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Preface

Biological systems are inherently stochastic and uncertain. Thus, research in
bioinformatics, where computer technologies are applied to the management
of biological data, and in computational biology, where computational models
are built for modeling and analysis of ecological, molecular, cellular and neural
networks, has to deal with a large amount of uncertainties. For example, a small
number of molecules, different internal states of a population of cells, changes
in environments and genetic mutations can all contribute to variations in gene
expression.

Fuzzy logic has shown to be a powerful tool in capturing different uncer-
tainties in engineering systems. In recent years, fuzzy logic based modeling and
analysis approaches are becoming popular in analyzing biological data and mod-
eling biological systems. Numerous results have been reported to demonstrate
the effectiveness in applying fuzzy logic to solving a wide range of problems in
bioinformatics, biomedical engineering, and computational biology.

This book contains 16 chapters that represent a body of selected research work
on applying fuzzy systems to the modeling and analysis of biological systems, in
particular, to bioinformatics, biomedical engineering and computational biology.

In Chapter 1, a method for generating type-1 and type-2 fuzzy rules using
artificial immune systems (AIS) is presented. A brief introduction to both AIS
and type-2 fuzzy systems is provided. The potential application of AIS-based
fuzzy systems to to data mining in bioinformatics and biomedecine is discussed.

Chapter 2 describes a framework for performing assembly of genome sequences
of both single and multiple organisms using fuzzy logic. It is shown that fuzzy
logic improves the performance of genome sequence assembly by allowing for
tolerance of inexactness or errors in fragment matching and enhances the classi-
fication of fragments belonging to different organisms with a divide-and-conquer
strategy.

Chapter 3 develops a model-based approach to the analysis of proteobacterial
genomes for promoter features that is able to account for the variability in se-
quence, location and topology intrinsic to differential gene expression. Authors
decompose a feature into a family of models or building blocks, which maximizes
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the sensitivity of detecting those instances that weakly resemble a consensus
(e.g., binding site sequences) without decreasing the specificity. These features
are treated using fuzzy assignments, which allow them to encode how well a
particular sequence matches each of the multiple models for a given promoter
feature.

A data-adaptive fuzzy filtering framework for processing of cDNA microarray
images is presented in Chapter 4. The framework is designed to remove noise
in cDNA microarray images that does not require for fuzzy rules, nor does it
assume that the original cDNA signal is available. This is achieved by utilizing
the inference engine in the form of transformed distance metrics between the
cDNA vector-valued samples within the supporting window. In this way, the
training or learning of the weighting coefficients is only based on local image
features without the use of linguistic fuzzy rules or local statistics estimation.

In Chapter 5, the fuzzy c-means clustering algorithm is suggested for analyzing
microarray gene expression data followed by a discussion of the main concerns
in clustering gene expression data. Tuning of the parameters are discussed in
the context of 2-way and 3-way microarray data. A transformation that allows
for more contrast in distances between all pairs of samples in a dataset is pro-
posed, which increases the likelihood of detection of a group structure in a high
dimensional dataset.

Chapter 6 introduces a flexible framework for feature selection and classifica-
tion of microarray data. Dimensionality reduction is achieved by the application
of a supervised fuzzy pattern algorithm that is able to reduce and discretize
existing gene expression profiles. Then, a self-organizing neural network, termed
growing cell structures (GCS) network, is employed for clustering biological data.

In Chapter 7, authors employ a fuzzy rule-based classification system to ana-
lyze gene expression data. The applied classifier consists of a set of fuzzy if-then
rules that allow for efficient and accurate classification of input patterns. Fur-
thermore, a hybrid fuzzy approach to classifying gene expression data, where a
genetic algorithm is used to select a subset of the fuzzy rules, is also presented.
It is shown that the performance of the compact fuzzy classifier is comparable
to that of the full classifier.

Reconstruction of gene regulatory networks using fuzzy logic based models
is reviewed in both Chapters 8 and 9. Chapter 8 emphasizes the functionalities
of regulatory motifs, and the reconstruction of such motifs using fuzzy systems.
Two selected methods are discussed in detail, examples are given where the two
methods are applied to both real microarray data concerning the yeast cell cycle
and simulated data concerning the Raf signaling pathway. In contrast, Chapter 9
surveys the application of fuzzy logic both to clustering of gene expression data
and the reconstruction of gene regulatory networks. Examples are also supplied
in the discussion of the methods.

Chapters 10, 11 and 12 provides examples of employing fuzzy logic to model
gene expression data and biological networks in greater detail. Chapter 8 de-
scribes the use of genetic programming to evolve a fuzzy rule base to model gene
expression. It is shown that fuzzy rule based models allow for the insertion of
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prior knowledge, which makes it possible to find sets of rules that include the rela-
tionships between genes that are already known. In addition, it is demonstrated
that evolving a fuzzy rule base using genetic programming is able to extract
explanatory rules from microarray data obtained in the real experiments.

Chapter 11 describes a class of widely used neuro-fuzzy systems, known as
adaptive neuro-fuzzy inference systems (ANFIS), and its application to modeling
gene regulatory networks. Furthermore, a hierarchical, multi-layer ANFIS model
(termed GeneCFE-ANFIS) is introduced. It is shown that GeneCFE-ANFIS is
able to improve the performance of prediction in terms of true positive rate with
a little amount of a priori knowledge about gene interactions.

Although fuzzy logic presents an appealing approach to modeling gene ex-
pression data, it also faces the serious challenge of combinatorial rule explosion
in modeling complex biological networks. Chapter 12 suggests a number of ap-
proaches to addressing the scalability issue, including adopting the union rule
configuration or optimizing the fuzzy rule structure using genetic algorithms.

Chapters 13, 14 and 15 provide various applications of fuzzy logic to dealing
with biomedical problems. In Chapter 13, authors provide an overview of several
fuzzy c-means based clustering approaches to medical imaging. The conventional
hard c-means and the fuzzy c-means, together with three computationally more
efficient variants of fuzzy c-means are evaluated. In Chapter 14, the application
of self-organizing fuzzy logic controller (SOFLC) to the control of a multivariable
model of anesthesia is explored. A methodology is proposed to design SOFLC for
complex multi-input/multi-output (MIMO) systems. Different design strategies
of MIMO are outlined and the application of such SOFLC systems to muscle
relaxation and depth of anesthesia control is studied. Chapter 15 presents an
interval type-2 fuzzy classifier and its application to ECG arrhythmic classifica-
tion problem. It is shown that the uncertainties associated with the membership
functions can be encapsulated by the footprint of uncertainty (FOU) and that it
can be fully characterized by the upper membership function (UMF) and lower
membership function (LMF). The proposed type-2 fuzzy classifier is applied to
the ECG arrhythmic classification problem and the performance of the classifier
is tested on MIT-BIH Arrhythmia database. Results show that the proposed
strategies to design the FOU are essential to achieve a high performance fuzzy
rule-based classifier in the presence of uncertainties.

The role of fuzzy logic in the modeling of gene regulatory networks is further
studied in Chapter 16. Different to its applications in modeling and analysis of
gene expression data, this chapter investigates in silico the influence of control
logic on the easiness of evolving typical regulatory dynamics in computational
models of genetic regulatory networks. The gene regulatory network motif con-
sidered in this work consists of three genes with both positive and negative
feedback loops. Two fuzzy logic formulations are studied in this work, one is
known as the Zadeh operator, and other is the probabilistic operator. Empiri-
cal results show that with the probabilistic ‘AND’ operator and the probabilistic
‘OR’ operator, the system is able to evolve sustained oscillation with a low proba-
bility. However, sustained oscillation is not evolvable when the Zadeh operator is
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employed. In addition, it is also shown that regulatory motifs with the probabilis-
tic operators possess much richer dynamics than that with the Zadeh operators.

The research work described in this book presents a selected yet comprehen-
sive picture of how fuzzy logic can elegantly address problems in bioinformat-
ics, biomedecical engineering and computational biology, particularly in dealing
with uncertainties in biological systems. We hope that the methodologies and
application examples discussed in the book are instructive and inspiring to both
practitioners and researchers. Thus, we hope that the publication of this book
will further promote the related research areas.

We would like to thank Dr. Janusz Kacprzyk for including this book in the
Springer book series “Studies in Fuzziness and Soft Computing”. We are also
grateful to the authors for their nice contributions and cooperation during the
preparation of the book. Finally, we would like to thank Heather King and
Thomas Ditzinger of Springer for their kind support and patience.

October 2008
Yaochu Jin
Lipo Wang
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1

Induction of Fuzzy Rules by Means of Artificial
Immune Systems in Bioinformatics

Filippo Menolascina, Vitoantonio Bevilacqua, Mariadele Zarrilli,
and Giuseppe Mastronardi

Polytechnic of Bari, Via E. Orabona 4, 70125 Bari, Italy
f.menolascina@ieee.org

Summary. Fuzzy Rule Induction (FRI) is one of the main areas of research in the
field of computational intelligence. Recently FRI has been successfully employed in the
field of data mining in bioinformatics [34, 38]. Thanks to its flexibility and potentialities
FRI allowed researchers to extract rules that can be easily modeled in natural language
and submitted to experts in the field that can validate their accuracy or consistency.
The process of FRI can result to be highly complex from a computational complexity
point of view and, for this reason, several alternative approaches to accomplish this
process have been proposed ranging from iterative and simultaneous algorithms [22]
to Genetic Algorithms and Ant Colony Optimization based approaches [22]. In this
chapter we will focus on a specific application of type-1 (T1) and type-2(T2) fuzzy
systems to data mining in bioinformatics in which FRI is carried out using a novel and
promising computational paradigm, namely Artificial Immune Systems (AIS). In order
to provide the reader with the necessary theoretical background we will go through
a brief introduction to the fields of AIS and T2 Fuzzy Systems, then we will set
up the scientific context and describe applications of these concepts to real world
cases. Conclusions and cues for future work in this fascinating field will be provided in
the end.

1.1 Artificial Immune Systems

Artificial Immune Systems (AIS) represent one of the most recent and promising
approaches in the branch of bio-inspired techniques. Although this open field of
research is still in its infancy, several relevant results have been achieved by using
the AIS paradigm in demanding tasks such as the those coming from computa-
tional biology and biochemistry. Artificial immune systems (AIS) can be defined
as computational systems inspired by theoretical immunology, observed immune
functions, principles and mechanisms in order to solve problems. Their devel-
opment and application domains follow those of soft computing paradigms such
as artificial neural networks (ANN), evolutionary algorithms (EA) and fuzzy
systems (FS). Soft computing was the term coined to address a new trend of co-
existence and integration that reflects a high degree of interaction among several
computational intelligence approaches ike artificial neural network, evolutionary
algorithms and fuzzy systems. The idea of integrating different computational

Y. Jin and L. Wang (Eds.): Fuzzy Systems in Bio., STUDFUZZ 242, pp. 1–17.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009



2 F. Menolascina et al.

intelligence paradigms in order to create hybrids combining the strengths of
different approaches is not new. Following the previous concepts when in 2002
de Castro and Timmis introduced AIS as a new soft computing paradigm they
gave birth to a new challenge to have a great potential to interact the new born
technique with others. Strictly speaking evolution and immune system are bio-
logically closely related to each other. In fact the process of natural selection can
be seen to act the immune system at two levels. First recall that lymphocytes
multiply based on their affinity with a pathogen. The higher affinity lymphocytes
are selected to reproduce, a process usually named immune microevolution. The
mechanism of immune microevolution is very important. The clonal selection
principle presupposes that a very large number of B-cells containing antigenic
receptors is constantly circulating throughout the organism. The great diversity
of this repertoire is a result of the random genetic recombination of gene frag-
ments from different libraries plus the random insertion of gene sequences during
cell development. This availability of different solutions guarantees that at least
one cell will produce an antibody capable of recognizing, thus binding with, any
antigen that invades the organism. The antigen-antibody binding stimulates the
production of clones of the selected cells, where successive generations result in
exponential growth of the selected antibody type. Some of these antibodies re-
main in circulation even after the immune response ceases, constituting a sort
of immune memory. Other cells differentiate in plasma cells, producing anti-
bodies in high rates. Finally during reproduction, some clones suffer an affinity
maturation process, where somatic mutations are inserted with high rates (hy-
permutation) and, combined with a strong selective mechanism, improve the
capability (Ag-Ab affinity and clone size) of these antibodies to recognize and
respond to the selective antigens. Secondly, there is surely an immune contri-
bution to natural selection, which acts by allowing the multiplication of those
people carrying genes that are most able to provide maximal defense against
infectious diseases coupled with minimal risk of autoimmune diseases. At this
time the majority of the immune algorithms currently developed have an evo-
lutionary type of learning of embodied process and several techniques from one
strategy have been used to enhance another.

The success of the AIS paradigm is based on two key properties of its theo-
retical foundations: recognition and adaptation/optimization. When an animal
is exposed to an antigen, some subpopulation of its bone marrow derived cells
(B lymphocytes) respond by producing antibodies (Ab). Each cell secretes a sin-
gle type of antibody, which is relatively specific for the antigen. By binding to
these antibodies (cell receptors), and with a second signal from accessory cells,
such as the T-helper cell, the antigen stimulates the B cell to proliferate (di-
vide) and mature into terminal (non-dividing) antibody secreting cells, called
plasma cells. The process of cell division (mitosis) generates a clone, i.e., a cell
or set of cells that are the progenies of a single cell. While plasma cells are the
most active antibody secretors, large B lymphocytes, which divide rapidly, also
secrete antibodies, albeit at a lower rate. On the other hand, T cells play a
central role in the regulation of the B cell response and are preeminent in cell
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Fig. 1.1. Clonal selection principle in natural immune systems

mediated immune responses, but will not be explicitly accounted for the de-
velopment of our model. Lymphocytes, in addition to proliferating and/or dif-
ferentiating into plasma cells, can differentiate into long-lived B memory cells.
Memory cells circulate through the blood, lymph and tissues, and when exposed
to a second antigenic stimulus commence to differentiate into large lymphocytes
capable of producing high affinity antibodies, pre-selected for the specific antigen
that had stimulated the primary response. Fig 1.1 depicts the clonal selection
principle.

The clonal selection and affinity maturation principles are used to explain
how the immune system reacts to pathogens and how it improves its capability
of recognizing and eliminating pathogens [14]. In a simple form, clonal selection
states that when a pathogen invades the organism, a number of immune cells
that recognize these pathogens will proliferate; some of them will become effector
cells, while others will be maintained as memory cells. The effector cells secrete
antibodies in large numbers, and the memory cells have long life spans so as
to act faster and more effectively in future exposures to the same or a similar
pathogen. During the cellular reproduction, the cells suffer somatic mutations
with high rates and, together with a selective force, the higher affinity cells in
relation to the invading pathogen differentiate into memory cells. This whole
process of somatic mutation plus selection is known as affinity maturation. To a
reader familiar with evolutionary biology, these two processes of clonal selection
and affinity maturation are much akin to the (macro-)evolution of species. There
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are a few basic differences however, between these immune processes and the
evolution of species. Within the immune system, somatic cells reproduce in an
asexual form (there is no crossover of genetic material during cell mitosis), the
mutation suffered by an immune cell is proportional to its affinity with the
selective pathogen (the higher the affinity, the smaller the mutation rate), and
the number of progenies of each cell is also proportional to its affinity with the
selective pathogen (the higher the affinity, the higher the number of progenies).
Evolution in the immune system occurs within the organism and, thus it can
be viewed as a micro-evolutionary process. As we know, in fact, immunology
suggests that the natural Immune System (IS) has to assure recognition of each
potentially dangerous molecule or substance, generically called antigen (Ag), by
antibodies (Ab). The IS first recognizes an antigen as “dangerous” or external
invaders and then adapts (by affinity maturation) its response to eliminate the
threat. To detect an antigen, the IS activates a recognition process. In vertebrate
organisms, this task is accomplished by the complex machinery made by cellular
interactions and molecular productions. The main features of the clonal selection
theory that will be explored in this chapter are [14]]:

• Proliferation and differentiation on stimulation of cells with antigens;
• Generation of new random genetic changes, subsequently expressed as

diverse antibody patterns, by a form of accelerated somatic mutation (a
process called affinity maturation);

• Elimination of newly differentiated lymphocytes carrying low affinity
antigenic receptors.

To illustrate the adaptive immune learning mechanism, consider that an antigen
Ag1 is introduced at time zero and it finds a few specific antibodies within
the animal (see Fig. 1.2). After a lag phase, the antibody against antigen Ag1
appears and its concentration rises up to a certain level, and then starts to decline
(primary response). When another antigen Ag2 is introduced, no antibody is
present, showing the specificity of the antibody response [14]. On the other hand,

Fig. 1.2. Immune response plotted as antibody concentration over time
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Fig. 1.3. Antibody affinity as function of the specific antigen binding site

one important characteristic of the immune memory is that it is associative:
B cells adapted to a certain type of antigen Ag1 presents a faster and more
efficient secondary response not only to Ag1, but also to any structurally related
antigen Ag1 + Ag2. This phenomenon is called immunological cross-reaction, or
cross-reactive response. This associative memory is contained in the process of
vaccination and is called generalization capability, or simply generalization, in
other artificial intelligence fields, like neural networks [14].

Receptor editing offers the ability to escape from local optima on an affin-
ity landscape. Fig. 1.3 illustrates this idea by considering all possible antigen-
binding sites depicted the x-axis, with the most similar ones adjacent to each
other. The Ag-Ab affinity is shown on the y-axis. If we consider a particular
antibody (Ab1 ) selected during a primary response, then point mutations allow
the immune system to explore local areas around Ab1 by making small steps
towards an antibody with higher affinity, leading to a local optimum (Ab1∗).
Because mutations with lower affinity are lost, the antibodies can not go down
the hill. Receptor editing allows an antibody to take large steps through the
landscape, landing in a locale where the affinity might be lower (Ab2 ). However,
occasionally the leap will lead to an antibody on the side of a hill where the
climbing region is more promising (Ab3 ), reaching the global optimum. From
this locale, point mutations can drive the antibody to the top of the hill (Ab3∗).
In conclusion, point mutations are good for exploring local regions, while editing
may rescue immune responses stuck on unsatisfactory local optima.

Computational immunology is the research field that attempts to reproduce
in silico the behavior of the natural IS. From this approach, the new field of Ar-
tificial Immune Systems (AIS) attempts to use theories, principles, and concepts
of modern immunology to design immunity-based system applications in science
and engineering [14]. AIS are adaptive systems in which learning takes place
using evolutionary mechanisms similar to biological evolution. These different
research areas are tied together: the more we learn from in silico modeling of
natural systems, the better we are able to exploit ideas for computer science and
engineering applications.
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Thus one wants, first, to understand the dynamics of such complex behavior
when they face antigenic attack, and second, one wishes to develop new algo-
rithms that mimic the natural IS under study. Thus the final system may have a
good ability to solve computational problems otherwise difficult to be solved by
conventional specialized algorithms. The computational and predictive power of
AIS offers researchers a promising approach for trying to solve well known and
challenging problems like knowledge discovery from huge biological databases
(e.g. coming from high throughput platforms) as well as protein folding or func-
tion prediction and multiple sequence alignment.

1.2 Type-2 Fuzzy Systems

Type-1 fuzzy sets are characterized by crisp grades of the membership function
however, for some reasons, it could be very hard to find the exact membership
function for a given fuzzy set and, as a consequence, it is hard to determine
an exact membership level for each linguistic variable of the defined universe.
It is then necessary to further fuzzify the knowledge base and this is possible
only by using fuzzy sets that are fuzzy themselves [33]. Type-2 fuzzy sets are
characterized by membership grades that are represented by values in the interval
[0, 1]. At each value of the primary variable the membership is a function (and not
just a point value), also called secondary membership function, whose domain
the primary membership, is in the interval [0, 1] and whose range secondary
grades may also be in [0, 1]. We can assume, then, that the membership function
of a Type-2 Fuzzy Set is three dimensional (see Fig. 1.4). This is a real plus to the
theory of Type-1 Fuzzy Sets since it should be evident that such sets are useful in
circumstances where uncertainty prevents us from obtaining a sufficiently clear
knowledge on the process. As an example we consider the the well known case of
eye contact [33]. Let us put the eye contact on a scale of values that goes from 0 to
10. One can say that a term of this universe can be ‘some eye contact’. Suppose

Fig. 1.4. Triangular MFs for a T2FS
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we interviewed 100 men and women asking them to set boundaries for this
measure on the 0−−10 scale. It is unlikely we will get the same results from all
of them because words mean different things to different people and this situation
is rather frequent even in specialized field like medicine. One approach to using
the 100 sets of two end-points is to average the end-point data and to use the
average values for the interval associated with some eye contact. We could then
construct a triangular (other shapes could be used) membership function (MF ),
MF (x), whose base end-points (on the x-axis) are at the two average values and
whose apex is midway between the two end-points. This type-1 triangular MF
can be displayed in two-dimensions. Unfortunately, it has completely ignored
the uncertainties associated with the two end-points. A second approach is to
make use of the average values and the standard deviations for the two end-
points. By doing this we are blurring the location of the two endpoints along
the x-axis. Now locate triangles so that their base end-points can be anywhere
in the intervals along the x-axis associated with the blurred average endpoints.
Doing this leads to a continuum of triangular MFs sitting on the x-axis, e.g.
picture a whole bunch of triangles all having the same apex point but different
base points, as in Fig. 1.4. For purposes of this discussion, suppose there are
exactly 100 (N) such triangles. Then at each value of x, there can be up to N
MF values, MF1(x), MF2(x), · · · , MFN (x). Let us assign a weight to each of
the possible MF values, say wx1, wx2, · · · , wxN (see Fig. 1.4). We can think of
these weights as the possibilities associated with each triangle at this value of x.
At each x, the MF is itself a function -the secondary MF - (MFi(x), wxi), where
i = 1, · · · , N . Consequently, the resulting type-2 MF is three-dimensional. For
more details on T2 Fuzzy Sets the reader is referred to [32] and [28]. From the
description we have provided it should be evident that uncertainty handling is
a key point of these approaches. Uncertainty plays a major role in bio-medicine
and biomedical science since most of the research carried out in this field is
experimental and is affected by measurements associated errors. This is why we
recently proposed a novel approach to data mining in bioinformatics that tries to
face these problems using a coherent algorithmic model. In the next paragraphs
we will describe type-1 and type-2 based fuzzy systems for rule inference from
bioinformatic databases. We will provide a detailed description of both starting
from the type-1.

1.3 Fuzzy-Immunity Based Data Mining Systems in
Bioinformatics

Recent advances in active fields of research like biotechnology and electronics
allowed biomedical research to make a significant step forward in the acquisi-
tion of fundamental tools for the elucidation of complex bio-processes like the
ones behind cancer or Alzheimer disease. The advent of High-Throughput (HT)
platforms has revolutionized the way researchers working in life sciences thought
at their role in experiments. HT devices allowed researchers to concentrate on
more important tasks like experimental design and results interpretation at the
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same time allowing him to ignore the hundreds when not thousands of repeats
of the same protocols for the different patients or mRNA sequences for instance.
Microarrays are, probably, one of the most evident examples of this change of per-
spectives: gene expression evaluation for a panel of even only a few tens of genes
took several days to be completed before their introduction, now we are able to
obtain gene expression level for thousands of genes in the time of an overnight
hybridization. Together with expression microarrays we can mention copy num-
ber monitoring microarrays (commonly referred to as aCGH technique), High-
Throughput Sequencers, and Mass Spectrometers. In the next sections we will
go through a brief analysis of the main open problems in bioinformatics and will
discuss about how they can be addressed using immunity based data mining
algorithms. A short introduction on data mining principles and potentialities
is given in order to help unexperienced readers understanding concepts behind
statements.

1.3.1 Data Bases and Information Retrieval in Biology

Devices coming from the integration of experiences gained in diverse fields like
physics, chemistry, biology and engineering, in this way helped researchers in
boosting their work and in quickly obtaining results of their experiments. The
capabilities of these different kinds of approach pushed the interest for the es-
tablishment of data repositories for newly generated results. Data-bases entered
the world of biology. Larger and larger amounts of data started to fill public
databases (leaving apart literature databases which, of course, need a separated
analysis) giving rise to what we can rename ”Moore’s law in biology” [46] (that
just like the original Moore’s law in electronics, models future progress in biotech-
nology [18]). However the main advantages provided by novel devices soon re-
vealed to be their main weak point. The availability of large amount of data as
results did not yield of information drawn from these data; this phenomenon
characterized both early and more recent years in life sciences research bringing
to the so-called ”gap”. Roughly speaking, researchers indicate, with this term, an
estimate of the difference between the amount of available data and the amount
of these data that have been sufficiently interpreted [24]. In the recent years we
have observed a worrying widening in this gap: this means that we are making
quite large investments with a ROI (return on investments) that still keeps low.
In order to maximize the information yield of each experiment several alterna-
tive solutions have been proposed being probably data warehousing the most
successful. Data warehouses are the natural evolution of data bases; described
for the first time by William Immon [53]. They are integrated, subject-oriented,
time-variant and non-volatile data collection processes implemented with the
precise aim to build a unique decision support system. The distinction between
data bases and data warehouses is clear: as advanced data bases, data warehouse
provide data analysis functionalities that ease the process of knowledge extrac-
tion from highly dense data repository. In this context significant experiences
like the GEO (Gene Expression for Omnibus [4]), SMD (Stanford Microarray
Database [17]) and ArrayExpress [7] have been gained. It is evident that data
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warehouse can greatly help researchers in reducing the gap by providing a valu-
able aid in filling the last real hole in experimental processes automation: results
interpretation.

1.3.2 Mining the Data: Converting Data to Knowledge

Data mining, also known as Knowledge Discovery in Data-bases (KDD) , has
been defined as ”The nontrivial extraction of implicit, previously unknown, and
potentially useful information from data” [20] (a more practical definition of
data mining will be given in the following section); it uses machine learning,
statistical and visualization techniques to discover and present knowledge in a
form easily comprehensible to humans. Data mining grew at the border line
among statistics, computer science and artificial intelligence and soon became
a golden tool to solve problems ranging from Customer Relationship Manage-
ment (CRM [31]) to Decision Making Support in medicine [47]. Data mining in
bioinformatics, then, can be considered as a useful tool for modeling complex
processes allowing researchers speeding the pace towards treatments for diseases
like cancer: for instance several works have successfully tried to exploit the po-
tentialities of rule induction systems in breast cancer associated survival [30, 5]
and cancer evolution modeling [35]. It can be argued that data mining was born
from several diverse disciplines, in the effort of overcoming intrinsic limitations
of the single approaches. It is particularly evident if we compare the expressive
power of typical statistical inference approaches and propositional or first order
logic on the other hand. Huge efforts have been spent, in the recent past, in order
to speed up one of the central tasks in current research in bioinformatics, that
is, the transformation process that converts data in knowledge passing through
information [43]. Data mining software, then, became more and more com-
mon: researchers soon realized the valuable aid algorithms could have given to
their researchers and the amount of paper describing algorithms for information
extraction grew faster and faster [15, 44, 55]. Comprehensive software tools for
data mining purposes are currently largely used in bioinformatics and include
both open-source and proprietary solutions. Among commercial packages we
can list SPSS, SAS, Clementine and E-Miner. Open source tools are well
represented by:

• Weka [54]
• Rapid Miner (formerly YALE) [40]
• Orange [39]

In particular Weka has gained a relevant success in the field of data mining
due to its flexibility and versatility. Thanks to these characteristics Weka has
been customized and redistributed in several different flavors (BioWeka [23] de-
voted to biological sequences mining and Weka4WS [48], the GRID-enable Weka
implementation). Due to a simple but efficient modular organization Weka al-
lowed third-party developers to add functionalities to the core package. It is the
case of ”Weka Classification Algorithms” project managed by Jason Brownlee
who has implemented several bio-inspired [8, 9, 29] data mining algorithm in a
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customized version of Weka Classification Algorithms1. One of the most inter-
esting aspects of this implementation consists in the presence of a wide variety
of Artificial Immune System based data mining algorithms. Both the black and
white box flavors are represented in the set of proposed algorithms. The distinc-
tion between black and white box algorithms will be described in the following
paragraph, however it can be argued that white box approaches provide the
user with tools to easily interpret the way it reached a certain results, on the
contrary to what happens with black box algorithms (think at how complex is
the interpretation of neural network predictions and how simple is interpreting
rules induced from a dataset). Among black box Immunity based algorithm we
can mention:

Clonalg

The Clonal Selection Algorithm, originally called CSA in [12], and renamed to
CLONALG in [13] is said to be inspired by the following elements of the clonal
selection theory:

• Maintenance of a specific memory set
• Selection and cloning of most stimulated antibodies
• Death of non-stimulated antibodies
• Affinity maturation (mutation)
• Re-selection of clones proportional to affinity with antigen
• Generation and maintenance of diversity

The goal of the algorithm is to develop a memory pool of antibodies that repre-
sents a solution to an engineering problem. In this case, an antibody represents
an element of a solution or a single solution to the problem, and an antigen
represents an element or evaluation of the problem space.

CSCA

The Clonal Selection Classifier Algorithm is an evolution of the concept behind
Clonalg since it tries to maximize classification accuracy and minimize misclas-
sification accuracy still using clonal selection paradigms.

Immunos

The Immunos [10] algorithm has been mentioned a number of times in AIS
literature [49, 25, 50]. It is claimed as being one of the first immune-inspired
classification systems. Immunos tries to mimic in a very precise way the mecha-
nisms underlying immune response to antigen attacks and this has led to a quite
complex classification system still under discussion.

AIRS

The Artificial Immune Recognition System [52] algorithm was one of the first
AIS technique designed specifically and applied to classification problems. After
1 http://sourceforge.net/projects/wekaclassalgos
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an initialization phase the algorithm cycles through each antigen (record in the
dataset) in order to select best fitting memory cells through a powerful resource
competition stage.

On the other hand white box AIS based paradigms can be found in:

• IFRAIS
• AIS based rule induction with boosting

These approaches will be discussed in greater depth in the next section.

1.3.3 Algorithmic Approaches to Data-Mining in Biology

As previously stated data mining is an interdisciplinary research field, involving
areas such as machine learning, statistics, databases, expert systems and data
visualization, whose main goal is to extract knowledge (or patterns) from real-
world data sets [19, 54]. This section focuses on the classification (supervised
learning) task of data mining. In essence, the goal of the classification task is
to assign each example (data instance or record) to a class, out of a prede-
fined set of classes, based on the values of attributes describing that example.
In the context of bioinformatics an example could be, for instance, a protein;
the classes could be protein functions; and the attributes describing the pro-
tein could be, say, physico-chemical properties of the amino acids composing the
protein. It is important that the attributes describing an example are relevant
for predicting its class. Hence, it would be a mistake to use a clearly irrelevant
attribute, say the name of the patient, as an attribute to predict whether or not
a patient will get a certain disease. In bioinformatics, ideally, the classification
model should satisfy two requirements. First, it should have a high predictive ac-
curacy, or generalization ability, correctly predicting the class of new examples
unseen during the training of the system. Second, it should be comprehensi-
ble to users (biologists), so that it can be interpreted in the context of existing
biological knowledge and potentially further validated through new biological ex-
periments. Concerning the issue of comprehensibility of the classification model
discovered from the data, it should be noted that some classification algorithms
are designed to maximize only predictive accuracy, representing the classification
model in a way that cannot be understood by the user - therefore ignoring the
comprehensibility requirement. Typical examples of algorithms in this category
are support vector machines [51] and neural networks [26]. In this case the clas-
sification model is a ”black box”, which does not give the user any insight about
the data or explanations about the classification of new examples. In contrast,
some classification algorithms use a representation which is comprehensible to
the user, therefore returning ”knowledge” to the user. In this section we focus
on one popular kind of comprehensible representation, namely IF-THEN classi-
fication rules, and algorithms that use this kind of representation are called rule
induction algorithms [21]. In rule induction algorithms the classification model
is represented by a set of classification rules. These rules are of the form: ”IF
antecedent THEN consequent”, where the antecedent represents a conjunction
of conditions and the consequent represents the class predicted for all examples



12 F. Menolascina et al.

(data instances, records) that satisfy the antecedent. Each condition in the an-
tecedent typically specifies a value or a range of values for a given attribute of
the data being mined - e.g., ”gender = female”, ”age < 21”.

The first AIS for rule induction in the classification task of data mining was
proposed in [3], and named IFRAIS (Induction of Fuzzy Rules with an Artifi-
cial Immune System). IFRAIS as well as IFRAIS2 will be discussed in the next
section. In this section we just highlight that this system discovers fuzzy classi-
fication rules. Fuzzy rules are in general more natural and more comprehensible
to human beings than crisp rules, and the fuzzy rule representation also has the
ability of coping well with the uncertainties frequently associated with data in
biological databases [41]. Other algorithms ased on AIS for rule induction are
discussed in detail in [1, 11].

Artificial Immune Systems in Bio-medical Data Mining: IFRAIS and
IFRAIS2

As mentioned earlier, IFRAIS as well as its Type-2 FS counterpart are AIS that
designed to discover fuzzy classification rules from data. From now on we will
refer to IFRAIS as the main ideas behind it remained unchanged in IFRAIS 2
unless otherwise stated.

Recall that the rule antecedent is formed by a conjunction of conditions. Each
attribute can be either continuous (real-valued, e.g. the molecular weight of a
protein) or categorical (nominal, e.g. the name of a species), as usual in data
mining. Categorical attributes are inherently crisp, but continuous attributes are
fuzzified by using a set of three linguistic terms (low, medium, high). Hence, in
the case of continuous attributes, IFRAIS discovers fuzzy rules having conditions
such as: ”molecular weight is large”. IFRAIS discovers fuzzy classification rules
by using the sequential covering approach for rule induction algorithms [54].
This is an iterative process which starts with an empty set of rules and the full
training set (containing all training examples). At each iteration, IFRAIS is run
to discover the best possible classification rule for the current training set, which
is then added to the set of discovered rules. Then the examples correctly covered
by the discovered rule (i.e. the examples satisfying the antecedent of that rule and
having the class predicted by the rule) are removed from the training set, so that
a smaller training set is available for the next iteration. This process is repeated
until all (or a large part of the) training examples have been covered by the
discovered rules. In order to discover classification rules, IFRAIS uses essentially
clonal selection and hypermutation procedures. The basic ideas are as follows.
Each antibody corresponds to a candidate fuzzy classification rule. During an
IFRAIS run, the better the classification accuracy of an antibody, the more likely
it is to be selected for cloning. In addition, once an antibody is cloned, the rate of
mutation of a clone is inversely proportional to the classification accuracy of the
antibody. Hence, the principles of clonal selection and hypermutation drive the
evolution of the population of antibody towards better and better classification
rules. In IFRAIS2, on the other hand, we are interested in evolving terms with
MF that are fuzzy themselves so we handle them using a pre-defined number
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Table 1.1. Results of IFRAIS and IFRAIS 2 on several data sets of varying complexity

Dataset IFRAIS2 IFRAIS
CRX 74.82% 69.65%
Monk 91.08% 87.26%
Wine 85.12% 83.26%

Breast Cancer aCGH [38] 87.86% 78.65%
Breast Cancer Gene Expression [34] 87.45% 82.73%

of MF for each term and we evolve vectors of these features in place of single
attributes (e.g. vectors of mean values or cut-values of MF in place of a single
mean or cut-value). In [34, 38] IFRAIS was successfully employed to discover
fuzzy classification rules for female breast cancer familiarity profiling. IFRAIS’
results were validated using statistical driven approaches using Gene Ontology
through GO Miner [55]. Competitive results obtained by IFRAIS and IFRAIS 2
(Tab. 1.1 show a comparative study of the results of both IFRAIS and IFRAIS
2 on benchmark, as well as, on real world data sets) seem to encourage new
efforts in this field. A biological interpretation of the results carried out using
Gene Ontology is currently under investigation.

1.3.4 Application of AIS Based Data Mining in Bioinformatics

As we previously stated several examples of application of Fuzzy-AIS based data
mining systems in bioinformatics can be retrieved in literature. Fuzzy and Artifi-
cial Immune Systems-derived algorithms have been employed in familiarity pro-
filing [34], prognosis prediction [35] and estrogen receptor modeling [36] in breast
cancer. For a brief comparative overview of the performances of these kinds of
systems in the context of aCGH data analysis the reader is referred to [37]. For
the AIS counterpart we should note that previously de Castro and colleagues
focused on the use of Hierarchical Artificial Immune Network paradigm for the
problem of gene expression clustering [6, 27] and for rearrangement study of gene
expression [16]. Research currently being carried out by Alves and colleagues is
mainly focused on the application of a multi-label Fuzzy-AIS based data mining
system to the problem of protein function prediction [2].

1.4 Conclusions and Open Questions

In this chapter we have analyzed some applications of Fuzzy-Artificial Immune
System based algorithms in bioinformatics. Of course this is only a partial out-
look on the world of Fuzzy-AIS based approaches: interested readers can check
references in order to obtain more detailed information about specific aspects of
the proposed topics. Furthermore, given their infancy, Fuzzy-AIS are currently
undergoing very fast changes resulting in a very dynamical field of research
where tens of novel and promising projects are proposed in the time of some
months. These aspects forced the authors to select a set of significant experi-
ences to be used as examples of how the algorithms described herein can be
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successfully used in the field of bioinformatics. After these necessary statements
some conclusions. In this chapter we have learned how novel bio-inspired com-
putational intelligence paradigms can be used in very diverse field of research in
bioinformatics. As previously stated Fuzzy-AIS are considered a novel paradigm
but they have been already able to reach significant results in highly complex
context like knowledge discovery in data bases and gene signature prediction.
Even if fuzzy-immune-inspired algorithms have been successfully employed in
several diverse problems, there are still some strategic fields of research in which
solutions seem to be far from being reached, just to name few:

• Gene networks inference;
• Disease profiling and evolution modeling.
• Diagnostic and prognostic disease signature development

These are only some of the most active areas of Fuzzy-AIS based research in
bioinformatics. From a theoretical point of view it should be noted that some
areas like hybrid systems in this field have been exploited with a limited system-
atic approach in bioinformatics: these areas deserve a comprehensive analytic
approach. Readers interested in these promising aspects of the Fuzzy-AIS re-
search in bioinformatics can find useful information in [42, 45].
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Summary. Traditional methods obtain a microorganism’s DNA by culturing it indi-
vidually. Recent advances in genomics have lead to the procurement of DNA of more
than one organism from its natural habitat. Indeed, natural microbial communities are
often very complex with tens and hundreds of species. Assembling these genomes is a
crucial step irrespective of the method of obtaining the DNA. This chapter presents
fuzzy methods for multiple genome sequence assembly of cultured genomes (single
organism) and environmental genomes (multiple organisms).

An optimal alignment of DNA genome fragments is based on several factors, such
as the quality of bases and the length of overlap. Factors such as quality indicate if the
data is high quality or an experimental error. We propose a sequence assembly solution
based on fuzzy logic, which allows for tolerance of inexactness or errors in fragment
matching and that can be used for improved assembly.

We propose fuzzy classification using modified fuzzy weighted averages to classify
fragments belonging to different organisms within an environmental genome popula-
tion. Our proposed approach uses DNA-based signatures such as GC content and nu-
cleotide frequencies as features for the classification. This divide-and-conquer strategy
also improves performance on larger datasets. We evaluate our method on artificially
created environmental genomes to test various combinations of organisms and on an
environmental genome.

2.1 Introduction

DNA is the building block of all life on this planet, from single cell microscopic
bacteria to more advanced creatures such as humans. Twenty years after the
DNA code was cracked, Frederic Sanger, a Nobel Laureate, invented the chain
termination method of DNA sequencing, also known as the Dideoxy termination
method or the Sanger method [39]. His research paved the way to a technique
to obtain DNA sequences and to the first genome sequence assembly, Bacterio-
phage φX174 [38]. In 1990 the Human Genome Project was announced, which
sought to sequence the billions of nucleotides present in human DNA and was
completed in 2003, two years before its projected date. In 1993 The Institute
for Genome Research (TIGR) decided to use the TIGR EST algorithm which
is based on whole-genome shotgun sequencing method to assemble a microbial
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genome. Thus in 1995 at TIGR, Haemophilus influenzae was sequenced, becom-
ing the first genome to be sequenced entirely [12]. Shotgun sequencing was first
demonstrated to close a genome in this paper. The assembly of H. influenzae
proved the potential of shotgun sequencing and thus lead to subsequent projects
that would be based on shotgun sequencing. There were two major advancements
in technology that lead the to complete sequencing of the Human Genome and
the H. influenzae: shotgun sequencing and the use of computational techniques.
This brief history gives insight into the advancements that were made in sequenc-
ing using computational techniques. For more history on the evolution of DNA
sequencing and timelines of genome sequencing projects, refer to [7] and [10].

A DNA strand consists of four nucleotides: Adenine(A), Cytosine(C), Gua-
nine(G) and Thymine(T). Genome sequencing is figuring out the order of DNA
nucleotides, or bases, in a genome that make up an organism’s DNA. Genome se-
quences are large in size and can range from several million base pairs in prokary-
otes to billions of base pairs in eukaryotes. For example, Wolbachia genome,
a bacteria has 126 million base pairs (Mb), Arabidopsis thaliana, a plant has
120Mb, and the human genome is 3.2 billion base pairs. The whole genome can-
not be sequenced all at once because available methods of DNA sequencing can
handle only short stretches of DNA at a time. Although genomes vary in size
from millions of nucleotides in bacteria to billions of nucleotides in humans, the
chemical reactions researchers use to decode the DNA base pairs are accurate for
shorted lengths [32]. Genomes are cut at random positions then cloned to obtain
the smaller fragments, also known as shotgun sequences. Obtaining shotgun se-
quences has allowed sequencing projects to proceed at a much faster rate, thus
expanding the scope of the realistic sequencing venture [10]. Sequencing DNA
using the shotgun method led to the completion of several organism genomes, in-
cluding human, mouse, fruit fly and several microbes, such as Wolbachia genome
and H. influenzae.

Microorganisms live in communities, and their structure and behavior is
influenced by their habitat. Most microorganisms genomes are known from
pure cultures of organisms isolated from the environment, be it a natural
organism-associated (i.e, human) or artificial system. Cultivation-based ap-
proaches miss majority of the diversity that exists however, such that devel-
opment of cultivation-free methods has been implied. In the past, microbial
DNA was sequenced by culturing microorganisms in a controlled environment.
Cultivating these organisms did not reveal enough information about these com-
munities of organisms. Invitro cultivation methods allow the extraction of DNA
from only a limited selection of microbial species that can grow in artificial en-
vironments. These methods do little to characterize the properties of globally
distributed microbes, because the vast majority of them have not been cultured.

New techniques in genomic sciences have emerged that allow an organism to
be studied in its natural habitat as part of a community. Research has broad-
ened from studying single species to understanding microbial systems and their
adaptations to natural environments. These techniques have been achieved by
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developing methods that can sequence mixed DNA directly from environmental
samples [2, 36].

Whole-genome shotgun sequencing of environmental DNA gained attention
as a powerful method for revealing genomic sequences from various organisms in
natural environments [2, 41]. An organism’s DNA was not only sliced into small
fragments but also mixed with other organisms’ DNA fragments, thus creating
a huge population of fragments, initial efforts were with long fragments ranging
from 40Kb - 150Kb in fosmid or BAC libraries. Even though DNA fragments
from diverse populations can be gathered together at the same time, they need
to be assembled in order for us to make meaningful conclusions.

There are several approaches that are designed for examining a single organ-
ism, but there is a need for tools that are specific for community-level analysis.
In this chapter, we propose methods of sequence classification and assembly for a
metagenomic population. Sequence classification is a process of grouping genome
fragments into classes based on their similarities. The proposed method aims to
use an approximate method based on fuzzy logic to classify genome fragments
into groups and then perform assembly.

The rest of the chapter is structured as follows: Sect. 2.2 presents background
information on computational biology and DNA sequence assembly, including a
survey of the related literature. Sect. 2.3 presents the fuzzy solution for sequence
assembly. Sect. 2.4 presents taxonomical classification methods for metagenome
fragments. Improvements achieved due to signatures and a new technique of
fuzzy classification, in addition to results attained, are included in Sect. 2.3 and
Sect. 2.4. Conclusions and a look into future directions are presented in Sect. 2.5.

2.2 Background

2.2.1 Genome Sequence Assembly

Several concepts and terms from genomic sciences that are used this in chapter
are informally defined below. There are several books on computational biology
that provide detailed explanations of the terms listed below [1, 50].

Definition 1. Base Pair: Two nucleotides on a paired double-helix-structured
DNA strand. These two nucleotides are complements of each other.

Definition 2. DNA Fragment/Read: A section of the genome sequence of
nucleotides that forms a DNA strand.

Definition 3. Contig (Contiguous Sequence): A consensus sequence reated by
overlapping two or more sub-sequences or fragments.

Definition 4. Nucleotide Frequencies: The measure of occurrences of nucleotide
pairs of a specified length.

Definition 5. Metagenome: Genome sequences containing an unspecified
number of microbial organisms directly obtained from the natural habitat.
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The problem of sequence assembly is acquiring data and assembling the DNA
fragments or sequences into an entire genome sequence. Available chemical
technologies for sequences produce short fragments of DNA sequences (40 Kbp
-1000 Kbp) depending on the technology. Sequencing machines cannot read en-
tire DNA, and can only work on small stretches at a time. There are two im-
portant aspects to understanding the problems that arise in genome assembly:
the genome is cut into smaller portions, and fragments or sequences are cut at
random positions. To obtain the original sequence these fragments need to be
combined by determining overlaps between fragments. Thus, portions of the frag-
ments need to appear more than once. Multiple copies of original sequences are
made to ensure the entire sequence is covered. This process is generally referred
to as coverage of nX, where n is the number of copies and X is the sequence.
Coverage of 8X or 10X is widely accepted and it has been shown it is sufficient
to reconstruct the entire sequence. Thus for a genome sequence of length 4(mil-
lion)MB, if the sequence fragments of length around 500 bp are generated we
need 80,000 sequences.

Following the sequencing process, an assembler pieces together the many over-
lapping bases and reconstructs the original sequence [32]. The process explained
above is known as the whole-genome shotgun method. There are three main steps
involved in the assembly of sequences. The first step, Sequencing, breaks the ge-
nomic DNA into fragments by sonication, a technique which uses high-frequency
sound waves to make random cuts in DNA molecules [4]. In the assembly phase
the sequences are combined to form contiguous sequences. The final phase is
finishing, in this phase contigs are joined by closing physical gaps. Closing is a
time consuming process, which can be improved by using more than one clone
libraries. Clone libraries are prepared using different vectors. As different vectors
clone sequences differently, using more than one vector can help improve cover-
age. Fragments that could not be cloned by one vector could be cloned by the
other. Thus gaps could be reduced as overall coverage increases when sequences
are generated using different vectors.

Sequencing of an organism’s DNA is a labor-intensive task, made possible
by recent advances in automated DNA sequencing technology.Even though au-
tomated DNA sequencing technology made it possible to sequence genomes,
several other problems exist. The sequence read from a machine is not always
100% correct; it may contain experimental errors. The process of acquisition of
genome sequence data may lead to the insertion of certain discrepancies in the
sequences, known as base-calling errors. The actual DNA sequence is read as a
frequency signal, which is converted to represent the character sequence repre-
senting the four nucleotides as A, C, G and T. PHRED is a popular tool for
reading signals and assigning quality scores [11]. In this scoring technique each
nucleotide is given a score based on the strength of the base, a high score im-
plying a higher probability of the base being correct. Low scores are assigned to
bases that have less probabilty of being true. Sequences at the ends tend to have
weak signals that make it difficult to identify them. Thus the base is assigned to
the closest match and marked as a low quality base.
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Base-calling errors create additional problems during assembly. These dif-
ferences are categorized into three groups: insertions, deletions (indels) and re-
placements. Another well known problem with the sequences is that they contain
repetitive sections also known as repeats. All the parameters mentioned above
make assembly an approximation problem.

The most popular approach to DNA fragment assembly has been to itera-
tively find the best overlap between all fragment pairs until an acceptable final
layout is determined. If enough fragments are sequenced and their sampling is
sufficiently random across the source, the process should determine the source
by finding sequence overlaps among the bases of fragments that were sampled
from overlapping stretches [14]. In current genome sequencing tasks, the num-
ber of fragments is usually numerous, and the degree of computation required
increases exponentially. Being essentially an NP-hard problem, many different
approaches with varied parameters and matching schemes have been explored
to save computation time.

The earliest approach to find solutions using the shotgun sequence approach
was to find the shortest common superstring from a set of sequences. Current ap-
proaches use pairwise sequence alignment as a method and instead of obtaining
the shortest superstring, the longest common substring is used. To obtain the
common substrings of two sequences, we are required to consider all possible sub-
strings of the given sequences. The substring with the longest overlap is known as
the longest common sequence (LCS). Finding the LCS for all possible sequences
is an NP-hard problem. Thus, a brute-force approach is not feasible. Dynamic
programming solves problems by combining the solutions to subproblems to
reduce the runtime of algorithms containing overlapping subproblems and opti-
mal substructures [9]. Using dynamic programming, we can find a polynomial-
time solution for the LCS problem. Therefore, dynamic-programming-based
approaches are the most routinely used approaches in sequence assembly and
alignment.

Other techniques for finding the LCS include suffix trees and greedy ap-
proaches. A suffix tree is a data structure that uses suffix information for fast
processing of string problems. A suffix tree can be constructed in linear time us-
ing the Ukkonen algorithm [47]. Even though suffix trees are a linear answer to
sequence comparison problems, they are not good at storing and handling large
datasets. Greedy algorithms are shown to be much faster than traditional dy-
namic programming in the presence of sequencing errors [54]. Greedy paradigms,
applied in popular assemblers such as TIGR [42], Phrap [15], and CAP3 [17],
are relatively easy to implement, but they are inherently local in nature and
ignore long-range relationships between reads that could be useful in detecting
and resolving repeats [32]. Greedy and hill-climbing approaches generally find a
local optimal and thus the global solution could be missed. Additionally, these
algorithms work with specific kinds of errors and cannot be generalized; they
also become difficult to implement on larger datasets.

Unlike greedy approaches the overlap–layout–consensus mechanism considers
all possible solutions before selecting the consensus overlap. An application of
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graph theory is found in [20] in which fragment reads are represented by nodes
and an overlap between two fragments is represented by an edge. Paths are con-
structed through the graph such that each path forms a contig. The paths are
then cleaned by resolving and removing any problems such as intersecting paths,
and consensus sequences are constructed following the paths. One of the major
problems of this approach to DNA sequence assembly is the extensive com-
putation requirement. Fragment assembly performed with the overlap–layout–
consensus approach becomes inefficient with an increasing number of fragments.

Even with the algorithmic improvements, additional reductions to the search
space in fragment assembly problems are routinely employed. Pre-assembly clus-
tering of fragments may be viewed as a more structured form of fragment thin-
ning before alignment comparisons are made. Clustering is a process of grouping
objects into like groups based on some measure of similarity. Clustering or clas-
sification can be achieved by several techniques such as K-means and artificial
neural networks. A divide-and-conquer strategy for sequence assembly based on
average mutual information is described in [30].

2.2.2 Environmental Genomics

Molecular biology has impacted microbiology by shifting the focus away from
clonal isolates and toward the estimated 99% of microbial species that cannot
currently be cultivated [6, 18, 34]. As an illustration, traditional culture and PCR-
based techniques showed a bias of Firmicutes and Bacteroides as the most abun-
dant microbial groups in the human gastrointestinal (GI) tract. Metagenomic
sampling has revealed that Actinobacteria and Archaea are actually most
prolific [23].

Metagenomic data can be ecosystem or organism associated: ecosystem asso-
ciated metagenome contains DNA of microbes obtained from an environmental
sample and an organism associated metagenome contains DNA from organisms.
For example, the Sargasso sea project, an ecosystem associated metagenomes
containfiltering of sea water. These samples contained large amounts of novel ge-
netic information, including 148 new bacterial phylotypes, 1.2 million new genes,
and 782 new rhodopsin-like photoreceptors [48]. A similar metagenomic project
giving new insight into naturally existing bacterial systems was the sampling
biofilm from of an underground acid mine drainage [46]. Because this sample
was from a system with low complexity, almost all DNA from present species
were completely reconstructed, allowing the examination of strain differences
and naturally forming lineages. It also enabled access to the full gene comple-
ment for at least two species, providing detailed information such as metabolic
pathways and heavy metal resistance. Soil samples and the mouse GI tract are
some other published metagenomic projects [36, 45].

Closely related organisms can contain remarkable genomic diversity, as was
shown for some bacteria [49]. These variations, even though few, can result
in different metabolic characteristics. Extracting these variations is one of the
key ideas to further processing of the metagenomes. The genomic diversity be-
tween metagenome samples is extracted and used as a marker to separate data
phylogenetically.
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2.2.3 Phylogenetic Classification Using Signatures

The metagenomic approach of acquiring DNA fragments often lacks suitable
phylogenetic marker genes, rendering the identification of clones that are likely
to originate from the same genome difficult or impossible [44]. Separating the
fragments in a metagenomic sample and reconstructing them is a complex pro-
cess. Identification of certain features can distinguish one genome from another
in some circumstances. Organisms within a metagenome population can belong
to different ranks in the taxonomy, for example they could belong to differ-
ent domains or could be from the same species. For example, the acidmine
drainage data consists samples that belong to archeal and bacterial domains.
A metagenome population can contain a large number of organisms that could
either be very diverse, that is not closely related or it could be constrained to
strains or species that are closely related. Thus complexity of a metagenome can
also dictate the classification accuracy. Metagenome complexity can be measured
with three different parameters: taxonomic relation, evenness, and richness. Vi-
sualization these is complex for example there are several ranks within taxonomy.
This subsection describes the DNA signatures that can be employed in identifi-
cation of differences within a metagenome.

DNA signatures are specific patterns that are observed within a DNA strand.
These patterns can be observed in specific regions such as coding regions or can
be observed throughout a genome. There have been several studies on the pat-
terns found in DNA sequences. Biological sequences contain patterns that can
lead to discoveries about the sequences. Two kinds of signatures are important
to our discussion: GC content and oligonucleotide frequencies. Oligonucleotide
composition within a genome contains bias, making certain patterns appear sev-
eral times within the genome. These oligonucleotide usage patterns are known
to be species-specific [19].

The four nucleotides of a DNA strand (A, C, G, and T) have hydrogen bonds
between them. The nucleotide A bonds specifically with T and the nucleotide
C bonds with G. AT pairs have two hydrogen bonds and GC pairs have three
hydrogen bonds, making the GC bond thermostable. Thus, the GC content in
an organism can sometimes be used to determine certain characteristics about
that organism. Organisms are generally biased in the distribution of A, C, G
and T. Certain organisms contain higher percentages of GC and are thus known
as GC rich, while some other organisms are dominated by AT and are known as
AT rich. This fundamental property of organisms can be used in separating one
organism from another.

Another signature that has been used frequently for analysis of genome se-
quences is the oligonucleotide frequencies, which is a measure of the occurrence of
words of fixed sizes in the genomic sequence. Oligonucleotides are short sequences
of nucleotides generally of length less than 20. Nucleotide frequencies have been
extensively used for grouping species or for differentiation of species. Specific
details about obtaining nucleotide frequencies will be covered in Sect. 2.4.
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2.2.4 Fuzzy Logic

The concept of fuzzy logic and approximate reasoning was introduced in 1975 [53].
Fuzzy logic formalizes an intuitive theory based on human approximation, which
is by definition imprecise or vague. Fuzzy set theory allows classification of en-
tities into categories by establishing degrees of weak or strong membership.
A fuzzy set F is given by

F = {μF (x) | x ∈ X, μF (x) ∈ [0, 1]}
where :
x = a given element
μF (x) = fuzzy set membership function
X = the Universe of Discourse

The fuzzy set membership function, μF (x), returns a membership value between
0 and 1(inclusive) that signifies the degree of membership.

Fuzzy logic has been used in several engineering applications. Fuzzy ap-
proaches to bioinformatics have been explored to some extent. Even though
the application of fuzzy logic is not widely used, it has begun to gain popularity.
An application to ontology similarity using fuzzy logic was presented in [52].
Fuzzy logic also been applied to classification problems in computational bi-
ology. A modified fuzzy K-means clustering was used to identify overlapping
clusters of yeast genes [13]. A model for creating fuzzy set theory for nucleotides
was proposed by Sadegh-Zadeh [37]. In this model a fuzzy polynucleotide space
is made to measure the degree of difference and similarity between sequences
of nucleic acids. Alignment of sequences has different specifications, and thus,
alignment tools are not suitable for assembly purposes. Assembly of sequences
is influenced by several factors besides the sequence chain. Therefore, there is a
need for an approximation method that takes into consideration all the factors
for assembling sequences. Specific fuzzy applications for sequence assembly and
classification will be covered in Sects. 2.3 and 2.4.

2.3 Fuzzy Genome Sequence Assembly

DNA sequence assembly can be viewed as the process of finishing a puzzle, where
the pieces of the puzzle are DNA subsequences. Although a puzzle has pieces
that fit together well, the pieces of a DNA puzzle do not fit together precisely;
the ends can be ragged and some pieces are missing, thus making it difficult, and
sometimes nearly impossible, to complete the puzzle. Hence, we need methods or
rules to determine optimally which piece fits with another piece. The problem of
sequence assembly is one of obtaining approximate matches through onsensus.
A consensus sequence is constructed through approximate matches by following
an overlap and consensus scheme [31] as illustrated in Fig. 2.1.

In current genome sequencing tasks, the number of fragments is usually large,
and the degree of computation required increases exponentially. Being essen-
tially an NP-hard problem, many different approaches with varied parameters
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Fig. 2.1. Whole Genome Sequencing Process of Creating Contigs from Fragment Reads

and matching schemes have been explored which can, among other things, save
computation time. Finding the longest common subsequence (LCS) between
fragments is the key to the process of sequence assembly.

In this section, an approximate matching scheme based on fuzzy membership
functions is presented. Several parameters are considered to create an optimal
assembly. Then a divide-and-conquer strategy is presented to speed up the as-
sembly by dividing the sequences into classes. Assembling sequences is accom-
plished by first grouping the sequences into clusters so that sequences in a cluster
have high similarity with one another and sequences between two clusters are
less similar.

2.3.1 Previous Techniques

Dynamic programming has been extensively used to determine the LCS as it
reduces the NP-hard problem to a time complexity of Θ(n2). The method is
simple and useful in finding the LCS that may have mismatches or gaps. The
Smith-Waterman algorithm, an application of dynamic programming to find the
LCS for multiple sequence alignment, is one of the most prominent algorithms
used in sequence assembly programs. The algorithm gained popularity because
it reduces the number of searches required; more details of the algorithm can be
found in [40]. Most of the earlier assemblers have crisp bounds and do not adapt
to the datasets. For example, a dataset can contain all, or a significant number
of, low quality reads. Some of the assemblers clip low quality regions, which will
result in, most of the regions getting clipped and thus, not used in assembly.
However, if the assembler can adapt itself and allow a new threshold for low
quality, this problem can be avoided. Due to its applicability to problems that
do not require hard solutions, fuzzy logic has been widely used in various fields to
provide flexibility to classical algorithms. Thus, approximate sequence assembly
is a good candidate for fuzzy logic. In the next subsection a non-greedy approach
is presented, based on approximate sequence matching using fuzzy logic.

2.3.2 Sequence Assembly

The sequence assembly problem is tackled using two different approaches: the
first module performs fuzzy sequence assembly, and the second module performs
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a fuzzy divide-and-conquer strategy for assembly. The divide-and-conquer strat-
egy uses a fuzzy membership function to divide genome sequences into groups,
reducing the number of comparisons and performing meaningful assembly. The
fuzzy functions used in this subsection are a modified version of the fuzzy genome
sequencing assembler described in [25].

Longest Common Subsequence with Fuzzy Logic

Sequence assembly requires creating contigs from fragment reads. The longest
subsequence with fewest insertions or deletions (indels) is ideal. Since an exhaus-
tive search is not applicable for this problem, a time constraint is also placed
on the solution. One of the problems with existing techniques for sequence as-
sembly is that they have crisp bounds. The user has to specify the parameters
for the program, such as minimum score and minimum match. lmost all existing
techniques provide user-defined thresholds; the user generally runs the program
several times to obtain optimal results. In such cases it is better to determine
empirically the ideal cut-off point or the threshold. For example, assume that a
cutoff value for the maximum gap allowed is 30 bases and that there are fairly
large numbers of sequences with gaps of 31 and 32. Due to the fact that these
techniques allow for crisp matches only, these potentially important sequences
would be excluded. Alternatively, we can represent a gap of 30 and lower with a
fuzzy confidence value of 1, which is for crisp results. Sequences with gaps that
are very close to 30, like 31, can have a fuzzy value of 0.98. In this case, the user
does not have to preprocess the data, change parameters and run the program
several times.

The approach starts by acquiring the LCS of given sequence fragments using
dynamic programming (details of the fuzzy LCS technique can be found in [25]).
The optimal subsequence can be a perfect match, or the user may choose to tol-
erate indels. These criteria can depend on the user, the source of the data or the
quality of the data. There are several factors that determine if two subsequences
have an optimal overlap. We propose a method in which we select multiple sub-
sequences and then, based on fuzzy parameters, select the optimal solution. The
novelty of our method is that it uses more parameters of the sequence besides
the length of overlap, and we believe that these parameters can lead to a better
sequence. The sequence satisfying the aggregate overall requirement is selected.
The process starts with LCS and selecting all the subsequences that satisfy the
minimum length required as given in (2.1). The threshold is a function of the
length of the LCS.

length ≥ threshold, threshold = f(length(LCS)) (2.1)

In (2.1) length is the size of overlap, and threshold determines the minimum
length required. The selection of the optimal subsequence is done using fuzzy
similarity measures in constant time; therefore, the complexity of the algorithm
is same as the complexity of dynamic programming, which is Θ(mn) for any two
subsequences of length m and n. After the LCS is obtained we need to deter-
mine the other factors that influence assembly. The following subsection lists the
descriptions along with the characteristic functions for each of the parameters.
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Fuzzy Similarity Measures

Fuzzy similarity measures and the concept created by this research are an im-
portant step in creating a contig from two subsequences or finding an overlap
between two sequences. The following subsections describe the fuzzy functions
utilized in our approach for assembly.

Length of Overlap

The first similarity measure is the length of the match or length of overlap μlo,
which includes indels and replacements. A higher overlap is better because it
generates a longer contig; thus, this function aims at maximizing overlap. The
membership function for this measure is defined as:

μlo(s1, s2) =

⎧
⎨

⎩

1, if |overlap(s1, s2)| = max|overlap(s1, s2)|
0, if |overlap(s1, s2)| = 0
|overlap(s1, s2)|/max|overlap(s1, s2)|, otherwise

Here, |overlap(s1, s2)| is the length of overlap of sequences s1 and s2. Given
sequences s1, s2 where no overlap occurs, the possibility of similarity does not
exist.

Confidence

The confidence μqs for each contig is defined as a measurement of the quality of
the contributing base pairs [11]. A strong signal indicates a correct read or less
chance of an experimental error. Every base involved in the contig has a quality
score, and the entire sequence can be a mix of low and high quality bases. The
confidence of a contig is the aggregate quality score of its contributing bases.
For simplicity, the sum of weighted average quality scores is the confidence of
the contig. The weight can be calculated as shown in (2.2). The bases with high
quality are assigned a weight of 1. The bases that are of lower quality are given
weights between 0 and 1, based on the cut-off value.

μi =

⎧
⎨

⎩

1, if qi ≥ δ
0, if qi = 0
(qi − minqs)/(maxqs − minqs), otherwise

(2.2)

In (2.2), δ is the threshold as explained earlier, generally specified by the user,
and minqs and maxqs are the minimum and maximum values for quality. The
minimum and maximum values are obtained from the quality scoring algorithm.
The equation below describes the membership function:

wqs =
∑n

i=0 wiqi

n
(2.3)

In (2.3), μqs is the quality score for the overall overlap region, wi is the weight
used to standardize the quality scores, n is the number of bases, and qi is the
quality score of an individual base.
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Gap Penalty

Gaps refer to regions of a sequence that are missing. These are divided into
three categories: Inserts, Deletes, and Replacements. Affine gap penalty can be
calculated as given in Equation (2.4):

GapPen = GapOpening + Gaplength× GapExtension (2.4)

In the previous equation, GapOpening and GapExtension are scores for an open-
ing or a continuation of a gap. The summation of (2.4) gives the entire gap
penalty GapPen(s1, s2). The membership function for gap penalty is given as
follows:

μgp(s1, s2) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if GapPen(s1, s2) = 0
0, if Overlap(s1, s2) ≤ GapPen(s1, s2)
1 − ((Overlap(s1, s2) − GapPen(s1, s2)))/(Overlap(s1, s2)),

otherwise

Score

The score, denoted μws, is calculated from the numbers of matching bases, indels
and replacements. The score can be calculated by using different methods. For
example:

score = n(MatchingBP )− n(Inserts) − n(Deletes)− n(Replacements)

Here, n refers to the count. The fuzzy membership function for the score is
defined as

μws(s1, s2) =

⎧
⎨

⎩

1, if tscore(s1, s2) = fmbp(s1, s2)
0, if fmbp(s1, s2) ≤ 0
fmbp(s1, s2)/tscore(s1, s2), otherwise

(2.5)

where fmbp (s1, s2) is the score calculated using a scoring matrix and tscore (s1,
s2) is score of the overlap if there were no indels or replacements. Detailed
explanation of fuzzy membership functions and a sample scoring matrix can be
found in [24].

Fuzzy Thresholds

Minmatch

Minmatch is the minimum number of matching bases that are required between
the two sequences. It is not always possible to get a perfect overlap, and some
amount of inexactness is tolerated. Therefore, we would like to have a minimum
match value for the overlap sequences, which has a perfect match without any
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gaps. Generally, minmatch is used as a threshold to select or reject the contigs.
A sigmoid membership function is used to select an optimal threshold for the
minimum match required. The sigmoid function is given as

S(x, c) =
1

1 + e−(x−c)
(2.6)

In (2.6), x is the minmatch value selected by the user, and c is the break point
that determines a transition from membership to non-membership.

Minscore

A score is calculated from the numbers of matching bases, indels and replace-
ments as given previously in (2.5). Minscore is a threshold which specifies the
minimum allowable score of the overlap. Minimum score is a commonly used
parameter that sets a limit on the minimum score value that must be satisfied
to accept a sequence as a match.

Aggregate Fuzzy Value

Once the fuzzy value for each of these parameters is calculated, it is combined
into an function to determine the overall fuzzy value. To make a selection, this
value needs to be defuzzified or converted to a crisp result. The aggregate fuzzy
match value (AFV) acts as the defuzzification function. We employ the center
of area (COA) defuzzification function that uses weighted average values of the
fuzzy members. In a scenario of exact matching, perfect overlap can be defined
as an overlap that satisfies the two thresholds, minmatch and minscore, is free
of gaps, and satisfies the quality requirements. In a fuzzy system, this perfect
match has a crisp value of 1. All matches that are closer to 1 than to 0 are known
to be more similar. We define the fuzzy aggregate function in Equation (2.7).

fa(c) = μqswqs + μwswws + μgpwgp + μlowlo, (2.7)
where : wqs + wws + wgp + wlo = 1

Each of the selected parameters has a weight w associated with them. These
weights can be selected by the user to control the influence of an individual
factor on the assembly. For example, to achieve a stringent assembly with the
least gaps, wgp can be set to a higher value. To obtain longer contigs, wlo can
be set to a higher value. A weight can be assigned a zero value so that the factor
does not influence the assembly.

afv = fa(c)/m (2.8)

In (2.8), m is the number of parameters, and fa(c) is given in (2.7). Equations
(2.7) and (2.8) give the overall fuzzy function and the aggregate fuzzy function
for m parameters. The subsequences that produce the highest fuzzy value for an
overlap are selected as final sequences. Depending on their position as a suffix
or prefix, a new contig or consensus sequence is formed.
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2.3.3 LCS Clustering

Genome sequence assembly is a rigorous task that performs comparisons of a
genome with every other genome present in the population. As discussed in
the background review, there have been techniques to divide the fragments into
groups. These groups are intended to be small and to have high similarity be-
tween the fragments.

In this work we perform a classification based on the AFV of the LCS. The
idea of grouping based on the AFV derives from the fact that sequences that
satisfy the overall requirement have higher similarity. These sequences have a
higher chance of forming a consensus sequence. The process named ClusFGS is
described in [26]. This technique improves the performance of assembly as shown
in Fig. 2.2.

Fig. 2.2. Comparison of LCS with and without Clustering

2.3.4 Experiment and Results

The assembler was tested on artificially generated datasets and genome se-
quences obtained from GenBank belonging to different groups.The experiments
for assembly are shown in Table 2.1. The results are compared with TIGR
2.0 [42]. The genomes used are listed as follows: (1) The Wolbachia endosymbiont
of the Drosophila melanogaster strain wMel 16S ribosomal RNA gene containing
8,514 base pairs; (2) Geobacillus thermodenitrificans NG80-2 plasmid pLW1071,
complete sequence, containing 57,693 base pairs; (3) Yersinia pestis Pestoides
F plasmid CD, complete sequence, containing 71,507 base pairs; (4) Arabidopsis
thaliana genomic DNA, chromosome 3(ch3), BAC clone:F11I2, geneid: F11I2.4.
containing 36,034 base pairs; (5) Ostreococcus tauri mitochondrion, complete
genome containing 44,237 base pairs; and, (6) Phytophthora sojae mitochon-
drion, complete genome containing 42,977 base pairs. All these genomes can be
obtained from GenBank [27]. The total base was covered 4 times, 4X of the
original sequence. Each subsequence is in the range of 300-900 base pairs. In
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Table 2.1. Assembly Comparisons of Different Sequences

Percentage Genome Recovered
Genome MGS TIGR FGS

RPObc of Wolbachia genome 65% 99.6% 99.6%
Yersinia pestis Pestoides 93.9% 88.7%

Geobacillus thermodenitrificans 77.1% 91.6%
Arabidopsis thaliana ch3 56.8% 88.8% 92.135%

Ostreococcus tauri mitochondrion 77.7% 97.3%
Phytophthora sojae mitochondrion 97.7% 97.2%

Table 2.2. Table shows time for assembly and number of contigs obtained for Assembly
of Sequences using FGS, the experiments were conducted on AMD Turion 64 X2 dual-
core processor, with 4GB of RAM

FGS Assembly
Genome Time in Sec. No. of Sequences No. Contigs

RPObc of Wolbachia genome 146 100 15
Geobacillus thermodenitrificans 5800 650 195

Arabidopsis thaliana ch3 466 200 61
Phytophthora sojae mitochondrion 1085 300 72

Table 2.1, MGS = Multiple Genome Sequencing using a simple LCS implemen-
tation, TIGR = TIGR Assembler 2.0, FGS = Fuzzy Genome Sequencing. Since
MGS did not perform well, we did not include it in further experiments. The
next experiment was to separate two species. Sequences from two organisms was
taken and mixed with each other. The input data appears as if it is from a
single organism. ClusFGS algorithm is performed to group sequences from the
organisms, into small classes, followed by assembly. In Table 2.3, ClusFGS is
the method described in Subsect. 2.3.3 and is a modified version of FGS. Mis-
classification refers to the length of overall subsequences from genome 1 that
were assembled incorrectly with contigs of genome 2. The results obtained in
Table 2.1 from assembling the genome projects showed a high percentage of the
genome recovered while using FGS and TIGR. Some of the small differences
in results could be due to different thresholds being used. Preliminary results
from Table 2.3 show that fuzzy classification was successful in grouping these
two classes separately. The clustering classified the data into two groups without
any misclassification. The clustering technique is linear, and hence, can make the

Table 2.3. Clustering for Two Organisms with ClusFGS

Genome Percentage Recovered Miss-Classifications
P. sojae mitochondrion 61% 0%
G. thermodenitrificans 61.1% 0%
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assembly much faster. At this stage ClusFGS cannot recover a higher percentage
of the genome because comparisons are done within a class. The performance is
limited by factors such as random selection of the seeds, no interaction between
classes such as reassignment of sequences, and smaller classes not being merged.
This classification with some of it drawbacks is the inspiration for the new work
that is presented in Sect. 2.4.

2.4 Fuzzy Classifier to Taxonomically Group DNA
Fragments within a Metagenome

The metagenomic approach makes the acquisition of genomic fragments easier;
nevertheless, the approach suffers from limitations. Recall from Sect. 2.2 that the
diverse genomes acquired together may need to be separated and assembled to
make meaningful conclusions. Taxonomical classification of genomic fragments is
a vital problem in metagenomic approach. Because these microorganisms come
from the same community, their characteristics are similar. Nevertheless, closely
related bacteria can contain remarkable genomic diversity [49]. These differ-
ences can be found by analysis of features of the DNA, which we refer as DNA
signature.

Pre-assembly grouping of metagenomic fragments into phylogenetic classes
can lead to faster and more robust assembly by reducing the search space re-
quired to find adjacent fragment pairs, because DNA from the same organism
should be classified into the same taxonomic group. The DNA signatures cho-
sen are GC content, and tri- and tetra-nucleotide frequencies. The proposed
method uses a fuzzy classifier and extracts signatures from given sequences and
uses them as a feature set. The technique is verified with artificial shotgun se-
quences to measure correctness. The main purpose is to classify fragments of a
community, which is depicted by classification of an acid mine drainage (AMD)
environmental genome.

Even though studies have successfully taxonomically differentiated full genomes
or fragments of sizes greater than 1,000 base pairs [22, 43, 51], there is a lack
of availability of applications that classify shorter (500-900 base pairs) shotgun
fragments. The proposed approach is designed with a goal of classifying shotgun
fragments. Earlier techniques have focused on using a single signature for classifi-
cation [51]. A combination of different signatures is proposed for the classification.

2.4.1 Background

Separation of domain-specific genomic fragments and reconstruction is a com-
plex process that involves identification of certain features exhibited by entire
taxonomic groups. These features are used to group the metagenomic sample
into classes. The following subsection describes the DNA signatures that are
employed in identification or classification of fragments.
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DNA Signatures

Phylogenetically related groups of sequences show similar nucleotide frequencies
either because of convergence or because they were inherited from a common
ancestor [8]. For example, a study conducted on E-coli revealed a nonrandom
utilization of codon pairs [16]. Some of the most frequent codon pairs found
were: CTGGCG, CTGGCC, CTGGCA, CTGGAC, AACCCG, CTGGAA. This
study and others reveal that there is a nonrandom over-representation and
under-representation of certain codon pairs within a species. Oligonucleotide
frequency studies with short x-x bases have reported tendencies of under- and
over-representation n Xmers [5]. This study brought to attention that certain
oligonucleotides are rarely observed in certain species while certain other oligonu-
cleotides have shown their dominance in a particular species. This also shows
that nucleotide composition contains bias.

The key to the classification of genomes is the presence of atterns in a se-
quence. Recall from Sect. 2.2.3, that these patterns can be specific to certain
organism group. Thus, identification of these patterns can lead to the discovery
of the phylogeny of a group. Moreover, the patterns can be used as signatures
to distinguish one species from another. We now move our discussion to the two
groups of signatures that will be utilized.

The first signature is based on GC content present in the genome. GC content
is found to be variable with different organisms; this variation is viewed to be
the result of variation in selection or bias in mutation [3]. For example, coding
regions within a genome code for genes and are less divergent within popula-
tions. enes represent characteristics of an organism: the physical development
and phenotype of organisms can be thought of as a product of genes interacting
with each other and with the environment [28]. Studies have shown that the
length of the coding sequence is directly proportional to higher GC content [29],
thus showing a strong correlation between GC content and gene properties. The
pre-assembly of a well-known metagenomic dataset from acid mine drainage was
performed by binning the fragments by their GC content [46].

The second signature that were investigated were the oligonucleotide frequen-
cies. Nucleotide frequencies are generally taken from a group of two, three, four,
five, or six nucleotides. These are known as di-, tri-, tetra-, penta- and dicodon
nucleotide frequencies, respectively. These prefixes indicate the presence or ab-
sence of certain words in a genome that have been used to separate certain
species. Evaluation of frequencies of fragments and their correlations based on
taxonomy was performed by Teeling, et al. [43]. In this paper it was shown
that GC content is not sufficient for separating species and tetra-nucleotide fre-
quencies showed better differentiation of species for fragments of size 40,000
base pairs. A grouping based on nucleotide frequencies resembles the phyloge-
netic grouping of the representative organisms [33]. In another approach, dif-
ferentiation of bacterial genomes was performed using statistical approaches for
structural analysis of nucleotide sequences [35].

Frequencies of larger word sizes such as tetra, penta, and hexa are considered
more reliable. But obtaining enough frequencies for larger words is difficult and
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may not give statistically relevant results for shorter fragments. There are a
total of 4,096 dicodons. A sequence of length 10,000 bp contains 1,665 dicodons
because this number is less than 4,096, the sequence cannot cover the 4,096
dicodons. The same sample contains 3,332 tri-nucleotide frequencies, that can
easily cover the 64 tri-nucleotides. Therefore, it is better to use tri-nucleotide
frequencies in cases of fragment classification.

Even though studies have successfully taxonomically differentiated full genomes
or fragments of sizes greater than 1,000 base pairs [22, 43], there is a lack of avail-
ability of applications that classify shorter (500-900bp) shotgun fragments. Our
approach is designed with a goal of classifying shotgun fragments. Earlier tech-
niques have also focused on using a single signature for classification. We propose
using a combination of different signature patterns.

Clustering

K-means is an unsupervised learning algorithm to group objects into categories.
The simplest K-means algorithm places N objects into K classes by using the
minimum distance from the center of K to each object. In the simple K-means
approach, K is fixed a priori. Clustering problems generally derive some kind
of similarity between groups of objects. K-means clustering is a simple and fast
approach to achieve a grouping for data. Due to its simple method of using
feature vectors as seeds and the arithmetic mean as the center for the clusters,
the K-means algorithm suffers from drawbacks. The simple K-means algorithm
could not guarantee convergence. A modified K-means was developed that uses
a weighted fuzzy average instead of the mean to get new cluster centers. Using
a fuzzy weighted average instead of a simple mean improved K-means and also
leads to convergence [21]. In this research, a modification of the fuzzy K-means
algorithm with fuzzy weighted averages is used for fragment clustering. The
algorithm is described in the next subsection.

2.4.2 An Overview of Our Algorithm

Fragment classification divides entire datasets into smaller categories. The classes
represent two significant properties: (1) they contain fragments belonging to
the same group or species present in the metagenomic data set, and (2) they
have continuity and can represent local regions of the genome. The first step
to classification is the identification of the signatures for each fragment. After
the signatures are extracted the feature vector is initialized, and the K-means
algorithm is run to create classes. The operations carried out is be described
next.

GC Content

GC content is expressed as the percentage of G and C present in the fragment
and is calculated as follows:

C + G

A + C + G + T
× 100
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Certain factors need to be considered when using GC content. GC content is
known to be more influential in coding regions. Shotgun fragments ofmetagenomes
do not contain information that reveals directly whether a certain fragment con-
tains coding regions or the percentage of fragment region that can code for a gene.
Analysis of GC content revealed that it is not sufficient to obtain a classification
when closely related species are present in the datasets. Thus, advanced signatures
are required to obtain a good separation of groups within a metagenome.

Nucleotide Frequencies Using Markov Chain Model

Markovian models have been used in fields such as statistics, physics and queuing
theory. Markov chain predictors have also been used to predict coding regions,
thus finding genes. The simplest chain is the zero-order Markov chain which can
be estimated from the frequencies of the individual nucleotides A, C, G, and
T. The approach used to estimate the zero-order Markov chain is shown below.
Consider the sequence GGATCCC, the nucleotide frequency is given by:

p(GGATCC) = p(G)p(G)p(A)p(T )p(C)p(C)

Higher order Markov chains can also be constructed using only the previous
state frequencies. A maximal-order Markov chain removes biases from all the
previous states and is dependent on only the past state. frequencies and tetra-
nucleotide frequencies. The tri-nucleotide and tetra-nucleotide frequencies can
be calculated using a maximal-order Markov chain. Expected values are directly
calculated from the observed values as shown in (2.9). In (2.9) and (2.10), O
refers to the observed values, E is the expected value, and Ni refers to a nucleic
acid base pair.

E(N1N2N3) =
O(N1N2)O(N2N3)

O(N2)
(2.9)

E(N1N2N3N4) =
O(N1N2N3)O(N2N3N4)

O(N2N3)
(2.10)

Fuzzy K-Means Clustering

Clustering for a metagenome assembly problem has a two fold purpose: to divide
the space for performance improvement and to group fragments into classes such
that each class has fragments from one group. The K-means algorithm uses a
set of unlabeled feature vectors and classifies them into K classes. From the set
of feature vectors K of them are randomly selected as initial seeds. The feature
vectors are assigned to the closest seed. The mean of features belonging to a
class is taken as the new center.

Given N sequences, such that S = {C}i, where C ={A, C, G, T}. We ran-
domly select K sequences as the initial seeds, where K is less than the number
of sequences N. The nucleotide frequencies and GC content for all sequences are
calculated. These frequencies form the p features to be used in classification.

The sequence is assigned to the class that has the highest fuzzy similarity.
The fuzzy similarity is calculated using a weighted fuzzy average (WFA). Let
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{x1, ..., xP } be a set of P real numbers. The weighted fuzzy average is using the
weight wp for xp is given as:

μr =
∑

p=1,P

w(r)
p xp, r = 0, 1, 2, . . .

Here, x is the parameter or feature and p the number of features. The number
of the iteration is given as r. The mean is obtained for all the K initial classes.
The next step is to assign features to each of the classes. A feature is assigned
to the closest class by computing the distance of a feature from each of the
classes. Given i=0,. . . ,N and j=0,. . . ,k, the distance di,j for each cluster can
be calculated as follows:

di,j = max(μr
j ), for all j = 0, . . . , k

Thus feature vectors are assigned to a class. Since a large number of classes
were created initially, empty or small classes are eliminated. Classes that are
close to each other are merged to form one class. This process is repeated until
convergence by replacing the initial mean with the WFA, and feature vectors are
reassigned by computing the distance. In the next subsection we show the results
obtained by classification and describe the genomes used to test the approach.

2.4.3 Clustering via Feature Extraction

Artificial Metagenome

To asses the performance of fuzzy clustering on genomic sequences, experiments
on artificial data were performed. In the first experiment, two genomes from
different phylogenetic types are used for the first test case. These fragments
are mixed with each other. Table 2.4 shows the results obtained after classify-
ing these two samples. In Tables 2.4 and 2.6, GC refers to clustering with GC
content, Tz refers to tri-nucleotide and TRz refers to tetra-nucleotide frequen-
cies using zero-order Markov chains. TRm refers to tetra-nucleotide frequencies
using a maximal-order Markov chain, Tm indicates the tri-nucleotide frequen-
cies using a maximal-order Markov chain. Combinations of different signatures
are shown by hyphenating individual frequencies. A value of NA indicates that
the signatures could not separate the fragments into groups and all the data was
placed into one class. In the second experiment, the dataset that was described in
Sect. 2.3.4 was used. For this experiment we conducted not only classification but
also assembly of the sequence using signature-based classification. Recall results
from Table 2.3, that classified genome fragments using an LCS-based approach.
The results of our classification and assembly are shown in Table 2.5. These re-
sults indicate improvement in assembly using the signature-based method, even
though there are few misclassifications. The reason for the misclassifications
is that ClusFGS classifies based on LCS, which considers the entire sequence
for classification. Whereas signature-based classification uses signatures without
creating an overlap, this also makes the approach much faster than ClusFGS.
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Table 2.4. Separating 500 Fragments Belonging to Two Organisms Using Different
Signatures

# Fragments classified incorrectly
Signature Genome 1 Genome 2 Total %

GC 39 1 0.08
Tz NA NA NA

TRz NA NA NA
GC − Tz − TRz 18 32 0.1

Tm 7 0 0.02
TRm 15 0 0.03

Tm- TRm 11 3 0.028
GC − Tm − TRm 5 1 0.012

Table 2.5. Clustering and Assembly of 800 Artificial Metagenome fragments

Genome Percentage Recovered Miss-Classifications
P. sojae mitochondrion 82.90% 0%
G. thermodenitrificans 94.124% 1.6%

The Acid Mine Drainage Metagenome

The AMD metagenome was obtained from Richmond Mine at Iron Mountain,
CA [46]. The acid mine drainage environmental genome was shown to contain
2 major groups. We use shotgun sequences of two genomes of AMD, namely
Leptospirillum sp. Group II (Lepto) environmental sequence and Ferroplasma
sp. Type II (Ferrop. Type II) environmental sequence. These sets are 960,150
and 1,317,076 nucleotide base pairs respectively. The first group belongs to the
bacterial genus Leptospirillum; the second one is an archea from the genus fer-
roplasma. Shotgun sequences of average size 700 base pairs were generated from
these genomes. Fig. 2.3 depicts the classification results on AMD data, using
GC content. A set of 3,000 samples was used for the display. The tests were
conducted successfully for all 5 sub-groups in AMD.

The results of classification using the modified K-means approach using DNA
signatures is given in Table 2.6. It compares the classification results for the
two AMD genomes. Classification was performed using different combinations
of signatures, and the results are displayed in Table 2.6. The final classification
resulted in two groups, one with fragments from Lepto and another with Ferrop
Type II fragments respectively. The results indicate that frequencies obtained
using maximal-order Markov chain created the better classification than zero-
order Markov chain. A combination of different signatures also resulted in fewer
misclassifications.

Taxonomy is a method of classifying organisms into types and further classify-
ing types into subtypes to form a hierarchical structure. All species are classified
into hierachical groups starting with domain, kingdom, phylum, class, order,
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Fig. 2.3. Classification using GC Content and Nucleotide Frequency for Shotgun Se-
quence Fragments obtained from AMD G1 and AMD LG2

family, genus and species. Organisms that belong to different domains can have
genome sequences that are different. But as we go down the hierarchy the sim-
ilarities increase, therefore organisms that belong to same species are highly
similar. As similarities between organisms increase it becomes difficult to cluster
them. A study on the classification of fragments to identify the accuracy of the
classifier can be found in [24]. Analysis of certain pairs also shows that there is
over- and under-representation of certain oligonucleotide words. The results of
classification indicate that at higher ranks in the taxonomy the classifier works
well and the classification gradually decreases after which there is sharp increase
in miss-classifications. Advanced signatures or supervised clustering can be a
potential approach for organisms that are more similar.

Table 2.6. Separating 20,000 Fragments from AMD into Two Classes Using Different
Signatures

# Fragments classified incorrectly
Signature Lepto. Ferrop. Type II Total %

GC 500 27 0.026
Tz NA NA NA

TRz NA NA NA
GC − Tz − TRz 640 27 0.033

Tm 147 16 0.0081
TRm 170 6 0.0088

Tm- TRm 127 10 0.0068
GC − Tm − TRm 129 11 0.007
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2.5 Conclusions and Future Work

This body of work contributes an effective framework for assembly of sequences
using fuzzy logic. The work was initiated to create an assembler that can work on
metagenome fragments without pre-processing. The fuzzy assembly process can
successfully assemble sequences. The functions proposed can be easily adapted
in other assembly methods or techniques.

This classifier is enhanced to use DNA signatures to perform a phylogenetic
classification. A fuzzy clustering algorithm is proposed to classify shotgun genome
fragments into taxonomical classes. We classified fragments using different signa-
tures and combination of signatures. We also tested the AMD metagenome and
classified it into two groups of bacteria and archea. Using combination of DNA sig-
natures also showedgood classification.Results were obtained for different types of
genomes sequences, thus testing a wide range of input genomes. Prior to this work,
classification was performed on full genomes or fragments that were longer than
1000bp. This work shows that fragments of smaller length can also be classified
into groups. We propose an unsupervised classification that requires, no training
or identification of important nucleotides. A known limitation of the classification
technique is that the classes have to be set by the user. If the classes are not set,
the K-means algorithm determines final groups. The algorithm creates classes that
are compact rather than classes that are large and dispersed. Thus fragments from
one genome, can be present in more than one class, ensuring classes with minimal
or no misclassifications. The technique can be improved by application of validity
measures, using marker regions to identify and create groups that can represent a
number of genomes within the sample.

This work opens a question of using an adaptive assembler that can adapt
itself to the input to generate the best possible assembly. The concept of adaptive
assembler is dependent on two factors: statistical analysis of data and the best
approximation of the parameters. The assembly can be further improved by data
reduction before assembly making it possible to run larger data sets at faster
speeds. A parallel version of the assembler can be found faster assembly in [24].
The classification proposed can also be enhanced by generating signatures that
are different from each other rather than selecting random signatures. The results
indicate that we are able to group shotgun sequences from their frequencies
and GC Content. Analysis of the DNA signatures can be done to find the best
discriminatory pairs, enabling selection of features that suit the dataset best
rather than using all available frequencies.
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Summary. One of the biggest challenges in genomics is the elucidation of the design
principles controlling gene expression. Current approaches examine promoter sequences
for particular features, such as the presence of binding sites for a transcriptional regu-
lator, and identify recurrent relationships among these features termed network motifs.
To define the expression dynamics of a group of genes, the strength of the connections
in a network must be specified, and these are determined by the cis-promoter features
participating in the regulation. Approaches that homogenize features among promot-
ers (e.g., relying on consensuses to describe the various promoter features) and even
across species hamper the discovery of the key differences that distinguish promoters
that are co-regulated by the same transcriptional regulator. Thus, we have developed a
model-based approach to analyze proteobacterial genomes for promoter features that
is specifically designed to account for the variability in sequence, location and topol-
ogy intrinsic to differential gene expression. We applied our method to characterize
network motifs controlled by the PhoP/PhoQ regulatory system of Escherichia coli
and Salmonella enterica serovar Typhimurium. We identify key features that enable
the PhoP protein to produce distinct kinetic patterns in target genes, which could not
have been uncovered just by inspecting network motifs.

3.1 Introduction

Whole genome sequences and genome-wide gene expression patterns (usually in
the form of microarray data) provide the raw material for the characterization and
understanding of transcription regulatory networks. These networks can be rep-
resented as directed graphs in which a node stands for a gene (or an operon in the
case of bacteria) and an edge symbolizes a direct transcriptional interaction. Re-
current patterns of interactions, termed network motifs, occur far more often than
in randomized networks, forming elementary building blocks that carry out key
functions. This is a convenient representation of the topology of a set of regula-
tory Boolean (i.e. ON-OFF) networks, in which each gene is either fully expressed
or not expressed at all, or that it has a binding site for a transcriptional regula-
tor or lacks such a site. However, this approach has serious limitations because
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most genes are not expressed in a simple Boolean fashion. Indeed, genes that are
co-regulated by the same transcription factor are often differently expressed with
characteristic expression levels and kinetics. Therefore, a deeper understanding of
regulatory networks demands the identification of the key features used by a tran-
scriptional regulator to differentially control genes that display distinct behaviors
despite belonging to networks with identical motifs.

The identification of the promoter features that determine the distinct ex-
pression behavior of co-regulated genes is a challenging task because: first, there
are difficulties in discerning the sequence elements relevant to differential ex-
pression patterns (e.g., the binding sites for transcriptional regulators and RNA
polymerase) from a background of variable DNA sequences that do not play
a direct role in gene regulation [3, 27]. Second, the sequences recognized by a
transcription factor may differ from promoter to promoter within and between
genomes and may be located at various distances from other cis-acting features
in different promoters [51, 53]. Third, similar expression patterns can be gener-
ated from different or a mixture of multiple underlying features, thus, making it
more difficult to discern the causes of analogous regulatory effects.

In this study, we present a method specifically aimed at handling the vari-
ability in sequence, location and topology that characterize gene transcription.
Instead of using an overall consensus model for a feature, where important dif-
ferences are often concealed because of intrinsic averaging operations between
promoters and even across species, we decompose a feature into a family of mod-
els or building blocks. This approach maximizes the sensitivity of detecting those
instances that weakly resemble a consensus (e.g., binding site sequences) with-
out decreasing the specificity. In addition, features are considered using fuzzy
assignments, which allow us to encode how well a particular sequence matches
each of the multiple models for a given promoter feature. Individual features are
then linked into more informative composite models that can be used to explain
the kinetic expression behavior of genes.

We applied our method to analyze promoters controlled by the PhoP/PhoQ
regulatory system of Escherichia coli and Salmonella enterica serovar Ty-
phimurium. This system responds to the same inducing signal (i.e. low Mg2+)
in both species [53, 11, 32, 45]. Moreover, the E. coli phoP gene could comple-
ment a Salmonella phoP mutant [16]. The DNA-binding PhoP protein appears
to recognize a tandem repeat sequence separated by 5 bp [53, 11, 32], consis-
tent with being a dimer [35]. The PhoP/PhoQ system is an excellent test case
because it controls the expression of a large number of genes, amounting to ca.
3% of the genes in the case of Salmonella [22]. Furthermore, the PhoP/PhoQ
regulon has been shown to employ a variety of network motifs including the
single-input module (Figure 3.1(A)), the multi-input module (Figure 3.1(B)),
the bi-fan (Figure 3.1(C)), the chained (Figure 3.1(D)), and the feedforward
loop (Figure 3.1(E)) [22, 34, 24]. Our analysis uncovered the salient features
that distinguish genes co-regulated by PhoP belonging to similar networks. Gene
transcription measurements provided experimental support for the investigated
predictions.
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Fig. 3.1. The PhoP/PhoQ system employs a variety of network motifs to regulate
gene transcription. (A) In the single-input module, PhoP as a single transcription
factor regulates a set of genes (i.e. mgtA, phoP and pmrD). (B) In the multi-input
module, two or more transcription factors (e.g., PhoP and RcsB) regulate a target
gene (i.e. ugd). (C) In the bi-fan module, a set of genes (i.e. pmrD and yrbL) are each
regulated by a combination of transcription factors (i.e. PhoP and PmrA). (D) In the
chained motif, genes are regulated in an ordered cascade. (E) In the feedforward loop,
a transcription factor (i.e. PhoP) regulates the expression of a second transcription
factor (i.e. YhiW), and both jointly regulate one or more genes (i.e. hdeA/D).

3.2 Materials and Methods

Our method consists of three phases: first, encoding the available information
into preliminary model-based features, which includes identifying cis-features
from DNA sequences and information from available databases; performing ini-
tial modeling of each individual feature, allowing the process of multiple occur-
rences of a feature and using relaxed thresholds and permitting missing values.
A model-based feature is generated by the identification of a feature in a subset
of observations (F ) in the dataset, based on measuring the degree of match (Q)
between an observation and a model, or a family of models (M={Mα}), at some
degree (α) defined in a unit-interval scale (i.e., fuzzy values, Q(F, Mα)) [38, 54].
Second, grouping the results into subsets, thus, decomposing the preliminary
models into a family of models or building blocks by using fuzzy clustering.
Third, composing the building blocks by either combining the same or different
types of features by using fuzzy logic expressions. And fourth, describing new
promoters using the resulting models.

Network Motifs

In theory, the term “network motifs” is related to a statistical significant sub-
graph; however, in practice, they are treated as an over represented subgraph
(see [12, 6, 5]). For example, a motif termed “single input motif “ of three/four
nodes in the E. coli [39] (e.g., mfinder1.2 p-value < 34.7+-8.5) or Saccharomyces
cerevisiae network [20] is not recognized as significant, while the only motif that
exceeds the standard threshold is the “feed forward motif”.
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Binding Site Submotifs and Orientation

(1) We built an initial model for the PhoP binding site by learning a posi-
tion weight matrix [18] (E-value < 10E-12) based on the upstream sequences of
genes corresponding to the training set of the E. coli and Salmonella genomes
(Table S1). (2) We searched the intergenic regions of the genes in both orien-
tations, using low thresholds corresponding to two standard deviations below
the mean score obtained with the initial model [36]. Multiple PhoP binding site
candidates were allowed in a given promoter operator region. (3) After trans-
forming nucleotides into dummy variables [12], we grouped sequences matching
the PhoP position weight matrix using the fuzzy C-means clustering method
with the Xie-Beni validity index (see below) to estimate the number of clus-
ters [6, 5]. (4) We built models for these clusters using position weight matrices
(E-value < 10E-22) and searched the E. coli and Salmonella genomes to char-
acterize each gene according to its similarity to each model as a fuzzy partition
(Figure S1 and S2).

Performance. To evaluate the ability of the resulting models to describe PhoP-
regulated promoters, we extended the dataset by including 772 promoters (Reg-
ulonDB V3.1 database [39]) that are regulated by transcription factors other
than PhoP (see “Search known transcription factor motifs” [19]), by selecting
the promoter region corresponding to the respective transcription factor binding
site 10 bp. We considered the compiled list of PhoP regulated genes as true posi-
tive examples (Table S1) and the binding sites of other transcriptional regulators
as true negative examples to evaluate the performance of the submotif feature.
We used a leave-one-out crossvalidation process (Crossvalind, Matlab r2006a),
which is appropriate for reduced datasets, as a procedure to estimate the vari-
ance error on the training set (correct test estimation of 94% vs. 75% between
submotifs and single position weight matrices, respectively). Then, each matrix
threshold has been optimized for classification purposes by using the correlation
coefficient measurement (see below) based on the extended dataset (Table S2).
(See the complete evaluation of genomes online [19]). We found that the PhoP-
binding site model increases its sensitivity from 66% to 91% when submotifs are
used instead of a single consensus, while its specificity went from 98% to 97%
(correlation coefficient 73% vs. 87%). We also obtained substantial improvements
for other transcription factors from RegulonDB. For example, by considering the
CRP regulator, we used 130 promoters regulated by this protein in RegulonDB
as the true positive values and 642 regulated by other proteins than CRP as
negative examples. We found that the sensitivity of the CRP model for binding
sites increases from 29% to 50%, by using submotifs instead of a single consen-
sus, while the specificity remains the same at 98% (correlation coefficient 39% vs.
62%). Overall, by considering transcription factors with more than ten reported
binding sequences in the RegulonDB data base (including CRP, Lrp, FIS, IHF,
FNR, ArcA, NarL, GlpR, PurR, OmpR, TyrR, AraC, Fur, CytR, FruR,Hns,
ArgR, DnaA, PhoB, and LexA), we could increase the sensitivity in an average
of 35%, while retain almost the same sensitivity than a single position weight
matrix (average correlation coefficient 87%).
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RNA Polymerase Sites

(1) We gathered sigma 70 class I and class II promoters [20, 40] from the Reg-
ulonDB database and [17]. Then, we built models of the RNA polymerase site
using a neuro-fuzzy method (see HPAM [19], [9]), and used the resulting models
to perform genome-wide descriptions of the intergenic regions of the E. coli and
Salmonella genomes with a false discovery rate <0.001 (see Promoter search
in [19]). (2) We used an intelligent parser to differentiate class I and class II
promoters that evaluate the quality of the -35 motif [20, 2], based on fuzzy
logic and genetic algorithms techniques (see MOSS in [19]). (3) To characterize
the distance relationship between transcription factors binding sites and RNA
polymerase binding sites, we built models of such distances from the examples re-
ported in the RegulonDB database. (3.1) We modeled activated and repressed
promoters (see below Activated or repressed feature). (3.2) We re-built his-
tograms for each group of distances (i.e. activated and repressed), distinguishing
three overlapping distributions for each of them (Figure S3). (3.3) We built
models for distances by fitting their distributions into models based on fuzzy
membership functions [23] (see below), which were termed close, medium and
remote distances for each set of activated and repressed genes. Finally, to charac-
terize the distance relationship between the PhoP box and putative RNA poly-
merase binding site, we connected Steps (2) and (3) by using fuzzy logic-based
operations (see below).

This process allowed us to retrieve the most representative RNA polymerase
binding site candidates for each promoter region relative to the PhoP binding
site (e.g., best class II RNA polymerase site, which is located close to the PhoP
box in an activated promoter), which were arrayed and constituted the value of
the RNA polymerase site feature in Figure S1. The probabilistic interpretation
of the former process is usually the posterior probability (e.g., p(class II/close)
that, given a close promoter, it comes from class “class II” by following Bayes’
rule [12, 6, 5]). This process is analogous to classification methods termed Näıve
Bayes [33] if the T-norm and the T-conorm (see below) are restricted to the Prod-
uct and the Maximum, respectively: vMAP = argmax

vj∈V
P (vj)

∏

i

P (ai|vj) where

vMAP (maximum a posteriori probability) denotes the target value output by
the Näıve Bayes classifier and vj , aicorrespond to the features and attributes or
variables, respectively.

Performance. The RNA polymerase site feature was evaluated using 721
RNA polymerase sites from RegulonDB as positive examples and 7210 random
sequences as negative examples. We obtained an 82% sensitivity and 95% speci-
ficity for detecting RNA polymerase sites. These values provide an overall perfor-
mance measurement (see below) of 92% corresponding to a false discovery rate
<0.001 and a correlation coefficient of 82%. In addition, we selected 34 examples
of RNA polymerase sites reported to be of class II, which all differ from the typ-
ical class I promoter by exhibiting a degenerate -35 sequence motif [32, 20, 2],
and obtained 74% sensitivity and 95% specificity.
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Activated/Repressed

We modeled PhoP-regulated promoters as activated or repressed based on ex-
amples reported in the RegulonDB database [39]. (1) We separately grouped
activated and repressed promoters, and developed histograms for each group cor-
responding to the distances between transcription factor binding sites and the
transcription initiation (+1) site. (2) We distinguished two non-disjoint distri-
butions in each group and built models for these distances by fitting histograms
with fuzzy membership functions [23] (Figure S4A-D), which do not force pro-
moters to be exclusively Activated or Repressed. (3) Finally, we connected (2)
and sigma 70 promoters previously detected to select the most representative
candidate for each promoter condition (e.g., best promoter that characterize the
activated condition) by using fuzzy logic-based operations as described above,
which also have a probabilistic interpretation (e.g., p(activated/sigma 70)), to
characterize relationships between predicted PhoP and RNA polymerase bind-
ing sites detected in candidate promoters. Simple features, such as activated and
repressed can be combined in more complex composite models to represent di-
vergently transcribed genes (e.g., two adjacent genes, one repressed, the other
activated, both sharing the same putative PhoP box in different orientations)
using fuzzy logic expressions.

Binding Sites for other Transcription Factors

We developed models for different transcription factor binding sites from the
RegulonDB database as follows: (1) We built position weight matrices for each
transcription factor using the Consensus/Patser program, choosing the best fi-
nal matrix for motif lengths between 14-30 bps if the corresponding length had
not been previously specified (see “Consensus matrices” in [19]). We accounted
for the motif symmetry (e.g., asymmetric, direct, inverted [40]) if available (see
“Search known transcription factor motifs” in [19]). (2) We searched the inter-
genic regions of the E. coli and Salmonella genomes with these models, using
the overall performance measure (see below) and additional 772 promoters from
the RegulonDB database [39] to establish a threshold (average E-value < 10E-
10) for each matrix [4] (see “Thresholded consensus” in [19]). (3) We accounted
for the distances between distinct transcription factors binding sites occurring
in the same promoter region (e.g., the distance between the CRP and FIS sites
in the proP promoter [31]) in promoters reported in RegulonDB database and
built a histogram with the obtained results (Figure S4D). (4) We fitted the
histogram using a fuzzy membership function (see below) and used this model
as a fuzzy cluster to characterize the distances between a putative PhoP box
and another putative transcription factor binding site detected in the same re-
gion. (5) Finally, we connected (2) and (4) by using fuzzy logic-based opera-
tions as described above, which can also have a probabilistic interpretation (e.g.,
p(CRP,FIS/appropriate distance) upstream of the proP open reading frame of
E. coli), to characterize PhoP regulated candidates promoters.
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Fuzzy Logic Expressions

Propositional calculus logic expressions [37] can be extended by incorporating
predicates having fuzzy variables, which are manipulated using various theo-
rems/axioms and methods [23]. This approach, which has been widely used in
several fields including decision-making [7], artificial intelligence [52] and electri-
cal engineering [10] for many years, was applied to model related features that
describe different regulatory objects.

Thus, given a dataset X = {x1, ..., xn}, the feature that characterizes it can
be best described as a set F1 (X) = {d11/x1, ..., d1n/xn}, where {d11, ..., d1n} ∈
{0, 1} in classical set theory and [0,1] in fuzzy set theory. These fuzzy values
represent the degree of matching between an observation of the dataset and a
fuzzy set. The degree of matching is defined in the unit interval and can be
obtained from evaluating the membership function of the corresponding fuzzy
set (see below). Then, given F2 (X) = {d21/x1, ..., d2n/xn} and the Minimum as
an intersection operator, we define the expression:

F1(X)
⋂

F2(X) = MIN(F1, F2)

= {MIN(d11, d21)/x1, ..., MIN(d1n, d2n)/xn} .

Fuzzy logic-based operations, such as T-norms/conorms, include operators like
MINIMUM, PRODUCT, or MAXIMUM, which are used as basic logic operators,
such as AND or OR, or their set equivalents INTERSECTION or UNION [5,
23]. We used in this work the Minimum and Maximum as T- and T-conorms,
respectively.

Fuzzy Membership Functions

They can be viewed as approximation of data distributions, where the degree of
matching in the [0,1] scale is calculated using triangular functions [23]:

μ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if x < a0 or x > a2

(x − a0)/(a1 − a0), if x < a1

(a2 − x)/(a2 − a1), if x > a1

1, otherwise

(3.1)

where a0, ..., a2 are learned from the projection of the histograms onto the vari-
able domains (Figure S4) by simple regression and minimum squared meth-
ods [12, 47]. This process is analogous to fitting histograms to a distribution,
and assigning probability values based on a density function. Our approach,
however, adopts a distribution-independent and non-parametric fitting process
by projecting data [12, 47] into triangular functions.

Fuzzy C-Means Clustering Method

Fuzzy C-Means clustering method [6, 13] is an extension of the K-means clus-
tering method, where the elements can belong to more than one cluster with a
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different degree of membership. Thus, membership of a promoter kwith a feature
valuexk in a particular cluster Vi is calculated as:

μi,k =
[

1 +
(
‖xk − Vi‖2

A

/
wi

)1/m−1
]−1

∀i, k; 1 < m ≤ ∞ (3.2)

where c-partitions of the data X were usually arrayed as a (cxn) matrix
Ucontaining the vector representation of matching between n promoters and
c-partitions of one type of feature, μi,k is taken as the degree of membership of
the value xk in the ith partitioning fuzzy subset of X , Viis the cluster prototype
or centroid of partition Vi, mis the degree of fuzzification, A determines the
type of norm commonly used in pattern recognition (e.g., A=1 is the city block
norm; A=2 is the Euclidean norm, etc [5]), and a weight for penalty terms wi,
which is initialized as 1 in the absence of external information. If the approach
is probabilistic μi,k is usually the posterior probability p(i/xk) that, given xk, it
comes from class i by following Bayes’ rule [6, 5, 33]. If the approach is fuzzy, xk

can come from more than one class, and if it is possibilistic [5], a more realistic
situation is represented where we do not force each element to belong to a class.
The cluster prototype or centroid of partition Vi is calculated as:

Vi =
∑n

k=1 (μi,k)mxk
∑n

k=1 (μi,k)m
∀i (3.3)

based on the use of the Euclidean distance as a similarity function:

‖x, V ‖2 =
√

(x − V )T (x − V ) (3.4)

Summarizing, (0) Initialize V0 = {v1, ..., vc} (1) While (t < T and ‖Vt − Vt−1‖ >
ε) (2) Calculate Ut with Vt−1, (3) update Vt−1 to Vt, with Ut (4) Iterate, where
T is the maximum number of iterations.

Xie-Beni Validity Index [5]

The minimization of this index through different number of clusters (i.e., c = 2to
c =

√
n) detects compact representations of Fuzzy C-Means partitions:

XB(U, L) =

n∑

k=1

c∑

i=1

u2
i,k

∥
∥xk − Vi

∥
∥2

n

(

min
i�=j

{ ∥
∥Vi − Vj

∥
∥2
} ) . (3.5)

Performance Measurement

We use a correlation coefficient implementation to establish best local thresholds
for transcription factor binding site motifs. That is, from a range of possible
thresholds applied over a particular motif, we choose the one that maximizes
this coefficient defined as:
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CC =
(TP × TN) − (FP × FN)

√
(TP + FP ) × (TN + FN) × (TP + FN) × (TN + FP )

, (3.6)

where specificity = TN/(TN + FP) and sensitivity = TP/(TP + FN); P=
positive, N=negative, T = true and F=false [4]. We constrained the sensitivity
of the selected threshold to be above the 60%. The false positive rate for binding
site analysis was calculated by detecting binding sites from other transcription
factors different from the one being evaluated (RegulonDB database).

Dataset

We initially used the intergenic regions of E. coli and Salmonella operons from
-800 to +50 because >5% are larger than 800 bp in bacterial genomes (as de-
scribed in the RegulonDB database or generously provided by H. Salgado) [40];
however, predictions have been performed in whole coding and non coding re-
gions (see [19]). The promoter and transcription factor information was taken
from RegulonDB database. We compiled from the literature and our own lab
information (Table S1) genes whose expression (using microarrays) differed sta-
tistically between wild-type and phoP E. coli strains experiencing inducing con-
ditions for the PhoP/PhoQ regulatory system [53], as well as a list of genes
known/assumed to be PhoP regulated (Table S2). However, this information
did not explicitly indicate whether these genes were regulated directly or indi-
rectly by the PhoP protein. The learned features were used to make genome-wide
predictions in the E. coli and Salmonella genomes.

Programming Resources

The scripts and programs used in this work, some of which are accessible
from [19], were based on Perl, Matlab r2006a and C++ interpreters/languages,
and the visualization routines were performed on Spotfire DecisionSite software
8.2. Data and predictions for E. coli and Salmonella genomes will be available
at [19].

Bacterial Strains, Plasmids and Growth Conditions

Bacterial strains and plasmids used in this study are listed in Table S3.
Salmonella enterica serovar Typhimurium strains used in this study are de-
rived from strain 14028s. Bacteria were grown at 37˚C in Luria-Bertani broth
(LB) [41] or N-minimal medium pH 7.7 [44] supplemented with 0.1% Casamino
Acids, 38 mM glycerol, MgCl2. Kanamycin was used at 25 μg/ml.

Constructions of GFP Reporter Plasmids

Promoter regions (i.e. the intergenic region between two ORFs) were amplified
using PCR. A list of the promoter-specific primers used in the PCR reactions
is shown in Table S4. The PCR fragment was digested with BamHI and XhoI,
purified, then introduced to the cloning site of pMS201 (GFP reporter vector
plasmid, a gift from Alon, U [28]). Sequences of promoter region were verified
by nucleotide sequencing.



54 O. Harari, L. Herrera, and I. Zwir

Measurements of Promoter Activity and Growth Kinetics for GFP
Reporter Strains with High-Temporal Resolution

Promoter activity and growth kinetics of wild-type Salmonella strain harboring
GFP reporter plasmid was measured in parallel using automated microplate
reader (VICTOR3, Perkin Elmer) [28]. Overnight cultures of strains in N-
minimal medium with 10 mM MgCl2 and 25 μg/ml of kanamycin were washed
with the same medium without MgCl2 then diluted (1:100) to 96-well plate
(Packard) containing 150 μl of N-minimal media supplemented 50 μM MgCl2.
After overlaying the wells with 50 μl of mineral oil (Sigma) to prevent evapo-
ration of media, the plate was inserted in the VICTOR3 machine pre-warmed
to 37˚C. The fluorescence and optical density (600 nm) of cells were recorded
with shaking of the plate (1 min with 0.1 mm diameter), and this protocol was
repeated every 6 min for 99 times. The background fluorescence was measured
using a strain carrying empty vector and subtracted from the test values. Each
experiment was conducted independently twice (Figure S6), and a representative
is shown in the figures.

Data Preprocessing

The raw GFP and OD signals were used to calculate the promoter activity
as [dGi(t)/dt ]/OD i(t). The activity signal was then smoothed by a shape-
preserving interpolant (Piecewise Cubic Hermite Interpolating Polynomial, Mat-
lab r2006a) fitting algorithm that finds values of an underlying interpolating
function at intermediate points that are not described in the experimental as-
says. Then, we applied a polynomial fit (sixth order, Matlab r2006a) on each
expression signal. This smoothing procedure captures the dynamics well, while
removing the noise inherent in the differentiation of noisy signals.

3.3 Results and Discussion

Approach

We investigated five types of cis-acting promoter features by extracting the max-
imal amount of useful information from datasets and then creating models that
describe promoter regulatory regions. This entailed applying three key strategies:
first, we conducted an initial survey of the data provided from different available
sources, capturing and distinguishing between broad and easily discernable pat-
terns. We then used these patterns as models to re-visit the data with greater
sensitivity and specificity, which allowed the detection of those instances where a
binding site sequence resembles the consensus only weakly or where the distances
between the transcription factor and the RNA polymerase are unusual. Second,
we utilized fuzzy clustering methods [5, 13] to encode how a promoter matches
each of the multiple models for a given promoter feature, which avoided having
to make premature categorical assignments, thus producing an initial classifica-
tion of the promoters into multiple subsets. Finally, we applied fuzzy logic [23]
to link basic features into more informative composite models that explain the
distinct expression behavior of genes belonging to similar networks (Figure S1).



3 A Hybrid Promoter Analysis Methodology 55

Transcription Factor Binding Site Submotifs

Many genes are controlled by a single-input network motif where the affinity
of a transcription factor for its promoter sequences is a major determinant of
gene expression (Figure 3.2(A)). Thus, co-regulated genes displaying distinct
expression patterns are likely to differ in the binding site for such a transcrip-
tion factor. Methods that look for matching to a consensus sequence have been
successfully used to identify promoters controlled by particular transcription
factors [1, 46, 29]. However, the strict cutoffs used by such methods increase
specificity but decrease sensitivity [18, 46], which makes it difficult to detect
binding sites with weak resemblance to a consensus sequence.

To circumvent the limitation of consensus methods [49], we decomposed the
binding site motif of a transcription factor into several submotifs and then com-
bined the submotifs into a multi-classifier (see Methods), which increased the
sensitivity to weak sites without losing specificity. In the case of PhoP, we iden-
tified four submotifs (Figure S2), and used them to search both strands of the
intergenic regions of the E. coli and Salmonella genomes (Figure S1). This al-
lowed the recovery of promoters, such as that corresponding to the E. coli hdeA
gene or the Salmonella pmrD, that had not been detected by the single consen-
sus position weight matrix model [18, 46] despite being footprinted by the PhoP
protein [53, 11, 32], [22, 34, 24].

To test the notion that PhoP binding to promoters with different PhoP box
submotifs is a determinant promoter activity, we compared the gene expression
patterns of wild-type Salmonella harboring plasmids with a transcriptional fu-
sion between a promoterless gfp gene to different PhoP-activated promoters.
Faster GFP expression kinetics were observed when transcription was driven
by the phoP promoter, which has the M2 submotif, than when it was driven by
the pmrD promoter, which has the M1 submotif, (Figure 3.2 (B)-(C)). Thus,
the binding site for a transcriptional regulator is a key determinant in gene
expression.

The use of submotifs instead of a single consensus increased the sensitivity for
PhoP binding sites from 66% to 91%; yet, the specificity remained essentially
the same (i.e., 98% in a consensus model versus 97% in the case of submotifs).
Importantly, this approach is not exclusive to binding sites recognized by the
PhoP protein as the sensitivity for sites recognized by the cAMP receptor pro-
tein (CRP) increased from 29% to 50% when submotifs were used instead of a
consensus; yet, the specificity remained the same at 98%.

Transcription Factor Binding Site Orientation

Functional binding sites for a transcription factor may be present in either ori-
entation relative to the RNA polymerase binding site [43]. This is due to the
possibility of DNA looping and to the flexibility of the alpha subunit of the bac-
terial RNA polymerase in its interactions with transcriptional regulators [2, 48].

Analysis of PhoP-regulated promoters revealed that the PhoP box could be
found with the same probability in either orientation in the intergenic regions
of the E. coli and Salmonella genomes (Figure S5). For example, the E. coli
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Fig. 3.2. The PhoP protein achieves differential expression using the single-input
network motif by controlling genes that differ in their binding site submotifs. (a) PhoP
regulates several promoters (i.e. phoP and pmrD) using a single-input network motif.
(b) The PhoP protein recognizes a binding site motif consisting of a hexameric direct
repeat separated by 5 bp, but distinguishes between different submotifs with different
specificities. We identified four of these classes (M1- M4; Figure S2), and tested the
influence of this cis-feature in the phoP and pmrD Salmonella promoters corresponding
to class M2 and M1, respectively. (c) Transcriptional activity of wild-type Salmonella
harboring plasmids with a transcriptional fusion between a promoterless gfp gene and
the Salmonella phoP (red color) or pmrD (blue color) promoters. The activity of each
promoteris proportional to the number of GFP molecules producedper unit time per
cell [dGi(t)/dt/ODi(t)], whereGi(t) is GFP fluorescence from wild-type Salmonella
strain 14028s culture and conditions described in Methods, and OD i(t) is the optical
density. The activity signal was smoothed by a polynomial fit (sixth order). The results
are not normalized. Faster and earlier GFP expression was observed when transcription
was driven by the phoP promoter, which has the M2 submotif, than by the pmrD
promoter, which has the M1 submotif.
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ompT and yhiW promoters and the Salmonella mig-14, pipD, pagC and pagK
promoters harbor putative PhoP binding sites in the opposite relative orienta-
tion to that described for the prototypical PhoP-activated mgtA promoter [53]
(Figure S1). Yet other promoters (i.e. those of the ybjX, slyB, yeaF genes in E.
coli and the virK, ybjX, and mgtC genes in Salmonella) contain sequences re-
sembling the PhoP box in both orientations. The demonstration that PhoP does
bind to the mgtC, mig-14 and pagC promoters [53], which harbor the PhoP
binding site in the opposite orientation as in the mgtA promoter, validates our
predictions and argues against alternative network designs where these promot-
ers would be regulated by PhoP only indirectly [25].

To assess the contribution of PhoP box orientation to gene expression, we
determined the fluorescence of wild-type Salmonella harboring plasmids with a
transcriptional fusion between a promoterless gfp gene to PhoP-regulated pro-
moters that differed in the orientation of the PhoP box. Promoters with the PhoP
box in the direct orientation, such as those corresponding to the yobG and slyB
genes, were transcribed earlier and faster than the pagK and pagC promoters in
which the PhoP box is in the opposite relative orientation (Figure 3.3(A)-(C)).
This is in spite of the fact that yobG and pagK promoters are equally divergent
from the PhoP binding site consensus (60% and 66% of the consensus infor-
mation content (Figure S2), respectively). Furthermore, promoters sharing the
same PhoP binding site submotif but arranged in different orientations (e.g. the
ugd and mig-14 promoters) produced distinct rise times and expression levels
(data not shown).

RNA Polymerase Site

The distance of a transcription factor binding site to the RNA polymerase bind-
ing site(s) and the class of sigma 70 promoter are critical determinants of gene
expression [2]. These classes correspond to the different types of contacts that
can be established between a transcription factor and RNA polymerase.

We identified seven patterns among PhoP-regulated promoters of E. coli and
Salmonella (Figure S1) that combine promoter class and distance between the
PhoP box and the RNA polymerase site (Figure S3). These patterns may corre-
spond to different kinetic behaviors within a network motif [2]. For example, the
ugtL and pagC promoters share the orientation of the PhoP box but differ in the
distance of the PhoP box to the RNA polymerase binding site (Figure 3.4(A)-
(B)). This may account for the different dynamic behavior of these promoters
when tested in a wild-type strain harboring plasmids with promoter fusions to
the promoterless gfp gene (Figure 3.4(C)).

In addition, some PhoP-regulated promoters (e.g. the hemL and phoP pro-
moters of E. coli) contain several putative RNA polymerase binding sites located
at different positions and belonging to different classes, suggesting that such pro-
moters may be regulated by additional signals and/or transcription factors [32].

Activated/Repressed Promoters

Gene expression data normally allow clear separation of genes into those that
are activated and those that are repressed by a regulatory protein. Because the
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Fig. 3.3. Expression of PhoP-regulated promoters that differ in the orientation of
the PhoP-binding site. (a) PhoP regulates a set of promoters including those of the
Salmonella yobG, slyB, pagK and pagC genes using a single-input network motif. (b)
We established that when Salmonella experiences low Mg2+, the PhoP protein binds to
both the archetypal directly oriented yobG and slyB promoters as well as the oppositely
oriented pagK and pagC promoters using chromatin immunoprecipitation (ChIP) in
vivo. (c) Transcriptional activity of wild-type Salmonella harboring plasmids with a
transcriptional fusion between a promoterless gfp gene and the Salmonella yobG (red
color) or slyB (green color) promoters reveals a much earlier an higher levels of activity
than the isogenic strains with fusions to the pagK (blue color) and pagC (cyan color)
promoters. Promoter activity was determined as described in the legend to Figure 3.2.
Thus, the orientation of the binding site for a transcriptional regulator contributes
to the kinetic behavior as well as the maximum expression levels achieved by the
promoters.

expression signal is sometimes absent or too low to be informative, we consid-
ered the location of a transcription factor binding site relative to that of the
RNA polymerase to separate promoters into activated and repressed subsets
(Figure S4A-C) [8].

We determined that the location of binding sites functioning in activa-
tion is different from that corresponding to sites functioning in repression
(Figure S4A-C), being centered ∼40 and ∼20 bp upstream of the transcription
start site, respectively. This allowed us to distinguish among PhoP-regulated
promoters that have apparently similar network motifs (Figure S1). For ex-
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Fig. 3.4. Expression of PhoP-regulated promoters that differ in the RNA polymerase
sites. (a-b) The PhoP-activated ugtL and pagC promoters share the orientation of the
PhoP-binding site as well as the class I sigma 70 promoter, but differ in the distance
between the PhoP box and the RNA polymerase site. (c) Transcriptional activity of
wild-type Salmonella harboring plasmids with a transcriptional fusion between a pro-
moterless gfp gene and the Salmonella ugtL (red color) and pagC (blue color) promot-
ers. Promoter activity was determined as described in the legend to Figure 3.2. The
ugtL promoter is transcribed earlier than the pagC promoter, which also exhibits a
PhoP box in the opposite orientation but more distant from the RNA polymerase site.

ample, we identified a PhoP binding site at a relative distance to the RNA
polymerase consistent with repression in the promoter region of the hilA gene,
which encodes a master regulator of Salmonella invasion and had been known to
be under transcriptional repression by the PhoP/PhoQ system [15, 42]. Several
promoters, including those of the Salmonella pipD and nmpC genes, were clas-
sified as candidates for being both activated and repressed, because the distance
between the predicted transcription start site and the PhoP box is consistent
with either activation or repression. Gene expression experiments conducted in
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E. coli indicate that nmpC is a PhoP-repressed gene [53, 11, 32]. Other promot-
ers were predicted to have more than one PhoP box (e.g., those of the PhoP-
activated mgtC and pagC genes), where one could correspond to an activation
site and the other to a repression site. Indeed, this appears to be the case of the
PhoP-activated iraP gene [50].

Binding Sites for other Transcription Factors

Certain promoters harbor binding sites for more than one transcription fac-
tor. This could be because transcription requires the concerted action of such
proteins, or because the promoter is independently activated by individual tran-
scription factors, each responding to a distinct signal.

We analyzed the intergenic regions of the E. coli and Salmonella genomes for
the presence of binding sites for 54 transcription factors [39]. We then investi-
gated the co-occurrence of 24 sites with the binding site of the PhoP protein in
an effort to uncover different types of network motifs involving PhoP-regulated
promoters. For example, the Salmonella pmrD, ugd and yrbL promoters and the
E. coli yrbL promoter harbor PhoP- and PmrA-binding sites, consistent with
the experimentally-verified regulation by both the PhoP and PmrA proteins that
can be described by the bi-fan network motif [53, 21] (Figure 3.5(A)). In addi-
tion, the relative position of transcription factor binding sites (Figure S4D) can
play a critical role because the PmrA-box in the Salmonella pmrD and yrbL
promoters is located closer to the PhoP-box (∼38 bp and ∼24 bp, respectively)
than in the udg promoter (∼65 bp), which could account for the different ex-
pression patterns exhibited by their respective genes (Figure 3.5(B)-(C)). By
analyzing both the binding site quality and the location of transcription factor
binding sites, we increase the chances of identifying co-regulated promoters.

By considering the presence of binding sites for multiple transcription fac-
tors, it is possible to generate hypotheses about potential network motifs. For
example, the promoters of the PhoP-activated gadA, dps, hdeA, yhiE and yhiW
genes of E. coli also have binding sites for the regulatory proteins YhiX and
YhiE [53], raising the possibility that some of these genes might be regulated
by feedforward loops where both the PhoP protein and either the YhiW or the
YhiE proteins would bind to the same promoter to activate transcription. This
notion was experimentally verified [53], validating our prediction.

Regulation of Orthologous Genes

A distinguishing characteristic of our approach is that promoters for ortholo-
gous genes are considered individually. This is in contrast to some phylogenetic
footprinting methods [30] that often ignore regulatory differences among closely-
related organisms due to their strict reliance on the conservation of regulatory
motifs across bacterial species. Thus, we could uncover cases of phenotypic dif-
ferences between closely-related species resulting from the differential regulation
of homologous genes. For example, the ugd and iraP promoters of Salmonella
(Figure S1) harbor functional PhoP boxes that are footprinted by the purified
PhoP protein [22, 34, 24] [50]. By contrast, the PhoP boxes are missing from
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Fig. 3.5. Expression of PhoP-regulated promoters that use the bi-fan network motif.
(a) The Salmonella pmrD, and ugd promoters harbor experimentally verified PhoP-
and PmrA-binding sites that can be described by the bi-fan network motif. (b) The
distance between the PhoP and PmrA boxes in the Salmonella pmrD and ugd pro-
moters are different (∼38 bp and ∼65 bp, respectively). (c) Transcriptional activity of
wild-type Salmonella harboring plasmids with a transcriptional fusion between a pro-
moterless gfp gene and the Salmonella pmrD and ugd promoters. Promoter activity
was determined as described in the legend to Figure 3.2. The two promoters confer
different expression and kinetic patterns.

the ugd and iraP promoters of E. coli, preventing it from expressing these genes
under the same conditions as Salmonella,Tu06 (Mouslim and Groisman, unpub-
lished results). Likewise, there is a PhoP box in the pmrD promoters of both
E. coli and Salmonella (albeit of different submotifs) but only the Salmonella
pmrD promoter has a PmrA box that functions as a repression site [51, 53]. This
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demonstrates that the detailed analysis of cis-features can shed light on different
network motif design among closely-related bacterial species.

3.4 Conclusions

We demonstrated that a transcription factor can mediate differential expression
of genes that are described by the same network motif. This is because of the
functional significance of variability in sequence, location and topology that ex-
ists among promoters that are co-regulated by a given transcription factor. We
developed a flexible computational framework to encode and to combine these
promoter features, which allows matching of cis-observations to multiple models
for a given promoter feature. This enables the description of regulatory elements
from different angles and the generation of composite models that can be used
to explain the different kinetic behavior of co-regulated genes.

Finally, unlike regulators such as the LacI [29] and MelR [14] proteins of
E. coli that govern expression of single promoters, many transcriptional reg-
ulators control multiple promoters that express products required in different
amounts or for different extents of time. This is clearly the case for the regu-
latory protein PhoP, which controls transcription of a large numbers of genes,
that can be described by a variety of network motifs (Figure 3.1). Our findings
argues that understanding a cell’s behavior in terms of differential expres-
sion of genes controlled by a transcription factor requires a detailed analy-
sis of a promoter’s regulatory features. As a single nucleotide difference in
the binding site for a transcription factor can dictate the requirement for co-
activator proteins [26], we feel that by considering multiple models (as opposed to
the relying on consensuses) it will be possible to uncover subtle differences be-
tween regulatory targets and to capture the salient properties of co-regulated
promoters.
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Summary. A data-adaptive fuzzy filtering framework is designed to remove noise in
microarray images without the requirement for fuzzy rules and local statistics esti-
mation, or under unrealistic assumptions that the original signal is available. This is
achieved by utilizing the inference engine in the form of transformed distance metrics
between the samples within the supporting window. The training of the filter coeffi-
cients is thus based on local image features. Proposed fuzzy filters can preserve im-
portant structural elements and eliminate degradations introduced during microarray
image formation.

4.1 Introduction

Recent technological advances have allowed for the combination of various bio-
logical, medical and computational approaches and their application to the field
of computational biology, genomic engineering and bioinformatics. Complemen-
tary Deoxyribonucleic Acid (cDNA) microarray imaging is one of such advanced
technologies [2, 5]. It is used in the investigation of toxicological problems and
extraction and interpretation of genomic information via cellular response to low
dose ionizing radiation. Analysis of cDNA microarray data helps in monitoring
the expression levels of thousands of genes simultaneously [9, 27]. By analyzing
changes in genome-wide patterns of gene expression in different populations of
cells, potentially hazardous substances, such as carcinogens and reproductive
toxins, can be identified. Due to the parallel processing feature and effective-
ness of their analysis, cDNA microarrays have found applications in gene and
drug discovery, toxicological research, and cancer, diabetes and genetic disease
diagnosis [14, 42].

Unfortunately, the often result of microarray imaging are images which suf-
fer from significant image background variations, discrete artifacts, and noise
floor [1, 20, 26]. Therefore, extensive image processing is usually necessary in
order to eliminate errors from propagating further down the processing pipeline
to the gene expression analysis tasks. The vast volume of microarray data ne-
cessitates the use of automated image processing. Typical image processing op-
erations include filtering and enhancement [1, 20, 39], edge detection [17, 25],

Y. Jin and L. Wang (Eds.): Fuzzy Systems in Bio., STUDFUZZ 242, pp. 67–82.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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data normalization [18, 38], background separation [28], grid adjustment [6], and
image segmentation [8, 12, 15, 19, 23]. Among these, noise filtering is defacto a
default element of the processing pipeline, as removing noise in microarray im-
ages makes them easier to analyze and gene expression measurements obtained
in the end of the process are more accurate to interpret [42]. Taking into consid-
eration the noise characteristics in cDNA microarray images, fuzzy logic-based
techniques have been proved to be an effective solution to the estimation problem
at hand [21].

This chapter focuses on the design of fuzzy logic-based noise removal tech-
niques for cDNA microarray images. Since in microarray imaging the original
noise-free signal is not available to the designer, the problem of determining
the optimal filtering structure becomes quite challenging. To achieve the desired
processing accuracy, the filtering framework presented in this chapter utilizes
weighting coefficients which are adaptively determined on the basis of local sig-
nal context expressed via aggregated distances between the inputs. This frame-
work integrates well-known concepts from the areas of fuzzy set theory, nonlinear
filtering, multidimensional scaling and robust order-statistics.

Section 4.2 discusses the biological background and microarray basics. Sec-
tion 4.3 describes the cDNA microarray imaging fundamentals, image representa-
tion, and noise impairments. Section 4.4 is devoted to the design of a generalized
framework for filtering noise in cDNA microarrays using fuzzy logic principles.
The chapter concludes with Section 4.5 by summarizing the main fuzzy logic-
based cDNA microarray image filtering ideas.

4.2 Microarray Basics

The microarray experiment usually consists of the following four stages: i) probe
design and microarray fabrication, ii) sample preparation and target sequence
hybridization, iii) hybridization result detection, and iv) hybridization image
analysis. As shown in Fig. 4.1, the cDNA microarray imaging procedure requires
first to isolate Ribonucleic Acid (RNA) from both control (reference) and ex-
perimental (test) sample in order to convert these extracted RNAs into cDNAs
by the so-called reverse transcription process [40]. Using a Cy3/Cy5 system, the
procedure continues by labelling the cDNAs with fluorescent probes, usually Cy3
for the control and Cy5 for the experimental channel [26], and hybridizing the
fluorescent targets to the microarray, which is an arrays of cDNA spots, usually
up to 80 000 probes per 2×4 cm2 area [5]. After heating microarrays at 65◦C and
washing them for 16 to 24 hours, microarrays are scanned using a sophisticated
scanner.

The scanner excites the fluorescent dyes on the hybridized cDNA samples
in order to emit fluorescence photons. Common microarray imaging systems
use excitation radiation of a narrow-band (i.e., laser) or wide-band (i.e., lamp)
spectrum light source to generate excitation photons. The absorption of the exci-
tation light by the fluorescent dyes results in fluorescence, a process which raises
an energy level of the fluorescent molecules to an unstable excited state. When
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Fig. 4.1. Microarray experiment using Cy3 and Cy5 fluorescent dyes

molecules decay from this state, they emit fluorescent light at a characteristic
wavelength (slightly larger than the wavelength of the excitation light [41]), a
process which is known as fluorescence emission. Common fluorophores have a
very small difference, the so-called Stokes shift [3], between excitation and emis-
sion peaks. Namely, as depicted in Fig. 4.2, Cy3 reaches peak absorption at 554
nm and emission at 568 nm, while the corresponding wavelength for Cy5 are 650
nm for peak absorption and 672 nm for emission. To prevent distortion, excita-
tion and emission photons are discriminated by using a dichroic beam-splitter
in conjunction with a band-pass optical filter [7, 41]. Since the emitted photons
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Fig. 4.2. Cyanine dye spectra and the normalized fluorescence intensity (NFI)
expressed using the light wavelength: (left) Cy3 and (right) Cy5
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vary in their direction, emission optics collect the emitted fluorescence and di-
rect it toward a detector [34], such as a photomultiplier tube (PMT) for laser
excitation or a charge-coupled device (CCD) detector for filtered white-light ex-
citation, which detects the emission radiation and converts it into voltage. The
scanning process converts the emission photons into electrons. Finally, an analog-
to-digital (A/D) converter is used to transform the electric current into a digital
signal which is stored as an image formed by equally spaced pixels [29, 41].

4.3 cDNA Microarray Imaging

The scanning procedure produces two 16-bit monochromatic images, one
(Fig. 4.3a) for Cy5 and one (Fig. 4.3b) for Cy3. These monochromatic images
are registered into a two-channel, red-green image for the purpose of image pro-
cessing and gene expression analysis. However, according to the trichromatic
theory of color vision, an arbitrary color is matched by superimposing appropri-
ate amounts of three primary colors [32]. Therefore, in order to visualize or store
cDNA image data in the familiar red-green-blue (RGB) color format (Fig. 4.3c),
the introduction of zero B components is needed [20].

The foreground of microarray images is constituted by their spots. The inten-
sities of the pixels within a microarray spot are used to determine a single gene
expression and to identify the genes expressed in a particular cell type [10, 42].
A gap between spots or alternatively the presence of cDNA vectors residing
outside spots areas constitute the background. By extracting the spots from the
microarray image, the background can be viewed as a homogeneous region, while
the essential foreground should remain heterogonous as a result of the variable
spots’ coloration [23].

The image spots’ coloration represents the abundance of hybridized RNA in
the array [40]. The presence of RNAs from the experimental or control popu-
lation of cells is determined by the red or green spots, respectively. The occur-
rence of yellow spots suggests that RNAs from both experimental and control

(a) (b) (c)

Fig. 4.3. cDNA microarray image: (a) Cy5 channel, (b) Cy3 channel, and (c) cDNA
microarray visualized as the RGB image with zero B components



4 Fuzzy Vector Filters for cDNA Microarray Image Processing 71

Red

Green0

255

0 255Black

Yellow

Fig. 4.4. Color mixing in cDNA microarray images

population contribute to the abundance while black spots denote no binding
of RNAs. Based on this simple coloration concept (Fig. 4.4), cDNA microarray
based gene expression analysis uses the measurement of the hybridized RNA
abundance as a measure of gene expression activity [15].

4.3.1 Image Representation

The two-channel cDNA microarray image x : Z2 → Z2 represents a K1 × K2

matrix of two-component samples x(r,s) = [x(r,s)1, x(r,s)2]T with r = 1, 2, ..., K1

and s = 1, 2, ..., K2 denoting the image rows and columns, respectively. The
component x(r,s)1 indicates the R channel while x(r,s)2 indicates the G chan-
nel, which are combined to form the cDNA vector x(r,s) uniquely determined
by its magnitude M(r,s) =

∥
∥x(r,s)

∥
∥ =

√
(x(r,s)1)2 + (x(r,s)2)2 and direction

D(r,s) = 1

‖x(r,s)‖x(r,s) = 1
M(r,s)

x(r,s) in a two-dimensional vector space depicted

in Fig. 4.4, [22]. A typical spot has a circular shape and contains approximately
150 to 200 cDNA pixels x(r,s) [37]. Under the ideal conditions, each spot in
the noise-free cDNA image (Fig. 4.5a) has uniform magnitude (Fig. 4.5b) and
directional (Fig. 4.5c) characteristics [23].

4.3.2 cDNA Microarray Image Noise

Unfortunately, microarray image formation is a complicated, nonlinear process
influenced by many factors resulting in images which usually exhibit signifi-
cant variations in both their foreground and background due to noise impair-
ments [21, 39]. Main sources of noise in microarray images are artifacts caused
by laser light reflection and dust on the glass slide, photon and electronic noise
introduced during scanning, and the nature of cDNA microarray technology it-
self. Because of these noise impairments, spots not only vary in their magnitude
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Fig. 4.5. cDNA microarray image characteristics: (a-c) idealized noise-free case, (d-f)
real noisy case; (a,d) image area of interest, (b,e) magnitude characteristics, and (c,f)
directional characteristics

and directional characteristics (Fig. 4.5d-f), but they often vary in their sizes
and positions (Fig. 4.3).

Changes of the pixel intensities from the foreground to the background can be
attributed to the Gaussian nature of noise corrupting cDNA chips [26] whereas
isolated discrete artifacts and outliers present in the cDNA microarray image
can be seen as impairments which are impulsive in nature [20]. In conventional
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image processing applications, noise corruption of such nature is most often
modelled through a mixture of additive Gaussian noise and impulsive noise [24,
35]. Applying similar modelling concepts to microarray images, the acquired
cDNA signal x(r,s) = [x(r,s)1, x(r,s)2]T can be expressed as follows:

x(r,s) = o(r,s) + v(r,s) (4.1)

where o(r,s) = [o(r,s)1, o(r,s)2]T represents the original, noise-free cDNA signal
and v(r,s) = [v(r,s)1, v(r,s)2]T denotes the various image impairments introduced
during processing.

4.4 Fuzzy Vector Filtering Framework

The goal of noise filtering in microarray images is to estimate the original image
information from noisy data while preserving spot edges and color information
as these convey essential information for subsequent analysis. Since cDNA mi-
croarray images are nonstationary in their background, suffer from substantial
noise floor and impairments, and exhibit significant spot nonuniformities, many
filtering schemes operate on the premise that an image can be subdivided into
small regions, each of which can be treated as stationary [22]. These small image
regions are determined using the supporting window, such as those shown in
Fig. 4.6. The window, defined as Ψ(r,s) = {x(i,j); (i, j) ∈ ζ}, for r = 1, 2, ..., K1

and s = 1, 2, ..., K2, slides over the entire image x placing, successively, every
pixel at the center of a local neighborhood denoted by ζ. The procedure replaces
the cDNA vector x(r,s) located at the window center (r, s) with the output
y(r,s) = f(Ψ(r,s)) of a filter function f(·) operating over the samples listed in
Ψ(r,s). As shown in Fig. 4.6, the supporting window may vary in shape. The type
of window determines both the area of support and the overall performance of
the procedure. Due to its versatility and demonstrated good performance, a 3×3
square-shape window, defined by ζ = {(r + p, s + q);−1 ≤ p ≤ 1,−1 ≤ q ≤ 1},
is the most commonly used in image processing.

Since it is difficult to distinguish between noise and edge pixels, fuzzy sets —
commonly considered as sets with unsharp boundaries — are highly appropriate
for image filtering tasks [32]. This is due to the fact that fuzzy sets are better

p

q

-2

-1

0

1

2

1-1 0 21-2 -1 0 21-2 -1 0

+ + + +

1-1 0

Fig. 4.6. Supporting windows with ‘+’ denoting the center location (r, s). The popular
3 × 3 window is arranged as the second from the left.
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suited to deal with tolerance for some inexactness and imprecision compared to
a conventional set theory approach.

4.4.1 Fuzzy Logic Basics

The fuzzy set is defined via the characteristic function μF : U → [0, 1], which
transforms the elements of U to the fuzzy set with any value, the so-called degree
of membership, between 0 and 1. If an element assigns a value close to 1, the
degree of membership, or truth value is high. The characteristic function of a
fuzzy set is called the membership function and depending on definition it can
take a variety of different shapes [44, 45].

A number of fuzzy filters use a window-based, rule-driven approach leading to
data-dependent fuzzy solution [4, 33, 36]. As shown in Fig. 4.7, these filters utilize
fuzzy logic to convert the linguistic terms into the fuzzy quantities. Namely, the
fuzzification procedure transforms the input data into fuzzy values. These are
processed in the inference engine using the set of if-then-else fuzzy-rules usually
constituted in the if-then format. By applying a bank of fuzzy rules to the fuzzy
versions of signal elements which lie within the supporting window, the fuzzy
filter yields the filtered output taking into account local characteristics or selected
patterns in the neighborhood of the pixel to be processed, thus adapting the filter
to local data. The output of the fuzzy filter depends on the fuzzy rule and the
defuzzification process which combines the effects of the different rules into an
output value which is then converted into the original (crisp) application format.
Through the utilization of linguistic terms, a fuzzy rule-based approach to signal
processing allows for the incorporation of human knowledge and intuition into
the design, which cannot be achieved via traditional mathematical modelling
techniques.

Unfortunately, there is no easy way to determine the number and type of
fuzzy rules required for the fuzzy image operation. Usually, the designer has to
compromise between quality and number of rules used, since even for a moderate
supporting window a large number of linguistic rules are required and these rules
must be optimally set using the optimization procedure [11, 13] which typically
requires the presence of the original signal and the sufficient time for learning.
However, as in many other real-life applications, microarray imaging lacks the

fuzzy rule base

learning mechanism

inference
engine

fuzzification defuzzification

Fig. 4.7. Conventional fuzzy system with the learning mechanism
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original signal. To overcome this difficulty, data-dependent filters adopting fuzzy
reasoning have been designed for color image processing applications [16, 31,
32]. These designs combine fuzzy concepts, such as membership functions and
fuzzy aggregators, with nonlinear estimators. Using similar strategy, fuzzy vector
filters have been proposed to remove noise in cDNA microarrays without the
requirement for fuzzy rules [21].

4.4.2 Data-Adaptive Fuzzy Filter Design

The most commonly used smoothing method to reduce the level of random noise
present in the signal and transitions is averaging. Therefore, the general form
of the data-dependent filter is given as a fuzzy weighted average [22, 32] of the
cDNA vectors inside the supporting window Ψ(r,s):

y(r,s) = f

⎛

⎝
∑

(i,j)∈ζ

w(i,j)x(i,j)

⎞

⎠ (4.2)

where f(·) is a nonlinear function that operates over the weighted average of the
input set and

w(i,j) = μ(i,j)/
∑

(g,h)∈ζ

μ(g,h) (4.3)

is the normalized filter weight calculated using the weighting coefficient μ(i,j)

equivalent to the fuzzy membership function associated with the cDNA vector
x(i,j) ∈ Ψ(r,s). Note that the two constraints w(i,j) ≥ 0 and

∑
(i,j)∈ζ w(i,j) = 1 are

necessary to ensure that the filter output is an unbiased estimator and produces
the samples within the desired intensity range.

Since noisy samples deviate from other samples in a given data population,
outlying cDNA vectors can be determined by evaluating their distance to other

Inputs: 1 2K K� input image x

Supporting window area �

Design parameters � and �

Output: 1 2K K� image y

For 1r � to 1K

For 1s � to 2K

Read the input set ( , ) ( , ){ ; ( , ) }r s i j i j 	
 � �x

Calculate the aggregated distances ( , )i jD using ( , )r s


Calculate the weights ( , )i jw based on ( , )i jD

Determine ( , ) ( , )( , , , )r s r sf � �� 
y w

End

End

Fig. 4.8. Pseudo-code of data-adaptive fuzzy filtering
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vectors in this data population [20]. This rationale can be used to design an
effective and computationally efficient filter, as the one shown in Fig. 4.8. The
filter weights w(i,j), for (i, j) ∈ ζ, can be determined adaptively using functions of
a distance criterion between the cDNA vectors included in Ψ(r,s). A membership
function value μ(i,j) can thus be used to quantify the degree of similarity of x(i,j)

to the other cDNA vectors in Ψ(r,s).
Detailed inspection of Fig. 4.5 reveals that the data variations affect both

the magnitude and the directionality of the cDNA vectors. Therefore, powerful
filtering solutions can be designed by evaluating the vectors’ differences in mag-
nitude and/or orientation. For given two cDNA vectors x(i,j) = [x(i,j)1, x(i,j)2]T

and x(g,h) = [x(g,h)1, x(g,h)2]T , where (i, j) ∈ ζ and (g, h) ∈ ζ, their magnitude
difference can be quantified through the Euclidean metric as follows:

d(x(i,j),x(g,h)) =

(
2∑

k=1

(x(i,j)k − x(g,h)k)2
) 1

2

(4.4)

whereas their orientation difference can be evaluated using the angular measure
as follows:

d(x(i,j),x(g,h)) = arccos
(

x(i,j) · x(g,h)

|x(i,j)||x(g,h)|
)

(4.5)

Based on the value of d(x(i,j),x(g,h)), the corresponding fuzzy membership func-
tion is then computable as:

μ(x(i,j),x(g,h)) =
1

1 + f(d(x(i,j),x(g,h)))
(4.6)

where μ(x(i,j),x(g,h)) → 0 for d(x(i,j),x(g,h))→∞ and μ(x(i,j),x(g,h)) = 1 for
d(x(i,j),x(g,h)) = 0. Depending on the specific distance measure that is applied
to the input data, a different fuzzy membership function can be devised.

4.4.3 Fuzzy Weighting Formulations

As shown in Fig. 4.9, to avoid optimization of fuzzy rules, the data-adaptive
fuzzy system can utilize the inference engine in the form of transformed distance
metrics between the input cDNA vectors [21]. Since the output of this adaptive
fuzzy system depends on local neighborhood ζ, the system is capable of tracking
the varying image and noise statistics. The training or learning of the weighting
coefficients is only based on local image features without the use of linguistic
fuzzy rules or local statistics estimation. By appropriately tuning their mem-
bership function the data-adaptive fuzzy filters can be optimized for any noise
model [31].

The weight w(i,j), for (i, j) ∈ ζ, provides the degree to which an input cDNA
vector x(i,j) contributes to the output of the filter. The relationship between the
central sample x(r,s) and its neighbors determined by Ψ(r,s) should be reflected
in the decision for the weights of the filter. Since the relationship between dis-
tances measured in physical units and perception is generally exponential [31],
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Fig. 4.9. Data-adaptive fuzzy system

an exponential type of function maybe suitable to be used in the weighting
formulation:

μ(i,j) = β
(
1 + exp

{
D(i,j)

})−α (4.7)

where α is a parameter adjusting the weighting effect of the membership func-
tion, β is a normalization constant, and D(i,j) =

∑
(g,h)∈ζ d(x(i,j),x(g,h)) is the

aggregated distance or similarity measure. The data-adaptive filters can be op-
timized for any noise model by appropriately tuning their membership function
in the above equation. These filters can operate either on magnitude or direc-
tion of the input cDNA vectors [24]. Depending on the employed distance or
similarity function d(·, ·), different degrees of membership can be achieved, thus
resulting in different filter outputs. This increases the degree of freedom in the
filter design.

The defuzzification step is realized via the filtering procedure, which deter-
mines the most appropriate vector value to replace the cDNA vector x(r,s) under
consideration and represent a collection of cDNA vectors x(i,j), for (i, j) ∈ ζ. A
widely used centroid defuzzification approach, the so-called center of gravidity,
generates the defuzzified value which is at the center of the values of a fuzzy
set [31]. Therefore, the presented data-adaptive filtering scheme based on mem-
bership functions defined via the distance concept also satisfies minimization
property required in noise removal applications (Fig. 4.10a-c).

The defuzzified vector y(r,s) obtained through the centroid defuzzification
approach does not belong to Ψ(r,s). This suggests that such an unconstrained
filter may have reduced detail-preservation ability compared to its constrained
version which can operate using the weights defined as follows:

w(i,j) =
μλ

(i,j)
∑

(g,h)∈ζ

μλ
(g,h)

=
(μ(i,j)

μmax
)
λ

∑

(g,h)∈ζ

(μ(g,h)

μmax
)
λ

(4.8)

where μmax ∈ {μ(i,j); (i, j) ∈ ζ} is the largest membership value.
Given that μ(i,j) < μmax and λ→∞, the weights obtained via the maximum

defuzzifier strategy can be redefined as follows [32]:

w(i,j) =
{

1 if μ(i,j) = μmax

0 if μ(i,j) �= μmax
(4.9)
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Fig. 4.10. cDNA microarray image characteristics: (a-c) fuzzy weighted averaging vec-
tor filter, (d-f) fuzzy selection vector filter; (a,d) image area of interest, (b,e) magnitude
characteristics, and (c,f) directional characteristics

If the maximum value occurs at a single point only, the output of an adaptive
fuzzy system can be expressed as:

y(r,s) = x(i,j), for μ(i,j) = μmax (4.10)
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which is equivalent to a selection filtering operation which identifies one of the
cDNA vectors determined by Ψ(r,s) as the filter output. Such filters are able to
preserve both intra- and inter-channel corrections while effectively suppressing
noise in image signals (Fig. 4.10d-f).

4.4.4 cDNA Ratio-Based Fuzzy Filter Design

The use of the Euclidean metric or the angular distance in not the only way of
evaluating the similarity of two cDNA vectors. Taking advantage of the expected
relative uniformity of the local ratios between the components of each cDNA
vector, which is definitely the case of noise free-data, aggregated distance D(i,j)

can be calculated using d(·, ·) expressed as the absolute difference between cDNA
ratios [21]:

d(x(i,j),x(g,h)) =
∣
∣x(i,j)1/x(i,j)2 − x(g,h)1/x(g,h)2

∣
∣ (4.11)

Operating on the ratios x(i,j)1/x(i,j)2, for (i, j) ∈ ζ, the output cDNA vector
y(r,s) = [y(r,s)1, y(r,s)2]T is obtained as follows:

y(r,s)1 = x∗
(r,s)2

∑

(i,j)∈ζ
w(i,j)x(i,j)1/x(i,j)2 (4.12)

y(r,s)2 = x∗
(r,s)1

∑

(i,j)∈ζ
w(i,j)(x(i,j)1/x(i,j)2)−1 (4.13)

where x∗
(r,s) = [x∗

(r,s)1, x
∗
(r,s)2]

T is a normalization vector. This vector can be con-
sidered as a robust estimate which statistically represents the input set Ψ(r,s).
Using robust order-statistic principle [30], x∗

(r,s) is defined here as the componen-
twise median filter [43]. However, unlike its standard applications where x∗

(r,s)
is the output of a filtering procedure, the components of x∗

(r,s) are used here to
normalize the output color ratio value to the desired intensity rage in order to
recover components y(r,s)1 and y(r,s)2.

4.5 Conclusion

This chapter presented a data-adaptive fuzzy filtering framework for process-
ing of cDNA microarray images. Unlike conventional fuzzy systems that require
complex or time-consuming training procedures and the presence of the original
data to optimally set the fuzzy rules in order to achieve the desired perfor-
mance, the framework described in this chapter is designed to remove noise in
cDNA microarray images without the requirement for fuzzy rules or under un-
realistic assumptions that the original cDNA signal is available by utilizing the
inference engine in the form of transformed distance metrics between the cDNA
vector-valued samples within the supporting window. In this way, the training
or learning of the weighting coefficients is only based on local image features
without the use of linguistic fuzzy rules or local statistics estimation.

Given the vectorial nature of cDNA data and the mixed Gaussian and im-
pulsive nature of noise impairments in microarray images, particular emphasis
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was put on powerful vector operators that are proven to be effective and robust
for various noise models. By utilizing robust order statistics calculated through
a supporting window, fuzzy vector filters can preserve important structural el-
ements, such as spot edges, and eliminate degradations introduced during mi-
croarray image formation. The utilization of the spatial, structural and spectral
characteristics of the cDNA vector-valued signal is essential in the preservation
of both intra- and inter-channel correlations which are of paramount importance
for subsequent cDNA microarray analysis.
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Summary. Microarray technology is used for studying gene regulation at the genome
and transcriptome level. In the most common application, the expression level of thou-
sands of genes is monitored simultaneously leading to a huge dataset having high
dimensionality. It is assumed that genes with similar function or regulatory elements
will display a common expression profile over a variety of biological conditions. For
some cases, it may be desirable to study simultaneously many drugs in different ex-
perimental conditions (e.g. concentration or time point) on biological models, leading
to the generation of 3-way data. Cluster analysis is used for identifying biologically
relevant groups of genes. In this chapter, fuzzy cluster analysis is used for this purpose.
After a brief formulation of the problem, we outline motivations for our choice of the
clustering algorithm. Then, the fuzzy clustering algorithms are presented and the main
tuning parameters are discussed in the context of 2-way and 3-way microarray data.
We propose a transformation allowing more contrast in distances between all pairs of
samples in a dataset. This increases the likelihood of detection of a group structure, if
any, in a high dimensional dataset. Results showing the performance of the fuzzy C-
Means algorithm are carried out using real datasets. These results are finally validated
through functional enrichment of genes.

5.1 Introduction

Microarray technology allows simultaneous monitoring of the expression level of
thousands of genes. This technology is actually used routinely in biomedical re-
search to compare gene expression levels at different developmental stages [21], in
different tissues [2, 15] or different clinical conditions [10]. Microarrays are solid
supports (glass slides) on which thousands of DNA sequences representing genes
are spotted (or synthesized in situ) at known addresses (spots). Messenger RNA
from biological samples are labelled with a fluorescent dye and hybridized for
pairing with complementary DNA sequences on the microarray. The microarray
is then washed and scanned to quantify fluorescent molecules hybridized to each
DNA sequence. Data from scanned images are first normalized [32, 8] to elim-
inate variations which are independent of the biological phenomenon studied.
After data normalization and/or summarization, genes that best fit the biolog-
ical model are identified using heuristic or statistical tests [33, 9]. These genes
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are finally used in classification/clustering algorithms and in data interpretation
tools [31, 27].

A typical microarray experiment will for example compare gene expression
profiles between multiple biological samples such as tumour biopsies, or a sin-
gle sample in response to a treatment over time. The dataset produced by such
experiments is a table containing thousands of genes (equal to the number of
rows), and dozens of samples or arrays (equal to the number of columns). It
is generally assumed that genes with similar function or sharing regulatory ele-
ments will display a common expression profile over a variety of biological con-
ditions. Classification methods are then used to group genes according to their
expression profile in a defined set of samples and/or to group samples based on
the set of genes they express [2, 15, 3]. Unsupervised classification methods or
clustering are typically used when no a priori information is available on sam-
ples or genes [13, 4, 28, 29]. There are roughly two kinds of clustering methods
[30] : hierarchical and partitional methods. Hierarchical clustering methods pro-
duce results represented by dendrograms, like trees where each branch is a group
of genes having similar profile. In the agglomerative hierarchical algorithm, each
gene is initially put in its own group and an aggregation measure is chosen. Then,
the two closest groups are put together into one group. This process is repeated
until all genes are in a single group. The divisive hierarchical method operates
in the reverse manner, starting with all genes in the same group, it ends with
each gene in its own group. The use of the hierarchical method for microarray
data clustering has been popularized by Eisen et al [13] who also provided free
software for visualizing the results. With a hierarchical method the user does not
have to fix the number of clusters a priori. However, this method suffers from
the non-uniqueness of the dendrogram produced [24].

Partitional clustering methods consist of finding the best partition of genes into
K clusters in such a way that one criterion (e.g. total inertia of clusters) is opti-
mized. An exhaustive solution will consist in testing all combinations correspond-
ing to the distribution of genes in the dataset into K clusters and then keeping
the combination which minimizes the chosen criterion. In practice, an exhaustive
search is rarely performed because of the heavy computation it requires. Instead,
heuristic iterative procedures are used. Typically, data are initially (randomly)
divided into K clusters. Then iteratively, the best local combination of genes into
K clusters is searched by finding in the neighbourhood of each gene, the cluster
for which the criterion is optimized. The K-Means algorithm is the most common
partitional clustering method. It allows the placement of each gene into one group
containing genes of similar profile. Genes in the same cluster are then expected to
have similar biological function. With the K-Means clustering algorithm, every
gene in the dataset will be assigned to a cluster even if it has a profile different
from those of the other genes. This hard assignation of genes to groups was used
and gave acceptable results in many cases [29]. However the biological activities of
a gene are more complex. It is indeed known that given genes are subject to reg-
ulation by several molecular pathways. The overall expression pattern for a given
gene may therefore correspond to the superimposition of distinct patterns, each
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corresponding to a given mode of regulation. To try to capture this complexity and
to be able to form tightly related groups of genes, we used Fuzzy C-Means (FCM)
clustering algorithm. In contrast to the K-Means clustering algorithm, the FCM
clustering algorithm links each gene to all clusters via a real-valued vector uik of
indexes. The value of components of this vector of indexes are between 0 and 1.
The closer an index is to 1 for a given cluster, the closer the corresponding gene is
to that cluster. The real-valued vector of indexes defines the membership of a gene
to a cluster. Exploitation of membership values will hence identify genes that are
tightly related, or genes which are linked to more than one cluster, thus providing
the opportunity to explore the biological complexity of a gene.

5.2 Fuzzy C-Means Clustering Algorithm

Let us consider a microarray experiment which consists in studying the expresion
profiles of genes for the mouse genome in many biological conditions. Let us note
by I the total number of genes in the mouse genome and J the total number
of biological conditions of interest. We hence have a 2-way dataset noted X =
{x1 x2 . . . xI} where xi (i = 1, . . . , I) denotes a vector of size J representing
gene i with the measurements for the J biological conditions used.

5.2.1 FCM for 2-Way Microarray Data

Grouping genes in dataset X into K clusters using the FCM algorithm con-
sists in finding cluster membership values uik and centers ck which minimize
the criterion proposed in [7, page 65]. This criterion is modified as follows for
introducing a transformation of distances used:

J (uik, ck) =
I∑

i=1

K∑

k=1

um
ikdα(xi, ck) (5.1)

subject to

K∑

k=1

uik = 1 ; 1 ≤ i ≤ I (5.2)

with dα(xi, ck) =

⎛

⎝
J∑

j=1

(xij − ckj)2

⎞

⎠

α
2

(5.3)

where m is the fuzziness parameter (m > 1) and dα(xi, ck) is α−power of the Eu-
clidean distance between gene xi and centroid ck. Usually the Euclidean distance
is used thanks to its nice geometrical properties. For other choices of distance,
see [17, 14, 22]. The choice of the fuzzy parameter m is discussed in [11]. The
use of parameter α in Equation (5.1) is new and it allows more freedom in the
choice of parameter m, see Section 5.2.3. We assumed that the number K of
clusters in the dataset is known. The value of K can be estimated using ad hoc
methods or clustering validation methods [23, 26, 34].
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From Equation (5.1), when the number K of clusters, the fuzziness parameter
m and the distance power α are fixed the parameters of interest are the cluster
membership values uik and the centers ck. The total number of parameters to
obtain in minimization of criterion (5.1) is (I + J)K. This number is high and
a direct optimization method is rarely used. Instead, alternating optimization
over membership values and centers is used. This algorithm is summarized as
followed:

1. Initialization: set values for m, K, α, ck and choose a distance metric d(, )
2. compute membership values uik

3. compute cluster centers ck

4. if convergence stop else goto step 2

Expressions for membership values and cluster centers are obtained as follows:

Expression for the membership values

By using the Lagrange multipliers to take the constraint (5.2) into account in
Equation (5.1), we get

L(uik, λi) =
I∑

i=1

K∑

k=1

um
ikdα(xi, ck) −

I∑

i=1

λi

(
K∑

k=1

uik − 1

)

(5.4)

Performing partial differentiation of Equation (5.4) with respect to uik we get

∂L(uik, λi)
∂urs

= mu(m−1)
rs dα(xt

r, c
t
s) − λr (5.5)

setting this derivative to zero, saddle point condition, we get an expression
for uik

∂L(uik, λi)
∂urs

= 0 ⇒ urs =
λ

1
m−1
r

[mdα(xr, cs)]
1

m−1
(5.6)

Performing the partial differentiation of Equation (5.4) with respect to λi and
setting this derivative to zero, we get

∂L(uik, λi)
∂λr

= 0 ⇒
K∑

s=1

urs = 1 (5.7)

Using Equation (5.6) in Equation (5.7) we get:

K∑

k=1

λ
1

(m−1)
r

[mdα(xr, ck)]
1

(m−1)
= 1 (5.8)

From this equation we have the following expression for λi:

λ
1

(m−1)
r =

1
∑K

k=1

[
1

mdα(xr,ck)

] 1
m−1

(5.9)
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By returning the above expression of λi in Equation (5.6) we get

urs =
1

∑K
k=1

[mdα(xr,cs)]
1

m−1

[mdα(xr,ck)]
1

m−1

(5.10)

or

urs =
[dα(xr, cs)]

1
1−m

∑K
k=1 [dα(xr , ck)]

1
1−m

(5.11)

Expression for cluster centers

For the cluster centers let us perfom partial differentiation of Equation (5.1) and
set it to zero. We get:

∂J (uik, ck)
∂ck

= 0 ⇒
I∑

i=1

um
ik

∂dα(xi, ck)
∂ck

= 0 (5.12)

Using Equation (5.3), we have:

α

I∑

i=1

um
ik

⎛

⎝
J∑

j=1

(xij − ckj)2

⎞

⎠

α
2 −1

(xis − cks) = 0 (5.13)

When α = 2, i.e. we used the square of Euclidean distance, it follows immediately
that the cluster centers are given by

cks =
∑I

i=1 um
ikxis

∑I
i=1 um

ik

s = 1, . . . , J (5.14)

In fact, Equation (5.14) is also the solution for all α since all components in the
sum

∑J
j=1(xij −ckj)2 are greater than or equal to zero with strict equality when

xij = ckj for j = 1 . . . , J .
The alternating optimization over membership values and cluster centers is

then based on Equations (5.11) and (5.14). For computing the membership values
using Equation (5.11) we need a precaution to deal with the case where cluster
centers match some dataset samples (xi = ck). In this case, let us note by
Ii = {k/1 ≤ k ≤ K ; d(xi, ck) = 0} and Ĩi = {1, 2, . . . , K} − Ii. Hence, if the
set Ii is empty, we used Equation (5.11), else membership values are set to zero
if k ∈ Ĩi and the other values are chosen in such a way that

∑K
k∈Ii

uik = 1.
For the convergence, a difference matrix is computed using the matrix as-

sociated to membership values (U = [uik], i = 1, . . . , I; k = 1, . . . , K) from
the current and previous iteration. The algorithm converges when the Frobenius
norm of the difference matrix is lower than a threshold fixed a priori. Global
convergence results of the FCM algorithm are given in [18, 16].
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5.2.2 FCM for 3-Way Microarray Data

When the microarray experiment described in the beginning of this section is per-
formed at T time points, we obtain a 3-way dataset which can be noted Xt =
{x1t,x2t, . . . ,xIt}. We can consider data at each time point as a 2-way dataset and
hence use the objective in Equation (5.1) to get membership values and centers
for clusters. In this way, unrelated membership values and centers are produced.
When we want to have the same membership values for all I genes independently
of the time point, we have to perform simultaneous minimization of T criteria:

min (J1(uik, ck1), J2(uik, ck2), . . . , JT (uik, ckT )) (5.15)

Cluster centers, ckt, t = 1, . . . , T , obtained from Equation (5.15) are time point t
dependent. This is not the case for the membership values uik which are mutually
related for all data time points.

The minimization of Equation (5.15) is referred to as a multi-objective op-
timization problem where managing conflicting and incommensurate objectives
can occur. We need here, the membership values uik and cluster centers ckt lead-
ing simultaneously to the minimum value for each of the T objectives Jt(uik, ckt),
t = 1, . . . , T . In general, such a solution does not exist and we are interested to
all solutions such that an improvement in minimization of one criterion leads to
a deterioriation in performances for at least another criterion. These solutions
are known as Pareto optimal front in multi-objective optimization. To solve the
minimization problem in Equation (5.15), we combined the T objectives into one
scalar objective through weights: wt, t = 1, . . . , T . The total criterion to mini-
mize is then given by the following equation which is an extension of criterion
in Equation (5.1), see also [25]:

J (uik,Ck) =
T∑

t=1

I∑

i=1

K∑

k=1

wtu
m
ikdα(xit, ckt) (5.16)

subject to the constraint given in Equation (5.2). We assumed that there is no
empty cluster. In Equation (5.16), we note Ck = [ck1 ck2 . . . ckT ].

The method of combining the T objectives necessitates the choice of T weights.
A combination of weights will allow one solution for Equation (5.16), i.e. one
point of the Pareto optimal front. The choice for the weights is not trivial.
However, using a constraint,

∑T
t=1 wt = 1 allows the use of many combinations

for getting the entire Pareto optimal front. But only a convex curve will be
obtained with this approach.

As for a 2-way dataset case, an alternating optimization algorithm can be
used to obtain the cluster membership values and centroids. By mimicking the
results in Section 5.2.1, we get the following algorithm, see also [25] where the
same equations are obtained using a different method:

Algorithm

Computation of uik when cluster centers ckt are given
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Ii = {k/1 ≤ k ≤ K; dα(xit, ckt) = 0} (5.17)

Ĩi = {1, 2, . . . , K} − Ii (5.18)

If Ii = φ (an empty set) then

urs =

[∑T
t=1 wtd

α(xrt, cst)
] 1

1−m

∑K
k=1

[∑T
t=1 wtdα(xrt, ckt)

] 1
1−m

(5.19)

If Ii �= φ (not an empty set) then

uik = 0 ∀k ∈ Ĩi,

K∑

k∈Ii

uik = 1 (5.20)

Computation of ckt when membership values uik are given

ckjt =
∑I

i=1 um
ikxijt

∑I
i=1 um

ik

(k = 1, . . . , K; j = 1, . . . , Jt; t = 1, . . . , T ) (5.21)

5.2.3 Choice of the Distance Power and the Fuzziness Parameter

In the classical FCM algorithm, the square of the Euclidean metric is used (α =
2). The choice of the fuzziness parameter m has been discussed in [11] for the
high dimensional microarray dataset, and a heuristic method was proposed for
computing an upper bound value for the fuzziness parameter m. Here, we give
theoretical results supporting our previous choice. Our theoretical results are
based on the following assumptions, notations and definitions. We consider the
case of a 2-way dataset and use the square Euclidean metric. However, the result
in corollary 1 can be extended to a 3-way dataset.

• A1 : Components of the vector xi are independent and identically distributed
(i.i.d.) with all absolute moments up to order 4 finite.

• D1 : P [e] denotes the probability of event e,
• D2 : E[Y ] and var[Y ] are respectively, the expectation and the variance of

the random variable Y ,
• D3 : E[xr

ik] = μr(xi) is the r−order moment of component xik. From as-
sumption A1 above, this moment is independent of the index k,

• D4 : d(xi,xl) is a non negative real-valued number representing the distance
between xi and xl.

• D5 : dmin = min[ds(xi,xl) l �= i = 1, . . . I] and dmax = max[ds(xi,xl) l �=
i = 1, . . . I] are respectively the minimum and the maximum of the s−power
distances between all pairs of the I genes in the dataset.

Theorem 1. [6] Under the conditions of assumption and definitions given
above, if
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lim
J→∞

var

[
ds(xi,xl)

E[ds(xi,xl)]

]

= 0 (5.22)

then for every ε > 0

lim
J→∞

P [dmax ≤ (1 + ε)dmin)] = 1 (5.23)

Proof. See [6] for details. �
In short, theorem 1 says that if the distribution of distances fulfills the conditions
of relation (5.22) as data dimension J increases, distances between all the pairs
of genes goes to nearly the same value. As a consequence, membership values for
all genes will go to the same value. In fact, let us note by D the common value of
distances when the condition in relation (5.22) is fulfilled. From Equation (5.11)
and assuming that the cluster centroids match some genes, we will have urs =
(D)

1
1−m /

∑K
k=1(D)

1
1−m = 1

K . We also get the same value for the membership
values when the fuzziness parameter m goes to infinity even if more contrast is
present in the dataset distances. The convergence of membership values to the
same value is observed for high but finite dimensional dataset. The following
corollary allows a partial explanation to this situation.

Corollary 1. Let us assume that the cluster centers match some genes in the
dataset. Under the conditions of assumptions and definitions given above, the
FCM algorithm based on the square of Euclidean metric cannot recover a group
structure from the dataset, if any, when their dimension J goes to infinity.

Proof. Using expression (5.3) of distance with α = 2, let us show that condition
in relation (5.22) is fulfilled when J goes to infinity.

We have1:

d2(xi,xl) =
J∑

j=1

(xij − xlj)2 =
J∑

j=1

2∑

r=0

(
2
r

)
(−1)rx

(2−r)
ij xr

lj (5.24)

d4(xi,xl) =

⎡

⎣
J∑

j=1

(xij − xlj)2

⎤

⎦

⎡

⎣
J∑

j=1

(xij − xlj)2

⎤

⎦

=
J∑

j=1

4∑

r=0

(
4
r

)
(−1)rx4−r

ij xr
lj

+
J∑

j=1

J∑

k=1
k �=j

2∑

r=0

2∑

s=0

(
2
r

) (
2
s

)
(−1)r+sx2−r

ij xr
ljx

2−s
ik xs

lk (5.25)

1 We used :
(

n
p

)
= n!

p!(n−p)!
and (a − b)q =

∑q
r=0 (q

r) (−1)raq−rbr.



5 Microarray Data Analysis Using Fuzzy Clustering Algorithms 91

From Equation (5.24) we have2:

E[d2(xi,xl)] = J

(
2∑

r=0

(
2
r

)
(−1)rμ(2−r)(xi)μr(xl)

)

(5.26)

From Equation (5.25) and using var[Y ] = E[Y 2] − E2[Y ], we have:

var[d2(xi,xl)] = J

(
4∑

r=0

(
4
r

)
(−1)rμ(4−r)(xi)μr(xl)

−
[

2∑

r=0

(
2
r

)
(−1)rμ(2−r)(xi)μr(xl)

]2
⎞

⎠ (5.27)

Equation (5.22) can be written as follows:

lim
J→∞

var

[
d2(xi,xl)

E[d2(xi,xl)]

]

= lim
J→∞

var[d2(xi,xl)]
E2[d2(xi,xl)]

(5.28)

Using Equations (5.26) and (5.27) in Equation (5.28) we get the following:

lim
J→∞

var

[
d2(xi,xl)

E[d2(xi,xl)]

]

=
1
J

⎛

⎜
⎜
⎜
⎜
⎜
⎝

4∑

r=0

(
4
r

)
(−1)rμ(4−r)(xi)μr(xl)

[
2∑

r=0

(
2
r

)
(−1)rμ(2−r)(xi)μr(xl)

]2 − 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(5.29)

This function depends on the first fourth-order moments of the dataset X . From
the assumptions on the moments, summations in the numerator and the denom-
inator of Equation (5.29) are finite, we then conclude that Equation (5.29) goes
to zero when J → ∞, hence the corollary 1. �
Corollary 1 allows an explanation, in part, for the worst behavior of classifica-
tion algorithms based on Euclidean distance, when the data dimension is higher.
The convergence to zero of the expression value of Equation (5.29) assumes that
the data dimension J goes to infinity, which is not the case for practical situa-
tions. The threshold value of J which can be considered as higher is theoretically
difficult to estimate. Let us note that the numerator in the right hand side of
Equation (5.29) used moments up to order 4 while only up to 2 order moments
are used in the denominator. We used, in the sequel of this subsection, a power
of distance through parameter α to increase value of the numerator more rapidly
than the denominator, and hence to slow down the convergence to zero of Equa-
tion (5.29) for given dataset dimension J .

2 We use the following property : if f(Y ) and g(Z) are two measurable functions were
Y and Z are independent random variables, then E[f(Y )g(Z)] = E[f(Y )]E[g(Z)].
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Choice of the fuzziness parameter m

The fuzziness parameter m is a real-valued number to be chosen greater than 1.
More often it is set to two, which leads to simplification in the expression (5.11)
used to compute membership values. However, the previous results show that
this choice for m, combined with the square of Euclidean metric can fail to allow
the recovery of group structures, if any, in a high dimensional dataset. From
Equation (5.11), the cluster membership values depends on the 1

m−1 power of
distances between all pairs of genes in the dataset and the cluster centers. We can
assume without loss of generality that cluster centers match some genes. Hence,
using this observation and the distribution of distances for a given dataset, we
were able to propose a method for estimating an upper bound value mub for
the fuzziness parameter [11]. We heuristically searched for mub such that the
coefficient of variation of the distances between all pairs of genes in the dataset
are close to 0.03J . Equation (5.29) shows that the square of the coefficient of
variation of distances between all pairs of dataset genes is inversely proportional
to the dataset dimension J .

The method proposed in [11] can lead to a fuzzy parameter m close to 1. When
the fuzziness parameter goes to 1 the FCM results are close to those obtained
using K-Means clustering algorithm, meaning that one membership value of a
given gene is close to 1 while others go to zero. To handle this situation, we
introduce the parameter α as a power factor for distances.

Choice of the distance power parameter α

Using the algorithm proposed in [11] for estimating an upper bound value for
the fuzziness parameter, we can obtain a value close to 1 for square Euclidean
distances. Using parameter α introduces more flexibility in the choice of the
fuzziness parameter m. Hence, the computation of an upper bound value can
be based on the distances defined by {[dα(xi,xl)]

1
m−1 ; l �= i = 1, . . . , I}. Note

that the transformation of distances through the parameter α preserves the
main properties for the measure of distance (non negativity, identity, symme-
try and triangle inequality property). α is a real-valued number greater than
zero and is a magnification factor. It accentuates or attenuates differences in
distances computed from a dataset. In fact, the choice of α will depend on the
objective : increase or decrease of the contrast in distances. The parameter α
should be chosen greater or lesser than one depending on the maximum value of
data distances and on the modification of distances wide (maximum distance -
minimim distance) needed. Hence, if distances between all pairs of genes in the
dataset are less than one, the choice α < 1 leads to transformed distance values
to go toward one. The choice of α > 1 will lead to transformed distance values to
go toward zero. On the other hand, if at least one distance from those between
all pairs of genes in the dataset is greater than one : the choice of α < 1 leads to
transformed distance values to decrease toward zero while the choice of α > 1
leads to transformed distance values to increase toward infinity.
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5.3 Results

Microarray data used in this paper has been recently published in [1] where a
detailed description of the biological aspects are given. These data are avail-
able from the Gene Expression Omnibus (GEO) web site (http://www.ncbi.
nlm.nih.gov/geo/ ) under the accession number GSE3634. Affymetrix GeneChip
430A 2.0 mouse arrays were used for generating the data which consisted in
studying gene expression profiles in mouse models for Huntington’s disease and
Spinocerebellar ataxia type 7, respectively, sharing a common retinal phenotype.
For the Spinocerebellar ataxia type 7, two genotypes R7E Knock-Out (KO) and
Wild-Type (WT) mice were studied at two time points, 3 weeks and 9 weeks of
age. For the Huntington’s disease model, two genotypes R6/2 KO and WT mice
were studied at 9 weeks of age. In each biological condition, 4 to 6 replicates
were used. Table 5.1 summarizes the experimental design and the repartition of
array numbers between the experimental groups.

A total of 30 arrays were used, each having 22960 probesets (representing
genes) including controls. An expression level is associated with every gene and
for each array. The 30 expression levels of a given gene form its profile. It was
shown in [1] that the retinal phenotype of the KO R7E and R6/2 correlates with
loss of expression for many known genes. At the same time, gain of expression was
observed for other genes. Results in [1] were obtained after a 2-by-2 comparison of
data in experimental groups using Wilcoxon-Mann-Whitney sum rank test, and
by searches in biological databases. Here, we used FCM to cluster gene profiles
and then focused our attention on some interesting cluster profiles. From the
22690 probesets in the dataset, 3020 were selected as follows. Using the CEL
format files generated by the Affymetrix GeneChip Operating Software [19], we
used Robust Multi-array Average (RMA) [20] for normalization and association
of expression levels to probesets. Then, we selected probesets having at least
one expression level greater than 6.5 in the 30 arrays. The value 6.5 corresponds
to the median of all expression levels and was used as the minimum detection
threshold for each probeset. A total of 13716 probesets passed out of this heuristic
filter. We finally used an ANalysis Of VAriance (ANOVA) statistical test to
search for differentially expressed probesets between the 6 experimental groups.
The list of the final 3020 genes were obtained using a p-value threshold of 0.005
which allows to have a False Discovery Rate (FDR) of 2% [5]. Before clustering,

Table 5.1. Array numbers and their repartition between the 6 exprimental groups

# phenotype (arrays) mice age

1 R6/2:WT (71, 73, 79, 86) 9 weeks
2 R6/2:KO (70, 80, 82, 83) 9 weeks
3 R7E:WT (87, 88, 89, 90, 93) 3 weeks
4 R7E:KO (207, 208, 212, 213, 214) 3 weeks
5 R7E:WT (55, 56, 57, 66, 67, 68) 9 weeks
6 R7E:KO (174, 179, 180, 186, 189, 190) 9 weeks
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data are standardized, i.e. transformed such that each gene has zero mean value
and a standard deviation equal to one. This transformation allows performing
appropriate comparison of profiles from genes which may have totally different
mean expression levels.

We used Visual C++ to compute cluster membership values and centers and
Matlab for generating the figures. A user friendly package of the FCM algorithm
(Flora) can be found at http://www-microarrays.u-strasbg.fr/Flora/ index.html.
However, only the case α = 2, square of Euclidean distance, is currently available
in this software. The C++ code developed for the results presented here will be
added to the Flora package.

5.3.1 Results for 2-Way Data

We first considered the data associated with the selected 3020 probesets as a
2-way dataset. Hence, this dataset has a dimension equal to the number of
arrays, J = 30. We began the analysis by estimating an upper bound for the
fuzzy parameter for two values of α. We obtained 1.37 and 1.75 using Euclidean
metric and for two values of the parameter α equal to 2.0 and 4.0, respectively.
To have an estimation of the number K of clusters in the dataset, we used
hierarchical agglomerative clustering, then from the dendrogram, we decided to
choose K = 30.

We ran the FCM by setting the fuzzy parameter to m = 1.2. To show the
advantage of using the parameter α, we ran the FCM algorithm with two values
of α: 2 (square of Euclidean metric) and 4.0. The convergence threshold was
set to 0.001, meaning that the algorithm stops if the Frobenius norm of the
matrix corresponding to the difference between two consecutive iterations of
membership value matrices is lesser than this threshold. The algorithm will also
stop if the number of iterations exceeds a pre-specified maximum number of
iterations (200 ). 20 runs were used with random initial solution for each and the
best run result was kept. This allows the handling of the possible convergence of
the FCM algorithm to a local solution. We searched the maximum membership
value associated to each gene. Figure 5.1 corresponds to histograms of these
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Fig. 5.1. Histograms of maxima membership values attributed to genes when using
α = 2 (circle line plot) and α = 4 (star line plot). For the same distance metric, we
increased the maxima of membership values by increasing the value of α.
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maxima for the two values of α. This figure shows that we have more genes
having small membership values for α = 2 than for α = 4.

We used a threshold level on the membership values to form clusters. We did
not adopt a solution which consists of assigning each gene to a group where the
membership value is the highest. Indeed, we wanted to have on the one hand,
groups of genes tightly related and, on the other hand, genes having the tendency
to belong to more than one group. Median values of the first maxima membership
values associated to the 3020 genes are 0.4644 and 0.8735, respectively, for α = 2
and α = 4. We fixed the membership values threshold to 0.7. This value allows
grouping 70% of the genes in dataset when α is set to 4. Note that only 22% of
the 3020 genes in the dataset will be grouped if the same threshold is used with
square Euclidean distance (α = 2). The profiles of groups obtained are given in
Figure 5.2.

The profile of cluster #27 shows a clear correlation with the retinal phenotype
of the KO R7E and R6/2 genotypes. For this cluster, the expression level of the
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Fig. 5.2. Profiles of the 30 clusters obtained with FCM, m = 1.2, Euclidean distance,
α = 4, membership values threshold = 0.7. For each cluster we have 3 curves corre-
sponding to the mean profile ± the standard deviation. Each cluster is identified by a
# and its total number of genes, e.g., cluster 27 contains 133 genes. For each cluster,
a point on the x-axis corresponds to an array number. Arrays are ordered in the same
way as they appear in Table 5.1, i.e. 71, 73, 79, 86 70, 80, 82, 83, 87, 88, 89, 90, 93,
207, 208, 212, 213, 214, 55, 56, 57, 66, 67, 68, 174, 179, 180, 186, 189, 190).
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0 10 20 30
−3

−2

−1

0

1

2

3
27  133

0 10 20 30
−3

−2

−1

0

1

2

3
19  79

Fig. 5.3. Zoomed profiles of cluster #27 and #19 obtained with FCM and membership
threshold set to 0.7

WT mice is remarkably higher than the expression level for the KO mice. Cluster
#6 shows a similar profile. These two clusters contain all genes (including Crx,
Nrl and Nr2e3 ) described in [1] and which are involved in the phototransduction
function and morphogenesis of differentiated rod photoreceptors. Cluster #2 and
#16 contain genes (including Stat3 ) having an expression level higher in the KO
mice than in the WT mice, especially for mice of age 9 weeks. Cluster #19
shows, however, profile of genes which have especially higher expression level
in the R7E KO genotype than in the corresponding WT mice at age 9 weeks.
Figure 5.3 shows zoomed profiles for cluster #27 and #19.

5.3.2 Functional Enrichment

To verify that the link between probesets in some clusters and the Retina tis-
sue is not a random observation, we used the web-accessible program “Database
for Annotation, Visualization, and Integrated Discovery” (DAVID) [12]. DAVID
allows the functional annotation of a list of genes according to shared biologi-
cal information available in various databases. We first used the list of the 201
probesets in clusters 6 and 27 (see Figure 5.2) and a list of 201 probesets ran-
domly selected from the 22690 of the Affymetrix GeneChip 430A. From the
DAVID web site, http://david.abcc.ncifcrf.gov, we used the “Functional Anno-
tation Tool” and uploaded our probeset lists one at a time.

The 201 probesets in the list coming from clusters 6 and 27 were associated
with 172 DAVID identifiers, among them, 150 (87%) were noted as expressed in
tissues. The 201 probesets randomly selected were associated with 214 DAVID
identifiers. Among them, 162 (75%) were noted as expressed in tissues. We down-
loaded the “Tissue Expression” results in text files for local analysis which con-
sisted of counting the number of probesets expressed in the Retina and/or the
Eye tissue. We found 93 probesets (62%) and 17 probesets (10.5%), respectively,
for the list coming from clusters 6 and 27 on the one hand, and the list randomly
selected on the other hand. More interestingly, there were 20 probesets (13.3%),
in the list coming from clusters 6 and 27, expressed only in the Retina and/or
the Eye tissue. At the same time, among the 17 probesets coming from the list
randomly selected, none were expressed in only the Retina and/or the Eye tissue.
These results are summarized in Table 5.2. In this table, we also summarized
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Table 5.2. Results obtained using DAVID Functional Annotation Tool

Probesets origin C6+C27 Random C2+C16+C19 All clusters
(number) (201) (201) (248) (2124)

Expressed in tissue 150 162 187 1525
Contain {Retina, Eye} 93(62%) 17(10.5%) 39(21%) 414(27%)
Only {Retina, Eye} 20(13.3%) 0(0%) 0(0%) 42(2.7%)

results obtained using probesets coming from clusters 2, 16 and 19 on one hand,
and from all clusters (membership values threshold was set to 0.7) on the other
hand.

These results show that a random selection of probesets leads to a small
number (10.5%) of genes expressed in the Retina/ Eye tissue. They also show
that our initial filter allows the selection of probesets related (27%) to the
Retina/ Eye tissue. To verify that the probesets in clusters 6 and 27 are sig-
nificantly related to the Retina/ Eye tissue, we used the probability density
function of the hypergeometric distribution. The computations were performed
using the R environment (see http://www.r-project.org/ ). From the values in Ta-
ble 5.2, the probability of having 93 probesets or more expressed in the Retina/
Eye tissue is p = phyper(93,414,1525-414,150,lower.tail=FALSE)=5.308E-22.
This probability value is highly significant and shows that the probesets in
clusters 6 and 27 are tightly related to the Retina/ Eye tissue. The p-value
associated to probesets in clusters 2, 16 and 19 is p = phyper(39,414,1525-
414,187,lower.tail=FALSE)=0.9778.

5.3.3 Results for a 3-Way Dataset

For the results presented in this subsection, only data for the R7E model were
used. In these data, two biological conditions (WT and KO) were compared at
two time points (3 weeks and 9 weeks mice) leading to a 3-way dataset. The total
number of probesets (genes) is unchanged, I = 3020. However, we have J1 = 10
and J2 = 12 corresponding to the number of arrays used in the comparison
with 3 weeks age mice and with 9 weeks age mice, respectively. We ran the
alternating optimization FCM algorithm described in Equations (5.19)-(5.21)
for a 3-way dataset. As previously, we used the same tuning parameters but the
number of cluster K was set to 12. This is because we decreased the complexity
of the dataset and we wanted to highlight more relevant groups. The histogram
in Figure 5.4 shows the distribution of the maxima of the membership values
obtained for the 3020 genes. 2275 genes (more than 75% of genes in the dataset)
have a maximum membership value greater than 0.7. Using 0.7 as a membership
value threshold, we obtained the cluster profiles in Figures 5.5 and 5.6 for the 3
weeks age mice and 9 weeks age mice, respectively. Each cluster # in Figures 5.5
and 5.6 has the same number of genes, since the same membership values are
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Fig. 5.4. Histogram of maxima membership values attributed to genes when
using α = 4
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Fig. 5.5. 3 weeks age mice, profiles of the 12 clusters obtained with FCM, m = 1.2,
Euclidean distance, α = 4, membership values threshold = 0.7. For each cluster we have
3 curves corresponding to the mean profile ± the standard deviation. Each cluster is
identified by a # and its total number of genes. The x-axis refers to an array number,
i.e. 87, 88, 89, 90, 93, 207, 208, 212, 213, 214).

attributed. Differences are, however, observed for profiles associated with the 3
weeks age mice and 9 weeks age mice.

The expression level of cluster #9 is remarkably higher in the WT mice than
in the KO mice for the two time points (3 weeks and 9 weeks age mice). This
cluster contains the three genes (Crx, Nrl and Nr2e3) known to be related to
retinal dystrophy or degenerative disorders. Many other genes (Rho, Pde6g,
Txnl, Rdh12, Rs1 and Sag) related to retina disorder and not reported in [1] are
present in this cluster. Cluster #5 has a profile similar to that of cluster #9.
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Fig. 5.6. 9 weeks age mice, profiles of the 12 clusters obtained with FCM, m = 1.2,
Euclidean distance, α = 4, membership values threshold = 0.7. For each cluster we have
3 curves corresponding to the mean profile ± the standard deviation. Each cluster is
identified by a # and its total number of genes. The x-axis refers to an array number,
i.e. 55, 56, 57, 66, 67, 68, 174, 179, 180, 186, 189, 190).

However, the first array (#55 and #87) of this cluster has, on average, a different
value compared to those of the same group. We consulted the wet lab results
for these arrays and found that, on average, the expression level of array #87
was lower than those of the other arrays, meaning that the RMA normalization
and signal summarization seem to be inadequate for correcting certain technical
problems which are encountered during data generation.

Cluster #8 has an interesting profile. In the 9 weeks age mice, its expression
level is remarkably higher in the KO mice than in the WT mice. This situation
is not clear for the 3 weeks age mice. Other clusters, (#12, #11, and #7) have
profiles similar to that of cluster #8.

5.4 Conclusion

In this chapter, the Fuzzy C-Means clustering algorithm was used for analyzing
microarray gene expression data. We outlined the concern of clustering gene
expression data and then explained why we chose FCM. Then, this clustering
method was presented in the context of 2-way and 3-way datasets. We especially
discussed the choice of tuning parameters for high dimensional datasets.

We introduced a parameter for transformation of distances between all pairs
of dataset features (genes) and hence allowed more contrast for detection of group
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structures, if any, in high dimensional datasets. The parameter α for transform-
ing distances can also be used for small dimensional datasets. For results, not
shown here, we observed a fast convergence of the FCM algorithm when α = 4,
in comparison to the classical choice where α is set to 2.

Using some assumptions on the data distribution, we showed that the coef-
ficient of variation (cv) of distances between all pairs of samples in a dataset
is related to the data dimension. More precisely, the cv of Euclidean metric
distance decreases when data dimension grows.

We used a microarray data recently published [1] to show performance of the
FCM clustering method. These data were generated by the core facility Biopuces
de Strasbourg (http://www-microarrays.u-strasbg.fr). We were able to recover
clusters containing the same genes previously described. More interestingly, we
also found other genes sharing the same biological function of known genes and
not reported in [1]. We used a web-based program publicly available to associate
functional enrichment to some genes in clusters having interesting profiles. We
showed that genes in two of the clusters are primarily expressed in the Retina
tissue and this cannot due to chance (small probability value).
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Summary. The advent of DNA microarray technology has supplied a large volume of
data to many fields like machine learning and data mining. Gene expression profiles are
composed of thousands of genes at the same time, representing complex relationships
between them. In this context, intelligent support is essential for managing and inter-
preting this great amount of information. One of the well-known constraints specifically
related to microarray data is the large number of genes in comparison with the small
number of available experiments. In this situation, the ability of design methods ca-
pable of overcoming current limitations of state-of-the-art algorithms is crucial to the
development of successful applications. In this chapter we present a flexible framework
for the task of feature selection and classification of microarray data. Dimensionality
reduction is achieved by the application of a supervised fuzzy pattern algorithm able to
reduce and discretize existing gene expression profiles. An informed growing cell struc-
tures network is proposed for clustering biological homogeneous experiments starting
from the previous simplified microarray data. Experimental results over different data
sets containing acute myeloid leukemia profiles show the effectiveness of the proposed
method.

6.1 Introduction

The advent of microarray technology has become a fundamental tool in genomic
research, making it possible to investigate global gene expression in all aspects
of human disease. In particular, cancer genetics based on the analysis of cancer
genotypes, provides a valuable alternative to cancer diagnosis in both theory and
practice [14]. In recent years, there has been an explosion of methods that analyze
gene expression arrays to produce long lists of genes that express differentially
in distinct cellular states. Gene expression arrays provide a great amount of
valuable biological information, although it represents only a suspicion about
the processes taking place within the whole cell.

Y. Jin and L. Wang (Eds.): Fuzzy Systems in Bio., STUDFUZZ 242, pp. 103–125.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Recent studies in human cancer have demonstrated that microarrays can be
used to develop a new taxonomy of cancer, including major insights into the
genesis, progression, prognosis, and response to therapy on the basis of gene ex-
pression profiles [26]. The automatic classification of cancer patients has been a
promising approach in cancer diagnosis since the early detection and treatment
can substantially improve the survival rates. For this task, a number of success-
ful machine learning approaches have been proposed in the literature, includ-
ing support vector machines (SVM) [4], artificial neural networks (ANN) [34,
21], k-nearest neighbor (k-nn) [25] and hierarchical clustering [1] methods,
among others.

Since the number of examined genes in an experiment runs to the thousands,
a major problem with the application of existing clustering and classification
techniques is the huge number of attributes (genes) in the existing datasets. Gene
reduction in microarray data is extremely important because: (i) it generally
reduces the computational cost of machine learning techniques, (ii) it usually
increases the accuracy of classification algorithms [6] and (iii) it provides clues
to researches about genes that are important in a given context (i.e. biomarkers
for certain diseases).

In this context, several methods derived from machine learning and multivari-
ate statistical analyses have been applied to gene selection/dimension reduction
in the field of microarray data. On the one hand, there are works on applying ge-
netic algorithms [23, 7], wrapper approaches [2], support vector machines [15, 5]
or spectral biclustering [24] to achieve significant reduction rates. On the other
hand, the utilization of partial least squares (PLS), sliced inverse regression
(SIR) or principal component analysis (PCA) have been shown highly useful
for classification with gene expression data [6]. Other approaches focus their at-
tention on redundancy reduction and feature extraction [19, 28], as well as the
identification of similar gene classes making prototypes-genes [17]. One way or
another, the selected method has to pursue two main goals: (i) reduce the cost
and complexity of the classifier and (ii) improve the accuracy of the model.

In recent years, the number and variety of applications of fuzzy logic have
increased significantly. The applications range from consumer products such as
cameras, camcorders, washing machines, and microwave ovens to industrial pro-
cess control, medical instrumentation, and decision-support systems. But, what
is meant by fuzzy logic?. In a narrow sense, fuzzy logic represents a logical
system, which is an extension of multi-valued logic. However, from a broader
perspective fuzzy logic is almost synonymous with the theory of fuzzy sets, a
theory which relates to classes of objects with unsharp boundaries in which
membership is a matter of degree [31, 10]. Another basic concept in fuzzy logic,
which plays a central role in most of its applications, is that of a fuzzy if-then
rule or, simply, fuzzy rule. Although rule-based systems have a long history of
use in AI, what is missing in such systems is a mechanism for dealing with fuzzy
consequents and fuzzy antecedents. In fuzzy logic, this mechanism is provided
by the calculus of fuzzy rules.
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In this context, a trend that is growing in visibility relates to the use of
fuzzy logic in combination with neurocomputing and genetic algorithms. More
generally, fuzzy logic, neurocomputing, and genetic algorithms may be viewed
as the principal constituents of what might be called soft computing [32]. Unlike
the traditional hard computing, soft computing accommodates the imprecision
of the real world. In this sense, the guiding principle of soft computing is to
exploit the tolerance for imprecision, uncertainty, and partial truth to achieve
tractability, robustness, and low solution cost.

In this work, a gene fuzzy discretization process is proposed prior to the
application of a supervised discriminant fuzzy pattern generation algorithm. The
similitude between existing fuzzy labels (representing genes) is later used for
defining a metric that will be applied for boosting cell distance computation
in our GCS (Growing Cell Structures) network. The combination of biological
knowledge (drawn from the gene selection process) into the operation of the
neural network powers its self explanatory capability. Results over two different
microarray datasets are reported showing the feasibility of the proposed method
combination.

The rest of the chapter is organized as follows. The next section describes the
proposed fuzzy pattern algorithm for reducing and discretizing gene expression
data. Then, we present and explain in detail the improved GCS neural net-
work. This lays the groundwork for introducing our geneCBR tool for multiple-
microarray analysis in which the proposed techniques were implemented. Later,
we present the case study and analyze the evaluation results. The chapter con-
cludes with a discussion of the main themes.

6.2 Filtering Superfluous Genes

Classical reduction dimension methods applied to microarray data tend to iden-
tify differentially expressed genes from a set of microarray experiments [33]. A
differentially expressed gene is a gene which has the same expression level for
all examples of the same class, but different for those examples belonging to
different classes. The relevance value of a gene depends on its capacity of be-
ing differentially expressed. However, a non-differentially expressed gene will be
considered irrelevant and will be removed from the classification process even
though it might well contain information that would improve the classification
accuracy. For this reason, the task addressed here is slightly different from that
of feature selection for gene expression based classifiers [18, 30].

The fuzzy set concept is crucial to perform our analysis in terms of knowledge
representation, since this notion is used to define the adjectives that describe
the different expression levels of a gene given by the raw microarray data. We
are not interested in the construction of a fuzzy inference model, where the
system provides a mapping from a given input to an output using fuzzy logic
in terms of a list of fuzzy rules (if-then statements) [20, 16, 29]. Instead of this,
we are interested in the representation of expression levels of a gene as a vague
concept, where it can be admitted the possibility of partial membership in it.
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The fuzzy set notion is intimately related to the fuzzy logic, where the truth
of any statement becomes a matter of degree. The major advantage that fuzzy
logic offers is the ability to reply to a yes-no question with a not-quite-yes-or-not
answer. Humans do this kind of thing all the time, but it is a rather new trick
for computers. The way in which each point of the input space is mapped to a
degree of membership (between 0 and 1) is given by a membership function.

The function itself can be an arbitrary curve whose shape can be defined
as a function that is suitable from the point of view of simplicity, convenience,
speed, and efficiency. In this work, two types of membership functions are used.
Firstly, a polynomial approximation of a Gaussian membership function which
achieve smoothness for the degree of membership of ‘normal’ expression levels of
a gene, and secondly, a polynomial approximation of two sigmoidal membership
functions which are able to specify asymmetric membership functions for the
‘low’ and ‘high’ expression levels.

The whole algorithm comprises of three main steps. First, we represent each
gene value in terms of one from the following linguistic labels: Low, Medium,
High and their intersections LowMedium and MediumHigh. The output is a
fuzzy microarray descriptor (FMD) for each existing sample (microarray). The
second phase aims to find all genes that best explain each class, constructing
a supervised fuzzy pattern (FP) for each pathology. Starting from the previous
obtained FPs, our proposed method is able to discriminate those genes that can
provide a substantial discernibility between existing classes, generating a unique
discriminant fuzzy pattern (DFP).

6.2.1 Discretizing Microarray Data Using Fuzzy Labels

Given a set of n expressed sequence tags (ESTs) or genes, the discretization
process is based on determining the membership function of each gene to the
three linguistic labels Low, Medium and High. These membership functions
are defined by a polynomial function that approximates a Gaussian member-
ship function, where its center and amplitude depend on the mean and on the
variability of the available data, respectively (see Figure 6.1). The Medium mem-
bership function is considered symmetric whereas the Low and High functions
are asymmetric in the extremes (see [11] for more details about the mathematical
background).

Our method defines a threshold value, θ, which need to be established in order
to discretize the original data in a binary way. For concrete values of threshold
θ, specific zones of the gene values domain for which none of the labels will be
activated can exist (neighbor region of the intersection of labels Medium and
High in Figure 6.1).

This fact must be interpreted as the specific value of the feature is not enough
to assign it a significant linguistic label at the significance degree of membership
fixed by threshold θ. On the other hand, one value can simultaneously activate
two linguistic labels, since at the significance level given by θ, any assignment of
the measure to a linguistic label is significant (neighbor region of the intersection
of labels Low and Medium in Figure 6.1).
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Fig. 6.1. Shape of membership functions for a specific gene and possible assigned
labels given a threshold θ = 0.7

6.2.2 Assembling a Supervised Fuzzy Pattern of Representative
Genes

A fuzzy pattern is a higher concept built from a set of FMDs belonging to the
same class, and it can be viewed as a prototype of them. The FP corresponding
to a given class is constructed selecting the genes with a label which has a
relative frequency of appearance equal to or greater than a predefined ratio π
(0 < π ≤ 1). Therefore, the FP captures relevant and common information
about the discretized gene expression levels of the FMDs that summarizes.

The predefined ratio π controls the degree of exigency for selecting a gene
as a member of the pattern, since the higher the value of π, the fewer the
number of genes which make up the FP. The pattern’s quality of fuzziness is given
by the fact that the labels, which make it up, come from the linguistic labels
defined during the transformation into FMD of an initial observation. Moreover,
if a specific label of a gene is very common in all the examples belonging to a
given class, this feature will be selected to be included in the FP. Therefore, a
frequency-based criterion is used for selecting a gene as part of the fuzzy pattern.

6.2.3 Recognizing Valuable Genes

The goal of gene selection is to determine a reduced set of genes, which are useful
to classify new samples given the existing knowledge. Now, we are interested in
those genes that allow us to discriminate a given class with regard to the others.

Here, we introduce the notion of discriminant fuzzy pattern with regard to a
collection of FPs. A DFP version of a FP only includes those genes that can serve
to differentiate it from the rest of the patterns. Therefore, the computed DFP
for a specific FP is different depending on what other FPs are compared with
it. It’s not surprising that the genes used to discern a specific class from others
(by mean of its DFP) will be different if the set of rival classes also changes. The
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pseudo code algorithm used to compute the final DFP containing the selected
genes can be consulted on [9].

6.3 Clustering Biologically Homogeneous Gene
Expression Data

In this work we propose the use of our DFP filter as a gene selection strategy to
generate the input data for a GCS neural network. The target goal of the GCS
network is to group together those samples (microarrays) that are most similar,
but only taking into account the genetic information provided by the previously
selected genes.

6.3.1 Growing Cell Structures Networks

GCS neural networks [12] constitute an extension to Kohonen’s self-organizing
maps [22], and are only one member in the family of self-organizing incremen-
tal models. GCS networks have the advantage of being able to automatically
construct the network topology, and to support easy visualization of semantic
similarity in high-dimensional data. More importantly, the extracted knowledge
that is relevant to clustering can provide meaningful explanations for the clus-
tering process and useful insight into the underlying domain.

It is important to highlight that the final goal of our GCS network is to clus-
ter all patients that are genetically similar given a filtered and discretized group
of genes (FMDDFP ), and without taking into account their previous assigned
classes. Our proposed method aims to find new relations between the patients even
now unknown. Therefore, it is possible and not contradictory to group together
patients suffering different (but genetically related) diseases. Such a topology has
the added advantage that inter-cluster distances can be precisely quantified. Since
such networks contain explicit distance information, they can be used effectively
to (i) represent an indexing structure which indexes sets of related patients and
to (ii) serve as a similarity measurement between individual patients.

To illustrate the working model of the GCS network used in our framework, a
two-dimensional space is used, where the cells (neurons) are connected and orga-
nized into triangles [13]. Each cell in the network is associatedwith a weight vector,
w, of the same dimension as the previous selected group of genes (FMDDFP ). At
the beginning of the learning process, the weight vector of each cell is initialized
with random values [13]. The basic learning process in a GCS network consists of
topology modification and weight vector adaptations carried out in three steps.

In the first step of each learning cycle, the cell c, with the smallest distance
between its weight vector, wc, and the actual FMDDFP is chosen as the winner
cell or best-match cell. The selection process is succinctly defined by using the
Euclidean distance measure as indicated in Expression (6.1) where O denotes
the set of cells within the structure at a given point in time.

c : ‖FMDDFP − wc‖ ≤ ‖FMDDFP − wi‖ ; ∀i ∈ O (6.1)
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The second step of the learning process consists of the adaptation of the weight
vector, wc, of the winning cell, and the weight vectors, wn, of its directly con-
nected neighboring cells, Nc, by means of Equations (6.2) and (6.3).

wc(t + 1) = wc(t) + εc(FMDDFP − wc) (6.2)

wn(t + 1) = wn(t) + εn(FMDDFP − wn); ∀n ∈ Nc, (6.3)

where εc and εn represent the learning rates for the winner and its neighbors
respectively, belonging to the [0, 1] interval, and Nc stands for the set of direct
neighbor cells of the winning cell, c.

In the third step, a signal counter, τ , is assigned to each cell, which reflects
how often a cell has been chosen as winner. Equations (6.4) and (6.5) define
how the signal counter is updated with parameter α acting as a constant rate of
counter reduction for the rest of the cells at the current learning cycle, t.

τc(t + 1) = τc(t) + 1 (6.4)

τi(t + 1) = τi(t) − α τi(t); i �= c (6.5)

Growing cell structures also modify the overall network structure by inserting
new cells into those regions that represent large portions of the input data (ge-
netically similar patients), or removing cells that do not contribute to the input
data representation. The cell deletion policy has not been used in our work due
to the lack of great amounts of data. The adaptation process is then performed
after a fixed number of learning cycles of input presentations (epochs). There-
fore, the overall structure of a GCS network is modified through the learning
process by performing only cell insertion. Equations (6.6), (6.7) and (6.8) define
the rules that govern the insertion behavior of the network.

hi = τi/
∑

j
τj ; ∀i, j ∈ O (6.6)

q : hq ≥ hi ; ∀i ∈ O (6.7)

r : ‖wr − wq‖ ≥ ‖wp − wq‖ ; ∀p ∈ Nq. (6.8)

Insertion starts with selecting the cell, which served the most often as the winner,
on the basis of the signal counter, τ . The cell, q, with the highest relative counter
value, h, is selected. The neighboring cell, r, of q with the most dissimilar weight
vector is determined using Expression (6.8). In this expression, Nq denotes the
set of neighboring cells of q. A new cell, s, is inserted between the cells q and
r, and the initial weight vector, ws, of this new cell is set to the mean of the
two existing weight vectors, wq and wr. Finally, the signal counters, τ , in the
neighborhood, Ns, of the newly inserted cell, s, are adjusted. The new signal
counter values represent an approximation to a hypothetical situation where s
would have been existed since the beginning of the process.
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6.3.2 Boosting Cell Distance Computation

An important issue in the GCS network operation is the distance calculation be-
tween two cells representing two different classes in the gene expression domain.
In this work, we propose to hybridize our GCS network by using biological knowl-
edge for distance computation. Every time the network needs to compute the
distance between two nodes or one node and the actual input pattern FMDDFP ,
Equation 6.1 is used.

Given that each position in the weight vector wc stores a gene expression
value for a selected gene, we can use the similarity between linguistic labels as a
measure of the relation between each position in wc and the corresponding value
in the FMDDFP pattern, since we assume that

‖X− Y‖ ∝ 1
∑

sim(Xi, Yi)

From conventional set theory, the similarity among two sets can be computed
by the ratio between the cardinal of the intersection of the two sets and the
cardinal of the reference set. In this case, it has been considered that the fuzzy
intersection of two fuzzy sets A and B (represented by its membership functions
μA and μB, respectively) is given by the application of the min operator to the

Fig. 6.2. Interpretation of similarity among fuzzy sets
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two membership functions, namely, μA∩B = min {μA, μB}. Since the cardinality
operator can be replaced by the integral operator, the metric sim(A, B) can be
computed by Equation (6.9), where similarity ranges from 0 (total dissimilarity)
to 1 (total similarity). A graphical interpretation of the similarity among fuzzy
sets can be viewed in Figure 6.2.

sim(A, B) =
|A ∩ B|
|A| =

∫ x2

x1
min {μA(x), μB(x)} dx
∫ x2

x1
μA(x)dx

(6.9)

In Equation (6.9) the area representing the intersection of two fuzzy sets
(
∫ x2

x1
min {μA(x), μB(x)} dx) is calculated by parts. In the general case, it is nec-

essary to take into consideration four different zones as depicted in Figure 6.3,
where cL, cM stand for the centers of membership functions Low and Medium
respectively, and λL, λM represent the amplitude of these functions. The join
point xcut is calculated by means of Equation (6.10).

Fig. 6.3. Intersection of linguistic labels Low and Medium without adjustment

xcut =
cLλM + cMλL

λLλM
(6.10)

At this point, the analytical calculation of the integrals must be made. After
some calculus, facilitated by the fact that the defined membership functions
are polynomial, a closed form for these integrals is obtained. As it is shown in
Figure 6.3 the total area under the curve can be split into two sections,
and therefore, the similarity among Low and Medium labels is given by
Expression (6.11):
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sim(L, M)=

∫ cL+λL

cM−λM
min(μL(x), μM (x))dx
∫ cL+λL

cL−λL
μL(x)dx

=

∫ xcut

xmin
min(μL(x),μM(x))dx+

∫ cL+λL

xcut
min(μL(x),μM(x))dx

∫ cL+λL

cL−λL
μL(x)dx

(6.11)

where xcut is given by Expression (6.10) and xmin = max {cL − λL, cM − λM}.
As it is mentioned previously, the mathematical definitions of membership

functions μL(x), μM (x),and μH(x)can be found in [11], but they are not included
here due space limitations. The following results, Expressions (6.12) to (6.15),
are derived from these membership functions. Firstly, the area under the μL(x)
membership function can be computed directly, as shown below:

∫ cL+λL

cL−λL

μL(x)dx =
∫ cL

cL−λL

dx +
∫ cL+λL/2

cL

μL(x)dx +
∫ cL+λL

cL+λL/2

μL(x)dx

= λL + 5
12λL + 1

12λL = 3
2λL. (6.12)

In the same way, the area under the μM (x) membership function can be also
computed efficiently:

∫ cM+λM

cM−λM

μM (x)dx = 2

{∫ cM+λM /2

cM

μM (x)dx +
∫ cM+λM

cM+λM /2

μM (x)dx

}

= 2
{

5
12λM + 1

12λM

}
= λM . (6.13)

Finally, and assuming that any expression level in the rangec − λ < x < c + λ,
where the membership degree is greater than 0, can be expressed in parametric
form by x = c+ t ·λ with t ∈ [−1, 1], the integral below the curve branch of each
one of the considered membership functions is given by Expression (6.14).

∫ c+tλ

c

μ(x)dx =
∫ c

c−tλ

μ(x)dx

=

⎧
⎨

⎩

t
(
1 − 2

3 t2
)
λ, if 0 ≤ t ≤ 1

2
5
12λ + 2

3

(
t − 1

2

) (
t2 − 5

2 t + 7
4

)
λ, if 1

2 < t < 1
1
2λ, if t ≥ 1

(6.14)

Therefore, the similarity among Low andMedium labels given by Equation (6.11)
can be rewritten as follows:

sim(L, M)=
{

1
2λL − ∫ cL+tcutλL

cL
μL(x)dx

}

+
{∫ cM

cM−tminλM

μM (x)dx−
∫ cM

cM−tcutλM

μM (x)dx

}

/ 3
2λL, (6.15)
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where tcut = (cM − xcut)/λMand tmin = (cM − xmin)/λM . Solving the partial
integrals in this expression with the result given in Equation (6.14), the entire
integral can be computed in closed form.

The values of similarity among all membership functions belonging to each
gene are precomputed at the same time that the parameters of these functions
(centers and amplitudes) are determined.

6.4 Integrating Fuzzy Patters and GCS Networks Inside
GENECBR

In light of the fast growth in DNA technology there is a compelling de-
mand for tools able to perform efficient, exhaustive and integrative analyses
of multiple microarray datasets. Specifically, what is particularly evident is
the need to link the results obtained from these new tools with the wealth of
clinical information. The final goal is to bridge the gap existing between biomed-
ical researchers and pathologists or oncologists providing them with a com-
mon framework of interaction. To overcome such difficulty we have developed
geneCBR [8], a freely available software tool that allows the use of combined
techniques that can be applied to gene selection, clustering, knowledge extrac-
tion and prediction1. In diagnostic mode, geneCBR employs a case-based rea-
soning model that incorporates a set of fuzzy prototypes for the retrieval of
relevant genes, a growing cell structure network for the clustering of similar
patients and a proportional weighted voting algorithm to provide an accurate
diagnosis.

geneCBR was implemented to support integrative work for inter-disciplinary
research groups working together in order to design, implement and test new
techniques for supervised and unsupervised cancer classification and clustering.
Figure 6.4 (left) shows this user-dependent architecture:

• Pathologists or oncologists : geneCBR (diagnostic mode) implements an ef-
fective and reliable system able to diagnose cancer subtypes based on the
analysis of microarray data using a CBR architecture (see Figure 6.4(right)).

• Biomedical researches : geneCBR (expert mode) offers a core workbench for
designing and testing new techniques and experiments.

• Programmers: geneCBR (programming mode) includes an advanced edi-
tion module for run-time modification of previous coded techniques based
on BeanShell2.

geneCBR is written entirely in Java 1.5 and portable across multiple operating
systems and platforms. It is simple to install and easy to update through the
utilization of Java Web Start technology3 which ensures the execution of the last
available version.

1 http://www.genecbr.org/
2 http://www.beanshell.org/
3 http://java.sun.com/products/javawebstart/
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Fig. 6.4. (left) Logic architecture and interfaces of geneCBR system. (right) Life-cycle
of geneCBR system working in diagnostic mode.

6.4.1 Core Functions and Features

geneCBR expert mode can load microarray expression datasets from any plat-
form as input, as long as the data coming from different experiments have been
summarized into a matrix of normalized expression values (microarray base).
The input file should contain text fields with comma as separator and can hold
lines starting with the number sign (‘#’) for commenting meta-data information.
geneCBR includes (i) a co-expression analysis module, (ii) a discriminant ex-
pression analysis module, (iii) a supervised/unsupervised classification module
and (iv) various add-ins such us the net explorer module.

The co-expression analysis module is used to identify sets of genes simultane-
ously co-expressed in multiple datasets belonging to patients suffering the same
kind of cancer. Briefly, given a set of microarrays which are well classified, for
each class a fuzzy pattern (FP) can be constructed from the fuzzy microarray de-
scriptor (FMD) associated with each one of the microarrays (see Section 6.2.2).
The FMD is a comprehensible description for each gene in terms of a linguis-
tic label. Figure 6.5 shows how these membership functions are calculated by
geneCBR.

The discriminant expression analysis module is developed to derive sets of
genes expressed differentially in several FPs. The objective is to select those
genes that allow us to discriminate a new microarray from one class with regard
to the others. Here we introduce the notion of discriminant fuzzy pattern (DFP)
with regard to a collection of fuzzy patterns (see Section 6.2.3). A DFP version
of a FP only includes those genes that can serve to differentiate it from the rest
of the patterns. A consequence is that the computed DFP for a specific FP is
different depending on which other FPs are compared with it. It’s not surprising
that the genes used to discern a specific class from others (by mean of its DFP)
will be different if the set of rival classes also changes.
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Fig. 6.5. Fuzzy membership functions representing each gene in the microarray data
base

In the supervised and unsupervised clustering module the DFP derived from
the discriminant expression analysis module serves as a filter to select a reduced
number of relevant and representative genes, allowing other artificial intelligence
techniques to be able to tackle the high-dimensional data. geneCBR incorpo-
rates a GCS neural network able to cluster all patients that are genetically similar
given a selected group of genes and without taking into account their previous
assigned classes (see Section 6.3.1). Figure 6.6 shows a diagram of the whole
algorithm including the fuzzy systems and the GCS network.

The practice of biomedical research seeks to comprehend the complexity of
complex organisms, or their subsystems, by combining many different kinds of
data to improve existing knowledge. In current practice, as experts explore their
data, they typically create manual, ad hoc connections among software tools
and databases, cutting and pasting queries, creating temporary files, running
web searches and taking notes. geneCBR includes an Internet explorer module
able to gather additional information (gene annotations, public gene ids, biolog-
ical functions, relevant related articles from PubMed/MedLine, etc.) in order to
facilitate the integration of several sources of information. Figure 6.7 shows a
typical screenshot of the query toolbox integrated within the system. geneCBR
always keeps their local databases updated, downloading new information as
soon as it is available in Internet.
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Fig. 6.6. Integrated flowchart of the proposed algorithm

Every time the biomedical research group finishes their work geneCBR
provides a guided 4-step wizard to setup geneCBR in diagnostic mode (see
Figure 6.8). With this configuration, the application is ready to receive a new
microarray experiment and perform all the programmed tests in only one step.
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Fig. 6.7. Query results and add-ins available in geneCBR

Fig. 6.8. geneCBR wizard for configuring diagnostic mode

6.5 Case Study and Evaluation

Acute myeloid leukemia (AML) is a heterogeneous group of hematological can-
cers with marked differences in their response to chemotherapy. As in many
other human cancers, the diagnosis and classification of AML have been based
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on morphological, cytochemical and immunophenotipic features. More recently,
genetic features have helped to define biologically homogeneous entities within
AML. Karyotype is the most important independent prognostic factor and there-
fore the most useful parameter for stratifying patients into risk groups. Thus,
the favorable outcome group is composed of well-defined subtypes in terms of
cytogenetics: t(15;17), inv(16) and t(8;21).

In contrast, the correlation between morphologic characteristics, genetic ab-
normalities and prognostic features is more inconsistent in the remaining AML.
In this case, there are a significant number of AML patients (above the 50%
of the whole) which are not yet classified into well-characterized subtypes of
AML. In this context, the analysis of gene expression profiles of tumors using
microarray technology has become a powerful tool for classifying hematopoietic
neoplasms [14].

The goal of this study is to test the performance of the proposed technique in
order to classify correctly patients which suffer from a well-known type of AML
and which come from two different studies.

6.5.1 Gene Expression Data Sets

This section describes the available data which have been used in our experi-
mentation. For this purpose we have employed two different data sets.

The first data set (herein, referred to as EUMC-Rotterdam) contains the gene
expression profiles in samples of peripheral blood of bone marrow from 285 pa-
tients with AML using Affymetrix U133A gene chips. This data set was used
by [27] in a study about the identification of useful gene expression profiles
in AML from a prognostic Al point of view. The gene expression profiles of 8
healthy persons are also available in this data set. The data comes from the De-
partment of Hematology, Erasmus University Medical Center, Rotterdam (The
Netherlands) and it is publicly available on-line at the GEO (Gene Expression
Omnibus) web site4.

The second data set (herein, referred to as HC-Salamanca) contains the gene
expression profiles in samples of bone marrow from 62 adult patients with AML
plus a group of 6 healthy individuals. The gene chip Affymetrix U133A was also
used. The data comes from the Hematology Service of the University Hospital
of Salamanca (Spain).

Patients were classified according to the WHO (World Health Organization)
classification into 4 subgroups: a) acute promyelocytic leukemia (APL) with re-
current cytogenetic translocation of type t(15;17), b) AML with recurrent cyto-
genetic translocation of type inv(16), c) acute monocytic leukemia and d) other
AML not well-characterized. The class assignment of the profiles to a particular
subgroup of AML is not available for 11 patients in the EUMC-Rotterdam data
set. The distribution of the two data sets according to this classification is shown
in Table 6.1.

Only the microarrays from the three well-characterized AML subtypes and the
control group (healthy persons) have been used in the experiments. Deal with the
4 http://www.ncbi.nlm.nih.gov/projects/geo/
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Table 6.1. Class assignment of gene expression profiles within available data sets

Data set EUMC-Rotterdam HC-Salamanca

Healthy persons 8 6
APL with t(15;17) 19 10
AML with inv(16) 14 4

Monocytic 64 7
Other AML 177 41
Not available 11 0

microarrays from the “Other AML” group requires an unsupervised technique in
order to clustering similar microarrays and, if some biological evidence supports
it, discover new subtypes of AML. Since our proposed technique is supervised,
it seems reasonable to deal only with gene expression profiles from groups which
are well classified. Therefore, the EUMC-Rotterdam and HC-Salamanca data
sets are reduced to 105 and 27 samples, respectively.

Before the experimentation with those microarrays, the original data sets
must be preprocessed in order to perform a normalization of the available data.
Both data sets have been normalized using the RMA (Robust Multichip Aver-
age) algorithm [3], which is proposed by Affymetrix to perform a background
adjustment, a quantile normalization, and finally a summarization.

6.5.2 Results

The employed methodology splits the available data within a test set and
a training set. Concretely, the HC-Salamanca data set was used to test the
GCS network trained with the available microarrays in the EUMC-Rotterdam
data set.

The proposed technique consists of two differentiated steps. Firstly, the filter-
ing of superfluous genes by mean of the computation of the DFP, and secondly,
the clustering process by mean of the training of a GCS network. Both processes
require the assessment of the θ and π parameters, and the maximum number
of nodes in the GCS network. The two first parameters determine the length of
the DFP and, therefore, the number of meaningful genes which are selected. The
last parameter determines the capacity of clustering of the GCS network.

Over the training data set, a strategy of cross-validation is used in order to
asses these parameters, concretely, a 3-fold stratified cross-validation. In each
round, each fold of the original training set (which acts as an evaluation set)
is used to estimate the predictive accuracy of the GCS network (referred to as
evaluation error) trained from the rest of folds.

Different configurations of θ and π values have been evaluated. For each one
it has been computed the mean of evaluation error for each evaluation data set.
Specifically, we have been evaluated the configurations of the Cartesian product
{0.75, 0.8, 0.85, 0.9, 0.95}×{0.65, 0.7, 0.75, 0.8, 0.85} for the parameters θ and π,
respectively, and for a maximum number of nodes in the GCS network ranging
from 5 to 8.
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Fig. 6.9. Evaluation error vs. θ and π parameters

The evaluation error surface inferred from the experimental results, which de-
pends on the values of θ and π parameters, is shown in Figure 6.9 (upper panel).
The contour plot presented in Figure 6.9 (bottom panel) shows the existence of
several configurations with minimal evaluation error, basically in the quadrant
{0.75, 0.8, 0.85}×{0.65, 0.7, 0.75}.

To refine the assessment of values to the relevant parameters of the proposed
technique, the evaluation error is shown in Figure 6.10. These values depend on
the maximum number of nodes considered in the training process of the GCS
network. The upper graph shows the variation of the evaluation error for differ-
ent levels of the θ parameter, whereas the lower graph shows the variation of the
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Fig. 6.10. Evaluation error vs. number of nodes of the GCS network

Table 6.2. Results of the three tested configurations

Θ Π #featuresin DFP #nodes GCS TrainingError TestError
0.75 0.70 469 7 15/105 0/27
0.75 0.75 258 7 13/105 0/27
0.75 0.75 258 8 13/105 0/27

error for different π values. As it can be seen on Figure 6.10, the configurations
{(0.75, 0.7, 7), (0.75, 0.75, 7), (0.75, 0.7, 8)} seem to be a “good” choice of
parameters θ, π and maximum number of nodes in GCS, respectively.

Starting from the previous experimentation, Table 6.2 shows the results of
the tested configurations taking into account the number of selected genes, the
training error and the test error. In next section we discuss the major issues
about the obtained results in the experimentation process.

6.5.3 Discussion

Firstly, we introduce some comments about the specific results obtained in the
experimentation which has been carried out, and finally, we conclude this section
with general remarks about the proposed technique.

The parameter θ determines the granularity of the fuzzy discretization which
is carried out by the computation of fuzzy patterns for each class. Therefore, it
is quite related to the expressive power of the implicit knowledge representation
imposed by linguistic labels over the numerical data of original microarrays.
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Since the three tested configurations have the same value for parameter θ, now
we are interested in the concrete value of π parameter.

The π parameter controls the frequency threshold that is required to include
a gene in the corresponding FP of a class, and consequently, the length of the
DFP representative for all the classes. Given a fixed level for the θ parameter,
a higher value of π parameter implies a lower number of genes belonging to
DFP, and therefore, a lower number of meaningful genes selected in the first
step of the proposed technique. The number of genes selected for the considered
configurations were 469 (with π = 0.7) and 258 (with π = 0.8). The complete
list of genes is not shown due to space limitations.

As it can be seen in Table 6.2, the training error over the EUMC-Rotterdam
data set is about the 12-14% whereas the test error over the HC-Salamanca data
set is 0%.

Given the three tested configurations, we prefer the second one since it leads to
a less complex model (in terms of the selected features and the number of nodes of
the GCS network which is trained). Simultaneously, this configuration produces
a model which maintains the higher accuracy reached for all the tested scenarios.
Moreover, and since the origin of the two data sets are completely independent,
the 0% error over test data can show the high capacity of generalization of the
proposed technique. This characteristic is always a desirable property for any
model.

Summarizing, this work explores the application of fuzzy logic to the process
of gene selection and data reduction in the microarray data domain. In this sense,
we have applied fuzzy logic to discretize the original data about the expression
level of a gene within three linguistic labels (Low, Medium and High). This fact
leads to the possibility of clearly identifying the genes (those one belonging to
the discriminant fuzzy pattern), which are meaningful to discriminate between
patients and classes.

The work also explores the capabilities of a growing cell structure neural
network to discover relevant knowledge for clustering patients suffering for acute
myeloid leukemia. A key advantage of the proposed method is that it allows
incorporating biological meaningful information to the network operation in the
form of a gene-based distance metric. Moreover, the GCS network makes use of a
previous successful fuzzy discretization method for data reduction on microarray
data domain.

Using self-organizing GCS networks to meaningfully cluster filtered microar-
ray data has a number of appealing features over other approaches (i.e. incre-
mental self-construction and easy visualization of biological relationships among
the input data). The explanations of the clustering process carried out by the
network can be addressed by means of our DFP vector. The most relevant knowl-
edge for each cluster can be highlighted, and provide meaningful explanations
about the clustering process and useful insights into the underlying problem and
data. The experimental results show that with only a small subset of the genes
belonging to a sample, the performance of the network in terms of the clustering
accuracy rate rises to 100%.
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Summary. Microarray studies and gene expression analysis has received tremendous
attention over the last few years and provide many promising avenues towards the
understanding of fundamental questions in biology and medicine. In this chapter we
show that the employment of a fuzzy rule-based classification system allows for effective
analysis of gene expression data. The applied classifier consists of a set of fuzzy if-then
rules that allows for accurate non-linear classification of input patterns. We further
show that a hybrid fuzzy classification scheme in which a small number of fuzzy if-
then rules are selected through means of a genetic algorithm is capable of providing
a compact classifier for gene expression analysis. Extensive experimental results on
various well-known gene expression databsets confirm the efficacy of the presented
approaches.

7.1 Introduction

Microarray expression studies measure, through a hybridisation process, the lev-
els of genes expressed in biological samples. Knowledge gained from these stud-
ies is deemed increasingly important due to its potential of contributing to the
understanding of fundamental questions in biology and clinical medicine. Mi-
croarray experiments can either monitor each gene several times under varying
conditions or analyse the genes in a single environment but in different types
of tissue. In this chapter we focus on the latter where one important aspect is
the classification of the recorded samples. This can be used to either categorise
different types of cancerous tissues as in [7] where different types of leukemia are
identified, or to distinguish cancerous tissue from normal tissue as done in [2]
where tumor and normal colon tissues are analysed.

One of the main challenges in classifying gene expression data is that the
number of genes is typically much higher than the number of analysed samples.
Also is it not clear which genes are important and which can be omitted without
reducing the classification performance. Many pattern classification techniques
have been employed to analyse microarray data. For example, Golub et al. [7]
used a weighted voting scheme, Fort and Lambert-Lacroix [5] employed partial
least squares and logistic regression techniques, whereas Furey et al. [6] applied
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support vector machines. Dudoit et al. [4] investigated nearest neighbour classi-
fiers, discriminant analysis, classification trees and boosting, while Statnikov et
al. [15] explored several support vector machine techniques, nearest neighbour
classifiers, neural networks and probabilistic neural networks. In several of these
studies it has been found that no one classification algorithm is performing best
on all datasets (although for several datasets SVMs seem to perform best) and
that hence the exploration of several classifiers is useful. Similarly, no universally
ideal gene selection method has yet been found as several studies [14, 15] have
shown.

In this chapter we apply fuzzy rule-based classification concepts to the classifi-
cation of microarray expression data and show, based on a series of experiments,
that it affords good classification performance for this type of problem. Several
authors have used fuzzy logic to analyse gene expression data before. Woolf and
Wang [18] used fuzzy rules to explore the relationships between several genes
of a profile while Vinterbo et al. [17] used fuzzy rule bases to classify gene ex-
pression data. However, Vinterbo’s method has the disadvantage that it allows
only linear discrimination. Furthermore, they describe each gene by only 2 fuzzy
partitions (‘up’ and ‘down’) while we also explore division into more intervals
and show that by doing so increased classification performance is possible.

Based on this fuzzy rule classification system we then show that a compact
rule base can be extracted using a genetic algorithm that assesses the fitness of
individual rules and selects a rule ensemble that maximises classification perfor-
mance while maintining computational efficiency due to a preset small size of
the rule base.

7.2 Fuzzy Rule-Based Classification

While in the past fuzzy rule-based systems have been mainly applied to control
problems [16], more recently they have also been applied to pattern classification
problems. Various methods have been proposed for the automatic generation of
fuzzy if-then rules from numerical data for pattern classification and have been
shown to work well on a variety of problem domains [8, 11, 10].

Pattern classification typically is a supervised process where, based on set
of training samples with known classifications, a classifier is derived that per-
forms automatic assignment to classes based on unseen data. Let us assume
that our pattern classification problem is an n-dimensional problem with C
classes (in microarray analysis C is often 2) and m given training patterns
xp = (xp1, xp2, . . . , xpn), p = 1, 2, . . . , m. Without loss of generality, we assume
each attribute of the given training patterns to be normalised into the unit in-
terval [0, 1]; that is, the pattern space is an n-dimensional unit hypercube [0, 1]n.
In this study we use fuzzy if-then rules of the following type as a base of our
fuzzy rule-based classification systems:

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn

then Class Cj with CFj , j = 1, 2, . . . , N,
(7.1)
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Fig. 7.1. Example triangular membership function (L = 3)

where Rj is the label of the j-th fuzzy if-then rule, Aj1, . . . , Ajn are antecedent
fuzzy sets on the unit interval [0, 1], Cj is the consequent class (i.e., one of the
C given classes), and CFj is the grade of certainty of the fuzzy if-then rule Rj .
As antecedent fuzzy sets we use triangular fuzzy sets as in Figure 7.1 where we
show the partitioning of two variables into a number of fuzzy sets.

Our fuzzy rule-based classification system consists of N linguistic rules each
of which has a form as in Equation (7.1). There are two steps in the genera-
tion of fuzzy if-then rules: specification of antecedent part and determination
of consequent class Cj and the grade of certainty CFj . The antecedent part of
fuzzy if-then rules is specified manually. Then, the consequent part (i.e., con-
sequent class and the grade of certainty) is determined from the given training
patterns [13]. In [12] it is shown that the use of the grade of certainty in fuzzy
if-then rules allows us to generate comprehensible fuzzy rule-based classification
systems with high classification performance.

7.2.1 Fuzzy Rule Generation

Let us assume that m training patterns xp = (xp1, . . . , xpn), p = 1, . . . , m, are
given for an n-dimensional C-class pattern classification problem. The conse-
quent class Cj and the grade of certainty CFj of the if-then rule are determined
in the following two steps:

1. Calculate βClass h(j) for Class h as

βClass h(j) =
∑

xp∈Class h

μj(xp), (7.2)

where
μj(xp) = μj1(xp1) · . . . · μjn(xpn), (7.3)

and μjn(·) is the membership function of the fuzzy set Ajn. In this chapter
we use triangular fuzzy sets as in Figure 7.1.
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2. Find Class ĥ that has the maximum value of βClass h(j):

βClass ĥ(j) = max
1≤k≤C

{βClass k(j)}. (7.4)

If two or more classes take the maximum value, the consequent class Cj of the
rule Rj can not be determined uniquely. In this case, specify Cj as Cj = φ. If a
single class ĥ takes the maximum value, let Cj be Class ĥ. The grade of certainty
CFj is determined as

CFj =
βClass ĥ(j) − β̄
∑

h βClass h(j)
(7.5)

with

β̄ =

∑
h �=ĥ βClass h(j)

C − 1
. (7.6)

7.2.2 Fuzzy Reasoning

Using the rule generation procedure outlined above we can generate N fuzzy if-
then rules as in Equation (7.1). After both the consequent class Cj and the grade
of certainty CFj are determined for all N rules, a new pattern x = (x1, . . . , xn)
can be classified by the following procedure:

1. Calculate αClass h(x) for Class h, j = 1, . . . , C, as

αClass h(x) = max{μj(x) · CFj |Cj = h}, (7.7)

2. Find Class h′ that has the maximum value of αClass h(x):

αClass h′(x) = max
1≤k≤C

{αClass k(x)}. (7.8)

If two or more classes take the maximum value, then the classification of x is
rejected (i.e. x is left as an unclassifiable pattern), otherwise we assign x to
Class h′.

7.2.3 Rule Splitting

It is generally known that any type of rule-based system suffers from the curse
of dimensionality. That is, the number of generated rules increases exponentially
with the number of attributes involved. Our fuzzy rule-based classifier is no ex-
ception, in particular considering that for successful classification of microarray
data typically at least a few dozens genes are selected. For example, based on the
selection of 50 genes, the classifier would generate 250 = 1.1259 ∗ 1015 rules even
if we only partition each axis into two which is clearly prohibitive both in terms
of storage requirements and computational complexity. We therefore apply a rule
splitting step and limit the number of attributes in a fuzzy if-then rule to 2. As

the number of combinations of attribute pairs is
(

50
2

)

= 1225 for 50 genes and

as for two fuzzy sets for each attribute 22 = 4 rules are necessary in total we need
only 4 ∗ 1225 = 4900 rules, a number significantly lower than 250.
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7.3 Hybrid Fuzzy Classification

Even though the classifier developed in Section 7.2 has been shown to work well
on various pattern classification problems [12] its major drawback is that due to
the exhaustive way of generating the underlying rule base, the number of gen-
erated rules is high, even for low dimensional feature vectors. As mentioned in
Section 7.2.3 one way of reducing the complexity of the classifier is to use only
rules with 2 attributes. However, this approach still generates a high number of
rules for higher dimensional data. In the following we show how, through applica-
tion of a genetic algorithm (GA) [9], a compact fuzzy rule base for classification
can be derived.

The fuzzy if-then rules that we are using in this approach are of the same form
as the one given in Equation (7.1), i.e. contain a number of fuzzy attributes and a
consequent class together with a grade of certainty. Our approach of using genetic
algorithms to generate a fuzzy rule-based classification system is a Michigan style
algorithm [10] which represents each linguistic rule by a string and handles it
as an individual in the population of the GA. A population consists of a pre-
specified number of rules. Because the consequent class and the rule weight of
each rule can be easily specified from the given training patterns as shown in
Section 7.2, they are not used in the coding of each linguistic rule (i.e., they are
not included in a string). Each rule is represented by a string using its antecedent
fuzzy sets.

7.3.1 Genetic Operations

First the algorithm randomly generates a pre-specified number Nrule of rules as
an initial population (in our experiments we set Nrule = 20). Next the fitness
value of each linguistic rule in the current population is evaluated. Let S be the
set of rules in the current population. The evaluation of each rule is performed
by classifying all the given training patterns by the rule set S using the single
winner-based method described in Section 7.2. The winning rule receives a unit
reward when it correctly classifies a training pattern. After all the given training
patterns are classified by the rule set S, the fitness value fitness(Rq) of each
linguistic rule Rq in S is calculated as

fitness(Rq) = NCP(Rq), (7.9)

where NCP(Rq) is the number of correctly classified training patterns by Rq. It
should be noted that the following relation holds between the classification per-
formance NCP(Rq) of each linguistic rule Rq and the classification performance
NCP(S) of the rule set S used in the fitness function:

NCP(S) =
∑

Rq∈S

NCP(Rq). (7.10)

The algorithm is implemented so that only a single copy is selected as a winner
rule when multiple copies of the same linguistic rule are included in the rule
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set S. In GA optimisation problems, multiple copies of the same string usually
have the same fitness value. This often leads to undesired early convergence
of the current population to a single solution. In our algorithm, only a single
copy can have a positive fitness value and the other copies have zero fitness
which prevents the current population from being dominated by many copies of
a single or few linguistic rules.

Then, new rules are generated from the rules in the current population using
genetic operations. As parent strings, two fuzzy if-then rules are selected from
the current population and binary tournament selection with replacement is
applied. That is, two rules are randomly selected from the current population
and the better rule with the higher fitness value is chosen as a parent string. A
pair of parent strings is chosen by iterating this procedure twice.

From the selected pair of parent strings, two new strings are generated
by a crossover operation. We use a uniform crossover operator, illustrated in
Figure 7.2 where crossover positions (indicated by “∗”) are randomly chosen for
each pair of parent strings. The crossover operator is applied to each pair of
parent strings with a pre-specified crossover probability pc. After new strings
are generated, each symbol of the generated strings is randomly replaced with
a different symbol by a mutation operator with a pre-specified mutation prob-
ability pm. Usually the same mutation probability is assigned to every position
of each string. The mutation operator is illustrated in Figure 7.3 where mutated
values are underlined. Selection, crossover, and mutation are iterated until a
pre-specified number Nreplace of new strings are generated.

Finally, the Nreplace strings with the smallest fitness values in the current
population are removed, and the newly generated Nreplace strings added to form
a new population. Because the number of removed strings is the same as the
number of added strings, every population consists of the same number of strings.
That is, every rule set has the same number of linguistic rules. This generation
update can be viewed as an elitist strategy where the number of elite strings is
(Nrule − Nreplace).

The above procedures are applied to the new population again. The generation
update is iterated until a pre-specified stopping condition is satisfied. In our

Fig. 7.2. Example of crossover operator

Fig. 7.3. Example of mutation operator
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experiments we use the total number of iterations (i.e., the total number of
generation updates) as stopping condition.

7.3.2 Algorithm Summary

To summarise, our hybrid fuzzy rule-based classifier works as follows:

Step 1: Parameter Specification. Specify the number of linguistic rules Nrule,
the number of replaced rules Nreplace, the crossover probability pc, the
mutation probability pm, and the stopping condition.

Step 2: Initialization. Randomly generate Nrule rules (i.e., Nrule strings of length
n) as an initial population.

Step 3: Genetic Operations. Calculate the fitness value of each rule in the cur-
rent population. Generate Nreplace rules using selection, crossover, and
mutation from existing rules in the current population.

Step 4: Generation Update (Elitist Strategy). Remove the worst Nreplace rules
from the current population and add the newly generated Nreplace rules
to the current population.

Step 5: Termination Test. If the stopping condition is not satisfied, return to
Step 3. Otherwise terminate the execution of the algorithm.

During the execution of the algorithm, we monitor the classification rate of the
current population on the given training patterns. The rule set (i.e., population)
with the highest classification rate is chosen as the final solution.

7.3.3 Increasing the Classification Performance

Randomly generated initial linguistic rules with fine fuzzy partitions usually do
not classify many training patterns in high-dimensional pattern classification
problems such as those encountered when analysing gene expression data. This
is because each linguistic rule covers a very small portion of the pattern space.

A simple method for expanding the covered area by each initial rule is to
increase the selection probability of “don’t care” among the antecedent fuzzy sets.
Let pdon′t care be the selection probability of don’t care when initial linguistic
rules are generated. In this case, the selection probability of each of the other
five antecedent fuzzy sets is (1 − pdon′t care)/5. Thus the portion of the pattern
space covered by each initial rule can be increased by increasing the selection
probability of don’t care. In turn, this simple trick has a significant positive effect
on the search ability of the hybrid fuzzy classifier.

Another method for generating initial rules with high classification ability is to
use training patterns for specifying their antecedent fuzzy sets [10]. To generate
an initial population of Nrule fuzzy rules, first we randomly select Nrule training
patterns. Next we choose the combination of the most compatible linguistic
terms with each training pattern. Note that don’t care is not used in this stage
because any attribute values are fully compatible with don’t care (i.e., because
don’t care is always chosen as the most compatible antecedent fuzzy set for any
attribute values). Each linguistic term in the selected combination is replaced
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with don’t care using the selection probability pdon′t care. The combination of
the linguistic terms after this replacement is used as the antecedent part of an
initial rule. This procedure is applied to all the randomly selected Nrule training
patterns for generating an initial population of Nrule rules.

The specification of antecedent fuzzy sets from training patterns can be
utilised not only for generating an initial population but also for updating the
current population. When a training pattern is misclassified or its classification
is rejected by the current population, the generation of a new fuzzy rule from
the misclassified or rejected training pattern may improve the classification abil-
ity of the current population. We can modify the generation update procedure
as follows. We generate a single linguistic rule using the genetic operations and
another rule from a misclassified or rejected training pattern. When all the train-
ing patterns are correctly classified, two rules are generated using the genetic
operations.

Another extension to the hybrid fuzzy algorithm is the introduction of a
penalty term with respect to the number of misclassified training patterns to
the fitness function in Equation (7.9) as follows:

fitness(Rq) = NCP(Rq) − wNMP · NMP(Rq), (7.11)

where NMP(Rq) is the number of misclassified training patterns and wNMP is
a positive constant. The fitness function in Equation (7.9) can be viewed as a
special case of Equation (7.11) with wNMP = 0. In Equation (7.11), NCP(Rq)
and NMP(Rq) are calculated by classifying all the training patterns by the cur-
rent population S including the linguistic rule Rq. To understand the effect of
the second term of on the evolution of linguistic rules, let us consider a rule
that correctly classifies ten patterns and misclassifies three patterns. If the mis-
classification penalty is zero (i.e., if wNMP = 0), the fitness value of this rule
is 10. Thus this rule is not likely to be removed from the current population.
As a result, the three misclassified patterns will also be misclassified in the next
population. On the other hand, the fitness value of this rule is negative (i.e.,
−5) when wNMP = 5. In this case, the rule will be removed from the current
population. As a result, the three misclassified patterns may be correctly classi-
fied by other rules or their classification may be rejected in the next population.
From this we can see that the introduction of the misclassification penalty to
the fitness function may improve the search ability of the algorithm to identify
rule sets with high classification ability.

7.4 Classifying Gene Expression Data

To demonstrate the usefulness and efficacy of our algorithms we evaluated our
proposed method on three gene expression data sets that are commonly used in
the literature. In the following we characterise each dataset briefly:-

• Colon dataset [2]: This dataset is derived from colon biopsy samples. Ex-
pression levels for 40 tumor and 22 normal colon tissues were measured for



7 Gene Expression Analysis by Fuzzy and Hybrid Fuzzy Classification 135

6500 genes using Affymetrix oligonucleotide arrays. The 2000 genes with the
highest minimal intensity across the tissues were selected. We pre-process the
data following [4], i.e. perform a thresholding [floor of 100 and ceil of 16000]
followed by filtering [exclusion of genes with max/min < 5 and (max-min)
< 500] and log10 transformation.

• Leukemia dataset [7]: Bone marrow or peripheral blood samples were taken
from 47 patients with acute lymphoblastic leukemia (ALL) and 25 patients
with acute myeloid leukemia (AML). The ALL cases can be further divided
into 38 B-cell ALL and 9 T-cell ALL samples and it is this 3-class division
that we are basing our experiments on rather than the simpler 2-class ver-
sion which is more commonly referred to in the literature. Each sample is
characterised by 7129 genes whose expression levels where measured using
Affymetrix oligonucleotide arrays. The same preprocessing steps as for the
Colon dataset are applied.

• Lymphoma dataset [1]: This dataset contains gene expression data of dif-
fuse large B-cell lymphoma (DLBCL) which is the most common subtype
of non-Hodgink’s lymphome. In total there are 47 samples of which 24 are
of germinal centre B-like” and the remaining 23 of activated B-like subtype.
Each sample is described by 4026 genes, however there are many missing val-
ues. For simplicity we removed genes with missing values from all samples.

Although the datasets represent only 2-class or 3-class problems, due to the large
number of genes involved any rule based classification system would consist of a
very large number of rules and hence represent a fairly complex process. Also, not
all genes are equally important for the classification task at hand. We therefore
sort the significance of genes according to the BSS/WSS (the ratio of between
group to within group sum of squares) criterion used in [4] and consider only
the top 50 respectively 100 genes as input for our classification problem.

We perform standard leave-one-out cross-validation where classifier training
is performed on all available data except for the sample to be classified and this
process is performed for all samples1. Fuzzy rule based classifiers and hybrid
fuzzy classifiers based on partition sizes L between 2 and 5 partitions for each
gene were constructed. To evaluate the achieved results we also implemented
nearest neighbour and CART classifiers. The nearest neighbour classifier we
employ searches through the complete training data to identify the sample which
is closest to a given test input and assigns the identified sample’s class. CART [3]
is a classical rule based classifier which builds a recursive binary decision tree
based on misclassification error of subtrees.

The results on the three datasets are given in Tables 7.1 to 7.3. In each table we
given the number of correctly classified samples (CR), the number of incorrectly
classified or unclassified samples (FR), and the classification accuracy (Acc.),
i.e. the percentage of correctly classified samples.

Looking at the results for the Colon dataset which are given in Table 7.1, for
the case of 50 selected features the fuzzy classifier with 3 partitions performs
1 It should be noted that the top 50 respectively 100 genes were selected solely based

on the training set.
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Table 7.1. Classification performance on Colon dataset given in terms of number
of correctly classified samples (CR), falsely classified or unclassified samples (FR),
and classification accuracy (Acc.). Results are given for leave-one-out cross validation.
Experiments were performed with 50 and 100 selected genes respectively and with
a varying number L of partitions per gene. For comparison results obtained using a
nearest neighbour classifier and a rule-based CART classifier are also listed.

test data
n classifier CR FR Acc.

50

fuzzy L = 2 50 12 80.65
fuzzy L = 3 53 9 85.48
fuzzy L = 4 52 10 83.87
fuzzy L = 5 48 14 77.42
hybrid fuzzy L = 2 49.7 12.3 80.11
hybrid fuzzy L = 3 52.0 10.0 83.87
hybrid fuzzy L = 4 49.0 13.0 79.03
hybrid fuzzy L = 5 50.0 12.0 80.64
nearest neighbour 49 13 79.03
CART 48 14 77.42

100

fuzzy L = 2 44 18 70.97
fuzzy L = 3 51 11 82.26
fuzzy L = 4 50 12 80.65
fuzzy L = 5 46 16 74.19
hybrid fuzzy L = 2 48.4 13.6 78.01
hybrid fuzzy L = 3 49.7 12.3 80.11
hybrid fuzzy L = 4 47.7 14.3 76.88
hybrid fuzzy L = 5 48.0 14.0 77.42
nearest neighbour 52 10 83.87
CART 45 17 72.58

best with a classification accuracy of 85.48% which corresponds to 9 incorrectly
classified cases while nearest neighbour classification and CART produce 13 and
14 errors respectively. However when selecting the 100 top genes the nearest
neighbour classifier performs slightly better than the fuzzy system. It is inter-
esting to compare the performance of the fuzzy rule-based classifier when using
different numbers of partitions for each attribute. It can be seen that on this
dataset the best performance is achieved when using 3 partitions (although on
training data alone more partitions afford better performance). In particular it
can be observed that the case with L = 2 as used in the work of Vinterbo et
al. [17] produces the worst results and hence confirms that increasing the num-
ber of fuzzy intervals as we suggest leads to improved classification performance.
However, it can also be seen that applying too many partitions can decrease clas-
sification performance as is apparent in the case of L = 5 on test data. For the
hybrid fuzzy classifier we ran the experiment 10 times with different, random,
initial populations and list the average of the 3 best runs. We can see the the
hybrid fuzzy approach performs only slightly worse than the full fuzzy rule-based
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Table 7.2. Classification performance on Leukemia dataset, laid out in the same fash-
ion as Table 7.1

test data
n classifier CR FR Acc.

50

fuzzy L = 2 66 6 91.67
fuzzy L = 3 68 4 94.44
fuzzy L = 4 67 5 93.06
fuzzy L = 5 66 6 91.67
hybrid fuzzy L = 2 69.3 2.7 96.29
hybrid fuzzy L = 3 69.3 2.7 96.29
hybrid fuzzy L = 4 67.7 4.3 93.98
hybrid fuzzy L = 5 65.7 6.3 91.20
nearest neighbour 70 2 97.22
CART 47 25 65.28

100

fuzzy L = 2 63 9 87.50
fuzzy L = 3 71 1 98.61
fuzzy L = 4 69 3 95.83
fuzzy L = 5 67 5 93.06
hybrid fuzzy L = 2 68.0 4.0 94.44
hybrid fuzzy L = 3 67.3 4.7 93.52
hybrid fuzzy L = 4 63.9 8.1 88.74
hybrid fuzzy L = 5 63.0 9.0 87.50
nearest neighbour 70 2 97.22
CART 45 27 62.50

system which, considering that classification is performed based only on 20 se-
lected rules, proves the potential of this method.

Turning our attention to the results on the Leukemia dataset which are given
in Table 7.2 we see a similar picture. Again the worst performing fuzzy classifier
is that which uses only two partitions per gene while the best performing one
as assessed by leave-one-out cross validation is the case of L = 3. CART per-
forms fairly poorly on this dataset with classification accuracies reaching only
about 65% while nearest neighbour classification performs well again confirming
previous observations that despite its simplicity nearest neighbour classifiers are
well suited for gene expression classification [4]. The best classification results
are achieved by the fuzzy classifier with L = 3 for the case of 100 selected genes
with a classification accuracy of 98.61% and the nearest neighbour classifier with
97.22% for 50 selected genes. For the case of 50 features, the hybrid fuzzy classi-
fier outperforms the conventional fuzzy classification system in most cases while
for classification based on 100 features it is more accurate only for the case of
L = 2.

Table 7.3 lists the results obtained from the Lymphoma dataset. Here, perfect
classification s achieved by the fuzzy classifier with L = 4 for 50 selected genes
and by nearest neighbour classification based on 100 genes. The hybrid fuzzy
approach performs slightly worse in most cases but is significantly worse for
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Table 7.3. Classification performance on Lymphoma dataset, laid out in the same
fashion as Table 7.1

test data
n classifier CR FR Acc.

50

fuzzy L = 2 45 2 95.74
fuzzy L = 3 46 1 97.87
fuzzy L = 4 47 0 100
fuzzy L = 5 44 3 93.62
hybrid fuzzy L = 2 46.0 1.0 97.88
hybrid fuzzy L = 3 43.3 3.7 92.20
hybrid fuzzy L = 4 42.3 4.7 90.07
hybrid fuzzy L = 5 43.0 4.0 91.49
nearest neighbour 45 2 95.74
CART 36 11 76.60

100

fuzzy L = 2 44 3 93.62
fuzzy L = 3 44 3 93.62
fuzzy L = 4 44 3 93.62
fuzzy L = 5 39 8 82.98
hybrid fuzzy L = 2 44.0 3.0 93.61
hybrid fuzzy L = 3 42.1 4.9 89.65
hybrid fuzzy L = 4 37.7 9.3 80.14
hybrid fuzzy L = 5 34.7 12.3 73.76
nearest neighbour 47 0 100
CART 38 9 80.85

L = 4 and L = 5 and 100 features. The reason for this performance is probably
that during the run, the genetic algorithm was unable to explore sufficiently all
of the search space.

7.5 Conclusions

In this chapter we have demonstrated that fuzzy rule-based classification sys-
tems can be used effectively for the analysis of gene expression data. The pre-
sented classifier consists of a set of fuzzy if-then rules that allows for accurate
non-linear classification of input patterns. Based on extensive experiments we
confirmed that our fuzzy approach to classification affords good classification
performance on a series of data sets. Furthermore, a hybrid fuzzy approach to
classifying gene expression data was also presented which provides a much more
compact rule based, achieved through the application of a genetic algorithm to
select useful rules, compared to the conventional classifier. The classification per-
formance of the hybrid method was shown to be comparable to that of the full
classifier.
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Summary. With the arrival of high-throughput genomic data, biologists now have the
ability to investigate the expression of genetic transcripts on a genome-wide scale. With
this advancement, it is important to consider the regulation of gene expression in the
context of a system, including the discovery of any genetic interactions that contribute
to regulation. Genetic networks provide a concise representation of the interaction be-
tween multiple genes at the system level, giving investigators a broader view of the
cellular state compared to a singular declaration of whether a gene is over/under ex-
pressed. Many methods currently exist to infer gene regulatory networks, including
discrete models (Boolean networks, Bayesian networks), continuous models (weight
matrices, differential equations models), and fuzzy logic models. The attractive fea-
ture of the fuzzy logic model is that it allows for a simplified rule structure, since
observations are categorized, but retains information in the original data by allowing
partial membership in multiple categories. The fuzzy logic model is flexible, and can
be adapted to a variety of regulatory models and inferential rule sets. In this work, we
review several recent advances in fuzzy logic methodologies developed for the genetic
network reconstruction problem. The goals of the approaches range from whole genome
screening of microarray data for small regulatory units, to detailed reconstruction of
the iteractions between genes in a particular pathway. We apply the methods to real
microarray data concerning the yeast cell cycle and simulated data concerning the Raf
signaling pathway, and compare results with other well-known algorithms.

8.1 Introduction

The production of a viable protein from a gene is called gene expression, and
the regulation of gene expression is a fundamental process necessary to main-
tain the viability of an organism. Therefore, knowledge of gene expression pat-
terns and the genes involved in the regulation process is valuable information
to scientific investigators. Understanding the modulation of a gene’s expression
pattern during normal cell and tissue functioning provides useful insights into
the biological function of the gene. Investigators can infer how genes are af-
fected by diseases by comparing expression patterns between diseased and non-
diseased states. These studies also give indications about potential biological
pathways to target for therapeutic drugs. Pharmaceutical companies can test
how cells will react to new drug treatments by observing gene expression patterns

Y. Jin and L. Wang (Eds.): Fuzzy Systems in Bio., STUDFUZZ 242, pp. 141–163.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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pre- and post- treatment. In short, studying gene expression patterns improves
our understanding of biological systems, and also enhances our ability to combat
disease and improve our quality of life.

One of the dilemmas encountered in investigating gene function and genetic
interactions is the sheer number of genes that are contained within a genome.
Yeast, a relatively simple organism when compared to humans, contains over six
thousand genes in its genome. The estimated number of genes within the human
genome is about thirty thousand [5, 56]. Clearly, experimentation on each gene
individually would take a very long time. To overcome this, scientists have de-
veloped technologies which are scalable to the level of the genome, collectively
known as DNA microarrays, to evaluate the behavior and inter-relationship be-
tween genes on a genomic scale. DNA microarrays enable investigators to take
a ‘snapshot’ of the processes of the cell in a particular state by measuring the
expression levels of thousands of genes simultaneously. This is done by quanti-
fying the amount of messenger RNA (mRNA) for that gene which is contained
within the cell.

Since the advancement of DNA microarray technology, there has been an ex-
plosion of methods developed for analyzing data of this type. The methodological
areas range from experimental design [25], normalization [4], and missing value
imputation [8], to cluster analysis [19], classification [40], identification of differ-
entially expressed genes [18], and network modelling [51]. In addition to exten-
sions and enhancements of classic statistical techniques, new methods involving
fuzzy logic have been proposed to address many of these areas [2, 12, 32]. One
area that is particularly challenging is the reverse engineering of gene regulatory
networks using microarray data. Reconstruction of these regulatory networks
gives biologists keen insight into how genes interact with each other, and the
roles genes play in various biological pathways.

Several methods have been developed to construct genetic networks from
gene expression data. These include Boolean networks [31, 1, 11], Bayesian
networks [21, 27, 59, 12, 55], weight matrices [53], differential equations mod-
els [13, 17], causal inference [58], graphical Gaussian models [44], partial least
squares [39], and fuzzy logic models [57, 42, 47, 36, 16, 7]. Though each method
differs in its approach to the network reconstruction problem, the goal in every
case is to determine how genes interact and regulate gene expression by relating
gene expression levels of target genes with putative regulatory genes. Models
which use the continuous data directly, such as weight matrices and differential
equation models, often involve the estimation of numerous network parame-
ters, which is difficult with the relative scarcity of samples typically available
in microarray data. Boolean networks and Bayesian networks can simplify the
data structure by converting continuous gene expression data into discrete data.
However, this discretization of the data into one of two states, “on” or “off”,
may overlook valuable information. Fuzzy logic represents a compromise between
discrete and continuous models, that can characterize the data in an intuitive
manner but allows observations to maintain partial membership in multiple cat-
egories. The idea is to examine the data in a fashion that enables high-level,
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human-like reasoning in the characterization of the regulatory network, while
retaining much of the information in the original, continuous data.

In this work, we review several recent advances in fuzzy logic methodolo-
gies developed for the genetic network reconstruction problem. The goals of the
approaches range from whole genome screening of microarray data for small
regulatory units [57, 42, 7], to detailed reconstruction of the iteractions between
genes in a particular pathway [47, 36, 16]. One of the primary advantages of fuzzy
logic is the ability to translate numeric data into linguistic constructs, that can
then be easily converted into testable hypotheses. In addition, the interpretabil-
ity of fuzzy logic models can be aided by computationally powerful methods like
neural networks [29, 37] and genetic algorithms [16]. The methods discussed in
this chapter combine these attributes of interpretability and computational so-
phistication, providing attractive approaches for investigators to decipher gene
regulatory networks.

The rest of this chapter is organized as follows. In Section 8.2, we give a brief
overview of the mechanics behind the regulation of gene expression. We also
illustrate how gene regulatory networks can be represented, and briefly discuss
the technologies currently used to identify gene-gene and protein-protein inter-
actions. In Section 8.3, we describe the general characteristics of algorithms for
reverse engineering gene regulatory networks using fuzzy logic, and briefly re-
view other commonly used methods as well. In Section 8.4, we demonstrate the
effectiveness of the fuzzy logic network reconstruction algorithms on simulated
data, and compare results with other well-known algorithms. In Section 8.5, we
present results from application of the methods to real microarray data concern-
ing the yeast cell cycle. Lastly, in Section 8.6 we give some concluding remarks
and discuss future directions and extensions of the fuzzy logic algorithms for
genetic network reconstruction.

8.2 Gene Regulatory Networks

The production of a protein from a gene, called gene expression, is a two step
process. The first step is called transcription, where DNA (deoxyribonucleic acid)
serves as a template to produce messenger RNA (ribonucleic acid), or mRNA.
The second step is called translation. Here mRNA is transported outside the
cell’s nucleus into the cytoplasm, where it is translated into a polypeptide, form-
ing a protein. Proteins are involved in the transport of molecules, structural
integrity, communication between cells, and facilitation of chemical reactions.

The process of gene expression is regulated by certain proteins known as
transcription factors. Transcription factors facilitate the transcription process
by binding the DNA in the promoter or enhancer region of the gene, which is
upstream of the gene’s transcription start site. Binding of the transcription fac-
tor to the promoter region of the gene either enhances or represses the ability
of RNA polymerase, the enzyme responsible for transcription, to bind and start
the transcription process. Frequently, several transcription factors work collec-
tively as a single complex, and attract additional intermediary proteins known as
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cofactors that assist in recruitment of RNA polymerase and additional proteins
necessary for transcription.

For a transcription factor to bind to the promoter region of a gene requires the
conversion of the dense DNA structure, known as heterochromatin, to a more
lightly packed form known as euchromatin. This is typically accomplished via
chromatin remodeling factors or histone acetylation, and is occasionally linked
to the transcription factors themselves [28]. The process exposes the upstream
promoter region of the gene or genes of interest, and allows the transcription
factors and affiliated complexes to bind there. Often, multiple genes are tran-
scribed together, so that their expression is monitored in a coordinate fashion
and regulated by a single protein known as the operator. The group of genes the
operator regulates or stimulates is known as an operon. Thus, the regulation of
any one gene’s expression may be tied to the expression of multiple other genes,
which often results in a complex process involving many interwoven pieces.

A genetic regulatory network can be represented graphically via a set of in-
terconnected nodes, where each node on the graph represents a gene (or, in
some cases, an operon), and lines connecting nodes on the graph represent
regulatory interactions between genes. Figure 8.1 depicts the interactions be-
tween protein products of genes in the yeast cell cycle, as represented in the
KEGG database [24]. Note that interactions between the nodes in the graph
consist of several different types, including both positive and negative regu-
lation, and protein-protein interaction versus direct transcriptional regulation.
Regulatory networks can be decomposed into elementary subunits consisting of
direct and indirect interactions (Figure 8.2, top, see [54]), and network motifs,
which are building blocks of network architecture that occur in numbers that are
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Fig. 8.1. Yeast cell cycle network, as given in the KEGG database. A filled arrow
indicates a positive interaction, open arrows indicate negative interactions. Solid lines
represent direct transcriptional regulation, dashed lines indicate protein-protein inter-
actions. The time axis at the bottom of the figure refers to the portion of the yeast
cell cycle for which the particular gene is active. The letters G1, S, G2, and M refer to
distint periods in the yeast cell cycle.
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Fig. 8.2. Top: Direct (a) and indirect (b-d) interactions between network nodes, as
depicted in [54]. Bottom: Commonly occuring regulatory motifs in the transcriptional
regulation of E. coli, as reported in [46].

significantly higher than those in randomized blocks [30, 38, 46]. Figure 8.2, bot-
tom, illustrates three motifs, feedforward loops, single input modules, and dense
overlapping regions, that were found to occur frequently in the transcriptional
networks of E. coli [46].

To study genetic networks, a variety of technologically advanced experimental
techniques can be used to enable investigators to perform genome-wide studies of
gene-gene and protein-protein interactions. The DNA-binding sites of transcrip-
tion factors can be mapped on a genomic scale using ChiP-chip technology [41],
which combines the concepts of chromatin immunoprecipation and DNA mi-
croarrays. Protein-protein interactions can be evaluated using affinity tags, the
two-hybrid system, or quantitative proteomic techniques [3]. However, even these
advanced experimental techniques for detecting physical interactions can pro-
duce a high number of false positives [22], and only a small number of interactions
are supported by more than one method [52]. Hence, computational approaches
for reverse engineering genetic association networks are extremely useful to biolo-
gists, as they provide a method for unraveling genetic interactions using existing
high-throughput post-genomic data, and give important clues about where to
focus future research efforts.

8.3 Fuzzy Logic Models for Genetic Networks

In this section, we review the general steps of the algorithms described in [7, 16,
47, 36, 57] for inferring gene regulatory networks from microarray gene expression
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data. The general steps of most fuzzy algorithms are fuzzification, inference, and
defuzzification. During fuzzification, gene expression values from the microarray
data are assigned ‘fuzzy’ membership values in a set of fuzzy classes. Once the data
are ‘fuzzified’, fuzzy rules relating the fuzzified gene expression levels to a specified
target gene expression level are evaluated and selected. The selected fuzzy rules
form a fuzzy rule set which is used to infer a fuzzy predicted target expression
profile via fuzzy inference. Finally, the fuzzy predicted target expression profile is
‘de-fuzzified’ into a set of numbers on the same scale as the original microarray
data. Networks can be ranked on the basis of a score which describes how well
the predicted expression profile agrees with the original target expression profile,
with regard to both the “closeness” to the observed value of the target for the
data under consideration and in terms of the variety of configurations in which
the collection of genes being considered was observed to occur.

8.3.1 A Fuzzy Logic Method to Screen for Network Triplets

Woolf and Wang [57] present a fuzzy logic model for network triplets consisting
of an activator, repressor, and target gene. The model is conceptually simple,
and allows screening of genetic interactions which would be missed by traditional
clustering methods. Brock et. al [7] extend this approach by varying the number
of states used in the model, as well as present an alternative model closely
resembling the fuzzy logic model which is based on probability theory. Ressom
et. al [42] also extend the approach of [57], by exploring alternate approaches
for rule aggregation and defuzzification, and additionally speed the processing
of the algorithm by implementing a clustering pre-conditioning step.

In each of these algorithms, gene expression values are first normalized to
the [0, 1] scale by subtracting the minimum of each gene’s expression values and
dividing by the range. In [57], the normalized expression values are then fuzzified
using a three-state triangular matrix, with linguistic values “High”, “Medium”,
and “Low”. Brock et. al [7] explored the utility of increasing the number of
states used to model the system, and found that a small to intermediate number
of states had the best performance. Figure 8.3 depicts the membership functions
for the three-state model, along with the membership values corresponding to a
hypothetical activator / repressor gene pair.

After fuzzifying the data, a predicted target expression profile is determined
for each activator / repressor gene combination. This is accomplished by using
a decision matrix, an example of which is given in Table 8.1 for the three-
state model. This decision matrix gives the fuzzy rules for determining target
gene expression levels based on the input expression levels of the activator and
repressor genes, in the form of IF-THEN clauses. For example, if the expression
level for the activator gene (A) is High and the expression level for the repressor
gene (R) is Low then the corresponding expression level for the hypothesized
target gene (T ) is High. This can be interpreted as a fuzzy statement or claim,
and the degree of ‘truth’ associated with the claim ‘T is High’ is equal to the
minimum of the degree of truth for the two antecedents in the claim, i.e. that
‘A is High’ and ‘R is Low’. Here, the degree of truth for the claim ‘A is High’
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Table 8.1. Decision matrix for the three-state fuzzy logic model. Entries within the
decision matrix are the inferred levels of the target gene.

Activator

Repressor Low Medium High
Low Medium High High

Medium Low Medium High
High Low Low Medium

is synonymous with the fuzzy membership level that A has in the High state. If
there are several claims where A and R predict T to be High, then the overall
truth-value associated with the statement ‘T is High’ equals the maximum of all
the truth-values for these individual claims.

Table 8.2. Illustration of the process of fuzzy inference

Antecedent Consequent

IF xA is Low AND xR is Low THEN x̃T is Medium
(truth = 0.6) (truth = 0.2) truth = min(0.6, 0.2) = 0.2

OR
IF xA is Medium AND xR is Medium THEN x̃T is Medium

(truth = 0.4) (truth = 0.8) truth = min(0.4, 0.8) = 0.4

Overall validity of claim that x̃T is Medium = max(0.2, 0.4) = 0.4
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Using the decision matrix and the fuzzified activator and repressor expres-
sion levels, the degree of membership that the target value has in each state is
determined. This fuzzy target value can then be transformed back into a pre-
dicted value between 0 and 1 via the process of de-fuzzification. The method
used for our fuzzy system is a zero-order Sugeno model [49], which uses a single-
ton output function that assigns a single value to each of the N fuzzy states in
the model. The value for a particular fuzzy state is equal to its center of mass,
obtained by interpreting the fuzzy membership function as a density function.
To transform the fuzzified values back into numbers between 0 and 1, we take
a weighted average of this output function, with the weights corresponding to
the membership level that the fuzzy output has in each fuzzy state. Figure 8.4,
originally given in+[7], illustrates the process, for an activator with membership
levels 0.6 Low and 0.4 Medium, and a repressor with membership levels 0.2 Low
and 0.8 Medium (neither gene has any membership in the High category). The
resulting predicted target value is 0.389.

The fuzzy logic algorithm results in a predicted target expression profile for
each of the G(G− 1) activator / repressor gene pairs, where G is the total num-
ber of genes. For a particular activator / repressor pair all of the remaining

A is Low R is Medium

A is Medium R is Medium

A is Medium R is Low

T is Low

T is Medium

T is High

1. fuzzy inputs 2. fuzzy operation (and = min) 

if 

if 

if 
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Input 1 Input 2 
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= 0.6(1/6) + 0.4(1/2) + 0.2(5/6) / (0.6 + 0.4 + 0.2) 
= 0.389

Output 

Fig. 8.4. The de-fuzzification process
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G − 2 genes are considered as potential target genes, and the predicted target
expression profile for this gene pair is compared with the actual profiles of these
remaining genes. To determine which gene triplets best fit the regulatory net-
work model, each activator / repressor / target gene triplet is evaluated based
on a composite score consisting of a residual and variance score. The residual
score indicates how accurately the activator / repressor gene pair predicts the
target gene expression profile. The variance score measures the variation in con-
figurations the activator / repressor gene pair exhibit over the time course. This
is important, because activator and repressor gene pairs which predict well in
a variety of situations should be given greater weight. Conversely, if the gene
pair only made predictions within a small segment of the decision matrix, the
performance of the gene pair for the rest of the decision matrix would be entirely
unknown. A low variance score indicates that the activator and repressor pair
cover the decision matrix well. An overall score is obtained by multiplying the
residual and variance scores together, so that networks with lower overall scores
rank higher and exhibit a better fit with the regulatory model.

The methodology presented in [7] extends the three-state fuzzy logic model
to an arbitrary number of odd states. The membership functions and decision
matrix are both straightforward generalizations of their three-state counterparts.
In addition, [7] develop an alternative probability model, which is similar in
spirit to the fuzzy logic model. The authors evaluated the number of states in
the model using both real and simulated microarray data, and found that a
moderate number of states (5 to 7) performed best. The software for running
the algorithm is available in the software package FPRNET [6]. The user specifies
the number of states to use, the number of network triplets to output, and the
type of model to run (fuzzy logic or probability). The networks are ranked on
the basis of their overall score, and the top scoring triplets are output to a file.

8.3.2 Other Algorithms for Identifying Regulatory Networks Based
on Fuzzy Inference

Linear Fuzzy Gene Networks with Accelerated Search

The models developed in [47, 16] combine a linear fuzzy logic model with a ge-
netic search algorithm to identify a set of optimally fitting rule configurations
for representing a gene regulatory network. The authors use a three-state mem-
bership function, similar to [57], for the fuzzy logic representation of the data.
The method is designed for ratiometric data, where the expression ratios are first
symmetrized about zero by taking base 2 logarithms. Values are then converted
to the range [−1, 1] by taking the arctangent and dividing by π/2. They are then
assigned linguistic values using the three-state membership function.

To avoid the exponential explosion of possible rule combinations that occurs
when considering multiple input nodes, the authors restrict the model to a linear
fuzzy logic scheme using the union rule configuration of [15]. Under this setup,
the rule set complexity grows linearly with the number of input nodes. The
effect of each input node on the output is evaluated on an individual basis,
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using IF-THEN constructs. For example, one possibility relating the expression
of input gene A to output gene B is “If A is Low then B is Low”, “If A is
Medium then B is Medium”, and “If A is High then B is Medium”. In [16],
the set of the 33 = 27 possible rule combinations is restricted to seven, three
positive rules (higher expression of the input node leads to higher expression
of the output node), three negative rules (higher expression of the input node
leads to lower expression of the output node), and a null rule corresponding
to no effect. The set of possible rules corresponding to a particular gene can
be constrained beforehand, which allows for incorporation of prior knowledge
concerning the effect of that gene. The number of possible inputs to an output
node is not restricted in [16].

To relate the overall effect of G input genes on the output node or target gene,
the contribution of all the inputs are aggregated by a fuzzy union, corresponding
to a logical OR operation. This is computed by summing the contributions of
each input gene to each output state. For an input gene vector y having fuzzy
representation [γ1, γ2, γ3] and fuzzy rule r = [r1, r2, r3], the contribution to the
effect on the output node z is [γr1 , γr2 , γr3 ]. For G input genes, the effect of
each gene can be represented as an intermediate output zi = [zi

1, z
i
2, z

i
3], and the

resulting fuzzy value obtained by summing the contributions of each input gene:

z =
∑

G

zi = [
∑

G

zi
1,

∑

G

zi
2,

∑

G

zi
3] .

The fuzzy representation of the output vector is defuzzified by taking a weighted
average of the point masses at -1, 0, and 1, using the fuzzy membership values
in z as weights.

To search the allowable space of fuzzy rule sets, [16] use an evolutionary search
algorithm to modify and adapt the rule sets. At each iteration of the algorithm,
the overall fitness of the rule sets in the current population should increase. The
search algorithm proceeds as follows. At the outset, an intial population of N
rule combinations is generated at random, where each rule combination specifies
how the G nodes (genes) affect the output node. Each of these N rule combi-
nations is duplicated (the “new” population), and each of the duplicated rule
combinations has a specified probability pC of a crossover event and pM of a
mutation event. In a crossover event, a random number of corresponding rules
in two rule combinations are swapped (the other rule combination is randomly
selected from the new population). In a mutation event, the rules corresponding
to a uniformly distributed random number of input nodes are altered (in accor-
dance with the user specified contraints for those nodes). The fitness function of
each rule set in the old and new populations (2N rule sets in total) is evaluated,
and the top N rule sets are selected to form the next generation. The fitness
function E is the sum of squared errors between the predicted target expression
profile and the actual expression profile of the output node (gene), normalized
by the variability of the output node to allow comparisons between genes with
high and low expression ratio magnitudes. A gamma distribution is used to
model the distribution of the error terms E, to determine whether a particular
rule set is fitting the output node better than what is expected by chance. The
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parameters of the gamma distribution are determined by calculating the error
terms corresponding to a suitable number of randomly selected rule sets.

Recurrent Neural Fuzzy Networks

Maraziotis et. al proposed a method for modeling the regulation of gene ex-
pression based on neural fuzzy recurrent networks (NFRNs) [36]. The NFRN
combines the computational power and flexibility of the neural network with
the human-like reasoning of fuzzy systems. The recurrent structure of the model
allows for dynamic mapping of the expression data, which has advantages over
static mapping when time-series expression data are considered (e.g., it allows
the incorporation of feedback loops). The model of [36] is based largely on those
proposed in [29] and [37].

One advantage of the NFRN model developed by [36] is that both the struc-
ture and the parameters of the model are learned. Hence the rules specifying
the network architecture are not designated in advance, but are determined by
the data. In order to avoid the problem of rule set combinatorial explosion, a
clustering-based partition method is used to constrain the number of possible
rules describing the causal relationships. As in [7], they find that the number of
fuzzy sets needed to adequately model the network can be limited to an inter-
mediate number (seven).

The NFRN architectural structure of [36] consists of six layers (see
Figure 8.5). The nodes in the first layer are the input variables, whose values are
transmitted directly to the second layer. The second layer performs the fuzzifi-
cation of the data using Gaussian membership functions, where the number of
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Fig. 8.5. Schematic diagram representing the neural fuzzy recurrent network of
Maraziotis et. al [36]
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linguistic labels is not pre-determined but learned by the algorithm. The nodes
in the third layer constitute the rule nodes. The output of each node in this layer
depends on input from two sources, layer 2 (the spatial firing degree) and layer
5 (the temporal firing degree). The fourth layer normalizes the output from the
third layer, and the fifth layer defuzzifies the data using the output linguistic
variables.

The NFRN learns the structure (clustered partitioning) of the input-output
space using two criterion, the residual error between the predicted and actual
target expression profile and the distance between the proposed rule (added
cluster) and all the previously created rules (clusters). The algorithm also checks
at the completion of the structure learning phase to see if redundant rules can
be deleted or merged with other rules, to create a more parsimonious model and
eliminate redundancy. The parameters of the NFRN are then tuned using the
back-propagation through time (BPTT) algorithm+[29].

8.3.3 Other Algorithms for Network Reconstruction

In this section, we very briefly mention a few commonly used methods for in-
ference of regulatory networks which do not use a fuzzy logic framework for
inference. These methods are compared with the fuzzy logic methods of [7] and
[47, 16] using simulated data in Section 8.4. References for each are given for the
interested reader.

Bayesian Networks

Bayesian networks (BNs) consist of a graphical structure combined with a
family of conditional probability distributions that together define the joint dis-
tribution over the set of nodes. Model structures M are sampled from a poste-
rior distribution P (M |D) ∝ P (D|M)P (M), where P (D|M) is the likelihood of
the data given the model structure M and depends on the model parameters.
Sampling from the posterior distribution is achieved via Markov Chain Monte
Carlo (MCMC) methods, using an efficient proposal algorithm based on node
orders [20]. Numerous extensions to the BN have been developed, including dy-
namic BNs for modeling time series data and allowing cyclic regulation [27],
using a non-parametric regression model to avoid discretisation [26], and in-
corporation of biological prior knowledge such as transcription factor binding
locations [55].

Relevance Networks

Relevance networks (RNs) [9, 10] are a straightforward approach based on pair-
wise association scores between all pairs of nodes. The association score can be
based on the mutual information or the Pearson correlation between the signals
associated with each node. The approach has the advantage of being compu-
tationally simple, but may have difficulty in distinguishing between direct and
indirect interactions (see Figure 8.2).



8 Detecting Gene Regulatory Networks 153

Graphical Gaussian Models

Graphical Gaussian models (GGMs) [44, 45] are inferred from the matrix of
partial correlation coefficients between each node. The partial correlation coeffi-
cients are calculated using the inverse of the empirical covariance matrix, which
for genomic data can be unstable due to the high-dimensionality of the data. The
authors stabilize the estimate of the covariance matrix using a novel regulariza-
tion approach based on shrinkage [45]. Edges between nodes in the graph are
determined by large partial correlation coefficients, and significantly small values
are removed from the graph using an empirical Bayes procedure to estimate the
local false discovery rate (FDR).

Partial Least Squares

Partial least squares (PLS) was recently proposed by Pihur et. al [39]. For each
gene, a separate PLS regression model is constructed, using a specified number
of PLS components (typically, 2 to 5). The association between the ‘dependent’
gene (the dependent variable in the PLS regression model) and the remaining
genes used to construct the PLS components can be determined by the PLS
component coefficients for each gene and the estimated beta parameters in the
regression model (essentially, the scalar product of these two vectors for each
gene). For undirected edges, the overall association between any two genes is an
average of the association measures using each gene as the dependent variable.
Similarly to GGMs, this measure of association is adjusted for the effects of other
genes, since the PLS components are constructed in an orthogonal manner. An
empirical Bayes approach is also used to estimate the local FDR and determine
significant edges.

8.4 Simulated Data: Raf Signaling Pathway

We evaluated the fuzzy logic (FL) models of [7] and [16] on previously generated
data concerning the Raf signaling pathway, taken from Werhli et al. [54]. Raf is
a critical signalling protein involved in regulating proliferation of cells in the hu-
man immune system, and deregulation of the Raf pathway can lead to carcinogen-
esis. Figure 8.6 shows the currently accepted signaling network, taken from Sachs
et al. [43]. We present results from a representative subset of the data sets used
in [54]; the observed and interventional real cytoflow data, observed and inter-
ventional Gaussian data, and observed data generated by Netbuilder with a noise
level σ = 0.3, under both the correct and V-structure topology. In each situation,
100 observations were generated for each of the 11 proteins, and the process was
repeated five times to generate five independent data sets of each type.

The ranking of the network triplets produced by [7] defines a reciever opera-
tor characteristic (ROC) curve of the number of true positive (TP) versus false
positive (FP) edges. Based on this, two scores were used to compare the differ-
ent network reconstruction algorithms [54]. The first score records the number
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Fig. 8.6. The Raf signalling pathway. Nodes represent proteins, and edges indicate
the direction of signal transduction.

of TP edges discovered when the number of FP edges was five. This score cap-
tures the performance of each method at low FP values. The second score is the
area underneath the ROC curve (AUC), which gives an aggregate measure of
performance over all FP values. In both cases, larger values indicate better per-
formance. Each score was calculated under a directed (DGE) and an undirected
(UGE) criterion. The DGE considers the directionality of the edge when scoring
a correctly specified edge, and the UGE considers only the edge itself.

Tables 8.3 and 8.4 present a subset of the results from [7], for the 5-state FL
model. Also added are results using the PLS model of [39]; the results for the
relevance network, graphical Gaussian model, and Bayesian network are taken
from [54]. The results of the FL model are comparable to RNs, GGMs, and
PLS for the DGE TP counts. For the DGE AUC score, the FL model has results
comparable to RNs, but is outperformed by the other three methods. The FL
model has performance similar to RNs for the UGE scores (TP and AUC) on
the real and Gaussian data, but does worse on the Netbuilder data. As noted
in [7], however, the intended purpose of the FL model as a screening tool of
large genomic data sets is different from the other methods, which are primarily
intended for refined modeling of smaller gene sets.
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Table 8.3. True positive edges found with no more than five false positive edges, using
data generated from the Raf signalling pathway

Gaussian Gaussian Netbuilder Netbuilder Real Real
Measure Model Int Obs Obs Orig Obs V-str Int Obs
DGE BN 18.4 4.9 4.1 7.7 6.9 3.3

GGM 5.2 4.7 4.7 5.5 4.1 5.1
RN 1.8 3.8 5.1 5.0 1.7 5.1
PLS 4.4 3.2 4.6 5.8 3.4 5.0
FL 5 3.0 3.8 3.0 5.6 1.4 3.0

UGE BN 18.5 15.8 15.5 14.2 11.1 9.5
GGM 13.2 14.8 14.8 13.2 9.6 9.6
RN 6.5 8.1 16.6 13.6 7.1 9.3
PLS 11.6 11.4 12.8 15.0 10.6 9.8
FL 5 6.6 8.0 4.8 8.0 6.2 6.6

Table 8.4. AUC values for the ROC curve of true postive versus false positive edges
found, using data generated from the Raf signalling pathway

Gaussian Gaussian Netbuilder Netbuilder Real Real
Measure Model Int Obs Obs Orig Obs V-str Int Obs
DGE BN 0.980 0.782 0.821 0.875 0.697 0.623

GGM 0.749 0.797 0.798 0.835 0.666 0.644
RN 0.663 0.641 0.824 0.845 0.553 0.631
PLS 0.797 0.819 0.832 0.843 0.695 0.679
FL 5 0.709 0.614 0.641 0.759 0.555 0.578

UGE BN 0.966 0.885 0.905 0.933 0.791 0.690
GGM 0.820 0.881 0.883 0.904 0.713 0.685
RN 0.710 0.681 0.916 0.915 0.569 0.668
PLS 0.718 0.727 0.774 0.779 0.662 0.625
FL 5 0.694 0.656 0.535 0.708 0.571 0.639

Table 8.5 gives results from analyzing the Raf signalling pathway data using
the FL model of [16]. The networks were estimated using a genetic search algo-
rithm with a population size of 30, 30 generations, and crossover and mutation
probabilities of 0.7. The algorithm was run with five different starting seeds, and
the best rules for each output gene after all iterations were retained. All possible
regulatory connections were allowed except for auto-regulation. Since the model
produces one final network indicating the type of interaction between genes, but
no relative ranking of the edges, we could not calculate the TP and AUC scores
used in [54]. Instead, we present the TP, FP, sensitivity, and specificity of the
estimated network models. The number of TP edges for each data set are higher
than those in Table 8.3, but so are the number of FP edges, making direct com-
parisons with the other methods difficult. Of note, the sensitivity and specificity
for the DGE and UGE measures are fairly comparable, indicating that the model
does well at detecting the directionality of the edge in addition to the presence
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Table 8.5. True positive (TP), false positive (FP), sensitivity, and specificity for the
fuzzy logic model of [16], using data generated from the Raf signalling pathway

Measure Data Set TP FP Sensitivity Specificity
UGE Gaussian Int 28.0 20.4 0.70 0.75

Gaussian Obs 30.4 34.8 0.76 0.57
Real Int 31.6 34.4 0.79 0.58
Real Obs 28.8 36.4 0.72 0.55
Netbuilder Obs Orig 37.2 38.8 0.93 0.52
Netbuilder Obs V-str 35.2 40.4 0.88 0.50

DGE Gaussian Int 12.2 26.8 0.61 0.73
Gaussian Obs 12.8 37.2 0.64 0.63
Real Int 13.6 41.2 0.68 0.59
Real Obs 10.6 36.2 0.53 0.64
Netbuilder Obs Orig 17.8 45.4 0.89 0.55
Netbuilder Obs V-str 17.0 44.4 0.85 0.56

of the edge. We also ran the model allowing for all possible regulatory connec-
tions, including auto-regulation. The resulting networks were more sparse and
had higher specificity values, but also dropped in sensitivity (results not shown).

8.5 Yeast Cell-Cycle Data

We also tested the FL models of [7] and [16] on gene expression data from the
yeast cell-cycle [48]. We used the data from the alpha, cdc15, cdc28, and elu cell-
synchronized data sets, with 18, 24, 17, and 14 time points, respectively. Missing
values were imputed using the K-Nearest-Neighbor (KNN) algorithm [8]. The
data sets were analyzied in two ways. First, we screened the data in a manner
similar to [57] and [7], to eliminate genes which had expression levels below
the noise threshold and did not fluctuate significantly during the cell cycle. In
particular, all genes with a maximum expression level below the first quartile in
any of the four data sets or exhibited less than a three fold difference between
maximum and minimum expression values in all four data sets were removed. The
resulting data set of 1737 genes was screened using the FL model of [7], and the
gene triplets were assessed for enrichment of transcription factors and cell-cycle
regulated genes. In the second analysis, we selected twelve genes from the yeast
cell-cycle pathway taken from KEGG, given in Table 8.6. We ran the FL genetic
search algorithm model of [16] on the gene expression values corresponding to
these twelve genes, and checked for consistency of the estimated network with
the pathway depicted in KEGG.

Screening of Network Triplets

To assess whether the FL model of [7] is returning biologically plausible results,
we examined the number of network triplets that contained genes annotated as
transcription factors in activator and repressor positions, and cell-cycle regulated
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Table 8.6. Subset of genes selected for constructing regulatory networks using the FL
model of [16]

Gene Name ORF
CLN3 YAL040C
CDC28 YBR160W
MBP1 YDL056W
SWI4 YER111C

CDC20 YGL116W
CLB6 YGR109C
CDC6 YJL194W
SIC1 YLR079W
SWI6 YLR182W
CLN1 YMR199W
CLN2 YPL256C
CLB5 YPR120C

genes in the target position. Brock et al. [7] presented results for the cell-cycle
data of [14]. Here, we extend the analysis to include three additional data sets
from [48] (alpha, cdc15, and elu). We obtained two lists of genes affiliated with
the regulation of the transcription process, both using the YEAST package [33]
from the Bioconductor repository [23]. The first was obtained from all genes
containing the phrase “transcription factor” in their description, resulting in
116 genes. The second, larger list was obtained by all genes containing the word
“transcription” in their description. For cell-cycle regulated genes, we used three
lists of increasing size. The first list contained 104 genes known to be regulated
at various phases of the cell-cycle [48]. The second list contained 421 genes
determined to be cell-cycle regulated by Cho et al. [14]. The third list contained
800 genes determined to be cell-cycle regulated by Spellman et al. [48].

The percentage of the top scoring networks containing transcription factors
in the activator / repressor positions and cell-cycle regulated genes in the tar-
get positions are given in Table 8.7, for both a 7 state and 15 state FL model.
The enrichment of cell-cycle regulated genes in target positions is striking, with
between a 2 to 5 fold increase in representation among the top scoring networks
compared to the nominal frequency of occurrence in the reduced data. For tran-
scription factors the enrichment is not so pronounced, with between a 1.5 to 2
fold increase in representation for the 7 state model, but little if any enrichment
for the 15 state model. The lack of over-representation of transcription factors
in the top scoring networks may be explained by incongruency between mRNA
transcript levels and transcription factor activity. For example, a regulatory pro-
tein may be maintained at a fairly constant level within the cell, and activated
or deactivated (e.g. via phosphorylation) when necessary. Thus the amount of
mRNA transcript present may not reflect the activity of gene’s protein within
the cell.
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Table 8.7. Percent of the top scoring networks with transcription factors in the ac-
tivator and repressor positions, and cell-cycle regulated genes in the target position.
The different lists of transcription factor (TF) and cell-cycle regulated (CC) genes are
described in the text.

Number in Reduced Top 10,000 (%) Top 1,000 (%)
List Number Data (%) Position 7 State 15 State 7 State 15 State
TF1 116 27 (1.7) Act 3.4 1.9 2.8 1.9

Rep 3.1 1.6 2.2 1.6
TF2 530 109 (7.1) Act 10.8 7.1 8.0 7.1

Rep 10.0 8.7 11.3 8.7
CC1 104 68 (4.4) Tar 23.4 19.4 25.3 19.4
CC2 421 226 (14.6) Tar 62.3 53.5 73.1 53.5
CC3 800 449 (29) Tar 80.3 69.8 90.3 69.8

KEGG Cell-Cycle Pathway

We ran the FL model of [16] using the alpha, cdc15, cdc28, and elu yeast cell-
cycle data from [48] on the twelve genes in Table 8.6. The model was run with
the same parameter settings as in Section 8.4 and assuming no auto-regulation,
but all other regulatory connections were allowed. The final predicted network is
given in Table 8.8. The results presented here have been simplified by indicating
all positive interactions with a 1, all negative interactions with a -1, and no
interaction with a 0.

We evaluated the results by comparing with the cell-cycle figure as depicted
in KEGG [24] (see Figure 8.1), with connections assumed to exist between genes

Table 8.8. Predicted regulatory network using the FL model of [16], for the twelve cell-
cycle genes in Table 8.6. A 1 indicates a positive interaction, a -1 negative interaction,
and 0 no interaction. The row genes indicate the origin of the edge (the regulatory
genes), the column genes are the targets. Correctly specified edges (direction and type)
are given in bold.

CLN3 CDC28 MBP1 SWI4 CDC20 CLB6 CDC6 SIC1 SWI6 CLN1 CLN2 CLB5
CLN3 0 1 1 −1 0 0 1 0 0 0 0 1

CDC28 1 0 0 0 1 1 0 −1 1 0 0 0
MBP1 0 1 0 −1 0 0 0 −1 −1 0 −1 0
SWI4 −1 0 −1 0 0 1 1 1 0 0 0 1

CDC20 0 1 0 0 0 0 1 1 1 0 −1 −1
CLB6 1 1 1 1 −1 0 0 1 −1 1 1 1
CDC6 1 1 −1 1 1 0 0 1 −1 0 0 0
SIC1 0 −1 −1 1 1 0 1 0 0 0 0 0
SWI6 −1 1 −1 0 0 0 0 0 0 1 0 0
CLN1 0 1 1 0 −1 1 0 0 1 0 1 1
CLN2 −1 1 −1 1 −1 1 0 0 1 1 0 1
CLB5 0 0 0 1 −1 1 1 0 0 0 1 0
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within a complex. When considering both correct specification of edge direction
and type (positive vs negative regulation), the algorithm correctly identified
36.4% of the true associations, with a specificity of 47% and an overall accuracy
of 43.8%. Compared to results reported in other cases [39], the algorithm achieves
respectable success. Also, given that only three of the interactions were consid-
ered negative in the true network, it is difficult for any algorithm to correctly
specify the type of interaction without some prior constraints. When consider-
ing just the directionality of the edge, the sensitivity increased to 47.7% and the
overall accuracy to 47.2%, while the specificity remained unchanged. Since the
model will always try to best explain a given gene’s expression pattern, correctly
characterizing a protein which is solely regulatory within a system (e.g., CDC20
in our example) is a difficult task. Knowledge of a whether a connection exists,
though, is still useful to biologists, who can design further assays to study the
nature of the relationship between the genes. Hence the ability of an algorithm
to correctly specificy an existing edge, irrespective of direction, is important.
In this case, the FL model captures 71.6% of the edges between genes, with a
specificity of 37.7% and an overall accuracy of 53.5%.

8.6 Conclusion

In this chapter, we have demonstrated the use of fuzzy logic to develop tools
capable of screening genomic data sets for potential regulatory interactions, and
comprehensive reverse engineering of regulatory pathways concerning a subset
of genes of interest. In both cases, the use of fuzzy logic allows the incorporation
of high-level, human-like reasoning in constructing the rule-base for the regula-
tory system. This is especially advantageous for the biologist or subject matter
expert who has extensive knowledge about existing regulatory mechanisms, who
can then cast this information in an intuitive fashion using the semantics of
fuzzy logic.

Fuzzy logic models are flexible, and several aspects can be modified to pos-
sibly achieve greater performance. For example, alternative inference systems
(e.g., Mamdani [35, 34] and Tsukamoto [50]), and input-output membership
function shape and spacing can be used. In addition, non-linear effects among
the regulatory genes can be added by consulting with subject matter experts
and translating knowledge about gene interactions into an appropriate fuzzy
logic model. The FL model of [16] learns the rule configuration using a genetic
algorithm, while the NFRN of [36] fine-tunes the parameters of the regulatory
system using the BPTT algorithm. However, learning these aspects of the FL
system adds computational complexity to the algorithm. If the method is pri-
marily intended as an exploratory tool, as in [7], then the increase in compu-
tational overhead must be weighed against the added flexibility of the model.
Both the [7] and [16] models were assessed using simulated microarray data,
and results compared favorably with other network reconstruction algorithms.
Unfortunately, the NFRN program was not publicly available at the time of writ-
ing, and so was not included in the comparative analysis. Results from analyzing
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publicly available yeast cell-cycle data [48] indicate the FL models also return
biologically meaningful results.

There are inherent difficulties in discovering regulatory networks using mi-
croarray data. Gene expression is regulated at several stages, including DNA
transcription, RNA processing and transport (in eukaryotes), RNA translation,
and post-translational modification of proteins. DNA microarrays capture bio-
logical activity involving the first of these stages, but regulation at later stages is
not necessarily reflected by changes in mRNA transcript abundance. Further, in-
teractions gleaned from microarray data are not necessarily causative in nature,
but may indicate indirect connections among genes involved in similar biological
pathways. Further experimental assays are needed to determine the validity of
genetic interactions suggested by network models. In spite of these challenges,
the computational approaches discussed here provide useful tools to mine mi-
croarray data for potential genetic regulatory interactions. This information can
generate testable hypothesis and guide future experiments, focusing the efforts
of investigators and saving them time and resources.
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Summary. Recent technological advances in high-throughput data collection allow for
computational study of complex biological systems on the scale of the whole cellular
genome and proteome. Gene regulatory network is expected to be one of suitable tools
for interpreting the resulting large amount of genomic and proteomic data sets. A huge
number of methods have been developed for extracting gene networks from such data.
Fuzzy logic which plays an important role in multiple disciplines is a framework bringing
together physics-based models with more logical methods to build a foundation for
multi-scale bio-molecular network models. Biological relationships in the best-fitting
fuzzy gene network models can successfully recover direct and indirect interactions
from previous knowledge to result in more biological insights about regulatory and
transcriptional mechanism. In this chapter, we survey a class of models based on fuzzy
logic with particular applications in reconstructing gene regulatory networks. We also
extend our survey of the application of fuzzy logic methods to highly related topics
such as protein interaction network analysis and microarray data analysis. We believe
that fuzzy logic-based models would take a key step towards providing a framework
for integrating, analyzing and modeling complex biological systems.

9.1 Introduction

Fuzzy set, which is a kind of logic using a range of values as ‘degree of truth’
instead of the binary values ‘true or false’, was first founded by Zadeh [50] and
later investigated by many other researchers [21]. So far fuzzy system methods,
especially fuzzy logic methods have gained rapid advances. Fuzzy logic has be-
come a widely used computational tool for formulating and transferring human
expert knowledge to quantitative models. It provides a simple way to arrive at
a definite conclusion based upon vague, ambiguous, imprecise, noisy, or missing
input information, which makes fuzzy logic flexible for modeling the relationship
between input and output information and distinguished by its robustness with
respect to noise and variations in system parameters. This characteristic mirrors
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the robustness of many systems and their remarkable ability to achieve precise
functional control from imprecise inputs. For example, a fuzzy logic biochemical
model requires some numerical parameters in order to operate, such as initial
values and rate coefficients, but exact values of these numbers are usually not
critical. Since dynamic rules are defined in terms of fuzzy quantities, fuzzy logic
models allow computation of logical consequences of complex system dynamics
with imprecise variables. At the same time, fuzzy logic models are capable of
representing extremely complex systems to high degrees of accuracy when pre-
cise data is available. Most biological data are derived from logically-designed,
hypothesis-driven experiments, which may contain various noises, fuzzy logic
provides a way for biologists to incorporate data that might otherwise be difficult
to incorporate into computer models. Therefore, fuzzy logic has been particularly
useful in applications where appropriate mathematical models cannot be derived
due to the complexity of the problem and has become ubiquitous in modern con-
trol systems engineering, including biological and medical applications [44] such
as analyzing and modeling gene expression data [10, 45], reconstructing gene
regulatory networks [46], etc. In real applications, statistical and non-gradient
based optimization methods such as genetic algorithms are often adopted to
determine a set of optimal fuzzy rules describing a systems. Here, we briefly
describe some fuzzy system methods used in this chapter.

9.1.1 Fuzzy Logic and Fuzzy Systems

Fuzzy logic, the logic based upon which fuzzy systems operate, is much closer in
spirit to human thinking and natural language than conventional digital logic.
Basically, it provides an effective means of capturing the approximate and inex-
act nature of the real-world knowledge. According to Zadeh [50], the essential
characteristics of fuzzy logic are:

• Exact reasoning is viewed as a limiting case of approximate reasoning
• Everything is to a matter of degree
• Any logic system can be fuzzified
• Knowledge is interpreted as a collection of elastic or equivalent, fuzzy con-

straints on a collection of variables
• Inference is viewed as a process of propagation of elastic constraints

Fuzzy sets are qualitative properties (e.g., low, medium, high) whose elements
belong to the sets only in a degree. The degree of belonging is defined by the
value of a membership function (MF), which has values between 0 and 1. Such a
technique clearly provides a way of representing uncertainties in a mathematical
model. The most popular membership functions are triangular functions, Gaus-
sian functions, bell-shaped functions, and trapezoidal functions. An illustration
for bell-shaped membership functions and triangular membership functions is
shown in Fig. 9.1. It is defined as:

μ(x) =
1

1 + [(x−1
a )2]b
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Fig. 9.1. An illustration of bell-shaped membership functions and triangular member-
ship functions

Fuzzy systems are fuzzy rule-based expert systems, which comprise a set of
fuzzy rules also known as linguistic rules in the form of ‘IF-THEN’ [22]. A fuzzy
rule is defined as IF x THEN y, where x (condition or premise) is a conjunc-
tion in which each clause specifies an input variable and one of the member-
ship functions associated with it, and y (conclusion or consequence) specifies an
output variable membership function. Both x and y are propositions contain-
ing linguistic variables. It is such linguistic variables and fuzzy IF-THEN rules
that enable fuzzy system methods to exploit the imprecisions and uncertainty
underlying target data. Fuzzy systems can be broadly categorized into two fam-
ilies. The first includes linguistic models based on collections of IF-THEN rules,
whose antecedents and consequents utilize fuzzy values. This family of fuzzy sys-
tems uses fuzzy reasoning and the system behavior can be described in natural
terms. The second category, based on Sugeno-type systems, uses a rule struc-
ture that has fuzzy antecedent and functional consequent parts. Fuzzy rule-based
systems have particularly successful applications in computer control and engi-
neering, now extended to other fields such biomedical diagnosis, modeling gene
regulation, etc.

9.1.2 Fuzzy Clustering

Clustering of numerical data, which is a branch of pattern recongnition, forms
the basis of many classification and system modeling algorithms. The purpose
of clustering is to identify natural groupings of data from a large data set to
produce a concise representation of a system’s behavior. The resulting partition
can improve our understanding for the data and reveal the internal structure of
the data. While classical hard clustering methods such as k-means, hierarchical
clustering have played important roles in analyzing large-scale complex data, in
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real applications, there may not be sharp boundaries between different clusters.
Fuzzy c-means (FCM) is a popular data clustering technique which allows each
data point to belong to a cluster to some degree specified by a membership
grade. This technique was originally introduced by Bezdek [4] as a fuzzy-logical
extension to earlier clustering methods. It provides a method of how to group
data points that populate some multi-dimensional space into a specific number
of different clusters. In the recent years, many variants of FCM such as fuzzy
j-means have been proposed for more proper applications [3].

9.2 Basic Biological Knowledge

In this section, we briefly introduce some biological concepts and knowledge used
in the later sections.

9.2.1 Gene Expression Principle and Data

Although genome stores biological information, it is unable to release the infor-
mation by itself to the cell. Only through the coordinated activity of enzymes
and other proteins participating in a series of biochemical reactions, biological
information can be utilized and biological function can be achived. Regulation of
gene expression is one of the most important processes in a cell system. It trans-
mits static information encoded in the DNA sequence into functional protein
molecules which in turn control most of the cellular processes. A gene is called
expressed when it is transferred to RNA molecules which are finally synthesized
into proteins through this process. In other words, gene expression is the process
by which the inheritable information that comprises a gene (DNA segment) is
made manifest as a physical and biologically functional gene product, such as
protein or RNA. Gene regulation and gene expression are achieved by a kind of
binding proteins known as transcription factors (TFs) which attach to specific
DNA promoter regions and initiate RNA synthesis to achieve the transcription
process.

The amount of mRNA synthesized during transcription measures how active
a gene is. It is thousands of genes and their products in a given living organ-
ism that function in a complicated and coordinated way and create the mystery
of life. However, traditional methods in molecular biology that examine gene
expression levels were limited to a small scale per experiment. With the de-
velopment of high-density DNA chip technology, a new technology called DNA
microarray which can be used to detect RNAs that may or may not be translated
into active proteins, has enabled researchers to monitor the whole genome at the
transcriptional level on a single chip and detect mRNA expression levels of thou-
sands of genes simultaneously. This kind of analysis is referred to as expression
analysis or expression profiling. The first use of microarrays for gene expres-
sion profiling was in [37]. Nowadays, various such high-throughput microarray
techniques have generated massive amount of data. There are many databases
such as Stanford Microarray Database, Gene Expression Omnibus, ExpressDB.
in which various microarray data sets are deposited and can be dealt with and
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analyzed by different computational methods and help us to gain insights into
underlying biological processes. The resulting gene expression data can be used
to study the effects of drug treatments, diseases, and developmental genetics,
etc. For example, microarray-based gene expression profiling has been widely
used to identify disease genes by comparing their expression profiles in diseased
and normal tissues. In addition, gene expression profiles are actually the results
of transcription regulation, thus they have been widely used to reconstruct gene
regulatory networks [46].

9.2.2 Gene Regulatory Networks

As mentioned in last subsection, gene expression means the process of producing
functional molecules such as RNA or protein from static DNA sequences, among
which transcription regulation is the first and important step. The steps in the
gene expression process may be modulated, including the post-transcriptional reg-
ulation of a mRNA and the post-translational modification of a protein. One of
the most important question in biology is how gene expression is switched on and
off, i.e., how the expression of a gene is regulated. The transcriptional regulation
of genes is achieved by binding proteins that attach to specific DNA promoter re-
gions and exert their effects positively or negatively on binding of RNA polymerase
to promoter region of the gene. Such regulatory relationships between genes can
be described by a network. Gene regulatory network (GRN) is a logical way of
attempting to describe the relationships between different genes observed with
transcription profiling. It is a directed network with genes as nodes and the re-
lationships as edges and can be viewed as a input-output device (Fig. 9.2). The
interactions in gene regulatory networks may not be a direct physical interaction
from a regulator to a target gene since they do not represent explicitly the proteins
and metabolites that mediate those interactions. It is such regulatory networks in
cells that dynamically orchestrate the expression level of each gene in the genome
by controlling whether and how the gene will be transcribed into RNA in response
to various environmental and developmental signals.

Gene 1

Gene 2

Gene 3

Gene 4

Gene 5

Gene 6

Fig. 9.2. Graphical representation of a gene regulatory network with six genes
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Gene regulatory networks can be modeled and simulated by mathematical
and computational approaches such as Boolean networks, Bayesian networks,
differential equations [2, 9, 18]. Although such models are created based on a
set of unrealistic assumptions, they can provide the rough description of system
dynamics and derive behavioral predictions. Once the model are chosen, the
parameters in the model need to be inferred to fit the data. Since the expres-
sion profiles of gene origin from the network interactions between regulators and
target genes, it is reasonable to retrieve these interactions from gene expression
data. Such a computation process is known as gene regulatory network infer-
ence or reverse engineering of gene regulatory networks. In the last few years, a
number of methods have been developed for inferring gene regulatory networks
from microarray data, among which we will focus on introducing some fuzzy
logic methods for modeling gene expression data and reconstructing GRN in
this chapter.

9.2.3 Protein Interaction Networks

The nature and role of the interactions between proteins is the central topic in
the field of proteomics. Protein-protein interactions play diverse roles in function-
ality and robustness of biological systems and differ based on the composition,
affinity, and lifetime of the association. Non-covalent contacts between residue
side-chains which facilitate a variety of interactions and associations within and
between proteins are the basis for protein folding, protein assembly, and protein-
protein interaction. An interaction may be mainly transient in vivo but becomes
permanent under certain cellular conditions. Naturally, proteins seldom act as
single isolated units while performing their functions in cellular systems. Proteins
involved in the same cellular processes often interact with each other and the
function of unknown proteins may be postulated on the basis of their interaction
with a known protein target of known function [51]. Mapping protein-protein in-
teractions not only provides insights into protein function but also facilitates
the modeling of functional pathways to elucidate the molecular mechanisms of
cellular processes. Thus, the study of protein interactions is fundamental to un-
derstanding how proteins function together within the cell and how proteins
organize to form a robust system.

A huge number of protein-protein interactions have been identified via the
yeast two-hybrid system, mass spectrometry, and protein microarrays. Such data
have been deposited in several main databases such as DIP, MIPS, etc. How-
ever, the data generated is likely to be erroneous and incomplete. In order to
form an understanding of the total universe of potential interactions, includ-
ing those not detected by these methods, it is useful to develop computational
methods to predict possible interactions between proteins. The accurate predic-
tion of protein-protein interactions is therefore an important goal in the field of
bioinformatics [51].

In protein-protein interaction networks, proteins with tense connections tend
to form clusters which correspond to functional modules or protein complexes.
Protein complexes are groups of proteins that interact with each other at the
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same time and place, forming a single multi-molecular machine. Functional mod-
ules consist of proteins that participate in a particular cellular process while
binding to each other at a different time and place. Clustering protein-protein
interaction networks therefore involves identifying protein complexes and func-
tional modules. It has important significance for analyzing protein interaction
networks and their organization, predicting the principal function of each module
and elucidating possible protein functions.

Fig. 9.3 shows an overview of the main content of this chapter. Yeast two-
hybrid method (Y2H) and Affinity purification combined with mass spectrom-
etry (TAP-MS) are two high-throughput technology for protein interactions.
Yeast two-hybrid method (Y2H) is typically carried out by screening a protein
of interest against a random library of potential protein partners. Its principle
is based on the fact that many eukaryotic transcription activators have at least
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two distinct domains known as DNA-binding do- main (BD) and transcriptional
activation domain (AD). In Y2H system, protein-protein interactions are tested
by fusing one protein (bait) to the DNA-binding domain of the yeast GAL4 tran-
scription factor. This chimeric protein is cloned in an expression plasmid, which is
then transfected into a yeast cell. A similar procedure creates a chimeric sequence
of another protein (prey) fused to the GAL4 activation domain. The transcrip-
tion system works only if the two domains are physically close, which means that
splitting BD and AD will inactivate the transcription. But the transcription can
be restored if a DNA-binding domain is physically associated with an activating
domain. If two proteins physically interact, the reporter gene is activated. Affin-
ity purification combined with mass spectrometry (TAP-MS) approaches typi-
cally consist of the selective purification and enrichment of a bait protein and
the associated prey proteins that co-purify with the bait. Firstly, appropriate
TAP tags are selected. Then, tagged proteins are expressed in yeast and allowed
to form physiological complexes. These complexes are affinity purified using the
appropriate tag, and the purification protein assemblies are resolved by dena-
turing gel electrophoresis. Resolved proteins are excised from the gel and then
digested by trypsin. The resulting peptides are analyzed by mass spectrometry
and interacting proteins can be characterized by using bioinformatics methods.

9.3 Fuzzy System Methods for Reconstructing GRN

As fuzzy system methods have wide applications in other fields such as control
theory, decision making, etc, they also have been used in modeling gene expres-
sion and reconstructing gene regulatory networks. Fuzzy system methods allow
problem solving with incomplete or uncertain information and are suitable for
modeling uncertain phenomenon when systems are difficult to describe with a
deterministic mathematical model, which makes them an ideal tool for analyz-
ing gene expression data since microarray experimental data are often noisy and
uncertain. Therefore, although a large number of computational methods have
been developed for building gene regulatory models, fuzzy systems have been
effectively used in identifying the logical relationships between genes and are
still a promising method to understand the phenomena of gene regulation.

An early work on fuzzy system methods with applications in modeling gene ex-
pression was contributed by Woolf and Wang [46], where they built an activator-
repressor gene regulatory model based on fuzzy rules to find gene regulation
patterns from expression data. Through a fuzzy logic algorithm, gene expres-
sion profiles were fuzzified and transformed into qualitative descriptors such as
‘high’,‘medium’ and ‘low’. Then, by using a set of known heuristic fuzzy rules
consistent with common knowledge, all possible combinations of triplets (activa-
tors, repressors, and target) were tested and the model output was compared to
the expression level of the target gene to check if they fit the fuzzy model. Regu-
lation combinations were ranked based upon the residual between the calculated
expression and the observed expression of the target gene. Those combinations
that have a low error and fit most of the fuzzy rules were inferred to exhibit
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Fig. 9.4. Fuzzy membership functions and fuzzy rules used in [46]

an activator-repressor-target relationship. For example, if the activator is highly
expressed and the repressor is lowly expression, the target gene would be highly
expressed. If the repressor concentration is high and the activator concentration
is low, the target gene would be lowly expressed. The fuzzy membership func-
tions and fuzzy rules used in [46] are shown in Fig. 9.4. Such fuzzy-logic based
gene regulatory network model can be viewed as a generalization of Boolean
networks since in this model genes have three states instead of only two states
‘on’ and ‘off’ in Boolean networks. Furthermore, it performs like a human expert
to find underlying regulatory relationships by comparing the expression levels of
genes. The predicted regulation patterns constitute a gene regulatory network.
This fuzzy-logic model was tested on yeast expression data from Saccharomyces
cervisae cell cycle expression database and the numerical results agree well with
the experimental results from literature.

As pointed out in [35, 34, 33], although above fuzzy-logic model is effective
in finding gene regulatory networks, one of the major problems lying in this ap-
proach is that large amount of computational time is required for analysis since
all possible combinations of triplets should be examined. For example, The anal-
ysis of the relationships between 1,898 genes required 200 h on an 8-processor
SGI Origin 2000 system. The complexity of the regulatory model increases in
O(n3) as the number of genes n used for the model increases. In addition, the
algorithm can only focus on simple regulation patterns and cannot scale well
to more complex models because more complex models such as a model with
co-activators and co-repressors would have an O(n5) complexity whose imple-
mentation time would be on the scale of years instead of hours [33]. Therefore,
Ressoma et al. [35, 34] introduced temporal gene expression clustering as a data
processing step into an improved gene interaction algorithm to reduce computa-
tion time. Such processing is based on a fact that if a gene combination of cluster
centers does not fill the fuzzy-logic model well, it is unlikely that any genes with
similar expression profiles will fit the model well. Therefore, after clustering gene
expression data by self-organizing maps (SOM), only cluster centers are needed
to fit the model, which substantially reduce the gene combinations. Instead of
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only using fuzzy ‘AND’ operations for rule aggregation, Ressoma et al. [35, 34, 33]
tried a few fuzzy models with different conjunction and rule aggregation oper-
ations such as Mamdani’s model, Kosko’s Standard Additive Model (SAM), a
hybrid fuzzy model that combined attributes of the Mamdani’s model and SAM.
The experimental results on several real gene expression datasets show that the
improved fuzzy-logic model is more efficient for reconstructing gene regulatory
networks in terms of computation time and the Mamdani’s model performs best
in terms of the resilience to noise. Another generalization of Woolf and Wang’s
method is given in [31] which predicts changes in expression level of the target
over interval time points and allows a wider search space for inferring regulatory
relationships.

To represent necessary biological details in gene expression, Sokhansanj and
Fitch [40] developed a fuzzy-logic approach to model gene regulation by using
five fuzzy sets ’very low’, ’low’, ’medium’, ’high’, and ’very high’. A typical fuzzy
rule has n inputs and one output like

IF P1 AND P2 AND · · · AND Pn,THEN Q

However, such fuzzy rule has a problem of curse of dimensionality, i.e. if the
inputs Pi have M fuzzy sets, this requires a rule base with Mn rules. Although
clustering is useful in combining proteins that are co-regulated and reduce the
possible combinations, it defeats the purpose of a reasonably detailed gene reg-
ulation model [40]. To solve this problem, in [40], Union Rule Configuration
(URC) which avoids combinatorial explosion in the fuzzy rule base [6] was used,
in which the above rule would be written as

(IF P1THEN Q) OR (IF P1THEN Q) · · · OR (IF PnTHEN Q)

With this form, only M ·n rules are required, which makes rule evaluation com-
putationally feasible and mining data to obtain the rule base quickly. URC is
likely not equivalent to the original formulation in fuzzy logic, but it succeeds
as a heuristic method in many problems. Sokhansanj et al. [41] introduced a
scalable linear variant of fuzzy logic for gene regulatory network modeling and
used an exhaustive search for fuzzy gene interaction models that best fit tran-
scription microarray measurements. Datta and Sokhansanj [8] built on above
linear fuzzy logic model and employed an evolutionary search algorithm instead
of exhaustive search to accelerate the search for finding a biomolecular network
model as consistent with biological data as possible. In [41, 8], the magnitude
of gene expression was normalized to [−1, 1] and represented by the fuzzy sets
‘low’, ‘medium’, ‘high’ with the following membership functions as fuzzification
scheme:

μlow(x) =
{−x x < 0,

0 x > 0,
(9.1)

μmedium(x) = 1 − |x|, (9.2)
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μhigh(x) =
{

0 x < 0,
x x > 0.

(9.3)

To bridge quantitative and qualitative biological data, the simplified centroid
method was adopted as defuzzification scheme:

x̃ =
μhigh − μlow

μlow + μmedium + μhigh

.

Then, fuzzy predictions generated by a set of fuzzy rules were compared with
quantitative data and evaluated by

E =

∑m
j=1(xj − x̃j)

∑m
j=1(xj − x̄j)

where m is the number of data points in the time series of gene expression
profiles and x̄ is the average expression ratio over the whole series. With this
criteria, exhaustive search or evolutionary search algorithm was adopted to find
the best-fit fuzzy model (a set of fuzzy rules) which represents the gene reg-
ulatory network most consistent with biological data. In a similar framework,
Linden and Bhaya [23] designed an evolutionary algorithm to find a set of fuzzy
rules that could represent the actual regulation of gene expression. Unlike other
“black-box” software, fuzzy-logic based gene network inference approaches can
be understood and applied by biologists. A major advantage of fuzzy logic model
is that it can tolerate the noise underlying gene expression data by qualitative
representation of expression levels.

In addition to fuzzy logic, fuzzy adaptive resonance theory (fuzzy ART) also
was used as a modeling method for gene regulatory networks. Fuzzy ART is a
type of unsupervised clustering method and introduced by Carpenter et al. [5].
Takahashi et al. [42] developed a fuzzy ART associated matrix method for infer-
ring gene regulatory networks. In this method, fuzzy ART was used to cluster
gene expression data, which can decrease the number of time course gene expres-
sion patterns and reduce the implementation time. Fuzzy ART matrix is based
on the assumption that a gene with an early maximum gradient point in the
expression pattern will influence or regulate the gene in the same cluster or the
gene with a proximate maximum gradient point. So, in [42], gene clusters were
arranged according to the order of maximum gradient points of expression pat-
terns, based on which regulatory relationships can be figured out (Fig. 9.5). In
addition, 2D matrix was constructed to extract some common gene interactions
under different stress conditions. Note that many feedback loops may be ruled
out by this method since it exacts gene-gene interactions according to the order
of clusters.

Finally, like their applications in analyzing gene expression data, fuzzy clus-
tering algorithms have been used to reconstruct gene regulatory networks. The
basic idea underlying this class of methods is that some genes interact between
multiple regulatory pathways and soft clustering algorithm can account for this.
Sehgal et al. [38] presented an framework called Collateral-Fuzzy Gene Regu-
latory Network Reconstruction (CF-GeNe) for gene regulatory network (GRN)
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Fig. 9.5. Extracting gene regulatory interactions from the order of clusters

inference. Specifically, the fuzzy-PBM index is used to automatically determine
the cluster number. Then fuzzy c-means was employed to find expression patterns
(gene clusters) based on which significant genes with large inter-class variations
and small intra-class variations were selected for gene network inference by using
the Between Group to within Group Sum of Squares (BSS/WSS) method. The
last step is that Spearman rank correlation is computed between each gene Gi

in the selected significant genes set and all genes Gj within the cluster by

ρ =
6
∑

D2
g

Ng(N2
g − 1)

,

where Dg is the distance between the ordered gene pair GI and GJ , while Ng

is the number of pairs. The resulting gene pairs with high correlation compose
of gene regulatory networks. By a same research group, an adaptive fuzzy evo-
lutionary GRN Reconstruction (AFEGRN) framework with a similar spirit for
modeling GRNs was presented [39]. Du et al. [12] proposed a new multi-scale
fuzzy c-means method to cluster gene expression data and find co-regulated
genes. Then, the time correlation between coregulated genes A and B can be
expressed in discrete form as

RAB(τ) =
n∑

t=1

xA(t)xB(t − τ),

where xA and xB are normalized (zero mean, standard deviation of unity) ex-
pression profiles of genes A and B, τ is the time shift. For multiple data sets,
say L data sets, the time correlation results of each data set are combined as

RC
AB(τ) =

L∑

k=1

Rk
AB(τ).

By using maxτ RC
AB(τ), the time delay τ ′ between expression profiles of genes A

and B can be estimated and possible regulatory relationships can be obtained
according to the following rules:
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• RC
AB(τ) > 0, τ ′ �= 0, there is positive regulation between genes A and B;

• RC
AB(τ) < 0, τ ′ �= 0, there is negative regulation between genes A and B;

• RC
AB(τ) > 0, τ ′ = 0, genes A and B are positively co-regulated;

• RC
AB(τ) < 0, τ ′ = 0, genes A and B are negatively co-regulated.

where the sign of τ ′ determines the direction of regulation. τ ′ > 0 means gene B
regulates gene A with time delay τ ′; τ ′ < 0 means gene A regulates gene B with
time delay. Maraziotis et al. [25] developed a recurrent neuro-fuzzy method to
extract fuzzy rules from microarray data. The neuro-fuzzy method combine the
advantages of the strong computational power and low-level learning of neural
networks and the high-level human-like reasoning of fuzzy systems. In addition,
the dynamic aspects of gene regulatory interactions are expressed by the recur-
rent structure of the neuro-fuzzy model. Other work on using fuzzy logic methods
to infer gene regulatory networks can be found in [24].

9.4 Fuzzy Clustering Techniques for Gene Expression
Data

The adaptability of cells and the diversity in cellular processes are accomplished
through the cooperation and multi-functionality of groups of genes/proteins. De-
pending on the cellular environment, groups of genes are often co-expressed and
each group is regulated by a specific mechanism. DNA microarray technology
has the potential to create huge datasets in short times which require computa-
tional methods for analyzing such data. Clustering based on the assumption that
a population of objects can be subdivided into smaller subgroups has proved to
be an important tool for the purpose of identifying groups of genes or samples
displaying a similar expression profile. Such partitioning has the main scope of
facilitating data visualization and interpretation, and can be exploited to gain
insight into gene regulatory networks underlying a biological process of interest
and uncover potential biological mechanisms.

A number of methods have been developed to deal with the complex relation-
ships between objects and have been applied to microarray data analysis [16, 10].
However, due to the complex nature of biological systems and the noises under-
lying data, gene expression datasets tend to have very diverse structures. Some
of them even do not have well-defined clustering structures. Classical cluster-
ing techniques such as k-means, hierarchical clustering and self-organizing maps
(SOM), typically construct clusters on the basis of pairwise distance between
genes. As a consequence, they may fail to reveal nonlinear relationships between
gene expression profiles, and thereby fail to correctly represent a dataset with
nonlinear structure. More sophisticated clustering approaches have been devel-
oped specifically for microarray data clustering, such as GeneClust [11] and
CLIFF [47]. Though in some particular cases they perform better than classi-
cal methods, none of them is proved consistently better across multiple different
datasets [17]. Moreover, high algorithmic complexity severely limits their use and
the traditional algorithms remain more popular for their conceptual simplicity



178 S. Zhang et al.

and easy implementation. Particularly, since the work of Eisen et al. [13], hierar-
chical clustering remains the most widely used clustering algorithm, although it
has been described to suffer from a number of limitations mostly deriving from
the local decision making scheme that joins the two closest genes or clusters
without considering the data as a whole [43].

While these classical algorithms can accurately identify distinct expression
patterns by grouping genes with similar expression behavior, they are unable
to identify genes whose expression levels are similar to multiple, distinct groups
of genes, ignoring the information about the inter-relatedness of genes. In other
words, when analyzing large gene-expression datasets collected under various
conditions, where genes are likely to be co-expressed with multiple groups of
genes under different conditions, hard clustering methods cannot recognize such
gene and result in inaccurate clusters which lead to incorrect conclusions about
gene product behavior [14]. In addition, conventional partition clustering meth-
ods force all genes into clusters, even those for which the variations in expression
do not fit into any global pattern. These methods will assign to each cluster some
genes which may only be marginally relevant for the biological significance of
the cluster. For such cases, fuzzy clustering techniques have been taken into
consideration because of their capability to assign one gene to multiple clusters
(fuzzy assignment), which allow to capture genes involved in multiple transcrip-
tional programs and biological processes and can reveal additional information
concerning gene co-expression such as overlapping clusters and overlapping cel-
lular pathways [16, 10]. In other words, fuzzy logic methods assign a relative
likelihood for each gene belonging to each cluster, which can characterize the
multi-functionality of a gene. Such likelihood can be used to select genes ex-
hibiting tight association to given clusters and allows us to focus only on genes
which show coherent behavior within clusters. In addition, fuzzy logic methods
inherently account for noise in the data because they use qualitative represen-
tation of gene expression rather than the precise values.

The fuzzy clustering method connects each gene to all clusters by an indicator
vector, whose elements correspond to the membership degrees of the gene to
all clusters, where the membership degree takes a value between 0 and 1. A
membership degree close to 1 indicates that the gene has a strong association to
the cluster, whereas a membership close to 0 indicates a weak association. The
general goal of the fuzzy clustering method is to find a fuzzy partition matrix
W , and assign each gene to some clusters according to W such that each gene
belong to one or more clusters with different membership degrees.

The first choice for fuzzy clustering in real applications is the fuzzy c-means
algorithm (FCM) which is the fuzzy logic extension of the hard clustering tech-
nique k-means. FCM searches for the membership degrees and centroids until
there is no further improvement in the objective function value and it computes
fuzzy assignment essentially on the relative distance between one object and all
cluster centroids [4, 16, 10, 3]. Many variants of FCM have been proposed in
the past years, including a heuristic variant that incorporates principle compo-
nent analysis (PCA) and hierarchical clustering [16], and fuzzy j-means that
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applies variable neighborhood searching to avoid cluster solution being trapped
in local minima [3]. A FuzzySOM approach was also developed to improve FCM
by arraying the cluster centroids into a regular grid [29]. Fuzzy j-means (FJM)
developed recently by Belacel et al. [3] was inspired by the local search heuris-
tic j-means which is developed for solving the minimum sum-of-squares clus-
tering problem. J-means has better performance than the standard k-means,
especially for clustering large datasets. In j-means and FJM methods, centroid
moves belong to the neighborhood of the current solution defined by all possible
centroid-to-pattern relocations. In FJM, the ‘integer’ solution is moved to the
continuous one by finding centroids and membership degrees for all patterns and
clusters [3].

The partition matrix W = (wik) in fuzzy clustering techniques is of size
n × c, where wik is the membership value of gene i (i = 1, ..., n) for the cluster
k (k = 1, ..., c). The gene expression data can be represented by an n×m matrix:

⎛

⎜
⎜
⎝

x1

x2

· · ·
xn

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

x11 x12 · · · x1m

x21 x22 · · · x2m

· · · · · · · · · · · ·
xn1 xn2 · · · xnm

⎞

⎟
⎟
⎠

where n is the number of genes and m is the number of arrays. The xij represents
the normalized, expression level of gene i in array j. In the following, we will
describe FCM and its variants in a detailed manner.

Fuzzy c-means clustering: Fuzzy c-means clustering (FCM) is a fuzzy logic
extension of classic k-means method which can be represented as follows [4]:

min J(W, V ) =
n∑

i=1

c∑

k=1

wm
ik‖xi − vk‖2,

where J(W, V ) represents the objective function reflecting the quality of the
clustering obtained from prototypes V and membership W , and m is the degree
of fuzzification (the choices of m is critical). The membership degrees wik are
defined such that 0 ≤ wik ≤ 1, under the constraint of

∑c
k=1 wik = 1 for

i = 1, · · · , n. V = (v1, v2, · · · , vc) is the vector of cluster centers or prototypes,
and ‖xi − vk‖2 is the Euclidean distance between gene i and the prototype of
cluster k. The FCM approach is an unsupervized approach, always converges
and tends to assign low membership degrees for noisy points.

Fuzzy j-means clustering: The FJM method, introduced by Belacel et
al. [3], uses all possible centroid-to-pattern relocations in order to construct
move-defined neighborhoods. Fuzzy j-means clustering (FJM) method is a fuzzy
logic extension of j-means. As the fuzziness parameter m = 1 defines a hard
clustering, the m parameter for fuzzy logic applications has to be m > 1. The
objective function of FCM can therefore be reformulated to:

min R(V ) =
n∑

i=1

[
c∑

k=1

‖xi − vk‖2(1−m)

]1−m

,
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Fig. 9.6. Comparison of algorithm flowchart for FCM and FJM (adapted from [3])

where R(V ) is the reformulated objective function which is only related to the
centroid positions. Therefore, centroid positions can be obtained directly by
minimizing the above modified objective function. The obtained centroids can
be used to calculate the membership values, and the results can subsequently be
iteratively improved.

The algorithms describing FCM and FJM are briefly outlined in Fig. 6. Mem-
bership values and centroids of FJM are calculated in the same way as in
FCM [3]. Both FCM and FJM are local heuristic algorithms and can there-
fore only determine a solution closest to the starting center which may not be
an optimal solution. As a matter of fact, all those fuzzy c-means-derived clus-
tering approaches suffer from the same basic limitation underlying k-means, i.e.
using pairwise similarity between objects and cluster centroids for membership
assignment, thus lacking the ability to capture non-linear relationships.

Determination of the fuzziness parameter m: Note that the criterion
J(W, V ) depends on the choice of fuzziness parameter m. According to the anal-
ysis of Dembele and Kastner [10], it is not appropriate for fuzzification parameter
to be set to a common value of 2 when the fuzzy clustering method is applied
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to microarray data analysis. Thus, an initial step in any further investigation of
fuzzy clustering methods is how to determine an optimal value of m for the stud-
ied dataset [10, 3]. Many applications of the FCM method have been hindered so
far by problems associated with the choice of m. Dembele and Kastner [10] pro-
posed a novel method which computes an upper bound value for m, and is then
used to choose m independently of the number k of clusters before applying the
clustering algorithm. Its related computation uses only first and second-order
sample statistics (mean and variance) of distances between genes. Belacel et
al. [3] also suggested two empirical rules for the estimation of optimal m. Pre-
vious studies used a hypothesis test which allows to reveal clustering structure
in a given data set. In contrast, the computation for an upper bound value for
m does not require knowledge of the distribution of distances as in the case of
the hypothesis test. But we should note that the optimal m values given in such
way are different for different datasets [10, 3, 14].

Another class of fuzzy clustering approaches is based on Gaussian Mixture
Model (GMM) combined with expectation-maximization schemes [30, 48], where
the dataset is assumed to be generated by a mixture of Gaussian distributions
with certain probability, and an objective function is calculated based on the
mixture Gaussians as the likelihood of the dataset being generated by such
model. Then the objective function is maximized to solve the model and give a set
of probabilistic assignments. A possible problem in this approach, as highlighted
by Yeung and colleagues [48], is that real expression data do not always satisfy
the basic Gaussian Mixture assumption even after various transformations aimed
at improving the normality of the data distributions.

Recently, Fu and Medico [14] proposed a novel and powerful clustering algo-
rithm named fuzzy clustering by local approximation of membership (FLAME).
FLAME is mainly based on two general assumptions. One is that clusters should
be identified in the relatively dense part of the dataset, the other is that neighbor-
ing objects with similar features (expression profiles) must have similar cluster
memberships so that the membership of one object is constrained by the mem-
berships of its neighbors. Therefore, the membership of each single object (gene
or sample) is not determined with respect to all other objects in the dataset
or to some cluster centroids, but determined with respect to its neighboring
objects only. In contrast to general fuzzy clustering algorithms, this approach
brings the notable advantage of capturing non-linear relationships between dif-
ferent genes or samples, in a way similar to a nonlinear data dimensionality
reduction approach called locally linear embedding [36]. After this, the dataset
can be represented in a lower dimensional space, where each object is mapped
according to the lower dimensional representation of its nearest neighbors and
the weights are assigned to its nearest neighbors. In this way the local structure
of the original dataset (the neighbors of each object and their proximity) is pre-
served in a lower dimensional space. Then a fuzzy clustering approach based on
neighborhood approximation can be adopted for capturing non-linear relation-
ships in multidimensional data and providing a substantial improvement in the
visualization and analysis of microarray data.
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The authors have empirically estimated its computational efficiency by analyz-
ing its time complexity and performing an empirical study of the time complexity
of FLAME compared with other algorithms. The empirical result shows that for
data matrices with many columns, FLAME has significant computational ad-
vantage over other methods, except k-means. But actually in traditional imple-
mentation, no sophisticated techniques are implemented for k-means to search
for global minimum, while FLAME usually guarantees global minimum. Taking
this into account, k-means may not have many computational advantages over
FLAME.

The fuzzy clustering techniques offer several benefits for researchers. First, it
generates accessible internal cluster structures, i.e. it indicates how well corre-
sponding clusters represent genes. Second, the overall relation between clusters,
and thus a global clustering structure, can be defined. The fuzzy clustering tech-
niques can also be useful for unraveling complex modes of regulation for some
genes. It is indeed known that some genes are subject to regulation by several
molecular pathways. The overall expression patterns for such genes may there-
fore correspond to the superimposition of distinct patterns, each corresponding
to a given mode of regulation. In this respect, the clusters defined by the sec-
ond or third highest membership value can identify such secondary modes of
regulation.

Another reason for applying fuzzy clustering is the high level of noise in mi-
croarray data due to numerous biological and experimental factors [15]. A com-
mon procedure to reduce noise in microarray data is to set a minimum threshold
for expression changes. Genes below this threshold are excluded from further
analysis. However, the determination of such exact threshold value seems to be
arbitrary due to the lack of an established error model. Additionally, filtering
may exclude interesting genes from further analysis. Soft clustering is a valuable
approach here since it is highly robust to noise and pre-filtering can be avoided.
Note that microarray data normalization is basically an important step for ob-
taining data that are reliable and usable for subsequent analysis [20]. Studies
have shown that the choice of different normalization methods drastically af-
fects the result of the cluster analysis [49]. In summary, we would emphasize
that these two factors that affect clustering results should be paid attention
to when fuzzy clustering methods are applied to the microarray data analysis
successfully.

9.5 Fuzzy Systems in Analyzing Protein Interaction
Networks

Biological networks have long been considered organized in a modular manner,
which is composed of topologically or/and functionally isolated subnetworks cor-
responding to specific biological units [51]. Generally, modules can be understood
as subnets which are densely connected within themselves but sparsely connected
with the rest of the network. Revealing modular structure in cellular networks is
helpful for understanding biochemical processes and signal pathways. Note that
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Fig. 9.7. A toy network with three nodes lies between modules

module structure referred to as “community structure” in the field of complex sys-
tem theory also has attracted great interests [27, 7]. Many community-detection
algorithms have been developed before in the field of complex networks. However,
most current methods are hard partition algorithms which mean that each protein
belongs to only one specific module. Such algorithms are not suitable for finding
overlapping modules (See Fig. 9.7). Although some local search methods can de-
tect modules with overlap, there is no detailed discussion on the possible signif-
icance and biological implication of overlapping nodes. Recently, some methods
have been developed particularly for detecting fuzzy modules [32, 28, 53, 54, 26].
For example, the so-called CFinder method [28] has been applied for detecting
overlapping functional modules in protein interaction networks [1, 19]. But the
CFinder method is too restrictive and its basic element is 3-clique, and thereby
it can detect few modules with many nodes excluded, especially in sparse protein
interaction networks [52]. The Potts model for fuzzy community detection [32] is a
random search procedure and returns different assignments of nodes upon differ-
ent initial assignments. They repeat the algorithm many times and combine the
inconsistence of the resulted assignments to form fuzzy communities.

Like applications in other fields, several fuzzy logic-based methods have been
developed for detecting community structure in complex networks or functional
modules in protein interaction networks [53, 54, 26]. Similar with the partition
matrix W in the FCM method, a partition matrix U = [uik]N×c which has the
same constraints with W is needed. Partitions of this type on networks are called
fuzzy partitions. The fuzzy membership degrees for a given vertex can be thought
as a feature vector that describes some properties of the entity in a compact
manner. However, these methods usually require a distance function defined in
the data space, therefore it is impossible to apply them to graph partitioning
directly, except in cases where the vertices of the graph are embedded in an
n-dimensional space.

Recently, Zhang et al. [53] discusses a possible embedding of the vertices of an
arbitrary graph into an n-dimensional space using spectral mapping in order to
utilize the fuzzy c-means (FCM) algorithm on graphs. Specifically, a generalized
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modular function Q̃ employing fuzzy concept is introduced, which is devised
for evaluating the goodness of overlapping community structure. They also map
data points (i.e. network nodes) into Euclidean space by computing the top K
eigenvectors of a generalized eigen system.

The flow of the algorithm: Given an upper bound K of the number of
clusters and the adjacent matrix A = (aij)n×n of a network.

The detailed algorithm is stated straightforward for a given λ as follows:

• Spectral mapping:
1. Compute the diagonal matrix D = (dii), where dii =

∑
k aik.

2. Form the eigenvector matrix EK = [e1, e2, · · · , eK ] by computing the top
K eigenvectors of the generalized eigen system Ax = λDx.

• Fuzzy c-means: for each value of k, 2 ≤ k ≤ K
1. Form the matrix Ek = [e2, e3, · · · , ek] from the matrix EK .
2. Normalize the rows of Ek to unit length using Euclidean distance norm.
3. Cluster the row vectors of Ek using fuzzy c-means or any other fuzzy

clustering method to obtain a soft assignment matrix Uk.
• Maximizing modular function: Pick the k and the corresponding fuzzy par-

tition Uk that maximizes Q̃(Uk).

In the algorithm above, the FCM method is initialized such that the starting
centroids are chosen to be as orthogonal as possible which does not increase the
time complexity, and can reduce the need for restarting the random initializa-
tion process and improve the quality of the clusterings. It can identify meaningful
fuzzy communities in several well-known networks, but the eigenvector calcula-
tion involved in the algorithm renders it computationally expensive to use on
large networks. Note that this method is also sensitive to the exact value of
fuzziness parameter m. It can be determined by the empirical estimation [10, 3].

To overcome the need of spatial embedding, Nepusz et al. [26] proposed a
different approach based on vertex similarities. A meaningful partition should
group vertices that are somehow similar to each other in the same community.
It is reasonable to assume that an edge between vertex v1 and v2 implies the
similarity of v1 and v2, and likewise, the absence of an edge implies dissimilarity.
Suppose we have a prior assumption about the actual similarity of the vertices,
denoted by s̃ij for vi and vj . Let sij denote the similarity function based on
the partition matrix U . The following equation measures the fitness of a given
partition U of graph G(V, E) by quantifying how precisely it approximates the
prescribed similarity values with sij :

DG(U) =
n∑

i=1

n∑

j=1

wij(s̃ij − sij)2,

where wij are optional weights and n is the number of vertices in the network.
Let S(U) = [sij ] and S̃ = [s̃ij ] and assume that S̃ = A, the adjacency matrix of
the network, such that the similarity of connected vertex pairs should be close
to 1 and the similarity of disconnected vertex pairs should be close to zero. The
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authors define a similarity function sij that satisfies the conditions prescribed
above as follows:

sij =
c∑

k=1

ukiukj .

It easily follows that S(U) = [sij ] = UT U . In summary, the community detection
problem in this framework boils down to the optimization of DG(U) defined
above. The goal is to find U that minimizes DG(U) while satisfying the general
constraints of partition matrix. The number of clusters c, the weight matrix W
and the desired similarities S̃ are given in advance (the adjacency matrix A is
most commonly chosen as the latter matrix). This is a nonlinear constrained
optimization problem which suggested to be solved by a gradient-based iterative
optimization method.

One of the advantages of fuzzy community detection is that it enables us to
analyze to what extent a given vertex is shared among different communities.
A measure called bridgeness of a vertex vi was defined as the distance of its
membership vector ui = [u1i, u2i, . . . , uci] from the reference vector [ 1c , 1

c , . . . , 1
c ]

in the Euclidean vector norm, inverted and normalized to the interval [0, 1] as
follows:

bi = 1 −
√
√
√
√

c

c − 1

c∑

j=1

(

uji − 1
c

)2

.

A vertex that belongs to only one of the communities has zero bridgeness, while
a vertex that belongs to all of the communities exactly to the same extent has
a bridgeness of 1.

Recently, Zhang et al. [54] presented an interesting community detection
method based on non-negative matrix factorization (NMF) technique. Based
on a quantitative function, a proper feature matrix from diffusion kernel and
NMF algorithm, the presented method can detect an appropriate number of
fuzzy communities in which a node may belong to more than one community.
The distinguished characteristic of the method is its capability of quantifying
how much a node belongs to a community. The FCM method can only give a
relative membership which means that the membership of a node to a cluster
is related to its membership to other clusters since the sum of its membership
to all clusters equals to 1, whereas the NMF method quantifies how much a
node belongs to a community in an absolute membership manner which is more
reasonable since it can reflect the absolute possibility that a node belongs to a
specific community. It has been applied to a protein interaction network and the
preliminary results have shown its usefulness.

9.6 Summary

Uncertainty is considered essential to science. Fuzzy logic, as a qualitative com-
putational approach, is a way to model and deal with data using natural lan-
guage. Since uncertainty is inherent in biological data due to uncertainty of
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biological experiments and other factors, fuzzy logic and fuzzy set based theory
and techniques can be considered as a suitable formalism to deal with the impre-
cision intrinsic to many biological problems. In this chapter, we briefly introduce
the basic principle of gene expression, gene expression databases as well as the
concepts of gene regulatory networks and protein interaction networks. Then
we comprehensively summarize the application of fuzzy logic and fuzzy logic-
based clustering techniques in modeling gene regulatory networks and analyzing
gene expression data and protein networks. Beyond all doubt, fuzzy logic based
methods have shown powerful effectiveness in many aspects. But even though,
we think that this is only a start. The fuzzy logic model and fuzzy clustering
techniques are expected to take a key role in analyzing and modeling the huge
amount of microarray datasets and grouping proteins/genes based on network
topological structure in the future.
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concept of bridgeness in complex networks. Physical Review E 77, 016107 (2008)

27. Newman, M.E.J.: Detecting community structure in networks. Eur. Phys. J. B. 38,
321–330 (2004)
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Summary. This chapter describes the use of genetic programming to evolve a fuzzy
rule base to model gene expression. We describe the problem of genetic regulation in
details and offer some reasons as to why many computational methods have difficulties
in modeling it. We describe how a fuzzy rule base can be applied to this problem as
well as how genetic programming can be used to evolve a fuzzy rule base to extract
explanatory rules from microarray data obtained in the real experiments, which give us
data sets that have thousands of features, but only a limited number of measurements
in time. The algorithm allows for the insertion of prior knowledge, making it possible to
find sets of rules that include the relationships between genes that are already known.

10.1 Biological Introduction

Biology has expanded its knowledge of the gene regulation process and a full
description of known features of the regulation process would require a huge
compendium. In this section we will describe the main features of gene regulation
in order for the reader to understand the specific class of problems studied in
this chapter. We will also describe the main characteristics of the data sets used
in this problem.

10.1.1 Gene Regulation

All information necessary for the creation of the proteins that are necessary for
the cell is coded in DNA. This information is extracted in a multi-step path that
is called the central dogma of molecular biology that could be summarized as
DNA −→ RNA −→ Protein, meaning that cell response and differentiation steps
can be controlled in many different steps. This ability to respond to different
needs and the basic process of differentiation are fundamental to an organism.
No one would confuse a neuron with a liver or a heart cell, either based on
their shape or on their function. Nevertheless, this difference is not due to major
differences in their DNA sequence, but rather to differences in the expression level
of each gene. In every cell, at every time point, only a fraction of the total DNA
is expressed, that is, transcribed into mRNA, which is subsequently translated
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into protein. The amount of proteins and other elements produced is regulated
so that the necessary amounts are produced without depleting excessively the
energetic reserves of the cell.

At every given time, a gene may be expressed at different levels, including zero
(not expressed). Its expression level has a strong correlation to the amount of
mRNA in the cell that is coded by the gene. It is important to understand that
there are other control mechanisms in the cell, such as protein degradation speed,
RNA transport and localization control etc, but for most cells the initiation of
RNA transcription is the most important point of control [1]. Nevertheless, one
should understand that considering only transcriptional control in the reverse
engineering problem is a limitation of any method based on microarrays (see
Section 10.1.2 for further details).

A cell can change the expression level of its genes in response to external
signals. At any given time, the cell needs to inhibit or activate groups of genes
in response to changing organism and environment requirements. In order to
perform this regulation, cells have an elaborate mechanism that include several
control areas in every gene, the catalysis of gene expression by several other
substances and other mechanisms.

A gene can be regulated by several molecules and the ones it codes for can
regulate one or more other genes, creating a pleiotropic regulation network, which
occurs by the binding of molecules to gene control areas. Since many of these
molecules are proteins synthesized based on the mRNA of other genes, we can
say that one gene regulates another, even though DNA regions do not interact
directly.

10.1.2 Microarray Data Sets

Nowadays, the data available on gene expression is growing exponentially. The
creation of new tools has caused a genomics revolution, flooding scientists with
huge amounts of data. DNA microarray technology is one of the technologies
that has caused this huge impact in the biological sciences. It describes the state
of each cell by measuring the mRNA expression levels, which, according to the
central dogma, is a good approximation of protein levels. It is not precise how-
ever, because there are other mechanisms of control besides DNA transcription
control, but measurement techniques for other substances such as proteins are
not as accurate and widespread as microarrays.

A DNA array, or microarray, is defined as an orderly arrangement of tens
to hundreds of thousands of unique radioactive or fluorescent DNA molecules
(probes) of known sequence attached to a fixed surface. The DNA samples are
then presented to the microarray and bind to their complementary sequences
(hybridize), thus allowing for the determination of their sequence or their relative
abundance (expression level) [26].

Microarrays allow one to study expression levels in parallel thus providing
static information about gene expression (i.e., in which tissue(s) the gene is
expressed) and dynamic information (i.e., how the expression pattern of one
gene relates to those of others). The high degree of digital data extraction and
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processing of these techniques supports a variety of samples or experimental con-
ditions [6]. Microarray technology, as a high throughput approach of differential
gene expression studies, efficiently generates massive amounts of gene regula-
tion data, facilitating rapid identification of gene candidates to follow up with
functional characterization.

There are, of course, some pitfalls when dealing with this technology that
a cautious experimenter must deal with. We will not describe the problems in
detail, for this is not the main goal of this chapter, but, in brief, the main
problems with this technology are:

• Differences among samples
• Measurement errors from CCD or radioactivity detectors
• Normalization methods
• Background noise elimination
• Stochastic binding effects

A cautious experimenter will try to ensure that these problems are dealt with and
that experiments are repeated in order to avoid the common errors associated
with microarrays.

Once these problems are dealt with, the main problem with a microarray data
set becomes its dimensions. Usually, thousands of genes are measured simulta-
neously for a small number of time steps. Given thousands of expression levels,
it is a complex task to identify the differentially expressed genes and under-
stand the myriad relationships that define the genetic regulation network. There
are several well known statistical techniques for this [12], but they all require
massive amounts of data. There are some techniques, such as those described
in [34] and [25] that try to minimize the number of experiments, by reducing
the dimensionality of the data, either with Fisher Discriminant Analysis (FDA),
singular value decomposition (SVD) or by Wilks Lambda Score. Nevertheless,
these techniques, even though they manage to reduce data dimensionality dras-
tically, still require a significant number of measurements (of the order of tens,
in both cases).

Unfortunately, given the high cost of experiments, this volume of data is not
available. Thus, it is necessary to propose new techniques that can cope with
lack of data and still mine the gene expression matrix for useful relationships.
There is, of course, a price for dealing with such a small data set. First, we
can point out to the loss of certainty, making it very difficult to make accurate
statements about relationships between genes. Second, we incur the “blessing of
dimensionality”. Given the high number of genes measured and the small number
of measurement points, we face a situation where there are many degrees of
freedom and few constraints, so that there are many possible “good fit” solutions.
Thus, it can be argued that any search method will stumble upon a reasonable
solution, and the key is how to differentiate between various solutions. Therefore,
any proposed method should be able to deal with both these problems.
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10.2 Pros and Cons of Gene Regulatory Networks (GRN)
Models

In this section we discuss some methods that are successful and popular in other
fields of application but have inherent characteristics that make them less advis-
able in this specific application. This does not mean, of course, that these meth-
ods are of inferior quality or that it is impossible to obtain meaningful results with
them, but only that their inherent characteristics make it more difficult to achieve
good or reliable results when dealing with microarray data sets.

10.2.1 Boolean Networks

Perhaps the simplest model is the Boolean Network. Boolean networks were first
introduced by Kauffman in the late 60’s as an abstraction of genetic regulatory
networks: each gene is modeled as being either “ON” or “OFF”, and the state
of each gene at the next time step is determined by a Boolean function of its
inputs at the current time step [15].

Several papers use Boolean networks as a tool to model gene expression, either
regular [21] or probabilistic [27]. This model assumes that each gene can take
either 0 (not-expressed) or 1 (expressed) as its state value. This approach can
model some aspects of real regulation, as discussed in [29]. Nevertheless, since
gene regulation is gradual and varies with gene expression levels, the ability of
Boolean Networks to model real genetic regulation is limited.

10.2.2 Neural Networks

The data set available in a typical gene regulatory network problem generally con-
sists of hundreds to thousands of signals, usually measured for no more than twenty
time-steps. This paucity of data renders network models inferred from this data
statistically insignificant [31] and requires methods that can deal with this specific
situation to produce results that have real value to “wet lab” experiment design,
even though they may not be statistically significant for predictive purposes.

Artificial neural networks (ANN) are computational models that try to mimic,
in an extremely simple way, the way the human brain works. Just like the brain,
ANNs consist of a group of simple cells (artificial neurons) connected by synapses
that form a massively parallel and distributed processing system. The structure
of this system (connections and their weights) is formed during a training phase,
when the ANN is presented with data examples, actually acquiring knowledge
from its environment [18].

To perform this learning, neural networks rely on massive data sets to perform
their training process, so they cannot be trained correctly, using traditional
algorithms, in situations where data is scarce. Unfortunately, each experiment
has a non negligible cost, so that it is financially not practical for most labs to
perform a large number of experiments, which makes it impossible to generate
the amount of data a neural network would require. When presented with small
data sets, neural networks tend to simply memorize them, instead of actually
learning the underlying structure that generated them.
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10.2.3 Association Rules

Creighton and Hanash [7] describe a technique that uses association rules to mine
for regulatory relationships among genes. The algorithm proposed uses data
binning (actual discretization) to overcome measurement errors and inherent
noise. The dangers associated with discretization are highlighted in [16] in which
it is also proposed to search for association rules, using planes to separate data.

In [7] all expression levels are set to three different states: up, down and
neither-up-nor-down, while in [5] all expression levels are transformed into a
boolean variable (over-expressed and under-expressed). An idea that might im-
prove these methods would be to adapt them to a fuzzy sets based approach,
allowing them to have multiple fuzzy sets that would correspond to, for instance,
highly expressed, very highly expressed, etc.

This technique suffers from being data intensive, because it needs several
microarray runs to create frequent itemsets and establish a pattern of co-
occurrences and, therefore, the cost limitations described above still apply. Using
a small number of data points may cause the frequent itemsets to be relatively
small, allowing for spurious effects (inherent to a multiply connected graph such
as the biological regulation one) to create rules that do not have real importance.

This method, in common with all others that rely on large data sets, will
improve as experimental costs begin to fall. As [16] points out, it is becoming
increasingly common to see data sets with tens of experiments. In the future,
when hundreds or even thousands of experiments become common, the ability
of methods based on association rules to model data will improve considerably.

10.2.4 Linear Regression

If gene regulation could be assumed to be linear, then linear regression would be
an effective tool to model it. However, there are commonly occurring biological
effects that make the linearity assumption fail:

1. Saturation: at a concentration that is specific to each binding site and sub-
strate, increasing the regulator concentration will not change the speed
and/or the amount of regulatee action.

2. Catalysis: the presence of certain enzymes will change the speed of the reac-
tion and this effect, together with saturation, will cause the reaction curve to
be S-shaped. A piecewise linear method, such as described in [9], may min-
imize this as well as he effect mentioned in the previous item, by creating
close linear approximations for each of the main function regions.

3. Inhibitory effects: The presence of certain substances will inhibit the regu-
lation process, either shutting it down completely, or making it extremely
inefficient. This effect can be modeled by combining a Boolean network with
a linear one, as done in [4].

Because of all these effects, any technique that is based on a linearity assumption
tends to yield poorer results. They can serve as a first approximation, but non-
linearity will always insidiously decrease the veracity of their results, an effect
that may be decreased if one combines a piecewise linear approach with Boolean
networks.
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10.2.5 Perturbation Analysis

The idea behind such methods, described in papers such as [30] and [3], is that ad-
ditional information about a genetic network may be gleaned experimentally by
applying a directed perturbation to the network, and observing the steady-state
expression levels of every gene in the network in the presence of the perturbation.

The problem with this technique is similar to the one described for neural
networks: perturbation experiments may become expensive, especially if they
need to be repeated in order to eliminate spurious results. Another problem
with this approach lies in the fact that there seems to be some evidence that
nature rewards redundancy in the form of alternative pathways performing the
same function, so that there are backups in case that one pathway fails. Therefore
a knock-out experiment may not lead to the pathway being switched off, even
if a seemingly crucial component of a pathway was knocked out, since a backup
component is activated and takes over the function of the one knocked out.

Another issue is that in higher metazoa each gene is associated with an average
of ten different biological functions [2]. This means that perturbation studies may
disrupt several different pathways and cause unforeseen effects that may make
it very difficult for the analyst to understand what is really happening in the
single pathway he is studying.

10.2.6 Differential Equations

A genetic regulatory network can be understood as a dynamic system whose
states are defined by the expression levels as measured by microarray experi-
ments. As such, they could be described by differential or difference equation
based models, which at once can be seen as superior to Boolean networks, given
their ability to deal with intermediate expression levels.

The main problems with these models are the following:

• Discrete aspects: they cannot easily describe the discrete aspects of gene
regulation such as binding of a transcription factor to the DNA, which is
essentially an on/off event [4].

• Linear models vs Excessive data requirements: scientists tend to concentrate
on linear models because they require less data, but at the cost of placing
strong constraints on the nature of regulatory interactions in the cell that may
lead to less accuracy in the regulatory interaction description [15]. The use
of differential equations allows for the introduction of explicit rate constants
and one could go beyond the linear additive summation and include higher
order terms, the determination of the parameters of a network incorporating
higher-order terms would require much more data than is generally available
for these systems [32].

• If the algorithm uses time-series data, it must estimate the rates of change
of the transcripts (dx

dt ) from the series. This can be problematic because
calculating the derivative can amplify the measurement errors (noise) in the
data [15].
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This section has not made an exhaustive list of methods applied to the gene
regulation problem. Many other methods have been applied to this problem.
The reader may refer to [35], for instance, to learn about other computational
techniques to analyze genomic data.

10.3 Fuzzy Logic Applied to the Gene Regulation
Problem

Now that we have discussed what methods should not be used, we can proceed
to the discussion of the method proposed in this chapter. In this section we will
describe the fuzzy logic model used to deal with microarray data.

10.3.1 Beneficial Characteristics of a Fuzzy Model

Fuzzy rules model naturally ill-posed problems characterized by very little infor-
mation such as the one we are facing using a linguistic approach that is a form
of information useful to human experts. Therefore, they can be used to convey
imprecise information for experts that are available and can seed the systems
with a number of effective rules from the outset and verify the linguistic results
obtained [28]. Using this prior knowledge is a very interesting feature that we
explored in this work and that becomes very difficult to implement in numeric
methods, like differential equations and neural networks.

Whenever discovered knowledge is to be used to assist in decision-making by a
human user, it is important that it be comprehensible to the user [13]. Given the
discrepancy between data dimensions (high number of genes with small number
of points) we cannot arrive at a definitive model, no matter what method is used.
Therefore, the main purpose of purposing a fuzzy model is to create hypotheses
that can subsequently be tested in the biological workbench (“wet lab”). This
implies that simplicity of the rules is an essential feature.

Fuzzy rules also make it very easy to include delays in the model. It is enough
to include a parameter t in the rule, where t stands for the delay. For instance,
a rule with the format IF HighlyExpressed(f1(-1)) AND LowlyExpressed(f2(-2))
THEN HighlyExpressed(f3) means that if in the previous time step the substance
f1 had a high expression level and two time steps before substance f2 had a low
expression level, then the substrate f3 will have a calculated high expression
value. The default value for t will always be 1, meaning that we are referring
to the previous expression value available. Obviously, when we introduce this
feature we create more degrees of freedom and the model must be able to deal
with this issue.

10.3.2 Definition of the Fuzzy Sets

It is assumed that each gene may be associated with several fuzzy sets whose
universes of discourse will cover all the numeric space that its expression levels
can span.
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In our work, the expression space of each feature is divided evenly, so that
each fuzzy set has the same support. The process consists of the following steps:

1. Choose the number of fuzzy sets for the gene of interest (nfuzzy);
2. The universe of discourse for the variable is defined by reading the interval

of expression values from the microarray data and expanding it a little (10%,
for instance) in each direction;

3. The universe of discourse is then divided in (nfuzzy − 1)parts;
4. Create the fuzzy sets using triangular functions, using the following scheme:

• The first half part is the support of the first descending function;
• The last half part is the support of the last ascending function;
• The nfuzzy−2 remaining parts are the supports of triangular membership

functions.

We could assign meaning to each fuzzy set. For instance, if we divide the space
into three fuzzy sets, they could be understood as representing Low expression
level, Medium expression level and High expression level. If we divide the space in
five fuzzy sets, we could interpret the fuzzy sets as meaning Very low expression
level, Low expression level, Medium expression level, High expression level and
Very high expression level.

There is overlapping among adjacent fuzzy sets, so that more than one rule
may be active for each expression value.

10.3.3 Using Fuzzy Rules to Calculate Expression Levels

Having defined the fuzzy sets and the fuzzy rule base, calculating next time step
expression levels is a simple matter of applying the current time step expression
levels to the rules and defuzzifying the results. There are many defuzzification
methods that could be used in this process and the choice of method is analogous
to that used in any other fuzzy application.

In this application, we applied the medium of maxima (MoM) defuzzification
method, expressed by the formula:

yj =
∑nfuzzy

i=1 μi ∗ ymax
i∑nfuzzy

i=1 μi

(10.1)

In this formula, nfuzzy stands for the number of fuzzy sets defined for the gene
of interest (see Section 10.3.2), μi is the calculated membership of the rule to
the fuzzy set i and ymax

i is the expression value where the membership function
of set i is at its maximum.

There may be rules that have zero support. In our experience, this may lead
to poorer results, and a minimum degree should be designated for each rule
before the defuzzification process. A small value, such as 0.05 will guarantee set
participation and allow the algorithm to achieve better results.

10.3.4 Rule Introduction by an Expert

Fuzzy logic offers an appealing method for describing phenomena by a set of
rules and data sets that are based on linguistic expressions very similar to the



10 Evolving a Fuzzy Rulebase to Model Gene Expression 199

ones we use daily to keep and transfer knowledge. These expressions include
“high level of expression”, “low level of expression” etc and the rules based on
those concepts express knowledge in approximately the same way that a human
expert would. An example of a fuzzy rule would be “if gene A is at a low level
of expression, then gene B is at a high level of expression”, which clearly means
that gene A is an inhibitor to gene B.

Experts are already aware of many regulatory pathways and ignoring this
prior knowledge is certainly wasteful, while exploiting it leads to a reduction in
the size of the search space, which is always desirable.

It is not easy for an expert to incorporate prior knowledge into certain meth-
ods, such as differential equation based and neural networks based methods,
which can be considered to be “numerically encoded”, thus requiring transla-
tion of qualitative knowledge into appropriate quantitative knowledge, usually
a difficult task. This is not the case with fuzzy systems. Since we have a rule
base that can have many rules applied to a single fuzzy variable, experts can
include their knowledge and this will be used together with the rules discovered
by any algorithm. Using this prior knowledge makes the method smarter and
also makes it possible for any tool created to become a hypothesis tester. In
the next section we will discuss rule insertion by experts when describing a full
genetic programming algorithm used to discover a fuzzy rule base.

10.4 Using Genetic Programming to Evolve a Fuzzy Rule
Base

The basic concepts of using a fuzzy rule base were described in the previous
section, but we still need an algorithm that can help us find what rules to use.
In this section we will describe the evolutionary algorithm we use to create the
fuzzy rule base that can best describe the gene regulation implicitly presented
in the (small) data set.

10.4.1 Basic Concepts

Evolutionary algorithms (EA) are inspired by Nature. The idea is to mimic
the natural evolution of the species using operators that simulate both sexual
reproduction and random mutation in order to create a new kind of search
technique that is robust and intelligently seeks solutions in a search space that
may be too big for conventional techniques [22]. EA spawns several different
techniques, including genetic algorithms (GA), genetic programming (GP) and
evolutionary programming (EP).

Genetic Programming is a branch of evolutionary algorithms that simulates
natural evolution to find complex structures such as programs and rules [19]. As
with other EAs, it uses the concept of a population that reproduces and suffers
mutation (as in natural, biological processes) and with high probability evolves
toward a better solution that fits better to real data available. It is a heuristic
that, although dependent on many probabilistic factors, tends to span much of
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the solution space and is less affected by common data problems such as local
minima in an energy function.

All evolutionary algorithms use a population of competing solutions subjected
to random variation and selection for a specific purpose [10], which is to evolve
the population to one that contains a higher proportion of superior (fitter) indi-
viduals. The fitness of each individual in the population (its quality) is a measure
of how well that individual achieves the desired goal and is the main connec-
tion between the EA and the problem at hand. Therefore, the formulation must
contain all aspects of the problem, including constraints.

The variation and selection are usually based on two operators, the crossover
operator which combines two different individuals into a new one and the mu-
tation operator, which randomly changes parts of one individual in order to
increase diversity. Both are very important, representing two different aspects
of the natural search: exploitation (using current solutions information to derive
a new and possibly better solution), which is performed by the crossover oper-
ator, and exploration (venturing into new areas of the search space), which is
performed by the mutation operator.

An evolutionary algorithm could be described by the following pseudo-code:

Create Initial Population
While termination criteria not met

Select parents which will generate offspring from current population
Apply genetic operators to the selected parents and generate offspring
Select next population from current individuals and generated offspring

End While
Present best solution(s)

In this algorithm, termination is usually based on one or more of the following
criteria:

• time based: a number of generations has elapsed;
• quality based: a certain performance has been achieved;
• stagnation based: the set of best individuals has not improved for a certain

number of generations.

Parent selection must be done in a way so that best solutions have the big-
ger probability of reproducing, but not at the expense of preventing the worse
solutions from also doing so. The idea is that these worse solutions may have im-
portant information coded in their “genes” that would be missed if they did not
participate in the creation of new offspring. Therefore, a variation of a roulette
approach is usually used in which the parents with highest evaluation (“fittest”)
correspond to a bigger fraction of the roulette wheel when a random “spin” of
the wheel is performed.

Thus, in order to define an EA one must define the coding scheme (how each
individual will be represented in the computer), the operators (both mutation
and crossover and any other specific one that will be used), the evaluation or
fitness function (i.e., a measure of the quality of the current solutions to the
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problem at hand), the termination criteria used, the parent selection scheme
and the next generation choice algorithm. We will discuss all these items applied
to the problem of gene regulation reverse engineering in the following sections.

10.4.2 Dealing with Microarray Data Characteristics

The use of GP methods is justified by their ability to generate and test a broad
spectrum of solutions, even from incomplete or insufficient data sets. As discussed
in Section 10.1.2, microarray data usually consists of hundreds or thousands of
genes whose expression levels are measured at only a few time points. This low
dimensionality generally implies that statistical methods are liable to generate
solutions of low statistical significance, but does not stop a GP method from
generating testable hypotheses for the biology lab.

The high number of degrees of freedom of the data set gives rise to a phe-
nomenon that we have called “the blessing of dimensionality”, which will cause
any search method to stumble upon a reasonable solution. The key is how to
differentiate between various spurious solutions and a possibly true regulatory
relationship. Since financial constraints make it very hard to conduct the ex-
periments that would generate the amount of data necessary to find a unique
optimally fitted network, this problem must be dealt with computationally.

Our approach is based on the assumption that genes that exhibit the same
behavior are under the same kind of control. This assumption seems to be bio-
logically sound, however, when we deal with a limited number of experiments,
we may be fooled into believing that two genes that display the same behavior
are part of the same regulatory pathway, since different strategies could generate
the same response over a limited window of observation and under a limited set
of conditions. Nevertheless, although this strategy could lead to false positives,
it should not, in principle, hide any meaningful relationships.

Therefore, it was decided to use a clustering algorithm that assumes that
genes that exhibit the same behavior are under the same kind of control, which
means that strongly correlated genes should be treated together in order to find
the single underlying regulation network that controls them all. It is important
to understand that this clustering approach may not be correct, but searching
for techniques that work in the entire cluster helps to eliminate many hypotheses
and helps limit the number of control mechanisms found by the algorithm. Since
the goal of this algorithm is to find testable hypotheses for the “wet lab”, this
helps to reduce the set of candidates.

One useful measure that indicates similarity between expression levels and
their changes is the Pearson Product-Moment Correlation Coefficient (correla-
tion coefficient for short) denoted ρ, which is a measure of the degree of linear
relationship between two variables, usually labeled X and Y . While in regression
the emphasis is on predicting one variable from the other, in correlation, on the
other hand, the emphasis is on the degree to which a linear model may describe
the relationship between two variables. In regression the interest is directional,
one variable is predicted and the other is the predictor; in correlation the interest
is non-directional, the linearity relationship is the critical aspect [12].
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We calculate the correlation values for the gene of interest with every other
gene in the microarray and establish an arbitrary cutoff point (in our case, we
worked with a value of 0.95). Using only high correlation values is also interesting
because it may generate overlapping clusters. The fact that gene g1 is correlated
to a certain degree with gene g2 and the latter is correlated to the same certain
degree with gene g3 does not imply that gene g1 is also correlated with gene g3

to a degree above the cutting point. Therefore, we create one cluster for each
gene of interest, containing all the elements that are correlated to it.

Pearson correlation values are in the range [−1, 1], where −1 stands for perfect
anti-correlated (when gene g1 expression level rises, gene g2 expression level
lowers in the same proportion). We could include anti-correlation in our groups,
just arranging for a special processing of the trees that turns inhibition into
promotion and vice-versa, but we decided against it, because we do not need an
additional hypothesis to constrain the veracity of our results.

10.4.3 Chromosome Structure

In our algorithm, a rule is represented as a tree whose linear representation is
in reverse polish notation (RPN), where all operators precede their operands.
This tree representation has already been used, although somewhat differently,
in works such as [24, 8, 36].

In the model proposed, expressions are defined recursively by the following
syntax:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

< Expression >::= <Antecedent> <Consequent>;
< Antecedent >::= <BinOperator> <Expression> <Expression>
< Antecedent >::= NOT <Expression>;
< Antecedent >::= <FuzzySet>;
< BinOperator >::= AND | OR;
< FuzzySet >::= <set> <variable> <time>;
< Consequent >::= <set> <variable>.

In this syntax, <set> defines the fuzzy set used, <variable> is one of the many
genes whose expression levels were measured by the microarray and <time>
is an integer that represents the delay between measurement and control. This
delay is important because sometimes, due to kinetic energy in the molecules,
probabilistic effects or mere reaction times, the control performed by one gene
can occur later in time, especially if the interval between microarray measure-
ments is small enough. This delay can go from 1 (previous time step) to (n− 1),
where n is the number of measurements. It is important to understand that the
number of time steps used to match the data will be limited by the maximum
delay allowed (d). In this case, we will only have n−d instances of data, starting
at time step n − d + 1.

The use of past data is important in several genetic processes. For instance,
there is evidence that the phenomenon of cell memory is a prerequisite for the
creation of organized tissues and for the maintenance of stably differentiated cell
types [1]. In other cases, such as bacterial tryptophan control, only the immediate
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availability of tryptophan is relevant. So, using the delay mechanism is a good
addition to the toolbox but will not necessarily be used in all problems we
might face.

This notation leads to a tree representation, where non-leaf nodes consist of
operators, either binary (AND ; OR) or unary (NOT ) and leafs consist of the
fuzzy set, the variable and the time delay. An example can be seen in Figure 10.1.

We must guarantee that we have at least one rule for each fuzzy set created for
our gene of interest. We could consider having only one rule per gene and joining
the various rules with an OR node, which would have the same effect in the de-
fuzzification process. Nevertheless, this idea leads to higher trees and we choose
to have several lower trees instead. This will cause only a minor impact on the
application of the crossover operator (see Section 10.4.4 for further information).
Therefore, our chromosome will consist of a “forest”, with at least nfuzzy trees,
where nfuzzy is the number of fuzzy sets created for our gene of interest.

Having more than one tree per fuzzy set can lead to having contradictory rules.
Wang and Mendel [33] suggest having only one rule: the one with the maximum
degree. We do not need to apply this rule because the OR interpretation in
our algorithm will already do that, with the added benefit of being adaptive,
meaning that in each different situation, a different rule may have the highest
degree and will be chosen for application.

10.4.4 Genetic Operators

In order to define completely the proposed GP, we need to define the muta-
tion and crossover operators. As is typical in evolutionary algorithms that use
competing operators, the GP proposed in this paper uses a roulette wheel and
assigns a time varying probability for the mutation and crossover operators.

Fig. 10.1. Example of the representation. Inner nodes are the operators, while outer
nodes represent a fuzzy set, a variable and a delay. In the figure, F1(A, 1) means that we
are going to use the membership value of expression level of variable A in the previous
time step (delay 1) to fuzzy set F1.
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The probability variation is due to the fact that in the beginning of each run
we want to emphasize the exploitation aspect of the algorithm, by trying to al-
low the best characteristics in the population to propagate. This means that the
crossover operator should have a higher choice probability. In the final genera-
tions, genetic convergence tends to occur and the population tends to be filled
with similar individuals, which makes it more profitable for the GP to emphasize
the exploration aspect, giving the mutation operator a higher probability.

Some researchers prefer to emphasize the exploration aspect in the early stages
of the GA, but given the fact that the population is randomly initialized and
applying further randomness on the population tends to yield little gain. On the
other hand, giving the mutation operator higher probabilities in the later stages
helps the GA fight the convergence effect that usually affects populations.

Therefore, we start with a high preference for the crossover operator (90%
chance, for instance) and linearly decrease it with each successive generation.
There are other strategies to make this chance (namely, quadratic and step
decrease), but the choice of change mode does not seem to have a high impact
on the GP performance.

Crossover Operator

The main goal of the crossover operator is to exchange information between
two different individuals in a way similar to sexual reproduction, allowing the
EA to exploit the best characteristics of the current population and hopefully
transmitting it to the newly generated offspring.

The crossover operator used in this work is a version of the operator commonly
used in genetic programming [19], having a performance that is quite similar to
uniform crossover for genetic algorithms, both in its modus operandi and in the
number of schemes preserved.

The operator works by randomly choosing sub-trees to interchange between
the chosen parents, using the following algorithm:

For each parent do
node nc = tree root
initialize selection probability ps

While nc not equals to null do
Make a random draw with probability ps

If nc is chosen
Store node nc for the current parent
Exit while

Else
raise probability ps

End if
End While

End For
Create offspring by exchanging the selected sub-trees
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Fig. 10.2. Example of crossover action in two random parents

An example of this operator can be seen in Fig. 10.2. This strategy preserves
the sub-expressions rooted at the selected nodes and therefore the crossover is
not too disruptive with regard to the current population, which is a common
problem with genetic programs.

Since there may be multiple rules per fuzzy set, there must be an additional
control mechanism to choose which rules will exchange sub-trees. In this case,
the crossover operator guarantees that the rules for a fuzzy set X in the first
parent (C1) only crosses with rules for the same fuzzy set in the second parent
(C2), even if there are more rules for this fuzzy set in one chromosome than in
another. This means that if chromosome C1 has two rules for fuzzy set X and
chromosome C2 has only one, the two rules from C1 will cross with the single
one from C2. If the situation is reversed and C1 has only one rule while has C2

two or more, the number of rules in the resulting chromosome will still be equal
to the number of rules in C1.

If both of them have more than one rule for fuzzy set X , a random choice will
be made between the alternative rules, only ensuring that each rule crosses at
least once. Obviously, crossover generates two rules per operation, which are done
applying the rules described here twice: first considering the order C1/C2 and
secondly, the order C1/C2. Therefore, children with the characteristic structure
of both parents will be generated.

We could create a multiple parent version of this crossover operator by al-
lowing multiple cutting points in each parent and creating a pool of selected
sub-trees that would be randomly selected to replace the cut branches of each
parent. This version would be more disruptive and should be used together with
an elitist operator and an increase in the number of generations per run.
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Mutation Operator

The goal of the mutation operator is to insert random variation into the popula-
tion so that we can explore areas of the search space that have not yet been visited.
In order to perform this task, we create three different mutation operators:

1. rule mutation: The rule mutation randomly chooses one node in the rule tree
and prunes the whole branch. Following this, a new sub-tree is generated
using the same generator that created the initial population and the branch
is then replaced. The population generator in this specific case is instructed
to generate short trees (trees whose height is equal to or less than 3). An
example of its operation is described in shown in Figure 10.3.

2. insertion mutation: Insertion mutation randomly chooses a fuzzy set for
which to create a rule. The new rule is generated using the same random
rule generator that generates the initial population. It is reasonable to give
the inserted rules a high choice probability in this isolated creation, for we
cannot raise the probability with the number of selections, as we did in the
population initialization (see Section 10.4.7).

3. deletion mutation: Deletion mutation randomly chooses one rule to delete
in one of the fuzzy sets available. In order to keep the rule base efficient, we
cannot allow a fuzzy set to have zero rules, so the chosen rule will be deleted
if it is not the only rule for a fuzzy set. In this case we will perform the

Fig. 10.3. The mutation operator chooses randomly a sub-tree to cut (circled) and
replaces it with a newly generated short tree. The choice can be done algorithmically
by performing a draw at each node with increasing probability. If the draw fails, we
randomly choose to go to the left or right node and increase the probability in such a
way that at a leaf, the draw probability will be 1.
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random selection again, but one must be careful not to get into an infinite
loop if all the fuzzy sets have exactly one rule, which can be avoided by
allowing only a maximum number of tries for this operator. One must also
be careful when excluding rules to verify whether the chosen tree is the only
one that contains a rule inserted by the user.

10.4.5 Evaluation Function

In order to evaluate the performance of the chromosome, we will consider mi-
croarray data as a trajectory with N steps. This trajectory represents the “real”
behavior of the network to be modeled, given the conditions it was submitted
to. There are one or more genes of interest in that network, whose regulatory
networks we intend to find.

In order to evaluate a proposed solution, the network it represents receives
the first state of each trajectory and the GA calculates the intermediate and
final steps for the genes of interest.

In order to calculate the expression levels at time t, one must decide whether
to use the real or calculated values at each time step. As stated in the previous
paragraph, the expression levels at time t = 2 are calculated using the real initial
conditions at time t = 1 (real1). But for every t > 2, how should we calculate
the genes expression value (calct)? Should we use the real value at time t − 1
(realt−1) or the previously calculated expression value at time t − 1 (calct−1)?

There are good arguments for both alternatives. Using the calculated values
verifies if the network can model the entire trajectory, but allows errors to accu-
mulate. Using the real values at each time point to calculate the next expression
values verifies if the rules can, given a real value, predict the behavior of the
network at the next point. Both are valid alternatives, but in our work we opted
for the latter, because some experiments showed that some cumulative errors
influenced the ability of the network to behave like the real one, specially when
we use many fuzzy sets, causing them to have a small domain.

In order to avoid scale errors due to different expression levels at different
time steps, the mean absolute percentage error (MAPE) was used, instead of
using the absolute difference. This metric is defined by the following formula:

MAPE =
1
N

N∑

t=1

realt − calct

realt
(10.2)

We will use the inverse of this function because the smaller the error, the bigger
should be the evaluation function. We will also add 1 to the denominator in
order to avoid infinity with perfect fit solutions. Therefore, the first try for our
evaluation function will be:

F =
1

1 + MAPE
(10.3)

The first impression is that this function will capture easily the good solutions,
but there is a potential pitfall. In many situations a single outlier can make
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Fig. 10.4. Example of the outlier effect. The solid line represents the real data and
there are two calculated solutions represented by the dotted and the traced lines. Even
though the dotted one models the underlying process better, it has an outlier at time
t=3 that makes it MAPE grow and may cause it to be considered worse than the traced
line whose behavior shows less resemblance to the real one.

the function obtain a low evaluation, even though it may correctly capture the
changes in expression levels with time. An example of this problem is shown in
Figure 10.4

In order to minimize this effect and reward those solutions that capture the
directional changes in the target genes, we created a directional coefficient, which
is given by the a function of the directional changes in the measured values (realt)
and the calculated values (calct), that is given by the following formula:

dc =

⎧
⎪⎪⎨

⎪⎪⎩

0.7, if (↑ realt∧ ↓ calct) ∨ (↓ realt∧ ↑ calct);
0.9, if (↑ realt∧ ↔ calct) ∨ (↓ realt∧ ↔ calct)

∨(↔ realt∧ ↓ calct) ∨ (↔ realt∧ ↑ calct);
1.1, if (↓ realt∧ ↓ calct) ∨ (↑ realt∧ ↑ calct).

(10.4)

In this formula, a ↑ means that the expression level has grown at time t. Con-
versely, a ↓ means that the expression level has diminished and a ↔ means that
the expression level has remained the same. An expression level is considered
constant if it varies less than ±1% from the previous time point. This evaluation
improves the capture of directional expressional movement in time. For instance,
if an expression value increases from time t to time t+1 and the calculated value
decreases in the same period of time, the error value at this time point may not
be very high, even as a percentage. Therefore, on adding this coefficient, every
chromosome that has a high evaluation will calculate a solution that has high
correlation with the function that maps real expression values changes over time.

The blessing of dimensionality, discussed above, may cause the GP to find an
over-specific rule that matches the numbers available without really uncovering
the underlying process that generated them. This will be reflected in “tall” trees
that should be discouraged by a reduction in their evaluation. This is achieved
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by creating a coefficient c ≤ 1 to multiply the evaluation function we discussed
so far. The idea is that the higher the tree represented by the chromosome, the
smaller is the coefficient c. Therefore, in the case where there are two different
chromosomes with the same evaluation, the simpler and shorter one will be
preferred. This does not imply that nature necessarily rewards simplicity, but
rather that we have a small amount of data and should be cautious about over-
fitting it. This coefficient is given by the following formula, dependent on the
tree height h:

hc =
{

1, h ≤ 2;
1

h−1 , h > 2. (10.5)

The final formula is the multiplication of all three elements obtained in formulas
10.3, 10.4 and 10.5, creating the following evaluation function:

Eval(network) = hc ∗ dc ∗ F (10.6)

This evaluation function is quite resilient and searches for the underlying process,
not only achieving a data fitting, but also trying to avoid data over-fitting, by
simplifying the regulatory process found and being aware of the dangers of the
blessing of dimensionality.

10.4.6 Population Module and Execution Mechanism

In the GP proposed, we used an elitist population module and defined the fol-
lowing three different termination criteria:

• number of generations: no more than a predefined number of generations per
run;

• stagnation: stop the run if the best solution stagnates for the last 20 genera-
tions. It was not used in our work, but an alternative solution is to increase
the probability of the mutation operator, so that we give more emphasis to
the exploration effect in order to find new solutions that break the stagna-
tion. Of course, a fine control must be established so that the probability is
decreased when the GP starts to have a better performance;

• quality of the solution found: stop if the data was fit to a maximum error of
1%. This number is arbitrary and appropriate for this specific problem. We
know that the numbers obtained from microarrays are inherently imprecise
(see Section 10.1.2) and that given the blessing of dimensionality, any perfect
fit might consist of over-fitting. In other problems, the 1% rate of error might
be too high;

Usually, genetic programs are seeded with large populations that execute for
a large number of generations, because genetic programming operators tend to
be very destructive, which causes a long execution time. The destructive effect
can be minimized by using elitist strategies to preserve the best solutions and
by using operators that prioritize the lower tree levels when deciding where to
exchange material between genes.
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In this work a different strategy was adopted. Ten independent runs with
initial random populations were executed and the top 2% of each execution was
used to seed the 11th run, whose initial population was completed randomly.
This allowed for a faster execution time with smaller stagnation effects in each
population, while allowing the best solutions found in different initial populations
(seeded randomly) to interact in order to find a better solution. It is even possible
to get an even bigger speed up by using a parallel execution of the algorithm,
using 10 different machines that will allow their best solutions to migrate at the
end of their execution.

10.4.7 Tree Processing

The rule generator used to initialize the population was created to guarantee that
some chromosomes would incorporate prior knowledge, expressed as a specific
set of rules defined by the user . This is an important advantage of fuzzy rules
that was enforced in this work.

This incorporation was done by creating a random draw for each sub-tree
generated to decide whether that sub-tree would be one of the rules inserted by
the user. Since we wish for their value to be used as entered, placing those rules
as descendants of a NOT node should be avoided. The probability assigned to
this draw increased linearly with the number of chromosomes, up to the point
where the rules were used or, in the final chromosome, the chance amounted to
100%, assuring rule usage.

A second passage was made through all generated chromosomes in order to
assure that rules that were considered as “forbidden” by the user were absent
from every chromosome. When cropping the tree to remove “forbidden” rules, a
new sub-tree was generated with the characteristic discussed above.

After every reproduction/mutation cycle, a full pass through the new pop-
ulation is performed in order to verify that required rules are still present in
the population and have not been disrupted by the genetic operators. If they
are not present anymore, a new incorporation is performed, as discussed in the
paragraph above.

A rule simplifier was created that allows us to substitute some sub-trees for
simpler ones that still represent the same logical expression, allowing us to, for
example, reduce expressions such as A AND A to their simpler form (in this
case, A). The rules shown here have already gone through this simplification
process. This simplification decreases the computational time spent by the pro-
posed algorithm in the tree evaluation step, which is the longest one in the whole
search process, decreases average tree height and also allows the genetic material
exchanged between trees to be meaningful.

10.5 Results

The results obtained with the application of this algorithm to microarray data
sets are described in great details in [23]. We will highlight their most important
features in this section.
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The data set tested was obtained from The Arabidopsis Internet Research
project (TAIR) and measures the reaction to cold of Arabidopsis thaliana, giving
the value of close to 8000 genes at seven data points. Because of this small number
of measurements it was not feasible to use the time dependence available in the
chromosomes. Therefore, every calculated value depends solely on the expression
values available at the previous time point.

A. thaliana, like many plants, increases its freezing tolerance when exposed
to low nonfreezing temperatures. This process of cold acclimation is a multi-
genic and quantitative trait that is associated with complex physiological and
biochemical changes [17].

The genes that are hypothesized to be responsible for the cold response are
16062 s at, 17520 s at and 16111 f at. The genes 13018 at and 13785 at are two
of the genes regulated by the above named ones. The algorithm was applied to
search for regulatory strategies for these last two genes, modeling correctly both
trajectories and giving us the following interesting results:

• In the rules discovered for 13018 at, the three known regulators were present
and a candidate regulator (17034 s at) that was considered interesting enough
by the biologists who provided the data to warrant further investigation in
the near future. Other genes that show high correlation with known regula-
tors were present in the rules, an effect that may be due to the small number
of points available in the data set.

• In the second case (13785 at, some prior knowledge was included and the
program was asked to include necessarily activation from 17520 s at and
preferentially an inhibition from 16111 s at. The resulting rules included the
required and the desirable relationships. Another interesting feature is the
presence of gene 17034 s at, which was also deemed interesting in the previous
set of rules.

• In both cases, the rules present a few genes that don’t seem to “belong”
in terms of previous knowledge. This kind of spurious control relationship
will always be present in any method and is a consequence of the blessing
of dimensionality previously mentioned and cannot be avoided with such a
small data set.

One can understand better those results by reviewing the best chromosome found
for element 13875 at, which is described by the following rules:

(a) IF AND Low Level of Expression(17413 s at)
NOT High Level of Expression(16111 f at)
THEN Low Level of Expression(13785 at)

(b) IF NOT Average Level of Expression (15714 at)
THEN Low Level of Expression(13785 at)

(c) IF NOT Average Level of Expression (17834 at)
THEN Low Level of Expression(13785 at)

(d) IF Low Level of Expression (17421 s at)
THEN Average Level of Expression(13785 at)
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(e) IF Average Level of Expression (16062 s at)
THEN Average Level of Expression(13785 at)

(f) IF OR Low Level of Expression(17050 s at)
High Level of Expression(16062 s at)
THEN High Level of Expression(13785 at)

(g) IF Average Level of Expression (17034 s at)
THEN High Level of Expression(13785 at)

(h) IF NOT OR High Level of Expression(16062 s at)
Low Level of Expression(15140 s at)
THEN High Level of Expression(13785 at)

Those rules have the following features worthy of note:

• Rules (a), (e) e (f) show relationships to known regulators;
• Rule (g) presents a new regulator (17034 s at) that was considered promising

by A. thaliana researchers;
• Rules (f) e (h) show relationships with elements 15140 s at and 17050 s at

that are highly correlated to element 17520 s at, which is a known regulator
and is absent from the rules found. This situation is expected and is due to
the small amount of data points.

10.6 Conclusion

The algorithm described was applied to a data set with many degrees of freedom
and yielded interesting results. When applied to previously investigated regula-
tion models, the results generated are very similar to known results in biology.
This suggests that the algorithm may be a tool to uncover other regulation
processes, but must be used with caution. All results found by this algorithm
must be tested afterwards in a biological lab and all limitations associated with
microarray data sets must be taken into consideration. Besides, if data is not
scarce, other methods could be more effective, but, at the present time, obtaining
a large number of microarray measurements is not financially feasible.

The approach described in this chapter to model gene expression is a very
simplified view of the actual process, appropriate for exploratory data analysis.
In reality, gene expression is a complex process regulated at several stages in the
synthesis of proteins that also involves molecular movement and binding, which
is a probabilistic event.

Apart from the regulation of DNA transcription, the best-studied form of reg-
ulation, the expression of a gene may be controlled during RNA processing and
transport (in eukaryotes), RNA translation, and the post-translational modifi-
cation of proteins. The degradation of proteins and intermediate RNA products
can also be regulated in the cell, and the modeling of this process can be seen,
for example, in [11]. Regulatory molecules can control the concentration and
form of the product of each step. These regulators are usually fully-formed pro-
teins, but any of the intermediate products (RNA, polypeptides, or proteins)
also may act as regulators of gene expression. Reverse-engineering techniques



10 Evolving a Fuzzy Rulebase to Model Gene Expression 213

usually concentrate on protein transcription control, mainly because DNA mi-
croarray technology has become an abundant data source. Measuring peptide,
protein and metabolite regulators of gene expression is generally more difficult,
and such data are not often available [14].

In this situation, the model proposed here serves as a rough sketch of the
regulatory process, but it still must be considered as an initial step and must be
augmented in the direction of methods that can understand and model cellular
context, RNA translation and protein folding; thus understanding the network
as a whole.

It is important to understand that most large-scale data sets contain only
information from cells exposed to a single condition. The approach proposed
here does not attempt to analyze the dynamics of complex biological networks. In
order to carry out such an analysis of dynamics, we would have to deal with more
interaction data sets under different cellular conditions, and more importantly,
integrate with gene expression profile data under various conditions. The reader
interested in biological networks can refer to [37].

It is also important to understand that many different genetic networks can
generate the same phenotype, specially under data scarcity conditions, a phe-
nomenon called “gene elasticity” and discussed in detail in [20]. The approach
proposed here will not find many different possibilities for the same data in the
same run, but given the fact that there is a random initialization step in the GP,
it is possible to find different networks in different runs.

Besides incorporating the issues described above, a full model must also in-
corporate different regulatory mechanisms at different time points. For instance,
a gene may regulate another only at a certain time point, while remaining qui-
escent during the rest of the interval evaluated. A possible solution would be to
add, to each fuzzy rule in the base, an application condition that would determine
when to apply it. Many difficult issues arise from this idea: for example, ensuring
that at least one condition applies to a controlled gene at every time step and
determining how to submit these rules to a genetic operator. We are currently
studying the best way to represent these application conditions in our rules.
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Summary. In our previous studies, we first noted that dot products of 1st- and 2nd-
order differential derivatives are effective to extract paired expression patterns in time-
course microarray gene expression data. Here, the feature extraction model and an
adaptive neuro-fuzzy inference system are encompassed together for fusing information
attained from microarray experiments and known gene-gene interactions confirmed
by biological experiments. Having the capability allows computer to associate gene
expression patterns with genetic or transcriptional interactions, we can use it to identify
other interactions that have not yet been confirmed by biologists. We also bring forward
the concept of multilayer adaptive neuro-fuzzy inference systems showing how fuzzy
models collaborate with each other on the basis of limited time-course microarray data
and take advantage of the known gene-gene interactions. In this chapter, we examine
the fuzzy model that may lead to higher true-positive results in prediction of gene
networks. We also discuss the relative merits and drawbacks of two methods, and
provide recommendations for readers to choose the most suitable method specifically
for their applications in bioinformatics.

11.1 Introduction

The genesis of bioinformatics is a discipline which makes the best effort of avail-
able computational resources in order to analyze the massive data sets produced
by the modern technologies in molecular biology. In recently decades, bioinfor-
matics has become an active research area in the fields of molecular biology,
computer science, artificial intelligence, statistics and mathematics. Bioinfor-
matics is a collaborative science that combines feature extraction, data analysis,
database managing, and interpreting information attained from in silico molec-
ular biology experiments. This research area has become one of the most cutting
edge research topics after the Human Genome Project was completed in April
2003. With the improvements on microarray technology, abundant data in the
field, such as gene sequences, protein sequences and structures, microarray gene
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expression data, and results of polymerase chain reaction (PCR) experiments
are exponentially growing. With the emergence of modern technologies, infer-
ring genetic regulatory mechanisms in biological organism has become possible.

Facing the huge amount of data, traditional approaches are not applicable
anymore since the biological problem itself is highly nonlinear. Also, it may
cause computational overhead involved in computer implemented analysis sys-
tems. In order to search for answers the biological problems, advanced informa-
tion technologies are needed. To answer these questions, the analysis algorithms
needs to take advantage of large amount of data, and results in validly biological
conclusions. Many computational and mathematical approaches had been pub-
lished to make inferences about the molecular processes in animals, for example,
data mining, graphical model, Bayesian learning, hidden Markov chain model,
artificial neural networks, fuzzy logic, evolutionary optimization, and support
vector machines. These approaches usually deal with three major problems in
bioinformatics research, such as classification, clustering, and association.

Many algorithms have been proposed to predict regulatory networks, most of
which using sequence data, localization data, expression data, structural data, or
orthologs information across different species. Sequence data and expression data
are the most frequently exploited biological features in most of the approaches.
However, sequence based approaches do not provide a direct way to uncover the
types of interactions, e.g. activation or repression, which constitute the actual
functions of the interactions. Thus, expression data is required to compensate
this drawback.

Recently, there have been a few studies on transcriptional compensation in-
teractions. Transcriptional compensation is a phenomenon that the expression
quantity for a gene increases when its compensatory gene is mutated. On the
other hand, the expression quantity for a gene decreases when its compen-
satory gene is mutated, this is called transcriptional delimitation. Mechanisms
of transcriptional compensation interactions are mostly discovered in quantita-
tive real-time PCR (qRT-PCR) experiments. Transcriptional compensation and
transcriptional delimitation are very useful clues to detect synthetic sick or lethal
interactions, in which mutation of two or more genes causes more severe growth
defection (i.e., symptoms resembling premature aging, Cockayne syndrome, etc.)
than mutation of one gene alone. Therefore, inferring these interactions is an es-
sential topic of interest in bioinformatics.

Fusing microarray gene expression data and prior knowledge about results
attained in qRT-PCR experiments is still an open question for scientists to infer
possible regulatory mechanisms of diseases in biological organisms. In this chap-
ter, our focus here is on the task of answering question about how to combine
graphical model and fuzzy logics, and use the hybrid model to infer genetic /
transcriptional interactions. This task is arisen because large amount of microar-
ray data and biological experiments results are now available for public access
on the Internet. Hence, it should be more efficient if we simplify the problem of
inferring genetic / transcriptional interactions into a machine learning problem.
Our objective here is to provide a fuzzy logic based approach that enables the
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machine to associate the known interactions with specific patterns in microarray
gene expression data.

11.2 Genetic Interactions

As previously mentioned, genetic interactions can be uncovered by qRT-PCR
experiments. qRT-PCR system is a successful and well-known tool that enables
reliable measurements for establishing functional linkages between a group of
genes. qRT-PCR system achieves quantitative PCR analysis by taking advan-
tage of the specific interaction between two modified genes sequences. One of the
PCR primers contains a fluorescent label that residues at the 5’-terminus. The
other PCR primer is unlabeled. The reaction mix includes both primers, and the
labeled primer is preferentially incorporated at the position complementary to
the target double-stranded DNA. The incorporation of the unlabeled strand at
this position results in quenching of the fluorescent dye on the complementary
DNA strand and a reduction in fluorescence, which allows quantization during
amplification. Multiplex reactions are achievable by using different fluorescence
on a primer pair for each target sequence. After the amplification procedures are
completed, the labeled strands fluoresce when hybridized with a complementary
DNA strand. The measured fluorescence intensity does not have any absolute
unit associated with it. Thus, it usually gives ratio of the fluorescence intensities
comparing between different tissues or experimental conditions. In this experi-
ment, we can attain the answer of: Does the expression level of gene of interest
change due to an experimental condition?

After a series of qRT-PCR experiments, we measure the fluorescence intensity
levels of genes of interest. Furthermore, statistical test is conducted to check the
functional linkage between a gene pair, say gene A and gene B, where A is a
potential regulating gene, and B is a potential target gene regulated by A. Two
groups of qRT-PCR experiments are conducted in which one is treatment group,
and the other is control group. First, we measure the level of B against that of
its partner mutative gene A. We also include wild type gene A as the control
group. Each group contains a number of replicates, say n replicates. According
to our biology knowledge, if A functions as an activator of B, the level of B
should decrease when Awas mutated. On the other hand, if A functions as an
repressor of B, the level of B should increase when A was mutated.

In order to verify the aforementioned activator-to-target interaction between
A and B, fluorescence intensity levels of B in all experiments are measured,
where C1, C2, . . . , Cn1 are levels of B in control group (wild type gene A), and
E1, E2, . . . , En2 are levels of B in experimental group (mutative gene A). We
test the hypothesis using t-test:

{
H0 : μC = μE

H1 : μC �= μE
,

where μC and μE is the mean of levels of B in control group and experimental
group, respectively, and significance level α = 0.1. Since the numbers of replicates
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in control group and experimental group are not necessarily to be the same, we
utilize independent two-sample t-test with unequal sample sizes and unequal
variances to test the hypothesis. Thet statistic to test whether the means of
fluorescence intensity levels of B in two groups are different can be calculated
by:

t =
C̄ − Ē

sC̄−Ē

,

where

sC̄−Ē =

√

s2
C

n1
+

s2
E

n2
,

and s2
C and s2

E are the unbiased estimators of the variances of the levels of B.
For the significance testing, the distribution of the test statistic is approximated
by the ordinary Student’s tdistribution. The degree of freedom of the Student’s
tdistribution can be determined by the Welch-Satterthwaite equation, which can
be formulated by:

df =

(
s2

C

n1
+ s2

E

n2

)

(
s2

C
n1

)2

n1−1 +

(
s2

E
n2

)2

n2−1

Since it is a two-tailed test, the null hypothesis (H0) is rejected if the p-value
of the test is lesser than or equal to α/2 = 0.05 on either side of the Student’s
tdistribution. Thus, the observation is inconsistent with H0, which means that
the levels of B in control group and experimental group are significantly different
due to A was mutated.

On the occasion that H0 is rejected, a functional linkage is confirmed to exist
between the regulating gene A and the target gene B. As aforementioned in the
first section, we focus on two types of interactions: transcriptional compensa-
tion and transcriptional delimitation. If μC is lesser than μE , it represents that
mutative gene A increases the level of B, and the interaction between A and B
is transcriptional compensation interaction. Alternatively, If μC is greater than
μE , it represents that mutative gene A decreases the level of B, thus the inter-
action between them is transcriptional delimitation interaction. A set of prior
knowledge about existing interactions can be attained by conducting a series
of qRT-PCR experiments and statistical tests. The prior knowledge data set is
then used to train the fuzzy inference system that will be introduced later.

11.3 Time-Course Microarray Gene Expression Patterns

In the field of molecular biology, gene expression levels of thousands of genes
can be measured at once using modern microarray technology. A measurement
represents a global picture of genomic functions at a particular time. Many ex-
periments of this sort measure the activities of genes over a period of time, and
result in time-course gene expression data. Time-course gene expression data
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is inheritable information that determines the cumulative amount of messenger
RNA (mRNA) made from a gene. It can have a profound effect on the functions
of the gene in the organism. If a gene is used to produce mRNA, it is consid-
ered to be activated, otherwise, it is repressed. Thus, gene expression patterns
between genes sometimes been interpreted as a kind of gene-gene interaction
process.

There are many kinds of metric that have been proposed to measure the sim-
ilarity of gene expression patterns between genes, such as Euclidean metric or
manifold metric. Pearson correlation is also a widely utilized method to mea-
sure the similarity of two genes’ expression pattern. However, according to our
knowledge in molecular biology, any particular promoter region in the upstream
sequence of a gene can be bound by both its activators and repressors, and
the activators or repressors might also require co-factors to enable its function.
Hence, it leads the gene regulating model to become a highly nonlinear system,
which is capable of responding in multiple ways to a change of gene activity
depending on the state of the overall gene regulatory network and the presence
of genes affecting different pathways. For this reason, traditional linear metrics
are not suitable to analyze patterns in microarray gene expression data.

In this chapter, we utilized a curve feature based metric to measure the similar-
ity or counter-similarity of paired genes’ expression levels as originally proposed
in PARE by Chuang, et al. [2]. This metric was originally inspired by observing
the patterns in the plots of paired genes’ expression levels. By comparing the ob-
served patterns with interactions that were confirmed by qRT-PCR experiments,
two major types of patterns were found. The first type of the patterns is similar
pattern, and the second type is anti-similar pattern. In [2], both patterns have
been checked against interactions (e.g. transcriptional compensation and tran-
scriptional delimitation) that have been confirmed by qRT-PCR experiments. A
t-test was conducted to verify the significant association between patterns and
interactions. With the significant level of 0.05, transcriptional compensation in-
teractions were identified to have anti-similar pattern. As well, transcriptional
delimitation interactions were identified to have similar pattern in microarray
gene expression data. An example of transcriptional compensation interaction
SWE1-HST3 in the plot of expression levels is given in Figure 11.1(a). We can see
that the expression levels of both genes show the anti-similar pattern. Another
example, as depicted in Figure 11.1(b), shows a transcriptional delimitation in-
teraction POL32-TOP1. It is clear to observe a similar pattern in the plot of
both genes’ expression levels.

According to our observation on example depicted in Figure 11.1(a), the slopes
and curvatures of gene expression curves of similar pattern tend to have the same
signs during the experimental period. Also, the example plotted in Figure 11.1(b)
shows that the slopes and curvatures of gene expression curves of anti-similar
pattern tend to have different signs for the whole experimental time course. To
capture the characteristics of similar pattern and anti-similar pattern of expres-
sion curves, we calculate the products of their first and second derivatives with
respect to time. We formulate these into two functions at below:
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SA,B =
∂GA (t)

∂t
· ∂GB (t)

∂t
,

CA,B =
∂2GA (t)

∂2t
· ∂2GB (t)

∂2t
,

where SA,B and CA,B represents the products of the first derivatives and second
derivatives of expression levels for regulator gene A and target gene B, respec-
tively. GA(t) and GB(t) are gene expression level of A and B at time point t.
The partial differential terms need not to be continuous there. Since time-course
gene expression levels are discretely measured in time, so the 1st- and 2nd-order
partial differential terms for computing SA,B and CA,B can be formulated by

∂G (t)
∂t

=
G (t + 1) − G (t)

Δt
,

∂2G (t)
∂2t

=
G (t + 2) − G (t + 1)

ΔtΔ (t + 1)
− G (t + 1) − G (t)

(Δt)2
,

=
G (t + 2) − 2G (t + 1) + G (t)

(Δt)2

Paired gene expression levels with similar pattern will result in positive SA,B

and CA,B. Contrarily, anti-similar pattern will result in negative SA,B and CA,B.
These two formulas have been verified to be effective to extract nonlinear features
of similar pattern and anti-similar pattern in microarray gene expression data.

As aforementioned, coefficient of Pearson correlation has been widely applied
to estimate the strength of trend between two random variables. In the field
of bioinformatics, gene expression levels are equivalent to random variables in
statistics. Thus, many researchers used Pearson correlation to determine the
strength of functional linkage between two genes. However, microarray gene ex-
pression data is known to be nonlinear, and it is necessary to do some mod-
ifications on Pearson correlation in order to make it suitable for analysis of
microarray gene expression data. Based on our knowledge in signal processing,
if a set of signal is nonlinear and discontinuous, ordinary signal processing meth-
ods might become inapplicable. But if we divide the signal into several smaller
fragments, the nonlinearity and discontinuity of the signal can be removed, and
those signal processing methods are then become applicable. Base on this con-
cept, we introduce another approach, named “sum of local correlation coefficient
(SLCC)”, to measure the nonlinear correlation between two random variables.
It combines much of the simplicity of linear correlation with the flexibility of
measuring nonlinear correlation. A moving window is needed to compute local
correlations denoted by r’. If the data comes from two gene expression levels
GA(t) and GB(t), then SLCC is formulated by average of local correlations as
follow:

rA,B =
1

n − w

n−w∑

i=1

r′
([

GA (i) · · · GA (i+w − 1)
]
,
[
GB (i) · · · GB (i + w − 1)

])
,
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Fig. 11.1. (a) The gene expression pattern of transcriptional compensatory (TC) gene
pairs SWE1 and HST3 across time; (b) The gene expression pattern of transcriptional
diminished (TD) gene pairs POL32 and TOP1 across time

where rA,B is the SLCC between A and B, n is the total number of time points,
and w is the size of the moving window. The local correlations r’ is defined by
products of the standard scores of the two gene expression levels x and y divided
by the degrees of freedom
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r′ (x, y) =
1

w − 1

w∑

i=1

(
xi − x̄

sx

) (
yi − ȳ

sy

)

,

where x̄ and sx represent sample mean and sample standard deviation of x, re-
spectively. Similar to SA,B and CA,B, gene expression levels belong to similar
pattern and anti-similar pattern will result in positive and negative r, respec-
tively. The size of the moving window w is suggested to be one half time of cell
cycle.

Please note that SA,B, CA,B, and r aforementioned in above are based on the
assumption that it has no time-lag effect on genetic interactions. Some previously
studies (e.g. [5]) suggested that co-expressed genes usually do not regulate the
functions of one another. Therefore, observing gene expression data taken with
time lags of one or two time point might be useful to capture the causal effects in
which the expression behavior of one gene leads to a delayed pattern of expression
of another [9, 2]. Also, both biological cellular behavior and the time interval
between two time points should be taken into account when deciding the length
of the time-lag. If the time interval is short (e.g. minutes), we suggest that taking
one or two time-lags is reasonable. Alternatively, if the time interval is long (e.g.
days), no time-lag is needed during the analysis.

11.4 ANFIS: Adaptive Neuro-Fuzzy Inference Systems

Fuzzy inference is a computer paradigm based on fuzzy set theory, fuzzy rule
base, and fuzzy reasoning. With the concept of uncertainty, a fundamental fuzzy
system was introduced by Zadeh’s paper in 1976. The significance of Zadeh’s pa-
per was that it was designed to mathematically represent uncertainty and vague-
ness based on the foundation of probability theory. The capability of fuzzy sets
is to express gradual transitions from membership function to non-membership
function and vice versa. There are a number of ways that can involve fuzzy
sets in a system, such as analogous text description of the system, uncertainty
expression in system parameters, and inputs, outputs and state variables that
are described by fuzzy sets. Different from crisp systems, fuzzy systems were
modeled by means of if-then rules. While the text description is vague and less
specific, it is usually more useful to describe a system that a mathematical model
is difficult to derive. Also, it allows decision making with estimated value under
incomplete or uncertain information.

In general, a fuzzy inference system consists of four primary parts: fuzzifica-
tion, inference, fuzzy rule base, and defuzzification. The overall block diagram
of the fuzzy inference system is depicted in Figure 11.2. Depending on the form
of formulation, two types of fuzzy inference models can be identified. The first
type is Linguistic fuzzy model, where both the antecedent and the consequent are
fuzzy propositions. The other one is Takagi-Sugeno fuzzy model, where the an-
tecedent is fuzzy proposition, but the consequent is a crisp function. The knowl-
edge represented by fuzzy rules can be easily understood and handled by human
being. For a thorough review of fuzzy systems, we refer to [15, 16, 17, 7, 13].
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Input
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Defuzzification
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Fuzzy Rule
     Base

Fig. 11.2. General model of an adaptive neuro-fuzzy inference system

Fuzzy inference systems have been proven to work well in reasoning with im-
precise information. Although fuzzy logic can be used to encode expert knowl-
edge directly using linguistic rules, it usually takes a lot of time to design and
tune the membership functions which quantitatively define those linguistic rules.
In some nonlinear applications, the complexity in developing fuzzy rules in-
creases with complexity of the entire fuzzy inference process, such as selection of
membership functions, configuration of the center and width of the membership
functions, and development of the appropriate fuzzy rules. Moreover, it is very
difficult for designers to express the nonlinear fuzzy rules. Membership functions
and fuzzy rules are not aggregated completely with easily without a systematic
and reliable manner. Thus, these disadvantages make the applications of fuzzy
systems been restricted to the field where expert knowledge is available and the
number of input and output variables is small. Due to they cannot automati-
cally acquire the rules they use to interpret those information, it might make the
fuzzy inference systems unsuited for some particular problems. The limitation of
learning is therefore of interests in the development of fuzzy systems, and it has
become a central driving force behind the creation of the adaptive neuro-fuzzy
inference systems (ANFIS).

ANFIS, which was introduced in [4], is a hybrid system that incorporates the
advantages of fuzzy inference systems and neural networks whose interconnection
weights are fuzzy sets. It combines the capability of fuzzy sets theory in handling
uncertainty information and the ability of neural networks in learning from a set
of training data through numbers of trials. The combination of these particular
features makes ANFIS to have the advantages of adaptability and fault tolerance
on both linear and nonlinear problems.

The architecture of the neuro-fuzzy model is shown in Figure 11.3. The archi-
tecture of ANFIS consists of five layers feedforward network, which is comprised
by the input, defuzzification, rule, composite, and output layer:

In the 1st layer, the output of every node is the degree of association between
input and the linguistic label associated with this node function. The membership
function of each node specifies the degree to which the given input satisfies the
linguistic label. The output of ith node in 1st layer O1,i can be formulated by

O1,i (x) =
1

1 +
((

x−ci

ai

)2
)bi

,
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O1,i

Input 1st layer
Fuzzification

2nd layer
Product

3rd layer
Normalization

4th layer
Rules

5th layer
Summation

O2,i O3,i O4,i

O5,i

x    y

Prediction

Fig. 11.3. The conceptual diagram of ANFIS, which has two inputs, one output, and
three member functions (CP, SP and no pattern) corresponding to each input

where x is the input of the ith node, and {ai, bi, ci} are parameter set need to
be tuned. The values of these parameters determine the shape of membership
function on linguistic label of ith node. The function of O1,i can be bell-shaped
function, or other continuous functions such as trapezoidal or triangular-shaped
functions.

Every node in the 2nd layer multiplies the incoming signals and sends the
product out to the next layer. The operation in the 2nd layer can be formulated
by

O2,i (x) =
∏

i

O1,i (x).

The value of O2,i represents the firing strength of a rule. It is equivalent to fuzzy
AND operation of inputs from the 1st layer.

The node in the 3rd layer calculates the ratio of the ith rule’s firing strength
to the sum of all rules’ firing strengths, which can be formulated by

O3,i (x) =
O2,i (x)

∑

j

O2,j (x)
.

The output of every node is a value with maximum equal to 1 and minimum
equal to 0. Thus, output if this layer is also called normalized firing strength.

In the 4th layer, the output of ith node is defined as below

O4,i (x) = O3,i (x) · fj ,
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where fj is the function of rule defined in rule base. The function fj may contain
several parameters that need to be estimated.

The node in the 5th layer calculates the overall output of the ANFIS as for-
mulated at below

O5,i (x) =
∑

i

O4,i (x).

The operation of node in 5th layer is the summation of all incoming signals from
the 4th layer. Total number of rules in ANFIS can be derived by product of
numbers of membership functions associated with every input.

A numerous type of learning algorithms can be employed to update the afore-
mentioned parameters. In the forward process of the training, parameters in fj

are estimated by the least squares estimate. In the backward process, the error
rates propagate backward to update parameter sets (e.g. {ai, bi, ci} in the 1st

layer) by gradient descent. In order to reduce the computational complexity of
the training process, some studies used gradient descent only or gradient descent
with one pass of least square estimate to update all parameters. If we utilize gra-
dient descent in larger portion of the training algorithm, the computational time
can be significantly reduced. However, it might also reduce the resulting perfor-
mance of the training. Various types of training algorithm have been developed
to attain optimal values for parameters in ANFIS. For a thorough review on
other training algorithms, please refer to [14, 6, 1, 3, 8].

11.5 Predicting Genetic Interactions Using Multilayer
ANFIS

By combining the feature extraction method in Section 11.3 and ANFIS in Sec-
tion 11.4, a new algorithm, called GeneCFE-ANFIS, is developed to infer ge-
netic interactions using microarray gene expression data. The architecture of
the GeneCFE-ANFIS is depicted in Figure 11.4. First, the raw data measured
from microarray experiments is normalized. The purpose of normalization is to
adjust microarray data for noises which added by variation in the technology
or human error rather than from biological difference between the mRNA sam-
ples [11]. The association between dye-bias and fluorescence intensity can be
observed by plotting an MA-plot. If the MA-plot shows a skewed trend, the
experiments might be considered to have dye-bias, and it might lead the anal-
ysis to omit some spots that might be differentially expressed genes of interest.
In order to remove the dye-bias effect from raw data, an overall trend line is
estimated by loess regression, and corrects the M-values in the MA-plot by sub-
tracting the values estimated by loess regression from the M-values. The global
loess normalization can be formulated as below

N = M − loess(A),

where M = log2R – log2G, A = (log2R + log2G)/2, N is the normalized log-
ratio intensity for each spot, and R and G represent red and greed intensities
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measured from each spot, respectively. Sometimes the difference between each
print-tip might also lead the data to suffer from print-tip bias. Print-tip loess
normalization is then applied in order to adjust the log-ratio within each print tip
group. The process of the print-tip loess normalization is similar to the global
loess normalization. For more information about normalization of microarray
data, please refer to [11]. Except dye-bias and print-tip-bias, time-course mi-
croarray gene expression data are known to suffer from severe noise problem
because the data are measured from multiple microarray experiments. Noise sig-
nals embedded in the data usually seriously influence the performance of the
analysis. In order to remove noise signals from the data, a mean filter is applied
to the normalized log-ratio data. The size of the mean filter depends on the
strength of noise signals. In Chuang et al. [2], mean filter has been proven to be
effective to help discovering the macro trend of the gene expression patterns.

Then, we enter the feature extraction stage of GeneCFE-ANFIS. The
GeneCFE-ANFIS is an algorithm that predicts genetic / transcriptional interac-
tion in pairwise manner. For example, if we are looking for the effect of regulating
gene A acts on its target gene B, the gene expression levels of A and B are ap-
plied to the feature extraction method aforementioned in Section 11.3. We can
obtain a feature vector {SA,B, CA,B ,rA,B} that identifies the pattern formed by
gene expression levels of A and B, and the feature extraction stage is complete.

In the inference stage of GeneCFE-ANFIS, the feature vector {SA,B, CA,B,
rA,B} is applied to a two-layer ANFIS to infer the interaction between A
and B. As shown in Figure 4, the front-end and back-end ANFIS are encom-
passed by three and one ANFIS, respectively. Elements of feature vector SA,B,
CA,B,rA,B are assigned to signal-input and single-output ANFIS-D1, ANFIS-D2,
and ANFIS-Corr in the front-end ANFIS, respectively. The back-end ANFIS is
a three-input single-output ANFIS. The input signals of the back-end ANFIS
are the output signals from the front-end ANFIS. The output of the back-end
ANFIS represents the prediction result. The outputs of all ANFIS in both layers
can be interpreted by: 1) positive value represents activator-target or transcrip-
tional delimitation interaction, and 2) negative value represents repressor-target
or transcriptional compensation interaction.

The purpose of the two-layer ANFIS design is a realization of voting scheme.
The inference results yielded by front-end ANFIS are preliminary predictions
based on each element in feature vector {SA,B, CA,B,rA,B}, individually. These
preliminary predictions are then sent to the back-end ANFIS to obtain a score of
final prediction. This voting scheme helps the algorithm to isolate the low quality
element in the feature vector from the analysis. The low quality element means
that the feature extracted from paired genes’ expression pattern does not show
much association with its interaction. This situation is normal and happens all
the time because the characteristics of microarray gene expression data usually
differ from one another. The two-layer ANFIS design can avoid such problem
during the training process, and the overall prediction accuracy is better than
that uses single ANFIS only.
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11.6 Experimental Results

In this chapter, the GeneCFE-ANFIS is applied to a set of cDNA microarray
data that was provided by Spellman et al. [12] to infer potential genetic / tran-
scriptional interactions. The raw data of the microarray data set is available
online for public access at http://cellcycle-www.stanford.edu. The microarray
data set encompasses four sub data sets labeled by alpha, cdc15, cdc28, and
elu. The alpha data includes 18 time points following removal of alpha fac-
tor added 120 minutes earlier. The cdc15 data set consists of 25 expression
level series from 23 time points following arrest of cdc15 temperature sensi-
tive mutant. The cdc28 data set contains 17 time points following arrest of
cdc28 temperature sensitive mutant. Finally, the elu data set is formed by 14
time points following elutriation. For each experiment, experimental and control
groups were fluorescence intensities measured from synchronized yeast cultured
by its experimental conditions. Log ratio of red to green fluorescence intensi-
ties were applied to the GeneCFE-ANFIS for the reconstruction of the genetic
regulatory networks.

Since GeneCFE-ANFIS requires a complete training before it can produce any
useful prediction, a training data set formed by known interactions is needed.
A total of 112 genetic interactions (88 transcriptional compensation interac-
tions and 24 transcriptional delimitation interactons) that were confirmed by
qRT-PCR experiments are utilized to build a prior knowledge database. Among
these prior known gene interactions, (1/k) of interactions were randomly chosen
to be a training set to tune the parameters of GeneCFE-ANFIS, and the rest
1/k portions of interactions forms the test set for k-fold cross validation (CV),
where k = 3, 10 and 112 (leave-one-out CV) were implemented. Note that 3-fold,
10-fold and n-fold CVs were also conducted for the training sets to obtain the
averaged accuracy, which can be checked against the true-positive rate to detect
any overfitting problem. GeneCFE-ANFIS is applied to the entire database con-
sisting of alpha, cdc15, cdc28 and elu data set provided in [12]. The simulation
results are summarized in Table 11.1. The true-positive rate is defined to be the
ratio of the correctly predicted pairs to the total number of gene pairs. The best
case was obtained in elu data set, which was checked against the well-known in-
teractions confirmed by qRT-PCR. The true-positive rates of GeneCFE-ANFIS
with 3-fold, 10-fold, and n-fold CVs in elu data set are 69%, 70%, and 79%,
respectively, where 3-fold and 10-fold CV were repeated for 500 times.

A total of 77 transcriptional interactions (56 repressor-target interactions, 21
activator-target interactions) that were collected by surveying previously pub-
lished literatures are utilized as knowledge database to train and test the perfor-
mance of GeneCFE-ANFIS. Among these prior known gene interactions, (1/k)
of interactions were randomly chosen to be a training set to tune the parameters
of GeneCFE-ANFIS, and the rest portions 1/k of interactions forms the test
set for k-fold cross validation (CV), where k = 3, 10 and 77 (leave-one-out CV)
were implemented. GeneCFE-ANFIS is applied to predict interaction relation-
ships of the collected TFs pairs using all data sets in [12]. The simulation results
are summarized in Table 11.2. True-positive rates of GeneCFE-ANFIS in each
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Table 11.1. The prediction results of GeneCFE-ANFIS applied to the alpha, cdc15,
cdc28 and elu data sets for all time points. The simulation results were checked against
the 112 pairs of gene interactions confirmed by qRT-PCR experiments.

Dataset CV Type
Training Testing

Training Accuracy True-Positive Rate

Alpha

3-fold 86.9% 60.3%
10-fold 81.4% 61.5%
n-fold 79.6% 62.5%

Cdc15

3-fold 89.5% 64.7%
10-fold 86.9% 65.0%
n-fold 85.6% 66.9%

Cdc28

3-fold 89.1% 61.1%
10-fold 86.9% 63.9%
n-fold 86.1% 64.3%

Elu

3-fold 89.3% 69.2%
10-fold 88.9% 70.4%
n-fold 87.8% 79.5%

Table 11.2. The prediction results in terms of accuracy and true-positive rate (TPR)
of GeneCFE-ANFIS applied to the alpha, cdc15, cdc28 and elu data sets with all time
points. The simulation results were checked against the 77 TFs pairs collected from
literatures.

Dataset CV Type
Training Testing

Schäfer and
Strimmer [10]

Accuracy TPR TPR

Alpha

3-fold 85.5% 59.3%
52%10-fold 79.7% 60.5%

n-fold 79.6% 66.2%

Cdc15

3-fold 87.8% 59.8%
52%10-fold 83.4% 61.2%

n-fold 81.1% 62.3%

Cdc28

3-fold 85.5% 60.2%
56.9%10-fold 83.4% 62.7%

n-fold 82.9% 63.6%

Elu

3-fold 90.5% 63.3%
57.9%10-fold 86.2% 69.2%

n-fold 85.3% 71.4%

data set range from 59% to 71%, which are checked against 77 transcriptional
interactions with the known interaction relationships. The same simulations
based on the model proposed in [10] were also conducted, and the true-positive
rate are 52%, 52%, 56.9%, and 57.9% for alpha, cdc15, cdc28, and elu data sets,
respectively. The results show that GeneCFE-ANFIS overcomes the performance
yielded by the model proposed in [10], especially in elu data set.
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11.7 Conclusions

GeneCFE-ANFIS learns gene expression patterns from known genetic interac-
tions, confirmed through biological experiments or information gathered from
databases, and then GeneCFE-ANFIS can predict genetic interactions with sim-
ilar nature to the known interactions. True positive rates of GeneCFE-ANFIS
applied to the alpha, cdc15, cdc28 and elu data sets in [12] range from about 60%
to 80%. These results are more superior to other existing approaches because
their performances were usually poor when they were applied to the real MGE
data. Although GeneCFE-ANFIS requires some prior knowledge to tune the in-
ference system, but it only needs a small amount of known gene-gene interactions
to yield good performances. GeneCFE-ANFIS has been tested thoroughly using
the real microarray gene expression data in yeast. Moreover, the simulation re-
sults are checked against two knowledge data sets from different sources. The
simulation results show that GeneCFE-ANFIS yields promising performances,
and may be useful to infer gene networks.
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Summary. Fuzzy logic is an effective language for models that interpret large scale,
high throughput molecular biology experiments, including genomics, proteomics,
metabolomics, and inhibitor screening. Two important principles apply for biological
system modeling: (1) In the post-genome era, the development of novel molecular diag-
nostics and therapeutics requires interpreting the complex results of high-throughput
multiplexed experiments, and a framework to efficiently and rapidly design hypothesis-
driven experiments. (2) Biomolecular data are typically noisy and semi-quantitative, in
particular because of the typical fluorescence output of high throughput experiments.
Fuzzy biomolecular network models coupled with hypothesis generation strategies ad-
dress these needs. In this chapter, we describe an integrated, data-driven method for
extracting system models from data and generating hypotheses for experimental design.
The method is based on scalable, linear relationships between nodes of a biomolecu-
lar network, representing the expression of genes, proteins, and/or metabolites. Data
from high-throughput are fuzzified using a universal normalization method. Best-fitting
models are generated through an evolutionary algorithm, and disagreements between
plausible hypothetical network models are used as the basis for identifying experimental
designs. The result is a modeling and simulation framework that can be easily inte-
grated with text-based and graphical biological knowledge contained within existing
literature and databases.

12.1 Introduction

12.1.1 Overview of Biomolecular Network Modeling

Cells function respond to stimuli, process nutrients, repair damage, adapt to
their environment through the regulated activities of DNA elements, proteins,
and other molecules which constitute the structural units and catalyze chemical
reactions. Biomolecular network models can be used to abstract the production
of proteins from sequence coded in DNA, the transformation of proteins into
different catalytic states, the formation and dissolution of protein complexes, and
chemical interactions between proteins and small molecules. Critical functions
of the cell, such as metabolism, cell cycle, stress response and repair, etc. engage
biomolecular networks that include coordinated actions of hundreds to thousands
of proteins.

Y. Jin and L. Wang (Eds.): Fuzzy Systems in Bio., STUDFUZZ 242, pp. 235–255.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Traditional molecular biological experiments were limited to studying the
function of only one or small number of proteins. This knowledge base is now
complemented by large data sets generated by whole genome DNA sequence in-
formation and a host of high-throughput post-genomic technologies. Examples
include methods to efficiently and comprehensively measure whole genome se-
quences, the temporal profile of genes transcribed to proteins following a stimulus
or due to a genetic perturbation (reviewed in [8]), the temporal profile of protein
expression using MS [14] and protein arrays [5], the binding of proteins to DNA
to regulate transcription [2], metabolite profiling through MS [11] and nuclear
magnetic resonance (NMR) [12], as well as technology to rapidly generate genetic
perturbations through gene silencing with RNA interference (RNAi) [25]. Under-
standing the biomolecular network implementing cellular function goes beyond
the old dogma of one gene: one function. Only through comprehensive system
understanding can we predict the impact of genetic variation in the population,
design effective disease therapeutics, and evaluate the potential side-effects of
therapies.

This means that mathematical modeling and computation are necessary in
the emerging landscape of post-genomic biology. To understand how a complex
network works together to execute a cellular function relevant for organism be-
havior and health demands integrating data from small-scale molecular biological
experiments, high-throughput omics experiments, and phenotypic quantitative
measurements and qualitative observations (at the level of cells, tissues, and the
whole organism). Given the complex, heterogeneous, and multiscalar nature of
this problem, it is still unclear how best to represent biological variables within
a model, and given a model representation, how to identify the model based on
pre-existing knowledge and experimental data. This subject has been reviewed
extensively (a few examples are [9, 1, 10]). In this book chapter, we describe a
fuzzy logic-based approach to both the model representation and model iden-
tification questions: (1) representing biological network interactions using fuzzy
logic rule-based models, and (2) generating multiple plausible hypothetical mod-
els for a system based on a qualitative knowledge and quantitative data.

12.1.2 Motivation for Fuzzy Logic Model Representation

Boolean logic-based models of biomolecular networks have been proposed, recog-
nizing the relationship between the logic of cellular regulation and digital circuit
states with AND, OR, and IF/THEN functions [21]. However, binary rules were
recognized early on in the pre-genome era to lack the dynamic resolution and
range necessary to model biological function [13]. This presents a case to con-
sider fuzzy logic as a generalization of Boolean (i.e., binary true/false) logic [40].
Rather than having an object defined absolutely within or outside a set, fuzzy
logic allows for a continuum of set membership between absolutely false (defined
numerically as 0.0) to absolutely true (1.0). This reflects a more biologically re-
alistic picture of the continuum states of key variables (gene expression, protein
concentration, etc.).
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A variety of other approaches to state models have been implemented for
gene and protein networks, including among others (references given are only
examples of many): hidden Markov models (e.g., [29, 30]), Bayesian networks [28,
18], linear neural networks [7], finite state algebra [20], and probabilistic Boolean
networks [31, 26]. These and other methods are based on either treating biological
variables at the crudest resolution (on or off in Boolean networks, a few more
levels possible for finite state models but with rapidly growing complexity) or
as absolute physical quantities. Consequently, to integrate molecular biology
data (generally linguistic and low-resolution), semi-quantitative data (e.g. from
microarrays), and quantitative data available for biological system modeling, we
focus on the fuzzy logic.

At the other end of resolution and computational complexity, differential equa-
tions and stochastic models of chemical kinetics have been proposed for biomolec-
ular network modeling [3, 36, 39]. However, biomolecular experiments are noisy
and data are semi-quantitative or qualitative: for example, pixel counts of a
fluorescent spot on a membrane, chip, or microscope image. In addition, there
is a cost barrier (time, technology, risk of experimental failure) associated with
doing multiple experiments. Thus, in most cases, time series data for a cell or
organism in response to a stress, for example are undersampled. Often, only one
time point is measurement during a transition in system state, such as some ar-
bitrary number when it is thought through other knowledge or crude preliminary
experiments that system response is at its peak or has reached a quasi-steady
state.

Fundamentally, biologists study systems through hypothesis generation and
testing. Experiments are designed to maximize the distinction between “yes” or
“no” outcomes, not to generate high-precision numbers to validate a quantitative
theory. This is even true when quantitative data are obtained, for example from
physiological measurements. Many chemical kinetics models are based on param-
eters obtained consequentially in biochemical experiments, for example [3, 34].
However, their validity as absolute physical quantities must be questioned, be-
cause the experimenters optimized in vitro experimental conditions to obtain
statistically significant results, i.e., a maximal, reproducible difference between
the results found under test and null conditions. This is a critical difference be-
tween biology, an observational science, and physics, a theoretical science. As a
result, there is a formidable obstacle towards applying traditional methods used
by engineers accustomed to the wealth of high-precision quantitative data on
material properties to include their models of mechanical and electrical systems.
Technologies to implement these methods either do not exist or are prohibitively
expensive or time-consuming (and not needed to obtain novel biological insight
under the hypothesis-driven or even high-throughput biology paradigms).

Fuzzy logic therefore presents an appealing bridge linking qualitative obser-
vations and knowledge to quantitative and semi-quantitative data. In particular,
fuzzy logic allows for “linguistic” rule-based modeling. This allows us to apply
“if/then” rules using English words to represent fuzzy states of quantitative vari-
ables [22]. Figure 12.1 shows an example of how a biochemical quantity (i.e., the
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Fig. 12.1. Translation of a quantitative concentration level to a fuzzy linguistic level.
In this case, the fuzzy description is a membership in the set of “low” concentration
and a membership in the set of “medium”. Consequently, both the state transition
rules “if concentration is LOW then ...” and “if concentration is MEDIUM then ...”
are evaluated.

concentration of an enzyme) can be “fuzzified” and represented by membership
values in multiple fuzzy sets. For example, such fuzzy sets may be defined as
“LOW”, “MEDIUM”, and “HIGH”. Depending on the definition of fuzzy sets,
a concentration such as 0.1 mM may have a membership of 0.9 in LOW, 0.1 in
MEDIUM, and 0.0 in HIGH, while a concentration such as 10 mM may have a
membership of 0.0 in LOW, 0.1 in MEDIUM, and 0.9 in HIGH. Then, a set of
rules can be written as, for example, “if the concentration of reactant is LOW
then output is MEDIUM, if input is MEDIUM then output is LOW, if input
is HIGH then output is HIGH”. This allows for the construction of rule-based
models similar to qualitative rules found in biological literature, i.e. “if repressor
gene A is expressed at a LOW level then the expression of its target gene is
HIGH” and variations thereof.

12.2 General Linear Fuzzy Network Modeling

12.2.1 Developing a Scalable Method for Heterogeneous Data

Figure 12.2 shows an overview of the fuzzy modeling process. This schematic
indicates the components that have to be defined for our application, including
the conversion between quantitative and fuzzy values (in both directions) and
the evaluation of rules based on the interaction of biomolecular network nodes.
In developing a fuzzy network model representation, we are motivated by the
needs for generality, the ability to integrate different kinds of biological data,
and scalability, the need to avoid combinatorial explosion in modeling complex
biomolecular networks. These are two of the biggest obstacles towards applying
fuzzy logic to biological systems. There are many choices in developing fuzzy
set definitions for a given population, such as the number, shape, range of sets.
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Fig. 12.2. General schematic for fuzzy logic modeling of interaction rules based on
data, from data to the application of rules and the quantitative numerical interpretation
of fuzzy results

Typically, the modeler develops the fuzzy set design for a given problem in col-
laboration with domain experts. However, to be practically applied by biologists
and for rigorous use as a basis for inferring models based on experimental data, a
uniform modeling framework should be capable of integrating different kinds of
biological data and being applied to different regulatory systems. Once we define
a fuzzy set representation scheme, the challenge becomes inference at nodes of a
network model: in general, the number of possible rules scales exponentially by
the number of inputs to the node and the number of fuzzy sets representing the
state of each node. We have approached this problem by linearization of model
inference through a method first described by Combs and Andrew (the Union
Rule Configuration) [4].

12.2.2 General Fuzzification Scheme for Biological Variables

Briefly, Figure 12.3 describes the scheme used for translating semi-quantitative
data to fuzzy set language. These definitions were chosen to conserve y = x and
y = -x relationships, as well as for their conceptual simplicity and flexibility.
The problem of determining appropriate fuzzy set definitions is to determine
a suitable normalization of semi-quantitative values to the interval [-1,1]. Our
current approach is to take the normalized arctangent of the logarithm of the
expression ratios. In our previous work [6, 33], this overall scheme showed suf-
ficient dynamic range for quantitative comparison with gene expression ratios
in microarray data. In general, this is a general scheme that can be used for
all kinds of ratiometric data, which are typical in biological experiments. Deter-
mining absolute quantities is in general very difficult in biology, because most
measurement is based on arbitrary units (i.e., intensity fluorescence or the height
of a peak in a mass spectrum). Ratiometric data are generally taken in reference
to a control condition, or if data for one are not available, the mean of all mea-
sured conditions. An open question for research is the use of other methods to
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deal with ratiometric data in a general fashion, but the transformation we have
used can be applied the same way for proteomic data, metabolomic data, as well
as genome expression, and thus can be a framework for data fusion.

12.2.3 Linear Fuzzy Relationship Functions

To reduce the problem of combinatorial explosion associated with rule-based
modeling, our general modeling framework allows only a linear combination of
rules at each node. That is, we follow the so-called Union Rule Configuration
(URC) scheme first presented by Combs and Andrew [4]. All input rules defining
the behavior of a node in the biomolecular network are thus combined by a single
OR logical function. To minimize computational complexity while maintaining
the quantitative resolution necessary to describe biological processes, for the
OR function we employ the sum of membership functions in each fuzzy set, as
described in detail in [33]. We first implemented this approach in modeling the
microbial regulatory pathways of the lac operon (lactose metabolism) [32] and
glycolysis [27]. One limitation of this approach is the inability to model nonlinear
XOR interactions. This is analogous to the perceptron problem, and thus these
nonlinear interactions may be resolved by hidden layers of nodes in a fashion
similar to neural networks [37].

Fig. 12.3. Fuzzification (conversion from quantity to fuzzy set; top) and defuzzification
(conversion back from fuzzy set to quantity; bottom) schemes. Defuzzification (applying
the centroid method with point set definitions) is equivalent to dividing the difference
between memberships in HIGH and LOW by the sum of memberships in all sets.
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12.2.4 Model Identification: Simulating and Ranking Multiple
Plausible Networks

There is no “gold standard solution” for the identifying biological systems based
on data. Nor does comparing models on the basis of their agreement with previ-
ous biological knowledge provide any “proof” of success. Both the mathematical
abstractions of models and the linguistic abstractions used by a biologist inter-
preting results in qualitative language are necessarily incomplete. The correct
goal for the biological reverse engineering method should not be the “actual”
model, which is ill-defined at best, but rather multiple, alternative plausible
models consistent with the data. The set of plausible models may then be used
to perform further simulations, complement other models, interpret biological
information, and pose hypotheses for experimental study.

To compare the results of simulating a fuzzy network model with experi-
mental data for the system, an error metric is calculated for each measurable
variable from the sum of the error for each measurement of that variable (i.e.,
the measurement at each available time point and/or the measurement for each
different experimental condition or biological stimulus being tested). The mea-
surable variables are those gene and/or protein expression levels being measured
in the available experimental data set, and they are generally restricted by prac-
tical considerations, such as which genes are spotted on a microarray, or whether
proteins were measured. The other elements of the sub-network being studied
act as hidden nodes within the fuzzy state model. Using the “defuzzification”
scheme in Figure 12.3, fuzzy set membership values are converted to predicted
levels for the measurable variables. In [33] we defined a normalized measure E of
the model fit quality for each gene (node) in the gene network being simulated
(perfect fit defined by max(E) = 1.0) using the formula for predicted experi-
mental ratio data {x̃i} for the node and the experimental data series {xi}, where
x̄ is the average expression ratio over the whole experimental data series (with
M data points):

E =
∑M

i=1(xi − x̃i)2
∑M

i=1(xi − x̄)2
(12.1)

This error score was chosen to emphasize the correlation in qualitative behav-
ior between the fit and prediction instead of the absolute numerical fit.

Thus, each hypothetical fuzzy network model is characterized by a fit quality
E that represents its degree of plausibility based on available experimental data.
In general, when the problem is underdetermined (i.e., more interactions than
available data), there are multiple hypothetical networks that can fit the data
equally well (or poorly). To illustrate this, we draw from our previous work on
exhaustively searching all plausible fuzzy rules for a yeast cell cycle microarray
gene expression data set. Figure 12.4, taken from [33], shows the decrease in
models fitting the data a particular yeast cell cycle gene as the threshold for
fit quality (E) is increased, finally terminating with a finite number of equally
well-fitting hypothetical gene networks.
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Fig. 12.4. Histogram of the number of fuzzy rules for yeast gene CLN1 from the yeast
cell cycle microarray data set at different fit quality levels (indicated by E)

Subsequently, we have introduced a method to translate the E to an estimate
of the probability that a rule governing a particular gene in a network model was
obtained by chance [6]. This provides an assessment of the redundancy of the
multiple plausible solutions to the inverse problem for biomolecular networks.
As seen in our previous work doing exhaustive searches that generate all possible
rule combinations, the histogram for E is roughly bell-shaped (but skewed since
it is a ratio). In general, there are a few rule combinations with a low E corre-
sponding to good fits, a large number with a moderate E that are poor fits, and a
small number that represent anti-correlations, leading to a sigmoidal cumulative
distribution. Based on our previous results and keeping E strictly positive, we
propose to estimate the error distribution through a gamma distribution, which
is defined using two parameters, a and b as,

y = f(x|a, b) =
1

baΓ (a)
xa−1e−x/b. (12.2)

To obtain a maximum likelihood estimate of a and b for a particular variable
in a given data set, we evaluate E using this equation for a random sample
of the search space of rule combinations for that variable in that data set. As
Figure 12.5 illustrates, based on our results for 20 nodes in the network, we have
found that on the order of 2000 randomly selected rule combinations (of the
720 possibilities in this case, where 7 possible rules are allowed for each network
interaction) need to be evaluated for a particular data set to obtain a stable
parameter estimate. As Figure 12.6 demonstrates, we can use the shape of the
probability distribution to compare the quality of data sets, in terms of to the
ability to converge to a small number of plausible hypothetical networks.

Collections of hypothetical network models that remain plausible to some
threshold thus define the next set of experiments that have to be performed to
better understand the biomolecular network under study. What is common be-
tween the models represents a practical “ground truth” for biomolecular network
knowledge, limited by the caveat of modeling limitations (only a sub-network
being simulated, the limitation on number of measurements). The differences
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between equally plausible hypothetical networks provide a practical basis for
establishing the priorities for the next set of experiments, allowing for efficient
experimental design and interpretation. Figure 12.7 shows a schematic of this
process. Consequently, at least from an information/analysis perspective, biolo-
gists would not necessarily have to over-simplify the system being studied and
return to the unrealistic “single gene single function” approach to biology that
ignores cellular context (though the next set of experiments may have to be fo-
cused on unique players due to technical limitations but the results would still
be rigorously interpreted in the broader context through modeling).

12.3 Practical Implementation

12.3.1 Challenge of Combinatorial Explosion in Larger Networks

In our earliest work, we evaluated all possible fuzzy network models for a given set
of data. This allowed us to examine the qualitative relationship between fit error

Fig. 12.5. Estimation of gamma function parameters for the error probability distribu-
tion of gene TOP2A, with the TN human cell cycle array data set. (Bottom) The mean
a and b parameters (solid line with white squares and grey line with black diamonds,
respectively) estimated for increasing sample sizes uniformly drawn from the space of
all possible rule sets. (Top) Coefficients of variation (standard deviation divided by
mean) versus sample size (based on 10 samplings).
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Fig. 12.6. Time series data (left) and corresponding error distribution functions for
specific genes in the human cell cycle microarray data set: the solid line is data set
TT3 for gene CCNB1 (a = 22.8, b = 0.0458, a/b = 498), the grey line is TT1 for
CCNE1 (a = 9.3, b = 0.0120, a/b = 77), and the dashed line is Shake for CDKN3
(a = 197, b = 0.00517, a/b = 38092). The results are consistent with the evidence
that TT3 and TT1 synchronization for cell cycle experiments leads to more robust
experimental data than mechanical synchronization (i.e., the Shake data set).

Fig. 12.7. Iterative framework for plausible biomolecular network modeling search,
evaluation, and experiment generation (A, B, C, D, E are examples of biomolecules
in the network). The grey arrow represents the ultimate goal of feedback between
modeling predictions and generation of new experimental data.

and the number of plausible networks, i.e., developing the profile in Figure 12.4
that led to the gamma distribution described above. While employing exhaustive
search, potential combinatorial explosion in the number of exhaustive hypothet-
ical fuzzy network dynamic models generated for a biomolecular network struc-
ture has been mitigated in three ways: by using the linear fuzzy rule configuration
as described above, reducing the size of the network and the setting a maximum
number of possible inputs to any given node (while still allowing all other nodes
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Table 12.1. Fuzzy rules allowed at a network node

Rule # If input is... Then output is... Rule # If input is... Then output is...

Low High Low Low
−3 Medium Medium 1 Medium Medium

High Low High Medium
Low High Low Medium

−2 Medium Medium 2 Medium Medium
High Medium High High
Low Medium Low Low

−1 Medium Medium 3 Medium Medium
High Low High High

as possible inputs within that combination), this was specifically outlined in our
previous work with the yeast cell cycle [15], and taking advantage of the parallel
nature of the problem to run it on multiple processors. Because of the linearization
of rule evaluation, each node is computed independently, so the algorithm runs for
each node sequentially without depending on previous results.

In our current work, we have also considered a reduction in the number of
possible rules from 27 (all 33 fuzzy state relationships) to just seven, including
the absence of a relationship, as outlined in Table 12.1 (this is the approach
used in [6]). These rules can be evaluated through simple matrix multiplications
as we show here, allowing for computationally efficient rule simulation. In these
examples, we show how two particular rules in Table 12.1 are evaluated to obtain
the prediction for the rule on an input to the node with fuzzy set memberships
0.7 (Low), 0.3 Medium, and 0.0 (High) leading to an output with corresponding
memberships in Low, Medium, and High, using the summation OR function
as described above. In the case of multiple inputs, the output predictions are
summed as described and the average is found (corresponding to the centroid
function) to normalize set memberships to a maximum of 1.0.

Rule#− 3 :
[
0.7 0.3 0.0

]

⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦ =
[
0.0 0.3 0.7

]

Rule# + 2 :
[
0.7 0.3 0.0

]

⎡

⎣
0 1 0
0 1 0
0 0 1

⎤

⎦ =
[
0.0 1.0 0.0

]

In addition, as will be shown in the example problem described below, we have
also begun using prior knowledge on the structure of the biomolecular network
as a basis for developing dynamic models, as introduced in [17]. When used in
conjunction with automated data-mining techniques to develop the prototype
network model, this leads to a fully integrated fuzzy-logic based model identifi-
cation and evaluation system. One approach that has not yet been implemented
in our approach but we propose for future study is rule elimination through
rigorous fuzzy similarity analysis as described generally in [19].
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12.3.2 Evolutionary Search Algorithm for Plausible Network
Models

We have recently published an evolutionary search method to accelerate the iden-
tification of plausible hypothetical network models [6]. Genetic algorithms [16]
are inspired by natural selection in evolution, in which the fittest individuals in
a generation pass on their genes, with probabilistic recombination and muta-
tion. To study the feasibility of this approach, initially we have attempted one of
the simplest possible evolutionary search formulations. The algorithm steps we
implement are as follows, and a Matlab toolbox including scripts implementing
it is freely available from the author. Figure 12.8 shows the general schematic
for evolutionary optimization algorithms, which we define specifically for our
application in this section.

Fig. 12.8. General schematic for evolutionary algorithms, with a continuing cycle
between evolution of models through genetic operators (i.e., mutation and crossover)
and the selection of most fit (lowest error) for the next iteration

(1) Generation of Initial Population. The user can specify which rules are
allowed for each possible input-output combination for the G nodes (e.g., genes)
in the biomolecular network. Based on that possible space, N rule combinations
are generated for the output. Each rule is a string of G randomly selected rules
for each input in sequence. In this formulation, we have limited the number of
possible rules to 7, roughly corresponding to different degrees of positive co-
regulation, negative co-regulation, and a null rule. The null rule is introduced
because the maximum input limitation is no longer in effect. In general, N = G1
(all other nodes can be inputs to the node being identified) but it can be con-
strained based on domain knowledge to reduce the search space complexity. We
found based on artificial and biological data sets that population sizes of 30-50
are adequate for obtaining convergence [6]. However, it is necessary that mul-
tiple initial seeds also be considered. This is because of the large number of
potentially optimal solutions, which is inherent to the problem of many possible
inputs to given nodes and noisy and often sparse data sets. (2) Evaluation of
the fitness function. The fitness of each of the N rule combinations is calculated
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using the probability of fitting the rule by chance, based on gamma parame-
ters as above. This is the most time consuming step of the process. Thus, the
complexity of the algorithm scales according to the number of possible input
genes and the number of data points that must be evaluated (i.e., the number
of sampled points in an experimental time series). (3) Reproduction; Crossover;
Mutation. A duplicate set of N rule combinations are generated as the Offspring
Population. Within this Offspring Population, crossover and mutation are per-
formed. All crossovers are performed before the mutations. In crossover, there
is a probability pC that each of the new rule combinations will be selected for
a crossover. If one is selected, then another member of the Offspring Population
is identified (from an unweighted, uniform distribution). Then, a random num-
ber of rules in the same points in the sequence of each of the two partner rule
combinations (corresponding to rules for particular inputs) are selected and the
rules in them are switched. (If the rules crossing over are the same, then the
recombination has no effect.) In mutation, there is a probability pM for each
of the N new rule combinations to have a single mutation. If a mutation oc-
curs, it occurs for a (uniformly distributed) random number of the inputs in
the rule combination, and then another rule (circumscribed by the user-imposed
constraint in Step 1 is randomly selected for each of the inputs selected for a mu-
tation. We have identified optimal pC and pM as 0.6-0.7 based on artificial data
sets [6]. (4) Selection of the next generation. The fitness function (probability of
fitting the rule by chance) is calculated for each rule combination in the Offspring
Population. Then, the N most fit rule combinations from the 2N total in the
Parent and Offspring Populations are selected for the next generation, repeating
from Step 3.

(5) Termination. The search is generally terminated when either the minimum
fit error within the total population changes by less than a certain threshold,
or more commonly in our implementation by attaining a certain number of
generations (identified as being optimally 30-50 based on artificial data sets).
This is because we view this as a means of identifying plausible network models
consistent with data rather than the absolute lowest fit error which is affected
by the high levels of noise in microarray and other high-throughput biological
data.

Given the noise levels in biological experiments, multiple models will be consis-
tent with the data. These models represent hypotheses, which can be constrained
by prior knowledge. Modeling redundancy is a key reason why we have designed
our method to be scalable for on the order of 102 variables (proteins and/or
genes) This is because capitalization by chance will occur for larger potential
solution spaces, leading to a huge number of candidate hypothetical models
consistent with data sets, which are impossible to interpret. This represents a
fundamental limitation that we will apply to networks at other scales as well.
Thus, we have taken this limitation into account in identifying the number of
search algorithm iterations, as well as the parameters for mutation and crossover
operators, as detailed in [6].
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12.3.3 Example: Analysis of Evolutionary Search on a Human Cell
Cycle Sub-Network

Biomolecular networks are abstractions, and our identification of their com-
ponents is necessarily limited. For example, mRNA microarrays measure the
expression levels of genes. The co- or anti-expression of these genes suggests
functional correlations, which can be termed gene regulatory networks (or “gene
networks”). However, the expression of a gene relates to the rate of produc-
tion of the protein it encodes. There is no information about the modification,
activity, or interaction of these proteins with each other and other cellular com-
ponents. Consequently, no gene network model will ever actually represent a
biological truth. Within this context, to validate the use of fuzzy sets to repre-
sent semi-quantitative information, we generally test predicted “most plausible”
fuzzy network models for genes against an experimental data set completely ex-
cluded from the model selection process. At each state transition, the fuzzy state
values for each node (the activity or concentration of protein or expressed gene)
is updated based on the values of the input nodes and the fuzzy rule base for
the network being simulated.

The state transition points used in the simulation are defined by what experi-
mental data are available and can be measured for the process being studied. In
past work, for example, we simulated gene network models of the yeast (S. cere-
visiae) cell cycle and compared the data to published microarray data sets with
gene expression ratios for different cell cycle synchronization methods [35]. In
this case, state transitions were computed at each time point measurements were
made (approximately every 5 minutes over 2 hours). In the case of another study
on plague bacteria microarray data, state transitions were defined at “early” (1
h), “middle” (4 h), and “late” (10 h) responses to the stimulus [27].

For the example shown here, we follow the same lines as our recently pub-
lished test of the model against published human cell cycle microarray data sets
obtained using different cell cycle synchronization methods [38]. The cell cycle
is a particularly useful model system for studying methods of biomolecular net-
work inference, since many genes and proteins are regulated at different phases of
the cell cycle, interactions of which may be evident in the relationships between
their changes over the time series. Nevertheless, there are caveats to using these
kinds of data, beyond just the usual problems of noise and the lack of absolute
quantification. In particular, all the cells in the sample must be synchronized so
that interindividual differences in cell cycle phase do not obscure the data. We
take advantage of the different synchronization methods to produce alternative
data sets for training and test of inferred models. However, no synchronization
method is perfect, as exemplified in Figure 12.6 by the clear differences data
quality between different methods.

Here, we also employ the biomolecular identification method presented in [17].
Using several key transcription factor proteins as seeds, automated text- and
data-mining methods were used to determine a protein-protein interaction net-
works. Then, a sub-network was found by clustering around the p300 hub pro-
tein, as shown in Figure 12.9. One of the key challenges in this approach is
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Fig. 12.9. Reduced network graph of clustered protein-protein interactions, highlight-
ing a few of the interaction rules found in this example. Grey and black arrows indicate
negative and positive feedback relationships respectively.

Table 12.2. Relationship between gene and protein names

Gene Name Protein Name

DMPK dm
BRCA1 brca1
H1FX h1

PSCDBP he
PPP2R4 ptpa

MYC myc
NR4A2 not

F2 f2
PTEN pt
RRM2 r2
PLAT tpa
TYR tyr
CAD cad
CDK2 cdk2
CDK4 cdk4
EP300 p300

ambiguity between names given to genes and the proteins they code for. As
shown in Table 12.2, which was generated by consulting with the NCBI database
(http://www.ncbi.nlm.nih.gov/sites/entrez), there is often a non-obvious
relationship between gene and protein names, with gene names being used in
databases containing gene expression data. We compared network models found
using “full” connectivity (all the nodes shown in Figure 12.9 can be inputs to
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any other node) and the “reduced” connectivity map allowing only inputs along
the edges in Figure 12.9. Then, we employed evolutionary search methods (30
generations / 30 hypothetical models evaluated in each generation) with 5 differ-
ent initial seeds, selecting the best-fitting rules for each gene as an output node.
The training data set is denoted ThyNoc and the test set ThyThy, corresponding
to the names used by the experimenters for different cell cycle synchronization
methods used to generate the data.

Fig. 12.10. Plots of experimental and simulated data for the CDK4 gene using the
fuzzy rule set model found for the ThyNoc training data set. Shown here are (top)
comparing the predicted curves for the full connectivity matrix (solid black), reduced
network-based connectivity matrix (dashed black), and ThyNoc experimental data
(solid grey), and (bottom) the same predicted rules (obtained by training on the
ThyNoc data set) tested on the ThyThy experimental data set.
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Table 12.3. Fuzzy rule models found by evolutionary search: output genes are in
rows, and input genes are in columns following the same sequence. The first row for
each gene is the best-fitting rule found for the assumption of full connectivity, and the
subsequent row is the best-fitting rule assuming the reduced connectivity model shown
in Figure 12.7.

DMTF 0 -2 0 0 0 0 0 0 3 -2 0 -1 -3 3 3 -1
DMTF 0 -1 1 0 0 0 0 0 0 -2 0 0 -2 0 0 0
BRCA1 0 0 0 0 0 0 0 -2 -3 0 0 -3 0 2 1 1
BRCA1 0 0 0 0 0 0 0 0 -3 0 0 -3 0 0 3 3
H1FX 0 0 0 0 0 3 0 0 0 3 3 -3 1 0 3 0
H1FX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0
HE 0 0 2 0 -3 -3 0 1 0 -2 3 0 -3 0 0 -3
HE 0 0 0 0 -3 0 0 0 0 0 2 0 0 0 0 0
PPP2R4 0 3 1 -3 0 3 1 0 1 3 0 -3 3 3 3 3
PPP2R4 0 0 0 0 0 0 1 0 0 0 0 0 0 3 0 0
MYC 0 -1 0 -2 0 0 2 -3 0 0 -3 0 3 0 3 3
MYC 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0
NR4A2 -2 1 -3 0 0 3 0 0 -3 3 1 0 2 -3 0 3
NR4A2 0 0 0 0 0 0 0 -1 0 0 0 2 0 0 0 3
F2 0 -3 -2 1 0 -3 0 0 2 0 0 1 -1 0 -3 -2
F2 0 0 0 0 0 0 0 0 0 0 -2 0 -3 0 0 0
PTEN 3 -3 0 0 0 0 -1 3 0 3 -3 0 0 1 -1 0
PTEN 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -3 0
RRM2 -1 0 3 -3 3 -2 0 0 3 0 0 0 2 3 0 0
RRM2 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0
PLAT 0 0 3 3 0 -3 0 0 -2 0 0 0 0 0 3 0
PLAT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TYR 0 -3 -2 3 -3 3 3 3 0 0 0 0 -1 -2 -3 -3
TYR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 0
CAD 0 0 3 -2 0 3 2 -3 -3 0 1 0 0 0 3 3
CAD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
CDK2 3 1 -1 -3 3 -2 0 0 2 3 -1 -3 2 0 3 0
CDK2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CDK4 0 3 3 0 1 3 0 0 -2 0 3 -3 3 0 0 0
CDK4 0 3 3 0 0 3 0 0 0 0 0 0 0 0 0 0
EP300 0 3 -3 -3 3 0 1 -3 -1 1 0 -3 0 -2 0 0
EP300 0 3 -1 0 0 0 3 0 0 0 0 0 2 0 0 0

Table 12.3 shows the rules that were found, comparing the plausible models
found using the full connectivity and reduced connectivity map. In keeping with
the linearization used to enhance scalability, the rules here are connected by OR
(summation) relationships. Notably, there is at least directional agreement be-
tween common interactions that were identified in both cases. Also, where there
is a connection suggested by the full connectivity assumption and not found by
the prior data-mining, a hypothesis can be generated that the connectivity map
in Figure 12.9 is incomplete. The partial overlaying of the rules from Table 12.3
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Table 12.4. Evaluation of errors of models found by evolutionary search

ThyNoc ThyThy
Gene Full Reduced E for P = 10−5 Full Reduced E for P = 10−5
DMTF 0.6055 0.7106 0.6156 0.9404 1.4629 0.6219
BRCA1 0.4514 0.3792 0.4876 1.3448 1.8728 0.3941
H1FX 0.5708 0.3319 0.67 1.0118 0.6115 0.7748
HE 0.4046 0.5031 0.5211 1.2915 2.0834 0.6954
PPP2R4 0.3168 0.5053 0.3832 0.6844 0.8911 0.4925
MYC 0.6144 0.4267 0.6553 0.9905 1.0131 0.5799
NR4A2 0.5626 0.5494 0.4752 0.7465 1.0467 0.4274
F2 0.3163 0.6274 0.3394 1.0768 1.3202 0.7152
PTEN 0.6476 0.801 0.6969 1.0773 1.0849 0.6846
RRM2 0.6919 0.7445 0.688 0.9529 0.7462 0.7669
PLAT 0.4497 1.0203 0.6543 1.3132 1.0014 0.7546
TYR 0.3576 0.8752 0.4258 1.2229 2.2915 0.5403
CAD 0.3703 0.9529 0.4274 0.8565 1.4029 0.4058
CDK2 0.4407 1.031 0.4746 0.7312 1 0.5474
CDK4 0.1934 0.184 0.3636 0.6341 0.6282 0.5158
EP300 0.4707 0.5337 0.4607 1.1111 1.586 0.735

on the map in Figure 12.9 shows the potential for fuzzy modeling to be used to
provide dynamic interaction information from an experimental data set on top of
the static regulatory map inferred from biological knowledge. Table 12.4 shows
the error of the fits, (ThyNoc) and test (ThyThy) data sets, each of which rep-
resent different synchronization methods with different numbers of data points,
and show the general consistency between error of fitting on training and test
data sets. To make it easier to interpret error values, we also indicate for each
data set the error score corresponding to rules that occur with a frequency of
10−5 being found in the search space, as determined by Eqn. (12.2). The fit for
the gene CDK2 on the training and test sets (for both the full connectivity and
reduced connectivity assumptions) is shown by time series plots in Figure 12.10.

12.4 Conclusions

The example we show here provides a specific example of general challenges faced
by fuzzy logic and other efforts to infer knowledge from large-scale experiments.
In particular, the search space for models that are consistent with experimental
data contains many similarly optimal solutions (as shown by the generally low
P values calculated by Eqn. (12.2) and shown in Table 12.4). This provides ad-
ditional concrete evidence of the fallacy of finding an optimal reverse-engineered
biomolecular network model based on data analysis alone. Even when prior bi-
ological knowledge is added (as in the kind of static interaction map shown in
Figure 12.7), there are still many plausible network hypotheses, however. Thus,
there is a need for high-throughput experiments guided by the analysis of mod-
eling results, as suggested by the schematic in Figure 12.6. One of the profound
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advantages of the method described here is the ability to explicitly identify plau-
sible hypotheses that can be ranked for experimental priority.

Another advantage suggested by the integration with text- and data-mining
algorithms is the ability of fuzzy logic models to be translated to the linguis-
tic and graphical ways of understanding systems familiar to biologists. There is
a clear tie between the natural language processing required to interface with
hypothesis-based biological experiments and the linguistic models of dynamic
interactions measured in high throughput experiments. This is becoming partic-
ular significant as large-scale data sets are being gathered to separate diseases
by molecular signatures. There are significant technical issues with these molec-
ular signatures [23], requiring us to employ biological knowledge to understand
what the most important elements of a signature are based on function, and
how multiple signatures may overlap with each other because they fall in the
same regulatory circuit. Another crucial application will be the emerging field
of “polypharmacology”, which is motivated by the finite limit of “druggable”
protein targets within cells: determining multiple targets for drugs, and combi-
nations of drugs targeting combinations of targets [24].
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Summary. Segmentation is an important step in many medical imaging applications
and a variety of image segmentation techniques exist. One group of segmentation algo-
rithms is based on clustering concepts. In this chapter we provide an overview of several
fuzzy c-means based clustering approaches and their application to medical imaging.
In particular we evaluate the conventional hard c-means and fuzzy c-means (FCM)
approches as well as three computationally more efficient derivatives of fuzzy c-means:
fast FCM with random sampling, fast generalised FCM, and a new anisotropic mean
shift based FCM.

13.1 Introduction

Clinical applications typically require image segmentation so that e.g. different
anatomical parts or biological tissues can be easily identified. Unfortunately, seg-
mentation has proven to be a very hard problem due to the diversity in modalities
and image characteristics as well as image noise and image artefacts. For exam-
ple, magnetic resonance imaging may suffer from the irregularities of the magnetic
fields leading to intensity inhomogenities while speckle noise in ultrasonic images
can induce some image sections to become disconnected. Development of an ‘op-
timal’ segmentation methodology is hence highly sought after and has attracted
much attention in the research community.

Image segmentation can be defined as the grouping of similar pixels in a para-
metric space, where they are associated with each other in the same or different
images. Classical image segmentation methodologies include thresholding, edge
detection, and region detection [12]. Thresholding methods are relatively simple
but lack sensitivity and specificity for accurate segmentation in the presence of
different objects with similar intensities or colours. Edge-based methods, quite
similar to the contour detection, are fast but sensitive to noise in the background
and fail to link together broken contours. While region detection is superior to
thresholding and edge-based methods in terms of stability and consistency, never-
theless, these approaches need further modifications in order to effectively handle
e.g. image occlusions which commonly exist in real scenarios. Better segmentation
is achieved by connectivity-preserving relaxation methods, also referred to as the

Y. Jin and L. Wang (Eds.): Fuzzy Systems in Bio., STUDFUZZ 242, pp. 257–271.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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active contour models [15], which start from an initial contour shape, followed by
applying shrink or expansion operations according to a defined object function.
However, here the convergence of the computation is affected by local minima of
the function which hence might lead to incorrect segmentation.

Image segmentation can also be approached as a clustering problem. Con-
ventional hard c-means (HCM) and fuzzy c-means (FCM) algorithms are two
clustering-based [13] segmentation techniques. In contrast to HCM, FCM allows
us to reduce the uncertainty of pixels belonging to one class and therefore in gen-
eral provides improved segmentation. In addition, multiple classes with varying
degrees of membership can be continuously updated. In recent years, numerous
efforts of c-means/k-means segmentation methods with faster computation and
more flexible capabilities than the classical techniques, have emerged.

In this chapter, we provide an overview of the more popular c-means based
segmentation techniques, namely HCM [18], conventional FCM [2], fast FCM
with random sampling [6], fast generalized FCM [20], and also present a new
anisotropic mean shift based fuzzy c-means algorithm [23]. The proposed clus-
tering method incorporates a mean field term within the standard fuzzy C-means
objective function. Since mean shift can quickly and reliably find cluster centres,
the entire strategy is capable of optimally segmenting clusters within the image.

13.2 Hard c-Means

Hard c-means clustering (HCM) is one of the most widely used unsupervised
algorithms used to solve the well known clustering problem [18]. The algorithm
exploits a simple but effective way to handle the classification problem of a given
data set given a preset number of C clusters. The general idea is to identify C
centroids, one for each cluster. The locations of these centroids are critical as
they directly determine the clustering results.

C-means clustering sets out to minimise an objective function in squared error
form

E =
C∑

j=1

N∑

i=1

||x(j)
i − cj ||2 (13.1)

where ||x(j)
i − cj ||2 is the distance between one of the N data samples xi and

its closest cluster centroid cj . In order to minimise E the following procedure is
followed:

Step 1: Initialise C cluster centroids.
Step 2: Associate each sample (i.e. pixel) with the centroid closest to it.
Step 3: Re-compute the cluster centroids based on the mapped samples.
Step 4: Repeat steps 2 to 3 until convergence, i.e., until the locations of the

centroids do not change.

This process is illustrated in Figure 13.1 based on an example with five clusters.
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(a) original image (b) initial cluster centroids

(c) approximating actual centres (d) final settlement

Fig. 13.1. Illustration of c-means clustering algorithm. Dots represent sample and
discs the cluster centres.

An example of c-means clustering on medical images is given in Figure 13.2(a)
which shows an image of tissue stained with hemotoxylin and erosin. This image
was used to help pathologists distinguish several tissue types. Figure 13.2(b)-(d)
show the results of c-means clustering with different numbers of clusters (2, 3,
and 4).

It should be noted that despite guaranteed convergence, HCM typically does
not find the optimal solution. This is due to the fact that the algorithm only
converges towards the local minimum and hence the algorithm is significantly
affected by the starting configuration of cluster centres.

Although c-means represents a simple and well established method for cluster-
ing and segmentation, experience shows that it is necessary to further improve
this methodology. For example, Dhillon et al. [10] noticed that cosine similarity
based k-means did not work effectively when applied to document collections.
A strategy of re-assigning samples and immediately re-computing centroids can
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(a) original image (b) HCM 2 cluster segmentation

(c) HCM 3 cluster segmentation (d) HCM 4 cluster segmentation

Fig. 13.2. Example of stained tissue image and segmentations based on c-means clus-
tering with 2, 3, and 4 clusters. Original image is courtesy of John Hopkins University.

work better. To address the cluster initialisation problem, Bradley and Fayyad [3]
proposed to randomly sample a number of data points for c-means. Each of these
constructed systems was then evaluated, where the best system was used to ini-
tiate HCM on the entire data set. Zhang [22] presented a rectified optimisation
process using soft assignment of image points to different clusters with proper
weights rather than directly moving them from one cluster to another. In terms
of distance measurements, the Mahalanobis distance was used to handle hyper-
ellipsoidal clusters in [19].

13.3 Fuzzy c-Means

Fuzzy c-means (FCM) is based on the same idea of finding cluster centres
by iteratively adjusting their positions and evaluation of an objective function
as HCM, yet it allows more flexibility by introducing the possibility of par-
tial memberships to clusters. The error function from Equation (13.1) is thus
extended to

E =
C∑

j=1

N∑

i=1

μk
ij ||x(j)

i − cj ||2 (13.2)
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where μij is the fuzzy membership of sample (or pixel) xi and the cluster identi-
fied by its centre cj, and k is a constant that defines the fuzziness of the resulting
partitions.

E can reach the global minimum when pixels nearby the centroid of corre-
sponding clusters are assigned higher membership values, while lower member-
ship values are assigned to pixels distant from the centroid [7]. In here, the
membership is proportional to the probability that a pixel belongs to a specific
cluster where the probability is only dependent on the distance between the im-
age pixel and each independent cluster centre. The membership functions and
the cluster centres are updated by

μij =
1

∑C
m=1

( ||xj−ci||
||xj−cm||)2/(k−1)

) (13.3)

and

ci =

∑N
j=1 μk

ijxj
∑N

j=1 μk
ij

(13.4)

The steps involved in fuzzy c-means image segmentation are [2]:

Step 1: Initialise the cluster centres ci and let t = 0.
Step 2: Initialise the fuzzy partition memberships functions μij according to

Equation (13.3).
Step 3: Let t = t + 1 and compute new cluster centres ci using Equation (13.4).
Step 4: Repeat Steps 2 to 3 until convergence.

Again, an initial setting for each cluster centre is required and FCM also con-
verges to a local minimum. The efficiency of FCM has been investigated in [14].
To effectively address the inefficiency of the algorithm several variants of the
fuzzy c-means algorithm have been introduced in the literature.

13.4 Fast FCM with Random Sampling (RSFCM)

To combat the computational complexity of FCM, Cheng et al. [6] proposed a
multistage random sampling strategy. This method has a lower number of fea-
ture vectors and also requires fewer iterations to converge. The basic idea is to
randomly sample and obtain a small subset of the dataset in order to approxi-
mate the cluster centres of the full dataset. This approximation is then used to
reduce the number of iterations. Random sampling FCM (RSFCM) consists of
two phases. First, a multistage iterative process of a modified FCM is performed.
Phase 2 is then a standard FCM with the cluster centres approximated by the
final cluster centres from Phase 1.

Phase 1:

Let XΔ% be a subset whose number of subsamples is Δ% of the N samples
contained in the full dataset X and denote the number of stages as n. ε1 and ε2
are parameters used as stopping criteria. After the following steps the dataset
(denoted as X(ns∗Δ%)) will include N ∗ Δ% samples:



262 H. Zhou, G. Schaefer, and C. Shi

Step 1: Select X(Δ%) from the set of the original feature vectors matrix (z = 1).
Step 2: Initialise the fuzzy memberships functions μ using Equation (13.3) with

X(z∗Δ%).
Step 3: Compute the stopping condition ε = ε1-z∗((ε1-ε2)/ns) and let t = 0
Step 4: Set t = t + 1
Step 5: Compute the cluster centres c(z∗Δ%) using Equation (13.4).
Step 6: Compute μ(z∗Δ%) using Equation (13.3).
Step 7: If ||μj

(z∗Δ%) − μj−1
(z∗Δ%)|| ≥ ε, then go to Step 4.

Step 8: If z ≤ ns then select another X(Δ%) and merge it with the current
X(z∗Δ%) and set z = z + 1, otherwise move to Phase 2 of the algorithm.

Phase 2:

Step 1: Initialise μij using the results from Phase 1, i.e. c(ns∗Δ%) with Equa-
tion (13.4) for the full data set

Step 2: Go to Steps 3 of the conventional FCM algorithm and iterate the algo-
rithm until stopping criterion ε2 is met.

Evidence has shown that this improved FCM is able to reduce the computation
requested in the classical FCM method. Other variants of this multistage random
sampling FCM framework have also been developed and can be found e.g. in [11]
and [16].

13.5 Fast Generalized FCM Scheme (EnFCM)

Ahmed et al. [1] introduced an alternative to the classical FCM by adding a term
that enables the labelling of a pixel to be associated with its neighbourhood. As
a regulator, the neighbourhood term can change the solution towards piecewise
homogeneous labelling. As a further extension of this work, Szilágyi et al. [20]
proposed their EnFCM algorithm to speed up the segmentation process for black-
and-white images. In order to reduce the computational complexity, a linearity-
weighted sum image g is formed from the original image, and the local neighbour
average image evaluated as

gm =
1

1 + α

⎛

⎝xm +
α

NR

∑

j∈Nr

xj

⎞

⎠ (13.5)

where gm denotes the gray value of the m-th pixel of the image g, xj represents
the neighbours of xm, NR is the cardinality of a cluster, and Nr represents the
set of neighbours falling into a window around xm.

The objective function used for segmenting image g is defined as

J =
C∑

i=1

qc∑

i=1

γlμ
m
ij (gl − ci)2 (13.6)
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where qc denotes the number of the gray levels in the image, and γl is the
number of the pixels having an intensity equal to l with l = 1, 2, . . . , qc. Thus,
∑qc

l=1 γl = N under the constraint that
∑C

i=1 μij = 1 for any l.
Finally, we can obtain the following expressions for membership functions and

cluster centres [4]:.

μil =
(gl − ci)−2/m−1

∑C
j=1(gl − cj)−2/m−1

(13.7)

and

si =
∑qc

l=1 γlμ
m
il gl

∑qc

l=1 γlμm
il

(13.8)

EnFCM considers a number of pixels with similar intensities as a weight. Thus,
this process may accelerate the convergence of searching for global similarity. On
the other hand, to avoid image blur during the segmentation, which may lead
to inaccurate clustering, Cai et al. [4] utilised a measure Sij , which incorporates
the local spatial relationship Ss

ij and the local gray-level relationship Sg
ij , and is

defined as

Sij =
{

Ss
ij × Sg

ij , j �= i

0, j = i
(13.9)

with

Ss
ij = exp

(−max(|pcj − pci|, |qcj − qci|)
λs

)

(13.10)

and

Sg
ij = exp

(−||xi − xj ||2
λg × σ2

g

)

(13.11)

where (pci, qci) describe the co-ordinates of the i-th pixel, σg is a global scale
factor of the spread of Ss

ij , and λs and λg represent scaling factors. Sij replaces
α in Eq. (13.5).

Hence, the newly generated image g is updated as

gi =

∑
j∈Ni

Sijxj

Sij
(13.12)

and is restricted to [0, 255] due to the denominator.
Given a pre-defined number of clusters C and a threshold value ε > 0, the

fast generalised FCM algorithm proceeds in the following steps:

Step 1: Initialise the clusters cj .
Step 2: Compute the local similarity measures Sij using Equation (13.9) for all

neighbours and windows over the image.
Step 3: Compute the linearly-weighted summed image g using Equation (13.12).
Step 4: Update the membership partitions using Equation (13.7).
Step 5: Update the cluster centres ci using Equation (13.8).
Step 6: If

∑C
i=1 ||ci(old) − ci(new ||2 > ε go to Step 4.

Similar efforts to improve the computational efficiency and robustness have also
been reported in [17] and [5].
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13.6 Anisotropic Mean Shift Based FCM (AMSFCM)

In the following we will present a new efficient approach to fuzzy c-means
clustering that utilises an anisotropic mean shift algorithm coupled with fuzzy
clustering [23].

Mean shift based techniques have been shown to be capable of estimating the
local density gradients of similar pixels. These gradient estimates are iteratively
performed so that all pixels can find similar pixels in the same image [8, 9]. A
standard mean shift approach method uses radially symmetric kernels. Unfor-
tunately, the temporal coherence will be reduced in the presence of irregular
structures and noise in the image. This reduced coherence may not be properly
detected by radially symmetric kernels and thus, an improved mean shift ap-
proach, namely anisotropic kernel mean shift [21], provides better performance.

In mean shift algorithms the image clusters are iteratively moved along the
gradient of the density function before they become stationary. Those points
gathering in an outlined area are treated as the members of the same segment.
A kernel density estimate is defined by

f̃(x) =
1
N

N∑

i=1

K(x − xi), (13.13)

with
K(x) = |H |−0.5K(H−0.5x), (13.14)

where N is the number of samples, and xi stands for a sample from an unknown
density function f . K(·) is the d-variate kernel function with compact support
satisfying the regularity constraints, and H is a symmetric positive definite d×d
bandwidth matrix. Usually, we have K(x) = ke(φ), where ke(φ) is a convex
decreasing function, e.g. for a Gaussian kernel

ke(φ) = cte
−φ/2 (13.15)

and for an Epanechnikov kernel,

ke(φ) = ct max(1 − φ, 0) (13.16)

where ct is a normalising constant.
If a single global spherical bandwidth is applied, H = h2I (I is identity ma-

trix), then we have

f̃(x) =
1

Nhd

N∑

i=1

K

(
x − xi

h

)

(13.17)

Since the kernel can be divided into two different radially symmetric kernels, we
have the kernel density estimate as

f̃(x) =
1
N

N∑

i=1

1
hβ(Hα

i )q
kα(d(cα

i , xα
i , Hα

i ))kβ
(
||(cβ

i − xβ
i )/(hβ(Hα

i ))||2
)

(13.18)



13 Fuzzy C-Means Techniques for Medical Image Segmentation 265

(a) FCM (b) RSFCM

(c) EnFCM (d) AMSFCM

Fig. 13.3. Segmentations of the image from Figure 13.2 using the four fuzzy c-means
techniques with 3 clusters

where and α and β denote the spatial and temporal components respectively
and d(cα

i , xα
i , Hα

i ) is the Mahalanobis metric, i.e.

d(cα
i , xα

i , Hα
i ) = (xα

i − cα
i )T Hα−1

i (xα
i − cα

i ). (13.19)

Anisotropic mean shift is intended to modulate the kernels during the mean
shift procedure. The objective is to keep reducing the Mahalanobis distance so
as to group similar samples as much as possible. First, the anisotropic bandwidth
matrix Hα

i is estimated with the following constraints:
{

kα
e (d(x, xi, H

α
i )) < 1

kβ
e

(||(x − xi)/hβ(Hα
i )||2) < 1 (13.20)

The bandwidth matrix can be decomposed to

Hα
i = λV AV T (13.21)

where λ is a scalar, V is a matrix of normalised eigenvectors, and A is a diagonal
matrix of eigenvalues whose diagonal elements ai satisfy

p∏

i=1

ai = 1 (13.22)
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(a) original image (b) HCM

(c) FCM (d) RSFCM

(e) EnFCM (f) AMSFCM

Fig. 13.4. Original Herpes image together with segmentations by all five c-means
algorithms (based on 5 clusters)

The bandwidth matrix is updated by adding more and more points to the com-
putational list: if these points are similar in intensity or colour, then the Ma-
halanobis distance will be consistently reduced. Otherwise, if the Mahalanobis
distance is increased, these points will not be considered in the computation.

In our algorithm we combine fuzzy c-means and anisotropic mean shift seg-
mentation. A significant difference between our approach and other similar meth-
ods is that our algorithm continuously inherits and updates the states, based on
the mutual correction of FCM and mean shift.

Anisotropic mean shift based FCM (AMSFCM) proceeds in the following steps:

Step 1: Initialise the cluster centres ci. Let j = 0.
Step 2: Initialise the fuzzy partitions μij using Equation (13.3).
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(a) original image (b) HCM

(c) FCM (d) RSFCM

(e) EnFCM (f) AMSFCM

Fig. 13.5. Original Varicella image together with segmentations by all five c-means
algorithms (based on 3 clusters)

Step 3: Set j = j + 1 and compute ci using Equation (13.4) for all clusters.
Step 4: Update μij using Equation (13.3).
Step 5: For each pixel xi determine anisotropic kernel and related colour radius

using Equations (13.18) and (13.21). Note that mean shift is applied to
the outcome image of FCM.

Step 6: Calculate the mean shift vector and then iterate until the mean shift,
M+(xi)−M−(xi), is less than a pixel considering the previous position
and a normalised position change:

M+(xi) = νM−(xi) + (1 − ν)
∑N

j=1(xj−M−(xi))||(M−(xβ
i )−xβ

j )/(hβHα
j )||2

∑
N
j=1 ||(M−(xβ

i )−xβ
j )/(hβHα

j )||2
with ν = 0.5.
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Step 7: Merge pixels with similar colour.
Step 8: Repeat Steps 3 to 6 until convergence.

In Figure 13.3 we show the results of applying classical fuzzy c-means, the two
improved algorithms (i.e., RSFCM and EnFCM), and our AMSFCM algorithm
to the stained tissue image from Figure 13.2.

13.7 C-Means Based Segmentation of Medical Images

In this section we provide experimental results on series of medical images cap-
tured using different modalities. In particular we show segmentation results

(a) original image (b) HCM

(c) FCM (d) RSFCM

(e) EnFCM (f) AMSFCM

Fig. 13.6. Original Endoscopy image together with segmentations by all five c-means
algorithms (based on 3 clusters)
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on four images: Herpes (Figure 13.4), Varicella (Figure 13.5), Endoscopy (Fig-
ure 13.6), and Doppler (Figure 13.7). For the Herpes image we used 5 clusters
while for the other ones we used 3. For each image we show the original image
together with the segmentations generated by all five algorithms.

(a) original image (b) HCM

(c) FCM (d) RSFCM

(e) EnFCM (f) AMSFCM

Fig. 13.7. Original Doppler image together with segmentations by all five c-means
algorithms (based on 3 clusters)



270 H. Zhou, G. Schaefer, and C. Shi

As can be seen from the figures, in general the resulting segmentations share
similarities. This is of course not surprising as they all share the common under-
lying concept of iteratively adjsting the cluster centres based on the generated
partitions. Yet, it can also be observed that the fuzzy c-means methods typically
provide improved results compared to the hard c-means images (in particular
on the Doppler image). The three derivatives of fuzzy c-means provide similar
performance but all three of them have a clear advantage over the conventional
FCM algorithm in that they are by far more computationally efficient and run
about 2-3 times faster than FCM [6]. As fast clustering is required in many real
applications (e.g. health surveys and clinical diagnosis), the importance of this
issue should be stressed.

13.8 Conclusions

In this chapter we have provided an overview of fuzzy c-means based image seg-
mentation techniques and their application to medical imaging. Fuzzy c-means
clustering provides a soft variant of the well known hard c-means algorithm.
Various variants of this technique have been proposed in the literature and we
have presented some of them including a novel technique based on a combination
of fuzzy c-means with anisotropic mean shift segmentation. Fuzzy c-means seg-
mentation is well established in medical imaging as has been demonstrated on
a series of experiments. Nevertheless, it should be noted that apart from these
techniques there is a wealth of other segmentation algorithms and that no single
algorithm has been shown to work on every dataset. Rather, generic techniques
as the ones covered here can provide the basis of more specialised approaches.
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Summary. In this chapter, the design and implementation of Self-Organizing Fuzzy
Logic Controller (SOFLC) is explored with a particular application to control a mul-
tivariable model of anesthesia. A concept called decomposition of multivariable self-
organizing fuzzy logic structure is proposed in this chapter. Hence, the basic forms of
a simple 2 terms SOFLC to a multi-term complex multi-input/multi-output (MIMO)
controller will be presented. Different design strategies of MIMO will be outlined and
the application of SOFLC systems to muscle relaxation and depth of anesthesia con-
trol will be explored in the simulations. After comparison with four different MIMO
controllers, the successful simulation results have given confidence to perform on-line
clinical trials at the operating theatre in the near future.

14.1 Introduction

Control of non-linear systems has grown rapidly due to the fact that most sys-
tems are inherently non-linear, moreover, linear control systems can only perform
well on a linearized model of the process around the operating points. Most con-
trollers such as a PID three term controllers, Model-Based Predictive Control
(MBPC) and robust control (Hα) can do very well on a fixed set point. How-
ever, in recent years, there has been a move towards intelligent control with a
qualitative dimension due to the widespread dissatisfaction with quantitative
systems engineering. One of the main attractions of intelligent system design
is the possibility of multivariable control system without the need for extensive
dynamic models of the process [11, 25]. The main difficulty in the multivari-
able case is the interaction between variables together with sensitivity to faults
in various channels. Intelligent systems, such as Neural Networks (NN), Fuzzy
Logic Control (FLC), and Genetic Algorithms (GA), have been at the forefront

Y. Jin and L. Wang (Eds.): Fuzzy Systems in Bio., STUDFUZZ 242, pp. 273–295.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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of such methodologies and have proved to be strong contenders for other forms
of control [8].

The application of intelligent control to medical systems has been around
for many years [5, 14, 19], but due to the nature of the humans, differences
from one person to another, the dynamic changes in the human response to
external stimuli’s and the effect of the different drugs on patients, a form of an
adaptable intelligent controller can fix the description very well. An attractive
approach to solving these problems is provided by the self-organizing fuzzy logic
controller (SOFLC), which was first proposed by Procyk and Mamdani [26]. By
mimicking the human learning process, the SOFLC has a learning algorithm and
is capable of generating and modifying control rules according to an evaluation
of the system’s performance. There have been many studies and applications
of SOFLC in recent years, but only a few in biomedical systems. Linkens and
Hasnain [15] published an early study on SOFLC of muscle relaxation, but only
in computer simulations. Recently, this has been implemented in clinical trials
in muscle relaxation [22, 27], depth of anesthesia [34, 35], and pain control in
patient controlled analgesia [30]. However, most of these applications are dealing
with two inputs and one output. When we meet the multivariable self-organizing
fuzzy logic structure, it was found that there are still some problems with the
SOFLC algorithm after many applications in multivariable structure, mostly in
its difficulty to handle the performance index and rule-base in multidimensional
space. An idea stimulated by the decomposition of multivariable control rules
of fuzzy system into a set of one-dimensional systems led Gupta et al. [9] to a
solution of multivariable fuzzy systems. A concept called the decomposition of
multivariable self-organizing fuzzy logic structure is presented in this chapter. In
Section 14.2 the generic multivariable self-organizing fuzzy logic structures are
presented and some formal properties of the structures are discussed. Simulation
of anesthesia system either in two-input / two-output or four-input / two-output
for SOFLC structures are demonstrated in Section 14.3. Finally, the concluding
remarks are given in Section 14.5.

14.2 Multivariable Self-Organizing Fuzzy Logic Structure

Recently research on the application of fuzzy set theory to the design of biomed-
ical control systems has led to interest in the theory and description of the
multivariable structure of these systems due to two vital factors. One is real
biomedical control systems are multidimensional, and another is the computer
implementation of these biomedical systems requires the processing of a huge
data base due to the complexity of human being. Therefore, the analysis and
design procedures for such systems are consequently very difficult. In search of
previous study of SOFLC structure, most of these applications are dealing with
two inputs and one output as shown in Figure 14.1.

As an explanatory example, take as the starting point a simple two-input
/ one-output self-organizing fuzzy logic structure illustrated in Figure 14.2.
SOFLC is an extension of a simple fuzzy logic controller with the self-organizing
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Fig. 14.1. Self-organizing fuzzy logic structure for 2-input / 1-output

Fig. 14.2. Design of drug controller using a SOFLC algorithm

level that incorporates four new functional blocks: (1) the previous rule-base
generation, (2) the performance index, (3) the rule-base modification algorithm,
and (4) the control rule-base performance measure.

14.2.1 The Previous Rule-Base Generation

This rule-base can be generated either from expert experience (i.e., medical
doctors) or from learning input and output data. Hence, the previous rule-base
may have some rules to start with if it begins from expert experience, or may
have no rules initially if it starts from zero knowledge. However, after introducing
several data into the process, the previous rule-base will be modified by current
input and output data. In this chapter, the initial rule-base is generated from
simple FLC based on the try-and-error method from our researcher which was
expert in fuzzy logic control but only had a little knowledge of anesthesia system.

14.2.2 The Performance Index

The performance index measures the deviation from the desired response and cal-
culates the appropriate changes that are required in the output of the controller.
The generation and modification of the control rules is achieved by assigning
a credit or reward value to the individual control actions that make a major
contribution to the present performance. The credit value is obtained from a
fuzzy algorithm which defines the desired performance linguistically and has the
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Fig. 14.3. SOFLC performance index matrix [15]

same form as the control algorithm of the generic fuzzy logic controller. Hence,
these linguistic performance rules are derived from a qualitative “feel” for the
process and are intended to provide fast convergence around the equilibrium
state to achieve high accuracy. For this reason, it is not specific to the type of
process being controlled. In other words, this performance index may be very
similar for different processes. In this work the performance index was derived
from previous research work [15] as shown in Figure 14.3.

14.2.3 The Rule-Base Modification Algorithm

The rule modification procedure can be explained assuming that a process has a
time-lag of m samples. If the present instant is nT, this means that the control
action at sample (nT-mT ) has contributed most to the process performance at
the sampling instance nT. Thus, the original implication:

E(nT − mT ) → CE(nT − mT ) → U(nT − mT )

should be changed to:

E(nT − mT ) → CE(nT − mT ) → U(nT − mT ) + Po(nT )

where E and CE are error and change-in-error from the set-point respectively;
U is the controller output; Pcp is the correction issued by the performance index.

After the rule modification procedure has taken place, a new rule is generated
from the input and output data of the controller at each sampling step. The
method of logic examination [38] can be employed to obtain the new rules. If the
new generated rule has no match in the rule-base, it will be added to rule-base.
However, if it already exists in the rule-base, it will be replaced.
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14.2.4 The Control Rule-Base Performance Measure

After modifying the three functional blocks, the control rule-base becomes ac-
curate (i.e. no noise contamination and conflicting rules). If the performance
of the controller is satisfied by the necessary criteria which are strongly depen-
dent on individual system requirement, the rule-base of the controller will stop
modification and the rule-base will converge to a constant rule-base.

However, the multivariable self-organizing fuzzy logic structure as shown
in Figure 14.4, still have some problems with the structure when applied
to multivariable systems, mostly in its difficulty to handle the performance
index and rule-base in multidimensional space. An idea stimulated by the de-
composition of multivariable control rules of fuzzy system into a set of one-
dimensional systems led Gupta et al. [9] to a solution of multivariable fuzzy
systems. A concept called the decomposition of multivariable self-organizing
fuzzy logic structure is shown in Figure 14.5 as a simple example for this 3-
input and 1-output SOFLC. Furthermore, it is easy to extend this concept
to decompose 2-input / 2-output and 3-input / 2-output SOFLC structure in
Figure 14.6.

Fig. 14.4. Conventional self-organizing fuzzy logic structure for 3-input / 1-output

Fig. 14.5. Decomposition of self-organizing fuzzy logic structure for 3-input / 1-output
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(a) (b)

Fig. 14.6. Decomposition of self-organizing fuzzy logic structure for 2-input / 2-output
and 3-input / 2-output

14.3 Simulation of Anesthesia for Multivariable SOFLC
Structures

14.3.1 Simulation Methods

Anesthesia is the art or science of removing sensation of, and reaction to, a
surgical procedure. Anesthesia means loss of all sensation whether it is a sense
of pain, touch, temperature or position [1]. Modern general anesthesia com-
prises the triad of muscle relaxation, unconsciousness, and analgesia (i.e. pain
relief). Each of these conditions has been considered in recent years as possible
scenarios for automated drug infusion via feedback strategies. The major roles
performed by a clinical anesthetist are the maintenance of drug-induced mus-
cle relaxation, unconsciousness and analgesia. During the last two decade, the
application of simple control (i.e., PID) and advanced control (e.g., adaptive &
intelligent) techniques to drug-induced muscle relaxation and unconsciousness in
operating theatre has been investigated [3, 13, 16, 20, 21, 31, 32, 34, 35, 36, 39].
The main problem in drug-induced unconsciousness is to measure clinical signs
which can be used on-line to the system. The measurement of muscle relax-
ation is considerably easier via evoked electromyogram (EMG) responses using
commercial instruments such as a Datex Relaxograph. Hence, these EMG re-
sponses are still as the most general reliable guide for administering intravenous
(e.g., atracurium, cisatracurium, or rocurocium) of muscle relaxation control.
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However, depth of anesthesia (i.e. unconsciousness) is much harder to define and
not readily measurable. In practice, anesthetists have a number of clinical signs
and on-line measurements which can be used selectively for the determination
of the patient’s state. Therefore, many methods have been used for feedback
control of anesthetic depth based on different clinical measurements, such as
blood pressure [23, 29, 40], electroencephalograph (EEG) signals [33], minimum
alveolar concentration (MAC) values [37], plasma concentration of propofol [28]
and auditory evoked response (AER) [6, 7]. However, anesthetists still use blood
pressure as the most general reliable guide for administering intravenous (e.g.,
propofol) or inhalational anesthetics (e.g., isoflurane, desflurane, or sevoflurane).
The measurement of pain is the hardest of all, since it is heavily subjective, and
liable to many levels of personal interpretation. Generally speaking, analgesia is
mainly concerned with postoperative conditions. It will not be considered in the
simulation of this chapter.

It is considered that the major roles performed by a clinical anesthetist are the
maintenance of drug-induced muscle relaxation, unconsciousness, and analgesia.
Anesthetic drugs with a rapid onset and short duration of action are highly desir-
able. The more anesthetists understand the drug’s features accurately, the more
patient’s safety was protected. Pharmacology, the basic for using closed-loop
control, consists of two main categories known as pharmacokinetics (PK) and
pharmacodynamics (PD). Pharmacokinetics is the study of the concentration of
drugs in tissue as a function of time and dose schedule, where as pharmacody-
namics is the study of the relationship between drug concentration and effect.
Therefore, not only can the anesthetist improve their anesthetic skills through
many clinical trials but also by means of pharmacology. In this section of sim-
ulation, we use the most common drugs in modern surgery of atracurium for
controlling muscle relaxation and isoflurane for controlling blood pressure via
their PK-PD compartment models as shown in Figure 14.7 [4].

14.3.2 The Atracurium Mathematical Model

Pharmacokinetics

According to previous studies [17, 18], the drug pharmacokinetics can be ex-
pressed by the following equation:

G1(s) =
9.94(1 + 10.64s)

(1 + 3.08s)(1 + 34.42s)
(14.1)

Equation (14.1) describes the pharmacokinetics of the muscle relaxation system
relating to the drug atracurium.

Pharmacodynamics

Similarly, to characterize different aspects of drug effect a hypothetical effect
compartment is introduced in the above structure (Figure 14.7) leading to the
following transfer function:
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Fig. 14.7. Traditional pharmacological patient model, 2-compartment for pharmacoki-
netic model and one compartment model for pharmacodynamics, u is system input.
The parameters of k10 and k20 are elimination paths based on Hofmann elimination
criteria, k12 and k21 are first-order rate constants associated with the movement of
drug from compartment 1 to compartment 2 and compartment 2 to compartment 1,
respectively, and kE0 is the rate constant for elimination from the effect compartment.

G11(s) =
K1(1 + T4s)e−τ1s

(1 + T1s)(1 + T2s)(1 + T3s)
(14.2)

where τ1= 1 min, K1 = 1, T1= 4.81 min, T2= 34.42 min, T3= 3.08 min, T4=
10.64 min. Moreover, the following non-linearity represented by a Hill equation
is used to relate the effect to a specific drug concentration:

Eeff = Emax
Xα

E

Xα
E + (XE(50))α

(14.3)

where XE is the drug concentration, α the power and XE(50) the drug concen-
tration at 50% effect with the following values: Emax = 100%, XE(50) = 0.404
μg ml−1, α = 2.98 .

14.3.3 The Isoflurane Unconsciousness Model

There is no doubt that anything that is related to the human brain represents a
very complex entity, and anesthesia or unconsciousness which affects the brain
has indeed been the subject of many conflicting views. Hence, depth of anesthe-
sia (i.e. unconsciousness) is much harder to define and not readily measurable. In
practice, anesthetists have a number of clinical signs and on-line measurements
which can be used selectively for the determination of the patient’s state. Rou-
tinely, anesthetists still use blood pressure as the most general reliable guide for
inhalational anesthetics (e.g., isoflurane, desflurane, or sevoflurane) or admin-
istering intravenous (e.g., propofol). Hence, in studies conducted by previous
groups [24], step responses to changes in inspired concentration of isoflurane
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from a vaporizer were performed. If the changes in inhaled isoflurane concen-
tration are small (i.e., less than 5 %), the responses could be approximated by
linear characteristics. However, if the changes do not fall within this range, the
responses are in general non-linear and time-varying. Thus, a first-order linear
model with dead-time has been adopted, having a time-constant of 1-2 minutes.
The magnitude of the time-constant is long enough to absorb some inaccuracy
of dead-time estimate due to breathing variation. On the other hand, in order to
estimate the steady-state gain, it is assumed that a relatively sensitive patient
needs 2 % isoflurane for a 30 mmHg reduction in MAP. Therefore, the model
describing variations of blood pressure to small changes in inhaled isoflurane
concentration can be written as:

G22(s) =
ΔMAP (s)

U2(s)
=

K2e
−τ2s

(1 + T5s)
(14.4)

where τ2= 0.42 min, T5= 2 min, K2= -15 mmHg/percent.

14.3.4 Interactive Component Model

Regarding atracurium to blood pressure interaction [18], this has been inves-
tigated in human beings and there seems to be a small increase in heart rate
when atracurium is administered. As an initial approximation, therefore, this
pathway has been ignored in the dynamic model. However, it should be noted
that this may not be approximate for other drugs for unconsciousness, such as
other inhalational drugs, such as desflurane or sevoflurane. On the other side,
the interaction of isoflurane to muscle relaxation is small but significant. An ex-
periment was performed by Dr Asbury in 1990, in which a patient of 47 without
a kidney but having a renal transplant was anaesthetized. Step changes of 0 ∼ 1
% isoflurane infusions were superimposed on steady relaxation levels achieved 50
minutes into the operation via atracurium infusion. Transient responses for both
on and off conditions were obtained, and dynamics estimated for each case. Be-
cause there was not a large difference between the phases, an averaged transfer
function was obtained as follows:

G12(s) =
K4e

−τ4s

(1 + T6s)(1 + T7s)
(14.5)

where τ4= 1 min, T6= 2.83 min, T7= 1.25 min, K4= 0.27 .

14.3.5 The Overall Multivariable Anesthetic Model

From the previous sections description, the overall linear multivariable system
combining muscle relaxation (i.e., paralysis) together with unconsciousness (in
terms of blood pressure measurements) can be summarized by the following
system: [

Paralysis
ΔMAP

]

=
[

G11(s)
0

G12(s)
G22(s)

] [
U1

U2

]

(14.6)
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where

G11(s) =
1.0e−s(1 + 10.64s)

(1 + 3.08s)(1 + 4.81s)(1 + 34.42s)

G12(s) =
0.27e−s

(1 + 2.83s)(1 + 1.25s)

G22(s) =
−15.0e−0.42s

(1 + 2s)

Finally, the overall non-linear multivariable system combining all the effects
is obtained by including the non-linearity of pharmacodynamics of atracurium
drug only since isoflurane drug-effect is considered to reflect linear characteristics
within a range already specified in the preceding sections.

14.4 Simulation Results

In order to demonstrate the performance of the proposed multivariable SOFLC
structure, the model has been taken the equation (14.6) for simulation this two-
input (i.e., muscle relaxation error and blood pressure error), and two-output
(i.e., atracurium and isoflurane), anesthesia control system using fuzzy logic and
self-organizing fuzzy logic structures. Moreover, in order to reduce the steady-
state errors, the error integrations of muscle relaxation and blood pressure have
been considered for simulation this four-input (i.e., muscle relaxation error,
muscle relaxation integration error, blood pressure error, and blood pressure
integration error), and two-output (i.e., atracurium and isoflurane), anesthesia
control system using fuzzy logic and self-organizing fuzzy logic structures as well.
Hence, four kinds of fuzzy logic structures have been considered in this work, as
described in the following.

14.4.1 Fuzzy Logic Control of Two-Input and Two-Output
Anesthesia System

Figure 14.8 shows the FLC closed-loop control structure of the two-input and
two-output anesthesia system. Control rules, membership functions, fuzzy in-
ference engine and defuzzification are the essential elements in the fuzzy logic
control. To perform fuzzy inference and describe this FLC control system, we
chose two inputs which were the error of muscle relaxation (i.e., M e) and the
error of blood pressure (i.e., B e) and two outputs which were the atracurium
infusion rate (i.e., Atra Inf) and isoflurane concentration (i.e., Iso Conc). So, the
fuzzy logic structure for this two-input and two-output is shown in Figure 14.9.

In order to fuzzify the inputs and output, the error of muscle relaxation
(M e) and the error of blood pressure (B e) were divided into seven levels,
namely negative big (NB), negative medium (NM), negative small (NS), zero
(ZE), positive small (PS), positive medium (PM), and positive big (PB). The
change of atracuriun infusion (Atra Inf) and isoflurane concentration (Iso Conc)
were divided into four levels, namely zero (ZE), positive small (PS), positive
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Fig. 14.8. Closed loop FLC system

Fig. 14.9. The fuzzy logic structure for this two-input / two-output

(a) (b)

Fig. 14.10. The rule-bases of two-input and two-output for fuzzy logic (a) Atracurium
rule-base (b) Isoflurane rule-base

medium (PM), and positive big (PB). There is no negative fuzzy set because
the absolute output values of atracurium infusion and isoflurane concentration
were used in this simulation so there are no negative values of these infusion
rate and concentration. There are many shapes of possible membership func-
tions, such as triangle and trapezoid, which can be used in the fuzzy logic
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controller. In this study, a triangular shape is used and a 25% overlap for
contiguous fuzzy sets is reckoned [12] for two inputs (M e and B e), and two
outputs (Atra Inf and Iso Conc). A try-and-error method was adopted to gen-
erate the initial rule-base; this method is based on good knowledge of fuzzy
logic but less in anesthesia. Twenty five rules were developed to control the
system as shown in Figure 14.10. In this simulation, the set points of mus-
cle relaxation and blood pressure were set to 80% paralysis and 110 mmHg
respectively. Each simulation was performed for 150 min surgical operation.
The simulation results are shown in Figure 14.11. Unfortunately, these initial
rules gave poor control of the muscle relaxation and blood pressure where some
steady state errors occurred. Therefore the rule-bases need to be modified due
to the poor designed rule which were generated by a non expert in anesthesia.
Hence, this could be done using a SOFLC algorithm to further fine-tune the
rule-bases.
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Fig. 14.11. The simulation of two-input and two-output anesthesia system using fuzzy
logic (a) Muscle relaxation output (b) Blood pressure output (c) Atracurium input (d)
Isoflurane input
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Fig. 14.12. The two-input and two-output anesthesia system using SOFLC structure
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Fig. 14.13. The simulation of two-input and two-output anesthesia system using
SOFLC (a) Muscle relaxation output (b) Blood pressure output (c) Atracurium in-
put (d) Isoflurane input

14.4.2 Self-Organizing Fuzzy Logic Control of Two-Input and
Two-Output Anesthesia System

SOFLC is a two-level hierarchical controller. The basic level is a simple fuzzy
logic controller, while the second level is a self-organizing level that supervises
the basic level by monitoring its performance, subsequently generating and mod-
ifying the control rules. Hence, we applied this SOFLC in multivariable struc-
ture of two-input and two-output anesthesia simulation system. The SOFLC
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(a) (b)

Fig. 14.14. The rule-bases of two-input / two-output for SOFLC (a) Atracurium rule-
base (b) Isoflurane rule-base (Notation: The italic and underline rules in the atracurium
and isoflurane rule-bases represented generated from self-organized fuzzy logic algorithm)

Fig. 14.15. The fuzzy logic structure for this four-input / two-output
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Fig. 14.16. The rule-bases of four-input / two-output for fuzzy logic (a) Atracurium
rule-base (b) Isoflurane rule-base

structure was shown in Figure 14.12. In order to compare it to a basic fuzzy
logic controller, the set points and partition of fuzzy sets for the inputs and
outputs were the same used in the previous method. Also, in this simulation,
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Fig. 14.17. The simulation of two-input and two-output anesthesia system using fuzzy
logic (a) Muscle relaxation output (b) Blood pressure output (c) Atracurium input (d)
Isoflurane input

the initial rule-base (i.e., 25 rules) was taken from the previous basic FLC. The
simulation results are shown in the Figure 14.13. The controller performance is
better than the previous method but the steady state error still dominant in
the outputs although some rules were generated by self-organizing fuzzy logic
structure as shown in Figure 14.14. Therefore, the control structure needs to be
modified in order to overcome the steady state error problems.

14.4.3 Fuzzy Logic Control of Four-Input/Two-Output Anesthesia
System

In order to reduce the steady state error, an integration of the error was considered
as an input to the system. Hence, four inputs were defined as the error of muscle
relaxation (M e), the integration error of muscle relaxation (M e i), the error of
blood pressure (B e), and the integration error of blood pressure (B e i). Whereas
the two outputs were the same as in the previous method, namely atracurium
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Fig. 14.18. The SOFLC structure for four-input / two-output structure

Table 14.1. The steady state errors of muscle relaxation and blood pressure of these
four methods

FLC
(2-input /
2-output)

SOFLC
(2-input /
2-output)

FLC
(4-input /
2-output)

SOFLC
(4-input /
2-output)

Muscle
Relaxation
Steady-state
error

-0.25293 -0.078626 -0.13776 -0.006190

Blood
Pressure
Steady-state
error

1.7836 -1.25 -0.17889 0.065204

infusion rate (Atra Inf) and isoflurane concentration (Iso Conc). The controller
structure (four-input / two-output) is shown in Figure 14.15. According to try-
and-error method, the designer (expert in fuzzy logic control but only had a little
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Fig. 14.19. The simulation of four-input / two-output anesthesia system using SOFLC
(a) Muscle relaxation output (b) Blood pressure output (c) Atracurium input (d) Isoflu-
rane input

knowledge of anesthesia system) has generated both rule-bases for controlling the
atracurium infusion and isoflurane concentration. Six fuzzy rule-bases were de-
veloped; each has twenty five rules as shown in Figure 14.16. In order to compare
with the two-input / two-output structure, the set points and partition of the fuzzy
sets for the inputs and outputs were the same used in the previous method. The
simulation results are shown in the Figure 14.17. The steady state error of blood
pressure was reduced dramatically but the steady state error of muscle relaxation
still exists. Hence, the SOFLC algorithm can be utilized to further fine-tune the
rule-bases for each case according to previous experience.

14.4.4 Self-Organizing Fuzzy Logic Control of
Four-Input/Two-Output Anesthesia System

The SOFLC system was applied to multivariable structure of four-input / two-
output anesthesia simulation system as shown in Figure 14.18. In order to
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(a)

(b)

Fig. 14.20. The rule-bases of four-input and two-output for SOFLC (a) Atracurium
rule-base (b) Isoflurane rule-base (Notation: The italic and underline rules in the
atracurium and isoflurane rule-bases generated by SOFLC)
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compare with the basic fuzzy logic controller, the set points and partition of
fuzzy sets of the inputs and outputs were the same used in the previous method.
Also, in this simulation, the initial rule-base (i.e., 25 rules) that is generated for
the simple FLC was used. The simulation results are shown in the Figure 14.19.
The steady state error of muscle relaxation was reduced dramatically and the
steady state error of blood pressure is better controlled due to the addition of
new rules which were generated by self-organizing fuzzy logic structure as shown
in Figure 14.20.

Finally, the steady state errors of these four methods were are tabulated in
Table 14.1. It is shown that the steady state error of the SOFLC with four-input
/ two-output structure is the smallest in terms of muscle relaxation and blood
pressure compared to that of the other three multivariable structures.

14.5 Conclusions

In this chapter, we have demonstrated that a multivariable SOFLC can provide
more stable muscle relaxation and blood pressure by administering atracurium
infusion rate and isoflurane concentration when rule-base modifications have
been considered in comparison with a simple fuzzy logic which has fixed rule-
bases. Two important aspects have been addressed in this chapter for simulating
anesthesia control in the operating theatre. First, using decomposition of mul-
tivariable self-organizing fuzzy logic structure, we are able to handle the per-
formance index and rule-base in multidimensional space. Second, the SOFLC
algorithm has a learning ability which is similar to the way in which human
experts use experiential knowledge or no knowledge to learn a clinical rule-base
protocol for anesthesia control (i.e., learning-by-example). In this chapter, sev-
eral new rules, which are not in the initial rule-base, were generated by the self-
organizing learning process via 150 min simulation. Moreover, the simulations
explored how the multivariable SOFLC algorithm compensates for the missing
knowledge from the initial rule-bases, this evidence provides an insight view on
how rules migrate and converge.

However, this study demonstrates the feasibility and applicability of the mul-
tivariable SOFLC in anesthesia control. But, it still needs a series of clinical
trials at operating theatre, perhaps to refine the multivariable SOFLC, and cer-
tainly to show how widely they can be applied. Therefore, this presentation
is by no means complete and it aims to give an idea of whether multivari-
able SOFLC can mimic human being thinking for monitoring multiple sensors
and administering multiple drugs in the operating theatre. Also it can show
whether the decomposition of multivariable self-organizing fuzzy logic structure
can provide better performance when the rule-bases are modified. In this sense,
an initial rule-base (i.e., 25 rules) is from simple decomposed fuzzy logic con-
trollers that construct a 2-input / 2-output or 4-input / 2-output structure. The
SOFLC features will modify the decomposed rule-bases separately to give the
multivariable algorithm strength in combating complex systems. The current re-
search can now be expanded to encompass alternative intravenous techniques and
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different intravenous drugs (e.g., propofol, midazolam, morphine). In addition,
the multivariable SOFLC could be expanded to include other closed-loop con-
trol in analgesia or NICU, such as multivariable pain control in extra corporeal
shock wave lithotripsy [30] and even more complex multivariable control prob-
lems, such as the treatment of cerebral perfusion for controlling MAP and ICP
in NICU [10].

Currently, fuzzy logic, neural networks and genetic algorithms are three pop-
ular artificial intelligence techniques that are widely used in many applications.
Due to their distinct properties and advantages, they are currently being investi-
gated and integrated to form models or strategies in the areas of system control.
In control engineering, the fusion of fuzzy logic, neural networks and genetic
algorithms is steadily growing [2, 33]. Therefore, using the hybrid intelligent ap-
proach to auto-tuning the parameters of the fuzzy logic controller may provide
more suitable clinical control of anesthesia in operating theatre. However, the
characteristics of on-line self-learning have lead the SOFLC to be more suitable
for real time control in comparison with off-line analysis of the neural networks
and genetic algorithms which are more time consuming.
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Summary. This chapter presents an Interval Type-2 fuzzy classifier and its applica-
tion to ECG arrhythmic classification problem. The uncertainties associated with the
membership functions are encapsulated by the footprint of uncertainty (FOU) and it is
totally characterized by the upper membership function (UMF) and lower membership
function (LMF). To enable designed membership functions (MFs) reflect the data, we
proposed three types of FOU design strategies according to the dispersion of the data.
The first and second designs comprise of Gaussian MFs with uncertain standard de-
viations and means respectively whereas the third design is the combination of both.
The FOU is then further optimized through Genetic Algorithm. The proposed Type-2
fuzzy classifier has been applied to ECG arrhythmic classification problem to discrim-
inate three types of ECG signals, namely the normal sinus rhythm (NSR), ventricular
fibrillation (VF), and ventricular tachycardia (VT). The performance of the classifier
is tested on MIT-BIH Arrhythmia database. The average period and pulse width of
ECG data are extracted as the inputs to the classifier. Different sources of noises have
been included to model the uncertainties associated with the vagueness in MFs and the
unpredictability of the data. The results show that the proposed strategies to design
the FOU are essential to achieve a high performance fuzzy rule-based classifier in face
of the uncertainties.

15.1 Introduction

Fuzzy systems have been used successfully in an increasing number of application
areas. One of the main advantages of fuzzy logic is that it enables qualitative
domain knowledge about a classification task to be deployed in the algorithmic
structure. Fuzzy approaches to pattern recognition have been pioneered by Bell-
man, Kalaba and Zadeh [1]. In recent years, it has been successfully applied in
medical domains. There are many inherent virtues of fuzzy system which are
suitable for medical applications. Firstly, it can avoid hard threshold, thereby
increasing the tolerance towards contradictions in the data. Secondly, a fuzzy
rule-based classifier (FRBC) provides a framework to incorporate both subjec-
tive (i.e., expert opinion) and objective (i.e., design samples where the knowledge
can be extracted) information, hence it may be able to outperform other clas-
sifiers. It is possible to integrate this valuable knowledge into the fuzzy logic
system due to the system’s similar reasoning style to the human being. Thirdly,
biomedical features have statistical attributes that are non-stationary and math-
ematical descriptions of the non-stationarities are unknown [6].

Y. Jin and L. Wang (Eds.): Fuzzy Systems in Bio., STUDFUZZ 242, pp. 297–314.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Different types of fuzzy systems may cater for different sources of uncertain-
ties. Mendel [6] suggests that a non-singleton type-1 fuzzy logic system (FLS)
can be used to handle uncertainties caused by noisy measurements. The inputs
are modeled as type-1 fuzzy numbers. A mathematical analysis [2] shows that
the non-singleton fuzzifier manages to minimize the effect of noise. Despite the
popularity of fuzzy logic, an ordinary (type-1) fuzzy set does not capture uncer-
tainty in all of its manifestations, particularly when it arises from vagueness in
the shape of the membership function. The uncertainties of the MFs could arise
from differing expert opinions which are used to formulate the fuzzy rules or due
to the noisy inputs when they are used to train the FLS. As such, the imprecise
boundaries of a type-2 fuzzy set give rise to truth or membership values that are
fuzzy instead of a crisp number, may overcome the problem. In particular, the
MF of a type-2 fuzzy set has blur boundary and consists of a set of admissible
type-1 MFs. The employment of general type-2 FLS usually increases the com-
putational complexity in comparison with type-1 FLS, therefore the simplified
version of general type-2 FLS, which is known as interval Type-2 FLS, is prefer-
able. The reduction on the computational complexity is due to the property that
all the secondary membership grades for an interval type-2 fuzzy set are all equal
to one rather than a value in [0,1].

In this chapter, we investigate, through the application of ECG arrhythmic
classification, the feasibility of capturing the uncertainties associated with the
antecedent sets and the inputs via the type-2 fuzzy framework. Moreover, we also
show how it is straightforward to directly exploit the information inherent in the
problem to set up the number of fuzzy rules, and the antecedent set parameters.
This chapter is organized as follows. Section 15.2 provides fundamental theory
about an interval type-2 fuzzy set [7]. The classification problem and feature
extraction method are explained in Section 15.3. Section 15.4 outlines the interval
type-2 fuzzy rule-based classifier (FRBC) and the proposed design methods. The
experimental results are presented in Section 15.5 and finally Section 15.6 offers
concluding remarks.

15.2 Interval Type-2 Fuzzy Set

An interval type-2 (IT2) fuzzy set, Ã is characterized as:

Ã =
∫

x∈X

∫

u∈Jx⊆[0,1]

1/(x, u) =
∫

x∈X

[∫

u∈Jx⊆[0,1]

1/u

]

/x (15.1)

where x, the primary variable, has domain X ; u ∈ U , the secondary variable,
has domain Jx at each x ∈ X ; Jx is called the primary membership of x and is
defined in (15.5); and, the secondary grades of Ã all equal 1. Note that (15.1)
means: Ã : X → {[a, b] : 0 ≤ a ≤ b ≤ 1}. Uncertainty about the shape and
position of Ã is conveyed by the union of all the primary memberships, which is
called the footprint of uncertainty (FOU) of Ã (see Fig. 15.1), i.e.
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Fig. 15.1. FOU (shaded), LMF (dashed), UMF (solid) and an embedded FS (wavy
line) for IT2 FS Ã

FOU(Ã) =
⋃

∀x∈X

Jx = {(x, u) : u ∈ Jx ⊆ [0, 1]} (15.2)

The upper membership function (UMF) and lower membership function
(LMF) of Ã are two type-1 MFs that bound the FOU (Fig. 15.1). The UMF
is associated with the upper bound of FOU and is denoted μ̄Ã, ∀x ∈ X , and the
LMF is associated with the lower bound of FOU and is denoted μ

Ã
, ∀x ∈ X , i.e.

μ̄Ã(x) ≡ FOU(Ã) ∀x ∈ X (15.3)

μ
Ã
(x) ≡ FOU(Ã) ∀x ∈ X (15.4)

Note that Jx is an interval set, i.e.

Jx = {(x, u) : u ∈ [μ
Ã
(x), μ̄Ã(x)]} (15.5)

so that FOU(Ã) in (15.2) can also be expressed as

FOU(Ã) =
⋃

∀x∈X

[μ
Ã
(x), μ̄Ã(x)]. (15.6)

For continuous universes of discourse X and U , an embedded IT2 FS Ãe is

Ãe =
∫

x∈X

[1/u]/x u ∈ Jx (15.7)

Note that (15.7) means: Ãe : X → {u : 0 ≤ u ≤ 1}. The set Ãe is embedded
in Ã such that at each x it only has one secondary variable (i.e., one primary
membership whose secondary grade equals 1). Examples of Ãe are1 μ̄Ã(x) and
μ

Ã
(x), ∀x ∈ X .

1 In this notation it is understood that the secondary grade equals 1 at all elements
in µ̄

Ã
(x) or µ

Ã
(x).
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For discrete universes of discourse X and U , in which x has been discretized
into N values and at each of these values u has been discretized into Mi values,
an embedded IT2 FS Ãe has N elements, where Ãe contains exactly one element
from Jx1 , Jx2 , . . . , JxN , namely u1, u2, . . . , uN , each with a secondary grade equal
to 1, i.e., Ãe =

∑N
i=1[1/ui]/xi, where ui ∈ Jxi . Set Ãe is embedded in Ã, and,

there are a total of
∏N

i=1 Mi Ãe. Associated with each Ãe is an embedded T1
FS Ae, where

Ae =
∫

x∈X

u/x u ∈ Jx (15.8)

Note that (15.8) means Ae : X → {u : 0 ≤ u ≤ 1}. The set Ae, which acts
as the domain for Ãe, is the union of all the primary memberships of the set
Ãe in (15.7). As the universes of discourse X and U are continuous then there
is an uncountable number of embedded IT2 FSs (Ãe) and embedded T1 FSs
(Ae) in Ã. Because such sets are only used for theoretical purposes and are not
used for computational purposes, this poses no problem. For discrete universes
of discourse X and U , an embedded T1 FS Ae has N elements, one each from
Jx1 , Jx2 , . . . , JxN , namely u1, u2, . . . , uN , i.e., Ae =

∑N
i=1[ui]/xi where ui ∈ Jxi .

Set Ae is the union of all the primary memberships of Ãe and there are a total of∏N
i=1 Mi Ae. For simplicity, without explicitly stated, we assume that the term

type-2 fuzzy set is referring to interval type-2 fuzzy set in the remainder of this
chapter.

15.3 Problem Description

An electrocardiogram (ECG) is the representation of the electrical activity of the
heart (cardiac) muscle as it is recorded from the body surface. Fig. 15.2 shows the
various components of a typical ECG signal. The P wave represents depolariza-
tion of the upper part of the heart, the atria whereas the QRS complex represents
ventricular depolarization and T wave represents ventricular repolarization.

Changes in normal rhythm of a human heart may result in different cardiac
arrhythmias, which may be immediately fatal or cause irreparable damage to
the heart when sustained over long periods of time. Ventricular fibrillation (VF)
and ventricular tachycardia (VT) are both life-threatening cardiac arrhythmias.

Fig. 15.2. ECG components: P wave, QRS complex, and T wave
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In particular, VF requires immediate defibrillation whereas VT must be distin-
guished from Normal Sinus Rhythm (NSR) and VF to receive cardioversion, by
delivering a shock of somewhat lower energy in synchronization with the heart
beat. Critical cardiac incidents occur most often out of hospitals, therefore auto-
matic external defibrillators (AED) were introduced for increasing the survival
rate [3]. Since the successful termination of VF and VT requires fast response
and application of high-energy shocks in the heart region, the accuracy of the
built-in algorithm for VF detection is of paramount importance. One major in-
fluence on the detection accuracy is the capability of the classifier to account for
the uncertainties.

15.3.1 Data and Feature Extraction

The ECG data used in this study is obtained from MIT-BIH Malignant Ventric-
ular Arrhythmia Database (VFDB) [8]. All signals are first preprocessed by a
0.05-40Hz bandpass filter and a 60Hz notch filter in order to suppress DC compo-
nents, baseline drifts and possible electrical interference. The filtered ECG signal
are transformed into the binary strings. The transformation algorithm used in
this chapter is a modified version of that in the paper [11]. Unlike Zhang’s one-
pass conversion, a two-pass conversion method is employed. The ECG signal
will be transformed into partial binary string first instead of full binary string
directly. This can reduce the false positive peak detection greatly by eliminating
low amplitude signal. This step is closely followed by a full binary string con-
version for determining a threshold that can maximize the differences between
NSR class and VF/VT classes. The steps are listed as follows:

1. Select a finite length (i.e., 4s) of ECG. Since the VFDB signals were digitized
at 250Hz, then there will be 1000 data points {xi|i = 1, 2, . . . , n; n = 1000}
within 4s window length.

2. Mean-center ECG data where the mean data, xm is subtracted from every
data point, i.e., {xi − xm}.

3. Find out the negative peak, Vn and positive peak Vp.
4. Form a partial binary string: if the signal level falls in between the range of

(0 < xi < 0.2 Vp) or (0.2 Vn < xi < 0), then it is assigned “0”.
5. Calculate the parameters Np and Nn. Np denotes the number of data (xi >

0) while Nn = n − Np.
6. Determine a proper threshold, Tr to convert the partial binary string into

a complete binary string: if Np < 0.15 n, then threshold is assigned as
Tr = 0.7 Vp, otherwise Tr = 0. This step is crucial to separate NSR signals
from VF and VT signals.

7. Compare xi to Tr to turn the partial binary string into a complete binary
string, that is if xi ≤ Tr, then xi is assigned as “0” or otherwise “1”.

The graphs in Fig. 15.3 show the examples of three different types of ECG
signals with their corresponding binary sequences. Two time-domain features
commonly used for ECG classification are extracted from the binary sequences:



302 T.W. Chua and W.W. Tan

50 50.5 51 51.5 52 52.5 53 53.5 54

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time / s

V
ol

ta
ge

 / 
m

V

(a)

1260 1260.5 1261 1261.5 1262 1262.5 1263 1263.5 1264

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time / s

V
ol

ta
ge

 / 
m

V

(b)

1197 1197.5 1198 1198.5 1199 1199.5 1200 1200.5 1201

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time / s

V
ol

ta
ge

 / 
m

V

(c)

Fig. 15.3. ECG signals (excerpts from VFDB) and corresponding binary sequences:
(a) NSR, record 421 (50-54s), (b) VF, record 424 (1260-1264s), (c) VF, record 611(1197-
1201s)

pulse width, and pulse period and the scatter plot is shown in Fig. 15.4. All
parameters are averaged within the 4s window. For the sake of convenience, all
attribute values in this chapter were normalized into real number between unit
interval [0, 1] as:

xi,k :=
xi,k − min{xk|∀i}

max{xk|∀i} − min{xk|∀i}
(15.9)

where i = 1, . . . , N, k = 1, . . . , p. Therefore, the C-class classification problem
is defined in the p-dimensional unit cube [0, 1]p.
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Fig. 15.4. The scatter plot for inputs pulse period vs. width

15.4 Fuzzy Rule-Based Classifiers (FRBCs)

There are two popular types of FRBCs: Mamdani-Assilian (MA) type and
Takagi-Sugeno-Kang (TSK) type. The MA classifier requires both the input and
output domains to be characterized by linguistic terms. Both the antecedent
and consequent of an if-then rule are typically Boolean expressions of simple
clauses. The TSK type has the same Boolean expressions of simple clauses for
the antecedent part. However, the consequent is a function of the input (e.g. a
polynomial). In this chapter, we only focus on MA type FRBC.

15.4.1 Interval Type-2 Fuzzy Rule-Based Classifier Structure

This sub-section introduces the interval type-2 FRBC. Fig. 15.5 shows the gen-
eral structure of the proposed type-2 fuzzy rule-based classifier. There are six
components in the architecture. The rule-base consists of T rules where each
rule relates the domain X1 × · · · × Xp ⊆ Rp to the range Y ∈ R and can be
expressed as the following intuitive IF-THEN statement:

Rj: IF x1 is Ãj
1 and · · · xp is Ãj

p, THEN y is Cj

Fig. 15.5. Structure of type-2 classifier
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where Rj denotes the jth rule, Ãj
k is an interval type-2 antecedent set associated

with the kth input variable xk (k = 1, . . . , p), and Cj represents the consequent
set associated with the output variable y. The role of the fuzzifier in a fuzzy
system is to map each of the element, x′

k, in the input vector x′ = (x′
1, . . . , x

′
p)T

into the fuzzy set X̃ ′
k. This process provides a natural framework for handling

uncertain input information. There is a variety of methods for performing fuzzi-
fication. The most common approach is singleton fuzzification, which maps a
crisp input into the following MF:

μX̃′
k
(xk) =

{
1 xi = x′

k

0 xk �= x′
k

Next, the inference engine component computes the firing strengths for each rule
which expresses how well the the fuzzified input X̃ ′ match the antecedents Ã′.
For type-2 FRBC, the inference engine produces two firing strengths for each
rule, the lower and upper firing strengths of the jth rule, f j(x′) and f̄ j(x′), are
computed as:

f j(x′) =
∏p

k=1
sup
xk

[μX̃′
k
(xk), μ

Ãj
k

(xk)] (15.10)

f̄ j(x′) =
∏p

k=1
sup
xk

[μX̃′
k
(xk), μ̄Ãj

k
(xk)] (15.11)

where sup[.] denotes supremum operation. Before the final crisp output can
be obtained, the output of the inference engine and the consequent must be
processed. In a more general case where the consequent fuzzy sets C̃j are interval
type-2 sets, the type-reduced set Ycos can be computed with center-of-sets type
reduction:

Ycos = [yl, yr] =
∫

y1∈[y1
l ,y1

r ]

· · ·
∫

yM∈[yM
l ,yM

r ]

∫

f1∈[f1,f̄1]

· · ·
∫

fM∈[fM ,f̄M ]

1

/∑M
j=1 f jyj

∑M
j=1 f j

(15.12)

where [yj
l , y

j
r ] denotes to the centroid of the set C̃j , which can be obtained from

various methods defined in [5]. However, the consequent fuzzy sets in our classi-
fication problem correspond to the ECG arrhythmia labels and are represented
by crisp number (singleton), the center-of-sets type-reduction above is simplified
to height type-reduction by simply setting yj

l = yj
r . The type-reduced set which

is an interval output, [yl(x′), yr(x′)] can be obtained via Karnik-Mendel iterative
algorithm [7]. To compute yl, the steps are:

1. Without loss of generality, assume that pre-computed yj
r are arranged in

ascending order; i.e., y1
r ≤ y2

r ≤ · · · ≤ yT
r ;

2. Compute yr as yr =
∑T

j=1 f j
r yj

r/
∑T

j=1 f j
r by initially setting f j

r = (f j+f̄ j)/2
for j = 1, . . . , T and let y′

r ≡ yr;
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3. Find R (1 ≤ R ≤ T − 1) such that yR
r ≤ y′

r ≤ yR+1
r ;

4. Compute yr as yr =
∑T

j=1 f j
r yj

r/
∑T

j=1 f j
r with f j

r = f j for i ≤ R and
f j

r = f̄ j for i > R and let y′′
r ≡ yr;

5. If y′′
r �= y′

r, then go to Step 6. If y′′
r = y′

r, then stop and set y′′
r ≡ yr;

6. Set y′
r equal to y′′

r , and return to Step 3.

The procedure for computing yl is very similar to the one for yr. Just replace
yj

r by yj
l , and, in Step 3 find L(1 ≤ L ≤ T − 1) such that yL

l ≤ y′
l ≤ yL+1

l .
Additionally, in Step 2 compute yl as yl =

∑T
j=1 f j

l yj
l /

∑T
j=1 f j

l by initially
setting f j

l = (f j + f̄ j)/2 for j = 1, . . . , T and, in Step 4 compute yl as yl =
∑T

j=1 f j
l yj

l /
∑T

j=1 f j
l with f j

l = f̄ j for i ≤ L and f j
l = f j for i > L.

The type-reduced set is then defuzzified to the crisp output, y by simply
taking the average of yl and yr, i.e.:

y(x′) =
yl(x′) + yr(x′)

2
(15.13)

Finally, the decision maker will determine the class label:

Class(x′) = arg min
j

(y(x′) − C̄j) (15.14)

where C̄j denotes the singleton at the point having maximum membership in
the jth consequent set. For Gaussian MF, this point is equal to the mean of the
function.

15.4.2 Classifier Designs

In this sub-section, the design strategy of the type-2 classifiers will be explained.
A useful trait of the design methodology is most of the antecedent MF param-
eters can be conveniently derived from data itself. The design strategy, which
comprises four steps, is summarized in Fig. 15.6. The first step is to determine
the structure of the classifier. This can be achieved by establishing one fuzzy rule
for each naturally distinguishable class. Since there are three classes, it would
be intuitive to form only three rules (i.e., T = 3) in this problem. In addition,

Fig. 15.6. The design strategy of Type-2 FRBCs
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the number of antecedents for each rule is determined by the number of fea-
tures which is two in our case. The next step is to determine the parameters of
the MFs. To ensure the designed MF parameters are relevant to the data and
to achieve good interpretability and transparency of the rule-base, our second
strategy is to design the prototype type-1 MF where the mean M j

k and stan-
dard deviation σj

k of the Gaussian MF parameter are computed according to the
distribution of the data. For ∀x ∈ Classj:

M j
k =

1
Nj

Nj∑

i=1

xi,k (15.15)

σj
k =

√
√
√
√

Nj∑

i=1

1
Nj

(xi,k − M j
k)2 (15.16)

where Nj denote the total number of samples from class j. Alternatively, the
mean of type-1 MF can be computed with other more advanced clustering algo-
rithms like Fuzzy C-Means (FCM), Self-Organizing Map (SOM) etc. We define
these prototype MFs as base-line type-1 (BS-T1) MFs. Based on the BL-T1 MFs,
we design three types of FOUs with the aim to account for different sources of
uncertainties such as randomness of the data and the ambiguity in determining
the exact membership functions. The first type-2 MF is shown in Fig. 7(a) where
the upper membership function (UMF) is characterized by BL-T1 MF. The lower
membership function (LMF) has the same mean as the UMF but with two dif-
ferent standard deviations, (σj

L,k, σj
R,k). The idea to incorporate two different

standard deviations is motivated by the fact that most classification problems
have uneven data distribution with respect to the mean. For example, the ECG
data distributions in Fig. 15.4 have different densities. The initial values of both
parameters are then computed as:

σj
L,k =

√
∑

x∈Classj

1
N ′

j

(xi,k − M j
k)2 for ∀xi,k ≤ M j

k (15.17)

σj
R,k =

√
∑

x∈Classj

1
N ′′

j

(xi,k − M j
k)2 for ∀xi,k > M j

k (15.18)

where N ′
j and N ′′

j represent the total number of samples from class j which satisfy
the condition parts of (15.17) and (15.18) respectively. Since the asymmetrical
FOUs are created by varying the standard deviations, this classifier is named as
the type-2 uncertain standard deviations (T2-US) classifier. The second one is
known as type-2 uncertain means (T2-UM) classifier. As the name suggests, the
UMF has two mean values, [M̄ j

L,k, M̄ j
R,k]. For ∀x ∈ Classj:

M̄ j
L,k =

1
N ′

j

N ′
j∑

i=1

xi,k for ∀xi,k ≤ M j
k (15.19)
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M̄ j
R,k =

1
N ′′

j

N ′′
j∑

i=1

xi,k for ∀xi,k > M j
k . (15.20)

This strategy is motivated by the limitations of clustering algorithms to locate
the true mean of the MF. For example, the FCM algorithm is known to work well
with evenly distributed data that are spherical in shape [4] but may not work
well in the case of elliptical distribution. Fig. 15.4 clearly shows that NSR data
comprise of two sub-clusters with high densities compared to VF and VT classes
with sparse densities. Furthermore, all three classes have elliptical data distri-
bution. The BL-T1 MF is used as the LMF for T2-UM classifier (see Fig. 7(b)).
Finally, the third classifier- type-2 uncertain standard deviations and means
(T2-USUM), is the combination of T2-US and T2-UM classifiers. We see that
BL-T1 MF automatically served as the principal MF, as shown in Fig. 7(c). For
all three types of type-2 classifiers, the steps above intend to capture as much
uncertainty as possible from the data through the FOUs. The initial parameters
such as LMF of T2-US classifier, UMF of T2-UM classifier and both LMF and
UMF of T2-USUM classifier served as the good initial search points in the later
stage of optimization by Genetic Algorithm (GA).

A GA is a search technique used in computing to find exact or approximate
solutions to optimization and search problems. It is categorized as global search
heuristics. A GA starts off with a population of randomly generated chromo-
somes, and advances toward better chromosomes by applying genetic operators.
The population undergoes evolution in a form of natural selection. During suc-
cessive iterations, called generations, chromosomes in the population are rated
for their adaptation as solutions, and on the basis of these evaluations, a new
population of chromosomes is formed using a selection mechanism and specific
genetic operators (mutation and crossover). A fitness function is used to return
a single numerical fitness of the individual in the population, which is supposed
to be proportional to the utility or adaptation of the solution represented by
that chromosome. Binary coded GA is adopted in the current framework. Each
of the parameter is encoded in a 8-bit string. The training accuracy is chosen as
the fitness function. During the fitness evaluation, the parameters are decoded
into real numbers using linear mapping equation as shown below:

gp = Gmin
q + (Gmax

q − Gmin
q ) × Aq

2N − 1
(15.21)

where gp denotes the actual value of the qth parameter, Aq denotes the integer
represented by a N-bit string gene, Gmax

q and Gmin
q denote the user defined upper

and lower limits of the gene respectively. The selection method is tournament
size of two with elitism. As for the genetic operators, bitwise flipping mutation
and single-point crossover are implemented.

15.5 Experimental Results

In this section, we will carry out five case studies to examine the performances
of different types of T2 FRBCs. In addition, T2 FRBCs are compared against
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(a)

(b)

(c)

Fig. 15.7. Interval type-2 Gaussian membership functions with: (a) uncertain standard
deviations, (b) uncertain means, (c) uncertain standard deviations and means
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BL-T1 FRBC. The structure of a BL-T1 FRBC is similar to a T2 FRBC (refer
to Section 15.4.1) except for a few aspects. Firstly, the inference engine will
produce a firing strength, f j for jth rule rather than an interval value. Secondly,
the type-reducer does not exist since no type-2 number is involved. For height
defuzzification, the crisp output, y can be computed as:

y(x′) =

∑T
j=1 yjf j

∑T
j=1 f j

(15.22)

If all FOUs of a type-2 FRBC disappear, then type-2 FRBC is immediately
reduced to type-1 FRBC and there is no difference between the final outputs
from both classifiers.

The first case study seeks to examine the importance of the evolved FOUs
in T2 FRBCs compared to the BL-T1 FRBC when the means of the MFs are
obtained via Equation (15.15). The second case study focuses on whether the
more advanced clustering algorithm can further improve the performance of T2
FRBCs. This is achieved by computing the means through the FCM algorithm.
Subsequently, the third and fourth case studies examine the performances of
T2-FRBCs when the evolved antecedent membership functions in case study
1 are later perturbed with noises. In the third case study, only the means of
the MFs (as computed in first case study) are corrupted with noises while the
fourth case study is configured in such a way that only the standard deviations
of the MFs are perturbed with noises. In practice, the uncertainties could be
due to different experts’ opinions which are used to construct the rule-base. As
suggested by Mendel [5], words can mean different things to different people.
Therefore, there exists vagueness in the linguistic labels. Moreover, the random
disturbances could be due to the noisy training data. The dynamics of the ECG
signal is inherently noisy because it is very sensitive to cable movement and
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Fig. 15.8. Boxplot for case study 1 with 10-CV and ten iterations (a) training accuracy,
(b) testing accuracy
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Fig. 15.9. Boxplot for case study 2 with 10-CV and ten iterations (a) training accuracy,
(b) testing accuracy
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Fig. 15.10. Boxplot for case study 3 with 10-CV and ten iterations (a) training accu-
racy, (b) testing accuracy

muscle activity. In addition, the interference from electrical network can degrade
the recording process especially for surface ECG recording. As the T2 FRBCs
attempt to the encapsulate the aforementioned uncertainties in the FOUs of the
antecedent sets, it may be able to outperform its T1 counterpart. The last case
study aims to study if T2 FRBCs can handle the uncertainty associated with
unpredictability [10], [9] better. Roughly speaking, this is one of the most im-
portant issues in ECG classification or any pattern classification problems. It
reflects the situation where the applied testing samples deviate from the train-
ing samples to some extent. When referring to automated external defibrillator
(AED), this occurs when the ECG signals produced by the patient deviate from
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Fig. 15.11. Boxplot for case study 4 with 10-CV and ten iterations (a) training accu-
racy, (b) testing accuracy

BL−T1 T2−US T2−UM T2−USUM

82

83

84

85

86

87

88

89

90

91

92

A
cc

ur
ac

y 
(%

)

Classifier

(a)

BL−T1 T2−US T2−UM T2−USUM

82

83

84

85

86

87

88

89

90

91

92

A
cc

ur
ac

y 
(%

)

Classifier

(b)

Fig. 15.12. Boxplot for case study 5 with 10-CV and ten iterations (a) training accu-
racy, (b) testing accuracy

the training samples during the algorithm development stage. Hopefully, T2 FR-
BCs can improve the tolerance towards the unpredictability. This case study is
modeled by noise corrupted test data while the training data are unperturbed.
In case studies 3, 4 and 5, the noise source is modeled as a Gaussian function
with zero mean and variance of 0.001:

P ′ = P +
√

0.001 × uniform() (15.23)

where P represents either Gaussian MF mean or standard deviation parameter
in case 3 and 4 or the input value in case 5 while P ′ represents the noise corrupted



312 T.W. Chua and W.W. Tan

Table 15.1. Average Training Accuracies of FRBCs (in %)

BL-T1 T2-US T2-UM T2-USUM

Case 1 88.5926 90.2407 90.7407 90.2161
Case 2 88.4259 90.1914 89.9444 90.0432
Case 3 86.1729 88.4444 88.4259 88.3210
Case 4 87.0062 89.5309 89.4568 89.3148
Case 5 88.6914 90.1729 89.9876 89.8272

Table 15.2. Average Testing Accuracies of FRBCs (in %)

BL-T1 T2-US T2-UM T2-USUM

Case 1 88.1111 89.3333 89.9444 89.3333
Case 2 88.0000 90.1111 89.8765 89.4444
Case 3 85.8334 88.1667 88.4444 88.0555
Case 4 87.1667 89.1667 89.0555 89.4444
Case 5 83.6667 88.6111 87.4444 87.5000

parameter. uniform() denotes a function that generates a scalar value from a
normal distribution with mean 0 and standard deviation 1.

To test the performance of each classifier, we carried out a 10-fold cross-
validation (10-CV) procedure. For GA, we did not use adaptive parameters in
order to keep the algorithm as simple as possible. The mutation rate was initially
set to 0.1, 0.05, 0.03 and 0.01 respectively. It was noticed that mutation rates
of 0.1 and 0.05 can lead to premature convergence occasionally. On the other
hand, the convergence speed of the solution can be very slow when the mutation
rate was set to 0.01. It worked out that mutation rate of 0.03 gave the best com-
promise between the convergence speed and classifier’s accuracy. Likewise, we
compared the crossover rates (0.5, 0.7, 0.8 and 0.9) and 0.8 consistently gave the
best GA performance. The population size was 30 and the maximum number of
generations was fixed at 100. The optimization process stops if there is no im-
provement in the fitness functions of the past 30 generations. In this particular
application, the solutions usually converged between 70 and 90 generations. The
results of the 10-CV experiments are summarized in Tables 15.1 and 15.2 where
each result is obtained from the average of ten iterations for each classifiers. Data
for the first 4 case studies indicate that all FRBCs have good generalization ca-
pabilities since the training and testing accuracies are very close. In the last case
study, the perturbation of the test data set has inevitably decreased the testing
accuracy. Comparing the first and the second case studies, the performance dif-
ferences between the mean calculation method of simple averaging and FCM are
minimal. This shows the FCM does not bring any improvement over the sim-
ple averaging method. In all cases, T2 FRBCs consistently outperform BL-T1



15 Interval Type-2 Fuzzy System for ECG Arrhythmic Classification 313

FRBC, this shows that the FOU is essential for a better FRBC. In particular,
the third and the fourth case studies show that T2 classifiers are more robust
against the perturbations in the MFs, hence less sensitive to design errors. BL-
T1 classifier has significant testing performance drop (≈ 5%) when the test data
are corrupted by noises as shown in last case study while all T2 FRBCs remain
relatively robust with only 1−2% performance drop. This implies that the issue
of unpredictability can be minimized through the proposed type-2 framework.
The boxplots are shown in Fig. 15.8-15.12. It is clear that under any types of
the perturbations mentioned above, T2 FRBCs remain robust and consistent
compared to T1 FRBC.

15.6 Conclusion

In this chapter, we presented some simple yet intuitive fuzzy approaches to ECG
arrhythmic classification namely to distinguish NSR, VF and VT. The structure
of the FRBC and the initial parameters can be computed directly from the data
set. When dealing with biological signals such as ECG, various uncertainties can
arise and this will lead to the usability limitation of the algorithm in real-world
applications. Through the extensive experimental results, we have shown that
T2 FRBCs has much better and stable performances in face of different sources
of uncertainties. The optimization of the FOUs by using GA is proven to be
effective and model-free. While there is no preference for T2-US, T2-UM or T2-
USUM FRBCs in this application, there is always a possibility that either one of
them will outperform the rests in other applications. Finally, we believe that the
FRBC design strategy described in this chapter provide the general methodology
that can be also be applied to other classification tasks.
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Summary. This chapter investigates empirically the influence of control logic on reg-
ulatory dynamics in computational models of genetic regulatory networks. The gene
regulatory network motif considered in this work consists of three genes with both
positive and negative feedback loops. Two fuzzy logic formulations are studied in this
work, one is known as the Zadeh operator, and other is the probabilistic operator. The
evolved dynamics of the network motifs is then verified with perturbed initial system
states. Our empirical results show that with the probabilistic ‘AND’ operator and the
probabilistic ‘OR’ operator, the system is able to evolve sustained oscillation with a low
probability. However, sustained oscillation is not evolvable when the Zadeh operator
is employed. In addition, we also show that regulatory motifs with the probabilistic
operators possess much richer dynamics than that with the Zadeh operators.

16.1 Introduction

Modeling and analysis of gene regulatory networks is receiving increasing atten-
tion in computational systems biology. It has been found that a small number of
sub-networks, also known as network motifs, occur very often in complex gene
regulatory networks. These network motifs serve as building blocks of regulatory
networks and the dynamics of the whole networks can be analyzed by analyzing
these motifs. Detection and analysis of regulatory motifs in biological systems
has now become one important research topic in systems biology [1, 2].

One line of fascinating research is to analyze the role of positive and negative
feedback loops in the robustness and evolvability of gene regulatory networks.
It has been found that negative feedback loops are a major mechanism for bi-
ological robustness, e.g., in heat shock response of E. Coli [6] and in perfect
adaptation of bacteria chemotaxis [20]. A design principle found in cell signaling
networks is that coherently coupled feedback loops are of essential importance
to robustness [13], and that networks containing a large number of positive feed-
back loops and a small number of negative feedback loops are more likely to be
robust to perturbations [14]. Most recently, it has been reported that a combina-
tion of positive feedback with negative feedback loops endows the networks with
more robust and tunable sustained oscillations, and makes it easier to evolve
stable oscillatory dynamics [19].

Y. Jin and L. Wang (Eds.): Fuzzy Systems in Bio., STUDFUZZ 242, pp. 315–327.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Meanwhile, regulatory control, particularly the regulation logic, is also at-
tracting more and more research efforts. An experimental analysis of regula-
tion control of the gene for development of the sea urchin has been conducted
in [21]. A systematic investigation of control logic in gene regulation has been
performed in [17], which concludes that, among others, networks consisting of
competitively binding activators and repressors can be controlled more robustly.
Another interesting finding suggests that two types of logic control may exist in
bacteria transcriptional networks, namely, a digital type and analog type [15].
Interestingly, these two distinct control types are found to be complementary
in gene regulation. Negative feedback loops that promote systems robustness
to mutations have also been shown to emerge in computational evolution of
developmental system [18].

This chapter investigates in silico the role of regulation logic in evolving os-
cillatory dynamics for a regulatory motif consisting of a negative feedback loop
and a positive feedback loop. To this end, we employ an evolution strategy, one
of the widely used artificial evolutionary algorithms [3], to evolve the parame-
ters of the given network motifs. Though evolution of the desired dynamics for
a given network motif appears straightforward at the first sight, we find out
that it is nontrivial to evolve sustained oscillations, i.e., limit cycles. The most
interesting finding from this work is that the probabilistic fuzzy operators can
produce much richer dynamics than their Zadeh counterparts, and thus have a
better ability to evolve sustained oscillatory dynamics.

A few research efforts have been made to evolve dynamics for gene regulatory
networks in silico. In [7], both bistable switches and oscillators are evolved based
on a number of predefined basic biochemical reactions. However, it was suggested
in [4] that the results reported in [7] are not easily reproducible, which implies
that successful evolution of sustained oscillation is sensitive to experimental se-
tups. In [4], a correlation based fitness function has been suggested, though no
definite conclusion can be drawn on its influence on the successful evolution of
oscillators. Similar work has also been reported in [16], where two different fit-
ness functions are suggested for evolving oscillation. In [11], it is shown that a
higher Hill co-efficient facilitates the evolution of sustained oscillation for the
relaxation oscillator.

This chapter is organized as follows. In Section 16.2, a brief introduction to
gene expression and the mathematical model of the studied network motif is
provided. The concept of regulation control is discussed in Section 16.3, where a
number of fuzzy logic expressions is also presented. Section 16.4 describes very
briefly the evolution strategy used in this work. Experimental results are given
in Section 16.5 with discussions, and Section 16.6 concludes this chapter.

16.2 Regulatory Network Motifs and Regulation Control
Logic

According to the central dogma of biology, the process of gene expression is
believed to be composed of two main steps, namely, transcription of DNA to
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Fig. 16.1. A regulatory motif consisting of three gene, forming a negative feedback
loop and a positive feedback loop

mRNA and translation of the mRNA to encoded proteins. The expression of
genes is controlled by biophysical and biochemical interactions among genes,
proteins and metabolites. This network of interactions is termed the gene regu-
latory network.

The regulatory motif studied in this work consists of three genes, as shown in
Fig. 16.1. From the figure, we can see that genes g1 and g3 formulate a positive
feedback loop, while genes g2 and g3 build up a negative feedback loop. The
mathematical model of the regulatory motif can be described by the following
differential equations:

ẋ1 = a13H13(x3) − a11x1, (16.1)
ẋ2 = a23H23(x3) − a22x2, (16.2)
ẋ3 = a3L(H31(x1), H32(x2)) − a33x3, (16.3)

where xi, i = 1, 2, 3 are the concentration of the corresponding protein products
of the three genes, a11, a22, and a33 are the degradation rate of the proteins,
and a13, a23, and a3 are the parameters representing the strength of the protein
interactions. All these parameters are non-negative, and

H13(x3) =
βxn

3

θn
1 + xn

3

, (16.4)

H31(x1) =
βxn

1

θn
3 + xn

1

, (16.5)

H32(x2) =
βxn

2

θn
4 + xn

2

(16.6)

H23(x3) =
β

1 + (x3/θ2)n
, (16.7)

where β, θi, i = 1, 2, 3, 4, and n are parameters in the activating and repressive
Hill functions, where n is called the Hill coefficient. We can see that H13, H31

and H32 are activating, and H23 is repressive.



318 Y. Jin and B. Sendhoff

In Equation (16.3), L(H31, H32) is the function denoting the regulation logic
that combines the influence of activating regulations from g1 and g2 of the expres-
sion of g3. Often the case, various regulatory inputs are supposed to be additive.
However, this may not be always true in biology, as discussed in [17]. Generally,
activating interactions from g1 and g2 can be either independent, competitive
or cooperative. In this work, we consider two situations. 1) Both transcription
factors produced by g1 and g2 are necessary for the expression of g3, and 2) Ei-
ther of the transcription factors will be sufficient for the expression of g3. These
two situations can be described by logic ‘AND’, logic ‘OR’, respectively. In the
following section, we are going to introduce in more details the logic functions
used in this work.

16.3 Fuzzy Logic

Fuzzy logic systems have found a wide range of applications in science and
engineering [12] since Zadeh’s pioneering work on fuzzy sets [22] and fuzzy rea-
soning [23]. It is believed that fuzzy logic systems are particularly powerful in
dealing with uncertainties in modeling, reasoning, and control, just to name a
few. The unique ability of fuzzy systems can be attributed, in part, to the fol-
lowing two features. First, in contrast to the conventional set theory, where an
element either belongs to or does not belong to a set, while in the fuzzy set the-
ory, an element may belong to a set with a degree between zero and one. This
membership degree is defined by a piece-wise continuous membership function
whose value is between 0 and 1. Second, the fuzzy logic operators that allow
for more flexible processing of information. In the earlier age, most fuzzy sys-
tems were built upon human heuristics, or from observations of human experts.
Since the beginning of 1990’s, data-driven fuzzy systems have been playing an
increasingly important role, where fuzzy rules are abstracted from experimental
data. One main new feature of the data-driven fuzzy systems is their ability
to learn, which can be largely attributed to the marriage of machine learning
techniques, such as neural networks and evolutionary algorithms with fuzzy set
theory [5, 8, 10]. However, it must be pointed out that data-driven fuzzy sys-
tems may lose interpretability, which is the essence of fuzzy systems [10]. To
address this problem, interpretability issues should be taken into account [9] in
generating fuzzy rules from data.

This work investigates the role of fuzzy logic in modeling gene regulation
control and its relationship to evolving oscillatory dynamics. In gene regulation,
the expression of a gene is often regulated by a number of regulatory units
(enhancers or silencers), and more than one transcription factor can be bound
to a binding site. The question is, does it need all activating TFs to activate the
expression of the gene, or is it sufficient to have only one of the TF to activate?
Another question is, if multiple TFs can be bound to the binding site, are they
independent, competitive, or as a compound only?

In this work, we try to answer the first question mentioned above to a certain
degree. As shown in Fig. 16.1, the regulatory motif we are studying contains three
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genes, where gene 3 is activated by both gene 1 and gene 2. Two possibilities
are considered in the following: 1) Genes 1 and 2 are both needed to activate
gene 3, which can be modeled using the fuzzy ‘AND’ logic; 2) Either gene 1 or
gene 2 are needed to activate gene 3, modeled using the fuzzy ’OR’ logic.

Two types of fuzzy logic formulations are investigated in the simulations. The
first type is the Zadeh operators:

AND: x
∧

y = min (x, y), (16.8)
OR: x

∨
y = max (x, y), (16.9)

where ‘
∧

’ and ‘
∨

’ denote fuzzy ‘AND’ and ‘OR’, respectively, min(x, y) and
max(x, y) return the minimum and the maximum of x and y, respectively.

The second type of fuzzy logic operators is known as the probabilistic
operators, which can be described as follows:

AND: x
∧

y = xy, (16.10)
OR: x

∨
y = x + y − xy. (16.11)

It should be mentioned that in logic operations, the value of x and y is al-
ways limited between zero and one. In this work, we require that the value is
non-negative, but it is allowed to be larger than one.

16.4 Evolution Strategy

Evolution strategies are one of the widely used artificial evolutionary algorithms
that are very effective for optimizing real-valued problems. Since the structure of
the regulatory motifs is fixed, and only the parameters are evolved in this work,
we adopt a canonical evolution strategy for evolving the desired dynamics. In a
canonical evolution strategy (ES), the mutation of the object parameters (the
parameters to be optimized) is performed by adding an N(0, σ2

i ) distributed
random number, where σi’s are termed as strategy parameters that are also
encoded in the genotype and subject to mutations. The ES used in this work
can be described as follows:

x(t) = x(t − 1) + z̃ (16.12)
σi(t) = σi(t − 1)exp(τ ′z)exp(τzi); i = 1, ..., n, (16.13)

where x is an n-dimensional parameter vector to be evolved, z̃ is an n-
dimensional random number vector with z̃ ∼ N(0, σ(t)2), z and zi are normally
distributed random numbers with z, zi ∼ N(0, 1). Parameters τ , τ ′ and σi are
the strategy parameters, also known as step-sizes, where σi is mutated as in
equation (16.13) and τ , τ ′ are constants as follows:

τ =
(√

2
√

n

)−1

; τ ′ =
(√

2n
)−1

. (16.14)
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Fig. 16.2. Success rate in evolving sustained oscillation

Two selection schemes have been proposed in evolution strategies, known as
comma and plus strategies. Suppose there are μ and λ individuals in the parent
and offspring population, usually μ ≤ λ. In the comma strategy, μ parent indi-
viduals are selected only from the λ offspring individuals, which is usually noted
as (μ,λ)-ES. In the plus strategy, μ parent individuals are selected from a union
of μ parent individuals and λ offspring individuals, which is noted as (μ+λ)-ES.
In our study, the (μ, λ)-ES is adopted.

In the evolution, all parameters in the regulatory model, i.e., three decay
rates and three synthesis rates, one coefficient (β), four thresholds, and one Hill
coefficient are the object parameters encoded in the genome.

16.5 Simulation Results

A (30, 200)-ES has been adopted in our experiments. All object parameters
parameters to be evolved are randomly initialized between 0 and 4. According
to the physical meaning of the parameters, a lower bound is set to 0 for all
parameters, but no upper bound is given. The initial step-size is set to 1. In all
simulations, 500 generations are run for each case.

The aim of the work is to produce a sustained oscillatory dynamics for the
concentration of g3. The target function for x3 in evolving oscillation is defined
by a sinus function as follows:

xd
3(t) = sin(2 π t/T) + 1.0, (16.15)

where t is time instant, and T is the desired period of the oscillation. In the
simulations, a desired period of T = 1, 2, ..., 12 is chosen in 12 groups of simula-
tions, and for each desired period, 10 independent runs are performed. During
the evolution, x1 and x2 are initialized to 1.0, while x3 is initialized to 0.
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Fig. 16.3. Time course of x3 of the evolved gene regulatory network given 50 randomly
initialized states. The thick dashed line denotes the desired signal. (a) T = 3, and (b)
T = 10.

16.5.1 Easiness of Evolving Sustained Oscillation

Fig. 16.2 shows the rate of successful evolution of sustained oscillation in 10
independent runs, when different logic functions are employed. It can be seen
that when the probabilistic ‘AND’ operator is used, the system is able to evolve
sustained oscillation for 17 times from a total of 120 independent runs. When
the probabilistic ‘OR’ is used, sustained oscillation is evolved only four times in
120 runs.

Although the successful rates are quite low in general, it is interesting to notice
that a large Hill coefficient is not required, as suggested in [11], where different
regulatory signals are summed up in a relaxation oscillator.

Apart from the different success rates for different logic formulations, evolved
regulatory motifs with probabilistic logic operators show richer dynamics than
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Fig. 16.4. State-space trajectories of the evolved regulatory motifs. In both cases, the
system has a limit cycle and a stable equilibrium. (a) T = 3, and (b) T = 10.

those with Zadeh operators in that the former often consists of two different
dynamic features, usually a limit cycle plus a stable equilibrium or an attractor
plus a stable equilibrium. In the latter case, most systems generate either an
attractor or a stable equilibrium only.

16.5.2 Analysis of Evolved Dynamics

In this subsection, we examine the dynamics of the evolved network motifs, both
for cases where sustained oscillation has or has not been successfully evolved. At
first, we check two runs using the probabilistic ‘AND’ with successfully evolved
oscillation, where the desired period of the oscillation is 3 and 10, respectively.
The resulting dynamics are plotted in Fig. 16.3, where the initial states of
xi(0), i = 1, 2, 3 are randomly set between 0.0 and 4.0. We find that for T = 3,
refer to Fig. 16.3(a), 48 of the 50 initial states result in sustained oscillation,
while the other two initial states converge to 0. In contrast, 19 initial states
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Fig. 16.5. (a) Time course of x3 of the evolved regulatory motif when the probabilistic
‘OR’ is used (the desired period T = 4). (a) Time course, and (b) state-space trajectory
of 50 random initial states.

result in sustained oscillation, while the rest converge to zero, for T = 10, see
Fig. 16.3(b). In addition, we can make the following observations. First, the fre-
quency of the evolved oscillator is roughly the same as the desired frequency, as
can be seen in Fig. 16.3. Second, the amplitude of the limit cycles for different
initial states are very similar. Third, both evolved motifs have one limit cycle
plus one equilibrium, refer to Fig. 16.4.

In the following, we are going to present some additional interesting dynamics
observed in the evolved regulatory motifs.
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Fig. 16.6. Bi-stabile dynamics from an evolved regulatory motif with probabilistic
’OR’ logic. (a) T = 6, and (b) T = 12.

Limit Cycle together with a Stable Equilibrium

A limit cycle plus an equilibrium has been evolved when a probabilistic ‘AND’
(refer to Fig. 16.4) or a probabilistic ‘OR’ is used, see Fig. 16.5. In the former
case, the system states go very closely by the limit cycle and then converge to
the origin. In the latter case, the location of the limit cycle and the equilibrium
is quite distant from each other.

Bi-stability

Although the desired dynamics is a sustained oscillation, bi-stable dynamics of-
ten emerges in the evolved systems, particularly when the probabilistic ‘OR’
logic is used. Two kinds of bi-stable dynamics have been generated, either
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Fig. 16.7. Amplitude and period of the evolved limit cycles

one oscillatory attractor and an equilibrium as shown in Fig. 16.6(a), or two
equilibria, see Fig. 16.6(b).

Frequency-Amplitude Relation

It has been observed that it is of great importance in biology that a regulatory
system can show adaptive oscillation frequencies with a similar oscillation am-
plitude [19]. Since the motif we studied in this work also contains a negative
feedback loop plus a positive one, we try to verify this observation when the
probabilistic ‘AND’ logic is used. The relationship between the evolved period
and the amplitude of the limit cycles are presented in Fig. 16.7. In these net-
work motifs, the amplitude ranges from 0.4 to 1.4 when the period varies from
2.9 to 9.3.

16.5.3 Discussions

The biological meanings of the dynamics evolved for the regulatory motifs in
this work remains to be revealed. On the one hand, we show that rich dynam-
ics, such as limit cycles, attractors, equilibria, as well as bistability, has been
evolved successfully for a very simple regulatory motif when the probabilistic
logic operators are used for modeling the regulation logic, which signifies that
the systems ability to generate rich phenotypic features. On the other hand,
the biological implication of such richness in dynamics, particularly its role in
biological evolution, is still unclear.

16.6 Conclusions

This chapter reports our initial results on the influence of fuzzy regulation logic
on the easiness of evolving oscillatory dynamics for a gene regulatory motif. It has
been shown that the probabilistic fuzzy logic can produce richer dynamics than
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the Zadeh operators. Three interesting phenomena have been observed. First,
a range of desired frequencies can be evolved in case the probabilistic ‘AND’
logic is used. For probabilistic ‘OR’ logic, the probability to evolve sustained
oscillation is much lower. When the Zadeh ‘AND’ or Zadeh’ OR operation is
used, no sustained oscillation can be evolved in a total of 120 independent runs
performed in this work. Second, the frequency and amplitude of the generated
oscillation is quite robust to the initial states of the system, and the difference of
the amplitude for different frequencies is relatively small. Third, the attraction
basin of a sustained, or dampened oscillation covers only part of the state-space,
and usually, there is also an equilibrium in addition to the limit cycle. Fourth,
although a sustained oscillation is targeted, the resulting dynamics can also be
bi-stability, or equilibria only.

A few interesting issues remain to be investigated. For example, how the
evolvability of sustained oscillation may change as the activation pattern evolved.
In this work, the target gene has two activating regulatory connections, with one
positive feedback loop and one negative feedback loop. It is of interest to check
if coherency of the feedback loops and the coherency of the transcription factors
also play a role in the evolvability.

Another limitation of this work is that only the parameters are changed with
a predefined wiring structure and fixed regulation logic. It is of interest to study
if an evolvable structure in terms of both regulatory structure and regulation
logic can be evolved autonomously.
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