable | unit id

<entity id>::=agent id | role id | unit id

<action>::=<functional action> |
<organizational action>

<temporal>::=BEFORE <sit> | AFTER <sit> |
BETWEEN(<sit> , <sit>)

φ : FORBIDDEN α≡ [α]V
φ : OBLIGED α≡ [¬α]V

φ : PERMITTED α≡ [α]¬V

φ : φ′SANCTION α≡φ′ ∧ [V]DO(α)
φ : φ′REWARD α≡φ′ ∧ [¬V]DO(α)

φ : φ′BEFORE α≡φ′ ∨DONE(α)
φ : φ′AFTER α≡ [α]φ′

φ : φ′BETWEEN(α1, α2)≡ [α1]φ
′∨

DONE(α2)

φ : φ′IFβ≡β → φ′

for its activation (<if condition>). It is a boolean condition expressed over vari-
ables, identifiers, failed or satisfactory states of norms or service results.

Usually, obligations and prohibitions have sanctions and rewards as persuasive
methods. Sanctions and rewards are represented through norms addressed to
entities that will act as norm defenders or promoters. The definition of sanctions
and rewards recursively as norms can create an infinite chain of norms. Thus, not
only addressed agents might be controlled by norms, but also their controllers
(defenders or promoters). Following M. Luck et al. proposal [13], our normative
model does not impose any restriction on this fact, so it is the norm designer
who is in charge of specifying when to stop this recursive process, i.e. when a
controller is trustworthy enough. For example, norm 1 obliges a Supervisor agent
to request AddUnit service; if the Supervisor agent does not respect the norm,
then it will be expelled from the organization by the OMS as sanction. Norm
1 contains a state condition and a temporal condition also. In this case, these
conditions indicate that the agent is obliged to request AddUnit service before
10 seconds if it is the only Supervisor inside the organization.

?agent : Supervisor OBLIGEDREQUEST AddUnit

IF InformQuantity(“Supervisor′′) = 1

BEFORE(10
′′
)

SANCTION omsOBLIGEDPROV IDEExpulse

MESSAGE(CONTENT (?agent, “Supervisor′′))

(1)

Organizational norms are related to actions that allow agents to request or-
ganizational services (<org service>) for adopting roles, registering new norms,

A Norm-Based Organization Management System 25

etc. These services are provided by the OMS. Functional norms are defined in
terms of actions related to the publication (REGISTER), provision (SERVE)
or usage (REQUEST) of services. The BNF syntax of both organizational and
functional actions is detailed in Table 2. Norm 2 contains an example of a func-
tional norm. It obliges a service Provider agent to register its own SearchService
service.

?agent : Provider OBLIGED

REGISTERSearchService

PROFILE

INPUT (ServiceDescription : String)

OUTPUT (ServiceID : Identifier)

(2)

Table 2. BNF syntax of organizational and functional actions

<organizational action>::=REQUEST <org service> MESSAGE(<msg cont>)

<org service>::=<structural service> | <dynamic service> | <informative service>

<structural service>::=RegisterNorm | RegisterRole | DeregisterNorm |
DeregisterRole | DeregisterUnit | RegisterUnit

<informative service>::=InformUnitRoles | InformAgentRoles | InformUnit | InformMembers |
InformRoleProfiles | InformRoleNorms | InformQuantity

<dynamic service>::=AcquireRole | LeaveRole | Expulse

<functional action>::=<serv publication> | <serv provision> | <serv usage>

<serv publication>::=REGISTER service name PROFILE <profile desc>
[PROCESS<process desc>]

<service provision>::=SERVE service name PROCESS <process desc>
[MESSAGE(<msg cont>)]

<service usage>::=REQUEST service name MESSAGE(<msg cont>)

As previously mentioned, the specification of functionalities by means of
OWL-s standard allows defining functionality more expressively: representing
service preconditions and effects; global functionalities are described as complex
services that are composed of atomic services, so a complex service specification
describes how agent behaviours are orchestrated; and functionality is detailed in
two ways: services that entities perform and services that entities need. Thus,
Service Oriented Computing (SOC) concepts such as ontologies, process models,
choreography, facilitators, service level agreements and quality of service mea-
sures can be applied to MAS. Our proposal of normative language offers support
for specifying knowledge about a service following OWL-s ontology. The profile
(<profile desc>) for advertising and discovering services contains input and out-
put parameters of the service and its preconditions and postconditions. The pro-
cess model (<process desc>) gives a detailed description of a service’s operation.
It details the sequence of actions carried out by the service. These actions are
linked through each other by means of different control constructs: CONNECTS
indicates a sequential ordering between two actions; JOIN indicates a concur-
rence between actions and a final synchronization of them; IF-THEN-ELSE and

26 N. Criado et al.

Table 3. BNF syntax of service profile and process

<profile desc>::=[INPUT(<param list>)] [OUTPUT (<param list>)]
[PRE(<cond exp>)][POST(<cond exp>)] | profile id

<process desc>::=process id | ?variable | <action> CONNECTS <process desc> |
<action> JOIN <process desc> |
IF <cond exp> THEN(<process desc>) [ELSE (<process desc>)] |
WHILE <cond exp> DO(<process desc>)

<msg cont>::=[SENDER(<entity>)] [RECEIVER (<entity>)]
[PERFORMATIVE (performative id)] CONTENT (<args>)

<action>::=task id(<param list>) | <service usage>

<param list>::=variable : type [,<param list>]

WHILE-DO define the classical control structures. Finally, the grounding pro-
vides details on how to interoperate with a service, via messages <msg cont>).
Table 3 contains syntax of service processes, profiles and requesting messages.

In this section, a general language for controlling agent service access has been
briefly described. For further details and examples see [11].

3.2 Norm Management Process

This section describes aspects related to the management of organizational
norms. As previously mentioned, our formalism allows representing constraints
over organizational dynamics. Thus, the controlled norms define access to the
organizational services provided by our architecture.

Recently, the line of research on computational implementation of norms is
based on the Electronic Institution (EI) proposal [9,10]. The EIs provide a frame-
work for heterogeneous agent cooperation. However, they are not an open en-
vironment in its broadest sense, because agents interact inside the institution
through the infrastructure provided by the EI. Therefore, the behaviour of ex-
ternal agents is completely controlled by the institution, which allows or not
agents to pronounce certain illocutions. Thus, norms are pre-imposed on agents.
The institutional mediation prevents agent behaviour from deviating from de-
sired behaviour. Moreover, the fact that all communications are made through
the institution allows an easy regimentation and enforcement of norms. In this
sense, the existence of a middle-ware for mediating the agent communication
avoids the need to take into consideration the limitations that exist in open en-
vironments. Such limitations are related to the detection of fact occurrence and
the extra capabilities needed in order to impose norms upon other agents.

Our proposed virtual organization architecture is completely different since it
does not have any mediator layer. On the contrary, agents are allowed to interact
freely. In this sense, our architecture is more related to the notion of Partially
Controlled MAS [14], in which agents may deviate from ideal behaviour. As a
consequence, there has to be a control mechanism for motivating agents to obey
the norms. However, our architecture offers a set of services for the management
of the organizations life-cycle. In this sense, the OMS is not a centralised entity
that controls all the interactions performed by agents. On the contrary, it is
a controllable entity (which is directly controlled by the system designer [14])

A Norm-Based Organization Management System 27

which offers a set of organizational services in order to give support to agent
cooperation. One of these coordination mechanisms is the definition of norms
that regulate agent behaviour. The OMS does not control the agent communica-
tions, it is only in charge of implementing the norms that regulate access to OMS
services. The verifiability issue of a norm is a crucial aspect in the normative
management process since there is not any mediator middle-ware that controls
all the communications.

Norm Verifiability. Works on norm implementation conceive norms as a mech-
anism for enabling coordination and cooperation inside open MAS. Nevertheless,
none of them faces with one of the main problems inside open systems, which is
the existence of limitations. The term limitation refers to the fact that an entity
needs extra information and capabilities in order to act as a norm supervisor
or controller. Therefore, an analysis of normative verifiability is needed, before
dealing with norm implementation.

The OMS can control norms which are related to the provision of organiza-
tional services. Therefore, the set of OMS verifiable norms is a subset of the
organizational norms. Verifiable norms are regulative norms that define ideal
behaviour by means of obligations, prohibitions and permissions. More specifi-
cally, permissive and prohibition norms concerning the access to OMS services
are controllable, since the OMS checks whether the client agent is allowed to
perform such request before providing it. On the other hand, obligation norms
can not be imposed by the OMS as it has not capabilities to force agents to
carry out an action. However, the OMS can detect the violation of an obligation
norm related to an OMS service and perform the associated sanction. On the
contrary, if the norm has been fulfilled then the OMS will carry out the actions
specified by the reward. Logically, obligation norms should be active for a certain
period of time, i.e. normative activation and deactivation events must be defined
in order to allow the OMS to determine the norm fulfilment.

Verifiable conditions are related to informative services provided by the OMS
such as role cardinalities, information about roles played by agents, etc. Regard-
ing detectable events, they are the request and provision of services offered by
the OMS. Both verifiable condition and detectable events syntax are a refine-
ment of the general condition syntax proposed in [11]. Finally, sanctions and
rewards can be defined by means of norms that oblige the OMS to request or
provide a specific service, as shown in norm 2.

In this section, issues concerning the formal language for representing norms
and syntax of verifiable organizational norms have been detailed. Not only an
abstract component in charge of the management of organizations has been
proposed, but also an implementation of the OMS component has been made.
Next, this implementation is described.

4 Organization Management System Implementation

As previously argued, the OMS is a controllable entity which offers a set of orga-
nizational services. This system maintains a fact base representing the

28 N. Criado et al.

Fig. 1. OMS Implementation

organizational state, and it is also in charge of controlling verifiable norms. The
implementation has been included in a prototype of the THOMAS architecture2.
As Figure 1 illustrates, the OMS implementation is composed by two main ele-
ments: the implementation of the organizational services and the implementation
of the normative management process, which are described next.

4.1 OMS Services Implementation

As previously stated, the set of services provided by the OMS are those ones
related to the organizations life-cycle management, i.e. the management of their
structural components (unit, roles and norms) and the organizational dynamics.

The service request management process consists of:

– (i) Firstly, the normative context must be analysed in order to determine
whether the client agent is allowed to request this service according to the
organizational state.

– (ii) If so, then the OMS provides the requested service.
– (iii) If the organizational state changes as a result of the service provision,

then this state is updated.

Mainly, the service provision process consists of an input verification phase and
the updating of the organizational state according to the produced changes. As
an example, the process of registering of a new norm involves:

– (i) Verification of input data, i.e. checking the adequacy of norm syntax as
well as the uniqueness of the provided norm identifier.

– (ii) Norm verifiability detection, i.e. determine if the norm control should
be carried out by the OMS. Verifiability checking is done by means of an
interpreter, which has been automatically built from the BNF syntax of our
organizational normative language employing the JavaCC3 tool.

– (iii) Inconsistency checking. Taking [15,16] as a starting point, an inconsis-
tent situation is that one in which an action is forbidden and permitted or
forbidden and obliged simultaneously. The off-line detection of all norm in-
consistencies is not possible, since the norm activation conditions are based

2 http://www.dsic.upv.es/users/ia/sma/tools/Thomas/
3 https://javacc.dev.java.net/

http://www.dsic.upv.es/users/ia/sma/tools/Thomas/
https://javacc.dev.java.net/

A Norm-Based Organization Management System 29

on the detection of events and facts that may occur during execution. For the
moment, the inconsistency detection mechanism is restricted to the determi-
nation of static inconsistencies, which are situations in which the same action
is defined unconditionally as permitted and forbidden to the same entity. As
future work, we will employ results of theoretical works on norm change4

as well as conflict resolution techniques for solving dynamic inconsistencies
among norms.

– (iv) The fact corresponding to the new norm is registered in the normative
system.

Due to lack of space, only the organizational service for registering a new norm
has been explained in detail. However, all services needed for the management
of units, roles, norms and organizational dynamics, have been implemented in a
similar way.

4.2 Norm Management Implementation

This process covers the maintenance of the organizational state and the de-
termination of the allowed actions according to the normative context and the
organizational state. These two functionalities have been implemented as inter-
nal services of the OMS, by means of a rule-based system in Jess5 that maintains
a fact base representing the organizational state and it also detects norm activa-
tion. Thus, the update service is in charge of adding and deleting facts into the
rule system in order to register the organizational current state.

The determination of the allowed actions is made by means of the analysis of
the normative context. It has been performed as an internal query service offered
by the normative manager to the OMS services. This checking is performed by
the OMS each time it receives a new service request. Then the OMS checks
whether it exists a norm addressed to the client agent that forbids such service
request. Thus, an action is considered as allowed when there is not any norm
that forbids it explicitly. Norms can be addressed to any agent that plays a
specific role or they can affect a specific agent also. Consequently, a criterion for
norm precedence is needed. In this case, a rule known as lex specialis has been
employed [17]. Therefore, the normative analysis begins with checking agent
addressed norms. If there is not any norm, norms related to the roles played by
the agent are considered.

Regarding detection of norm activation and deactivation, this functionality
has been implemented through a set of rules that detect the occurrence of the
activation and deactivation events. This implementation of norms by means of
rules is based on a previous work aimed at implementing norms for Electronic
Institutions [9]. Next, some details about the implementation of each type of
norm are commented:

4 http://icr.uni.lu/normchange07/
5 http://herzberg.ca.sandia.gov/

http://icr.uni.lu/normchange07/
http://herzberg.ca.sandia.gov/

30 N. Criado et al.

– Service access norms. As previously mentioned, these norms allow the defi-
nition of prohibitions and permissions concerning the use of organizational
services. More formally, the semantics of permission norms, expressed as
Event-Condition-Action rules (ECA-rules), is:

on eventstart if ifcondition do ⊕permitted(a)
on a if permitted(a) do ⊕provided(a)

on eventend do �permitted(a)
if not(ifcondition) do �permitted(a)

(3)

According to this, a general service access norm is controlled by means of
the definition of four new rules in the expert system. The first rule detects
norm activation and asserts the permission (⊕permitted(a)). If the action
(a) occurs and it is allowed, then the service is provided (⊕provided(a)).
The last two rules retract the norm from the expert system when the norm
is deactivated, i.e. when the condition (ifcondition) is not true or the com-
pletion event is detected (eventend). In case of prohibition norms, a prohi-
bition (⊕forbidden(a)) is asserted. Thus, if an action a is forbidden, then a
notAllowed fact is asserted.

– Obligation norms. They cannot be directly imposed by the OMS, since it
is not able to force another agent to carry out a specific action. However,
it might persuade agents to behave correctly by performing sanctions and
rewards; i.e. the OMS acts as norm enforcer. Following, a formal description
of obligation semantics is shown:

on eventstart if ifcondition do ⊕expected(a)
on a if expected(a) do �expected(a) • reward

on eventend if expected(a) do �expected(a) • sanction
(4)

Thus, the implementation of obligation norms consists on controlling the
activation of the obligation. Then the OMS waits for the fulfilment of the
expected action (a), i.e. the OMS asserts a new expectation (⊕expected(a)).
If the action is performed before the deadline (eventend) then the reward is
carried out. Otherwise the OMS will perform the sanction.

This section has illustrated some details of the implementation of the OMS
entity. The next section illustrates a case study which describes how an untrusted
external agent is prevented from participating in the agent society.

5 Case Study

In order to illustrate the performance of the OMS services and the normative
management process carried out by the OMS, a case-study example of a cus-
tomised information system has been employed in this section. This example,
named InformationSystem, aims at distributing relevant information of differ-
ent topics in an efficient way, trying to guarantee the maximum quality of this
information. Thus, users might ask the system for information about some spe-
cific topic punctually or they might request to be a member of the system. As a

A Norm-Based Organization Management System 31

member, a user can supply its own information for a specific topic, he can also
create new topics and even classify or evaluate the quality of the information
given by others.

In this section, this system is modelled as an Open MAS in which external
agents can participate as information requesters, providers or even information
evaluators. Following, a description of the organizational structure of the In-
formationSystem organization is explained, and also a dynamical usage of the
organization is detailed, providing an execution scenario.

5.1 Organization Structure

Three roles have been identified in the InformationSystem example: (i) Consul-
tant, that requests information to the system; (ii) Provider, that is allowed to
provide new information (documents); and (iii) Evaluator, who is in charge of
evaluating the documents and controlling member behaviours. Two domain ser-
vices have been identified: ProvideInfo service, that allows Providers to add new
documents; and EvaluateInfo service, which is offered by Evaluators in order to
assess the quality of a given document.

5.2 Dynamic Usage

This scenario shows how a provider agent, which is not providing good docu-
ments, is expulsed permanently from the InformationSystem (Figure 2). P1, E1,
C1 have been previously registered as a provider, an evaluator and a consultant
inside the InformationSystem, respectively. Then C1 requests P1 to give infor-
mation related to hotels (Figure 2 message 1). P1 returns a Document as a result
of the ProvideInfo service (message 2). Then C1 requests agent E1 to provide
the EvaluateInfo service so as to known quality of this information (message
3). After evaluating the provided document, E1 answers by informing C1 about
the low quality of this information (message 4). Then, E1 decides to expel P1
from the InformationSystem, since its provided documents are of low quality, by
requesting the OMS to execute the expulsion service (messages 5 and 6). Then
the OMS informs P1 about its expulsion as an information provider (message 7).
Next E1 creates a new norm in order to prevent P1 acting as a provider in the
future (messages 7 and 8). Therefore, when P1 tries to become an information
provider inside the InformationSystem (message 9) the OMS will not allow P1
to acquire the provider role (message 10), since there is a norm which forbids it
explicitly.

Due to lack of space, a detailed application example illustrating all the new
features of the proposal has not been included here. However, this example il-
lustrates how the OMS services are employed in order to change the normative
context dynamically. The normative context defines the way in which agents be-
have inside THOMAS. For further details a simple demo example can be found
together with an available prototype of the THOMAS architecture6. Following,
conclusions and a discussion on related works are presented.
6 http://www.dsic.upv.es/users/ia/sma/tools/Thomas/index.html

http://www.dsic.upv.es/users/ia/sma/tools/Thomas/index.html

32 N. Criado et al.

Fig. 2. Case Study Dynamics

6 Discussion

Organizations represent an effective mechanism for activity coordination, not
only for humans but also for agents. They have recently been used in agent
theory to model coordination in open systems and ensure social orders [18].

Virtual Organizations include the integration of organizational and individual
perspectives, and the dynamic adaptation of models to organizational and en-
vironmental changes [1]. The necessity of managing the organizational life-cycle
has been taken into account in several approaches such as the S-Moise+ middle-
ware [19] (based on Moise+ [20] organizational model), the Brain system [21],
the ORA4MAS proposal [22] and the Rade system [23]. In our architecture the
OMS entity acts in a similar way; it offers dynamical services for allowing agents
to take roles at runtime, accordingly to the established organizational norms.
However, the main contributions of our proposal are: (i) all this functionality
has been designed following a Service Oriented approach. The OMS services
have been implemented as Web Services independently of the agent platform.
Thus, the OMS gives support for the coordination among agents which belong to
different platforms. In addition, the OMS services are registered and published
by the architecture in order to allow agents to discover them and to know how
to make use of them. (ii) The OMS also offers structural services for allowing
the organizational structure (i.e the roles, units and norms) to be modified at
runtime. As argued previously, the characteristics of open environments make
mandatory supporting the organizational structure evolution and facilitating its
growth and update through execution time.

Open systems need the existence of normative mechanisms that coordinate
agent behaviours. Regarding works on norms, they traditionally have a theoret-
ical point of view. Recently, norms have received a more practical conception
in order to allow the regulation of open distributed systems. More specifically,
traditional approaches based on deontic logic have evolved to a more operational
conception of norms that allows their employment inside the design and execu-
tion of real MAS applications as a coordination mechanism. These approaches
must allow reasoning about the global system performance as well as the agent

A Norm-Based Organization Management System 33

individual reasoning. The normative learning term has been defined as the pro-
cess by which agents take norms into consideration inside their decision making
process [24]. Works concerning the normative reasoning are related to the norm
emergence [25,26] and the norm acceptance [27,28]. Taking these later works
as a starting point, the OMS component described in this paper is aware of the
existence of norms that regulate access to its services. On the other hand, propos-
als for computational operationalization of norms are based on the e-institution
metaphor [9,10]. They assume the existence of an “special” entity, which is the
institution itself, that acts as a middle-ware for agent communications. There-
fore, the institution has an unlimited knowledge about occurrence of facts as
well as extra capabilities for controlling norms.

In order to allow the definition of MAS as Open Systems a new normative
framework that gives support to agent normative reasoning is needed. With this
aim, we have proposed a general normative language for expressing norms and
a normative implementation that allows agents to take into consideration the
existence of norms and their limitations as norm controllers. This proposal of
normative language is a more general and expressive formalism mainly focused
on controlling service registering and usage, making it possible a better integra-
tion of both MAS and Web Service Technologies. The main and new aspects of
the proposed language are: (i) it allows the definition of norms that cover organi-
zational dynamics; and (ii) norms define agent functionality in terms of services
requested and provided by each role. Both the organizational performance and
functionality of the system are established by means of norms.

7 Conclusions

This work belongs to a higher project whose goal is to develop models, frame-
works, methods and algorithms for constructing large-scale open distributed
computer systems. Our aim is to employ this architecture for building demon-
strators on e-procurement, e-healthcare and water conflict resolution. Thus, the
Organizational Management System implementation has been included in a pro-
totype of the THOMAS architecture. This component is mainly responsible for
the management of organizations and their entities. The OMS allows the creation
and management of both norms and organizations. Therefore, our normative
implementation has been employed for controlling access to the organizational
services. In this sense, norms can be conceived as a method for regulating the
dynamical organizational adaptation to the environmental changes.

References

1. Dignum, V., Dignum, F.: A landscape of agent systems for the real world. Tech. re-
port 44-cs-2006-061, Inst. Information and Computing Sciences, Utrecht University
(2006)

2. Boissier, O., Gâteau, B.: Normative multi-agent organizations: Modeling, support
and control. In: Normative Multi-agent Systems, Dagstuhl Seminar (2007)

34 N. Criado et al.

3. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Computing
as Interaction (A Roadmap for Agent Based Computing). AgentLink (2005)

4. Luck, M., McBurney, P.: Computing as interaction: Agent and agreement tech-
nologies. In: IEEE SMC Conference on Distributed Human-Machine Systems, pp.
1–6 (2008)

5. Greenwood, D., Calisti, M.: Engineering web service - agent integration. In: IEEE
Int. Conf. on Systems, Man and Cybernetics, vol. 2, pp. 1918–1925 (2004)

6. Carrascosa, C., Giret, A., Julian, V., Rebollo, M., Argente, E., Botti, V.: Service
Oriented MAS: An open architecture. In: AAMAS, vol. 2, pp. 1291–1292 (2009)

7. Argente, E., Palanca, J., Aranda, G., Julian, V., Botti, V., Garćıa, A., Espinosa,
A.: Supporting agent organizations. In: Burkhard, H.-D., Lindemann, G., Ver-
brugge, R., Varga, L.Z. (eds.) CEEMAS 2007. LNCS (LNAI), vol. 4696, pp. 236–
245. Springer, Heidelberg (2007)

8. Boella, G., van der Torre, L., Verhagen, H.: Introduction to the special issue on
normative multiagent systems. Journal of. Auton. Agents Multi-Agent Syst. 17,
1–10 (2008)

9. Garćıa-Camino, A., Noriega, P., Rodŕıguez-Aguilar, J.A.: Implementing norms in
electronic institutions. In: EUMAS, pp. 482–483 (2005)

10. Torres, V.: Implementing norms that govern non-dialogical actions. In: Sichman,
J.S., Padget, J., Ossowski, S., Noriega, P. (eds.) COIN 2007. LNCS (LNAI),
vol. 4870, pp. 232–244. Springer, Heidelberg (2008)

11. Argente, E., Criado, N., Julian, V., Botti, V.: Designing Norms in Virtual Organi-
zations. In: CCIA, vol. 184, pp. 16–23. IOS Press, Amsterdam (2008)

12. Criado, N., Julian, V., Argente, E.: Towards the Implementation of a Norma-
tive Reasoning Process. In: 7th International Conference on Practical Applica-
tions of Agents and Multi-Agent Systems (PAAMS 2009), pp. 319–328. Springer,
Heidelberg (2009)

13. López, F., Luck, M.: Modelling norms for autonomous agents. In: ENC, pp. 238–
245. IEEE Computer Society, Los Alamitos (2003)

14. Brafman, R.I., Tennenholtz, M.: On Partially Controlled Multi-Agent Systems.
Journal of Artificial Intelligence Research 4, 477–507 (1996)

15. Kollingbaum, M.J., Vasconcelos, W.W., Garćıa-Camino, A., Norman, T.J.: Con-
flict resolution in norm-regulated environments via unification and constraints. In:
Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2007.
LNCS (LNAI), vol. 4897, pp. 158–174. Springer, Heidelberg (2008)

16. Vasconcelos, W., Kollingbaum, M.J., Norman, T.J.: Resolving conflict and incon-
sistency in norm-regulated virtual organizations. In: AAMAS, pp. 632–639 (2007)

17. Boella, G., van der Torre, L.: Permissions and obligations in hierarchical normative
systems. In: ICAIL (2003)

18. Dignum, V., Meyer, J., Weigand, H., Dignum, F.: An organization-oriented model
for agent societies. In: RASTA: 31–50 (2002)

19. Hubner, J., Sichman, J., Boissier, O.: S-moise+: A middleware for developing or-
ganised multi-agent systems. In: EUMAS, pp. 64–78 (2006)

20. Hubner, J., Sichman, J., Boissier, O.: MOISE+: towards a structural, functional,
and deontic model for MAS organization. In: AAMAS, pp. 501–502 (2002)

21. Cabri, G., Leonardi, L., Zambonelli, F.: BRAIN: A Framework for Flexible Role-
Based Interactions in MAS. In: CoopIS/DOA/ODBASE, pp. 145–161 (2003)

22. Kitio, R., Boissier, O., Hbner, J.F., Ricci, A.: Organisational artifacts and agents
for open multi-agent organisations: “Giving the power back to the agents”. In: Sich-
man, J.S., Padget, J., Ossowski, S., Noriega, P. (eds.) COIN 2007. LNCS (LNAI),
vol. 4870, pp. 171–186. Springer, Heidelberg (2008)

A Norm-Based Organization Management System 35

23. Xu, H., Zhang, X.: A Methodology for Role-Based Modeling of Open Multi-Agent
Software Systems. In: ICEIS, pp. 246–253 (2005)

24. Verhagen, H.J.E.: Norm Autonomous Agents. PhD thesis, The Royal Institute of
Technology and Stockholm University (2000)

25. Walker, A., Wooldridge, M.: Understanding the emergence of conventions in multi-
agent systems. In: ICMAS, pp. 384–390 (June 1995)

26. Savarimuthu, B.T.R., Cranefield, S., Purvis, M., Purvis, M.: Role model based
mechanism for norm emergence in artificial agent societies. In: Sichman, J.S., Pad-
get, J., Ossowski, S., Noriega, P. (eds.) COIN 2007. LNCS (LNAI), vol. 4870, pp.
203–217. Springer, Heidelberg (2008)

27. Castelfranchi, C., Dignum, F., Jonker, C.M., Treur, J.: Deliberative normative
agents: Principles and architecture. In: Jennings, N.R. (ed.) ATAL 1999. LNCS,
vol. 1757, pp. 364–378. Springer, Heidelberg (2000)

28. Dignum, F., Morley, D., Sonenberg, L., Cavedon, L.: Towards socially sophisticated
BDI agents. In: ICMAS, pp. 111–118. IEEE Computer Society, Los Alamitos (2000)

J. Padget et al. (Eds.): COIN 2009, LNAI 6069, pp. 36–52, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Implementing Collective Obligations in Human-Agent
Teams Using KAoS Policies

Jurriaan van Diggelen1, Jeffrey M. Bradshaw2, Matthew Johnson2,
Andrzej Uszok2, and Paul J. Feltovich2

1 TNO Defense, Security and Safety,
Soesterberg, The Netherlands

2 Florida Institute for Human and Machine Cognition (IHMC),
40 S. Alcaniz, Pensacola, FL 32502, USA
jurriaan.vandiggelen@tno.nl,

{jbradshaw,mjohnson,auszok,pfeltovich}@ihmc.us

Abstract. Obligations can apply to individuals, either severally or collectively.
When applied severally, each individual or member of a team is independently
responsible to fulfill the obligation. When applied collectively, it is the group as
a whole that becomes responsible, with individual members sharing the obliga-
tion. In this paper, we present several variations of common teamwork models
involving the performance of collective obligations. Some of these rely heavily
on a leader to ensure effective teamwork, whereas others leave much room for
member autonomy. We strongly focus on the implementation of such models.
We demonstrate how KAoS policies can be used to establish desired forms of
cooperation through regulation of agent behavior. Some of these policies con-
cern invariant aspects of teamwork, such as how to behave when a leader is pre-
sent, how to ensure that actions are properly coordinated, and how to delegate
actions. Other policies can be enabled or disabled to regulate the degree of
autonomy of the team members. We have implemented a prototype of a Mars-
mission scenario that demonstrates varying team behavior when applied across
these different teamwork models.

Keywords: Human-agent teams, Policies, Collective Obligations.

1 Introduction

Autonomy is a core property of an agent. Generally speaking, we might say that the
more control an agent has over its own actions and internal state, the greater its
autonomy. By this definition, collaboration almost always entails a reduction in
autonomy. In collaboration, we are willing to give up some degree of autonomy in the
service of achieving joint objectives [18].

Our research interest has been to understand how this can be realized through the
use of policies in KAoS [2]. A KAoS policy is defined as “an enforceable, well-
specified constraint on the performance of a machine-executable action by a
subject in a given situation”. There are two main types of polices; authorizations and
obligations. Authorization policies specify which actions are permitted (positive

 Implementing Collective Obligations in Human-Agent Teams Using KAoS Policies 37

authorizations) or forbidden (negative authorizations) in a given situation. Obligation
policies specify which actions are required (positive obligations) or waived (negative
obligations) in a given situation. KAoS uses OWL (Web Ontology Language:
http://www.w3.org/2004/OWL) to represent policies. These policies can be used for
regulation of a variety of systems including agent-based systems, web services, and
grid services.

KAoS policies have already been successfully applied to some important aspects of
joint activity in the context of human-robot teamwork [17] In this paper, we extend
this research by adding the notion of a collective obligation [7]. The difference be-
tween an individual obligation (IO) and a collective obligation (CO) is that in IO’s
each individual or member of a team is independently responsible to fulfill the obliga-
tion. On the other hand, in CO’s, it is the group as a whole that becomes responsible,
with individual members sharing the obligation. CO’s are especially useful in govern-
ing complex abstract behavior—in our case, for example, the obligation that agents
have to ensure safety. The difficulty of writing individual obligations for ensure-
safety is that it is probably not an action that can be directly executed by any one
agent. Most likely, a plan must be created to decompose ensure-safety into more con-
crete actions. It is also difficult to decide, beforehand, who is the best candidate to
carry out the plan, as a different plan might be adopted in different circumstances.
Moreover, agents may have different capabilities, enabling them to contribute indi-
vidually or jointly in particular roles. For such reasons, constraints requiring the per-
formance of abstract team actions like ensure-safety are usually better implemented as
collective, as opposed to individual, obligations.

Because a CO often does not direct activity at the level of the single agent’s behav-
ior, we must find a way to translate the CO to the individual level. Our research aim
in this paper can thus be described: to develop general policies to fulfill collective
obligations, and to map these obligations to individuals dynamically, based on the
current context.

Inspired by previous theoretical groundwork on these issues [7][14], we follow a
very practical approach. First, we demonstrate how to represent and reason about
collective obligations in OWL. Second, we describe three sets of KAoS policies that
we defined to govern agent behavior in the execution of collective obligations. Third,
we provide a configuration policy set that is used to adjust specific aspects of the
teamwork model for use in a given situation. Finally, we present a prototype we have
implemented to demonstrate the use of these policies in the context of a Mars mission
scenario [19].

We claim several benefits for developers of agent teams. The first concerns reus-
ability. Because the policies describe near-universal teamwork aspects, they are
domain independent and can apply to many kinds of applications, thus saving devel-
opment time. The second benefit concerns sharedness. Because teamwork requires
maintaining common ground among the participants [18], agents benefit when the
code that generates team behavior can be shared by all agents. By introducing a
shared collection of teamwork policies for the whole system, in conjunction with
KAoS monitoring and enforcement capabilities, newly added agents fit easily into the
team, no matter who developed them or which language they are programmed in. The
policies accommodate even the most primitive agents by eliminating the requirement
that each agent be capable of sophisticated deliberation in order to collaborate. Next,

38 J. van Diggelen et al.

there is the benefit of separation of concerns. By using KAoS policies, the code that
implements teamwork is cleanly segregated from the rest of the agent code. This
avoids the typical clutter experienced when teamwork code is scattered in arbitrary
locations among all agents. Finally, we believe that KAoS policies are very straight-
forward to read and understand, making them more suitable to implement this kind of
behavior than more low-level programming languages.

In addition to the benefits for agent developers, we also believe that this approach
is more conducive to scientific progress towards the much more ambitious goal of
human and machine joint activity [23][10]. Although the policies described in this
paper are relatively simple, they are fundamental in normal human teamwork. Hence,
when agents adopt important aspects of human teamwork, people may find them more
predictable and understandable.

The remainder of the paper is outlined as follows. Section 2 explains the basic
teamwork model. Section 3 provides an overview of the KAoS policy services
framework. In Sections 4, 5 and 6, we describe how we used KAoS to implement the
teamwork model: ontological aspects in Section 4; policies in Section 5; an imple-
mented prototype with agents in a Mars-mission scenario in Section 6. Related work
is discussed in Section 7, followed by conclusions in Section 8.

2 Team Design

Teamwork is a topic of great complexity and breadth. Here, our focus is only on one
aspect of teamwork, i.e., collective obligations. Collective obligations require teams
to perform some action whenever some event or state triggers the obligation. Perform-
ing such actions typically involves planning, delegation and coordination. The aim of
team design is to ensure that this process is adequately supported.

Not every team member is necessarily equally involved in each phase. For exam-
ple, special responsibilities are often attributed to the leader of the team. What it
means to be a leader may vary in different domains [17]. In this paper, we adopt a
very light definition of leadership, i.e. being authorized to delegate actions, and being
authorized to create plans. Whether the presence of a leader is a strict necessity in our
approach is further discussed in Section 7.

Three primary aspects of team design are pertinent to the issues discussed in this
paper: leadership assumption, task allocation, and plan coordination. Each of these
aspects can vary, resulting in different team behavior. Figure 1 depicts these aspects
in three dimensions, where each combination of aspects represents a different kind of
team.

Along the x-axis, two possibilities for leadership assumption are shown. We can
appoint someone as a leader beforehand (i.e. pre-established leadership), or we can
defer the choice and allow leaders to volunteer on demand (i.e. ad hoc leadership
assumption). Whereas "pre-established" and "ad hoc" qualify as two extremes on the
leadership assumption dimension, there are, of course, intermediate options possible
that we do not consider here. One example is that of a predefined line of succession
which is used to determine leadership if all higher-ranking leaders are unavailable.

 Implementing Collective Obligations in Human-Agent Teams Using KAoS Policies 39

ad hoc
pre-established

decentralized

centralized

individual

group

leadership
assumption

task
allocation

plan
coordination

Fig. 1. Three dimensions in team design

The task allocation dimension is shown along the z-axis. Individual task allocation
means that requests are directed at individual agents. In group task allocation, the
request is directed to the group as a whole, without specifying which individual must
perform the task.

Plan coordination is depicted on the y-axis, with the two alternatives being central-
ized and decentralized. Figure 2 depicts the communication pattern for these two
ways of coordinating plans. The left side of the figure depicts centralized coordina-
tion, i.e. the requester (the grey agent) is responsible for making sure that the actions
are executed in the right order. The right side of the figure shows decentralized coor-
dination, i.e. the agents executing the plan take care of the coordination themselves. In
the latter case, the requester delegates plan coordination. It may do so by sending a
request for action a, together with information about who will perform the subsequent
action b. In the figure, this is written as “creq a,b.”

re
q

a

re
q

b

do
ne do

ne

req
c

done
cr

eq
a,

b

cr
eq

b
,c creq

c
done

done done

Centralized Decentralized

1

2

3

4

5

6

1
2 3

4 5

6

Fig. 2. Centralized and decentralized coordination patterns

With centralized coordination, the requested agents may not be aware that their ac-
tions are part of a larger plan. With decentralized coordination, the requested agents
require more knowledge about the action’s context, i.e. they must know which agent
is responsible for performing the next action in the plan.

The three dimensions outlined above can be regarded as different aspects of the di-
chotomy between central authority and member autonomy [3]. Pre-established leader-
ship means that one central authority remains in charge of the team, whereas ad hoc
leadership allows for more member autonomy because each team member may

40 J. van Diggelen et al.

become a leader under certain circumstances. Centralized plan coordination allocates
the task of coordinating plans to one central authority, whereas decentralized plan
coordination allows each agent to make its contribution to coordination, i.e. reflecting
more member autonomy. Individual task allocation implies that one central authority
decides who performs the tasks; whereas group task allocation yields more member
autonomy as the team members decide this among themselves.

In Figure 1, the team with most central authority is represented as the black cube.
For the other teams, we can say that the further away the cube is from the black cube,
the more member autonomy exists in the team. The white cube represents the team
with most member autonomy. Which of these eight team configurations is the best
one depends on the circumstances and cannot be decided in general. Below, we out-
line some general considerations when choosing between central authority and mem-
ber autonomy; the discussion is not intended to be exhaustive. An advantage of using
a central authority might be that it allows the team designer to select the best agent for
the most important tasks. In this way, the team can be better adapted to the different
qualities of agents. Another advantage of a central authority approach might be ac-
countability: that is, that it would be easier to identify the responsible agent when
things go wrong.

A disadvantage of a central authority might be that it would be less robust in cer-
tain circumstances, e.g., when the leader becomes unavailable, the entire team be-
comes dysfunctional. Another disadvantage of central authority might arise when not
every team member has the same access to the situation. For example, it may be better
to have a crisis operation led by someone on site than by a predefined leader who is
far away. As a last disadvantage, we mention the potentially increased response time
of strongly hierarchical teams. For example, when an incident happens, this must
communicated all the way up to a leader, after which the leader makes a decision and
communicates it all the way down to those carrying out the work. A faster response
may be obtained by allowing the observer of the incident to take immediate action.

Because the models are implemented on the KAoS infrastructure, we will first
give some more background on the KAoS policy framework.

3 Implementing Team Behavior

KAoS provides the basic services for distributed computing, including message trans-
port and directory services, as well as more advanced features like domain and policy
services. The two main components of the KAoS Framework are the Directory Ser-
vice and the Guard. Agents register with the Directory Service, which provides nor-
mal white and yellow page services as well as acting as the policy repository. The
policies themselves are distributed to local guards deployed on each platform to allow
for fast policy checking that is robust to network problems.

An important part of building systems in this way is deciding where to implement a
given behavior. In general, there are three possible places; in the agent, in the policies,
or in the ontology (cf. Figure 3). For example, in our implementation, system devel-
opment in KAoS takes place at different locations, in different languages, using dif-
ferent tools. The agent or application is typically were most systems keep their
knowledge, so we will address ontologies and policies in more detail and explain the
advantages and disadvantages each brings.

 Implementing Collective Obligations in Human-Agent Teams Using KAoS Policies 41

 Language Development Tool
Agents or other

Applications
E.g., Java E.g., Eclipse

Policies KAoS Policies (OWL) KPAT

Ontologies OWL E.g., Protégé, COE

Fig. 3. KAoS system development components

OWL ontologies provide the vocabulary used in specifying policies. They define
all actions, action properties, and actor types and can be developed directly in OWL
or using an ontology editor, such as Protégé (http://protege.stanford.edu/) or COE
(Cmap Ontology Editor).

Policies are also represented in OWL. They can be created using the KAoS Policy
Administration Tool (KPAT). KPAT hides the complexity of OWL from the human
users and allows the user to create, modify and manage policies in a very natural
hypertext interface. Policies can be ranked in terms of their priorities. In case two
conflicting policies are applicable at the same moment, the policy with the highest
priority takes precedence.

The policies are used to govern the actions of agents (or other applications) within
the system being developed. We use Java and Eclipse (http://www.eclipse.org/) to
implement the agents for our prototype, although any other combination of a pro-
gramming language and IDE could be used. KAoS includes a number of features that
can be exploited in the development of agent-based systems.

As an example of system development in KAoS, suppose that we have a set of ro-
bots and we want to obligate them to beep before they move, in order to alert any
nearby people of the pending movement. First, we would specify the terms Robot,
Beep and Move in an ontology. Then, we would create a policy using KPAT, which
would look like the following:

1 Robot is obligated to start performing Beep
2 which has any attributes
3 before Robot starts performing Move
4 which has any attributes

Fig. 4. KAoS policy example

Once the policy has been created, it is sent by KPAT to the Directory Service for
analysis and deconflication, before it is distributed for run-time enforcement. Since
this policy applies only to robots, it is automatically distributed only to the guards
responsible for governing robots. Local enforcement mechanisms on each platform
intercept movements as appropriate and check with the guard resident on that plat-
form for policy constraints. With the new policy in place, an obligation to beep would
be applied prior to each movement.

Each approach has advantages and disadvantages in different situations. Without
policy, we would be forced to represent everything in the agent itself, so, for our beep
example, the beep action might simply be coded in Java within the move method. This
is not very flexible and is hidden from those unfamiliar with the code. In situations
where the source code is unavailable, it simply cannot be implemented at all. A second

42 J. van Diggelen et al.

option is to implement the behavior by adapting the ontology, i.e. by defining a move
as a beep that is followed by a physical move, and having the agents query the ontol-
ogy for the definition of the action. This would amount to redefining the commonly
accepted meaning of move into something else entirely – not a good idea either. The
third option is to add the policy of Figure 4. This seems to us the cleanest method. The
policy is defined external to the robot’s program and thus is viewable and editable by
anyone using the system. To give an example that pushes some knowledge back into
the robots, suppose that we modify our policy to state “robots must warn before they
move.” The main idea is still modeled in policy, though less specific. The ontology
could be used to model the knowledge that beeping and flashing lights are both appro-
priate methods to warn. Finally, the robot could chose the appropriate warning method
based on its own capabilities and preferences.

In the following three sections we will explain how the teamwork model described
in Section 3 can be implemented by developing ontologies, policies, and agents.

4 Ontology

Extending KAoS so it can handle collective obligations posed some additional re-
quirements to the core ontology. The first issue concerns the representation of teams.
The property teamMemberOf was used to assert that an agent (represented by an indi-
vidual in class agent) is a member of some team (represented by an individual in
class team). To represent the collective obligation of a team, the property HasCollec-
tiveObligation was used to refer to the instance representation1 of the action that
constitutes the CO.

The second issue concerning collective obligation is the representation of plans. Be-
cause a plan typically consists of multiple actions (that may be partialed out to different
team members), we can represent that an action contains subactions by using the prop-
erties subAction1 and subAction2. The property subActionRelation specifies
whether the two subactions are composed in parallel or sequence. In this way, compos-
ite actions can be represented as an AND-OR graph, or planning tree [22].

The last ontological issue concerns the relationship between the plan and the action
the plan seeks to achieve. Because different circumstances require different plans and
adjustments of players, roles, and tools, we specify this as a context-dependent rela-
tion, using a rule of the form “X counts-as Y in context C.” These so-called counts-as
rules can be used in an ontology to translate between actions of different levels of
abstraction [13]. For example, the sequence of actions bring-to-habitat and nurse (the
plan) counts as ensure-safety (what the plan is designed to achieve) in the context of
spacesuit-failure-of-Benny-at-11:00am (the context). An action and its associated
context are related by the property hasContext. To represent the fact that an action
has been performed, the property hasStatus is set to performed. Because we repre-
sent counts-as rules as subclass relations (e.g. “X subClassOf Y” represents the fact

1 Because OWL-DL does not allow the use of classes as property values, we created a proto-

typical instance for every action class (e.g. ensureSafety). This prototypical instance
represents the same (e.g. ensureSafetyPrototypicalInstance). In this way, we
can refer to actions both at the class level, and at the instance level.

 Implementing Collective Obligations in Human-Agent Teams Using KAoS Policies 43

1 Leader is obligated to start performing Action which has attributes:
2 all prototypicalInstance values equal the Trigger action's
3 triggerOfCollectiveObligation of the prototypicalInstance values
4 the performedBy value equals the Trigger action's performedBy values
5 after Leader finishes performing Action which has attributes:
6 any prototypicalInstance values are in the set of this action's
7 HasCollectiveObligationTrigger of the teamMemberOf of the
8 performedBy values

Fig. 5. KAoS hypertext statement representing the policy of Definition 1.1

that X counts as Y), the OWL reasoner automatically derives that if X hasStatus
performed, then also Y hasStatus performed.

The issues discussed above are important when monitoring policy compliance re-
garding collective obligation. An agent complies with an obligation to do action X, if
X has the status performed before the deadline set by the obligation. This definition
has two important consequences. First, the agent to which the obligation applies is not
required to perform the action itself, but may also delegate the action to another agent.
Second, the agent can choose to perform a plan which counts as action X (in the cur-
rent context), because performance of the plan entails performance of X. Both of
these two issues play a fundamental role in our approach to teamwork and are there-
fore implemented at the ontology level.

5 Policies for Agent Teams

The general pattern of the teamwork described in this paper consists of three steps.
First, the collective obligation is triggered. Second, a plan is created. Third, this plan
is carried out. The policies described in this section serve to support this process by
governing issues such as: how is the CO-trigger communicated to the agent creating
the plan? Who creates the plan? Who carries out the plan? How is the plan coordi-
nated to ensure the right order of actions?

5.1 Leader Policy Set

If there is a team leader, it has a special responsibility and must be treated by the other
agents in a special way. The purpose of the Leader Policy Set is to lay down these
responsibilities, managing both task allocation and plan coordination.

Definition 1. Leader Policy Set

1. The leader of a team should adopt the collective obligations of its team as its
own individual obligations

2. Team members should notify their leader when the collective obligation of their
team is triggered

3. The leader of a team may request members of its team to perform actions
4. The leader of a team may create plans

44 J. van Diggelen et al.

The first policy captures the intuition that leaders must take responsibility for their
team. Definition 1.1 states more precisely what this means for collective obligations.
The policy as implemented in KAoS is shown in Figure 5. The trigger of the policy is
implemented at line 5,6,7 and 8 using a role-value map [1] which compares the val-
ues of two properties of the Action which the agent has just finished performing. It
states that the property prototypicalInstance must have a value in common with
the concatenation of the properties performedBy, teamMemberOf and HasCollec-
tiveObligationTrigger. As an example of an action that would trigger the obliga-
tion, consider agent Herman performing the action observeSpaceSuitFailure (i.e.
observeSpaceSuitFailure performedBy Herman) and that Herman is teamMemberOf
MecaTeam and that MecaTeam HasCol-lectiveObligationTrigger observeSpace-
SuitFailurePrototypicalInstance. The obligation is described in lines 1, 2, 3 and
4 of Figure 5. Lines 2-3 is a role-value map which describes that the actor must do the
action which is given by the property triggerOfCollectiveObligation of the ac-
tion that triggered the obligation. In our example, observeSpaceSuitFailure is
triggerOfCollectiveObligation of ensureSafety. Hence, the actor is obliged to
perform ensureSafety. Line 4 describes that the agent that must fulfill the obliga-
tion is the same agent that has triggered the obligation.

The second policy of Definition 1 ensures that, in case nobody else in the team
triggers the collective obligation (for example by observing a spacesuit failure), this
agent will notify the leader about the event. This captures the intuition that team
members must help their leader. This policy is implemented in a similar fashion to
policy 1.1 (Figure 5).

The third policy in the leader policy set states that leaders do not have to do the
work all by themselves, but they are authorized to request actions from their team
members.

The fourth policy states that the leader is authorized to create a plan. Plan creation
is done by adding a counts-as rule to the ontology (see Section 4). The effect of this is
that all agents may perform a different action than the action they were initially
obliged to do. Therefore, the right to create new plans is not self-evident. It is, how-
ever, a right that belongs to a leader.

5.2 Coordination Policy Set

The coordination policy set describes how actions in a plan should be coordinated.
We consider two coordination patterns (as depicted in Figure 2), which are both gov-
erned by this policy set.

Definition 2. Coordination Policy Set

1. An agent should notify the requester after it has performed a requested action
2. If the agent knows who will perform the subsequent action, it should notify that

agent after it finishes performing its own action
3. If the agent knows who will conduct the subsequent action, it is not required to

notify the requester after it finishes performing its action

 Implementing Collective Obligations in Human-Agent Teams Using KAoS Policies 45

The first policy ensures that, in case of centralized coordination, the requester knows
when the subsequent action may begin. This is due to the “done” messages 2, 4 and 6
on the left side of Figure 2. In case of decentralized coordination, the requester is
notified after the plan is finished, i.e. by “done” message 6 on the right side of the
figure.

The second policy of Definition 2 concerns the case of decentralized coordination.
When an agent has received a request for a coordinated action, it knows who will per-
form the subsequent action, and must notify that agent after it has finished its action.

The third policy is enforced with high priority, and can be regarded as an exception
to the first policy of Definition 2. This policy prevents requested agents from notify-
ing their requester when the plan is only partially completed. As can be seen on the
right hand side of Figure 2, the two agents that are requested to perform action a and
action b of the plan do not send a “done” message to their requester. The rationale
behind this is that, in the decentralized case, partially-finished notifications are not
needed for plan coordination, which is the purpose of this policy set. There may be
other reasons why this may be desirable, e.g., to monitor plan progress to respond to
unexpected events in a timely way [10]. This can always be implemented in an addi-
tional higher priority policy set, which is specially designed for that purpose. How-
ever, issues such as dealing with plan failure or replanning are beyond the scope of
this paper.

5.3 Leader Absence Policy Set

What if the agents find themselves in a leaderless team? This may happen either be-
cause nobody has been appointed as a leader or else the leader is (temporarily) un-
available. In this case, the other agents in the team must take care of the collective
obligation themselves. This issue is handled by ensuring that one agent assumes the
leader role, and thereby becomes subject to the leadership policies of Definition 1.

Definition 3. Leader Absence Policy Set

1. When no leader is present, the CO is triggered, and the agent knows it can fulfill
the CO, it should assume the leader role

2. When no leader is present, the CO is triggered, but the agent cannot fulfill the
CO, it should notify the whole team of the CO trigger

3. An agent should not notify its team about a CO trigger, when it has been notified
itself by another team member about that CO trigger

The first policy ensures that a capable leader will volunteer in case the collective
obligation is triggered in a leaderless team. An agent may assume leadership by regis-
tering with the KAoS directory-service, which only accepts such a registration when
there are no other leaders already currently available. In this way, we prevent multiple
agents from taking leadership at the same time, on a first come, first served basis.

The second policy is a variation on the policy of Definition 1.2, adapted to the
leaderless scenario. For example, when an agent observes a safety critical event (the
CO is triggered), but the agent is not capable of ensuring safety, the agent should
notify all of its team members about it, so someone else in the team can fulfill the CO.

46 J. van Diggelen et al.

The third policy is an exception to the second rule, and prevents agents from re-
peatedly notifying one another about the same collective obligation trigger.

5.4 Configuration Policy Set

The policies discussed so far are the same for all eight different kinds of teams de-
picted in Figure 1. In this section, we will discuss the configuration policy set which
states which of the eight team strategies the agents must follow.

Definition 4. Configuration Policy Set

1. Do not request distributed coordinated actions
2. Do not request actions to a team

In contrast to the policy sets we discussed earlier, these policies are optional, and can
be switched on and off depending on the way the team designer wishes to configure
the team. If the first policy is switched on, the team will apply centralized plan coor-
dination. If it is switched off, the team will apply decentralized plan coordination.

If the second policy is switched on, the team will apply individual task allocation.
If it is switched off, the team applies group task allocation. Group task allocation can
be implemented using collective obligations that are dealt with using the policies
described in the previous sections. For example, to request action a to a group, the
action a is added as a collective obligation to that group. The leader absence policy
set (Definition 3) ensures that a leader which is capable of performing action a stands
up, after which the leader policy set (Definition 1) ensures that this agent performs
action a.

To implement pre-established leadership assumption, a leader must be appointed
beforehand, using KPAT. To implement ad hoc leadership assumption, no leader
should be defined beforehand, such that the policy in Definition 3.1 ensures that a
leader will volunteer at runtime if needed.

6 Meca Scenario

We tested the policies using a Mars mission scenario developed in the Mission Execu-
tion Crew Assistant (MECA) project [19]. This long-term project aims at enhancing
the cognitive capacities of human-machine teams during planetary exploration mis-
sions by means of an electronic partner. The e-partner helps the crew to assess a situa-
tion and determine a suitable course of actions when problems arise. A large part of
the project is devoted to developing a requirements baseline, taking into account hu-
man factors knowledge, operational demands, and envisioned technology. Developing
new prototypes using emerging technologies, such as this one, is a continuous activity
in the project.

One of the major themes is dealing with the long communication delays between
Earth and Mars. This has led researchers to consider new forms of mission control
that are less centralized on Earth, allowing greater autonomy to the astronauts on
Mars [12]. We believe that our work on policies and team strategies is a useful contri-
bution to this problem.

 Implementing Collective Obligations in Human-Agent Teams Using KAoS Policies 47

One of the use-cases that has driven the development of MECA’s requirements
baseline concerns an astronaut suffering from hypothermia. The initial situation is
depicted in Figure 6.

Herman is in the Habitat; Anne, Albert and two rovers are in team A; Benny and
Brenda are in team B. Benny and Brenda are on a rock-collecting procedure. Sud-
denly, Benny’s space suit fails. Brenda and the MECA system diagnose the problem
together and predict hypothermia. Immediate action is required. A rover from team B
comes to pick Benny up and brings him to the habitat. Someone with surgery skills
and someone with nursing skills await him there and take care of Benny, after which
he safely recovers.

One of the requirements of MECA is that safety of the crew must be ensured at all
times. We implemented this requirement using a collective obligation of the MECA
team to EnsureSafety. The trigger of this collective obligation is Observe-
SafetyCriticalEvent. Within the scenario, both of these actions are added in a specific
MECA-action ontology which extends the KAoS core action ontology. The ontology
also specifies several subconcepts of ObserveSafetyCriticalEvent, such as Observe-
SpaceSuitFails. This causes ObserveSpaceSuitFails to trigger the collective obligation.

Fig. 6. MECA prototype

The seven agents in the example (five astronauts and two rovers) are implemented
in Java. Because most of the agent behavior in this demonstration is implemented by
the policies, the Java implementation could remain very simple. We used Java to
implement how the actions, such as BringToHabitat, are performed. For the purposes
of this demonstration, a simple screen animation was sufficient. We also implemented
in Java how the agents remain policy-compliant. This means that they consult the
KAoS guard to check which obligations and authorization policies apply. They fulfill
an obligation by simply executing the code that implements the action concerned. It
fulfills a negative authorization by refraining from executing the corresponding piece
of code.

48 J. van Diggelen et al.

The most important aspect of this demonstration is the implementation of collec-
tive obligations after the action ObserveSpaceSuitFails is performed. This is driven
exclusively by KAoS policies. By applying the different team configurations de-
scribed in Section 2, we obtain different event traces which demonstrate the function-
ing of the team. The event trace for the most centrally organized team (represented by
the black cube in Figure 1) is shown below.

Brenda performs ObserveSpaceSuitFails
Brenda is obliged to perform SendNotificationOfTrigger
Brenda to Herman: SendNotificationOfTrigger
Herman is obliged to perform EnsureSafety
Herman is authorized to perform CreatePlan
Herman performs CreatePlan
Herman is not authorized to perform RequestCoordinatedAction
Herman is authorized to perform RequestAction
Herman to Rover1: request BringToHabitat
Rover1 performs BringToHabitat
Rover1 is obliged to perform SendNotificationOfRequestedActionFinished
Rover1 to Herman: SendNotificationOfRequestedActionFinished
Herman to Albert: request PerformSurgery
Albert performs PerformSurgery
Albert is obliged to perform SendNotificationOfRequestedActionFinished
Albert to Herman: SendNotificationOfRequestedActionFinished
Herman to Anne: request Nurse
Anne performs Nurse
Anne is obliged to perform SendNotificationOfRequestedActionFinished
Anne to Herman: SendNotificationOfRequestedActionFinished

Fig. 7. Event trace of MECA team with maximal central authority

Fig. 8. Event trace of MECA team with maximal member autonomy

 Implementing Collective Obligations in Human-Agent Teams Using KAoS Policies 49

The events printed in bold are actions; the underlined events are communication
actions; the italicized events represent policies that were triggered. Typical to this
event trace is that Brenda immediately knows that she must contact Herman after she
observed the spacesuit failure. This is due to the pre-established leadership of Her-
man. Furthermore, Herman delegates the parts of the plan to individual agents (i.e.
individual task allocation), and he waits until the requested agent is finished before he
requests the next action in the plan (i.e. centralized plan coordination).

The event trace for the team with most member autonomy (represented by the
white cube in Figure 1) is shown in Figure 8.

Typical to this event trace is that Brenda notifies the whole team about the CO
trigger, after which Anne becomes a leader (i.e. ad hoc leadership assumption). Fur-
thermore, Anne delegates her actions to the MECA team (i.e., group task allocation).
Also, she delegates all actions at once and instructs the agents how to coordinate the
actions (i.e., decentralized plan coordination). More information about applying com-
putational policies in space mission design can be found in [6].

7 Related Work

In this paper, we have investigated how collective obligations can be projected on
individuals using KAoS policies. More generally, the problem addressed can be re-
garded as a coordination problem. In this section, we will discuss similarities and
differences with related approaches for multi-agent coordination.

Policies are constraints that are imposed and enforced prescriptively on agents. Re-
lated to policy systems, are normative systems, such as electronic institutions, and
agent organizations, e.g. [8],[15]. Researchers who study norms generally focus on
the ways in which agents learn, recognize, and adopt such obligations through their
own deliberation, including the consideration of incentives and sanctions [5]. Several
approaches exist in which norm-based electronic institutions have been applied to
coordination problems, e.g. [9][11],[21]. Whereas these approaches also solve coordi-
nation problems by explicitly constraining the behavior of agents, their underlying
motivation is to effectively model an organization. Our starting point in this paper has
been the idea of a collective obligation, and what this means in terms of policies for
individual agents.

Another approach to solving coordination problems is to use coordination artifacts
[20], which are part of the platform, and provide coordination services for the agents
using them. Because these artifacts are much simpler than agents, they can solve
(simple) coordination problems in a more straightforward way. We have chosen to
solve also the simple coordination problems with agents (or humans), which are
guided by policies. A benefit of this approach could be that, in human-agent teams,
coordination requests might be easier accepted when performed by humans than when
performed by electronic artifacts.

Yet another approach to teamwork and collaboration is based on common goals.
For example, the pioneering research of Cohen and Levesque [4] introduced the no-
tion of a joint persistent goal as the ultimate driving force behind teamwork. In our
framework, a collective obligation serves a similar purpose. A difference is that
Cohen and Levesque based their approach on mentalistic notions, such as goals, be-
liefs and intentions, whereas our approach is based on institutional notions, such as

50 J. van Diggelen et al.

obligations and authorizations. This allows the approach to be used by both simple
and sophisticated agents, of heterogeneous varieties. Another approach to teamwork,
based on mentalistic notions is STEAM [24]. STEAM is based on Soar, a general
cognitive architecture for intelligent systems, whereas our approach is based on
KAoS, which is a policy framework. A correspondence between our implementation
and STEAM is that both approaches heavily rely on plans in the teamwork process. A
crucial requirement for effective teamwork is maintaining a sufficient level of com-
mon ground [18]. By adopting the KAoS framework, some important aspects of
common ground were naturally ensured. The common ontology, which is maintained
by the directory service and distributed to the guards, ensures that every agent shares
understanding of the domain terms. Also the collective obligations of the team, which
are represented in the ontology, are mutually known.

8 Conclusion

In this paper, we have proposed a policy-based approach for addressing collective
obligations in human-agent teams. We have implemented a variety of common team-
work models using KAoS policies. These models have demonstrated their value in a
simulation of a Mars-mission scenario, where a delicate decision must be made be-
tween central authority and member autonomy.

We believe that our approach to teamwork has considerable benefits in terms of re-
usability, clarity, and generality. Although the types of teamwork we support are still
relatively simple, we believe that more complex teamwork can be implemented by
utilizing additional policies on top of the policies we have proposed here.

In the future, we plan to extend the teamwork model to deal with unexpected
events. This requires a leader to monitor his or her plan, and to perform re-planning if
the plan does not go as expected. In another envisioned augmentation, the team mem-
bers can be of help by notifying their leaders when their requested actions fail or are
encountering trouble (cf. [10]). Such policies can be implemented in KAoS, in a simi-
lar fashion as we have described in this paper.

Another topic of future research is to investigate teams which are less dependent
on a leader. Whereas we have solved the problem of leaderless teams by obliging one
agent to become an ad-hoc leader, it is perhaps possible to fulfill a collective obliga-
tion without a leader at any stage of the process. In this way, a more peer to peer or-
ganization is obtained, where agents collectively reach agreement about the plan to be
followed. As this organization form is much more complex, it can be regarded as an
extension of the work we presented in this paper.

References

[1] Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, Cambridge (2003)

[2] Bradshaw, J.M., et al.: Representation and reasoning for DAML-based policy and domain
services in KAoS and Nomads. In: Proceedings of the Autonomous Agents and Multi-
Agent Systems Conference (AAMAS). ACM, New York (2003)

 Implementing Collective Obligations in Human-Agent Teams Using KAoS Policies 51

[3] Burton, R.M., DeSanctis, G., Obel, B.: Organizational Design. Cambridge University
Press, Cambridge (2006)

[4] Cohen, P.R., Levesque, H.J.: Teamwork. SRI International, Menlo Park (1991)
[5] Davidsson, P.: Emergent Societies of Information Agents. In: Klusch, M., Kerschberg, L.

(eds.) CIA 2000. LNCS (LNAI), vol. 1860, pp. 143–153. Springer, Heidelberg (2000)
[6] van Diggelen, J., Bradshaw, J.M., Grant, T., Johnson, M., Neerincx, M.: Policy-Based

Design of Human-Machine Collaboration in Manned Space Missions. In: Proceedings of
the Third IEEE International Conference on Space Mission Challenges for Information
Technology, SMC-IT09 (2009)

[7] Dignum, F., Royakkers, L.: Collective Obligation and Commitment. In: Proceedings of
5th Int. conference on Law in the Information Society, Florence (1998)

[8] Dignum, V.: A Model for Organizational Interaction. SIKS Dissertation Series (2003)
[9] Esteva, M., Rodriguez-Aguilar, J., Rosell, B., Arcos, J.: Ameli: An agent-based middle-

ware for electronic institutions. In: Proceedings of the 3rd International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 236–243 (2004)

[10] Feltovich, P.J., Bradshaw, J.M., Clancey, W.J., Johnson, M., Bunch, L.: Progress ap-
praisal as a challenging element of coordination in human and machine joint activity. In:
Artikis, A., O’Hare, G.M.P., Stathis, K., Vouros, G.A. (eds.) ESAW 2007. LNCS
(LNAI), vol. 4995, pp. 124–141. Springer, Heidelberg (2008)

[11] Gómez, M., Plaza, E.: Dynamic Composition of Electronic Institutions for Teamwork. In:
Sichman, J.S., Padget, J., Ossowski, S., Noriega, P. (eds.) COIN 2007. LNCS (LNAI),
vol. 4870, pp. 155–170. Springer, Heidelberg (2008)

[12] Grant, T., Soler, A.O., Bos, A., Brauer, U., Neerincx, M., Wolff, M.: Space Autonomy as
Migration of Functionality: The Mars Case. In: Proceedings of the 2nd IEEE international
Conference on Space Mission Challenges For information Technology(SMC-IT), pp.
195–201. IEEE, Los Alamitos (2006)

[13] Grossi, D.: Designing Invisible Handcuffs. Formal Investigations in Institutions and Or-
ganizations for Multi-agent Systems. SIKS Dissertation Series 2007-16, Utrecht Univer-
sity (2007)

[14] Grossi, D., Dignum, F., Royakkers, L., Meyer, J.-J.C.: Collective Obligations and Agents:
Who Gets the Blame? In: Lomuscio, A., Nute, D. (eds.) DEON 2004. LNCS (LNAI),
vol. 3065, pp. 129–145. Springer, Heidelberg (2004)

[15] Hübner, J.F., Sichman, J.S., Boissier, O.: A Model for the Structural, Functional, and De-
ontic Specification of Organizations in Multiagent Systems. In: Bittencourt, G., Ramalho,
G.L. (eds.) SBIA 2002. LNCS (LNAI), vol. 2507, pp. 118–128. Springer, Heidelberg
(2002)

[16] Hubner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems using
the MOISE+ model: programming issues at the system and agent levels. Int. J. Agent-
Oriented Softw. Eng. 1(3/4), 370–395 (2007)

[17] Johnson, M., Feltovich, P.J., Bradshaw, J.M., Bunch, L.: Demonstrating Human-Robot
Coordination through Dynamic Regulation, policy. In: IEEE Workshop on Policies for
Distributed Systems and Networks, pp. 231–232 (2008)

[18] Klein, G., Woods, D., Bradshaw, J.M., Hoffman, R.R., Feltovich, P.J.: Ten Challenges
for Making Automation a Team Player. IEEE Intelligent Systems in Joint Human-Agent
Activity 19(6) (2004)

[19] Neerincx, M.A., Bos, A., Olmedo-Soler, A., Brauer, U., Breebaart, L., Smets, N., Lin-
denberg, J., Grant, T., Wolff, M.: The Mission Execution Crew Assistant: Improving
Human-Machine Team Resilience for Long Duration Missions. In: Proc. of the 59th In-
ternational Astronautical Congress, IAC 2008 (2008)

52 J. van Diggelen et al.

[20] Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination Arti-
facts: Environment-Based Coordination for Intelligent Agents. In: Proceedings of the
Third international Joint Conference on Autonomous Agents and Multiagent Systems
(2004)

[21] Rubino, R., Omicini, A., Denti, E.: Computational institutions for modelling Norm-
regulated MAS: an approach based on coordination artifacts. In: Boissier, O., Padget, J.,
Dignum, V., Lindemann, G., Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda,
J. (eds.) ANIREM 2005 and OOOP 2005. LNCS (LNAI), vol. 3913, pp. 127–141.
Springer, Heidelberg (2006)

[22] Steffik, M.: Introduction to Knowledge Systems. Morgan Kaufmann, San Francisco
(1995)

[23] Sycara, K., Lewis, M.: Integrating intelligent agents into human teams. In: Team Cogni-
tion: Understanding the Factors that Drive Process and Performance, pp. 203–232.
American Psychological Association, Washington (2004)

[24] Tambe, M.: Towards Flexible Teamwork. Journal of Artificial Intelligence Research, 83–
124 (1997)

Building Multi-Agent Systems for Workflow

Enactment and Exception Handling�

Joey Lam, Frank Guerin, Wamberto Vasconcelos, and Timothy J. Norman

Department of Computing Science
University of Aberdeen, Aberdeen, U.K. AB24 3UE

{j.lam,f.guerin,w.w.vasconcelos,t.j.norman}@abdn.ac.uk

Abstract. Workflows represent the coordination requirements of var-
ious distributed operations in an organisation. Typical workflow man-
agement systems are centralised and rigid; they cannot cope with the
unexpected flexibly. Multi-agent systems offer the possibility of enacting
workflows in a distributed manner, via software agents which are intel-
ligent and autonomous, and respect the constraints in a norm-governed
organisation. Agents should bring flexibility and robustness to the work-
flow enactment process. In this paper, we describe a method for building
a norm-governed multi-agent system which can enact a set of workflows
and cope with exceptions. We do this by providing agents with knowl-
edge of the organisation, the domain, and the tasks and capabilities of
agents. This knowledge is represented with SemanticWeb languages, and
agents can reason with it to handle exceptions autonomously.

1 Introduction

Workflows represent the coordination requirements of various distributed oper-
ations in an organisation, and can automate business processes, for example.
Workflows can be formalised and expressed in a machine readable format, and
this makes it possible for them to be employed in service-oriented computing sce-
narios. In such scenarios we may be dealing with open heterogeneous computing
systems, where errors and exceptions are likely to occur. We would like the com-
puting systems to cope with these exceptions. Ideally we would like to be able
to deal with the unexpected; while we could write specific exception handling
routines to deal with some common exceptions which we expect to arise, it will
be difficult to anticipate all possible exceptions. We can use Artificial Intelligence
techniques to deal with a set of possible exceptions, where the response to each
situation is not hand-coded at design-time, but rather worked out at run-time by
reasoning with hand-coded knowledge. Typical workflow management systems
(e.g., [12,13]) are centralised and rigid; they have not been designed for dynamic
environments requiring adaptive responses. To overcome this we argue that it is
necessary to use agents to control the enactment of a workflow in a distributed
manner; agents can be endowed with sufficient intelligence to allow them to

� This work is funded by the European Community (FP7 project ALIVE IST-215890).

J. Padget et al. (Eds.): COIN 2009, LNAI 6069, pp. 53–69, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

54 J. Lam et al.

Fig. 1. Overview of the Proposed Approach

manage exceptions autonomously. This should bring flexibility and robustness
to the process of enacting workflows.

We are interested in building multi-agent systems (MASs) which simulate the
operations in large organisations, and so must adhere to constraints defined by
the organisation1. We propose a method for building such agent systems, given
the appropriate knowledge as an input. The knowledge input to the system is
divided into three main components, as illustrated in Figure 1. Firstly there is
the organisational knowledge, consisting of such things as roles, norms, role clas-
sification, and resources available. Secondly there are the workflows, describing
the tasks to be executed, and appropriate flow of control, and also including
variable definitions which are used to control flow. Thirdly there is the domain
ontology, describing concepts of the world including tasks and resources. Some
tasks are atomic and can be directly executed by agents, but some tasks re-
quire a workflow to be executed. In this case the name of the task matches the
name of a workflow. As indicated by the dashed line there are links between
the workflow tasks and the organisation and imported domain ontology. Tasks
and resources are not described in the organisation directly; the domain ontol-
ogy is imported to the organisation ontology. This knowledge allows us to firstly
allocate tasks in an agent system where workflow tasks are distributed among
the agents in a way which is consistent with the organisational constraints. Sec-
ondly, it allows the agents to enact the workflows, updating the organisation
as appropriate. Thirdly it allows agents to cope with exceptions as they arise,
because the agents can query the ontology to find alternative agents or tasks
when problems arise.

In our system the workflow specifications and the ontologies are available to
be queried by any of the agents in the system, and the ontologies can also be
updated as events add or modify instances in the ontology. This requires a cen-
tralised service which maintains the knowledge, and updates it, when instructed
to by an agent. This centralised approach is somewhat undesirable in a dis-
tributed agent system (lack of robustness, and scalability), however additional
robustness could be introduced by having multiple copies of the knowledge, and
some synchronisation processes to ensure that all copies are identical. Both of
these possibilities entail challenges which go beyond the scope of the current
paper; we will merely assume the knowledge is available.

1 Our focus for the moment is simulation, but eventually we envisage that our agents
will support real human users in executing tasks as part of human-agent teams.

Building MASs for Workflow Enactment and Exception Handling 55

This paper is structured as follows. In Section 2 we briefly introduce Seman-
tic Web languages. In Section 3 we describe norm-governed organisations repre-
sented in Semantic Web languages. We describe the representation of workflows
and explain allocation of tasks in Sections 4 and 5 respectively. The details of
agents enacting workflows and dealing with exceptions are given in Sections 6
and 7 respectively. Section 8 looks at related work and Section 9 concludes and
proposes future work.

2 Semantic Web Languages

The OWL-DL [6] ontology language is a variant of the SHOIN (D) Description
Logic [7], which provides constructs for full negation, disjunction, a restricted
form of existential quantification, cardinality restrictions, and reasoning with
concrete datatypes. We make use of the open world assumption, which requires
that something is false if and only if it can be proved to contradict other informa-
tion in the ontology. Since we assume a MAS as an open system, its knowledge
of the world is incomplete, and the knowledge is extendable. If a formula cannot
be proved true or false, we draw no conclusion2.

Formally, an ontologyO consists of a set of terminology axioms T (TBox), role
axioms (RBox) and assertional axioms A (ABox), that is, O = 〈T ,R,A〉. An
axiom in T is either of the form C � D or C

.= D, where C and D are arbitrary
concepts (aka. classes in OWL); the RBox contains assertions about roles (such
as functional, transitive roles) and role hierarchies; an axiom in A is either of the
form C(a) (where C is a concept and a is an individual name; a belongs to C),
or of the form R(a, b) (where a, b are individual names (aka. instances in OWL)
and R is a role name (aka. a datatype or object property in OWL); b is a filler
of the property R for a). The meaning of concepts, roles and individuals is given
by an interpretation. An interpretation I = (ΔI , ·I) consists of a non-empty set
of individuals (the domain of the interpretation) and an interpretation function
(·I), which maps each atomic concept CN ∈ C (C is a set of concept names) to
a set CNI ⊆ ΔI and each atomic role R ∈ R (R is a set of role names) to a
binary relation RI ⊆ ΔI ×ΔI . The interpretation function can be extended to
give semantics to concept descriptions. An interpretation I is said to be a model
of a concept C, or I models C, if the interpretation of C in I is not empty. A
concept A is unsatisfiable w.r.t. a terminology T if, and only if, AI = ∅ for all
models of I of T . An ontology O is inconsistent if it has no models. Note that
from this point onwards we will refer to OWL-DL roles as properties, to avoid
confusion with agents’ roles in an organisation.

OWL DL benefits from many years of DL research, leading to well defined
semantics, well-studied reasoning algorithms, highly optimised systems, and well
understood formal properties (such as complexity and decidability) [3].

2 We can reason in an inconsistent ontology by tolerating a limited number of con-
tradictions. A formula is undefined (or undetermined) if it entails neither true nor
false; a formula is overdefined (or over-determined) if it entails both true and false.

56 J. Lam et al.

The Semantic Web Rule Language (SWRL)3 extends the set of OWL axioms
to include Horn-Clause-like rules that can be expressed in terms of OWL classes
and that can reason about OWL instances. SWRL provides deductive reasoning
capabilities that can infer new knowledge from an existing OWL knowledge base.
However, OWL DL extended with SWRL is no longer decidable. To make the ex-
tension decidable, Motik et al. [15] propose DL-safe rules where the applicability
of a rule is restricted to individuals explicitly named in a knowledge base.

For example:

parent(x,y) ∧ brother(y,z) ∧O(x) ∧O(y) ∧O(z) → uncle(x,z)

where O(x) must hold for each explicitly named individual x in the ontology.
Hence, DL-safe rules are SWRL rules that are restricted to known individuals.

The language SPARQL-DL [18] supports mixed TBox/RBox/ABox queries
for OWL-DL ontologies. Throughout the paper we will use qnames to shorten
URIs with rdf, rdfs, and owl prefixes to refer to standard RDF (Resource Descrip-
tion Framework), RDF-S (RDF Schema) and OWL namespaces, respectively. We
also use the prefix dom and org to refer to the namespace of the Domain and
Organisation ontologies. Our agents will be able to query the ontology to ac-
cess the knowledge. For example, agents can search for all roles working in the
finance department which are obliged to perform task “WriteReport” by using
this query4:

Type(:x, ?role), PropertyValue(:x, org:worksIn, :y), Type(:y, org:FinanceDept),

PropertyValue(:x, org:isObliged, :z), Type(:z, dom:WriteReport)

3 Norm-Governed Organisations

In this section, we describe how to represent roles, role classification, and norms
using OWL and SWRL. Our specification in this section is adequate to allow
agents to query an organisation at a certain point in time and ask questions
such as “is agent x prohibited from doing task t”, or “is agent y empowered to
do task b”. However, we do not provide a specification for how the organisation
is changed as a result of agents performing speech acts, or as a result of other
events. We assume that the system provides other specifications for this purpose,
and we focus only on the specifications necessary for workflow enactments.

We represent the agent organisation using Semantic Web languages. The agent
literature has many examples of different approaches to the specification of norm-
governed organisations, using languages such as the event calculus or C+, for
example [2]. Semantic Web languages are not as expressive as these, but they
have the advantage of having very efficient DL reasoners, and being standardised.
To specify the organisational knowledge relevant to our workflows we can get
by without the expressiveness of more sophisticated languages; for example we
only need to do static queries on current knowledge, and we do not require the

3 http://www.w3.org/Submission/SWRL/
4 Type(?a,?C) gives the most specific classes an instance belongs to.

Building MASs for Workflow Enactment and Exception Handling 57

ability to reason over different time intervals. We do allow modalities to change
over time, but we only represent the new (changed) ontology; agents can only
query the current version, not any prior states.

3.1 Roles and Their Constraints

The ontology we propose in this paper models the concepts of a role, its role clas-
sification(s), restrictions on roles (such as mutually exclusive roles, cardinality,
prerequisite roles) [16], and other aspects of the organisation. Roles are mod-
elled in a classification to reflect the subsumption of role descriptions. Sub-roles
inherit the properties from the super-roles; the properties of a sub-role override
those of its super-roles if the sub-role has more restrictive properties (the sub-
role cannot be less restrictive or the ontology would be inconsistent). Cardinality
restrictions can be used for example to restrict the number of agents a task can
be assigned to. Disjointness axioms can represent separation of duty restrictions.

We now give an example specification to illustrate these ideas. In Figure 2,
a role classification is shown. Sub-roles inherit the properties from super-roles.
For example, Staff are obliged to work from 9am to 5pm during weekdays; its
sub-roles inherit this obligation. The properties of a sub-role override those of
its super-role. Manager is permitted to employ staff; its sub-roles inherits this
property. However, this property of the AccountingManager is more restrictive;
it is only permitted to employ AccountingStaff (see axioms 4 and 5 below). For
the cardinality restrictions, we can model that only one agent can fill the role of
the general manager (see axioms 11 and 12 below); a member of staff works in
exactly one department (see axiom 6 below). An example of mutually exclusive
roles is that a department manager cannot be a general manager simultaneously
(see axiom 8 below). An example of separation of duty is that a staff submitting a
project proposal is prohibited from approving the proposal (see axiom 9 below).
Prerequisite roles means that a person can be assigned to role r1 only if the
person already is assigned to role r2 (see axiom 10).

(1) Programmer � Manager � Secretary � Staff

(2) DeptManager � GeneralManager � Manager

(3) AccountingManager � ITManager � DeptManager

(4) Manager � ∃ isPermitted.(∃ employs.Staff) � ∀ isPermitted.(∃ employs.Staff)

(5) AccountingManager � ∃ isPermitted.(∃employs.AccountingStaff)� ∀isPermitted.(∃employs.AccountingStaff)

(6) Staff � =1 worksIn

(7) range(worksIn) = Department

(8) DeptManager � ¬ GeneralManager

(9) Staff(x) ∧ ProjectProposal(p) ∧ ApproveProjectProposal(act) ∧ submits(x,p) ∧ approves(act,p) ∧O(x)

∧O(p) ∧O(act) → isProhibited(x,act)

(10) AccountingManager � ∃ prerequisites.Accountant

(11) GeneralManager � =1 takenBy

(12) range(takenBy) = Agent

(13) canDelegate � hasPower

(14) Staff � ∃ isObliged.(∃ works.(Weekdays � OfficeHour)) � ∀ isObliged.(∃ works.(Weekdays � OfficeHour))

58 J. Lam et al.

Fig. 2. Roles and a Role Classification

3.2 Normative Notions

We firstly describe norms concerning agents performing some task Task. We
model permission5, obligation, prohibition and power as isPermitted, isObliged,
isProhibited and hasPower OWL object properties to relate roles in the organisa-
tion and tasks. Their domain and range is Role and Task respectively. Permissions
allow the agent to achieve a state of affairs or perform an action (see for exam-
ple axioms 4 and 5 above). Permission and prohibition are distinct from power
because a member may be empowered to do something even though he is prohib-
ited from doing it. Prohibitions forbid the agent from achieving a state of affairs
or performing an action (see for example axiom 9 above). An obligation indicates
that some act has to be done (see for example axiom 14 above). It is common
to specify a time-limit or a condition for obligations. The axiom 14 above states
a conditional obligation, such that staff have to work during office hours and
weekday. Due to limited space, we will not describe time-limit constraints in the
paper. We now model the relations between the basic notions; the relations can
be equivalence, compatibility or incompatibility (or conflict) [20]. The following
rules list some of these relations.

(1) If an act is permitted and prohibited then there is a conflict.

isPermitted(x,act) ∧ isProhibited(x,act) ∧O(x) ∧O(act) → owl:Nothing(x)

(2) If an act is obligatory, then it is permitted.

isObliged(x,act) ∧O(x) ∧O(act) → isPermitted(x,act)

(3) If an act is obligatory and prohibited then there is a conflict.

isObliged(x,act) ∧ isProhibited(x,act) ∧O(x) ∧O(act) → owl:Nothing(x)

(4) If a prohibited act is performed then there is a violation.

performed(x,act) ∧ isProhibited(x,act) ∧O(x) ∧O(act) → violated(x,act)

Compared to standard deontic logic, here these deontic notions are being given
quite a different interpretation by the Semantic Web languages. For example
in deontic logic we could say that “obliged” is equivalent to “not permitted not
to”, however in Semantic Web languages we cannot express this. SWRL does not
allow us to negate the atoms within the scope of isPermitted(. . .). Nevertheless,
5 Explicitly defined permission means strong permission in our system. Undefined

permission axioms represent weak permission.

Building MASs for Workflow Enactment and Exception Handling 59

the Semantic Web version of these norms seems to be adequate for representing
simple agent scenarios, as illustrated in our examples below. One thorny issue
is contraposition; a DL axiom such as A � B entails ¬B � ¬A. This entailment
is not desirable in exceptional situations where there is a special condition such
that some type of A is not a B. The only way we can deal with this is to explicitly
state all exceptions in the axioms, for example Bird
 ¬ Penguin
 ¬ Ostrich �
CanFly.

In this paper we distinguish between institutional tasks (such as authorising
a purchase), and physical tasks (such as printing a document). An institutional
task can only be performed by an agent which has power to do that task. For
example we say that action ‘manager x employs staff y’ is valid if x is empowered
to employ a staff at that time, therefore y is now a member of staff. Otherwise,
it is an invalid action due to its lacking of institutional power. The following
axioms mean that a manager has the power to employ staff; when the manager
performs EmployStaff, the person will become a staff:

EmployStaff
.
= ∃ employ.Staff � ∀ employ.Staff

Manager � ∃ hasPower.EmployStaff

Manager(m) ∧ Person(p) ∧ EmployStaff(act) ∧ hasPower(m,act) ∧ employ(act,p) ∧ performed(m,act) ∧O(m)

∧O(p) ∧O(act) → Staff(p)

4 Workflows

We now introduce a representation for workflows. A common way to repre-
sent a workflow is using Petri Nets [19] or BPEL (Business Process Execution
Language) [1]. In this paper we represent a workflow as a digraph, which is a
simplified and minimalistic way to capture the basic concepts of workflows.

Definition 1. A workflow is a tuple 〈N,S,E, s0,Sf 〉, where

1. N is the name of the workflow,
2. S is a finite set of states of the form 〈id , T 〉, where id is the number identi-

fying this state, and T is the task;
3. E is a set of edges linking states. Edges take the form 〈id1, l, v, id2〉, where

id1 is the state this edge leaves from, id2 is the state this edge arrives at, v
is the variable associated with the edge, and l is a label indicating the type of
edge. There are four types of edge, l ∈ {AND,OR, JOIN-AND, JOIN-OR}
where AND-edges and OR-edges describe exclusive-or branches, and JOIN-
AND-edges and JOIN-OR-edges describe joins. For any pair of states with
multiple edges linking them, the edges must be of the same type;

4. s0 is the initial state of the workflow, and Sf ⊆ S is the set of final states.

We consider a travel request workflow example in a company. Figure 3 graph-
ically depicts the example. Figure 4 shows the representation of the workflow.
The figure annotates edges with the name of the variable associated with the
edge. We refer to input and output variables of the workflow; for example the
state 〈2,checkRequestForm〉 has input variable “TravelRequestForm” and output

60 J. Lam et al.

Fig. 3. Travel Request Workflow Example

W = 〈travelRequest WF, S, E, 1, {4, 5}〉
S = {〈1,travelRequest〉, 〈2,checkRequestForm〉, 〈3,approveTravelRequest〉, 〈4,placeOrder〉, 〈5,rejectRequest〉}
E = {〈1,AND,TravelRequestForm , 2〉, 〈2,OR,CorrectTravelRequesForm, 3〉,

〈2,OR,IncorrectTravelRequesForm, 5〉 〈3,OR,ApprovedForm, 4〉, 〈3,OR,RejectedForm, 5〉}

Fig. 4. Travel Request Workflow as a Digraph

variable “CorrectTravelRequestForm”. In this example, we assume the workflow
is triggered by an agent who issues a travel request. Firstly a travel request
form is issued; the request form should be checked to have correct information.
The checked form is then passed to be approved. The output of “approveTrav-
elRequest” is either “ApprovedForm” or “RejectedForm”. If the output variable
is “ApprovedForm”, the order for the travelling can be placed; otherwise, the
request is rejected.

5 Allocating Tasks to Agents

In this section we describe how we allocate tasks to software agents which,
together, will enact a set of workflows. Agents are parameterised by the roles
they take up – these roles dictate the tasks agents become responsible for.

The input to the ontological creation of agents is a set of workflowsW and an
ontology O, and the output is an updated ontology with a set of software agents
introduced as subclasses of the Agent concept, with roles and tasks associated
with them. In Figure 5 we show how we create agents in our ontology. The
algorithm collects in T all tasks of the workflows and distributes them among
the roles of the organisation. The distribution gives priority to i) obligations,
then ii) institutionalised power and permissions, and finally iii) permissions,
captured in the algorithm by the order of the nested if constructs. All tasks
should be distributed among roles, otherwise the algorithm fails, that is, the
organisation represented in the ontology cannot enact one of the workflows. If
all tasks have been assigned to roles, then for each role Ri we create in O a
subclass Agi of Agent, with tasks Ti = {T i

0, . . . , T
i
m} associated to the agent via

isCapable.
For each Agi in O we start up an independent computational process – a

software agent – which will support the enactment of workflows. Each software
agent, upon its bootstrapping, will use the definition of the subclass as the
parameterisation of its mechanisms: the role and tasks associated to the agent
will guide its behaviour, explained in Section 6. For simplicity, in our algorithm
above, we assume that each agent will enact exactly one role; however this could
easily be changed if required.

Building MASs for Workflow Enactment and Exception Handling 61

algorithm agent creation(W = {W1, . . . , Wn}, O)
T =

⋃n
i=1 Si, 〈Ni, Si, Ei, s0i

, Sfi
〉 ∈ W

for each role Ri in O do
for each 〈id, T 〉 ∈ T do
if Ri � ∃ isObliged.T then
T := T \ {〈id , T 〉}; Ti := Ti ∪ {T}

else if Ri � ∃ hasPower.T � ∃ isPermitted.T then
T := T \ {〈id , T 〉}; Ti := Ti ∪ {T}

else if Ri � ∃ isPermitted.T then
T := T \ {〈id , T 〉}; Ti := Ti ∪ {T}

if T �= ∅ then fail // org. cannot enact a workflow
else
for each role Ri in O with Ti = {T i

0 , . . . , T i
m} do

O := O ∪ {Agi � Agent}
O := O ∪ {Agi

.
= ∃ hasRole.(Ri) � ∃ isCapable.(T i

0 � · · · � T i
m)}

return O;

Fig. 5. Creation of Agents in O

6 Enactment of Workflows

After allocation, the next step is that agents take up roles in the organisation and
enact workflows. Agents plan their actions in real-time. The workflow provides
an outline plan, but many of the details need to be decided by agents. During
the enactment, an ontology is used by the agents to check what actions they
can perform. There is a relationship between the tasks and variables in the
workflows, and the concepts and instances in the ontology. Each time the agents
perform workflow tasks or assign values to variables, they update the instances in
the ontology. Some agent actions will involve the consumption of organisational
resources, in which case the agent will update the instances in the ontology. Thus
the ontology maintains a record of the current status of the workflow enactment,
as well as relevant aspects of the organisation. In this paper we avoid details of
how the implementation could work, but the update of the ontology can be done
by the agents whenever they are about to do a task; the agent sends an update
instruction to the service which maintains the ontology.

We will detail the relationship between the ontology and the workflow enact-
ment; this is easiest to illustrate by referring to an example. We continue with
the travel request example from Section 4, and we add to it an ontology (see
the axioms below) which describes roles, norms, and descriptions of tasks. The
following axioms state the norms governing agents and the tasks to be executed.

(1) Secretary � ∃ isObliged.checkRequestForm
(2) Manager � ∃ hasPower.approveRequest
(3) DeptManager � ∃ hasPower.approveTravelRequest
(4) Manager(m) ∧ TravelRequestForm(f) ∧ approveTravelRequest(act) ∧ requestedFrom(f,m) ∧

approves(act,f) ∧O(m) ∧O(m) ∧O(f) → isProhibited(m,act)
(5) checkRequestForm

.
= ∃ checks.(TravelRequestForm � ∃ isCorrect.xsd:boolean)

(6) Staff(s) ∧ requestedFrom(f,s) ∧ hasName(s,n) ∧ filledName(f,n) ∧ hasStaffID(s,id) ∧
filledStaffID(f,id) ∧O(s) ∧O(f) ∧O(n) ∧O(id) ∧ · · · → isCorrect(f, {“true”ˆˆ〈 xsd:boolean〉})

(7) CorrectTravelRequestForm
.
= TravelRequestFrom � ∃ isCorrect.{“true”ˆˆ〈 xsd:boolean〉}

(8) InCorrectTravelRequestForm
.
= TravelRequestFrom � ∃ isCorrect.{“false”ˆˆ〈 xsd:boolean〉}

(9) checkRequestForm � ∃ hasInput.TravelRequestForm �
∃hasOutput.(CorrectTravelRequestForm � InCorrectTravelRequestForm)

(10) functional(isCorrect)
(11) ApprovedForm

.
= TravelRequestForm � ∃ isApproved.{“true”ˆˆ〈 xsd:boolean〉}

62 J. Lam et al.

Each state in a workflow is mapped to a task in the domain ontology by match-
ing the same name (i.e. each task is a concept in the ontology). For example, state
2 in the workflow (Figure 4) is mapped to checkRequestForm in the domain ontol-
ogy. When a task in a workflow is about to be executed by an agent, an instance
of the corresponding task in the ontology is created by the agent (in real-time).

Similarly, each input (or output) variable from a workflow task maps to a con-
cept in the ontology. For example, the variable “ApprovedForm” in the workflow
(Figure 4) is mapped to the concept ApprovedForm (see axiom 11 above) in the
domain ontology. Every time an agent assigns a value to an input (or output)
from a workflow task, then a new instance is also created in the ontology, corre-
sponding to the value of the variable.

The creation of instances in the ontology allows an agent to check if its next ac-
tion complies with the constraints of the organisation. The agent who is about to
execute a workflow task first tentatively creates an instance in the ontology, and
then calls the DL reasoner to check the ontology’s consistency and also to check
if violations have been introduced. If the ontology is inconsistent, then the agent
knows that the task it was about to execute is an error; on the other hand, if the
ontology entails violated(x,task) for some agent “x”, then the agent knows that the
task it was about to execute would cause it to violate norms. Thus the agent should
not carry out the task, and should revert to the ontology before the instance was
added. This type of check can pick up on such things as an agent performing a pro-
hibited action (see axiom 4 in subsection 3.2) or axiom (4) above which forbids a
manager from approving his own travel request. Of course an autonomous agent
may choose to execute the task regardless, in which case the instance is added, and
the ontology may now have recorded violations (in the case of broken prohibitions)
or may be inconsistent (in the case of an agent updating wrong information). In
the second case, the inconsistent ontology can still be used thereafter for agents to
check proposed actions. Ontology reasoners can reason with inconsistent ontolo-
gies by selecting consistent subsets [8]. In our case, the reasoner can identify the
set of “Minimal Unsatisfied Preserving Sub-Ontologies” (MUPSs) in an inconsis-
tent ontology [17]; each MUPS is a minimal set of problematic axioms. Thus, given
an inconsistent ontology, an agent can add an instance and check if the number of
MUPSs has increased; if so, then this instance has caused further inconsistencies,
otherwise the instance (and hence the proposed workflow task) is acceptable.

We now describe how the agent’s behaviour is related to the ontology and
the workflow using the “travel request” workflow in Figure 4. Let us look at
the second state of the workflow in Figure 4, i.e., the “checkRequestForm” task.
When control passes to this state there already exists an instance of a TravelRe-
questForm in the ontology, say this is TF124. Now the above axioms (1) states
that the Secretary is obliged to perform the “checkRequestForm” workflow task.
The secretary is going to perform this action, so the secretary agent creates an
instance of checkRequestForm, say this is CRF54. Axiom (5) states that checkRe-
questForm is defined as having at least one checks relationship, and therefore the
secretary agent must also add an ABox axiom for the relationship checks(CRF54,
TF124); the agent can also deduce that the form TF124 should be correct or in-
correct (i.e. boolean). Now due to axiom (6), assuming the form has been filled

Building MASs for Workflow Enactment and Exception Handling 63

correctly, then its isCorrect property should have a true value; this corresponds
to ABox axiom isCorrect(TF124, {“true”ˆˆ〈 xsd:boolean〉}), which can now be in-
ferred from the ontology. Now from axiom (7) it can be inferred that the travel
request form TF124 is an instance of the concept CorrectTravelRequestForm. Fi-
nally axiom (9) tells us that this instance TF124 is the value to be assigned to
the output variable “CorrectTravelRequesForm” of this workflow task. However,
the secretary might erroneously decide to assign the output TF124 as the out-
put value “CorrectTravelRequesForm” or “IncorrectTravelRequesForm” in the
workflow. As mentioned above, whenever an agent assigns a value to a workflow
input (or output) variable, the agent must add an instance of the corresponding
concept to the ontology. Thus the secretary’s choice is between adding the ABox
axiom CorrectTravelRequestForm(TF124) or InCorrectTravelRequestForm(TF124).
Of course if the latter choice is made, then the ontology becomes inconsistent,
because the form passed all the tests of axiom (6), hence CorrectTravelRequest-
Form(TF124) can already be inferred. Thus the secretary knows that declaring
the form incorrect breaks the organisation’s constraints. Likewise, if the form
was incorrectly filled, the secretary would break the organisation’s constraints
by declaring it to be correct. Axiom (10) states that the isCorrect property can
only have one value (i.e. the form’s correctness cannot be both true and false).

7 Dealing with Exceptions

During the enactment of workflows, exceptions may occur easily, for example
due to unavailable resources, or agent failures. One way to deal with exceptions
is to classify exceptions into classes and pre-define rules or policies to handle
each case; specialised agents then perform defined remedial actions [9]. How-
ever, exceptions are difficult to predict during design, especially in open and
dynamic environments. It is preferable to program agents with intelligence and
adaptivity so they can accommodate unexpected changes in their environment.
To satisfy this requirement we have associated the workflow tasks with semantic
information in the OWL ontology, and we have also represented the background
knowledge for the organisation. This allows agents to reason about the descrip-
tion of tasks and agents in the organisation and find alternative ways to deal
with workflow tasks when exceptions arise.

Exceptions often involve the inability to execute some particular task in the
workflow. This can be repaired by breaking off from the execution of the work-
flow at that point, and executing some sequence of actions which can act as a
substitute for the problematic task. The appropriate sequence of actions may
itself involve another workflow which is nested inside the original workflow. A
simple example of this could be when a member of an organisation is absent and
unable to execute a task in a workflow; then another member of the organisa-
tion may repair this problem by invoking a delegation workflow to delegate the
absent member’s duties to another suitable member of staff.

We provide exception handlers for the following two types of exception: (1) an
agent exception, where an agent may have crashed, or is not performing for some
reason; and (2) a task exception, where a task is unachievable.

64 J. Lam et al.

The “Agent Exception handler” in Figure 6 handles Exceptions regarding un-
available agents. The input to this routine consists of the problematic workflow
state and the agent who is handling the exception (AgH); this is the agent who
completed the preceding workflow state, and was unable to pass control to the
next agent. This routine first tries to find an alternative agent which has the
appropriate capability (and institutional power if necessary), and to delegate
the task to that agent. If no suitable agent can be found, then a substitute task
is sought; the subroutine “Find Alternative Task” (Figure 8) tries to find a task
with the same inputs and outputs. If no suitable task can be found, then the
Agent Exception handler tries to procure additional staff, and this is done via a
nested workflow for staff procurement. The agent uses its own internal procedure
“callWorkflow” to initiate a workflow to procure a new member of staff who can
do task Tp; this procedure returns true if the workflow successfully procures new
staff. We do not detail the procurement workflow, but it will make a selection
between either hiring contract staff or recruiting new staff, depending on the
organisational rules governing that class of staff.

The “Task Exception handler” in Figure 6 deals with unachievable tasks. Its
inputs are the problematic workflow state and the agent who is handling the
exception (AgH); in this case this is the agent who attempted to execute the
problematic task, and was unable to. The routine begins by checking if the task
has failed due to the unavailability of a required resource. If so, an alternative
resource is sought. This is done by finding siblings of the original resource in the
ontology. This could for example replace a black and white laser printer with a
colour laser printer for a simple print job; the colour printer is less desirable as
it is more costly, but it can do the job. If no suitable substitute resource can be
found, then a substitute task is sought; the subroutine “Find Alternative Task”
(Figure 8) tries to find a task with the same inputs and outputs. If no suitable
task can be found, then the Task Exception handler tries to procure the resource,
and this invokes a nested workflow for resource procurement. This workflow is
shown in Figure 9, it will make a selection between either hiring the equipment
or purchasing it, depending on the organisational rules governing that type of
equipment (we do not give the details of these rules).

We now describe dealing with exceptions with examples. We consider the
workflow example shown in Figure 9 which deals with printing a finance report.
When a finance report is written, its format is then checked. Next, the report is
to be approved, and printed locally, finally the report is posted. Below we list
some of the ontology axioms which are relevant to this workflow.

(1) ApproveReport � Institutional Task
(2) Manager � ∃ hasPower.ApproveReport � ∀ hasPower.ApproveReport � ∃ isCapbale.ApproveReport �

∃ isPermitted.ApproveReport
(3) ITManager � ∃ hasPower.ApproveITReport � ∀ hasPower.ApproveITReport
(4) FinanceManager � ∃ hasPower.ApproveFinanceReport � ∀ hasPower.ApproveFinanceReport
(5) FinanceManager � ITManager � GeneralManager � Manager
(6) ApproveFinanceReport � ApproveITReport � ApproveReport
(7) ApproveFinanceReport � ¬ ApproveITReport
(8) Secretary � ∃ isObliged.checkReportFormat

The FinanceManager has the power to do ApproveFinanceReport. If the FinanceM-
anager is not available, then control returns to state 2 of the workflow, where the

Building MASs for Workflow Enactment and Exception Handling 65

algorithm Agent Exception handler(〈id, Tp〉, AgH)
// Try to find an alternative agent who has the capability to do Tp

if Find Alternative Agent(〈id, Tp〉, AgH ,O) return true;
// Try to find an alternative task (or workflow) with the same input/output as Tp

else if Find Alternative Task(〈id, Tp〉, AgH ,O) return true;
else if callWorkflow(procureStaff WF,Tp) return true; // initiate the staff procurement workflow
else return false;

algorithm Task Exception handler(〈id, Tp〉, AgH)
// if something is missing try alternative resources
if there exists some resource R such that

Tp � ∃uses.R and ! available (R)
then for each Ri, where sibling(R, Ri)

let r be an instance of R
let ri be an instance of Ri

let t be an instance of Tp

O′ := {uses(t, ri)} ∪ O \ {uses(t, r)}
if consistent(O′) then O := O′; return true;

end for
// Try to find an alternative task (or workflow) with the same input/output as Tp

if Find Alternative Task(〈id, Tp〉, AgH ,O) then return true;
// If resources are missing
if there exists some resource R such that Tp � ∃ uses.R and ! available (R)

then if callWorkflow(procureResource WF,R) return true
// initiate the resource procurement workflow

return false;

Fig. 6. Dealing with Exceptions

algorithm Find Alternative Agent(〈id, Tp〉, AgH ,O)
AgH = 〈RH , TH〉
// if Tp is a type of institutional task, then it needs institutional power
if Tp � Institutional Task ∈ O
// then find agents having the capability and power to do Tp

then Agent list := RunQuery(“Type(:y, ?agent), PropertyValue(:x, org:isPermitted, :z),
PropertyValue(:x, org:hasPower, :z), PropertyValue(:y, org:isCapable, :z),
PropertyValue(:y, org:hasRole, :x), Type(:z,dom:Tp)”)

// else find agents having the capability to do Tp

else Agent list := RunQuery(“Type(:y, ?agent), PropertyValue(:y, org:isCapable, :z), Type(:z,dom:Tp)”)
for each Agi in Agent list do

// if AgH has power to delegate to Agi, then AgH gives him the order to do it
if ∃Role ∈ RH such that canDelegate(Role, Agi)

then SpeechAct(AgH , Agi,order, Tp) return true;
else // AgH requests Agi to take the obligation

if callWorkflow(request WF, AgH , Agi, Tp) then return true;
end for
return false;

Fig. 7. Finding Alternative Agents

secretary must handle the exception using the routine in Figure 6. This leads to
the routine “Find Alternative Agent” (in Figure 7) being run. After running the
query within “Find Alternative Agent”, the agent whose role is GeneralManager
is returned as an appropriate candidate to carry out the approval task. This is
because GeneralManager inherits power from its superclass Manager, while IT-
Manager is restricted to approve IT reports only. The final stage of the exception
handling is for the secretary to initiate a “request” workflow, to request that the
general manager take on the obligation to approve the finance report. If this is
successful, then the workflow can resume with the new substitute agent.

The next step is to print the report. To show an example of an unachievable
task, let us assume no printer or toner is available; therefore printReportLocally
cannot be implemented. As the secretary is responsible for this unachievable task,

66 J. Lam et al.

algorithm Find Alternative Task(〈id, Tp〉, AgH ,O)
AgH = 〈RH , TH〉
// find any task T with same input/output
Task list := RunQuery(“Type(:t, ?task),Type(:z, dom:Tp), PropertyValue(:z, dom:hasInput, :xi),

PropertyValue(:z, dom:hasOutput, :xo), PropertyValue(:t, dom:hasInput, :xi),
PropertyValue(:t, dom:hasOutput, :xo)”)

for each T ∈ Task list // check the consistency for each alternative task
let t be an instance of Tp

O′ := {T (t)} ∪ O \ {Tp(t)}
if consistent(O′) then O := O′

if T is a workflow, then AgH initiates T
else if T is a task // then check if the AgH can do T

if Tp � Institutional Task ∈ O // then find agents having the capability and power to do Tp

if ∃Role ∈ RH such that isCapable(AgH , T)∧ hasPower(Role, T)∧ isPermitted(Role, T)
then AgH := 〈RH , TH ∪ {T}〉; return true;

else if ∃Role ∈ RH such that isCapable(AgH , T)
then AgH := 〈RH , TH ∪ {T}〉; return true;

// otherwise call routine for finding alternative agent
if Find Alternative Agent(〈id, T 〉, AgH ,O) then return true;

end for
return false;

Fig. 8. Finding Alternative Task

Fig. 9. Finance Report and Purchase Workflows

the secretary must execute of the routine “Task Exception handler” (in Figure
6), which reveals that a resource is missing, and no suitable alternative resource
exists in the organisation. The routine then searches for alternative tasks and
finds that the task printReportCommercially is a sibling task of printReportLocally,
has the same input ApprovedReport and output PrintedReport. However, if the
report is sensitive, it is not allowed to print it commercially (see axiom 6 below).
Assume that printRpt322 is the instance of printReportLocally, which is to be
replaced by printReportCommercially; according to “Find Alternative Task” (in
Figure 8) we move the instance printRpt322 from printReportLocally to printRe-
portCommercially. If the report is sensitive, i.e., printRpt322 is also an instance of
SensitiveReport, then from axiom 6 below we could infer that the agent perform-
ing the commercial print act is violating norms. Hence, printReportCommercially
should not be executed. If the agent chooses not to violate the norms, then
“Find Alternative Task” fails and control returns to “Task Exception handler”
(in Figure 6). Having failed to find an alternative resource or task, this routine
now tries to procure the resource required for the task. This means that the
secretary must initiate the “procureResource WF” workflow (in Figure 9), and
if successful, the printing resource is available, and the workflow can progress.

Building MASs for Workflow Enactment and Exception Handling 67

(1) printReportLocally
.
= ∃ print.(Report � ∃ printedBy.(Printer � ∃ hasToner.(Toner �

∃ hasAmt.GreaterThanZero)))
(2) Printer � Toner � Resource
(3) procureRequest

.
= ∃ requests.(Resource � ∃ hasAmt.LessThanOne � = 1 hasPrice)

(4) printReport � ∃ hasInput.ApprovedReport � ∃ hasOutput.PrintedReport
(5) printReportLocally � printReportCommercially � printReport
(6) Staff(s) ∧ SensitiveReport(r) ∧ printReportCommercially(act) ∧ print(act,r) ∧ performed(s,act) ∧O(s)

∧O(r) ∧O(act) → violated(s,act)
(7) Secretary � ∃ isObliged.printReportLocally

8 Related Work

Various works use agents to enact workflows. Buhler and Vidal [4] proposed to
integrate agent services into BPEL4WS-defined workflows. The strategy is to
use the Web Service Agent Gateway to slide agents between a workflow engine
and the Web services it calls. Thus the workflow execution is managed centrally
rather than by the agents. On the other hand Guo et al. [5] describe the de-
velopment of a distributed multi-agent workflow enactment mechanism from a
BPEL4WS specification. They proposed a syntax-based mapping between some
of main BPEL4WS constructs to the Lightweight Coordination Calculus (LCC).
This work however does not address organisational or normative aspects of an
agent system; we believe that these high level aspects are important for agent
systems that are to model real processes in human organisations; such simula-
tions can be useful to reveal potential problems in organisational and normative
specifications for a system, for example in a crisis management scenario. Fur-
thermore we have shown how the use of ontologies to describe aspects of the
organisation and domain can be valuable in exception handling, as agents are
part of an organisation and will be unable to deal with exceptions entirely on
their own.

Klein and Dellarocas [9] explicitly deal with the issue of exceptions; they
propose the use of specialised agents that handle exceptions. The exception han-
dling service is a centralised approach, in which a coordination doctor diagnoses
agents’ illnesses and prescribes specific treatment procedures. Klein and Dellaro-
cas [10] identified an exception taxonomy which is a hierarchy of exception types,
and then described which handlers should be used for what exceptions. Klein et
al. [11] describe a domain-independent but protocol-specific exception handling
services approach to increasing robustness in open agent systems. They focus on
“agent death” in the Contract Net protocol. We would argue that our approach
is more generic in that it is neither domain-specific, nor protocol-specific. When
seeking alternative ways to achieve workflow tasks, our agents can use the same
handling routine regardless of the workflow in progress. A further distinction be-
tween our work and the above related works use some device which is added into
the system to deal with exceptions, for example: specialised agents, an excep-
tion repository, or a directory to keep track of agents. In contrast, our approach
aims to endow the agents of the system themselves with the ability to deal with
exceptions by querying ontologies to find alternative ways.

Perhaps the closest approach to our work in the literature is from Mallya and
Singh [14]. Building on the commitment approach, they have proposed novel

68 J. Lam et al.

methods to deal with exceptions in a protocol. They distinguish between ex-
pected and unexpected exceptions. Unexpected exceptions are closest to the
types of exceptions we tackle here. Mallya and Singh’s solution makes use of
a library of sets of runs (sequences of states of an interaction) which could be
spliced into the workflow at the point where the exception happens. This is sim-
ilar to the way our exception handling can sometimes include a nested workflow
in place of a failed task, to repair the workflow. However, they do not describe
how these sets of runs can be created, but it is likely that one would need access
to observed sequences from previous enactments of similar workflows. The aim
of the commitment approach is in line with our work, as it endows the agents
with some understanding of the meaning of the workflow they are executing, by
giving them knowledge of the commitments at each stage. This would make it
possible for agents to find intelligent solutions when exceptions arise. Similarly,
in our approach, agents are endowed with semantic knowledge (represented in
an ontology) about the capabilities and norms of the other roles so that they
can find suitable candidates to execute tasks in the case of exceptions.

9 Conclusions and Future Work

In this paper we have described a method by which an agent system could be
constructed to enact a set of given workflows, while respecting the constraints of
a given organisation. We have shown how Semantic Web languages can be used
to describe the organisational knowledge, as well as domain knowledge which can
be used by the agents if exceptions arise during the enactment of a workflow;
the agents can then use this knowledge to make intelligent decisions about how
to find alternative ways to complete the workflow.

Some issues which have not been addressed include the updating of the or-
ganisational knowledge by agent activities outwith the workflows, for example
speech acts that may change norms in the system. Also, we have not included
any mechanism to detect when an obligation is violated. This could be addressed
by associating time limits with obligations and including timer events which are
triggered when obligations time out, and then checking if they have been fulfilled;
this remains for future work.

Our aim has been to allow agents to deal with unexpected exceptions, rather
than coding specific exception handlers for a predefined set of expected excep-
tions. Nevertheless we have had to define exception handling routines for some
predefined situations, such as agent exceptions, or task exceptions. However, our
predefined situations cover a broad class of exceptions, and there can be many
possible solutions if the ontological knowledge is suitably rich.

References

1. IBM, BEA Systems, Microsoft, SAP AG and Siebel Systems, business Process
Execution Language for Web Services version 1.1. Technical report (July 2003)

2. Artikis, A.: Executable Specification of Open Norm-Governed Computational Sys-
tems. PhD thesis, Imperial College London (2003)

Building MASs for Workflow Enactment and Exception Handling 69

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, Cambridge (2003)

4. Buhler, P., Vidal, J.M.: Integrating agent services into BPEL4WS defined work-
flows. In: Proceedings of the Fourth International Workshop on Web-Oriented Soft-
ware Technologies (2004)

5. Guo, L., Robertson, D., Chen-Burger, Y.-H.: Using multi-agent platform for pure
decentralised business workflows. Web Int. and Agent Systems 6(3) (2008)

6. Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic
satisfiability. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS,
vol. 2870, pp. 17–29. Springer, Heidelberg (2003)

7. Horrocks, I., Sattler, U.: A tableaux decision procedure for SHOIQ. In: Proc. of
the 19th Int. Joint Conf. on Artificial Intelligence, pp. 448–453 (2005)

8. Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with inconsistent ontologies.
In: Kaelbling, Saffiotti (eds.) IJCAI’05 (2005)

9. Klein, M., Dellarocas, C.: Exception handling in agent systems. In: AGENTS ’99:
3rd Annual Conference on Autonomous Agents, pp. 62–68 (1999)

10. Klein, M., Dellarocas, C.: Towards a systematic repository of knowledge about
managing multi-agent system exceptions. Technical Report ASES Working Report
ASES-WP-2000-01, Massachusetts Institute of Technology (2000)

11. Klein, M., Rodriguez-Aguilar, J., Dellarocas, C.: Using domain-independent ex-
ception handling services to enable robust open multi-agent systems: The case of
agent death. Auton. Agents and Multi-Agent Systems 7(1-2), 179–189 (2003)

12. Lanzén, A., Oinn, T.: The taverna interaction service: enabling manual interaction
in workflows. Bioinformatics 24(8), 1118–1120 (2008)

13. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee,
E.A., Tao, J., Zhao, Y.: Scientific workflow management and the Kepler system:
Research articles. Concurr. Comput.: Pract. Exper. 18(10), 1039–1065 (2006)

14. Mallya, A.U., Singh, M.P.: Modeling exceptions via commitment protocols. In: AA-
MAS ’05: Proceedings of the fourth international joint conference on Autonomous
agents and multiagent systems, pp. 122–129. ACM, New York (2005)

15. Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with Rules.
In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS,
vol. 3298, pp. 549–563. Springer, Heidelberg (2004)

16. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. Computer 29(2), 38–47 (1996)

17. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: Proceedings of the 8th International Joint Con-
ference on Artificial Intelligence (IJCAI’03), pp. 355–362 (2003)

18. Sirin, E., Parsia, B.: SPARQL-DL: SPARQL query for OWL-DL. In: 3rd OWL
Experiences and Directions Workshop, OWLED-2007 (2007)

19. van der Aalst, W.: The Application of Petri Nets to Workflow Management. The
Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

20. von Wright, G.H.: Deontic logic. Mind, New Series 60(237), 1–15 (1951)

An Approach for Virtual Organisations’

Dissolution

Nicolás Hormazábal1, Henrique Lopes Cardoso2,
Josep Lluis de la Rosa1, and Eugénio Oliveira2

1 Universitat de Girona, Agents Research Lab,
Av. Lluis Santaló S/N, Campus Montilivi, Edifici PIV, 17071 Girona, Spain

{nicolash,peplluis}@eia.udg.edu
2 Universidade do Porto, LIACC, DEI / Faculdade de Engenharia,

R. Dr. Roberto Frias, 4200-465 Porto, Portugal
{hlc,eco}@fe.up.pt

Abstract. Current research on virtual organisations focuses mainly on
their formation and operation phases, devoting only little attention to
the dissolution phase. These passages typically suggest that dissolution
should occur when the organisation has fulfilled all its objectives or when
it is no longer needed. This last definition is quite vague and hard to
define, as the need for an organisation is not always easy to measure.

We believe that, besides fulfilment of objectives, more causes should
be considered for the dissolution of a virtual organisation, since an or-
ganisation is not always capable of achieving its goals or continuing op-
erations. Organisations can change during their operation, as might the
environment in which they operate, and these changes may affect their
performance to the point that they should not continue operating. In
addition, the causes that could lead to dissolution could affect the for-
mation of future organisations. Considering the correspondence between
virtual organisations and real-life organisations, some portions of real-
world commercial law related to dissolution can be applied to the virtual
world.

In this paper we introduce the different causes that should be con-
sidered for virtual organisation dissolution, and a case study focused on
one of these causes is presented as a way to emphasise the significance
of the dissolution process.

1 Introduction

Generally speaking, virtual organisations (VOs) are composed of a number of au-
tonomous agents with their own capabilities and resources for problem-solving,
task execution and performance. Being autonomous, agents usually pursue in-
dividual goals, but in some cases, these goals can be achieved with better per-
formance or higher benefits inside a cooperative environment with other agents,
where the resulting organisation can even offer new services through the com-
bination of complementary abilities. For example, in an economic environment,

J. Padget et al. (Eds.): COIN 2009, LNAI 6069, pp. 70–85, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Approach for Virtual Organisations’ Dissolution 71

agents may represent different units or enterprises that come together in re-
sponse to new market opportunities that require a combination of resources
that no partner alone can fulfil [1]. These cooperative organisations have been
researched mainly from the point of view of their formation and operation. How-
ever, their lifecycle has been outlined as having an additional phase and therefore
is comprised of formation, operation and dissolution.

Although the automation of the dissolution process has been mentioned as a
research and development challenge in the study of VOs [2], there is not much
work addressing dissolution. This phase is often overlooked by deeper research,
yet, in economic terms, if an organisation’s dissolution is not properly managed,
it can generate tremendous costs [3]. The timeliness of dissolution is dictated
by the existing agents and resource availability. If a VO is underperforming
without a chance for reconfiguring itself (or if the possible reconfiguration is
not sufficient to improve performance), then it should dissolve in order to free
assigned resources and members.

Under normal circumstances, the dissolution should happen after the VO has
fulfilled its objectives [4]. Some researchers also mention that such partnerships
should dissolve when they are no longer sustainable [5] or the VO is no longer
needed. The main topic of this paper is the clarification of these terms, through
an identification of the causes that should be considered for the dissolution of a
VO.

The paper is organised as follows: Section 2 briefly describes some real-life
organisations and the normative environment that provides the context for the
dissolution process of virtual organisations. Section 3 describes the normative
framework used for supporting the dissolution process. Section 4 explains the
dissolution process, describing the steps needed for dissolution and the causes
that should lead to a VOs dissolution. Section 5 presents a case study focused on
one of the causes for dissolution presented. Finally, in section 6, the conclusions
of the current work are presented.

2 Real-World Organisations

In virtual environments, agent societies enable interactions between agents and
are therefore the virtual counterpart of real-life societies and organisations [6]. As
such, when seeking to support VO dissolution, issues related to the dissolution
of real-life organisations should be considered.

The most common type of regulated social organisation is the commercial
organisation, such as a limited or public limited company. These organisations
are regulated by law, and therefore they exist inside a normative environment
enforced by its respective legal institution. Every country has its own laws, but
there are several common key features among Western countries that can be
used for reference. We shall use Spanish Commercial Law ([7], [8]) as a starting
point, specifically those laws concerning the dissolution of this type of commercial
organisation.

The dissolution of a commercial organisation is divided into two phases. First,
there is the identification of a dissolution cause. In some cases, the agreement of

72 N. Hormazábal et al.

the organisation’s members is also needed to move forward to the next phase.
The second phase is liquidation, wherein, once a dissolution cause is identified,
the organisation moves forward to perform the tasks needed to enact its end,
producing a dissolution report that summarises the organisation’s activity.

From the text above, the dissolution causes can be classified into two different
groups:

– Causes that, when identified, dissolve the organisation automatically without
needing of the members’ (or the boards) agreement.

– Causes that, when identified, need an agreement from the members (or the
board) before going on to the next step, the liquidation.

These causes depend on, besides the law itself, the contents of the organisations
articles of association, their statutes (where, for example, the duration of the
organisation is specified, in case the partners decide to have a fixed duration) or
the organisation’s assets. The law may also include slightly different legislation
on some aspects depending on the organisation’s scope.

Institutions regulate interactions between the members of a society, defining
the ”rules of the game”, what is permitted and what is forbidden and in what
conditions [9]. Similarly, a VO needs to operate within a normative environment,
enforced in this case by an electronic institution (EI), which is the electronic
counterpart of real-life institutions.

3 Normative Framework

Commercial organisations are restricted externally by the legal context in which
they operate and internally by the statutes or articles of association created during
the organisation’s formation. There are, then, different normative layers related
to the organisations’ activities. First, a common set of norms for every organisa-
tion exists in the form of the law; specific norms for each one of them consist of the
statutes or articles of association. An institutional normative framework should
therefore include a hierarchical organisation of norms.Borrowing from [11],we con-
sider norms to be organised into three levels (see Figure 1).

The EI aims to support agent interaction as a framework of coordination
and provides a level of trust by offering an enforceable normative environment.
This means that the EI will facilitate both the creation and the enforcement of
contracts among agents [12]:

– Institutional norms, at the higher level, influence the formation of VO con-
stitutional and operational contracts; they set up the normative background
upon which cooperative commitments can be established. Regulations on
general contracting activities and the behaviour of every agent in the EI are
included on this level.

– Constitutional norms represent the core of the cooperative agreement be-
tween the agents. The agreement is represented by norms that regulate the
created coalition, which usually exists for a specified period of time. Norms
at this level only affect the agents that participate in the VO.

An Approach for Virtual Organisations’ Dissolution 73

Fig. 1. Normative Framework

– Operational norms indicate the actions to be performed by contractual agents
by specifying operational contracts, which may be established among a sub-
set of the VO’s agents.

Drawing a parallel between the real-life organisations (like commercial organisa-
tions) and the EI framework, institutional norms map commercial law, constitu-
tional norms correspond to the organisation’s articles of association or statutes,
and the operational norms represent the individual task commitments inside the
organisation (table 1).

Table 1. Parallel between societies and EI

Real-Life Societies Electronic Institution Framework

The Law Institutional Norms

Statutes Constitutional Norms

Task Commitments Operational Norms

The VOs activity is therefore governed by norms established for different lay-
ers in the institutional normative framework. When we focus on the dissolution
phase of a VO lifecycle, we posit that there should be some norms related to
the identification of when a VO has to be dissolved, thus helping to identify the
causes of dissolution.

4 Dissolution Process

Inspired by commercial law, in this work we suggest a two-step dissolution pro-
cess. First is the dissolution activation (which will be called activation), con-
sisting of the identification of a cause of dissolution for the VO, and then the
execution of the dissolution process follows, where the needed tasks for the dis-
solution will be run (this step will be called liquidation).

74 N. Hormazábal et al.

4.1 Activation

In the current literature, the causes for VO dissolution are mainly the successful
achievement of all its goals or a decision by the involved partners to stop the
operation [10]. But if the partners decide to stop the operation of the VO, they
should somehow specify the cause of the decision; if the organisation is ending
its activities before fulfilling its goals, this could be considered an unsuccessful
venture. This information should be used for future organisation formation and
partner selection.

Before dissolving, VOs can attempt to adapt themselves to environmental
changes or perform a reorganisation in order to maintain or improve perfor-
mance, depending on different causes. This means that it is not always the right
choice to move forward to the dissolution, yet in some cases, it may be better to
dissolve instead of trying to reorganise a VO.

We suggest then distinguishing two type of causes of dissolution: first, the causes
that need the decision of the involved members for moving on to the dissolution,
which will be called Necessary Causes, as they are necessary for the dissolution
but not sufficient, as they need the members agreement.

Additionally, there are some causes that should automatically dissolve the or-
ganisation without needing the partners’ decision. These causes are the Sufficient
Causes.

During the VO operation, necessary or sufficient causes could be identified,
which could lead the VO to different dissolution sub-states (figure 2). If a suf-
ficient cause is identified, the VO goes directly to liquidation, the mandatory
step before the complete dissolution, where the organisation enters into an on-
liquidation sub-state until it finishes related tasks. But if a necessary cause is
identified, the VO goes to a pending dissolution sub-state, where the VO waits
for the partners’ confirmation for the dissolution, or for the VO modifications
(the adaptation or evolution of the VO) that will avoid the dissolution and make
the VO return to the operation phase. If no measures are taken for returning to
the operation phase after a period of time defined by the EI, the VO dissolves,
going to the on-liquidation sub-state.

In short, during the dissolution, if a sufficient cause is detected, the organisa-
tion goes into liquidation. If a necessary cause is detected and no actions on the
VO are taken to solve the issues related to the dissolution cause, the VO goes
into liquidation.

Sufficient Causes. Sufficient causes, once identified, are sufficient for the au-
tomatic dissolution of the VO. The causes of this type that we have identified
are as follows:

– Deadline: In the VO cooperation agreement, created during its formation,
the duration of the organisation can be specified. During the operation of
a VO, partners can modify their own normstheir cooperation agreementso
they can extend the lifespan of the organisation, but once it is reached, the
organisation should dissolve, as it was created to exist only for this duration.

An Approach for Virtual Organisations’ Dissolution 75

Fig. 2. Dissolution Sub-States

– Reduction: During the formation of a VO, the agents specify in the cooper-
ation agreement the resources that they are willing to devote to the organ-
isation. This is what defines the organisation’s assets: the total amount of
resources that the organisation has. The EI should establish the minimum
required resources for a VO to be considered as such. If for some reason the
VO suffers a reduction of its resources below the minimum, the VO dissolves.
For example, on a football (soccer) team, the minimum amount of resources
for a team is 7 players; below that number, one no longer has a team.

– Agreement: As we cannot disregard the case where VO partners arbitrarily
decide to dissolve the organisation, the agreement for the dissolution should
be considered too. For that, a minimum percentage (typically over 50%) of
partners must decide to dissolve the organisation.

Necessary Causes. Necessary causes are necessary, but not sufficient. To be
made sufficient, they need the agreement of the VO partners. Putting it another
way, the partners have to take action to prevent the dissolution.

– Fulfilment: As mentioned before, the dissolution can be reached by the suc-
cessful achievement of all the VO goals. During the formation of the VO,
agents must define the organisation’s goals in the cooperation agreement.
Once they are fulfilled, the Institution can be dissolved. The reason that
this is a necessary cause and not a sufficient one is that once the goals have
been achieved, the agents can evaluate whether they want to set new ones
based on the performance and continue operating.

– Unfeasibility: There are some cases when a VO cannot fulfil its goals. This
could happen due to internal issues, such as the loss of key resources for
achieving all the goals, or it could be brought about by external causes, such
as changes in the environment that affect the organisation, such as the arrival
of a new organisation that competes for the same goals. The VO can make
changes to improve its performance, change its goals or add new resources,
among other measures, to prevent the dissolution.

– Inactivity: For any reason, it could happen that the VO could show no
activity during a period of time; after a specified period, the organisation
could be considered as idle or dead, and after that, it could go on to the
dissolution phase.

76 N. Hormazábal et al.

– Loss: This dissolution cause makes sense only when the benefits of the VO are
measurable and in the same unit as the assets specified in the VO formation
(see the Reduction sufficient cause above). In the cooperation agreement, the
organisational assets are specified based on the resources that each member
is willing to spend. If, during the operation of the VO, instead of benefits
there are losses and these losses are over the half of the organisational assets,
the VO can be dissolved as it can be considered unviable.

Some examples of possible action for the VO to take to avoid dissolution after a
necessary cause are identified below:

– New goal definition or reallocation of resource and agent assignments for
given tasks.

– Addition of new agents to the VO or replacing partners.
– Force the resumption of VO activities after a period of inactivity.
– Modify the VO assets by adding new resources or removing them.

In short, there are seven different dissolution causes, grouped by sufficient causes
and necessary causes (table 2).

Table 2. Dissolution Causes

Sufficient Causes
Deadline
Reduction
Agreement

Necessary Causes

Fulfilment
Unfeasibility
Inactivity

Loss

Activation within an Electronic Institution Framework. In the different
layers of the EI normative framework (from section 3), we should have norms that
support the VO dissolution at both the institutional and constitutional levels.
Institutional norms should contain at least four values for dissolution support,
which we will call dissolution support elements:

– Minimum Resources (R): The minimum resource requirements that a VO
needs to have to be considered as such. The VO assets have to be greater
than this value.

– Time of inactivity (Ti): The time that a VO has to be inactive before con-
sidering its dissolution.

– Maximum loss over assets (Ml): The maximum percentage of loss over the
VO’s initial assets before considering its dissolution.

– Minimum votes for the majority (V): The default value for the minimum per-
centage of the total number of participants needed to agree on the dissolution.

These values in the top level of the norms hierarchy (Institutional Norms) can
be context-dependent. The grouping of predefined norms by appropriate contexts

An Approach for Virtual Organisations’ Dissolution 77

mimics the real-world enactment of legislation applicable to specific activities
[13]. So, depending on the type of organisation, it could have some different
dissolution support elements.

The following is an abstraction of the concepts that should be included in
a VO contract. Regarding the constitutional norms, the VO contract should
include at least the VO duration D (or the starting and ending dates for the
VO operation). The contract structure should contain the cooperation effort to
which each agent has committed as a result of the negotiation process prior to
the VO formation. For each agent Ai, with the assigned resources Rk, based on
the cooperation effort structure specified in [11]:

CoopEff = {〈Ai, Rk, W 〉}
W = 〈MinQt, MaxQt, Freq, UnitPr〉

W represents the workload for each participant agent Ai specified between a
minimum (MinQt) and a maximum value (MaxQt), with a frequency (Freq)
during the lifetime of the organisation and the unit price (UnitPr) that the
agent has assigned for performing the assigned workload.

The frequency depends on the unit used for measuring the VOs duration (i.e.,
days, weeks, computer cycles), which in turn depends on the VO’s scope. For
example, when the duration unit is days, if the workload is specified for each
week then the frequency Freq is 7 (every seven days).

The significance of the cooperation effort for the dissolution is that with it,
the organisational asset Oa of the organisation can be calculated, given the total
duration of the organisation D for each agent Ai in the VO:

Oa =
∑

Ai

MaxQt ∗ UnitPr ∗ D

Freq

This organisational asset will be used to evaluate the Reduction and Loss disso-
lution causes.

Each one of the causes of dissolution depends on one normative level (ta-
ble 3) except for Reduction and Loss, which depend on both institutional and
constitutional norms, as they depend on the initial VO assets (and thus on the
constitutional norms) and on a minimum value specified in the institutional
norms in the case that the VO has not redefined this for itself.

Unfeasibility is a different case. Although it can be considered as a consti-
tutional norms-dependent cause, the truth is that it is more complicated to
identify than by observing the assigned resources for each VO goal. A VO could
find itself in a situation where it cannot fulfil its objectives for causes beyond
the control of the organisation itself. Sometimes for external causes, VO perfor-
mance could decrease, and the organisation should adapt to the environment,
making modifications by reconfiguring itself (some authors introduce a separate
phase for adaptation, and others mention the adaptation as a part of the opera-
tion phase), or dissolve. Tools for monitoring the VO are needed for identifying
cases such as Unfeasibility, which, once identified, can enable the VO to avoid a
useless extension of operation time if the expected results are to be negative.

78 N. Hormazábal et al.

Table 3. Dependence between dissolution causes and normative framework levels

Normative Level Dissolution Cause

Institutional Norms

Agreement
Inactivity
Reduction

Loss

Constitutional Norms

Deadline
Fulfilment
Reduction

Loss

4.2 Liquidation

Liquidation is the last step before the complete dissolution of the VO. Every
running task must be stopped and the VO activity frozen for realising the liq-
uidation step. The organisation goes into an on-liquidation sub-state inside the
dissolution phase (see Figure 2).

During the organisation’s operation, a profit and expenses log must be main-
tained, which will allow the VO to create the final balance during this step. Some
of the other main aspects that should be supported [10] are:

– Definition of general liabilities upon the dissolution of the VO.
– Keeping track of the individual contributions to a product/service that is

jointly delivered (in terms of the quality and product life cycle maintenance).
– Redefinition/discontinuing information access rights after ceasing the

cooperation.
– Assessing the performance of partners and generating information to be used

by partner selection tools in future VO creation.

This last item is especially relevant, as it not only supports the formation of
future VOs but can also support the identification of dissolution causes based
(such as unfeasibility) on past experiences. An organisation can use this infor-
mation to identify whether it is possible to fulfil its objectives given its status
at a specific time.

For evaluating the partners’ performance, it is better not to make a single
evaluation at dissolution time, but at several times during the organisation’s
lifespan in order to have a complete picture of the performance evolution. In the
best case the evaluation should be made at every moment during the organi-
sation’s operation time, but as this is not always possible, at least three fixed
times are recommended for evaluating the organisation: at the moment of its
formation, at half of its expected lifespan and at the end, before dissolving [14].
Additionally, new evaluations should be made if key elements are changed within
the VO, such as the cooperation agreement.

The evaluation of performance depends upon the VO’s scope. A suggestion
for the evaluation elements is:

Ev = 〈T ime, CA, Ben, Exp, Wf, Wr〉

An Approach for Virtual Organisations’ Dissolution 79

Where:

– T ime: The time when the evaluation has been made.
– CA: The VO cooperation agreements.
– Ben, Exp: A balance of the VO’s benefits and expenses.
– Wf : The workload (in time or price unit) used for the fulfilled tasks.
– Wr: The expected workload needed for fulfilling the remaining tasks.

The output of the liquidation process should be a dissolution report (DR), which
will contain all the evaluations made during the organisation’s lifespan Evs, to-
gether with the dissolution cause DC. Additionally, it can contain an assessment
Sc (a score between 0 and 1) from each agent Ai evaluating the VO’s perfor-
mance based on the fulfilment of the agents individual goals. We suggest the
following for the content of the dissolution report DR:

DR = 〈Evs, DC, V als〉
Evs = {Ev1, Ev2, ..., Evn}

V als = {V al1, V al2, ..., V aln}
V ali = 〈Ai, Sc〉

DC ∈ {Deadline, Reduction, Agreement,

Fulfilment, Unfeasibility, Inactivity, Loss}
This dissolution report, stored in a knowledge base, will facilitate future VO
formation and partner selection, giving information about the performance (from
the benefits and expenses) and evaluation of each agent, and it also provides
information for the reasons why the VO has not fulfilled its objectives, when
that is the case.

5 Unfeasibility Case Study

We developed a simple digital environment for simulating the creation of agent
organisations and for testing a way to identify the unfeasibility dissolution cause.
In this environment, agents form organisations (as the idea is to focus only on
the dissolution, the organisation formation process is done automatically) with
a fixed duration (in time steps), after which the organisation dissolves.

The mechanism is simple: agents move and interact asynchronously through a
grid space (which represents the environment), and when they find another agent
in their neighbourhood (nearer than two cells), they send a message proposing
the creation of an organisation. In the next time step, agents reply with whether
they accept or not. Every agent in the system offers a single (not unique) service,
where the advantage of forming an organisation lies in that two agents together
can offer their own service plus their service combination, expanding their own
markets.

The idea is to demonstrate the utility of supportive tools to automate the
identification of dissolution causes, as well as to demonstrate how the dissolu-
tion can affect the overall system performance, comparing the results with cases

80 N. Hormazábal et al.

without the unfeasibility cause. Additionally, agents have a transitional step be-
tween dissolution activation and liquidation for deciding whether to proceed or
not, based on the evaluation results of the organisation’s performance.

At the moment of their dissolution, each organisation will generate a dissolu-
tion report containing evaluations of the organisation at different time periods.
Each evaluation will contain only the benefits since the last evaluation (or the
benefits so far if it is the first evaluation), the diversity of the offered services
and the time steps passed from the last evaluation. These evaluations will be
generated at three time periods of the VO’s lifespan: at the first third of its ex-
pected lifespan, at the second third, and at the moment of its dissolution, when
the dissolution report containing the evaluations is created (thus, if a VO has a
fixed lifespan of 30 steps, the report will contain evaluations of the VO’s benefits
at steps 10, 20 and 30). If an organisation decides to extend its lifespan, new
evaluations will be added to the report.

A knowledge base with previous cases will be used to identify cases in which
the agents’ expectations will probably not be fulfilled. At first, this knowledge
base will be empty, and it will be filled with the dissolution reports that each
dissolved organisation generates.

For the simulation, the following assumptions related to the agents have been
made:

1. Each agent offers a single service.
2. Agents who coalesce are more likely to reap benefits, to the extreme that, in

this case, single agents receive no benefits.
3. When agents coalesce, there are three options related to the organisation’s

lifespan: a) set a fixed lifespan, b) do not fix a lifespan and c) set an initial
lifespan that can be changed.

4. In the specific negotiation scenario, at least two agents coalesce; one agent
who makes an offer for creating an organisation and one or more who receive
the offer. Each offer has a 50% chance of being accepted. This is to simplify
the negotiation process while still having the chance to offer refusals.

As for the calculated benefits and organisation services, it is assumed that:

1. Two or more agents offering the same service can’t be part of the same
organisation.

2. Benefits are calculated based on the services an organisation offers and the
demand for these services.

3. The organisations will offer the individual services of each member agent,
as well the combination of these services. For example, if an organisation is
composed of two agents, which respectively offer the services A and B, the
organisation will offer the services A, B and A+B (figure 3)

4. Every service has the same base demand, as do the combined services.
5. The demand of a service depends on the competition within this service (how

many organisations offer the same service). For example, if an organisation
offers the services A, B and A+B, and another active organisation offers the
services A, C and A+C, there will be two competitors for the service A.

An Approach for Virtual Organisations’ Dissolution 81

Fig. 3. Services of an organisation

Benefits for each time step are calculated by the following equation:

E =
∑

i

(
B

Ci
+ N)

Where:

– E are the total earnings or benefits of the organisation at each step.
– B is the base earnings for each service i.
– Ci is the number of organisations that offer the same service i (including the

organisation whose earnings are being calculated).
– N is a random number from a normal distribution with average 0 and vari-

ance (B/2).

This implies that the greater the diversity in the services that an organisation
offers, the lower competition and the higher benefits it will likely experience.

The organisation’s goal is to receive at each time step a minimum ”accept-
able” benefit E above B/5; if it identifies that the goal is not achievable, an
unfeasibility cause is detected. On the other hand, if the organisation estimates
that its expected benefits can be over B/2, it considers whether to extend its
lifetime, as the expected benefits are good.

To support the identification of the dissolution cause, a knowledge base with
previous cases will be used. In this experiment, we will use a case-based algorithm
(which from now on will be referred as the algorithm) to identify those cases in
which it is better to dissolve the organisation if the goal cannot be fulfilled,
which means that it finds itself in an unfeasibility case. The same algorithm will
be used when the organisation’s lifespan is about to reach its end, identifying
whether it is better to extend it rather than to proceed to liquidation, as the
benefit expectancies are good.

As said before, during the organisation’s dissolution, a dissolution report will
be created and stored in the knowledge base with different evaluation cases con-
taining the VO’s benefits, service diversity and the time step when the evaluation
was made.

82 N. Hormazábal et al.

The algorithm, in its retrieving step, will identify pairs of consecutive evalu-
ations similar to the current and last evaluations. Once a similar case is found,
the algorithm will try to predict the following state based on the past case and
to evaluate, reusing the past similar case, which is the best action for the or-
ganisation to take: whether it is better to continue operating by extending its
lifespan or to dissolve.

The similarity for the algorithm is calculated by:

Sim = (Divk ∗ w1 + Benk ∗W2) + (Divk−1 ∗ w1 + Benk−1 ∗W2)

Where:

– Div is the diversity similarity at a time k and a time k − 1. This value is
calculated by the percentage difference of the amount of different agent types
(identified by the service they offer) that are members of organisations. For
example, having in one case 4 different agents in an organisation, and in
another 5, the diversity similarity will be 4/5 = 0, 8.

– Ben are the benefits similarity per time step at a time k and a time k − 1.
This is calculated by the same method as above, but using the benefits per
step instead of the number of different agents.

– wn are the respective weights for the similarity values. For this case, the
weight will be equal for every similarity value.

In the knowledge base, there must be an evaluation at a time k + 1 in order to
estimate the future benefits given the current state.

To distinguish positive cases (when it seems the that goal can be fulfilled for
the next time step) from negative ones (when the goal cannot be fulfilled), the
algorithm will compare earning expectations with the benefits found in similar
past cases from the knowledge base, reusing values from past cases.

5.1 Setup

The simulation environment has been developed in RePast1. RePast is an open
source agent modelling toolkit developed in Java that provides different tools
for tracking and displaying agent and environment values. The tests were done
in a grid of 50x50 cells, with 500 different agents who can each offer one of the
ten different services. The base earning for each service was fixed at 1, and the
default duration time of an organisation was 15 time steps. It was tested over
10,000 time steps through three different experiments:

Experiment 1: Organisations start with a defined lifespan, which can be ex-
tended or reduced, with support from the algorithm.

Experiment 2: Organisations have an unlimited lifespan, so new organisations
can never be dissolved. Since agents only get benefits when they are part of an
organisation (from hypothesis 2), this could be a reasonable strategy to guar-
antee benefits for each agent at each time step once the agents have formed an
1 http://repast.sourceforge.net

http://repast.sourceforge.net

An Approach for Virtual Organisations’ Dissolution 83

organisation, as opposed to the other experiments where, due the organisations
dissolution, there will more often be agents without organisations wandering in
the grid without getting benefits.

Experiment 3: Organisations have a fixed lifespan that cannot be modified, so
they always dissolve when the expected deadline is reached.

5.2 Results

After ten runs of 10,000 steps for each experiment, the results for the average
benefits at each step can be seen on Figure 4. After step 8,600 the benefits per
step seem to stabilise and reach the 98% of the steady value, so for the conclusions
and the results calculation, we will consider the average benefits from step 8,600
onward. The average benefits per step are in Table 4.

Fig. 4. Average organisation’s benefits per step, 3 experiments, 10 runs, 10,000 steps
each

Table 4. Average benefits per time step from the step 8600 onward

Average Benefits Std. Deviation

Experiment 1 1,530.04 12.69
Experiment 2 997.21 13.35
Experiment 3 543.77 16.26

There is a significant improvement when the algorithm enables identification
of the unfeasibility dissolution cause for an organisation and when the organisa-
tion is allowed to modify its own lifespan (experiment 1). In Experiment 2, there
are not many agents outside of an organisation, so most of them are getting ben-
efits, but this does not guarantee that they are in the best possible organisation.
They may do better to leave their organisationand not reap benefitsto search
for new ones, instead of remaining part of a badly performing organisation. In
this case, the unfeasibility dissolution cause not only helps to prevent organisa-
tions from operating when goals cannot be achieved, but it also helps to improve
overall performance if goals are related to benefits.

84 N. Hormazábal et al.

6 Conclusions

VOs have been approached from different perspectives, but most of these ap-
proaches are focused mainly on the first phases of their lifecycle, (formation and
operation), leaving the dissolution phase as an unresolved issue pending future
work. The current paper makes an approach to this phase, presenting it as a
two-step phase of (activation and liquidation), with two sub-states, (pending
dissolution and liquidation).

One of the main contributions of this work is in the description of the causes
of dissolution, besides VO goal fulfilment or the partners decision to dissolve.
We also use elements from the dissolution process for supporting future VO
formation, recording the resulting dissolution report from the liquidation step.
This could be significant for future partner selection and for future identification
of dissolution causes such as the unfeasibility cause, which can be identified by
experience from past similar cases (see section 5).

Dissolution prevents the operation of badly performing or unnecessary organ-
isations, and it can improve overall performance by correctly identifying those
cases when an organisation should no longer operate.

Not all the dissolution causes are mandatory for dissolving the VO; some of
them need the partners’ approval for going on to the dissolution, as they could
be also a cause for VO reconfiguration. The VO formation phase should consider
new issues during the negotiation process, related to the norms for the dissolution
phase.

Finally, the basis for the dissolution process was inspired by real-world or-
ganisations’ dissolution; because of this, a normative framework is needed for
supporting the dissolution process with a structure similar to that of real-life
norms (the law at a higher level, and the organisations’ statutes below). Al-
though commercial law is used as an inspiration, this approach is not restricted
to economically based organisations; assets, costs and benefits are not restricted
to economical approaches, as they can be identified within the amount of work-
load inside a VO.

The dissolution phase is not trivial, so we offer an approach to it. Hopefully
this work will fulfil the goal of emphasising its significance and provide a good
reference for contributing to the formalisation of VO process. Future work will
be focused on completing the formalisation of the dissolution phase and extend
the work to other types of organisations.

References

1. Dignum, F., Dignum, V.: Towards an Agent-based Infrastructure to Support Vir-
tual Organisations. In: PRO-VE ’02: Proceedings of the IFIP TC5/WG5.5 Third
Working Conference on Infrastructures for Virtual Enterprises, vol. 213, pp. 363–
370 (2002)

2. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Enabling
Next Generation Computing (A Roadmap for Agent Based Computing), AgentLink
(2005)

An Approach for Virtual Organisations’ Dissolution 85

3. Van Dyke, P.H.: Technologies for Virtual Enterprises. Agility Journal (1997)
4. Katzy, B., Zhang, C., Löh, H.: Reference Models for Virtual Organisations Virtual

Organizations Systems and Practices, pp. 45–58. Springer, US (2005)
5. De Roure, D., Jennings, N.R., Shadbolt, N.R.: The Semantic Grid: Past, Present,

and Future. Proceedings of the IEEE 93(3), 669–681 (2005)
6. Dignum, V., Dignum, F.: Modelling Agent Societies: Co-ordination Frameworks

and Institutions. In: Brazdil, P.B., Jorge, A.M. (eds.) EPIA 2001. LNCS (LNAI),
vol. 2258, pp. 7–21. Springer, Heidelberg (2001)

7. Ley de Sociedades Anónimas, Texto Refundido de la Ley de Sociedades Anónimas,
Aprobado por el RDLeg 1564/1989, de 22 de diciembre, BOE del 27/12/1989 (1989)

8. Ley de Responsabilidad Limitada, Ley 2/1995, de 23 de marzo, BOE del
24/03/1995 (1995)

9. Esteva, M., Rodŕıguez-Aguilar, J.A., Sierra, C., Garcia, P., Arcos, J.L.: On the
formal specification of electronic institutions. In: Sierra, C., Dignum, F.P.M. (eds.)
AgentLink 2000. LNCS (LNAI), vol. 1991, pp. 126–147. Springer, Heidelberg (2001)

10. Camarinha-Matos, L.M., Afsarmanesh, H.: Virtual Enterprise Modeling and Sup-
port Infrastructures: Applying Multi-agent System Approaches. In: Luck, M.,
Mař́ık, V., Štěpánková, O., Trappl, R. (eds.) ACAI 2001 and EASSS 2001. LNCS
(LNAI), vol. 2086, pp. 335–364. Springer, Heidelberg (2001)

11. Lopes Cardoso, H., Oliveira, E.: Virtual Enterprise Normative Framework Within
Electronic Institutions. Engineering Societies in the Agents World V, 14–32 (2005)

12. Lopes Cardoso, H., Oliveira, E.: Electronic institutions for B2B: dynamic normative
environments. Artificial Intelligence and Law 16(1), 107–128 (2007)

13. Lopes Cardoso, H., Oliveira, E.: A Contract Model for Electronic Institutions.
In: Sichman, J.S., Padget, J., Ossowski, S., Noriega, P. (eds.) COIN 2007. LNCS
(LNAI), vol. 4870, pp. 73–84. Springer, Heidelberg (2008)

14. Collier, B., DeMarco, T., Fearey, P.: A Defined Process For Project Postmortem
Review. IEEE Software 13(4) (1996)

Playing with Agent Coordination Patterns in

MAGE

Visara Urovi and Kostas Stathis

Department of Computer Science,
Royal Holloway, University of London, UK
{visara,kostas}@cs.rhul.ac.uk

Abstract. MAGE (Multi-Agent Game Environment) is a logic-based
framework that uses games as a metaphor for representing complex agent
activities within an artificial society. More specifically, MAGE seeks to
(a) reuse existing computational techniques for norm-based interactions
and (b) complement these techniques with a coordination component to
support complex interactions. The reuse part of MAGE relates physical
actions that happen in an agent environment to count as valid moves of a
game representing the social environment of an application. The coordi-
nation part of MAGE supports the construction of composite games built
from component sub-games and corresponds to coordination patterns
that support complex activities built from sub-activities. To illustrate
the MAGE approach, we discuss how to use the framework to specify
the coordination patterns required to form a virtual organisation in the
context of a service-oriented scenario.

1 Introduction

Early work in multi-agent system has focused on the representation of agent in-
teraction construed in terms of communication protocols that agents can use to
interact with each other. As these protocols standartise the way in which agents
partake in social activities, more recent work has put the emphasis on norma-
tive concepts such as obligation, permission, and prohibition, amongst other,
to specify the social rules that represent agent protocols (see [3,17]). However,
despite the plethora of frameworks that support agent interactions about social
concepts, there is relatively less work on how to represent systematically more
complex activities that require agents to coordinate their actions when playing
many protocols at the same time. There is, in other words, the need for com-
putational frameworks that compose complex interactions and allow for their
coordination.

Our specific motivation results from our participation in ARGUGRID [1], a re-
search project that aims at providing a new model for programming a service Grid
at a semantic, knowledge-based level of abstraction through the use of argumen-
tative agent technology. Agents act on behalf of (a) users who specify abstract ser-
vice requests and (b) providers who offer electronic services on the Grid. Agents
interact with other agents by forming dynamic Virtual Organisations (VOs) in

J. Padget et al. (Eds.): COIN 2009, LNAI 6069, pp. 86–101, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Playing with Agent Coordination Patterns in MAGE 87

order to enable the transformation of abstract user requests to concrete services
that can be supported by the Grid. To guarantee that interactions in VOs are of
a certain standard, agent-oriented provision of services must conform to service
level agreements, while agent interaction more generally must be governed by elec-
tronic contracts. One of the requirements of ARGUGRID is that agreements and
contracts need to be negotiated on the fly by agents, so there is the need to sup-
port protocols and workflows that enable the activities of VO creation, operation,
and dissolution. One of the issues then becomes how to represent these complex
activities at a knowledge-based level, suitable for argumentation-based agents to
use as a framework to coordinate their interactions.

To manage agent coordination for VOs we present a logic-based framework
that we call MAGE (Multi-Agent Game Environment). MAGE is based on the
games metaphor for interactive systems [19,18] where the rules of a communica-
tion protocol between agents are viewed as the rules of an atomic game played
amongst players, the speech acts uttered by agents represent the legal moves in
the game, and the roles of agents in the interaction represent the roles of the
players in the game. The game here is more like a dialogue game [16] to represent
agent interactions from an observer’s point of view and not from the strategy
agents play, as in game theory [13].

The contribution of MAGE is that given the representation of atomic games
it provides a computational framework in which atomic games can be composed
into composite ones and provides a systematic framework for their coordina-
tion. To illustrate how the resulting framework can be applied to a practical
application, we show how to apply it in an ARGUGRID scenario that specifies
workflows in terms of agent protocols to support the creation of a VO and its
relevant electronic contracts.

The rest of the paper is organised as follows. Section 2 presents the context of
the problem and relates it to two kinds of games: atomic and compound. Atomic
games and their specification are discussed in Section 3, while compound games
and their specification are discussed in Section 4. Section 5 places our research in
the context of existing literature and compares it to related work. We conclude
with Section 6 where we also discuss our plans for future work.

2 ARGUGRID Games

We present a scenario that has motivated our work together with negotiation
protocol used to negotiate services. We also discuss the link between the envis-
aged agent interactions and their representation as games. Once we have estab-
lished this relation, we use it as the base of the MAGE computational framework
developed in the next section.

2.1 The Earth Observation Scenario

This ARGUGRID scenario considers a government ministry official requiring
data about the detection of an offshore oil spill [20]. The oil spill is an abstract

88 V. Urovi and K. Stathis

and high-level goal that cannot be immediately satisfied by data within the
ministry itself and requires the help of satellite companies that observe parts of
the earth at different days. These companies publicise their services on a ser-
vice Grid that is managed by agents. In this scenario a software agent takes
the abstract request of the official and tries to instantiate it in a detailed set of
services that can be invoked in sequence to provide the requested information.
The scenario further assumes that satellite companies provide different services,
each with different capabilities and costs, and one satellite may be more appro-
priate than another given certain conditions that the ministry sets. The official’s
software agent based on a set of preferences over the services requested, selects
the suitable satellite companies and engages in a contract negotiation process
with provider agents to create a VO that will instantiate the lower level services
required to meet the official’s request.

2.2 The Minimal Concession Protocol

Negotiation of contract terms in ARGUGRID uses a minimal concession proto-
col, with or without rewards, described in Dung et al [7], see Fig.1.

Fig. 1. The Minimal Concession protocol with Rewards [7]

The protocol provides the following set of locutions available to agents: re-
quest, introduce, reply, concede, standstill, accept, reject. The protocol assumes
two agent roles, a buyer (B) and a seller (S). The protocol can start with an
introduce move made by the seller or with a request move made by the buyer.
These moves are used to respectively request or introduce an offer e.g. an oil
spill detection service with some properties. Afterwards, a reply move can be
made from the buyer to reply to an introduce move, or from a seller to reply
to a request move. After this move, standstill, reject or concede an offer are all

Playing with Agent Coordination Patterns in MAGE 89

moves that can be made by any role. The accept move terminates successfully
the protocol and the accepted offer is considered the value of the result of the
game. Three consecutive standstill moves are considered as a reject move, which
terminates the protocol with no agreement.

An important property of this protocol is that if two agents use the proto-
col in conjunction with a minimal concession strategy, then every negotiation
terminates successfully and the minimal concession strategy is in symmetric
Nash equilibrium [7]. A minimal concession strategy is used if the offered ser-
vice/product does not match what is requested. An agent can concede on a
property of the service/product when it is possible to do so. Afterwards the
agent will expect the other agent to concede as well allowing the offer to get
closer to match the request and vice versa. If the agent decides not to concede,
it can standstill. The other agent will reply to a standstill with a concede lo-
cution if standstill is not a consecutive locution, otherwise it will standstill as
well.

2.3 The VO Life-Cycle in ARGUGRID

The minimal concession protocol is only a component of the more complex ac-
tivities that in ARGUGRID allow agents to form and participate in VOs, as
shown in Fig. 2.

Fig. 2. Negotiation in the VO Life-cycle of ARGUGRID

Fig. 2(a) shows how by negotiating a successful contract starts the execu-
tion and monitoring activities of a VO. Issues raised by the monitoring or ex-
ecution activities are reported and the VO must in this case be reformed via
re-negotiation. If, however, reformation does not apply to these issues or if the
execution has fulfilled the goals of the VO creation, the VO is dissolved by having
its result being evaluated first. Activities in VOs may require further control-
flows for sub-activities as shown in Fig. 2(b); this illustrates how the activity of
negotiation is in fact a more complex activity that requires first to determine

90 V. Urovi and K. Stathis

the roles of the agents in the VO, then negotiate the terms of the VO contract
using the minimal concession protocol, and finally the complete contract must
be signed by all relevant parties. The details for the remaining activities of mon-
itoring, execution, reportage, evaluation, and dissolution, are beyond the scope
of this work. In the remainder of this paper we focus on how to model the control
flows of activities as a complex game exemplified by the negotiation activity.

2.4 VO Activities as Complex Games

The games metaphor was originally proposed to model human-computer inter-
action by Stathis and Sergot in [19] and was subsequently applied to formulate
agent interaction protocols in [18]. We extend this model to support agent coor-
dination patterns in ARGUGRID as games.

The basic unit of the games metaphor is the notion of an atomic game, which
describes a set of rules about an initial state, a set of player roles, a set of
game moves, the effects the moves have on the state, a specification of when a
move is legal, a set of terminating states, and a set of results [18]. The minimal
concession protocol described earlier seen as a game implies that the initial state
of the protocol is the initial state of the game, the roles of the participating
agents are the roles of the players, the protocol locutions are the game moves,
the effects of locutions on the protocol state are the effects of moves on the state
of the game, the preconditions of locutions are the valid moves, the final protocol
states are the terminating states of the game, the set of protocol outcomes are
the possible game results. The result of a game does not necessarily need to be
zero-sum [13], by requiring a winner and a loser, but it can also give rise to a
win/win or loose/loose situations.

To obtain complex interactions we combine atomic games to build more com-
plex, composite games. An example of a complex interaction is the control flow
of the Fig. 2(b), where we need to combine three different games: first the agents
can play a role negotiation game to determine their roles, after establishing their
roles, they play a minimal concession with reward game to agree on the terms
of the contract, they can reiterate this game for as long they find an agreement
and, finally, the sign game becomes active for the agents to sign the contract.

In a composite game we want to be able to parallelise, choose and synchro-
nise atomic games. To capture these control-flow aspects of complex games we
produce a coordination framework that allows us to coordinate complex inter-
actions build from simpler ones. The resulting framework is then applied to
support workflow coordination patterns. In general, the term workflow refers to
the specification of a work procedure or a business process in a set of atomic
activities and relations between them in order to coordinate the participants
and the activities they need to perform [2]. The link with the definition of the
workflow here is that the participants are the agents and the atomic activities
are the atomic games. By relating atomic games as atomic activities we then
use basic coordination patterns to enable agents to play more complex activities

Playing with Agent Coordination Patterns in MAGE 91

as complex games. We will see later how our example of the negotiation com-
posite game (illustrated in Fig. 2(b)) will be defined as an aggregation of three
patterns: a sequence, a conditional, and an iteration pattern.

3 Atomic Games in MAGE

Following earlier work on the games metaphor [19], we view communicative
interactions within an agent society abstractly as game interactions [18]. As the
rules of a game represent all valid evolutions of the game’s state, we use the
following logic program to describe the rules of a game:

game(State, Result)←
terminating(State, Result).

game(State, Result)←
not terminating(State, Result),
valid(State, Move),
effects(State, Move, NewState),
game(NewState, Result).

To formulate a particular game we need to decide how to represent a game
state, its initiating and terminating states, how players make valid moves, and
how the effects of these moves change the current state to the next one until the
terminating state is reached.

3.1 The State of Atomic Games

To represent the State of a game we use a term of the form Id@T, where Id is
a unique identifier of a complex term describing the attributes of the state’s
configuration, and T is the system’s time that uniquely identifies the actual
evolutions of the complex term as a result of the interaction. The rationale behind
this kind of representation is that in MAGE we acknowledge the fact that the
interaction within a multi-agent system application can become quite complex.
To cater for the complexities of practical applications we assume that complex
terms have an underlying object-based data-model. To represent complex terms
we use the syntax of C-Logic [5]. A term of the form:

min concession:mc1 [
parties⇒ {agent:a1 [role ⇒ seller], agent:a2 [role⇒buyer]},
buyer position ⇒ offer:o1 [price ⇒80, resolution⇒20, delivery ⇒2],
seller position ⇒ offer:o2 [price ⇒100, resolution⇒20, delivery ⇒2],
standstill count ⇒ 1,
result ⇒ nil

]

is identified by mc1 denoting an instance of an object whose class is the mini-
mal concession protocol with two participating agents a1 and a2, complex terms

92 V. Urovi and K. Stathis

whose role attribute is seller and buyer respectively, where the buyer in the pre-
vious round has made an offer o1 (a complex term), while the seller has made
another offer o2 (another complex term), there is one standstill move that has
been encountered, and the result of the interaction is still incomplete as the
value is still nil. Such a complex term has a first-order logic translation, see [5]
for details.

3.2 State Evolution

The moves of the game are represented by complex terms too. The complex term
below

speech act:m1[actor ⇒ a1, act⇒introduce, offer ⇒ o1, role⇒ seller],

describes that the seller agent a1 utters introduce about an offer o1. Such moves
are used as the contents of events that happen at a specific time. An assertion of
the form happens(m1, 12), states that move m1 has happened at time 12. Such
an event changes the state of a game.

holds at(Id, Class, Attr, Val, T)←
happens(E, Ti), Ti ≤ T,
initiates(E, Id, Class, Attr, Val),
not broken(Id, Class, Attr, Val, Ti, T).

broken(Id, Class, Attr, Val, Ti, Tn)←
happens(E, Tj), Ti < Tj ≤Tn,
terminates(E, Id, Class, Attr, Val).

holds at(Id, Class, Attr, Val, T)←
method(Class, Id, Attr, Val, Body),
solve at(Body, T).

attribute of(Class, X, Type)←
attribute(Class, X, Type).

attribute of(Sub, X, Type)←
is a(Sub, Class),
attribute of(Class, X, Type).

instance of(Id, Class, T)←
happens(E, Ti), Ti ≤ T,
assigns(E, Id, Class),
not removed(Id, Class, Ti, T).

removed(Id, Class, Ti, Tn)←
happens(E, Tj), Ti < Tj ≤ Tn,
destroys(E, Id).

assigns(E, Id, Class)←
is a(Sub, Class),
assigns(E, Id, Sub).

terminates(E, Id, Class, Attr,)←
attribute of(Class, Attr, single),
initiates(E, Id, Class, Attr,).

terminates(E, Id, , Attr,)←
destroys(E, Id).

terminates(E, Id, , Attr, IdVal)←
destroys(E, IdVal).

Fig. 3. A subset of the Object-based Event Calculus from [10]

We use the object-based event calculus (OEC) of Kesim and Sergot [10] to
capture state changes of complex terms. A subset of the OEC is given in Fig. 3.
The first two clauses derive the value of an attribute for a complex term holds
at a specific time. The third clause describes how to represent derived attributes

Playing with Agent Coordination Patterns in MAGE 93

of object as method calls computed by means of a solve at/2 meta-interpreter as
specified in [11]. The fourth and fifth clauses support a monotonic inheritance of
attributes for a class limited to the subset relation. The sixth and seventh clauses
determine how to derive the instance of a class at a specific time. The effects of
an event on a class is given by assignment assertions; the eighth clause states
how any new instance of a class becomes a new instance of the super-classes.
Finally, the ninth clause deletes single valued attributes that have been updated,
while the tenth and eleventh clauses delete objects and dangling references.

3.3 Valid Moves and Their Effects

Before the event of a move being made in the state of the game, we must have
a way to check that the move is valid. One simple definition is to make valid
moves equivalent to the legal moves of the game:

valid(State, Move) ↔ legal(State, Move).

To specify valid moves, we specify when moves are legal. We specify when a
request move is legal in the minimal concession protocol as:

legal(Id@T, Move) ←
instance of(Id, min concession, T),
speech act:Move[actor ⇒ A, act⇒request, offer ⇒ Product, role⇒ buyer],
holds at(S, agent of, A, T),
holds at(A, role, buyer, T).

Other definitions of valid moves are possible, for instance, Artikis et al [3] provide
a more detailed account of valid moves in terms of social concepts such as obli-
gations, permission and power. The important point here is that our framework
can accommodate these for an application by providing a different definition of
valid/2.

Once a set of moves is determined as valid, a new game state is brought about
due to their effects. If we assume that the happening of such moves take only
one unit of time, we can specify their effects as:

effects(Id@T, Moves, Id@NewT) ←
forall(member(Move, Moves), add(happens(Move T))),
NewT is T + 1.

In our representation of state, once an event has happened, its effects are added
to the state implicitly, via inititiates/4 definitions that initiate new values for
attributes of a state term, terminates/4 clauses that remove attribute values from
a state term, and assigns/3 definitions for assigning new instances of terms. An
example, of how new values are initiated for attributes for the minimal concession
protocol is given below:

94 V. Urovi and K. Stathis

initiates(Ev, Id, seller position, Offer)←
happens(Ev, T),
instance of(Id, min concession, T),
Ev[act ⇒ Act, actor ⇒ Aid, role ⇒ seller, offer ⇒ Offer],
changes seller position(Act).

changes seller position(introduce).
changes seller position(concede).
changes seller position(reply).

The above definition initiates the current position made by a seller to be stored
in the state of the game as a result of a request, reply or concede move. The
old offer is terminated and substituted by a new request because of the way the
object event calculus is specified (see the ninth clause in Fig. 3).

It is important to note that other specifications of effects/3 are possible de-
pending on what assumptions we make about the duration of moves captured in
events. In addition, the state could be represented explicitly as a set of assertions
as in [18] rather that implicitly, with rules that define what holds in it, as in
MAGE. Both of these issues, however, are beyond the scope of this paper. It
suffices to say here that once a choice of state representation has been made, the
framework can accommodate it by suitably adjusting the effects/3 definition.

3.4 Initial and Final States of a Game

For the state of an atomic game to be created, the framework discussed so far
requires the assertion of an event that will first create the term via an assigns/3
assertion. The assertion:

assigns(Ev, Id, min concession)←
Ev[act ⇒ construct, protocol ⇒ min concession, id ⇒ Id].

will allow the creation of an instance for the minimal concession protocol, which
can then be queried using the sixth clause of Fig. 3. To complete the instantiation
process we also need to specify the initial values for the attributes of the complex
term representing the minimal concession protocol. For this we need to define
separately the initiates/4 rules as the one below:

initiates(Ev, Id, party of, Val)←
Ev[act ⇒ construct, protocol ⇒ min concession, parties ⇒ agent: Val].

Additional initiates/4 clauses are needed to define the whole of the initial state,
one for each attribute value.

The initial state of the game will evolve as a result of moves been made in
the state of a game. This state will eventually reach the final state from which
we can extract the game’s result. We specify this via terminating/2 predicates.
For example, the definition:

Playing with Agent Coordination Patterns in MAGE 95

terminating(Id@T, Result)←
instance of(Id, min concession, T),
holds at(Id, result, Result, T),
not Result==nil.

specifies the conditions under which the minimal concession protocol terminates
and at the same time returns the result.

4 Compound Games in MAGE

Compound games are complex games composed from simpler, possibly atomic,
sub-games. Based on our previous work in applying compound games to develop
multi-agent systems [18], in this section we show how to develop compound
games in the MAGE framework, with aim to support the coordination of complex
agent activities such as ARGUGRID workflows.

4.1 A Compound Game

To give an example of how sub-games will appear in the main game, consider
as an example the state of the VO negotiation in ARGUGRID, as specified in
Fig. 2.

vo negotiation: Id [
parties ⇒ {agent:a1, agent:a2, agent:a3},
process ⇒ seq([

roles:r1,
if(r1[result⇒success], repeat(mcwr:r1, m1[result⇒exit])),
if(m1[agreement⇒achieved], sign:s1)

])).

The above term states that the process of the negotiation is a sequence (seq)
of sub-games involving first a sub-game of roles game with identifier r1. This
game must be played, and if the result of the roles game is success, it means
that the roles of the agents in the VO have been agreed, and the workflow
must continue with repeatedly creating a minimal concession protocol mcwr
with identifier m1 and playing it until the result of this game is exit (meaning
that either an agreement has been achieved during the negotiation or the game
has been played more than a certain maximum and no agreement was achieved).
Only if the agreement attribute of m1 is set to achieved, the sign game with
identifier s1 is started and played to complete the negotiation process.

4.2 Coordination of Active Sub-games

The main issue to be considered in compound games is the coordination of moves
in active sub-games. We define coordination specifying the predicate active at/3.
Using active sub-games, we can define valid moves in a complex game to include
all the valid moves in the active sub-games:

96 V. Urovi and K. Stathis

valid(Id@T, Move) ←active at(Id, SubId, T), valid(SubId@T, Move).

For VO negotiation we define active subgames as follows:

active at(Id, SubId, T)←
instance of(Id, neg, T),
Id [process⇒Workflow],
pattern(Workflow),
runs(Id, Workflow, SubId, T).

Patterns in our framework are interpreted by a runs/4 predicate that parses the
coordination structure and checks which sub-games are running. For the VO
negotiation process three patterns are required: a sequence, an if-conditional,
and a repeat loop, as specified below.

runs(G, seq([A|]), A, T)←
not pattern(A),
not terminating(A@T,).

runs(G, seq([A|B]), C, T)←
not pattern(A),
terminating(A@T,),
runs(G, seq(B), C, T).

runs(G, seq([A|B]), C, T)←
pattern(A),
(runs(G, A, C, T);
runs(G, seq(B), C, T)).

runs(G, if(Id[Prop⇒Val], P), C, T)←
holds at(Id, Prop, Val, T),
(pattern(P) →
runs(G, P, C, T); C=P).

runs(G, repeat(P, Id[Prop⇒Val]), A, T)←
not holds at(Id, Prop, Val, T),
runs(G, P, A, T).

pattern(P)← sequence(P).
pattern(P)← if conditional(P).
pattern(P)← repeat loop(P).

sequence(seq()).
if conditional(if(,)).
repeat loop(repeat(,)).

Note that the top-level game G is required as a parameter in the definition of
runs/4 as a reference to the global variables of the interaction. Note also that
the definition of the above patterns can be combined to form arbitrary complex
structures, which is indicative of the expressive power of the framework.

More workflow primitives [21] can be specified in a similar manner. We show
next an and split pattern to illustrate how to support parallel composition. This
pattern is specified as

and split(A, Condition, Activities)

and states that after activity A is completed, if the Condition is true, then the set
of Activities must be carried out in parallel. To support the parallel composition
required for this coordination pattern, we define runs/3 as follows:

Playing with Agent Coordination Patterns in MAGE 97

runs(G, and split(A, ,), A, T) ←
not pattern(A),
not terminating(A@T,).

runs(G, and split(A, Id[Prop ⇒Val], Activities), C, T)←
terminating(A@T,),
holds at(Id,Prop,Val,T),
member(Activity,Activities),
not terminating(Activity@T,),
(pattern(Activity) → runs(G,Activity,C,T); C=Activity).

We have formulated similarly the patterns for and join, xor split, and xor join,
but we cannot discuss them here due to lack of space. We plan to present these
in future work.

4.3 Status of the Work

Implementation. We have built a prototype of MAGE that allows the deploy-
ment of a set of distributed objects in the GOLEM platform [4]. We call these
objects Game Calculators. They are used by GOLEM agents to interact with
each other and to coordinate their interactions, see Fig. 4. More specifically,
GOLEM agents can call methods of a calculator object by means of actions per-
formed in the environment. The content of such actions represents a move in the
compound game. We believe this to be advantageous in two ways: (a) space and
time decoupling, i.e. because game calculators are a mediation service, agents
do not need to be in the same place at the same time in order to interact; and
(b) we do not have to treat everything as an agent to develop an application.

To implement games, we link the internal part of the Game Calculator object
with a TuCSoN tuple centre [14], a Linda-like extension of the concept of tuple
space as a reactive logic based blackboard. The reason why we chose TuCSoN to
implement Game Calculators is that it allows us to use a main tuple centre and
distribute the state of a compound game in other tuple centres, each tuple centre

Fig. 4. Implementing MAGE using TuCSoN and GOLEM

98 V. Urovi and K. Stathis

could in principle map to atomic or compound sub-games. To support this we
use a combination of the ReSPeCT language [14] and the OEC discussed here.
A Game Calculator can be configured from an agent (either a coordinator agent
or the agent who is interested to start the negotiation) to work as a specific
compound game (such as VO negotiation). Further details of the implementa-
tion are beyond the scope of this work; we plan to present the implementation
separately in future work.

Evaluation. MAGE is a mediation framework acting as a social environment
that supports interactions between heterogeneous self-interested agents. We have
developed MAGE so that it can work as a component-based social infrastructure
for the GOLEM agent environment [4] to support practical applications. To do
this we have tried to be flexible with the way norms are incorporated in the
system using the notion of valid moves and we have focused on coordination. One
of our contributions is that we have extended the games metaphor, presented in
previous work, with the treatment of coordination patterns that this framework
did not support before. From our experimentation with the minimal concession
protocol in ARGUGRID VOs, a feature that we have found interesting is that
we can specify the interaction with workflows at run-time, by keeping the same
Game Calculator but changing the protocol and the workflow activities in a plug-
and-play style. Moreover, using object-based indexing of events already available
in the Event Calculus, we have experimented with interactions that give rise
to approximately 1,000 events within a protocol, with acceptable performance.
Again, we plan to discuss these details separately, as future work.

5 Related Work

The Electronic Institution (EI) approach [8] and the AMELI framework [9] uses
organisational concepts to model the interaction of agents. Our framework is
similar to EIs in the sense that their scenes are our atomic games and their
norms as the rules that capture the valid moves for the agent as the game
progresses. EIs also support a performative structure that enables a developer
to define dependencies such as choice points, synchronization and parallelism
mechanisms between scenes based on role flow policies among scenes specifying
which paths can be followed by which agent’s role. In our framework the EI
performative structures are defined as compound games that structure atomic
games, which can be coordinated by activity patterns. One of the differences of
MAGE with AMELI is that we expect agents to interact via Game Calculators
and we do not use mediating agents such as AMELI governors. An explicit
feature of our approach is that the state of the interaction in a Game Calculator is
easily inspectable, while in EIs agent playing specific roles need to communicate
to build a coherent state. In addition we naturally support complex games that
consist of complex sub-games, while EIs would require hierarchical performative
structures and thus increase the complexity of the overall EI approach.

Artikis et al [3] propose a model for norm-governed multi-agent systems
as executable specification of open agent societies. This work represents social

Playing with Agent Coordination Patterns in MAGE 99

constraints by making a clear distinction between physical capabilities, institu-
tional power, permissions and sanctions to enforce policies. Social constrains are
a sophisticated version for defining our valid moves of a game that captures the
social state of the interaction. We too distinguish between possible actions hap-
pening in the environment supported by GOLEM, from social actions happening
in MAGE, and we link them via physical objects that support agent coordination.
As our focus is on coordination and as their emphasis is on normative concepts,
the two approaches can be seen as complementary to each other, especially as
they both use the Event Calculus as the underlying computational mechanism,
even if we assume an object-based data-model. However, in our model we do not
prove properties of interactions, which can be an extension of our work.

McBurney and Parson [12] present an abstract framework to represent com-
plex dialogues as sequences of moves in a combination of dialogue games. Agents
agree the game they need to play at a control layer, in our terms a compound
game, and then play the protocol at an execution layer, in a our case a sub-
game. The framework admits combinations of different dialogue types that in
our framework corresponds to the coordination of compound games. However,
McBurney and Parson’s dialogical games abstract away from the game state and
they do not define the valid moves as a way of analysing the different kinds of
pre-conditions and post-conditions on the state of the interactions. Instead their
formalism is based on agents selecting and agreeing to play these dialogues. On
the contrary our framework seeks to provide a computational mechanism for
coordination in complex interactions that are construed as compound games.

Kesim et al [6] propose a framework to specify and execute workflows based
on Event Calculus. In Kesim et al the Event Calculus is used to describe the
specification and execution of activities in a workflow. The activities are assigned
to agents using a coordinator agent that knows which agents can perform which
activities. Like Kesim’s work we use the EC to define workflows but we use
games to dynamically define compositions of workflows. Similarly, Omicini et
al [15] propose a model to distribute a workflow among different tuple centres
(conceived as the entities that coordinate agent’s activities) by linking tuple
centres with linkability operators. In our approach we use the linkability of tuple
centres as the coordination mechanism that the Game Calculator uses to start
and terminate new games. We also provide a representational framework that
can be used systematically to represent patterns of interactions, like workflows.

6 Conclusions and Future Works

We have presented MAGE, a logic-based framework that uses games as a metaphor
for representing complex agent activities within an artificial society. We have illus-
trated how MAGE can reuse existing computational techniques for norm-based in-
teractions and support their coordination. Using examples from the ARGUGRID
project, we have illustrated how the reuse part of MAGE relates physical actions
that happen in an agent environment to count as valid moves of a game represent-
ing the social environment of an application. Coordination in MAGE supports the

100 V. Urovi and K. Stathis

construction of complex games built from component sub-games and corresponds
to coordination patterns that support complex activities built from sub-activities.
We have discussed how to use the framework to specify the coordination patterns
required to form a virtual organisation in ARGUGRID.

Future work involves formulating the VO lifecycle of ARGUGRID in MAGE
to build a library of reusable coordination patterns for similar applications.

References

1. ARGUmentantion as a foundation for the semantic GRID, ARGUGRID (2009),
http://www.argugrid.eu/

2. Workflow Management Coalition (2009), http://www.wfmc.org/
3. Artikis, A., Sergot, M.J., Pitt, J.V.: Specifying Norm-Governed Computational

Societies. ACM Trans. Comput. Log. 10(1) (2009)
4. Bromuri, S., Stathis, K.: Situating Cognitive Agents in GOLEM. In: Weyns, D.,

Brueckner, S.A., Demazeau, Y. (eds.) EEMMAS 2007. LNCS (LNAI), vol. 5049,
pp. 115–134. Springer, Heidelberg (2008)

5. Chen, W., Warren, D.S.: C-logic of Complex Objects. In: PODS ’89: Proceedings of
the eighth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database
systems, pp. 369–378. ACM Press, New York (1989)

6. Cicekli, N.K., Yildirim, Y.: Formalizing Workflows Using the Event Calculus. In:
Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873, pp. 222–231.
Springer, Heidelberg (2000)

7. Dung, P.M., Thang, P.M., Toni, F.: Argument-based Decision Making and Nego-
tiation in E-business: Contracting a Land Lease for a Computer Assembly Plant.
In: Fisher, M., Sadri, F., Thielscher, M. (eds.) CLIMA IX. LNCS, vol. 5405, pp.
154–172. Springer, Heidelberg (2009)

8. Esteva, M., Rodŕıguez-Aguilar, J.A., Sierra, C., Garcia, P., Arcos, J.L.: On the
formal specifications of electronic institutions. In: Sierra, C., Dignum, F.P.M. (eds.)
AgentLink 2000. LNCS (LNAI), vol. 1991, pp. 126–147. Springer, Heidelberg (2001)

9. Esteva, M., Rosell, B., Rodriguez-Aguilar, J.A., Arcos, J.L.: Ameli: An agent-based
middleware for electronic institutions. In: AAMAS ’04: Proceedings of the Third
International Joint Conference on Autonomous Agents and Multiagent Systems,
Washington, DC, USA, pp. 236–243. IEEE Computer Society, Los Alamitos (2004)

10. Nihan Kesim, F., Sergot, M.: A Logic Programming Framework for Modeling Tem-
poral Objects. IEEE Transactions on Knowledge and Data Engineering 8(5), 724–
741 (1996)

11. Kesim, N.: Temporal Objects in Deductive Databases. PhD thesis, Imperial College
(1993)

12. McBurney, P., Parsons, S.: Games that agents play: A formal framework for di-
alogues between autonomous agents. Journal of Logic, Language and Informa-
tion 11(3), 315–334 (2002)

13. Myerson, R.B.: Game Theory: Analysis of Conflict. Harvard University Press, Cam-
bridge (September 1997)

14. Omicini, A., Denti, E.: From Tuple Spaces to Tuple Centres. Science of Computer
Programming 41(3), 277–294 (2001)

15. Omicini, A., Ricci, A., Zaghini, N.: Distributed workflow upon linkable coordi-
nation artifacts. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006.
LNCS, vol. 4038, pp. 228–246. Springer, Heidelberg (2006)

http://www.argugrid.eu/
http://www.wfmc.org/

Playing with Agent Coordination Patterns in MAGE 101

16. Parsons, S., McBurney, P., Sklar, E., Wooldridge, M.: On the relevance of utter-
ances in formal inter-agent dialogues. In: Durfee, E.H., Yokoo, M., Huhns, M.N.,
Shehory, O. (eds.) 6th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2007), p. 240. IFAAMAS (2007)

17. Paschke, A., Bichler, M.: SLA Representation, Management and Enforcement. In:
EEE ’05: Proceedings of the 2005 IEEE International Conference on e-Technology,
e-Commerce and e-Service (EEE’05) on e-Technology, e-Commerce and e-Service,
Washington, DC, USA, pp. 158–163. IEEE Computer Society, Los Alamitos (2005)

18. Stathis, K.: A Game-based Architecture for Developing Interactive Components in
Computational Logic. Journal of Functional and Logic Programming (5) (2000)

19. Stathis, K., Sergot, M.J.: Games as a Metaphor for Interactive Systems. In: HCI’96,
People and Computers XI, pp. 19–33. Springer, Heidelberg (1996)

20. Toni, F.: E-business in ArguGRID. In: Veit, D.J., Altmann, J. (eds.) GECON 2007.
LNCS, vol. 4685, pp. 164–169. Springer, Heidelberg (2007)

21. van der Aalst, W.M.P., Hofstede, A.t., Kiepuszewski, B., Barros, A.: Workflow
patterns home page (2009), http://www.workflowpatterns.com/

http://www.workflowpatterns.com/

A Model-Based Architecture for Organizational
Interoperability in Open Multiagent Systems

Luciano R. Coutinho1,�, Anarosa A. F. Brandão2,��, Jaime S. Sichman2,���,
Jomi F. Hübner3,†, and Olivier Boissier4,‡

1 DEINF/ CCET / UFMA - Avenida dos Portugueses, s/n
65085-580 São Luı́s, MA, Brazil

lrc@deinf.ufma.br
2 LTI / EP / USP - Av. Prof. Luciano Gualberto, 158, trav. 3

05508-900 São Paulo, SP, Brazil
{anarosa.brandao,jaime.sichman}@poli.usp.br

3 DAS / CTC / UFSC - PO Box 476
88040-900 Florianópolis, SC, Brazil

jomi@das.ufsc.br
4 SMA / G2I / ENSM.SE - 158 Cours Fauriel

42023 Saint-Etienne Cedex, France
Olivier.Boissier@emse.fr

Abstract. In this paper, we report on MAORI, a Model-based Architecture for
ORganizational Interoperability between agents and open MASs that were de-
signed and implemented with heterogeneous organizational models/infrastructures.
MAORI is structured along three layers: the Organizational Metamodels (OMM),
the Model Transformations (M2M) and the Organizational Interoperability (ORI)
layers. Building upon previous work, we focus on the rationale, design and imple-
mentation of the ORI layer.

1 Introduction

In the last few years, several organizational models [1,2,3,4] and infrastructures [5,6,7]
were put forward for the engineering of organization-centered open multiagent systems
(MASs) [8] . On the one hand, the availability of a wide range of diverse models and
infrastructures has made the design and implementation of ordered open MASs feasi-
ble. On the other hand, such a diversity introduced an important new interoperability
challenge for agent designers: how to deal with heterogeneous organizational models
and infrastructures? Whenever an autonomous agent comes to enter some MAS it has
to be able to interact with the other participants using a particular agent communication
language as well as to understand received messages against a given domain ontology.
Besides this, if the MAS was designed by following an organization-centered approach,

� Supported by FAPEMA, Brazil, grant 127/04 and CAPES, Brazil, grant 1511/06-8.
�� Supported by CNPq, Brazil, grant 310087/2006-6.

��� Partially supported by CNPq, Brazil, grants 304605/2004-2, 482019/2004-2, 506881/2004-0.
† Supportedby ANR Project ForTrust (ANR-06-SETI-006).
‡ Partially supported by USP-COFECUB, grant 98/-4.

J. Padget et al. (Eds.): COIN 2009, LNAI 6069, pp. 102–113, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

MAORI in Open Multiagent Systems 103

the entering agent has also to be able to access a particular organizational infrastructure
and to interpret its underlying organizational model. In this way, the agent design be-
comes tailored to a particular organizational approach and cannot be reused.

For instance, suppose that several e-business applications designed as open agent or-
ganizations are available on the Internet. Therefore, it is realistic to assume that these
applications will be heterogeneous w.r.t. the organizational technology applied to build
them. To put it in more concrete terms, suppose two agents organizations: one built upon
the S-MOISE+ [6] organizational middleware and the other by using MADKIT [5] or-
ganizational platform. In this setup (and assuming a shared common agent communi-
cation language and domain ontology), the agent designers face the following problem:
the native S-MOISE+ agents (based on the MOISE+ model [2]) do not interoperate
with the MADKIT organizational infrastructure (based on the AGR model [1]), and
vice-versa. Thus, it is not possible, for instance, to write an agent code that enter both
e-business agent organizations in the search of products and/or services on behalf of its
users. Such fact limits the S-MOISE+ and MADKIT agents actions’ range which, in
other turn, limits the idea of open MASs.

Given this problem, four approaches (at least) can be envisioned as candidate solu-
tions [9]. The first one is to avoid the problem altogether by creating standards for orga-
nizational models and infrastructures (in a way similar to the FIPA standards for agent
communication languages and platforms, or the W3C standards for writing ontologies).
This approach solves the problem at the cost of imposing homogeneity and this some-
times is a high or even prohibitive cost (homogeneity can not be assumed in the case
of legacy MASs). The second approach consists in conceiving an universal agent archi-
tecture able to function in all organizational infrastructures. This is an ambitious and
technically challenging approach. Beyond an integrated view of organizational models,
it requires the definition of a general organizational reasoning for the agent that could
be specialized to each organizational infrastructure. The third approach comprises the
delegation of the organizational reasoning needed to participate in an agent organiza-
tion to middle-agents that “understand” the underlying organizational model and are
able to function in the corresponding organizational infrastructure. This approach is
technically feasible and it seems as an extension of the idea proposed by some organi-
zational infrastructures (e.g., in AMELI [7] there is an internal active component called
governor that helps external agents to reason about the structure and functioning of
an e-institution). However, the basic drawback of this organizational middle-agent ap-
proach is that it turns the MAS in a semi-closed society [10] where the external agents
have lost their organizational autonomy. The external agents do not “understand” the
structure and functioning of the MAS and pass to react to the organizational requests
coming from the middle-agent. Finally, the forth envisioned approach is to bridge the
interfaces between the external agents and the organizational models/infrastructures of
the MASs by means of some run-time interoperator middleware [11]. The basic func-
tion of such a middleware is to provide adapted copies of the state of some MAS (run-
ning on a source organizational model/infrastructure) on top of the target organizational
models/infrastructures in which the external agents run. In this manner, the organi-
zational interoperability problem is solved by translating a given agent organization
(its running state) to the “language” (expected interface) of the external agents. Com-

104 L.R. Coutinho et al.

Fig. 1. Organization-centered open MAS

pared to the previous approaches, this last approach works with legacy MASs, does not
requires a general organizational reasoning, and preserves the external agents’ orga-
nizational autonomy. Nonetheless, its downside is that not all existing organizational
models/infrastructure are full compatible (i.e., some present concepts/features that are
not found in the other; or are found, but with some variations of meaning) and this can
hinder the translations of the agent organization state.

In this paper, we present MAORI, a Model-based Architecture for ORganizational
Interoperability between external agents and open MASs that were designed and im-
plemented with heterogeneous organizational models/infrastructures. MAORI mainly
follows the forth approach described in the previous paragraph. In order to tackle the
issue of organizational models/infrastructures incompatibility, we also propose the use
of organizational middle-agents (the third approach) to guide the external agents when
its underlying organizational model/infrastructure cannot represent concepts or features
found in the organizational model/infrastructure of the MAS.

The rest of the paper is structured as follows. Section 2 discuss some basic assump-
tions regarding the engineering of organization-centered open MASs. In section 3, an
overview of MAORI is presented. The section 4 is dedicated to detail the top level orga-
nizational interoperability layer of MAORI. In section 5, some aspects of the implemen-
tation and validation of MAORI are described. In section 6, related work is discussed.
In section 7, the main contributions and future directions are summarized.

2 Organization-Centered Open MASs

Following an organization-centeredperspective [8], the engineering of an open MAS can
be described as a process that starts with the creation of an organizational specification.

MAORI in Open Multiagent Systems 105

Fig. 2. MAORI overview

The organizational specification is written in conformance to an organizational model; it
consists in an explicit computational representation of the desired patterns of joint activity
that should occur inside the MAS in order to drive the agents interactions towards some
desired purpose.

Once the organizational specification is done, it is used as the input to an organiza-
tional infrastructure. In general, the organizational infrastructure is supposed to interpret
the specification and reify the organization of the MAS. In this respect, it maintains an
internal organizational state of the MAS and offers to the agents an interface of orga-
nizational services. The list of the agents acting as members of the organization, what
roles the agents are playing, what groups are active in the organization, among others,
are some of the informations maintained in the organizational state. Some organiza-
tional services offered are: the global coordination of joint activity, role assignment
requests/queries, sanctions, etc. These services are available to the participating agents
by means of components called organizational proxies.

Finally, with the organizational infrastructure materializing the organization of the
MAS, application domain agents (developed independently of the organization) can
enter and interact inside it by accessing the available organizational services. This brief
account is depicted in Figure 1.

3 MAORI

This section presents an overview of MAORI, our proposal for addressing the problem
of organizational interoperability described in the Introduction. MAORI is structured
along three main layers (Figure 2):

106 L.R. Coutinho et al.

– at the bottom, the Organizational Metamodels (OMM) layer – in this layer, the
existing organizational models are represented by means of explicit metamodels;

– in the middle, the Model Transformations (M2M) layer – the purpose of this layer
is to provide an integrated view and transformations between the organizational
models represented in the OMM layer;

– at the top, the Organizational Interoperability (ORI) layer – this layer is formed by
active components that use the M2M and OMM layers to translate and adapt the
organizational state of running agent organizations from one source organizational
infrastructure to one or more target organizational infrastructures.

The rationale, design and implementation of the OMM and the M2M layers were al-
ready reported elsewhere (see [12] and [13]). In this manner, in this paper, we will bring
into focus only the structure and functioning of the ORI layer and how it relates to the
OMM and M2M layers.

4 Organizational Interoperability Layer

The Organizational Interoperability (ORI) layer function as an extension of the orga-
nizational infrastructures of MASs. It adds to each organizational infrastructure three
basic components: organization providers, organization adapters and agent proxies (see
Figure 2).

4.1 Providers and Adapters

Organizational providers are responsible for exporting the organizational state of run-
ning MASs. The exported state is called source organization. Organizational adapters
are responsible for importing the organizational state of running MASs. An imported
state is named target or adapted organization.

Imagine a scenario where an agent functions on a given organizational infrastructure
and consider a MAS running on a different organizational infrastructure. If the agent
wants to enter the MAS, an organizational adapter has to be instantiated in the organi-
zational infrastructure of the entering agent. Initially, the responsibility of the adapter
is to locate the appropriate organizational provider, establish a connection with it, ask
for the organizational state and finally translate this organizational state to a target or-
ganization on top of the organizational infrastructure of the entering agent. In this way,
for each MAS there will be one organizational provider. Connected to this provider,
there will be several organizational adapters; one for each organizational infrastructure
in which there are external heterogeneous agents.

In order to establish connections, the organizational providers and adapters must
share a communication medium and protocol. The shared communication infrastruc-
ture is presented in the following. Some aspects of the communication protocol are
discussed in section 4.3.

Organizational Interoperability Society. To describe the communication infrastruc-
ture, it helps to conceive of the organizational providers and adapters as internal agents

MAORI in Open Multiagent Systems 107

Fig. 3. Organizational Interoperability Society

Fig. 4. MOISE+ structural specification for the ORISOC

that participate as members of an Organizational Interoperability Society (ORISOC,
Figure 3). Thus, the ORI layer itself is conceived of as a MAS.

By following an organization-centered approach (sec. 2), the organization of the
ORISOC can be represented by means of an organizational specification. The (struc-
tural part of the) organizational specification for the ORISOC is depicted in the diagram
of Figure 4. The diagram is a MOISE+ structural specification. In it, ORISOC is rep-
resented as a super group formed by several sub groups (OrgIntGr). In each OrgIntGr,
there is only one organizational provider and several organizational adapters; provider
can communicate with adapters, and vice-versa; and, adapter cannot communicate with
adapter. In this way, each OrgIntGr represents the inter-connection between one organi-
zational provider with several organizational adapters (or one source organization being
exported to several different target organizational infrastructures).

Once having represented the ORISOC in the form of an organizational specification,
the major benefit is that available organizational infrastructures can be reused to imple-
ment it1. Following this way, the communication link between organizational providers
and adapters will be provided by the (underlying communication infrastructure of the)

1 In our prototype implementation (discussed in section 5) we have used the S-MOISE+ organi-
zational infrastructure.

108 L.R. Coutinho et al.

organizational infrastructure used. The localization of a given source organization will
be reduced to a query for some OrgIntGr (issued by an adapter in the organizational
infrastructure used to implement ORISOC). And, the act of connecting to a provider
will simply mean the entering of an adapter in an appropriate OrgIntGr.

Summing up, the organizational providers and adapters are components that by one
side interact with the internals of the organizational infrastructures, and that by the other
side are agents that enter in an agent organization (ORISOC) to interact with each other
and exchange organizational states.

Organizational State Translations. After connecting to a provider in the ORISOC,
the organizational adapters will be in constant communication with it to synchronize
the source and target organizational states. At the basis of this synchronization process
are the M2M and OMM layers.

In the M2M layer, there is an integrated organizational metamodel [13]. This meta-
model merges the concepts and structures present in all organizational models that
compose the OMM layer [12]. The rationale of having an integrated metamodel is to
minimize the number of transformations between n organizational metamodels. There-
fore, when an organizational adapter asks the source organizational state to an organiza-
tional provider, the following occurs: (i) the organizational provider inspects the current
organizational state and translate it (via the M2M layer) to an integrated format con-
forming to the integrated metamodel; (ii) the organizational adapter receives the result
of the transformation and; (iii) the organizational adapter applies a transformation from
the M2M layer that converts the received state from the integrated format to a format
conforming to the organization metamodel of the target organizational infrastructure.

As discussed in the Introduction, sometimes the translation from the source organi-
zational model to the target organizational model is not perfect and information is lost.
When this occurs, a source organization cannot be completely expressed in the target
infrastructure. Consequently, target agents are not able to reason about certain aspects
of the organization. The use of special middle-agents called agent proxies are proposed
to address this problem.

4.2 Agent Proxies

In the ORI layer, agent proxies are components representing agents situated in a remote
organizational infrastructure. They serve two basic purposes.

Firstly, they are the starting point of messages forwarded from one infrastructure
space to another. When an external agent enters in a MAS, it is expected that it com-
municates with other agents inside the MAS. However, if the agent that must receive
a message is not physically running in the same infrastructure space, there must be a
way to route the message to the recipient. In the ORI layer, this is achieved by the
agent proxies. For every remote agent, the organizational provider (and the adapters)
register an agent proxy. These proxies will be visible to the other agents as being local
agents. When a message comes to an agent proxy, the proxy forwards it to the respec-
tive provider (or adapter). Then, the provider (or adapter) forwards the message to the
adapter (or provider) that is running in the same infrastructure of the real receiver of the
message. Finally, the adapter (or provider) sends the message to the receiver.

MAORI in Open Multiagent Systems 109

Secondly, the agent proxies can function as guides or governors for the remote
agents. This occurs only in the case of the proxies in the provider side. Recalling, when
the target organizational model cannot represent certain aspects of the source organi-
zational model, the translation source/target loses information. Then, the proxies in the
provider side will represent agents that are not able to reason about certain aspects of
the organization. To ease this problem the agent proxy can assume the active role of
guiding the remote agent in doing what have to be done inside the organization. The
exact way of the conversation between remote proxy and external agent will be dictated
by the source and target organizational models.

4.3 Organization Life-Cycle

This section describes some very basic events in the life-cycle of an agent organization
and how the ORI layer deals with them. A common denominator in all organizational
models, is that organizations are structured around roles that can be gathered in groups.
In the sequel, it is discussed how the events of role adoption and group creation, which
affect the organizational state of the MAS, are propagated along the ORI layer.

Role playing. Each organizational event can be triggered either on the side of the
organizational provider or on the side of some adapter. For example, a request to play a
role can be issued by an agent that is situated in the source organization or by a remote
agent running on a target infrastructure.

In the first case, the protocol followed by the provider and the adapters to synchronize
their state will be the following. Firstly, interacting with the infrastructure of the source
organization, the organizational provider detects the assignment of a role to an agent
on the source organization. Secondly, it gets the new source organizational state and
translate it to the integrated format (via M2M layer). Thirdly, it broadcasts the new
organizational state (in the integrated format) to all organizational adapters present in
the same OrgIntGr. By their time, each adapter receives the new state and transforms
it (via M2M layer) to an equivalent new state on top of the target infrastructure. In
this manner, each new role assignment in the source organization is propagated from
the ORI layer to the the target organizations. And so, every agent running on a target
infrastructure gets to know about the new role assignment.

In the second case (when an agent requests to play a role in the adapter side), the
protocol is a little more complex. Firstly, the organizational adapter notifies the organi-
zational provider that an agent is requesting to play a role. Then, the provider forwards
the request to the underlying organizational infrastructure for validation and execution.
Upon receiving the role play request result, the organizational provider communicates
it to the issuing adapter. After that, in the case of an accepted request, the organiza-
tional provider also broadcasts the new organizational state (translated to the integrated
format) to all adapters present in the OrgIntGr. In this manner, each role request from
the adapter side is firstly performed in the source organization an then propagated to all
target organizations.

Group creation. The group creation event is dealt by the ORI layer in a way similar to
that of the role adoption event. To avoid repetition of textual description, the dynamics
of the ORI layer during a group creation event is depicted in the diagrams of Figure 5.

110 L.R. Coutinho et al.

Fig. 5. Group creation event sequences

In the upper diagram, a group creation event happening in the organizational provider
side is shown. Below, it is seen a group creation request taking place in the adapter side
and its consequences.

The communications between the organizational provider and adapters occurs in the
context of the ORISOC and, in the diagram, are expressed as KQML messages. The
messages from the provider (or adapter) to the M2M layer are simple method invoca-
tion. Finally, the interaction between the organizational infrastructure and the provider
(or the adapters) depends on the specific infrastructure. For instance, in the case of the
MADKIT platform this interaction can be operationalized by a mechanism called ker-
nel hooks. By using this mechanism, the provider (or adapter) can register itself with the
kernel of the MADKIT platform and pass to listen/intercept the organizational events.
As another example, in the case of S-MOISE+ infrastructure, the organization is con-
trolled by a special agent called OrgManager. And, this agent can be contacted via
KQML messages for the performance of organizational services.

5 Implementation and Validation

MAORI was fully implemented in the Java programming language. The OMM layer
was automatically generated by using the Eclipse Modeling Framework (EMF)2.
Regarding the M2M layer, it was first prototyped in the Atlas Transformation Language

2 http://www.eclipse.org/modeling/emf/

MAORI in Open Multiagent Systems 111

Fig. 6. The write paper agent organization

(ATL)3 and then ported to Java for performance reasons. The ORI layer is currently im-
plemented for three organizational infrastructures: the MADKIT, the S-MOISE+ and
the J-MOISE+ infrastructures4.

In order to assess the effectiveness and performance of MAORI, some prototype ap-
plications are being developed. One is the example of a group of agents that wants to
write a paper and use for this purpose an explicit organization to help them to collabo-
rate. The organization consists in a group composed of: one agent in the role of paper
coordinator (who controls the process and writes the introduction and conclusion of the
paper), one to five agents in the role of collaborators (who writes the paper sections)
and one agent in the role of librarian (who compiles the bibliography).

Taking this simple example, some experiments were performed. One of them is
illustrated in Figure 6. In this experiment we have an organization composed of five
agents – one coordinator (Eric), three collaborators (Greg, Joel and Mark) and one
librarian (Carol). Initially the organization is started in the MADKIT platform (the win-
dow seen on the bottom left corner of Figure 6). Also in MADKIT, the agents Eric and
Carol are started (top left corner of Figure 6). After that, in the S-MOISE+ is started
one organizational adapter that imports the organization (the window on the bottom

3 http://www.eclipse.org/m2m/atl/
4 Both S-MOISE+ and J-MOISE+ are based on the same organizational model, MOISE+

[2]; they differ in the agent platform below the organizational infrastructure; S-MOISE+
runs on an communication infrastructure called SACI; J-MOISE+ is based on the Jason
(http://jason.sourceforge.net) interpreter for AgentSpeak. MADKIT uses the
AGR model [1].

112 L.R. Coutinho et al.

right corner of Figure 6). The three remaining agents (Greg, Joel and Carol) are started
in S-MOISE+ (top right corner of Figure 6). These agents perceive and enter the orga-
nization by requesting the role of collaborator. At this point, the interaction begins: the
agents in S-MOISE+ are now members of an organization running in MADKIT.

Finishing the description of Figure 6, on the bottom middle the agent proxies for the
S-MOISE+ agents can be seen. And, in the background, the ORISOC (implemented
using the S-MOISE+ organizational infrastructure) is shown.

Regarding the performance, the following can be noted. For each organizational
event, the target organizations have to be updated. And this involve translations and
message exchange between adapters and providers. At first sight this appears to be a
bottleneck. However, our experiments have shown that the organizational events are
not so frequent. They occur mainly during organization setup. The message exchange
between the domain agents, on the other hand, are much more frequent. They occur
constantly and every time a message is addressed to an agent running in another infras-
tructure, the message has to traverse the ORI layer. However, this cost can be seen as
being inherent to the problem addressed, given the fact that the agents are supposed to
be located in different platforms.

6 Related Work

Full interoperability across open MASs boundaries is a complex problem involving
several complementary aspects: heterogeneous communication infrastructures, hetero-
geneous domain ontologies and heterogeneous organizational infrastructures are three
of them. While the first two aspects have been discussed in the literature, to the best of
our knowledge, we do not find other work that deals explicitly with matters of organi-
zational interoperability.

In [11], the authors present the implementation of an RETSINA-OAA interoperator
that to some extent performs a similar function of our ORI layer. However, the focus
is different: in [11] the RETSINA-OAA interoperator deals with service location and
communication interoperability between agent-centered platforms. Another work that
focus on communication interoperability is [14].

Regarding domain interoperability, we can cite the work [15]. The authors propose
an extension of the agent-centered platforms with a component called Platform Matcher
Service (PMS) responsible for linking one organization to other similar organizations
(w.r.t. the domain ontology). To this end, the PMS consults a Federation Directory Ser-
vice (FDS) where several organizations having similar domain ontologies are registered.

7 Conclusion

In this paper, we approached the problem of making agents to effectively participate in
open organizational-centered MASs when these agents and the MASs were conceived
with different organizational models/infrastructures. Accordingly, the paper contribution
was MAORI - a Model-based Architecture for Organizational Interoperability. MAORI
addresses the problem by providing a middleware layer interconnecting organizational
infrastructures. By means of MAORI, a running agent organization can be transported

MAORI in Open Multiagent Systems 113

to several organizational infrastructures. Therefore, agents interpreting different organi-
zational model can interact and form a large scale organizational-centered MAS.

Currently, MAORI is a prototype supporting the MADKIT, S-MOISE+ and J-MOISE+
organizational infrastructures. Our future work direction include developing agents orga-
nizations to test and improve the approach, designing a more efficient mechanism to syn-
chronize the organizational states than the translation of the entire organizational state,
and the implementation of MAORI in other organizational infrastructures.

References

1. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organizational view
of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.) AOSE 2003. LNCS,
vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

2. Hübner, J.F., Sichman, J.S., Boissier, O.: A model for the structural, functional, and deon-
tic specification of organizations in multiagent systems. In: Bittencourt, G., Ramalho, G.L.
(eds.) SBIA 2002. LNCS (LNAI), vol. 2507, pp. 118–128. Springer, Heidelberg (2002)

3. Esteva, M., Padget, J., Sierra, C.: Formalizing a language for institutions and norms. In:
Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp. 348–366.
Springer, Heidelberg (2002)

4. Dignum, V.: A model for organizational interaction: based on agents, founded in logic. PhD
thesis, Utrecht University (2004)

5. Gutknecht, O., Ferber, J.: The MADKIT agent platform architecture. In: Wagner, T.A., Rana,
O.F. (eds.) AA-WS 2000. LNCS (LNAI), vol. 1887, pp. 48–55. Springer, Heidelberg (2001)

6. Hübner, J.F., Sichman, J.S., Boissier, O.: S-moise+: A middleware for developing organised
multi-agent systems. In: Int. Workshop on Organizations in MAS: From Organizations to
Organization Oriented Programming (OOOP 2005), pp. 107–120 (2005)

7. Esteva, M., Rosell, B., Rodrı́guez-Aguilar, J.A., Arcos, J.L.: AMELI: an agent-based mid-
dleware for electronic institutions. In: AAMAS’04., vol. I, pp. 236–243. IEEE Press, Los
Alamitos (2004)

8. Boissier, O., Hübner, J.F., Sichman, J.S.: Organisational oriented programming from closed
to open organizations. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.)
ESAW 2006. LNCS (LNAI), vol. 4457, pp. 86–105. Springer, Heidelberg (2007)

9. Magnin, L., Pham, V.T., Dury, A., Besson, N., Thiefaine, A.: Our guest agents are welcome
to your agent platforms. In: ACM Symposium on Applied Computing 2002, pp. 107–114.
ACM Press, New York (2002)

10. Davidsson, P.: Categories of artificial societies. In: Omicini, A., Petta, P., Tolksdorf, R. (eds.)
ESAW 2001. LNCS (LNAI), vol. 2203, pp. 1–9. Springer, Heidelberg (2002)

11. Giampapa, J.A., Paolucci, M., Sycara, K.: Agent interoperation across multagent system
boundaries. In: Fourth International Conference on Autonomous Agents, Agents 2000 (2000)

12. Coutinho, L., Sichman, J., Boissier, O.: Modelling Dimensions for Agent Organizations. In:
Handbook of research on multi-agent systems: semantics and dynamics of organizational
models. Information Science Reference, pp. 18–50 (2009)

13. Coutinho, L.R., Brandão, A.A.F., Sichman, J.S., Boissier, O.: Model-driven integration of
organizational models. In: Luck, M., Gomez-Sanz, J.J. (eds.) AOSE’08. LNCS, vol. 5386,
pp. 1–15. Springer, Heidelberg (2009)

14. Suguri, H., Kodama, E., Miyazaki, M., Kaji, I.: Assuring interoperability between heteroge-
neous multi-agent sytems with a gateway agent. In: 7th IEEE Int. Symp. on High Assurance
Systems Engineering, HASE’02 (2002)

15. Erdur, R.C., Dikenelli, O., Seylan, I., Gürcan, Ö.: Semantically federating multi-agent orga-
nizations. In: Gleizes, M.-P., Omicini, A., Zambonelli, F. (eds.) ESAW 2004. LNCS (LNAI),
vol. 3451, pp. 74–89. Springer, Heidelberg (2005)

A Normative Organisation Programming Language for
Organisation Management Infrastructures

Jomi F. Hübner1,2,�, Olivier Boissier2, and Rafael H. Bordini3

1 Department of Automation and Systems Engineering
Federal University of Santa Catarina

Florianópolis, Brazil
jomi@das.ufsc.br

2 Ecole Nationale Supérieure des Mines
Saint Etienne, France

{hubner,boissier}@emse.fr
3 Institute of Informatics

Federal University of Rio Grande do Sul
Porto Alegre, Brazil

R.Bordini@inf.ufrgs.br

Abstract. The Organisation Management Infrastructure (OMI) is an important
component to support and monitor the execution of large-scale open multi-agent
organisations whose functioning is described using high-level abstract modelling
languages. Their interpretation by the OMI leads to heavy-weight programs, hin-
dering flexibility and evolution. In this paper, we introduce a normative organ-
isation programming language, called NOPL, based on a simple and elegant
normative programming language. We show the suitability of these languages
for programming the OMI of theMOISE framework; in particular, we show how
MOISE’s Organisation Modelling Language can be translated into NOPL. We
also briefly describe how this all has been implemented on top of ORA4MAS,
the artifact-based OMI forMOISE.

1 Introduction

The use of organisational and normative concepts is widely accepted as a suitable ap-
proach for the design and implementation of Multi-Agent Systems (MAS) [1,5,4,13].
These concepts are useful for the design of MAS, so they are present in various dif-
ferent software engineering methodologies for MAS. However, they are also used at
runtime to make agents aware of the organisation in which they take part, on one hand,
and to support and monitor their activity to achieve the purpose of the organisation on
the other hand. The Organisation Management Infrastructure (OMI) plays an important
role in the realisation of the latter aspect. In this paper, we will focus on the OMI.

A recent trend in the development of OMIs is to provide languages that the MAS
designer (human or artificial in the case of self-organisation) uses to write a program
that will define the organisational functioning of the system, complementing agent pro-
gramming languages that defines the individual functioning within the system. The

� Supported by the ANR in the ForTrust project (ANR-06-SETI-006).

J. Padget et al. (Eds.): COIN 2009, LNAI 6069, pp. 114–129, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Normative Organisation Programming Language for OMIs 115

former type of languages can focus on different aspects of the overall system, for ex-
ample: structural aspects (roles and groups) [7], dialogical aspects [5], coordination as-
pects [18], and normative aspects [21,9]. The OMI is then responsible for interpreting
such a language and providing corresponding services to the agents. For instance, in the
case ofMOISE+ [13], the designer can program a norm such as “an agent playing the
role ‘seller’ is obliged to deliver some goods after being payed by the agent playing role
‘buyer”’. The OMI is responsible for identifying the activation of that obligation and to
enforce the compliance to that norm by the agents playing the corresponding roles.

We are particularly interested in a flexible and adaptable implementation of OMIs.
Such implementation is normally coded using an object-oriented programming lan-
guage (e.g. Java). However, the exploratory stage of current OMI languages often re-
quires changes in the implementation so that one can experiment with new features. The
refactoring of the OMI for such experiments is usually an expensive task that we would
like to simplify. Our work therefore addresses one of the main missing ingredients for
the practical development of sophisticated multi-agent systems where the macro-level
requires complex organisational and normative structures in the context of so many dif-
ferent views and approaches to such structures still being actively investigated by the
MAS research community.

This problem is particularly complex for organisation models that consider elements
with different natures such as groups, roles, common goals, and norms. These elements
have their own life cycle, are closely related to each other, and are constrained by a
set of properties (e.g. role compatibility and cardinality). Our proposal aims at express-
ing these different properties in a unified framework based on norms. The OMI is then
mainly concerned with providing a uniform mechanism to interpret and manage the
status of the normative expressions instead of specific mechanisms for each kind of
constraints. However, we do not want to force the MAS designer to program the organ-
isation using only norms. The designer should program their organisation using more
suitable constructs. For example, using a role cardinality constructor to state “a class-
room has one professor” instead of a norm like “it is prohibited that two agents play the
role professor in the same classroom”).

The solution presented in this paper is to translate a high-level language into another,
simpler language. The problem of implementing the OMI is thereby reduced to a trans-
lation problem, which is usually much simpler and less error prone. We start from an or-
ganisational modelling language which is then automatically translated into a normative
programming language. The language used by the MAS designer has more abstractions
available (such as groups, roles, and global plans) than normative languages. More pre-
cisely, our starting language is the MOISE Organisation Modelling Language (OML
— see Sec. 3) and our target language is the Normative Organisation Programming
Language (NOPL — Sec. 4). NOPL is a particular class of a normative programming
language presented and formalised in this paper (Sec. 2). All of this has been imple-
mented on top of our previous work on OMI where an artifact-based approach, called
ORA4MAS, was used (Sec. 5).

The main contributions of this paper are: (i) a normative programming language and
its formalisation using operational semantics; (ii) the translation from an organisational
language into the normative language; and (iii) an implemented artifact-based OMI that

116 J.F. Hübner, O. Boissier, and R.H. Bordini

interprets the target normative language. These contributions are better discussed and
placed in the context of the relevant literature in Sec. 6.

2 Normative Programming Language

Although several languages for norms are available (e.g. [21,23,9]), for this project we
need a language that handles obligations and regimentation. While agents can have un-
fulfilled obligations (and sanctions might take place later), regimentation is a preventive
strategy of enforcement: agents are not capable of violating a regimented norm [14].
Regimentation is important for an OMI to allow situations where the designer wants
to define norms that must always be followed because their violation represents a se-
rious risk to the organisation.1 Most existing languages consider either obligation or
regimentation as enforcement strategies, and do not allow the designers (or the agents)
to dynamically choose the best strategy for their application.

The language that we define is based on the following assumptions. (i) Permissions
are defined by omission, as in the work in [10]. (ii) Prohibitions are represented either
by regimentation or as an obligation for someone else to decide how to handle the
situation. For example, consider the norm “it is prohibited to submit a paper with more
than 6 pages”. In case of regimentation of this norm, attempts to submit a paper with
more than 6 pages will fail. In case this norm is not regimented, the designer has to
define a norm such as “when a paper with more than 6 pages is submitted, the chair
must decide whether to accept the submission or not”. (iii) Sanctions are considered
as an obligation (i.e. someone else is obliged to apply the sanction) and (iv) norms are
consistent (either the programmer or the program generator are supposed to handle this
issue). Thus, the language can be relatively simple, reduced to two main constructs:
obligation and regimentation.

2.1 Syntax

Given the above requirements and simplifications, we introduce below a new Norma-
tive Programming Language (NPL) (Fig. 1 contains the definition of its syntax).2 A
normative program np is composed of: (i) a set of facts and inference rules (following
the syntax used in Jason [2]); and (ii) a set of norms. A NPL norm has the general form
norm id : ϕ -> ψ, where id is a unique identifier of the norm; ϕ is a formula
that determines the activation condition for the norm; and ψ is the consequence of the
activation of the norm. Two types of norm consequences ψ are available:

– fail – fail(r): represents the case where the norm is regimented; argument r rep-
resents the reason for the failure;

1 The importance of regimentation is corroborated by relevant implementations of OMI, such
as Madkit [7], S-MOISE+ [12], and AMELI [6], which consider regimentation as a main
enforcement mechanism.

2 The non-terminals not included in the specification, atom, id, var, and number, correspond,
respectively, to predicates, identifiers, variables, and numbers as used in Prolog.

A Normative Organisation Programming Language for OMIs 117

np ::= “np” atom “{” (rule | norm)* “}”
rule ::= atom [“:-” formula] “.”
norm ::= “norm” id “:” formula “->” (fail | obl) “.”

fail ::= “fail(” atom “)”
obl ::= “obligation(” (var | id) “,” atom “,” formula “,” time “)”

formula ::= atom | “not” formula | atom (“&” | “|”) formula
time ::= “‘” (“now” | number (“second” | “minute” | ...)) “‘”

[(“+” | “-”) time]

Fig. 1. EBNF of the NPL

– obl – obligation(a, r, g, d): represents the case where an obligation for some
agent a is created. Argument r is the reason for the obligation (which has to include
the id of the norm from which the obligation has been created); g is the formula that
represents the obligation itself (a state of the world that the agent must try to bring
about, i.e. a goal it has to achieve); and d is the deadline to fulfil the obligation.

A simple example to illustrate the language is given below; we used source code com-
ments to explain the program.

np example {
a(1). a(2). // facts
ok(X) :- a(A) & b(B) & A>B & X = A*B. // rule

// note that b/1 is not defined in the program;
// it is a dynamic fact provided at run-time

// alice has 4 hours to achieve a value of X < 5
norm n1: ok(X) & X > 5
-> obligation(alice,n1,ok(X) & X<5,‘now‘+‘4 hours‘).

// bob is obliged to sanction alice in case X > 10
norm n2: ok(X) & X > 10
-> obligation(bob,n2,sanction(alice),‘now‘+‘1 day‘).

// example of regimented norm; X cannot be > 15
norm n3: ok(X) & X > 15 -> fail(n3(X)).
}

As in other approaches (e.g. [8,22]), we have a static/declarative aspect of the norm
(where norms are expressed in NPL resulting in a normative program) and a dynamic/
operational aspect (where obligations are created for existing agents). We call the first
aspect simply norm and the second obligation. An obligation has thus a run-time life-
cycle. It is created when the activation condition ϕ of some norm n holds. The activation
condition formula is used to instantiate the values of variables a, r, g, and d of the
obligation to be created. Once created, the initial state of an obligation is active (Fig. 2).
The state changes to fulfilled when agent a fulfils the norm’s obligation g before the

118 J.F. Hübner, O. Boissier, and R.H. Bordini

d > now
active

fulfilled

unfulfilled

inactive

g

¬ ø

ø

Fig. 2. State Transitions for Obligations

deadline d. The obligation state changes to unfulfilled when agent a does not fulfil
obligation g before deadline d. As soon as the activation condition (ϕ) of the norm that
created the obligation ceases to hold, the state changes to inactive. Note that a reference
to the norm that led to the creation of the obligation is kept as part of the obligation
itself (the r argument), and the activation condition of this norm must remain true for
the obligation to stay active; only an active obligation will become either fulfilled or
unfulfilled, eventually. Fig. 2 shows the obligation life-cycle.

2.2 Semantics

We now give semantics to NPL using the well known structural operational semantics
approach [17].

A program in NPL is essentially a set of norms where each norm is given according to
the grammar in Fig. 1; it can also contain a set of initial facts and inference rules specific
to the program’s domain (all according to the grammar of the NPL language). The
normative system operates in conjunction with an agent execution system; the former is
constantly fed by the latter with “facts” which, possibly together with the domain rules,
express the current state of the execution system. Any change in such facts leads to a
potential change in the state of the normative system, and the execution system checks
whether the normative system is still in a sound state before carrying out particular
execution steps; similarly, it can have access to current obligations generated by the
normative system. The overall system’s clock also causes potential changes in the state
of the transition system by changing the time component of its configuration.

As we use operational semantics to give semantics to the normative programming
language (i.e. the language used to program the normative system specifically), we first
need to define a configuration of the transition system that will be defined through
the semantic rules presented later. A configuration of our normative system, giving
semantics to NPL, is a tuple 〈F, N,�, OS, t〉 where:

– F is a set of facts received from the execution system and possibly rules expressing
domain knowledge. The former works as a form of input from the OMI to the
normative interpreter. Each formula f ∈ F is, as explained earlier, an atomic first
order formula or a Horn clause.

A Normative Organisation Programming Language for OMIs 119

– N is a set of norms, where each norm n ∈ N is a norm in the syntax defined for
norm in the grammar in Fig. 1.

– The state of the normative system is either a sound state denoted by � or a fail-
ure state denoted by ⊥; the latter is caused by regimentation through the fail()
language construct within norms. This is accessible to the agent execution system
which prevents the execution of the action that would lead to the facts causing the
failure state, and rolls back the facts about the state of the execution system.

– OS is a set of obligations, each accompanied by its current state; each element
os ∈ OS is of the form 〈o, ost〉 where o is an obligation, again according to the
syntax for obligations given in Fig. 1, and ost ∈ {active, fulfilled, unfulfilled,
inactive} (the possible states of an obligation). This is also of interest to the agent
execution system and thus accessible to it.

– t is the current time which is automatically changed by the underlying execution
system, using a discrete, linear notion of time. For the sake of simplicity, it is as-
sumed that all rules that could apply at a given moment in time are actually applied
before the system changes the state to the next time.

Given a normative program P — which is, remember, a set of facts and rules (PF) and
a set of norms (PN) written in NPL — the initial configuration of the normative system
(before the system execution starts) is 〈PF , PN ,�, ∅, 0〉.

In the semantic rules, we use the notation Tc to denote the component c of tuple T .
The semantic rules are as follows.

Norms. The rule below formalises regimentation: when any norm n becomes active —
i.e. its condition component holds in the current state — and its consequence is fail(),
we move to a configuration where the normative state is no longer sound but a failure
state (⊥). Note that we use nϕ to refer to the condition part of norm n (the formula
between “:” and “->” in NPL’s syntax) and nψ to refer to the consequence part of n
(the formula after “->”).

n ∈ N F |= nϕ nψ = fail()
〈F, N,�, OS, t〉 −→ 〈F, N,⊥, OS, t〉 (Regim)

The underlying execution system, after realising a failure state caused by Rule Regim
above, needs to ensure the facts are rolled back to the previously consistent state, which
will make the following rule apply.

∀n ∈ N.(F |= nϕ ⇒ nψ �= fail())
〈F, N,⊥, OS, t〉 −→ 〈F, N,�, OS, t〉 (Consist)

The next rule is similar to Rule Regim but instead of failure, the consequence is the cre-
ation of an obligation. In the rule, m.g.u. means “most general unifier” as in Prolog-like
unification; the notation tθ means the application of the variable substitution function θ
to formula t. Note that we require that the deadlines of newly created obligations are not

yet past. The notation
obl= is used for equality of obligations, which ignores the deadline

120 J.F. Hübner, O. Boissier, and R.H. Bordini

in the comparison. That is, we define that an obligation obligation(a, r, g, d) is equals
to an obligation obligation(a′, r′, g′, d′) if and only if a = a′, r = r′, and g = g′.
Because of this, Rule Oblig does not allow the creation of the same obligation with two
different deadlines. Note however that if there already exists an equal obligation but it
has become inactive, this does not prevent the creation of the new obligation.

n ∈ N F |= nϕ nψ = o oθd > t

¬∃〈o′, ost〉 ∈ OS . (o′ obl= oθ ∧ ost �= inactive)
〈F, N,�, OS, t〉 −→ 〈F, N,�, OS ∪ 〈oθ, active〉, t〉

where θ is the m.g.u. such that F |= oθ

(Oblig)

Obligations. Recall that an NPL obligation has the general form obligation(a,
r, g, d). With a slight abuse of notation, we shall use oa to refer to the agent that has
the obligation o; or to refer to the reason for obligation o; og to refer to the state of the
world that agent oa is obliged to achieve (the goal the agent should adopt); and od to
refer to the deadline for the agent to do so. An important aspect of the obligation syntax
is that the NPL parser always ensures that the programmer used the norm’s id as predi-
cate symbol in or and so in the semantics, when we say or, we are actually referring to
the activation condition nϕ of the norm used to create the obligation.

Rule Fulfil says that the state of an active obligation o should be changed to fulfilled
if the state of the world og that the agent agent was obliged to achieve has already been
achieved (i.e. the domain rules and the facts from the underlying execution system
imply g). Note however that such state must have been achieved within the deadline.

os ∈ OS os = 〈o,active〉 F |= og od ≥ t

〈F, N,�, OS, t〉 −→ 〈F, N,�, (OS \ {os}) ∪ {〈o, fulfilled〉}, t〉 (Fulfil)

Rule Unfulfil says that the state of an active obligation o should be changed to
unfulfilled if the deadline is already past; note that the rule above would have changed
the status to fulfilled so the obligation would no longer be active if it had been achieved
in time.

os ∈ OS os = 〈o,active〉 od < t

〈F, N,�, OS, t〉 −→ 〈F, N,�, (OS \ {os}) ∪ {〈o,unfulfilled〉}, t〉 (Unfulfil)

Rule Inactive says that the state of an active obligation o should be changed to inactive
if the reason (i.e. motivation) for the obligation no longer holds in the current system
state reflected in F .

os ∈ OS os = 〈o,active〉 F �|= or

〈F, N,�, OS, t〉 −→ 〈F, N,�, (OS \ {os}) ∪ {〈o, inactive〉}, t〉 (Inactive)

Algorithm 1 shows an NPL interpreter, which makes it easier to understand the norma-
tive programming language for those not familiar with structural operational semantics.

A Normative Organisation Programming Language for OMIs 121

Algorithm 1. NPL Interpreting Algorithm
1: for all norms n in N do
2: if F |= nϕ then
3: if nψ = fail {regimentation} then
4: return fail
5: else
6: if nψ �∈ OS then
7: add nψθ to OS
8: where θ is the m.g.u. such that F |= nψθ
9: for all obligations 〈o, ost〉 ∈ OS do

10: if ost = active and F |= og and od ≥ t then
11: change ost to fulfilled
12: if ost = active and od < t then
13: change ost to unfulfilled
14: if ost = active and F �|= or then
15: change ost to inactive
16: if ost = inactive and F |= or then
17: change ost to active

3 MOISE Organisational Modelling Language

TheMOISE framework includes an organisational modelling language (OML) that ex-
plicitly decomposes the specification of organisation into structural, functional, and nor-
mative dimensions [13]. The structural dimension specifies the roles, groups, and links
of the organisation. The definition of roles states that when an agent chooses to play
some role in a group, it is accepting some behavioural constraints and rights related
to this role. The functional dimension specifies how the global collective goals should
be achieved, i.e. how these goals are decomposed (within global plans), grouped in
coherent sets (through missions) to be distributed among the agents. The decomposi-
tion of global goals results in a goal tree, called scheme, where the leaf-goals can be
achieved individually by the agents. The normative dimension is added in order to bind
the structural dimension with the functional one by means of the specification of the
roles’ permissions and obligations within missions. When an agent chooses to play
some role in a group, it commits to these permissions and obligations.

As an illustrative and simple example of an organisation specified usingMOISE+,
we consider agents that aim at writing a paper together and therefore there is an organ-
isational specification to help them collaborate. Due to lack of space, we will focus on
the functional and normative dimensions in the remainder of this paper. For the struc-
ture of the organisation, it is enough to know that there is only one group (wpgroup)
where two roles (editor and writer) can be played. To coordinate the achievement of
the goal of writing a paper, a scheme is defined in the functional specification of the or-
ganisation (Fig. 3(a)). In this scheme, a draft version of the paper has to be written first
(identified by the goal fdv in Fig. 3(a)). This goal is decomposed into three sub-goals:
writing a title, an abstract, and the section titles; the sub-goals have to be achieved in

122 J.F. Hübner, O. Boissier, and R.H. Bordini

this very sequence. Other goals, such as finish, have sub-goals that can be achieved
in parallel. The specification also includes a “time-to-fulfil” (TTF) attribute for goals
indicating how much time an agent has to achieve the goal. The goals of this scheme
are distributed in three missions which have specific cardinalities (see Fig. 3(c)): the
mission mMan is for the general management of the process (one and only one agent
must commit to it), mission mCol is for the collaboration in writing the paper’s content
(from one to five agents can commit to it), and mission mBib is for gathering the
references for the paper (one and only one agent must commit to it). A mission defines
all goals an agent commits to when participating in the execution of a scheme; for
example, a commitment to mission mMan is effectively a commitment to achieve four
goals of the scheme. Goals without an assigned mission (e.g. fdv) are satisfied by the
achievement of their sub-goals.

The normative specification relates roles to missions (see Table 1). For example,
norm n2 states that any agent playing the role writer has one day to commit to mis-
sion mCol. Designers can also define their own application-dependent conditions (as
in norms n4–n6). Norms n4 and n5 define sanction and reward strategies for confor-
mance and violation of norms n2 and n3 respectively. Norm n5 can be read as “the
agent playing role ‘editor’ has 3 hours to commit to mission mr when norm n3 is ful-
filled”. Once committed to mission mr, the editor has to achieve the goal reward. Note
that a norm inMOISE is always an obligation or permission to commit to a mission.
Goals are therefore indirectly linked to roles since a mission is a set of goals.

Table 1. Normative Specification for the Paper Writing Example

id condition role type mission TTF

n1 editor per mMan –
n2 writer obl mCol 1 day
n3 writer obl mBib 1 day
n4 violation(n2) editor obl ms 3 hours
n5 conformance(n3) editor obl mr 3 hours
n6 #mc editor obl ms 1 hour

#mc stands for the condition “more agents committed to a
mission than permitted by the mission cardinality”.

4 Normative Organisation Programming Language

The NOPL is a particular class of NPL programs applied toMOISE. The syntax and
semantics are the same as presented in Sec. 2, but the set of facts, rules, and norms are
specific to theMOISE model and the organisational artifacts presented in Sec. 5. The
main idea is that an Organisational Specification (OS) is translated into various different
programs in NOPL; such programs then define the management of norms for groups and
schemes. In this section we consider only the programs generated for schemes.

A Normative Organisation Programming Language for OMIs 123

(a) Paper Writing Scheme

(b) Monitoring Scheme

mission cardinality

mMan 1..1
mCol 1..5
mBib 1..1

mr 1..1
ms 1..1

(c) Mission Cardinalities

Fig. 3. Functional Specification for the Paper Writing Example

4.1 Facts

For scheme programs, the following facts, defined in the OS, are considered:

– scheme mission(m,min,max): is a fact that defines the cardinality of a mission
(e.g. scheme mission(mCol,1,5)).

– goal(m,g,pre-cond,‘ttf‘): is a fact that defines the arguments for a goal g: its
mission, pre-conditions, and TTF (e.g. goal(mMan,wsec,[wcon],‘2 days‘)).

The NOPL also defines some dynamic facts that represent the current state of the or-
ganisation and will be provided by the artifact that manages the scheme instance:

– plays(a,ρ,gr): agent a plays the role ρ in the group instance gr.

124 J.F. Hübner, O. Boissier, and R.H. Bordini

– responsible(gr,s): the group instance gr is responsible for the missions of
scheme instance s.

– committed(a,m,s): agent a is committed to mission m in scheme s.
– achieved(s,g,a): goal g in scheme s has been achieved by agent a.

4.2 Rules

Besides facts, we define some rules that are useful for the NOPL programs. The rules
are used to infer the state of the scheme (e.g. whether it is well-formed) and goals (e.g.
whether it is ready to be achieved or not). Note that the semantics of well-formed and
ready to be achieved are formally given by these rules. As an example, some such rules
are listed below. Although the rule well formed is specific for the paper writing
scheme, the others are generic.

// number of players of a mission M in scheme S
mplayers(M,S,V) :- .count(committed(_,M,S),V).

// status of a scheme S
well_formed(S) :-
mplayers(mBib,S,V1) & V1 >= 1 & V1 <= 1 &
mplayers(mCol,S,V2) & V2 >= 1 & V2 <= 5 &
mplayers(mMan,S,V3) & V3 >= 1 & V3 <= 1.

// ready goals: all pre-conditions have been achieved
ready(S,G) :- goal(_, G, PCG, _) & all_achieved(S,PCG).

all_achieved(_,[]).
all_achieved(S,[G|T]) :- achieved(S,G,_) & all_achieved(S,T).

4.3 Norms

We have three classes of norms in NOPL: norms for goals, norms for properties, and
domain norms (which are explicitly stated in the normative specification). For the first
class, we have only the following norm that handles obligations to achieve goals:

// agents are obliged to fulfil their ready goals
norm ngoal: committed(A,M,S) & goal(M,G,_,D) &

well_formed(S) & ready(S,G)
-> obligation(A,ngoal,achieved(S,G,A),‘now‘ + D).

This norm can be read as “when an agent A: (1) is committed to a mission M that (2)
includes a goal G, and (3) the mission’s scheme is well-formed, and (4) the goal is
ready, then agent A is obliged to achieve the goal G before the deadline for the goal”.
This norm gives precise semantics for the notion of commitment inMOISE framework.
It also illustrates the advantage of using a translation to implement the OMI instead of an
object oriented programming language. For example, if some application or experiment
requires a semantics of commitment where the agent is obliged to achieve the goal even
if the scheme is not well-formed, it is simply a matter of changing the translation to a

A Normative Organisation Programming Language for OMIs 125

norm that does not include the well formed(S) predicate in the activation condition
of the norm. One could even conceive an application using schemes being managed by
different NOPL programs (i.e. each scheme translated differently).

For the second class of norms, only the mission cardinality property is considered
in this paper since other properties are handled in a similar way. In the case of mission
cardinality, the norm has to define the consequences of a circumstance where there are
more agents committed to a mission than permitted in the scheme specification. As pre-
sented in Sec. 2, two kinds of consequences are possible, obligation and regimentation,
and the designer chooses one or the other when writing the OS. Regimentation is the
default consequence and it is used when there is no norm with condition #mc in the
normative specification. Otherwise, as in norm n6 of Table 1, the consequence will be
an obligation. The norm for mission cardinality regimentation is:

// norm for cardinality regimentation
norm mission_cardinality: scheme_mission(M,_,MMax) &

mplayers(M,S,MP) & MP > MMax
-> fail(mission_cardinality).

and the norm without regimentation is:

// norm for cardinality without regimentation
norm mission_cardinality: scheme_mission(M,_,MMax) &

mplayers(M,S,MP) & MP > MMax &
responsible(Gr,S) & plays(A,editor,Gr)

-> obligation(A,mission_cardinality,committed(A,ms,_),
‘now‘+‘1 hour‘).

where the agent playing editor is obliged to commit to the mission ms in one hour.
For the third class of norms, each norm in the normative specification of the OML has

a corresponding norm in NOPL. Whereas OML obligations refer to roles and missions,
NPL requires that obligations are for agents and towards a goal. The NOPL norm thus
identifies the agents playing the role in groups responsible for the scheme and, if the
number of current players still does not reach the maximum cardinality, the agent is
obliged to achieve a state where it is committed to the mission. For example, the NOPL
norm for norm n2 in Table 1 is:

norm n2: plays(A,writer,Gr) & responsible(Gr,S) &
mplayers(mCol,S,V) & V < 5

-> obligation(A,n2,committed(A,mCol,S),‘now‘+‘1 day‘).

5 Artifact-Based Architecture

The approach introduced in this paper has been implemented in an OMI that follows
the Agent & Artifact model [15,11]. In this approach, a set of organisational artifacts is
available in the MAS environment providing operations and observable properties for
the agents so that they can interact with the OMI. For example, each scheme instance is
managed by a “scheme artifact”. The scheme artifact provides operations like “commit
to mission” and “goal x is achieved” (with which agents can act upon the scheme)

126 J.F. Hübner, O. Boissier, and R.H. Bordini

and observable properties (that agents perceive as the current state of the scheme). We
can effortlessly distribute the OMI by deploying as many artifacts as necessary for the
application.

Each organisational artifact has an NPL interpreter loaded with (i) the NOPL pro-
gram automatically generated from the OS for the type of the artifact (e.g. the artifact
that will manage the writing paper scheme will be loaded with the NOPL program trans-
lated from the corresponding scheme specification); and (ii) dynamic facts representing
the current state of (part of) the organisation (e.g. the scheme artifact will produce dy-
namic facts related to the current state of the scheme instance). The interpreter is then
used to compute: (i) whether some operation will bring the organisation into an incon-
sistent state (where inconsistency is defined by means of regimentations), and (ii) the
current state of the obligations.

Algorithm 2, implemented on top of CArtAgO [19], shows the general pattern we
used to implement every operation (e.g. role adoption and commitment to mission) in
the organisational artifacts. Whenever an operation is triggered by an agent, the algo-
rithm first stores a ‘backup’ copy of the current state of the artifact (line 5). This backup
is restored (line 10) if the operation leads to a failure (e.g. when committing to a mission
that is not permitted). The overall functioning is that invalid operations do not change
the artifact state.3 A valid operation is thus an operation that changes the state of the
artifact to one where no fail is produced by the NPL interpreter. In case the operation
is valid, the algorithm simply updates the current state of the obligations (line 13). Al-
though the NPL handles states in the norm’s conditions, this pattern of integration has
allowed us to use NPL to manage agents’ actions, i.e. the regimentation of operation on
artifacts.

Algorithm 2. Artifact Integration with NOPL
1: let oe be the current state of the organisation managed by the artifact
2: let p be the current NOPL program
3: let npi be the NPL interpreter
4: when an operation o is triggered by agent a do
5: oe′ ← oe // creates a “backup” of current oe
6: execute operation o to change oe
7: f ← a list of predicates representing oe
8: r ← npi(p, f) // runs the interpreter for the new state
9: if r = fail then

10: oe← oe′ // restore the state backup
11: return fail operation o
12: else
13: update obligations in the observable properties
14: return succeed operation o

Notice that the NOPL program is not seen by the agents. They continue to perceive
and reason on the scheme specification as defined in the OML. The NOPL is used only
inside the artifact to simplify its development.

3 This functioning requires that operations are not executed in parallel, which can be easily
configured in CArtAgO.

A Normative Organisation Programming Language for OMIs 127

Given the general pattern of integration proposed in Algorithm 2, organisational ar-
tifacts are mostly programmed in NOPL. Only the management of changes in the or-
ganisational state remains coded in Java within the organisational artifact.

6 Related Work

This work is based on several approaches to organisation, institutions, and norms (cited
throughout the paper). In this section, we briefly relate and compare our main contribu-
tions to such work.

The first contribution of the paper, the NPL, should be considered specially for two
properties of the language: its simplicity and its formalisation (that led to an available
implementation). Similar work has been done by Tinnemeier et al. [21,20], where the
operational semantics for a normative language was also proposed. Their approach and
ours are similar on certain points. For instance, both consider norms as “declarative”
norms (i.e. “ought-to-be” norms) in the sense that obligations and regimentation bear
on goals. However our work differs in several aspects. In our approach, the NOPL is for
the OMI and not to be used by programmers. The programmer continues to use OML
to define both an organisation and the norms that have to be managed within such a
structure. Organisation primitives are much richer in the OML than in the normative
language. Another clear distinction is that we rely on a dedicated programming model
(the Agent & Artifact model) providing a clear connection of the organisation to the
environment and allowing us to implement regimentation on physical actions [16]. The
artifacts model also simplified the distribution of the management of the state of the
organisation with several instances and types of artifacts.

Regarding the second contribution, namely the automatic translation, we were in-
spired by work on ISLANDER [3,9]. The main difference here is the initial and target
languages. While they translate a normative specification into a rule-based language,
we start from an organisational language and the target is a normative language. It is
simpler to translate OML norms into NPL norms, since we have norms in both sides of
the translation, than translate organisational norms into rules.

Regarding the third contribution, the OMI, we started from ORA4MAS [11]. The
advantages of the approach presented here are twofold: (i) it is easier to change the
translation than the Java implementation of the OMI; and (ii) with the operational se-
mantics of NPL and the formal translation we are taking significant steps towards a
formal semantics forMOISE.

7 Conclusion

In this paper, we introduced an approach for translating an organisation specification
written inMOISE OML into a normative program that can be interpreted by an artifact-
based OMI. Focusing on the translation rather than Java coding, we have brought flex-
ibility to the development of the OMI. We also made the point that such a normative
language can be based on only two basic concepts: regimentation and obligation. Pro-
hibitions are considered either as regimentation or as an obligation for someone else to
apply sanction. As a consequence, the resulting NPL is elegant and simpler to formalise

128 J.F. Hübner, O. Boissier, and R.H. Bordini

(only 6 rules in the operational semantics) and implement. Future work will concern
the proof of correctness of the translation from OML into NOPL and the exploration of
NPL translations for other organisational and institutional languages in order to assess
its generality.

References

1. Boissier, O., Hübner, J.F., Sichman, J.S.: Organization oriented programming from closed to
open organizations. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.) ESAW
2006. LNCS (LNAI), vol. 4457, pp. 86–105. Springer, Heidelberg (2007)

2. Bordini, R.H., Hübner, J.F., Wooldrige, M.: Programming Multi-Agent Systems in AgentS-
peak using Jason. John Wiley & Sons, Chichester (2007)

3. da Silva, V.T.: From the specification to the implementation of norms: an automatic approach
to generate rules from norm to govern the behaviour of agents. Journal of Autonomous
Agents and Multi-Agent Systems 17(1), 113–155 (2008)

4. Dignum, V., Vazquez-Salceda, J., Dignum, F.: OMNI: Introducing social structure, norms
and ontologies into agent organizations. In: Bordini, R.H., Dastani, M.M., Dix, J., El Fallah
Seghrouchni, A. (eds.) PROMAS 2004. LNCS (LNAI), vol. 3346, pp. 181–198. Springer,
Heidelberg (2005)

5. Esteva, M., de la Cruz, D., Sierra, C.: ISLANDER: an electronic institutions. In: Castel-
franchi, C., Lewis Johnson, W. (eds.) Proceedings of the First International Joint Conference
on Autonomous Agents and MultiAgent Systems (AAMAS 2002). LNCS (LNAI), vol. 1191,
pp. 1045–1052. Springer, Heidelberg (2002)

6. Esteva, M., Rodrı́guez-Aguilar, J.A., Rosell, B., Arcos, J.L.: AMELI: An agent-based mid-
dleware for electronic institutions. In: Jennings, N.R., Sierra, C., Sonenberg, L., Tambe, M.
(eds.) Proceedings of the Third International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS’2004), pp. 236–243. ACM, New York (2004)

7. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in multi-
agents systems. In: Demazeau, Y. (ed.) Proceedings of the 3rd International Conference on
Multi-Agent Systems (ICMAS’98), pp. 128–135. IEEE Press, Los Alamitos (1998)

8. Fornara, N., Colombetti, M.: Specifying and enforcing norms in artificial institutions. In:
Omicini, A., Dunin-Keplicz, B., Padget, J. (eds.) Proceedings of the 4th European Workshop
on Multi-Agent Systems, EUMAS’06 (2006)

9. Garcı́a-Camino, A., Rodrı́guez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: Constraining rule-
based programming norms for electronic institutions. Journal of Autonomous Agents and
Multi-Agent Systems 18(1), 186–217 (2009)

10. Grossi, D., Aldewered, H., Dignum, F.: Ubi Lex, Ibi Poena: Designing norm enforcement
in e-institutions. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V.,
Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, pp. 101–114. Springer,
Heidelberg (2007)

11. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organisations with
organisational artifacts and agents: “giving the organisational power back to the agents”.
Journal of Autonomous Agents and Multi-Agent Systems (2009)

12. Hübner, J.F., Sichman, J.S., Boissier, O.: S-MOISE+: A middleware for developing organised
multi-agent systems. In: Boissier, O., Padget, J., Dignum, V., Lindemann, G., Matson, E.,
Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.) ANIREM 2005 and OOOP 2005.
LNCS (LNAI), vol. 3913, pp. 64–78. Springer, Heidelberg (2006)

13. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multi-agent systems using the
MOISE+ model: Programming issues at the system and agent levels. International Journal of
Agent-Oriented Software Engineering 1(3/4), 370–395 (2007)

A Normative Organisation Programming Language for OMIs 129

14. Jones, A.J.I., Sergot, M.: On the characterization of law and computer systems: the normative
systems perspective. In: Deontic logic in computer science: normative system specification,
pp. 275–307. John Wiley and Sons Ltd., Chichester (1993)

15. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent systems.
Journal of Autonomous Agents and Multi-Agent Systems 17(3), 432–456 (2008)

16. Piunti, M., Ricci, A., Boissier, O., Hübner, J.F.: Embodying organisations in multi-agent
work environments. In: Proceedings of International Joint Conferences on Web Intelligence
and Intelligent Agent Technologies (WI-IAT 2009), pp. 511–518. IEEE/WIC/ACM (2009)

17. Plotkin, G.D.: A structural approach to operational semantics. Technical report, Computer
Science Department, Aarhus University, Aarhus, Denmark (1981)

18. Pynadath, D.V., Tambe, M.: An automated teamwork infrastructure for heterogeneous soft-
ware agents and humans. Autonomous Agents and Multi-Agent Systems 7(1-2), 71–100
(2003)

19. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment programming in CArtAgO. In:
Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Program-
ming: Languages, Tools and Applications, ch. 8, pp. 259–288. Springer, Heidelberg (2009)

20. Tinnemeier, N.A.M., Dastani, M., Meyer, J.-J., van der Torre, L.: Programming normative
artifacts with declarative obligations and prohibitions. In: Yates, R.B. (ed.) Proceedings of
International Joint Conferences on Web Intelligence and Intelligent Agent Technologies (WI-
IAT 2009), pp. 145–152. IEEE/WIC/ACM (2009)

21. Tinnemeier, N., Dastani, M., Meyer, J.-J.: Roles and norms for programming agent organi-
zations. In: Sichman, J., Decker, K., Sierra, C., Castelfranchi, C. (eds.) Proc. of AAMAS’09,
pp. 121–128 (2009)

22. Vázquez-Salceda, J., Aldewereld, H., Dignum, F.: Norms in multiagent
systems: some implementation guidelines. In: Proceedings of the Sec-
ond European Workshop on Multi-Agent Systems, EUMAS 2004 (2004),
http://people.cs.uu.nl/dignum/papers/eumas04.PDF

23. López, F., López, M.L., d’Inverno, M.: Constraining autonomy through norms. In: Proceed-
ings of the first international joint conference on Autonomous agents and multiagent systems,
pp. 674–681. ACM Press, New York (2002)

http://people.cs.uu.nl/dignum/papers/eumas04.PDF

Monitoring Social Expectations in Second Life

Stephen Cranefield and Guannan Li

Department of Information Science
University of Otago

PO Box 56, Dunedin 9054, New Zealand
scranefield@infoscience.otago.ac.nz

Abstract. Online virtual worlds such as Second Life provide a rich medium for
unstructured human interaction in a shared simulated 3D environment. However,
many human interactions take place in a structured social context where partic-
ipants play particular roles and are subject to expectations governing their be-
haviour, and current virtual worlds do not provide any support for this type of
interaction. There is therefore an opportunity to adapt the tools developed in the
MAS community for structured social interactions between software agents (in-
spired by human society) and adapt these for use with the computer-mediated
human communication provided by virtual worlds.

This paper describes the application of one such tool for use with Second
Life. A model checker for online monitoring of social expectations defined in
temporal logic has been integrated with Second Life, allowing users to be notified
when their expectations of others have been fulfilled or violated. Avatar actions
in the virtual world are detected by a script, encoded as propositions and sent
to the model checker, along with the social expectation rules to be monitored.
Notifications of expectation fulfilment and violation are returned to the script
to be displayed to the user. This utility of this tool is reliant on the ability of the
Linden scripting language (LSL) to detect events of significance in the application
domain, and a discussion is presented on how a range of monitored structured
social scenarios could be realised despite the limitations of LSL.

1 Introduction

Much of the research in multi-agent systems addresses techniques for modelling, con-
structing and controlling open systems of autonomous agents. These agents are taken
to be self-interested or representing self-interested people or organisations, and thus
no assumptions can be made about their conformance to the design goals, social con-
ventions or regulations governing the societies in which they participate. Inspired by
human society, MAS researchers have adopted, formalised and created computational
infrastructure allowing concepts from human society such as trust, reputation, expecta-
tion, commitment and narrative to be explicitly modelled and manipulated in order to
increase agents’ awareness of the social context of their interactions. This awareness
helps agents to carry out their interactions efficiently and helps preserve order in the
society, e.g. the existence of reputation, recommendation and/or sanction mechanisms
discourages anti-social behaviour.

As the new ‘Web 2.0’ style Web sites and applications proliferate, people’s use of
the Web is moving from passive information consumption to active information sharing

J. Padget et al. (Eds.): COIN 2009, LNAI 6069, pp. 133–146, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

134 S. Cranefield and G. Li

Computer-mediated
human society Tools

Middleware
Services

Formalisation
Algorithms
Architectures

Human
society MAS

Concepts
Mechanisms

Fig. 1. Feedback from MAS research to computer-mediated human societies

and interaction within virtual communities; in other words, for millions of users, the
Web is now a place for social interaction. However, while Web 2.0 applications pro-
vide the middleware to enable interaction, they generally provide no support for users
to maintain an awareness of the social context of their interactions (other than basic
presence information indicating which users in a ‘buddy list’ online). There is therefore
an opportunity for the software techniques developed in MAS research for maintaining
social awareness, that were inspired by human society, to be applied in the context of
electronically mediated human interaction, as well as in their original context of soft-
ware agent interaction (see Figure 1).

This paper reports on an investigation into the use of one such social awareness tool
in conjunction with the Second Life online virtual world. Second Life is a ‘Web 3D’ ap-
plication providing a simulated three dimensional environment in which users can move
around and interact with other users and simulated objects [1]. Users are represented in
the virtual world by animated avatars that they control via the Second Life Viewer client
software. Human interaction in virtual worlds is essentially unconstrained—the users
can do whatever they like, subject to the artificial physics of the simulated world and
a few constraints that the worlds support, such as the ability of land owners to control
who can access their land. However, many human interactions take place in a structured
social context where participants play particular roles and there are constraints imposed
by the social or organisational context, e.g. participants in a meeting should not leave
without formally excusing themselves, and students in an in-world lecture should re-
main quiet until the end of the lecture. Researchers in the field of multi-agent systems
have proposed (based on human society) that the violation of social norms such as these
can be discouraged by publishing explicit formal definitions of the norms, building tools
that track (relevant) events and detect any violations, and punishing offenders by lower-
ing their reputations or sanctioning them in some other way [2]. Integrating this type of
tool with virtual worlds could enhance the support provided by those worlds for social
activities that are subject to norms.

Monitoring Social Expectations in Second Life 135

In this research we have investigated the use of a tool for online monitoring of ‘so-
cial expectations’ [3] in conjunction with Second Life. The mechanism involves a script
running in Second Life that is configured to detect and record particular events of in-
terest for a given scenario, and to model these as a sequence of state descriptions that
are sent to an external monitor along with a property to be monitored. The monitor
sends notifications back to the script when the property is satisfied. These notifications
could be handled in a variety of ways: the information or some consequences of it (such
as a reputation adjustment) could be communicated privately to the script’s owner via
text chat or a “head-up display” object, it could be broadcast on the public chat chan-
nel or posted directly to a publicly observable (simulated) in-world notice-board, or
the avatar causing a violation could be automatically ejected and/or banned from the
script owner’s land. However, investigating and evaluating these notification handling
techniques is not part of the research reported in this paper.

It is important to note that the monitoring mechanism is not intended to provide a
global surveillance mechanism for Second Life, but rather, to allow specific users and
communities to model and track the social expectations that apply in particular types of
structured interaction ocurring within a single Second Life “land parcel”.

The rest of this paper is structured as follows. A brief overview of the Second Life
architecture is given in Section 2 and then Section 3 describes how we have used the
Linden Scripting Language to detect avatars in Second Life and create a sequence of
propositional state models to send to the monitor. The architecture for communication
between this script and the monitor is presented in Section 4. Section 5 discusses the
concept of conditional social expectations used in this work, and the model checking
tool that is used as the expectation monitor. Section 6 presents some simple scenarios
of activities in Second Life being monitored, and Section 7 discusses some issues aris-
ing from limitations of the Linden Scripting Language and the temporal logic used to
express rules. Some related work is described in Section 8, and Section 9 concludes the
paper.

2 Second Life Architecture

Second Life is based on a client-server architecture, with each user’s viewer commu-
nicating with a server that simulates the current 256m × 256m “region” in which the
user’s avatar is located. The regions are linked in a rectangular mesh and partitioned
across multiple servers (known as simulators or “sims”). In 2007 there were 15400
simulator processes updating their regions at a targeted rate of 45 frames per second
[4]. Each region can support 100 avatars and 15000 primitive objects (from which in-
world structures are built) [5]. A region is divided into “land parcels” of varying sizes,
which are the portions of land owned by different users or groups.

There are also a number of centralised databases used by the simulators, e.g. to access
user identity information.

3 Detecting Events in Second Life

As shown in Figure 2, the Second Life Viewer provides, by default, a graphical view
of the user’s avatar and other objects and avatars within the view. The user can control

136 S. Cranefield and G. Li

Fig. 2. The Second Life Viewer

the ‘camera’ to obtain other views. Avatars can be controlled to perform a range of
basic animations such as standing, walking and flying, or predefined “gestures” that are
combinations of animation, text chat and sounds. Communication with other avatars
(and hence their users) is via text chat, private instant messages, or audio streaming.
The user experience is therefore a rich multimedia one in which human perception and
intelligence is needed to interpret the full stream of incoming data. However, the Linden
Scripting Language (LSL [6]) can be used to attach scripts to objects (e.g. to animate
doors), and there are a number of sensor functions available to detect objects and events
in the environment. These scripts are run within the Second Life simulator servers, but
have some limited ability to communicate with the outside world.

LSL is based on a state-event model, and a script consists of defined states and
handlers for events that it is programmed to handle. Certain events in the environ-
ment automatically trigger events on a script attached to an object. These include col-
lisions with other objects and with the ‘land’, ‘touches’ (when a user clicks on the
object), and money (in Linden dollars) being given to the object. Some other types of
event must be explicitly subscribed to by calling functions such as llSensor and
llSensorRepeat for scanning for avatars and objects in the current region within
a given arc and range (up to 96 metres), llListen for detecting chat messages from
objects or avatars within hearing range, and llSetTimerEvent for setting a timer.
These functions take parameters that provide some selectivity over what is sensed, e.g. a
particular avatar name or object type can be specified in llListen, and llListen
can be set to listen on a particular channel, for a message from a particular avatar, and
even for a particular message.

In this paper we focus on the detection of other avatars via the function llSensor
Repeat, which repeatedly polls for nearby avatars (we choose not to scan for ob-
jects also) at an interval specified in a parameter. A series of sensor events are
then generated, which indicate the number of avatars (up to a maximum of 16) de-
tected in each sensing operation. A loop is used to get the unique key that identi-
fies each of these avatars (via function llDetectedKey) and the avatar’s name (via
llDetectedName). The key can then be used to obtain each avatar’s current

Monitoring Social Expectations in Second Life 137

basic animation (via llGetAnimation). Our script can be configured with a fil-
ter list specifying which avatar/animation observations should be either recorded or
ignored, where the specified avatar and animation can refer to a particular value, or
“any”. To reduce the computation in subsequent steps, detected avatar animations are
filtered through this list sequentially, resulting in a set of (avatar name, animation)
pairs that comprise a model of the current state of the avatars within the sensor range.
Another configuration list specifies the optional assignment of avatars to named groups
or roles such as “Friend” or “ClubOfficial”. There is currently no connection with the
official Second Life concept of a user group (although official group membership can
be detected). Group names can also be included in the filter list, with an intended ex-
istential meaning, i.e. a pair (group name, animation) represents an observation that
some member of the group is performing the specified animation. The configuration
lists provide scenario-specific relevance criteria on the observed events, and are read
from a ‘notecard’ (a type of avatar inventory item that is commonly used to store tex-
tual configuration data for scripts), along with the property to be monitored.

When the script starts up, it sends the property to be monitored to the monitor. It then
sends a series of state descriptions to the monitor as sensor events occur. However, we
choose not to send a state description if there is no change since the previous state, so
states represent periods of unchanging behaviour rather than regularly spaced points in
time. State descriptions are sets of proposition symbols of the form avatar animation
or group animation.

This process can easily be extended to handle other types of Second Life events that
have an obvious translation to propositional (rather than predicate) logic, such as de-
tecting that an avatar has sent a chat message (if it is not required to model the contents
of the message). Section 7 discusses this further.

4 Communication between Second Life and the Monitor

Second Life provides three mechanisms for communication with entities outside their
own server or the Second Life Viewer: scripts can send email messages, initiate HTTP
requests, or listen for incoming XML-RPC connections (which must include a parame-
ter giving the key for a channel previously created by the script). To push property and
state information to the monitor we use HTTP. However, instead of directly embedding
the monitor in an HTTP server, to avoid local firewall restrictions we have chosen to
use Twitter [7] as a message channel. An XML-RPC channel key, the property to be
monitored and a series of state descriptions are sent to a predefined Twitter account as
direct messages using the HTTP API1. The Twitter API requires authentication, which
can be achieved from LSL only by including the username and password in the URL in
the form http://username:password@.

The monitor is wrapped by a Java client that polls Twitter (using the Twitter4J li-
brary [9]) to retrieve direct messages for the predetermined account. These are ignored

1 Twitter messages are restricted to 140 characters and calls to the Twitter API are subject to a
limit of 70 requests per hour, which is sufficient for testing our mechanism. For production use
an alternative HTTP-accessible messaging service could be used, such as the Amazon Simple
Queue Service [8].

138 S. Cranefield and G. Li

Fig. 3. The communications architecture

until a pair of messages containing an XML-RPC channel key and a property to be
monitored (prefixed with “C:” and “P:” respectively) are received, which indicates that
a new monitoring session has begun. The monitoring session then consists of a series of
messages beginning with “S:”, each containing a list of propositions describing a new
state. The monitor does not currently work in an incremental ‘online’ mode—it must
be given a complete history of states and restarted each time a new state is received2;
therefore, the Java wrapper must record the history of states. It also generates a unique
name for each state (which the monitor requires).

Each time a state is received, the monitor (which is implemented in C) is invoked
using the Java Native Interface (JNI). The rule and state history are written to files and
the names passed as command-line arguments. An additional argument indicates the
desired name of the output file. The output is parsed and, if the property is determined
to be true in any state, that information is sent directly back to the Second Life script
via XML-RPC.

Figure 3 gives an overview of the communication architecture.

5 Monitoring Social Expectations

5.1 Modelling Social Expectations

MAS researchers working on normative systems and electronic institutions [2] have
proposed various languages for modelling the rules governing agent interaction in open
societies, including abductive logic programming rules [10], enhanced finite state ma-
chine style models, [11], deontic logic [12], and institutional action description lan-
guages based using formalisms such as the event calculus [13].

2 Work is in progress to add an online mode to the monitor.

Monitoring Social Expectations in Second Life 139

The monitor used in this work is designed to track rules of social expectation. These
are temporal logic rules that are triggered by conditions on the past and present, result-
ing in expectations on present and future events. The language does not include deontic
concepts such as obligation and permission, but it allows the expression of social rules
that impose complex temporal constraints on future behaviour, in contrast to the sim-
ple deadlines supported by most normative languages. It can also be used to express
rules of social interaction that are less authoritative than centrally established norms,
e.g. conditional rules of expectation that an agent has established as its personal norms,
or rules expressing learned regularities in the patterns of other agents’ behaviour. The
key distinction between these cases is the process that creates the rules, and how agents
react to detected fulfilments and violations.

Expectations become active when their condition evaluates to true in the current
state. These expectations are then considered to be fulfilled or violated if they evalu-
ate to true in a state without considering any future states that might be available in
the model3. If an active expectation is not fulfilled or violated in a given state, then it
remains active in the following state, but in a “progressed” form. Formula progression
involves partially evaluating the formula in terms of the current state and re-expressing
it from the viewpoint of the next state [14]. A detailed explanation is beyond the scope
of this paper, but a simple example is that an expectation �φ (meaning that φ must be
true in the state that follows) progresses to the expectation φ in the next state.

5.2 The Social Expectation Monitor

The monitoring tool we have used is an extension [3] of a model checker for hybrid tem-
poral logics [15]. Model checking is the computational process of evaluating whether a
formal model of a process, usually modelled as a Kripke structure (a form of nondeter-
ministic finite state machine), satisfies a given property, usually expressed in temporal
logic. For monitoring social expectations in an open system, we cannot assume that we
can obtain the specifications or code of all participating agents to form our model. In-
stead our model is the sequence of system states recorded by a particular observer, in
other words, we are addressing the problem of model checking a path [16]. The task of
the model checker is therefore not to check that the overall system necessarily satisfies
a given property, but just that the observed behaviour of the system has, to date, satis-
fied it. The properties we use are assertions that a social expectation exists or has been
fulfilled or violated, based on a conditional rule of expectation, expressed in temporal
logic.

The basic logic used includes these types of expression, in addition to the standard
Boolean constants and connectives (true, false, ∧, ∨ and ¬):

– Proposition symbols. In our application these represent observations made in Sec-
ond Life, e.g. avatar name sitting.

– �φ: formula φ is true when evaluated in the next state

3 This restriction is necessary, for example, when examing an audit trail to find violations of
triggered rules in any state. The standard temporal logic semantics would conclude that an
expectation “eventually p” is fulfilled in a state s even if p doesn’t become true until some
later state s′.

140 S. Cranefield and G. Li

– �φ: φ is true in the current or some future state
– �φ: φ is true in all states from now onwards
– φU ψ: ψ is true at the current or some future state, and φ is true for all states from

now until just before that state

� and � can be expressed in terms of U and are abbreviations of longer expressions.
The logic also has some features of Hybrid Logic [17], but these are not used in this

work except for the use of a nominal (a proposition that is true in a unique state) in the
output from the model checker to ‘name’ the state in which a fulfilled or violated rule
of expectation became active.

Finally, the logic includes the following operators related to conditional rules of ex-
pectation, and these are the types of expression sent from the Second Life script to the
model checker:

– ExistsExp(Condition, Expectation)
– ExistsFulf(Condition, Expectation)
– ExistsViol(Condition, Expectation)

where Condition and Expectation can be any formula that does not include ExistsExp,
ExistsFulf and ExistsViol.

The first of these operators evaluates to true if there is an expectation existing in the
current state that results from the rule specified in the arguments being triggered in the
present or past. The other two operators evaluate to true if there is currently a fulfilled
or violated expectation (respectively) resulting from the rule.

Formal semantics for this logic can be found elsewhere [3].
The input syntax to the model checker is slightly more verbose than that shown

above. In particular, temporal operators must indicate the name of the ”next state modal-
ity” as it appears in the input Kripke structure. In the examples in this paper, this will
always be written as “<next>”. Writing “<next>” on its own refers to the operator �.

6 Two Simple Scenarios

A simple rule of expectation that might apply in a Second Life scenario is that no one
should ever fly. This might apply in a region used by members of a group that enacts
historical behaviour. To monitor this expectation we can use the following property:

ExistsViol<next>(true, !any flying)

This is an unconditional rule (it is triggered in every state) stating the expectation that
there will not be any member of the group “Any” (comprising all avatars) flying.

If this is the only animation state to be tracked, the script’s filter list will state that the
animation “Flying” for group “Any” should be recorded, but otherwise all animations
for all avatars and other groups should be discarded. On startup, the script sends the
property to be monitored to the monitor, via Twitter, and then as avatars move around
in Second Life and their animations are detected, it sends state messages that will either
contain no propositions (if no one is flying) or will state that someone is flying:

S: any flying

Monitoring Social Expectations in Second Life 141

These states are accumulated, and each time a new state is received, the monitor is
called and provided with the property to be monitored and the model (state history), e.g.
s1 : {}, s2 : {}, s3 : {any flying} (the model is actually represented in XML—an
example appears below).

For this model, the monitor detects that the property is satisfied (i.e. the rule is vio-
lated) in state s3 and a notification is sent back to the script. How this is handled is up to
the script designer, but one option is for the script to be running in a “head-up-display”
object, allowing the user to be informed in a way that other avatars cannot observe.

We now consider a slightly more complex example where there are two groups (or
roles) specified in the script’s group configuration list: leader (a singleton group)
and follower. We want to monitor for violations of the rule that once the leader is
standing, then from the next state a follower must not be sitting until the leader is sitting
again. This is expressed using the following property:

ExistsViol<next>(
leader_standing,
<next>(U<next>(!follower_sitting,

leader_sitting))
)

The filter list can be configured so that only the propositions occurring in this rule
are regarded as relevant for describing the state.

Suppose the scenario begins with the leader sitting and then standing, followed by
the follower sitting, and finally the leader sitting again. This causes the following four
states to be generated:

� � � �

leader sitting leader standing follower sitting leader sitting

s1 s2 s3 s4

This is represented in the following XML format to be input to the model checker:

<hl-kripke-struct name="M">
<world label="s1"/>
<world label="s2"/>
<world label="s3"/>
<world label="s4"/>
<modality label="next">

<acc-pair to-world-label="s2"
from-world-label="s1"/>

<acc-pair to-world-label="s3"
from-world-label="s2"/>

<acc-pair to-world-label="s4"
from-world-label="s3"/>

</modality>
<prop-sym label="leader_standing"

142 S. Cranefield and G. Li

truth-assignments="s2"/>
<prop-sym label="leader_sitting"

truth-assignments="s1 s4"/>
<prop-sym label="follower_sitting"

truth-assignments="s3"/>
<nominal label="s1" truth-assignment="s1"/>
<nominal label="s2" truth-assignment="s2"/>
<nominal label="s3" truth-assignment="s3"/>
<nominal label="s4" truth-assignment="s4"/>

</hl-kripke-struct>

The output of the model checker is:

s3: (s2, U<next>(!(follower_sitting),
leader_sitting))

This means that a violation occurred in state s3 from the rule being triggered in state
s2. The violated expectation (after progression to state s3) is:

U<next>(!(follower_sitting), leader_sitting)

This information is sent to the script.

7 Discussion

As mentioned in Section 3, our detection script currently only detects the animations
of avatars. This limits the scenarios that can be modelled to those based on (simulated)
physical action. However, it is straightforward to add the ability to detect other LSL
events, provided that they can be translated to a propositional representation. Thus we
could detect that an avatar has sent a chat message, but we cannnot provide a propo-
sitional encoding that can express all possible chat message contents. However, the
addition of new types of configuration list would allow additional flexibility. For exam-
ple, regular expressions or other types of pattern could be defined along with a string
that can be appended to an avatar or group name to generate a proposition meaning that
that avatar (or a member of that group) sent a chat message matching the pattern.

The LSL sensor functions have a limited range (96 metres) and will return a max-
imum of 16 avatars or objects. For scenarios where this is not sufficient, an array of
scripted monitor objects could be pre-positioned in the region, and these could com-
municate with each other either via a private chat channel or via an external server.
Interconnected scripted objects of this sort are already used as ‘proximity sensors’ for
recording land use metrics in Second Life, such as the number and identities of avatars
visiting a region over a period of time [18]. There are at least two companies selling
proximity sensors in Second Life. Through the use of multiple sensors, large multi-
region “estates” can be monitored, which suggests that there are no inherent limita-
tions in the use of LSL sensors that would prevent an extension of our approach from

Monitoring Social Expectations in Second Life 143

being applied to large land areas. However, when multiple sensors are running and many
avatars are detected, the communication with the external model checker may become
a bottleneck. In this case, real-time notification of social expectation fulfilments and
violations may not be possible, but it would still be useful to collect audit trails that
could be used as evidence to support claims of antisocial behaviour.

As LSL scripts are run on the Second Life simulator servers, a Second Life region
can suffer from “lag”—a noticeable drop in response time—when too many complex
scripts are running simultaneously [19]. It is important to note, therefore, that we are
not proposing that our monitoring technique will be used by numerous participants in
a scenario. Rather, we expect that in many scenarios there would be a single avatar
(e.g. the land owner or a group leader) running the monitor script. Even if many avatars
choose to run a monitor, this is not necessarily infeasible. In 2007 it was reported that
the Second Life grid was running 30 million concurrent scripts at any time, with an
average of 2000 per simulator (although most of these may be waiting for input) [4].
Furthermore, ongoing research into more scalable virtual world architectures should
result in the ability to support higher levels of scripting. For example, Cox and Crowther
[19] suggest that sensor data feeds could be sent to clients to be analysed by client-
side listeners. While Second Life is a proprietary system that may not evolve in this
direction, this type of architecture could be investigated using open source virtual world
implementations such as OpenSimulator [20] and Wonderland [21].

A significant limitation of the Linden Scripting Language is that the events that
a script can detect are focused on the scripted object’s own interactions with the
environment—there is no facility for observing interactions between other agents, ex-
cept for what can be deduced from their animations and chat. For many scenarios, it
would be desirable to detect these interactions, for example, passing a certain object or
sending money from one avatar to another might be a significant event in a society. One
way around this problem would be to add additional scripted objects to the environment
and set up the social conventions that these objects must be used for certain purposes.
For example, an object in the middle of a conference table might need to be touched
in order to request the right to speak next. These objects would generate appropriate
propositions and send them to the main script via a private link.

When defining expectations on avatar actions, rather than relying on potentially com-
plex rules expressed in terms of basic animations, it would be useful to be able to de-
fine more complex behaviours that scripts could detect and rules could refer to. Artikis
and Paliouras [22] have investigated the recognition of “long-term behaviours” such
as fighting, taking as input a set of basic “short-term” behaviours detected in surveil-
lance video frames. This work could be applied to extend the monitoring mechanism
described here.

The logic used currently is based on a discrete model of time, which can cause prob-
lems in some scenarios. For example, in the leader/follower scenario, it would be rea-
sonable to allow the follower some (short) amount of time to stand after the leader
stands. However, if a follower stands and another does not stand within the granularity
of the same sensor event, then that second follower will be deemed in violation. It would
be useful to be able to model some aspects of real time. This could be done by moving
to a real-time temporal logic (which would involve some theoretical work on extending

144 S. Cranefield and G. Li

the model checker), or by some pragmatic means such as allowing the configuration
parameters to define a frequency for regular “tick” timer events.

8 Related Work

There seems to be little prior work that has explored the use of social awareness tech-
nology from multi-agent systems or other fields to support human interaction on the
Internet in general, and in virtual worlds in particular.

A few avatar rating and reputation systems have been developed [23] to replace Sec-
ond Life’s own ratings system, which was disestablished in 2007. These provide various
mechanisms to allow users to share their personal opinions of avatars with others.

Closer to our own work, Bogdanovych et al. [24,25] have linked the AMELI elec-
tronic institution middleware [26] with Second Life. However, their aim is not to pro-
vide support for human interactions within Second Life, but rather to provide a rich
interface for users to participate in an e-institution mediated by AMELI (in which the
other participants may be software agents). This is done by generating a 3D environ-
ment from the institution’s specification, e.g. scenes in the e-institution become rooms
and transitions between scenes become doors. As a user controls their avatar to per-
form actions in Second Life, this causes an associated agent linked to AMELI to send
messages to other agents, as defined by an action/message mapping table. Moving the
avatar between rooms causes the agent to make a transition between scenes, but doors
in Second Life will only open when the agent is allowed to make the corresponding
scene transition according the rules of the institution.

This approach could be used to design and instrument environments that support
structured human-to-human interaction in Second Life, but the e-institution model of
communication is highly stylised and likely to seem unnatural for human users. In our
work we are aiming to provide generic social awareness tools for virtual world users
while placing as few restrictions as possible on the forms of interaction that are compat-
ible with those tools. However, as discussed in Section 7, the limitation of the sensing
functions provided by virtual world scripting languages may mean that some types of
scenario cannot be implemented without providing specific scripted coordination ob-
jects that users are required to use, or the use of chat messages containing precise pre-
specified words or phrases.

9 Conclusion

This paper has reported on a prototype application of a model checking tool for social
expectation monitoring applied to monitoring social interactions in Second Life. The
techniques used for monitoring events in Second Life and allowing communication be-
tween a Second Life script and the monitor have been described, and these have been
successfully tested on some simple scenarios. A discussion was presented on some of
the limitations imposed by the LSL language and the logic used in the model checker,
along with some suggestions for resolving these issues. Further work is needed to ex-
plore more complex scenarios and to test the scalability of the approach.

Monitoring Social Expectations in Second Life 145

References

1. Linden Lab.: Second Life home page (2008), http://secondlife.com/
2. Boella, G., van der Torre, L., Verhagen, H.: Introduction to normative multiagent systems. In:

Boella, G., van der Torre, L., Verhagen, H. (eds.) Normative Multi-agent Systems. Dagstuhl
Seminar Proceedings, Internationales Begegnungs- und Forschungszentrum für Informatik
(IBFI), Schloss Dagstuhl, Germany, vol. 07122 (2007)

3. Cranefield, S., Winikoff, M.: Verifying social expectations by model checking truncated
paths. In: Hübner, J.F., Matson, E., Boissier, O., Dignum, V. (eds.) COIN@AAMAS 2008.
LNCS, vol. 5428, pp. 204–219. Springer, Heidelberg (2009)

4. Wilkes, I.: Second Life: how it works (and how it doesn’t). Presentation video and slides
from QCon San Francisco 2007 (2007),
http://www.infoq.com/presentations/Second-Life-Ian-Wilkes

5. Linden Lab: Land. Article on Second Life wiki (2009),
http://wiki.secondlife.com/wiki/Land

6. Linden Lab: LSL portal (2008),
http://wiki.secondlife.com/wiki/LSL_Portal

7. Twitter: Twitter home page (2008), http://twitter.com/
8. Amazon Web Services: Amazon simple queue service (2008),

http://aws.amazon.com/sqs/
9. Yamamoto, Y.: Twitter4j (2008), http://yusuke.homeip.net/twitter4j/en/

10. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Compliance veri-
fication of agent interaction: a logic-based software tool. In: Trappl, R. (ed.) Cybernetics and
Systems 2004. Austrian Society for Cybernetics Studies, vol. II, pp. 570–575 (2004)

11. Esteva, M., de la Cruz, D., Sierra, C.: ISLANDER: an electronic institutions editor. In: Pro-
ceedings of the 1st International Joint Conference on Autonomous Agents and Multiagent
Systems, pp. 1045–1052. ACM, New York (2002)

12. Vázquez-Salceda, J., Aldewereld, H., Dignum, F.: Implementing norms in multiagent sys-
tems. In: Lindemann, G., Denzinger, J., Timm, I.J., Unland, R. (eds.) MATES 2004. LNCS
(LNAI), vol. 3187, pp. 313–327. Springer, Heidelberg (2004)

13. Farrell, A.D.H., Sergot, M.J., Sallé, M., Bartolini, C.: Using the event calculus for track-
ing the normative state of contracts. International Journal of Cooperative Information Sys-
tems 14(2&3), 99–129 (2005)

14. Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowledge for
planning. Artificial Intelligence 116(1-2), 123–191 (2000)

15. Dragone, L.: Hybrid logics model checker (2005),
http://luigidragone.com/hlmc/

16. Markey, N., Schnoebelen, P.: Model checking a path. In: Amadio, R.M., Lugiez, D. (eds.)
CONCUR 2003. LNCS, vol. 2761, pp. 251–265. Springer, Heidelberg (2003)

17. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cam-
bridge (2001)

18. Kezema, K.: Further analysis of parcel data collection. Blog post (2009),
http://jeffkurka.blogspot.com/2009/03/further-analysis-of-
parcel-data.html

19. Cox, R.J., Crowther, P.S.: A review of Linden Scripting Language and its role in Second
Life. In: Purvis, M., Savarimuthu, B.T.R. (eds.) Computer-Mediated Social Networking. First
International Conference, ICCMSN 2008. LNCS (LNAI), vol. 5322, pp. 35–47. Springer,
Heidelberg (2009)

20. opensimulator.org: Open simulator wiki (2009),
http://opensimulator.org/wiki/Main_Page

http://secondlife.com/
http://www.infoq.com/presentations/Second-Life-Ian-Wilkes
http://wiki.secondlife.com/wiki/Land
http://wiki.secondlife.com/wiki/LSL_Portal
http://twitter.com/
http://aws.amazon.com/sqs/
http://yusuke.homeip.net/twitter4j/en/
http://luigidragone.com/hlmc/
http://jeffkurka.blogspot.com/2009/03/further-analysis-of-parcel-data.html
http://jeffkurka.blogspot.com/2009/03/further-analysis-of-parcel-data.html
http://opensimulator.org/wiki/Main_Page

146 S. Cranefield and G. Li

21. Sun Microsystems, CollabNet and O’Reilly Media: Project Wonderland: Toolkit for building
3D virtual worlds (2009), https://lg3d-wonderland.dev.java.net/

22. Artikis, A., Paliouras, G.: Behaviour recognition using the event calculus. In: Artificial Intel-
ligence Applications and Innovations III. IFIP Advances in Information and Communication
Technology, vol. 296, pp. 469–478. Springer, Heidelberg (2009)

23. Second Life: Removal of ratings in beta (2007),http://blog.secondlife.com/
2007/04/12/removal-of-ratings-in-beta/

24. Bogdanovych, A., Berger, H., Sierra, C., Simoff, S.J.: Humans and agents in 3D electronic in-
stitutions. In: Proceedings of the 4rd International Joint Conference on Autonomous Agents
and Multiagent Systems, pp. 1093–1094. ACM, New York (2005)

25. Bogdanovych, A., Esteva, M., Simoff, S.J., Sierra, C., Berger, H.: A methodology for 3D
electronic institutions. In: Proceedings of the 6th International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pp. 358–360. IFAAMAS (2007)

26. Esteva, M., Rosell, B., Rodrguez-Aguilar, J.A., Arcos, J.L.: AMELI: An agent-based middle-
ware for electronic institutions. In: Proceedings of the 3rd International Joint Conference on
Autonomous Agents and Multiagent Systems, vol. 1, pp. 236–243. IEEE Computer Society,
Los Alamitos (2004)

https://lg3d-wonderland.dev.java.net/
http://blog.secondlife.com/2007/04/12/removal-of-ratings-in-beta/
http://blog.secondlife.com/2007/04/12/removal-of-ratings-in-beta/

Towards a Logical Model of Social Agreement
for Agent Societies

Emiliano Lorini1 and Mario Verdicchio2

1 Université de Toulouse, CNRS, Institut de Recherche en Informatique de Toulouse, France
2 Università degli studi di Bergamo, Italy

Abstract. Multi-agent systems (MASs), comprised of autonomous entities with
the aim to cooperate to reach a common goal, may be viewed as computational
models of distributed complex systems such as organizations and institutions.
There have been several model proposals in the agent literature with the aim to
support, integrate, substitute human organizations, but no attempt has gone be-
yond the boundaries of this research context to become a mainstream software
engineering implementation guideline, nor has it been adopted as a universal
model of multi-agent interaction in economics or social sciences. In this work we
counter top-down, operational organization specifications with a logical model
of a fundamental concept: agreement, with the long-term aim to create a formal
model of multi-agent organization that can serve as a universally accepted basis
for implementation of collaborative distributed systems.

1 Introduction

Multi-agent systems (MASs) can provide an effective computational model of autono-
mous individuals interacting in a complex distributed system. The models that simulate
the operations of multiple entities can show how agent technology can be exploited in
economics and social sciences. The lack of a breakthrough so far is possibly paralleled
by some lack of generality in the proposed MAS implementations. Several research
works aim at proposing operational models of multi-agent organizations in the form of
templates of norms, roles, interaction patterns, and so on, that have a significant impact
on the agent community, but whose adoption by a wider audience may be hindered by a
discrepancy between how organizations are conceived in this research context and how
they actually emerge in the real world.

In this work we begin our attempt to formalize the concept of organization starting
from what we consider its most fundamental component: agreement. We see an orga-
nization as a way to coordinate agent interaction that starts from an agreement between
the relevant agents. Moreover, we adopt a bottom-up, formal approach to keep our anal-
ysis as general as possible, and, as a consequence, the application field of our current
and future results as wide as possible.

The paper is organized as follows: Section 2 illustrates more in detail the motivations
to our efforts; Section 3 presents the syntax and the semantics of our logical model, and
some choices made in the model are discussed in Section 4, while Section 5 presents
some theorems; Sections 6 and 7 illustrate how agreements are formed and how com-
mitments and norms can be grounded on them, respectively; Section 8 provides some
pointers to significant related literature, and, finally, Section 9 concludes.

J. Padget et al. (Eds.): COIN 2009, LNAI 6069, pp. 147–162, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

148 E. Lorini and M. Verdicchio

2 Motivation

MASs can be seen as conceived with two distinct purposes. In the scenarios envisioned
by the pioneers of this field, whose hopes were boosted also by the unprecedented
success of Internet technologies, agents were viewed as a further development of the
object-oriented paradigm, leading to the implementation of goal-driven, mobile pro-
grams that could cooperate with each other autonomously to reach a common objec-
tive. In a broader interpretation including social, economic, legal aspects, MASs are
seen as a computational model of groups of interacting entities: Agents are programs
that simulate a real-life complex system whose properties are to be analyzed by means
of a computer system.

The lack (so far) of a so-called ‘killer application’ based on MAS technology does
not mean that the latter interpretation traces the only viable path for agent researchers.
Nevertheless, in our opinion, significant achievements in the simulation-oriented MAS
research are a necessary step to finally reach a breakthrough also in mainstream soft-
ware development. We agree with DeLoach [5]: MAS researchers have not yet demon-
strated that the agent approach can yield competitive or even better solutions than other
programming paradigms by providing reliable, complex, distributed systems.

We refer to virtual organizations, and think that the relevance of MAS technologies
can be shown by a believable agent-based simulation of real-life, human organizations.
Once agents are proven to be capable of delivering detailed models of complex orga-
nizations, then they can become a very appealing candidate for cutting-edge software
solutions aiming at supporting, or even substituting, their human counterparts.

Several models of virtual organizations have been proposed in the literature [19], [8].
In particular, Electronic Institutions [17] have been introduced to regulate agent interac-
tion in open environments. We see some issues rising from this research line: How really
open are these environments with respect to the constraints introduced by the proposed
organizational models? How does the operational nature of these models (as opposed
to logical) affect their impact on the potential adopters? These questions are facets of
our main concern: The affinity of virtual organizations with real ones is a key factor in
MAS technology’s shift from research to practice. Although we can provide detailed
specifications of virtual organizations in terms of roles, scenarios, interaction patterns,
communication protocols and so on, we think that such approach inevitably narrows
down the scope of a proposal to the researchers’ working hypotheses. The top-down
specification of a predefined template is not the way organizations are born in the real
world, and this distance between theoretical research and actual organizational dynam-
ics might correspond to the gap between the agent-based proposals and the solutions
adopted in the industry.

Our work has a rather different, if not opposite, starting point. We intend to provide
a logical model (as opposed to operational) that allows for the formalization of the cre-
ation of organizations in a bottom-up fashion (as opposed to top-down). It might seem
surprising that researchers who call for the elimination of the gap between theory and
practice opt for a logic-based approach. However, this is a research field where univer-
sal models for basic concepts, including the very concept of ‘agent’, are still missing.
We think that theoretical definitions of general concepts might work as wider and more
solid foundations for the construction of a model of organizations that can eventually

Towards a Logical Model of Social Agreement for Agent Societies 149

provide effective implementation guidelines. This is also the idea behind the choice of
a bottom-up approach: To keep a model of organizations as general as possible, instead
of trying to impose a standard template, which is a surely successful approach only in
monopoly contexts, we aim at shedding some light on the basic mechanisms that lead a
group of independent individuals (or autonomous agents) to form an organization.

In a top-down approach, agents join an organization with pre-established rules.
In our bottom-up approach, we see an organization as the product of the agreement
of several agents on how their future interactions should be regulated. Thus, the aim of
this work is to formally define ‘agreement’ as a fundamental concept for the creation of
multi-agent organizations, that is, we intend to propose a logic of social agreement.

3 A Modal Logic of Social Agreement

We present in this section the syntax and semantics of the modal logic SAL (Social
Agreement Logic). The logic SAL specifies the conditions under which agreements are
established and annulled. The main idea behind the formalism is to take agreement as a
primitive object and to clarify its relationships with the concept of preference (i.e. how
agreement formation depend on agents’ preferences). We make a general assumption
about rationality of agents in our logical approach to agreement. In particular, we sup-
pose that the agents in a group I agree about a certain issue ϕ only if ϕ is something
satisfactory for the agents in I . In other words, an agreement between certain agents is
formed only if the content of agreement is something good for every agent.

3.1 Syntax

Let ATM = {p, q, . . .} be a nonempty set of atomic formulas, AGT = {i, j, . . .}
a nonempty finite set of agents, and ACT = {α, β, . . .} a nonempty set of atomic
actions. We note 2ACT∗ = 2ACT \ ∅ the set of all non-empty sets of actions, and
2AGT∗ = 2AGT \ ∅ the set of all non-empty sets of agents.

We introduce a function REP that associates to every agent i in AGT a non-empty
set of atomic actions called action repertoire of agent i:

REP : AGT −→ 2ACT∗.

For every agent i ∈ AGT we define the set of i’s action tokens of the form i:α, that is,

Δi = {i:α | α ∈ REP(i)}.
That is, i:α is an action token of agent i only if α is part of i’s repertoire. We note

Δ =
⋃
i∈AGT Δi

the pointwise union of the sets of possible action tokens of all agents.
The following abbreviations are convenient to speak about joint actions of groups

of agents. For every non-empty set of agents I we note JACT I the set of all possible
combinations of actions of the agents in I (or joint actions of the agents in I), that is,

JACT I =
∏
i∈I Δi.

150 E. Lorini and M. Verdicchio

For notational convenience we write JACT instead of JACTAGT . Elements in every
JACT I are tuples noted δI , δ′I , δ′′I , Elements in JACT are simply noted δ, δ′,
δ′′, . . . For example suppose that I = {1, 2, 3} and δI = 〈1:α, 2:β, 3:γ〉. This means
that δI is the joint action of the agents 1, 2, 3 in which 1 does action α, 2 does action β
and 3 does action γ. For notational convenience, we write δi instead of δ{i} for every
i ∈ AGT .

The language of SAL is the set of formulas defined by the following BNF:

ϕ ::= p | ⊥ | ¬ϕ | ϕ ∨ ϕ | AgreeIϕ | Doi:αϕ

where p ranges over ATM , i ranges over AGT , i:α ranges over Δi, and I ranges over
2AGT∗.

The classical Boolean connectives ∧,→,↔ and � (tautology) are defined from ⊥,
∨ and ¬ in the usual manner.

The operators of our logic have the following reading.

– AgreeIϕ: ‘the agents in the group I agree that ϕ’.
– Doi:αϕ: ‘agent i is going to do α and ϕ will be true afterwards’ (therefore Doi:α�

is read: ‘agent i is going to do α’).

Operators of the form AgreeI enable one to express those issues on which the agents in
I agree, while forming a coalition. For example, AgreeI¬smokePublic expresses that
the agents in I agree that people should not smoke in public spaces.

The formula AgreeI⊥ literally means that ‘the agents in I agree on a contradiction’.
We assign a special meaning to this formula by supposing that ‘agreeing on a contra-
diction’ means ‘not being part of the same group’ (or ‘not forming a coalition’). This is
because we assume that functioning as members of the same coalition is (at least in a
minimal sense) a rational activity, and a rational group of agents cannot agree on a con-
tradiction. Thus, AgreeI⊥ should be read ‘the agents in I do not function as members
of the same group’ or ‘the agents in I do not form a coalition’ or ‘the agents in I do
not constitute a group’. Conversely,¬AgreeI⊥ has to be read ‘the agents in I function
as members of the same group’ or ‘the agents in I form a coalition’ or ‘the agents in
I constitute a group’. This concept of constituted group is expressed by the following
abbreviation. For every I ∈ 2AGT∗:

Group(I) def= ¬AgreeI⊥.

Note that this definition of group demands for some form of agreement, in particular
if the agents in I form a coalition (i.e. Group(I)) then the agents in I agree that they
form a coalition (i.e. AgreeIGroup(I)). Indeed, as we will show in Section 3.3, our
agreement operators satisfy the axiom ¬AgreeIϕ→ AgreeI¬AgreeIϕ.

If I is a singleton then AgreeI is used to express the individual preferences of agent
i. That is, for every i ∈ AGT :

Prefiϕ
def= Agree{i}ϕ.

Formula Prefiϕ has to be read ‘agent i prefers that ϕ is possible’ (semantically this
means that ‘ϕ is true in all states that are preferred by agent i’).

Towards a Logical Model of Social Agreement for Agent Societies 151

The following additional abbreviations will be useful to make more compact our
notation in the sequel of the article. For every i ∈ AGT :

Satiϕ
def= ¬Prefi¬ϕ.

Formula Satiϕ has to be read ‘ϕ is a satisfactory state of affairs for agent i’ (seman-
tically this means that ‘there exists at least one preferred state of agent i in which ϕ is
true’).

For every I ∈ 2AGT∗ and δI ∈ JACT I :

DoδI ϕ
def=

∧
j∈I Doδj ϕ.

Formula DoδI ϕ has to be read ‘the agents in I execute in parallel their individual actions
δi in the vector δI and ϕ will be true after this parallel execution’. We shorten this to
‘the joint action δI is going to be performed by group I and ϕ will be true afterwards’.
In other words, we consider a weak notion of joint action δI as the parallel execution of
the individual actions δi by every agent in I .

For every I ∈ 2AGT∗:

PrefIϕ
def=

∧
j∈I Prefjϕ;

SatIϕ
def=

∧
j∈I Satjϕ.

Formula PrefIϕ has to be read ‘every agent in I prefers that ϕ is true’, whilst SatIϕ
has to be read ‘ϕ is satisfactory for every agent in I’.

3.2 Semantics

Frames of the logic SAL (SAL-frames) are tuples F = 〈W, R, A〉 defined as follows.

– W is a non empty set of possible worlds or states.
– R : Δ −→W ×W maps every possible action token i:α to a deterministic relation

Ri:α between possible worlds in W .1

– A : 2AGT∗ −→W ×W maps every non-empty set of agents I to a transitive2 and
Euclidean3 relation AI between possible worlds in W .

It is convenient to view relations on W as functions from W to 2W ; therefore we write
AI(w) = {w′ : (w, w′) ∈ AI} and Ri:α(w) = {w′ : (w, w′) ∈ Ri:α}. If
AI(w) �= ∅ and Ri:α(w) �= ∅ then we say that AI and Ri:α are defined at w.

Given a world w ∈ W , AI(w) is the set of worlds which are compatible with group
I’s agreements at world w. If I is a singleton {i} then A{i}(w) is the set of worlds that
agent i prefers. If (w, w′) ∈ Ri:α then w′ is the unique actual successor world of world
w, that will be reached from w through the occurrence of agent i’s action α at w. (We
might also say that Ri:α is a partial function). Therefore, if Ri:α(w) = {w′} then at w
agent i performs an action α resulting in the next state w′.

1 A relation Ri:α is deterministic iff, if (w, w′) ∈ Ri:α and (w, w′′) ∈ Ri:α then w′ = w′′.
2 A relation AI is transitive iff for every w ∈ W , if (w, w′) ∈ AI and (w′, w′′) ∈ AI then
(w, w′′) ∈ AI .

3 A relation AI is Euclidean iff for every w ∈ W , if (w, w′) ∈ AI and (w, w′′) ∈ AI then
(w′, w′′) ∈ AI .

152 E. Lorini and M. Verdicchio

It is convenient to use RδI =
⋂
i∈I Rδi . If RδI (w) �= ∅ then coalition I performs

joint action δI at w. If w′ ∈ ⋂
i∈I Rδi(w) then world w′ results from the performance

of joint action δI by I at w.
Frames will have to satisfy some other constraints in order to be legal SAL-frames.

For every i, j ∈ AGT , α ∈ REP(i), β ∈ REP(j) and w ∈W we have:

S1 if Ri:α and Rj:β are defined at w then Ri:α(w) = Rj:β(w).

Constraint S1 says that if w′ is the next world of w which is reachable from w through
the occurrence of agent i’s action α and w′′ is also the next world of w which is reach-
able from w through the occurrence of agent j’s action β, then w′ and w′′ denote the
same world. Indeed, we suppose that every world can only have one next world. Note
that S1 implies the determinism of every Ri:α. Moreover, note that constraint S1 jus-
tifies the reading of formula Doi:αϕ as ‘agent i is going to do α and ϕ will be true
afterwards’. Indeed, we intend to express in our logic what agents will do as the result
of their agreement on what to do together, rather than what agents will possibly do.

We also suppose that every agent can perform at most one action at each world. That
is, for every i ∈ AGT and α, β ∈ REP(i) such that α �= β we have:

S2 if Ri:α is defined at w then Ri:β is not defined at w.

We impose the following semantic constraint for individual preferences by supposing
that every relation A{i} is serial, i.e. an agent has always at least one preferred state.
For every w ∈ W and i ∈ AGT :

S3 A{i}(w) �= ∅.
The following semantic constraint concerns the relationship between agreements and
individual preferences. For every w ∈W and I, J ∈ 2AGT∗ such that J ⊆ I:

S4 if w′ ∈ AI(w) then w′ ∈ AJ(w′).

According to the constraint S4, if w′ is a world which is compatible with I’s agreements
at w and J is a subgroup of group I , then w′ belongs to the set of worlds that are
compatible with J’s agreements at w′.

The last two semantic constraints we consider are about the relationships between
preferred states of an agent and actions. For every w ∈ W , i ∈ AGT and δi ∈ Δi:

S5 if Rδi is defined at w′ for every w′ ∈ A{i}(w) then Rδi is defined at w.

According to the constraint S5, if action δi of agent i occurs in every state which is
preferred by agent i, then the action δi occurs in the current state.

For every w ∈W and i ∈ AGT :

S6 if Rδi is defined at w then there exists I ∈ 2AGT∗ such that i ∈ I and Rδi is
defined at w′ for every w′ ∈ AI(w).

According to the constraint S6, if agent i’s action δi occurs at world w then there exists
a group I to which i belongs such that, for every world w′ which is compatible with I’s
agreements at w, i’s action δi occurs at w′.

Models of the logic SAL (SAL-models) are tuples M = 〈F, V 〉 defined as follows.

– F is a SAL-frame.
– V : W −→ 2ATM is a valuation function.

Towards a Logical Model of Social Agreement for Agent Societies 153

Given a model M , a world w and a formula ϕ, we write M, w |= ϕ to mean that ϕ is true
at world w in M . The rules defining the truth conditions of formulas are just standard
for p, ⊥, ¬ and ∨. The following are the remaining truth conditions for AgreeIϕ and
Doi:α.

– M, w |= AgreeIϕ iff M, w′ |= ϕ for all w′ such that w′ ∈ AI(w)
– M, w |= Doi:αϕ iff there exists w′ ∈ Ri:α(w) such that M, w′ |= ϕ

Note that AgreeI is a modal operator of type necessity, whilst Doi:α is of type possibil-
ity. The following section is devoted to illustrate the axiomatization of SAL.

3.3 Axiomatization

The axiomatization of the logic SAL includes all tautologies of propositional calculus
and the rule of inference modus ponens (MP).

From �SAL ϕ and �SAL ϕ→ ψ infer �SAL ψ(MP)

We have the following four principles for the dynamic operators Doi:α.

(Doi:αϕ ∧ ¬Doi:α¬ψ)→ Doi:α(ϕ ∧ ψ)(KDo)

Doi:αϕ→ ¬Doj:β¬ϕ(AltDo)

Doi:α� → ¬Doi:β� if α �= β(Single)

From �SAL ϕ infer �SAL ¬Doi:α¬ϕ(NecDo)

Dynamic operators of the form Doi:α are modal operators which satisfy the axioms and
rule of inference of the basic normal modal logic K (Axiom KDo and rule of inference
NecDo). Moreover, according to Axiom AltDo, if i is going to do α and ϕ will be true
afterwards, then it cannot be the case that j is going to do β and ¬ϕ will be true after-
wards. According to Axiom Single, an agent cannot perform more than one action at
a time. This axiom makes perfectly sense in simplified artificial settings and in game-
theoretic scenarios in which actions of agents and joint actions of groups never occur in
parallel.

We have the following principles for the agreement operators and the preference
operators, and for the relationships between agreement operators, preference operators
and dynamic operators.

(AgreeIϕ ∧ AgreeI(ϕ→ ψ))→ AgreeIψ(KAgree)

¬Prefi⊥(DPref)

AgreeIϕ→ AgreeIAgreeIϕ(4Agree)

¬AgreeIϕ→ AgreeI¬AgreeIϕ(5Agree)

AgreeI(ϕ→ ¬AgreeJ¬ϕ) if J ⊆ I(SubgroupAgree)

PrefiDoδi� → Doδi�(Int1Pref,Do)

Doδi� →
∨

i∈I
AgreeIDoδi(Int2Pref,Do)

From �SAL ϕ infer �SAL AgreeIϕ(NecAgree)

154 E. Lorini and M. Verdicchio

Operators for agreement of the form AgreeI are modal operators which satisfy the
axioms and rule of inference of the basic normal modal logic K45 [4] (Axioms KAgree ,
4Agree and 5Agree , and rule of inference NecAgree). It is supposed that the agents in a
coalition always agree on the contents of their agreements and on the contents of their
disagreements (Axioms 4Agree and 5Agree). That is, if the agents in I agree (resp. do not
agree) that ϕ should be true then, they agree that they agree (resp. do not agree) that ϕ
should be true.

We add a specific principle for individual preferences by supposing that an agent
cannot have contradictory preferences (Axiom DPref).

Axiom SubgroupAgree is about the relationship between the agreements of a group
and the agreements of its subgroups. The agents of a group I agree that ϕ should be
true only if there is no subgroup J of I such that J agree that ϕ should be false. A
specific instance of Axiom SubgroupAgree is AgreeI(ϕ → Satiϕ) if i ∈ I . This
means that the agents of a group I agree that ϕ should be true only if ϕ is satisfactory
for every agent in I . A more detailed explanation of the logical consequences of Axiom
SubgroupAgree is given in Section 5.

Axiom Int1Pref,Do and Axiom Int2Pref,Do are general principles of intentionality de-
scribing the relationship between an agent’s action, his preferences, and the agreements
of the group to which the agent belongs. According to Axiom Int1Pref,Do , if agent i
prefers that he performs action δi (δi occurs in all states that are preferred by agent
i) then agent i starts to perform action δi. A similar principle for the relationship be-
tween individual intentions and action occurrences has been studied in [15]. According
to Axiom Int2Pref,Do , if an agent i starts to perform a certain action δi then it means
that either agents i prefers to perform this action or there exists some group I to which
agent i belongs such that the agents in I agree that i should perform action δi. In other
terms, an agent i’s action δi is intentional in a general sense: either it is driven by i’s
intention to perform action δi or it is driven by the collective intention that i performs
action δi of a group I to which agent i belongs.

We call SAL the logic axiomatized by the axioms and rules of inference presented
above. We write �SAL ϕ if formula ϕ is a theorem of SAL (i.e. ϕ is the derivable from
the axioms and rules of inference of the logic SAL). We write |=SAL ϕ if ϕ is valid in
all SAL-models, i.e. M, w |= ϕ for every SAL-model M and world w in M . Finally,
we say that ϕ is satisfiable if there exists a SAL-model M and world w in M such that
M, w |= ϕ. We can prove that the logic SAL is sound and complete with respect to the
class of SAL-frames. Namely:

Theorem 1. SAL is determined by the class of SAL-frames.

Proof. It is a routine task to check that the axioms of the logic SAL correspond one-to-
one to their semantic counterparts on the frames. In particular, Axioms 4Agree and 5Agree
correspond to the transitivity and Euclideanity of every relation AI . Axiom DPref corre-
sponds to the seriality of every relation A{i} (constraint S3). Axiom AltDo corresponds
to the semantic constraint S1. Axiom Single corresponds to the semantic constraint S2.
Axiom SubgroupAgree corresponds to the semantic constraint S4. Axiom Int1Pref,Do
corresponds to the semantic constraint S5. Int2Pref,Do corresponds to the semantic
constraint S6.

Towards a Logical Model of Social Agreement for Agent Societies 155

It is routine, too, to check that all of our axioms are in the Sahlqvist class. This means
that the axioms are all expressible as first-order conditions on frames and that they are
complete with respect to the defined frames classes, cf. [2, Th. 2.42]. ��

4 Discussion

One might wonder why we did not include a principle of monotonicity of the form
AgreeIϕ → AgreeJϕ for J ⊆ I in our logic of agreement: for every sets of agents I
and J such that J ⊆ I , if the agents in I agree that ϕ should be true then the agents in
the subgroup J agree that ϕ should be true as well. We did not do include this principle
because we think that it is not sufficiently general to be applied in all situations. Indeed,
a minority group J of a larger group I might exist which does not have the same view
than the larger group. For example, imagine I is the group of members of a political
party who are choosing the leader of the party for the next years. All agents in I agree
that a certain member of the party called Mr. Brown should be the leader for the next
years. This is the official position of the party. At the same time, a small minority of I
in conspiracy agree that Mr. Black should be the leader.

Consider now the following principle AgreeI(ϕ →
∧
i∈I Prefiϕ) and even the

weaker AgreeI(ϕ →
∨
i∈I Prefiϕ): every group of agents I agree that ϕ should be

true only if all of them prefer ϕ, and every group of agents I agree that ϕ should be
true only if some of them prefers ϕ. These two principles are also too strong. Indeed,
the agents in a group I might agree that ϕ should be true, without claiming that ϕ must
be preferred by every agent in I and without claiming that ϕ must be preferred by some
agent in I . For example, the members of a community I might agree that taxes should
be payed by every agent in I without claiming and agreeing that tax payment must be
preferred by every agent in I , and without claiming and agreeing that tax payment must
be preferred by some agent in I . The members of the community just agree that tax
payment must be something preferable by the whole community.

Finally, let us explain why we did not include stronger versions of Axiom Int1Pref,Do
and Axiom Int2Pref,Do of the form AgreeIDoδI� → DoδI� and DoδI� → AgreeIDoδI

� in the axiomatization of our logic SAL for every I ∈ 2AGT∗. On the one hand
AgreeIDoδI� → DoδI� is too strong because autonomous agents should be capable
to violate norms and to decide not to conform to agreements with other agents (see
Section 7). For example, agents might agree at the public level that each of them should
pay taxes (i.e. Agree{1,...,n}Do〈1:payTaxes,...,n:payTaxes〉�) but, in private, some of them
does not pay taxes (i.e. ¬Do〈1:payTaxes,...,n:payTaxes〉�). On the other hand, DoδI� →
AgreeIDoδI� is too strong because there are situations in which the agents in a set I
perform a joint action δI without agreeing that such a joint action should be performed.
Each agent in I is doing his part in δI without caring what the other agents in I do. For
example, i might be cooking while j is reading a book without reciprocally caring what
the other does, and without agreeing that the action of cooking performed by i and the
action of reading performed by j should occur together. One might say that i and j do
not have interdependent reasons for jointly preferring that i cooks while j reads a book.

156 E. Lorini and M. Verdicchio

5 Some SAL-Theorems

Let us now discuss some SAL-theorems. The first group of theorems present some
generalizations of Axioms AltDo and Single for joint actions of groups.

Proposition 1. For every I, J ∈ 2AGT∗ and δI , δ
′
I , δJ such that δI �= δ′I :

�SAL DoδI ϕ→ ¬DoδJ¬ϕ(1a)

�SAL DoδI� → ¬Doδ′I�(1b)

According to Theorem 1a, if group I is going to perform the joint action δI and ϕ will
be true afterwards, then it cannot be the case that group J is going to perform the joint
action δJ and ϕ is going to be false afterwards. According to Theorem 1b, every group
of agents can never perform more than one joint action at a time.

The second group of theorems present some interesting properties of agreement.
Theorems 2a and 2b are derivable from Axioms 4Agree , 5Agree and DPref. According to
these two theorems, the agents in I agree (resp. do not agree) that ϕ if and only if they
agree that they agree (resp. do not agree) that ϕ. According to Theorem 2c, a group
of agents I can intend to perform at most one joint action. Theorem 2d expresses a
unanimity principle for agreement: for every set of agents I , the agents in I agree that if
each of them prefers ϕ then ϕ should be the case. Theorem 2e expresses an interesting
property about coalition formation and coalition disintegration: if the agents in I agree
that a minority part J of I agrees that ϕ and another minority part J ′ of I agrees that
¬ϕ, then the agents in I do not form a coalition (i.e. I is not a constituted group).

Proposition 2. For every I, J, J ′ ∈ 2AGT∗ and δI , δ
′
I such that δI �= δ′I and J, J ′ ⊆ I:

�SAL AgreeIϕ↔ AgreeIAgreeIϕ(2a)

�SAL ¬AgreeIϕ↔ AgreeI¬AgreeIϕ(2b)

�SAL AgreeIDoδI� → ¬AgreeIDoδ′I�(2c)

�SAL AgreeI(
∧

i∈I
Prefiϕ→ ϕ)(2d)

�SAL AgreeI(AgreeJϕ ∧ AgreeJ′¬ϕ)→ ¬Group(I)(2e)

At the current stage, our logic does not allow to deal with situations in which I is a
constituted group, the agents I agree about a certain fact ϕ and, at the same time, they
agree that some agents in I prefer ¬ϕ. Formally, by Theorem 2e and Axiom 4Agree ,
we can prove that formula AgreeIϕ ∧ AgreeIPrefi¬ϕ implies ¬Group(I), if i ∈ I .
This means that at the current stage our logic SAL does not allow to handle collec-
tive decisions based on special procedures like majority voting in which certain agents
might find a collective agreement about something while agreeing that it is not based
on unanimous preferences. For example, the agents in I might be the members of the
Parliament of a certain country and form a coalition (i.e. Group(I)). They might collec-
tively decide by majority voting to declare war upon another country (i.e. AgreeIwar),
although they agree that there is a (pacifist) minority i, j ∈ I preferring that war is not
declared upon another country (i.e. AgreeI(Prefi¬war ∧ Prefj¬war)). Although we

Towards a Logical Model of Social Agreement for Agent Societies 157

are aware that this is a limitation of our proposal, we think that our logic of agreement
is still sufficiently general to model informal and non-structured groups in which there
are no special voting procedures nor special roles (e.g. legislators, officials of the law,
etc.) which are responsible for agreement creation. In fact, in such a kind of groups
agreements are often about solutions to coordination (or cooperation) problems which
are satisfactory for all agents in the group (e.g. some agents find an agreement to have
dinner together at a Japanese restaurant rather than at an Indian restaurant).

6 Reaching an Agreement on What to do Together

We can provide in our logic SAL the formal specification of some additional principles
explaining how some agents might reach an agreement on what to do together starting
from their individual preferences. We do not intend to add these principles to the ax-
iomatization of SAL presented in Section 3.3. We just show that SAL is sufficiently
expressive to capture them both syntactically and semantically so that they can be eas-
ily integrated into our formal framework. The principles we intend to characterize are
specified in terms of agreements about the conditions under which a certain joint action
should be performed.

In certain circumstances, it is plausible to suppose that a group of agents I agree
that if there exists a unique satisfactory joint action δI for all agents in I , then such a
joint action should occur. In other terms, the agents in a group I agree on the validity
of the following general principle: ‘Do together the joint action δI , if it is the only
joint action that satisfies every agent in I!’. This criteria is often adopted by groups
of agents in order to find cooperative solutions which are satisfactory for all them.
For example, in a Prisoner Dilemma scenario with two agents i and j the joint action
〈i:cooperate,j:cooperate〉 is the only satisfactory solution for both agents. If the two
agents i and j agree on the previous principle and face a PD game, then they will agree
that 〈i:cooperate,j:cooperate〉 is the joint action that they should perform. The previous
principle of agreement creation is formally expressed in our logic as follows. For every
I ∈ 2AGT∗ and δI ∈ JACT I :

AgreeI((SatIDoδI� ∧
∧

δ′I �=δI

¬SatI Doδ′I�)→ DoδI�)(*)

Principle * corresponds to the following semantic constraint over SAL-frames. For
every w ∈ W , I ∈ 2AGT∗ and δI ∈ JACT I :

S6 if w′ ∈ AI(w) and A{i} ◦ RδI (w′) �= ∅ for all i ∈ I and, for all δ′I �= δI there
exists i ∈ I such that A{i} ◦Rδ′I (w′) = ∅ then, RδI (w′) �= ∅

where A{i} ◦RδI (w′) is defined as
⋃{RδI (v) | v ∈ Si(w′)}.

If we suppose that the Principle * is valid then the following consequence is derivable
for every I ∈ 2AGT∗ and δI ∈ JACT I :

(3) AgreeI(SatIDoδI� ∧
∧

δ′I �=δI

¬SatI Doδ′I�)→ AgreeIDoδI�

158 E. Lorini and M. Verdicchio

REMARK. Note that in the previous Principles * and 3 of agreement creation mutual
trust between the agents in the group is implicitly supposed, that is, it is supposed that
every agent i in I thinks it possible that the other agents in I will do their parts in the
joint action δI . Indeed, trust between the members of the group is a necessary condition
for agreement creation (on this point, see [1] for instance). We postpone to future work
a formal analysis of the relationships between trust and agreement. To this aim, we will
have to extend our logic SAL with doxastic modalities to express agents’ beliefs.

Example 1. Imagine a situation of exchange of goods in EBay between two agents i
and j. Agent i is the buyer and agent j is the seller. They have to perform a one-shot
trade transaction. We suppose AGT = {i, j}. Agent i has the following two actions
available: pay and skip (do nothing). Agent j has the following two actions available:
send and skip (do nothing). That is, Δi = {i:send , i:skip} and Δj = {j:pay , j:skip}.
Therefore, the set of possible joint actions of the two agents is

JACT = {〈i:skip, j:skip〉, 〈i:send , j:skip〉, 〈i:skip, j:pay〉, 〈i:send , j:pay〉}.
The two agents i and j agree that the situation in which i sends the product and j pays
is satisfactory for both of them.

(A) Agree{i,j}Sat{i,j}Do〈i:send ,j:pay〉�.

Moreover, agent i and agent j agree that the situation in which i does nothing and j
pays the product, the situation in which i sends the product and j does not nothing,
and the situation in which i and j do nothing, always leave one of them unhappy. Thus
we have that agent i and agent j agree that there is no other situation different from
〈i:send , j:pay〉 that is a satisfactory situation for both of them:

(B) Agree{i,j}
∧
δ′{i,j} �=〈i:send ,j:pay〉 ¬Sat{i,j}Doδ′I�.

From items A and B, by using Principle 3, we infer that agent i and agent j agree that
they should perform the joint action 〈i:send , j:pay〉:
(C) Agree{i,j}Do〈i:send ,j:pay〉�.

Other conditions under which the agents in a group can reach an agreement on what to
do together could be studied in our logical framework. For instance, one might want to
have general principles of the following form which can be used to find a solution in
coordination problems. Suppose that δI and δ′I are both satisfactory joint actions for all
agents in group I . Moreover, there are no joint actions δ′′I different from δI and δ′I which
are satisfactory for all agents in I . Then, either the agents in I agree that δI should be
performed or they agree that δ′I should be performed. In other terms, if the agents in a
group I face a coordination problem then they strive to find a solution to this problem.

7 Grounding Norms and Commitments on Agreements

The logic of agreement SAL presented in the previous section provides not only a for-
mal framework in which the relationships between individual preferences of agents in a
group and group agreements can be studied, but also it suggests a different perspective
on concepts traditionally studied in the field of deontic logic.

Towards a Logical Model of Social Agreement for Agent Societies 159

Consider for instance deontic statements of the following form “within the context
of group I it is required that agent i will perform action δi” or “within the context of
group I it is required that agent i will perform his part in the joint action δI together
with the other agents in I”. These statements just say that i has a directed obligation
towards his group I to do a certain action as part of a joint plan of the group I (see e.g.
[13,14] for a different perspective on directed obligations). By way of example, imagine
the situation in which agent i and agent j are trying to organize a party together. After a
brief negotiation, they conclude that i will prepare the cake, while j will buy drinks for
the party. In this situation, “within the context of group {i, j} it is required that agent i
will prepare the cake for the party and it is required that agent j will buy drinks for the
party”. The following abbreviation expresses the classical deontic notion of directed
obligation in terms of the concept of agreement. For every I ∈ 2AGT∗, i ∈ I and
δi ∈ Δi:

Obligi(δi,I) def= AgreeIDoδi�.

Formula Obligi(δi,I) has to be read ‘within the context of group I it is required that
agent i will perform action δi’.4 It is to be noted that the notion of directed obligation
represents an essential constituent of the notion of social commitment. Thus, in our
approach, an essential aspect of an agent i’s commitment with respect to his group I to
do a certain action δi is the fact that all agents in I agree that i should perform action
δi. Since all agents in the group I agree on this, they are entitled to require agent i to
perform this action. Moving beyond the notion of directed obligation as an essential
constituent of social commitment, our logic SAL can be used to provide a a formal
characterization of the notion of mutual (directed) obligation in a group I , as ’every
agent in I is required to perform his part in a joint action δI of the group’. Formally, for
every I ∈ 2AGT∗ and δI ∈ JACT I :

MutualObgI(δI)
def=

∧
i∈I Obligi(δi,I).

Formula MutualObgI(δI), which is equivalent to AgreeIDoδI�, has to be read ‘the
agents in the group I are mutually obliged to perform their parts in the joint action δI ’.
This notion of mutual (directed) obligation is an essential constituent of the notion of
mutual (social) commitment. As already emphasized in Section 4, in our logic agents
can violate obligations assigned to them (breaking their social commitments). Violation
of a directed obligation is expressed in our logic by the construction Obligi(δi,I) ∧
¬Doδi�: within the context of group I it is required that agent i will perform action
δi, but agent i does not perform action δi. The discussion on the notion of commitment
will be extended in Section 8 where our approach will be compared with some formal
approaches to agreement recently proposed in the MAS area.

8 Related Work

The literature on agents, organizations, agreements is too vast to be given an exhaustive
overview here: let us provide pointers to some significant works that relate to our effort

4 Note that Obligi(δi,I) captures a specific notion of obligation based on agreement. We are
aware that other forms of obligations exist in social life like legal obligations or moral obliga-
tions (an agent may feel obliged to do something for his own moral reasons).

160 E. Lorini and M. Verdicchio

or that are set against it in a way that stimulates discussion. We take inspiration from
Garcia et al. [10] to determine the dimensions along which multi-agent organizational
concepts are developed: structural, functional, dynamic, and normative.

From a conceptual perspective, the formalization of agreements comes before any
structural consideration. As an example, Dignum et al. [7] propose an attempt to de-
scribe minimum requirements for agents to be organized into an institution. The min-
imum requirements rely on an existing institution designed with the ISLANDER tool
[8], and call for a middle agent. ISLANDER is probably the most complete tool to
date for the specification of institutions in terms of roles and scenes. The tool is kept
as general as possible to allow for the widest possible variety of definable institutions.
Nevertheless, the specification of an institution is entirely performed by a human de-
signer, and agents join an institution by assuming one or more roles, with no account
of the process by which individuals look for and reach agreements that give rise to an
institution. Thus, the platform is an effective means to translate an existing institution
into a MAS, but the automatization of the creation of organizations is out of scope.

With respect to the functional dimension of organizations, that is, their goals and
how to achieve them, we adopt the conceptual distinction drawn by Griffiths and Luck
[12] between teamwork and coalition formation. The former is seen as focused on task
assignment and action coordination among agents in the short term, whereas the latter
is said to be dealing with the establishment in the long term of a group of agents with
a common aim or goal. Although agreeing with the authors in viewing multi-agent or-
ganizations as a means to achieve long-termed objectives and in considering trust as a
key concept for an organization that influences an agent’s decisions on undertaking co-
operations, our focus is slightly different in the context of this research: we consider an
organization to be born when an agreement is made, so our efforts are on the formaliza-
tion of agreements. An investigation on the relationship between trust and agreements
lies ahead in our research path. Nevertheless, we share the authors’ aim to determine the
basic principles that lead to the creation of organizations, as opposed to several coalition
formation research works optimizing match-making algorithms between a set of tasks
and a set of agent capabilities (e.g.: [18]).

We can consider dynamic and normative dimensions as intrinsic to any attempt to
formalize a concept like a multi-agent organization. Dynamic aspects include the forma-
tion and the evolution of coalitions of agents and, on a smaller scale, the preconditions
and the consequences of an agent’s action. When these conditions deal with deontic
concepts the MAS is characterized also by a normative dimension. An important ques-
tion is which normative concept or set of concepts to choose as the fundamental basis
for the formalization of organizations. Dignum et al., for instance, choose violation as
a fundamental concept to define deadlines in a MAS [6]. Violation is surely a very
important concept in any normative context, and especially in those where deadlines
are the central focus. Nevertheless, we argue that it does not play a primary role when
one wants to deal with a more general overview of organizations, especially electronic
ones. As pointed out by Cardoso et al. [3], while in real life a coercive action is even-
tually enforced against individuals not able or willing to abide by a sanction deriving
by some misdemeanor, such coercions are not (yet?) implementable in a distributed in-
formation system, so that effectiveness of violations and relevant sanctions is somehow

Towards a Logical Model of Social Agreement for Agent Societies 161

diminished. Boella and van der Torre [9] propose contracts, defined as a special type
of beliefs ascribed to a group of agents, as a foundational means for the creation of
legal institutions. We follow a similar approach, but consider agreement as a more basic
concept that precedes contracts.

In [20] a formal approach to multiparty agreement between agents is proposed based
on the notion of social commitment: A multiparty agreement among the agents in
{1, . . . , n} is given by a set of commitments {C1, . . . , Cn} where Ci the commitment
that agent i has towards the other agents. In this approach the notion of commitment
is taken as a primitive concept and the notion of agreement is built on it, which we
counter by starting from a primitive notion of agreement in a group I (which depends
on the individual preferences of the agents in I), on the top of which we built a notion
of directed obligation, the essential constituent of the notion of social commitment. The
logic of agreement SAL has some similarities with the logical framework based on the
concept of acceptance we presented in [16] and [11], in which a logical analysis of the
relationships between the rules and norms of an institution and the acceptances of these
rules and norms by the members of the institution has been provided. However, these
works do not analyze the relationships between individual preferences of agents and
collective acceptances (or agreements) which we presented in this paper.

9 Conclusions

This work is a starting point of a long enterprise. Our long-term aim is to provide a
formal specification of all the basic notions that characterize organizations in general,
including those in the real world, and we started with what we consider to be a funda-
mental concept: agreement. The formalization of this concept with a logical approach
aims at analyzing in detail both its static characteristics and its dynamic properties, that
is, what is meant by the term agreement and how it is supposed to influence agents’ be-
havior when cooperation is the common goal. Once a model is universally established
which is formal and general enough to abstract from particular types of organizations
or specific operational details, such a model may be used as a sound basis for an agent-
based implementation that can really have a significant impact on economic or social
scientific contexts. The relations between our formalization of agreement and the no-
tions of norms and commitments have been investigated in this work, but other dimen-
sions of multi-agent interaction, such as trust, are still to be tackled, which is what we
intend to pursue in the future.

Acknowledgements

Emiliano Lorini is supported by the project ForTrust “Social trust analysis and formal-
ization” ANR-06-SETI-006 financed by the French ANR.

References

1. Andrighetto, G., Tummolini, L., Castelfranchi, C., Conte, R.: A convention or (tacit) agree-
ment between us. In: van Benthem, V.F., Hendricks, J., Symons, J., Pedersen, S.A. (eds.)
Between Logic and Intuition: David Lewis and the Future of Formal Methods, Philosophy
Synthese Library. Springer, Heidelberg (to appear)

162 E. Lorini and M. Verdicchio

2. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cam-
bridge (2001)

3. Cardoso, H.L., Rocha, A.P., Oliveira, E.: Supporting virtual organizations through electronic
institutions and normative multi-agent system. In: Rennard, J.P. (ed.) Handbook of Research
on Nature Inspired Computing for Economy and Management. Idea Group, USA (2006)

4. Chellas, B.F.: Modal logic: an introduction. Cambridge University Press, Cambridge (1980)
5. DeLoach, S.A.: Moving multiagent systems from research to practice. In: Future of Software

Engineering and Multi-Agent Systems, FOSE-MAS (2008)
6. Dignum, F., Broersen, J., Dignum, V., Meyer, J.J.: Meeting the deadline: Why, when and

how. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff, C.A. (eds.) FAABS 2004.
LNCS (LNAI), vol. 3228, pp. 30–40. Springer, Heidelberg (2004)

7. Dignum, F., Dignum, V., Thangarajah, J., Padgham, L., Winikoff, M.: Open agent sys-
tems??? In: Luck, M., Padgham, L. (eds.) Agent-Oriented Software Engineering VIII. LNCS,
vol. 4951, pp. 73–87. Springer, Heidelberg (2008)

8. Esteva, M., de la Cruz, D., Sierra, C.: Islander: an electronic institutions editor. In: Proceed-
ings of AAMAS ’02, pp. 1045–1052. ACM Press, New York (2002)

9. Boella, G., van der Torre, L.: Contracts as legal institutions in organizations of autonomous
agents. In: Proceedings of AAMAS ’04, pp. 948–955. ACM Press, New York (2004)

10. Garcia, E., Argente, E., Giret, A., Botti, V.: Issues for organizational multiagent systems
development. In: Sixth International Workshop From Agent Theory to Agent Implementation
(AT2AI-6), pp. 59–65 (2008)

11. Gaudou, B., Longin, D., Lorini, E., Tummolini, L.: Anchoring institutions in agents’ atti-
tudes: Towards a logical framework for autonomous mas. In: Proceedings of AAMAS ’08,
pp. 728–735. ACM Press, New York (2008)

12. Griffiths, N., Luck, M.: Coalition formation through motivation and trust. In: Proceedings of
AAMAS ’03, pp. 17–24. ACM Press, New York (2003)

13. Kanger, S., Kanger, H.: Rights and parliamentarism. Theoria 6(2), 85–115 (1966)
14. Lindahl, L.: Stig Kanger’s theory of rights. In: Holmström-Hintikka, G., Lindström, S., Sli-

winski, R. (eds.) Collected Papers of Stig Kanger with Essays on his Life and Work, vol. 2,
pp. 151–171. Kluwer, Dordrecht (2001)

15. Lorini, E., Herzig, A.: A logic of intention and attempt. Synthese 163(1), 45–77
16. Lorini, E., Longin, D., Gaudou, B., Herzig, A.: The logic of acceptance: Grounding institu-

tions on agents’ attitudes. Journal of Logic and Computation (to appear)
17. Noriega, P., Sierra, C.: Electronic institutions: Future trends and challenges. In: Klusch, M.,

Ossowski, S., Shehory, O. (eds.) CIA 2002. LNCS (LNAI), vol. 2446, pp. 14–17. Springer,
Heidelberg (2002)

18. Shehory, O., Sycara, K.P., Jha, S.: Multi-agent coordination through coalition formation. In:
Rao, A., Singh, M.P., Wooldridge, M.J. (eds.) ATAL 1997. LNCS, vol. 1365, pp. 143–154.
Springer, Heidelberg (1998)

19. Sycara, K., Paolucci, M., van Velsen, N., Giampapa, J.A.: The Retsina MAS infrastructure.
Autonomous Agents and MAS 7(1-2) (2003)

20. Wan, F., Singh, M.P.: Formalizing and achieving multiparty agreements via commitments.
In: Proceedings of AAMAS ’05, pp. 770–777. ACM Press, New York (2005)

Promotion of Selfish Agents
in Hierarchical Organisations

Suzanne Sadedin1 and Christian Guttmann2

1 Clayton School of Information Technology
Monash University, Melbourne, Australia

suzanne.sadedin@infotech.monash.edu.au
2 Department of General Practice

Faculty of Medicine, Nursing and Health Sciences
Monash University, Melbourne, Australia

christian.guttmann@gmail.com

Abstract. In hierarchical organisations, a preferred outcome is to pro-
mote a more productive worker to a more influential status. However,
productivity is rarely directly measurable, so an individual worker often
has both motive and opportunity to misrepresent his productivity. This
leads to an alternative possibility: the promotion of selfish individuals.
We use an agent-based model to study how selfishness and competency
of agents influence their promotion in hierarchical organisations. We con-
sider the case where selfish agents can overstate their productivity and
thus obtain undeserved promotions. Our results suggest that more pro-
ductive agents reach positions of power most of the time. However, even
under ideal conditions, selfish agents occasionally dominate the higher
levels of a hierarchical organisation, which in turn has a dramatic effect
on all lower levels. For organisations of around 100-10,000 employees with
3-4 hierarchy levels, on average, the promotion of selfish agents is mini-
mized and the promotion of competent agents is maximized. Finally, we
show that judging the productivity of an individual agent has a greater
impact on promoting selfish behaviour than judging the productivity of
an individual’s team. These results illustrate that agent-based models
provide a powerful framework for examining how local interactions con-
tribute to the large-scale properties of multi-layered organisations.

1 Introduction

In hierarchical organisations, high-achieving individuals are often rewarded with
promotions that provide money and power [Stumpf and London 1981]. Promo-
tions thus might serve as an iterated filtration process, where at each step the
most productive individual is promoted, so that the most useful and competent
individuals attain the greatest influence. This ideal is captured by the proverb
“the cream floats to the top”. However, an individual’s true contribution to their
organization can rarely be accurately measured [Kanter and Summers 1987,
Jensen and Murphy 1990, Guest 1997, Bourne et al. 2000]. Consequently, the
rewards of power may encourage selfish individuals to cheat by misrepresenting
their productivity and thereby attain undeserved promotions [Dess and Robinson

J. Padget et al. (Eds.): COIN 2009, LNAI 6069, pp. 163–178, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

164 S. Sadedin and C. Guttmann

1984, Jensen and Murphy 1990, Guest 1997]. If so, the hierarchy might promote
the most selfish individuals instead of the most productive. The likelihood of
these opposing possibilities has not been formally investigated. Here, we use an
agent-based model to explore how hierarchical organisations evolve when indi-
viduals in the hierarchy have varying degrees of selfishness and competency.

Developing efficient and effective organisational structures has been a promi-
nent issue for decades. Within this field, a major concern has been how to struc-
ture incentives and monitor individuals to obtain optimal performance in the
face of conflicting interests [Jensen and Murphy 1990, Guest 1997, Bourne et al.
2000]. However, researchers have only just begun to examine the topic from a
computational viewpoint that treats individuals as autonomous and interacting
entities. The first agent based organisational models were developed in the 1980s
[Bond and Gasser 1988]. Following this work, formal representations of organ-
isations, including roles, obligations, capabilities, from both agent and organi-
sational perspectives were developed [Dignum et al. 2002, Dastani et al. 2002,
Matson and DeLoach 2005]. Many of these models focus on formally defining
interactions and roles [Dignum et al. 2002]. However, the possibility that agents
may have a direct conflict of interest with their organisation has not been pre-
viously considered. Thus, this paper is the first to study the possible impact of
selfishness and cheating on organisational function in an agent-based model.

Because the interests of organisations and individuals are not identical, and
performance can rarely be directly measured [Guest 1997], there is often an
opportunity for individuals to “cheat”: that is, to maximize others’ impres-
sion of their contribution, rather than their actual contribution. For example,
if academic performance measures emphasise the number of publications, aca-
demics may write endless trivial papers. If they emphasise journal prestige, aca-
demics may abandon creativity to conform to fashion. If citations are counted,
academics may focus on advertising. Thus, each measure of academic perfor-
mance can be maximized by a behaviour that actually reduces an academic’s
overall contribution. While for some industries performance measures may be
easier than in academia, measuring the performance of managers in general is
notoriously problematic [Dess and Robinson 1984, Kanter and Summers 1987,
Jensen and Murphy 1990, Guest 1997]. To the extent that performance measures
do not directly correspond to performance, there is temptation for individuals to
optimize the measure, not the performance. Individuals vary in orientation to-
ward collectivist versus individual goals, and this orientation impacts their reac-
tions to management practices substantially [Ramamoorthy and Carroll 1998].

Individuals who do not cheat given the opportunity are, in a sense, displaying
altruism. The evolution and maintenance of selfishness and altruism are a major
topic of game theory research [Axelrod 1988]. Recently, research has shifted
to consider the evolutionary dynamics of altruism on networks, where agents
interact repeatedly with the same agent (e.g., Jansen and van Baalen [2006]).
However, these networks have so far used random or lattice structures rather
than hierarchies, and agents are typically confined to a fixed position on the
network. Here, we consider the more constrained (but socially relevant) scenario
of an organisational hierarchy where a high “score” - obtained either by honest
performance or selfish deception – is likely to lead to promotion to a higher tier.

Promotion of Selfish Agents in Hierarchical Organisations 165

Models of opinion formation can also reveal complex dynamics, includ-
ing rapid state transitions in simple lattice and random Boolean networks
[Green et al. 2006]. The complex dynamics observed in even simple models sug-
gest that self-organisation in agent hierarchies may have non-intuitive features.
Will genuinely competent and altruistic individuals naturally rise to power in hi-
erarchies, or will hierarchies often be dominated by cheats? Can features of the
hierarchy influence the power of dishonesty? Is heavy-handed regulation nec-
essary to moderate the impact of selfishness, and if so, how should cheats be
punished? These questions are sufficiently complex that analytical solutions are
currently intractable.

Agent-based models provide a means to clarify such difficult questions. Sim-
ulating the interactions between large numbers of agents in complex networks
often yields outcomes at the system level that are non-intuitive from an indi-
vidual perspective (emergent). Such models have been used to examine a wide
variety of related problems such as opinion formation and cultural dynamics
[Kacperski and Holyst 2000, Plewczynski 1998] as well as the dynamics of co-
operation and selfishness [Jansen and van Baalen 2006]. Because the properties
of the system emerge from local interactions among its components (agents)
rather than from an external controlling force, such systems are said to be self-
organizing (see review by Green et al. [2008]).

Here, we use a novel agent-based model to study how the distribution of
selfishness and competency self-organise in hierarchical organisations. This paper
addresses the following issues.

– Under what conditions do hierarchical structures favour selfish or
altruistic agents, and competent or incompetent agents? In partic-
ular, we examine how selfishness, competency and status are related in or-
ganisations where selfishness can positively or negatively influence an agent’s
overall productivity.

– How do competency and selfishness of high-ranked agents changes
in response to organisation size and structure? If multi-tiered hierar-
chies act as an effective filtration system for unproductive agents, we might
expect that hierarchies with more tiers would promote more competent lead-
ers. However, if deception propagates as agents are promoted, leaders may
also be more selfish and, potentially, less productive.

– How do promotions influence selfishness and competency at high
ranks? The performance of an individual is often difficult to separate from
that of a team. We examine the impact of this lack of clarity on the promo-
tion of selfishness. We also study the effects of punishing agents for selfish
behaviour to test whether selfishness can be effectively suppressed without
reducing competency.

In the following sections, we first describe the simulation model in detail, and
our experiments. We present results from two experiments. In the first experi-
ment, we explore the impact of organization size and complexity on selfishness
and competency at different levels. In the second experiment, we consider the

166 S. Sadedin and C. Guttmann

influence of punishment and opportunity on cheating behaviour. Finally, we dis-
cuss some case studies of how the observed processes might impact productivity
at the organisational scale using data from real-life domains, and suggest some
future directions for research.

2 Model

2.1 Overview

We developed an agent-based model for the evolution over time of a hierarchically
structured organisation (tree). The hierarchy consists of L tiers, with each node
giving rise to G branches. Thus, the total number of nodes, N =

∑i=L−1
i=0 Gi.

We tested the simulation for most values of L and G that yield N < 10, 000.
Each agent occupies a node in the hierarchy and provides a yield, Y , to the

organisation. Agent status is scaled between 0 and 1, with 0 indicating an agent
on the bottom tier and 1 indicating an agent on the top tier. There is only
one agent with status 1, which we refer to as the Chief Executive Officer (CEO).
Each agent with a non-zero status (manager) monitors the G agents immediately
below him (his subordinates) and has a perception UP about the yield of each
subordinate.

At each iteration, a randomly chosen manager leaves the organisation. The
subordinate perceived by this manager to have the highest yield from the level
below is promoted to take place of each departing manager. Promotion creates
a line of vacancies to the base of the hierarchy, which are filled progressively in
the same way, with a random new agent introduced at the bottom.

2.2 Agent Traits and Behaviour

Agents have two quantitative traits, competency and selfishness, with randomly
chosen Gaussian-distributed values between 0 and 1 (μ = 0.5, σ = 0.1).

Definition 1. An agent’s yield to the organisation is

Y = C + SI, where

· Competency, C, determines how much an agent can contribute to the or-
ganisation.

· Selfishness, S, determines how likely it is that an agent “cheats” by over-
stating its productivity when it has the opportunity.

· I is a parameter that influences the impact of selfishness on productivity.
We consider both negative (-1) and positive (1) values of I to allow for the
possibility that selfishness increases or decreases productivity, giving yield in
the range [−1, 2].

To examine the impact of the difficulty of separating individual and team per-
formance, we consider two possible ways of determining perceived yield UP . In
both cases, UP has the range [-1,2].

Promotion of Selfish Agents in Hierarchical Organisations 167

Table 1. Model parameters and their experimental values (* indicates default values)

Parameter Symbol Values
Tiers in the hierarchy L 2-10, *5
Size of groups (branches) G 2-9000, *5
Impact of selfishness I -1, 0, 1
Duration of punishment PI *0, 10
Opportunity to cheat PC *0.25, 0.5, 0.75
Detectability of cheating PD *0.25, 0.5, 0.75

– Alone scenario. Perceived yield UP is normally determined by the agent’s
yield (UP = UY , where UY denotes the agent’s actual yield).

– Team scenario. Perceived yield UP is normally half the agent’s yield (UY /2)
multiplied by the mean perceived yield of its subordinates. This value gives
50% weight each to individual and team performance; teams can impact an
agent’s perceived yield either positively or negatively.

If the subordinate cheats, UP is further modified. The probability that a sub-
ordinate cheats is the subordinate’s selfishness US multiplied by parameter PC ,
the probability of an opportunity to cheat.

When a subordinate cheats, it is detected by the manager with probability
MY × PD, the yield of the manager multiplied by the detectability of cheating
(truncated to 1 if greater than 1). A subordinate that is detected cheating is
punished with a zero perceived yield that iteration and for the next PI itera-
tions. However, if the subordinate is not detected, its perceived yield is given
by UP = UY + 2US . (Doubling US allows selfishness to enhance perceived yield
even when the impact of selfishness, I, is negative). In this way, agents who cheat
risk missing promotions if they are caught, but can also gain extra promotions,
especially if their manager is itself selfish or incompetent.

2.3 Experiments

We ran the simulation for 40 replicates, each of 40,000 iterations, recording the
distribution of selfishness and competency in the hierarchy every 2,000 iterations
for each parameter value. In particular, we are interested in the traits of the agent
who rises to the top of the hierarchy. For clarity, we term this agent the CEO of
the organisation.

Two simulation experiments were completed.

– In Experiment 1, we varied L, G and I and considered both Team and
Alone scenarios to explore how organisation size and structure influence the
promotion of competency and selfishness.

– In Experiment 2, L and G were constant and I, PI , PC and PD were varied
to examine the impact of punishment and opportunity. Each experiment was
run as a fully crossed design. See Table 1 for parameter values.

168 S. Sadedin and C. Guttmann

3 Results

3.1 Experiment 1 - Structure and Size of Organisations

In many situations studied, agents who rose in the hierarchy were more produc-
tive (Figure 1), supporting the idea that “the cream rises to the top” due to the
agents’ competency. That is, high-ranked agents were less selfish than the aver-
age agent if selfishness decreased productivity, and more selfish than the average
agent if selfishness increased productivity. However, this effect was observed
only when the number of tiers in the hierarchy was small: as the complexity
of the hierarchy increased, mediocrity prevailed. The impact of selfishness on
productivity also obscured general competency: when productivity was related
to selfishness either positively or negatively, less competent agents were usually
promoted (Figure 2).

Organisation size and structure had substantial implications for competency
and selfishness at high ranks. Figure 3 shows the effect on the CEO of the number
of tiers and number of employees. In general, as the number of tiers increased, so
did the selfishness and incompetence of the CEO. In small organisations (N <
100), a hierarchy with only two tiers was ideal. However, in larger organisations
(N > 100), hierarchies with 3-4 tiers promoted the least selfish and incompetent
CEOs.

We observed a subtle impact of the way in which agent performance is judged,
by the individual’s traits or the collective contribution of their team. In small

Position in Hierarchy

M
e

a
n

S
e

lf
is

h
n

e
s
s

o
f

a
g

e
n

ts

0.57

0.54

0.51

0.48

0.45

1.00.50.0

0.57

0.54

0.51

0.48

0.45

1.00.50.0 1.00.50.0

Judge = Alone, Impact = -1 Judge = Alone, Impact = 0 Judge = Alone, Impact = 1

Judge = Team, Impact = -1 Judge = Team, Impact = 0 Judge = Team, Impact = 1

3

4

5

6

7

8

9

Layers

Fig. 1. Mean selfishness of agents at different levels in hierarchies (Experiment 1).
Symbols indicate the number of tiers in the organization L. Panels show experimental
condition; alone or team (rows) and impact of selfishness I (columns).

Promotion of Selfish Agents in Hierarchical Organisations 169

Position in Hierarchy

M
e

a
n

C
o

m
p

e
te

n
c
y

o
f

A
g

e
n

ts

0.600

0.575

0.550

0.525

0.500

1.00.50.0

0.600

0.575

0.550

0.525

0.500

1.00.50.0 1.00.50.0

Judge = Alone, Impact = -1 Judge = Alone, Impact = 0 Judge = Alone, Impact = 1

Judge = Team, Impact = -1 Judge = Team, Impact = 0 Judge = Team, Impact = 1

3

4

5

6

7

8

9

Layers

Fig. 2. Mean competency of agents at different levels in hierarchies (Experiment 1).
Results grouped as in Figure 1.

N

M
e

a
n

S
e

lf
is

h
n

e
s
s

o
f

C
E

O

0.60

0.55

0.50

0.45

10000100010010

0.60

0.55

0.50

0.45

10000100010010 10000100010010

2

3

4

5

6

7

8

9

Layers

I=-1 I=0 I=1

Fig. 3. CEO selfishness plotted against number of employees N . Results are grouped
as in Figure 1.

170 S. Sadedin and C. Guttmann

N

M
e

a
n

C
o

m
p

e
te

n
c
y

o
f

C
E

O
0.64

0.60

0.56

0.52

0.48

10000100010010

0.64

0.60

0.56

0.52

0.48

10000100010010 10000100010010

2

3

4

5

6

7

8

9

Layers

I=-1 I=0 I=1

Fig. 4. CEO competency plotted against number of employees N . Results are grouped
as in Figure 1.

S
e

lf
is

h
n

e
s
s

o
f

C
E

O

0.6

0.5

0.4

0.3

Punish

Cheat

Detect

100

755025755025

755025755025755025755025755025755025

0.6

0.5

0.4

0.3

100

755025755025

755025755025755025755025755025755025

100

755025755025

755025755025755025755025755025755025

Judge = Alone, Impact = -1 Judge = Alone, Impact = 0 Judge = Alone, Impact = 1

Judge = Team, Impact = -1 Judge = Team, Impact = 0 Judge = Team, Impact = 1

Fig. 5. Boxplots of CEO selfishness under different detection, cheating and punishment
conditions in Experiment 2. Panels as for Figure 1.

Promotion of Selfish Agents in Hierarchical Organisations 171

organisations (N < 100), judging performance by teams impaired promotion of
the least selfish and incompetent. However, in larger organisations, judging by
teams enhanced promotion of unselfish and competent agents (Figures 3 and 4).
The strength of this effect increased with the number of tiers in the hierarchy.

3.2 Experiment 2 - Opportunity, Detection and Punishment of
Cheating

Figures 5 and 6 show boxplots of CEO selfishness and competency under different
conditions. CEOs who possessed the most extreme traits were promoted when
punishment was light, and both opportunities for, and detection of cheating
were rare. CEOs who were both the least selfish and most competent of all were
seen when selfishness decreased productivity in this situation. However, when
selfishness increased productivity, the same conditions led to promotion of the
most selfish CEOs. These selfish CEOs were moderately competent.

Analysis of variance using a general linear model showed significant effects
of all independent variables (Table 2) for both selfishness and competency. Al-
though effects were significant, variance was high within conditions, reflecting the
unpredictable state of the model at any time; thus, we obtained small overall cor-
relations of r2 = 13.08% and r2 = 44.42% for selfishness and competency respec-
tively. In general, as expected, more severe punishments and increased detection
led to reduced selfishness. However, frequent detection and severe punishment of
selfishness also strongly repressed competency of CEOs. Frequent opportunities

C
o

m
p

e
te

n
c
y

o
f

C
E

O

0.7

0.6

0.5

0.4

Punish

Cheat

Detect

100

755025755025

755025755025755025755025755025755025

0.7

0.6

0.5

0.4

100

755025755025

755025755025755025755025755025755025

100

755025755025

755025755025755025755025755025755025

Judge = Alone, Impact = -1 Judge = Alone, Impact = 0 Judge = Alone, Impact = 1

Judge = Team, Impact = -1 Judge = Team, Impact = 0 Judge = Team, Impact = 1

Fig. 6. Boxplots of CEO competency under different detection, cheating and punish-
ment conditions in Experiment 2. Panels as for Figure 1.

172 S. Sadedin and C. Guttmann

Table 2. Analysis of variance for competency and selfishness with degrees of freedom
DF, F-test statistic F and probability P

Trait . Selfishness . Competency .

Parameter DF F P F P
Alone/Team 1 33.30 < 0.001 584.65 < 0.001
I 2 3559.55 < 0.001 470.69 < 0.001
PI 1 506.86 < 0.001 3064.50 < 0.001
PC 2 210.8 < 0.001 1035.08 < 0.001
PD 2 26.17 < 0.001 274.32 < 0.001
Error 53987

to cheat led to increased selfishness when cheating reduced productivity, but
decreased selfishness when selfishness increased productivity. Opportunities to
cheat uniformly led to the promotion of less competent CEOs.

3.3 Analysis

Our results show that for moderate-sized organisations with 100-10000 employ-
ees, hierarchies with 3-4 tiers promote leaders who contribute the most to pro-
ductivity of the organisation. This was observed whether cheating enhances or
detracts from productivity. However, when hierarchies had more than 4 tiers,
performance of leaders declined as the number of tiers increased: in hierarchies
with 7 or more tiers, top-ranked agents were no more productive than agents
at the third tier. This observation is interesting in the light of historical studies
showing that long-lived hierarchical organisations (such as the Catholic Church)
rarely have more than 4 tiers; however, simple organisational structures also of-
fer other benefits such as facilitating information flow. The current data suggest
that the benefits of repeated filtration offered by numerous hierarchical tiers are
outweighed (at least for the parameter ranges tested) by the cost of long path
length: the most competent and altruistic individuals often leave the organisation
before they attain high status.

A second key observation is that agents with ideal traits were more likely to
be promoted when punishment was light, opportunities to cheat were rare, and
detection of cheating was also rare. In particular, while detection and punish-
ment of cheating was effective in reducing the selfishness of CEOs, competency
was also strongly suppressed by these factors. Across all conditions, the more op-
portunities there were for cheating, the less competent the CEO. Opportunities
to cheat exacerbated the CEO’s selfishness when cheating damaged productiv-
ity, but suppressed it when cheating enhanced productivity. We attribute this
to frequent cheating creating a noisy environment where genuine productivity
could not be detected.

4 Discussion and Related Research

The model presented here is basic and preliminary in many respects: further
research is required to investigate the applicability of these suggestions in more

Promotion of Selfish Agents in Hierarchical Organisations 173

realistic scenarios. In the following sections, we discuss these limitations in the
context of related research, and how possible extensions could address these
concerns. Note that the introduction discussed primary related research on agent
organisations, selfishness in game theoretic research and evolutionary dynamics.

4.1 Organisational Cost of Promoting Incompetent Employees

The current model has focused on understanding how individuals are promoted
to certain positions based on their degree of selfishness and competency. How-
ever, from an economical point of view, it is of primary importance to know how
agent selfishness and competency influence productivity at the level of the entire
organisation.

We assume that higher ranked employees have a higher influence on the organ-
isation. Reliable data quantifying the actual influence of employees at different
organisational tiers are unavailable. This makes it difficult to measure precisely
the overall productivity. However, we have reliable data of the costs of ranked
employees in many organisations, particularly regulated organisations, including
universities and public offices. Such costs are often assumed to be proportional
to influence. Given that we have a value for individual competency, this measure
for cost allows us to calculate a rank/cost ratio.

Costs for ranked employees are readily available. For example, Monash Uni-
versity has a salary scale of employees at five different levels.1

Rank Income Normalised Value (approximate)
Level A (Assistant Lecturer) $66,360 1.0
Level B (Lecturer) $82,951 1.25
Level C (Senior Lecturer) $98,667 1.49
Level D (Associate Professor) $113,509 1.71
Level E (Professor) $132,722 2.0

For illustrative purposes we show a simple way to calculate the rank/cost
(RC) ratio of the organisation. We multiply each agent’s competency with the
normalised value associated to each agent’s rank, and add all resulting values. So,
for example, consider a university department. If we have one professor at level
E with a competency of 0.72, and two employees at Level C with competency 0.8
and 0.5, we have the following overall value for RC: 2.0 * 0.72 + 1.49 * (0.8+0.5)
= 3.38. A better allocation of resources would be if the professor is at 0.8, and
one of the senior lecturer is at 0.72, as this yields the following value for RC:
2.0 * 0.8 + 1.49 * (0.72+0.5) = 3.46. So, a lower value of RC indicates a worse
allocation of money to individuals. Knowing the underlying, and controllable
conditions that increase or decrease this ratio value is a guide to reduce costs to
an organisation.
1 These levels are subdivided into steps, but we have taken the highest step for

the year 2008. Table taken from URL:http://www.adm.monash.edu.au/enterprise-
agreements/academic-general-2005/salary-academic.html. Such income scales vary
little between different universities in Australia.

174 S. Sadedin and C. Guttmann

4.2 Panel Decisions

In our current model, the decision of promoting an employee remains with one
manager. However, in many organisations, promotion decisions are made by a
panel. Such a panel may consist of many managers at the same hierarchical level,
managers at different hierarchical levels, and external agents. One immediate
implication of panel decisions in our model is that a cheating agent is more likely
to be detected as it will be assessed by many managers with varying degrees of
“cheating detection” ability. However, if the impact of cheater-detection is often
negative, as suggested by our model results, this might lead to panels making
worse decisions than individual managers. Panel decision making raises many
complex issues, including the information available to each decision-maker, their
relative power, and costs of panel involvement.

For example, at Australian universities, an application for a promotion from
lecturer to professor would be decided by a panel consisting of various actors, in-
cluding the head of department and the dean of the faculty (both are at different
hierarchical levels).

4.3 Agents That Model the Behaviour of Other Agents

Early research on multi-agent systems recognised that the coordination of
agents will be problematic if they are not able to predict their own behaviour
and that of others [Bond and Gasser 1988], particularly when they predict
other agents’ roles and capabilities in organisational settings [Dignum et al.
2002]. Significant research contributions have been made towards understand-
ing the role of “modelling other agents” in the coordination of agents [Smith
1980, Stone et al. 2000, Garrido et al. 2000, Gmytrasiewicz and Durfee 2001,
Kok and Vlassis 2001, Vassileva et al. 2003]. In particular, agent models are used
to predict the decisions of collaborators [Gmytrasiewicz and Durfee 2001], match
students with tutors in collaborative support environments [Vassileva et al.
2003], schedule meetings based on the availability of agents [Garrido et al. 2000],
and predict the performance of soccer-agents in RoboCup [Stone et al. 2000,
Kok and Vlassis 2001]. Different research initiatives make distinct assumptions
that influence what to model, how to model it, and how to use and refine mod-
els. Recently this research has been extended to ensure that coordination is
improved by collective contributions of a group of knowledgeable agents as op-
posed to “isolated” contributions by individuals [Guttmann 2008]. This approach
is called Collective Iterative Allocation (CIA) and involves a group of agents that
collectively refine allocations of a team to a task (or in this case, a promotion to
an employee). In the current model, managers maintain a simple model of sub-
ordinates’ short-term productivity; subordinates do not model their managers at
all. Extending the model, managers might retain or exchange information about
subordinates, and subordinates might model managers or even themselves, and
adapt their behaviour according to these models.

Promotion of Selfish Agents in Hierarchical Organisations 175

4.4 Selfishness

Agents are often assumed to behave “as they are supposed to behave”, that is,
according to the design intentions of a system [Nisan 1999, Zambonelli et al.
2001, Horling and Lesser 2005]. In many domains, this assumption is simplistic
as agents often aim to optimise their own criteria [Sergot 2005], particularly when
opportunistic behaviour is promoted [Castelfranchi 2001; 2002]. Selfish agents
exhibit behaviour that places their own needs and desires above the needs and
desires of others. This is an issue in applications such as resource and task allo-
cation, routing and electronic trade [Nisan 1999, Ronen 2000, Anshelevich et al.
2003, Anderegg and Eidenbenz 2003, Guttmann 2008]. In our framework, a self-
ish agent can behave such that it is perceived as being more productive than its
actual competency, hence having an unfair advantage over others in the promo-
tion process.

4.5 Agent Learning and Demography

Our model assumes that individuals have fixed traits for their entire lifespans;
that they enter and leave organisations at random with respect to age, status,
their manager’s opinion of them, and their own traits; and that selfishness and
competency are Gaussian-distributed traits. All of these assumptions could be
refined to provide quantitative predictions more applicable to specific scenarios.
For example, some groups (such as graduates newly recruited to an organisation)
might have specific trait distributions which change over time. Employees who
have remained with the organisation for longer might develop increased loyalty,
reducing cheating; alternatively, ability to exploit the system undetected may
increase with experience. Appropriate parameter choices for such extensions re-
quire empirical data and are likely to be specific to the particular organisation
in question.

5 Conclusion

We have used a simple model of organisational hierarchy to address some basic
questions about how promotion decisions and the structure of the hierarchy
can influence the distribution of individual traits in the hierarchy. In summary,
our results suggest that organisations wishing to promote the most productive
workers should consider the following guidelines.

– Have few tiers. In the conditions studied, organisations with 3-4 tiers
optimize promotion of competent CEOs for organisations with 100-10000
employees; 2 layers are better for organisations with < 100 employees.

– Minimise opportunities to cheat. Opportunities to cheat obscure the
genuine productivity of individuals and are therefore damaging regardless
of whether selfishness is productive or costly to the organisation. In our
model, minimising opportunities to cheat equates to measuring performance
accurately.

176 S. Sadedin and C. Guttmann

– In small organisations, judge individuals separately; in large or-
ganisations, judge individuals by their teams Judging by teams in a
large organisation reduces cheating because unproductive individuals more
often promote unproductive subordinates.

– Disregard cheating when it happens. In our model, punishment sup-
presses competency because when cheating is frequent, highly competent
agents are likely to be punished. However, the model excludes psychological
consequences of punishment. To the extent that individuals are less likely
to consider cheating if they fear being caught, punishment may effectively
reduce cheating opportunities and thus enhance competency of high-ranked
individuals.

The generality of these conclusions is limited by the simplicity of the model. Fur-
ther work is required to assess the implications of complex promotion dynamics,
agent psychology, demographic characteristics and change over time.

Acknowledgements

We thank G. Paperin, D. G. Green and E. A. Duenez-Guzman.

References

Anderegg, L., Eidenbenz, S.: Ad hoc-VCG: A truthful and cost-efficient routing
protocol for mobile ad hoc networks with selfish agents. In: Proceedings of the
nineth annual international conference on Mobile computing and networking,
pp. 245–259 (2003)

Anshelevich, E., Dasgupta, A., Tardos, E., Wexler, T.: Near-optimal network
design with selfish agents. In: Proceedings of the thirty-fifth annual ACM
symposium on Theory of computing, pp. 511–520 (2003)

Axelrod: The Evolution of Cooperation. Basic Books, New York (1988)
Bond, A.H., Gasser, L.: Distributed Artificial Intelligence. Morgan Kaufmann

publishers Inc., San Francisco (1988)
Bourne, M., Mills, J., Wilcox, M., Neely, A., Platts, K.: Designing, implement-

ing and updating performance measurement systems. International Journal of
Operations and Production Management, 754–771 (2000)

Castelfranchi, C.: Trust and Deception in Virtual Societies. Kluwer Academic
Publishers, Dordrecht (2001)

Castelfranchi, C.: The Role of Trust and Deception in Virtual Societies. Inter-
national Journal of Electronic Commerce 6(3), 55–70 (2002)

Dastani, M., Dignum, V., Dignum, F.: Organizations and normative agents.
LNCS, pp. 982–989. Springer, Heidelberg (2002)

Dess, G.G., Robinson, R.B.J.: Measuring Organizational Performance in the
Absence of Objective Measures: The Case of the Privately-Held Firm and
Conglomerate Business Unit. Strategic Management Journal, 265–273 (1984)

Dignum, V., Meyer, J., Weigand, H., Dignum, F.: An organization-oriented
model for agent societies. In: Proceedings of RASTA, at AAMAS02 (2002)

Promotion of Selfish Agents in Hierarchical Organisations 177

Garrido, L., Sycara, K., Brena, R.: Quantifying the utility of building agents
models: An experimental study. In: Agents-00/ECML-00 Workshop on Learn-
ing Agents, Barcelona, Spain (2000)

Gmytrasiewicz, P.J., Durfee, E.H.: Rational communication in multi-agent envi-
ronments. Autonomous Agents and Multi-Agent Systems 4(3), 233–272 (2001)

Green, D., Leishman, T., Sadedin, S.: The emergence of social consensus in
simulation studies with boolean networks. In: PAAA World Congress on Social
Simulation, Kyoto, Japan (2006)

Green, D., Sadedin, S., Leishman, T.: Systems theory - self-organization. Ency-
clopedia of Ecology 4, 3195–3203 (2008)

Guest, D.E.: Human resource management and performance: a review and re-
search agenda. The International Journal of Human Resource Management 8,
263–276 (1997)

Guttmann, C.: Collective Iterative Allocation. PhD thesis, Monash University
(2008)

Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. The
Knowledge Engineering Review 19(04), 281–316 (2005)

Jansen, V.A.A., van Baalen, M.: Altruism through beard chromodynamics. Na-
ture 440, 663–666 (2006)

Jensen, M., Murphy, K.: Performance pay and top-management incentives. J.
Political Economy 98(1), 225 (1990)

Kacperski, K., Holyst, J.: Phase transitions as a persistent feature of groups
with leaders in models of opinion formation. Physica A 287, 631 (2000)

Kanter, R.M., Summers, D.: Doing Well While Doing Good: Dilemmas of Per-
formance Measurement in Nonprofit Organizations and the Need for a Multi-
pleconstituency Approach. In: McKevitt, D., Lawton, A. (eds.) Public Sector
Management: Theory, Critique and Practice, New York State, United States
of America, pp. 261–262. Open University Press, Stony Stratford (1987)

Kok, J.R., Vlassis, N.: Mutual modeling of teammate behavior. Technical Report
UVA-02-04, Computer Science Institute, University of Amsterdam, Nether-
land (2001)

Matson, E., DeLoach, S.: Formal transition in agent organizations. In: Integra-
tion of Knowledge Intensive Multi-Agent Systems, 2005, pp. 235–240 (2005)

Nisan, N.: Algorithms for Selfish Agents Mechanism Design for Distributed Com-
putation. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, p. 1.
Springer, Heidelberg (1999)

Plewczynski, D.: Landau theory of social clustering. Physica A 261, 608 (1998)
Ramamoorthy, N., Carroll, S.: Individualism/Collectivism Orientations and Re-

actions Toward Alternative Human Resource Management Practices. Human
Relations 51, 571–588 (1998)

Ronen, A.: Solving Optimization Problems among Selfish Agents. PhD thesis,
Hebrew University in Jerusalem, Israel (2000)

Sergot: Modelling unreliable and untrustworthy agent behaviour. In: Keplicz,
B.D., Jankowski, A., Skowron, A., Szczuka, M. (eds.) International workshop
on monitoring, security, and rescue technique in multiagent systems, Plock,
Poland, pp. 161–177. Springer, Berlin (2005)

178 S. Sadedin and C. Guttmann

Smith, R.G.: The contract net protocol: High-level communication and control
in a distributed problem solver. IEEE Transactions on Computers 29(12),
1104–1113 (1980)

Stone, P., Riley, P., Veloso, M.M.: Defining and using ideal teammate and oppo-
nent agent models. In: Proceedings of the Innovative Applications of Artificial
Intelligence Conference (IAAI), pp. 1040–1045 (2000)

Stumpf, S., London, M.: Management promotions: Individual and organizational
factors influencing the decision process. The Academy of Management Re-
view 6(4), 539–549 (1981)

Vassileva, J., McCalla, G.I., Greer, J.E.: Multi-agent multi-user modeling in I-
Help. User Modeling and User-Adapted Interaction 13(1-2), 179–210 (2003)

Zambonelli, F., Jennings, N., Wooldridge, M.: Organizational abstractions for
the analysis and design of multi-agent systems. In: Ciancarini, P., Wooldridge,
M.J. (eds.) AOSE 2000. LNCS, vol. 1957, pp. 235–251. Springer, Heidelberg
(2001)

The SIOC Project: Semantically-Interlinked

Online Communities, from Humans to Machines

Alexandre Passant1, Uldis Bojārs1, John G. Breslin1,2, and Stefan Decker1

1 Digital Enterprise Research Institute,
National University of Ireland, Galway, Ireland

{firstname.lastname}@deri.org
2 School of Engineering and Informatics,

National University of Ireland, Galway, Ireland
john.breslin@nuigalway.ie

Abstract. The SIOC project — Semantically-Interlinked Online Com-
munities — is aimed at expressing information about the nature, struc-
ture and content of online communities using Semantic Web technologies.
Then, information created and maintained via human-centric social in-
teractions becomes processable by autonomous software agents for ad-
vanced purposes, such as enabling interoperability between applications
from the Social Web. In this paper, we describe the various components
of the SIOC project (i.e. the SIOC Core ontology and its different mod-
ules as well as the SIOC ecosystem and some related applications) in this
context of online communities, both on the Web and in more restricted
virtual environments, also taking into account human-agent communica-
tions in such environments.

1 Introduction

While the new paradigms, tools and services introduced by the Social Web —
also referred to as Web 2.0 [20] — are now widely accepted in both public and
scientific communities (for instance blogs, wikis, tagging practices, etc.), their
popularity has also led to various issues. Indeed, due to the heterogenous nature
of data models used to represent Social Media Contributions (for instance various
APIs or database structures, generally depending on the application provider),
finding, interlinking and querying such data within and between online com-
munities is a complex issue. Moreover, such tools generally act as independent
data silos where the information is being locked with a lack of machine-readable
meta-data; hence, reusing information from these applications is not straight-
forward, and most of Web 2.0 services can be seen as ”walled gardens” where
information cannot be extracted and reused by users nor software agents.

However, online communities would greatly benefit from better ways to pro-
vide machine-readable description of their nature, content and structure, en-
abling among others interoperability in and between various distinct online
communities. For example, it would allow to retrieve content created in different
communities but sharing a similar topic, enabling a way to follow and navigate

J. Padget et al. (Eds.): COIN 2009, LNAI 6069, pp. 179–194, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

180 A. Passant et al.

through distributed conversations across the Social Web — such as following a
discussion starting on a bulletin board and continuing on a separated forum.

To that extent, another recent trend with regards to Web technologies con-
cerns the Semantic Web [3], which provide standards and models to build a Web
of Data, with unified models to represent typed and interlinked data from differ-
ent sources, where we are currently browsing a Web of Documents, with simple
pages and hyperlinks. Hence, the vision that we follow consists in combining
Semantic Web technologies and paradigms from the Social Web. This leads to
”Social Semantic Information Spaces” (Figure 1) [8], where information from
online communities is created and maintained through social interactions but is
at the same time interlinked and machine-readable. Thus, new ways to exploit
these online communities can be envisioned, for example using SPARQL to uni-
formly query data from different communities (Section 5). Such integration of
these two fields would thus lead to a Social Semantic Web [10], a vision that has
been researched during the past few years [1] and defended by Tim Berners-Lee
himself [2].

Fig. 1. Social Semantic Information Spaces

Focusing on that integration, the SIOC project1 — Semantically-Interlinked
Online Communities [9] — aims to be a building block of these Social Semantic
Information Spaces, solving the aforementioned issues by providing a compre-
hensive data model (as well as related tools and applications) used to represent
online communities and their activities in an homogenous way. To achieve this
vision, the SIOC project relies on two main components that are to be discussed
in this paper: (1) the SIOC Ontology, composed of the SIOC Core Ontology and
various modules; and (2) a set of applications, covering the creation, integration
and use of SIOC data in online communities, and that form a SIOC eco-system.

1 http://sioc-project.org

http://sioc-project.org

The SIOC Project 181

In the next section of this paper, we will detail the SIOC Ontology, i.e. the
SIOC Core Ontology and its related modules. Then, we will discuss the uptake
of SIOC on the Web and describe the SIOC Eco-system. We will continue by
presenting various initiatives and applications using SIOC, in online communi-
ties. In that section, we will also focus on the ability to use SIOC to represent
communities formed not only by humans, but also comprised of both humans
and software agents (such as bots on IRC — Internet Relay Chat). We will then
present how such data can be queried and reused in order to make sense of online
communities thanks to SIOC data, before concluding this paper.

2 The SIOC Ontology

In order to allow agents to process machine-readable data uniformly across dif-
ferent applications, the Semantic Web vision relies on the use of ontologies [13]
as models to provide shared semantics between applications on the Web. Hence,
to achieve the aforementioned goal of the SIOC project, i.e. making information
from online communities available to software agents, the first requirement is to
provide a comprehensive ontology covering the various artifacts and actions that
are created and that happen in these communities.

The SIOC Ontology [4] is composed of a Core Ontology and of a set of mod-
ules. The main motivation that lead to splitting the ontology in several parts is
to provide an easy integration of SIOC in existing applications by Web develop-
ers, that consequently do not have to apprehend a complex schema but can focus
on simple models, generally considering first the use of the SIOC Core Ontology,
and then using additional modules if required.

In July 2007, the SIOC Ontology was published as a W3C Member Submis-
sion2. This submission ensures higher visibility of the ontology as a format for
representing online communities and offers a way to bootstrap the model and
consequently provide more content using it on the Web, as we will see in Sec-
tion 3. That way, it creates a network of interlinked Social Data at Web scale,
augmenting its global value as also discussed in [15].

A comprehensive overview of the SIOC ontology is provided in [7]. We shall
also mention that, while being a mature model, the SIOC Ontology still evolves
based on the needs of the community and some particular applications that
emerge and require new features in the ontology, for instance the concept of
followers in microblogging applications.

2.1 The SIOC Core Ontology

The main classes and properties in the SIOC Core Ontology3 are shown in
Figure 2. As we introduced earlier, while relatively small and simple, this model
is yet powerful enough to represent the content produced and exchanged within
online communities. For instance, a Forum represents a space in which discussion
2 http://www.w3.org/Submission/2007/02/
3 http://rdfs.org/sioc/spec

http://www.w3.org/Submission/2007/02/
http://rdfs.org/sioc/spec

182 A. Passant et al.

happen (not necessarily a bulletin board, in spite of its name, but any virtual
space that hosts discussion), and contains different (instances of) Posts, written
by (instances of) UserAccounts. In order to represent more abstract containers
(such as a personal information space that to not necessarily hold discussions),
the more general Container and Space classes can be used. Based on the SIOC
Core Ontology, the following example (using RDF N3 serialization4) describes
how we represent that Alice has created a post in a particular forum (i.e. an
area of discussion) and that Bob replied to it. In addition, we shall mention that
with an emphasis on standardized Semantic Web technologies since its beginning
(i.e. relying on W3C specifications), the whole ontology has been designed using
RDFS and recently was adapted as an OWL-DL model.

Fig. 2. Main classes and properties in the SIOC ontology

In addition to the ones represented in Figure 2, other classes and properties
are provided in the SIOC Core Ontology. For instance, the previous_version
and next_version properties can be used to link versioned items (which is
particularly useful in wiki communities), while the has_modifier one is used to
identify the modifier(s) of any content. Considering once again the use-case of
wikis, this property can be used to represent modifiers that are both humans, i.e.
people editing wiki pages, and autonomous agents, such as both automatically
reverting pages edited by vandalism. To that extent, SIOC is then suited not only
to human-human online interactions but to any community involving agents,
either they are human or machines.
4 Prefixes omitted for space reasons.

The SIOC Project 183

:post a sioc:Post ;

sioc:has_creator :alice ;

sioc:has_container :forum ;

sioc:has_reply :reply .

:forum a sioc:Forum .

:reply a sioc:Post ;

sioc:has_creator :bob .

:alice a sioc : UserAccount .

:bob a sioc:UserAccount .

Listing 1.1. Example of RDF data modeling a post and its reply using SIOC

2.2 The SIOC Modules

Several SIOC modules have been defined (i) on the one hand to extend some
terms from the SIOC Core Ontology (and to avoid making it too complex to
apprehend) and (ii) on the other hand to focus on particular features of online
communities. Among its different modules, SIOC provides5:

– SIOC Access module: In order to define access control in online commu-
nities and in particular discussion spaces, the SIOC Access module6 provides
simple classes and properties regarding the notions of Role and Permission.
Such properties could be combined with authentication schemes relying on
Semantic Web technologies, especially FOAF-SSL [28] that provides a de-
centralized and user-owned authentication scheme based on FOAF, which
complements well with the use of SIOC. In addition, one could rely on SIOC-
related initiatives, such as the concept of Faceted Online Presence [27], as
well as work based on policies presented in [25] to enable the management of
norms and responsibilities in online communities;

– SIOC Argument module: As many people in online communities not only
share data but also agree and disagree between them, there is a need to repre-
sent these argumentations in a machine-readable way. The SIOC Argument
module7 defines classes and properties to represent simple argumentative
discussions in online communities websites [17]. Another fine-grained module
aims at representing argumentative discussion is the SWAN/SIOC module,
describe later in that section;

– SIOC Types module: The SIOC Types module8 defines advanced content-
types tobeusedwhendefininguser-generated content fromonline-communities.
While the Core Ontology simply defines classes such as sioc:Post/sioc:Item
to represent online contributions and sioc:Forum / sioc:Container to de-
fines online communication spaces, the Types module goes further to provide

5 See http://rdfs.org/sioc/spec/#sec-modules for an up-to-date list of modules,
since new ones are regularly designed to enable the use of SIOC in new applications
or domain-areas.

6 http://rdfs.org/sioc/access
7 http://rdfs.org/sioc/args
8 http://rdfs.org/sioc/types

http://rdfs.org/sioc/spec/#sec-modules
http://rdfs.org/sioc/access
http://rdfs.org/sioc/args
http://rdfs.org/sioc/types

184 A. Passant et al.

more accurate descriptions of the items that are shared. For instance, it in-
cludes classes such as sioct:BlogPost and sioct:WikiArticle to represent
the shared items as well as sioct:Blog or sioct:Wiki for the container, that
respectively subclass the sioc:Post and sioc:Forum classes discussed previ-
ously. That way, using the SIOC Types module, the previous example can be
refined as depicted in Listing 1.2.

– SIOC Services module: Another feature of main Web 2.0 applications is
the way they provide access to their content for developers, so that they
can build mash-ups, etc. The SIOC Services module9 defines classes and
properties to represent Web services related to online communuties (e.g. API
endpoint and return format, etc.). We shall note that it aims to be and stay
lightweight, and do not compare with webservices description languages and
ontologies such as WSDL10. However, thanks to this module, agents could
figure out how to access an endpoint to retrieve machine-readable description
of the community.

– The SIOC/SWAN module: Finally, one of the recent development of
SIOC is a module defining alignments between SIOC and the SWAN —
Semantic Web Applications in Neuromedicine — ontology [11]11, providing a
complete model for fine-grained argumentative discussions in online scientific
communities through the SWAN/SIOC module [24].

:post a sioct:BlogPost ;

sioc:has_creator :alice ;

sioc:has_container :forum ;

sioc:has_reply :reply .

:forum a sioct:Blog .

:reply a sioct:Comment ;

sioc:has_creator :bob .

:alice a sioc:User .

:bob a sioc:User .

Listing 1.2. Example of RDF data to model a post and its reply using the SIOC Core
Ontology and the SIOC Types module

2.3 Relationships with Other Vocabularies

SIOC reuses and aligns with various ontologies from the Web. The main goal of
such approach is to avoid reinventing new classes and properties, and to ben-
efit from past work from other communities in terms of ontology engineering.
Especially, SIOC reuses the Dublin Core model to define various attributes of
created content (such as the creation date of an item, using dcterms:created),
9 http://rdfs.org/sioc/services

10 http://www.w3.org/TR/wsdl
11 http://rdfs.org/sioc/swan

http://rdfs.org/sioc/services
http://www.w3.org/TR/wsdl
http://rdfs.org/sioc/swan

The SIOC Project 185

FOAF — Friend Of A Friend 12 — to model personal identity and related at-
tributes and has ties with SKOS — Simple Knowledge Organization System13

— to model discussion topics (Figure 3). By interlinking FOAF and SIOC, one
can have different user profiles on different websites (represented as instances of
sioc:UserAccount), all related to the same physical person (foaf:Person) us-
ing the foaf:account property. Moreover, we shall note more precisely that each
sioc:UserAccount is actually related to the Agent class from FOAF (and not
directly to a foaf:Person). Consequently, an instance of sioc:UserAccount
can be associated with both software agents and human users, which may be
useful when dealing with wikis or IRC bots.

Fig. 3. Combining SIOC with FOAF and SIOC in online communities

3 Current Status and Uptake of SIOC

Since the goal of SIOC is to provide interoperability between communities on
the Social Web, one way to evaluate it is to consider its uptake on the Web. To
illustrate the amount of SIOC data on the Web, according to the PingTheSe-
manticWeb (PTSW) service14 there were 132’475 documents which contain data
described using the SIOC ontology by June 200915 (Figure 4). Large amounts of
12 http://foaf-project.org
13 http://www.w3.org/2004/02/skos/
14 http://pingthesemanticweb.com
15 The full amount of SIOC information on the Web is larger than described here as

PTSW indexes only a part of available RDF data.

http://foaf-project.org
http://www.w3.org/2004/02/skos/
http://pingthesemanticweb.com

186 A. Passant et al.

SIOC data are provided by wrappers to existing Social Web sites (e.g. wrappers
for Flickr16 or MediaWiki17). Thus, the Billion Triple Challenge 2009 dataset 18

contains more than 15 million RDF resources described using SIOC. In addition,
SIOC is now widely accepted as a core ontology to describe Social Web commu-
nities using Semantic Web technologies, alongside with FOAF. Hence, the use
of SIOC is suggested by the Yahoo! SearchMonkey developer documentation19

(SIOC data being indexed by SearchMonkey to improve presentation of search
results) and by various best practices documents describing data publishing on
the Semantic Web such as [5].

Fig. 4. The amount of SIOC data on the Web (PingTheSemanticWeb data)

Moreover, we shall mention recent initiatives using SIOC that should help
sustain its growth, notably its integration as a core vocabulary in Drupal 7, that
supports native RDF output via RDFa annotations embedded in web pages20.

3.1 The SIOC Eco-system

Various SIOC-enabled services have been created21, forming an eco-system of
applications (Figure 5) that implement the SIOC ontology and that participate
in various stages of SIOC information life cycle (from data creation and integra-
tion through to its storage and use). The creation of an application ecosystem
around an ontology helps to overcome the “chicken and egg” problem of the
Semantic Web and to facilitate the uptake of the ontology on the Web.

These applications typically belong to one of the following types:

– data producers — that allow us to generate SIOC RDF data from various
applications;

16 http://apassant.net/home/2007/12/flickrdf/
17 http://ws.sioc-project.org/mediawiki
18 http://vmlion25.deri.ie/
19 http://developer.yahoo.com/searchmonkey/smguide/profile_vocab.html
20 http://groups.drupal.org/node/16597
21 http://rdfs.org/sioc/applications/

http://apassant.net/home/2007/12/flickrdf/
http://ws.sioc-project.org/mediawiki
http://vmlion25.deri.ie/
http://developer.yahoo.com/searchmonkey/smguide/profile_vocab.html
http://groups.drupal.org/node/16597
http://rdfs.org/sioc/applications/

The SIOC Project 187

– data collectors — that help with the discovery, crawling and indexing of this
data;

– data consumers — that allow to browse and analyze the knowledge contained
in SIOC data, to visualize and to reuse this data;

– libraries and utilities — for supporting the SIOC applications described
above.

Fig. 5. The SIOC eco-system

In order to bootstrap usage of SIOC and to facilitate its adoption we initially
created a small set of “seed” applications covering main areas of the ontology
ecosystem. Examples of initial SIOC applications include the WordPress SIOC
export plugin22, the Semantic Radar extension for Firefox23 and various applica-
tions for exploring SIOC data. Then, thanks to contributions from the developer
community, outside the core team, the size of the SIOC eco-system has grown
to over 50 applications. To aid with the production and use of SIOC data in
Social Semantic Web applications by the community, reusable APIs, covering
various parts of SIOC data life-cycle, have been created for languages such as
PHP, Ruby on Rails and Java.

4 Initiatives Using SIOC

Since the goal of SIOC is to enable interoperability of social data on the Web,
having applications that address different system and communities is a mean to
22 http://sioc-project.org/wordpress
23 https://addons.mozilla.org/en-US/firefox/addon/3886

http://sioc-project.org/wordpress
https://addons.mozilla.org/en-US/firefox/addon/3886

188 A. Passant et al.

achieve this goal. Thus, within the aforementioned ecosystem, various applica-
tions have been developed either to produce, collect and consume SIOC data24

and we describe some of them in this section.

4.1 Expressing IRC Conversations

Instant messaging is one major form of social interaction and online collabora-
tion, but it is traditionally disconnected from the Web, especially when happen-
ing on IRC. The SiocLog application25 [14] addresses this issue and provides a
record of IRC conversations using SIOC and FOAF ontologies. Participants of
these conversations may include both human users and automatic agents (called
bots). Bots are often used on IRC channels for various administrative tasks, to
interface with web services or to facilitate teleconferences [12].

The SiocLog logger is provided as in IRC bot. The linked data interface pro-
vided by it may use data from another bot — mttlbot26 — which enables users
to define their Web IDs and thus enrich IRC logs with relevant user profiles. In
terms of future developments, a useful addition to this application would be the
ability to identify bots separately from users and to define metadata for describ-
ing them. Since users and bots interact with one another on IRC, logs of such
conversations could provide insights into the patterns of communication on IRC,
i.e. how users interact with such bots.

4.2 Interlinking Collaborative Work Environments

The Ecospace Integrated Project27 is addressing issues of interoperability in
the area of Collaborative Work Environments (CWE) like Lotus Notes, Mi-
crosoft SharePoint and BSCW. The SIOC ontology has been adopted in the
project28 to provide the basis for the much-needed multi-platform integration
and to allow cross-project querying and access to this semantically-interlinked
information [19]. This was achieved in three stages: (1) concepts that exist in the
CWE domain and that appear in the platforms involved in the project namely,
BSCW and Business Collaborator (BC) were mapped to the SIOC ontology;
(2) SIOC exporters were developed for these platforms. These tools, based on
the conceptual mappings created in the previous stage, annotate the internal
data and export them as SIOC RDF data; and (3) a specialized SIOC4CWE
explorer was developed for navigating and querying aggregated SIOC data from
heterogeneous shared workspaces in a unified way.

Another similar effort, focused more on interoperability issues between En-
terprise 2.0 [18] applications (combining blogs, wikis, tagging, RSS feeds) is the

24 An up-to-date list is available at
http://wiki.sioc-project.org/index.php/Category:Applications

25 http://github.com/tuukka/sioclog
26 http://buzzword.org.ok/2009/mttlbot/#project
27 http://www.ip-ecospace.org/
28 http://www.ami-communities.eu/wiki/ECOSPACE/SIOC

http://wiki.sioc-project.org/index.php/Category:Applications
http://github.com/tuukka/sioclog
http://buzzword.org.ok/2009/mttlbot/#project
http://www.ip-ecospace.org/
http://www.ami-communities.eu/wiki/ECOSPACE/SIOC

The SIOC Project 189

SemSLATES proposal, in which SIOC has been deployed to provide a founda-
tional layer of integration between these applications, in combination with other
services such as semantic wikis and a semantic tagging platform [22]. Figure 6
exemplifies how data from various applications from an Enterprise 2.0 ecosys-
tem (blogs, wikis, RSS feeds) is automatically translated to SIOC to provide a
unified representation of social content from these various services in enterprise
settings that can be then reused for advanced and cross-application querying
purposes.

Wikis

Automated
exports and
translations

Common semantics using SIOC and
related vocabularies

Independent
tools and
models

:item_1

rdf:type sioc:Item

:billet_1

:article_1

rdf:type

rdf:type

sioct:NewsItem

sioct:WikiArticle

sioct:BlogPost

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf
Blogs

RSS feeds

Fig. 6. Using SIOC to unify information from corporate online communities

4.3 Exposing Wiki Structure with SIOC

Another recent area in which SIOC was introduced is the modeling of wiki fea-
tures, especially with regards to versioning and multi-authoring. To that extent,
new properties were introduced in the SIOC ontology and we also developed a
SIOC exporter (available as a Web service29) for any MediaWiki instance, hence
being able to provide a complete SIOC export of popular wikis such as Wikipedia
including pages revisions, internal and external links, etc. [21]30 Moreover, once
wiki data is exposed to SIOC, it allows to interlink various wikis together, and
also to combine wiki data with other SIOC-enabled content (such as blog data
or the aforementioned IRC conversations).
29 http://ws.sioc-project.org/mediawiki
30 The majority of information in the billion triples challenge dataset (including

14,133,700 instances of sioct:WikiArticles) is generated by this wrapper applied
to WikiPedia.

http://ws.sioc-project.org/mediawiki

190 A. Passant et al.

http://wikiexample.org/PageName

http://wikiexample.org/PageName_Vers_X

http://wikiexample.org/PageName_Vers_Y

http://wikiexample.org/PageName_Vers_Z

latest_version

earlier_version
previous_version

previous_version

previous_version

next_version

next_version

next_version

later_version

Fig. 7. Modeling versioning of wiki pages with SIOC — From [21]

Interestingly, this SIOC exporter exports both contributions from real people
as well as from bots (e.g. agents automatically moderating content) while there
is unfortunately no way to formally differentiate both (since Wikipedia API does
not provide this information) from users. This exporter also features relationships
between different versions of the same Wiki page, using the next_version and
previous_version properties that we mentioned earlier. These properties are
defined as subproperties of later_version and earlier_version, which are
transitive properties (i.e. defined as instances of owl:TransitiveProperty). It
allows agents that can exploit these transitivity axioms, such as Pellet [26], to
identify immediately all the previous versions for a given page, as we can see in
the Figure 7. While only links to the (immediately) previous pages are present,
new information about online communities are discovered thanks to inference
capabilities, consequently augmenting their value for querying and integration
purposes.

4.4 Semantic Microblogging

Another important trend in the Web 2.0 world is the use of microblogging, in or-
der to exchange status updates to an update audience, notably using Twitter31.
In addition to several initiatives that provide SIOC export of microblogging data,
such as the Chisimba Tweet aggregator32, we developed the SMOB framework
(for Semantic MicrOBlogging [23]), another example of how Semantic Web tech-
nologies can enhance applications from the Social Web. SMOB provides an open
platform for decentralized and distributed publishing and aggregating of mi-
croblog content, using notably FOAF and SIOC, as well as standards protocols
to exchange and query information between publishers and aggregators.

Any content generated with SMOB is available in RDF using the aforemen-
tioned vocabularies, and can be combined with other SIOC data, such as blog
31 http://twitter.com
32 http://tweetgator.peeps.co.za/

http://twitter.com
http://tweetgator.peeps.co.za/

The SIOC Project 191

posts and wiki pages, in order to get a real-time overview of activity around a
particular topic. Indeed, SMOB also provides interlinking capabilities with other
Linking Open Data sources, enabling real-time object-centred sociality [16] for
microblogs.

5 Querying and Browsing SIOC Data

Since SIOC data is RDF data, one can simply relies on existing standards to
query it, especially SPARQL33. The main interest of such approach is that, by
exposing data from online communities as SIOC data, the same query pattern
can be applied by software agents to any community data. Thus, retrieving the
last contributions in Forum X can be done similarly as retrieving the last ones
from Wiki Y. In addition, by exposing this data openly on the Web, agents can
benefit from Semantic Search engines such as Sindice34 to find this information,
originally distributed on the Web, in a single place.

SELECT ?post ?creator ?agent

WHERE {

?post a sioc:Post ;

sioc:has_creator ?creator .

?agent foaf : holds_account ?creator .

!BOUND(? creator rdfs:type foaf:Person)

}

Listing 1.3. Example of SPARQL query using SIOC data

Focusing on human-agent conversations, Listing 1.3 shows a SPARQL query
retrieving posts created by agents that are not defined as persons, relying on
the principles of negation as failure, due to the Open World Assumption of the
Semantic Web35.

To enable human navigation of SIOC data, hence providing a complete human-
machine-human chain for information management in online communities, vari-
ous applications have been built, such as the SIOC browsers defined in [6]. One
of them is depicted in Figure 8, representing how SIOC information has been
used to identify social networks across distributed conversations, based on the
reply patterns of users. It shows once again how common semantics to represent
data from online communities can be used to extend the usages we can get from
them.
33 http://www.w3.org/TR/rdf-sparql-query/
34 http://sindice.com
35 Hence, that query cannot ensure that the identified agent is not a person, which

would require a specific class subclass of foaf:Agent, being disjoint of foaf:Person,
for instance ex:Bot.

http://www.w3.org/TR/rdf-sparql-query/
http://sindice.com

192 A. Passant et al.

Fig. 8. Identifying social networks from SIOC-based information

6 Conclusion

In this paper, we described the SIOC project, its goals and means as well as re-
lated uptake and overview of some of the services exposing or using SIOC infor-
mation. We detailed the SIOC ontology (both the Core and its modules) as well
as various applications and initiatives using SIOC, describing how they provide
machine processable data from online interactions in various contexts, ranging
from wikis, IRC conversations and microblogging applications. Our current work
focuses on extending the ontology for specific domains and use-cases, as we have
described in this paper in the context of Wikis and microblogging applications.
Indeed, as new Web 2.0 services appear, with new paradigms and features, there
is a need to provide new modules (or enhance the SIOC Core Ontology) to rep-
resent interactions happening within these services in a machine-readable way,
so that data can be processed and integrated with other SIOC data.

Acknowledgements

The work presented in this paper has been funded in part by Science Foundation
Ireland under Grant No. SFI/08/CE/I1380 (Ĺıon-2).

References

1. Ankolekar, A., Krötzsch, M., Tran, D.T., Vrandecic, D.: The Two Cultures: Mash-
ing up Web 2.0 and the Semantic Web. Journal of Web Semantics 6(1), 70–75
(2008)

The SIOC Project 193

2. Berners-Lee, T.: Tim Berners-Lee Podcast at ISWC 2005 (November 2005),
http://esw.w3.org/topic/IswcPodcast

3. Berners-Lee, T., Hendler, J.A., Lassila, O.: The Semantic Web. Scientific Ameri-
can 284(5), 34–43 (2001)

4. Berrueta, D., Brickley, D., Decker, S., Fernández, S., Görn, C., Harth, A., Heath,
T., Idehen, K., Kjernsmo, K., Miles, A., Passant, A., Polleres, A., Polo, L., Sintek,
M.: SIOC Core Ontology Specification. W3C Member Submission June 12, World
Wide Web Consortium (2007),
http://www.w3.org/Submission/sioc-spec/

5. Bizer, C., Cyganiak, R., Heath, T.: How to Publish Linked Data on the Web.
Technical report (2007),
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/

6. Bojārs, U., Breslin, J.G., Passant, A.: SIOC Browser – Towards a Richer Blog
Browsing Experience. In: Proceedings of the 4th Blogtalk Conference (Blogtalk
Reloaded), Books on demand (2006)

7. Bojārs, U., Breslin, J.G., Peristeras, V., Tummarello, G., Decker, S.: Interlinking
the Social Web with Semantics. IEEE Intelligent Systems 23(3), 29–40 (2008)

8. Breslin, J.G., Decker, S.: Semantic Web 2.0: Creating Social Semantic Information
Spaces. In: Tutorial at the 15th International World Wide Web Conference, WWW
2006 (2006)

9. Breslin, J.G., Harth, A., Bojārs, U., Decker, S.: Towards Semantically-Interlinked
Online Communities. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS,
vol. 3532, pp. 500–514. Springer, Heidelberg (2005)

10. Breslin, J.G., Passant, A., Decker, S.: The Social Semantic Web. Springer, Heidel-
berg (2009)

11. Ciccarese, P., Wu, E., Wong, G., Ocana, M., Kinoshita, J., Ruttenberg, A., Clark,
T.: The SWAN biomedical discourse ontology. Journal of Biomedical Informat-
ics 41(5), 739–751 (2008)

12. Froumentin, M.: Zakim — A Multimodal Software System for Large-Scale Tele-
conferencing. In: Bengio, S., Bourlard, H. (eds.) MLMI 2004. LNCS, vol. 3361, pp.
46–55. Springer, Heidelberg (2005)

13. Gruber, T.R.: Towards Principles for the Design of Ontologies Used for Knowledge
Sharing. International Journal Human-Computer Studies 43(5-6), 907–928 (1995)

14. Hastrup, T., Bojars, U., Breslin, J.G.: SiocLog: Providing IRC discussion logs as
Linked Data. In: 2nd Social Data on the Web (SDoW 2009) Workshop at the 8th
International Semantic Web Conference, vol. 520 (2009)

15. Hendler, J.A., Golbeck, J.: Metcalfe’s law, Web 2.0, and the Semantic Web. Journal
of Web Semantics 6(1), 14–20 (2008)

16. Knorr-Cetina, K.D.: Sociality with objects: Social relations in postsocial knowledge
societies. Theory, Culture and Society 14(4), 1–30 (1997)

17. Lange, C., Bojars, U., Groza, T., Breslin, J., Handschuh, S.: Expressing argumen-
tative discussions in social media sites. In: First International Workshop on Social
Data on the Web (SDOW 2008), vol. 405. CEUR-ws.org. (2008)

18. Mcafee, A.P.: Enterprise 2.0: The Dawn of Emergent Collaboration. MIT Sloan
Management Review 47(3), 21–28 (2006)

19. Ning, K., Peristeras, V., Bojārs, U., Breslin, J.G.: A SIOC Enabled Explorer of
Shared Workspaces. In: CSCW and Web 2.0 Workshop at the 10th European Con-
ference on CSCW, Limerick, Ireland (2007)

20. O’Reilly, T.: O’Reilly Network: What Is Web 2.0: Design Patterns and Business
Models for the Next Generation of Software (September 30, 2005),
http://www.oreillynet.com/lpt/a/6228

http://esw.w3.org/topic/IswcPodcast
http://www.w3.org/Submission/sioc-spec/
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/
http://www.oreillynet.com/lpt/a/6228

194 A. Passant et al.

21. Orlandi, F., Passant, A.: Enabling cross-wikis integration by extending the SIOC
ontology. In: Proceedings of the Fourth Workshop on Semantic Wikis, SemWiki
2009 (2009)

22. Passant, A.: Technologies du Web Sémantique pour l’Entreprise 2.0 (Semantic Web
technologies for Enterprise 2.0). PhD thesis (2009)

23. Passant, A., Bojars, U., Breslin, J.G., Hastrup, T., Stankovic, M., Laublet, P.:
An Overview of SMOB 2: Open, Semantic and Distributed Microblogging. In: 4th
International Conference on Weblogs and Social Media, ICWSM 2010 (2010)

24. Passant, A., Ciccarese, P., Breslin, J., Clark, T.: SWAN/SIOC: Aligning Scientific
Discourse Representation and Social Semantics. In: Workshop on Semantic Web
Applications in Scientific Discourse (co-located with the 8th International Semantic
Web Conference), vol. 523. CEUR-ws.org (2009)

25. Passant, A., Kärger, P., Hausenblas, M., Olmedilla, D., Polleres, A., Decker, S.:
Enabling Trust and Privacy on the Social Web. In: W3C Workshop on the Future
of Social Networking (2009)

26. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-
DL reasoner. Journal of Web Semantics 5(2), 51–53 (2007)

27. Stankovic, M., Passant, A., Laublet, P.: Directing status messages to their audi-
ence in online communities. In: Multi-Agent Logics, Languages, and Organisations
Federated Workshops, vol. 494, CEUR-ws.org (2009)

28. Story, H.: FOAF & SSL: creating a global decentralised authentication protocol.
In: W3C Workshop on the Future of Social Networking (2009)

J. Padget et al. (Eds.): COIN 2009, LNAI 6069, pp. 195–210, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Directing Status Messages to Their Audience in Online
Communities

Milan Stankovic1,2, Alexandre Passant3, and Philippe Laublet1

1 LaLIC, Université Paris–Sorbonne, 28 rue Serpente, 75006 Paris, France
2 Hypios, 187, rue du Temple, 75003 Paris, France

3 Digital Enterprise Research Institute, National University of Ireland UI-Galway,
Galway, Ireland

milan.stankovic@hypios.com, alexandre.passant@deri.org,
philippe.laublet@paris-sorbonne.fr

Abstract. Social interactions have become an important element of today’s
Web through sites like Social Networks and other online communities. In this
paper we focus on a particular aspect of the “Social Web” – the exchange of
status messages (short text messages usually broadcasted to a large audience).
We investigate the nature of the status message sharing phenomenon and the is-
sues that surround it by the means of a qualitative user study. The results sug-
gest the need to introduce the notion of audience of a status message in the
broadcasting in order to prevent the issues of “Gap of Understanding”, “Lack of
Significance” and “Privacy”. In the second part of the paper we present the re-
quirements for a system that would overcome those issues, and seek the con-
crete solutions in the emerging “Semantic Web” technologies. We present a
way how “Semantic Web” ontologies and rules could be used to address the
problem of directing status messages to their intended audience. Particularly we
show how semantic descriptions of status messages and their intended audi-
ences can be beneficially coupled with the existing distributed data about users
to direct status messages to their intended recipients.

Keywords: Online Presence, Virtual Social Networks, Semantic Web.

1 Introduction

Status messages are short textual expressions that describe the state of a user’s pres-
ence in the online world, i.e. generally on the Web. Sharing status messages on differ-
ent social services on the Web (Microblogging services, Instant Messaging platforms,
Social Networks) became a common practice for people to share thoughts, feelings of
the moment, announce one’s presence in the online world and broadcast information.
However, as more and more users take part in status message sharing, it becomes
obvious that the audience of status messages is an important issue. The recently gen-
erated overload of status messages on sharing services has brought to light many
problems. Firstly, confidentiality of status messages in open communities is a signifi-
cant question, since not all status messages are meant for general public. Some should
be kept private from certain contacts that might use them in an inappropriate way. An

196 M. Stankovic, A. Passant, and P. Laublet

example could be a status message revealing somebody’s drinking habits, meant to
amuse personal friends, but the same status message could be a source of inconven-
ience if shown to work colleagues.

Apart from private nature of some status messages there are other reasons why a
particular status message might not be suitable for a certain audience. For example,
some status message updates may have no significance for certain groups of contacts
that consider them as information noise. It is a common case that we subscribe to
someone’s statuses because of the interest in professional news she/he is sharing, but
aside we get a lot of postings about the person’s personal life that don’t interest us.
Problems like those limit in a great deal, the usefulness of today’s status sharing ser-
vices (mostly microblogging services and Social Networks).

Although the notion of audience design has already been studied in sociolinguistics
[1] our intention was to complement this work by deepening the understanding of
audience-related issues in status message sharing communities on the Social Web.
Thus we conducted a qualitative user study with subjects who are using status mes-
sages for different purposes and in different contexts on a daily basis. The goal of the
study was to develop understanding of the key problems, factors that make a status
message open or confidential – that determine its intended audience. Apart from un-
derstanding the problems, the outcomes of the study allowed us to explore the space
of possible technical solutions to these issues. Thus the second part of our work con-
sists in designing a Semantic Web-based approach for dealing with audience-related
issues in status message sharing. The reminder of the paper is organized as follows: in
Section 2 we present our user study and its results. Section 3 presents the Presence
Diamond, a notion for the study of presence online as a faceted phenomenon. Section
4 lists currently available solutions for problems identified in the study. In Section 5
we synthesize the requirements for an advanced status message publishing system.
Section 6 follows with investigation how Semantic Web could help build such a sys-
tem. In this section, we introduce a way to direct status messages to their intended
audience using Semantic Web technologies, and we show how those technologies are
flexible enough to support even dynamic audience definitions (where members of the
audience change frequently based on various contextual properties). Section 7 pre-
sents related work and we finally conclude the paper in Section 8.

2 The User Study

The user study was conducted through a series of interviews with ten users of social
networks and microblogging platforms who have been using them for status message
sharing for some time (a year in average). The 30-35 minute interviews were field-noted
and audio recorded for further reference. Users’ age ranged from 22 to 35. This choice
proved to correspond well to demographics of users of the most active microblogging
services (documented in a statistical report done by Pew Internet [2]). Equal number of
female and male subjects, from France and Ireland, with different origins and back-
grounds, took part in the interviews.

After a couple of questions about users’ background, users were asked to tell their
status message publishing experiences. The main goal was to identify their context in
the time of publishing, nature of the status message content and the intended audience.

 Directing Status Messages to Their Audience in Online Communities 197

The inconveniences and the inability of microblogging tools and social networks to
meet their status message sharing needs were also explored.

Once we collected the user stories, we relied on Grounded Theory inspired ap-
proach to extract relevant categories from them, and further generalize the categories
to super-categories that we call – major issues. Grounded Theory was introduced by
Glaser and Strauss [3] and has served ever since for analysis of results in qualitative
research in Social Sciences. Grounded Theory is an approach to looking systemati-
cally at qualitative data to derive codes and group them into relevant categories that
will further be generalized into concepts that make the ground for generating a theory.
Generalizations are derived by thinking efforts of researchers. Due to a space limit, in
this paper we present only a part of our findings - the highest level generalizations,
and we briefly describe them with some of the lower level generalizations that we
find the most relevant to our intended readers. In particular, two features of the
Grounded Theory, Open and Axial coding, were conducted by two researchers who
reached an agreement about the codes in order to reduce the impact of subjectivity.
For more detailed study report we refer the reader to [4].

The chosen research method and the size of the sample correspond to our particular
needs that are exploratory in nature, as the study’s purpose is to create a ground for
further development of a technical solution, and help understand the advantages and
disadvantages of a particular technology – Semantic Web in directing status messages
to their audience.

Generally, we discovered that many times when users publish a status message,
they have a certain audience in mind. The status message is intended for a particular
audience either because of its ability to understand the message (or the inability of
others to understand it properly) either because of significance of the message for a
certain group (and insignificance for others) or because of the confidential nature of
the status message content. The next three sections present those major issues, i.e. the
main reasons why a status message has its particular audience. Those reasons will be
used later to design a Semantic Web approach for dealing with audience issues.

2.1 Gap of Understanding

In many cases where a certain status message is not meant for a certain group of people
it is because of their inability to understand, properly interpret and maybe even reply to
the content of the message. Sometimes the inability arises from shallow acquaintance
like in cases where the user publishing a status message knows a certain group of people
for a short time. The shallowness of acquaintance can be an obstacle for this group of
people to understand jokes, metaphors and properly interpret the intended meanings of
status messages. Sometimes the gap of understanding results from lack of competence
like in cases where users use status messages to ask for advice, or provoke professional
discussions. This problem is also present in scenarios of automatic postings of status
messages across services (e.g. automatic forwarding from Twitter to Facebook) where
mostly different audiences are present on different services. Quite often personal friends
from one service (Facebook in our case) don’t understand and find irrelevant the profes-
sion-related status messages posted on another service (Twitter).

Some status messages bear a socially established meaning, understood by a small
community of people, like those containing internal jokes, or internal aliases and

198 M. Stankovic, A. Passant, and P. Laublet

metaphors. Such status messages may be misinterpreted by people outside that small
community and may be source of misunderstandings, inappropriate comments and
other inconveniences. This phenomenon is just a reflection of the phenomenon of a
speech community that exists in the real world scenarios and is well studied in the
field of sociolinguistics [1].

2.2 Lack of Significance

In other cases, a status message is not intended for some people simply because they
have no interest in it. This is the case when a status message relates to a certain domain
and thus can be of significance only to people with an interest in the domain. This case
is common when people make connections based on a shared interest, stay in touch and
then use status messages to spread domain related news, announce events and provoke
discussions. In some cases it is the interest in the domain that makes a certain group of
people not interested in other non domain-related status messages of a user. For people
who are not familiar with the domain such messages can represent noise.

In other cases some groups of people might not be able to make use of the infor-
mation in the status message, which has an informative purpose. This is the case with
status messages highly dependent on location – like those containing invitations to
local parties and announcements of local events. In both cases such status messages
are irrelevant to people from other locations that could not make use of the an-
nouncement, since it relies on a geographical context which they do not belong to.

2.3 Privacy

Privacy is an issue that occurs when a user wants to explicitly restrict access to some
groups of contacts for some types of status message or even only for a particular status
message. It is usually related to groups of higher granularity, like the case of separating
status messages for work and private contacts. People usually perceive some content
types (like feelings and moods or travel experiences) to be suitable only for closer con-
tacts or contacts of a more private nature, while those status messages should be kept
private from some other (more professional) groups of contacts.

Some users, on the other hand express concern about the possibilities to track
their status messages to the past and draw conclusions about their personality that
would be out of their control. The concern is expressed about the uncontrolled data
integration possibilities across services and attempts to integrate status messages with
other content about the user and thus perform some spy-like behavior.

3 The Presence Diamond

Once we acknowledge that many status messages have an intended audience and that
access to these messages should in some cases be restricted to that particular audience
(in case of confidential messages for instance), it becomes clear that one user might
want to have different status messages for different audiences at the same time.

In fact, emitting different information (appearances) to different groups of observ-
ers is not restricted to status messages, but spans the whole notion of online presence.

 Directing Status Messages to Their Audience in Online Communities 199

By the term online presence we refer to the totality of information that allows perceiv-
ing one’s presence in online communities. Apart from status messages as an element
of presence, availability for interaction might also have a faceted nature and be differ-
ent for different groups at different times. One can easily imagine a working situation
where a user is available for interaction only with his work colleagues and busy for all
the others. That can be observed for instance on the status message of instant messag-
ing client of some users, such as “Available for work purposes only”. Access to dif-
ferent presence information might also be given only to specific groups of contacts
(like in the case of sharing the current location only with closest friends). In the case
of online status messages, we can imagine a user feeling to disclose “waiting for to-
night’s party” to his close friend and “working on a project deliverable” to his col-
league at the same time.

Therefore, there is a need to look at the notion of online presence as a faceted phe-
nomenon. For this reason we introduce the notion of the presence diamond (Figure 1.)
to capture the faceted nature of presence and the need to appear differently to different
groups of people.

Fig. 1. The Presence Diamond1

The notion of presence diamond allows us to look at a person’s online presence as
a diamond whereby different observers are introduced to different facets of the dia-
mond. Facets differ among themselves in different types of presence data that is
accessible by observers of a facet (like in cases where one group of observers can
access a person’s location, availability and a status message, and another group can
access only the status message), different granularity of data (like in the case of
sharing the exact location with closest friends and only the current city/country with
strangers), and even in different data that is emitted to different observers (like hav-
ing different status messages and different availability for different groups of con-
tacts, as in our previous example).

The notion of appearing differently to different groups of observers might find its
counterpart in the sociolinguistic research. According to [1] style shift in speech oc-
curs as a response to different audiences. The notion of presence diamond brings a
similar phenomenon to light, but applied to the different categories (type of presence
data, granularity, different data) instead of speech style.

Although the presence diamond does not bring a fundamentally new view on the
world it provides a very practical way to think of the space of user’s contacts and slice

 1 The figure and the notion of the Presence Diamond are strongly inspired by the notion of the

diamond of digital identity, that Mike Roch, Director of IT Services at University of Reading,
introduced at the Eduserv Digital Identity Workshop in London, January 08, 2009.

200 M. Stankovic, A. Passant, and P. Laublet

that space in groups according to the properties of group members. Further on, the
presence diamond slices the space of user’s acquaintances from the perspective of the
user and his/her publishing needs.

Even though we focus on the particular case of status messages in this paper, we
will look at the problem of directing status messages to their intended audience as a
sub-problem of enabling faceted online presence (and even online identity), and will
therefore favor solutions that are general enough to address the faceted nature of pres-
ence as a whole on the Web.

4 Incomplete Ways to Deal with Status Message Directing

Some ways to direct status message updates to a particular audience already exist. In
this section we present the workarounds found and applied by users, as well as solu-
tions developed as features of existing and popular Social Web sites. For each of these
solutions we discuss their advantages but also their incompleteness.

4.1 User Workarounds

Some users manage to separate their contacts on different Social Web services, by
taking into account the nature of relationship with a particular contact. For example, a
number of users maintain a list of work-related contacts on Twitter while having a
more personal network of friends on Facebook and professional contacts on LinkedIn,
then sharing different status message updates for the different audiences. This way,
status messages related to private life can be kept confidential from work colleagues,
and personal friends don’t have to be bothered by work related postings. However, the
fact that some contacts use only one social network stands in the way of such a sepa-
ration. If some of the user’s work colleagues use only Facebook, then maintaining the
separation would mean not connecting at all with those persons. Apart from this limi-
tation, if the separation by purpose is not done at the start, it is hard to impose it once
the user has accepted different types of contacts to his/her social network.

Another way to deal with the identified issues is just to restrict oneself to publish-
ing only status messages acceptable for the wide audience. Some users choose not to
publish too personal status messages because work-related contacts might see them,
and not to publish work-related status messages because they might not be of interest
to their friends. This approach limits the potential of status message sharing in a great
deal excluding many professional and staying-in-touch use cases.

4.2 Solutions Developed by Social Web Sites

Solutions for niche microblogging and micro-broadcasting (broadcasting status mes-
sages in small communities as opposed to the open nature of Twitter and similar ser-
vices) began to emerge recently. Those Social Web sites allow for broadcasting of
status messages in closed communities (like in ShoutEm2) or to people gathered
around a certain interest (like in Static3). However they mostly require intended

2
 http://www.shoutem.com/

 3 http://www.static.com/

 Directing Status Messages to Their Audience in Online Communities 201

recipients of the status message updates to join each closed community, which can get
quite complicated having in mind the number of intended audiences a user might
have. This approach certainly leads to social network fatigue – a phenomenon of loss
of motivation to participate in yet another social network when confronted with join-
ing many social networks and building identities on them4.

The new service E5 can be used to manage adding different people to different
social networks according to the nature of the acquaintance (e.g. adding friends to
Facebook and business contacts to MySpace). However, it is hard to enforce this
separation since not all users are present on each of those networks and therefore
some of connections might be lost if they do not meet the purpose one user has given
to his/her social network account.

5 Requirements for an Advanced Status Message Publishing
Service

Based on the limitations of current systems discussed in the previous section and the
user workarounds disclosed by our user study, we proposed a set of requirements that
an advanced status message publishing service should satisfy in order to respond to
the needs discovered in the user study. A more adequate service should support users
in dedicating status messages to people based on:

R 1. Their social graph (their relationships with other users).
R 2. Their affiliation with a certain institution (e.g., school or workplace) as

well as with people who are members of a certain online community (e.g.,
an online forum).

R 3. Their interests and competences (including languages spoken and knowl-
edge about locations visited).

R 4. The intensity of relationship between the status message publisher and the
observer.

As well as:

R 5. Support users in dedicating status messages to a certain group of people
regardless of the status sharing service they use (i.e., allowing the target
audience to be dispersed all over the Social Web).

R 6. Take into account the dynamic and ever changing nature of user proper-
ties (for example their current location, interest, etc.).

R 7. Allow users to publish status messages confidentially – in a way that only
certain people can get access to the status message.

The dynamic nature of audience that emerged in our study is also present in the
works on sociolinguistics (e.g. [5] that includes dynamic factors in the study of speech
variation).

In the following sections we investigate the possibilities offered by Semantic Web
[6] technologies to help establish a system capable of fulfilling these requirements.

 4 http://blogs.zdnet.com/social/?p=53
 5 http://www.mynameise.com/

202 M. Stankovic, A. Passant, and P. Laublet

6 Directing Status Messages: The Linked Data Way

The term Linked Data [7] refers to publishing and interlinking structured data on the
Web in RDF6 with the assumption that the value and usefulness of data increases the
more it is interlinked with other data. This effort to publish the data online using open
standards and interlink data sources is aimed at transforming the Web of documents
towards a more (re)usable, machine readable Web of Data7.

We argue - and will demonstrate - that additional semantics describing a status
message, as well as semantics (partially already published as Linked Data) describing
users and their current context can be helpful to direct a status message to its intended
audience, and thus reduce information noise and contribute to ensuring privacy. In
particular we argue that currently available Linked Data sources, especially from the
Linking Open Data initiative8, can help define the intended audiences of status mes-
sages, relying on user properties described in those sources (interests, locations, social
graph, etc.)

To enable publishing and exchange of such additional semantics, we decided to en-
rich an existing vocabulary - the Online Presence Ontology (OPO)9, that we defined
in previous work [8] - with the information about intended audience of a status mes-
sage. The Online Presence Ontology provides a way to describe a user’s current state
of presence in the online world, including his/her availability for interaction, current
status message, location and other elements of context. As such this vocabulary can
be elegantly complemented with a way to direct a status message (but also other pres-
ence data) to a certain audience. To enable this, we have extended the OPO with the
notion of Sharing Space.

Fig. 2. An excerpt from the Online Presence Ontology

A Sharing Space, in our proposal, is a group of people (or more generally agents)
with whom particular information can be shared. As shown on Figure 2, instances of
the OnlinePresence class, encompassing (among other properties) the current status

 6 Resource Description Framework http://www.w3.org/RDF/
 7 http://www.w3.org/2001/sw/
 8 http://linkeddata.org
 9 http://www.milanstankovic.org/opo/

 Directing Status Messages to Their Audience in Online Communities 203

message of a user, can be connected to its intended audience, represented as an in-
stance of the SharingSpace class through a property intendedFor. The status mes-
sage itself is represented using the Item concept from the SIOC10 ontology [9] in order
to enable replies to the status message and make use of this concept’s suitable seman-
tics. Sharing Space is also enriched with a list of properties that make it possible to
represent some of the common attributes that bind members of the Sharing Space
together (e.g., common interest, shared current location). In order to express the se-
mantics of those attributes we relied on concepts from widely used vocabularies
(FOAF11, SWC12, WGS8413). For more details about the ontology design we refer the
readers to the project website and the ontology specification14. We shall also mention
that OPO as well as the extension to enable Sharing Spaces, is designed using existing
W3C standards, namely RDF(S)/OWL.

By identifying people who are intended to receive a status message, the notion of
Sharing Space can help software systems to deliver status messages to specific people
(members of the Sharing Space) and thus deal with information noise and even ensure
confidential status message exchange.

In order to properly define Sharing Spaces according to the needs of real life sce-
narios, we rely on the results of our user study, presented in Section 2. According to
our study results, some of the major ways to define the intended audience are: friends
of a certain friend; people having a certain interest; friends from a particular online
community; people being in a certain location; people having a certain nature of rela-
tionship with the user; people who were affiliated in the same institution; and custom
assembled groups of contacts.

A lot of information needed to define those groups (users’ current and permanent
locations, interests, friends’ lists, etc.) is already available on the Social Web, and
many sources already publish this data using vocabularies such as FOAF and SIOC.
Relying on those existing resources, Sharing Spaces could be dynamically defined
using simple SPARQL15 queries that could identify the members of a particular Shar-
ing Space by collecting data across different data sources. We believe that this way of
defining Sharing Spaces is flexible enough to cover the needs of real life scenarios
identified in our user study, and we will illustrate it on an example in the following
subsection.

When proposing to use data from various distributed datasets, we should acknowl-
edge that executing queries over distributed datasets might be a challenging task.
However, this challenge has already attracted researchers to develop solutions for this
distributed scenario. One of them is a system DARQ [10], an engine for federated
SPARQL queries, or the Semantic Web client library16 that can be used to consider
the Semantic Web as a single graph to be quieried from a single entry point.

10 http://sioc-project.org/
11 Friend-of-a-Friend vocabulary http://xmlns.com/foaf/spec/
12 Semantic Web Conference Ontology
http://data.semanticweb.org/ns/swc/swc_2009-05-09.html

13 World Geodetic System ontology http://www.w3.org/2003/01/geo/
14 Other properties and classes introduced to support the notion of Sharing Space can be found

in the specification document http://www.milanstankovic.org/opo/specs/
15 http://www.w3.org/TR/rdf-sparql-query/
16 http://www4.wiwiss.fu-berlin.de/bizer/ng4j/semwebclient/

204 M. Stankovic, A. Passant, and P. Laublet

Apart from specifying Sharing Space members using SPARQL, the new version of
the OWL language17, recently adopted as a W3C recommendation [11] will provide a
way to define Sharing Spaces through richer restriction axioms such as property
chains. Property chains would allow to state that if a user satisfies a certain property
then he is automatically a member of a Sharing Space. For example, if the user has
interest in the topic that is at the same time associated with a Sharing Space (that is
the common interest of all Sharing Space members); an OWL 2 property chain could
be created to imply that the user is a member of the Sharing Space. The example defi-
nition of this property is given on the Figure 3.

SubPropertyOf(
PropertyChain(

foaf:interest ObjectInverseOf(opo:commonInterest)
)
ex:member

)

Fig. 3. OWL 2 Property Chain defining a Sharing Space

However, when we use property chains we should take care not to change the se-
mantics of properties defined elsewhere. This is why in our example we use the prop-
erty ex:member that is thaught of as the subproperty of foaf:member18 defined in the
FOAF ontology. It is introduced since statements made directly about the
foaf:member property (that is created and maintained by other people) might redefine
its original meaning ant thus be considered as vocabulary hijacking [12]. This sub-
property introduced only for the purpose of this example makes the impact of the
statement to the semantics of foaf:member property more genuine.

Document(
Prefix(dbpedia <http://dbpedia.org/resource/>)
Prefix(ex <http://example.org/ns#>)
Prefix(opo <http://ggg.milanstankovic.org/opo/ns#>)
Prefix(foaf <http://xmlns.com/foaf/0.1/>)
Group (
 Forall ?person ?presence (
 ?person[foaf:memberOf -> ex:currentlyInParis] :-

?person[
foaf:topic_interest -> dbpedia:Semantic_Web
opo:declaresOnlinePresence -> ?presence

]
?presence[
opo:currentLocation -> <http://sws.geonames.org/2988507/>

]
)

)

Fig. 4. Sharing Space in Object-Oriented Representation in RIF Core presentation syntax

17 http://www.w3.org/2004/OWL/
18 foaf:member property is used to state that one foaf:Person is a member of a foaf:Group.

 Directing Status Messages to Their Audience in Online Communities 205

We also believe that the emerging Rule Interchange Format [13] – RIF (currently a
candidate recommendation) will be a useful way to define and exchange Sharing
Space definition rules across different systems that may use different rule languages
internally. RIF is meant to serve for the exchange of rules on the Semantic Web, and
it could therefore be a good solution for the specific need of sharing Sharing Space
definitions.

On Figure 4 we give an example Sharing Space definition represented using RIF
Object-oriented syntax. The example defines the Sharing Space called
ex:currentlyInParis. All persons having an interest in Semantic Web (the
concept is uniquely identified by DBPedia19 URI) and having declared Paris as their
current location in their presence declaration; will according to this rule, be automati-
cally considered as members of this Sharing Space. In our example we rely on the
Geonames20 URI for Paris, to uniquely identify this geographical location.

6.1 Scenario of Use

To better illustrate the flexibility of our approach and the usefulness of Linked Data, we
present a scenario of publishing a status message together with a dedication to a particu-
lar Sharing Space. Figure 5 will serve as a graphical support to our explanations.

In this scenario, our example user Harry is organizing a reunion for his friends
from the Semantic Web community. The reunion will take place in Paris, and Harry
wants to announce it in his status message.

Thanks to the open nature of Semantic Web technologies, any status message pub-
lishing service (including microblogging platforms, social networks, chat platforms)
can publish a status message and describe it using the OPO vocabulary, while transla-
tion services can be written for existing services to provide their data as RDF using
OPO. Then, Harry’s status message publishing service can offer a semantically-rich
description of the message and make it available to all status message consuming
services. It can further associate it with a particular audience, by using the intended-
For property and the concept of a SharingSpace. Along with OPO data about the

Fig. 5. Publishing a Status Message

19 DBPedia is a semantic Wikipedia – the repository of RDF data extracted from Wikipedia

articles; http://dbpedia.org
20 http://www.geonames.org/

206 M. Stankovic, A. Passant, and P. Laublet

status message itself, Harry’s service can publish a SPARQL query to define the
members of the Sharing Space. In our case, since Harry’s message is intended for
people interested in Semantic Web who are currently in Paris, the SPARQL Query
would be similar to the one presented in Figure 4.

To make better use of the data available in Linked Data sources, we can reuse ex-
isting URIs used by those sources. In this example we rely on DBPedia and
Geonames URIs, like in the previous RIF example, to benefit from already existing
identifiers to represent respectively an interest and a location.

PREFIX opo: <http://http://ggg.milanstankovic.org/opo/ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

CONSTRUCT
{
 <http://example.org/ns#SWPeopleInParis>

 rdf:type opo:SharingSpace;
 foaf:member ?person.
}
WHERE
{
 ?person foaf:topic_interest

<http://dbpedia.org/resource/Semantic_Web>.
 ?person opo:declaresOnlinePresence ?presence .
 ?presence opo:currentLocation

 <http://sws.geonames.org/2988507/>.
}

Fig. 6. Example definition of a Sharing Space

Once the message is available together with its semantic description, and a Sharing
Space definition, other services can consume it and make it available to their users.
Let us take another example user, Sally. She is Harry’s friend, interested in Semantic
Web and currently visiting Paris (according to her last published status message with
associated geographic location information). Although Sally is not using the same
status message publishing service as Harry, her Social Network (SN) service, can
retrieve semantically described status messages and SPARQL queries defining Shar-
ing Spaces. Since information about Sally’s interest is available in one of her FOAF
files, and available to her SN, and since her current location is also known to SN,
applying the SPARQL query from Figure 6 will put Sally in SWPeopleInParis Shar-
ing Space - the one Harry’s status message is intended for.

Sally’s interface for browsing status messages can now make sure that status mes-
sages intended for her get to her attention and somehow stand out from the abundance
of other status messages put online by her friends and other people.

6.2 Benefits of Sharing Spaces

Combining the publishing of status messages using OPO and the extension describe
earlier with the definitions of Sharing Spaces can help direct a status message to its
audience. As opposed to solutions where particular (sometimes even closed) services
are used to dedicate a status message to a certain group of people, our approach offers
a way to dedicate a status message to a certain audience regardless of the service

 Directing Status Messages to Their Audience in Online Communities 207

being used to publish them and present them (requirement R5). It is the use of widely
accepted Semantic Web standards (e.g., RDF(S) and OWL) that make the intended
audience specifications universal and thus applicable everywhere.

The approach also allows taking into account the ever-changing nature of user-
related data, since membership in a Sharing Space can be defined through a property
and not by naming particular members (requirements: R1-R4). Therefore users can
belong to a sharing space at one time when they satisfy a certain condition (e.g. cur-
rently located in Paris), and not belong to it at all other times, that switch between
sharing spaces being done dynamically thanks to the attribute of the users, that change
over time and sometime other contexts such as location (requirement R6).

Apart from solving the issue of status message overload and helping relevant mes-
sages to reach their audience, Sharing Spaces can serve as a ground for ensuring pri-
vacy and confidential status message sharing (requirement R7). Our approach is based
on the idea [14] that ensuring trust and privacy on the future Web can be grounded on
the interlinked graph of data (i.e. Linked Data) and policies that take advantage of
existing data sources. The introduced change in the OPO vocabulary is a first step in
this direction, allowing specifying the intended audience of a status message by reus-
ing existing (linked) data on the Web. Further mechanisms to enforce the delivery of a
status message to the specified intended audience can be built on top of our presented
solution. The advantage of this approach is that dedicating a status message to its
audience is quite a general solution, addressing at the same time the challenge of
dealing with information noise, and being the ground for ensuring the confidential
status message sharing.

Finally we would like to emphasize how the presence diamond helped to summa-
rize the requirements associated with the audience of status messages, and how the
Semantic Web solution emerged naturally, as sharing spaces represent in fact facets of
the presence diamond.

7 Related Work

Similar to our use of SPARQL to define sharing spaces i.e. intended audience groups,
Alessandra Toninelli et al. [15] use RDF and SPARQL triple patterns to build social
graph aware policies. Using triple patterns different policies can be created to grant
access to user’s attention (e.g., ring her phone). However this work is more related to
mobile devices as it strongly reflects the specifics of communication using a mobile
device, and in this sense it is complementary to our work in effort to make use of
social data available in Linked Data sources to enhance user’s interaction with de-
vices and make her communications more adapted to her current situation. Another
point of difference is that the socially-aware policy model is more concerned at grant-
ing/restricting access to a certain resource than dedicating/directing presence informa-
tion to a certain audience.

Another example of related work is the MyCampus project that was aimed at devel-
oping a Semantic Web based platform to support social interactions of students in
university campuses [16]. Apart from other aspects of socialization, it deals with pres-
ence as well. When it comes to the problem of different audiences of different data,
researchers from the MyCampus project proposed a mechanism for providing different

208 M. Stankovic, A. Passant, and P. Laublet

granularity and different accuracy of contextual data to different audiences. For exam-
ple, depending on the presence data consumer, the user’s location could be obfuscated
or provided in a less precise form (e.g., like saying that the user is on the campus and
not disclosing the exact building where she is). Although this approach is quite useful
for user’s location and more structured data, in case of status messages it is difficult to
apply it because of unstructured nature of status messages published as text.

Researchers from Stanford University have noticed the difficulties in keeping track
of many e-mail addresses of our contacts, and have designed a system for directing e-
mail messages to people who satisfy a certain criteria [17]. Their system allows a user
to specify the characteristics of persons that should receive the message, and then uses
various Semantic Web data sources (most notably personal data described using
FOAF) to select the actual recipients and find their e-mail addresses. Even though the
approach is applied on e-mails and not status messages, it is very similar in nature;
which leads us to think how the notion of Sharing Spaces could be generalized to
serve in scenarios of directing other kind of content (not only status messages and
presence data). This generalization will certainly be one of the directions for our fu-
ture work.

8 Conclusions and Future Work

In this paper we presented the results of our user study, based on qualitative research
techniques, which was aimed at identifying the nature of problems surrounding status
message publishing. Our study emphasized the need to direct a status message to a
particular audience in order to deal with major issues like: Lack of Understanding, Sig-
nificance, and Privacy.

We have shown how users try to deal with those issues and what solutions did the
Social Web sites come up with to help direct a status message to a certain audience.
However, we judged all those solutions as incomplete either because they require
users to join particular status sharing networks or because they restrain users from
publishing certain types of status messages.

Our solution to the problem of dedicating a status message to a particular audience
is based on providing semantic descriptions of intended audience and taking advan-
tage of existing data about users published as Linked Data on the Web. Particularly
we rely on an extension of the Online Presence Ontology that allows for associating
the intended audience information to a status message. Since the solution is based on
Semantic Web technologies it allows a high level of interoperability and gives the
intended audience information the ability to flow across different status message shar-
ing services. Moreover, our semantic descriptions of intended audiences possess the
ability to collect the intended audience members’ information from different Linked
Data sources across the Web, which makes them universal and based on existing and
already available data.

A part of our future work will consist in evaluating the practical aspects of our pro-
posal by extending the distributed microblogging platform SMOB21, described in [18]
to publish and take into account the intended audience information through the use of

21 http://smob.sioc-project.org/

 Directing Status Messages to Their Audience in Online Communities 209

new notion of Sharing Space introduced in the Online Presence Ontology. Among
others, the new version of SMOB will make use of data available as Linked Data on
the Web to create refined descriptions of audience for its status messages.

While the simple publishing and taking into account of intended audience informa-
tion would be sufficient to combat the information noise problem, encompassing both
issues of Lack of Understanding and Significance; some additional access control
mechanisms must be employed to ensure that the intended audience specifications are
properly applied across the Web. As a solution to access control we are considering to
use the FOAF + SSL protocol [19] – a lightweight solution for authentication and
authorization, based on the semantics exposed using the widespread FOAF vocabu-
lary. The OpenID22 framework for providing a single digital identity across the
Internet can also elegantly contribute to achieve simple access control. OAuth23 au-
thorization protocol could also be helpful in ensuring secure exchange of intended
audience information across different services on the Social Web. This protocol might
also be of great value to the confidential exchange of other sensitive data (user pro-
files, locations, etc.) that is relevant for status message directing.

Although our solution for directing a status message to its audience is flexible in
specifying the intended recipients of the status message, a lot of work remains to be
done to ensure that the unintended recipients do not get access to it. We see the pre-
sented extension of OPO and the notion of Sharing Space as a first step in this direction.

References

1. Bell, A.: Language style as audience design. Language in Society 13, 145–204 (1984)
2. Lenhart, A., Fox, S.: Twitter and status updating. Report of Pew Internet and American

Life Project (February 12, 2009),
http://www.pewinternet.org/Reports/2009/
Twitterand-status-updating.aspx

3. Glaser, B., Strauss, A.: Discovery of Grounded Theory. Aldine, Chicago (1976)
4. Stankovic, M.: Faceted Online Presence – A Semantic Web Approach. Master’s Thesis.

Université Paris-Sud XI, Orsay, France (2009),
 http://milstan.net/papers/masters.pdf

5. Ladegaard, H.J.: Audience design revisited: persons, roles, and power relations in speech
interactions. Language and Communication 15, 89–101 (1995)

6. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (May
2001),
http://www.sciam.com/article.cfm?id=
the-semantic-web&print=true

7. Berners-Lee, T.: Design Issues: Linked Data (2006),
http://www.w3.org/DesignIssues/LinkedData.html

8. Stankovic, M.: Modeling Online Presence. In: Proceedings of the First Social Data on the
Web Workshop, Karlsruhe, Germany (2008),
http://sunsite.informatik.rwth-aachen.de/Publications/
CEUR-WS/Vol-405/paper9.pdf

22 http://openid.net/
23 http://oauth.net/

210 M. Stankovic, A. Passant, and P. Laublet

9. Breslin, J.G., Harth, A., Bojars, U., Decker, S.: Towards Semantically-Interlinked Online
Communities. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp.
500–514. Springer, Heidelberg (2005)

10. Quilitz, B., Leser, U.: Querying distributed RDF data sources with SPARQL. In:
Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS,
vol. 5021, pp. 524–538. Springer, Heidelberg (2008),

 http://www.eswc2008.org/final-pdfs-for-web-site/qpII-2.pdf
11. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 Web Ontology Language: Structural

Specification and Functional-Style Syntax (2009),
 http://www.w3.org/TR/owl2-syntax/

12. Hogan, A., Harth, A., Polleres, A.: Scalable Authoritative OWL Reasoning for the Web.
International Journal on Semantic Web and Information Systems 5(2), 49–90 (2009)

13. Boley, H., Hallmark, G., Kifer, M., Pasche, A., Pollares, A., Reynolds, D.R.: RIF Core
(2008), http://www.w3.org/TR/rif-core/

14. Passant, A., Kärger, P., Hausenblas, M., Olmedilla, D., Pollares, A., Decker, S.: Enabling
Trust and Privacy on the Social Web. In: Proceedings of W3C Workshop on the Future of
Social Networks, Barcelona (January 15-16, 2009),

 http://www.w3.org/2008/09/msnws/papers/trustprivacy.html
15. Toninelli, A., Khushraj, D., Lassila, O., Montanari, R.: Towards Socially Aware Mobile

Phones. In: Proceedings of the First Social Data on the Web Workshop, CEUR Workshop
Proceedings, Karlsruhe, Germany, October 27 (2008) ISSN 1613-0073,
http://ftp1.de.freebsd.org/Publications/CEUR-WS/
Vol-405/paper1.pdf

16. Sadeh, N., Gandon, F., Kwon, O.B.: Ambient Intelligence and Pervasive Computing. In:
Vasilakos, T., Pedrycz, W. (eds.) Ambient Intelligence: The MyCampus Experience.
ArTech House, Norwood (2006),
http://www.cs.cmu.edu/~sadeh/Publications/
More%20Complete%20List/Ambient%20Intelligence%20Tech%20Report
%20final.pdf

17. Kassoff, M., Petrie, C., Zen, L.M., Genesereth, M.: Semantic Email Addressing: Sending
Email to People, Not Strings. In: AAAI 2006 Fall Symposium on Integrating Reasoning
into Everyday Applications (2006),
http://www.aaai.org/Papers/Symposia/Fall/2006/FS-06-04/
FS06-04-004.pdf

18. Passant, A., Hastrup, T., Bojars, U., Breslin, J.,, M.: A Semantic Web and Distributed Ap-
proach. In: Proceedings of the 4th Workshop on Scripting for the Semantic Web, CEUR
Workshop Proceedings, Tenerife, Spain, June 02 (2008) ISSN 1613-0073,

 http://www.semanticscripting.org/SFSW2008/papers/11.pdf
19. Story, H.: FOAF & SSL: creating a global decentralized authentication protocol. In: W3C

Workshop on the Future of Social Networking, Barcelona, Spain, January 15-16 (2009),
http://blogs.sun.com/bblfish/entry/foaf_ssl_creating_a_global

Effects of Social Network Topology and Options

on Norm Emergence

Onkur Sen1 and Sandip Sen2

1 Oklahoma School of Science and Mathematics
onkursen@gmail.com

2 Department of Computer Science
University of Tulsa
sandip@utulsa.edu

Abstract. A social norm is a behavior that emerges as a convention
within society without any direction from a central authority. Social
norms emerge as repeated interactions between individuals give rise to
biases toward actions or behaviors which spread through the society un-
til one behavior is adapted as the default behavior, even when multiple
acceptable behaviors exist. Of particular interest to us is how and when
norms emerge in social networks, which provide a framework for individ-
uals to interact routinely. We study how quickly norms converge in social
networks depending on parameters such as the topology of the network,
population size, neighborhood size, and number of behavior alternatives.
Our research can be used to model and analyze popular social networks
on the Internet such as Facebook, Flickr, and Digg. In addition, it can
be used to predict how norms emerge and spread in human societies,
ranging from routine decisions like which side of the road to drive on to
social trends such as the green phenomenon.

1 Introduction

Recent literature in multiagent systems show a significant increase in interest
and research on normative systems which are defined as [6]:

A normative multiagent system is a multiagent system organized by
means of mechanisms to represent, communicate, distribute, detect, cre-
ate, modify, and enforce norms, and mechanisms to deliberate about
norms and detect norm violation and fulfillment.

Norms or conventions routinely guide the choice of behaviors in human so-
cieties and plays a pivotal role in determining social order [19]. Conformity to
norms reduces social frictions, relieves cognitive load on humans, and facilitates
coordination. “Everyone conforms, everyone expects others to conform, and ev-
eryone has good reason to conform because conforming is in each person’s best
interest when everyone else plans to conform” [21]. Norms or conventions can

J. Padget et al. (Eds.): COIN 2009, LNAI 6069, pp. 211–222, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

212 O. Sen and S. Sen

therefore be substituted as external correlating signals to promote coordination
(all coordination is choosing a solution from a space of possible solutions).

While these aspects of norms or conventions have merited in-depth study of
the evolution and economics of norms in social situations [14, 28, 38, 39], we are
particularly interested in the following characterization: “... we may define a
convention as an equilibrium that everyone expects in interactions that have
more than one equilibrium.” [39]. This observation has particular significance
for the study of norms1 in the context of computational agents.

As computational agents in a multiagent system often have to coordinate
their actions, adoption and adherence to norms can improve the efficiency of
agent societies. A large class of interactions between self-interested agents (play-
ers) can be formulated as stage games with simultaneous moves made by the
players [18]. Such stage games often have multiple equilibria [23], which makes
coordination difficult. While focal points [31] can be used to disambiguate such
choices, they may not be available in all situations. Norms can also be thought
of as focal points evolved through learning [39] that reduces disagreement and
promote coherent behavior in societies with minimal oversight or centralized con-
trol [9]. Norms can therefore have economic value to agents and help improve
their efficiency.

To study the important phenomenon of emergence of social norms via private
interactions, we use the following interaction framework. We consider a popu-
lation of agents, where, in each interaction, each agent is paired with another
agent randomly selected from the population. Each agent then is learning con-
currently over repeated interactions with randomly selected members from the
population. We refer to this kind of learning social learning [22,33] to distinguish
from learning in iterated games against the same opponent [15].

Our experiments involve symmetric games with multiple pure-strategy equi-
libria with the same payoff. While some research on norm emergence assumed
uniform interaction probabilities between agents [33,34] others have studied the
effect of topologies of agent relationships [11, 20, 22]. This body of research can
be further divided into interaction-based learning approaches to norm emer-
gence [22] and observation-based adoption approaches [11]. In the interaction-
based learning mode, agents learn utility estimates of their behavior choices and
over time converge on a particular behavior that becomes the norm in the society.
In this mode, agents actually do not even need to observe others’ behaviors. In
the observation-based learning mode, agents’ behaviors must be fully observable
and typically there is no direct consideration of utilities.

We are interested in studying how different network topologies affect the rate
of interaction based norm emergence. In particular, we experiment with (a) scale-
free networks, (b) fully-connected networks, and (c) ring networks. Within ring
networks we further consider the effect of neighborhood sizes, where a neighbor-
hood size of δ implies that any node in the ring can interact with the δ nearest
nodes on the ring. Such ring networks represent realistic situations where the
agents are physically situated in space and are more likely to interact with other

1 Henceforth we use the term norm to refer to both social norms and conventions.

Effects of Social Network Topology and Options on Norm Emergence 213

agents in their physical proximity2. Scale-free networks, on the other hand, rep-
resent logical connectivity in social networks [2], and represent situations where
the node degrees of the network follow a power law distribution [24]. With the
explosion in interest in social networking sites like Facebook, MySpace, Flickr,
Digg, etc., understanding and exploiting how information is disseminated and
how choices are adopted by individuals in social networks have assumed critical
significance both to social scientists who want to study this fascinating social
phenomena and to companies who want to benefit from mining these interaction
data to produce better marketing and advertising tools.

While our previous work [22,33] has studied the effect of learning algorithms,
population biases, physical proximity based interaction likelihood, etc. we have
not addressed the issue of scale-up. Whereas studying scaling-up properties of
rate of norm convergence for larger agent societies is of obvious interest given
rapid growth of user base of social networking sites, we believe that studying
norm emergence scale-up properties of different network topologies in face of
increasing number of alternate choices or behaviors can also offer key insights
to the working of these systems. For example, users face an increasingly di-
verse set of choices in their everyday interactions, ranging from usage of soft-
ware and web-based products (email clients, chat facilities, browsers, social net-
working/blogging sites), availability of TV shows, interaction styles (emoticons,
acronyms, etc.). It would be of significant interest and value to better understand
how and when the entire society, or any sub-group thereof, adopt a particular
choice given a large set of initial choices. Who are the drivers of this adoption,
e.g., are the hubs in a social network the drivers or facilitators of the rise of com-
mon choices or conventions? While this paper does not purport to answer all of
these complex, interrelated issues, we will evaluate how increasing the number of
alternative available behaviors affect the rate of norm emergence in the different
network topologies described above.

The rest of the paper is organized as follows: in Section 2 we briefly overview
relevant literature; in Section 3 we present the network topologies we use in
our study; in Section 4 we describe how individuals behave in the network; in
Section 5 we analyze our experimental results and their implications; in Section 6,
we summarize our results and propose future work.

2 Related Work

Norms may be adhered to in human societies because they facilitate the function-
ing of individuals, or because of the threat of social disapproval [29] or acceptance
by individuals of desired conduct [13]. They are self-enforcing: “A norm exists in
a given social setting to the extent that individuals usually act in a certain way
2 In physical environments, e.g., real-life physical interactions between humans in the

society, agents are much more likely to interact with those in close physical proximity
compared to others located further away. Such physical or spatial interaction con-
straints or biases have been well-recognized in social sciences [26] and, more recently,
in multiagent systems literature [32].

214 O. Sen and S. Sen

and are often punished when seen not to be acting in this way” [3]. Conventions
in human societies range from fashions to tipping, driving etiquette to interac-
tion protocols. Norms are ingrained in our social milieu and play a pivotal role
in all kinds of business, political, social, and personal choices and interactions.

Hence, the systematic study and development of robust mechanisms that facil-
itate emergence of stable, efficient norms via learning in agent societies promises
to be a productive research area that can improve coordination in and thereby
functioning of agent societies. Establishment of social norms may come about
by top-down influences like official edicts and role models, bottom-up processes
driven by local customs, and lateral diffusion of established norms between re-
lated interaction types [37]. Most research on norms in multiagent systems focus
on the legalistic view where norms are used to shape the behavior of open systems
without using sanctions to enforce desirable behavior. In this approach norms
are typically logically specified using a normative language [16] from which rules
of behavior can be automatically derived [10]. Our approach to norm emergence
from personal interactions is based on the interactionist view, which adopts a
bottom-up view of individual adoption of norms because of alignment of goals
and utilities between agents in a population [7, 8].

While researchers have studied the emergence of norms in agent populations,
they typically assume access to significant amount of global knowledge [14, 28,
38, 39]. For example, all of these models assume that individual agents can ob-
serve interactions between other agents in the environment. While these results
do provide key insights into the emergence of norms in societies where the as-
sumption of observability holds, it is unclear if and how norms will emerge if all
interactions were private, i.e., not observable to any other agent not involved in
the interaction.

Amaral et al. study the topology of various “small-world” networks, which en-
compass scale-free networks [2]. Noble et al. study how the topology of a network
affects the rate of spreading of information [25]. The need for effective norms to
control agent behaviors is well-recognized in multiagent societies [5, 11]. In par-
ticular, norms are key to the efficient functioning of electronic institutions [17].
Most of the work in multiagent systems on norms, however, has centered on logic
or rule-based specification and enforcement of norms [12]. Similar to these re-
search, the work on normative, game-theoretic approach to norm derivation and
enforcement also assumes centralized authority and knowledge, as well as system
level goals [4,5]. While norms can be established by centralized diktat, norms in
real-life often evolve in a bottom-up manner, via “the gradual accretion of prece-
dent” [39]. In our formulation, norms evolve as agents learn from their interac-
tions with other agents in the society using multiagent reinforcement learning
algorithms [27]. Most multiagent reinforcement learning literature involve two
agents iteratively playing a stage game and the goal is to learn policies to reach
preferred equilibrium [30]. Another line of research considers a large population
of agents learning to play a cooperative game where the reward of each individ-
ual agent depends on the joint action of all the agents in the population [35].
The goal of the learning agent is to maximize an objective function for the entire

Effects of Social Network Topology and Options on Norm Emergence 215

population, the world utility. While these learning approaches consider the same
set of individuals repeatedly interacting and learning, in our framework an agent
learns by interacting with different individuals at each time step.

3 Network Topologies

An important property of the topology of a social network is its diameter. A
social network’s diameter is defined as the largest distance between any two
nodes in a network. The diameter represents the largest path within the network
and characterizes the compactness and connectivity of the network. A network
with a small diameter is very well-connected, and thus the average path length of
the network will be small. On the other hand, a network with a large diameter
will be very sparsely-connected, and the average path length can be large. In
addition, a network with a small diameter is more likely to have many different
paths between nodes, but a network with a large diameter will have many longer
paths between nodes.

Scale-free networks have the structural property that the connectivity of the
network follows a power law distribution. This means that the network has a
small number of nodes, designated as hubs, which have a very high connectivity.
However, the most of the nodes in the network are sparsely-connected. A familiar
example is the current airport system: small cities do not have very busy airports,
but cities like Atlanta, Chicago, and Los Angeles are analogous to the hubs in
the network. The diameter of a scale-free network can be approximated as the
largest distance among hubs plus 2 since this is the distance between a neighbor
of one hub of the longest path and a neighbor of the other hub of the longest
path. We use the algorithm presented by Albert and Barabási [1] to generate
scale-free networks (the parameters used were as follows: number of initial nodes
= 10, number of links to be added or rewired at each step = 3, probability of
adding links = 0.4, probability of rewiring links = 0.4).

We also examine ring networks, where nodes are connected in a ring. We
actually consider generalized rings where each node is linked to all other nodes
within a certain distance δ, the neighborhood size. Unlike scale-free networks, in
which certain nodes dominate the network, in a ring network, all nodes have the
same connectivity and thus are equally important in the network.

A special case of a ring network is a fully-connected network (also known
in graph theory as a clique), in which every node is connected to every other
node. Therefore, a fully-connected network is a ring network with diameter 1 or
neighborhood size equal to the size of the network.

4 Individual Behavior in Networks

In our framework, an agent interacts with a random neighbor at each time inter-
val. An interaction consists of both agents selecting an action (behavior). The
first agent receives a payoff based on the action chosen by both agents: if the
actions are identical, the payoff is +4; else, the payoff is −1. An agent does not

216 O. Sen and S. Sen

know the identity of its opponent, nor its opponent’s payoff, but it can observe
the action taken by the opponent (perfect but incomplete information). Note
that only one player gains experience from each interaction. This is to ensure
that all agents learn at the same rate, as opposed to agents that are randomly
chosen more often learning quicker than those who are chosen less often. We
present the protocol of interaction for the entire agent society in Algorithm 1.

for a fixed number of time intervals do
repeat

remove randomly agents pa from the population
randomly choose pb, one of the neighbors of pa,
pa and pb choose their respective actions;
pa updates its utility estimate for the chosen action based on the
reward received from the joint action

until all agents have been selected during this time interval ;
end

Algorithm 1. Interaction protocol

Upon receiving the payoff from an interaction, an agent adjusts its estimate
of the utility of the action chosen using Q-Learning [36]:

Qt(a) = αR + (1− α)Qt−1(a),

where Qt(a) represents the agent’s Q-valuation of the action a at time t, R is the
reward received, and α is a learning rate that weights the current reward with
the previous valuation of the action to produce a more accurate approximation
to the true valuation. Next, the agents semi-deterministically choose the action
estimated to be the most profitable, i.e., the agents will choose the action with
the highest valuation most of the time, but with a small probability ε (we use
ε = 0.2) they will instead choose a random action. Note that the choice of action
does not change their opinion of which action is the most profitable. Algorithm 2
details the behavior followed by an agent at each time interval:

Data: Q-Table Q[], action a, Reward R, Learning Rate α
R = playRandomNeighbor();
Q[a]← αR + (1− α)Q[a];
probabilityOfRandomAction = generateRandomDouble();
if probabilityOfRandomAction <= ε then

action = Q[generateRandomInteger(numberOfActions)];
else

action = Q.indexOf(max(Q));
end

Algorithm 2. Action selection and Learning algorithm

Effects of Social Network Topology and Options on Norm Emergence 217

5 Results

The performance metric for our experiments was the number of time intervals
necessary for convergence, i.e., how quickly a norm emerges. As an example, for
a population N = 100 and the number of actions A = 5, we examined how many
agents were following each action over time until 100% of the population view
the same action to be the most profitable, i.e. that action emerged as the norm
in the society. We performed experiments for scale-free and ring networks (in the
following, unless otherwise specified, we include the results from the completely
connected network as a special case of ring network with diameter 1). The set
of experiments that we ran are as follows:

Scale-free networks: We studied how varying the number of actions as well
as the population size would affect the rate of norm emergence. We varied
A over the set {2, 5, 10, 20}, and N over the set {250, 500, 750, 1000}.

Ring networks: Within ring networks, we also studied the variation of the
number of actions A over the set {2, 5, 20}, but instead of varying the
population size (fixed at 500), we varied the diameter D of the network over
the set {1, 2, 3, 4}.

Comparing Topologies: We compared the convergence speeds of scale-free
and ring networks for A = 2 and A = 20.

5.1 The Norm Emergence Process

Figure 1 shows graphs for how norms emerge in a society of 100 social learners
with 5 action choices. Initially, approximately the same number of agents play
each action. Over time, however, through agent-agent interactions, a bias toward
one action spreads through the entire network until 100% of the population
believes that this action is the most profitable, i.e., its Q-value is the highest. At
this point (approximately time 70 for the scale-free network and time 100 for the
fully-connected network), we say that a norm has emerged. However, this process
may sometime demonstrate surprising complexity. For example, in the graph for
fully-connected networks, the blue and orange actions rise at approximately the
same rate until about time 35 when the blue action dominates the orange action
and later emerges as the norm.

5.2 Scale-Free Networks

Figure 2 show the iterations required to reach different levels of consensus in the
network, measured as the largest percentage of agents to prefer the same action,
for our experiments on scale-free networks. All scale-free network systems con-
verged to a norm; however, the speed of norm emergence varied. A larger number
of available actions resulted in a delayed convergence of the system. This is to
be expected as a larger number of actions may produce local norms dispersed

218 O. Sen and S. Sen

Fig. 1. The process of norm emergence in scale-free (left) and fully-connected (right)
networks

Fig. 2. Iterations required to reach different levels of consensus in scale-free networks
with varying number of action options (left) and network size (right)

throughout the network which will lead to many clashes across localities. These
conflicting norms must then be resolved and consensus slowly spreads through-
out the network until one action emerges as the norm. In addition, a larger
population size also delays the emergence of a norm in the network. This is be-
cause a larger population size entails that more nodes have to converge to that
action based on interaction with other agents.

5.3 Ring Networks

Similar results from ring networks (see Figure 3) shows similar results as scale-
free networks in that a larger of number of actions resulted in a slower converge
time. In addition, an increase in diameter of the graph causes a near-exponential
growth in convergence time. This is because as the diameter of the ring network
grows, the spread of bias takes more intermediaries. Hence, biases tend to be

Effects of Social Network Topology and Options on Norm Emergence 219

Fig. 3. Iterations required to reach different levels of consensus in ring networks with
varying number of action options (left) and network diameter (right)

confined within a locality until the localities converge on an action, at which point
the bias toward an action can spread to other areas of the network. However, a
notable exception to this is a comparison between D = 1, i.e., a fully connected
network, and D = 2, where the convergence rates are approximately the same.
This is because interacting with everybody may, in some cases, lead to more
time taken to form a consensus.

5.4 Comparing Scale-Free and Ring Networks

Figure 4 shows the comparison of scale-free, fully-connected, and normal ring
networks for both a small and large number of actions. For a small number of
actions, the ring network converges the fastest, followed by the fully-connected
network, and the scale-free network converges last. However, for a large number
of actions, the scale-free network converges much faster than the ring and fully-
connected networks. The slight difference between the ring and fully-connected
networks can be explained as mentioned above in that interacting with almost
everybody can strike the right balance between developing and propagating bi-
ases in some cases when compared to interacting with everybody. The fact that
scale-free is not that effective for small number of actions but is clearly more
efficient for a large number of action choices is a very surprising and intriguing
result. We conjecture a hypothesis that needs to be further refined and tested to
explain this phenomenon. Note that the structure of scale-free networks is based
around a small number of hubs which dominate the network. However, in a ring
network, every node is equally important since each node has the same degree of
connectivity. For a small number of actions, the ring networks converge in a rel-
atively small amount of time as clashes have a smaller probability of occurring.
However, as the number of actions available increases, the convergence time for
the ring networks will increase rather quickly since clashes are more likely to oc-
cur within localities. This delays convergence of a node’s locality, and the spread

220 O. Sen and S. Sen

Fig. 4. Comparing convergence speeds of scale-free, normal ring, and fully-connected
networks for A = 2 (left) and A = 20 (right)

of bias throughout the network is slowed, resulting in a longer time for the norm
to emergence. However, for scale-free networks, after a certain threshold, the
number of actions becomes insignificant since the actions the hubs choose are
the ones that will drive the rest of the network. The sparsely-connected nodes
will follow the hubs on what action to choose. Therefore, the convergence for
a scale-free network is determined by which actions the hubs choose and how
quickly the hubs converge and that rate is less affected by an increase in the
number of actions available.

6 Conclusions and Future Work

Our research goal was to evaluate how varying topologies of social networks
would affect the emergence of norms through interaction-based social learning in
these networks. We chose to study scale-free, fully-connected, and ring networks
as the topologies. We were particularly interested in understanding the influence
of the number of action choices on the rate of norm emergence. An important,
counter-intuitive result from our experiments is that although ring networks
converge faster for a fewer number of actions, scale-free networks are able to
converge faster for a larger number of actions. In addition, we saw the general
trend that for both topologies, a larger population size and more actions to
choose from delays the emergence of a norm. For future work we first plan to
evaluate the hypothesis about the observed phenomena of relative performance
of ring and scale-free networks when number of actions is increased. Another
interesting set of experiments would be to weigh the experience with each node
based on its “status” in the network, e.g., its connectivity. This would mean,
e.g., that hub nodes in scale-free networks have more influence than tertiary
nodes. We also plan to study the emergence of norms in more topologies, e.g.,
small-world networks.

Effects of Social Network Topology and Options on Norm Emergence 221

References

1. Albert, R., Barabási, A.-L.: Topology of evolving networks: Local events and uni-
versality. Phys. Rev. Lett. 85(24), 5234–5237 (2000)

2. Amaral, L., Scala, A., Barthélémy, M., Stanley, H.: Classes of small-world net-
works. In: Proceedings of the National Academy of Sciences of the United States
of America, pp. 11149–11152 (2000)

3. Axelrod, R.: The complexity of cooperation: Agent-based models of conflict and
cooperation. Princeton University Press, Princeton (1997)

4. Boella, G., Lesmo, L.: A game theoretic approach to norms. Cognitive Science
Quarterly 2(3-4), 492–512 (2002)

5. Boella, G., van der Torre, L.: Norm governed multiagent systems: The delegation
of control to autonomous agents. In: Proceedings of IEEE/WIC IAT Conference,
pp. 329–335. IEEE Press, Los Alamitos (2003)

6. Boella, G., van der Torre, L., Verhagen, H.: Introduction to the special issue on
normative multiagent systems. Autonomous Agents and Multiagent Systems 17(1),
1–10 (2008)

7. Castelfranchi, C.: Modeling social action for AI agents. Artificial Intelligence 103(1-
2), 157–182 (1998)

8. Castelfranchi, C.: Formalising the informal? Dynamic social order, bottom-up so-
cial control, and spontaneous normative relations. Journal of Applied Logic 1(1-2),
47–92 (2003)

9. Coleman, J.S.: Norms as social capital. In: Radnitzky, G., Bernholz, P. (eds.) Eco-
nomic Imperialism: The Economic Approach Applied Outside the Field of Eco-
nomics. Paragon House, New York (1987)

10. da Silva, V.T.: From the specification to the implementation of norms: an auto-
matic approach to generate rules from norms to govern the behavior of agents.
Autonomous Agents and Multiagent Systems 17(1), 113–155 (2008)

11. Delgado, J., Pujol, J.M., Sanguesa, R.: Emergence of coordination in scale-free
networks. Web Intelligence and Agent Systems 1, 131–138 (2003)

12. Dignum, F., Kinny, D., Sonenberg, L.: From desires, obligations and norms to goals.
Cognitive Science Quarterly 2(3-4), 407–430 (2002)

13. Elster, J.: Social norms and economic theory. Journal of Economic Perspec-
tives 3(4), 99–117 (1989)

14. Epstein, J.M.: Learning to be thoughtless: Social norms and individual computa-
tion. Computational Economics 18, 9–24 (2001)

15. Fudenberg, D., Levine, K.: The Theory of Learning in Games. MIT Press, Cam-
bridge (1998)

16. Garcia-Camino, A., Rodriguez-Aguilar, J., Sierra, C.: Implementing norms in elec-
tronic institutions. In: Proceedings of the Fourth International Conference on Au-
tonomous Agents, pp. 667–673. ACM Press, New York (2005)

17. Garcia-Camino, A., Rodriguez-Aguilar, J., Sierra, C., Vasconcelos, W.: A rule-
based approach to norm-oriented programming of electronic institutions. ACM
SIGecom Exchanges 5(5), 33–41 (2006)

18. Genesereth, M., Ginsberg, M., Rosenschein, J.: Cooperation without communi-
cations. In: Proceedings of the National Conference on Artificial Intelligence,
Philadelphia, Pennsylvania, pp. 51–57 (1986)

19. Hume, D.: A Treatise of Human Nature. Oxford University Press, Oxford (1978)
20. Kittock, J.E.: The impact of locality and authority on emergent conventions: Initial

observations. In: AAAI, pp. 420–425 (1994)

222 O. Sen and S. Sen

21. Lewis, D.: Convention: A Philosophical Study. Harvard University Press, Cam-
bridge (1969)

22. Mukherjee, P., Sen, S., Airiau, S.: Norm emergence under constrained interactions
in diverse societies. In: Proceedings of the Seventh International Joint Conference
on Autonomous Agents and Multiagent Systems, pp. 779–786 (2008)

23. Myerson, R.B.: Game Theory: Analysis of Conflict. Harvard University Press, Cam-
bridge (1991)

24. Newman, M.: The structure and function of complex networks. SIAM Review 45,
167–256 (2003)

25. Noble, J., Davy, S., Franks, D.W.: Effects of the topology of social networks on in-
formation transmission. In: From Animals to Animats 8: Proceedings of the Eighth
International Conference on Simulation of Adaptive Behavior, pp. 395–404 (2004)

26. Nowak, M., May, R.M.: Evolutionary games and spatial chaos. Na-
ture(London) 359, 826–829 (1992)

27. Panait, L., Luke, S.: Cooperative multi-agent learning: The state of the art. Au-
tonomous Agents and Multi-Agent Systems 11(3), 387–434 (2005)

28. Posch, M.: Evolution of equilibria in the long run: A general theory and applica-
tions. Journal of Economic Theory 65, 383–415 (1995)

29. Posner, E.: Law and Social Norms. Harvard University Press, Cambridge (2000)
30. Powers, R., Shoham, Y.: New criteria and a new algorithm for learning in multi-

agent systems. In: Proceedings of NIPS (2005)
31. Schelling, T.C.: The Strategy of Conflict. Havard University Press, Cambridge

(1960)
32. Schweitzer, F., Zimmermann, J., Muhlenbein, H.: Coordination of decisions in a

spatial agent modela. Physica A 303(1-2), 189–216 (2001)
33. Sen, S., Airiau, S.: Emergence of norms through social learning. In: Proceedings of

the Twentieth International Joint Conference on Artificial Intelligence (IJCAI’07),
January 2007, pp. 1507–1512 (2007)

34. Shoham, Y., Tennenholtz, M.: On the emergence of social conventions: modeling,
analysis, and simulations. Artificial Intelligence 94, 139–166 (1997)

35. Tumer, K., Wolpert, D.H.: Collective intelligence and Braess’ paradox. In: Proceed-
ings of the Seventeenth National Conference on Artificial Intelligence, pp. 104–109.
AAAI Press, Menlo Park (2000)

36. Watkins, C.J.C.H., Dayan, P.D.: Q-learning. Machine Learning 3, 279–292 (1992)
37. Young, H.P.: Social norms. In: Durlauf, S.N., Blume, L.E. (eds.) The New Palgrave

Dictionary of Economics, 2nd edn. Macmillan, London (2008)
38. Young, P.H.: The evolution of conventions. Econometrica 61, 57–84 (1993)
39. Young, P.H.: The economics of convention. The Jounal of Economic Perspec-

tives 10(2), 105–122 (Spring 1996)

Directed Deadline Obligations in Agent-Based

Business Contracts

Henrique Lopes Cardoso and Eugénio Oliveira

LIACC, DEI / Faculdade de Engenharia, Universidade do Porto
R. Dr. Roberto Frias, 4200-465 Porto, Portugal

{hlc,eco}@fe.up.pt

Abstract. There are B2B relationships that presume cooperation in
contract enactment. This issue should be taken into account when model-
ing, for computational handling, contractual commitments through obli-
gations. Deadline obligations have been modeled by considering that
reaching the deadline without compliance brings up a violation. When
modeling commitments in business contracts, directed obligations have
been studied for identifying two agents: the obligation’s bearer and the
counterparty, who may claim for legal action in case of non-compliance.
We argue in favor of a directed deadline obligation approach, taking in-
spiration on international legislation over trade procedures. Our proposal
to model contractual obligations is based on authorizations granted in
specific states of an obligation lifecycle model, which we formalize using
temporal logic and implement in a rule-based system. The performance
of a contractual relationship is supported by a model of flexible dead-
lines, which allow for further cooperation between autonomous agents.
As a result, the decision-making space of agents concerning contractual
obligations is enlarged and becomes richer. We discuss the issues that
agents should take into account in this extended setting.

1 Introduction

In cooperative B2B Virtual Organizations, agents (representing different en-
terprises) share their own competences and skills in a regulated way, through
commitments expressed as norms in contracts. The importance of successfully
proceeding with business demands for flexibility of operations: agents should try
to facilitate the compliance of their partners. This common goal of conduct-
ing a multiparty business is based on the fact that group success also benefits
each agent’s private goals. These goals are not limited to the ongoing business
relationship, but also concern future opportunities that may arise.

While addressing this problem with norms and multi-agent systems, we find
that many approaches to normative multi-agent systems are abstracted away
from their potential application domain. As such, deontic operators are often

J. Padget et al. (Eds.): COIN 2009, LNAI 6069, pp. 225–240, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

226 H. Lopes Cardoso and E. Oliveira

taken to have a universal semantics. For instance, deadline obligations are vio-
lated if the obliged action or state is not obtained until the deadline is reached.

We argue that in some domains – such as in business contracts – such an
approach is not desirable. For instance, the United Nations Convention on Con-
tracts for the International Sale of Goods (CISG) [1] establishes what parties
may do in case of deadline violations. In some cases they are allowed to fulfill
their obligations after the deadline (Article 48), or even to extend the deadlines
with the allowance of their counterparties. Furthermore, a party may extend his
counterparty’s deadlines (Articles 47 and 63), which denotes a flexible and even
cooperative facet of trade contracts.

In this paper we propose a different approach (in comparison with [2][3][4][5])
to the use of obligations in MAS in the domain of business contracts. Following
a cooperative business performance posture, we argue that obligations should be
directed, and that deadlines should be flexible. We start by reviewing, in section
2, the most typical variations regarding the formalization of obligations, after
which we propose an approach based on directed obligations with deadlines.
The flexibility required when handling temporal restrictions of obligations is
addressed in section 3. The proposed approach is based on authorizations, and we
present a lifecycle for directed obligations with temporal restrictions. In section 4
we investigate the decision-making process of agents concerning authorizations.
Implementation of the proposed model in a rule-based system is discussed in
section 5. Section 6 discusses related work and section 7 concludes.

2 Contractual Obligations

The use of norms in MAS makes use of the well-known deontic operators of obli-
gation, permission and prohibition [6]. In theoretical deontic logic approaches,
these operators are sometimes used to represent abstract general principles (e.g.
it is forbidden to kill). In more applied research, deontic operators are ascribed
either to roles or to particular agents in a system; e.g. Ob(f) indicates that agent
b is obliged to bring about fact f (a state of affairs or an action) – in this case
agent b is said to be the bearer of the obligation.

Also, deontic operators are often made conditional and time constrained. Con-
sidering obligations, the conditional aspect has taken two different perspectives:
conditional obligations of the form Ob(f/s), meaning that agent b is obliged
to bring about f when situation s arises; and conditional norms of the form
s → Ob(f), meaning that if s then b is obliged to bring about f . As for the
temporal aspect of deontic operators, deadlines (either time references or more
generally defined as states of affairs) are typically employed for stipulating the
validity of the operator: Ob(f, d) is a deadline obligation indicating that agent b
is obliged to bring about f before d.

We will base the following discussion on the obligation deontic operator, as it
is the most important operator to represent trade relationships in B2B contracts.
The meaning of deontic operators has been studied, mainly regarding the use of

Directed Deadline Obligations in Agent-Based Business Contracts 227

deadlines (e.g. [2]). Regarding deadline obligations, the usual approach to their
semantics is to consider the following entailments1:

– Ob(f , d) ∧ (f B d) |= Fulfb(f , d) — If the fact to bring about occurs before
the deadline, the agent has fulfilled his obligation.

– Ob(f , d) ∧ (d B f) |= Violb(f , d) — If the deadline occurs before the fact to
bring about, the agent has violated his obligation.

The introduction of Fulf and Viol enables reasoning about the respective situ-
ations. The implementation of this semantics using forward-chaining rules has
been studied in [3]. Although intuitive, this semantics is quite rigid in that vi-
olations are all defined in a universal way (discounting the fact that different
norms can respond to violations in different ways).

The analysis of contracts brings into discussion the notion of directed obliga-
tions [8]. Obligations are seen as directed from a bearer (responsible for fulfilling
the obligation) to a counterparty. Some authors [4] define the very notion of con-
tractual obligation as an obligation with an “obligor” (bearer) and an “obligee”
(counterparty). The relationship between these two roles in a directed obligation
has been studied, giving rise to two different theories. The benefit theory pro-
motes the fact that the counterparty of an obligation is intended to benefit from
its fulfillment (see [8] for a benefit theory perspective of directed obligations). A
more relevant approach in which contracts are concerned – the claimant theory
– takes the stance that obligations are interpreted as claims from counterparties
to bearers (see [5] for a claimant theory support).

In general, claimant approaches are based on the following definition for di-
rected obligation (adapted from [5]): Ob,c(f) =def Ob(f) ∧ (¬f ⇒ Pc(lab)). A
directed obligation from agent b towards agent c to bring about f means that b
is obliged to bring about f and if b does not bring about f then c is permitted
to initiate legal action against b. The concept of legal action is rather vague.
A similar approach is taken in [9], where agent c is said to be authorized to
repair the situation in case b does not fulfill his obligation. Repair actions in-
clude demanding further actions from b; e.g., c may demand compensation for
damages. It is interesting to note that such definitions are careful enough to
base the claims of the counterparty on the non-fulfillment of the obligation, not
on its violation. In fact, these definitions do not include deadlines, which are
the basis for violation detection. Another significant issue is the discretionary
nature of the counterparty’s reaction (he is permitted or authorized), instead of
an automatic response based on the non-fulfillment of the bearer2.

1 In the following formulae we will follow linear temporal logic (LTL) [7], with a
discrete time model. Let x = (s0, s1, s2, ...) be a timeline, defined as a sequence
of states si. The syntax x |= p reads that p is true in timeline x. We write xk

to denote state sk of x, and xk |= p to mean that p is true at state xk. We
use a weak version of the before LTL operator B, where q is not mandatory:
x |= (p B q) iff ∃j (x j |= p ∧ ∀k<j (x

k |= ¬q)).
2 As in automatic violation detection approaches based on deadlines, complemented

with the definition of violation reaction norms.

228 H. Lopes Cardoso and E. Oliveira

We propose the use of directed deadline obligations as the basis for defining
contractual obligations: Ob,c(f, d). In section 3 we describe a model for flexible
obligation violation, based on the principle that the deadline is meant to indi-
cate when the counterparty is authorized to react to the non-fulfillment of an
obligation directed to him. A possible reaction is to declare the obligation as
violated, but there are other means to settle the matter, to the benefit of both
involved parties. An extension of directed (contractual) obligations with tempo-
ral restrictions is also introduced in [4], but that approach is based on a rigid
model of violations, in that they are automatically obtained at the deadline.

2.1 Directed Deadline Obligations

Our proposal combines directed [5][8] and deadline [2] obligations. Although this
has been done in the past (e.g. [4]), in our approach deadlines have a distinct
role in the definition of obligations. In section 3 we detail such a role.

Directed deadline obligations take the form Ob,c(f, d), meaning that agent b is
obliged towards agent c to bring about f before d. We do not make obligations
conditional (as in [4]), because we assume they are obtained from conditional
norms: rules prescribing obligations when certain situations arise.

We consider that if fact f is not yet the case when deadline d arises, the obli-
gation is not yet violated, but is in a state where the counterparty is authorized
to take some action. We emphasize the case for a deadline violation (as opposed
to obligation violation). This comprises a flexible approach to handling non-ideal
situations: each deadline violation is different, as each may have a different im-
pact on the ongoing business, and each occurs between a specific pair of agents
with a unique trust relationship.

Some evidence from the CISG convention [1] led us to this approach:

Article 48: (1) [...] the seller may, even after the date for delivery, remedy

at his own expense any failure to perform his obligations, if he can do so

without unreasonable delay [...]; (2) If the seller requests the buyer to make

known whether he will accept performance and the buyer does not comply with

the request within a reasonable time, the seller may perform within the time

indicated in his request. [...]

This means that even though a deadline has been violated, the bearer may
still be entitled to fulfill the same obligation. This kind of delay is also called
a grace period : a period beyond a due date during which an obligation may be
met without penalty or cancellation.

Figure 1 illustrates the intuitive semantics of a directed deadline obligation.
The shaded area represents the period of time within which the achievement
of f will certainly bring a fulfillment of the obligation. The region to the right
of d indicates that counterparty c is entitled to react if f is not accomplished;
however, as long as no reaction is taken, b can still fulfill his obligation.

Therefore, a deadline violation brings a counterparty authorization. Autho-
rizations are taken into account in the normative system by having rules and

Directed Deadline Obligations in Agent-Based Business Contracts 229

Fig. 1. Directed obligation with deadline

norms that are based on the materialization of such authorizations. The available
options are discussed in section 3.

2.2 Livelines and Deadlines

The deadline approach is often taken to be appropriate for specifying temporal
restrictions on obligations. However, in certain cases a time window should be
provided. In international trade transactions, for instance, storage costs may be
relevant. Also, perishable goods should be delivered only when they are needed,
not before. This is why in CISG [1] we have:

Article 52: (1) If the seller delivers the goods before the date fixed, the buyer

may take delivery or refuse to take delivery.

Therefore, anticipated fulfillments are not always welcome. We find it neces-
sary to include a variation of directed deadline obligations, to which we add a
liveline: a time reference after which the obligation should be fulfilled. In this
case we have Ob,c(f, l, d): agent b is obliged towards agent c to bring about f be-
tween l (a liveline) and d (a deadline). Figure 2 illustrates the intuitive semantics
of this kind of obligation. The shaded area represents the period of time within
which the achievement of f will certainly bring a fulfillment of the obligation. If
f is accomplished before l, however, it may be the case that c is not willing to
accept such a fulfillment, or at least that he may not be happy about it – the
region to the left of l entitles c to react if f is accomplished. The region to the
right of d is as with (simple) directed deadline obligations.

Fig. 2. Directed obligation with liveline and deadline

We escape from an approach with a fixed time reference for obligation fulfill-
ment (an obligation for bringing about f at time t), which would be suggested

230 H. Lopes Cardoso and E. Oliveira

by the term “date fixed” in CISG’s Article 52 transcription above. We find it
more convenient to define a fixed date as an interval, say, from the beginning till
the end of a specific date3.

3 Managing Liveline and Deadline Violations

After we have advocated, in the preceding section, a counterparty authorization
approach to deadline violations, in this section we address the issue of what
kind of actions the counterparty may take in such situations, and what are their
effects on the obligation whose deadline has been violated. The same accounts
to directed obligations with both livelines and deadlines.

The successful enactment of a contract is dependent on the need to make
contractual provisions performable in a flexible way. The importance of having
flexible trade procedures is apparent, once again, in the CISG convention [1]:

Article 47: (1) The buyer may fix an additional period of time of reasonable

length for performance by the seller of his obligations.

Article 63: (1) The seller may fix an additional period of time of reasonable

length for performance by the buyer of his obligations.

These articles emphasize, once more, the need for flexible deadlines. Note that
the counterparty’s benevolence on conceding an extended deadline to the bearer
does not prescribe a new obligation; instead, the same obligation may be fulfilled
within a larger time window. Furthermore, it is also in the counterparty’s best
interest that this option is available, given the importance of reaching success in
the performance of the contract.

In some other cases, a party may decide that the non-fulfillment of an obli-
gation should be handled in a more strict way. The CISG convention specifies
conditions for cancelling a contract in case of breach:

Article 49: (1) The buyer may declare the contract avoided: (a) if the failure

by the seller to perform any of his obligations [...] amounts to a fundamental

breach of contract; [...]; (2) However, in cases where the seller has delivered

the goods, the buyer loses the right to declare the contract avoided unless he

does so: (a) in respect of late delivery, within a reasonable time after he has

become aware that delivery has been made; [...]

Article 64: (1) The seller may declare the contract avoided: (a) if the failure

by the buyer to perform any of his obligations [...] amounts to a fundamental

breach of contract; [...]; (2) However, in cases where the buyer has paid the

price, the seller loses the right to declare the contract avoided unless he does

so: (a) in respect of late performance by the buyer, before the seller has become

aware that performance has been rendered; [...]

3 This is actually a matter of time granularity.

Directed Deadline Obligations in Agent-Based Business Contracts 231

These articles allow contract termination in both non-performance and late
performance cases. However, the second case is limited to the awareness of the
offended party.

From these excerpts we can distinguish two types of reactions to non-fulfill-
ments: a smoother one (from articles 47, 48 and 63), in which parties are willing
to recover from an initial failure to conform to an obligation; and a stricter one
(articles 49 and 64), where the failure is not self-containable anymore. Based on
these options, we propose a model for a directed deadline obligation lifecycle.

3.1 Authorizations on Violations

Following the discussion above, we identify the possible states for an obligation,
together with the elements we shall use to signal some of those states (when
obtained, these elements are supposed to persist over time):

– inactive: the obligation is not yet in effect, but will eventually be prescribed
by a norm;

– active: the obligation was prescribed by a norm – Ob,c(f, d) or Ob,c(f, l, d)
– pending : the obligation may be fulfilled from now on;
– liveline violation: the fact being obliged has been brought ahead of time –

LViolb,c(f , l , d)
– deadline violation: the fact being obliged should have been brought already

– DViolb,c(f , d) or DViolb,c(f , l , d)
– fulfilled : the obligation was fulfilled – Fulfb,c(f , d) or Fulfb,c(f , l , d)
– violated : the obligation was violated and cannot be fulfilled anymore –

Violb,c(f , d) or Violb,c(f , l , d)

Starting with the simpler case of directed deadline obligations, we identify the
(absolute) fulfillment case:

– Ob,c(f , d) ∧ (f B d) |= Fulfb,c(f , d)

Then we state the consequence of reaching a deadline with no achievement of
the obligated fact:

– Ob,c(f , d) ∧ (d B f) |= DViolb,c(f , d)

Note that, differently from the usual approach, we set the obligation to have a
violated deadline – DViolb,c(f , d) – but not to be violated in itself.

The counterparty’s reaction to a deadline violation will only change the obliga-
tion’s state if the option is to deem the obligation as violated, by denouncing this
situation. For this we introduce the element Denc,b(f , d), which is a denounce
from agent c towards agent b regarding the failure of the latter to comply with
his obligation to bring about f before d. Since we consider the achievement of
facts to be common knowledge, a party may only denounce the non-fulfillment
of an obligation while that obligation is not fulfilled yet4:
4 This is a simplification of what articles 49 and 64 of CISG suggest.

232 H. Lopes Cardoso and E. Oliveira

– DViolb,c(f , d) ∧ (f B Denc,b(f , d)) |= Fulfb,c(f , d)
– DViolb,c(f , d) ∧ (Denc,b(f , d) B f) |= Violb,c(f , d)

Figure 3 illustrates, by means of a state transition diagram, the lifecycle of di-
rected deadline obligations. We take obligations as being prescribed from condi-
tional norms; the confirmation of the norm’s condition will change the prescribed
obligation’s state from inactive to active. The obligation is also automatically
pending, since it may be legitimately fulfilled right away.

Fig. 3. Lifecycle of a directed deadline obligation

Fig. 4. Lifecycle of a directed obligation with liveline and deadline

Figure 4 contains the state transition diagram for directed obligations with
livelines and deadlines. In this case, the obligation will only be pending when
l arises, since only then it may be fulfilled in a way that is compliant with the
terms of the contract. We define the following relations:

– Ob,c(f , l , d) ∧ (f B l) |= LViolb,c(f , l , d)
– LViolb,c(f , l , d) ∧ (l B Denc,b(f , l , d)) |= Fulfb,c(f , l , d)
– LViolb,c(f , l , d) ∧ (Denc,b(f , l , d) B l) |= Violb,c(f , l , d)
– Ob,c(f , l , d) ∧ (l B f) ∧ (f B d) |= Fulfb,c(f , l , d)
– Ob,c(f , l , d) ∧ (d B f) |= DViolb,c(f , l , d)
– DViolb,c(f , l , d) ∧ (f B Denc,b(f , l , d)) |= Fulfb,c(f , l , d)
– DViolb,c(f , l , d) ∧ (Denc,b(f , l , d) B f) |= Violb,c(f , l , d)

We have now two kinds of temporal violations: liveline violations of the form
LViolb,c(f , l , d) and deadline violations of the form DViolb,c(f , l , d). In both
cases a denounce may establish the obligation as violated, if issued before l or
f , respectively.

Directed Deadline Obligations in Agent-Based Business Contracts 233

3.2 Smoother Authorizations on Violations

The diagrams in figures 3 and 4 only include events that produce a change in
an obligation’s state. The denouncement of the non-fulfillment of an obligation,
making it violated and consequently not fulfillable any longer, denotes a situation
in which a bearer’s attempt to fulfill the obligation will no longer be significant to
the counterparty, and thus a consummated violation should be handled according
to applicable norms. These may bring sanctions, further obligations or ultimately
a contract cancellation, as in articles 49 and 64 of CISG.

In order to accommodate less strict situations (see articles 47, 48 and 63
of CISG), we consider that in liveline and deadline violation states, while the
obligation can still be fulfilled, the counterparty may react to the non-ideal
situation. These possibilities are not illustrated in figures 3 and 4, since they do
not bring state changes. For instance, in international trade transactions storage
costs may be relevant. The counterparty may therefore be authorized to demand
for payment of storage costs from an early compliant bearer. Another example
for the deadline violation case:

Article 78: If a party fails to pay the price or any other sum that is in arrears,

the other party is entitled to interest on it [...]

While obligation state transitions are processed with appropriate rules (in-
cluding rules that take denounces into account), authorizations expressing the
counterparty’s right to demand for compensation are handled by the system
through appropriate norms, which may be defined in a contract basis.

4 Decision-Making on Directed Deadline Obligations

The authorization approach described above enriches the decision-making space
of agents concerning norms. Since commitments can be violated, agents (as hu-
man delegates) may decide whether to fulfill them or not. Furthermore, because
the violation state is determined by the counterparty’s choice to denounce this
situation, both parties associated with a directed obligation are in a position to
decide over it after the deadline.

In order to model the decision making process, we need to assess each agent’s
valuations on the obligation states and facts they are able to bring about. We will
write va(f) and va(S) to denote the valuation agent a makes of fact f or state
S, respectively (similarly to the valuation model used in [10]). When valuating
an obligation’s state (namely a fulfillment or a violation), agents should take
into account two different sorts of effects. First, since an obligation is taken to
be a part of a wider contract that should benefit all participants, the obligation
cannot be taken in isolation, as its fulfillment or violation may trigger further
commitments. Second, an agent’s reputation is affected by whether or not he
stands for his commitments. In the following we assume that an agent is capable
of anticipating and evaluating the consequences of his actions within a contract.

For an obligation Ob,c(f, d) we have the following valuation constraints for b:

234 H. Lopes Cardoso and E. Oliveira

vb(Ob,c(f, d)) < 0 : an obligation is a burden to its bearer
vb(f) < vb(Ob,c(f, d)) : there is a heavier cost associated with bringing about f
vb(Fulfb,c(f , d)) > 0 : b gains from fulfilling his obligation
vb(Violb,c(f , d)) < 0 : b loses from violating his obligation

The notions of gain and loss for the bearer extend to outside this obligation.
For instance, fulfilling an obligation may bring an entitlement (a new obligation
where the bearer becomes the counterparty). Violating an obligation will poten-
tially bring penalties to the bearer, hence the negative valuation. In both cases,
the reputation of agent b is affected (positively or negatively). Unlike in [10], we
do not impose that vb(Violb,c(f , d)) < vb(f) + vb(Fulfb,c(f , d)). An agent may
be able to exploit a contract flaw by considering that in a specific situation he
is better off violating his obligation than fulfilling it. Of course that even if the
above condition holds, agent b may still choose to violate his obligations, be-
cause of other conflicting goals: he may lose with respect to the outcome of this
contract, but may possibly win across contracts.

As for the counterparty c, we have:

vc(Ob,c(f, d)) > 0 : an obligation is an asset for the counterparty
vc(f) > vc(Ob,c(f, d)) : c benefits from f
vc(Fulfb,c(f , d)) ≤ 0 : c may acquire obligations after fulfillment
vc(Violb,c(f , d)) ≥ 0 : c may obtain compensations after violation

Note that both fulfillments and violations may bring no value if they have no
further consequences in the contract.

In a rough attempt to model the decision making process of a counterparty
of an obligation whose deadline was violated, we could state that he should
denounce (and thus obtain the obligation’s violation) if5

vc(f) + vc(Fulfb,c(f , d)) < vc(Violb,c(f , d)).

We consider that valuations may possibly vary with time. Were that not the
case, the above condition would only need to be checked right after d, at which
point the counterparty would either denounce or decide to wait indefinitely for
the bearer to fulfill his obligation. For instance, we believe that it makes sense
to think of vc(f) as possibly decreasing with time (like a resource that should
be available but is not yet). Even when the above condition does not hold, the
counterparty may still prefer to tolerate the less preferred situation of failure for
matters of conflicting goals (just as with the bearer).

Until now we have discussed the possibility of agents (both bearers and coun-
terparties) deciding on breach over compliance (either by assessing intra-contract
consequences or by inter-contract conflicts). But in scenarios enriched with social
features agents can exploit, it may be the case that agents decide to behave coop-
eratively even when they have to bear a contained disadvantage. In such settings,
more than being altruistic, agents may try to enhance their trust awareness in
the community, from which they will benefit in future interactions or contracts.
5 We assume there is no cost associated with the denouncing action.

Directed Deadline Obligations in Agent-Based Business Contracts 235

5 Implementation and Practical Issues

The logical relationships expressed above provide us a formalism to define di-
rected deadline obligations. However, in order to monitor contracts at run-time,
we need to ground this semantics into a reasoning engine capable of respond-
ing to events in a timely fashion. That is, elements describing obligation states
should allow us to reason about those states as soon as they occur.

A natural choice we have made before [3] is the use of a rule-based infer-
ence engine, with which the following (forward-chaining) rules can be defined to
implement the semantics of directed obligations with livelines and deadlines6:

– Ob,c(f , l , d) ∧ f ∧ ¬l → LViolb,c(f , l , d)
– LViolb,c(f , l , d) ∧ l ∧ ¬Denc,b(f , l , d)→ Fulfb,c(f , l , d)
– LViolb,c(f , l , d) ∧Denc,b(f , l , d) ∧ ¬l → Violb,c(f , l , d)
– Ob,c(f , l , d) ∧ l ∧ ¬LViolb,c(f , l , d) ∧ f ∧ ¬d → Fulfb,c(f , l , d)
– Ob,c(f , l , d) ∧ d ∧ ¬f → DViolb,c(f , l , d)
– DViolb,c(f , l , d) ∧ f ∧ ¬Denc,b(f , l , d)→ Fulfb,c(f , l , d)
– DViolb,c(f , l , d) ∧Denc,b(f , l , d) ∧ ¬f → Violb,c(f , l , d)

With this approach, we assume an immediate assertion of facts and deadlines
when they come into being. Furthermore, rules are expected to be evaluated in
every working memory update (e.g. right after a fact is asserted), in order to
produce the indicated conclusions, which are added to the normative state in a
cumulative fashion. To detect the moment at which the before relation holds, we
translated terms of the form (e1 B e2) into a conjunction e1 ∧ ¬e2. The fourth
rule demanded for a more careful construction, since we had two consecutive
before relations – we needed to ensure that there was no liveline violation when
having both l and f .

5.1 Reasoning with Time

In business contracts it is common to have deadlines that are dependent on the
fulfillment date of other obligations. Therefore, instead of having fixed (absolute)
dates, these may at times be relative, calculated according to other events. CISG
[1] expresses this by saying that dates can be determinable from the contract:

Article 33: The seller must deliver the goods: (a) if a date is fixed by or deter-

minable from the contract, on that date; (b) if a period of time is fixed by or

determinable from the contract, at any time within that period [...]

Article 59: The buyer must pay the price on the date fixed by or determinable

from the contract [...]

It is therefore useful to timestamp each event: facts, fulfillments and violations.
For that purpose, Fulfb,c(f , l , d)t will be used to indicate that b has fulfilled at
time point t its obligation towards c to obtain f between l and d; similarly for
6 The simpler case of directed deadline obligations is a simplification over these rules.

236 H. Lopes Cardoso and E. Oliveira

Violb,c(f , l , d)t . Since a fact itself has now a timestamp attribute, for ease of
reading we will write fact f achieved at time point t as Fact(f)t . A denounce
will also be written Denc,b(f , l , d)t .

Norms will be based on these elements and on their time references in order
to prescribe other obligations with relative deadlines. For instance,

Fulfb,c(Deliver(x , q), ,)t → Oc,b(Pay(price), t , t + 10)

means that once agent b has fulfilled his obligation to deliver q units of x to
agent c, the latter is obliged to pay the former within a period of 10 time units.

5.2 Re-implementing Rules

We also need to update our rules in order to stamp each generated event. In
fact, having timestamps also allows us to implement such rules in a way that
has a closer reading to the LTL before operator:

– Ob,c(f , l , d) ∧ Fact(f)t ∧ t < l → LViolb,c(f , l , d)
– LViolb,c(f , l , d) ∧ l ∧ ¬(Denc,b(f , l , d)u ∧ u < l)→ Fulfb,c(f , l , d)l

– LViolb,c(f , l , d) ∧Denc,b(f , l , d)u ∧ u < l → Violb,c(f , l , d)u

– Ob,c(f , l , d) ∧ Fact(f)t ∧ l < t ∧ t < d → Fulfb,c(f , l , d)t

– Ob,c(f , l , d) ∧ d ∧ ¬(Fact(f)t ∧ t < d)→ DViolb,c(f , l , d)
– DViolb,c(f , l , d) ∧ Fact(f)t ∧ ¬(Denc,b(f , l , d)u ∧ u < t)→ Fulfb,c(f , l , d)t

– DViolb,c(f , l , d) ∧Denc,b(f , l , d)u ∧ ¬(Fact(f)t ∧ t < u)→ Violb,c(f , l , d)u

This kind of approach has the benefit of relaxing the rule evaluation policy: rules
do not have to be evaluated after each working memory update, since we are
checking the timestamps of each event (see also [3]).

5.3 Example Contract

Considering a two-party business scenario, a contract should be beneficial for
both involved parties. Therefore, both are obliged to bring about certain facts
(e.g. payments or deliveries) in specific situations, and those facts should benefit
the obligations’ counterparties. The contract will typically specify remedies for
breach situations (such as those pointed out at CISG). For the sake of illustra-
tion, we present a possible buyer-supplier contract: agent S commits to supply
agent B, whenever he orders, good X for 7.5 per unit. The norms below define
this particular contractual relationship. Agent S is supposed to deliver the or-
dered goods between 3 to 5 days after the order (norm n1), and agent B shall
pay within 30 days (norm n2). Furthermore, if agent B does not pay in due time,
he will incur in a penalty consisting of an obligation to pay an extra 10% on the
order total (norm n3). Finally, if agent S violates his obligation to deliver, the
contract will be canceled (norm n4).

(n1) Fact(Order(X , q))w → OS ,B(Deliver(X , q),w + 3 ,w + 5)
(n2) FulfS ,B(Deliver(X , q), l , d)w → OB ,S(Pay(q ∗ 7 .5),w ,w + 30)

Directed Deadline Obligations in Agent-Based Business Contracts 237

(n3) DViolB ,S(Pay(p), l , d) → OB ,S(Pay(p ∗ 0 .10), d , d + 30)
(n4) ViolS ,B (Deliver(X , q), l , d)w → Cancel contract

Note that the interest applied on payments is automatic once a deadline violation
is detected (norm n3). On the other hand, a contract cancellation (norm n4)
requires that agent B denounces the inability of agent S to fulfill the delivery. It
is therefore up to agent B whether to wait further and accept a delayed delivery
or not. If the agreed upon contract conditions are important enough, allowing a
counterparty deviation (and hence taking a cooperative attitude regarding the
compliance of the contract) may be a good decision.

Different kinds of situations may be easily modeled using this kind of norms.
Moreover, using flexible deadlines also ensures a degree of freedom for agents
to make decisions in the execution phase of contracts, which is important for
dealing with business uncertainty.

6 Related Work

Most implementations of norms in multi-agent systems ignore the need for having
directed obligations from bearers to counterparties. The most likely reason for
this is that in those approaches obligations are seen as (implicitly) directed from
an agent to the normative system itself. It is up to the system (e.g. an electronic
organization [11] or an electronic institution [12]) to detect violations and to
enforce the norms which are designed into the environment (in some cases they
are even regimented in such a way that violation is not possible). On the contrary,
our flexible approach towards an Electronic Institution allows agents to define
the norms that will regulate their mutual commitments.

Other authors have proposed different lifecycles for commitments and deontic
operators. Directed social commitments are modeled in [13], in the context of
dialogical frameworks. Violated commitments resort to their cancellation, which
may bring sanctions. An interesting issue that is explicit in the model is the
possibility for the bearer to cancel his commitment, allowing the counterparty
to apply sanctions; also, updating is allowed through cancellation of the com-
mitment and creation of a new one. A more compact model is presented in [14],
also considering the possibility to update commitments. However, fulfillment and
violation are not dealt with explicitly in this model; instead, a commitment is
discharged when fulfilled, or else may be canceled.

Taking a cooperative approach to contract fulfillment, in [15] an obligation
lifecycle model includes states that are used in a contract fulfillment protocol.
Agents communicate about their intentions to comply with obligations, and
in this sense an obligation can be refused or accepted. After being accepted,
the obligation may be canceled or complied with. These states are obtained
according to the performance of a contractual relationship. Our model should
also require that agents communicate their intentions regarding an obligation
with a violated deadline. In fact, CISG’s Article 48 seems to go in this direction,
in order to protect the bearer’s efforts toward a late fulfillment of the obligation.

238 H. Lopes Cardoso and E. Oliveira

The need to identify two opposite roles in deontic operators is not exclusive
of obligations. In [5] the concept of directed permission is described on the basis
of interference and counter-performance. If a party is permitted by another to
bring about some fact, the latter is not allowed to interfere with the attempt
of the former to achieve that fact. The authors also sustain a relation between
directed obligations and directed permissions: Ob,c(f) → Pb,c(f), that is, if an
agent b has an obligation towards an agent c, then b is permitted (by c) to bring
about the obliged fact and c is not permitted to interfere. This is very important
in international trade transactions, especially when storage costs can be high.
Some evidence from CISG [1] brings us once more the same insight:

Article 53: The buyer must pay the price for the goods and take delivery of

them [...]

Article 60: The buyer’s obligation to take delivery consists: (a) in doing all the

acts which could reasonably be expected of him in order to enable the seller to

make delivery; and (b) in taking over the goods.

In this case the permission is described in terms of an obligation of the coun-
terparty (the buyer).

Our model of directed obligations with livelines and deadlines has some con-
nections with research on real-time systems, where a time-value function valuates
a task execution outcome depending on the time when it is obtained. Soft real-
time systems use soft deadlines: obtaining the result after the deadline has a
lower utility. In contrast, for hard real-time systems the deadline is crisp: after
it, the result has no utility at all, and missing the deadline can have serious
consequences. Our approach seems to be soft with a hard-deadline discretion-
ally declared by the counterparty of the task to achieve. Deadline goals are also
analyzed in [16] in the context of goal-directed and decision-theoretic planning.
Goals are given a temporal extent and can be partially satisfied according to
this temporal component. The authors propose a horizon time point somewhere
after the deadline, after which there will be no benefit in achieving the goal. In
our case the horizon is not static, but can be defined by the counterparty.

A model for commitment valuations, on which we have based our decision-
making prospect, has been proposed in [10]. However, while their work is centered
on checking correctness of contracts, we focus on valuations in the course of a
contract execution. We do not assume that a contract is correct from a fairness
point of view. This difference in concerns has brought divergent considerations
when valuating fulfillment and violation states.

Other authors have studied agent decision-making regarding norm compli-
ance. For instance, violation games, put in perspective of a game-theoretic ap-
proach to normative multi-agent systems in [17], model the interactions between
an agent and the normative system that is responsible to detect violations and
sanction them accordingly. That line of research analyses how an agent can vi-
olate obligations without being sanctioned. In our case, while we assume that
temporal violations are always detected, we explore decision-making from the
point of view of both the bearer and the counterparty of a directed obligation.

Directed Deadline Obligations in Agent-Based Business Contracts 239

7 Conclusions

In cooperative B2B Virtual Organizations, contracts specify, through obligations,
the interdependencies between different partners, and provide legal options to
which parties can resort in case of conflict. However, when this joint activity
aims at pursuing a common goal, the successful performance of business benefits
all involved parties. Therefore, when developing automated monitoring tools,
one should take into account that agents may be cooperative enough to allow
counterparties’ deviations.

Taking this into account, in this paper we have presented a novel model for
contractual obligations – directed deadline obligations. Following a claimant the-
ory approach, the directed aspect concerns the need to identify the agent who
will be authorized to react in case of non-fulfillment. We started from previ-
ous theoretical approaches to model such authorizations, and developed a more
concrete formalization by linking authorizations with a flexible model of dead-
lines. Obligation violations are now dependent on the counterparty motivation
to claim them. We have also considered in our model smoother authorizations.

Our approach is based on real-world evidence from business contracts (namely
the United Nations Convention on Contracts for the International Sale of Goods),
which denotes a flexible and even cooperative facet of trade contracts. This facet
extends to the concept of B2B Virtual Organizations, wherein different parties
come together to share a business goal that is achievable through the cooperative
fulfillment of a common contract.

We addressed the important issue of agent decision-making, which is enriched
by our model of authorizations. Both parties involved in a directed deadline
obligation may have a say regarding its violation. When considering obligations
as interlinked through norms in a contract, agents should evaluate the conse-
quences of fulfillment and violation states as prescribed in the contract. Further-
more, in “socially rich” environments, agents should explore the value of future
relationships by enhancing their perceived trustworthiness and predisposition to
facilitate compliance, something that is made possible by our directed deadline
obligations approach.

Acknowledgments. The first author is supported by FCT (Fundação para a
Ciência e a Tecnologia) under grant SFRH/BD/29773/2006.

References

1. UNCITRAL: United nations convention on contracts for the international sale of
goods, cisg (1980)

2. Broersen, J., Dignum, F., Dignum, V., Meyer, J.J.C.: Designing a deontic logic of
deadlines. In: Lomuscio, A., Nute, D. (eds.) DEON 2004. LNCS (LNAI), vol. 3065,
pp. 43–56. Springer, Heidelberg (2004)

3. Lopes Cardoso, H., Oliveira, E.: A context-based institutional normative environ-
ment. In: Hübner, J.F., Boissier, O. (eds.) AAMAS’08 Workshop on Coordination,
Organization, Institutions and Norms in agent systems (COIN), Estoril, Portugal,
pp. 119–133 (2008)

240 H. Lopes Cardoso and E. Oliveira

4. Ryu, Y.U.: Relativized deontic modalities for contractual obligations in formal
business communication. In: 30th Hawaii International Conference on System Sci-
ences (HICSS), Hawaii, USA, vol. 4, pp. 485–493 (1997)

5. Tan, Y.-H., Thoen, W.: Modeling directed obligations and permissions in trade
contracts. In: Proceedings of the Thirty-First Annual Hawaii International Confer-
ence on System Sciences, vol. 5. IEEE Computer Society, Los Alamitos (1998)

6. von Wright, G.: Deontic logic. Mind 60, 1–15 (1951)
7. Emerson, E.A.: Temporal and modal logic. In: Leeuwen, J.v. (ed.) Handbook of

Theoretical Computer Science. Formal Models and Sematics, vol. B, pp. 995–1072.
North-Holland Pub. Co./MIT Press (1990)

8. Herrestad, H., Krogh, C.: Obligations directed from bearers to counterparties. In:
Proceedings of the 5th international conference on Artificial intelligence and law,
College Park, Maryland, United States, pp. 210–218. ACM, New York (1995)

9. Dignum, F.: Autonomous agents with norms. Artificial Intelligence and Law 7(1),
69–79 (1999)

10. Desai, N., Narendra, N.C., Singh, M.P.: Checking correctness of business contracts
via commitments. In: Proc. 7th Intl. Joint Conf. on Autonomous Agents and Mul-
tiagent Systems, Estoril, Portugal, IFAAMAS, pp. 787–794 (2008)

11. Vázquez-Salceda, J., Dignum, F.: Modelling electronic organizations. In: Mař́ık,
V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI), vol. 2691,
pp. 584–593. Springer, Heidelberg (2003)

12. Esteva, M., Rodŕıguez-Aguilar, J.A., Sierra, C., Garcia, P., Arcos, J.L.: On the
formal specifications of electronic institutions. In: Sierra, C., Dignum, F.P.M. (eds.)
AgentLink 2000. LNCS (LNAI), vol. 1991, pp. 126–147. Springer, Heidelberg (2001)

13. Pasquier, P., Flores, R.A., Chaib-Draa, B.: Modelling flexible social commitments
and their enforcement. In: Gleizes, M.-P., Omicini, A., Zambonelli, F. (eds.) ESAW
2004. LNCS (LNAI), vol. 3451, pp. 139–151. Springer, Heidelberg (2005)

14. Wan, F., Singh, M.P.: Formalizing and achieving multiparty agreements via com-
mitments. In: Proceedings of the fourth international joint conference on Au-
tonomous agents and multiagent systems, The Netherlands, pp. 770–777. ACM
Press, New York (2005)

15. Sallé, M.: Electronic contract framework for contractual agents. In: Cohen, R.,
Spencer, B. (eds.) Advances in AI: 15th Conf. of the Canadian Soc. for Computa-
tional Studies of Intelligence, pp. 349–353. Springer, Heidelberg (2002)

16. Haddawy, P., Hanks, S.: Utility models for goal-directed, decision-theoretic plan-
ners. Computational Intelligence 14(3), 392–429 (1998)

17. Boella, G., van der Torre, L.: A game-theoretic approach to normative multi-agent
systems. In: Boella, G., van der Torre, L., Verhagen, H. (eds.) Normative Multi-
agent Systems (NorMAS07). Dagstuhl Seminar Proceedings, vol. 07122 (2007)

Internal Agent Architecture for Norm

Identification

Bastin Tony Roy Savarimuthu, Stephen Cranefield,
Maryam A. Purvis, and Martin K. Purvis

Department of Information Science, University of Otago, Dunedin, P.O. Box 56,
Dunedin, New Zealand

{tonyr,scranefield,tehrany,mpurvis}@infoscience.otago.ac.nz

Abstract. Most works on norms in the multi-agent systems field have
concentrated on how norms can be applied to regulate behaviour in agent
societies using a top-down approach. In this work, we describe the inter-
nal architecture of an agent which identifies what the norm of a society is
using a bottom-up approach. The agents infer norms without the norms
being given to them explicitly. We demonstrate how the norm associ-
ated with using a park can be inferred by an agent using the proposed
architecture.

1 Introduction

Software agents that act as proxies to real world entities need to adapt to the
changing needs of environments. An example would that be of virtual worlds (e.g.
SecondLife [1]). Virtual environments offer a rich and expressive environment for
agent interactions. Traditionally, norms have governed the behaviour of agent
interactions in a closed system. In open systems such as virtual worlds, agents
instead of possessing predetermined notions of what a norm is, should be able
to infer and identify norms through observing patterns of interactions and their
consequences.

Recognizing the norms of a society is beneficial to an agent. This process
enables the agent to know what is permissible within a society and what is
not. As the agent joins and leaves different agent societies, these capabilities
are essential for the agent to modify its expectations of behaviour depending
upon the society it is a part of. As the environment changes, the capability of
recognizing the new norm helps an agent to derive new ways of achieving its
intended goals.

In this work we describe an internal agent architecture for norm identification.
Using a park scenario as an example, we describe the design and implementation
of the internal agent architecture which aids the agent to infer what the norms
of using the park are.

J. Padget et al. (Eds.): COIN 2009, LNAI 6069, pp. 241–256, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

242 B.T.R. Savarimuthu et al.

2 Background and Related Work

2.1 Background on Norms

Norms are expectations of an agent about the behaviour of other agents in the
society. Norms are of interest to multi-agent system (MAS) researchers as they
help in sustaining social order and increase the predictability of behaviour in
the society. However, software agents tend to deviate from these norms due to
their autonomy. So, the study of norms has become crucial to MAS researchers
as they can build robust multi-agent systems using the concept of norms and
also experiment with how norms evolve and adapt in response to environmental
changes.

Due to multi-disciplinary interest in norms, several definitions for norms exist.
Ullman-Margalit [2] describes a social norm as a prescribed guide for conduct
or action which is generally complied with by the members of the society. She
states that norms are the resultant of complex patterns of behaviour of a large
number of people over a protracted period of time. Coleman [3] describes “I
will say that a norm concerning a specific action exists when the socially defined
right to control the action is held not by the actor but by others”. Elster notes the
following about social norms [4]. “For norms to be social, they must be shared
by other people and partly sustained by their approval and disapproval. They are
sustained by the feelings of embarrassment,anxiety, guilt and shame that a person
suffers at the prospect of violating them. A person obeying a norm may also be
propelled by positive emotions like anger and indignation ... social norms have
a grip on the mind that is due to the strong emotions they can trigger”.

Based on the definitions provided by various researchers, we note that the
notion of a norm is generally made up of the following two aspects.

– Normative expectation of a behavioural regularity: There is a general agree-
ment within the society that a behaviour is expected on the part of an agent
(or actor) by others in a society, in a given circumstance.

– A norm spreading factor: Examples of norm spreading factors include the
notion of advice from powerful leaders and the sanctioning mechanism. When
an agent does not follow the norm, it could be subjected to a sanction.
The sanction could include monetary or physical punishment in the real
world which can trigger emotions (embarrassment, guilt etc.) or direct loss
of utility resulting in the agent internalising the applicable norm to avoid
future sanctions. Other kind of sanctions could include agents not being
willing to interact with an agent that violated the norm or the decrease
of its reputation score. Other norm spreading factors include imitation and
learning on the part of an agent.

It should be noted that researchers are divided on what the differences between
a norm and a convention are. Our belief is that convention is a common ex-
pectation amongst (most) others that an agent adopts a particular action or
behaviour. Conventions may become norms once the non-adherence of the focal
action specified by the convention is sanctioned. In this paper our concern is on
norms.

Internal Agent Architecture for Norm Identification 243

2.2 Related Work

Several researchers have worked on both prescriptive (top-down) and emergent
(bottom-up) approaches to norms. In a top-down approach, an authoritative
leader or a normative advisor prescribes what the norm of the society should
be [5]. In the bottom-up approach, the agents come up with a norm through
learning mechanisms [6, 7]. Researchers have used sanctioning mechanisms [8]
and reputation mechanisms [9] for enforcing norms.

The work reported in this paper falls under the bottom-up approach in the
study of norms. Many researchers in this approach have experimented with game-
theoretical models for norm emergence [6,8]. Agents using these models learn to
choose a strategy that maximizes utility . The agents do not possess the notion
of a “normative expectation” in these works. Very few have investigated how an
agent comes to know the norms of the society. Our objective in this work is to
propose an architecture where agents can identify what the norms of the society
are. Several researchers have proposed architectures for normative systems. For
a comparison of these architectures refer to Neumann’s article [10].

We note that our work parallels the work that is being carried out by the
researchers involved in the EMIL project [11]. Researchers involved in the EMIL
project [11] are working on a cognitive architecture for norm emergence. There
have been some attempts to explore how the mental capacities of agents play a
role in the emergence of norms.

The EMIL project aims to deliver a simulation-based theory of norm innova-
tion, where norm innovation is defined as the two-way dynamics of an inter-agent
process and an intra-agent process. The inter-agent process results in the emer-
gence of norms where the micro interactions produce macro behaviour (norms).
The intra-agent process refers to what goes inside an agent’s mind so that they
can recognize what the norms of the society are. This approach uses cognitive
agents that examine interactions between agents and are able to recognize what
the norms could be. The agents in this model need not necessarily be utility
maximizing like the ones in the learning models. The agents in the model will
have the ability to filter external requests that affect normative decisions and
will also be able to communicate norms with other agents. Agents just employing
learning algorithms lack these capabilities.

Researchers involved with the EMIL project [12, 13] have demonstrated how
the norm recognition module of the EMIL-A platform works. In particular they
have experimented with an imitation approach versus the norm recognition ap-
proach that they have come up with. The norm recognition module consists of
two constructs, the normative board and a module for storing different types of
modalities for norms (which they refer to as modals). Each modal represents a
type of message that is exchanged between agents (e.g. the deontics modal refers
to distinguishing situations as either acceptable or unacceptable). The normative
board consists of normative beliefs and normative goals. They have shown that
norm recognizers perform better than social conformers (imitating agents) due
to the fact that the recognizers were able to identify a pool of potential norms
while the imitators generated only one type of norm.

244 B.T.R. Savarimuthu et al.

The work reported here differs from this work in three ways. Firstly, we have
chosen “reaction” (positive and negative) to be a top level construct for identify-
ing potential norms when the norm of a society is being shaped. We note that a
sanction not only may imply a monetary punishment, it could also be an action
that could invoke emotions (such as an agent yelling at another might invoke
shame or embarrassment on another agent), which can help in norm spreading.
Agents can recognize such actions based on their previous experience. Secondly,
we identify three different sets of norms in agent’s mind: suspected norms, candi-
date norms and identified norms. Thirdly, we demonstrate how our architecture
allows for an agent to identify co-existing norms.

Fig. 1. Higher level architecture of norm identification

Internal Agent Architecture for Norm Identification 245

3 Architecture for Norm Identification

This section describes the normative inference architecture of an agent. The
architecture provides a sequence of six steps that an agent goes through before
it comes to know what a norm of the society is, as shown in Figure 1.

To understand the architecture let us assume that an agent society exists. Let
us also assume that a norm does not exist to start with or only a few of the
agents have a notion of what an appropriate action should be in a particular
circumstance (a personal norm). In this architecture a typical agent would first
observe the interactions that occur between the agents in the society. The inter-
actions could be of two types. The first type of interaction is the one in which
the agent itself is involved and is called a personnel interaction (an action that
an agent does in an environment). The second type of interaction is an interac-
tion between other agents that is observed by the observer agent, referred to as
an observed interaction. The agent records these interactions. The top part of
Figure 1 shows the types of agents in an agent society. An agent in the society
can assume one or more of the three roles: a participant (P) that is involved in
a personal interaction, an observer (O) and a signaller (S).The actions observed
by an observer are of two types: regular actions and signalling actions. A regular
action is an event such as an agent moving to another location in a park or
sitting on a bench. Signalling actions can be thought of as special events that
agents understand to be either encouraging or discouraging certain behaviour.

For example, let us assume that two agents are in a public park. One agent
(A) sees another agent (B) littering the park. Agent B may choose to sanction
the agent A (B nods or shakes its head in disapproval and in the worst case
yells at the litterer). The observer agent (C) records the signalling that takes
place between these agents. The signals can either be positive or negative and
it depends on one kind of norm to another. In the case of park littering, agents
might issue a negative signal when an agent litters while non-littering might be
considered as a normal or routine activity for which there is no positive signalling.
In our architecture, signalling is a top level entity because in normative systems
it is important for an agent to have an expectation of a particular behaviour.
Norms do not appear from nowhere. There might be some norm entrepreneurs
or norm innovators who come up with a norm (also known as personal norm
(p-norm)). Though few, these agents might sanction or reward others because
they violated or followed the norm.

The third step is for the agent to infer normative expectations of a society
based on noted observations and signalling. An agent correlates signalling with
the observations and infers what its notion of a relevant norm in the society
is. A detailed description of how the norm inference works is provided in the
next section. The fourth step is to store this newly formed notion of norm in
its belief set. We call the beliefs that are based on norms normative beliefs. For
every signal that an agent processes, it re-evaluates its notion of the norm. Based
on the inference it can modify the notion of what the norm is at any point of
time which results in dynamic creation of norms. Once the agent has a norm,

246 B.T.R. Savarimuthu et al.

its desires and intentions are influenced by the norm which might affect its goals
and plans (steps 5 and 6).

Once the agent has inferred what the norm it, it will then have to decide
whether to follow the norm. The norm assessor component is responsible for
making this decision. The agent weighs its own personal norm against the iden-
tified norm in a given circumstance and chooses an appropriate action. The
emphasis of this paper is on the norm inference component.

4 Inferring Norms in a Communal Park

This section describes the design and implementation of a norm identification
system. The context for norms is the usage of a public park.

In many human societies there exists a norm that one should not litter a
communal area such as a park. However, software agents that join open societies
do not come to know of the norm of a society a priori. Let us assume that software
agents stroll through a virtual park in environments such as SecondLife [1]. Let
us imagine that the virtual park is a two dimensional grid where agents move
around and enjoy the park. Agents sometimes become hungry and eat food.
Some agents litter (i.e. drop the rubbish on the ground) and some agents carry
the rubbish with them and drop it in a rubbish bin. The actions that can be
performed by agent X are move, eat and litter. Some agents consider littering
to be an activity that should be discouraged, so they choose to sanction other
agents through actions such as yelling and shaking their heads in disapproval.
We assume that an agent has a filtering mechanism which categorizes actions
such as yell and shake-head as sanctioning actions. These sanctioning agents can
be considered as norm entrepreneurs.

Let us assume that the agents can observe each other within a certain visibility
threshold (e.g. agents can only see other agents in a 3 cell neighbourhood).
Agents can either be a direct participant in interactions or observers. Some
participants can be sanctioning agents . The observer records another agent’s
actions until it disappears from its vicinity. Whenever it encounters an action of
type sanction, it recognizes that something has gone wrong (e.g. the action is
against the personal norm of the punishing agent). When such an event occurs,
the agent may become emotionally charged and perform certain sanctioning
action such as yelling at the litterer or shaking its head vigorously in disapproval.
Hence, an agent observing this can infer that someone involved in an interaction
has violated a norm. We assume that there exists a filtering mechanism in the
agent that can recognize sanctioning and rewarding actions when they occur.

Let us assume that an agent perceives other agents’ actions. An event that is
perceived consists of an event id, an observed action, and the agent(s) partici-
pating in that event. For example an agent observing another agent eating will
have the representation of do(1,eat,A). This implies that the observer believes
that the first event was generated by agent A which performs an action eat. A
sample representation of events observed by an agent is given below.

Internal Agent Architecture for Norm Identification 247

⎛

⎜
⎜
⎜
⎜
⎝

do(1, eat, A)
do(2, litter, A)
do(3, move, B)
do(4, move, A)

do(5, sanction, B, A)

⎞

⎟
⎟
⎟
⎟
⎠

Event 5 is a sanctioning event where agent B sanctions agent A. An agent records
these events in its belief base. The agent has a filtering mechanism, which identi-
fies signalling events. We can consider the filtering mechanism to be a black box
that recognizes an emotionally charged event such as yelling and shaking head
in disapproval and categorizes those actions to be sanctions1. When a sanction-
ing event occurs, it triggers the invocation of the norm inference module of the
agent. It should be noted that signalling events can both be positive (e.g. re-
wards) and negative (e.g. sanctions). In this work, we have focused on the latter
type of signalling.

Figure 2 shows the architecture of the norm inference component of an agent.
The following sub-sections describe the four sub-components of the norm infer-
ence component.

4.1 Creating Event-Episodes

Agents record other agents actions in their memory. Let us assume that there
are three agents A,B and C. Agent A eats, litters and moves while agent B
moves and then sanctions. Agent C observes these events and categorizes them
based on which agent was responsible for creating an event. {A} followed by
right arrow (→) indicates the categorization of events performed by agent A as
observed by agent C. A hyphen separates one event from the next.

({A} → do(1, eat, A)− do(2, litter, A)− do(4, move, A)
{B} → do(3, move, B)− do(5, sanction, B, A)

)

When a sanction occurs, an observer agent extracts the sequence of actions
from the recorded history that were exchanged between the sanctioning agent
and the sanctioned agent. In the example shown above, the observer infers that
something that agent A did may have caused the sanction. It could also be
that something agent A failed to do might have caused a sanction. In this work
we concentrate on the former of the two. Agent C then extracts the following
sequence of events that take place between A and B based on the information
retrieved from its history.

{A, B} → eat(1, A)− litter(2, A)−move(4, A)− sanction(5, B, A)

To simplify the notation here afterwards only the first letter of each event will
be mentioned (e.g. e for eat). The event episode for interactions between agents
A and B shown above will be represented as
1 Recognizing and categorizing a sanctioning event is a difficult problem. In this paper

we assume such a mechanism exists (e.g. based on an agent’s past experience).

248 B.T.R. Savarimuthu et al.

Fig. 2. Architecture of the norm inference component

({A, B} → e− l−m− s
)

There might be a few sanctioning events at any given point of time that an agent
observes. A sample list containing ten event episodes that are observed by an
agent in a certain interval of time is given below.

(
e− l −m− s, l− e− l − s, m− e− l − s, e− l − e− s, e− l − e− s
l − e− l − s, e− e− l − s, m− e− l − s, e− l −m− s, e− l − e− s

)

4.2 Constructing an Event-Tree Based on Conditional Probability

Once the event episodes are constructed, the agent creates a tree of events that
occur in all episodes based on the estimation of conditional probabilities for
events that might have led to sanctioning. The mechanism for constructing a
decision tree is explained below.

For calculating the conditional probabilities for events that precede a sanction,
an agent follows the following steps.

1. Categorizes episodes into events belonging to different levels.
2. Constructs a conditional probability tree of sub-episodes
3. Ranks sub-episodes and chooses candidate norms for verification

Internal Agent Architecture for Norm Identification 249

Categorizing episodes into event levels - Based on a certain fixed number
of events that precede a sanction, an agent categorizes events of an episode into
certain levels (e.g. single-level events, two-level events and three-level events).
Let us assume that an agent is interested in n events in a sequence that precede
a sanction. As an example let us consider e-l-m-s, which is the first episode from
the sample list of ten episodes. The sequence of events that precede a sanction
is e-l-m and hence the value of n is three. A single level event (level 1) is an
event that precedes a sanction (i.e. m). Two-level events (level 2) are the events
that are a combination of two events that precede a sanction (i.e. e-l and l-m).
Three-level events (level 3) are the events that are a combination of three events
that precede the sanction (i.e. e-l-m). Let us call each entry in these levels a
sub-episode.

Fig. 3. Events-tree of all episodes based on conditional probability

Constructing a tree based on conditional probability - For each sub-
episode in each level, the agent calculates the conditional probability. Sub-
episodes for an episode e-l-m are e at level 1, e-l and l-m at level 2 and e-l-m
at level three. The conditional probability tree of the sample list of ten events
as shown in Section 4.1 is given in Figure 3.

For the sake of simplicity, let us only consider those sub-episodes that end
with e in the region encompassed by a dashed line in Figure 3. In the sample
list that consists of ten episodes, there are three episodes that end with event e.
So, the conditional probability of event e given that a sanction has occurred is
p(e|s)=0.3. One of the three events (e or l or m) could have occurred before e. The
conditional probability of e occurring given that an e-s has occurred is p(e-e-s|e-
s)=0.0 and the other two conditional probabilities are p(l-e-s|e-s)=1.0 and p(m-
e-s|e-s)=0.0. Based on these, we know that p(l-e-s|s)=0.3 and the p(e-e-s|s)=0
and p(m-e-s|s)=0. Now again, three events (e or l or m) could have preceded l.
The conditional probabilities p(e-l-e-s|l-e-s)=1.0 and p(l-l-e-s|l-e-s)=0 and p(m-
l-e-s|l-e-s)=0. From these, we can infer that p(e-l-e-s|s)=0.3, p(l-l-e-s|s)=0 and
p(m-l-e-s|s)=0.

At level 2, we are also interested to find out the occurrences of all episodes
that are made up of two level events (indicated in figure 3 as levels 2a and

250 B.T.R. Savarimuthu et al.

2b). Based on permutations with repetitions we know that for choosing two out
of three events, there are 9 possible combinations (ee,el,em,le,ll,lm,me,ml,mm).
The respective probabilities of each of these sub-episodes is 0.1,1,0,0.5,0,0.2,0.2
and 0,0.

The list given below shows the conditional probabilities of all sub-episodes that
have a non-zero probability for all the three levels. We call these sub-episodes
suspected norms. Note that for simplicity we assume that the representation of
p(x|s) is p(x). Additionally, the hyphens will be omitted from the sub-episodes
(e.g. e-l-m will be represented as elm).

1. p(e)= 0.3, p(l)=0.5, p(m)=0.3
2. p(ee)=0.1, p(el)=1, p(le)=0.5, p(lm)=0.2, p(me)=0.2
3. p(ele) = 0.3, p(eel)=0.1, p(lel)=0.2, p(mel)=0.2, p(elm)=0.2

Ranking sub-episodes and selecting candidate norms - The agent ranks
sub-episodes based on these probabilities and creates a ranked list using the
norm selection parameter (ns). An agent chooses only those sub-episodes that
have conditional probabilities greater than ns. Elements in this subset of norms
are referred to as candidate norms. For example, if ns is set to 50, the candidate
norms chosen from the set of suspected norms will be el (100%), l (50%) and le
(50%).Having compiled a set containing candidate norms, the agent passes this
information to the norm verification and identification component.

4.3 Norm Verification and Identification

In order to find whether a candidate norm is a norm of the society, the agent
asks another agent in its proximity. This happens in certain intervals of time
(e.g. once in every 10 iterations). When two agents A and B interact, A chooses
its first candidate norm and asks B whether its current norm is A’s candidate
norm. If true, A stores this norm in its set of identified norms. Otherwise, it
chooses a sub-episode of the norm and enquires whether that is the norm. It is
possible that B might identify the sub-episode as the norm. If not, A moves on
to the second candidate norm in its list2.

In the case of the running example, the sub-episode el has the highest prob-
ability for selection and it is chosen to be communicated to the other agent. It
asks another agent (e.g. an agent who is the closest) whether it thinks that the
given candidate norm is a norm of the society. If it responds positively, the agent
infers prohibit (el) to be a norm. If the response is negative, this norm is stored
in the bottom of the candidate norm list. It then asks whether the sub-episodes
of el, which are e or l are the reasons for sanction. If yes, the appropriate action
is considered to be prohibited. Otherwise, the next event in the candidate norm
list is chosen. This process continues until a norm is found or no norm is found
in which case, the process is re-iterated once a new signal indicating a sanction
2 Other alternative mechanisms are also possible. For example, an agent could ask for

all the candidate norms from another agent and can compare them locally.

Internal Agent Architecture for Norm Identification 251

is generated. When one of the candidate norms has been identified as a norm of
the society, the agent still iterates through the candidate norm list to find any
co-existing norms.

It should be noted that an agent will have three sets of norms: suspected
norms, candidate norms and identified norms. Figure 4 shows these three sets
of norms. Once an agent identifies the norms of the system and finds that the
norms identified have been stable for a certain period of time, it can forgo using
the norm inference component for a certain amount of time. It invokes the norm
inference component in regular intervals of time to check if the norms of the
society have changed, in which case it replaces the norms in the identified list
with the new ones3.

Fig. 4. Three sets of norms

4.4 Related Event Recommender

Even if the event immediately preceding a sanction was responsible for causing
the sanction (e.g. event l), the agent would still be watchful of the event se-
quences that precede the sanctioned action 100% of the time (e.g. event e) for
two reasons. One reason is that when it produces events e and then l, it could
be sanctioned. Also when other agents produce events e-l, then if the observer
were a sanctioning agent, it may have to sanction the litterer. The purpose of the
related event recommender is to recommend event episodes that occur 100% of
the time preceding a sanctioning action so that the agent can be warned about
impending sanctions.

5 Experiments on Norm Identification

In an agent society, one or more norms can co-exist. In this section we demon-
strate that the agents using our architecture are able to infer the norms of the
society.
3 Alternatively, an agent can wait for certain number of sanctions to occur before it

invokes the norm inference component.

252 B.T.R. Savarimuthu et al.

5.1 Scenario 1: A Society with One Type of Norm

We have experimented with an agent society comprising 100 agents. There are
agents with three different personality types. They are learning litterers (ll),
non-litterers (nl) and non-littering punishers (nlp). The learning litterers are
litterers who learn to change their behaviour based on normative expectations
inferred through the observation of interactions between agents. Non-litterers do
not litter the park and non-littering punishers are the non-litterers who sanction
littering because that action is against their personal norm.

There are 50 ll and 50 nl agents. Out of these 50 nl agents, 5 are nlp agents.
In each iteration, an agent performs one of m,e,l or s. The agents are initialized
with a uniform probability for choosing actions (p(m)=0.75, p(e)=0.25, p(l) hav-
ing eaten in the previous interaction =0.5). The nlp agents punish other agents
if they observe a littering action of an agent in the current iteration or the previ-
ous iteration with 6% probability (in both the cases). An agent stores the actions
performed by other agents in its vicinity (in the current set up, a fully-connected
network topology is assumed where an agent can see all other agents). We ran this
experiment for 100 iterations. In each iteration an agent can perform one of the
actions (e,l,m,s). At the end of the run every agent looks at the event history it had
recorded and observes what kinds of suspected and candidate norms has emerged.

Fig. 5. Sub-episode occurrence probabilities (level 1 and 2)

Fig. 6. Sub-episode occurrence probabilities (level 3)

Internal Agent Architecture for Norm Identification 253

It should be noted that for an episode that is made up of 3 different events,
allowing permutation with repetition, 39 sub-episodes can be created (3 in level
1, 9 in level 2 and 27 in level 3). It can be observed from figures 5 and 6 that out
of 39 possible sub-episodes, only a subset of sub-episodes (13 of them) happen
to appear (i.e. the suspected norms). Assuming that an agent’s norm selection
threshold is 0.45 to construct the list of candidate norms, there are two such
norms, which are norms against el and l. The agent then moves on to the norm
verification stage which identifies the norm against littering.

5.2 Scenario 2: Identification of Co-existing Norms in an Agent
Society

Let us assume that there are two types of sanctioning agents, one that sanctions
when an agent litters the park and the other sanctions if it sees anyone eating
in the park. In these cases, our mechanism will be able to generate different
sets of suspected norms. Retaining the experimental set-up used in the previous
scenario, we have set the probability of a nlp punishing eating action to be 3%
and the probability of punishing littering action to be 3%). The norm selection
threshold has been set to 0.25. Occurrence probabilities of sub-episodes (i.e sus-
pected norms) at level 2 is given in figure 7. It can be observed that there are
more occurrences of events involving e that appear in these sub-episodes than
event l. This is due to the set up of the system since p(e)=0.25 while p(l)=0.125.
The important thing to note in this experiment is that our architecture allows
for the identification of co-existing norms.

5.3 Scenario 3: Identification of Norms Across Different Societies

Let us assume that there are three sections of a park. At any point of time, an
agent might be present in one of these sections. Let us also assume that there
are two types of sanctioning agents. One type of agents punish litterers while the
other type of agents punish those who eat in the park. Assume that these types
of agents are randomly placed in the three sections of a park. Our objective was
to see what type of norms might emerge in these three sub-groups.

Figure 8 shows the candidate norms of three different agents that belong to
three different sub-groups. The norm selection threshold was set to 0.3. It can be
observed that different types of candidate norms are generated in the minds of
these agents based on what they had observed in their respective agent society.
It can be observed that the agent from sub-group one had identified the norm
against littering and the one from the third group had identified the norm against
eating while the agent from the second group had identified both these norms.

An extension to this experiment is to allow an agent to move around in these
three sections of the park and see how it accommodates the changes to its norms.
Another extension will be to allow the sanctioning agents to move around which
will enable dynamic change of norms in the society.

254 B.T.R. Savarimuthu et al.

Fig. 7. Sub-episode occurrence probabilities (level 2) when two types of sanctioning
agents were present

Fig. 8. Candidate norms of three agents that belong to three different sub-groups

6 Discussion

We note that the experimental set up is simple. We have assumed that an agent
considers three events (n=3) that precede a signal (a sanction or a reward). The
value of n can change and an agent being a computation machine should be able
to handle a large number of possible events. Most researchers agree that there
will be some form of sanction or reward once a norm is established (e.g. [4, 3]).
Hence, the notion of a reaction (positive or negative action) has been considered
to be a top level entity in our work. We have assumed that even when a norm
is being created, the notion of sanction is important for norm identification.

Our experimental set-up can be improved in many ways. Firstly, we do not
assume that there is a cost associated with sanctions. The cost for sanctions can
be included in the model. Secondly, our model identifies co-existing norms. If
the cost of sanctions is considered there could also be competing or conflicting
norms. For example, some agents might punish other agents when they litter
while some others may punish one when the littering agent is within 20 meters
from the rubbish bin. When there are competing norms the society might be
divided into groups. This type of dynamics will be interesting to study. Thirdly,
the experiments have only made use of observational information ignoring the
personal experience. We believe that the inclusion of personal experience will
speed up the rate at which norms are identified. Fourthly, we have assumed that

Internal Agent Architecture for Norm Identification 255

when an agent identifies a norm, it will follow the norm. Agents owing to their
autonomy do not always follow the norm. An agent might have its own personal
agenda and it can be an opportunistic norm follower. Autonomy of an agent
needs to be addressed in the future. In our architecture, this has been encapsu-
lated as a part of the norm assessment component which will be elaborated in
a future work. Fifthly, it might not always be possible to associate sanctions or
rewards with the events that immediately precede them. For example, speeding
might result in a fine that is sent to an agent after a couple of days. An ob-
server might not be able to recognize this sanction. In this work, we have only
considered those norms where the sanctions can be recognized by an observer
and the events that caused the sanction occurred within an immediate window
of time before the sanction. Sixthly, the problem of false negatives and positives
for norm identification needs to be dealt with in the future. Lastly, our work can
take advantage of the work done in the data-mining field on the identification
of frequent event sequences [14].

However, we believe that our work reports some advancements. Firstly, the
question of “how an agent comes to find out what the norm of society is” is being
dealt with by at least one other research group [11]. We have made some progress
in that regard by proposing an internal agent architecture and demonstrating
how an agent will identify the norms of a society. Secondly, other prominent
works identify one norm that exists in the society [15, 8]. In our architecture an
agent is able to identify several norms that might exist in the society. Thirdly,
most works have not addressed how an agent might be able to identify whether
a norm is changing in a society and how it might react to this situation. In our
model, the agents will be able to identify the norm change and dynamically add,
remove and modify norms. Fourthly, our architecture can be used to study norm
emergence. We believe through norm identification at the agent level, we are
also in the realm of addressing how norms emerge using a bottom-up approach.

7 Conclusions

In this paper we have explained the internal agent architecture for norm iden-
tification. Through simulations we have shown how an agent infers norms in an
agent society. We have also discussed the related work and have identified issues
that should be addressed in the future.

Acknowledgments

We thank the three anonymous reviewers for their insightful comments.

References

1. Rymaszewski, M., Au, W.J., Wallace, M., Winters, C., Ondrejka, C., Batstone-
Cunningham, B., Rosedale, P.: Second Life: The Official Guide. SYBEX Inc.,
Alameda (2006)

256 B.T.R. Savarimuthu et al.

2. Ullmann-Margalit, E.: The Emergence of Norms. Clarendon Press, Oxford (1977)
3. Coleman, J.: Foundations of Social Theory. Belknap Press (August 1990)
4. Elster, J.: Social norms and economic theory. The Journal of Economic Perspec-

tives 3(4), 99–117 (1989)
5. Verhagen, H.: Simulation of the Learning of Norms. Social Science Computer Re-

view 19(3), 296–306 (2001)
6. Shoham, Y., Tennenholtz, M.: Emergent conventions in multi-agent systems: Initial

experimental results and observations (preliminary report). In: KR, pp. 225–231
(1992)

7. Sen, S., Airiau, S.: Emergence of norms through social learning. In: Proceedings
of Twentieth International Joint Conference on Artificial Intelligence (IJCAI’07),
pp. 1507–1512. AAAI Press, Menlo Park (2007)

8. Axelrod, R.: An evolutionary approach to norms. The American Political Science
Review 80(4), 1095–1111 (1986)

9. Castelfranchi, C., Conte, R., Paolucci, M.: Normative reputation and the costs of
compliance. Journal of Artificial Societies and Social Simulation 1(3) (1998)

10. Neumann, M.: A classification of normative architectures. In: Proceedings of World
Congress on Social Simulation (2008)

11. Andrighetto, G., Conte, R., Turrini, P., Paolucci, M.: Emergence in the loop: Sim-
ulating the two way dynamics of norm innovation. In: Boella, G., van der Torre,
L., Verhagen, H. (eds.) Normative Multi-agent Systems, Dagstuhl Seminar Pro-
ceedings, vol. 07122. Internationales Begegnungs- und Forschungszentrum fuer In-
formatik (IBFI), Schloss Dagstuhl (2007)

12. Andrighetto, G., Campenni, M., Cecconi, F., Conte, R.: How agents find out norms:
A simulation based model of norm innovation. In: 3rd International Workshop on
Normative Multiagent Systems (NorMAS 2008), Luxembourg, July 15-16 (2008)

13. Campenni, M., Andrighetto, G., Cecconi, F., Conte, R.: Normal = normative?
the role of intelligent agents in norm innovation. In: The Fifth Conference of the
European Social Simulation Association (ESSA), University of Brescia, September
1-5 (2008)

14. Mannila, H., Toivonen, H., Inkeri Verkamo, A.: Discovery of frequent episodes in
event sequences. Data Mining and Knowledge Discovery 1(3), 259–289 (1997)

15. Epstein, J.M.: Learning to be thoughtless: Social norms and individual computa-
tion. Comput. Econ. 18(1), 9–24 (2001)

Influence of Communication Graph Structures

on Pheromone-Based Approaches in the Context
of a Partitioning Task Problem

Thomas Kemmerich

International Graduate School of Dynamic Intelligent Systems
Knowledge Based Systems, University of Paderborn, Germany

kemmerich@upb.de

Abstract. This paper introduces and formalizes a multi-objective agent
coordination problem, called General Online Partitioning Problem
(GOPP). The goal is to find a cost-optimal, distance minimizing, and
uniform partitioning of an agent set to a set of targets in a 2-dimensional
world. Agents build a communication graph based on local neighborhood
relations. We propose a message-based Ant Colony Optimization (ACO)
algorithm that disposes target-specific pheromones in this communica-
tion graph to solve the GOPP. It is analyzed why different typed and
newly arriving pheromone traces are unable to grow into once estab-
lished pheromone structures. Furthermore, an example is presented in
which pheromone-based approaches working on communication graphs
are unable to find optimal solutions. We present experimental results
and compare the new approach to existing ones. Besides the proved non-
optimality of our novel approach, the evaluation shows that the algorithm
produces high quality solutions on average.

1 Introduction

Consider a coffee-break scenario at a conference when a large number of Wi-Fi
devices at the same time tries to connect to the internet using some provided
access points. Usually, the access point with the strongest signal will be selected
by each device. However, this could lead to situations where one access point
is totally overcharged while others – that are reachable as well – still provide
plenty of capacity [1,2]. A possible solution to this problem would be to create
equal sized groups of devices. These groups then could assign themselves to the
access points. The question of how to create such groups autonomously and in
a decentralized manner has to be answered to realize such an approach.

Next, consider a scenario where several agents at the same time cooperatively
have to solve different tasks. Every task requires a certain number of agents in
order to be completed. Again, the question is how should the agents organize
themselves into groups in order to efficiently complete all tasks?

As these two examples show, establishing groups or organizations of agents is a
key problem when solving problems that could only be solved using the power of

J. Padget et al. (Eds.): COIN 2009, LNAI 6069, pp. 257–272, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

258 T. Kemmerich

organizations. The paper on hand handles this question by considering a problem
that demands an uniform, distance-minimal and cost-efficient partitioning of an
agent set to a set of targets in a 2-dimensional world. In order to solve that
problem we will propose an ant-based algorithm and discuss its properties.

Technically, the above mentioned problem is related to decentralized coordi-
nation of groups of agents, for which several different techniques have been pro-
posed. Kube and Zhang [3], for instance, implemented an ant-based approach
that uses indirect communication for solving a cooperative box-pushing task.
The task could only be fulfilled by cooperation since the box is too heavy to be
moved by a single robot. Kube and Zhang used the subsumption architecture
to arbitrate simple behavioral rules using fixed-priorities. In addition, they ex-
perimented with a simple neural network type called Adaptive Logic Networks.
Kube and Zhang showed the feasibility of a cooperative task without direct
communication using homogeneous robots.

In the early 2000s, further neural network based approaches towards cooper-
ative transport have been developed by Groß and Dorigo [4,5,6] as well as by
Groß et al. [7]. Their dynamic box-pushing task requires the agents to react on
changing target positions and to cope with “blind” robots that are occasionally
unable to detect the target. In [4] and [5] a single recurrent neural network and
a self-adaptive (μ + λ) evolution strategy are used to accomplish the task. In
[6] the authors note that it requires too many generations for a single neural
network to produce good results. Accordingly, they divided the task into two
subtasks that are performed by two independent neural networks. The results
show that the neural network controllers scale better with increasing group sizes
than hand-coded controllers.

In contrast to these partially biologically-inspired approaches, market-based
coordination methods recently gained the interest of researchers [8]. In [9], Koenig
et al. describe a sequential single-item auction system to solve an exploration
task. In detail, their problem includes a team of robots which has to visit tar-
gets located in a 2-dimensional world. Each target has to be visited by at least
one robot. The robots know their initial location, the exact positions of all tar-
gets, as well as the number of targets in the system. Furthermore, the terrain
includes obstacles whose dimensions and locations are unknown to the agents in
the beginning. Robots bid on targets whereas the costs to visit the correspond-
ing target on an cost-optimal path determines the bid value. Whenever a robot
detects a previously unknown obstacle, it publishes this information. Next, all
unvisited targets become subject of new auctions, again. The new bids reflect
the updated path costs. Koenig’s coordination method allows real time coordi-
nation, which is why the robots need to act efficiently in terms of communication
and computation. Comparable to the distance objective in the GOPP (see Sect.
2), Koenig et al. choose the minimization of the sum over all produced path
costs as a measure for the team performance. The proposed approach performs
well under the given constraints and is proved to gain results bounded by an
interval of [1.5, 2] times the optimum [9]. Recently, Koenig et al. [10] proposed

Influence of Communication Graph Structures 259

a method using auctions and regret clearing which further improves the team
performance.

Goebels et al. [11,12,13] consider a partitioning task, called Online Partition-
ing Problem (OPP). This problem demands a partitioning of an agent set to
a target set in a 2-dimensional world that does not include any obstacles. The
partitioning should be calculated according to the following three objectives:

Distribution: Uniform distribution of agents to targets
Distance: Minimize the overall distance between agents and assigned targets
Abilities: Agents should have as limited abilities as possible

To solve the OPP, Goebels [11] proposes several approaches including central in-
stance, non-communicative, and communicative strategies, biologically-inspired
techniques, as well as cellular automata, and organization-based methods. He
also presents a strategy, to which we will refer as Two Target Optimal (TTO)
approach, that calculates an optimal solution for two targets and n agents in
time O(n2). For the general case of m targets the problem is hard to solve
and the exact approach proposed by Goebels requires time O(mn). The most
promising heuristic is called Exchange Target Strategy (ETS). Its basic idea is to
optimize the OPP objectives one after the other. Therefore, the strategy begins
to optimize the distribution objective by assigning all agents to a target using
a uniform random number generator. Next, the distance objective is improved
by repeatedly exchanging target assignments between neighbored agents. Target
exchange decisions of an agent are based on information gathered using messages
which contain distance and assignment information of neighbored agents. An ex-
change is performed if it locally improves the distance objective, only. Due to the
exchange of target assignments, the distribution objective remains unchanged.
Later in this work we will use a more efficient ETS which avoids sending not
required messages [14].

In contrast to the local exchange strategy, Wehe [15] proposes the Chainmail
Strategy (CMS) which collects information about all assignments and distances
in an extended OPP system. Wehe’s OPP version allows a non-transparent wall
that can not be penetrated by radio waves. To collect the information, chainmail-
like messages are exchanged until, given enough runtime, all information are ac-
cumulated into a single message. This message is used locally by some special
agents to calculate an optimal solution. For two targets Wehe uses a strategy
comparable to the TTO approach, and for the general case of m targets he
proposes to use a linear programming technique. This, however, implies agents
high computational and storing abilities which in some way contradicts the
ability objective. CMS is able to produce high quality solutions in the evaluated
scenarios.

In Sect. 2 of this paper we propose a formalization of an extended, obstacle
containing OPP version whose evaluation function takes the ability property
into account. Section 3 introduces a novel approach inspired by the foraging be-
havior of ant societies using pheromones. In addition, we analyze the limitations
of pheromone-based approaches working on communication graphs. Section 4

260 T. Kemmerich

compares the novel approach to existing ones and presents experimental results.
Finally, Sect. 5 draws a conclusion and provides an outlook on future work.

2 Problem Definition

The problem considered in this paper is to find a partitioning of an agent set to a
target set in a 2-dimensional world containing obstacles and special regions. The
novel problem thus can be considered as a refinement of the Online Partitioning
Problem (OPP) [11,13] which at the same time overcomes its limitations.

Since the ability objective is not formalized within the OPP it is evaluated
informally, only. Our idea is to measure the abilities of an agent by considering
the costs they produce. In robotics, abilities of single robots emerge by executing
different software procedures and/or by using additional hardware. Usually, more
complex abilities require more computational effort and probably also additional
hardware. In contrast, simple abilities are satisfied with less resources. Support in
this idea comes from Šimunić et al. [16] who showed varying energy consumption
for different software configurations. In addition, Mei et al. [17] state

“As robots become more sophisticated, control, sensing, communication
and computation consume higher portions of energy.”

and

“The power consumption of the embedded computer may vary signifi-
cantly across different programs.”.

Consequently, we decided to use energy consumption as indicator for the com-
plexity of agent abilities. Since we deal with an abstract optimization problem,
the term energy consumption is abstracted to general costs. In order to com-
pare and measure the costs produced during the execution of an algorithm, we
developed a cost model and guidelines how to apply that model [14]. Note that
different algorithms can only be compared if the same model is used.

Additionally, we allow different types and an arbitrary number of obstacles
and special regions. Using areas where agents can move faster or slower, as well
as areas where agents can look through but are not allowed to walk across, we
are able to model more realistic scenarios, too. However, we currently distinguish
between solving the GOPP in a stationary environment and the actual movement
of the agents towards the targets in a second step.

In this paper A = {ai, . . . , an} denotes a non-empty set of agents, T =
{T1, . . . , Tm} a non-empty target set, C a cost model, and R a set of regions. A
region ri is described by a tuple ri = (Fi, Pi), with Fi denoting the geometrical
form and Pi a set of properties, containing at least a region specific weight factor
wi. ρ : {A�T �R} → R

+
0 ×R

+
0 is a positioning function that maps each object

to a position in the Euclidean space. The position of an object is defined as its
center point. δ(ρ(x), ρ(y)) denotes the shortest weighted distance between two
positions. Furthermore, let τ : A → T return an agent’s currently assigned tar-
get. Function ψ : A → T returns the nearest target of an agent (ties are broken

Influence of Communication Graph Structures 261

by selecting the target Ti with the lowest index i). Based on the given notations,
we now define the General Online Partitioning Problem (GOPP):

Definition 1 (GOPP). The General Online Partitioning Problem (GOPP)
is described by GOPP = (A, T , C,R, ρ). The aim is to find a partition S =
{S1, S2, . . . , Sm} of A with Si ⊆ A, i ∈ {1, . . . , m}, such that A = {S1 � S2 �
. . .� Sm}. Any agent a ∈ Si is assigned to target Ti. Such a partition must obey
the following three objectives:

1. create a uniform distribution where ∀i, i ∈ {1, ..., m} :
⌊
n
m

⌋ ≤ |Si| ≤
⌈
n
m

⌉
,

which is equal to maximizing the product of the subset sizes1:

max
∏

Si∈S
|Si|

2. minimize the overall weighted distance sum over all agents and their
assigned targets:

min
∑

a∈A
δ(a, τ(a))

3. minimize the costs produced to find the partition according to the cost model C:

min
∑

a∈A
fC(a) + λC(τ(a)),

where fC(a) describes the fixed costs produced by agent a and λC(τ(a)) the
costs for finding the assignment of agent a to target τ(a).

These objectives are normalized against optimal solutions and combined in Equa-
tion (1), where oi denotes the number of agents that would choose target Ti in an
optimal distribution according to the first objective. Furthermore, let α, β, γ ≥ 0
be weight factors with α + β + γ = 1.

f = α ·

⎛

⎜
⎜
⎜
⎜
⎝

∏

Si∈S
|Si|

m∏

i=1

oi

⎞

⎟
⎟
⎟
⎟
⎠

+ β ·

⎛

⎜
⎜
⎝

∑

a∈A
δ(a, ψ(a))

∑

a∈A
δ(a, τ(a))

⎞

⎟
⎟
⎠ + γ ·

⎛

⎜
⎜
⎝

∑

a∈A
fC(a)

∑

a∈A
fC(a) + λC(τ(a))

⎞

⎟
⎟
⎠ (1)

Since all three objectives are normalized, it holds that the higher the value f ∈
[0, 1] the better the solution found with reference to the weighted optimization
criteria.

Using Equation (1) we thus are able to assign a degree of importance to each of
the three contrary optimization criteria. By doing so, we obtain a simple measure
that allows us to compare different solutions based solely on a single criterion
instead of dealing with the Pareto optimality of all three optimization criteria.
1 For this mathematical description we use the fact that a product of m numbers is

maximal if the numbers are identical. A proof is available in the appendix of [11].

262 T. Kemmerich

Referring to the introduction, the uniform distribution objective demands the
emergence of equal sized agent groups.

In OPP scenarios without obstacles and weighted regions, Euclidean distances
are easy to calculate. In the remainder of this paper, however, we consider the
GOPP using four different types of rectangular, weighted regions as illustrated
in Fig. 1(a). The problem of determining shortest weighted paths in such envi-
ronments is known as Weighted Region Problem (WRP) [18]. Since an (1 + ε)-
approximation algorithm proposed in [18] requires time O(n8L), where L is a
factor based on the precision of the problem instance and n the number of ver-
tices, we implemented and used a heuristic that solves a simplified WRP in time
O(|R|3) [14]. To further simplify the distance determination, we assume infinite
small agents that cannot collide.

3 The ComAnt Approach

The presented communicative approach is inspired by the foraging behavior of
ant colonies, hence the name ComAnt. The basic idea is to establish a network
of pheromones based on the communication graph structure. Using pheromone
evaporation and updates, appropriate pheromone structures should emerge which
are used by the agents to find a partitioning according to GOPP’s objectives.
Algorithm 1 briefly summarizes the four phases of the ComAnt algorithm as
they will be described in the remainder of this section.

In the first phase each agent initializes its internal variables and determines
its (l, k)-neighborhood as defined in Definition 2. Note that the k-neighborhood
used in [11] and [15] per definition always contains the k nearest agents, but dis-
regards the maximum communication range of realistic communication devices.
We believe that a more realistic neighborhood is required and thus decided to
use the (l, k)-neighborhood which better reflects that physical limitation. Neigh-
borhoods are established using an iterative approach which increases the com-
munication range until either the desired number of agents k is reached or the
maximum communication range has been exceeded. In order to guarantee proper
execution, this and most other (G)OPP algorithms rely on the availability of lo-
cal information. Therefore, we demand a minimum number of neighbors l. If less
than l agents are reachable then the agent is said to be uninformed and it may
not properly execute the algorithm. Accordingly, its neighborhood size is set to 0.

Definition 2 ((l, k)-neighborhood). Let c be the number of agents within the
maximum communication range of agent a, a excluded. Then j is defined as
follows:

j =

⎧
⎪⎨

⎪⎩

k for c ≥ k

c for l ≤ c < k

0 otherwise

The (l,k)-neighborhood Na of agent a contains the j nearest agents according to
the communication distance δc, or more formally Na = {b1, . . . , bj} ⊆ A\{a}

Influence of Communication Graph Structures 263

Algorithm 1. ComAnt
1: procedure ComAnt
2: /* Phase 1: initialize all agents */
3: for all a ∈ A do
4: initialize variables
5: determine and store Na /* Agents do not move */

6: /* Phase 2: Sense targets */
7: for all a ∈ A do
8: sensedTargetList ← a.senseTargets()
9: if sensedTargetList �= ∅ then

10: t ← nearest target in sensedTargetList
11: a.assignTo(t)
12: a.setInitiatorStatus(t, true)

13: /* Phase 3: Create initial pheromone traces */
14: for all a ∈ A do
15: if a.isInitiator() then
16: a.createInitialTrace(maxTraceLength)

17: /* Phase 4: Find solution */
18: while the stop condition is false do
19: for all a ∈ A do
20: t ← a.getSelectionStrategy().selectTarget()
21: a.getUpdateStrategy().updatePheromones(t)

22: for all a ∈ A do
23: a.evaporatePheromones(evaporationRate)

such that ∀a′ ∈ A\(Na ∪ {a}), i ∈ {1, . . . , j} : δc(a′, a) ≥ δc(bi, a). By definition,
Na does not contain agent a itself.

The single neighborhoods form a (l, k)-communication graph such as the one
shown in Fig. 1(b).

The second phase causes each agent to search for targets located within the
maximum view range of its sonar sensor. Agents assign themselves to the nearest
sensed target, or, if no target was found, wait for phase three or four to begin.

Target perceiving agents are initiators of the third phase. Within this phase an
initial network of pheromone traces is established. A pheromone trace belongs
to a specified initiator and thus to a unique target. The initial network is created
as follows. Each initiator broadcasts a message to all its neighbors which in turn
retransmit that message until a specified hop counter value is exceeded. Like in
distance vector routing protocols (compare e.g. AODV [19]), these messages are
used to create route table entries pointing towards the initiator of a trace. The
pheromone concentration of an entry decreases with increasing number of hops
to the initiator. If an agent already owns a pheromone entry for the same target
with a higher pheromone concentration then the message is discarded. Otherwise,
a new trace is created or the existing updated. It is important to point out that
initial traces may not reach all agents, since the reachability highly depends on

264 T. Kemmerich

(a) Region types: wall (x), no-
go area (∼), speed-up (+), and
slow-down area (-).

(b) Exemplary communica-
tion graph structure.

Fig. 1. Example scenario

the chosen parameters and the dimensions of the system. Thus, the fourth phase
should ensure growing traces.

The fourth and last phase of the algorithm is executed repeatedly until a
stopping criterion is true. We decided that this stopping condition is true after
a certain number of iterations. A single iteration of phase four involves three
steps. First, agents select targets based on local (pheromone) information using
a target selection strategy. Second, the pheromones are updated according to
a given pheromone update strategy. Third, the artificial pheromones evaporate
over time using a constant factor chosen from [0, 1). Due to this evaporation,
pheromones on unused traces will diminish, while those on frequently selected
trails grow if they are renewed through the update strategy.

It is important that once existing traces are not completely removed from the
system since a removal may lead to problems when an update to an entire trace
towards a particular initiator has to be performed. Due to this, and since we
want to avoid arbitrary large and thus extremely dominating pheromone traces,
we enforce each pheromone concentration p to be within a predefined range
(pmin ≤ p ≤ pmax).

Pheromone update strategies are responsible for the emergence of appropriate
pheromone traces and thus directly influence the solution quality. In an optimal
case, an update procedure should evaluate the current solution and locally up-
date pheromones based on the actual solution quality. This, however, implies a
central instance — or at least massive data exchange.

We implemented three different update and selection strategies. The Pure-
Pheromone-Strategy (PPS) is an approach that bases the target selection only
on pheromone information. It locally applies negative feedback to all unselected
traces and positive feedback to the entire selected trace down to the initiator.
The Distribution-Pheromone-Dominating-Strategy (DPD) selects a target based
on target recommendations of neighbored agents if there are no pheromone in-
formation available. Trace initiators maintain a counter indicating the number

Influence of Communication Graph Structures 265

of agents that choose the corresponding trace. This value is used by the strat-
egy to determine whether or not the selected target was a good choice regard-
ing the distribution objective. Thus, the pheromones are updated according to
an assumed distribution. The Random-Pheromone-Dominating-Strategy (RPD)
strategy also bases its target selection on pheromones or advices but updates
the pheromones using a random update factor from [0.9, 1.1]. Details on the
strategies and analyses on their message complexity can be found in [14].

3.1 Influence of Communication Graph Structures

In this section we show the influence of communication graph structures to the
applicability of pheromone-based approaches. Figure 2(a) shows an optimal so-
lution for an exemplary scenario. The underlying communication graph is based
on a (l, k)-neighborhood with l = k = 2. We assume that the pheromone traces
grow by at least one agent in every iteration.

(a) Optimal solution and un-
derlying communication graph
structure.

(b) ComAnt after 6 iterations
(initial trace length = 3, dis-
tance factor = 0.91).

(c) ComAnt after 1000 itera-
tions (initial trace length = 3,
distance factor = 0.91).

(d) ComAnt solution after 1000
iterations (initial trace length =
80, distance factor = 1.0).

Fig. 2. Pheromone development on paths restricted by communication structures

Figure 2(b) shows a situation in which the pheromone trace of target TA
reaches agent a several iterations after the trace of TB. Note that besides agent
distribution as in the example, obstacles which are not penetrable like e.g. walls
also influence communication graph structures. Consequently, pheromone traces
have to surround these obstacles from which follows that it takes more time
for them to reach opposed agents. Hence, situations in which a trace reaches
a certain agent some time after another trace are very likely to occur in real
scenarios with obstacles.

266 T. Kemmerich

In pheromone-based algorithms, decisions generally are based on the available
pheromone concentrations: the higher the concentration, the higher the proba-
bility of being selected. As Fig. 2(b) already indicates, the probability for agent
a to choose the lately arriving trace thus will be small. Figures 2(c) and 2(d)
show that the probability of agent a to select TA is that low that its pheromones,
even after 1000 iterations, are unable to “grow” into TB’s trace. The remainder
of this section is used to provide a mathematical analysis of the probability that
the lately arriving trace grows into the older one.

Figure 3 shows a schematical representation of this situation. Let us assume
an initial trace length h = 2 and h
 p, p denoting the number of hops required
for trace TA to reach agent a. Then TB’s trace is available on a directly after the
initial pheromone network is established. In contrast, TA’s trace requires p− h
iterations until it finally reaches agent a. In each of these p− h iterations TB’s
trace, however, can grow by at least one agent. Since a trace is updated by each
agent that selects it, pheromone concentrations grow exponentially on agent a
for target TB because all agents ai right to a select TB. The reason for this is,
that they do not know about A’s existence in the beginning. Consequently, the
pheromone concentration of TB at a is reinforced exponentially and continuously,
whereas the one of TA remains unset (i.e. is 0).

Fig. 3. Schematical problem description

Let pcj(a, T) denote the pheromone concentration on agent a for target T ∈
{TA, TB} at iteration j. c denotes the initial concentration of a trace on an
agent that is just connected to the pheromone network, and f > 1 is a positive
feedback factor used for updating the pheromones. Without loss of generality,
we neglect pheromone evaporation and allow unlimited large/small pheromone
concentrations to simplify the following explanations.

In the beginning, we start with pc0(a, TA) = 0 and pc0(a, TB) = c, since h = 2
and h
 p. After the first iteration, it holds that pc1(a, TB) = pc0(a, TB) · f
and pc1(a, TA) = 0 since a’s only choice was TB. Thus, a updates its pheromone
concentration for TB and expands the pheromone trace to agent a1. After the
second iteration, it holds that pc2(a, TB) = pc1(a, TB)·f ·f since a’s and a1’s only
choices are to select TB. Due to the update mechanism down to the initiator,
both update the pheromones on a using f . TB’s trace is expanded to a2. For the
third iteration pc3(a, TB) = pc2(a, TB) · f · f · f follows, since a1, a2, as well as
a itself select target TB and so on.

Influence of Communication Graph Structures 267

Hence, TB’s pheromone concentration on agent a after the j-th iteration (0 ≤
j ≤ p− h) follows by Equation (2):

pcj(a, TB) = pcj−1(a, TB) · f j
= pcj−2(a, TB) · f j−1 · f j
= . . .

= pc0(a, TB) · f · f2 · f3 · . . . · f j−1 · f j
= c · f

∑ j
�=1 � (2)

After p − h iterations, TA’s trace will reach a. Then, pcp−h(a, TA) = c holds
by definition. According to the explanations above, for TB’s pheromones on a

pcp−h(a, TB) = c · f
∑p−h

�=1 � follows. In iteration p − h + 1 agent a has to decide
between both targets for the first time. Remember that the decision is based
on the available pheromone concentrations and that high concentrations are
more likely to be chosen. Since proportional selection techniques well reflect this
property, we decided to use the roulette wheel selection that belongs to this class
of techniques [20]. Note that other proportional selection techniques could be
used as well.

The following equation calculates the probability that agent a chooses target
TA, whereas α is a parameter that influences the selection procedure:

Pr(τ(a) = TA) =
pcp−h+1(a, A)α

pcp−h+1(a, A)α + pcp−h+1(a, B)α
=

1

1 + fα·
∑p−h+1

�=1 �
(3)

On the other hand, TB is selected with a probability of

Pr(τ(a) = TB) =
pcp−h+1(a, B)α

pcp−h+1(a, A)α + pcp−h+1(a, B)α
=

fα·
∑p−h+1

�=1 �

1 + fα·
∑ p−h+1

�=1 �
(4)

For fixed h and large p we get limp→∞ Pr(τ(a) = TA) = 0 and limp→∞ Pr(τ(a) =
TB) = 1. Consequently it follows, that TA’s trace will reach agents ai, 1 ≤ i ≤ p,
with a very small probability, only. Note that if TA’s traces manages to reach
agent a1, say in iteration j, then per definition pcj(a1, TA) = c holds. Conse-
quently, a1 will be faced to the same probability ratios as just described for agent
a. In general, we conclude, that the limit of the probability Pr(“all agents to the
right of a have pheromones for TA in iteration j“) as j approaches ∞ is 0.

To put it in other words, agents are unable to switch a once established trace
in favor of a new arriving one. This observation is supported by Goss et al. [21]
who calls this effect the “irreversible nature of the positive feedback process”.

3.2 Non-optimality

Again, we use the example shown in Fig. 2 to prove the non-optimality of the
ComAnt algorithm. In our understanding, an algorithm is non-optimal if there
are scenarios in which it is unable to find an optimal solution.

268 T. Kemmerich

The goal of the ComAnt algorithm is to solve the GOPP using adequate
pheromone traces. These traces are constrained to follow the underlying commu-
nication graph. According to the natural model, adequate traces should emerge
during the runtime. For the given example (Fig. 2), we thus expect final phero-
mones as sketched in Fig. 4(a) and 4(b), since they would result in an optimal
solution as calculated by the TTO approach (compare Fig. 2(a)).

(a) Pheromone concentrations
for TA.

(b) Pheromone concentrations
for TB .

Fig. 4. Expected, optimal pheromone concentrations

Next, we prove that it is impossible for two neighbored agents b and c, as
shown in Fig. 4(a), to select different targets with a probability of 1 each. In
this proof, cp denotes the pheromone concentration on an agent when it gets
connected to the pheromone network. Furthermore, n is the number of agents
(including a and b) that constitute the path between a and b. We consider a single
iteration of the ComAnt approach. According to the assumed traces, agents d
and c should select target TA, whereas the n agents which connect a and b should
select TB. These choices are rewarded by a positive update factor f > 1. Due
to the pheromone update down to an initiator, the pheromone concentrations
will develop as follows. On the one hand, the pheromone concentration pc(c, TA)
is updated only twice since solely agents d and c select target TA’s trace. On
the other hand, pc(c, TB) is updated n times using f . Accordingly, we obtain
pc(c, TA) = cp · f2 and pc(c, TB) = cp · fn, as well as pc(b, TA) = cp · f and
pc(b, TB) = cp ·fn. Using the roulette wheel selection, b and c will select TA with
a probability of 0 and TB with a probability of 1 for large n as Equations (5)-(7)
show.

Pr(τ(b) = TA) = lim
n→∞

(cp · f)α

(cp · f)α + (cp · fn)α = 0 (5)

Pr(τ(c) = TA) = lim
n→∞

(cp · f2)α

(cp · f2)α + (cp · fn)α = 0 (6)

Pr(τ(b) = TB) = lim
n→∞

(cp · fn)α
(cp · f2)α + (cp · fn)α = 1

= Pr(τ(c) = TB)
(7)

This, however, is a contradiction to the assumption that b and c are able to
choose different targets. Consequently, it follows that c selects the same target

Influence of Communication Graph Structures 269

(a) Different communication
graph.

(b) Pheromone distribution re-
quired by an optimal solution.

Fig. 5. Different communication graph structure

as b and thus, over time, others than the required pheromones for an optimal
solution will emerge. Figures 2(c) and 2(d) show exemplary pheromone results.

Note that the presented properties are independent from the pheromone up-
date strategy, since the latter is only used to determine the update factor which
is applied to the entire trace. Accordingly, no pheromone update strategy can
guarantee optimal solutions for all possible scenarios. Hence, the non-optimality
of the ComAnt algorithm in the proposed and implemented form follows.

Figure 5(a) sketches a communication graph which would enable the ComAnt
approach to find an optimal solution for the considered example since proper
pheromones may emerge as illustrated in Fig. 5(b).

4 Simulation Results

We simulated the ComAnt algorithm using the three abovementioned strategies
DPD, PPS, RPD and compared the results to those of the Chainmail Strategy
(CMS), the modified Exchange Target Strategy (ETSm), as well as to the optimal
solution calculated by the Two Target Optimal (TTO) approach. Note that
both, CMS and TTO, in the implemented form can only be applied to scenarios
with two targets. The simulations have been performed on four scenarios (S1-
S4) with 3000 randomly distributed agents. All scenarios contain one speed-up,
one slow-down, one no-go area, and one wall which all have random dimensions
and are located at random positions. Scenarios S1 and S2 both contain two
targets, scenarios S3 and S4 both contain three targets. In S1 and S3 the targets
are positioned randomly, while the targets in S2 are located in the top left
and bottom right corner of the system and the three targets in S4 constitute a
triangle in the middle of the system. We chose these scenarios to demonstrate
the importance of non-interfering pheromone traces. The fourth phase of the
ComAnt algorithm is executed 12 times and uses a pheromone evaporation rate
of 0.95. CMS iterates 13 times and ETSm 100 times. All algorithms use a (l, k)-
neighborhood with l = 6, k = 8. Furthermore we chose α = β = γ = 0.3333 for
the objective function specified in Equation (1). Since TTO is a central instance
approach, no costs are produced. Hence, we set α = β = 0.5, γ = 0 for TTO.
Each scenario was simulated 30 times for each algorithm.

270 T. Kemmerich

Table 1. Simulation results

Scenario Algorithm f var(f) distance costs distribution

1 CMS 0.9581 1e-04 0.9619 0.9125 1.0000
DPD 0.9492 0.0009 0.9565 0.9871 0.9039
PPS 0.9507 0.0013 0.9834 0.9872 0.8817
RPD 0.9482 0.0013 0.9757 0.9872 0.8818
ETSm 0.9838 1e-04 0.9522 0.9997 0.9997
TTO 0.9850 2e-04 0.9766 - 0.9935

2 CMS 0.9703 2e-06 0.9983 0.9126 1.0000
DPD 0.9918 1e-05 0.9932 0.9871 0.9953
PPS 0.9792 1e-05 0.9544 0.9872 0.9961
RPD 0.9920 1e-05 0.9929 0.9872 0.9960
ETSm 0.9986 2e-06 0.9965 0.9997 0.9997
TTO 0.9994 3e-06 0.9990 - 0.9997

3 DPD 0.9042 0.0024 0.8985 0.9871 0.8269
PPS 0.9070 0.0038 0.9643 0.9872 0.7694
RPD 0.9027 0.0030 0.9395 0.9872 0.7813
ETSm 0.9752 3e-04 0.9270 0.9996 0.9991

4 DPD 0.9343 3e-05 0.8295 0.9872 0.9861
PPS 0.9799 9e-06 0.9661 0.9872 0.9864
RPD 0.9605 1e-05 0.9073 0.9872 0.9869
ETSm 0.9830 5e-05 0.9504 0.9996 0.9992

Table 1 lists average values of the obtained results and the variance of f for
all four scenarios. The results show that all algorithms are able to produce high
quality solutions (f ≥ 0.95) for the two target case, but perform worse for three
targets. In S2, DPD and RPD produce almost optimal solutions. Beside of sce-
nario S4, the variances of the ComAnt strategies are higher compared to the
other approaches. Furthermore, the results in Table 1 show that the objective
function value for the ComAnt strategies is between 3% (PPS, 2 targets) and
8,04% (PPS, 3 targets) better in scenarios with fixed target positions compared
to scenarios with random target positions. Moreover, the variance in the scenar-
ios with fixed positions (S2,S4) is lower than in the random scenarios(S1,S3).

The reason for these results can be found in the way how the target posi-
tions were selected. In detail, these positions in S2 and S4 were chosen such that
the corresponding target pheromones should be able to grow without interfer-
ing each other and hence avoiding the effects described in Sect. 3.1. The ran-
dom alignment, however, may result in situations where the targets are located
nearby each other. In such cases, the pheromones interfere and the strongest
trace in terms of pheromone concentration will distract the others from adequate
growth. According to Sect. 3.2, the two obstacles (wall and no-go area) influ-
ence the communication graph structure and thus further influence the growth
of pheromones such that the approach is unable to find better solutions in S1
and S3. All ComAnt strategies are more cost-efficient than CMS since the latter
repeatedly broadcasts very large messages which results in high communication
costs. ETS produces the smallest costs and calculates the best solutions.

Influence of Communication Graph Structures 271

5 Conclusion and Future Work

Based on the question how to establish organizations or groups of agents in a
decentralized manner, in order to enable the agents to solve problems which
involve groups, we introduced and formalized the General Online Partitioning
Problem (GOPP). We presented a pheromone-based approach called ComAnt
to solve the GOPP. The simulations showed that the algorithm is able to create
groups of almost the same size in scenarios with obstacles and special regions.
The proposed approach also adequately solves the additional constraints (cost-
efficiency and distance minimization) demanded by the GOPP and thus is able
to produce high quality solutions on average.

However, we also identified and analyzed situations where the approach does
not perform well. We proved that the solution quality of the underlying mecha-
nism using different types of pheromones depends on the communication graph
structure of the agents. We showed that pheromones of different types cannot
break into already established structures due to the probabilities resulting from
proportional selection techniques.

As future work, we plan to evaluate scenarios with more than three targets and
update strategies based on internal agent states. Currently, we are developing
an hierarchy-based approach inspired by dominance fights in wasp societies to
solve the GOPP. Preliminary results are almost optimal for two but worse for
three targets.

References

1. Kasbekar, G.S., Kuri, J., Nuggehalli, P.: Online association policies in IEEE 802.11
WLANs. In: 4th International Symposium on Modeling and Optimization in Mo-
bile, Ad Hoc and Wireless Networks, pp. 1–10. IEEE, Los Alamitos (2006)

2. Bejerano, Y., Han, S.J., Li, L.E.: Fairness and load balancing in wireless LANs using
association control. In: Proceedings of the 10th Annual International Conference
on Mobile Computing and Networking, pp. 315–329. ACM, New York (2004)

3. Kube, C.R., Zhang, H.: Collective robotics: From social insects to robots. Adaptive
Behavior 2(2), 189–218 (1993)

4. Groß, R., Dorigo, M.: Cooperative transport of objects of different shapes and sizes.
In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle,
T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 106–117. Springer, Heidelberg (2004)

5. Groß, R., Dorigo, M.: Evolving a cooperative transport behavior for two simple
robots. In: Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M. (eds.)
EA 2003. LNCS, vol. 2936, pp. 305–316. Springer, Heidelberg (2004)

6. Groß, R., Dorigo, M.: Group transport of an object to a target that only some
group members may sense. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J.,
Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel,
H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 852–861. Springer, Heidelberg (2004)

7. Groß, R., Tuci, E., Dorigo, M., Bonani, M., Mondada, F.: Object transport by
modular robots that self-assemble. In: Proceedings of the 2006 IEEE International
Conference on Robotics and Automation, pp. 2558–2564. IEEE Computer Society
Press, Los Alamitos (2006)

272 T. Kemmerich

8. Dias, M.B., Zlot, R., Kalra, N., Stentz, A.: Market-based multirobot coordination:
A survey and analysis. Proceedings of the IEEE 94(7), 1257–1270 (2006)

9. Koenig, S., Tovey, C.A., Lagoudakis, M.G., Markakis, E., Kempe, D., Keskinocak,
P., Kleywegt, A.J., Meyerson, A., Jain, S.: The power of sequential single-item
auctions for agent coordination. In: Proceedings of the 21st National Conference
on Artificial Intelligence, pp. 1625–1629. AAAI Press, Menlo Park (2006)

10. Koenig, S., Zheng, X., Tovey, C.A., Borie, R., Kilby, P., Markakis, V., Keskinocak,
P.: Agent coordination with regret clearing. In: Proceedings of the 23rd National
Conference on Artificial Intelligence, pp. 101–107. AAAI Press, Menlo Park (2008)

11. Goebels, A.: Agent Coordination Mechanisms for Solving a Partitioning Task. PhD
thesis, University of Paderborn (2006)

12. Goebels, A., Kleine Büning, H., Priesterjahn, S., Weimer, A.: Multi target parti-
tioning of sets based on local information. In: Abraham, A., Dote, Y., Furuhashi,
T., Köppen, M., Ohuchi, A., Ohsawa, Y. (eds.) WSTST. Advances in Soft Com-
puting, vol. 29, pp. 1309–1318. Springer, Heidelberg (2005)

13. Goebels, A., Kleine Büning, H., Priesterjahn, S., Weimer, A.: Towards online
partitioning of agent sets based on local information. In: Fahringer, T., Hamza,
M.H. (eds.) Parallel and Distributed Computing and Networks, pp. 674–679.
IASTED/ACTA Press (2005)

14. Kemmerich, T.: Algorithms for the general online partitioning problem. Master’s
thesis, University of Paderborn (2008)

15. Wehe, B.: Verfahren zur Partitionierung von Multi-Agentensystemen in Szenarien
mit Hindernissen. Diploma thesis, University of Paderborn (2008)

16. Šimunić, T., Benini, L., De Micheli, G.: Cycle-accurate simulation of energy con-
sumption in embedded systems. In: Proceedings of the 36th annual ACM/IEEE
Design Automation Conference, pp. 867–872. ACM, New York (1999)

17. Mei, Y., Lu, Y.H., Hu, Y.C., Lee, C.G.: A case study of mobile robot’s energy
consumption and conservation techniques. In: IEEE International Conference on
Advanced Robotics, pp. 492–497 (2005)

18. Mitchell, J.S.B., Papadimitriou, C.H.: The weighted region problem: finding short-
est paths through a weighted planar subdivision. J. ACM 38(1), 18–73 (1991)

19. Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector routing. In: Pro-
ceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applica-
tions, pp. 90–100. IEEE Computer Society Press, Los Alamitos (1999)

20. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley,
Chichester (2005)

21. Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized shortcuts in
the argentine ant. Naturwissenschaften 76, 579–581 (1989)

An Infection-Based Mechanism in Large

Convention Spaces

Norman Salazar, Juan A. Rodriguez-Aguilar, and Josep Ll. Arcos

IIIA, Artificial Intelligence Research Institute
CSIC, Spanish National Research Council

{norman,jar,arcos}iiia.csic.es

Abstract. Regulating the behavior of autonomous agents is necessary
to solve coordination problems and minimize conflicts in multi-agent sys-
tems (MAS). It is well known that in practice centralized approaches are
not viable to accomplish this. Thus, distributed regulating mechanisms,
such as mechanisms for the emergence of social conventions, are highly
needed. Nevertheless, existing studies have not focused on determining
how the size of the convention space may influence the emergence of
conventions. To that end in this paper we apply a mechanism for the
distributed, dynamic emergence of social conventions, to a problem with
a large convention space: finding a common vocabulary (lexicon) for the
agents of a MAS that allows them to perfectly communicate with neither
ambiguity nor inconsistencies. Therefore, we empirically show that the
mechanism can cope with large convention spaces.

1 Introduction

Regulating the behavior of autonomous agents in multi-agent systems (MAS) to
improve its overall performance and effectiveness is a current subject of inter-
est. In particular, to solve coordination problems and minimize conflicts. It is
well known that centralized techniques that depend on global knowledge have
become a less than viable approach to accomplish this. Therefore, distributed
mechanisms have become highly desirable. In particular, those that coordinate
the agents in a MAS through social conventions.

It has been argued that the space of alternative behaviors (or convention
space) is an important factor in the outcome of convention problems [8]. In
other words, the number of possible conventions the agents can establish may
influence the emerging convention(s) (if any). Therefore, mechanisms must be
able to cope with convention spaces of different sizes.

In [15,14], Salazar et al. propose, with some success, an evolutionary comput-
ing mechanism based on the notion of social contagion to dynamically emerge
social conventions, the so-called infection-based mechanism (IBM). Neverthe-
less, their experiments are limited to study cases where the space of conventions
agents can reach is somewhat small. With this in mind, this paper focuses on
validating the IBM by evaluating it in large convention spaces. To this aim,

J. Padget et al. (Eds.): COIN 2009, LNAI 6069, pp. 273–288, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

274 N. Salazar, J.A. Rodriguez-Aguilar, and J.Ll. Arcos

we have selected language conventions as our case study domain because: (i) it
provides large convention spaces; and (ii) it is a relevant problem for MAS.

In multi-agent systems (MAS), communication is a key factor for agents to
successfully interact with each other. In particular, when agents rely on explicit
communication, a shared language or vocabulary (i.e. communication system) is
highly necessary. Nevertheless, in open, heterogeneous MAS, where no central
authority exists, such language may not exist. Since no one enforces a common
language, agents may have their own, limiting their successful interactions to
agents with a similar or the same language (if any exists).

In such MAS, agents may use different terms to refer to the same concept, or
may use the same term to refer to different concepts, creating ambiguities in their
communications. Therefore, a mechanism that allows agents to distributedly
reach language conventions (consensus) that improve their communications is
highly desirable. Furthermore, in an open MAS, establishing conventions with
an offline process may not be reliable. Because, the MAS conditions can change
with time (e.g. the number of agents, their objectives, the environment). Hence,
the need for a mechanism that allows agents to reach language conventions at
the same time they normally operate to achieve their (individual) goals.

From the social sciences perspective, language establishment is a highly stud-
ied topic [2,11]. It has been argued that languages are established as a form of
a social convention, thus the relationship between a word and a concept is de-
pendent on the interactions between individuals. Several studies have addressed
the modeling of such interactions as language games between individuals [12]
[4], with various levels of success. These games model language construction at a
purely semiotic level, i.e. they neglect the semantic relationships between models
and symbols. A common game to study conventionalization is the naming game
[18]. This game focuses on the interactions of speakers and listeners that try to
find names for objects to understand each other. Thus, the aim of the naming
game is to study how a common lexicon (vocabulary) is established in a society.
Thus, for our purposes we apply this notions from a MAS perspective.

With the purpose of studying different types of large convention spaces, we
evaluate two different cases. Firstly, the one created by having the same number
of names and concepts (objects). This scenario, is likely to exhibit ambiguity
(also called specificity) because there is a high probability that agents assign the
same name to different objects. Thus, it represents a behavior space with small
number of desired conventions (with respect to the number of possible ones).
Secondly, if the number of names is (relatively) much larger than the number of
objects, ambiguity may be less likely to occur, but conventions may be harder
to reach, since the space of possibilities is larger.

Several studies show that the social structure of a population affects how a
language emerges [13,6,10]. This motivates that we further explore how differ-
ent complex networks, such as small-world [19] and scale-free [1], as underlying
topologies of our MAS may influence the adaptation mechanism.

In this paper, as stated above, we propose applying the infection-based mecha-
nism as a distributed adaptation mechanism to engineer the emergence of lexicon

An Infection-Based Mechanism in Large Convention Spaces 275

conventions in a MAS. Firstly, we model agents’ communication interactions as
a particular type of naming game. To that end, we base ourselves on the model
proposed in [9]. Next, we use the IBM to provide lexicon adoption and adaption.
Lastly, we empirically show that thanks to such distributed adaptation mecha-
nism, agents in an open MAS distributedly manage to reach a common lexicon.
Furthermore, the emergent lexicon provides the MAS with a so-called, perfect
communication system [9]. Consequently, this also shows the usefulness of the
infection-based mechanism in large convention spaces.

Additionally, we analyze the robustness of the approach in dynamical settings,
by allowing new agents to join a MAS at any time and by dynamically changing
its interaction topology. Incoming agents are equipped with their own lexicon,
which may be different to the one the agents in the MAS have already agreed
upon (if any). Thus, we observe that despite changes in the population our
adaptation mechanism leads the agents in an open MAS to adapt to the existing
lexicon conventions or not.

To summarize, the contributions of this paper are: (1) we show how to success-
fully apply the IBM to emerge communication in an open MAS; (2) we propose a
MAS communication model based on the naming-game; (3) we empirically show
that the IBM can cope with large convention spaces; and (4) we empirically show
that thanks to IBM a consensus on a single, globally-shared lexicon is feasible
despite the interaction topology and dynamic changes.

The paper is organized as follows. Section 2 characterizes an open MAS and
defines the communication model agents employ to interact. Section 3 briefly
reviews the infection-based mechanism [14] and discusses its application to our
problem. Section 4 presents some empirical evaluations. Finally, in section 5 we
draw some conclusions and set paths to future research.

2 The Communication Model

In this section we define and characterize the communication model that the
agents employ to interact between themselves. We based the model on a well
studied one, the naming game. Therefore, the first part of the section focuses
on describing such game, as well as its shortcomings (from our perspective) if
used in MAS. Whereas, the second part proposes a communication model to
overcome the identified shortcoming.

The naming game [18] is one of the most used models for studying language
evolution. This game consists of two agents, a speaker who utters the name of an
object, and a listener who must understand it. Thus, a game is successful if the
listener can understand the speaker. Moreover, the game is considered as adap-
tive if speaker and hearer manage to increase the success of their communications
through repeated interactions.

Even though this kind of game is mostly used in linguistics to understand the
principles of language evolution [12], it can be highly useful in open MAS for
agents to agree upon the lexicon to share. Therefore, in a broad sense it can be
regarded as a model for ontology sharing [17]. Nevertheless, currently the most

276 N. Salazar, J.A. Rodriguez-Aguilar, and J.Ll. Arcos

common formulation of the naming game presents some impractical character-
istics to make it useful for open MAS. First of all, it allows agents to create any
word to refer to a particular object, which may be unrealistic in MAS since the
number of concepts to name can most likely be bounded beforehand. Secondly,
it allows the existence of multiple words to refer to the very same object (syn-
onymy), which may cause ambiguities or inconsistencies in the communication
between agents. Moreover, the predominant naming-game formulation makes no
distinction between the communication model and the communication develop-
ment (language acquisition) algorithm, (i.e. they are inter-wove).

To take into account the above-mentioned issues, we propose a communica-
tion model based on the one described by De Jong et al. in [7]. De Jong’s model
borrows some of the notions of the naming game and defines them for a MAS.
Moreover, it makes a distinction between the interaction model and the commu-
nication development algorithm. Nevertheless, it still considers word creation.
Therefore, we propose to replace word creation with a word selection (from a
finite set), similar to a not commonly used variation of the naming game pre-
sented in [16]. Henceforth, we shall refer to this communication model as the
name-matching game, whose mechanics we describe in what follows.

We shall consider an open MAS composed of a set of autonomous agents,
Ag. No central authority exists to rule the agents and agents only work with
local knowledge. Each agent, agi ∈ Ag knows a set of concepts (be them, for
instance, object, topics, actions) O, which it employs to communicate with the
other agents in the MAS. Some or all concepts can be shared between different
agents. We also consider that all agents share a finite set of words, W , which they
employ to refer to the concepts they use. Thus, agents interact with each other by
exchanging messages composed of words from W . To facilitate communication
among agents, each agent has a lexicon, Li : O →W , which assigns an external
representation to the concepts it needs to employ. Thus, each agent uses its own
lexicon Li to find the appropriate word that represents the concept about which
it wants to communicate. Moreover, we restrict the lexicon in such a manner
that only one entry per concept is permitted. Hence, it is not possible to assign
more than one word per concept (synonymy). Finally, the decoding function,
Di : W → 2O, is used to translate a given word to its related concept.

The convention space of this problem, C, stands for the set that contains all
possible agent language conventions. For the sake of simplicity we shall measure
its size as the number of possible lexicons to which all agents may agree to at
one point, namely |C| = |W ||O|. Notice that this is a lower bound since it only
considers conventions in which all agents share the same lexicon.

Additionally, we consider that interactions among agents in a MAS are re-
stricted by an interaction topology. We model an interaction topology as a graph
(Ag, E), where E ⊆ Ag × Ag, whose edges correspond to relationships (neigh-
borhoods) between agents. If (agi, agj) ∈ E, then agi and agj are neighbors,
and thus they can interact with each other. Since the kind of MAS we consider
is open (agents join or leave at will), interaction topologies may change with
time. Specifically, interactions between agents are pair-wise. Each interaction is a

An Infection-Based Mechanism in Large Convention Spaces 277

communication between an agent playing the role of speaker, s ∈ Ag, and another
one playing the role of hearer, h ∈ Ag, relating to a certain concept, o ∈ Os.

Given some interaction topology, each agent uses the words in its lexicon to
build messages that exchanges with its neighboring agents. The recipient of an
agent’s message may understand a message or not. This directly depends on the
degree of agreement on the lexicons of sender and receiver. Overall, the higher
the agreement on lexicons, the higher the number of successful interactions (and
hence the lower the amount of misunderstandings).

In a MAS context, this interaction framework models various communication
situations, in particular petitions. For example, an agent s (speaker) requiring
an object available to an agent h (hearer), requesting a service or task, sending
instructions, etc. Within this setting, communication is successful if agent s
obtains the object or service it requires; or if it perceives that agent h soundly
performs the requested task or some instruction. In other words, the game is
successful if both agents can match the same word to the same concept.

To summarize, the mechanics of the game that we propose are as follows: (1)
Agent s selects a concept, os ∈ Os; (2) Agent s uses its lexicon, Ls, to find the
word, w, that refers to os; (3) Agent s communicates w to agent h; (4) Agent h
uses its decoding function, Dh, to interpret w into a concept oh ∈ Oh; (5) Agent
h responds according to its understanding of oh; and (6) The game is successful
if s is satisfied by h’s response (i.e. if os = oh).

Our aim will be that agents achieve a so-called perfect communication sys-
tem [7], where the lexicon mappings between words and concepts are one-to-one.
Thus, as with synonymy, a desirable lexicon should not exhibit polysemy (i.e.
same word for multiple concepts). The presence of polysemy increases the pos-
sibility of ambiguousness in the message interpretation of the hearer agent. If a
particular agent’s lexicon, assigns the same word to two (or more) concepts, at
the moment of decoding a message relating to this word, the hearer will have
trouble deciding which concept the word refers to. In MAS communications, the
specificity of a word quantifies the degree to which it identifies a single concept
(the higher the specificity the less ambiguous the word). Thus, from here on we
shall measure the specificity of a lexicon as the percentage of words in the lexicon
with specificity equal to one. Therefore, a lexicon with 100% of specificity repre-
sents a lexicon with one-to-one mappings guaranteeing perfect communication.

Now observe that the ratio between the number of available words (|W |) and
concepts (|O|) to the agents in the MAS depicts scenarios with different degrees
of specificity. Hence, if |W | < |O| we obtain games where full understanding (a
perfect communication system) is impossible because ambiguity is unavoidable
(a 100% lexicon specificity cannot occur). If |W | = |O|, ambiguity is likely to
happen, but lexicons with a 100% specificity are feasible. Thus, for a large enough
number of concepts, the resulting convention space C is large, namely |C| =
|W ||O|. Nevertheless, only a small number of desirable conventions exist. Finally,
when |W | > |O| we obtain games where the likelihood to present ambiguity
is low, but where misunderstandings are possible because of different lexicons

278 N. Salazar, J.A. Rodriguez-Aguilar, and J.Ll. Arcos

naming the same object with different words. Moreover, if |W | is considerably
large then the resulting convention space is also considerable large.

Notice that the proposed communication model solves to some extent the
above-mentioned impracticalities by: i)bounding the number of available words
to a particular set; ii) preventing synonymy through lexicon restrictions; and iii)
decoupling the communication development algorithm from the communication
model. Therefore, the remaining issue to deal with is polysemy. We tackle this
issue with the aid of the communication development algorithm, whose aim will
be to emerge a common lexicon with high specificity. The next section presents
the algorithm we employ to accomplish this aim.

3 IBM for Communication Development

As noticed above, our main goal is to engineer the emergence of desirable lexicon
conventions in an open, dynamic MAS. To succeed in this endeavor, we must
guarantee that the agents in the MAS converge to a common lexicon. Not only
that, because we pursue that convergence occurs despite changes in the agent
population caused by the openness of a MAS. Therefore, we aim at endowing a
MAS (section 2) with a distributed, adaptive mechanism that ensures a contin-
uous convergence to a common lexicon despite changes in the agent population,
hence promoting the development of a common communication system.

In what follows we propose to apply the infection-based mechanism described
by Salazar et al. in [15] as a mechanism that promotes communication develop-
ment. Furthermore, we also discuss how to deploy the infection-based model in
an open MAS since it is an issue which is not tackled in [15].

The IBM is a distributed evolutionary algorithm that allows agents in a MAS
to self-regulate through the collective emergence of social conventions. It is based
on the social phenomenon of social-contagion [5], which relates to the spreading
of behaviors/knowledge between individuals akin to an infectious disease.

However, the IBM considers the notion of positive infection: agents with good
behaviors / knowledge that help improve the social welfare become more infec-
tious to spread their behaviors (knowledge). In the context of our problem, an
agent whose lexicon is highly unambiguous (close to or no polysemy) and/or
highly agrees with its peers’ is considered to have a good lexicon because it leads
to successful communications. Therefore, the agent is more likely to spread his
lexicon (infect other agents). An agent whose lexicon shows either a low degree
of agreement with its peers’ or a considerable number of ambiguous words, is
bound to lead the agent to unsuccessful communications. Hence, this agent’s lex-
icon can be regarded as a bad lexicon, that should not spread and be positively
infected by some agent with a good lexicon instead of being spread. The following
subsection details how the infection-based mechanism was implemented.

3.1 Implementation

Here we propose to deploy the infection-based mechanism in an open MAS by
embedding an infection-based (adaptation) module within each agent as depicted

An Infection-Based Mechanism in Large Convention Spaces 279

Agenti

Lexiconi

IBM

Agentk

Lexiconk

IBM

Interaction

Infection

Update Update

Monitor Monitor

Read Read

Fig. 1. Infection-based module embedded into agents

by figure 1 (squared boxes within agents labeled as IBM). These adaptation mod-
ules collaborate to run a distributed evolutionary algorithm (detailed below)
to continuously improve their lexicons. Within this setting, the infection-based
mechanism operates as follows. Each adaptation module (IBM) continuously
monitors the success of the interactions of the agent where it is embedded,
(figure 1). Recall that such interactions occur between agents linked by some
interaction topology. Periodically, adaptation modules synchronize to fire a co-
operative evolutionary process aimed at improving their agents’ lexicons. More
precisely, adaptation modules record the results of a fixed number of interac-
tions, namely language games (such as described in section 2). We refer to such
number as the incubation time (tincubation). This parameter bounds the time
period for adaptation modules to monitor the success that the lexicons in use
bring to their agents.

Once the incubation time expires, each infection-based module starts its adap-
tation process. It employs two strategies to improve the lexicon of each agent:
spreading it among the agent’s neighbors; and innovating it to prevent stagna-
tion. As outlined above, the mechanism gives agents a higher infectious power the
higher their success in their interactions. In the context of our problem, agents
with a good lexicons (low ambiguity and already adopted by other agents) should
have a higher chance of infecting other agents (via their lexicons), thus following
the survival of the fittest approach.

In order to assess an agent’s lexicon success, each adaptation module requires
an evaluation function. This function allows to value the results of the lan-
guage games an agent has been engaged in during the incubation time. Moreover,
each adaptation module also requires a secondary communication channel. Such
channel needs to be specialized for the adaptation module, i.e. independent of
the (primary) communication channel used by each agent (see figure 1). Through
this secondary channel, adaptation modules realize the spreading (infection at-
tempts) by exchanging information related to their lexicons and their usefulness
in preventing misunderstandings.

Henceforth, although the operations described below are run inside agents’
adaptation modules, for the sake of simplicity we refer to the agents hosting
them. Then, since each agent receives infection attempts from multiple neigh-
bors, a selection process is ran by the agent to determine the infecting peer,
based on its fitness (namely, on the evaluation of the peer’s lexicon). The selection

280 N. Salazar, J.A. Rodriguez-Aguilar, and J.Ll. Arcos

operator is implemented as detailed in [15] by adapting the roulette selection in
the classic GA literature [3] to make it decentralized.

Once an agent has chosen a peer, it runs an infection process (with prob-
ability pinfection)is ran, to have its lexicon injected with part of the infecting
agent’s lexicon (both lexicons are represented as genes). The infection process is
implemented as a classic crossover recombination. The classic crossover (single-
cut crossover) randomly selects a cut point in the parents’ gene sequences to
exchange their genes and produce two new individuals. Consider a contagious
agent and an agent to infect as two parents. Instead of creating child individ-
uals, an infection operator combines the genes of both parents. Furthermore,
there is no restriction on the number of agents each agent can infect (per iter-
ation), but no agent can be infected twice. Therefore, the fittest agents enjoy
more opportunities to spread.

Finally, each agent also runs an innovation process that randomly changes
(with probability pmutation) the word assigned to a concept with one word out
the set of words W . The infection-based mechanism is outlined in algorithm 1.
Importantly, our algorithm runs distributedly: each agent decides whether to
infect or mutate based on its local knowledge. The interactions to which algo-
rithm 1 refers are language games (line 2). As mentioned above, agents in a
MAS continuously engage in language games until the incubation time expires.
Thereafter, all agents locally start their evolutionary processes. Once this process
finishes, agents resume their interactions.

1: repeat
2: Let the agent interact for time tincubation;
3: ag.evaluate();
4: ag.sendInfectionAttempts();
5: ag′ ← ag.selection();
6: ag.infection(ag′, pinfection);
7: ag.innovation(pinnovation);
8: until MAS stops

Algorithm 1. Infection-based Algorithm

Notice that a very important feature of the infection-based mechanism is
that it allows to interweave agents’ interactions to achieve their goals with their
lexicon adaptation. In other words, adaptation occurs at the same time that
agents operate.

4 Empirical Evaluation

We hypothesize that the adaptation mechanism detailed in section 3 can be ap-
plied to emerge conventions in MAS with large convention spaces. To that end,
we use communication development, namely the agreement on lexicon conven-
tions, as our experimental domain. This domain, has the potential of exhibiting

An Infection-Based Mechanism in Large Convention Spaces 281

an interesting large convention space (depending on the number of words and
concepts). Therefore, we shall consider our hypothesis as solved if the IBM allows
a MAS to emerge a global (near-) perfect communication system.

Given an open MAS whose agent communication interactions are modeled
as a language game, we shall consider the mechanism as successful if it allows:
(i) agents in the MAS to reach lexicon convention(s) with a high level of speci-
ficity, for different word/concept ratios and under the most common interaction
topologies; and (ii) conventions can be maintained despite changes in the agent
population and in the underlying interaction topology.

At the aim of validating these hypothesis, we designed various sets of exper-
iments to empirically evaluate the mechanism for communication development
(described in section 3) under different conditions of a particular MAS. Next,
in subsection 4.1 we describe the interaction topologies that we employed. In
subsection 4.2 we detail our empirical settings, and in the rest of subsections we
present and discuss our empirical results.

4.1 Interaction Topologies

It has been argued that the social distribution of individuals is an important
factor in the evolution of languages [13,6,10]. This distribution is modeled in
our MAS by the underlying interaction topology. Thus, in order to empirically
analyze the potential of the infection-based mechanism as a tool for lexicon
evolution we chose the following interaction topologies:

Small-world. These networks present the small-world phenomenon, in which
nodes have small neighborhoods, and yet it is possible to reach any other node
in a small number of hops. This type of networks are highly-clustered (i.e. have
a high clustering coefficient). Formally, we note them as W k,p

V , where V is the
number of nodes, k the average connectivity, i.e., the average size of the node’s
neighborhood, and p the re-wiring probability. We used the Watts & Strogatz
model [19] to generate these networks.

Scale-free. These networks are characterized by having a few nodes acting as
highly-connected hubs, while the rest of them have a low connectivity degree.
Scale-free networks are low-clustered networks. Formally we note them as Sk,−γV ,
where V is the number of nodes and its degree distribution is given by P (k) ∼
k−γ , i.e. the probability P (k) that a node in the network connects with k other
nodes is roughly proportional to k−γ .

Notice that we discard to consider random networks because they rarely ap-
pear in actual-world networked systems.

4.2 Experimental Settings

Each experiment consists of 50 discrete event simulations, each one running up
to 120000 time-steps (ticks). Each simulation runs with 1000 agents using one
of the underlying topologies defined in section 4.1. At the beginning of each
simulation, each agent uploads a random lexicon. During each simulation, at

282 N. Salazar, J.A. Rodriguez-Aguilar, and J.Ll. Arcos

 0

 20

 40

 60

 80

 100

 0 20000 40000 60000 80000 100000 120000

P
e
rc

e
n
ta

g
e

Ticks

Agents in Dominant Lexicon
Dominant Lexicon Specificity

(a) Small-world

 0

 20

 40

 60

 80

 100

 0 20000 40000 60000 80000 100000 120000

P
e
rc

e
n
ta

g
e

Ticks

Agents in Dominant Lexicon
Dominant Lexicon Specificity

(b) Scale-free

Fig. 2. Results of the name-matching game

each time-step agents interact through communication, as defined in sections 2,
with a randomly selected neighbor. The interactions occur by agents randomly
choosing some concepts to send.

The individual understanding, evaluation function, of each agent is measured
as the number of times it has engaged in a successful communication as a speaker.
This measure is reset after each incubation period in the infection-based algo-
rithm (algorithm 1), namely once the interaction period is over.

We generate interaction topologies for the simulations as small-world and
scale-free networks by setting the following parameters: W<10>,0.1

1000 and S<10>,−3
1000 .

The clustering coefficients of the topologies are 0.492 and 0.056 respectively.
Notice that we generate a new interaction topology per simulation.

As to the parameters of the infection-based mechanism, we set them as follows:
pinfection = 0.65, pinnovation = 5 × 10−5, and tincubation = 10. This setting of
the incubation time means that we require a low number of interactions before
adapting lexicons. In other words, we can consider a continuous adaptation.

In order to observe the effect of the IBM over a MAS we probe simulations
in two ways. On the one hand, to measure whether a lexicon convention is
adopted, we observe the number of agents that share each lexicon per tick. We
shall refer to the lexicon shared by the largest number of agents as the dominant
lexicon. On the other hand, we also observe at every tick the quality of such
lexicon. Given a lexicon its quality is determined by its specificity, namely the
percentage of words that represent a single concept. For both dominant lexicons
and specificity, we aggregate the measures obtained after 50 simulations using
the inter-quartile mean.

We designed different sets of experiments to empirically validate our initial
hypothesis regarding the validity of the infection based mechanism. The first
set, analyzed in section 4.3, aims at showing that the IBM can guide a MAS
to emerge a lexicon with high specificity in a scenario where the likelihood of
ambiguity is high (|W | = |O|). Next, in section 4.4 we also test the case when
the likelihood to present ambiguity is low (but misunderstandings are feasible),
namely when |W | > |O|. Finally, in section 4.5 we study a dynamic setting where
both the agent population and interaction topology change over time to test the
robustness of the IBM.

An Infection-Based Mechanism in Large Convention Spaces 283

4.3 Matching Game with Same Words and Concepts

The aim of this section is to show that the infection-based mechanism (section 3)
can guide a MAS, whose interactions are modeled as a name-matching game, to
emerge a lexicon with high specificity. Furthermore, we particularly focus on the
case where the existing number of words is equal to the number of objects (|W | =
|O|). Recall that this scenario is likely to promote the existence of lexicons with
low-specificity because given a limited number of words an agent can probably
assign the same word to more than one concept.

We set the number of concepts to 10, and the set of words, W , is also composed
of 10 different words (|C| = 1010). Thus, to prevent ambiguity a lexicon must
manage to match each one of the ten concepts to a different word.

Figure 2 shows the evolution of the percentage of agents sharing the dominant
lexicon along with the specificity of the lexicon. We observe that, on average, for
a small-world topology the dominant lexicon convention exhibits a smooth and
slow growth. Nevertheless, at least 80% of the agents reach a consensus regarding
their lexicon. The figure also shows that the specificity of the dominant lexicon
quickly reaches 90%, which means that one of the words matches two concepts.
However, we observe that in the long run there is a trend towards total specificity.

As to scale-free networks, a dominant lexicon shared by a large number of
agents emerges in a fast and sharp manner. This dominant lexicon almost im-
mediately encompasses 90% of the agents with a 90% specificity. This state is
maintained for some time, but at some point (around 60000 ticks) reaches beyond
95% of the population and the quality or the lexicon improves.

Moreover, observing a particular simulation provides some interesting insights.
Figure 3 shows one of the 50 simulations performed for the small-world topology.
In this plot, the transition towards a lexicon with 100% specificity is clearer. If
we analyze what happens before the lexicon transition, we observe that the agent
population sharing the dominant lexicon decreases (around 30000 ticks). This
occurs because a lexicon with maximum specificity appears and starts pulling
members out of the dominant lexicon at that point. By the 35000 time-step it
is able to overtake the previously dominant lexicon and rapidly reaches a global
consensus (almost all the agent population shares it).

 0

 20

 40

 60

 80

 100

 0 20000 40000 60000 80000 100000 120000

P
e
rc

e
n
ta

g
e

Ticks

Agents in Dominant Lexicon
Dominant Lexicon Specificity

(a) Small-world

Fig. 3. Results of a particular small-world simulation

284 N. Salazar, J.A. Rodriguez-Aguilar, and J.Ll. Arcos

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000 20000

P
e
rc

e
n
ta

g
e

Ticks

Agents in Dominant Lexicon
Agents in Runner-up Lexicon

(a) Small-world

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000 20000

P
e
rc

e
n
ta

g
e

Ticks

Agents in Dominant Lexicon
Agents in Runner-up Lexicon

(b) Scale-free

Fig. 4. Results of the 2-names-matching game with |W | = 100 and |O| = 10

Overall, the results of these experiments show that the IBM emerges a perfect
communication system for more than 90% of the population. It is called perfect
because: i) all the words in the dominant lexicon have a high specificity; ii)
once established the lexicon becomes consistent overtime; and iii) the agents’
communicative interactions are always successful.

4.4 Matching Game with Many Words

In the previous section we focused on experiments with high potential ambiguity,
where there were as many concepts as words. Now we turn our attention to the
other extreme of the spectrum, where the number of words is significantly greater
than the number of concepts. In this case, the likelihood of ambiguity decreases
when the number of words increases. This happens because assigning the same
word to more than one concept is less probable. In other words, the number of
lexicons with 100% specificity increases.

For this set of experiments we set |W | ∈ {20, 100}, whereas we only used 10
concepts (|C| = 2010 and |C| = 10010). As to the extreme case (|W | = 100)
for a small-world topology, we observe in figure 4(a) that two (dominant) lexi-
con conventions with total specificity rapidly appear (< 100 ticks). One of them
starts gaining members rapidly (∼89%) while the other one appears to stabi-
lize with a small percentage of the population (∼11%). Since the second (small)
agent group has a lexicon with 100% specificity and its communications are
most likely occurring between its members, it can withstand infections coming
from the dominant group. However, because the topology is a small-world sce-
nario, members of this group may need to communicate with agents sharing the
dominant lexicon. Hence, around 1000 ticks, time at which the dominant lexi-
con is shared by most of the population, the membership of the second group
starts swaying towards the biggest group out of necessity. As times goes on (be-
yond what we show in the plot), the dominant lexicon settles in 98 % of the
population. On scale-free topology see figure 4(b), we observe a more straight-
forward behavior. Almost immediately (∼2000 ticks) a lexicon convention with
total specificity is shared by the whole population, swaying over any secondary
lexicon intending to rise.

An Infection-Based Mechanism in Large Convention Spaces 285

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20000 40000 60000 80000 100000
 50

 60

 70

 80

 90

 100

N
u

m
b

e
r

o
f

A
g

e
n

ts

P
e

rc
e

n
ta

g
e

Ticks

Agents in Dominant Lexicon
Populataion Size

Dominat Lexicon Specificity

Fig. 5. Evolution of a dominant lexicon for a dynamic agent population over a scale
free topology

As to the results with |W | = 20, on the small-word topology we observe the
same behavior as the one presented in section 4.3 for |W | = 10. However, there
are significant improvements regarding scale-free networks because there is a
larger number of lexicons with high specificity. Furthermore, observe that all the
scale-free experiments so far converge to a common lexicon significatively faster
than small-world. Such result contrast with results in the literature. This leads
us to believe that scale-free is more receptive to large convention spaces.

4.5 Dynamic Population

In previous sections we showed, through multiple scenarios, the usefulness of the
infection-based mechanism to engineer the emergence of lexicon conventions.
Nevertheless, all scenarios were somewhat static, in the sense that the MAS did
not change with time. Hence, the purpose of our last experiments is to show the
robustness of the IBM in a MAS that changes with time.

Thus, we model the open dynamics of a MAS by allowing the agent popu-
lation and their neighborhoods to change over time. In practice, environment
changes are achieved by dynamically changing the network topology. Hence, we
proceeded as follows: 1) we create a scale-free interaction topology up to certain
number of agents; 2) we let agents interact over the topology; and 3) after l simu-
lation ticks, we introduce new agents along with their neighborhoods. Finally, we
implemented the open dynamics of a MAS by inter-weaving the Barabasi-Albert
(BA) scale-free network generation algorithm [1] with the MAS simulation. In
other words, we ran the MAS and the BA algorithm at the same time.

We set the parameters for the experiments as follows. The starting MAS
employed a scale-free underlying topology of 400 agents (S<10>,−3

400). Every 400
iterations, 20 new agents with random lexicons joined the MAS (l = 400). The
MAS continued growing until reaching the S<10>,−3

6000 topology (6000 agents).
On average (inter-quartile mean), we can report that IBM helps agents rapidly

converge to a lexicon, and incoming agents promptly join the dominant conven-
tion. Nevertheless, this initial dominant lexicon presented some ambiguity that
diminished with time. Thus, at some point a lexicon with total specificity was
found. We illustrate this claim with a particular example.

286 N. Salazar, J.A. Rodriguez-Aguilar, and J.Ll. Arcos

Figure 5 shows a simulation (a single run instead of the aggregation) where a
dominant lexicon is quickly established. Notice that the dominant lexicon grows
at almost the same rate as the population (left-hand y-axis). However, the dom-
inant lexicon has an initial lexicon specificity percentage of ∼ 70% (right-hand
y-axis). Observe that as time goes on the lexicon specificity starts to improve.
Furthermore, notice that improvements in the quality of the global convention
lexicon (specificity) seems to be usually preceded by a decrease in the convention
size (e.g. ∼ 10000, ∼ 15000 and ∼ 60000 ticks). These downward spikes mark
the agent population’s transition to better lexicons. Nevertheless, observe that
some of the spikes do not improve the unambiguity. This also marks a change in
the current dominant lexicon, but one that did not improve the specificity.

5 Conclusions and Future Work

In this paper we proposed the use of a recently studied distributed evolution-
ary algorithm as a viable tool to emerge conventions in multi-agent systems
with large convention spaces. We accomplish this by tackling communication
development in MAS, which is a known problem. Through the infection-based
mechanism it is possible to engineer the emergence of lexicon conventions in open
heterogeneous MAS. The infection-based mechanism allows agents to distribut-
edly converge to a lexicon with high specificity that guarantees the success of
their communications, i.e. a perfect communication system. Even more, through
this approach lexicon consensus are attainable despite the presence of dynamic
changes in the MAS. In particular, changes in the agent population and its
underlying topology (e.g. available communication links between the agents).

We apply the infection-based mechanism described in [15] as a communica-
tion development mechanism. Moreover, we make use of language games as a
model for communication interactions. Hence, the agents’ normal interactions
are valued as successful or failed. Through these two elements our approach al-
lows agents to find and improve lexicon conventions while they normally interact
in the MAS. Nevertheless, notice that different communication models can be
employed without changing the IBM.

We ran several experiments to provide empirical evidence of the capabilities
of the proposed approach under different (reasonable) circumstances. Further-
more, because it is known that language emergence is influenced by the social
structures, our experiments took this into account. Namely, through the use of
the most common complex networks as underlying interaction topologies.

On the one hand, the results show that we can direct the emergence of a
global lexicon consensus regardless of the topology. Nevertheless, topology affects
the time it takes to reach such consensus. Therefore, in contrast with other
approaches [6], the IBM reaches a single-vocabulary consensus, in the form of
a globally shared lexicon. Moreover, this is accomplished in a largely populated
multi-agent systems.

On the other hand, the results also helped to gauge the effect intrinsic to the
relation in the number of words and concepts. When the number of words and

An Infection-Based Mechanism in Large Convention Spaces 287

concepts is equal, some difficulty exists in establishing an unambiguous lexicon,
but conventions between agents may be reached faster. However, as the number
of words increases, finding a lexicon with 100% specificity becomes somewhat
easier, but reaching a common to most agents becomes harder. Nevertheless,
despite this it is still possible to agree on a single lexicon global consensus.

Our final experiments showed that our adaptation mechanism can reach an
unambiguous lexicon convention even if the agent population in the MAS and
its interaction topology are constantly changing. Therefore, our approach shows
to be valid even in highly dynamic scenarios.

To summarize, we empirically show that the IBM can reach desirable global
conventions even when the convention space is large. Furthermore, this can also
be accomplished when the number of desired convention is considerably a small
fraction of the convention space.

Finally, as to future work we plan to look to more dynamic settings. For
instance, scenarios where agents can introduce new concepts at run-time. More-
over, we also plan to study the effect produced by each agent having a different
set of available words.

Acknowledgments

N. Salazar thanks CONACyT. JAR thanks Jose Castillejo (JC2008-00337). Work
funded by projects EVE (TIN2009-14702-C02-01), IEA (TIN2006-15662-C02-
01), AT (CONSOLIDER CSD2007-0022), and the Generalitat of Catalunya
grant 2009-SGR-1434.

References

1. Albert, R., Barabasi, A.-L.: Statistical mechanics of complex networks. Reviews of
Modern Physics 74, 47 (2002)

2. Axelrod, R.: The dissemination of culture: A model with local convergence and
global polarization. The Journal of Conflict Resolution 41(2), 203–226 (1997)

3. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford
(1996)

4. Baronchelli, A., Felici, M., Loreto, V., Caglioti, E., Steels, L.: Sharp transition to-
wards shared vocabularies in multi-agent systems. Journal of Statistical Mechanics:
Theory and Experiment 06, P06014 (2006)

5. Burt, R.: Social contagion and innovation: Cohesion versus structural equivalence.
American J. of Sociology 92, 1287–1335 (1987)

6. Dall’Asta, L., Baronchelli, A., Barrat, A., Loreto, V.: Nonequilibrium dynamics of
language games on complex networks. Physical Review E (Statistical, Nonlinear,
and Soft Matter Physics) 74(3), 36105 (2006)

7. de Jong, E.D., Steels, L.: A distributed learning algorithm for communication de-
velopment. Complex Systems 14, 315–334 (2003)

8. DeVylder, B.: The Evolution of Conventions in Multi-Agent Systems. PhD thesis,
Artificial Intelligence Lab Vrije Universiteit Brussel (2007)

288 N. Salazar, J.A. Rodriguez-Aguilar, and J.Ll. Arcos

9. Jong, E.D.D., Steels, L.: A distributed learning algorithm for communication de-
velopment. Complex Systems 14 (2003)

10. Kalampokis, A., Kosmidis, K., Argyrakis, P.: Evolution of vocabulary on scale-
free and random networks. Physica A: Statistical Mechanics and its Applica-
tions 379(2), 665–671 (2007)

11. Lewis, D.: Convention. Harvard University Press, Cambridge (1969)
12. Loreto, V., Steels, L.: Social dynamics: Emergence of language. Nature Physics 3,

758–760 (2007)
13. Puglisi, A., Baronchelli, A., Loreto, V.: Cultural route to the emergence of linguistic

categories. Proceedings of the National Academy of Sciences, 802485105 (2008)
14. Salazar, N., Rodŕıguez-Aguilar, J.A., Arcos, J.L.: An infection-based mechanism

for self-adaptation in multi-agent complex networks. In: Proc. of the Second IEEE
International Conference on SASO (2008)

15. Salazar, N., Rodriguez-Aguilar, J.A., Arcos, J.L.: Infection-based self-configuration
in agent societies. In: Proc. of the 2008 GECCO conference companion on Genetic
and evolutionary computation, pp. 1945–1952. ACM, New York (2008)

16. Steels, L.: Self-organizing vocabularies. In: Langton, C.G., Shimohara, K. (eds.)
Artificial Life V, Nara, Japan, pp. 179–184 (1996)

17. Steels, L.: The origins of ontologies and communication conventions in multi-agent
systems. Autonomous Agents and Multi-Agent Systems 1, 169–194 (1998)

18. Steels, L.: Grounding symbols through evolutionary language games. In: Simulating
the Evolution of Language, ch. 10, pp. 211–226. Springer, Heidelberg (2002)

19. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Na-
ture 393(6684), 440–442 (1998)

The Classification Game: Complexity Regularization
through Interaction

Samarth Swarup

Network Dynamics and Simulation Science Lab,
Virginia Bioinformatics Institute,

Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061
swarup@vbi.vt.edu

Abstract. We show that if a population of neural network agents is allowed to
interact during learning, so as to arrive at a consensus solution to the learning
problem, then they can implicitly achieve complexity regularization. We call this
learning paradigm, the classification game. We characterize the game-theoretic
equilibria of this system, and show how low-complexity equilibria get selected.
The benefit of finding a low-complexity solution is better expected generalization.
We demonstrate this benefit through experiments.

1 Introduction

In machine learning, simple models are expected to generalize better. More complex
models are more likely to overfit the training data, and consequently are less likely to
generalize well. Thus, during learning, it is advisable to try to find a low-complexity
model that performs well on the training data. How to do this is, in a nutshell, the
problem of complexity regularization.

Most attempts to solve this problem proceed by developing an objective function
(also called an empirical loss function) which includes a penalty term for the complexity
of the model [1,2,3, e.g.]. Here we present a multi-agent solution to this problem, where
the objective function used by each individual learner does not contain a penalty term
for complexity. Instead, low complexity models are found through implicit complexity
regularization via interaction during learning. Further, most techniques for complexity
regularization try to minimize the complexity of the weights, whereas our learning al-
gorithm is best understood as minimizing the complexity of the internal representation,
i.e. hidden layer activations, of the neural networks. This is closer in spirit to the idea of
learning over the space of input-output functions rather than the weights of the neural
network [4]. We call our learning method, the classification game [5].

We proceed as follows. First we give a brief introduction to neural networks. Then
we demonstrate, through a simple example, that the classification game succeeds in
finding simple models. Then we present the learning algorithm in detail. After that we
do some analysis to characterize the equilibria of the game, and discuss why certain
(low-complexity) equilibria tend to be selected in the game. Then we present another
experiment where vanilla neural networks fail to learn altogether, but a population of

J. Padget et al. (Eds.): COIN 2009, LNAI 6069, pp. 289–303, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

290 S. Swarup

neural networks playing the classification game is more successful. We then discuss
where our approach fits in the landscape of complexity regularization techniques. In the
conclusion, we present a summary of this work as well as some directions for future
work.

2 A Brief Introduction to Neural Networks

Artificial neural networks are one of the most commonly used representations in ma-
chine learning. They consist of a set of “nodes” with “weights” on the incoming edges to
the nodes. Feedforward neural networks generally have the nodes organized into “lay-
ers”, so that information flows strictly from the inputs to the outputs. The illustration in
figure 1 shows an example.

Hidden layer (of weights)

Output layer (of weights)

y

Node

Fig. 1. A schematic of a feed-forward artificial neural network

Each node in a neural network carries out the following computation:

u =
∑

i

wixi + b, (1)

y =
1

1 + e−βu
, (2)

where y is the output of the node, xi are the inputs to the node, and wi are the weights.
Additionally, b is known as the bias weight, and β is a parameter. The r.h.s. of equation
2 is known as the logistic function, which is a sigmoid function.

Geometrically, the weights of the node define a line (or a hyperplane in higher di-
mensions), and the computation above can be seen to be the dot product between a
point (given by the inputs, xi) and the line. u will be positive for points on one side
of the line, and negative for points on the other side of the line. Passing u through the
sigmoid function (equation 2) “squashes” the output to be between 0 and 1. Points on
the positive side of the line will evaluate to y > 0.5 and points on the negative side will
evaluate to y < 0.5. More importantly, though, the sigmoid function introduces a non-
linearity, so that the neural network as a whole computes a non-linear function. It can
be shown that a feed-forward neural network with two layers of weights is capable of

The Classification Game: Complexity Regularization through Interaction 291

approximating any continuous function arbitrarily closely, given enough hidden layer
nodes.

Given a set of samples from an unknown function (as input-output pairs), known as
the training set, the weights of a feedforward neural network can be estimated, to fit
the function, using a learning procedure known as error backpropagation. We define an
error function,

e = (t− y)2, (3)

where t is the target output for an input x, and y is the actual output generated by the
neural network. Then we calculate the gradient of the error function with respect to
all the parameters wi (using the chain rule when necessary), and update the weights to
descend the gradient. Thus, after several iterations, the neural networks ends up in a
local minimum of the error functions. Details about various kinds of neural networks
and their training can be found in several textbooks on the topic [6, e.g.].

3 Complexity Regularization in Neural Networks

If the training set is too small, or noisy, then the learning procedure can lead to over-
fitting, where the weights start to adapt to the noise in the data, rather than finding true
regularities. When this happens, the neural network becomes too complex. Thus, there
have been several modifications suggested for the basic error function defined above,
to avoid overfitting by keeping the complexity of the weights low. This is known as
complexity regularization, as discussed earlier.

Most approaches work by augmenting the objective function with a penalty term for
the complexity of the solution, so that by minimizing the objective function, both error
and complexity are minimized. These penalty terms are often derived from information-
theoretic (minimum description length) considerations. For example, Hinton [7] showed
early on that minimizing the squared error function above corresponds to minimizing
the description length of the “data misfits”, and adding a penalty term for the magni-
tude of the weights (

∑
ij w2

ij) corresponds to minimizing the description length of the
weights as well (with the assumption that the data misfits and the weights of the trained
network are each drawn from Gaussian distributions). Hinton and van Camp [2] pre-
sented a more sophisticated method utilizing noisy weights and a coding scheme based
on a mixture of Gaussians. The main limitation of their approach was that it relied
on a “good” initialization of the weights, since the description complexity is shown to
be equivalent to the Kullback-Leibler divergence between the prior and the posterior
distribution over the weights.

Hochreiter and Schmidhuber [3] showed how a minimum description length argu-
ment could be interpreted as a search for large flat minima in the weight space, which
results in a considerably more complex penalty term in the objective function, but also
shows very robust performance.

More recently, researchers have turned to ensemble methods for complexity regular-
ization, where the complexity of the ensemble can be adjusted by making the weight
of each trained learner depend on its complexity [8]. The difference between the clas-
sification game and this approach (and also other ensemble methods like boosting [9]
and bagging [10]) is that in the classification game all the learners converge towards a

292 S. Swarup

single model of low complexity, i.e., the complexity of each learner is reduced. Further,
we do not rely on a combination (by voting etc.) of the learned models at the end.

Before discussing the classification game in detail, we present a small demonstration
that shows that the classification game manages to perform complexity regularization
implicitly through interaction during learning, without modifying the error function.

4 A Demonstration of the Classification Game

We have a population of four artificial neural networks, with a fixed number (4, in
this example) of hidden layer nodes, and 1 output node. We train them on the xor
problem. Thus each neural network has 2 inputs, and the set of possible inputs is
{(0, 0), (0, 1), (1, 0), (1, 1)}. The expected output is the logical xor of the inputs, i.e.
the output is 1 when the inputs are different, and 0 when the inputs are the same.

We interpret each hidden layer node as a hyperplane, where the weights to the node
are the coefficients of the hyperplane. Since the input space is two-dimensional, we can
draw these hyperplanes (straight lines), to visualize how they dissect the input points.

Figure 2 shows the result of training a single neural network on the xor problem. The
hyperplanes in the figure are labeled and also indicate orientation. Hyperplane A, e.g.,
labels the point (0, 0) as 1, and all other points as 0. The output neuron of the neural
network converts the encoding generated by all four hidden layer hyperplanes into a
label. The neural network obtains zero error, i.e. perfect classification accuracy, very
easily, but we can see that the found solution uses all four hidden layer nodes whereas
we know that only two are really necessary. This means that the neural network has
found an overly complex model, though it is not a problem here because all possible
inputs are presented during training. This tendency to use all the hidden layer nodes
available is general behavior for a neural network, however, and if we used a more
complex problem where only some of the possible inputs are presented during training,

-2

-1

 0

 1

 2

 3

-0.5 0 0.5 1 1.5

y

x

1
0
A

1
0 B

1
0C

1
0

D

Fig. 2. A neural network typically finds overly complex solutions to the xor problem

The Classification Game: Complexity Regularization through Interaction 293

-2

-1

 0

 1

 2

 3

-1 -0.5 0 0.5 1 1.5 2

y

x

0
1

A

1
0

B

1
0C

1
0

D

Fig. 3. A population of neural networks playing the classification game typically finds the optimal
solution to the xor problem

then generalization is the key measure, and we would not expect the found model to
generalize well.

In contrast, if we have a population of such neural networks playing the classification
game, then they almost always converge on a solution such as the one illustrated in
figure 3. The details of the classification game are described in section 5. At present we
want to point out that the model that is found by the learners in this case is the optimal
model. Even though the neural networks are again provided with four hidden layer
nodes, we see that they are only “using” two of them. Two others have been “pushed
away”.

We now describe the learning algorithm that implicitly obtains this complexity reg-
ularization phenomenon. It should be noted that we are not claiming that the classifica-
tion game always finds the optimal solution. It only does so for toy problems like xor;
in general, though, it does reduce the complexity of the model substantially.

5 The Classification Game

Assume that we have a population of neural networks that are initialized with random
weights. The learning algorithm then proceeds as follows. At each step, we select two of
the learners randomly and designate them speaker and hearer. They are both presented
with the same training example to classify.

The speaker encodes this example into a set of hidden-layer activations, by passing it
through its hidden layer of weights and sigmoid activation functions in the usual way. It
also generates a label by passing the hidden layer activations through the output layer.
The hidden layer activations are also converted into a boolean vector by thresholding
the neuron activations at 0.5. The speaker then passes this boolean vector to the hearer.

The hearer ignores the example itself, and uses the encoding provided by the speaker
to try to predict the label, using its own output layer. In other words, the hearer sets the

294 S. Swarup

0 1

1 0 1 1 1011

1

Speaker

0 1

Hearer

1 0 1 1

0

Fig. 4. A single interaction in the classification game. The white arrows show signal flow, and the
grey arrows show error flow.

activations of its own hidden layer using the boolean values provided by the speaker,
and passes this vector through its output layer in the usual way to generate a label.

The speaker and hearer are then both given the expected label and update their
weights through error backpropagation. The entire process is illustrated in figure 4.
Notice that the speaker does not get any feedback about the error made by the hearer1.
Thus the speaker is simply trying to minimize its own error, whereas the hearer is try-
ing to minimize error on an encoding provided by the speaker. The error function (also
known as the objective function or loss function) being minimized by the learners is
simply the squared difference between the expected label and the actual output of the
neural network. The error function does not contain a term for the complexity of the
internal representation (weights or hidden layer activations). This means that the agents
are not explicitly trying to find a low-complexity solution.

Note that hidden layer weight updates for the hearer are slightly tricky because the
hidden layer activations for the hearer came from the speaker, and not the hearer’s own
hidden layer weights. Therefore, to update these weights, we proceed as follows. The
hearer backpropagates the error from the output layer to generate a set of hidden layer
activations. These are, in essence, what the hidden layer activations should have been,
to generate the right output. It then treats these as the expected outputs for its own
hidden layer. It generates the actual outputs of its hidden layer from the input vector,
compares them with these expected hidden layer outputs, and performs weight updates
in the usual manner.

We then return these learners to the population, choose two learners again and repeat
the process until we are satisfied (i.e., until the error drops low enough, or we reach an
arbitrary number of iterations).

6 Analysis

We now write down the above description formally, in an attempt to give a theoretical
description of what is going on in the classification game.

1 Agents take on the role of both speaker and hearer over the course of learning. Thus informa-
tion is shared between all agents, and information flow is not uni-directional.

The Classification Game: Complexity Regularization through Interaction 295

Following the formalism of Haussler [11], we assume that the learners are provided
with a training set z = {z1, z2, ..., zn} where each example zi = (xi, yi) consists of an
input xi ∈ X and an expected output yi ∈ Y . The learners are also provided with a loss
function l : Y × Y → �, and a hypothesis space H containing functions h : X → Y .
We assume that the training set is generated by sampling n times independently from a
probability distribution P , and that the true loss of a hypothesis h with respect to P is
defined as,

E(h, P) =
∫

X×Y
l(y, h(x))dP (x, y).

The goal of the learners is to find a hypothesis h that minimizes the true loss. The
learners proceed, as usual, by trying to minimize the empirical loss,

E(h, z) =
n∑

i=1

l(yi, h(xi)),

where the loss function, as mentioned earlier, is simply,

l(y, h(x)) = (y − h(x))2.

It has been shown that the difference between the empirical loss and the true loss is re-
lated to the complexity of h, and that low-complexity hypotheses that minimize the error
on the training set are also expected to have low true loss. This is known as Occam’s
razor for machine learning [12,13,14].

To quantify the complexity of our hypothesis space, we introduce the notion of
an internal representation space, V , by splitting the hypothesis space into two parts,
H = F ◦ G, where G : X → V , and F : V → Y . We assume that points in V are bi-
nary vectors, and functions g ∈ G are of the form of nh-hyperplanes. Finally, functions
f ∈ F are simply hyperplanes. Note that this matches the architecture of an artificial
neural network with nh hidden-layer nodes and a single output node. Points in V are,
thus, the vector of labels assigned to points in X by the nh hyperplanes corresponding
to the nh hidden-layer nodes. We call g an encoding function or simply encoder, and f
a decoding function or simply decoder.

Now, a low-complexity function g is one which “uses” a small number of the nh
hyperplanes available. This is intuitively obvious from figures 2 and 3. We will make
this more precise a little later.

Let x = {x1, x2, ..., xn} be the set of training set inputs. We define x+ = {xi ∈
x | yi is positive}, and x− = {xi ∈ x | yi is negative}, to be the positive and negative
subsets of x. Note that here, and henceforth, we will always use the term “positive
point” to refer to an input for which the expected output is positive, i.e. an input which
belong to the class of postively-labeled points (and the same for “negative point”). An
encoder, g, transforms x+ and x− into internal representations v+ and v− respectively.
Since we have a population of (say, m) learners, we obtain m internal representations,
denoted by vj , where, ∀j ∈ {1, ..., m}, vj = v+

j ∪v−j , through the action of m encoders,
g1...gm, corresponding to the m learners. The encoding of a particular point, say x+

i ,
by agent j is denoted by v+

j,i.

296 S. Swarup

6.1 Characterizing Nash Equilibria

From a game-theoretic perspective, the classification game proceeds as follows. Given
an example, the speaker chooses the encoding of it both for the speaker itself and for the
hearer. The payoff to the speaker and the hearer can be thought of as the negative of their
error on the given example. Thus, maximizing the payoff is equivalent to minimizing
the error. Note that, in an interaction, the speaker is essentially unaware of the hearer,
since it gets no feedback about the hearer’s error on the example. The speaker, thus,
chooses its encoding of the given example purely to minimize its own classification
error.

We are now ready to characterize the Nash equilibria of the classification game.
Note that while each encoder, gj , only produces its own internal representation, vj ,
each decoder, fj , has to decode not just vj , but ∪jvj , i.e. each decoder has to decode
the internal representations generated by all the encoders.

It is possible that the encoding, vj,p, generated by learner j for a positively-labeled
input, x+

p , is the same as encoding vk,q generated by learner k for a negatively-labeled
input, x−

q . We denote this event as a conflict. A conflict implies that decoders fj and
fk are guaranteed to make at least one classification mistake because they cannot dis-
tinguish positive input x+

p from negative input x−
q , when learners j and k interact with

each other. In this case, either one of the learners can change its internal representa-
tion by choosing a different encoding function, and can thus reduce its error. This leads
straightforwardly to the first condition for an equilibrium:

∪jv+
j ∩ ∪jv−j = ∅, (4)

where ∅ is the null set. In plain English, this condition is satisfied when there are no
conflicts. Note that this condition can always be achieved simply by making all the
learners have the same internal representations.
Each learner must choose its internal representation to satisfy two other conditions:

v+
j ∩ v−j = ∅, and (5)

vj must represent an attainable dichotomy for fj . (6)

Condition 5 simply states that a learner’s internal representation must be self-consistent,
i.e. it shouldn’t assign the same encoding to both a positive and a negative input. Condi-
tion 6 states that the encoder should transform the inputs in such a way that the decoder
can actually decode them into the right labels. For example, for the xor problem, if the
encoder is the identity function, the decoder will not be able to solve the problem, since
at least two hyperplanes are needed to separate the positive from the negative points.

Together, these three conditions specify the equilibria for the system, assuming that
G contains functions that are complex enough (i.e., the neural network has enough hid-
den layer nodes). Note that condition 4 implies condition 5. However, we state them
separately because that will facilitate the discussion of equilibrium selection ahead.

There are two different “incentives” for modifying an encoding. In the role of speaker,
an agent modifies its encoding to solve the classification problem. In the role of hearer,
an agent modifies its encoding to be compatible with the encodings of the other agents.
Further, note that the equilibria are not strict Nash equilibria, because it is possible

The Classification Game: Complexity Regularization through Interaction 297

for a learner at equilibrium to change its internal representation without increasing the
number of conflicts, and without increasing its error.

The complexity of an encoding. The complexity of an encoding, vj , corresponds
essentially to the number of points in vj , which we denote as |vj |. If more than one
point in x is mapped onto the same point in vj , then |vj | < |x|, and the complexity of
vj is lower than that of x. The complexity of vj can be quantified by, e.g., the entropy2

of vj ,

H(vj) =
|vj |∑

i=1

p(vj,i) log p(vj,i).

For maximally complex encodings, |vj | = |x| = n, i.e., a different point in V is as-
signed to each input xi. When this happens, we say the learner has memorized the data.
The number of such encodings is 2k

Cn. Such encodings will generalize poorly. On the
other hand, for minimally complex encodings, |vj | = 2, i.e., all the positive inputs are
labeled with one point in V , and all the negative inputs are labeled with another point
in V , making the decoder’s task trivial. The number of such encodings is 2k

C2. Such
encodings are expected to generalize well, but may not be attainable, depending on the
structure of the problem.

When two points have the same encoding, it means that there is no hyperplane sep-
arating them (or that hyperplane would assign different labels to the two points, giving
them different encodings). As the number of points that share their encoding increases,
we are in effect “using” fewer and fewer hyperplanes to separate the points. This cor-
responds to encodings of low complexity, as mentioned in section 6. In the limit, when
all positive points have the same encoding and all negative points have the same en-
coding, it means that there is essentially only one hyperplane separating them (though
in practice we might end up with multiple hyperplanes, nearly aligned with each other,
separating the positive from the negatively labeled points). This happens when we have
a linearly-separable problem.

6.2 Equilibrium Selection

The number of states of the population satisfying the three equilibrium conditions above
is large, yet we generally observe the emergence of low-complexity equilibria. To un-
derstand why this happens, we turn to the dynamics of the classification game.

To analyze this equilibrium selection problem, we assume that the learners all learn
individually for a while before they start interacting and playing the classification game.
It turns out that this makes no difference to the complexity regularization phenomenon
in practice, but it allows us to ignore the learning transient in the analysis.

Thus, we assume that the learners have all found internal representations that min-
imize the error on the training set. In other words, they have found internal represen-
tations that satisfy conditions 5 and 6 above. They are unlikely to be at an equilibrium
point of the classification game, however, because condition 4 might still not be satisfied.

2 Note that there are some learning approaches that explicitly try to maximize information gain,
such as ID3 [15]. Here, on the other hand, we are just using entropy to quantify the complexity
of the model, not to derive the learning algorithm.

298 S. Swarup

The system dynamics are determined by the backpropagation algorithm. In particu-
lar, we are interested in the dynamics of the points in V space, which is the space of
hidden layer activations. Ideally, we should set up a full dynamical model of the inter-
nal representation of an agent’s neural network and show that the stationary state of this
dynamical model corresponds to a low-complexity equilibrium. This is not possible,
unfortunately, because the learning dynamics of even a single neural network are not
yet fully understood [16,17, e.g.], not to mention that we have a population of inter-
acting neural networks. Nevertheless, we can gain a qualitative understanding of the
dynamics of the classification game by considering the following situations.

1. Input point x+
p is mapped onto vj,p by learner j and input point x−

q is mapped onto
vk,q by learner k, where vj,p = vk,q (we keep the j and k subscripts to differentiate
which learner is producing the point). This is a conflict and causes the hearer to
update its internal representation.

2. Input point x+
p is mapped onto vj,p by learner j and input point x+

q (note that this
is also a positive point) is mapped onto vk,q by learner k, where vj,p = vk,q . This
is not a conflict, even if k does not map x+

p to vk,q , since both j and k will produce
the correct label, but this event plays an important role in equilibrium selection, as
will be discussed presently.

First case. In the first case above, if j is the speaker and k is the hearer and they are
presented with x+

p , then j will produce the correct label, but k will generate a mis-
classification because it cannot distinguish positive point x+

p from negative point x−
q in

this case. If the roles were reversed and they were given input x−
q to classify, learner j

would produce a mis-classification and k would not.
Without loss of generality, if we assume the former situation, then k will alter its

encoding of x+
p to bring it closer to the encoding provided by j. This will create a

violation of condition 5, because k will now have the same encoding for positive point
x+
p and negative point x−

q . This violation will eventually be resolved by k when it takes
the role of speaker and has to classify these two points.

In general, violations of condition 4 are detected and corrected by agents when they
are in the role of hearer, and violations of conditions 5 and 6 are detected and corrected
by agents when they are in the role of speaker. The combined effect of learning in both
roles is to arrive eventually at a state in which none of the conditions are violated.

Now consider the case where j’s internal representation, vj , is less complex than k’s
internal representation, vk, which means |vj | < |vk|. Further, suppose that vj and vk
are inconsistent with each other. This means that for some pair of points x+

p and x−
q ,

vj,p = vk,q (or vice-versa). Also, since vj is less complex than vk , there is a higher
probability that vj,p is the encoding assigned to more than one input point by j, than
the probability that vk,q is assigned to more than one input point by k. In this case,
if j is the speaker and k is the hearer, there is a higher probability of a conflict being
detected by the hearer than if the roles are reversed. This implies that higher complexity
encodings will change more rapidly during learning than lower-complexity encodings.
In other words, lower-complexity encodings are more stable.

The Classification Game: Complexity Regularization through Interaction 299

In this sense, lower-complexity encodings are preferred in the classification game.
This is not the only pressure towards selecting low-complexity equilibria however. A
second one corresponds to the second situation above, and is described below.

Second case. Now consider the case where vj and vk are consistent with each other, but
are not identical. In particular, suppose that the two learners assign the same encoding
to two different points in the same class, i.e. vj,p = vk,q , where xp and xq are both
positive (say), but vk,p
= vk,q , i.e. k assigns different encodings to xp and xq .

If they are presented with xp, the speaker, j, will not make a classification error, and
thus will not update its internal representation. The hearer, k, will not make a classifi-
cation error either. However, since vk,p
= vk,q , k will change its internal representation
of xp to bring it closer to its internal representation of xq . This means that the complex-
ity of vk will get reduced, since it will end up assigning the same encoding to both xp
and xq .

Thus, even if the population is at a state that satisfies the three conditions for equi-
librium, the learners will still change their internal representations in a manner that
simplifies them. It is possible that this process will introduce violations of conditions
5 or 6, which will then have to be corrected by the agents when they have the role of
speaker.

Note that the two cases described do not proceed one after the other in an orderly
manner. Rather, they are happening simultaneously as the agents play the classification
game. The net result is that the agents converge upon a state of low-complexity. Indeed,
since we are always updating the hidden layer for the hearer in each interaction, any
equilibrium in which the internal representations of the population are not aligned is
unstable, since the hearer will update its internal representation even if it does not make
a classification error.

We now present another experiment to show that the classification game can result in
significant learning even in a case where vanilla neural networks fail to learn altogether.

7 Experiments

To show the dynamics of the complexity of the solution during learning, we present the
following experiment. We extend the xor task to 3 bits (i.e. 3 bit odd-parity), and extend
the inputs with 9 irrelevant bits. Thus each input example has 12 bits, and the output is
determined by the xor of the first three bits. We refer to this as the 12-input-first-3-xor
task. The total number of possible input examples is 212 = 4096. Of these, we construct
a training set by randomly selecting 50 examples. The testing set consists of all 4096
possible examples.

We train a population of ten neural networks on this task. They are each given 10
hidden layer nodes, though only 3 are needed to solve the task. Additionally, to follow
the paradigm of the analysis section, we let the networks train individually for the first
2 million time steps, after which we “turn on” the interaction. The resulting error curves
and entropy curve are shown in figure 5.

300 S. Swarup

0 200 400 600 800 1000

Time step (x 10000)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

 p
op

ul
at

io
n

er
ro

r

speaker-testing
hearer-testing
speaker-training
hearer-training

(a) Error curves.

0 200 400 600 800 1000

Time step (x 10000)

0.5

1

1.5

2

2.5

3

A
ve

ra
ge

 e
nt

ro
py

(b) Entropy curve.

Fig. 5. Learning and entropy curves on the 12-input-first-3-xor task

We see that in the initial phase of individual learning, the training error and test-
ing error3 both drop immediately (figure 5(a)). This corresponds to an increase in the
complexity of the solution as shown by the initial rise in the entropy curve in figure
5(b). The training error drops to about 0.08 and stabilizes there, and the corresponding
testing error stabilizes at 0.25. There hearer errors remain around 0.5 during this time,
which shows that the learners are discovering different solutions at this stage. When we
turn on interaction at time step 2 million, there is an immediate drop in the complexity
of the solutions, matched by a similarly sharp drop in the hearer errors. The training
error then goes to zero, and the testing error drops to 0.2. This result shows how a lower
complexity solution is discovered through interaction, and that this lower complexity
solution leads to better generalization.

For a more ”real-world” test, we trained a population of 10 neural networks, using
the classification game, on a gender discrimination task. The dataset we used is the
Stanford Medical Students database [18].

The database contains four hundred images of faces, of which two hundred are male
and two hundred female. Twenty images from each class were randomly chosen to
make up the training set, and the remaining three hundred and sixty were put into the
testing set. Figure 6 shows some of these images. We reduced the images to size 32
× 32. The neural networks thus had 1024 inputs. We set each neural network to have
50 hidden layer nodes, and, to force them to extract “good” features, we made them
reconstruct the image at the output of the neural network, in addition to classifying it.
Thus they had 1025 outputs, of which the first one was treated as the classification. Note
that we are giving raw pixel data to the neural networks, without any preprocessing.
This representation is much more difficult to learn from than, e.g., using the principal
components or eigenfaces [19,20], because the raw values don’t correct for differences
in background lighting, position of the face, etc. Even though the images are taken
to minimize differences in orientation, size, etc., it is still significantly difficult to use
the pixel data directly. In fact, when we try to use a standard neural network (i.e. the

3 Note that the testing error is just plotted for comparison. This information is not available to
the learners themselves.

The Classification Game: Complexity Regularization through Interaction 301

Fig. 6. Samples from the Stanford medical students database. The learning task is to classify each
face correctly by gender.

0 2 4 6 8

Time step (x 100,000)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

 P
op

ul
at

io
n

E
rr

or

speaker-testing
hearer-testing
speaker-training
hearer-training
error-weight-decay

(a) Error curves.

0 2 4 6 8

Time step (x 100,000)

3

3.5

4

4.5

5

5.5

6

A
ve

ra
ge

 e
nt

ro
py

(b) Entropy curve.

Fig. 7. Learning and entropy curves on the gender classification task

no communication case), it is completely unable to improve classification performance
through learning: the error always remains around 50%.

To compare with a standard complexity regularization approach, we also imple-
mented weight decay [21], where at each update a weight is also decremented by a frac-
tion d, so that weights tend to go to zero unless reinforced by backpropagation. In this
case also, the neural network was not able to learn, and the error remained around 50%.

When the agents were trained using the classification game we got significant im-
provement, as shown by the learning curves in figure 7. The figure shows five learning
curves: two are for the training set and two are for the testing set. The speaker error is
simply the average number of misclassifications by the population on the training (or
testing) set. To calculate the hearer error, we put each agent in the role of the hearer
and choose a speaker randomly from the population. The hearer then has to classify all
the points using encodings provided by this random speaker. Averaging all the hearer
errors gives the hearer learning curve (over time). The fifth learning curve is for neu-
ral network training (without interaction) with weight decay. As mentioned above, this

302 S. Swarup

fifth learning curve shows no improvement; the error remains at 0.5 even if we extend
training for several more time steps than shown in the figure. Figure 7(b) shows the
complexity of the solutions found.

As figure 7(a) shows, the agents were unable to converge on a shared representa-
tion (the hearer error remains high), at least in the time for which we ran the experi-
ment. Further, there is some evidence of overfitting, as the speaker error on the testing
set increases slightly after dropping initially. Despite these issues, we believe that it
is impressive that the classification game enables the neural networks to significantly
improve performance in a situation where individual neural networks fail to learn.

8 Conclusion

We have shown that a population of learners can implicitly perform complexity reg-
ularization by interacting with each other during learning. We have characterized the
equilibria of this game, and discussed why low-complexity equilibria tend to be se-
lected by the dynamic induced by the classification game learning algorithm. We have
also shown that the classification game results in better performance than plain neural
networks trained with error backpropagation, with or without weight decay.

The rate of convergence of the classification game, though we have not discussed it
here, tends to be quite slow. This is not unexpected, since it is hard to compute Nash
equilibria. However, we have some evidence that learning can be speeded up by altering
the topology of interaction of the learners [22], by making it scale-free, for example, or
dynamic, where the topology updates according to noisy preferential attachment [23].
Detailed exploration of the role of the interaction topology from a game-theoretic view-
point remains to be done, and the tradeoff with respect to how well the Nash equilibrium
is approximated in each case is also an important question that needs to be worked out.

In general, we believe that there may be many other cases of important computa-
tions that can be performed implicitly through interaction by a population of agents.
Designing multi-agent learning algorithms that can achieve these results represents, in
our view, an interesting and potentially very useful twist on mechanism design in game
theory.

Acknowledgments

I thank my external collaborators and members of the Network Dynamics and Sim-
ulation Science Laboratory (NDSSL) for their suggestions and comments. This work
has been partially supported NSF Nets Grant CNS-0626964, NSF HSD Grant SES-
0729441, CDC Center of Excellence in Public Health Informatics Grant 2506055-01,
NIH-NIGMS MIDAS project 5 U01 GM070694-05, DTRA CNIMS Grant HDTRA1-
07-C-0113 and NSF NETS CNS-0831633.

References

1. Barron, A.R.: Complexity regularization with application to artificial neural networks. In:
Roussas, G. (ed.) Nonparametric Functional Estimation and Related Topics, pp. 561–576.
Kluwer Academic Publishers, Boston (1991)

The Classification Game: Complexity Regularization through Interaction 303

2. Hinton, G., van Camp, D.: Keeping neural networks simple by minimizing the description
length of the weights. In: Pitt, L. (ed.) Proceedings of the Sixth ACM Conference on Com-
putational Learning Theory, Santa Cruz, CA, USA, pp. 5–13. ACM, New York (1993)

3. Hochreiter, S., Schmidhuber, J.: Flat minima. Neural Computation 9(1), 1–42 (1997)
4. Wolpert, D.: Backpropagation over i-o functions rather than weights. In: Cowan, J.D.,

Tesauro, G., Alspector, J. (eds.) Advances in Neural Information Processing Systems, vol. 6,
pp. 200–207. Morgan Kaufmann, San Mateo (1994)

5. Swarup, S., Gasser, L.: The classification game: Combining supervised learning and lan-
guage evolution. Connection Science (to appear, 2010)

6. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall, Engle-
wood Cliffs (1998)

7. Hinton, G.E.: Learning translation invariant recognition in a massively parallel network. In:
Goos, G., Hartmanis, J. (eds.) PARLE 1987. LNCS, vol. 258, pp. 1–13. Springer, Heidelberg
(1987)

8. Jin, Y., Okabe, T., Sendhoff, B.: Neural network regularization and ensembling using multi-
objective evolutionary algorithms. In: Proceedings of the Congress on Evolutionary Compu-
tation (CEC), pp. 1–8. IEEE Press, Los Alamitos (2004)

9. Mason, L., Baxter, J., Bartlett, P., Frean, M.: Boosting algorithms as gradient descent. In:
Solla, S.A., Leen, T.K., Muller, K.R. (eds.) Advances in Neural Information Processing Sys-
tems, vol. 12, pp. 512–518. MIT Press, Cambridge (2000)

10. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
11. Haussler, D.: Decision-theoretic generalizations of the PAC model for neural net and other

learning applications. Information and Computation 100(1), 78–150 (1992)
12. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. Information Pro-

cessing Letters 24(6), 377–380 (1987)
13. Board, R., Pitt, L.: On the necessity of Occam algorithms. In: Proceedings of the Twenty

Second Annual ACM Symposium on the Theory of Computing (STOC), pp. 54–63 (1990)
14. Li, M., Tromp, J., Vitányi, P.: Sharpening Occam’s razor. Information Processing Let-

ters 85(5), 267–274 (2003)
15. Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)
16. Luo, P., Wong, K.Y.M.: Dynamical and stationary properties of on-line learning from finite

training sets. Physical Review E 67(1) (2003)
17. Ampazis, N., Perantonis, S.J., Taylor, J.G.: Dynamics of multilayer networks in the vicinity

of temporary minima. Neural Networks 12, 43–58 (1999)
18. Diaco, A., DiCarlo, J., Santos, J.: Stanford medical students database (2000),

http://scien.stanford.edu/class/ee368/projects2001/dropbox/
project16/med students.tar.gz.

19. Sirovich, L., Kirby, M.: Low-dimensional procedure for the characterization of human faces.
Journal of the Optical Society of America A 4, 519–524 (1987)

20. Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, CVPR (1991)

21. Werbos, P.: Backpropagation: Past and future. In: Proceedings of the IEEE International
Conference on Neural Networks, pp. 343–353. IEEE Press, Los Alamitos (1988)

22. Swarup, S., Gasser, L.: Language evolution on a dynamic social network. In: The MORS
Conference on Analyzing the Impact of Emerging Societies on National Security, Argonne,
IL, April 14-18 (2008)

23. Swarup, S., Gasser, L.: Unifying evolutionary and network dynamics. Phys. Rev. E 75, 66114
(2007)

Dealing with Incomplete Normative States

Juan Manuel Serrano and Sergio Saugar

Computing Department
University Rey Juan Carlos

Madrid, Spain
juanmanuel.serrano@urjc.es, sergio.saugar@urjc.es

Abstract. This paper puts forward a normative framework which en-
ables the specification of incomplete theories and their management
through incomplete normative states. In particular, attempts to perform
a social action are evaluated either as permitted, prohibited (i.e. not per-
mitted) or pending for execution (i.e. neither permitted nor prohibited).
The framework lets designated agents resolve this latter category of at-
tempts through the speech acts allow and forbid. We build upon action
language K and its support for incompleteness in the formalisation of the
framework. The proposal is illustrated with some scenarios drawn from
the management of university courses.

1 Introduction

Empowerments and permissions are two common normative devices in the design
of computational societies [1,2,3,4,5]. The former notion allows us to model the
institutional capabilities ascribed to agents of the society; the latter one serves
to represent those desirable institutional states or courses of action which do
not lend themselves to violation. Concerning permissions, a difference is made
between regimentation and enforcement mechanisms in the implementation of
normative systems [6]: regimented infrastructures (e.g. AMELI [7]) effectively
prevent agents from executing some action if the corresponding permission does
not hold; on the contrary, systems based upon enforcement rely on a subsidiary
normative corpus of checking and sanctioning rules to bias the behaviour of
agents towards the desired courses of actions. Which approach is better (either
regimentation or enforcement) essentially depends on the application domain.
For instance, regimentation may simply not be an option in a purely decen-
tralised, large-scale, open system, whereas enforcement alone may not be suffi-
cient in some business process management settings.

This paper addresses the issue of normative incompleteness, mainly from a
regimented perspective. A normative theory is incomplete when it is unable, in
certain situations, to draw a definite conclusion on the truth or falsity of some
normative relation. For instance, the theory does not allow us to infer whether
some action is either permitted or not permitted (i.e. prohibited). There are two
major approaches for dealing with incomplete theories. First, the theory could be
extended with default assumptions that automatically complete the inferences of

J. Padget et al. (Eds.): COIN 2009, LNAI 6069, pp. 304–319, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Dealing with Incomplete Normative States 305

the theory when necessary. For instance, the general default “everything which
is not permitted, is prohibited” may be added to a normative theory in order to
account for a closed-world assumption concerning permissions. Notice that even
if the normative theory is incomplete, this approach leads to complete normative
states, i.e. every normative relation is either true or false at runtime. The second
approach consists of allowing a third truth value, undefined or unknown, which
holds for those normative relations which are affected by incompleteness. This
paper revolves around this second approach.

Another dimension of analysis which is also relevant for our proposal concerns
the sources of incompleteness. Roughly speaking, a normative theory may be in-
complete due to two different reasons. First, the theory may be underspecified,
i.e. there are general rules which would allow us to resolve the incompleteness,
but they are not implemented in the normative system as yet. Second, the nor-
mative deficiency of the theory may be a symptom of inherent incompleteness.
In the former case, the normative program may be enhanced with rules of the
application domain which can handle those situations of incompleteness. In the
latter case, which is the one mainly addressed by this paper, those situations can
not be tackled through general rules but only on a case by case basis by proper
agents at runtime1.

For instance, let us consider a computational society designed to support the
management of university courses. As part of the resulting specification, em-
powerment and permission rules are defined which partially regulate the social
processes of the application domain, namely assignments, examinations, tutor-
ing, lecturing, and so forth. In particular, the following norms concerning the
membership of assignment working groups are considered. Firstly, some stu-
dent is granted empowerment to join a working group if and only if she has
not passed the corresponding assignment, and is not currently participating in
any other working group for that assignment. Secondly, permission to join some
group is granted only if the specified submission deadline has not yet passed.
Note that the empowerment rule is complete, whereas the permission rule only
states a necessary condition. Thus, if some empowered student attempts to join
some working group and the corresponding submission deadline passed, then the
attempt will be prohibited. On the contrary, if the deadline has not yet passed,
then there will be grounds neither for prohibiting nor permitting the attempt.
To handle this situation, we may add the general default “everything which is
not prohibited, is permitted”, but this does not seem adequate since the ulti-
mate decision on the permission or prohibition of the attempt should lie with the
initiator of the working group (i.e. the student who set up the group). Hence,
sufficient conditions for permitting the joining action can not be specified in
advance by the designer of the society.

This paper attempts to provide a normative framework which enables the
specification of inherent incomplete theories of empowerment and permission

1 These agents may indeed follow general decision rules in order to allow or forbid
someone to do something. However, these are not institutional but private rules
which govern the internal dynamics of the agent components.

306 J.M. Serrano and S. Saugar

rules, such as the one described above for the course management application.
The normative framework shall deal with incomplete theories through normative
incomplete states, and will provide agents with adequate mechanisms to resolve
the incompleteness at runtime. In order to formalise this framework, we first
build upon the support for incompleteness of action language K [8], which, in
turn, builds upon the two characteristic negation operators (weak and strong) of
Answer Set Programming (ASP) [9]. In fact, action language K is implemented
as a frontend to the answer set solver DLV [11], called DLVK [10]. Second, the
normative framework shall rely upon the notions of empowerment, permission
and social actions reported in [5], where action language C+ is used as formal
device [12]. That paper introduces the operational semantics of a language for
programming computational societies called Speech [13,14,5,15], where social
actions (e.g. speech acts) are not treated as events but as social entities which
have an execution state, viz. prohibited or performed. This paper extends the
operational specification reported in [5] in such a way that social actions can
also be in a pending state, which holds when the normative program does not
allow to infer whether the social action being attempted is either permitted or
prohibited. Lastly, this paper will provide a mechanism for resolving pending
attempts through a formalization of artificial counterparts of the English speech
acts verbs allow and forbid [18].

The rest of the paper is structured as follows. Firstly, the most salient features
of action language K for the purpose of this paper will be reviewed. Then, the
general framework for social action processing in Speech will be introduced,
describing the major features of the action description in language K. Next,
the speech acts allow and forbid will be formalised and some experiments using
DLVK will be described. Lastly, the major differences with previous work will
be discussed and future work briefly described.

2 Review of Action Language K

Action languages are formal techniques for representing and reasoning about
the performance of actions in dynamic domains. The semantics of action lan-
guages is given in terms of transition systems, namely graphs whose states and
arcs represent, respectively, the possible configurations of the domain and its
evolution due to the concurrent execution of a set of actions. Commonly, action
languages such as C+ describe transitions between states of the physical world,
i.e. states which represent complete configurations of the domain, where each
fluent is necessarily either true or false. In contrast, action language K [8,10]
allows us to describe transitions between states of knowledge, where the truth
values of some fluents may be neither true nor false, but unknown. The motiva-
tion behind action language K was thus to support agents with an incomplete
view of the world in their planning processes.

An specification in language K is divided into three major parts (figure 1):
the action description, the background knowledge and the planning query. The
action description declares the set of fluents and actions which define the state

Dealing with Incomplete Normative States 307

% Action description

f luents :
f1(X1 ,...) requires t1(X1), ...

...

actions:
a1(X1 ,...) requires t1(X1), ...

...

i n i t i a l l y :

caused f i f B

...

always:
caused f i f B after A

...

% Background knowledge

% Instances of types

t1(a11).

t1(a12).

...

% Subsumption rules

tn(X) :- t1(X).

...

% Planning goal

goal:
f1, ..., fn? (n)

Fig. 1. Structure of K-specifications

parameters and characteristic events of the system being modeled, respectively;
moreover, it includes the set of causation rules and executability conditions which
define the dynamics of the system. The background knowledge represents static
knowledge which does not depend on particular configurations of the system.
Lastly, the planning goal specifies a desirable class of system’s configurations.
More precisely:

– A fluent or action p is declared using an expression of the form:

p(X1,. . .,Xn) requires t1(X1),. . .,tn(Xn)

where Xi are variables and ti are type predicates which specify the sorts of
the corresponding variables2. Type predicates are part of the background
knowledge, where their corresponding instances are defined (figure 1). The
background knowledge may also include different subsumption relationships
amongst types. Thus, the rule tn(X) :- t1(X) establishes that any instance
of type t1 is also an instance of type tn. This has as an immediate conse-
quence that any fluent or action declaration, as well as any causation rule
and executability condition, declared within the scope of type tn also pertain
to instances of type t1.

– Causation rules are expressions of the form:

caused f if B after A

If the subexpression f is a fluent literal (i.e. an atom a, or one prefixed by the
strong negation operator, -a), the causation rule expresses that f holds in the
current state if B holds in the current state and A also holds in the preceding
state. The subexpressions B and A are actually sequences of literals, possibly

2 This is actually a slightly simplified version of this construction. See [8] for the full
version.

308 J.M. Serrano and S. Saugar

prefixed with the default (or weak) negation operator not. The expression
not a, where a is an atom, holds if a is not known to be true, whereas the
expression not -a holds if a is not known to be false. If both expressions hold
then the truth value of a is unknown.

– The subexpression B can only refer to type or fluent predicates, whereas
A can also refer to action predicates. If sequences B and A are empty, the
corresponding if and after parts can be dropped from the expression. If
the after part is empty the rule is called static, otherwise the causation
rule is dynamic. Moreover, if f is the reserved atom false, the causation
rule represents an static (resp. dynamic) integrity constraint which allows us
to filter out from the transition system ill-formed states (resp. transitions).
Dynamic rules can be used to represent the non-executability conditions and
effects of actions. In particular, the following macro rule is a shorthand of
a dynamic constraint to represent that condition B blocks the execution of
action a [8, sec. 2]:

nonexecutable a if B ⇔ caused false after a, B

– Executability statements are primitive (i.e. not macro) expressions of the
form

executable a if B

This kind of declaration expresses that action a is eligible for execution in
any state of knowledge in which B holds. If we want the execution of action
a to be not only possible but also mandatory, then a dynamic constraint can
be declared. Since this a common requirement in this paper, we introduce
the following macro rule which allows us to declare B as a sufficient condition
for executing a:

executed a if B ⇔ executable a if B

caused false after not a, B

This macro is specially useful for representing reactive rules defined over
endogeneous actions, i.e. actions whose causes for execution are to be found
within the system being modeled. These actions contrast with so-called ex-
ogeneous actions, viz. actions whose causes for execution are not modeled
by the action description. For this latter type of actions, executability state-
ments suffice.

– Causation rules of an action description may be declared within the scope
of the initially or always keywords. In the former case, only static rules are
allowed which characterise the class of initial states of the system that will
be considered in the planning problem. In the latter, the rules apply to any
state of the system.

– The goal of the planning problem to be solved by the DLVK interpreter is
an expression of the form:

f1, ..., fn? (n)

Dealing with Incomplete Normative States 309

where each fi is a fluent literal and n is a natural number. The output of the
DLVK interpreter consists of a sequence of n sets of actions, whose execution
leads the system from one of the initial states to a state in which the goal
literals are true.

3 Social Action Processing

Departing from its original motivation, action language K is used in this paper for
describing transitions between states of institutional worlds, rather than states
of knowledge of some planning agent. In particular, the technical apparatus of
language K is exploited to represent institutional states where some normative
fluents (e.g., permissions) may have an objective, non-epistemic indeterminacy.
In software engineering terms, the dynamic system to be modeled is thus the
social middleware infrastructure in charge of the management of the institu-
tional state of the computational society, rather than the software components
participating as agents in the society.

The action description of the social middleware is partitioned in several sub-
specifications corresponding to the different types of social entities which make
up a computational society according to the Speech language, namely social
interactions, agents and social actions. A complete account of the whole specifi-
cation is beyond the scope of this paper. Instead, the focus here is on the major
features concerning the normative framework, and the specifications of the al-
low and forbid speech act types, which are part of the standard library of the
language.

3.1 Social Interactions

The institutional state of computational societies is hierarchically structured in
terms of a tree of social interactions. The root of this tree, or top-level interac-
tion, represents the social context within which the whole agent activity takes
place; the other sub-interactions represent the social contexts for particular joint
activities (i.e. social processes). For instance, assignment working groups are rep-
resented by social interactions which are sub-interactions of courses, another type
of social interaction. Social interactions may be initiated within the context of
some other interaction, and eventually finished by the social middleware. The
conditions which cause the execution of these actions are, in general, dependent
on the type of interaction. Thus, university courses are automatically initiated
when the new academic year begins, and assignment groups are initiated when
some student successfully declares its initiation through the performance of the
set up social action – in accordance with the empowerment and permission rules
of the society. In this latter case, the initiator of the social interaction can be
defined as the performer of the set up action.

310 J.M. Serrano and S. Saugar

3.2 Agents

Agents are roles3 played by software components interacting through the social
middleware which purport to achieve some goal as members of some interaction
context. In order to do so, agents are empowered to perform social actions such
as setting up new interactions, joining existing interactions, and so forth. For
instance, the purpose of students is to pass the course to which they belong
as members. In order to achieve this (purported) goal, students are empowered
to set up working groups or to join existing ones in order to carry out some
mandatory assignment. When the purpose of some agent is too complex, its
whole activity may be structured into a role-playing hierarchy of further agents.
Thus, the activity of a course student within the context of a working group
is represented by working group students, a new kind of agent. Agent roles are
played and abandoned by the social middleware according to certain conditions.
For instance, a course student role is automatically abandoned as soon as the
agent passes the course’s subject; a working group student is automatically cre-
ated for the initiator of the working group, and for any student who successfully
manages to join a pre-existing working group.

Listing 1 partially shows the K-specification of the agent type, which includes
the declarations of general fluents and actions which characterise and, respec-
tively, affect the institutional state of any kind of agent. Particularly, it shows
the declaration of the fluents state_a, context_a and player, which represent the
runtime state of agents (playing or abandoned), the social interaction context to
which the agent belongs and its player agent, respectively. Also, it shows the dec-
laration of the actions play and play_for. According to the rules declared in the
always section, the former action causes some agent to be created within some
social interaction context. The specification only includes its non-executability
condition and effect (lines 14–16). The action play_for causes some agent to be
created (line 18) for a particular player agent (line 19).

3.3 Social Actions

The activity of agent components within a multiagent society manifests itself
through the performance of attempts. This external action allows an agent com-
ponent to perform a given social action, namely to say something, manipulate
the environment or observe the current state of some social entity. Due to lack
of space, this paper refers only to speech acts and, particularly, to declarations
such as set up, join, allow and forbid. The processing of attempts by the social

3 The word “agent” is used to denote agent roles, whereas the expression “agent
component” is used to denote those software components (outside the social middle-
ware) playing some agent role within the computational society. For instance, in the
course management application, the human users are the actual students, teachers,
and so forth, which employ common user interfaces (e.g. a web browser) to interact
as student agents, teacher agents, etc., through the social middleware. Thus, agent
components for this application domain are not BDI intelligent agents but plain user
interfaces.

Dealing with Incomplete Normative States 311

1f luents:
2state_a(A,S) requires agent(A), agent_state (S).

3context_a (A,I) requires agent(A), interaction (I).

4player(A1 ,A2) requires agent(A1), agent(A2)

5...

6actions:
7play(A,I) requires
8interaction (I), agent(A).

9play_for (A1 ,A2 ,I) requires
10agent(A1), agent(A2), interaction (I).

11...

12always:
13% play /2

14nonexecutable play(A,I) i f state_a(A,playing).

15caused state_a (A,playing) after play(A,I).

16caused context_a (A,I) after play(A,I).

17% play_for /3

18executed play(A1,I) i f play_for (A1 ,A2 ,I).

19caused player(A1 ,A2) after play_for (A1 ,A2 ,I).

20...

Listing 1. K-specification of agents

middleware takes into account the empowerment and permission rules of the so-
ciety. In particular, empowerments shall represent the institutional capabilities
of agents, i.e. which social actions a given agent is capable of performing in virtue
of the role it represents; permissions shall denote the circumstances under which
these institutional capabilities can be exercised. Attempts by agent components
are processed according to the following procedure:

– If the agent is empowered to perform the specified social action, then the
attempt will be taken into account; otherwise, i.e. either if it is known for
certain that the agent is not empowered, or it can not be concluded that it
is empowered, the external action will be dismissed. In this latter case, the
institutional state of the multiagent society will not be altered at all.

– If the agent is empowered to perform the action, but it is known that the
specified performer is not permitted to perform it (i.e. it is prohibited), then
the process is finished with a prohibited attempt status.

– On the contrary, if the agent is both empowered and permitted, then the
social action is performed by the middleware. The effects caused through
this execution depend on the kind of social action being performed.

– If the agent is empowered to perform that action, but it is neither known
that the action is permitted nor prohibited, then the social action is kept in
a pending state. This state persists by inertia until it is eventually resolved
into a performed or prohibited state as soon as it is known whether the action
is permitted or prohibited.

312 J.M. Serrano and S. Saugar

This procedure is formalised as part of the social_action type specifica-
tion, whose major features are shown in listing 2. The fluents which charac-
terise the institutional state of a social action, declared in lines 2–8, represent
its runtime state (fluent state_sa, which may hold one of the values pending,
prohibited or performed); its context of execution (context_sa); its performer
agent (performer); and the empowerment and permission evaluations of the so-
cial action (empowered and permitted).

1f luents:
2state_sa (Act ,S) requires social_action (Act),

3social_action_state (S).

4context_sa (Act ,I) requires social_action (Act),

5interaction (I).

6performer (Act ,A) requires social_action (Act), agent(A).

7empowered (Act) requires social_action (Act).

8permitted (Act) requires social_action (Act).

9...

10actions:
11attempt(Act) requires social_action (Act).

12perform(Act) requires social_action (Act).

13always:
14% attempt /1

15executable attempt (Act ,A) i f not ill_formed (Act) ...

16caused state_sa (Act ,prohibited) after
17attempt(Act), empowered (Act), -permitted (Act).

18executed perform (Act) i f
19attempt(Act), empowered (Act), permitted (Act).

20caused state_sa (Act ,pending) after
21attempt(Act), empowered (Act), not permitted (Act),

22not -permitted (Act).

23...

24% pending attempts

25caused state_sa (Act ,prohibited) i f
26empowered (Act), -permitted (Act)

27after state_sa (Act ,pending).

28executed perform (Act) i f
29state_sa (Act ,pending), empowered (Act),

30permitted (Act).

31caused -state_sa (Act ,pending) after .

32state_sa (Act ,pending), not empowered (Act).

33...

34% perform /1

35caused state_sa (Act ,performed) after perform (Act).

Listing 2. K-specification of social actions

Attempts by agent components to execute some social action Act are repre-
sented through the action attempt(Act). This action is exogenous, so that it is

Dealing with Incomplete Normative States 313

just declared as executable (line 15) subject to the action not being ill-formed
(e.g. the interaction context being closed) and other preconditions not shown in
listing 2. The different scenarios described above concerning the processing of
attempts are modeled through different groups of dynamic rules:

– Lines 16–22 describe the effects of executing the attempt action. Note that
all these rules require the performer agent to be empowered; otherwise, the
attempt is dismissed. The first rule (line 16) declares a resulting prohibited

state for the social action if it is known that its execution is not permitted (i.e.
-permitted(Act)). The second rule declares the performance of the action
when it is known that its execution is permitted (line 18). Execution of
social actions is represented by the action perform, whose only effect at this
level of abstraction is the change in the runtime execution state (line 35).
Lastly, if the execution of the social action is neither known to be permitted
nor prohibited, then the social action is kept in a pending execution state in
the resulting system state (line 20).

– Pending attempts are eventually resolved according to causation rules in lines
25–31. The first two rules refer to those circumstances in which the system
evolves in such a way that the social action becomes permitted or prohibited.
In those cases, its runtime state will be resolved to the performed (line 28)
or the prohibition values (line 25) by the corresponding rules. Otherwise,
the social action will persist by inertia until the performer agent becomes
unempowered (line 31) or the social action becomes ill-formed.

3.4 Forbidding and Allowing Social Actions

Those social actions pending for execution will be resolved as prohibited or per-
mitted attempts as soon as the rules of the society enable the social middleware
to draw a definite conclusion on its permission status. As a complementary mech-
anism, particularly useful in the absence of general rules, designated agents may
also change the permission status through the speech acts allow and forbid. The
specification of a new type of social action t1 proceeds, firstly, by declaring the
rule social_action(X) :- t1(X) as part of the background knowledge. This rule es-
tablishes that any entity of type t1 shall be regarded as a social action, so that rules
which define the general structure and dynamics of social actions (listing 2) are ap-
plicable for entities of that type. Secondly, new fluents representing the additional
arguments of the new social action type must be declared. Lastly, new rules for rep-
resenting the post-conditions of the performance of the new type of action, as well
as their additional non-executability conditions, etc., have to be declared as well.

For instance, listing 3 shows the formalisation of the join speech act type. By
performing a speech act of this type, the speaker declares that she plays a new
role within the social action’s execution context. The interaction context and the
player agent are represented by the inherited social actions fluents context_sa

and performer (listing 2). The new role to be played is declared as a new fluent,
new_role. The rest of the specification includes the particular effects associated
to the execution of this kind of declaration, which are indirectly achieved through
the internal action play_for (listing 2).

314 J.M. Serrano and S. Saugar

1f luents:
2new_role (Join ,A) requires join(Join), agent(A).

3...

4always:
5executed play_for (A1 ,A2 ,I) i f
6join(Join), perform(Join), context_sa (Join ,I),

7performer (Join ,A2), new_role (Join ,A1).

8...

Listing 3. K-specification of the join social action

Figure 4 shows the partial specification of the allow speech act. In this case,
the generic social action specification is extended with the new fluent action_a,
which represents the social action targeted by the allow speech act. The effect
of performing the allow action is to explicitly cause that the social action is
permitted (line 6). The specification of the forbid speech act is similar to the
one shown in listing 4. The only major difference pertains to its post-condition,
which in this case resorts to the strong negation operator, i.e.

caused -permitted (Act) after
forbid(Forbid), perform(Forbid), action_f (Forbid ,Act)

1f luents:
2action_a (Allow ,Act) requires allow(Allow),

3social_action (Act).

4...

5always:
6caused permitted (Act) after
7allow(Allow), perform(Allow), action_a (Allow ,Act).

8...

Listing 4. K-specification of the allow social action

4 Planning Problems

This section illustrates the normative framework described above through some
planning problems defined over a simplified implementation of the course man-
agement application. The bulk of this implementation consists of a collection
of action descriptions which specifies the domain-dependent types of the appli-
cation domain, namely courses, working groups, students, and so forth. These
subspecifications are added to the action description of the normative frame-
work and standard library to obtain a working prototype. Thus, students of
courses are represented by the type courseStudent which is modeled as a partic-
ular subtype of agent (i.e. the rule agent(X) :- courseStudent(X) is part of the
background knowledge). The additional fluents, actions, causation rules, etc.,
which pertain to agents of this particular type (besides the standard ones, de-
scribed in listing 1) are declared by the corresponding action description. The

Dealing with Incomplete Normative States 315

full implementation of the course management example, the normative frame-
work and the standard speech act library, can be downloaded from the address
http://www.speechlang.org/k. Due to lack of space, this section just describes
the implemented planning scenarios.

1st scenario: Allowing to join. The implementation of the first scenario is par-
tially shown in listings 5 and 6. Listing 5 represents the background knowledge
of the planning problem, which basically consists of the declarations of the dif-
ferent objects which populate the computational society. Thus, s1 and s2 are
course students and the top object is a course interaction (lines 2–4). Concern-
ing listing 6, it declares the initial state of the system as well as the goal state
to be achieved. Thus, lines 3–6 state that, initially, the two course students are
being played within the context of the top course; that there is an open working
group within the course, which has been initiated by student s1; and, that this
student participates in that working group by playing role s11. The goal posed
to the DLVK planner asks for the possible ways in which student s2 may play a
role within the working group wg1, in exactly three planning steps (line 13).

1% Top -level interaction

2course(top).

3courseStudent (s1).

4courseStudent (s2).

5...

6% Assignment working Group

7assignmentGroup (wg1).

8assignmentGroupStudent(s11).

9assignmentGroupStudent(s21).

10join (join1).

11allow(allow1).

Listing 5. Background knowledge of the planning problem

1i n i t i a l l y :

2% objects ‘‘instantiated ’’ in the initial state

3state_a(s1 ,playing). context_a (s1 ,top).

4state_a(s2 ,playing). context_a (s2 ,top).

5state_i(wg1 ,open). context_i (wg1 ,top). initiator (wg1 ,s1).

6state_a(s11 ,playing). context_a (s11 ,wg1). player(s11 ,s1).

7% objects to be instantiated in future states

8-has_state_sa (join1). new_role (join1 ,s21).

9-has_state_a (s21).

10-has_state_sa (allow1). action_a (allow1 ,join1).

11...

12goal :
13state_a(A,playing), context_a (A,wg1), player(A,s2)? (3)

Listing 6. Initial and final states of the planning problem

http://www.speechlang.org/k

316 J.M. Serrano and S. Saugar

The output of the DLVK planner is shown in figure 2. As expected, the first
action to be performed is an attempt by agent s2 to join the working group. Two
additional objects have to be declared in the background knowledge in order for
this action to be performed: a join speech act, join1 and the student agent to be
played within the working group, s21. These objects initially belong to the pool
of objects which are made available for the planning process (lines 8–10 of listing
6), and might be instantiated in future states. Since the student is empowered
to perform the join action but no permission rules are declared (according to
the specification of the working group student type, not shown in the paper),
the attempt to perform it results in a pending status. The next state features
an attempt by agent s11 to allow the performance of the join action. Since this
agent is both empowered and permitted to perform social action allow1, the
permissions to execute the join1 action are in effect in the next state. This, in
turn, causes the performance of the join action and the consequent playing of
the student agent within the working group, which, in turn, causes the goal to
be satisfied.

STATE 0: state_a(s2,playing) state_i(wg1,open)

context_sa(join1,wg1) performer(join1,s2)

new_role(join1,s21) empowered(join1) ...

ACTIONS: attempt(join1)

STATE 1: state_sa(join1,pending) state_a(s11,playing)

context_sa(allow1,wg1) performer(allow1,s11)

action_a(allow1,join1) empowered(allow1)

permitted(allow1) ...

ACTIONS: attempt(allow1) perform(allow1)

STATE 2: state_sa(allow1,performed)

state_sa(join1,pending) performer(join1,a1)

permitted(join1) ...

ACTIONS: perform(join1) play_for(s21,s2,wg1) play(s21,wg1)

STATE 3: state_a(s21,playing) player(s21,s2)

context_a(s21,wg1) ...

Fig. 2. DLVK answer to a planning problem

2nd scenario: Prohibiting attempts to join. The planning query for the second
scenario asks for the different ways in which some attempt to join the work-
ing group may be prohibited. The answer of the DLVK planner outputs two
solutions: in the first one, the group’s initiator ignores the pending attempt,
whereas in the second one the initiator explicitly forbids the attempt. In the
former case, the attempt is prohibited when the deadline for submitting the as-
signment passes, in accordance to the prohibition rule shown in listing 7. This
rule, which states a necessary condition for joining assignment working groups,
is part of the specification of the working group student type.

Dealing with Incomplete Normative States 317

caused -permitted (Join) i f Deadline < Now ,

% where

join(Join), performer (Join ,S),

context_sa (Join ,G), new_role (Join ,GS),

courseStudent (S),

assignmentGroup (G), assignment_g (G,A),

assignment (A), deadline (A,Deadline),

assignmentGroupStudent(GS),

now(Now).

Listing 7. Prohibition rule for joining working groups

3rd scenario: Authorization hierarchies. The third planning scenario features
the emergence of authorization hierarchies to resolve some pending attempt.
This phenomenon is due to the fact that allow and forbid are social actions, and
hence their performance is also governed by permission rules. Thus, if some agent
attempting to allow other agent to do something lacks permission to perform this
authorization, the allow action will be frozen in a pending state. This pending
attempt may be resolved through the performance of a (meta-)allow speech act;
and so forth. For instance, let us assume that teachers want to have a finer
grained control over the membership of working groups. In order to support
this requirement, the normative program establishes that each group’s initiator
needs the teacher’s authorization in order to allow or forbid some colleague to
join their working groups.

5 Discussion

This paper has introduced a normative framework for computational societies
which makes possible the specification of incomplete sets of permission rules.
Rather than automatically completing the resulting normative state with de-
feasible assumptions (using negation as failure, abductive reasoning, etc.), the
framework is able to handle incomplete normative states where some permission
fluents are neither true, nor false, but have an undefined truth value. Attempts
to perform speech acts which are neither permitted nor prohibited lead to the
creation of pending speech acts, which may be eventually resolved as prohibited
or permitted (and hence executed). Therefore, speech acts are not treated as
events but as social entities, which contrasts with other approaches based on
Answer Set Programming (ASP) [3], the event calculus [4] or the C+ action
language [2], which revolve around complete normative states.

The proposed normative framework depends upon the features of action lan-
guage K for reasoning with incomplete information, which in turn build upon
the two kinds of negation operators (weak and strong) provided by ASP. Us-
ing weak negation, the designer may resort to a general default like “everything
which is not permitted, is prohibited” whenever it is adequate for some particu-
lar type of attempt. Using strong negation, the programmer may represent nec-
essary conditions of permissions, thereby endorsing an open-world assumption

318 J.M. Serrano and S. Saugar

over designated types of attempts. These features make our work closely aligned
with the proposal of [16], where ASP is also used as the underlying technical
framework. Basically, [16] puts forward a language for representing authorization
policies in terms of defeasible and strict permission/prohibition rules. Although
the language allows in principle for the representation of incomplete policies, that
paper focuses in ASP-based methods for checking compliance of events. Using
the terminology of [16], this paper primarily focuses instead on weakly compliant
events (i.e. attempts to perform some action which are not prohibited), which
at the same time are not strongly compliant (i.e. are not permitted).

Moreover, our framework lets designated agents “manually” resolve the incom-
pleteness resulting from these kinds of events by using the tailor-made speech
acts allow and forbid. This possibility makes the approach specially suited to
normative domains featuring an inherent incompleteness problem, although the
framework could also be fruitfully exploited in cases of underspecification. In
this latter class of systems, however, incompleteness may also be resolved dy-
namically by upgrading the normative program at runtime through additional
permission rules, something undertaken in [17]. Future work will address this
issue through the formalization of rule-oriented speech acts such as permit and
prohibit, which complement the ad-hoc character of the speech acts allow and
forbid [18].

The normative framework reported in this paper is part of a larger research
project aimed at the specification of Speech, a language for programming soft-
ware systems designed to support human interaction in arbitrary social contexts,
viz. social applications. This general goal partly explains some of the features
of the proposed normative framework, such as its bias towards regimentation.
Nevertheless, the approach may not be plainly qualified as “regimented”, since
some attempts which are not permitted may eventually be executed. It should
be noted that the eventual execution of pending speech acts may involve the
participation of a hierarchy of authorities. In future work we plan to compare
these ad-hoc hierarchies with other kinds of permission hierarchies found in the
literature [19].

Acknowledgments. The authors wish to thank the anonymous reviewers for their
detailed comments and suggestions. Research sponsored by the Spanish Ministry
of Science and Innovation, project TIN2006-15455-C03-03.

References

1. Jones, A.J.I., Sergot, M.J.: A formal characterisation of institutionalised power.
Logic Journal of the IGPL 4(3), 427–443 (1996)

2. Artikis, A., Sergot, M., Pitt, J.: Specifying norm-governed computational societies.
ACM Transactions on Computational Logic 10(1), 1–1 (2009)

3. Cliffe, O., Vos, M.D., Padget, J.: Answer set programming for representing and rea-
soning about virtual institutions. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA
2006. LNCS (LNAI), vol. 4371, pp. 60–79. Springer, Heidelberg (2007)

Dealing with Incomplete Normative States 319

4. Fornara, N., Colombetti, M.: Specifying artificial institutions in the event calculus.
In: Dignum, V. (ed.) Handbook of Research on Multi-Agent Systems: Semantics
and Dynamics of Organizational Models, pp. 335–366. IGI Global (2009)

5. Serrano, J.M., Saugar, S.: Run-time semantics of a language for programming
social processes. In: Fisher, M., Sadri, F., Thielscher, M. (eds.) CLIMA IX. LNCS,
vol. 5405, pp. 37–56. Springer, Heidelberg (2009)

6. Grossi, D.: Designing Invisible Handcuffs. SIKS Dissertation Series No. 2007-16
(2007)

7. Esteva, M., Rosell, B., Rodŕıguez-Aguilar, J.A., Arcos, J.L.: AMELI: An agent-
based middleware for electronic institutions. In: Proceedings of the Third Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems, vol. 1,
pp. 236–243 (2004)

8. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming
approach to knowledge-state planning: Semantics and complexity. Technical Report
1843-01-11, INFSYS Research Report (2002)

9. Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: A primer. In:
Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-
C., Schmidt, R.A. (eds.) Reasoning Web. Semantic Technologies for Information
Systems. LNCS, vol. 5689, pp. 40–110. Springer, Heidelberg (2009)

10. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming
approach to knowledge-state planning, II: The DLVK system. Artif. Intell. 144(1-
2), 157–211 (2003)

11. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The dlv system for knowledge representation and reasoning. ACM Trans. Comput.
Log. 7, 499–562 (2006)

12. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal
theories. Artif. Intell. 153(1-2), 49–104 (2004)

13. Serrano, J.M., Saugar, S.: Operational semantics of multiagent interactions. In:
Durfee, E.H., Yokoo, M., Huhns, M.N., Shehory, O. (eds.) AAMAS’07, pp. 889–
896. IFAAMAS (2007)

14. Saugar, S., Serrano, J.M.: A web-based virtual machine for developing computa-
tional societies. In: Klusch, M., Pěchouček, M., Polleres, A. (eds.) CIA 2008. LNCS
(LNAI), vol. 5180, pp. 162–176. Springer, Heidelberg (2008)

15. Serrano, J.M., Saugar, S.: Programming social middlewares through social inter-
action types. In: Dastani, M., Seghrouchni, A.E.F., Leite, J., Torroni, P. (eds.)
Proceedings of the workshop on Languages, methodologies and Development tools
for multi-agent systems (2009)

16. Gelfond, M., Lobo, J.: Authorization and obligation policies in dynamic systems.
In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp.
22–36. Springer, Heidelberg (2008)

17. Artikis, A.: Dynamic protocols for open agent systems. In: Sierra, C., Castelfranchi,
C., Decker, K.S., Sichman, J.S. (eds.) AAMAS (1), IFAAMAS, pp. 97–104 (2009)

18. Wierzbicka, A.: English speech act verbs. A semantic dictionary. Academic Press,
Australia (1987)

19. Boella, G., van der Torre, L.W.N.: Permissions and obligations in hierarchical
normative systems. In: ICAIL, pp. 109–118 (2003)

J. Padget et al. (Eds.): COIN 2009, LNAI 6069, pp. 320–333, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Towards an Architecture for Self-regulating Agents:
A Case Study in International Trade

Brigitte Burgemeestre1, Joris Hulstijn1, and Yao-Hua Tan1,2

1 PGS IT Audit, Faculty of Economics and Business Administration, Vrije Universiteit
2 Department of Technology, Policy and Management, Delft University of Technology
{jhulstijn,cburgemeestre}@feweb.vu.nl, Y.Tan@tudelft.nl

Abstract. Norm-enforcement models applied in human societies may serve as
an inspiration for the design of multi-agent systems. Models for norm-
enforcement in multi-agent systems often focus either on the intra- or inter-
agent level. We propose a combined approach to identify objectives for an
architecture for self-regulating agents. In this paper we assess how changes on
the inter-agent level affect the intra-agent level and how a generic BDI architec-
ture IRMA can be adapted for self-regulation. The approach is validated with a
case study of AEO certification, a European wide customs initiative to secure
the supply chain while facilitating international trade.

Keywords: Self-regulation, agent architectures, compliance.

1 Introduction

To make autonomous agents comply with norms, various enforcement mechanisms
have been proposed. Norms here are defined as standards of behavior that are accept-
able in a society, indicating desirable behaviors that should be carried out, as well as
undesirable behaviors that should be avoided [14]. Enforcement mechanisms often
require special ‘observers’ or ‘regulator agents’ that actively monitor the behavior of
the other agents, and sanction them in case of norm violations. When developing
norm enforcement mechanisms for multi-agent systems, the modeling is often focused
on the inter-agent level (between agents). Models aim to construct norm enforcement
mechanisms by agent interaction. The intra-level (inside the agent) is mainly treated
as a black box. We argue that the intra- and inter-agent aspects cannot be viewed
separately, especially in norm enforcement where external stimuli should motivate an
agent to adapt its behavior and thereby its internal mechanisms.

Norm-enforcement models applied in human societies may serve as an inspiration
for the design of electronic institutions and open agent systems. An enforcement
mechanism that is based on an agent’s internal architecture to achieve compliant be-
havior, and does not require additional ‘observers’ is self-regulation. Self-regulation
is a control approach in which rule making and enforcement are carried out by the
agent itself, instead of by the regulator. Self-regulation is an alternative for direct
control, when external supervision and enforcement is not possible, ineffective or
when there is a lack of controlling resources. For example, in an e-institution it might
be impossible to check all agent actions for compliance in real time. A solution might

 Towards an Architecture for Self-regulating Agents 321

be to do a code review and determine whether an agent is compliant by design [17]. In
human societies, programs of self–regulation have been found to contribute to ex-
panded control coverage and greater inspectorial depth [3]. Self-regulation can be
implemented in various ways, ranging from voluntary self-regulation, where a group
of agents chooses to regulate themselves, to mandated or enforced self-regulation,
where a government agency delegates some of its regulative and enforcing tasks to
the agents subjected to the norm, but retains the supervision [16]. Each model of self-
regulation causes different dependencies among agents and different information
needs, which imposes different requirements on the agent architecture.

A specific case of self-regulation is the Authorized Economic Operator (AEO)
program [12]. The AEO program is a European wide customs initiative that aims to
secure international trade while at the same time reducing the administrative burden
for companies through the use of self-control. Companies that are trustworthy in the
context of customs related operations and have a good internal control system may
apply for the AEO certificate and receive operational benefits from simplified cus-
toms procedures, preferential treatment, and less physical inspections. Companies that
do not have an AEO certificate remain subject to the current level of customs con-
trols. Participation in the AEO program is voluntary, but demonstrating effective self-
control mechanisms is a necessary requirement.

Implementing self-regulation as a control mechanism thus results in a redistribu-
tion or delegation of control tasks among the actors. Agents have to adapt their inter-
nal mechanisms to cope with these tasks. We see that changes at the inter-agent level
affect the intra-level. We therefore propose to use a combined approach to develop an
architecture which can use self-regulation as a control mechanism for multi-agent
systems. The research questions we would like to answer are:

1. What objectives need to be met by an architecture for self-regulating agents?
2. How should the existing BDI-agent architecture be adapted for self-regulation?

We use a combination of frameworks to cover the inter- as well as intra-agent aspects.
For intra-agent analysis the Intelligent Resource-Bounded Machine Architecture
(IRMA) [4] is a good starting point, because it is a general BDI architecture [15],
which is well accepted and forms the basis for more recent agent architectures, such
as AgentSpeak or 3APL. Software engineering methodology TROPOS [5] provides
suitable concepts to analyze agents’ dependencies at the inter-agent level.

The remainder of the paper is structured as follows. In Section 2 we analyze the
difference between direct control and self-regulation using TROPOS. Using this
analysis we generate objectives for the internal architecture of a self-regulating agent.
We apply these objectives to IRMA and propose some adaptations (Section 3). Using
the extended architecture and the TROPOS model, we analyze a case study of AEO
(Section 4). We examine if our adapted version of the architecture covers the findings
of the case study. We identify its suitability and shortcomings.

2 Inter-agent Analysis

We first analyze the types of agents involved in regulation, and the dependencies
between them. To do so we use concepts from the early requirements phase of the
TROPOS methodology [5], which is derived from the i* framework [18]. The key

322 B. Burgemeestre, J. Hulstijn, and Y.-H. Tan

concepts we use are: actor, goal, plan, resource and dependency. An actor can be an
autonomous agent that has a goal or strategic interest, based on its organizational role.
A goal can be satisfied through the execution of a plan, which is an abstract represen-
tation of a way of doing something. A resource can be a physical or informational
entity. Actors can depend on each other to reach a certain goal, to execute a plan or to
obtain resources. The agent that depends on another agent is called the depender, the
agent he depends on is called the dependee. The object which is the subject of the
dependency relation is called the dependum.

We first model direct control, where actions of autonomous agents are regulated by
special regulator agents. After that we analyze self-regulation and assess what should
change when an autonomous agent internalizes control tasks of the regulator agent.

2.1 Agents’ Dependencies in Direct Control

In direct control we have two types of agents: an Actor agent (A) that is carrying out
an activity and a Regulator agent (R) that is responsible for regulating A’s actions
such that agent A complies with the norms that are applicable to A. An agent can
violate the norms through pursuing an illegal goal or by performing an illegitimate
action. We assume that R has a norm framework from which it derives the set of
norms tailored to an agent’s specific situation. To regulate A, agent R must have plans
for executing the following activities: R1 ‘Specify norms for actor', R2 ‘Determine
control indicators of actor’, R3 ‘Monitor actor’s actions’ and R4 ‘Sanction actor’. R1
generates a set of norms for A. R uses information about A and A’s actions to select
the appropriate norms from the norm framework that apply to A’s specific situation.
R2 determines appropriate ‘control indicators’. A control indicator is the kind of evi-
dence required to demonstrate compliance of a norm, as well as infrastructural re-
quirements to collect that evidence. For example: when a company sends an invoice,
they make a copy of the invoice and store the copy to be able to check later whether
all collected payments are correct and complete. R3 concerns the monitoring per-
formed by R on A’s actions, based on information provided by A about the control
indicators. R4 describes the plan of R to sanction A in case of a norm violation.
Agent A’s model is quite simple, as A is a ‘blind’ agent that has no knowledge about
the norms or control indicators and can only act. Therefore it is possible that A un-
knowingly engages in an activity that violates a norm that is imposed upon A by R.
However, we do assume that A remembers action-sanction relations and that it can
decide to cancel an action that will lead to a sanction.

Figure 1 shows the results of the dependency analysis for direct control.
A consequence of this division of tasks, where the regulator is responsible for the

majority of control tasks, is that it is very labor intensive for the regulator. The regula-
tor needs to specify norm sets and control indicators for all agents and needs to do all
the verification and auditing. Furthermore the suitability of the rules can be disput-
able. Overregulation can occur when all the characteristics of the individual agents
and possible exceptions need to be taken into account in the rules. Or rules can be-
come ill fitting when they are supposed to be suitable for the majority of the agents
but turn out to be compromises, which are not suitable for any individual agent. In
direct control relations, Actor agents often have little influence on the rules that are
assigned to them and simply have to adapt to the rules that are given.

 Towards an Architecture for Self-regulating Agents 323

Fig. 1. TROPOS model of direct control. The actions of an actor (A) are regulated by a regula-
tor (R). Note that arrows depict dependency, not information flow. So to regulate A’s actions, R
depends on A for information about actor and actions.

2.2 Agents’ Dependencies in Self-regulation

For self-regulation we start again with two types of agents: the actor agent (A) and the
regulator agent (R). In self-regulation several control tasks are delegated from R to A.
Since A is autonomous, R can never be absolutely certain that A complies. R thus has
to implement a mechanism to make A regulate itself appropriately. Furthermore, to
maintain the power of the regulator to handle non-compliant agents, the sanctioning
task (R4) remains the regulator’s responsibility.

We first consider the consequences of the internalization of control tasks by A.
Plans R1, R2 and R3 may be internalized by agent A as plans: A1 ‘Specify norms’,
A2 ‘Determine control indicators’ and A3 ‘Monitor actions’. A1 specifies norms
based on a norm framework which originates from R. This entails a new dependency
between A and R: A now depends on R for communicating the norm framework.

324 B. Burgemeestre, J. Hulstijn, and Y.-H. Tan

When the norm specification is done by A, A is also supposed to be able to differenti-
ate between norm violations and norm compliance. A therefore no longer depends for
information about violations and permissions on R, but has to do it himself. A2 de-
fines control indicators about A’s actions, based on the norms defined in A1. A3 de-
scribes the monitoring actions of A which it performs in the context of the control
indicators from plan A2. The plans A1, A2, and A3 together, should support A to act
in compliance with the norms. The acts of A in turn affect the nature of the control
actions. If A starts doing different activities the control indicators may become less
effective and A therefore has to determine new control indicators that cover the
norms. For example, if A replaces the process of sending paper invoices to its cus-
tomers by sending electronic invoices, new control indicators are required: e.g. log
files and encryption proof instead of paper copies of the invoice.

Fig. 2. TROPOS model of self-regulation, control tasks of the regulator are internalized by the
actor agent

 Towards an Architecture for Self-regulating Agents 325

Now we describe the consequences of A’s internalization of the control tasks of
R’s goals and plans. Since A now has to control its own actions, the goal of R to regu-
late A’s actions is supposed to be met by the control activities of A. To determine if
this delegation of control is effective, R has adopted a new goal which is to regulate
the control activities of A. To reach this goal, R also has defined a new plan (R5),
which describes the activities of R to monitor and evaluate A’s control actions. Note
that R now depends on A for information about its control activities instead of its
activities, so R5 is a kind of meta-control plan. In auditing practice, R5 refers to a
system-based audit, were the focus is the internal control system instead of on busi-
ness transactions. Before an agent can enter a self-regulative relation, it has to provide
an authenticated control architecture or control script to the regulator.

A similar solution would work for a code review, mentioned in the introduction.
An electronic marketplace, for example, may want to provide assurance that its mem-
bers generally comply with the norms. In addition to monitoring and sanctioning
violations when they occur, the institution can require the owner of an agent to pro-
vide documentation and programming code before an agent is allowed into the envi-
ronment. In this documentation the owner must make explicit how the agents internal
control architecture assures compliance to the norms defined by the marketplace.
Using this evidence, the institution can verify (up to a point) whether the agent is
compliant by design, compare [17]. Such a verification can be automated, but that is
not necessary, as the review takes place off-line.

Figure 2 shows dependencies between agents A and R engaged in self-regulation.
When we compare direct control with self-regulation we see that A internalizes

some of R’s control activities on A. New information resources are gathered to be
used within the control activities. Also new goals evolve and lead to the adoption of
new plans. Corresponding new dependencies between R and A develop for the acqui-
sition of these new information resources.

These inter-agent changes are reflected in a number of objectives for intra-agent
architectures. Summarizing the objectives, self-regulating agent must have at least the
capabilities to:

1. Detect, internalize and store the norms which are applicable in the environment,
2. Translate norms into measurable control indicators, and
3. Monitor, detect and mitigate possible norm violations.

In the next section we show the internal architecture of the actor in self-regulation.

3 Inter-agent Analysis

We now analyze how the new tasks and dependencies revealed by the TROPOS mod-
els will affect an agent’s internal architecture. We acknowledge that these tasks are
complex normative tasks. We use the Intelligent Resource-Bounded Machine Archi-
tecture (IRMA) [4]. The architecture is a BDI architecture where the intentions are
structured into plans. A plan can be a plan that an agent has actually adopted, or a
plan-as-recipe that is stored into the plan library. Plan options are proposed as a result
of means-end reasoning or by the opportunity analyzer. The opportunity analyzer

326 B. Burgemeestre, J. Hulstijn, and Y.-H. Tan

detects changes in the environment and determines new opportunities, based on the
agent’s desires. The options are filtered through a compatibility filter, that checks the
options to determine compatibility with the agent’s existing plans, and a filter over-
ride mechanism, in which the conditions are defined under which (portions) of plans
need to be suspended and replaced by another option. The deliberation process deter-
mines the best option on the basis of current beliefs and desires.

Consider an autonomous agent that likes to achieve a certain goal. The agent has
already several plans of action available (in its plan-library) to reach this goal. Before
deliberating on a plan, the agent engages in a filtering process. This process constrains
the agent’s possible plans to plans that can be completed given its available (sub)
plans in the plan library, its beliefs and desires. The agent chooses from this selection
the best plan, given its beliefs and desires, and executes the plan. Figure 3 shows our
extension of the IRMA architecture, adapted for self-regulation. Norm related adapta-
tions are shown in grey and dotted lines. The ovals in the figure are information
stores (repositories) and the rectangles are process modules.

Within IRMA we like to implement the processes and information stores that are
needed for self-regulation. A self-regulating agent needs to internalize certain control
activities to control its actions. The activities are: ‘specify norms’ (A1), ‘determine
control indicators’ (A2), and ‘monitor actions’ (A3). These control activities require
input from the agent’s actions, and the actions in turn are influenced by the norms.
We first analyze which IRMA modules are possibly affected by normative reasoning.

Norms can impact the information stores or processes of the architecture. A norm
can be implemented in plans and function as a threshold to restrict the outcome. For
example, a thermostat function that tries to keep the room heated at a certain tempera-
ture. Norms can also restrict the possible set of plans. Plans that violate a norm are no
longer stored in the plan library. Or in means-end reasoning: there are illegal plans in
the plan library but they are not considered as appropriate options to reach a goal;
such plans are temporarily ‘suppressed’, as in [14]. Norms can also prevent the actual
execution of a plan. For example, a person can plan to rob a bank, but decide not to do
so at the last moment.

Besides that, norms affect the beliefs. After all, agents are expected to know the
general norms. Beliefs also affect the norms, in the sense that beliefs about the con-
text help to identify applicable norms. An agent may also realize, based on its beliefs,
that it is acting in violation with the norms. Or, an agent realizes that due to a change
in activities certain norms are no longer applicable and new norms must be incorpo-
rated. Whenever an agent adopts a new norm, this must be known (believed).

Norms are also related to the desires of an agent. An agent’s desires may violate
the norms. For example, an agent may desire a handbag that is made of the skin of a
protected snake. A norm is that killing a protected animal is illegal. If norms are in-
cluded in the compatibility filter, an agent can check if an option is compatible with
its norms. If norms are part of the filter override mechanism, non-compliance can be a
condition under which an agent must reconsider its plans. Both implementations make
it possible for an agent to decide not to consider a plan option of buying a snake skin
handbag. The opportunity analyzer may use the norms and beliefs to search for an
alternative, such as a fake snake skin handbag.

 Towards an Architecture for Self-regulating Agents 327

Fig. 3. A reasoning component for self-regulating agents adapted from [4]. Norm related
adaptations are shown in grey and with dotted lines.

We find that norms can impact all components of the architecture. To assure con-
sistent norm application we propose a central storage for norms similar to what the
plan library is for plans. Activity A1 updates the norm library according to the beliefs
of the agent. Only norms that are considered to be applicable to the agent’s specific
situation are included. To make an agent aware of a norm (violation) we connect the
norm library with the reasoner module that is attached to the beliefs. If an agent then
reasons about its beliefs, it will take the relevant norms into account. Beliefs about a
norm (violation) can be used as input for the means-end reasoner, opportunity ana-
lyzer and the deliberation process. Besides that, the agent may use its knowledge
about norms to determine the control indicators of A2. We consider the filtering proc-
ess the best location to implement the control indicators. Beliefs about norms are
already included in the other reasoning processes. The filtering process and reasoning

328 B. Burgemeestre, J. Hulstijn, and Y.-H. Tan

thus together consider (non-) compliant behavior. We think that the majority of the
control indicators should be embedded in the compatibility filter and only severe
violations should be handled by the filter override mechanism. Otherwise it could
happen that the filtering is too strict. The monitoring in A3 is handled through a com-
parison of the beliefs about the data on the indicators with the norms. Based on results
from this analysis, controls in the filtering process may be adapted. Figure 3 shows a
version of the IRMA architecture specifically adapted for self-regulation.

 Our approach of embedding norms into the filter override mechanism is compara-
ble with the framework that is proposed by [14]. Norms can also be implemented into
the goal generation mechanism as was done in the BOID architecture [6]. In BOID
one can distinguish two kinds of goals: internal motivations (desires), representing
individual wants or needs, and external motivations (obligations) to model social
commitments and norms [6]. All these potential goals may conflict. To resolve con-
flicts among the sets of beliefs, obligations, intentions and desires, a priority order is
needed. In the BOID, such a (partial) order is provided by the agent type. In [8] we
discuss the use of values for goal conflict resolution.

Note that we have so far only considered adaptations to the agent architecture
based on a conception of norms as a kind of filtering: actions, plans or goals which
might lead to violation are filtered out or suppressed. Instead of filtering, we can also
consider norm adoption [9,11]. Here, a norm is simply adopted as a goal. The rest of
the architecture will then ensure compliance. Note that adopted norms will often cor-
respond to so called maintenance goals: goals to make sure that some desirable state
of affairs subsists or that an undesirable state is avoided, by contrast to achievement
goals, which are about reaching a new state of affairs. Architectures for dealing with
maintenance goals are discussed in [13].

4 Case Study: AEO Certification

We illustrate and validate our models by analyzing a specific case of self-regulation:
AEO certification. The case study results are based on document analysis and a series
of semi-structured interviews with experts from Dutch Tax and Customs Administra-
tion, held in the period of May till November 2009. Meeting notes were made by the
authors and verified by interview partners. Intermediate results of the case study were
validated in a one-day workshop with domain experts.

An Authorized Economic Operator (AEO) can be defined as a company that is in-
control of its own business processes, and hence is considered trustworthy throughout
the EU in the context of its customs related operations [12]. Typically, modern enter-
prise information systems (ERP, CRM etc.) play an essential role for companies to be
in-control. AEO’s will receive several benefits in customs handling, such as a “Green
Lane” treatment with a reduced number of inspections. This can lead to considerable
cost-reductions for businesses. For non-certified enterprises customs will continue to
carry out the traditional supervision. Customs can direct their efforts towards non-
certified companies to increase the security of international supply chains, while at the
same time reducing the administrative burden for AEOs.

To qualify as AEO, a company must meet a number of criteria, which are de-
scribed in the community customs code and the AEO guidelines [12], developed by
the European Commission. Part of the application procedure is a self-assessment on

 Towards an Architecture for Self-regulating Agents 329

the quality of the company’s internal control system for aspects that are relevant to
the type of AEO certificate (‘Customs simplifications’, ‘Security and safety’ or
‘Combined’) [12]. The company’s approach and the results of the self-assessment are
inspected by customs. Customs officers determine whether the self-assessment is
performed well and whether the results indicate that a company is able to control its
business processes such that they contribute to a secure supply chain. If this is the
case and other criteria are met (e.g. solvency, no known tax evasions etc.) an AEO
certificate is issued by the customs office. Next we focus on the self-assessment task.

4.1 The Self-assessment Task

The company’s first task is to collect information related to the specific nature of the
company to focus the self-assessment. This step is called ‘Understanding the busi-
ness’. The next step is to identify (potential) risks to which the business is exposed
using the AEO guidelines, which provide an overview of general risk and attention
points. The company determines which sections are important according to the nature
of the business activities. A company then has to identify, what risks affect the supply
chain’s safety, and are therefore of interest of the customs authorities. So the company
takes over the customs’ task of risk identification. For example, computer compo-
nents are valuable goods, which are subject to theft. Trading valuable goods requires
more security measures, than, say, trading in a mass product like fertilizer. However,
some ingredients of fertilizer may be used to assemble explosives, leading to a differ-
ent set of risks.

A company must then assess if appropriate internal control measures are taken to
mitigate these risks. The vulnerability of a company to threats depends on its current
control measures. Control measures either reduce the likelihood, by dealing with
vulnerabilities (preventative controls), or reduce the impact (detective and corrective
controls). A robust system of controls is thus able to prevent, detect and correct
threats. A robust system of controls should also monitor its own functioning. For
risks that are not controlled, additional measures may be implemented or the risk is
“accepted”. Risks can be accepted, if the likelihood of a threat is limited and the risk
is partially covered, or if the costs for complete coverage are very high.

The company must show how its risk management contributes to its being trust-
worthy. In addition, the company must evaluate whether the proposed measures are
implemented effectively. To provide some guidance on what is considered ‘effective
implementation’ customs refer to the COSO internal control guidelines. COSO is a
general framework for risk management and internal control [10]. The scores range
from 0 “no control measures in place”, 1 “internal control is ad hoc and unorganized”,
2 “internal control has a structured approach”, 3 “internal control is documented and
known”, 4 “internal control is subject to internal audits and evaluation” until 5 “inter-
nal control measures are integrated into the business processes and continuously
evaluated”. This scoring provides the customs with an indication of the maturity level
of the company’s self-controlling abilities.

4.2 Case Analysis

In the AEO case study we see the implementation of tasks A1, A2, and A3 at the
company’s side. A company has to define a control system appropriate to handle its

330 B. Burgemeestre, J. Hulstijn, and Y.-H. Tan

specific risks. The company therefore translates the general AEO guidelines into
norms that are applicable in its own practice and circumstances (compatible with A1).
Thereby a company determines parameters to monitor and control its business proc-
esses (A2). A company with a control system of a high maturity level monitors its
actions (A3) through internal audits and controls that are integrated in the processes.
The customs replace their traditional controls of the company’s processes (R1,R2,R3)
with an assessment of the company’s self-regulating capabilities and control ac-
tions (R5). To check the reliability of the company’s controls, customs may still take
samples of business transactions, but these will now be much more focused, for in-
stance on areas with an increased risk. To make R5 and the delegation of tasks A1,
A2, A3 more manageable, we see that additional guidelines and principles must be
formulated. An example of such additional guidelines is the set of AEO guidelines
specified by the EU, indicating examples of risk areas for different domains. Another
example is given by local customs directives. For instance, the Dutch customs refer to
the COSO maturity levels as a way of objectively measuring ‘effective implementa-
tion’ of control measures. Such additional guidelines are needed for both implement-
ing and auditing control systems. They help to specify under what circumstances a
company can be said to be ‘in control’ of safety and security.

We also observe dependencies regarding information resources. The company de-
pends on abstract norms (e.g. the AEO Guidelines) provided by the customs, which
they try to apply to themselves as they believe the customs would do. The customs on
the other hand depend on the company for information about their control system. For
instance, why have they chosen for a certain implementation of the norms? Why have
they decided to accept a certain risk, and not take additional control measures?

The AEO case provides us with a new approach to control that could also be ap-
plied to a multi-agent system. It shows that norm enforcement is a task that can be
distributed among various types of agents. Furthermore we learned that self-
regulation only works under certain conditions and that delegating control tasks is not
simple. In general companies find it difficult to do a self-assessment as they do not
know what customs expect from them (open norms). The translation of the abstract
AEO guidelines into company specific norms turns out to be hard. For companies it is
unclear when they have taken sufficient measures. Companies sometimes expect
customs to indicate what is sufficient: “A fence for a chemical company should be X
meters high”. Even for customs such knowledge is often only implicitly available as
expert knowledge that is difficult to externalize and make accessible for companies.
In the AEO case, implemented measures are based on the risks in the environment.
This corresponds to our observation in the architecture that norms depend on the be-
liefs. In the AEO case, we find both the adoption of new policies and procedures
(norm adoption), as well as a redesign of existing business processes (norm filtering).
Mature companies have their controls integrated in the business processes, and have
regular audits to check the functioning of controls (reflective capabilities).

Summarizing, we can say that the internal control system of a company can be seen
as the implementation of an architecture for self-regulation. In the AEO case, customs
must provide a kind of quality assessment of this control architecture (system based
audit), rather than verifying business transactions. This fundamental change in the role
of customs, shows a transformation from operational control to meta-control. There-
fore issues like trust and integrity now play a role at two levels. First there is the trust-
worthiness of the company’s management, or in the case of an electronic institution, of

 Towards an Architecture for Self-regulating Agents 331

the agent owner. In the AEO case, we find that historical indicators of fraud always
lead to a rejection of the certificate. In electronic institutions a rule could be that agents
from proven untrustworthy owners are denied access to the community. Second, there
is the reliability of the control system or agent architecture itself. If the control system
is not reliable, it cannot be used to take over the delegated control tasks. Therefore the
company can’t function as a trusted partner of customs. Electronic institutions may
also require that agent behavior is controlled to assure the correctness of the transac-
tions. In that case, the owner of must prove that the agent is compliant by design. Such
a proof depends on the internal architecture of the agent.

5 Discussion

We use a combination of TROPOS and IRMA as a means to identify requirements for
self-regulating agents at the intra- and inter-agent level. We do not claim that these
are the best approaches currently available, there are some limitations.

The most important limitation of IRMA as the internal architecture is that it is not
reflective. By this we mean that agents cannot learn from their mistakes. When the
agent finds that a plan leads to a norm violation it is only able to cancel this plan as a
possible option. It lacks mechanisms to delete or change such plans in a plan library.
Desires that violate norms cannot be changed either. The agent therefore keeps pro-
posing violating plans and desires. Since norms are context dependent it is quite com-
plex to differentiate violating plans from non-violating plans. Plans that are allowed in
one situation may be a violation under different circumstances. An adaption of the
planning mechanism is needed.

Second, there seems to be a fundamental problem in the delegation of control: of-
ten it is not clear how to communicate the delegated norms from the regulator to the
actor. For companies it is difficult to interpret and implement the EU guidelines.
Should customs and companies implement a communication protocol, a shared vo-
cabulary or procedures such that they can more effectively communicate information?
How should a company make its internal control system available to customs, such
that they can determine the quality of a control system in a specific context with lim-
ited expert knowledge? These questions have to be answered by a detailed study of
norm communication, both in practice, and for multi-agent systems.

Third, our case study reveals issues which may inspire the development of norm
enforcement mechanisms for multi-agent systems. Open norms and forms of self–
regulation enable heterogeneous agents to enter environments as the entrance
requirements (open norms) leave room for specific implementations (control architec-
tures). In particular, it suggests how agents can be verified to be ‘compliant by de-
sign’ before entering into an agent environment. Agents have to map their control
architecture to the norm framework of the environment. The communication problem
in the case emphasizes the need for well defined norm frameworks. Norm frameworks
should be abstract enough to allow agents to enter an environment and specific
enough to support compliance and enforcement of the norms. However, exactly how
to translate such ideas depends on the particular set-up of the multi-agent system. In
most cases, there will be a large role for the human owner of the agent, similar to the
role of management. They must provide the evidence to demonstrate that they are ‘in
control’ regarding compliance.

332 B. Burgemeestre, J. Hulstijn, and Y.-H. Tan

6 Conclusions and Further Research

In this paper we have argued that, with regard to norms, the macro-level definition of
tasks and dependencies in a multi-agent system and the internal architecture of agents
are crucially interconnected. A combined approach, that analyses the inter- (between
agents) and intra-agent level (inside agents), was suitable to identify objectives for an
architecture for self-regulation. We identified key processes and their influence on the
dependencies between agents and the internal agent architecture. The models provide
an insight in the differences in requirements for direct controlled agents and self-
regulating agents. The analysis also points out the limitations of some well-known
existing approaches. IRMA lacks reflective capabilities and is therefore not sufficient
to model a truly self-regulating agent: an agent that is able to learn from its mistakes.
In [8] we look in more detail at various cognitive architectures and how they account
for compliance and norm adoption. Also unaddressed were aspects of norm commu-
nication. For two agents to engage in self-regulation relation, they must be able to
communicate the norms effectively. Since the agents are autonomous we cannot sim-
ply assume that both agents use similar vocabularies or protocols [7]. So a solution for
norm communication should take the agent’s autonomy into account. One of our
current research projects examines the use of argumentation theory [1] for norm im-
plementation and communication. Future research thus concerns the role of reflection
for normative behavior and norm communication. We hope to specify our ideas more
formally in a declarative agent architecture (e.g. based on [13]). This will allow agent-
based simulation of the regulatory process. We are also interested in the evolution
process from direct control to self-regulation.

Acknowledgments. We would like to thank the Dutch Tax and Customs Administra-
tion for their cooperation and insights.

References

1. Atkinson, K., Bench-Capon, T., McBurney, P.: Computational representation of practical
argument. Synthese 152(2), 157–206 (2006)

2. Boella, G., van der Torre, L., Verhagen, H.: Introduction to normative multiagent systems.
Computational and Mathematical Organization Theory 12, 71–79 (2006)

3. Braithwaite, J.: Enforced self-regulation: a new strategy for corporate crime control.
Michigan law review 80, 1466–1506 (1982)

4. Bratman, M.E., Israel, D., Pollack, M.: Plans and resource-bounded practical reasoning. In:
Cummins, R., Pollock, J.L. (eds.) Philosophy and AI: Essays at the Interface, pp. 1–22.
MIT Press, Cambridge (1991)

5. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-
oriented software development methodology. Journal of Autonomous Agents and Multi-
Agent Systems 8, 203–236 (2004)

6. Broersen, J., Dastani, M., Hulstijn, J., van der Torre, L.: Goal generation in the BOID ar-
chitecture. Cognitive Science Quarterly 2(3-4), 431–450 (2002)

7. Burgemeestre, C.B., Liu, J., Hulstijn, J., Tan, Y.: Early Requirements Engineering for e-
Customs Decision Support: Assessing Overlap in Mental Models. In: Proceedings of the
CAiSE Forum, pp. 31–36 (2009)

 Towards an Architecture for Self-regulating Agents 333

8. Burgemeestre, C.B., Hulstijn, J., Tan, Y.: Agent Architectures for Compliance. In: Aldew-
ereld, H. (ed.) ESAW 2009. LNCS, vol. 5881, pp. 68–83. Springer, Heidelberg (2009)

9. Conte, R., Castelfranchi, C.: Cognitive and Social Action. UCL Press (1995)
10. COSO enterprise risk management framework, http://www.coso.org
11. Dignum, F.: Autonomous agents with norms. Artificial Intelligence and Law 7, 69–79

(1999)
12. European Commission: AEO Guidelines, TAXUD/2006/1450 (2007),

http://ec.europa.eu/taxation_customs/customs/policy_issues/
13. Hindriks, K., van Riemsdijk, M.B.: Satisfying maintenance goals. In: Baldoni, M., Son,

T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2007. LNCS (LNAI), vol. 4897, pp.
86–103. Springer, Heidelberg (2008)

14. Meneguzzi, F., Luck, M.: Norm-based behaviour modification in BDI agents. In: Proceed-
ings of the 8th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS’09), Budapest, Hungary, pp. 177–184 (2009)

15. Rao, A.S., Georgeff, M.P.: Modelling rational agents within a BDI-architecture. In: Princi-
ples of Knowledge Representation and Reasoning (KR’91), San Mateo CA (1991)

16. Rees, J.: Self-regulation: An Effective Alternative to Direct Regulation by OSHA? Policy
Studies Journal 16(3), 602–614 (1988)

17. Sadiq, S.W., Governatori, G., Namiri, K.: Modeling control objectives for business process
compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 149–164. Springer, Heidelberg (2007)

18. Yu, E.K.S.: Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering. In: Proceedings of the 3rd IEEE International Symposium on Requirements
engineering, pp. 226–235 (1997)

Author Index

Arcos, Josep Ll. 273

Argente, Estefania 19

Boella, Guido 3

Boissier, Olivier 102, 114

Bojārs, Uldis 179

Bordini, Rafael H. 114

Botti, Vicente 19

Bradshaw, Jeffrey M. 36

Brandã, Anarosa A.F. 102

Breslin, John G. 179

Burgemeestre, Brigitte 320

Coutinho, Luciano R. 102

Cranefield, Stephen 133, 241

Criado, Natalia 19

Decker, Stefan 179

de la Rosa, Josep Lluis 70

Diggelen, Jurriaan van 36

Feltovich, Paul J. 36

Guerin, Frank 53

Guttmann, Christian 163

Hormazábal, Nicolás 70

Hübner, Jomi F. 102, 114

Hulstijn, Joris 320

Johnson, Matthew 36

Julián, Vicente 19

Kemmerich, Thomas 257

Lam, Joey 53

Laublet, Philippe 195

Li, Guannan 133

Lopes Cardoso, Henrique 70, 225

Lorini, Emiliano 147

Norman, Timothy J. 53

Oliveira, Eugénio 70, 225

Passant, Alexandre 179, 195

Purvis, Martin K. 241

Purvis, Maryam A. 241

Rodriguez-Aguilar, Juan A. 273

Sadedin, Suzanne 163

Salazar, Norman 273

Saugar, Sergio 304

Savarimuthu, Bastin Tony Roy 241

Sen, Onkur 211

Sen, Sandip 211

Serrano, Juan Manuel 304

Sichman, Jaime S. 102

Stankovic, Milan 195

Stathis, Kostas 86

Swarup, Samarth 289

Tan, Yao-Hua 320

Torre, Leendert van der 3

Urovi, Visara 86

Uszok, Andrzej 36

Vasconcelos, Wamberto 53

Verdicchio, Mario 147

Villata, Serena 3

	Lecture Notes in Artificial Intelligence 6069
	Coordination, Organizations, Institutions, and Norms in Agent Systems V: COIN 2009 International Workshops / COIN@AAMAS 2009, Budapest, Hungary, May 2009 / COIN@IJCAI 2009, Pasadena, USA, July 2009 / COIN@MALLOW 2009, Turin, Italy, September 2009 / Revised Selected Papers
	Preface
	Organization
	Table of Contents
	Conditional Dependence Networks in Requirements Engineering
	Introduction
	The Grid Scenario
	Dependency and Dynamic Dependency Modeling
	Dependence Networks
	Dynamic Dependence Networks

	Conditional Dependency Modeling
	Conditional Dependence Networks
	Coalitions in Conditional Dependence Networks

	Related Work
	Conclusions
	References

	A Norm-Based Organization Management System
	Introduction
	Organization Management System
	Norm Management
	Norm Representation Language
	Norm Management Process

	Organization Management System Implementation
	OMS Services Implementation
	Norm Management Implementation

	Case Study
	Organization Structure
	Dynamic Usage

	Discussion
	Conclusions
	References

	Implementing Collective Obligations in Human-Agent Teams Using KAoS Policies
	Introduction
	Team Design
	Implementing Team Behavior
	Ontology
	Policies for Agent Teams
	Leader Policy Set
	Coordination Policy Set
	Leader Absence Policy Set
	Configuration Policy Set

	Meca Scenario
	Related Work
	Conclusion
	References

	Building Multi-Agent Systems for Workflow Enactment and Exception Handling
	Introduction
	Semantic Web Languages
	Norm-Governed Organisations
	Roles and Their Constraints
	Normative Notions

	Workflows
	Allocating Tasks to Agents
	Enactment of Workflows
	Dealing with Exceptions
	Related Work
	Conclusions and Future Work
	References

	An Approach for Virtual Organisations’ Dissolution
	Introduction
	Real-World Organisations
	Normative Framework
	Dissolution Process
	Activation
	Liquidation

	Unfeasibility Case Study
	Setup
	Results

	Conclusions
	References

	Playing with Agent Coordination Patterns in MAGE
	Introduction
	ARGUGRID Games
	The Earth Observation Scenario
	The Minimal Concession Protocol
	The VO Life-Cycle in ARGUGRID
	VO Activities as Complex Games

	Atomic Games in MAGE
	The State of Atomic Games
	State Evolution
	Valid Moves and Their Effects
	Initial and Final States of a Game

	Compound Games in MAGE
	A Compound Game
	Coordination of Active Sub-games
	Status of the Work

	Related Work
	Conclusions and Future Works
	References

	A Model-Based Architecture for Organizational Interoperability in Open Multiagent Systems
	Introduction
	Organization-Centered Open MASs
	MAORI
	Organizational Interoperability Layer
	Providers and Adapters
	Agent Proxies
	Organization Life-Cycle

	Implementation and Validation
	Related Work
	Conclusion
	References

	A Normative Organisation Programming Language for Organisation Management Infrastructures
	Introduction
	Normative Programming Language
	Syntax
	Semantics

	$MOISE$ Organisational Modelling Language
	Normative Organisation Programming Language
	Facts
	Rules
	Norms

	Artifact-Based Architecture
	Related Work
	Conclusion
	References

	Monitoring Social Expectations in Second Life
	Introduction
	Second Life Architecture
	Detecting Events in Second Life
	Communication between Second Life and the Monitor
	Monitoring Social Expectations
	Modelling Social Expectations
	The Social Expectation Monitor

	Two Simple Scenarios
	Discussion
	Related Work
	Conclusion
	References

	Towards a Logical Model of Social Agreement for Agent Societies
	Introduction
	Motivation
	A Modal Logic of Social Agreement
	Syntax
	Semantics
	Axiomatization

	Discussion
	Some SAL-Theorems
	Reaching an Agreement on What to do Together
	Grounding Norms and Commitments on Agreements
	Related Work
	Conclusions
	References

	Promotion of Selfish Agents in Hierarchical Organisations
	Introduction
	Model
	Overview
	Agent Traits and Behaviour
	Experiments

	Results
	Experiment 1 - Structure and Size of Organisations
	Experiment 2 - Opportunity, Detection and Punishment of Cheating
	Analysis

	Discussion and Related Research
	Organisational Cost of Promoting Incompetent Employees
	Panel Decisions
	Agents That Model the Behaviour of Other Agents
	Selfishness
	Agent Learning and Demography

	Conclusion
	References

	The SIOC Project: Semantically-Interlinked Online Communities, from Humans to Machines
	Introduction
	The SIOC Ontology
	The SIOC Core Ontology
	The SIOC Modules
	Relationships with Other Vocabularies

	Current Status and Uptake of SIOC
	The SIOC Eco-system

	Initiatives Using SIOC
	Expressing IRC Conversations
	Interlinking Collaborative Work Environments
	Exposing Wiki Structure with SIOC
	Semantic Microblogging

	Querying and Browsing SIOC Data
	Conclusion
	References

	Directing Status Messages to Their Audience in Online Communities
	Introduction
	The User Study
	Gap of Understanding
	Lack of Significance
	Privacy

	The Presence Diamond
	Incomplete Ways to Deal with Status Message Directing
	User Workarounds
	Solutions Developed by Social Web Sites

	Requirements for an Advanced Status Message Publishing Service
	Directing Status Messages: The Linked Data Way
	Scenario of Use
	Benefits of Sharing Spaces

	Related Work
	Conclusions and Future Work
	References

	Effects of Social Network Topology and Options on Norm Emergence
	Introduction
	Related Work
	Network Topologies
	Individual Behavior in Networks
	Results
	The Norm Emergence Process
	Scale-Free Networks
	Ring Networks
	Comparing Scale-Free and Ring Networks

	Conclusions and Future Work
	References

	Directed Deadline Obligations in Agent-Based Business Contracts
	Introduction
	Contractual Obligations
	Directed Deadline Obligations
	Livelines and Deadlines

	Managing Liveline and Deadline Violations
	Authorizations on Violations
	Smoother Authorizations on Violations

	Decision-Making on Directed Deadline Obligations
	Implementation and Practical Issues
	Reasoning with Time
	Re-implementing Rules
	Example Contract

	Related Work
	Conclusions
	References

	Internal Agent Architecture for Norm Identification
	Introduction
	Background and Related Work
	Background on Norms
	Related Work

	Architecture for Norm Identification
	Inferring Norms in a Communal Park
	Creating Event-Episodes
	Constructing an Event-Tree Based on Conditional Probability
	Norm Verification and Identification
	Related Event Recommender

	Experiments on Norm Identification
	Scenario 1: A Society with One Type of Norm
	Scenario 2: Identification of Co-existing Norms in an Agent Society
	Scenario 3: Identification of Norms Across Different Societies

	Discussion
	Conclusions
	References

	Influence of Communication Graph Structures on Pheromone-Based Approaches in the Context of a Partitioning Task Problem
	Introduction
	Problem Definition
	The ComAnt Approach
	Influence of Communication Graph Structures
	Non-optimality

	Simulation Results
	Conclusion and Future Work
	References

	An Infection-Based Mechanism in Large Convention Spaces
	Introduction
	The Communication Model
	IBM for Communication Development
	Implementation

	Empirical Evaluation
	Interaction Topologies
	Experimental Settings
	Matching Game with Same Words and Concepts
	Matching Game with Many Words
	Dynamic Population

	Conclusions and Future Work
	References

	The Classification Game: Complexity Regularization through Interaction
	Introduction
	A Brief Introduction to Neural Networks
	Complexity Regularization in Neural Networks
	A Demonstration of the Classification Game
	The Classification Game
	Analysis
	Characterizing Nash Equilibria
	Equilibrium Selection

	Experiments
	Conclusion
	References

	Dealing with Incomplete Normative States
	Introduction
	Review of Action Language K
	Social Action Processing
	Social Interactions
	Agents
	Social Actions
	Forbidding and Allowing Social Actions

	Planning Problems
	Discussion
	References

	Towards an Architecture for Self-regulating Agents: A Case Study in International Trade
	Introduction
	Inter-agent Analysis
	Agents’ Dependencies in Direct Control
	Agents’ Dependencies in Self-regulation

	Inter-agent Analysis
	Case Study: AEO Certification
	The Self-assessment Task
	Case Analysis

	Discussion
	Conclusions and Further Research
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

