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second part look at various aspects of mesoscale weather phenomena: from the nu-
merical forecasting of individual thunderstorms to understanding how mountains
affect local weather and climate.
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the fields of atmospheric turbulence and mesoscale meteorology.
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Preface

Nature is not particularly generous when it comes to producing individuals with
both great intellectual and humanitarian qualities. Douglas K. Lilly, or simply Doug,
is a rare example of a person who essentially combines these two virtues.

As will become apparent from the scientific articles collected in this volume,
Doug has earned an outstanding reputation worldwide for the very high caliber
of his contributions to the fields of meteorology and geophysical fluid dynamics.
Less evident, but not less striking, is the dignity of his character, his modesty,
and his dedication to truth. Of pioneering stock, Doug still embodies the best
of the pioneering spirit: vision, individualism, fearlessness, and obliviousness of
authority. His fairness of judgements co-existing with his friendliness to colleagues
and dedication to students has become almost legendary. Doug has made many
friends throughout the years at the various places where he has worked, and is
respected and admired by students and prominent scientists alike.

This collective volume, dedicated to Doug on the occasion of his 75th birthday,
begins by focusing on Doug the man. His biography, written by K. Kanak, a recent
Ph.D. student of Doug, traces his scientific evolution by incorporating recollections
of several people, who worked with Doug, beginning with those of J. Smagorinsky,
Doug’s post-doc advisor. Doug’s fundamental work on the numerical simulation of
turbulence dates back to his interactions with Smagorinsky and K. Bryan while at the
Geophysical Fluid Dynamics Laboratory (GFDL) in the late 1950s and early 1960s.
In the latter part of the 1960s, Doug went to the National Center for Atmospheric
Research (NCAR), where he continued to develop his interests in numerical sim-
ulation in collaboration with J. Deardorff. During that period of his career, Doug
began nurturing interest also in observational techniques for measuring atmospheric
turbulent flows. D. Lenschow, who worked closely with Doug during those years,
reflects upon this interest in his recollection note.

In the early 1980s, Doug left NCAR to become Professor of Meteorology at the
University of Oklahoma (OU). While at OU, Doug developed strong ties to the
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viii Preface

National Severe Storms Laboratory (NSSL) of the National Oceanic and Atmos-
pheric Administration (NOAA). He directed the OU/NOAA Cooperative Institute
for Mesoscale Meteorological Studies (CIMMS) and was a co-founder of OU’s
Center for the Analysis and Prediction of Storms (CAPS). These various endeavors
of Doug are highlighted in the biography through the recollections of P. Lamb,
K. Droegemeier, and J. Kimpel, who worked closely with Doug while he was at OU.

The bulk of this book, however, focuses on the impact of Doug’s scientific contri-
butions. Individual chapters in Part I: Atmospheric turbulence and Part II: Mesoscale
meteorology represent invited contributions from renowned experts in these two ar-
eas, whose careers, either directly or indirectly, were touched by interactions with
Doug. Consequently, both the contents of and works cited in each chapter serve
as testaments to Doug’s scientific contributions. At the same time, the chapter se-
quence defines a course in atmospheric dynamics on scales ranging from the micro
to the meso, which should be of interest to graduate students or beginning scientists
who perhaps have never heard of Doug, as well as to seasoned practitioners inter-
ested in the latest assessment of advances in the fields of atmospheric turbulence
and mesoscale meteorology.

For instance, it should be readily apparent from the Atmospheric turbulence
chapters that the thread of Doug’s ideas is deeply woven into the fabric of modern
research on the topic. These chapters serve both to introduce and to reflect upon
the birth of an entirely new scientific methodology – the numerical simulation
of atmospheric turbulent flows. The birth of this new methodology raises novel
questions, such as:

� How does one rationalize simulation?
� How should simulations be optimally constructed, and then used?
� In what ways can simulations be integrated with established methodologies such as ex-

periments, observations, and more traditional theoretical work?

These questions form the subtext of nearly a half-century of research by Doug
Lilly. They should continue to interest current and future generations of students,
researchers, and practitioners involved in atmospheric turbulence research and its
applications.

This idea of Doug that numerical simulation represents a new frontier for
explorations of turbulence is eloquently articulated in the overview chapter by
J. Wyngaard, wherein he discusses Doug’s strategy for numerical simulation, which
he calls a bold “three-phase plan of attack.” With one exception, the other chapters
in Part I (and many chapters in Part II, especially the contribution by J. Klemp and
W. Skamarock) help to exemplify implementation of this plan. In particular, the use
of Direct Numerical Simulation (DNS) to study fundamental problems in turbulence
research, which J. Wyngaard credits with revitalizing the field, is exemplified in the
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article on two-dimensional and stratified turbulence by J. McWilliams. The contin-
uing efforts to rationalize Large Eddy Simulation (LES), which is the most active
area of turbulence research, and the contributions of Doug in this respect are
reviewed and extended in the chapter by J. Wyngaard and that by C. Higgins,
C. Meneveau, and M. Parlange. As another example of the implementation of
Doug’s strategy, the chapter by C.-H. Moeng, B. Stevens, and P. Sullivan shows how
LES is being used to study basic problems pertaining to cloud-topped mixed layers.
The only chapter to deviate from this three-phase strategy is illustrative in that it
focuses on the history of a simple theoretical framework for studying a rich and com-
plex geophysical problem: the stratocumulus mixed layer. This framework, known
as mixed-layer theory, was developed by Doug and is reviewed in the chapter by
D. Randall and W. Schubert.

However, it remains the centerpiece of efforts to use numerical simulation to un-
derstand stratocumulus-topped boundary layers. As such, it reminds us that Doug’s
contributions to an emerging scientific methodology are probably no more than the
byproduct of a brilliant scientist searching to understand and explain phenomena.

Introducing the chapters in Part II, it is worth recalling that Doug did his Ph.D.
work on buoyant convection in 1959, when mesoscale meteorology had yet to
become a common term describing research on phenomena occurring on spatial
scales of less than approximately 1000 kilometers and time scales of less than about
a day [see Fujita, T. (1963). Analytical mesometeorology: a review. In Severe Local
Storms, Meteorological Monographs No. 27, 5, American Meteorological Society,
77–125, for the history of the term “mesometeorology”]. In non-technical terms,
mesoscale meteorology is the science of the weather phenomena that are directly
experienced by human beings. The examples of such phenomena are thunderstorms,
cold fronts, strong local winds, fog and rain, etc. Doug’s deep interest in and
enthusiasm for these weather phenomena have had such a great influence that it is
probably no exaggeration to say that mesoscale meteorology, as we know it today,
is largely his creation.

The science of mesoscale meteorology, as developed by Doug Lilly, was based
on the pursuit of innovative observational technologies, recognition of the vast
potential of computer simulations to aid in the interpretation and forecasting of the
small-scale weather systems and, finally, a skilled use of analytical theory. As both
scientist and scientific manager, Doug pursued all of these areas with great vigor
and, consequently, many of the things we take for granted today, such as computer
models of thunderstorms and aircraft measurements of mesoscale air motions, are
a direct consequence of his leadership.

In Part II we have included a broad selection of topics, to which Doug has
made fundamental contributions. He both pioneered simulations of atmospheric
convection through his early work and fostered its later development through to
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the experimental forecasting of individual thunderstorms. The chapter by J. Klemp
and W. Skamarock and that by J. Sun address recent advances in these respective
areas. Doug also made fundamental contributions through theory, modeling, and
novel use of observations to the understanding of how mountains affect weather and
climate; the chapter by R. Smith likewise addresses some of the newer findings in
that field. In mesoscale meteorology, Doug’s curiosity knew no bound, and he tried
his hand at just about everything in this area at one time or another. The chapter
by K. Emanuel tells the interesting tale of Doug Lilly’s influence on Emanuel’s
tropical cyclone research. Finally, Doug had the knack of recognizing a problem
before the rest of us knew it was a problem. Such was the case with explaining
the atmospheric energy spectra over a very large range of scales. The chapter by
K. Gage chronicles the evolution of this field, in which Doug’s original contribution
continues to play an important role.

As John Wyngaard stated in his response to the invitation to contribute to the
book, “Doug is not just another excellent scientist; he has changed the face of
modern small-scale meteorology.” Therefore, we expect that this book will be
of significant interest to the meteorological community all over the world. Fur-
thermore, since the book includes a variety of papers on fundamental aspects of
turbulence and convection, we also anticipate interest from engineers, fluid dynam-
icists, oceanographers, and environmental scientists. We hope that the audience
for the book will include researchers, university instructors, and first- or second-
year graduate students in the fields of atmospheric dynamics, turbulence modeling
and simulation, boundary-layer meteorology, air-pollution meteorology, convective
storms, mountain meteorology, ocean dynamics, and computational fluid dynam-
ics. Some operational meteorologists may be interested in reading the chapters on
downslope windstorms and convective storm modeling. The book may also be used
as a supplementary textbook for graduate courses in atmospheric turbulence and
mesoscale meteorology, as well as a research compendium in these two areas.

The editors of this book gratefully acknowledge the assistance of Katharine
Kanak and Bob Conzemius in editing the chapters and preparing figures for the
book, and the help of Mark Laufersweiler in managing electronic versions of the
book components. They are indebted to Katharine Kanak for the compilation of the
Appendices.

              

       



Douglas K. Lilly: a biography

Katharine M. Kanak

with recollections from
K. Bryan, J. Deardorff, K. Droegemeier, J. Kimpel, P. Lamb,

D. Lenschow, and J. Smagorinsky

Douglas (Doug) Lilly was born on June 16, 1929 in San Francisco, California.
He grew up on the San Francisco peninsula where, as he describes it, “there is
not much weather!” He states that he was interested in weather and the atmosphere
starting from his years in high school in California. The predominant cloud features
there were stratus decks that would come into the bay area, stay for a while, and
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2 Douglas K. Lilly: a biography

eventually break up. He used to borrow the family car to drive up hills to observe
these stratus decks. One might say this was his high school hobby.

Doug attended Stanford University and completed a Bachelor of Science degree
in Physics in 1950. At Stanford, he was a member of the rowing crew and of
the Naval Reserve Officers Training Corps (ROTC) program. From 1950 to 1953,
during the Korean War, he was on active duty in the Navy. He was stationed for a
while in Hawaii, and then later on a minesweeper off the coast of Korea.

After completing his military service Doug decided to pursue a graduate degree
in Meteorology. It was early in his graduate studies at Florida State University
(FSU) that Doug first met Judith (Judy) Anne Schuh, who would later become
his wife. She was pursuing a degree in Education with a minor in German. They
dated for one year and married on August 12, 1954 (the year Judy graduated) in
her home town Jacksonville, Florida. Their first child, Kathryn Elizabeth, was born
July 19, 1955 in Tallahassee, Florida. In this same year, Doug completed his Master
of Science degree in Meteorology at FSU. During their time living in Florida, and
driving back and forth between Jacksonville and Tallahassee, Doug was fascinated
with the tropical convection and spent a good deal of the rides with his head out of
the car window!

In 1956, Doug took a job with Radio Free Europe and the family moved to
Munich, Germany. His responsibilities there included prediction of wind directions
and weather conditions for the purposes of launching balloons with news pamphlets
into Eastern Europe during the early years of the cold war. This was a nice oppor-
tunity for Judy to perfect her German in which she had earned a minor in college.
Doug also learned German there and later also some French. During this year they
lived in the apartment of a retired opera singer.

In the summer of 1957, the family returned to Redwood City, California, where
their second child, Donald Roger, was born on July 31, 1957. The following year,
they returned to Tallahassee for one more year in order for Doug to complete his
Ph.D. in 1958 with Seymour L. Hess as his major advisor. The title of his dissertation
was “On the Theory of Disturbances in a Conditionally Unstable Atmosphere.” This
novel theoretical work was later published under the same title in 1960 in Monthly
Weather Review (Lilly, 1960).

After completing his Ph.D., Doug took a position as a Research Meteorologist at
the US Weather Bureau’s General Circulation Laboratory (GCL), a division of the
National Oceanic and Atmospheric Administration (NOAA) in Washington, DC
(predecessor to the NOAA Geophysical Fluid Dynamics Laboratory, GFDL). In
Washington, DC, Doug and Judy’s third child, Carol Susan, was born on August
18, 1959.

It was at GCL that Doug met and worked with Joseph Smagorinsky. During
that time, Doug contributed to some of the very earliest efforts towards numerical

              

       



Douglas K. Lilly: a biography 3

simulation of atmospheric convection. He developed a series of numerical tech-
niques and methods that are still used today. He also worked on laboratory studies
of vortices and convection, and, of course, on the theory of atmospheric convec-
tion. To this day, Doug considers Joe Smagorinsky as his most esteemed mentor
and respected friend Joe writes:

I first met Doug Lilly in the late 1950s. I was a very young laboratory director looking for
talent. Bob Simpson and Werner Baum talked to me about a brilliant, though brash, graduate
student at Florida State University who had not yet finished his thesis work. Doug Lilly’s
interests were in tropical meteorology and convection. This coincided with my intentions
to begin a modeling and simulation activity at the GCL.

I went to Florida to talk to Doug. It was one of the hottest spells of the year and I can
remember my introduction, the following morning, to grits. The scientific precedents to my
objectives were the work of Joanne Simpson of Woods Hole Oceanographic Institution and
Georg Witt of the University of Stockholm. The modeling of atmospheric convection at that
time was virtually non-existent, as it was in other domains of geophysical fluid dynamics,
such as climate, oceanography, hurricanes, mesoscale meteorology, and extended-range
weather prediction.

Doug agreed to take the job and came to GCL in 1959. He and Syukuru (Suki) Manabe
arrived within a few days of each other: two nascent superstars. Doug started by modeling the
boundary layer in today’s Large Eddy Simulation (LES) sense and then derived appropriate
parameterizations – something that hasn’t yet been done properly 40 years later. But Doug
did invent the essence of LES along the way!

Considering that Doug did his undergraduate work at Stanford, it was not too surprising
that he got a hankering to return to the West. Doug applied for a sabbatical to NCAR. The
country, replete with horses, was irresistible to Doug and his family. This was the beginning
of the end of the GCL phase of his career. Doug decided to make his stay at Boulder more
permanent. We missed his presence at GCL.

I can’t help thinking “this lanky kid came a long way, and some of it started here.”
(Joseph Smagorinsky, GFDL, Princeton)

Another colleague of Doug’s from his time at the GCL, Kirk Bryan, remembers:

I was one of a very small group of scientists who worked in GCL from 1950 to 1965. For
a brief period, Doug Lilly, Syukuru Manabe, and I all shared the same office. I remember
those years as one of the most intellectually stimulating periods of my life. At that time Doug
was working on the simulation of convection, but his interests extended far beyond that. He
had completely mastered what was then known about numerical methods and worked out
many original approaches to numerical simulation on his own. What little I have learned
about the subject is through him.

Lengthy scientific discussions during the day left little time for actual work at the office.
That was done after hours. Almost every day Doug would come in the office, looking
somewhat haggard, and we would spend two or three hours at the blackboard going over
the problem he had “solved” or “almost solved” the previous night.

We would spend hours dissecting each lecture given at the Laboratory. Doug was very
quick to penetrate to the essential ideas. This was not easy to do in those days, because
geophysical fluid dynamics was still in a very rudimentary state. This is what has made him

              

       



4 Douglas K. Lilly: a biography

an inspiring teacher and mentor to many coming into the field. In a sense, I consider myself
one of his first students.

(Kirk Bryan, GFDL, Princeton)

In 1964, Doug took a position as a Senior Scientist at the National Center for
Atmospheric Research (NCAR) in Boulder, Colorado. Not long after the family
moved to Boulder, construction was started on the NCAR Mesa Laboratory, which
was completed in 1966. Doug and his colleagues referred to the Mesa Laboratory
as “Mount Olympus: Home of the Gods,” which seemed appropriate due to the
building’s impressive nature.

In 1966, the Lilly family moved to a home east of Boulder. A few years later
they had an anemometer mounted outside the house with the recorder indoors in
order to measure the wind speeds at the house. Doug’s daughter Carol recounts that
the instrument had its own graph and red ink, and that three kids loved to watch it
recording wind speeds during the severe wind storms, which were common in the
lee of the Rocky Mountains.

At some point, the kids became aware that their father was becoming renowned
as a meteorologist. He would appear on television occasionally, but he was always
“low key,” just as he is today – modest about his achievements. At one time the
interviewer asked Doug what the wind was going to do this year, and his simple
chuckling response was: “Blow!”

Doug loved his work and he worked all the time. After coming home from the
office, he would eat dinner and then sit in an easy chair, writing on his lap from
about eight until midnight. Even today, this is his preferred method of working.
Anyone who knows him can visualize him with his simple thin spiral notebook
(nothing fancy for elegant equations!) and a pencil. His constant working was a
source of amusement to the children and their friends. They would come in the
house, all pass by him and say “Hello, Dr. Lilly” one after another, and then giggle
upstairs because he never even looked up! Carol says he was also a wonderful role
model in finding work that he loved so much.

Doug’s career is distinguished by his broad range of interests and abilities,
but it might be said that stratocumulus clouds were, and still are, his favorite
topic. While at NCAR in 1968, he published a seminal paper on stratocumulus
clouds in the Quarterly Journal of the Royal Meteorological Society (Lilly, 1968).
It is remarkable that much later, in the 2000s, Doug has again returned to stra-
tocumulus (Lilly, 2002a, b; Stevens et al., 2003) and is writing a book on the
topic.

Whilst at NCAR, Doug also began to conduct laboratory and observational
studies with Jim Deardorff and Don Lenschow. He did work on turbulence
in the atmospheric boundary layer and in the stratosphere, and also became
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Doug Lilly in the mid 1960s at NCAR speaking about two-dimensional turbulence.

interested in predictability and numerical simulation of turbulence. Jim Deardorff
writes:

Around the time that Doug joined NCAR, in the early 1960s, I was getting started in
the numerical simulation of two-dimensional thermal convection. Doug showed me how
to finite-difference the vorticity and thermal-diffusion equations so as to conserve kinetic
energy and temperature variance in the absence of sources and sinks, and helped direct me
to references on the subject, which had already started to appear in the literature. His papers
in Tellus (Lilly, 1962) and in Journal of the Atmospheric Sciences (Lilly, 1964) were of
great help to me.

After I started to realize the advantages of utilizing the equations of motion directly, along
with the thermal-diffusion equation, it was Doug who showed me how to use a “staggered”
grid system for the velocity components in a manner that would conserve kinetic energy
and avoid non-linear computational instability. We in Doug’s group (I think NCAR had
developed a small-scale group by then which he had agreed to head), could count on him
to keep up on the latest developments in our fields of interest, and he had acquired an
understanding of Arakawa’s (1963) pioneering work along these lines at an early stage.

In the 1960s, Glen Willis and I were busy pursuing turbulent thermal convection in the
laboratory, in which Doug was quite interested, and we were making frequent observations
of the rate of increase in the height of the turbulent layer through the process of penetrative
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convection and entrainment. Doug already had a decent understanding of this process,
through his studies of the work of Turner and others, and could explain it to us along with
the expectation that the magnitude of the downward heat flux in the entrainment region
would be some fraction of the upward heat flux at the surface. His input here was too
valuable for him to avoid being a co-author of our paper on laboratory investigation of
non-steady penetrative convection (Deardorff et al., 1969).

After computing power had increased to the point where it was conceivable to study
turbulence in three dimensions, in the late 1960s, the problem arose of how to simulate the
dissipation of turbulent kinetic energy cascaded to scales too small to represent explicitly.
Doug was very well acquainted with J. Smagorinsky’s work on this subject, and was very
helpful in advising me on how to apply Smagorinsky’s method to small-scale turbulence.
Doug had already done his own research on this problem, and so could recommend a
coefficient of proportionality between the magnitude of the subgrid-scale eddy coefficient
and the resolvable strain rate.

By the 1970s, my interests had turned towards the atmospheric boundary layer and its
turbulence. In so doing, it soon became clear that results from numerical integrations would
be of greater value if the physical quantities involved were made non-dimensional. Here
Doug’s input was quite helpful to me for pointing out the use of the boundary-layer height
to scale all lengths, even though that height could increase with time within the calculations.
His interest in, and knowledge of, Ekman instability alerted me on what to look for in the
roll-like structures that emerged from the numerical calculations for neutral and slightly
unstable planetary boundary layers.

In the mid 1970s my interests turned towards the stratocumulus-topped planetary bound-
ary layer, partly as a result of Doug’s earlier study on this topic (Lilly, 1968). It had taken
quite a while for his work on this to sink into my consciousness, but with Doug on hand
to explain, from time to time, how radiative cooling from the tops of stratocumulus clouds
helps drive the turbulence, I was able to make my own contribution to this topic in 1976
(Deardorff, 1976).

Throughout the time period that Doug and I were both at NCAR, our group frequently
benefited from the visiting scientists that he invited there to give a talk and discuss mutual
interests. Needless to say, Doug’s influence within various fields of atmospheric science
has continued to be contributory in all respects.

(James Deardorff, Oregon State University)

Doug’s observational work of that time was focused on mountain waves and down-
slope windstorms. His paper with Joe Klemp on wave-induced downslope winds
(Klemp and Lilly, 1975) was awarded an “Outstanding Publication Award” from
NCAR. Don Lenschow recalls:

I first met Doug when I applied for a position at NCAR as a student nearing graduation,
in 1965. He had heard from Jim Telford, who was then at Commonwealth Industrial and
Research Organisation (CSIRO) in Australia, but making plans to move to the US, that it now
seemed possible for the meteorological community to take advantage of new technology
that would allow direct measurements of mesoscale air motions from aircraft. He saw
in my ‘résumé’ that I had worked on the development of an air-motion sensing system
on an aircraft, and hired me to help bring this technology to NCAR. He supported the
development of INS-based (inertial navigation systems) air-motion sensing platforms on
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aircraft at NCAR, well before others in the community recognized their capabilities and
applications (e.g. Lilly and Lenschow, 1974).

He also recognized limitations in other observational capabilities at that time that needed
to be addressed in order to make definitive tests of hypotheses for explaining the behavior
of the atmosphere. He encouraged the development of new instruments, for example, to
measure temperature in clouds, and high-rate temperature and humidity for eddy fluxes in
the boundary layer. He worked with NCAR and NOAA scientists on the development and
deployment of Doppler radars for studying motions in convective clouds. He experimented
with constant-level balloons for following air motions over the Rocky Mountains. He worked
on deploying chaff from aircraft for use as radar targets to study air motions. He had a
keen appreciation of the importance of technological developments in providing the tools
needed for model verification and improvement, and helped to implement them at NCAR.
His support led to systems that were at the cutting edge of the field and to many important
research results from observational programs.

The first field program that I recall in which I participated with Doug was a marine stra-
tocumulus study. In the late 1960s, after completing his seminal cloud-topped mixed-layer
paper, he carried out a small-scale Queen-Air based field program flying out of Coronado,
California to take measurements in the marine stratocumulus. Although I do not recall any
published results from this study on stratocumulus, it did provide the basis for later ob-
servational studies, in terms of gaining an understanding of what this regime looked like,
and how to deploy an airplane instrumented for turbulence measurements (and also ozone).
Later, he worked with Wayne Schubert in deploying the NCAR Electra in the first large-
aircraft deployment in the marine stratus regime. That program led to several publications,
for example by Wakefield and Schubert (1976), and Brost et al. (1982a, b), that helped to
understand this regime.

Doug had a long-term interest in studying flow over mountains – in particular the weather
regimes over the Front Range that led to the wintertime Boulder wind storms. He carried out
a series of airborne observational studies, including the 1970 Colorado Lee Wave Observa-
tional Study (Lilly et al., 1971), and played a central role in organizing and implementing
the Wave Momentum Flux Experiment (WAMFLEX). Some of the events were quite re-
markable and intense (e.g. Lilly and Zipser, 1972). Over the years, he employed the NCAR
Sabreliner, Buffalo, and Queen Air aircraft, as well as a WB57-F, a high-altitude military
aircraft. These studies took advantage of the research platforms that he played a role in
developing at NCAR and provided the observational basis for many modeling studies of
mountain waves and downslope winds.

(Don Lenschow, NCAR, Boulder)

In the early 1980s, Doug became interested in severe supercell convective storms. In
this area, his main collaborators were Joseph Klemp, Rich Rotunno, and Tzvi Gal-
Chen. Along with Tzvi Gal-Chen, Doug served as editor for a book on mesoscale
meteorology (Lilly and Gal-Chen, 1983).

About this same time, Doug started thinking it might be time for a change in
career. In 1982, Doug and Judy visited the School of Meteorology of the University
of Oklahoma (OU) and decided to move to Norman to experience university life.
They did so along with Doug’s long-time friend and collaborator, Tzvi Gal-Chen,
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and his family. I recollect Doug’s mentoring during my years as a student
at OU:

In 1984 I was an undergraduate and had the privilege of being in Doug’s first Physical
Meteorology class. I always enjoyed and appreciated his comments on my papers. He had
an ability to look beyond standard measures to find the unique strengths of each of his
students.

I graduated and went to the University of Wisconsin–Madison for graduate school.
However, I did return to Oklahoma for my Ph.D. work and to my great honor, Dr. Lilly
accepted me as his graduate student. He was an outstanding mentor, and he was never
condescending. He challenged me to reach for more from myself. Sometimes he would
ask me questions quite casually about our research and I would answer (smiling to myself)
knowing that he knew the answer and was just testing me. Doug never made an ordeal of
evaluating me.

He taught me to be a scientist by example. I watched him think and watched care-
fully how he approached problems. I saw that he always attended seminars and spent
significant time in the library reading the latest articles. He has an encyclopedic mem-
ory, an insatiable curiosity and never ever accepts anything as true just because someone
says so.

He never pushed deadlines or hurried the work. In fact, he was meticulous and deliberate
in research. This was very important; the most accurate answers in science cannot be
forced to reveal themselves and he recognized this. He also directed me to uphold the
highest possible standards of objectivity in science. He taught me how to write and to
choose my words carefully. Through his guidance, I learned patience, persistence and
determination. Articles we co-authored were never submitted until they were in the finest
form we could achieve. I sometimes became impatient with this, but I later understood, when
the review process was smooth, why he insisted on continuing to refine the manuscript prior
to submittal. He used to call those peer reviews “softballs.”

One other time, when I did not initially understand his reasoning, was when he wanted
me to publish my dissertation paper before completing the dissertation. I did not fully realize
at the time that I had stumbled onto something new and he helped me to get it published
quickly. I look back over my doctoral research mentorship and I see he almost always was
two–five (or more) steps ahead of me and I never knew it. In fact, Doug did not look at
things in “steps,” or in a linear sequential manner at all. I believe that he viewed things in full
pictures and saw the full three dimensions of everything. He was excellent at gentle steering.
His approach was to lead a student half-way across the river and wait on the other side for
him/her to cross the other half, perhaps with a little coaching here and there. His scientific
philosophy was that no scientific topic or question is without merit. He always supported
“science for science sake” and topics without direct applications, that is, fundamental basic
research. Doug was not one to hand out compliments easily. Therefore, when one received
one, it really meant something and he was genuinely sincere.

(Katharine Kanak, CIMMS, Norman)

In 1986, Doug was awarded one of OU’s highest honors, the George Lynn Cross
Research Professorship. From 1992 to 1995, he held the Robert Lowry Endowed
Chair in Meteorology at OU, which was at the time the first endowed chair in
Meteorology/Atmospheric Science in the United States.
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Doug Lilly (left) together with Edward Lorenz in front of the old CIMMS building
in Norman.

In 1987, Doug became the Director of the OU Cooperative Institute for Mesoscale
Meteorological Studies (CIMMS). During that time he published a series of papers
on the numerical simulation and predictability of thunderstorms. He worked on the
novel applications of helicity concepts to modeling of severe thunderstorms and on
cirrus outflow dynamics. He also maintained his work in atmospheric turbulence
and two-dimensional turbulence as applied to atmospheric mesoscale flow motions.
Additionally, he was involved in laboratory work on simulation of atmospheric
vortices. Current Director of CIMMS, Pete Lamb recalls:

From my arrival at OU in August 1991 until Doug stepped down as CAPS Director in the
summer of 1994, I had the good fortune to occupy an office relatively adjacent to Doug’s
office. The “outer office” between us housed support staff, some of whom we shared for
a couple of years. So, I was fortunate to interact with Doug on an almost daily basis for
three years. On two or three days each week, Doug would appear in my office around
5 p.m. to reflect for 10–20 minutes on the various states of CAPS, CIMMS, Meteorology
in general, OU, NOAA, the American Meteorological Society (AMS), the United States,
. . . , and the World. I am sure Doug’s initial visits had two motivations – to make me feel
welcome and (because of his interest in other people) to see what made me “tick.” Because
of Doug’s encyclopedic interests, anything could be discussed during these visits. When
Doug stopped by my office, it was part of a “one–two” Gal-Chen/Lilly “combination,” since
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Tzvi invariably stopped by about 45 minutes earlier for essentially the same purpose. These
late-afternoon visits were entirely natural because high among Doug’s and Tzvi’s most
important pastimes was a strong interest in their colleagues’ well-being and work, free-
ranging thought, conversation, and debate. Doug’s relinquishing of the CAPS Directorship
led to him moving to another office several floors up in our building, after which I saw much
less of him, unfortunately.

Doug was always very supportive of his current colleagues and keenly assessed the
accomplishments and potential of possible future colleagues. Doug’s mode of operation
during faculty searches was a model for younger colleagues. Looking over applicants’
Curriculum Vitae was just a start, to be followed by reading of some of their papers, a trip
to the main University Library to consult the Science Citation Index to assess the impact of
the papers, asking questions at candidates’ seminars even for presentations outside of his
areas of specialization, and often interviewing them informally, like when he was driving
them around Norman and vicinity. Several of us learned the value (and weaknesses) of the
Science Citation Index from Doug.

In 1993, Doug received the prestigious Symons Gold Medal from the Royal Meteoro-
logical Society (RMS) at their end-of-year meeting in London. Before he left for London
there were ruminations about what he would say in the short presentation he had been asked
to give to the “Meteorological Dining Club” at a dinner following the RMS meeting. The
Club, a group of especially accomplished RMS members, has a strict “anything but religion
and politics” rule for these short presentations. Doug chose to speak on the development of
scientific computing during his career, and when he returned he ventured that it had been
well received.

An especially revealing incident occurred when he first came into the office after that
trip. When I happened to cross paths with him in our outer office very soon after his arrival
that day, I inquired somewhat cavalierly “well Doug, where is the medal?” Much to my
surprise, he promptly obliged by producing it from his pants’ pocket. Carrying it around
there was not a trivial exercise, given that the medal was neither small nor light. Clearly,
Doug was appreciative of, and comfortable with, the recognition signified by the medal, and
suspected that his office staff and scientific colleagues would like to see it. Indeed we did!

(Peter Lamb, CIMMS, University of Oklahoma, Norman)

Doug became Director of the OU Center for the Analysis and Prediction of Storms
(CAPS) in 1989. Along with Kelvin Droegemeier, Doug wrote one of 11 out of 330
proposals for a Science and Technology Center that was funded by the National
Science Foundation. During his time at CAPS (1989–94), he was involved in many
studies of severe storms and techniques to improve their simulation, including four-
dimensional data assimilation and the impacts of convective storm helicity on its
predictability. Kelvin Droegemeier writes:

I recall Doug Lilly casually walking into my office during spring, 1988, carrying a four-
page request for proposals issued a few days earlier by the National Science Foundation.
Describing it as perhaps the best such solicitation he had ever seen, Doug hinted that we
should pursue the opportunity. In Doug’s classic style, he never organized any sort of formal
meeting regarding the NSF solicitation, but rather began writing a vision document, that
he shared with me in hard copy, on retrieving the unobserved components of the radial
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wind field from a single Doppler radar. I responded by beginning to pen a vision for a
numerical prediction system that could make use of such information, and that would be
based upon dynamically adaptive grids and new finite volume solution techniques. It was
at this time I began to recognize and appreciate Doug’s unique and almost artistic writing
style. We submitted the proposal in 1988 and later that year were notified that we had
succeeded. As Doug later commented, we “shot the bear and now had to drag it out of the
woods.”

Looks of “so what do we do about that” often bounced back and forth between me and
Doug during the frantic start-up period. And, of course, I began to know Doug more fully
as I now worked with him on a nearly daily basis. Those who also know Doug realize
that he is a highly creative individual – an abstract, random thinker as Jeff Kimpel later
would explain to me – and does not enjoy or even wish to be associated with management,
particularly involving money! Indeed, Doug once remarked that he managed activities by
passive neglect! Thus, although the first year of CAPS’ budget was a whopping $900K –
smaller than for all other such centers but quite large compared to anything either Doug or
I had seen – our rate of spending quickly exceeded the funds available! Had Doug viewed
this as a theoretical fluid dynamics problem he no doubt would have quickly appreciated
our predicament!

I have to admit that Doug frustrated me during those early years, as he did members of our
external advisory and site visit panels, because he was interested in doing science and not
seeing the administrative picture of what CAPS could achieve as a national center. Before
long, however, I began to appreciate this substantive aspect of Doug as the consummate
scientist and thinker – as an individual who looks at a problem from every conceivable
angle, and who must work unencumbered by the clutter and demands of bureaucracy. In
that regard, I can best describe Doug as the type of scientist whom everyone wants to be
around, and who draws the best out of everyone without showering praise. Perhaps this is
my most enduring memory of him.

As a faculty colleague, Doug offered keen insight into challenging problems ranging
from the qualifying examination to university parking! I recall how he mentored his grad-
uate assistants in a very personal way, often providing individual lectures and tutorials on
especially challenging topics. He was very tough on students, but those who understood the
rigors of research appreciated it. Doug was not a conventional teacher, but rather lectured
freely, often in the classic disorganized Doug Lilly style, reading from a spiral notebook
and wondering how he obtained the indicated result – all the while scratching his head
and laughing out loud. Yet there is no doubt that students who got 1% of what Doug
Lilly had to offer reaped greater benefit than those who received 200% from most other
faculty.

Words are inadequate to express the fondness I have for Doug Lilly – who without saying
so indicated the extent to which he cared about others and appreciated their contributions.
To say he is rare would be woefully inadequate. To say that he had a profound and enduring
positive impact on the study of the atmosphere – and on untold people who were fortunate
to share in his professional and personal life – gets a bit closer.

(Kelvin Droegemeier, CAPS Norman)

In 1995, Doug formally retired as Professor of the School of Meteorology. Nev-
ertheless, because of his commitment and dedication to his graduate students, he
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stayed on to make sure his current students had completed their degrees. In his re-
tirement, he took a part-time position as a Distinguished Senior Research Scientist,
National Severe Storms Laboratory (NSSL), NOAA (from 1997 to 2002). Current
Director of the NSSL, James Kimpel writes:

Doug came to the University of Oklahoma in 1982 without participating in the search
process required to fill faculty positions. When I called to invite him for an interview, he
said that he and Judy had already interviewed us! Months earlier they had visited Norman
and the department on their own time and nickel. An understanding Provost, J. R. Morris,
allowed us to hire him anyway. Doug had interviewed at five or more other universities.
The University of Oklahoma is indeed fortunate that he chose us. Even before his arrival in
Norman, Doug persuaded the late Tzvi Gal-Chen to join him at OU. Together their intellects
underpinned the OU School of Meteorology’s march, from simply a meteorology program,
toward one of national prominence.

Doug said he came to a university so that he could leave behind academic progeny, i.e.,
little Doug Lillys. In this he succeeded having produced twelve Doctoral and six Masters
graduates. During the Lilly years, the graduate student population could be divided into two
camps; those who sought out Doug for advice on their research, and those who did their
best to avoid him. The latter category of students prayed nightly that Doug, and especially
Doug and Tzvi together, would not show up at the required departmental seminar or at the
final defense of their thesis or dissertation.

Formal classroom teaching was not Doug’s strong suit. He once remarked that teaching
was hard work. He said it was like preparing and giving a seminar every day. It is difficult
to understand why Doug was not an outstanding lecturer since his writings are so brilliantly
lucid. Perhaps his capacity for abstract and random thought clashed with the concrete
and sequential style of lectures preferred by most students. He responded by changing his
approach to teaching toward using problem-solving exercises, student-led seminars and
group projects and this was successful.

As a university faculty member, Doug took his service responsibilities seriously. Doug
shouldered his share of the work and usually served with distinction and passion. He demon-
strated loyalty to the School and the University. In later years Doug refused much deserved
salary increases, saying that his junior colleagues needed it more. Also, he anonymously
donated funds he garnered through awards and honoraria to the OU Foundation to support
various student programs.

As was his style at NCAR, Doug would sometimes pepper university and national admin-
istrators with succinct, poignant memoranda on issues he felt strongly about. Usually Doug
would receive a courteous response. On occasion these memoranda were misinterpreted
as criticism, or worse as personal attacks. Similarly, Doug was often asked to evaluate the
scientific credentials of others for tenure and promotion at universities and national labo-
ratories. Doug would respond with brief, to the point replies, sometimes consisting of only
half a page. He felt honor bound to point out a candidate’s weaknesses no matter what
considerable strengths he or she might possess. Fortunately, Doug often closed out these
evaluation letters with a sentence ranking the candidate among others in the field. He named
names. This was used to gain positive tenure and promotion decisions in cultures where
recommendations were combed for damning with faint praise evidence in order to make
the appropriate decision.
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Shortly after retiring from the University of Oklahoma, Doug came to the National Severe
Storms Laboratory as a part-time employee with CIMMS. At NSSL he interacted with the
twenty plus graduate students and scientific staff on the NOAA Campus. He energized
the Friday morning seminars and spent considerable time in NSSL’s small library reading
current journal articles. We miss you Doug. We can only hope that your passion for science
and life, your good humor, and your instinct for righting all the wrongs in the world continue
here in Oklahoma, à la Don Quixote, with us, your academic progeny.

(James Kimpel, NSSL, Norman)

In 1999, Doug was elected to the National Academy of Sciences (NAS), and he
received his membership in an award ceremony in April 2000. He was the first
scientist from Oklahoma to receive this great honor. According to statements by
the Academy, it is a private, non-profit, self-perpetuating society of distinguished
scholars engaged in scientific and engineering research, dedicated to the furtherance
of science and technology and to their use for the general welfare. Upon the authority
of the charter granted to it by the Congress in 1863, the Academy has a mandate
that requires it to advise the federal government on scientific and technical matters.
Election is considered one of the highest honors that can be accorded a scientist.

Doug remains fully active in meteorology (and probably always will) and has
recently published two papers in the Journal of the Atmospheric Sciences (Lilly,
2002a, b). In addition, he participated in the Dynamics and Chemistry of Marine
Stratocumulus (DYCOMS-II) field program in Summer 2002 and is an author on a
paper that describes the experiment (Stevens et al., 2003).

During his career, Doug traveled extensively, attending conferences all over the
United States and the world. He also spent longer periods of time abroad teaching,
conducting research, and collaborating with colleagues in Germany, France, United
Kingdom, Australia, Russia, and China.

On October 15, 2002 Doug and Judy moved to join their daughter Carol and her
family in Nebraska. He has become affiliated with the Physics Department at the
University of Nebraska–Kearney. They will be greatly missed by the Oklahoma
Weather Center community.

Doug’s broad interest in many topics is also present in other areas of his life
besides meteorology. He loves hiking, skiing, swimming, bird-watching, garden-
ing, building kit houses, and studying any new thing, from winemaking to wild
mushrooms. He loves all animals and loves raising horses. Doug is a person that
breathes in all of life and seems to accept and understand the beauty and necessity
of its imperfections.
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Changing the face of small-scale meteorology
John C. Wyngaard

Department of Meteorology, Penn State University, University Park, USA

1.1 The foundations of large-eddy simulation

The first example of what is today called large-eddy simulation, or LES, is generally
taken to be Deardorff’s (1970) calculation of turbulent channel flow. Considering
it an application of an approach used by Smagorinsky et al. (1965) for calculation
of the general circulation of the atmosphere, Deardorff referred to it by the less
elegant term “three-dimensional numerical modeling.” He credited Lilly (1967)
with determining its subgrid-model constants through Kolmogorov’s (1941a, b)
theory of the inertial subrange in three-dimensional turbulence.

Today LES is a dominant tool in turbulence research. Like our other turbulence
tools it is imperfect, but it has provided a generation of researchers with insight
into turbulence properties that are otherwise all but inaccessible, particularly in
geophysical flows.

1.1.1 Frustration in the turbulence community

It is intriguing to view Lilly’s early contributions to turbulence in the context of
the community mood in the early 1960s. According to Moffatt (2002), a “sense of
frustration” afflicted G. K. Batchelor and many others at that time:

These frustrations came to the surface at the now legendary meeting held in Marseille (1961)
to mark the opening of the former Institut de Méchanique Statistique de la Turbulence
(Favre, 1962). This meeting, for which Batchelor was a key organizer, turned out to be
a most remarkable event. Kolmogorov was there, together with Obukhov, Yaglom, and
Millionshchikov . . . ; von Karman and G.I. Taylor were both there – the great father figures
of prewar research on turbulence – and the place was humming with all the current stars of
the subject – Stan Corrsin, John Lumley, Philip Saffman, Les Kovasznay, Bob Kraichnan,
Ian Proudman, and George Batchelor himself, among many others.

C© Cambridge University Press 2004
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18 Changing the face of small-scale meteorology

One of the highlights . . . was when Bob Stewart presented . . . the first convincing measure-
ments to show several decades of a κ−5/3 spectrum and to provide convincing support for
Kolmogorov’s (1941a, b) theory . . . . But then, Kolmogorov gave his lecture, which I recall
was in the sort of French that was as incomprehensible to the French themselves as to the
other participants. However, the gist was clear: He said that . . . Landau had pointed out to him
a defect in the theory . . . . Kolmogorov showed that the exponent (−5/3) should be changed
slightly and that higher-order statistical quantities would be more strongly affected . . . .

I still see the 1961 Marseille meeting as a watershed for research in turbulence. The very
foundations of the subject were shaken by Kolmogorov’s presentation; and the new ap-
proaches . . . were of such mathematical complexity that it was really difficult to retain that
essential link between mathematical description and physical understanding, which is so
essential for real progress.

Given that Batchelor was already frustrated by the mathematical intractability of turbulence,
it was perhaps the explicit revelation that all was not well with Kolmogorov’s theory that
finally led him to abandon turbulence in favor of other fields.

On October 21, 1961, seven weeks after the close of the Marseille meeting,
the journal Tellus received one of Doug Lilly’s first papers, “On the numerical
simulation of buoyant convection” (Lilly, 1962). Its introductory section discusses
“numerical experiment,” a new and promising approach to turbulent-flow analysis:

The application of numerical experimentation to physical theory is generally justifiable only
when more concise analytic methods have been unproductive or have reached apparent
limits of usefulness, but these conditions seem to prevail in the field of turbulent fluid
mechanics . . . . When the scale and energy of a system become so large that it may be
considered turbulent . . . we enter a region rather poorly explained by previously available
theoretical methods.

Lilly cited the advances in the understanding of turbulence that had come through
theoretical analysis and experimental work, referencing Batchelor’s (1953) mono-
graph. But, he wrote:

. . . no real unifying theory exists to relate these (results) from one experimental geometry
to another . . . . It should be possible to demonstrate that numerical integration of a single
set of differential equations (not necessarily including the unmodified Navier–Stokes equa-
tions) . . . can yield solutions corresponding to various experimental phenomena, such as
jets, puffs, wakes, and convective bubble- and plume-like thermals. Such a demonstration
cannot by itself provide the desired unifying theory. The detailed statistics of the numerical
solutions may, however, aid in its formulation, and in any case these statistics must provide
a crucial test of such a theory, as for example, Phillips’ (1956) numerical experiment aided
in verifying modern theory of the atmospheric planetary circulation.

Lilly then presented a bold, three-phase “plan of attack:”

1 Develop flexible and computationally well-behaved numerical models for simulation of
a large class of fluid motions;

2 test the detailed behavior of these models by means of experiments comparable with and
verifiable by results of significant physical experiments; and
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3 try to extend the results or generalize the models to include conditions not adequately
reproducible by experiment.

This was a striking departure from conventional thinking. It was also remarkable
in its timing, appearing on the heels of the frustration emerging from the Marseille
turbulence conference. This was evidently coincidental. At this time Lilly’s fluid-
mechanical environment was meteorological; he had a position in the General
Circulation Research Laboratory of the US Weather Bureau. He did not attend the
Marseille meeting.

Today much, if not most, “experiment” in small-scale meteorology is numerical
experiment. It is carried out to a limited extent via direct numerical simulation
(DNS), the numerical simulation of all scales of motion in a turbulent flow. Most is
done through (1) large-eddy simulation (LES), in which only the energy-containing
range of the turbulence is resolved; and (2) mesoscale modeling, in which little or
none of the turbulence is resolved.

1.1.2 Buoyant convection in two dimensions

Lilly’s first results are presented in the 1962 paper. Perceiving the option of a three-
dimensional numerical grid as “nearly unavailable for economic reasons,” he carried
out two-dimensional simulations of free convection at “low” resolution (15 × 30
grid squares) and “high” resolution (31 × 94) (Lilly, 1962). He characterized the
success of these simulations as “moderate” and attributed their limitations largely
to their two-dimensionality. He thought it advisable to continue as outlined in his
plan of attack and mentioned several steps along that path. A key step was the
“eventual development of a truly three-dimensional model.”

1.1.3 A basis for three-dimensional modeling of turbulent flows

Lilly’s (1967) paper “The representation of small-scale turbulence in numerical
simulation experiments” provides a wide-ranging discussion of simulation issues
and a remarkable set of prescriptions for their solution, some of which have yet
to be fully explored. Its introduction contains his perspective on the history of the
“direct numerical integration of the hydrodynamic equations:”

With some important exceptions . . . numerical simulation has been most frequently and suc-
cessfully applied in the areas of large-scale meteorology and high-speed aerodynamics. The
problems in these two fields . . . share the properties that they are typically two-dimensional,
or nearly so, and that turbulence is either unimportant or that it can presumably be treated
by fairly crude approximations. These two properties greatly simplify the numerical simu-
lation problem, but they eliminate from consideration most other fluid dynamics problem
areas . . . . In the fully three-dimensional flows, however, the interaction from the energy
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producing scales to those of molecular dissipation occurs in a direct and continuous process
and there is no convenient scale which one may choose to separate motions of qualitatively
different kinds.

He mentioned that Corrsin (1961) had stressed the futility of direct numerical
solution of the equations of motion in even modest-Reynolds-number laboratory
flows. Since geophysical Reynolds numbers are even larger, Lilly said, “we may
dismiss such complete simulation as hopeless.” He called for a more critical ex-
amination of “the mechanics of turbulent exchange” to see whether it is possible
to simulate in an approximate way some of the important effects of (1) three-
dimensionality and (2) molecular viscosity and diffusion, without computing them
in full detail.

Previous two-dimensional simulations of turbulent convection, including his own
1962 effort, Lilly wrote, “failed to show any structures that could be identified with
the irregularity and high-amplitude turbulence characteristic of the real world . . . .”
Several others had also found two-dimensional numerical simulations of turbu-
lence “partially unsatisfactory” as surrogates for three-dimensional turbulence. He
discussed previous attempts to remedy this, including the use of a “sandwich” of
three computational planes, rather than one plane, and adding random turbulence
energy to two-dimensional computations. While neither was fully satisfactory, a
“suitable justification or generalization of such quasi-three-dimensional models
would represent a tremendous breakthrough.”

These attempts to simulate three-dimensional turbulence in two dimensions
might seem surprising today, given the strong dynamic and structural differ-
ences between two- and three-dimensional turbulence. But the computers of that
time could do two-dimensional problems with no more than about (50–75)2 grid
points, and three-dimensional ones up to about (20)3. Meaningful 3D calcula-
tions of real-world turbulence still awaited the development of much larger, faster
computers.

Lilly (1967) then mentioned the “modern turbulence theory” based on
Kolmogorov’s (1941a) notion of an inertial range of the three-dimensional turbulent
energy spectrum E(κ). Using the equations from Lilly (1967) with their original
numbers preceded by an “L”, we have:

E(κ) = αε2/3κ−5/3, (L 1.5)

with α a universal constant. The results that Stewart presented in Marseille in
1961 had now appeared in print (Grant et al., 1962), and Gibson (1963) also had
found an inertial range in a much lower (but still high) Reynolds number laboratory
jet. These data showed a κ−5/3 inertial range separating the large-scale, energy-
containing eddies from the much smaller-scale, dissipative ones, as Kolmogorov
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predicted. Lilly then wrote:

We now suggest that the existence and relatively simple properties of the inertial range
might be used to greatly truncate the otherwise impossibly large requirements of computer
resolution. Let us assume that the simulation equations are integrated for variables defined
and resolvable in a scale range which includes most of the kinetic energy, and that the scale
of the calculation mesh lies within the inertial range. It should then be possible to fit the
explicitly calculated motion fields to the inertial range in a smooth and consistent manner.
The fitting conditions would require a continuous removal of energy from the small-scale
explicit motions such that (L 1.5) is maintained.

After discussing and rejecting one possible “fitting procedure,” he added:

A more physically acceptable procedure is suggested by consideration of the local interac-
tions between the explicit scale motions and those of the submesh length scales. The latter
cannot be known in detail, but certain statistical probabilities can be established with the aid
of the Kolmogorov spectrum function. In the following, I will describe a first and second
order theory for the interactions. Most of the detailed derivations and analysis are available
in an unpublished report (Lilly, 1966). For simplicity, the results are presented here for the
case of an incompressible constant density fluid.

We shall sketch his approach here, again using his equations from Lilly (1967).
The dependent variables are averaged over the grid-mesh volume (considered

for simplicity to be a cube of side h), the averaging denoted by an overbar:

F(x1, x2, x3, t) = 1

h3

∫ h/2

−h/2

∫ h/2

−h/2

∫ h/2

−h/2
F(x1 + y1, x2 + y2, x3 + y3, t) dy1dy2dy3.

(L 2.1)

In mesoscale modeling one can also use an ensemble average, but the spatial average
has the conceptual advantage that it allows mesoscale modeling to merge smoothly
with large-eddy simulation as h decreases.

The Navier–Stokes and continuity equations for constant-density flow are

∂ui

∂t
+ uk

∂ui

∂xk
+ ∂

∂xi

(
p

ρ

)
− ν

∂2ui

∂xk∂xk
= 0, (L 2.2)

∂ui

∂xi
= 0. (L 2.3)

Averaging these equations over the grid-mesh cube produces

∂ui

∂t
+ uk

∂ui

∂xk
+ ∂

∂xi

(
p

ρ
+ 2

3
E

)
− ν

∂2ui

∂xk∂xk
= ∂τik

∂xk
, (L 2.4)

∂ui

∂xi
= 0, (L 2.5)
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where τik is

τik = − (ui uk − ui uk) + 2

3
δik E . (L 2.6)

E is the kinetic energy of the unresolved motions per unit mass,

E = (ui ui − ui ui )/2. (L 2.7)

We shall write ui uk − ui uk = Rik, so Equation (L 2.6) becomes

τik = −
(

Rik − 2

3
δik E

)
,

the negative of the departure of Rij from its isotropic form; for that reason τik is
sometimes called a deviatoric stress.

The central problem here, Lilly pointed out, is to evaluate τij in terms of the
averaged quantities. Since the grid-mesh average commutes with differentiation
(away from boundaries, in the case of spatial derivatives (Ghosal and Moin, 1995))
one can write

∂ui u j

∂t
= ui

∂u j

∂t
+ u j

∂ui

∂t
,

which indicates how to derive the evolution equation for ui u j . The evolution equa-
tions for ui u j and E follow in similar fashion. Lilly’s equation for τij has the form

∂τij

∂t
+ uk

∂τij

∂xk
= 2

3
E

(
∂ui

∂x j
+ ∂u j

∂xi

)

−
[
τik

∂u j

∂xk
+ τjk

∂ui

∂xk
− 1

3
δijτk	

(
∂uk

∂x	

+ ∂u	

∂xk

)]

+ pressure − gradient interaction + divergence of fluxes
− rate of viscous dissipation. (L 2.8)

The evolution equation for E is

∂ E

∂t
+ ui

∂ E

∂xi
= divergence of fluxes + 1

2
τij

(
∂ui

∂x j
+ ∂u j

∂xi

)
− ε, (L 2.9)

with ε the rate of viscous dissipation per unit mass.
Lilly used the “simplest reasonable closure assumption,” an eddy-viscosity

model for τij:

τij = K

(
∂ui

∂x j
+ ∂u j

∂xi

)
= K Dij, (L 3.1)
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with the subgrid eddy viscosity K assumed to be positive and a function of the
averaged flow variables. He adopted Smagorinsky’s (1963) form

K = (kh)2 D/
√

2, (L 3.2)

with k a constant and D = (
Dij Dij

)1/2
. Lilly showed that (L 3.2) is consistent with

Kolmogorov’s inertial-range form (L 1.5) for scales near h provided that

k � 0.23α−3/4. (L 3.3)

In his “second-order theory” for τij Lilly used (L 2.8) and (L 2.9) in “nontrivial
but substantially simplified forms” that in steady, homogeneous turbulence yield
(L 3.1)–(L 3.3).

With this derivation Lilly provided the basis for what is now known as
“large-eddy simulation” (LES), a semantically precise term that originated in
the engineering community, which adopted it in the 1970s. As discussed by
Galperin and Orszag (1993), LES is used today in a host of geophysical re-
search applications including boundary-layer structure, turbulent diffusion, lo-
cal flows, severe storms, and oceanography. It is also widely used in engineer-
ing fluid mechanics research (Lesieur and Métais, 1996; Meneveau and Katz,
2000).

1.2 The mesoscale and LES limits

We now allow the averaging scale h to vary, subject only to the restriction that it be
much larger than the scale of the dissipative eddies so that the molecular-diffusion
terms in the resolvable-scale equations are negligible.

We shall call the case h � 	, with 	 the scale of the dominant turbulence, the
“LES limit.” Here the energy and flux-containing turbulence is resolved directly by
the averaged equation of motion (L 2.4), as sketched in Fig. 1.1. The case h � 	,
the “mesoscale limit,” is reached in mesoscale modeling. (Adding a Coriolis term
to (L 2.4) presents no complications, since that term is linear in velocity, so we
shall not indicate it explicitly.) In mesoscale modeling the grid-mesh element is
typically much smaller in the vertical direction than in the horizontal in order to
resolve some structure in the boundary layer. But since resolving three-dimensional
turbulence requires a grid mesh that is smaller than 	 in all three directions, even
with fine vertical resolution essentially none of the turbulence is resolved in the
mesoscale limit. The turbulence resides in the unresolved (also called subgrid-scale)
fields, as also sketched in spectral terms in Fig. 1.1.

In a flow that is statistically homogeneous in two directions (such as the bound-
ary layer over a uniform surface) spatial averaging with h � 	 corresponds, by
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k

f(k)

1/h 1/h1/

Figure 1.1. A schematic of the turbulence spectrum φ(κ) in the horizontal plane
as a function of the horizontal wavenumber magnitude κ . Its peak is at κ ∼ 1/	,
with 	 the length scale of the most energetic eddies. When the scale of the spatial
averaging is much larger than 	 we approach the mesoscale limit (left side) where
none of the turbulence is resolved. When the scale of the spatial averaging is much
smaller than 	 we approach the LES limit (right side) where the energy-containing
turbulence is resolved.

ergodicity, to ensemble averaging, and thus to time averaging in stationary con-
ditions. That allows one to use micrometeorological observations to determine
behavior in the mesoscale limit.

Equations (L 2.8) and (L 2.9) are the formal evolution equations for the deviatoric
stress τij and kinetic energy E of the unresolved motions in LES, in mesoscale
modeling, and for applications over the vast range of scales in between. They are
valid for all classes of filters used in LES codes. Even though in high-resolution LES
the turbulent kinetic energy and fluxes are carried almost entirely by the resolved
motion, the τij term in (L 2.4) remains important. It is an essential component of
the interactions that cause the cascade of kinetic energy and scalar variance from
the resolved to unresolved scales (Wyngaard, 2002). Thus, models of τij and E are
required also in the LES limit.

The development of LES and mesoscale modeling has taken place largely since
1967 and, it appears, largely independently in the two fields. Until recently their
spatial domains were nonoverlapping; the horizontal area of a typical boundary-
layer LES domain could fit within the horizontal grid-mesh square of a typical
mesoscale model. But computer power has grown to the point that very-fine-mesh
mesoscale modeling is approaching the scale range of coarse-resolution LES, i.e.,
h ∼ 	. As this happens a new issue emerges: the suitability of subgrid-scale turbu-
lence parameterization used in mesoscale models for operation in this scale range.
We shall discuss this next, beginning with the simpler case of a conserved scalar.
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1.3 The maintenance of subgrid-scale fluxes

1.3.1 A conserved scalar

The evolution equation for a conserved scalar c in a constant-density flow is

∂c

∂t
+ ui

∂c

∂xi
= γ

∂2c

∂xi∂xi
. (1.1)

The grid-mesh-averaged equation is

∂c

∂t
+ ui

∂c

∂xi
+ ∂ fi

∂xi
= 0, fi = cui − c ui , (1.2)

h having been assumed large enough to make the molecular destruction term neg-
ligible. fi is the subgrid-scale flux of the scalar.

Multiplying (1.2) by 2c and rearranging yields the equation for the evolution of
the squared resolved scalar:

∂c2

∂t
+ ui

∂c2

∂xi
+ ∂ (2 fi c)

∂xi
= 2 fi

∂c

∂xi
. (1.3)

The equation for the squared unresolved scalar is

∂(c2 − c2)

∂t
+ ui

∂(c2 − c2)

∂xi
+ ∂(ui c2 − ui c2 − 2 fi c)

∂xi
= −χ − 2 fi

∂c

∂xi
, (1.4)

with χ the rate of destruction of c2 through molecular diffusion. Evidently the final
term in (1.3) and (1.4) is the rate of transfer of squared scalar between the resolved
and unresolved scales.

Wyngaard et al. (1971) and Deardorff (1973) presented the evolution equation
for fi . In a constant-density flow it is

∂ fi

∂t
+ u j

∂ fi

∂x j
= − ∂ui

∂x j
f j − ∂c

∂x j
Rij

+ pressure-gradient interaction + divergence of fluxes. (1.5)

The first term on the right-hand side (rhs) is the rate of production of scalar flux
through the amplification and rotation of existing scalar flux by the velocity gradient;
it is the counterpart of the “stretching and tilting” term in the vorticity equation. The
second term on the rhs is the rate of production through the interaction of Reynolds
stress and the scalar gradient. The third and fourth terms are the rates of production
through interaction of c and pressure gradients and through spatial rearrangement,
respectively. The neglected molecular term is quite small in large-Reynolds-number
turbulence (Wyngaard et al., 1971). The role of sink for scalar flux then falls to
the pressure-gradient term; the simplest model for it is − fi/T , with T a time scale

              

       



26 Changing the face of small-scale meteorology

of the unresolved turbulence. A steady, homogeneous model of Equation (1.5) is
therefore

∂ fi

∂t
= 0 = − ∂ui

∂x j
f j − ∂c

∂x j
Rij − fi

T
, (1.6)

which implies the model

fi = −T

(
∂ui

∂x j
f j + ∂c

∂x j
Rij

)
. (1.7)

In the mesoscale limit we interpret the overbar as an ensemble average, which
we shall denote by brackets. Then with the classical decomposition into ensemble-
mean plus fluctuating parts, c = 〈C〉 + c′ = C + c′, ui = 〈ui 〉 + u′

i = Ui + u′
i ,

we have

fi = 〈cui 〉 − 〈c〉〈ui 〉 = 〈c′u′
i 〉, Rij = 〈u′

i u
′
j 〉,

and (1.7) becomes

〈c′u′
i 〉 = −T

(
∂Ui

∂x j
〈c′u′

j 〉 + ∂C

∂x j
〈u′

i u
′
j 〉

)
. (1.8)

In their analysis of data from the 1968 Kansas experiment Wyngaard et al. (1971)
found the steady, homogeneous model (1.8) to be a good representation of both the
horizontal and vertical components of the potential temperature flux budget with
T ∼ 	/E1/2, a time scale of the energy-containing turbulence.

In the LES limit, when the grid-mesh average has h � 	, the quasi-steady, ho-
mogeneous model is (1.6) with T ∼ h/E1/2, a time scale of the inertial-range
turbulence.

In approximating the flux-conservation equation (1.5), Deardorff (1973) used
isotropic forms for the fluxes in its production terms on its rhs, taking fi = 0, Rij =
2
3δij E . Under steady, homogeneous conditions these assumptions cause the model
(1.7) to reduce to the simpler downgradient-diffusion model typically used today
in LES:

fi ∼ −2

3
E1/2h

∂c

∂xi
= −Kc

∂c

∂xi
, (1.9)

with Kc an eddy diffusivity. With this model for fi the rate of transfer of squared
scalar in (1.3) is negative definite,

2 fi
∂c

∂xi
= −2Kc

∂c

∂xi

∂c

∂xi
, (1.10)

so the transfer is always from resolved to unresolved scales.

              

       



1.3 The maintenance of subgrid-scale fluxes 27

Without Deardorff’s assumption of isotropy for the production terms in the fi

budget (1.5), the model (1.7) rather than (1.9) emerges. The second term on the
rhs of (1.7) is the sum of three production rates, only one of which – the one that
involves a positive-definite diagonal element of Rij – produces a scalar flux that is
necessarily directed down the scalar gradient. Thus, only one of the six production
terms for scalar flux in the model (1.7) represents down-gradient diffusion.

With this fuller model of fi the rate of transfer of squared scalar becomes

2 fi
∂c

∂xi
= −2T

[
∂ui

∂x j

∂c

∂xi
f j + ∂c

∂xi

∂c

∂x j
Rij

]
. (1.11)

It appears that this could give “backscatter,” the local transfer of variance from
smaller scales to larger, which is observed when h � 	.

A steady, homogeneous model of unresolved scalar flux fi that seems applicable
across the scale range is

fi = −T

(
∂ui

∂x j
f j + ∂c

∂x j
Rij

)
, (1.12)

with the time scale T being of order 	/E1/2 and h/E1/2 in the mesoscale and LES
limits, respectively. This can be written as

Fi = −Kij
∂c

∂x j
, (1.13)

with Kij a tensor eddy diffusivity. ∗

1.3.2 Stress

The kinetic energy equation for the resolved motion is formed by multiplying (L 2.4)
by ui and rearranging:

∂

∂t

(
ui ui

2

)
+ u j

∂

∂x j

(
ui ui

2

)
+ ∂

∂x j
(p∗ u j − ui τij) = −1

2
τij Dij. (1.14)

Here p∗ = p/ρ + 2E/3 is a modified kinematic pressure. The energy equation for
the unresolved motion is (L 2.9). Each of these equations contains the term τij Dij/2,
which represents the rate of energy transfer between resolved and unresolved scales.

With the simplest closure approximation (L 3.1) for τij, this energy-transfer term
becomes

1

2
τij Dij = K

2
D2, (1.15)

which is positive definite. Equations (L 2.9) and (1.14) then indicate that the en-
ergy transfer is always from resolved to unresolved scales. The closure (L 3.1)

∗Wyngaard (2004) shows that data from the HATS experiment (Horst et al., 2004) support this more general
subgrid-scale model
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is commonly used in LES, where this one-way energy transfer is computation-
ally advantageous. However, the equilibrium values of τij components implied by
(L 3.1) are clearly unphysical in the mesoscale limit. In the neutral atmospheric sur-
face layer, for example, (L 3.1) yields 〈u′2〉 = 〈v′2〉 = 〈w′2〉 = 2E/3, which agrees
poorly with observations.

The next level of approximation for τij uses the steady, homogeneous form of its
conservation equation (L 2.8). Assuming local isotropy in its viscous term, this is

∂τij

∂t
= 0 = 2

3
E Dij

−
[
τik

∂u j

∂xk
+ τjk

∂ui

∂xk
− 1

3
δijτk	 Dk	

]
− τij

T
, (1.16)

with T again a time scale of the unresolved turbulence. This yields the closure

τij = 2

3
ET Dij − T

[
τik

∂u j

∂xk
+ τjk

∂ui

∂xk
− 1

3
δijτk	 Dk	

]
. (1.17)

The rate of energy transfer from the resolved to unresolved scales is now

1

2
τij Dij = 1

3
ET D2 − T

2
Dij

[
τik

∂u j

∂xk
+ τjk

∂ui

∂xk

]
, (1.18)

which could give backscatter. In the mesoscale limit, (1.17) implies that the turbulent
velocity variances in the neutral surface layer are

〈u′2〉 = T

(
−2〈u′w′〉∂U

∂z
− 2ε

3

)
+ 2E

3
,

〈v′2〉 = 〈w′2〉 = T

(
−2ε

3

)
+ 2E

3
. (1.19)

With the proper choice of T these can be made to agree fairly well with obser-
vations, the main discrepancy being that 〈v′2〉 is observed to be somewhat larger
than 〈w′2〉.

1.3.3 Implications for modeling

We have shown that the simplest steady, homogeneous closure of the conservation
equations for turbulent stress and scalar flux yields subgrid-scale turbulence models
that are more complex than those generally used today.

In highly resolved LES, where h � 	, the subgrid models carry little flux; their
principal role is extracting energy and scalar variance from the resolved scales.
The eddy-diffusivity subgrid model commonly used in LES, which emerges from
the subgrid-flux conservation equations when a number of production terms are
dropped, is quite effective in this transfer role; it is not clear that the additional
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production terms would have any strong effects. But the h � 	 constraint for LES
has not typically been met in severe-storm modeling (Bryan et al., 2003), and is
never met very near the surface in boundary-layer applications of LES because the
horizontal integral scale of vertical velocity varies like z there. The more complex
subgrid model discussed here could impact such applications.

The spatial resolution of mesoscale models has improved continuously over the
past 30 years, and grid meshes as fine as 1 km are now used in research applications.
In such cases h can be in the large-scale end of the energy-containing range of
boundary-layer turbulence, which means that the h � 	 constraint typically implicit
in the subgrid turbulence models used in mesoscale modeling is also violated. This
raises two questions:

� How can super-high-resolution mesoscale modeling and coarse-resolution LES be carried
out optimally, given that each is presently beyond the design range of its subgrid model?

� How can the subgrid models in LES and in mesoscale modeling be made to converge in
the region where h ∼ 	?

These questions concern the numerical modeling scale range that we shall call
the “terra incognita.”

1.4 The “terra incognita”

1.4.1 Background

Wyngaard (1982) and Bryan et al. (2003) have discussed qualitatively the behavior
of the averaged equation of motion (L 2.4) as the averaging scale h varies. To
simplify the summary here we use the eddy-viscosity closure (L 3.1) with K ∼
E1/2	s, where 	s is the length scale of the unresolved turbulence, and we assume
the averaged flow is horizontally homogeneous and has velocity and length scales
U and L . The Reynolds number Re of the averaged flow is of order

Re = U L

K
∼ U L

E1/2	s
. (1.20)

In the mesoscale limit the velocity and length scales E1/2 and 	s of the unresolved
turbulence are u and 	, the scales of the turbulence, which in turn are of the order
of U and L , the scales of the averaged flow. The Reynolds number of the averaged
flow is then O(1) and below the value required for transition to turbulence. Thus,
coarse-resolution mesoscale model output fields are nonturbulent.

In the LES limit 	s is the averaging scale h, which lies in the inertial subrange
of large Reynolds number turbulence. We can write

E �
∫ ∞

1/h
E(κ) dκ ∼ ε2/3h2/3, (1.21)
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Figure 1.2. The suggested behavior of the length scale 	s of the unresolved turbu-
lence as a function of the averaging scale h. On the LES side, 0 ≤ h ≤ 	, 	s = h.
On the mesoscale side, 	 ≤ h ≤ ∞, 	s = 	.

which, with ε ∼ u3/	, yields

E1/2 ∼ u

(
h

	

)1/3

, K ∼ E1/2h ∼ uh

(
h

	

)1/3

, Re ∼ u	

K
∼

(
	

h

)4/3

. (1.22)

Since 	/h � 1, Re is large and LES output fields are turbulent.
Presumably the transition to turbulence occurs when the averaging scale h is of

the order of 	. Here h is probably too large to lie in the inertial range, for which
LES subgrid models are designed, and probably smaller than averaging scales for
which mesoscale subgrid models are designed.

1.4.2 A unified closure concept

The discussion in Section 1.3 suggests using a single closure with its length scale
chosen to transition between 	on the mesoscale side and h on the LES side (Fig. 1.2):

	s = 	, h ≥ 	; 	s = h, h ≤ 	.

We can then sketch how the simplest eddy-diffusivity closure (L 3.1) with K ∼
E1/2	s and 	s so tailored could perform between the mesoscale and LES limits.
On the mesoscale side (the far right of the h-axis in Fig. 1.2) the averaging scale
h exceeds the turbulence scale 	, so 	s = 	. Equation (1.17) for unresolved energy
E , using ε ∼ E3/2/	 and ignoring constants of O(1), reduces to

E = 	2 D2. (1.23)
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As h → 	 we approach the energy-containing range; we enter it when h becomes
less than 	. At that point the curve becomes 	s = h (Fig. 1.2). The energy equation
(1.23) becomes E = h2 D2, and further decreases in h cause Re, the Reynolds
number of the averaged flow, Equation (1.20), to increase as h−2. When Re exceeds
its critical value the averaged flow becomes turbulent.

In the LES limit (near the origin in Fig. 1.2) Re grows as (	/h)4/3 (Equa-
tion (1.22)) and when Re is large enough the turbulent LES fields approach Re-
independence (Fig. 1.1).

We can now consider the implications of using the fuller closure (1.17) rather
than the simplest eddy-diffusivity closure (L 3.1), and using (1.12) rather than (1.9)
for scalars. In the mesoscale limit the significant turbulent fluxes and mean-field
gradients are those in the vertical, so the two closures are essentially equivalent.
In the LES limit the two closures are quite different, with the fuller closure having
a tensor eddy diffusivity in contrast to the scalar eddy diffusivity of the simpler
closure. But here the subgrid model carries essentially no flux; it simply transfers
energy and scalar variance at a rate that is made correct through the choice of the
constant in the eddy diffusivity. The fuller model would need to have its time scale
set in that way as well. Once that is done the two should perform similarly, although
there could be subtle differences – e.g., backscatter in the fuller model.

In the “terra incognita ” where h ∼ 	 the two closures are quite different, sug-
gesting that the model performance could be quite different as well.

1.4.3 The roles of buoyancy and turbulent transport

We have shown that a subgrid turbulence model more complex than the usual K -
closure emerges naturally from the conservation equations described in Section 3.
However, those equations could need buoyancy and turbulent-transport terms to be
useful in geophysical applications with h ∼ 	. Including buoyancy is straightfor-
ward: through the Boussinesq approximation, for example, the equation of motion
(L 2.2) gains a buoyant acceleration term g/0, with g the acceleration of gravity,
0 a background potential temperature profile, and  a deviation from this profile.
This generates buoyant-production terms in (L 2.8) for stress τij, (L 2.9) for energy
E, and (1.5) for scalar flux fi .

We can assess the importance of these buoyant-production terms as follows. We
define θ (h), the intensity scale of temperature fluctuations of spatial scale h, as the
rms value of  −  for averaging scale h. Its counterpart for the velocity field is
u(h). Their Kolmogorov inertial-range scaling is (Tennekes and Lumley, 1972)

u(h) = f (ε, h) = (εh)1/3 , θ (h) = g(χ, ε, h) = χ1/2ε−1/6h1/3. (1.24)
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These results hold also for h in the energy-containing range, where the intensity
scales are θ and u. That is, using ε ∼ u3/	, χ ∼ θ2u/	, Equation (1.24) yields for
h = 	

u(	) = u, θ (	) = θ. (1.25)

It follows that

θ (h) = θ

(
h

	

)1/3

, u(h) = u

(
h

	

)1/3

. (1.26)

When the buoyant- and gradient-production terms in the stress and energy con-
servation equations are scaled with h, u(h), and θ (h), their ratio becomes a scale-
dependent turbulent Richardson number:

Ri(h) = g θ (h)h

0 [u(h)]2
= g θ	

0 u2

(
h

	

)2/3

= Rie

(
h

	

)2/3

. (1.27)

Thus, when h → 	 this turbulent Richardson number becomes Rie, that for the
energy-containing range, which in atmospheric turbulence can be O(1) in both
stable and unstable stratification (Wyngaard, 1992). In the inertial subrange, where
h/	 � 1, (1.27) says the direct effects of buoyancy on the unresolved turbulence
budgets are small.

An equation for a second moment I I , say, has the general form

∂ I I

∂t
+ ui

∂ I I

∂xi
= ∂ I I Ii

∂xi
+ · · · .

The first term on the right is a “turbulent transport” (flux divergence) term that can
be important, particularly in the mesoscale limit in unstably stratified conditions.
There are two extremes in modeling the turbulent-transport term in such a second-
moment equation (Zeman, 1982). The simplest is to model it through gradient
diffusion,

I I Ii = −K
∂ I I

∂xi
, K ∼ E1/2L,

with L ∼ 	 and h in the mesoscale and LES limits, respectively. The most complex
approach is to write the rate equation for I I I ,

∂ I I I

∂t
+ ui

∂ I I I

∂xi
= rhs,

and calculate directly some of the terms on the right-hand side (including the
buoyancy term) while approximating others. This approach can be quite effective
in the unstable boundary layer (Zeman, 1982). Again, the prescribed behavior of
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the length scale could allow a smooth transition of the turbulent-transport model in
the LES limit.

Acknowledegements

I am grateful to Doug Lilly for being so thoroughly and delightfully himself over
the 25 years I have been privileged to know him, and to Evgeni Fedorovich and
Bjorn Stevens for inviting me to prepare this paper. This work was supported in
part by the National Science Foundation under grant ATM-0222421.

References

Batchelor, G. K. (1953). The Theory of Homogeneous Turbulence, Cambridge, UK:
Cambridge University Press.

Bryan, G. H., Wyngaard, J. C. and Fritsch, J. M. (2003). On adequate resolution for the
simulation of deep moist convection. Mon. Wea. Rev., 131, 2394–2416.

Corrsin, S. (1961). Turbulent flow. Amer. Scientist, 49, 300–324.
Deardorff, J. W. (1970). A numerical study of three-dimensional turbulent channel flow at

large Reynolds numbers. J. Fluid Mech., 41, 453–480.
(1973). Three-dimensional numerical modeling of the planetary boundary layer. In

Workshop on Micrometeorology, D. A. Haugen, ed., Boston: American
Meteorological Society.
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Phenomenological hunts in two-dimensional and stably
stratified turbulence

James C. McWilliams
Department of Atmospheric and Oceanic Sciences and Institute of Geophysics and Planetary Physics,

University of California, Los Angeles, USA

2.1 Introduction

There are many distinctive turbulent regimes in nature that arise due to the var-
ious physical influences of velocity shear, density gradient and gravity, bound-
ary configuration, (planetary) rotation, ionization, etc. At high Reynolds number
(i.e., Re = V L/ν, where V and L are characteristic velocity and length scales
and ν is the kinematic viscosity), the generic turbulent behaviors are to evince
cascades of velocity and scalar variance that act to (1) broaden their wavenum-
ber spectra and effect dissipation of variance; (2) spatially transport momentum
and scalars; and (3) develop coherent structures. The particular manifestations
of these behaviors, however, are highly regime dependent. From this perspective
the classical (Kolmogorov’s) regime of isotropic, homogeneous, uniform-density,
three-dimensional (3D) turbulence seems no more than typically distinctive, except
insofar as it might emerge as universal behavior at sufficiently small scales beneath
the control of the physical influences listed above. Even this hypothesis of univer-
sality, however, is contradicted in some regimes including two-dimensional (2D)
and, perhaps, stably stratified turbulence, the subjects of this essay.

Turbulence is a tough scientific problem because of its mathematical intractabil-
ity at the fundamental level of the Navier–Stokes equations and its experimental
inaccessibility due to the complexity of flow patterns and difficulty in mimicking
nature in the laboratory (e.g., achieving a high enough value of Re). So the rise
of modern computers and their application to fluid dynamics have complemented
theory and measurement and thereby greatly expanded our understanding of turbu-
lence, even though it remains only a partially solved problem.

Douglas Lilly is both a pioneer and homesteading practitioner of computational
studies of turbulence for the more than three decades that this approach has been
feasible. He worked in several regimes, some of which are addressed in other

C© Cambridge University Press 2004
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chapters in this book. The focus here is on the phenomena that occur in a 2D
fluid and in a 3D, stably stratified fluid without any accompanying large-scale
shear, asymptotically as Re → ∞. These regimes have in common a high de-
gree of anisotropy compared to the Kolmogorov regime, and even approximately
share the same governing equation (as explained in Section 2.4); however, their
behaviors are quite different, as we will see. This essay is a perspective on the
historical paths by which at least the qualitative behaviors in these regimes have
come to be fairly well understood. It is also an appreciation of Lilly’s contribu-
tions.

2.2 Computational turbulence

The natural phenomena of turbulence are firmly believed to be equivalent to the
solutions of the Navier–Stokes partial differential equation (PDE) system at large
Re. With this premise the two necessary ingredients for computational simulation
of turbulence are the mathematics of discretization for the continuous PDE and the
technology of computers with sufficient power to encompass the many degrees of
freedom that arise in turbulence. These ingredients are not unrelated since discrete
approximations converge only as the degrees of freedom become infinite, even
at a fixed large value of Re. Both ingredients steadily evolved over the twentieth
century. In particular, computational speed has followed Moore’s law of exponential
growth with time with a growth rate that itself has increased (Moore, 2003). This
has created an ever expanding capability for computational fluid dynamics (CFD) –
may it continue!

The term CFD is most widely used in the engineering community where the
primary goal is computational design of devices with high precision and reliability.
In the G(eophysical)FD community the primary goal continues to be phenomeno-
logical discovery and interpretation of measurements, with the precision of natural
simulations a more futuristic goal. Due to the difficulty of natural turbulence prob-
lems, computational studies have provided many important discoveries about the
cascades, transport, and coherent structures in different regimes; no doubt many
more will come.

As one of the pioneers of GFD turbulence simulation, Lilly had to work through
various practical methodological issues. These included spatial operator discretiza-
tion, time-integration stability, and subgrid-scale parameterization – i.e., represent-
ing by physical approximation the effects of unresolved small-scale motions on
the larger-scale simulated flow evolution when the phenomena of interest occur at
larger Re than can be encompassed in a feasible computation – see Lilly (1961,
1965, 1966, 1967, 1975, 1992, 1997), Fox and Lilly (1972), Scotti et al. (1993),
and Wong and Lilly (1994).
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2.3 Two-dimensional turbulence

The governing PDE system for 2D, incompressible, viscous flow is

∂ζ

∂t
+ (u · ∇) ζ = ν∇2ζ + F

u = (u, v) =
(

−∂ψ

∂y
,

∂ψ

∂x

)

ζ = ∂v

∂x
− ∂u

∂y
= ∇2ψ. (2.1)

Here u(x, y, t) is the 2D velocity; ∇ is the 2D gradient operator; F is a specified
random torque; ψ is the streamfunction; and ζ is the vorticity. Simple boundary
conditions are periodicity in x and y.

Of course, a 2D flow cannot be expected to occur widely in 3D nature. Never-
theless, for various reasons associated with the thinness of Earth’s atmosphere and
ocean, its typically stable density stratification, and its rotation (i.e., the Taylor–
Proudman effect), 2D turbulence can be argued to be more relevant to large-scale
flows than classical 3D turbulence (McWilliams, 1983). At the least, it embodies
an extreme form of the observed anisotropy in nature: H � L and W � V , where
H and W are characteristic vertical (i.e., parallel to gravity) length and velocity
scales, and L and V are their horizontal counterparts. An additional, historical at-
traction of 2D fluid dynamics is that it presents a smaller computational problem
than does 3D. A collection of early CFD papers is in The Physics of Fluids, vol. 12,
Supplement II, 1969: most of the papers are in fact 2D simulations even though the
target phenomena are 3D, but an exception is Lilly’s (1969) first simulation of 2D
turbulence (along with Batchelor’s, 1969).

When ν = F = 0, (2.1) requires the conservation of two quadratic integrals, the
kinetic energy and enstrophy:

E = 1

2

∫ ∫
u2 dx dy, E = 1

2

∫ ∫
ζ 2 dx dy. (2.2)

This implies that any turbulent evolutionary tendency to broaden the wavenumber
spectrum for u leads to an inverse cascade of energy density toward larger scales
together with a forward cascade of enstrophy density toward smaller scales and
eventual viscous dissipation for any ν �= 0 (Batchelor, 1953). (In contrast, classical
3D turbulent evolution has a primarily forward cascade of kinetic energy toward
small-scale dissipation.) Thus, the energy dissipation rate will become vanish-
ingly small as ν → 0 (Re → ∞), while the enstrophy dissipation rate will develop
over time to a finite value. In the presence of a sustained forcing (F �= 0 within
a limited range of wavenumbers around kF ), two different equilibrium, inviscid,
inertial-range shapes are predicted for the isotropic kinetic-energy spectrum in 2D
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turbulence (Kraichnan, 1967):

E(k) ∼ k−5/3, k � kF inverse energy cascade;

E(k) ∼ k−3, k � kF forward enstrophy cascade. (2.3)

Note that this leads to a non-equilibrium divergence of the energy with time as
it is continually generated by F and inverse-cascades to ever larger scales (or
accumulates at the finite domain scale) without dissipation as Re → ∞.

This is the conceptual framework within which Lilly (1969, 1971, 1972) made
his computational simulations of 2D turbulence. Their purposes were to test these
ideas and to assess the implications of sensitive dependence in 2D turbulence (i.e.,
small perturbations between two realizations amplify in time at an exponential
rate) for predictability limits in initial-value problems, with intended implications
for weather forecasting. He sensibly controlled the energy divergence in forced so-
lutions by adding a linear drag term, −Cζ , C > 0, to the rhs of the vorticity equation
in (2.1), justifying it as an Ekman drag against the missing vertical boundaries. The
conclusions from his simulations, broadly speaking, confirmed the extant theo-
ries about the inverse and forward cascades, the predicted inertial-range spectrum
shapes, and the relative weakness of the energy dissipation rate. A new discovery
was the growth of intermittency (non-Gaussianity) in the ζ and ∇ζ fields in the
freely decaying simulations (F = 0), although the associated magnitudes (e.g., of
kurtosis) were modest. In these papers several remarks indicate Lilly’s lack of con-
fidence in the adequacy of the numerical resolution, related to the modest values
of Re that were feasible. Nevertheless, they comprised a considerable achievement
that allowed the conclusion, “numerical simulation is now apparently capable of
adding to our fundamental understanding of turbulent processes at an affordable
cost” (Lilly, 1971, p. 414). These simulation results provided the standard for 2D
turbulence up through the comprehensive review article by Kraichnan and Mont-
gomery (1980).

How has our understanding of 2D turbulence changed since then? There have
been, of course, many quantitative refinements allowed by more powerful com-
puters. But perhaps the most important change is the realization that the generic
behavior of turbulence is the development of coherent structures at high-Re values.
The case for this was first and best made in 2D turbulence because of its compu-
tational affordability (McWilliams, 1984; Borue, 1993, 1994); however, this phe-
nomenon has since been confirmed in many turbulent regimes, albeit with different
typical flow patterns in different regimes. In hindsight the characteristic long-lived,
isolated, axisymmetric, monopole patterns in ζ (x, y) – coherent vortices – are not
evident in Lilly’s published figures. (He has subsequently remarked that he did see
indications of them in evidence not published.) A statistical measure of coherent
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Figure 2.1. Vortex emergence and evolution in computational 2D turbulence, as
seen in ζ (x, y) at sequential times, with random, spatially smooth initial conditions.
Solid contours are for positive ζ , and dashed ones are for negative ζ . The contour
interval is twice as large in the first panel as in the others. The times are non-
dimensionalized based on an advective scaling, L/V . (Adapted from McWilliams,
1984.)

vortex presence is intermittency in ζ , first noted in Lilly (1971), and very large
values of its kurtosis have since been shown in various circumstances (especially
in free decay).

The cascades and dissipation in 2D turbulence co-exist with vortex emergence,
movement, and mergers (Fig. 2.1). From smooth initial conditions or random forc-
ing, coherent vortices emerge by axisymmetrization; move around under each
other’s far-field circulation (similarly to point vortices); occasionally form opposite-
parity couples for brief intervals; and merge when two vortices of the same vor-
ticity parity move close enough together. With time and in the absence of new
generation by forcing, the vortices become fewer, larger, and sparser in space
(McWilliams, 1990a), and they undergo close encounters less frequently. Since dur-
ing close encounters the vortices change in ways other than simple movement and re-
versible deformation, the overall evolutionary rate for the spectrum shape and vortex
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population becomes ever slower with time, even though the kinetic energy does not
diminish appreciably. Enstrophy dissipation occurs primarily during emergence and
merger events: filaments of vorticity are stripped off of the vortices and continue to
elongate irreversibly until their transverse scale comes under the control of viscous
diffusion, and the enstrophy they contain is thereby dissipated. The filamentation is
induced by the differential velocity field (i.e., shear, strain rate) of one vortex acting
on another, which increases in magnitude as the vortices come closer together.

In 2D turbulence the aggregate evolutionary behavior of the flow (e.g., scalar
transport, cascade, and dissipation rates) is governed by the coherent vortices,
unless overcome by forcing and damping or other competing dynamic influences.
This is shown by artificial suppression of the vortices that alters the cascade and
dissipation rates (McWilliams, 1990b). It has also been shown by construction of a
vortex-based dynamic system that reproduces the aggregate evolutionary behavior
of 2D turbulence rather well (Carnevale et al., 1991; Weiss and McWilliams, 1993).
These results inspire the hypothesis of system evolutionary control by the coherent
structures in all turbulent regimes, although this idea has not yet been fully tested.

Further computational exploration at higher values of Re (e.g., Bracco et al.,
2000) and at least some testing by the passage of time have not qualitatively altered
the perceived phenomenology. This summary of 2D turbulence studies in the past
two decades is, of course, highly abbreviated (and personal); it certainly does not
comprise a review of the subject. Many scientists have found that 2D turbulence
continues to be an important and efficient context for testing a variety of ideas about
turbulence, even if it is not wholly defensible as a natural regime.

2.4 Stably stratified turbulence

The governing PDE system for 3D, stably stratified, incompressible, viscous, dif-
fusive flow in the Boussinesq approximation is

∂u
∂t

+ (u · ∇) u = −∇φ + ẑb + ν∇2u + f

∇ · u = 0
∂b

∂t
+ (u · ∇) b + N 2w = κ∇2b. (2.4)

Here ẑ is the opposite direction to gravity; u(x, y, z, t) = (u, v, w) is the 3D ve-
locity; ∇ is the 3D gradient operator; ρ(z) and p(z) are the background density
stratification and pressure in hydrostatic balance; φ = (p − p)/ρ0 is the normal-
ized pressure anomaly; f is a specified random force; N 2 = −(g/ρ0) dρ/dz is the
squared buoyancy frequency of the background stratification, assumed here to be
a constant; b = −(g/ρ0) (ρ − ρ) is the buoyancy anomaly; and κ is the buoyancy
diffusivity. Simple boundary conditions are periodicity for u, φ, and b in x , y, and z.
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The regime of stratified turbulence has a small Froude number, Fr =
V/N H � 1, with N the buoyancy frequency; Re � 1; moderate Prandtl num-
ber, Pr = ν/κ = O(1); and some conditioning of the initial and forcing data so
that the flow is primarily both horizontally oriented and horizontally non-divergent,
hence anisotropic. The latter condition is necessary to distinguish stratified turbu-
lence from the more isotropic, weakly nonlinear, internal gravity waves that are
another class of solutions to (2.4) when Fr � 1, Re � 1, and Pr ∼ 1. The pre-
sumption, supported by both observational and computational experience, is that
these two solution classes are usually weakly interacting. A mathematical represen-
tation of this distinction is by a Helmholtz decomposition of the horizontal velocity,
u⊥ = (u, v, 0), into its vertically rotational and horizontally divergent components,
with the vertical velocity related to the latter by incompressibility:

u⊥ = ẑ × ∇⊥ψ + ∇⊥χ, w = −
∫

∇2
⊥χ dz, (2.5)

where ∇⊥ is the horizontal gradient operator. Thus, stratified turbulence has |χ | �
|ψ | and |w| � |u⊥|, while gravity waves have |ψ | � |χ |.

When ν = κ = f = 0, again there are conserved integrals of motion, analogous
to (2.2), the total energy and potential enstrophy:

E = 1

2

∫ ∫ ∫
(u2 + b2/N 2) dx dy dz, E = 1

2

∫ ∫ ∫
q2 dx dy dz, (2.6)

where q = (∇ × u) · (N 2ẑ + ∇b) is the potential vorticity. However, unlike for
2D flow, the second integral is not a quadratic functional of the primary dependent
variables, so no strong inferences can be made about the direction of the turbulent
cascades. Similarly, no useful equilibrium inertial-range prediction can be made.
Finally, internal gravity waves have no manifestation in q (to leading order in Fr );
so their evolution is not well constrained by enstrophy conservation. For all these
reasons simple theoretical arguments about the evolution of stratified turbulence
have been illusive.

In nature, this stably stratified regime is a common one. It is often identified by
a local measure, the gradient Richardson number,

Ri(x) =
(

N 2 + ∂b

∂z

) / (
∂u⊥
∂z

)2

, (2.7)

being large, which is understood to preclude vertically overturning motions. It may
also be characterized by the Ozmidov scale, LO = (ε/N 3)1/2 (ε is the kinetic-energy
dissipation rate), being larger than the Kolmogorov viscous scale, Lν = (ν3/ε)1/4,
with the implication that motions with L > LO are stratified turbulence while those
with LO > L > Lν are classical, isotropic 3D turbulence; however, note that this
transition to universal turbulence at small scales depends on the dissipation rate
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being sufficiently large in stratified turbulence, ε > νN 2, which is not known to be
true a priori. Finally, this regime is, by definition, characterized by weak influence by
Earth’s rotation with large Rossby number, Ro = V/ f L � 1 (with f the Coriolis
frequency), hence it has L � N H/ f , the Rossby deformation radius. (When L ∼
N H/ f , the regime is called geostrophic turbulence.)

An early posing of the stratified turbulence problem was as the collapse of
isotropic turbulence (e.g., in the wake of a towed object in a stratified fluid) once
the turbulent energy dissipates to a stage when it cannot overcome the potential
energy barrier of the stratification to induce overturning motions. The ensuing
phenomena are quasi-linear gravity waves radiating away from the wake and a field
of long-lived, thin (λ = H/L � 1), nonlinearly evolving, horizontally recirculating
“pancake vortices,” or “vortical modes,” that remain behind (Lin and Pao, 1979).
Gage (1979) noted the anisotropic character of measured atmospheric mesoscale
wind and its approximate kinetic-energy spectrum shape, E ∼ k−5/3

⊥ , and proposed
the interpretation that this is a consequence of an inverse energy cascade from a
forcing due to cumulus convection by a turbulent dynamics somehow made 2D
by the stable stratification. Lilly (1983) performed an asymptotic scaling analysis
of (2.4) as Fr → 0 and derived the 2D vorticity equation (2.1) as the leading-
order dynamic balance, with the understanding that it holds independently in each
vertical layer. This result largely framed the central issues in subsequent stratified
turbulence research (see, e.g., the review by Riley and Lelong, 2000):

� Is layerwise 2D turbulence a uniformly valid approximation in stratified turbulence?
� Is the dynamic coupling to gravity waves and overturning motions weak?
� Is there an inverse energy cascade?
� How large is the energy dissipation rate?
� How much are natural motions with N H/ f > L > LO like pancake vortices?

Lilly and Petersen (1983) added to the empirical evidence for a ∼ k−5/3
⊥

mesoscale kinetic-energy spectrum, as well the ∼ k−3
⊥ spectrum at larger scales

(attributed, simplistically, to a forward enstrophy cascade of 2D-like turbulence
from a source at synoptic scales induced by Earth’s rotation or, more soundly, to
geostrophic turbulence, sometimes called 2 1

2 D turbulence). Lilly (1989) showed
that 2D turbulence with F concentrated at two well-separated scales can indeed
exhibit this type of contiguous dual inertial-range structure.

Lilly (1983, p. 757) also sowed seeds of doubt in his asymptotic approximation
by the argument that the sensitive dependence of 2D turbulence would cause diver-
gence in time between flow patterns in adjacent layers, hence a shrinking vertical
scale, hence a growth in Fr , hence eventually a small local Ri value and over-
turning motions by Kelvin–Helmholtz instability. McWilliams (1985) extended the
Fr → 0 asymptotic analysis to derive consistent leading-order balance or “slaving”
relations to ζ and ψ among all the other dependent variables, e.g., cyclostrophic
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and hydrostatic balance for the pressure and buoyancy anomalies:

∇2
⊥φ = 2

[
∂2ψ

∂x2

∂2ψ

∂y2
−

(
∂2ψ

∂x∂y

)2
]

,
∂φ

∂z
= b. (2.8)

This suggests the possibility that a limiting vertical scale would emerge under
evolution through conservative dynamic coupling between adjacent layers (a type
of vortex stretching), thereby preserving the uniform validity of the Fr � 1 regime.

Laboratory measurements (e.g., Browand et al., 1987; Spedding, 2002) and com-
putational simulations (Riley et al., 1981; Herring and Metais, 1989; Metais and
Herring, 1989; Kimura and Herring, 1996) confirmed some important aspects of the
layerwise 2D hypothesis for stratified turbulence: in free decay an initially small Fr
remains small, and pancake vortices routinely emerge but with less intermittency
than the vortices in 2D turbulence. But they contradicted some others: the energy
dissipation rate is large, and inverse energy cascade is not seen. The structure of
the energy dissipation was associated with the large vertical shear, |∂u⊥/∂z|, that
develops at the vertical edges of the pancake vortices. This can be viewed as a for-
ward energy cascade in vertical wavenumber. It implies a viscous dynamic selection
of a limiting vertical scale, and it inspired a simple extension of the 2D vorticity
equation in (2.1) to include vertical eddy diffusion, ν(∂2ζ/∂z2), and to downplay
the importance of the horizontal diffusion that plays an essential role in enstrophy
dissipation in 2D turbulence (Majda and Grote, 1997). The absence of demonstra-
ble inverse cascade in stratified turbulence undermined Gage’s interpretation of the
atmospheric mesoscale wind spectrum; this led Lilly et al. (1998) to invoke a more
complex interaction with cumulus convection to partially salvage the interpretation.

Until recently experiments and simulations have only been made for modest
values of Re; furthermore, most studies have been for freely decaying stratified
turbulence where Re(t) steadily decreases due to energy dissipation, making it
difficult to assess the inertial equilibrium state. Several recent studies (deBruynKops
et al., 2003; Laval et al., 2003; Reasor et al., 2004; Riley and deBruynKops, 2003;
K. B. Winters, personal communication) have made computational simulations at
larger Re values, and each concludes that, for a given small value of Fr , the flow
will evolve to have some locally small values of Ri and associated overturning
motions if Re is large enough. The term “hot spots” has been suggested for these
events. A scaling argument balancing production and dissipation in the kinetic-
energy balance suggests that the transition is for Re > O(Fr−2λ−2) with apsect
ratio, λ = H/L � 1, and Re = V L/ν defined in terms of the most energetic hori-
zontal length scale, L (Riley and deBruynKops, 2003). This phenomenon resolves
the issue of whether the Fr → 0 asymptotic approximation is uniformly valid at
large Re: it is not. On the other hand, each study also shows that the overturning
regions are highly intermittent and that the pancake vortices remain the dominant
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flow structures even after local overturning arises. This suggests that some kind
of annealing occurs after a local rupture of the otherwise balanced evolution of
stratified turbulence (cf. (2.8)). Evidently the Fr → 0 approximation continues to
be at least highly germane even if not precisely correct.

This local breakdown of pancake vortex dynamics is not the only new phe-
nomenon that arises in stratified turbulence at large Re. This is demonstrated by
the computational simulation in Laval et al. (2003) for randomly forced, quasi-
equilibrium turbulence. Its forcing f is chosen to project only onto accelerations
of the rotational component of u, i.e., f = ẑ × ∇� for a random large-scale poten-
tial, �. A simulation control path is designed to scan the behavior as a function of
Re. The forcing magnitude, N 2, and ν (with Pr = 1) are chosen so that the bulk
Froude number associated with the kinetic-energy spectrum peak is small and stays
constant at Fr ≈ 0.08 while the Taylor Reynolds number, Rλ (based on the rms
velocity and the length scale that is the square root of the ratio of kinetic energy
and kinetic enstrophy), is held fixed for time intervals of �τ = 100 eddy turnover
times, L/V , during which the flow comes into statistical equilibrium between up-
ward steps of �Rλ ≈ 100 (Fig. 2.2). Experience has shown that the Taylor Reynolds
number is the more germane measure of the turbulent development, compared to
the energy-containing Reynolds number, Re (though they approximately scale as
Re = Re2

λ as Re → ∞).
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Figure 2.2. Experimental path in Rλ(τ ) for forced stratified turbulence with a
fixed Fr and a step-wise decreasing viscosity. Also shown are time series of the
volume fraction of the domain with local Ri < 0.25 (filled gray area) and with
local Ri < 0 (filled black area). τ is a non-dimensional time, normalized by the
eddy turnover time. There is occurrence of Ri < 0.25 for 0 < τ < 300. (Adapted
from Laval et al., 2003.)
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Figure 2.3. Non-dimensional time evolution of components of the energy (defined
in the text with quotation marks) for the same simulation as Fig. 2.2. (Adapted
from Laval et al., 2003.)

Time histories of various energy components (Fig. 2.3) show evidence of three
successive transitions with Re. At small Re (i.e., for τ ≤ 200 and Rλ < 300), the
pancake vortices wholly dominate the solution as indicated by the “vortical” kinetic
energy (associated with ψ) dominating the divergent (or “wave”) kinetic energy
(χ ) and the “potential” energy (b/N ). The “vertical” velocity (w) contribution to
kinetic energy is especially small. Furthermore, the spontaneously generated mean
“shear” velocity, 〈u⊥〉(z, t) (where angle brackets denote horizontal average), has
a kinetic energy no larger than the “potential energy.” No overturning occurs, and
the local Ri values are large everywhere (Fig. 2.2). The first transition from this
archetypal pancake regime occurs around Rλ = 400 starting at τ ≈ 200: the shear
energy starts to grow and continues to do so as Rλ further increases, although
it approximately equilibrates when Rλ is held constant for longer intervals. This
phenomenon has also been simulated by Smith and Waleffe (2002) for Fr val-
ues below an O(1) critical value. The second transition occurs around Rλ = 600
starting at τ ≈ 400. It is not particularly evident in the energy components (Fig. 2.3)
but is evident in the distribution function for local Ri values (Fig. 2.2): a tail of
rare small values develops – initially with Ri < 0.25, the classical onset value for
Kelvin–Helmholtz instability (Miles, 1961), and subsequently with Ri < 0, indi-
cating a gravitationally unstable density profile caused by overturning motions. An
illustration of a local overturning event in the shear layer vertically between two
pancake flows in opposite horizontal directions is shown in Fig. 2.4. It has a nearly
periodic overturning structure along the surface of maximum shear, reminiscent of
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Figure 2.4. A local overturning event in forced stratified turbulence (as in
Fig. 2.2) with Rλ = 1000. Plotted are instantaneous vertical velocity (gray scale)
and (0, v, w) velocity (vectors) in a (y, z) plane; both are normalized by the rms
velocity, V , indicated by the reference arrow in the upper left. L is the horizontal
extent of the domain. (Courtesy of J.-P. Laval.)

a Kelvin–Helmholtz event (Cortesi et al., 1998; Caulfield and Peltier, 2000). The
third transition occurs around Rλ = 900 starting at τ > 700: the “vertical” energy
begins to grow (Fig. 2.3). This occurs without any evident accompanying growth
in “wave” and “potential” energies, so it is something other than a gravity-wave
outbreak. In fact it occurs in w at the largest vertical and horizontal scales in the
domain. We have provisionally interpreted it as an example of a negative eddy-
viscosity instability, analogous to the result of Dubrulle and Frisch (1991) for a
uniform-density flow, although this interpretation requires confirmation.

Given the newness of the results about high-Re transitions in stratified turbulence,
it is premature to attempt a definitive resolution of the issues framed by Lilly (1983)
(see the bullet list on p. 42). However, it does seem justifiable to forecast that the
issues, as phrased, will prove to have ambiguous and somewhat subtle answers.
Pancake vortices do comprise the dominant behavior of stratified turbulence even
at large Re values, but they do generate other types of motion that are seemingly
distinct from internal gravity waves (i.e., small-scale overturning and large-scale
horizontal and vertical flows). The overturning motions allow the possibility of
a transition to a classical Kolmogorov regime on scales smaller than the vortical
motions if their occurrence proves to be not too intermittent. The large-scales flows
represent a kind of inverse energy cascade whose spatial scale content is not yet well
determined (because of domain-size limitations in the present simulations). But this
is certainly a different kind of inverse cascade than the scale-by-scale progression
in 2D turbulence.

2.5 Final remarks

The problems of turbulence are addressable by computational simulation both qual-
itatively – in terms of the manifested phenomena and dominant flow patterns – and
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quantitatively. In geophysical fluid dynamics the phenomenological hunts have
been and will continue to be important scouting activities. For 2D turbulence the
most surprising parts of the hunt may be over, although such a forecast should only
be made humbly. For stably stratified turbulence the hunt still continues, and the
outcome may be much more complex than we now envision. Nevertheless, great
progress has been made on both problems during the last 30+ years, and Douglas
Lilly will always be known as a mighty hunter.
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Energy dissipation in large-eddy simulation:
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3.1 Introduction

Most numerical simulations of turbulent flow use grid spacings that far exceed the
viscous scale at which turbulent kinetic energy is dissipated into heat. Large-eddy
simulation (LES), requires closure models to account for the turbulent motions
occurring at small (the so-called subgrid) scales. These motions are responsible for
mixing and they interact with the large-scale motions in a way that tends, typically,
to transfer kinetic energy to smaller scales in the turbulent energy cascade. This
transfer must be reproduced accurately by subgrid-scale (SGS) closures in order to
prevent overdamping of resolved scales, or insufficient damping which can lead to
spurious instabilities. Lilly (1967) was the first to combine this insight with concepts
from the phenomenological theory of 3D turbulence to provide quantitative answers
to several important parameterization issues in LES. Our goals in this article are to
review briefly Lilly’s pioneering contribution, and to reinterpret certain variables
using geometric tools.

Forty years ago, Smagorinsky (1963) proposed a simple eddy-viscosity model
based on local variables characterizing the motions at the length scale of the com-
putational grid. In this model, the deviatoric part of the SGS stress tensor, τij, where

τij = ũi u j − ũi ũ j , (3.1)

is set proportional to the strain-rate tensor, S̃ij = 1
2 (∂i ũ j + ∂ j ũi ), characterizing the

rate of local deformation of the resolved velocity field. In these expressions a tilde
denotes spatial filtering at a length scale �. The model is written as:

τij − 1

3
τkkδij = −2νT S̃ij. (3.2)
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The constant of proportionality is the eddy viscosity νT which is written as νT =
λ2|S̃|, where |S̃| = (2S̃ij S̃ij)1/2. Here λ is a mixing length scale, while λ|S̃| is a
characteristic velocity scale estimated from the shear scale |S̃| and the mixing
length λ. The mixing length must be chosen judiciously. For locations far from
boundaries and in the absence of buoyancy and rotation effects, the only length scale
available to characterize the local turbulence structure of the simulated flow is the
filter scale, �. Dimensionally it follows that λ = cs�, where cs is a dimensionless
model parameter. This parameter must be specified in LES, and has been the subject
of much attention in the literature (Deardorff, 1971; Mason, 1994; Piomelli, 1999;
Meneveau and Katz, 2000).

In Section 3.2, we review Lilly’s classic argument linking cs to the universal
Kolmogorov constant cK. In Section 3.3 we discuss some dependencies between the
local SGS dissipation and parameters characterizing the structure of the resolved-
scale motions. In particular, we review field experimental data showing that the
SGS dissipation is correlated with axisymmetric expanding motions at the resolved
scales. In Section 3.4, we present a geometric view of the tensor contraction between
SGS stress and strain-rate tensors in terms of the alignment angles among their
respective eigenvectors. In Section 3.5, we combine observational evidence about
most likely alignment angles among eigenvectors with the expressions for SGS
dissipation and, using these empirical inputs, present a prediction of the preferred
SGS dissipation as function of the structure parameter of the resolved scales. A
discussion is presented in Section 3.6.

3.2 The Smagorinsky–Lilly model parameter

In a ground-breaking paper, Lilly (1967) showed how cs could be evaluated from
basic knowledge of turbulence, and thus cs is often referred to as the “Smagorinsky–
Lilly” constant in the literature. Central to Lilly’s development was the realization
that the most important effect of the SGS model upon the dynamics of the large-scale
structures is the amount of kinetic energy the model extracts. Hence, the energetics
of the flow computed in an LES takes on a special role. Lilly (1967) derives the
transport equation for the subgrid kinetic energy E = 1

2τkk and obtains:

∂ E

∂t
+ ũk

∂ E

∂xk
− ν


∂2 E

∂x2
k

−
(̃

∂ui

∂xk

)2

+
(

∂ ũi

∂xk

)2



= − τij S̃ij − ∂

∂xk

(
ũku2

i

2
− ũk ũ2

i

2
− ũi ũkui + ũ2

i ũk + ũk p

ρ
− ũk p̃

ρ

)
(3.3)
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where S̃ij = 1
2 (∂ j ũi + ∂i ũ j ). Taking the ensemble average of this equation (denoted

below by angled brackets), and assuming steady-state conditions, one obtains the
equality of molecular dissipation of SGS kinetic energy and its rate of production:

ν




〈(̃
∂ui

∂xk

)2
〉

−
〈(

∂ ũi

∂xk

)2
〉
 = −〈τij S̃ij〉. (3.4)

The quantity −〈τij S̃ij〉 is interpreted as the mean flux of kinetic energy from the
range of resolved scales into the SGS range, and also appears as a sink in the
equation for resolved kinetic energy, 1

2 ũk ũk . When � is in the inertial range, the
first term in the lhs of (3.4) dominates and equals ε, the overall rate of dissipation
by viscosity. Hence, we can write ε = −〈τij S̃ij〉.

Lilly then makes the next important step in his derivation by replacing τij with
the Smagorinsky closure. One obtains the expression

ε = 23/2(cs�)2〈(S̃ij S̃ij)
3/2〉 (3.5)

as a condition for the Smagorinsky model to extract kinetic energy from the re-
solved scales at the correct rate. Two more assumptions are required to complete
Lilly’s original argument: (1) that at the grid scale � the turbulence exhibits a
universal Kolmogorov spectrum E(k) = cKε2/3k−5/3 with turbulence statistics that
are isotropic; this assumption is justified when � pertains to the inertial range of
turbulence; and (2) the third-order statistics of the strain-rate magnitude may be
approximated with its second-order moment as

〈(S̃ij S̃ij)
3/2〉 ≈ 〈S̃ij S̃ij〉3/2. (3.6)

The latter assumption is not explicitly stated in Lilly’s paper since he did not elab-
orate explicitly on the nature of statistical averaging underlying the argument. The
accuracy of this assumption was recently tested with Direct Numerical Simulation
(DNS) data by Cerutti et al. (2000) and deviations on the order of 20% were ob-
served in the inertial range (the correction factor β of that paper). Also Novikov
(1990) has speculated that small-scale intermittency could introduce a further de-
pendence of cs upon �/ l, where l is the integral length scale. Equation (3.6) still
leaves the task of evaluating the second-order moment and strain-rate tensor con-
traction 〈S̃ij S̃ij〉. Using standard techniques from isotropic turbulence analysis, it is
straightforward to show that

〈S̃ij S̃ij〉 =
π/�∫
0

k2 E(k) dk (3.7)

where, as in Lilly (1967), a spherical spectral sharp filter is used to cut off the
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integration in wavenumber space at a wavenumber π/�. Substituting this into
(3.5) and using the Kolmogorov spectrum E(k) = cKε2/3k−5/3 and solving for the
coefficient cs one obtains Lilly’s result:

cs = 1

π

(
2

3cK

)3/4

∼ 0.165 (for cK = 1.6). (3.8)

The analysis has been reproduced in tutorial detail in Pope (2001).
When using computational meshes that are unequal in each Cartesian direc-

tion (e.g., �1 < �2 < �3), the above derivation can be repeated, but now us-
ing an anisotropic 3D filter (Scotti et al., 1993) such as a parallelepiped of sides
2π/�1, 2π/�2, and 2π/�3 in Fourier space. The integrals in Fourier space are
more complicated but can be evaluated numerically for exact evaluations of the
coefficient. Lilly’s central contribution to the Scotti et al. (1993) paper was to rec-
ognize that the integrations are greatly simplified if an ellipsoidal domain is used
in Fourier space instead of a rectangular one. To zeroth order in log(ai ) (where
a1 = �1/�3 and a2 = �2/�3 are the two grid aspect ratios), one can then show
analytically that � in the definition of νT must be replaced with a length scale based
on the cell volume,

�eq = (�1�2�3)1/3. (3.9)

This expression was already proposed on heuristic grounds by Deardorff (1970)
and is often used in LES. Lilly’s argument published in Scotti et al. (1993) thus
serves as a formal justification to the often-used cube-root length scale and clearly
demonstrates that it is to be preferred over other heuristic proposals that have
occasionally been made over the years. For large filter anisotropies, Scotti et al.
(1993) show that in addition to the use of �eq, cs should be replaced with cs f (a1, a2),
where

f (a1, a2) ≈ cosh

{
4

27
[(ln a1)2 − ln a1 ln a2 + (ln a2)2]

}1/2

.

The developments above relied upon statistical averaging to define the mean
SGS dissipation, −〈τij S̃ij〉. The fact that the average is non-zero is related to subtle
relationships among turbulent motions which lead to non-zero correlation among
the tensors τij and S̃ij. This correlation is a third-order moment (since τij is quadratic
with velocity and S̃ij is linear) similar to the third-order velocity structure function
that has important dynamic significance. Hence, it is of interest to explore more
precisely the nature of these correlations, to which the remaining parts of this
chapter are dedicated.
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3.3 Field experimental studies of SGS dissipation

Before describing the field experiments, we introduce several variables to be mea-
sured from the data. The local SGS dissipation of turbulent kinetic energy is written
as � = −τij S̃ij. We decompose both the filtered strain rate S̃ij = 0.5(∂i ũ j + ∂ j ũi ),
and the deviatoric SGS stress into their respective eigenvectors and eigenvalues by
the transform A = Q A�A QT

A where A is an arbitrary symmetric tensor, Q A is a
matrix containing the eigenvectors of A, and �A is a diagonal matrix containing
the corresponding eigenvalues of A on its diagonal.

The eigenvalues are named according to their magnitudes as α ≥ β ≥ γ, and
satisfy the condition α + β + γ = 0. This requires α ≥ 0, γ ≤ 0, and β is either
positive or negative. Eigenvectors are named by their corresponding eigenvalues:
α is the extensive eigenvector, γ is the contractive eigenvector, and β is the inter-
mediate eigenvector. To focus attention on the geometric alignment it is of interest
to scale out the magnitudes of stress and strain rate and define a dimensionless
dissipation, according to

�∗ = �

|S̃||τ| = −S̃ijτij

|S̃||τ| , (3.10)

where |S̃| =
√

S̃ij S̃ij =
√

α2
S̃
+ β2

S̃
+ γ 2

S̃
and |τ| = √

τijτij =
√

α2−τ + β2−τ + γ 2−τ

(note that henceforth |S̃| does not include the factor
√

2 that is usually included in the
definition of |S̃| for the Smagorinsky model). One can show that �∗ is now bounded
between −1 and 1, and only characterizes the geometric nature of the stress–strain
relationship. We now wish to study possible dependencies of this quantity with
the geometric structure of the resolved strains. Following Lund and Rogers (1994)
we characterize the geometric structure of the resolved strains using the so-called
strain state parameter

s∗ = −3
√

6αS̃βS̃γS̃(
α2

S̃
+ β2

S̃
+ γ 2

S̃

)3/2 . (3.11)

The strain state parameter is useful since it indicates the type of motions oc-
curring at the location of the measured filtered strain rate. For example, s∗ = 1
corresponds to axisymmetric extension (i.e., αS̃ = βS̃ > 0, γS̃ < 0), s∗ = 0 cor-
responds to plane strain (i.e., βS̃ = 0), and s∗ = −1 corresponds to axisymmet-
ric contraction (i.e., αS̃ > 0, βS̃ = γS̃ < 0). Similar expressions exist to relate
the non-dimensional eigenvalues of the SGS stress to the stress state parameter
s∗
−τ = −3

√
6α−τβ−τ γ−τ (α2

−τ + β2
−τ + γ 2

−τ )−3/2. The strain state parameter, s∗, is
bounded between −1 and 1 for incompressible flow, and the stress state parame-
ter, s∗

−τ , is bounded between −1 and 1 when the deviatoric part of the SGS stress
τ d

ij = τij − 1
3τkkδij is used instead of τij in the analysis. Inverse relations also exist
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(Lund and Rogers, 1994) that express the non-dimensional eigenvalues in terms of
the structure parameter:

β∗
S̃ =

√
6βS̃√

α2
S̃
+ β2

S̃
+ γ 2

S̃

= 2 cos

(
5

3
π + 1

3
cos−1 (s∗)

)
,

α∗
S̃ =

√
6αS̃√

α2
S̃
+ β2

S̃
+ γ 2

S̃

= − cos

(
5

3
π + 1

3
cos−1(s∗)

)

+
√

3

∣∣∣∣sin

(
5

3
π + 1

3
cos−1(s∗)

)∣∣∣∣ ,

γ ∗
S̃ =

√
6γS̃√

α2
S̃
+ β2

S̃
+ γ 2

S̃

= − cos

(
5

3
π + 1

3
cos−1 (s∗)

)

−
√

3

∣∣∣∣sin

(
5

3
π + 1

3
cos−1(s∗)

)∣∣∣∣ . (3.12)

Several previous studies of the full three-dimensional structure of SGS dissipa-
tion and alignment between the filtered strain-rate tensor and the SGS stress tensor
eigendirections have been performed. Tao et al. (2002) studied alignments in the tur-
bulent flow in a square duct using holographic particle image velocimetry (HPIV).
Higgins et al. (2003) studied the flow in the unstable atmospheric boundary layer
with arrays of sonic anemometers. Horiuti (2001) used DNS to study alignments.
Despite the large disparity in length scales and flow conditions between the studies,
they showed strikingly similar qualitative results with preferred orientations of the
eigenvectors of S̃ij and τij (see Section 3.4 for further discussion of their results).

In this chapter we present data from the same experimental setup as used in
Higgins et al. (2003) and discussed in detail in Porté-Agel et al. (2001). Two
vertically separated horizontal arrays of sonic anemometers were deployed in Davis,
California, to obtain spatial measurements of the temperature, T , and the full three-
component velocity vector. The upper array contained five sonic anemometers while
the lower array contained seven sonic anemometers. Horizontal separations between
sonics was 0.4 m and the vertical spacing between the two arrays was 0.51 m.
Data were acquired at a temporal resolution of 20 Hz. The friction velocity u∗ =
(〈u′w′〉2 + 〈v′w′〉2)1/4 and the Monin–Obukhov length L = −〈T 〉u3

∗
k g〈T ′w′〉 were used to

classify the data into subsets according to the values of z/L , where z is the average
height of the sensors above the ground (z = 3.9 m). Primes denote fluctuating
quantities, 〈. . .〉 represents averaging over time, κ is von Kármán’s constant (κ =
0.4) and g is the acceleration of gravity. Atmospheric conditions are classified as
having near neutral stability when |z/L| ≤ 0.02. The friction velocity for the data
used was u∗ = 0.27 m s−1. The present segment represents about 30 minutes of
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data and ∼ 40, 000 time realizations, and is distinctly different from the data used
in Higgins et al. (2003), who used data collected from the convectively unstable
atmosphere.

For the direct calculation of the SGS stress, the field measurements are filtered in
the spanwise horizontal direction with a box filter, and in the streamwise direction
with a Gaussian filter. Taylor’s hypothesis is invoked to convert the temporal data
record into a streamwise spatial record for streamwise filtering. The filter size, �,
used throughout the present work corresponds to five times the instrument spacing,
i.e., � ∼= 2 m. For the purposes of this analysis, this scale is considered to fall be-
low the turbulence integral scale (since �/z < 1). Spectra shown in Higgins et al.
(2003) confirm that � = 2 m falls broadly within the k−5/3 region. No filtering is
performed in the vertical direction. For consistency, gradients are calculated with fi-
nite differences over a distance of approximately�/5 in all three directions. Then S̃ij

and τij are computed according to their respective definitions: S̃ij = 1
2 (∂ j ũi + ∂i ũ j ),

and τij = ũi u j − ũi ũ j . For a complete description of this approximate filtering tech-
nique and applications to atmospheric datasets, see Porté-Agel et al. (2001), Tong
et al. (1999), and Horst et al. (2004). For applications to wind-tunnel laboratory
data from arrays of hot-wire anemometers, see Cerutti and Meneveau (2000), and
Kang and Meneveau (2002).

A probability distribution function (PDF) of non-dimensional dissipation for
atmospheric sonic anemometer data under near neutral stability is presented in
Fig. 3.1. Figure 3.2 shows the conditional PDF of �∗ as function of the parameter
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Figure 3.1. PDF of normalized dissipation, �∗, from the near-neutral atmospheric
surface layer. The mean normalized dissipation is positive (〈�∗〉 = 0.2) and the
most likely normalized dissipation is 0.4.
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Figure 3.2. Joint PDF of normalized dissipation, �∗, and strain state parameter.
To calculate the joint PDF, the s∗ axis was divided into 10 bins and the �∗ axis
was divided into 10 bins. The mode normalized dissipation, conditioned on strain
state parameter (represented by the symbols and dotted line), tends to increase as
s∗ increases. Similar trends were shown in Tao et al. (2002), but for a different
normalization of SGS dissipation.

s∗. Also shown as symbols and dotted line is the mode value of �∗ at given s∗.
It shows that the SGS dissipation tends to increase in regions of large s∗, where
resolved motions are of the axisymmetric extension type. In the following section
we seek to understand this trend in terms of preferred orientations among the two
tensors.

Figure 3.3 shows the PDFs of the two structure parameters s∗ and s∗
−τ obtained

from the present data. Both PDFs peak at s∗ = s∗
−τ = 1, indicating preferential

occurrence of axisymmetric extensional motions, and a preferential axisymmetric
contractive stress field. Probability density functions of s∗ and s∗

−τ were also pre-
sented in both Tao et al. (2002) and Higgins et al. (2003). Both studies showed that
the most likely strain-rate state correspond to s∗ = 1. A most likely value of s∗ = 1
was also obtained from DNS of unfiltered turbulence at lower Reynolds numbers
and smaller scales by Lund and Rogers (1994) and from multi-component hot-wire
data by Tsinober et al. (1992). Also in agreement with present results, Tao et al.
(2002) and Higgins et al. (2003) found that the most likely state of the negative
SGS stress is s∗

−τ = 1. Note that the peak is particularly pronounced for the SGS
stress structure, where more than half the data correspond to s∗

−τ > 0.64.
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Figure 3.3. PDFs of s∗ (solid line) and s∗
−τ (dashed line) showing that both have

a most likely value of 1. This indicates that the eigenvectors of both the filtered
strain rate, S̃ij, and the negative SGS stress, −τij, are in a state of axisymmetric
extension. This behavior was already noted in DNS data (Lund and Rogers, 1994),
hot-wire anemometer data (Tsinober et al., 1992), HPIV data in a square duct
(Tao et al., 2002) and in the atmospheric surface layer under unstable conditions
(Higgins et al., 2003).

3.4 Geometric view of stress–strain rate correlation

The contraction of (3.10) can be expanded in terms of the eigenvalues and eigen-
vectors of the two tensors as follows:

� = αS̃α−τ (αS̃, α−τ )2 + αS̃β−τ (αS̃, β−τ )2 + αS̃γ−τ (αS̃, γ−τ )2

+ βS̃α−τ (βS̃, α−τ )2 + βS̃β−τ (βS̃, β−τ )2 + βS̃γ−τ (βS̃, γ−τ )2

+ γS̃α−τ (γS̃, α−τ )2 + γS̃β−τ (γS̃, β−τ )2 + γS̃γ−τ (γS̃, γ−τ )2, (3.13)

where (α, β) denotes the cosine of the angle between two vectors α and β. Non-
dimensionalizing with the SGS stress and strain-rate magnitudes yields:

�∗ = 1

6
[α∗

S̃α
∗
−τ (αS̃, α−τ )2 + α∗

S̃β
∗
−τ (αS̃, β−τ )2 + α∗

S̃γ
∗
−τ (αS̃, γ−τ )2

+ β∗
S̃α

∗
−τ (βS̃, α−τ )2 + β∗

S̃β
∗
−τ (βS̃, β−τ )2 + β∗

S̃γ
∗
−τ (βS̃, γ−τ )2

+ γ ∗
S̃ α∗

−τ (γS̃, α−τ )2 + γ ∗
S̃ β∗

−τ (γS̃, β−τ )2 + γ ∗
S̃ γ ∗

−τ (γS̃, γ−τ )2]. (3.14)
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Equation (3.14) contains nine distinct angles (inner products) and six eigenvalues.
Yet, the alignment between the eigenvectors of two symmetric tensors is fixed with
only three Euler angles. Instead of Euler angles, which do not give uniform prob-
ability densities when computing their joint probability distributions for random
data, we follow the approach of Tao et al. (2002) who introduced three specific an-
gles that have uniform measure for random data. To reduce the degrees of freedom
in the dissipation equation, we must express each of the nine individual dot products
in (3.14) as a function of these three distinct angles. Briefly, the analysis performed
by Tao et al. (2002) and Higgins et al. (2003) fixed the relative orientation between
two tensors with a triplet of angles:

θ = cos−1 |(α−τ , αS̃)|, φ = cos−1
(∣∣(αp

−τ , βS̃

)∣∣∣∣αp
−τ

∣∣−1)
,

ζ = cos−1
(∣∣(γp

S̃
, γ−τ

)∣∣∣∣γp
S̃

∣∣−1
)

.

Here α
p
−τ is the projection of α−τ onto the γS̃ − βS̃ plane and γ

p
S̃

is the projection
of γS̃ onto the γ−τ − β−τ plane. The angle triplets were calculated for each point
in the dataset, and then a 3D joint probability density function of the three angles
was computed. By interpreting the modes in the joint PDF, Tao et al. (2002), and
Higgins et al. (2003) were able to deduce the most likely relative orientation of the
SGS stress with the filtered strain-rate eigendirections.

To simplify the trigonometry required to express the nine inner products in
(3.14) in terms of the three above angles, we circumscribe the set of eigendirec-
tions given by the filtered strain rate, and the SGS stress with the unit sphere. Each
eigenvector is a unit vector; therefore, each eigenvector can be represented as a
point on the unit sphere. The intersection of the sphere and a plane defined by
any two eigenvectors forms a great circle that connects the two respective points
on the sphere. The arc-length between two points (defined by a great circle) on
the unit sphere is identical to the angle between the corresponding vectors. With
spherical geometry, the problem is no longer one of finding angles in Cartesian
coordinates, but is instead finding distances on the unit sphere. Once this trans-
formation is made, we can use the standard tools of spherical trigonometry to
find distances on the sphere. The Law of Cosines for spherical triangles is given
by:

cos a = cos b cos c + sin b sin c cos A. (3.15)

Lower-case letters represent the sides of the spherical triangle and upper-case letters
represent the angles opposite of their respective side. The Law of Cosines for
spherical triangles will be used to express all of the dot products in (3.14) as
functions of the known angle triplet. To complete the final formulation, and to
make the geometry as general as possible, it is necessary to redefine the angles
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used by Tao et al. (2002) and Higgins et al. (2003) so that a point can be located
anywhere on the sphere relative to an eigenvector coordinate system. We will use
the following definitions for the angles:

θ = cos−1(αS̃, α−τ ), (3.16)

φ = (γS̃ × βS̃) · (
α

p
−τ × αS̃

)
cos−1

(
α

p
−τ , βS̃

)
∣∣αp

−τ

∣∣ , (3.17)

ζ = (γ−τ × β−τ ) · (
γ

p
S̃
× β−τ

)
cos−1

(
γ

p
S̃
, γ−τ

)
∣∣γp

S̃

∣∣ . (3.18)

The above definitions ensure that the angles are defined relative to a consistent
coordinate system, and can vary from −π to π. The nine dot products in (3.14) are
now given by the following set of equations:

(α−τ , αS̃)2 = cos2θ, (3.19)

(γS̃, α−τ )2 = sin2θ sin2φ, (3.20)

(γ−τ , γS̃)2 = cos2 ζ (1 − sin2θ sin2φ), (3.21)

(γ−τ , αS̃)2 = (cos θ sin φ cos ζ + cos φ sin ζ )2 sin2θ

1 − sin2θ sin2φ
, (3.22)

(β−τ , γS̃)2 = 1 − (α−τ , γS̃)2 − (γ−τ , γS̃)2, (3.23)

(βS̃, α−τ )2 = 1 − (αS̃, α−τ )2 − (γS̃, α−τ )2, (3.24)

(βS̃, γ−τ )2 = 1 − (γ−τ , αS̃)2 − (γ−τ , γS̃)2, (3.25)

(β−τ , αS̃)2 = 1 − (αS̃, α−τ )2 − (γ−τ , α−τ )2, (3.26)

(β−τ , βS̃)2 = 1 − (βS̃, α−τ )2 − (βS̃, γ−τ )2. (3.27)

Equation (3.14) is first simplified by using the angle relationships in (3.23)–(3.27)
(those relationships do not require any predefined angles or geometry) and we are
left with

�∗ = 1

6
[(αS̃, α−τ )2(α∗

S̃ − β∗
S̃)(α∗

−τ − β∗
−τ ) + (αS̃, γ−τ )2(α∗

S̃ − β∗
S̃)(γ ∗

−τ − β∗
−τ )

+ (γS̃, α−τ )2(γ ∗
S̃ − β∗

S̃)(α∗
−τ − β∗

−τ ) + (γS̃, γ−τ )2(γ ∗
S̃ − β∗

S̃)(γ ∗
−τ − β∗

−τ )

−3 β∗
S̃β

∗
−τ ], (3.28)

which will be the starting point of our analysis. To give a complete picture of the
final equation form we express all non-dimensional eigenvalues in terms of s∗ and
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s∗
−τ using the relationships in (3.12), and the angle relations in (3.19)–(3.22):

�∗ = 1

6
[−3 cos(�) +

√
3| sin(�)|][−3 cos(�τ ) +

√
3| sin(�τ )|] cos2θ

+ 1

6
[−3 cos(�) +

√
3| sin(�)|][−3 cos(�τ ) −

√
3| sin(�τ )|]

× (cos θ sin φ cos ζ + cos φ sin ζ )2 sin2θ

1 − sin2θ sin2φ

+ 1

6
[−3 cos(�) −

√
3| sin(�)|][−3 cos(�τ ) +

√
3| sin(�τ )|] sin2θ sin2φ

+ 1

6
[−3 cos(�) −

√
3| sin(�)|][−3 cos(�τ ) −

√
3| sin(�τ )|]

× cos2 ζ (1 − sin2θ sin2φ) − 12 cos � cos �τ , (3.29)

where � = 5
3π − 1

3 cos−1 s∗ and �τ = 5
3π − 1

3 cos−1 s∗
−τ . Equation (3.29) can be

used to investigate the effect of alignment and stress/strain state on dissipation;
however, for simplicity, (3.28) is a more natural starting point.

Recall that by definition α ≥ β ≥ γ. This set of inequalities allows us to deter-
mine the signs of the terms containing angles in (3.28):

(αS̃, α−τ )2(α∗
S̃ − β∗

S̃)(α∗
−τ − β∗

−τ ) ≥ 0

(αS̃, γ−τ )2(α∗
S̃ − β∗

S̃)(γ ∗
−τ − β∗

−τ ) ≤ 0

(γS̃, α−τ )2(γ ∗
S̃ − β∗

S̃)(α∗
−τ − β∗

−τ ) ≤ 0

(γS̃, γ−τ )2(γ ∗
S̃ − β∗

S̃)(γ ∗
−τ − β∗

−τ ) ≥ 0. (3.30)

With these constraints, we can deduce alignments of filtered strain-rate and SGS
stress eigendirections that maximize or minimize energy dissipation for all pos-
sible stress/strain states (s∗ and s∗

−τ ). Eliminating negative terms (αS̃, γ−τ ) =
(γS̃, α−τ ) = 0 and maximizing positive terms (αS̃, α−τ ) = (γS̃, γ−τ ) = 1 will
yield a maximum dissipation for all possible states of the stress or strain. This max-
imum is of course attained by the alignment corresponding to the eddy-viscosity
model (see Fig. 3.5(a)). The resulting normalized dissipation is given by:

�∗ = 1

6
(α∗

S̃α
∗
−τ + β∗

S̃β
∗
−τ + γ ∗

S̃ γ ∗
−τ ) = cos � cos �τ + | sin � sin �τ |. (3.31)

Equation (3.31) represents an eddy-viscosity behavior, �∗ = 1, only when �τ = �

(i.e., the stress state and strain state parameters are equal). A plot of the maximum
dissipation for all stress–strain state combinations is shown as the upper surface
in Fig. 3.4. The short thick line on the upper surface in Fig. 3.4 represents the
eddy-viscosity model.
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∗∗

∗

Figure 3.4. Upper and lower bounds on normalized dissipation for each strain
state and SGS stress state combination as deduced from (3.28). The diagonal line
at the upper surface corresponds to the eddy-viscosity closure. This line is also the
global maximum of dissipation.

Note that the alignment that produces a minimum bound on the normalized
dissipation for all SGS stress states and strain states can also be deduced from
(3.28). If an alignment is chosen so that the positive terms are eliminated, i.e.,
(αS̃, α−τ ) = (γS̃, γ−τ ) = 0, and the negatives are maximized, i.e., (αS̃, γ−τ ) =
(γS̃, α−τ ) = 1, we will have set the lower bound on dissipation for all possible
SGS stress and strain state combinations. The alignment that yields this minimum
is when the contractive direction of the filtered strain-rate tensor, γS̃ , is aligned
with the extensive direction of the (negative) SGS stress tensor, α−τ , and the two
intermediate eigendirections are aligned. An interpretive sketch of this alignment is
presented in Fig. 3.5(b). Such an alignment yields a normalized dissipation given by:

�∗ = 1

6
(α∗

S̃γ
∗
−τ + β∗

S̃β
∗
−τ + γ ∗

S̃ α∗
−τ ) = cos � cos �τ − | sin � sin �τ | (3.32)

which is the minimum for all possible stress–strain state combinations. A plot of
this minimum is presented as the lower surface in Fig. 3.4.
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Figure 3.5. Interpretive sketches that give rise to (a) maximum and (b) minimum
dissipation. The maximum dissipation is achieved when the vector alignment im-
plied by the eddy-viscosity model is realized (a). The minimum dissipation is
achieved by keeping the intermediate eigendirections aligned and pairing exten-
sive and contracting directions together (b). Global minimization of the dissipation
function also requires that a functional relationship between strain state and SGS
stress state be specified. The global maximum dissipation occurs when the eigen-
vectors are aligned as in (a) and s∗ = s∗

−τ . This is achieved when τij = −λS̃ij. The
global minimum occurs when the eigenvectors are aligned as in (b) and s∗ = −s∗

−τ .
This is achieved when τij = λS̃ij.

The form of (3.28) can be further simplified if either the filtered strain rate or
the SGS stress exhibits axisymmetric contraction or extension. For example, in the
most likely case of axisymmetric extension in the filtered strain rate, s∗ = 1, the
non-dimensional eigenvalues have the property α∗

S̃
= β∗

S̃
. Two of the required angles

then drop from (3.28). When the tensor’s eigenvector composition is axisymmetric,
all of the directional information is described by the axis of symmetry, including
the dissipation.

3.5 Dissipation from observed alignments

Tao et al. (2002) and Higgins et al. (2003) found two relative orientations of the
filtered strain rate and the SGS stress that are highly likely. The two alignments
that these studies reported are shown in Fig. 3.6. The atmospheric data used in our
study did not contain sufficient points to allow us to obtain statistically converged
joint PDFs of the three angles and so we rely on these earlier results. The align-
ment configuration of Fig. 3.6(a) represents the primary configuration, while the
alignment in Fig. 3.6(b) represents the secondary configuration. Each corresponds
to a unique alignment of the eigenvectors, but in both alignment configurations,
the angle between the two contracting directions (the angle between γS̃ and γ−τ )
is approximately the same (about 30◦), and the contracting direction γ−τ is per-
pendicular to the intermediate direction of the filtered strain rate, βS̃ .
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Figure 3.6. (a) Primary and (b) secondary alignment configurations between the
filtered strain rate and the SGS stress reported by Tao et al. (2002) and Higgins
et al. (2003). The alignments reflect a bimodal behavior with a characteristic angle
between the contracting directions of approximately 30◦.

In (3.29), the only variable composed of purely filtered scale quantities is the
strain state parameter s∗. Therefore, to explore the dependence of dissipation on
filtered scale quantities, we must choose an eigenvector alignment and a value for
the SGS stress state parameter.

We have seen that s∗
−τ = 1 is the most likely value of this parameter. Using

s∗
−τ = 1, only the alignment of the axis of symmetry, γ−τ , with the filtered strain

rate is needed to completely specify the alignment of the filtered strain rate and the
SGS stress tensor. This will require only two distinct angles. As mentioned before, it
was found in Tao et al. (2002) and Higgins et al. (2003) that γ−τ is perpendicular to
βS̃ in both of the likely alignment configurations. Substituting these two conditions
into (3.28) (s∗

−τ = 1 and γ−τ ⊥ βS̃), and using (3.25), the normalized dissipation
becomes

�∗ = 1

2
[(γS̃, γ−τ )2(α∗

S̃ − γ ∗
S̃ ) − α∗

S̃], (3.33)

which is a function of a single angle, namely the angle (γS̃, γ−τ ) that is approx-
imately the same in both peaks of the alignment PDF. We can then use the most
likely value of this angle as observed from data (γS̃, γ−τ )2 ≈ cos230◦ = 0.75 (the
value reported by Higgins et al., 2003). Equation (3.33) then reduces to:

�∗ = 0.25

{
2.0 cos

[
5

3
π − 1

3
cos−1(s∗)

]
+

√
3

∣∣∣∣sin

[
5

3
π − 1

3
cos−1(s∗)

]∣∣∣∣
}

.

(3.34)

The value of �∗ therefore varies in a range between about 0.125 when s∗ = −1 to
about 0.625 when s∗ = 1.
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Figure 3.7. Contour plot of the joint PDF between normalized dissipation, �∗,
and the strain state parameter (solid black lines). Symbols and dotted line: the
measured mode dissipation as a function of s∗ (same as in Fig. 3.2). Dashed line:
prediction using s∗

−τ = 1 and the eddy-viscosity alignment. Dash–dot line: present
prediction using s∗

−τ = 1, γ−τ ⊥ βS̃ , and ζ = 30◦, showing good agreement with
the data.

The dash–dot line in Fig. 3.7 denotes the prediction based on the three above
assumptions [Equation (3.34)], and is compared to the mode values measured from
the data (symbols and dotted line, same as Fig. 3.2).

Picking larger values for (γS̃, γ−τ )2 moves the alignment closer to the one pre-
sumed by the eddy-viscosity model. Specifically, for s∗

−τ = 1, the prediction for
perfect alignment (Fig. 3.5(a)) is shown as a dashed line (this is equal to the upper
surface shown in Fig. 3.4 along the line s∗

−τ = 1). In addition, the Smagorinsky
model gives a constant prediction, �∗ = 1, for all values of s∗ which represents an
even greater over-prediction of dissipation. Implications of these observations in
terms of improved subgrid models will be discussed in the next section.

3.6 Discussion and conclusions

In this chapter we have reviewed Lilly’s ground-breaking development in LES,
which recognized the central importance of the SGS dissipation, or contraction
between the SGS stress and resolved strain-rate tensors. The original work focused
upon the ensemble average value of the SGS dissipation as a means of deriving
the model parameter for the Smagorinsky model. We remark in passing that Lilly’s
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reasoning was extended to more complicated systems, for instance to account for
buoyancy (Deardorff, 1971), or viscous effects (Voke, 1996). Another extension
was proposed in Cerutti et al. (2000) in which the dissipation of enstrophy rather
than kinetic energy was shown to be useful to quantify model parameters for hyper-
viscosity models.

We have analyzed field experiment data collected under near-neutral conditions,
and found that the local SGS dissipation tends to increase in regions of axisymmetric
extension. In examining more closely the stress–strain alignments, we have written
down an expression for the non-dimensional form of the SGS dissipation. It de-
pends on only five independent parameters (three angles and two non-dimensional
structure parameters). The expression allows the investigation of dissipation caused
by a particular alignment and stress/strain state configurations (i.e., the local state
of the flow). Alignments of eigendirections that give nontrivial limits on dissipation
were deduced for every possible stress–strain state.

Using three observations (obtained by inspection of the data and knowledge
of the alignment structure presented in Fig. 3.6) the behavior of the normalized
dissipation with respect to the strain state is well reproduced. Specifically, the
results from Section 3.5 imply that any attempt to reduce the dissipation estimated
by the Smagorinsky model with an adjustment to the eddy-viscosity coefficient will
have no effect. Recall from Section 3.4 that the eddy-viscosity model gives

∏∗ = 1
by definition. This is a result of the local non-dimensionalization that scales out
tensor magnitudes. The difference in dissipation seen here (Fig. 3.7) from that given
by the Smagorinsky model is a result of structural differences in the SGS stress and
the filtered strain rate only. If we wished to modify the Smagorinsky model so that
it better reproduced the measurements, we would have to modify model structure
through either: (1) the eigenvector alignments with a rotation matrix; or (2) by
modifying the strain state, s∗, within the strain-rate eigensystem. The former is quite
complicated but has the potential to produce the desired result. The latter is simpler,
but the reduction in dissipation is limited to the upper surface in Fig. 3.4. Thus, it
seems that manipulating the local state of strain alone cannot achieve a great enough
reduction in modeled dissipation to match the measured dissipation behavior as a
function of s∗. The results show the potential of interpreting turbulent parameters
within a geometric framework, and make a clear and immediate connection between
the local flow structure and the resulting dissipation.
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Dreams of a stratocumulus sleeper
David A. Randall and Wayne H. Schubert

Department of Atmospheric Science Colorado State University Fort Collins, USA

4.1 Foggy recollections

When we were students at UCLA in the early 1970s, the California stratus deck
frequently floated over our heads. There on the beautiful campus under the clouds,
we studied Doug Lilly’s (1968; hereafter L68) paper about cloud-topped mixed
layers under strong inversions. The paper was recommended to us by our mentor,
Professor Akio Arakawa, who recognized the relevance of Lilly’s insights to climate
dynamics. Whereas spectacular supercells leap from the boundary layer to the
tropopause in a single bound, L68 analyzed “wimpy” stratus and stratocumulus
clouds that are only a few hundred meters thick and barely manage to precipitate.
L68 was a “sleeper.” It received little attention at first, but over the decades since then
it has picked up many citations (417 as of June 2003), and it forms the groundwork
for several currently thriving lines of research. L68’s emergence as a classic research
paper stems in part from the climatic importance of the cloud regimes it dealt with,
but more importantly from the amazing prescience of Lilly’s ideas and the clarity
with which he expressed them.

Several ingredients, acquired over a number of years, came together in a two-
week period during the summer of 1965 to produce the remarkable L68 paper. The
first was personal experience and interest. Lilly’s high-school physics teacher, at
Sequoia Union High School in Redwood City, California, ran a weather club, which
Lilly joined with enthusiasm. After becoming the club’s student leader, Lilly began
to evolve, by his own description, into a

weather junkie, keeping daily weather records, making forecasts, and testing their accuracy.
When I learned to drive, I did something akin to tornado chasing, within the limits of
California weather. Several times I took the car and drove up to the top of the Coast Range
to the west of us, with a thermometer, and observed the big temperature increase when you
go above the stratus layer.

C© Cambridge University Press 2004
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The second ingredient was a simple, accurate conceptual model based on ob-
servational work, especially Petterssen’s (1938) account of the radiative driving
of California stratocumulus clouds. In his insightful paper, Petterssen argued that
stratocumulus clouds are not caused by the direct cooling from the upwelling water,
but rather that the boundary layer air is unstable and stratocumulus forms because
of convection under the temperature inversion. Petterssen realized that outgoing
radiation from the top of the moist layer is effective in maintaining the temper-
ature inversion and the instability of the boundary-layer air. The third ingredient
was the mixed-layer modeling approach, one of the topics of study at the second
(1960) summer study program in geophysical fluid dynamics at the Woods Hole
Oceanographic Institution, a program to which Lilly had been sent by his boss
Joseph Smagorinsky. This remarkable program, now approaching its 45th con-
secutive year, afforded Lilly the chance to interact with oceanographers and fluid
dynamicists, including Stewart Turner, who was applying mixed-layer modeling to
the problem of the ocean thermocline. The fourth and final ingredient was moist
thermodynamics, no doubt mastered by Lilly during the research leading to his
dissertation “On the Theory of Disturbances in a Conditionally Unstable Atmo-
sphere.” A clear understanding of moist thermodynamics is crucial for generalizing
dry mixed-layer theory so that it can apply to cloud-topped mixed layers.

In the summer of 1965, nine months after joining the National Center for At-
mospheric Research (NCAR), Lilly was invited by Stanley Rosenthal to visit the
National Hurricane Research Laboratory, then collocated on the University of Mi-
ami campus with the National Hurricane Center and the Rosenstiel School of Marine
and Atmospheric Science. It was during this two-week visit that Lilly, spending
most of his time in the university library, generated the important parts of the
1968 paper, a nearly final version of which became available in June 1967 as
NCAR Manuscript No. 386. The NCAR manuscript contains more detail concern-
ing the radiation calculations than does L68. It became evident that Lilly’s ap-
proach to mixed-layer modeling was also relevant to the experimental work of
James Deardorff and Glen Willis, and the paper by Deardorff et al. (1969) soon
followed.

It is not our purpose here to comprehensively review the research edifice that the
atmospheric science community has built on L68. Instead we begin, in Sections 4.2
and 4.3, by giving our perspective on why L68 is still being actively discussed 35
years after its publication. As part of this discussion, we compare modern observa-
tions of the large-scale atmospheric circulations associated with marine subtropical
stratocumulus regimes with the data that was available when L68 was published. In
Sections 4.4 and 4.5, we offer a new analysis of issues that were raised for the first
time by L68: the effects of radiative and evaporative cooling on entrainment. Our
approach is formulated in terms of what we call the “effective inversion strength.”
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We conclude with some comments about the relevance of L68’s conceptual frame-
work to the design of global circulation models.

4.2 Why are stratocumulus clouds so prevalent over the eastern
subtropical oceans?

On the basis of climatological data from millions of ship reports during the pe-
riod 1885–1933 (McDonald, 1938) and radiosonde data collected during research
cruises in 1949–1952, Neiburger et al. (1961) described the peculiar structure of
the lower troposphere off the coast of California. A strong subsidence inversion
hangs a few hundred meters above the sea. Below the inversion, moist-conservative
variables are vertically homogenized within a “marine layer.” Especially during the
summer months, a thin but remarkably persistent sheet of stratus or stratocumu-
lus clouds hugs the inversion base. As the marine-layer air circulates towards the
southwest, around the subtropical high, it encounters gradually warming sea surface
temperatures (SSTs) and gradually weakening subsidence. A couple of thousand
kilometers downstream from the California coast, the stratus deck breaks up into
shallow cumuli.

In light of the widespread use of the Neiburger et al. analysis for theoretical
and modeling work, it is of interest to compare their surface wind climatology
with recent SeaWinds observations. SeaWinds is a microwave scatterometer on the
QuikSCAT satellite, launched in July 1999. QuikSCAT streamlines and isotachs
of the surface wind (calibrated to the 10 m level), averaged for July of the years
1999–2002, are shown in Plate I(a). For comparison, Fig. 35 of Neiburger et al. is
reproduced in Plate I(b). The Neiburger et al. figure is a redrafted version of the
northeast Pacific region in Charts 9 and 21 of McDonald (1938). A glaring omission
in the Neiburger et al. report is that the isotach units are not given. Many users of
the figure have no doubt assumed that the units are m s−1 or knots, but reference
to the original Chart 21 of McDonald confirms that the isotachs are in Beaufort
units. In Plate I(b) we have converted the Beaufort units to m s−1 with the arrow
notation, e.g., 4 → 7.2 meaning 4 Beaufort units is equivalent to 7.2 m s−1. The
QuikSCAT data reveal that the strongest surface winds along the coast average more
than 10 m s−1, just off Cape Mendocino, California. A secondary maximum occurs
just northwest of San Nicolas Island, site of the 1987 FIRE Marine Stratocumulus
Experiment (Albrecht et al., 1988). Somewhat surprisingly, these isotach maxima
near Cape Mendocino and San Nicolas Island do not appear in the isotach analysis
of Neiburger et al.

†
According to QuikSCAT data, an isotach maximum of 9 m s−1

†
In contrast to Chart 21, Charts 9 and 29 of the McDonald atlas do show isotach maxima just off the coast of
northern California. Apparently, the spatial smoothing used in Chart 21 (5 degrees in latitude and longitude) is
enough to eliminate the feature.

              

       



74 Dreams of a stratocumulus sleeper

is also found over a large region of the diffluent northeasterly trades east and south
of Hawaii. Another interesting feature is the shadow of light winds in the lee of the
Hawaiian Islands. The Neiburger et al. analysis does show an isotach maximum east
and south of Hawaii, but its magnitude is weaker. Because the QuikSCAT winds
are the product of a remote sensing algorithm, it is of interest to investigate their
accuracy. Recently, Chelton et al. (2001) compared QuikSCAT winds to surface
winds from the TAO buoy array for three months during 1999. Their conclusion
was that the QuikSCAT winds are approximately 0.74 m s−1 weaker than TAO-
observed winds. Even more recently, Bourassa et al. (2003) compared QuikSCAT
winds with surface wind measurements from six different research ships. Their
conclusion was that the QuikSCAT winds were about 0.14 m s−1 weaker than the
ship-observed winds. Based on the these results, we conclude that the wind speeds
given in the Neiburger et al. climatology are probably slightly too weak and too
smooth spatially.

The divergence field associated with the QuikSCAT winds of Plate I(a) is shown
by the color analysis in Plate II. For comparison, the July mean divergence estimates
of Neiburger et al. (their Fig. 37) are shown by the solid black isolines, labeled
in units of 10−6 s−1. Although the QuikSCAT surface wind data in Plate I(a) is
presented at 0.5 degree latitude/longitude resolution, for clarity the QuikSCAT
divergence field presented in Plate II has been subjected to a 7-element boxcar
average, which effectively eliminates features smaller than approximately 150 km
and also reduces the peak magnitudes. Plate II reveals that the surface winds are
divergent over nearly the whole area; the exceptions are the region influenced by
midlatitude disturbances in the northern part of the figure, a small region in the
lee of the Hawaiian Islands, and the northern edge of the ITCZ in the southeastern
part of the figure. The largest divergence is found along the North American coast,
with peak values of 6.5 × 10−6 s−1. Two lobes of enhanced divergence extend
westward, with a region of weak divergence between them. The northern lobe of
enhanced divergence lies between 40◦ N and 45◦ N, in the surface flow accelerating
eastward on the north side of the subtropical high. The southern lobe of enhanced
divergence lies in the diffluent, accelerating northeasterly trades midway between
Hawaii and southern California. The agreement between the QuikSCAT divergence
field and the earlier estimate of Neiburger et al. (1961) is generally good, although
the QuikSCAT data reveal a larger north–south extent of strong divergence along
the coast and a more extensive northern lobe of strong divergence.

A few years after the study of Neiburger et al. was published, satellite imagery
revealed similar cloud systems west of South America, west of Namibia in southern
Africa, and to some extent west of Europe and Australia (e.g., Hubert, 1966). We
began to speak of “marine subtropical stratocumulus cloud” regimes.

L68 explained why such regimes exist. Surface evaporation is promoted by the
persistent winds of the subtropical highs. Coastal and equatorial upwelling bring
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cold water to the surface, chilling the air. Boundary-layer turbulence mixes the
moist cool air upward, but subsidence and the strong inversion cap the mixing.
If the marine layer’s top climbs high enough so that the relative humidity there
reaches 100%, marine subtropical stratocumulus clouds (MSCs) form. Through
mechanisms explained by L68 and discussed below, cloud formation invigorates
the turbulence, and so favors a deepening of the marine layer and the cloud
itself.

At the top of the marine layer, the temperature increases sharply upward by 10 K
or more, and the mixing ratio of water vapor decreases upward by as much as 90%,
all within an interfacial zone that is much less than 100 m thick. The inversion is
a “battle-front” that marks the collision of dry, high-potential-temperature air that
has smoothly subsided from the upper troposphere, with humid, cool air that is
being turbulently mixed upward from near the sea surface. “Hot–dry” is coming
down, “cool–wet” is going up, and where they collide they agree to disagree.

It is amazing that the subsiding air of the subtropical high actually crosses the
spectacular boundary at the marine-layer top. Turbulent entrainment prevents the
interface itself from being advected downward by the subsidence. Entrainment is
not mixing. Mixed particles move in both directions across an interface, but en-
trained particles move in only one direction: from the quiet air into the turbulent air.
Entrainment is the active “annexation” of non-turbulent air by a growing turbulence.
An observational demonstration that the marine-layer top is a region of turbulent
entrainment was first provided for the northeast trades of the Pacific Ocean in the
classic paper by Riehl et al. (1951).

As the air crosses the top of the marine layer, it is very rapidly transformed
from hot–dry to cool–wet. The moistening is caused by a strong convergence of the
turbulent moisture flux. The cooling is due to a strong divergence of the radiative
energy flux, combined with the evaporative chilling associated with a strong con-
vergence of the turbulent flux of liquid water; without such cooling the buoyancy
force would prevent the air from descending into the marine layer.

At this point it is useful to introduce the moist static energy:

h ≡ cpT + gz + Lq, (4.1)

where cp is the heat capacity of air at constant pressure, T is temperature, g is the
acceleration of gravity, z is height, L is the latent heat of condensation, and q is
the mixing ratio of water vapor. We also define the mixing ratio of total (vapor plus
liquid) water,

r ≡ q + �, (4.2)

where � is the mixing ratio of liquid water. The definitions (4.1) and (4.2) are useful
because h is materially conserved under both dry adiabatic and moist adiabatic
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processes (with or without precipitation) in the absence of radiative heating, while
r is also materially conserved under both dry adiabatic and moist adiabatic processes
in the absence of precipitation.

L68 showed that the sharp turbulent and radiative flux divergences and the in-
terfacial entrainment rate satisfy two simple relations:

(Fh)B = −E�h̄ + �R̄, (4.3)

(Fr )B = −E�r̄ . (4.4)

Here Fη is the turbulent flux of a quantity η, the subscript B denotes a level at the top
of the turbulent boundary layer, E is the entrainment mass flux, �η is the upward
increase of a quantity η across the top of the marine layer, an overbar represents a
horizontal average, and R is the net upward flux of energy due to radiation. A positive
value of �R̄ represents intense radiative cooling within the thin interfacial layer.
L68 credits Petterssen (1938) with the key insight that the longwave contribution to
�R̄ (typically on the order of 50 to 100 W m−2) plays a key role in the physics of
MSCs. L68 emphasized that by cooling the top of the marine layer, �R̄ promotes
convection below. The convection effectively distributes the effects of the radiative
cooling over the entire depth of the marine layer, and in so doing it also drives the
turbulence of the marine layer.

The subsidence and cold-water characteristic of MSC regimes are compatible
with either a very shallow cloud-free marine layer or a somewhat deeper cloud-
topped marine layer (Randall and Suarez, 1984). If a thin cloud forms, cloud pro-
cesses including cloud-top radiative cooling promote faster entrainment that leads
to a further deepening of the layer and a thicker cloud. Conversely, if a transient
increase in subsidence pushes the top of the marine layer below the condensation
level so that the cloud disappears, the rate of entrainment decreases, favoring a
further decrease in the depth of the marine layer and tending to prevent the cloud
layer from re-establishing itself.

L68 deals with interactions among turbulence, moist thermodynamics, and ra-
diative transfer. This broad scope was necessary to encompass the processes at work
in MSCs. It is remarkable that even today the coupling among these processes is
completely ignored in many large-scale models.

4.3 How do stratocumulus clouds interact with the global circulations
of the atmosphere and ocean?

With albedoes that can reach 50%, MSCs scatter back to space a lot of solar radi-
ation that would otherwise be absorbed by the oceans, thus tending to reduce the
temperature of the water below. As discussed later, the cold water is favorable for
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the existence of the clouds. Coupled ocean–atmosphere models that fail to simulate
MSCs suffer from large positive SST errors off the west coasts of the continents
(e.g., Ma et al., 1994).

The cold water on the eastern side of the Pacific basin contrasts with the warm
water on the western side, especially during the La Niña phase of the ENSO cycle.
This SST difference induces a surface-pressure gradient that determines the strength
of the low-level trade-wind flow. As discussed by Bjerknes (1966), the trades act to
reinforce the SST difference. However, the excitation and eastward propagation of
equatorially trapped waves in the ocean can cause significant changes in thermo-
cline depth and SST in the eastern Pacific. When such events occur with sufficient
amplitude, an El Niño ensues, with a strong warming of the eastern-Pacific SST and
a decrease in subsidence there. El Niños are associated with a decrease in MSCs,
primarily over the equatorial cold tongue (Deser and Wallace, 1990). This decrease
in cloud cover favors a further warming of the water in the equatorial eastern Pacific,
thus providing a positive feedback on the El Niño-induced warming.

As already discussed, when MSCs are present, the top of the marine layer tends
to rise, so that a deeper layer of moisture is carried into the tropics. Through this
mechanism, MSCs tend to increase the supply of latent heat for the deep convection
of the Intertropical Convergence Zone (ITCZ).

At the same time, however, MSCs tend to produce drizzle patterns that are quite
horizontally inhomogeneous. In addition, there can be significant evaporation of the
drizzle in the subcloud layer. van Zanten et al. (2004) and Stevens et al. (2004) have
recently discussed airborne cloud radar measurements of drizzle rates in noctur-
nal marine stratocumulus west and southwest of San Diego and similar ship-based
measurements of stratocumulus west of South America. From their data it is now
apparent that drizzle rates are highly dependent on whether the stratocumulus con-
vection is in the form of open or closed cells. Embedded in a large region of closed
cells can be a “pocket of open cells.” It is in such pockets that high drizzle rates
occur, with very little drizzle observed in the region where the convection is in the
closed-cell form. Averaged over the many open cells in such a pocket, it appears
that the surface drizzle rate can often exceed 0.5 mm day−1. Since a surface drizzle
rate of 0.5 mm day−1 is approximately 10% of the surface evaporation rate, drizzle
from MSCs can, in some situations, represent a non-negligible moisture sink for
the trade-wind layer. In addition, the intensity of the drizzle is regulated to a certain
extent by the availability of cloud condensation nuclei (CCN); an increase in the
number density of CCN causes the available liquid water to be distributed over a
larger number of smaller drops, and so decreases the drizzle rate (Albrecht, 1989).
The increased number of small droplets also leads to an increase in the albedo of
the clouds (Twomey et al., 1984), as can be seen very clearly in ship-tracks (e.g.,
Liu et al., 2000). These two “indirect effects” of aerosols on climate have excited
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a lot of interest, but they are not yet widely incorporated into atmospheric general
circulation models (GCMs).

4.4 What determines the entrainment rate at the top of a
cloudy turbulent layer?

Starting with L68, theories have been proposed to determine the rate of cloud-top
entrainment (e.g., Lewellen and Lewellen, 1998; Lock, 1998, 2000; Lilly, 2002a,
b); see the recent review by Stevens (2002). Many of these theories are variations
on an approach suggested by L68, wherein a closure assumption is formulated in
terms of the vertically integrated “buoyancy flux,” i.e., the flux of virtual temper-
ature. The motivation for this approach is that the convection associated with the
vertically integrated buoyancy flux is the primary source of the MSC’s turbulence
kinetic energy (TKE). Obviously the TKE must be non-zero in order for turbulent
entrainment to occur, but at the same time entrainment normally tends to reduce the
buoyancy flux. All other things being equal, more TKE would imply more entrain-
ment, but more entrainment would tend to reduce the source of TKE. This line of
reasoning suggests that there is a particular entrainment rate for which the system is
in balance, and L68 hypothesized that this is the entrainment rate that we observe.

Cloud-top entrainment has been a highly controversial subject, in large part
because there have been very few hard facts to work with. Obviously, it is important
to test the entrainment theories against observations. Unfortunately, however, the
entrainment rate is very difficult to measure in the field, and almost as difficult
to simulate numerically, even with LES (large-eddy simulation; see Chapter 5 by
Moeng et al. in this book). Lacking such tests, entrainment theories have the quality
of “deniable plausibility,” not to be confused with the “plausible deniability” that
is so useful in the political arena. Even entrainment theories that are successfully
tested against data or LES are sometimes little more than curve fits, unsupported
by clear physical explanations.

Despite the difficulties, there is a consensus that L68 was correct in proposing
that cloud-top radiative cooling is a powerful promoter of entrainment. There is
also a (perhaps somewhat weaker) consensus that L68 was correct in proposing
that cloud-top evaporative cooling promotes entrainment, although the strength of
this effect is still vigorously debated.

Progress can be made by:

� finding entrainment “recipes” that work increasingly well, even if the reasons for their
success are incompletely understood;

� subjecting entrainment theories to increasingly challenging observational and/or numer-
ical tests;

� deriving entrainment theories from basic assumptions that are increasingly simple and
physical.
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We now report an example of the third approach, in which we attempt to clarify the
mechanisms by which cloud-top radiative and evaporative cooling act to increase
the entrainment rate.

Our starting point is an entrainment parameterization similar to the one that has
been proposed for use in the absence of clouds, following the ideas of Breidenthal
and Baker (1985), Siems et al. (1990), and Breidenthal (1992):

E = b1ρB
√

eM

1 + b2 max(Ri�, 0)
. (4.5)

Here ρ is the density of the air, eM is the TKE vertically integrated over the planetary
boundary layer (PBL), and

Ri� = gzM�s̄v

cpT̄BeM
(4.6)

is a Richardson number. The parameters b1 and b2 are usually assumed to be
constants.

Observations and high-resolution numerical simulations of cloud-free boundary
layers heated from below (e.g., Deardorff, 1974) suggest that b1 ≈ 0.25 and b2 ≈
0.25. When there is no capping inversion, (4.5) simplifies to

E = b1ρB
√

eM. (4.7)

This special case is interesting, in part because it is so simple. It is relevant to our
later discussion.

In (4.6), zM is the PBL depth, and sv is the virtual dry static energy (�s̄v its
increment across the PBL top), which is defined by

sv ≡ cpT

(
1 + (1 + δ)q

1 + q + �

)
+ gz, (4.8)

where δ = (Rv − Ra)/Ra ≈ 0.608 is a non-dimensional combination of the gas
constants, Rv of water vapor and Ra of dry air. With this definition, sv measures the
density of the air, taking into account the possible presence of both water vapor and
liquid water. Following the spirit of L68, we write a useful approximate formula
for s, which will be used later:

sv ≈ cpT + δεLq − εL� + gz

= h − (1 − δε)Lq − εL�, (4.9)

where ε ≡ cpT/L .
In (4.5), the “velocity scale” for the entrainment rate is

√
eM. The TKE appears

again in the definition of Ri�. Equation (4.5) is suited for use in a model that
explicitly predicts eM, as do the GCMs currently in use at Colorado State University
and at the University of California at Los Angeles. The Ri� term in the denominator
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of (4.5) represents the effects of buoyancy-induced resistance to entrainment across
a statically stable interface; for a given TKE, a stronger inversion leads to slower
entrainment.

The buoyancy flux at the top of a clear PBL satisfies

(Fsv)B = −E�s̄v. (4.10)

Substituting from (4.5) and (4.6), we obtain

(Fsv)B = −b1ρB
√

eM �s̄v

1 + b2 max

(
gzM�s̄v

cpT̄BeM
, 0

) . (4.11)

For �s̄v sufficiently positive, this can be approximated by

(Fsv)B ≈ −
(

b1

b2

) (
cpT̄B

gzM

)
ρBe3/2

M . (4.12)

According to (4.12), the buoyancy flux at the inversion base is negative and approx-
imately independent of �s̄v, for a given value of eM. This is true when the inversion
is sufficiently strong. From (4.11), we see that

(
Fsv

)
B → 0 in the limit as �s̄v → 0.

For �s̄v < 0, (4.11) gives

(Fsv)B = −b1ρB
√

eM �s̄v > 0. (4.13)

This means that entrainment leads directly to convection when the entrained air is
negatively buoyant.

The key hypothesis of our entrainment theory is that:

H1: Equation (4.5) holds in all cases, provided that the actual
Richardson number is replaced by an “effective Richardson number”
based on a suitably defined “effective inversion strength” that takes into
account the effects of cloud-top cooling.

Our physical interpretation of this assumption is that, for a given value of eM, cloud-
top cooling affects the entrainment rate by reducing the buoyancy of the air that is
entering the tops of the downdrafts, making it easier for that air to sink.

We pursue this approach in a step-by-step fashion. First, consider a “smoke
cloud,” with radiative cooling at its top, but no moisture. This useful idealization
was first studied by L68, and has recently been extensively analyzed by Bretherton
et al. (1999; hereafter B99). A smoke cloud feels the effects of cloud-top radiative
cooling, but without the additional complications associated with the phase changes
of water. Radiative cooling at the top of a smoke cloud chills the air that is being
entrained across the inversion, so that the newly entrained air arrives in the upper
part of the mixed layer with a cooler temperature, as if it had been entrained across
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a weaker inversion. This effect will be incorporated by use of an effective inversion
strength in (4.6), the expression for the Richardson number. Blobs of radiatively
chilled air drip downward into the smoke cloud under the action of the bouyancy
force, thus producing an upward buoyancy flux below the cloud top, as illustrated,
for example, in Fig. 8 of B99. The upward buoyancy flux favors an increased eM.
This effect is automatically taken into account in a model that predicts eM.

To derive an expression for the effective inversion strength, we begin with an
analysis of the properties of the air that is sinking in downdrafts below the inver-
sion; the discussion is similar to one given by Randall et al. (1992). Define σ as
the fractional area covered by the perturbation rising motion associated with the
turbulent eddies in the PBL, and write

ψ̄ = σψu + (1 − σ )ψd, (4.14)

where ψ is an arbitrary intensive variable, an overbar denotes a horizontal aver-
age, and the subscripts u and d denote updrafts and downdrafts, respectively. The
turbulent flux of ψ satisfies

Fψ = Mc(ψu − ψd), (4.15)

where Mc is a convective mass flux. The budget of ψ̄ for the inversion layer can be
expressed as

(Fψ )B = −E(ψ̄B+ − ψ̄B) −
∫ zB+

zB

S̄ψdz, (4.16)

where the subscript B+ denotes a level just above the turbulent layer, and
∫ zB+

zB
S̄ψdz

represents the effects of a concentrated source or sink of ψ̄ inside the inversion layer.
Comparing (4.15) and (4.16), we find that

(Mc)B [(ψu)B − (ψd)B] = −E(ψ̄B+ − ψ̄B) −
∫ zB+

zB

S̄ψdz. (4.17)

The model used here is admittedly a crude caricature of nature, in the sense that
it distinguishes only two categories of air, i.e., updrafts and downdrafts, each with
distinct thermodynamic properties. Obviously a real cloud layer has a much more
complex structure. Nevertheless, updrafts, downdrafts, and mass fluxes do exist
in nature, and our goal is to represent them simply but explicitly in our modeling
framework.

We now introduce a mixing parameter, χE , defined by

(ψd)B = χE ψ̄B+ + (1 − χE ) (ψu)B + λ

∫ zB+

zB

S̄ψdz, (4.18)
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Updraft

σ

Sψ

Downdraft

1 − σ

level B+

level B

Entrainment

Figure 4.1. Sketch used to interpret (4.18). See text for details.

where λ is a (dimensional) coefficient to be determined below. [Note that definition
(4.18) differs slightly from that used by Randall et al. (1992).] For Sψ = 0, (4.18)
reduces to

(ψd)B = χE ψ̄B+ + (1 − χE ) (ψu)B . (4.19)

An interpretation of (4.19) is that the air found at the top of the downdraft consists
of a mixture of newly entrained above-inversion air with property ψ̄B+, and air from
the top of the updraft, with property (ψu)B. In other words, χE can be interpreted
as the “mixing fraction” of newly entrained above-inversion air that contributes to
(ψd)B. Obviously, for E = 0 we expect χE = 0. The λ term of (4.18) represents
modification of ψ by the source/sink S̄ψ , before the air begins to descend at the top
of the downdraft. This conceptual framework is sketched in Fig. 4.1.

Using (4.16), we can rewrite (4.18) as

(ψd)B − (ψu)B = χE (ψ̄B+ − ψ̄B) + λ
∫ zB+

zB
S̄ψdz

1 − χE (1 − σB)
. (4.20)

Comparison of (4.17) and (4.20) shows that(
(Mc)B χE

1 − χE (1 − σB)
− E

)
(ψ̄B+ − ψ̄B) +

(
(Mc)B λ

1 − χE (1 − σB)
− 1

) ∫ zB+

zB

S̄ψdz = 0.

(4.21)

Equation (4.21) holds for anyψ , including particular choices ofψ for which Sψ = 0.
In the case Sψ = 0, (4.21) reduces to

(Mc)B χE

1 − χE (1 − σB)
− E = 0. (4.22)
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The quantities that appear in (4.22) are defined without reference to any particular
ψ . Therefore, (4.22) must hold for any choice of ψ for which Sψ = 0. We could
use (4.22) to relate E to (Mc)B for given values of χE and σB. In particular, (4.22)
tells us that E = 0 and χE = 0 go together, as expected. For χE � 1, (4.22) can
be approximated by the beautifully simple relationship

(Mc)B χE ≈ E . (4.23)

In order that (4.22) be consistent with (4.21) in all cases, we must choose

(Mc)B λ

1 − χE (1 − σB)
− 1 = 0, (4.24)

or, comparing (4.22) and (4.24),

λ = χE

E
≈ 1

(Mc)B
. (4.25)

The second (approximate) equality in (4.25) applies for χE � 1.
We use (4.16) and the first equality in (4.25) to rewrite (4.21) as

(ψd)B − ψ̄B = σBχE
[
(ψ̄B+ − ψ̄B) + E−1

∫ zB+
zB

S̄ψdz
]

1 − χE (1 − σB)
. (4.26)

Equation (4.26) is the desired result. It is essentially an upper boundary condition
on the properties of the air sinking in downdrafts at level B. For χE → 0, we get
(ψd)B → ψ̄B when S̄ψ = 0; for S̄ψ �= 0, however, (ψd)B can differ from ψ̄B even
when χE → 0, because χE/E → 1/(Mc)B as χE → 0, so that

(ψd)B − ψ̄B → σB

(Mc)B

∫ zB+

zB

S̄ψdz as χE → 0. (4.27)

Equation (4.27) applies in the limiting case for which the top of the turbulent layer
is an impermeable “ceiling,” with E = 0 and χE = 0.

When ψ is the moist static energy, h, we can show that
∫ zB+

zB
S̄hdz = −�R̄, so

that (4.26) reduces to

(hd)B − h̄B =
σBχE

(
�h̄ − �R̄

E

)

1 − χE (1 − σB)
. (4.28)

We now define
(
h̄B+

)
eff as the “effective” value of h̄B+ in the presence of radiative

cooling, i.e., it is the value that h̄B+ would have to take, in the absence of radiative
cooling, to make (hd)B the same as it is when radiative cooling actually is occurring.
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By analogy with (4.28), we write

(hd)B − h̄B = σBχE (�h̄)eff

1 − χE (1 − σB)
, (4.29)

where

(�h̄)eff ≡ (
h̄B+

)
eff − h̄B. (4.30)

Comparison of (4.28) and (4.29) shows that

(�h̄)eff = �h̄ − �R̄

E
, (4.31)

so that

(h̄B+)eff = h̄B+ − �R̄

E
. (4.32)

It follows from (4.31) and (4.9) that the effective virtual dry static energy jump for
the smoke-cloud case (with q = � = 0) is

(�s̄v)eff = �s̄v − �R̄

E
. (4.33)

This shows explicitly that the effect of �R̄ > 0 is to make the inversion seem weaker
than it really is, in terms of the effect of entrainment on the buoyancy of the air that
is sinking at the tops of the downdrafts. The amount of radiative chilling decreases
as E increases, because when entrainment is more rapid the entrained air spends
less time in the layer of concentrated radiative cooling. For the smoke-cloud case,

(Fsv)B = −E�s̄v + �R̄ > 0, (4.34)

and comparison with (4.33) shows that

(�s̄v)eff < 0. (4.35)

This means that the effective inversion strength is actually negative for the smoke
cloud. As shown below, however, a stronger inversion does act to reduce the rate
of entrainment across the smoke-cloud top, as expected.

In accord with H1 (p. 82), we modify the definition of the Richardson number,
(4.6), by using (�s̄)eff, as defined by (4.33), in place of �s̄v:

(Ri�)eff = gzM

cpT̄BeM

(
�s̄v − �R̄

E

)
< 0. (4.36)

Since (Ri�)eff < 0, (4.5) reduces to

E = b1ρB
√

eM. (4.37)
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To proceed, we need to determine eM. The steady-state TKE equation can be written
as a balance between buoyant production and dissipation:

0 =
∫ pS

pB+

κ Fsv

p
dp − CρMe3/2

M . (4.38)

Here pS is the pressure at the surface of the earth, C is a non-dimensional constant,
ρM is the vertically averaged density of the air in the PBL, and κ is the gas con-
stant divided by cp. According to the results of large-eddy simulations reported by
Moeng and Sullivan (1994), C ≈ 1. Following B99, we consider a smoke cloud
with negligible surface heat flux, i.e.,

(Fsv)S = 0. (4.39)

Using (4.39) and (4.34), the buoyancy flux integral for a well-mixed layer can be
approximated by ∫ pS

pB+

κ Fsv

p
dp ≈ gzM

2cpT̄B
(−E�s̄v + �R̄). (4.40)

Substituting (4.40) into (4.38), and rearranging, we find that the TKE satisfies

e3/2
M = (�R̄ − E�s̄v)

(
gzM

2cpT̄BCρM

)
. (4.41)

Using (4.37) and (4.41) to eliminate eM, we obtain a cubic equation for the entrain-
ment rate:

E3 = B(�R̄ − E�s̄v), (4.42)

where, for convenience, we define

B ≡ (b1ρB)3 gzM

2cpT̄BCρM
> 0. (4.43)

For the case studied by B99, we find that B ≈ 1.83 × 10−5 (kg m−3)2. Equation
(4.42) yields a single real, positive value of E . Rewriting (4.42) as

B = E3

�R̄ − E�s̄v
, (4.44)

makes it apparent that for sufficiently large values of B, we get

E ≈ �R̄

�s̄v
. (4.45)

The large-eddy simulations of a smoke cloud presented by B99 suggest that
E ≈ 0.3 × 10−3 kg m−2 s−1, for �R̄ ≈ 60 W m−2 and �s̄v ≈ 7000 J kg−1. To make
(4.42) agree with the LES results, we have to choose b1 ≈ 0.0034, which is much
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smaller that the value inferred from simulations of the cloud-free boundary layer
heated from below (b1 ≈ 0.25). We hypothesize that the implied variation of b1 is
real, and is due to physical differences between the idealized smoke-cloud case, in
which the turbulence is driven entirely by cooling from above, and a clear boundary
layer that is driven entirely by heating from below. This hypothesis should be
explored through additional LES-based research.

We now extend our entrainment closure to the more geophysically relevant case
of a water cloud, for which both radiative and evaporative cooling occur at cloud
top. Following the approach of L68, we use the fact that in a uniformly saturated
layer isobaric fluctuations of water vapor and moist static energy are approximately
proportional to each other, i.e.,

Lq ′ ≈
(

γ

1 + γ

)
h′, (4.46)

where

γ ≡ L

cp

(
∂q∗

∂T

)
p

, (4.47)

and q∗ denotes the saturation mixing ratio.
By combining (4.46) with (4.9), we can show that

(sv)d,B − (s̄v)B = β[(hd)B − h̄B] − εL [(rd)B − r̄B] , (4.48)

where

β ≡ 1 + (1 + δ)γ ε

1 + γ
(4.49)

is a positive non-dimensional coefficient. It is important to note that (4.48) applies
only when the layer is uniformly cloudy; if there are holes in the cloud, (4.48) must
be replaced by a more complicated equation, as discussed in Section 4.5 below.

By analogy with (4.28), the total water mixing ratio, r , in the downdraft satisfies

(rd)B − r̄B =
(

σBχE

1 − χE (1 − σB)

)
�r̄ . (4.50)

Substituting (4.28) and (4.50) into (4.48), we obtain

(sv)d,B − (s̄)B = β




σBχE

(
�h̄ − �R̄

E

)

1 − χE (1 − σB)


 − εL

(
σBχE

1 − χE (1 − σB)

)
�r̄

= σBχE

1 − χE (1 − σB)

(
�s̄v − (�s̄)crit − β

�R̄

E

)
,

(4.51)
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where

�s̄v − (�s̄)crit ≡ β�h̄ − εL�r̄ (4.52)

is a notation introduced by Randall (1980), who showed that

(�s̄v)crit =
[

1 − (1 + δ)ε

1 + γ

]
L(q∗

B+ − qB+) (4.53)

is a positive measure of the dryness of the air above the inversion. In (4.53) the
expression in [ ] is non-dimensional and positive. In a stratocumulus regime,
(�s̄v)crit/cp is typically on the order of 5 K.

To identify the effective inversion strength and effective Richardson number, we
define (�s̄v)eff by

(sv)d,B − (s̄v)B =
(

σBχE

1 − χE (1 − σB)

)
(�s̄v)eff, (4.54)

where (�s̄v)eff ≡ (s̄vB+)eff − s̄B . Comparison of (4.51) and (4.61) gives

(�s̄v)eff = �s̄v − (�s̄v)crit − β
�R̄

E
. (4.55)

Equation (4.55) shows that the effective inversion strength is reduced by evaporative
cooling, by an amount (�s̄v)crit, and that it is further reduced by radiative cooling.

Replacing �s̄v by (�s̄v)eff in (4.6), and substituting the result into (4.5), we
obtain

E = b1ρB
√

eM

1 + b2

(
gzM

cpT̄BeM

)
max

(
�s̄v − (�s̄v)crit − β�R̄

E
, 0

) (4.56)

which can be rearranged to

E =




b1ρB
√

eM + b2

(
gzM

cpT̄B

)
β�R̄

eM

1 + b2

(
gzM

cpT̄B

)
�s̄v − (�s̄v)crit

eM

for �s̄v − (�s̄v)crit − β�R̄

E
≥ 0

b1ρB
√

eM for �s̄v − (�s̄v)crit − β�R̄

E
< 0.

(4.57)

We can show that

�s̄v − (�s̄v)crit − β�R̄

E
≥ 0 =⇒ [�s̄v − (�s̄v)crit] b1ρB

√
eM ≥ β�R̄. (4.58)
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The effect of evaporative cooling is to reduce the denominator of (4.57). The effect
of radiative cooling is to increase the numerator, just as in the case of the smoke
cloud.

4.5 What are the processes that cause MSCs to break up into shallow
cumuli on their western and equatorward boundaries?

If the entrainment problem has been controversial, the stratocumulus break-up
problem has been even more so. Many mechanisms can lead to the destruction of a
stratocumulus cloud layer, including increased subsidence and horizontal advection.
One possible mechanism for the destruction of a uniform cloud layer is “cloud-top
entrainment instability” (CTEI). The concept was discussed by L68, who suggested
that if the inversion is not sufficiently strong, evaporatively enhanced entrainment
can “run away,” leading to the evaporative disruption of the uniform cloud layer.
The concept of CTEI has elicited a lot of interest, and at least as much skepticism.

Randall (1980) showed that the cloud-top buoyancy flux in a uniformly cloudy
layer satisfies

(Fsv)B = −E [�s̄v − (�s̄v)crit] + β�R̄. (4.59)

As can be seen from (4.59), when

�s̄v < (�s̄v)crit , (4.60)

entrainment will promote a positive buoyancy flux at the inversion base. Randall
(1976, 1980) and Deardorff (1980) argued that such a positive buoyancy flux will
generate additional TKE, thus promoting further entrainment, and leading to a
runaway destruction of the cloud through rapid infusion of dry air, i.e., to CTEI.
They hypothesized that (4.60) is the criterion for the onset of CTEI.

Observations (e.g., Kuo and Schubert, 1988) do not support this hypothesis;
they indicate that the entrainment rate remains modest when (4.60) is satisfied,
and that the cloud layer can survive intact or nearly so. Large-eddy simulations
by Moeng (2000) agree that the entrainment rate remains small when (4.60) is
satisfied but, in contrast to the observations, Moeng’s results show that the fractional
cloudiness decreases as �s̄v − (�s̄v)crit becomes increasingly negative. We have
no explanation for the apparent discrepancy between the observations and the LES
results.

Before completing our discussion of entrainment parameterization, we present
some stratocumulus simulations performed with the Colorado State University
General Circulation Model (CSU GCM). The model is described by Ringler
et al. (2000). In the simulation used here, the model is running in pure climate
mode; no observed initial conditions were used. The entrainment rate has been
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July PBL Cloud Incidence
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Figure 4.2. The top panel shows the July PBL stratus cloud amount as simulated
with the CSU GCM. The lower panel shows the corresponding observations for
June–August from Warren et al. (1986, 1988). The observations are not available
for Antarctica and the adjacent southern ocean.

parameterized by the method described here. The GCM uses an embedded mixed-
layer model, which includes the physical processes and interactions described in
L68. Entrainment is parameterized using the approach that we have proposed here.
When inequality (4.60) is satisfied, CTEI is assumed to occur and the stratocumulus
cloudiness is set to zero. Figure 4.2 shows the model results and, for comparison,
observations for June–August from Warren et al. (1986, 1988). The model suc-
cessfully simulates the primary marine stratocumulus regimes found west of North
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America, South America, and southern Africa, as well as secondary marine stra-
tocumulus regimes in such places as the North Atlantic. Experiments have shown
that if the CTEI criterion is ignored, the model produces much more extensive and
less realistic boundary-layer stratus clouds.

Moeng’s (2000) simulations of CTEI raise an important but neglected point: any
theory of CTEI should allow for partial cloudiness. It should therefore come as
no surprise that (4.59), which is based on the assumption of uniform cloudiness,
cannot describe the break-up of a uniform cloud layer. In the context of the model
presented in Section 4.4, a broken cloud layer has to be represented in terms of
cloudy updrafts and clear downdrafts. We now derive an expression for the rate of
entrainment across the top of such a partly cloudy layer. Our starting point is

(sv)d,B − (s̄v)B = (hd)B − h̄B − L ′′ [(rd)B − r̄B] + L ′[(�d)B − �̄B], (4.61)

where

L ′ ≡ [1 − (1 + δ)ε]L and L ′′ ≡ [1 − δε]L ,

which can readily be obtained from (4.9). For the case of a partly cloudy layer, with
a cloudy updraft and a cloud-free downdraft,

(�d)B = 0 and �̄B = σB(�u)B, (4.62)

so that (4.61) can be simplified to

(sv)d,B − (s̄v)B = (hd)B − h̄B − L ′′ [(rd)B − r̄B] − L ′σB(�u)B. (4.63)

Substituting from (4.28) and (4.50), we get

(sv)d,B − (s̄v)B =
[

σBχE

1 − χE (1 − σB)

] (
�h̄ − �R̄

E

)

− L ′′
[

σBχE

1 − χE (1 − σB)

]
�r̄ − L ′σB(�u)B.

(4.64)

Comparing (4.64) with (4.54), we find that[
σBχE

1 − χE (1 − σB)

]
(�s̄v)eff =

[
σBχE

1 − χE (1 − σB)

] (
�h̄ − �R̄

E

)

− L ′′
[

σBχE

1 − χE (1 − σB)

]
�r̄

− L ′σB(�u)B,

(4.65)

which is equivalent to

(�s̄v)eff = �s̄v −
(

1 − χE

χE

)
L ′(�u)B − �R̄

E
. (4.66)

Equation (4.66) is analogous to (4.55).
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For χE � 1, we can use (4.23) to approximate (4.66) by

(�s̄v)eff ≈ �s̄v − 1

E
{(Mc)BL ′(�u)B + �R̄}. (4.67)

Since (Mc)B(�u)B is the liquid water flux at level B, (4.67) states that the effective
inversion strength is reduced by the cooling due to evaporation of the liquid water
carried upward to the PBL top, as well as by the radiative cooling:

(�s̄v)eff ≈ �s̄v − 1

E
{L ′(F�)B + �R̄}. (4.68)

Using the approximation (4.67), we replace �s̄v by (�s̄v)eff in (4.6), and substi-
tute the result into (4.5), to obtain

E ≈ b1ρB
√

eM

1 + b2
gzM

cpT̄BeM
max

{
�s̄v − 1

E

(
L ′(F�)B + �R̄

)
, 0

} , (4.69)

which can be rearranged to

E ≈




b1ρB
√

eM + b2

(
gzM

cpT̄BeM

) {
L ′(F�)B + �R̄

}

1 + b2

(
gzM

cpT̄BeM

)
�s̄v

for (�s̄v)eff ≥ 0,

b1ρB
√

eM for (�s̄v)eff < 0.

(4.70)

By substituting (4.70) into (4.67), we can show that

(�s̄v)eff ≥ 0 is equivalent to �s̄v ≥ L ′(F�)B + �R̄

b1ρB
√

eM
. (4.71)

To our knowledge, (4.70) is the first equation proposed to determine the rate of
entrainment at the top of a partly cloudy layer. It is suitable for use in a model that
is capable of determining (F�)B in a partly cloudy layer; an example is ADHOC,
which is described by Lappen and Randall (2001). We envision a modified version
of ADHOC in which the PBL top and the entrainment rate are introduced as explicit
parameters.

A question can be raised about the liquid water flux, (F�)B, in a partly cloudy
layer. Should it not depend on the entrainment rate, as (Fh)B and (Fr )B do, and as
(F�)B does in a fully cloudy layer? If (F�)B did depend on E , then the entrainment
rate would enter implicitly on the right-hand side of (4.70), which would therefore
have to be modified in order to give a solution for E . We claim that in a partly
cloudy layer (F�)B is independent of E , so that (4.70) can be used as given. Our
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reasoning is that although the entrained air enters and alters the properties of the
clear downdrafts, it has no direct effect on the cloudy updrafts. The liquid water
mixing ratio in the downdrafts is zero by definition in a partly cloudy layer, and
this is true regardless of the entrainment rate. The liquid water mixing ratio and
other properties of the air at the tops of the updrafts are determined by processes at
lower levels in the updrafts, and are not directly affected by entrainment. We can
therefore determine (F�)B without knowing the entrainment rate.

4.6 Conclusion: the importance of cloud-scale process-coupling for
large-scale cloudiness

Thanks in large part to L68, we have a reasonably good understanding of why MSCs
exist. It is therefore somewhat surprising that GCMs have had limited success in
simulating them. One reason for this unfortunate situation is that MSCs are pro-
duced by closely coupled turbulent, radiative and microphysical processes. GCMs,
for the most part, fail to represent this coupling. In fact, there is a trend today towards
“modularization” of GCMs. In a modularized GCM, the various physical param-
eterizations are segregated into software “compartments” (subroutines, etc.), like
animals in a zoo. The parameterizations communicate only through their mutual
effects on the shared “large-scale environment,” which is predicted by the GCM.

From a software engineering point of view, modularization has a certain appeal,
but model development is not software engineering. One of the most revolutionary
insights of L68 is that the interactions among turbulence, radiation, and phase
changes are tightly coupled on small scales. For example, the turbulent entrainment
rate is strongly affected by both cloud-top radiative cooling and the effects of phase
changes on the buoyancy flux. The turbulence extends as high as it does only because
of this coupling between the cloud layer and the turbulence. These couplings occur
on small space and time scales, and not merely through their mutual interactions
with the large-scale environment. Failure to account for such cloud-scale couplings
has been a major obstacle to the simulation of MSCs with GCMs. There are many
other examples of process-coupling that argue for less, not more modularity in our
models (e.g., Arakawa, 2004). In its sophisticated coupling of radiative, turbulent,
and microphysical processes, L68 was (at least) 35 years ahead of its time.
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5.1 Introduction

With the advent of computers, scientists in the 1950s and 1960s began to ex-
plore the possibility of using numerical simulation to generate virtual laborato-
ries for exploring specific geophysical processes in a controlled manner. Doug
Lilly helped pioneer this emerging science of numerical simulation. As pointed out
by Wyngaard (Chapter 1), Lilly presented a “bold, three-phase plan of attack” in
which well-behaved numerical models would be developed; their fidelity would
be benchmarked against known solutions; and as confidence builds they would be
used to explore conditions not adequately reproducible by experiment. In the subse-
quent decades this strategy has become a staple of theoretical studies of turbulence.
In particular, a class of numerical simulations Doug helped develop in the early
1960s has come to be known as large-eddy simulation (LES) and is now widely
used in the field of planetary boundary layer (PBL) turbulence and clouds.
We begin in Section 5.2 by giving an example of the second element of

Doug’s plan of attack, and what we call “benchmarking.” This is by no means
trivial, because for turbulent flows there are no known solutions. To better ap-
preciate this point we consider LES of the cloud-topped boundary layer which
couples turbulence, radiation, and cloud processes. As cloudy boundary layers
cannot be created in the laboratory, one must invariably turn to field data to con-
struct meaningful benchmarks. Historically, field data have been collected to ex-
plore phenomenology, and thus few datasets exist to benchmark computations.
The second field study of the Dynamics and Chemistry of Marine Stratocumulus
(DYCOMS-II) is unique in that it was designed from the outset with the pur-
pose of testing LES. However, even with this focused field campaign the measure-
ments needed to design an LES to completely mimic the natural environment are

C© Cambridge University Press 2004
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96 Large-eddy simulations of cloud-topped mixed layers

difficult to make, and as we shall see this element of Doug’s strategy remains in its
infancy.
The third element of Doug’s strategy emphasizes creative thinking. Simulations

can be used to explore the parameter space that has not been (or cannot be)measured
in the field; or, for a given set of parameters, simulations can be used to explore
physical aspects of the solution that cannot be measured. Both tactics require the-
oretical guidelines. In the former, one needs a theoretical framework to help guide
exploration of the parameter space, and in the latter (which we focus on here), a
theoretical framework is needed to pose stimulating questions. A proper theoreti-
cal framework for the stratocumulus-topped boundary layer is Lilly’s mixed-layer
theory (see the review by Randall and Schubert, Chapter 4). With this theoretical
framework and some early LES solutions, Lilly investigates how the structure of
the cloud-top interface may affect its statistical representation (Lilly, 2002a), and
how the interface property can change the entrainment rate and interface stability
(Lilly, 2002b). As we show in Sections 5.3 and 5.4 both questions are impossible
to attack with observations alone, but fit the third phase of Doug’s “bold plan of
attack” on geophysical turbulence problems.

5.2 Benchmarking

For the purpose of benchmarking LESwe use data collected as part of DYCOMS-II.
An overview of the experiment is given in Stevens et al., (2003a); the particular case
we focus on here, research flight one (RF01), is an outgrowth of an earlier study of
the case described by Stevens et al. (2003b). The appealing aspect of DYCOMS-
II is that it is predominantly nocturnal, which makes it relatively straightforward
to constrain the large-scale energetics. An appealing aspect of RF01 is that the
stratocumulus layer is essentially non-precipitating, and the large-scale conditions
are remarkably uniform, further simplifying possible comparisons with LES. The
code used throughout is the NCAR LES, which was described in Moeng (1986)
and more recently in Moeng (2000).

5.2.1 Setup and initial data

The initial data and boundary forcings for the LES were derived from the RF01
measurements as reported by Stevens et al. (2003b). This case is characterized
as a persistent, well-mixed, and slightly thickening nocturnal cloud field capped
by a much warmer and drier free troposphere. The large-scale conditions were
approximately constant over the measurement period (which spanned 8 hours).
Input parameters for the LES are given in Table 5.1. For the vertically varying basic
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Table 5.1. Input parameters, where H0 and L0
denote the surface sensible and latent heat

fluxes respectively, D the large-scale
divergence, Ug and Vg the geostrophic wind
components, z0 the roughness height, f the

Coriolis frequency, p0 the surface pressure, and
�0 the reference temperature.

H0 15 W m−2
L0 100 W m−2
D 4× 10−6 s−1
(Ug, Vg) (6, −4.25) m s−1
z0 0.035 m
f 1× 10−4 s−1
p0 0.1 MPa
�0 288 K

state we specify

{qT, θl} =
{

{8.75 g kg−1, 289.7 K} z < 817 m,

{1.50 g kg−1, [296.7+ (z − 817)1/3] K} otherwise,
(5.1)

where θl is the liquid-water potential temperature and qT is the total water mixing
ratio. In addition to the surface fluxes, radiative forcing also drives the flow; here it
is calculated from a simple exponential formula shown in Equation (1) of Moeng
(2000), which, using Lilly’s (2002b) notation, can be approximated as follows:

FR = Fi exp

(
z − zi

λ

)
, for z ≤ zi, (5.2)

where zi is the height of the local cloud-top interface, Fi = 50 W m−2 is the
net radiative flux above cloud top derived from measurements. The decay length
scale λ ≈ 1/(ρ0κql) ≈ 26 m, given a reference air density ρ0 of 1 kg m−3, a
longwave absorption coefficient κ = 130 m2 kg−1, and if the mean cloud-top
liquid-water mixing ratio ql is about 0.3g kg−1. Note that these parameters and
initial data differ somewhat from the observations and from our previous inves-
tigation of this case (i.e., Stevens et al., 2003b). Here changes have been made
to preserve the cloud layer through the initial spin-up period of the simulation,
and to compensate for the use of an assumed Boussinesq vertical structure with
ρ0 = 1 g kg−3.
Below we explore results from three simulations, LES-(1, 2, 3), which dif-

fer only in their numerical treatment. Cases LES-(1, 2) both span a domain of
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2500 m× 2500 m× 1500 m with a mesh of 96× 96× 400 points, and only differ
in their treatment of the horizontal advection terms in the θl and qT equations;
LES-1 uses a pseudo-spectral method, while LES-2 uses the flux-limited upwind
algorithm (Koren, 1993; Sullivan et al., 1998) that is employed for the vertical
of θl and qT advection in all three simulations. LES-3 is identical to LES-1 except
that it spans a 7500m× 7500m× 1500mdomainwith amesh of 200× 200× 400
points. [The increased size of the horizontal domain is computationally expensive,
so LES-3 is integrated for only two simulation hours, as compared to four simula-
tion hours for LES-(1,2).] Thus in the spirit of benchmarking, we ask not only if
the LES can reproduce the observed structure with plausible fidelity, but also if this
reproduction is sensitive (at short times) to numerical methods or the truncation of
larger scales.

5.2.2 Comparison between LESs and observations

Wecompare the simulations only after the first hour. Before this time, the turbulence
is not fully developed and the statistics are not stationary. Stationarity of the statistics
is associated with invariance in the shapes of the profile statistics. Specifically, for
a conserved variable, ψ , whose horizontal average, �, satisfies

∂t� = ∂z, (5.3)

where  is some flux, then this condition implies that ∂t∂z� vanishes, or equiva-
lently  is linear.† If this condition is satisfied, the turbulent flow is near statistical
equilibrium. LES is most justifiably used to study the statistical properties of tur-
bulent flow fields; for this reason its analysis is normally confined to time periods
when the turbulence is in statistical equilibrium or the so-called quasi-steady state.
In Fig. 5.1 we show how the simulations represent the cloud evolution, and the

numerical effects on this evolution. The fractional cloud cover stays at about 99.5%
in LES-1 and fluctuates between 85% to 92% in LES-2. The time evolution of the
cloud top and base given in Fig. 5.1 are quite similar between LES-1 and LES-2
although LES-2 grows thinner compared to LES-1. Overall, the LESs compare
well with the observations, although there is a tendency for cloud base to rise
through the course of the simulation, in contrast to its apparent lowering in the
field data. As we shall see, this is consistent with a simulated entrainment moisture
flux that is larger than the observed. The simulations show that the mean cloud top
rises at a rate of about 0.16 cm s−1, and hence given a large-scale subsidence of
∼0.32 cm s−1 at z = 810 m, this rate of PBL deepening implies an entrainment

† For instance the turbulent fluxwqT in the case when� = QT, or the combination of the turbulent heat flux and
the radiative flux when � = �l. Here, w is the vertical wind velocity.
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C

Figure 5.1. Time evolution of the fractional cloud cover (upper panel) and the
mean cloud-top and cloud-base heights (lower panel) from LES-1 (solid lines),
LES-2 (dotted lines), and observations adapted from Stevens et al. (2003b). Here
the starting time of the simulation relative to the time of observation is chosen
to roughly correspond to the initial data of the simulations. Note that the mean
cloud-top and cloud-base heights are computed by horizontally averaging the local
cloud tops and bases only over cloudy grid points.

rate of about 0.48 cm s−1, which is in the range of observed values (Stevens et al.,
2003b).
The profile statistics from LES are computed as follows. We first compute statis-

tics by applying horizontal (x − y) averaging, then interpolate these instantaneous
profile statistics to a normalized vertical coordinate z/zi (where zi is the horizontally
averaged cloud-top height), and finally time-average these profiles between hour 1
and 4 of the simulation period. Because the vertical normalization is based on the
spatially averaged cloud-top height, the transition across the cloud top is expected
to be smoothed across a scale corresponding to spatial fluctuations in the simulated
interfacial layer at any given time. In Section 5.3 we investigate the effect of this
smoothing. Figure 5.2 shows vertical profiles of QT, �l, and Q l for LES-(1, 2)
compared with the observed sounding taken from Stevens et al. (2003b). These
results show that the LES provides a plausible representation of the cloud-topped
mixed layer and the simulations maintain a jump structure similar to that observed.
No decoupling occurs; the PBL remains well mixed throughout the simulations.
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z 
(m

)

QT (g kg−1) Ql (g kg−1)Θl (K)

Figure 5.2. Vertical profiles of (a) total water mixing ratio, (b) liquid-water po-
tential temperature, and (c) liquid-water mixing ratio from LES-1 (solid curves),
LES-2 (dotted curves), and the observations adapted from Stevens et al., 2003b.

The comparison of themean states can bemore critically evaluated by comparing
the time-rate-of-change of θl and qT within the mixed layer. Such comparisons
(not shown here) indicate that the simulated layer is warming more rapidly (about
0.1 K h−1 versus the observed rate of 0.07 K h−1), and not moistening as quickly
(0.02 g kg−1 h−1 versus the observed rate of 0.06 g kg−1 h−1). These differences are
not large, but both contribute to the simulation tendency to raise cloud base. Such
differences are consistent with simulated entrainment rates being on the upper end
of the observed range.
Figures 5.3 and 5.4 show the heat fluxes, as well as fluxes of moisture and

buoyancy from LES-1 and LES-2. The thick solid curves denote total (resolved
plus subfilter) fluxes. The total flux of moist enthalpy (H ≡ ρcpwθl + FR) and the
totalmoisture flux are linearwith height as required by our condition of quasi-steady
state. The effect of using an upwind scheme on the horizontal advection of scalars
is evident in the individual components of the resolved- and subfilter-scale (SFS)
fluxes near the cloud top where the temperature and moisture gradients are large.
In LES-1, the SFS heat flux is positive and the SFS moisture flux is negative, while
in LES-2 these SFS fluxes reverse signs. This highlights the difficulty of treating
SFS terms, which operate most effectively at the grid scale where numerical errors
are most evident. Here we simply note that in LES-1 the truncation error (due to
overshoots) overestimates the resolved-scale moisture flux near cloud top and is
combatted by the SFS model to maintain a linear profile of the total flux.
The difference in H above the cloud layer between LES-1 and LES-2 reflects

a smaller radiative flux due to a smaller fractional cloud cover in LES-2 than in
LES-1. This smaller radiative forcing also results in a smaller buoyancy flux in the
cloud layer of LES-2.
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Figure 5.3. Vertical profiles, in energetic units, of (a) heat fluxes (dotted curve
is the resolved-scale θl-flux, thin solid curve the longwave radiative flux, dashed
curve the SFS θl-flux, thick solid curve the total heat flux H ); (b) moisture fluxes
(dotted curve is the resolved-scale qT-flux, dashed curve the SFS qT-flux, and thick
solid curve the total); (c) buoyancy fluxes (dotted curve is the resolved-scale θv-
flux, dashed curve the SFS θv-flux, and thick solid curve the total) fromLES-1. The
thin horizontal line represents the minimum θl-flux level. θv is the virtual potential
temperature.

 (W m−2)  (W m−2)  (W m−2)

z 
(m

)

(a) (b) (c)

Figure 5.4. As Fig. 5.3, but from LES-2.

The mean moisture and moisture flux profiles shown above can be used to
estimate we, the entrainment rate (velocity), because wqT ≡ −we�QT for non-
precipitating cloud. From Fig. 5.2(a), we estimate a moisture jump of about –7.25 g
kg−1. Both Figs. 5.3(b) and 5.4(b) show that the entrainment moisture flux is about
90 W m−1, which is somewhat larger than observed (see Fig. 8(a) in Stevens et al.,
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Figure 5.5. Plot of θl and qT from the LES grid points between 750 m and 900 m.
The thin solid line is taken from Fig. 6 of Stevens et al. (2003b) and the dotted line
represents the Deardorff–Randall CTEI criterion. Left panel: LES-1; right panel:
LES-2.

2003b). This simulated moisture flux yields an entrainment rate of about 0.50 cm
s−1, consistent with the estimate from the time change of the mean cloud-top height
given above. Given that the entrainment rates are similar in LES-1 and LES-2, the
larger radiative driving for LES-1 (implicit in the larger above-cloud values of H
and a larger layer-averaged buoyancy flux) suggests that entrainment is somewhat
more efficient in LES-2.
Our motivation for using the flux-limited upwind (i.e., monotone) scheme for

horizontal advection of scalars in LES-2 is evident in the mixing-line plot of the
LES-1 solution, shown in the left panel of Fig. 5.5. The dots are LES solutions
from the layer between z = 750 m and 900 m (i.e., near the cloud-top regions) at
hour 2. The thin solid line represents the observed mixing line (from Stevens et al.,
2003b) and the dotted line indicates the Deardorff–Randall cloud-top entrainment
instability (CTEI) criterion (from Deardorff, 1980; Randall, 1980). The intersec-
tion between these two lines is calculated by layer-averaging the LES θl and qT
fields below z = 700 m, and is representative of the bulk mixed-layer properties,
�lmix ∼ 290 K and QTmix ∼ 8.75 g kg−1. In the LES-1 case, at the upper end of
the mixing line, global minima develop (i.e., points with qT < 1.5 g kg−1). At the
lower terminus some global maxima are evident (i.e., points with qT > 9 g kg−1).
Neither can be justified on physical grounds. They are numerical artifacts which
arise because the cloud top undulates in the presence of a mean wind so that hori-
zontal advection also advects θl and qT across sharp interfaces. The pseudo-spectral
scheme used for the horizontal advection of scalars in LES-1 results in overshoot
errors consistent with these extrema. We therefore implemented a flux-limited up-
wind scheme, which is the same as that used for vertical advection of scalars, for
horizontal advection of scalars in LES-2. The extrema at both ends of the mixing
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line disappears in LES-2, as shown in the right panel of Fig. 5.5. Although the
upwind scheme in LES-2 eliminates the spurious extrema, the bulk property of the
mixing line is relatively unchanged between LES-1 and LES-2.
Because there are no spurious data points at the ends of the mixing line in LES-2,

we use the right panel of Fig. 5.5 to estimate jumps in �l and QT. The jumps of
�l and QT are computed as the differences between the end points of the mixing
line (before the curve turns at the upper end), and that leads to ��l ∼ 11 K and
�QT ∼ –7.2 g kg−1 at hour 2 of the simulation. Using these jumps, we obtain
the Randall–Deardorff CTEI parameter κ ≡ ��e/(L/cp)�QT ∼ 0.38, where κ >

0.23 is hypothesized for break-up of cloud by Randall (1980) and Deardorff (1980).
(Here�e ∼ �l + (L/cp)QT is the equivalent potential temperature.) At the end of
the simulation��l grew to about 11.5 K, which results in a slightly steeper mixing
line (not shown) than that shown in Fig. 5.5; nevertheless, throughout the four
hours of simulation the mixing lines remain on the “unstable” side of the Randall–
Deardorff criterion (i.e., κ > 0.23), as did the observed cloud, but the cloud layer
remains solid in LES-1 and nearly solid in LES-2.

5.2.3 Large-scale truncation

The time series of the liquid water field from DYCOMS-II in-cloud flight legs (I.
Faloona, personal communication) often show fluctuations on scales larger than
the domain size of LES-1 and LES-2. This raises the question as to whether the
truncation of scales larger than the numerical domain biases the resultant statistics.
To investigate this issue we conducted LES-3, whose domain was a factor of three
larger. For the most part the statistics were insensitive to the presence of larger
scales (although truly large-scale variations may not have had time to spin-up in
this short time period). The cloud field in LES-3 reveals the presence of scales
larger than 2.5 km, which compares more favorably with observations, but these
larger-scale fluctuations do not change the statistics examined here.

5.3 Sharp-edged framework

Having demonstrated that LES plausibly represents a real flow, we now use it to
address specific scientific questions. The first (e.g., Lilly, 2002a) arises in response
to lingering criticisms of mixed-layer theory which, as originally formulated (Lilly,
1968), rests on the idealization of the cloud-top interface as a discontinuity in
the mean thermodynamic profiles. This so-called zero-order jump condition (see
Chapter 4 by Randall and Schubert) has been criticized in part because field mea-
surements and LES (e.g., Betts, 1974; Deardorff, 1979) often show a smooth tran-
sition in state variables over a non-negligible depth across the top of the mixed
layer. To address this criticism, Lilly (2002a, b) introduced an interface-tracking
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coordinate which he identified with the local position of the entrainment interface.
His idea was that the apparent diffusiveness in averaged entrainment interfaces
could be a product of averaging over a locally sharp interface that fluctuates in
space and time. By working in a coordinate system following the local interface,
Lilly argues that such artifacts can be avoided.

5.3.1 Cloud-top interface

Central to Lilly’s argument is the idea that the cloud top constitutes an unambiguous
interface. However in practice, nothing is unambiguous. For example, in Fig. 5.6
we plot the location of two interfaces: (1) the liquid-water interface defined as
the uppermost level where the liquid-water field changes from non-zero to zero,
which is shown as a solid curve and denoted as zlwc and (2) the maximum-θl-
gradient interface defined as the height where the maximum vertical gradient of θl

occurs, which is shown as a dotted curve and denoted as zgrd. (We also checked
the maximum-qT-gradient interface, and found it is nearly coincident with the zgrd
interface.) To see the fluctuations in a larger domain, we combine two different
horizontal segments of the LES-3 solution (each 7.5 km long) to form a total
domain of 15 km.
These two interfaces seldom coincide: zgrd is most often above zlwc, and the gap

between them becomes wider where zlwc is smaller; this is similar to what was
observed by Stevens et al. (1999) for the case of a smoke cloud. Here we see that
the vertical separation can be more than 100 m. These cloud-top fluctuations reveal
some interesting physical processes near the cloud top. The interface (particularly
when identified with zlwc) is higher than average above vigorous updrafts. As these
updrafts penetrate into the inversion, they squeeze the constant θl surfaces aloft
intensifying the maximum gradient right above them. Thus, in these segments zgrd
is likely to be about the same as zlwc and both are near the top of the penetrating
updrafts. Adjacent regions tend to have greater separation between zgrd and zlwc
in part for kinematic reasons. Similar effects are evident in the study of the dry
convective boundary layer (CBL), cf. Sullivan et al. (1998), and of the smoke cloud,
cf. Stevens et al. (1999). However in contrast to both the smoke-cloud CBL and
the dry CBL, in the stratocumulus-topped PBL the manner in which the top of the
layer is affected by mixing depends on how the top of the layer is defined – in large
part because cloud top is not a material surface. If some inversion air is entrained
and mixed in with these returning eddies, mixtures of clear and cloudy air can
be expected to characterize the properties of the air near cloud top. Mixtures with
small amounts of inversion air remain saturated, while those withmore inversion air
totally evaporate and become non-cloudy air. Similarly, in regions of active mixing
the θl gradients will be reduced and thus the level where the gradient attains its

              

       



5.3 Sharp-edged framework 105

Z
gr

d
Z

y

lw
c;

Figure 5.6. Spatial variation of the liquid-water interface (solid curve) and the
maximum-θl-gradient interface (dotted curve) from LES-3. The horizontal line is
the mid-level of the liquid-water interface undulation, which contains approxi-
mately equal amounts of clear and cloudy air.

maximum value can be expected to be above these active mixing regions. Hence,
this process can simultaneously lower zlwc and raise zgrd in mixing zones.
Figure 5.6 also reveals another interesting feature: Lenschow et al. (2000) used

cloud-top penetration flight legs to study the jump conditions across the cloud-top
interface. They purposely flew at a nearly constant height to ensure that flights
spent equal time inside and outside the cloud layer (as postulated by the horizontal
straight line near 820 m shown in Fig. 5.6). By averaging data collected on either
side of the cloud edge (with about 10 m segment on either side) from multiple
cloud penetrations, Lenschow et al. (2000) constructed composite profiles of the
mean temperature, moisture and ozone concentration, and used these profiles to
infer the jump condition across the cloud-top interface. They found that these tem-
perature and moisture jumps, though remaining sharp, are “considerably” smaller
than those measured from ascending/descending sounding flights. Figure 5.6 can
help us understand this apparent discrepancy. Any cloud-top penetration flight leg
along a horizontal straight line in the middle of the cloud-top undulations (as shown
in Fig. 5.6) would miss most of the maximum ∂θl/∂z areas and hence produce a
considerably smaller mean �l-jump across the interface than that measured from
ascending/descending flight legs.
The fluctuating amplitude of the zgrd interface is clearlymuch smaller than that of

the zlwc interface, as evidenced from Fig. 5.6. The standard deviation of zlwc is about
20mcomputed fromLES-1 andLES-3, and about 30m fromLES-2, all ofwhich are
commensurate with the observed value of 25 m as derived from downward-looking
lidar during RF01. The standard deviation of zgrd is only about 7–8 m in all three

LESs. The skewness of zlwc(≡ z′
lwc

3
/z′

lwc
2
3/2
) is about –2 and that of zgrd is around
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−0.8 to−0.5, in all LESs. (Note that in these calculations of standard deviation and
skewness of zlwc we exclude all “holes” where zlwc = 0. If the holes are included,
the liquid-water interface would yield a much larger negative skewness.) The large
negative skewness of zlwc is consistent with the highly intrusive (into the mixed
layer) feature shown in Fig. 5.6.

5.3.2 Vertical profiles in the sharp-edged coordinate

One apparent advantage of the sharp-edged top coordinate is its ability to cleanly
delineate the transition at the top of the boundary layer. However, even this can
be ambiguous; as defined, zlwc can delineate the cloud-top interface, but it may
not adequately separate turbulent from non-turbulent air due to entrainment and
evaporation at the cloud top. On the other hand, zgrd may better delineate the
turbulence boundary, but not the cloud boundary as shown in Fig. 5.6.
Both interfaces, particularly zlwc, are highly distorted which makes it difficult

to average over using real data or LES flows. For instance, the interface is not
guaranteed to remain single valued, and in the case of zlwc it becomes undefined if
no cloud exists in a column. For the LES cases studied here we do not experience
multi-valued interfaces, and in regions where there is no cloud in a column, we
interpolate zlwc based on neighboring points for the purpose of constructing the
z/zlwc coordinate. This procedure is admittedly ad hoc but given nearly 100% cloud
cover in LES-1, it probably does not significantly bias our subsequent results.
Figure 5.7 compares the mean temperature, moisture and liquid-water profiles

averaged along the z/zlwc coordinate with those averaged in the traditional smooth-
top framework (i.e., z/zi) from LES-1. Note that zlwc varies in x , y, and t , while
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Figure 5.7. Profiles of �l, QT and Ql from LES-1 where solid curves represent
averages along the z/zlwc coordinate and dotted curves represent averages along
horizontal planes, zi, which is the horizontal average of zlwc.
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zi varies only in t . The largest difference between the two averaging procedures
shows up in the Q l profile, which is expected given the definition of zlwc. The
changed coordinate, however, doesn’t significantly affect the profiles of �l and
QT. The jumps of �l and QT across the cloud top are not as sharp as one might
have anticipated for a sharp-edged coordinate. (We do not plot the averages on the
z/zgrd coordinate because they are essentially identical to the traditional smooth-top
averages, mainly because the LES case analyzed here has a very sharp and strong
capping inversion that is barely resolved even with our fine vertical grid spacing;
the zgrd interface fluctuates within 1 to 2 vertical levels.)
It would be interesting to compare the flux profiles between the sharp-edged and

smooth-top coordinates; as argued by Lilly (2002a, b) theminimum θl flux obtained
from the smooth-top coordinate is much smaller than that obtained from the sharp-
edged coordinate. However, we had trouble in constructing flux profiles for the
sharp-edged coordinate from the LES solutions. Constructing the fluxes in such a
coordinate requires computing the vertical velocity ω in the z/zlwc coordinate (see
Equation (6.1) in Lilly, 2002a), which involves taking the time and space derivatives
of the highly distorted surface zlwc and hence is difficult to performwith either LESs
or fieldmeasurements. In particular,ω becomes ill-defined near cloud-free columns
where zlwc = 0.
The difference between the entrainment θl-flux (denoted as wθli, and by def-

inition the flux averaged along the sharp-edged top) and the minimum θl-flux
obtained from horizontal averaging was discussed by Lilly (2002a). Based on
smoke-cloud LESs from Moeng et al. (1999) and assuming a Gaussian distri-
bution for smoke-top fluctuations, Lilly showed that the ratio of these two fluxes
wθli/wθlmin ∼ exp(4s/λ), where s is the standard deviation of the interface fluc-
tuations and λ is the decay length scale of longwave radiation as defined in
Section 5.2.1. From LES-1, s ∼ 20 m using zlwc as the interface and λ ∼ 26 m,
which yields exp(4s/λ) ∼ 20. Figure 5.3(a) shows (dotted line) that ρ0cpwθlmin ∼
–38 Wm−2, and since ρ0cpwθli ≡ −ρ0cpwe��l ∼ –53 W m−2, their ratio is only
about 1.4. Hence we conclude that Lilly’s assumption of a Gaussian distribution
for the interface fluctuations works only for smoke-cloud cases, not for wet-cloud
cases.

5.4 Interface properties and stability

Lilly’s second question is particularly relevant to RF01 and also well suited to
evaluation byLES.He askswhat characterizes the effective stability of the interface.
This is essentially the same question which motivates the theoretical discussion
presented in Chapter 4 by Randall and Schubert. It arises because for stratocumulus
entrainment mixing occurs in conjunction with phase changes of water, and hence
buoyancy of the mixtures doesn’t depend linearly on mixing fraction. And, because
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of the phase change of water, the entrainment buoyancy flux (i.e., the buoyancy flux
along the cloud-top interface where entrainment mixing occurs) does not simply
equal −we��v.

5.4.1 Wetness of cloud-top interface

At the thin cloud-top interface, air is neither completely dry nor completely wet.
To characterize the buoyancy flux at this thin interface, Lilly (2002b) defines a
“wetness” factor α, which describes the moisture content of the interface, as

wθvi = αwθvwi + (1− α)wθvdi, (5.4)

where the dry (hypothetical) buoyancy flux is defined as

wθvdi = adwθli + bdwqTi (5.5)

assuming the interface is completely dry, and the wet (hypothetical) buoyancy flux
is defined as

wθvwi = awwθli + bwwqTi (5.6)

assuming the interface is completely wet. The thermodynamic coefficients are ad =
1 and bd ∼ 175 K for unsaturated air and aw ∼ 0.54 and bw ∼ 1035 K for saturated
air, following Lilly’s thermodynamic approximation. Equation (5.4) makes the
entrainment buoyancy flux depend strongly on the wetness factor α. Rewriting
(5.4) yields

α = wθvdi − wθvi

wθvdi − wθvwi
. (5.7)

Lilly related this “wetness” factor to the mixing fraction of dry inversion air at
which the mixture is just saturated, denoted as m∗. The concept of mixing fraction
and how it modifies the buoyancy of mixtures has been used by many investigators
(e.g., Nicholls and Turton, 1986; Kuo and Schubert, 1988; Siems et al., 1990; Lilly,
2002b) to explain interface instability. This instability factor has been explicitly
incorporated into the entrainment rate parameterization of Turton and Nicholls
(1987). The basic idea is explained with the help of Fig. 5.8, which was adapted
from Fig. 3 in Stevens (2002).
The figure illustrates that the buoyancy of mixtures depends linearly on mixing

fraction only when the mixtures are completely saturated (m < m∗) or completely
unsaturated (m > m∗); these two linear curves have different slopes. The linear
curve on the unsaturated side has a slope that satisfies the clear-air thermodynamic
property:

�d�v ≡ ad��l + bd�QT, (5.8)
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Figure 5.8. Buoyancy of mixtures of boundary-layer air with a mass fraction, m,
of above-boundary-layer air. Here the buoyancy, B = gδ�v/�0,measured relative
to the boundary-layer air, is plotted versus m. See text for further discussion.

while the linear curve on the saturated side has a slope that satisfies the cloudy-air
thermodynamic property:

�w�v ≡ aw��l + bw�QT. (5.9)

The curves intersect at m∗ where

m∗ = �d�v − ��v

�d�v − �w�v
. (5.10)

(A more detailed derivation of the above equation is given in Moeng et al., 1995.)
There is a similarity between (5.7) and (5.10). Because wθvdi = −we�d�v for

completely unsaturated air and wθvwi = −we�w�v for completely saturated air,
(5.7) and (5.10) imply thatwθvi = −we��v only if α = m∗. Based on several LES
solutions Lilly (2002b) argues that α is in general larger than m∗ according to

α = 1− (1− m∗)8/3. (5.11)

As discussed by Lilly, α = m∗ only if no mixing occurs near the cloud top; for a
typical stratocumulus where mixing does occur near the cloud top, α > m∗.
LES-1 of RF01 allows us to check Lilly’s ideas using a case independent of

those used by Lilly in calibrating the above relationships. From LES-1, we estimate
�w�v ∼ –1.5 K from (5.9) and �d�v ∼ 9.7 K from (5.8) using Lilly’s values of
ad, aw, bd, and bw. We also deduce the jump of mean virtual potential temperature
from a mixing-line analysis of θv and qT (not shown), which produces��v ∼ 9 K.
Substituting these values into (5.10) yieldsm∗ ∼ 0.06 and in (5.11) gives α ∼ 0.15.
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Figure 5.9. Dependence of the entrainment rate on thewetness factor, usingLilly’s
new entrainment-rate formula (i.e., Equation (2.15) in Lilly, 2002b) and the LES-1
simulation fields.

Alternatively α can be derived by picking the value that yields the best agree-
ment between the entrainment rate obtained from Lilly’s new entrainment-rate
formula (i.e. Equation (2.15) of Lilly (2002b)) and the simulated rate. We solve this
graphically by plotting in Fig. 5.9 the dependence of the entrainment rate on the
wetness factor α using the LES-1 results for surface fluxes, Fi, �d�v, �w�v, and
the cloud-base to cloud-top ratio. Figure 5.9 shows a strong dependence of we on
α, particularly when α becomes larger, i.e., where the interface becomes wetter.
For we ∼ 0.48 cm s−1 as in LES-1, Fig. 5.9 yields α ∼ 0.3. If we assume α = 1
(a completely saturated interface), the entrainment rate would have been 4–5 times
larger than this predicted value.
In the above, we have discussed the value of α based on a zlwc interface where

the layer below is completely wet and the layer above is completely dry. If the
sharp-top interface is assumed to be zgrd, Fig. 5.6 suggests that the interface would
be close to completely dry because zgrd is mostly above zlwc.

5.4.2 A new CTEI criterion

With his new entrainment-rate formula, Lilly (2002b) derived a newCTEI criterion,
which can be summarized as

−L�QT

cp��l

> F

(
α,

zb
zi

)
, (5.12)
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Figure 5.10. Dependence of the CTEI criterion on the wetness factor and the ratio
of the cloud base-to-top ratio calculated from Equation (5.2) in Lilly (2002b).

where L is the latent heat of evaporation. The right-hand side depends on thewetness
factor and the ratio of themean cloud-base (zb) to cloud-top zi heights. Lilly derived
the above formula by setting the denominator of his entrainment-rate formula to
zero such that the entrainment rate becomes infinitely large and hence corresponds
to instability. We plot this new instability criterion as a function of α in Fig. 5.10 for
three different zb/zi values; zb/zi = 0.77 represents the DYCOMS-II RF01 case. In
all cases this CTEI criterion is more stringent than the Deardorff–Randall criterion
[which is 1.28 in terms of−L�QT/cp��l and is the smallest value one can find in
Fig. 5.10, where the cloud-top interface is assumed to be completely saturated (i.e.,
α = 1) and the cloud base zero]. The reasons Lilly’s new criterion is more stringent
are two-fold: (i) the energetics of the whole layer, rather than just the cloud-top
interfacial layer are considered in the entrainment formula; (ii) the buoyancy flux at
the interface is a weighted combination of fluxes due to saturated and unsaturated
mixtures rather than obtained by simply assuming all mixtures are saturated as has
been done by Deardorff (1980) and Randall (1980).
For the DYCOMS-II RF01 case, zb/zi ∼ 0.77 and α ∼ 0.15–0.3, and hence the

jump ratio in (5.12) has to be larger than ∼ 5 in order for instability (defined
here as we → ∞) to occur. The mixing line in Fig. 5.5 indicates that the jump
ratio in the DYCOMS-II RF01 case is only about 1.6, which appears consistent
with the sustenance of the cloud layer. Some other CTEI criteria (e.g., Kuo and
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Schubert, 1988; MacVean and Mason, 1990; Siems et al., 1990) might also predict
a stable cloud layer for this RF01 case, but here we examine only Lilly’s new
criterion.

5.5 Summary

Large-eddy simulation provides scientists with an invaluable tool in their efforts
to unravel the mysteries of flows beyond the reach of laboratories. The value of
this tool depends in large part on the extent to which simulations are insensitive
to the assumptions upon which they are based, for instance on the fidelity of the
numerical representation of the resolved component of the flow, or the faithfulness
with which the parameterized scales (both large and small) are represented. To
illustrate these points we start with the construction of benchmark simulations, built
around measurements derived from a recent field study. Comparisons between the
simulations and the observed cloud evolution suggest that the simulations perform
reasonably well. Moreover, sensitivity studies indicate that the LES representation
is not markedly sensitive to the truncation of larger scales, and that details of the
numerical representation onlymodestly affect themacroscopic statistics of theLES.
The results of this benchmarking encourage the use of LES to investigate questions
raised in two recent papers by Lilly (2002a, b).
The first question we address is motivated by Lilly’s argument that the idealiza-

tion of the stratocumulus-topped boundary layer as a well-mixed layer topped by
a discontinuity in profiles of averaged state variables is most appropriate from the
perspective of a coordinate system following the local cloud-top height. In contrast,
the use of the geometrical height as the vertical coordinate artificially smoothes out
the sharp jump over a layer equal to the depth of the cloud-top fluctuations. Because
it resolves the three-dimensional structure of the cloud-top interface, LES is well
suited to investigating questions relating to these possible choices of the vertical
coordinate. It is shown that the conceptual simplicity of the interface-following
coordinate is partially offset by ambiguity in defining the interface. In general, an
interface defined by the cloud tops lies below the interface defined by the maximum
gradient in temperature or moisture, and also fluctuates more. For this reason, the
averaged statistics depend upon how one defines the interface. As a result we find it
difficult to recommend one coordinate framework as clearly superior to the other.
The second question is what determines the effective stability of the cloud-

top interface. With his new entrainment-rate formula, Lilly (2002b) derives a new
criterion for the stability of the interface, and that criterion depends strongly on an
interpolation factor (called wetness because it is related to the moisture content of
mixtures) and the ratio of cloud-base to cloud-top heights. From the LES of the
DYCOMS-II RF01 case, the wetness is estimated to be between 0.15 to 0.3 and the

              

       



References 113

cloud base-to-top ratio is about 0.77. These values yield a more stringent criterion
compared to Deardorff–Randall’s and put the RF01 cloud layer in the stable regime
with respect to the interface stability.
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Model numerics for convective-storm simulation
Joseph B. Klemp and William C. Skamarock

National Center for Atmospheric Research, Boulder, Colorado

6.1 Introduction

Over the past forty years, the numerical simulation of atmospheric convection has
evolved from its infancy in two-dimensional dry thermals to highly sophisticated
three-dimensional models used for numerical weather prediction (NWP) at convec-
tive scales. This advancement has been feasible because of the enormous growth in
computing power, increasing from thousands to billions of calculations per second
during this period (Wilhelmson and Wicker, 2001). However, significant advance-
ments in model numerics, physical parameterizations, and data analysis have also
been required to capture the complexity of atmospheric convection and convective
storms in numerical simulation models. Throughout these decades, Doug Lilly has
been a major force in advancing this technology, both in his own research and in
motivating the achievements of others.

Lilly (1962) conducted pioneering research on the numerical simulation of buoy-
ant thermals that laid the groundwork for the 3D convective storm models that
evolved in subsequent decades. This work included a new approach for grid stagger-
ing (Lilly, 1961) and improved techniques for the treatment of subgrid turbulence in
an inertial subrange using a nonlinear eddy viscosity proportional to the local shear
and modified by buoyancy effects through a Richardson-number dependency. Lilly
solved the full 2D compressible equations in flux form, placing strong emphasis
on both numerical stability and accurate conservation (analyzed systematically for
alternative numerical schemes in Lilly, 1965). Lilly fostered the development of one
of the early 3D cloud models, the Klemp–Wilhelmson model, and in founding and
directing the Center for Analysis and Prediction of Storms (CAPS), he promoted
development of the Atmospheric Research and Prediction System (ARPS).

Throughout his long association with convective storm modeling, Lilly has had an
abiding interest in evaluating and improving subgrid turbulence closure techniques
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for these models (Lilly, 1962, 1966, 1967, 1992; Scotti et al., 1993; Wong and Lilly,
1994). However, the benefit of improved subgrid turbulence schemes will only be
realized if the computational damping in the model numerics is small compared to
the dissipation produced by the physical parameterization. Cloud models that have
been used extensively for storm research [e.g., Klemp–Wilhelmson (Klemp and
Wilhelmson, 1978), RAMS (Tripoli and Cotton, 1982), ARPS (Xue et al., 2000)]
have integrated the nonhydrostatic equations in advective form (non-conservative
for flux quantities) using split-explicit leapfrog time integration techniques to effi-
ciently accommodate acoustic modes, and used numerical filters to maintain stabil-
ity. In conducting analyses of momentum and energy budgets for supercell storm
simulations with the Klemp–Wilhelmson model, Lilly and Jewett (1990) found
that these numerical filters can cause excessive damping in the simulated storms,
removing more energy than the physically based subgrid turbulence closure. The
numerical filters are required in models using split-explicit leapfrog time integration
to prevent unrealistic energy buildup near the grid scale, particularly in strongly
nonlinear simulations.

In considering alternative numerical approaches in designing a new Weather Re-
search and Forecasting Model (WRF), we have sought techniques that improve the
numerical characteristics to mitigate some of the limitations encountered in earlier
models. Although several different numerical solvers for the dynamic equations
are being developed and tested as part of the WRF project, the discussion here will
focus on the Eulerian split-explicit version using the basic equation set and numer-
ical techniques as described by Klemp et al. (2000) and Wicker and Skamarock
(2002). Further references to the WRF model in this chapter focus on this par-
ticular model solver. In this version of the WRF model, we have implemented
higher-order numerical techniques that obviate the need for additional numerical
filters and significantly reduce artificial damping near the grid scale. Without this
artificial energy sink, it has been found that the subgrid turbulence parameteriza-
tion needs to be re-tuned in order to achieve realistic energy spectra at small scales
(Takemi and Rotunno, 2003). The WRF model also returns to flux form integration
of the prognostic equations (as Lilly adopted in his early convection model) to
ensure conservation of first-order quantities.

In this presentation, we will discuss the characteristics of the numerical tech-
niques used to integrate the dynamic equations in WRF, and compare them to those
used in the predecessor Klemp–Wilhelmson model. We will describe how the previ-
ous subgrid turbulence closure should be adjusted in light of the improved numerics
and how the power spectra in convective simulations are improved. These numer-
ics also appear to provide a realistic representation of the kinetic-energy spectra
in NWP applications, and we will illustrate the nature of this behavior. To begin,
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we will briefly summarize the evidence in Lilly and Jewett’s (1990) analysis that
reveals the significant computational damping in these storm simulations.

6.2 Computational damping in supercell storm simulations

Lilly and Jewett (1990, hereafter referred to as LJ) computed momentum and
kinetic-energy budgets for simulated supercell storms to determine their sources,
sinks, and transport using model datasets that overcome the problem of incomplete
data inherent in observational studies. Supercells are powerful rotating thunder-
storms that are often long-lived and produce severe weather such as tornadoes,
large hail, and heavy precipitation. Plate III illustrates the nature of supercells
developing in a numerical simulation with WRF for environmental conditions sim-
ilar to those in the cases analyzed by LJ. This simulation depicts splitting supercells
forming in strong environmental shear and characterized by single-cell rotating up-
drafts with cold precipitation-induced downdrafts spreading out to form gust fronts
along the flanking lines of the storms. The LJ analysis revealed that the vertical
flux of horizontal momentum is consistently down the velocity gradient, and that
the mean-flow kinetic energy associated with the vertical shear is a major contrib-
utor to the kinetic energy of the storm. This transfer of mean kinetic energy to the
storm was found to occur primarily through a gravity wave produced by the cold
rear-flank downdraft outflow. Their analysis also revealed that the computational
damping in the model had a significant influence on the overall kinetic-energy
budget, as illustrated in Fig. 6.1 for the right-moving supercell case simulated by
Klemp et al. (1981). Here, the shear-stress product term (VSH), representing the

Figure 6.1. Bar-graph representation of the volume-averaged contributions to
change of the kinetic energy of disturbance horizontal flow at 2 h in the Klemp
et al. (1981) supercell simulation. (From Lilly and Jewett, 1990.)
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energy transfer from the mean vertical shear, provides the dominant contribution
to the horizontal kinetic energy of the storm. The other positive contribution comes
from the pressure-induced transfer of vertical kinetic energy into the horizontal
(PRES). The sinks for the horizontal kinetic energy arise from the horizontal flux
convergence through the lateral boundaries (HFL), and from the damping terms,
and produce a net rate of change (EDT) that is negative at this particular time.

To clarify the nature of damping effects, LJ computed the individual damping
terms separately: DAMP1 results from the subgrid turbulence closure that solves
a turbulence energy equation to calculate a shear- and buoyancy-dependent eddy
viscosity; DAMP2 arises from the fourth-order horizontal filter; and DAMP3 is
associated with a second-order vertical filter on perturbation quantities. The damp-
ing effects on the horizontal kinetic-energy budget from the numerical filters are
about twice the size of the damping produced by the physically based turbulence
parameterization. This does not necessarily mean that the overall damping is three
times too large; with less computational damping, the physical damping would
increase as more smaller-scale structure would be present. However, it does mean
that the selective physics in the turbulence closure is being compromised by the less
discriminating damping in the computational filters. As stated by LJ, the effects
of these filters “do not necessarily vitiate the usefulness of the models, since the
more important larger scales of the simulations may not be much affected. They do
indicate that the modeling techniques used in these simulations need improvement.”

The significant influence of the computational filter was also documented for
squall-line simulations by Weisman et al. (1997). Their examination of the de-
pendence of squall-line structure on horizontal resolution was complicated by the
fourth-order computational filter, which for filter coefficients required to control
small-scale noise, does not produce the same magnitude of damping as the
horizontal resolution is varied. Furthermore, their sensitivity simulations revealed
that changes in the filter coefficient had a much larger effect on the precipitation
characteristics of the squall lines than comparable changes in coefficients in the
turbulence closure scheme.

6.3 Higher-order numerics in WRF

In seeking to improve the numerics of the earlier cloud models, we have placed
emphasis on techniques that could provide better conservation properties, increased
accuracy, and a more robust behavior. The importance of strict conservation of lin-
ear and quadratic integral properties is arguable for many cloud-scale and NWP
applications, which have open lateral boundaries, relatively short integration times,
and processes that contribute large sources and sinks to the model equations (Lilly,
1962). Although conservation of certain quadratic quantities may improve nonlinear
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Figure 6.2. Dependence of solution error in low- and high-order numerics on
resolution and computational cost.

stability (Phillips, 1959), linear stability characteristics and numerical accuracy may
be more important considerations. Also, strict conservation of mass and entropy is
important for dynamic models used in atmospheric-chemistry and air-quality ap-
plications (Byun, 1999). For WRF, we have chosen to solve the full nonhydrostatic
compressible equations in flux form, thereby conserving first-order quantities that
have conservation properties. We have developed time-split integration techniques
for the flux form of the equations for a terrain-following height coordinate and a
terrain-following hydrostatic pressure (mass) coordinate (Klemp et al., 2000). Us-
ing the flux form of the equations, we integrate prognostic equations for conserved
variables and recover other variables (such as pressure and temperature) from di-
agnostic relationships. This approach allows exact mass conservation, which is
typically not possible when solving a prognostic pressure equation.

In considering the appropriate accuracy for numerical techniques, we desire the
most efficient scheme for a particular application. Here, by efficiency, we mean the
most accurate solution for a given amount of computer time, or equivalently, a solu-
tion of given accuracy in the minimum amount of computer time. Thus, we are faced
with the tradeoffs between the benefits of higher-order (more accurate) numerics
and their accompanying increased computational costs, as illustrated schematically
in Fig. 6.2. Clearly, higher-order numerics should yield smaller error than lower-
order techniques for a given resolution. However, since the higher-order schemes
are computationally more expensive, there will typically be a crossover point in ef-
ficiency between the high- and low-order numerics. At low resolution the low-order
schemes may be most efficient, but because the high-order schemes converge more
rapidly with increasing resolution, they will at some point become more cost ef-
fective. Unfortunately, for complex applications including parameterized physics,
it is difficult, if not impossible, to quantify these error profiles, which may vary
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depending on the specific application. Nevertheless, since the resolution of model
simulations will continue to increase as computer power advances, we believe that
higher-order techniques will become increasingly advantageous.

For multi-dimensional models, higher-order numerics also tend to be more effi-
cient because of the strong dependence of the number of computations on the grid
size. In a three-dimensional model, the number of calculations required to integrate
over a specified time interval is inversely proportional to the fourth power of the grid
size (i.e., halving the grid interval in three dimensions plus halving the time step
increases the computations by a factor of 16). As a result, a significant increase in
the number of calculations at each grid point that might be needed for higher-order
schemes can be offset by a small increase in grid size. For example, if a high-
order scheme requires twice as many computations per grid point as a lower-order
scheme, the high-order model can run in the same amount of computer time as the
low-order version by using a grid that is only 19% coarser than low-order grid.

The time integration scheme chosen for our WRF solver is a time-split third-order
Runga–Kutta (RK3) method proposed and evaluated by Wicker and Skamarock
(2002). The basic algorithm for the integration of the equation φt = L(φ) from
time t to t + �t is as follows:

φ∗ = φt + (�t/3)L(φt ) (6.1)

φ∗∗ = φt + (�t/2)L(φ∗) (6.2)

φt+�t = φt + �t L(φ∗∗). (6.3)

Although leapfrog time integration occurs in a single step, it is almost always
coupled with a time-smoother to stabilize the computational mode (uncoupling of
the odd and even time steps) that arises because it is a three time level scheme
(cf. Durran, 1999, pp. 60–64). Thus, the time-smoothed leapfrog integration has
the form:

φ∗t+�t = φt−�t + 2�t L(φ∗t ) (6.4)

φt = φ∗t + α(φ∗t+�t − 2φ∗t + φt−�t ), (6.5)

where in cloud models typically α � 0.1 − 0.2.
In the time-split implementation of the RK3 method, the terms involving the

fast-moving (acoustic) modes L f are separated from the slower modes Ls of me-
teorological interest, and φt = L f(φ) + Ls(φ) is stepped forward using a series
of smaller forward–backward time steps to update the L f terms. This technique
is depicted in Fig. 6.3 for the original time-split leapfrog integration developed
by Klemp and Wilhelmson (1978), and for the RK3 integration analyzed by
Wicker and Skamarock (2002). Notice that the number of small time steps in the
three-stage RK3 integration is less than the number of small time steps in the
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Leapfrog, 1 step

3rd-order Runge−Kutta, 3 steps

Ls(U )

Ls(U )

t t + dtt + dt/3

t t + dt

t t + dt

t + dt/2

U *

Ls(U*)

Ls(U**) U

U**

t − dt t t + dt

Figure 6.3. Schematic illustrating the time-split leapfrog integration developed
by Klemp and Wilhelmson (1978) and the time-split third-order Runge–Kutta
technique proposed by Wicker and Skamarock (2002), shown for the case of 4
small time steps per large time step.

one-stage leapfrog scheme because the leapfrog step must span a time interval
of 2�t .

The improved response characteristics of the RK3 scheme over the leapfrog ap-
proach are demonstrated for the simple oscillation equation φt = iω0φ in Fig. 6.4.
The RK3 integration remains stable for ω0�t ≤ 1.73 (Durran, 1999, pp. 68–69),
which is nearly double the time-step limit for leapfrog (ω0�t ≤ 0.90) with a time fil-
ter having a coefficient α = 0.1. While the pure leapfrog scheme is non-dissipative,
including the time filter makes it more dissipative than the RK3 scheme. Notice
also that the relative phase errors in the RK3 integration are significantly less than
those arising in the leapfrog differencing.

The choice of numerics used for the advection terms affects both the accuracy
and dissipation of the model simulations. This is illustrated in Fig. 6.5 for simple nu-
merical integrations of the one-dimensional linear advection equation φt = −Uφx

for an advecting top-hat profile. These integrations are carried out in a periodic
domain for a top hat of width 15�x , using small time steps (Courant number
λ = U�t/�x → 0) such that temporal errors are negligible. Clearly, the higher-
order schemes reduce the advective phase errors, but notice also that the odd-ordered
schemes produce smoother profiles with significantly less small-scale “noise.” This
occurs because the even-ordered schemes (centered differences) are non-dissipative
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Figure 6.4. Phase and amplitude errors for leapfrog (LF) and third-order
Runge–Kutta (RK3) integration of the oscillation equation. Representing φ =
exp (iωr t) exp (−ωi t), ωr/ω0 is the relative phase propagation, and the amplitude
exp (−ωi t) is the amplification per time step.

Figure 6.5. One-dimensional linear advection of a top-hat profile using 2nd–6th-
order differencing for the advection term. The integrations were conducted for a
top-hat width Lh = 15�x in a periodic domain and are displayed at a dimension-
less time of Ut/Lh = 13.33. The dashed line denotes the correct position of the
top hat at this time.
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Figure 6.6. Real (cr) and imaginary (ci) components of the phase speed in the dis-
persion equation for the linear advection equation for 2nd–6th-order differencing
of the advection term for λ → 0, displayed a function of horizontal wavenumber k.
Here cr/U represents the relative accuracy of the phase propagation, while −ci/U
is a measure of the relative damping associated with the advection operator.

while the odd-ordered ones (upwind differences) contain inherent numerical dis-
sipation. This behavior is quantified in Fig. 6.6, which displays the real (cr) and
imaginary (ci) parts of the phase speed from the linear dispersion equation for
one-dimensional 2nd–6th-order advection (assuming perfect time resolution). As
expected, the errors in phase propagation (cr) are reduced in the higher-order ad-
vection schemes. Interestingly, the phase speeds for the odd-order schemes are
identical to those of the next-higher even-order scheme. In addition, the odd-order
schemes contain dissipation (the imaginary portion of the phase speed, ci) that is
increasingly high wavenumber specific as the order increases. Although the WRF
model is coded to allow selectable 2nd–6th-order advection, the 5th-order upwind
scheme is recommended as providing the best overall response characteristics in
combination with RK3 (Wicker and Skamarock, 2002). Writing the advection terms
as flux divergences for use in the flux form integration of the prognostic equations,

∂(Uφ)

∂x
= 1

�x

[
Fi+ 1

2
(Uφ) − Fi− 1

2
(Uφ)

]
(6.6)

the 5th-order representation of the flux becomes:

Fi+ 1
2
(Uφ) = 1

60
Ui+ 1

2
{37(φi+1 + φi) − 8(φi+2 + φi−1) + (φi+3 + φi−2)

− sgn
(
Ui+ 1

2

)
[10(φi+1 − φi) − 5(φi+2 − φi−1) + (φi+3 − φi−2)]}

(6.7)

where the i subscripts denote the locations of variables on a staggered C grid.
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Table 6.1. Maximum stable Courant number λ = U�t/�x for linear
2nd–6th-order advection for leapfrog and both second- and third-order

Runge–Kutta time integration. Unstable configurations are denoted by “uns.”
(Adapted and revised from Wicker and Skamarock, 2002.)

Advection scheme

Time integration 2nd 3rd 4th 5th 6th

Leapfrog (α = 0.1) 0.91 uns. 0.66 uns. 0.57
RK2 uns. 0.90 uns. 0.39 uns.
RK3 1.73 1.63 1.26 1.43 1.09

For constant flow, it can be shown that the odd-order flux divergence schemes are
equivalent to the next-higher even-order flux divergence scheme plus a dissipation
term of the higher even order with a coefficient proportional to the Courant number
(Wicker and Skamarock, 2002). Thus, for constant (positive) U , the 5th-order flux
divergence tendency becomes:

�t∇(Uφ)
∣∣∣
5th

= �t∇(Uφ)
∣∣∣
6th

− λ
�x6

60
∇6φ. (6.8)

The stability limits for leapfrog and Runge–Kutta time integration of the one-
dimensional advection equation are listed in Table 6.1 for the 2nd–6th-order advec-
tion schemes. Again, the RK3 scheme exhibits a stability envelope that is nearly
double the limit for leapfrog with a time filter of α = 0.1 for the even-order ad-
vection operators. Leapfrog integrations are unstable with odd-order advection, so
upwind advection schemes cannot be used. For comparison, the stability limits are
also shown for a second-order Runge–Kutta (RK2) time integration, which was
proposed as an alternative to leapfrog for time-split integrations by Wicker and
Skamarock (1998). The RK2 scheme is stable for odd-order advection operators
(though unstable for the even-order ones), but has a maximum Courant number
that becomes quite restrictive for higher-order advection. Wicker and Skamarock
(2002) proposed the time-split RK3 integration scheme as an improvement over
both leapfrog and the RK2 approaches: RK3 is stable for both centered and upwind
advection operators and allows significantly larger time steps within the limits of
linear stability. Although the RK3 scheme requires three evaluations of the advec-
tion term per time step compared to only one for leapfrog, much of this increased
computational burden is offset by the significantly larger time steps that can be taken
in the RK3 integration. These larger time steps are justified since the RK3 scheme is
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Figure 6.7. As in Figure 6.6 except for numerical integrations at finite Courant
number. (a) RK3 time integration with 5th-order upwind advection for Courant
numbers (labeled) ranging from 0 to 1 in increments of 0.2. (b) 6th leapfrog
integration (without time-smoother) with 6th-order advection and fourth-order
filter for β = 0.01 for Courant numbers (labeled) increasing from 0.1 to 0.5 in
increments of 0.1.

3rd-order accurate for linear disturbances (2nd-order for nonlinear forcing), while
leapfrog (with the time filter) is formally only accurate to first order.

The behavior of the RK3 scheme for the one-dimensional linear advection equa-
tion with 5th-order advection over a range of stable Courant numbers is displayed
in Fig. 6.7(a). At the higher Courant numbers the normalized phase propagation
increases somewhat above unity over the lower half of the wave spectrum, and the
damping increases in the higher-wavenumber regime. Because the effective dis-
sipation is proportional to the Courant number as indicated in (6.8), the damping
associated with the upwind differencing does not change in direct response to the
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Courant number; doubling the Courant number doubles the damping coefficient,
but in doubling the time step, the damping terms are applied only half as many
times in integrating out to a specified time. Thus, changes with Courant number are
due solely to the changing truncation errors in the RK3 scheme.

As mentioned above, time-split leapfrog integration models typically incorporate
a spatial filter to stabilize the overall scheme. Typically, a fourth-order horizontal
filter is used with a dimensionless coefficient β = ν�t/�x4 set equal to a constant.
For the supercell storm simulations analyzed by LJ, the filter coefficient was β =
0.01. It turns out that by defining the filter in this manner, the damping is strongly
dependent on the Courant number and, in fact, increases as the Courant number is
reduced. This occurs because the damping per time step remains proportional to the
filter coefficient, but decreasing the Courant number increases the number of time
steps needed to integrate over the same time period. This behavior is demonstrated
in Fig. 6.7(b), showing the response for the linear advection equation for a leapfrog
integration with no time filter for 6th-order advection, and including a fourth-
order filter with β = 0.01, displayed for several Courant numbers over the range of
stability (λ ≤ 0.58). Consequently, if the top-hat simulations depicted in Fig. 6.5
were recomputed at small Courant number including this fourth-order filter, the
resulting response would be highly damped. The second-order vertical filter on
perturbation variables in the Klemp–Wilhelmson (1978) model also exhibits this
inverse dependence on Courant number.

In cloud- and mesoscale simulations, the wind speed typically varies widely over
the model domain. Thus, for a given model time step, the local Courant number
will vary correspondingly. With upwind differencing, the internal computational
damping is largest in regions of higher wind speed where the local Courant num-
bers are larger. With a constant coefficient computational filter, all regions within
the model domain are damped by the same amount. The selectivity of the damp-
ing inherent in higher-order upwind advection schemes to high wavenumbers and
higher-Courant-number locales appears to improve the robustness of model simu-
lations with a lower overall amount of computational damping. Within the context
of 5th-order upwind advection, the coefficient multiplying the 6th-order damping
(the last term in (6.8)) can be altered to change the damping characteristics while
still maintaining the 5th-order accuracy. We have experimented with alternative
coefficients and have found it difficult to improve upon the form shown in (6.8).

6.4 Re-tuning the subgrid turbulence closure

In applying the WRF model using RK3 integration with 5th-order upwind advec-
tion to simulations of three-dimensional squall lines, Takemi and Rotunno (2003,
hereafter referred to as TR) confirmed that good results could be achieved without
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the use of any additional computational filters. However, they found that without
these added filters, unrealistic cell structure tended to develop at small scales. By
re-tuning the coefficients in the turbulence closure, they restored realistic behavior
in the simulations without resorting to additional computational damping.

The turbulence closure in WRF is based on subgrid eddy mixing, with the eddy-
mixing coefficient derived either from a Smagorinsky-type formulation or from
the integration of a prognostic turbulence kinetic-energy (TKE) equation. The
Smagorinsky approach uses a modified version, developed by Lilly (1962), that
includes buoyancy effects in computing the eddy mixing coefficient Km:

Km = (CS�)2|D|
√

1 − Ri

Pr
, (6.9)

where D is the deformation:

D2 = ∂u j

∂xi

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (6.10)

Ri is the Richardson number based on moist stability, and Pr = Km/Kh is the eddy
Prandtl number (specified to be 1/3). From theoretical considerations, Lilly (1966)
estimated the Smagorinsky constant CS � 0.23, while Mason (1994) determined
that CS � 0.2 provided the most realistic treatment of small scales in large-eddy
simulations.

With the TKE approach, proposed by Lilly (1966, 1967), the prognostic TKE
equation is integrated, including terms for advection, heat flux sources, Reynolds
stress sources, diffusion and dissipation. The eddy mixing coefficient is then related
to the turbulence kinetic energy Et through the expression:

Km = CK E1/2
t 	 (6.11)

where 	 is a measure of the grid scale. The dissipation ε is also expressed in terms
of the turbulence energy:

ε = Cε E3/2
t

	
(6.12)

Lilly’s (1966) theoretical derivation led to CK � 0.12 and Cε � 0.68, while Moeng
and Wyngaard (1988) proposed CK � 0.1 and Cε � 0.93 based on comparisons of
simulated spectra with theory.

To evaluate these turbulence closure techniques in WRF, TR conducted three-
dimensional squall-line simulations in a 300 × 80 km domain with periodic bound-
ary conditions in the along-line (north–south) direction. No wind shear was present
in the initial environment to promote the evolution of less-organized convective cells
along the outflow boundary beneath the squall line. Simulations were evaluated at
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K K

K K

Figure 6.8. Horizontal cross-section of vertical velocity at 4 h at a height of 3 km,
with a contour interval of 0.1 m s−1, for simulations using the TKE closure with
Cε = 0.93 and (a) CK = 0.1, (b) CK = 0.2, (c) CK = 0.3, and (d) CK = 0.1, but
including a weak fourth-order filter (β = 0.0025). The heavy dashed line indicates
the position of the right-moving gust front within the displayed 40 × 40 km window
(which differs for each case). (From Takemi and Rotunno, 2003.)

four hours for runs with the Smagorinsky closure for varying CS, with the TKE
scheme for different combinations of CK and Cε , and for runs including fourth-order
horizontal damping.

For the TKE scheme, TR used the coefficients CK = 0.1 and Cε = 0.93 sug-
gested by Moeng and Wyngaard (1988) as reference values, which produced sig-
nificant cell structure near the grid scale, indicating too little energy removal at high
wavenumbers (Fig. 6.8(a)). Increasing CK to 0.2, the convective cells appear bet-
ter represented and no longer display any grid-scale features (Fig. 6.8(b)). Further
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increasing CK to 0.3, the cells are smoother yet, and confined to the zone of strongest
lifting behind the gust front (Fig. 6.8(c)). In this case, the squall line produces less
precipitation, a weaker cold pool and, consequently, a slower rightward propagation
of the gust front.

To gain a better perspective of the effect of physical and numerical dissipation
across the range of horizontal scales present in the simulations, TR computed the
power spectral density for the vertical velocity at a height of 3 km in both the
across-line (x) and along-line (y) directions. These spectra were calculated within
an 80 × 80 km window positioned with its right boundary approximately 20 km
ahead of the gust front, and averaged over the last hour of the simulation. Plate IV
displays the spectra for simulations with the TKE scheme for values of CK ranging
from 0.1 to 0.3. For CK = 0.1, there is a significant accumulation of energy at small
scales, reflecting the convective structure near the grid scale apparent in Fig. 6.8(a).
For CK = 0.15 and 0.20, this small-scale energy buildup disappears and the two
coefficients produce very similar spectra. Further increasing CK , the spectra begin to
drop off more rapidly at the high-wavenumber end due to the increasing dissipation.
Based on these and other results, TR concluded that CK = 0.2 was the best choice
for the TKE scheme in this model system. The spectral slope decreases more rapidly
than a −5/3 decay at small scales; this may be due to the influence of the implicit
filtering in the 5th-order advection or to the fact that these smaller scales are still
well outside the inertial subrange.

TR obtained similar behavior with the Smagorinsky turbulence closure. With the
reference value of CS = 0.2, noticeable cell structure and and energy buildup was
evident at small scales. Increasing CS into the range 0.25–0.30 produced realistic
cell structure without spurious energy buildup at small scales, and TR endorsed
these values for use in the model. With further increases in CS, the convective cells
began to appear over-damped.

To assess the comparative effects of added computational damping, TR included
a fourth-order horizontal filter with β = 0.0025 (labeled F1) with the TKE scheme.
Using the reference coefficients, the grid-scale features are also removed, although
the resulting convective-cell structure appears somewhat over-damped (Fig. 6.8(d)).
This is confirmed in the plot of the power spectral density in Plate IV(b), which
exhibits a much more rapid energy decay at small scales than the run with CK = 0.20
and no filter. From simulations with the fourth-order filter and no TKE scheme,
TR further demonstrated that the filter itself had a significantly greater effect on
smoothing the convective cells than the TKE scheme with the reference coefficients.
With the F1 fourth-order filter, the power spectra in Plate IV(b) for runs with and
without the TKE scheme are nearly the same. Increasing the fourth-order filter
coefficient to β = 0.012 (labeled F2), the spectral drop off at high wavenumber is
much more rapid. These results explain why previous models using added numerical
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filters have not noticed much sensitivity to the choice of coefficients in the subgrid
turbulence closure schemes.

6.5 Resolved spatial scales in WRF forecasts

In considering WRF for numerical weather prediction applications, the model is
being evaluated in real-time experimental forecasts over scales ranging from con-
vective to synoptic. As part of the evaluation of these experiments, it is of interest
to determine how well the spectral distribution of predicted model fields compares
to the real atmosphere, particularly near the grid scale where artificial dissipation
might produce unphysical behavior. Although the verification of model spectra
does not, in itself, assess the accuracy or skill of forecasts, it does shed light on how
realistically the model represents the spatial variability observed in nature.

One assessment of the spatial variability in WRF has been provided by Baldwin
and Wandishin (2002, hereafter referred to as BW), who examined the Fourier
power spectra for forecast precipitation fields. As part of this study, BW compared
the variability of the forecast precipitation for one event using the WRF model with
10 km and 22 km horizontal grids, and the operational Eta model with a 12 km grid.
Forecasts over the continental United States (CONUS) were initialized at 12 UTC
on 4 June 2002 from data interpolated from the Eta analysis. At this time, a cold front
was moving to the southeast across Kansas, northern Oklahoma, and the northern
tip of Texas, producing heavy rainfall in the vicinity of the front. The accumulated
precipitation from 15–18 UTC, derived from the NCEP gage and radar data, depicts
this band of frontal precipitation (Plate V). The 3–6 h forecast precipitation fields for
the 10 km WRF model and the 12 km Eta model are also displayed in Plate V. While
both models forecast significant precipitation in the general vicinity of the cold front,
there are noticeable differences in the spatial variability of the precipitation. These
visual differences are confirmed in the Fourier power spectra BW computed for the
observed and forecast precipitation that are displayed in Plate VI. The spectrum
for the 10 km WRF precipitation forecast is quite similar to the observed profile,
with the slope beginning decline from the observed profile at scales below about
30–40 km. For the 22 km WRF, the spectrum agrees with observations for scales
down to about 100 km, and then begins to drop off more rapidly at smaller scales.
In contrast, the 12 km Eta model spectrum diverges significantly from the observed
profile for scales less than several hundred kilometers, and contains much less
spatial variability at the smaller scales represented in the model.

The WRF and Eta models contain numerous differences in model physics as
well as numerics that merit further analysis to clarify the reasons for this disparate
model behavior. However, both the precipitation fields in Plate V and their spectral
decomposition in Plate VI suggest that WRF is producing more realistic spatial
variability in the predicted precipitation.
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Harris et al. (2001) conducted a similar analysis, computing spectra for model-
derived reflectivity in convective forecasts with the ARPS model using a 3 km
horizontal grid for comparison with reflectivity spectra from Doppler radar. The
model spectrum agreed well with observations for scales greater than about 15 km
(5�x); at smaller scales, the model variability dropped off rapidly in comparison
to the observations. Harris et al. attributed this reduced variability at smaller scales
to the physically based subgrid-scale mixing and the fourth-order computational
damping included for model stability.

BW emphasized that guidance on the likely mode of convection from NWP
models exhibiting realistic precipitation patterns, even with errors in timing and lo-
cation, is of significant value to forecasters. To test the current capabilities in WRF
to provide improved convective forecast information, real-time WRF forecasts on a
4 km grid were conducted in support of the Bow echo And Mesoscale EXperiment
(BAMEX) in the central US from mid May to early July 2003. The 36 h forecasts
initiated at 00 UTC provided guidance for field operations on the following day.
These forecasts rely on the explicit treatment of convection, and no cumulus param-
eterization is employed. Plate VII shows an example of a 36 h and the subsequent
12 h forecast for the model-derived composite reflectivity valid at 12 UTC on 8
June 2003, along with the composite reflectivity from the NEXRAD Radar. At this
time a strong baroclinic cyclone is centered in northeastern Iowa, producing heavy
precipitation along the cold front spiraling around the center of circulation. The 36 h
forecast captures the structure of the cyclone and the strong convection along the
frontal boundary, but the position of the system is displaced to the southwest. The
next forecast, verifying at 12 h, corrects the position of the frontal convection and
also captures the convective system moving through northern Texas. The earlier
forecast also depicted strong isolated cells along the frontal line at 00 UTC on 8
June where the line of tornadic supercells actually occurred.

From daily evaluation of the BAMEX forecasts, Done et al. (2004) concluded
that the 4 km WRF simulations, in comparison with coarser-grid forecasts, provided
a much better indication of the likely mode of convection as well as the timing and
location of convective initiation. Bow-echo structures were frequently predicted
in the vicinity of their actual occurrence. Although the quantitative prediction of
precipitation did not improve noticeably in the high-resolution forecasts (possibly
due to deficiencies in the microphysics and a tendency for the model convection to
decay too slowly), the improved realism of the forecasts provided significant value
in support of the field operations, even in the absence of improved quantitative
accuracy.

Having conducted WRF real-time forecasts over a range of horizontal grid sizes,
it is of interest to see how the distribution of the model kinetic energy as a func-
tion of horizontal scale compares to observed energy spectra. Analysis of aircraft
measurements by Lilly and Peterson (1983), Nastrom and Gage (1983, 1985), and
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others, have documented that at large scales the spectral slope is approximately −3,

consistent with the behavior of quasi-geostrophic turbulence. However, at scales
of several hundred kilometers and below, the atmospheric kinetic energy exhibits a
significantly shallower −5/3 slope characteristic of the mesoscale. This mesoscale
variability has been attributed to either the spectrum of internal gravity and inertia-
gravity waves in the atmosphere (Dewan, 1979), or to the upscale transfer of en-
ergy through quasi-two-dimensional stratified turbulence (Gage, 1979; Lilly, 1983).
(These mechanisms explaining the mesoscale variability are addressed in depth by
Gage in Chapter 10.) Nastrom and Gage (1985) further demonstrated that veloc-
ity and temperature spectra have essentially the same universal profile, which is
largely independent of latitude, season, and location in the troposphere or strato-
sphere. A preliminary comparison of the model-derived kinetic-energy spectra with
the observed profile is displayed in Plate VIII for three experimental WRF forecast
applications: CONUS forecasts with a 22 km horizontal grid; BAMEX forecasts
over the central US with a 4 km grid, and BAMEX forecasts with a 10 km grid over
a domain intermediate between the other two forecasts. For each forecast applica-
tion, kinetic energy spectra are computed in the east–west direction (removing grid
points in the immediate vicinity of the lateral boundaries) at several model levels
and averaged over the 24–48 h forecast interval (12–36 h for the 4 km forecasts)
for three forecast days in early June 2003.

While the 22 km grid forecasts are fully within the hydrostatic regime, the 4 km
forecasts, running without cumulus parameterization, are beginning to explicitly
resolve the nonhydrostatic organized convection. Although there is a slight shift of
the spectra to higher energy with increasing model resolution, the overall model
spectra appear quite similar, and consistent with observed data as plotted by Nastrom
and Gage (1985). The nearly −3 slope at large scales transitions to a shallower
slope approaching −5/3 for scales smaller than several hundred kilometers. At the
small-scale end of each model spectrum, the curve tails downward, reflecting the
influence of increased computational dissipation near the grid scale. This effect
begins to appear in the model spectra at horizontal scales smaller than about 8�x .
Although further analysis of these kinetic-energy spectra is still being conducted
(W. C. Skamarock, unpublished paper), these preliminary results suggest that the
WRF model is producing a realistic distribution of energy over the broad range of
the scales resolved in the model.

6.6 Summary

Lilly (1990) challenged the convective-storm research community to apply the ad-
vances in this field to the development of new capabilities in storm-scale numerical
weather prediction. Lilly addressed the sobering limitations in the predictability of
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convective storms, but also identified situations, such as isolated organized storms,
that might have significantly enhanced predictability. In seeking to improve storm-
scale NWP, Lilly emphasized the need for further advances in utilizing Doppler
radar data to capture storm-scale information in model initializations, in developing
adaptive-mesh techniques to provide selective resolution enhancement for highly
intermittent phenomena, and in refining model physics to accommodate more of
the real-world complexity of these processes. In discussing current practices, Lilly
lamented that “subgrid-scale turbulence parameterizations are always applied, but
tend to be mixed somewhat haphazardly with computational damping.” Although
the ambiguity between physical and computational damping may never be fully
resolved in NWP models, we believe the WRF model has made significant strides
in this area.

The numerics of the new WRF model have been designed with the intent to
enhance the accuracy and stability of simulations over a diverse spectrum of ap-
plications. Integration of the conservative prognostic equations is achieved using
a two time level, split-explicit, third-order Runge–Kutta scheme along with fifth-
order upwind advection. With these numerics, the model time steps can be about
double those used in earlier leapfrog integrations, and without the addition of ex-
plicit computational filters required with leapfrog. The implicit damping associated
with the RK3 and fifth-order advection appears to have a more selective influence
on high wavenumbers at large Courant numbers than other computational filters,
thus producing less computational damping on resolved modes of physical inter-
est. Without the presence of added computational damping, the subgrid turbulence
closure used in the model plays a more prominent role in selectively removing
energy near the grid scale, and the coefficients in these closure schemes needed
to be retuned to achieve the desired behavior. In NWP applications, the WRF
numerics appear well suited for high-resolution, convection-resolving forecasts,
producing realistic precipitation and kinetic-energy spectra across a broad range of
scales.
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7

Numerical prediction of thunderstorms:
fourteen years later

Juanzhen Sun
National Center for Atmospheric Research, Boulder, USA

7.1 Introduction

Numerical weather prediction (NWP) has been an essential part of large-scale
weather forecasting since the1950s. Although the steady increase of computer
power has pushed operational numerical models to higher resolution and greater lev-
els of sophistication, until the 1990s, the numerical simulation of convective clouds
and storms was conducted only for basic research, without much thought towards
forecast application. In 1990, Douglas Lilly wrote an article entitled “Numerical
prediction of thunderstorms – has its time come?”, stating that it was time for
convective-storm scientists to apply their knowledge to the purpose of weather
prediction. Lilly (1990) argued that continued support and vigor of convective-
storm modeling research depends on identifying an applied objective, and weather
prediction is the principal reason for the support that we are given by our fellow
citizens.

Since the first three-dimensional cloud simulations were attempted in the 1970s
(see, e.g., Miller and Pearce, 1974; Schlesinger, 1975; Klemp and Wilhelmson,
1978), active research has been conducted in this area and almost all of the studies
have focused on the understanding of the dynamics of convective clouds. Due to
the lack of detailed data on convective clouds and storms for initialization and
comparison, and computational constraints, numerical simulations of convection
using cloud models have been started from composite soundings and artificial
thermal bubbles. Although some of the simulations were compared with reflectivity
observations (Klemp et al., 1981; Wilhelmson and Klemp, 1981), the comparison
was made only in a qualitative sense. Lilly (1990) argued that, with the availability
of the nationwide radar WSR-88D (Weather Surveillance Radar – 1988 Doppler)
observational network and the rapid increase in computer power, it was time to
launch a new research endeavor, which would examine whether storm-scale NWP
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was a realistic goal. With this mission in mind, a new program “Center for Analysis
and Prediction of Storms” (CAPS) was proposed by Lilly in 1989 and funded by
the National Science Foundation.

There is no doubt that numerical forecasting of convective storms possesses
considerable societal and economic significance. It also poses a number of chal-
lenges. Among them are the predictability of small-scale flows, the initialization
of cloud-scale models, computing, data and networking, and quantifying forecast
skills (Droegemeier, 2000). Although research has been conducted to cope with
each of these challenges, more attention has been given to the initialization of
cloud-scale numerical models due to its critical role in NWP. In Section 7.2, the
progress in dealing with the challenges posed to the numerical prediction of convec-
tive storms is briefly reviewed. Initialization methods for explicit forecast of storms
are described in Section 7.3. In Section 7.4, results are presented from a recent
case study of numerical prediction of a supercell storm to demonstrate our current
ability in the numerical prediction of thunderstorms. In Section 7.5, conclusions
are drawn and future directions are discussed.

7.2 Progress in the last fourteen years

7.2.1 Initialization of storm-scale numerical models

One of the crucial issues for explicit prediction of thunderstorm evolution is how
to initialize a storm-scale prediction model. Since the WSR-88D network is the
key observing system capable of sampling the four-dimensional structure of storm-
scale flow and this network is able to provide only single Doppler observations,
many of the studies in the initialization of storm-scale NWP have focused on
obtaining the model initial fields from the limited observations of a single Doppler
radar. Unlike the large-scale forecast problem, in which all variables necessary to
initialize a forecast model (except for vertical velocity) can be obtained directly
from the radiosonde, on the convective scale, a single Doppler radar will only
provide observations of radial velocity and reflectivity (intensity of precipitation).
The variables required to initialize a cloud model, such as three-dimensional wind,
temperature, pressure, and water-substance fields, within the storm must therefore
be retrieved in the initialization or data-assimilation process. Because no simple
balances or approximations apply, it seems necessary to use the prognostic equations
in the initialization process for the convective scale.

Early efforts in the storm-scale initialization were devoted to the retrieval of the
3D wind from single-Doppler clear-air observations. When the reflectivity signal is
due primarily to clear-air scatterers (as distinct from precipitation), the reflectivity
conservation equation should be valid. This assumption forms the basis for a number
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of single-Doppler wind retrieval techniques (e.g., Qiu and Xu, 1992; Laroche and
Zawadzki, 1995; Shapiro et al., 1995). These techniques showed acceptable accu-
racy when compared with dual-Doppler analysis and can be combined with tech-
niques for retrieving thermodynamic and microphysical fields (Gal-Chen, 1978;
Roux, 1985; Ziegler, 1985) to initialize storm-scale numerical models. Weygandt
et al. (2002a, b) applied the Shapiro et al. (1995) single-Doppler retrieval technique
and a thermodynamic retrieval technique, and followed by a moisture-specification
step in an initialization and forecasting experiment of a supercell storm that occurred
in Arcadia, OK.

Techniques were also developed to obtain the initial conditions of all the prog-
nostic variables in a storm-scale numerical model in a single step with the aid of a
numerical model. The four-dimensional variational assimilation (4D-VAR) method
was first applied to the convective scale by Lilly’s graduate student D. Wolfsberg
(1987) using a Boussinesq boundary-layer model. The results were critical to the
NSF proposal that established CAPS. The technique was further developed at the
University of Oklahoma (Sun et al., 1991) and later tested using real data at NCAR
( Sun and Crook, 1994). The prediction model along with the adjoint model1 in the
4D-VAR system were further extended to include microphysics such that the sys-
tem could be used to perform initialization and prediction of localized convection
(Sun and Crook, 1997, 1998).

The two initialization methodologies will be explained in more detail in
Section 7.3. In Section 7.4, results from a recent study of initialization and pre-
diction of a supercell storm using the 4D-VAR technique will be presented.

7.2.2 Practical predictability experiments

The classic analysis by Lorenz (1969) laid the foundation for the theoretical study
of predictability. However, since the real atmosphere is much more complex than
the Lorenz model, predictability experiments using real atmospheric models are
necessary. A number of predictability experiments have been conducted using
cloud-resolving models since the 1990s. These experiments were based on either
idealized simulations (e.g., McPherson and Droegemeier, 1991; Brooks, 1992;
Droegemeier and Levit, 1993) or numerical simulations using more realistic mod-
els and initial conditions. For example, real-time predictability experiments were
conducted using the Advanced Regional Prediction System (ARPS) (Droegemeier
et al., 1996a, b; Xue et al., 1996a, b). More recently, three cloud-resolving numer-
ical models [WRF (Weather Research and Forecasting model), RAMS (Regional

1 An adjoint model is a model composed of adjoint equations that maps the gradient vector of a cost function
from a forecast time to an initial time of the integration of a prediction model.
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Atmospheric Modeling System), and MM5 (PennState/NCAR mesoscale model)]
were run at a 4 km grid during BAMEX (Bow-echo and MCV Experiment) to
assess the predictability of mesoscale convective systems. A number of practical
predictability studies assimilated high-resolution Doppler-radar observations into
cloud-scale numerical models to provide the detailed storm-scale flow structure
(Crook and Sun, 2001; Montmerle et al., 2001; Sun and Crook, 2001a; Weygandt,
2002a, b). Although results from the studies cited above are generally encouraging,
large sensitivity of the storm-scale prediction with respect to changes in initial con-
ditions, environmental condition, and model physics are reported by several authors
(Crook, 1996; Sun and Crook, 2001b; Hu and Xue, 2002). The issue of predictabil-
ity for convective weather has been and remains a topic of debate (Brooks et al.,
1992). Important questions concerning the impact on forecast quality of various ob-
servations, model physics, and error in the initial conditions are being investigated.
More research and operational tests are needed before the operational storm-scale
NWP becomes a reality.

7.2.3 Computing, networking, and data management

Numerical prediction of storms presents an enormous challenge to computing,
networking and data management because the storm-scale NWP requires a high-
resolution numerical model along with an advanced data-assimilation system. For
example, the short time scale and thus the rapid perishability of convective-storm
predictions demands almost instant transmission of observations and output. In the
last decade, however, computing power has increased steadily, allowing operational
models to run at much higher resolution and to produce output of shorter-term pre-
diction. Moreover, the project CRAFT (Collaborative Radar Acquisition Field Test,
Droegemeier et al., 2002) has successfully demonstrated that the real-time compres-
sion and internet-based transmission of WSR-88D Level II data from multiple radars
is feasible.2 Currently, the NCDC and CAPS are receiving Level II data from 62
radars. The CRAFT concept will be applied to the entire WSR-88D network in the
near future. Plans have been made at NWS to deliver near real-time base data to cus-
tomers through NWSTG (NWS Telecommunication Gateway, Crum et al., 2003).

7.2.4 Measuring the quality of convective weather forecasts

Traditional verification approaches based on simple grid overlays between forecast
and observation are generally inadequate for convective precipitation forecasts. For

2 WSR-88D Level II data consist of reflectivity, mean radial velocity, and spectral width from the NWS WSR-88D
Radar Data Acquisition (RDA) processor. These data are located at spherical coordinates from the radar. There
has been a threshold on signal-to-noise ratio, and second trip echoes have been removed.
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example, small phase errors in the forecast of a small-scale feature can lead to zero
overlap with the observed feature and thus a zero skill score. However, this forecast
may still have value to forecasters. It would be useful in such a case to determine the
accuracy of the precipitation forecast if there were no position error. A number of
efforts are underway toward improving verification approaches for convective and
quantitative precipitation forecasts (Brooks et al., 1998; Ebert and McBride, 2000;
Baldwin et al., 2001; Brown et al., 2002). These approaches specifically attempt
to evaluate errors in location, intensity, and sometimes the shape of convective or
precipitation areas. It is clear that further efforts are needed to develop techniques
that can take into account the intensity, area coverage, location, timing, and scale
of convective precipitation.

7.3 Methods of initialization for the convective scale

Initialization of a cloud-resolving numerical model using high-resolution observa-
tions such as those from a Doppler-radar network is crucial to storm-scale NWP.
Therefore, active research has been conducted in the last decade to develop tech-
niques that are able to provide initial conditions to cloud-scale numerical models.
Two basic methodologies have been employed in the past: one that determines
all unobserved fields simultaneously; and one that retrieves the three-dimensional
wind first, followed by a retrieval or specification of the thermodynamic and micro-
physical fields. For simplicity, we will hereafter refer to the first methodology as
“simultaneous initialization” and to the second one as “sequential initialization”.

7.3.1 Simultaneous initialization

A data-assimilation system that retrieves all unobserved model variables simulta-
neously requires the use of the prognostic model equations. The four-dimensional
variational (4D-VAR) technique is the usual approach for retrieving all fields sim-
ultaneously with the aid of a cloud-scale numerical model. If a numerical model
represents the atmospheric motion without error and the initial conditions and
boundary conditions of the model are known, the predicted trajectory should match
observations to their measurement accuracy. Based on this concept, the 4D-VAR
technique seeks to determine the initial conditions of the model prognostic vari-
ables by iteratively minimizing a cost function. Model errors are usually neglected
and boundary conditions are assumed known from larger-scale analyses. The cost
function consists of two major terms: the observation term; and the background
term. The observation term is defined by the discrepancy between the output, from
the forward integration of the numerical model, and the observations within a spec-
ified assimilation window (the time period in which data assimilation is performed
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before a forecast). The background term measures the discrepancy between the
initial conditions and a forecast background or a priori analysis obtained using data
from an observation network excluding radar observations. The assimilation win-
dow is usually determined such that it covers three observation updates (10–12 min
for WSR-88D observations). In most storm-scale applications, we have found this
window not wide enough to propagate the information from the observed variables
to the unobserved variables. However, because of the nonlinearity of the numer-
ical model, a wider assimilation window tends to make the cost function behave
more nonlinearly and, as a result, the minimization algorithm does not perform
efficiently. To circumvent this problem, a cycling procedure is employed in which a
4D-VAR data-assimilation period is followed by a forecast period of similar dura-
tion and then by another 4D-VAR period. The output at the end of the final assimi-
lation period is used as the model initial conditions from which the model forecast
commences.

The National Center for Atmospheric Research’s VDRAS (Variational Doppler
Radar Analysis System) was designed for the assimilation of high-resolution
Doppler-radar observations using the 4D-VAR data-assimilation method. The con-
straining numerical model in VDRAS is a cloud-scale model with a bulk warm-rain
parameterization. The reader is referred to Sun and Crook (1997) for a detailed de-
scription of the numerical model. The prognostic variables in this model include
the three wind components (u, v, w), the liquid-water potential temperature (θl),
the total liquid-water mixing ratio (qt), and the rain-water mixing ratio (qr). The
cloud-water mixing ratio (qc) and temperature (T ) are diagnosed from the prognos-
tic variables by assuming that all vapor in excess of the saturation value is converted
to cloud water. The water-vapor mixing ratio (qv) and the pressure (p) are also prog-
nostic variables. Once qt, qr, and qc are known, qv is obtained because qt is the sum
of qc, qr, and qv. The pressure is obtained by solving a Poisson equation. The cost
function (its exact form will be given and described in Section 7.4) is minimized
by iteratively adjusting the initial conditions. The gradient of the cost function is
computed by the backward integration of the so-called adjoint model.

Figure 7.1 provides a flow chart that shows the procedure of 4D-VAR data
assimilation in VDRAS. For generality of numerical models, the thermodynamic
variable T (instead of Θl) and the microphysical variables qr, qc, and qv (instead of
qt) are used in Fig. 7.1 and (later) in Fig. 7.2. The first guess of the initial conditions
is provided and the numerical model is integrated forward. The cost function is
computed to evaluate the discrepancy between the observations and the model
output. If the value is greater than a given criterion, the adjoint model is integrated
backward to find out how to adjust the initial conditions such that the observation
and model prediction would be in better agreement. This process is repeated until
a satisfactory solution is obtained.
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Figure 7.1. Flow chart illustrating the optimization procedure in VDRAS. The
three volume scans of radar data denoted by V1, V2, and V3 are continuously
assimilated into the numerical model as the model is integrated forward. Values t0
and tN represent the beginning and ending times of the data-assimilation window.
Variables are defined in text.

Another technique that can retrieve the model initial conditions simultaneously
is the ensemble Kalman filter (EnKF, Evensen, 1994). Recently, this technique has
been applied to convective-scale data assimilation using simulated data (Snyder and
Zhang, 2003; Zhang et al., 2003). Similar to 4D-VAR, the EnKF aims at minimizing
a cost function consisting of an observation term and a background term. However,
the observational term in EnKF is defined at a single time in contrast to the 4D-VAR
in which it is defined over a specified data-assimilation window. The EnKF attempts
to retrieve the unobserved prognostic variables by computing the error covariance
between the variables. The error covariance is estimated using the deviation of each
forecast from the ensemble mean calculated from an ensemble of forecasts. As the
forecasts in the ensemble are carried forward by the numerical model, the error
covariance is propagated forward for analysis at the next observation time. When
the model forecast converges to the observations, the unobserved model variables
are recovered through the dynamic relation represented by the numerical model.
Application of the EnKF to simulated radar data experiments by Snyder and Zhang
(2003) and Zhang et al. (2003) have shown encouraging results.
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Figure 7.2. Flow chart illustrating the sequential initialization procedure as in
Weygandt et al. (2002). Five successive volume scans, V1 to V5, are used to
obtain 3D wind fields at three successive times. The wind is then blended with a
background wind. Finally, thermodynamic fields are retrieved for the middle time
level and the moisture fields are specified.

7.3.2 Sequential initialization

Both the 4D-VAR and the EnKF techniques are computationally expensive, pre-
venting them from being widely applied to complex and high-resolution numerical
models. An alternative methodology that can be used for initialization of cloud-
scale numerical models involves the sequential application of a three-dimensional
single-Doppler wind retrieval followed by a thermodynamic retrieval and a mois-
ture adjustment. An example of a sequential single-Doppler retrieval procedure
is described by Weygandt et al. (2002a, b). The three-dimensional wind retrieval
algorithm used in their study is that developed by Shapiro et al. (1995). The re-
trieval assumes that the three-dimensional distribution of two conserved scalars
(one is the reflectivity and the other is derived from the reflectivity conservation
by imposing a temporal constraint on the velocity field) and the radial velocity
are known. Figure 7.2 shows a schematic diagram of the sequential initialization
procedure. Note that a total of five successive volume scans are needed to produce
an initial state of the model dynamic variables. A separate step is necessary to blend
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the retrieved wind with the background wind from the model forecast or a large-
scale analysis. After the 3D wind is obtained, a Gal-Chen-type thermodynamic
retrieval procedure (Gal-Chen, 1978) is applied to determine the thermodynamic
fields (temperature and pressure). As a final step in the retrieval process, the water
vapor mixing ratio is adjusted to saturation in specified regions.

Other 3D wind retrieval methods, for instance the three-dimensional variational
technique (Gao et al., 2001), can be used to obtain the 3D wind in the sequential
initialization procedure. The variational wind retrieval technique is able to blend
the single-Doppler retrieval with a background wind field in a single step, thus
eliminating the second step in Fig. 7.2.

The major drawback of sequential initialization is that it is unable to determine
the thermodynamic and microphysical fields in a dynamically consistent manner.
Consequently, some of the features that play an important role in storm evolution
(for instance, the low-level cold pool) may not be well retrieved, and thus the forecast
of the storm could be significantly impaired. In addition, sequential initialization
has to assume that the 3D volume of radar observations is collected at a single
time, neglecting the time difference associated with the sequential scanning of the
volumetric observation. As it will be described in the next section, the 4D-VAR
technique is able to assimilate each radar data sample at its actual observation time.

7.4 Initialization and forecast experiments of a supercell storm

The objective in this section is to demonstrate our current ability in numerical
forecasting of thunderstorms when the numerical model is initialized using an
advanced data-assimilation system. In order to give the reader a broader picture,
a number of sensitivity experiments with respect to environmental conditions are
also presented to show how the numerical prediction depends on the environment.

7.4.1 Description of the 29 June 2000 supercell case

The supercell storm studied here occurred on 29 June 2000 during STEPS (Severe
Thunderstorm Electrification and Precipitation Study) near Bird City, Kansas. This
supercell storm was observed by the WSR-88D radar located at Goodland, Kansas
and two research radars. It appeared to have formed along an advancing surface
boundary propagating to the southeast. The first echo appeared on radar around
2130 UTC. The pre-storm environmental sounding observed at 2022 UTC from
the NCAR Mobile GPS/Loran Sounding System (MGLASS) is interpolated to
the model levels and shown in Fig. 7.3(a). The sounding indicates a southerly
component to the low-level flow with veering winds up to the tropopause and the
CAPE (Convective Available Potential Energy) of the environment is 1350 J kg−1.
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Figure 7.3. (a) Observed MGLASS sounding at 2022 UTC, plotted after interpo-
lation to the model levels. (b) Modified sounding used in the control experiments.

              

       



7.4 Initialization and forecast experiments of a supercell storm 149

y 
(k

m
)

x (km)

*

*

*

CHILL

KGLD

SPOL

2205 UTC
2225

0050

0005

2315

−60.0 78.0

−42.0

96.0

Figure 7.4. Storm positions indicated by the area greater than 40 dBZ at z =
0.75 km with a temporal interval of 20 min. The locations of the three radars are
marked by *. The x and y distances are relative to the KGLD radar.

The storm’s track is illustrated by the 40 dBZ contour line plotted every 20 min
starting from 2205 UTC in Fig. 7.4. The position of the three radars is also indicated
in Fig. 7.4. The storm propagated southeastward, from about 295◦ at a speed of
about 9.7 m s−1, before ∼2325 UTC. It then turned right from 295◦ to 330◦ and
moved with a velocity of 8.9 m s−1. An F1 tornado was reported at 2328 UTC.
Reflectivities near 65 dBZ, which are believed to represent large hail, developed
around 2230 UTC.

7.4.2 Experiments and results

The supercell storm described above was initialized at 2235 UTC using the obser-
vations from the WSR-88D radar KGLD located at Goodland, Kansas. NCAR’s
VDRAS was used for the initialization experiments. A two-hour numerical forecast
was performed after the initialization using the cloud model in VDRAS. There is
no ice physics in the cloud model and a bulk warm-rain parameterization scheme is
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Figure 7.5. Illustration of data-assimilation and forecast cycles.

employed. The numerical domain covers an area of 140 km × 140 km and extends
to a height of 15 km; the resolution is 2 km in the horizontal and 500 m in the verti-
cal; the temporal resolution is 5 s. A cycling procedure is implemented in VDRAS
and shown in Fig. 7.5. The numbers on top of the figure indicate the times in UTC.
The entire assimilation period of 30 min includes two assimilation cycles and one
forecast cycle. Each assimilation cycle assimilates two volumes of data. These data
are interpolated to a Cartesian grid of the same resolution as the numerical model.
At every second time step, a portion of data, whose observation time is within 10 s of
that time step, is assimilated. The data assimilation can be performed using only one
assimilation cycle starting at 2225 UTC or the assimilation–forecast–assimilation
procedure that spans a period of 30 min. We have found that the cycling procedure
improves the accuracy of the initial conditions and hence the prediction.

In each assimilation cycle, a trajectory, that optimally fits the observations dis-
tributed in the assimilation window of 10 min, is sought by minimizing the following
cost function:

J = (x0 − xb)T B−1(x0 − xb) +
∑
σ,t

[
ηv

(
vr − v0

r

)2 + ηq
(
qr − q0

r

)2] + Jp, (7.1)

where x0 represents the model state at the beginning of the assimilation window
and xb the previous forecast for the second assimilation cycle or a large-scale
background for the first assimilation cycle. The symbol B denotes the background
covariance matrix and is assumed diagonal and constant in this study. The variable
vr is the radial velocity computed from the model velocity components; v0

r is the
observed radial velocity; qr is the rain-water mixing ratio from the model; and q0

r

is the rain-water mixing ratio estimated from the reflectivity observation using the
formula:

Z = 43.1 + 17.5 log(ρqr), (7.2)

where Z denotes the reflectivity factor and ρ the air density. The quantities ηv and ηq

in (7.1) are weighting coefficients for radial velocity and reflectivity, respectively.
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The summation is over space (denoted by σ ) and time t . The symbol Jp denotes
the spatial and temporal smoothness penalty term. The function of the smoothness
penalty term is to ensure a smooth fit to the observations. Its exact form can be
found in Sun and Crook (2001c). Since the reduction of the cost function slows
down significantly after 70 iterations, the minimization is terminated then.

Data quality control and pre-processing are performed using NCAR’s software
SPRINT (Sorted Position Radar INTerpolation, Mohr and Vaughan, 1979; Miller
et al., 1986) and CEDRIC (Custom Editing and Display of Reduced Information in
Cartesian space, Mohr et al., 1986). Three major pre-processing steps are carried out
before the data are used in the assimilation: (1) interpolation from the data spherical
coordinates to the model Cartesian coordinates; (2) data filtering to reduce random
noise; and (3) partial data filling using a least-squares technique. Since the data with
high reflectivity values are associated with hail and cannot be easily quantified, and
the numerical model does not have ice physics, we truncated the reflectivity data
at 55 dBZ.

An assimilation experiment using the observed sounding at 2022 UTC (Fig.
7.3(a)) produced an initial storm with an updraft of 9 m s−1 and a positive tempera-
ture perturbation of about 2 K. However, this initial storm in the analysis dissipated
rapidly during the forecast. When comparing the low-level temperature and dew-
point temperature from the sounding (Fig. 7.3(a)) with those from surface mesonet
observations and the wind with a VAD (Velocity Azimuth Display) analysis (ob-
tained using the KGLD radar radial velocity observations at 2130 UTC ), we found
there were significant differences. Therefore a composite sounding was made by
first replacing the surface temperature and dew-point temperature in the sound-
ing with the surface mesonet observations and then extending the values up to the
top of the boundary layer by assuming a well-mixed boundary layer. In addition,
smoothing is applied to the dew-point profile. As a result, the environmental CAPE
in the modified sounding increased to the value of 3647 J kg−1. The wind profile
is replaced by the VAD analysis at low level (below 1.75 km) and by the average
wind between the observations at 2022 UTC and at high level 2338 UTC (above
4.75 km). A cubic-spline interpolation was used to determine the wind between
1.75 km and 4.75 km. The modified sounding is shown in Fig. 7.3(b) and the hor-
izontal wind components before and after the modification is plotted in Fig. 7.6.
The main difference of the wind before and after the modification is in the mid-
level where the northwest wind is increased after the modification. The shear in the
north–south direction is reduced according to the VAD analysis.

The performance of the forecasts is verified by computing the three-dimensional
relative correlation coefficient between the forecast rain-water mixing ratio and the
rain-water mixing ratio estimated from the reflectivity observation using (7.2). It
should be noted that this correlation coefficient has a dependence on the conversion
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Figure 7.6. Vertical profile of (a) x-component, u, and (b) y-component, v, of
velocity. The solid lines show the profiles after the modification and the dotted
lines from the observation.
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Table 7.1. Summary of experiments.

Description of experiment Experiment notation Initiated storm

Control sounding. 4DV CTR35 Yes
Model initialized at 2235 UTC BUB CTR35 Yes

Control sounding. 4DV CTR55 Yes
Model initialized at 2255 UTC BUB CTR55 Yes

Observed wind profile. 4DV OBV Yes
Model initialized at 2235 UTC BUB OBV Yes

Observed water vapor. 4DV OBQV Yes
Model initialized at 2235 UTC BUB OBQV No

Observed temperature. 4DV OBT Yes
Model initialized at 2235 UTC BUB OBT No

formula. However, we believe that it should still be able to provide a reasonable
measure of the performance of the forecast.

A number of experiments are conducted to demonstrate the impact of radar data
assimilation on thunderstorm prediction and the sensitivity of that prediction to the
environmental conditions. These experiments are summarized in Table 7.1. The
last column of the table indicates whether the model initiated convection. For each
experiment, two runs are performed: one using VDRAS to initialize the model and
one using a warm thermal bubble. For the warm-bubble experiment, we have varied
the size, magnitude, and height of the thermal bubble in order to obtain the best
forecast, which is presented here. This experiment is initiated by perturbing the
liquid-water potential temperature by a warm bubble of 4 ◦C placed at the observed
location of the storm. The size of the bubble is 20 km in the horizontal and 3 km in
the vertical.

The initial conditions retrieved from the VDRAS 4D-VAR assimilation are
shown in Fig. 7.7 by a vertical cross-section through the center of the storm from
southwest to northeast at 2235 UTC. The magnitude of the updraft (Fig. 7.7(a))
is about 15 m s−1. There is a positive temperature perturbation of over 2 K in
the mid-level and a weak cold pool near the surface (Fig. 7.7(b)). The maximum
cloud-water mixing ratio is a little over 2 g kg−1. The reflectivity field shown in
Fig. 7.7(a) by the shaded areas is converted from the analysis rain-water mixing
ratio using (7.2).

Two-hour forecasts of the thunderstorm are performed for all of the experi-
ments starting from the VDRAS analysis or the thermal bubble initialization. As
mentioned previously, both VDRAS and the warm-bubble runs failed to gener-
ate convection when the observed sounding (Fig. 7.3(a)) was employed. On the
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Figure 7.7. Analysis fields at 2235 UTC shown in a vertical cross-section through
center of the storm. (a) Reflectivity (shaded with a 20 dBZ increment starting from
20 dBZ); vertical velocity (contours of –2.5 (dash line), 2.5, and 5.0 m s−1 are
shown); and velocity vector. (b) Cloud-water mixing ratio (shaded with a 0.5 g
kg−1 increment starting from 0.5 g kg−1); perturbation temperature (contours of
−1 (dash lines), +1, and +2K are shown); and velocity vector.

contrary, both runs initiated convection with the modified sounding (Fig. 7.3(b)).
The effect of 4D-VAR initialization on subsequent prediction is shown in Fig. 7.8
by comparing the rain-water correlation coefficient of the two-hour prediction be-
tween the two runs. The results of the two-hour prediction initialized at 2235 UTC
and 2255 UTC are shown by Figs. 7.8(a) and 7.8(b), respectively. At both times,
the rain-water correlation from the prediction that is initialized by the VDRAS 4D-
VAR data assimilation (4DV CTR35 and 4DV CTR55) is much higher than that
initialized by a thermal bubble (BUB CTR35 and BUB CTR55), just as expected.
It is interesting to note that in the last half-hour the correlation of BUB CTR35
begins to rise and reaches the value of 4DV CTR35, suggesting that when the en-
vironment is favorable for convection, the supercell storm can be initiated with
a thermal bubble and the developed storm will have some agreement with the
observations. Comparison of the structure of the storms from BUB CTR35 and
4DV CTR35 (not shown) reveals that both the motion and the precipitation fields
show similarities at the end of the prediction period. The 4D-VAR data assimilation
of radar observations provides initial conditions of 3D wind, thermodynamic, and
microphysical fields, and hence results in better prediction throughout most of the
two-hour period. However, the environmental forcing may have played a more im-
portant role than the initial conditions in the latter part of the simulation. When the
model is initialized at 2255 UTC, the correlation from the warm-bubble experiment
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Figure 7.8. Rain-water correlation coefficient for (a) experiments 4DV CTR35
and BUB CTR35; and (b) experiments 4DV CTR55 and BUB CTR55.
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BUB CTR55 (dashed curve in Fig. 7.8(b)) is lower than the 4D-VAR experiment
4DV CTR55 (solid curve in Fig. 7.8(b)) throughout the two-hour forecast period,
suggesting that the data assimilation provides greater benefit to the forecast if the
model is initialized at the later time when the storm is further developed.

The storm tracks from the experiments 4DV CTR35 and BUB CTR35 are dis-
played in Fig. 7.9 by plotting the 40 dBZ contour lines every 20 min and compared
with that of the observed storm. The + sign indicates the location of the maximum
reflectivity at each selected time. The predicted storm track from the experiment
4DV CTR35 (Fig. 7.9(b)) shows good agreement with the observations. The storm
made a right turn at about the same time as it did in the observations. In contrast to
the experiment 4DV CTR35, the experiment initiated by the thermal bubble pro-
duces a storm that initially moves to the east before the precipitation is produced
and it then made a greater right turn and propagates to the location of the observed
storm near the end of the prediction.

We next present results from a set of experiments that investigate the sensitivity
of the prediction with respect to changes of the low-level environmental conditions.
A previous study by Crook (1996) on convective initiation showed that variations
in boundary-layer temperature and moisture that are within typical observation
variability (1 K and 1 g kg−1, respectively) can make the difference between no
initiation and intense convection. The objective here is to examine the sensitivity
of predicted convection to the environment when the model is initialized with
better initial conditions through the 4D-VAR data assimilation and compare it with
the simple initialization using a thermal bubble. In the following experiments, the
vertical profile of temperature, dew-point temperature, and wind in the control
sounding (Fig. 7.3(b)) is alternatively set back to that in the observed sounding
(Fig. 7.3(a)) while the other profiles remain the same as in the control sounding. In
experiments 4DV OBV and BUB OBV, the wind profile in the control sounding is
replaced by the observed wind profile at 2022 UTC. In the experiments 4DV OBQV
and BUB OBQV, the dew-point temperature profile is replaced by the observation.
In the last two experiments, 4DV OBT and BUB OBT, the temperature profile is
replaced.

When the observed wind profile is used, both VDRAS and the thermal bubble
runs initiated convection, but the tracks of the simulated storms are significantly
different. The storm track from the experiment 4DV OBV is shown in Fig. 7.10(a).
Comparing it with Fig. 7.9(a), we note that the storm does not propagate to the
southeast in the first 40 min as in the observation and it moves more toward the south
after becoming a supercell. The simulated storm from the experiment BUB OBV
(not shown) moves much slower than the simulated storm from 4DV OBV and the
observed storm, and as a result its rain-water correlation is near zero throughout the
two-hour prediction period. The rain-water correlation from 4DV OBV is shown
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Figure 7.9. Storm positions indicated by the area greater than 40 dBZ at z =
0.75 km with a temporal interval of 20 minutes. The x and y distances are relative
to the KGLD radar. The results shown are from (a) observation, (b) 4DV CTR35,
and (c) BUB CTR35.
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Figure 7.10. Same as Fig. 7.9 but for experiments (a) 4DV OBV and (b) 4DV OBT.
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Figure 7.11. Rain-water correlation coefficient for experiments 4DV OBV,
4DV OBQV, 4DV OBT, and 4DV CTR35.

by the solid line in Fig. 7.11. The correlation is substantially reduced from the
control simulation (4DV CTR35) in the second hour.

When either the profile of the temperature or the dew-point temperature is set
back to the observed values, the two experiments initialized by the thermal bubble,
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Figure 7.12. Threat score with respect to two-hour accumulated rainfall amount
for experiments 4DV CTR35 and 4DV OBT.

BUB OBQV and BUB OBT, are unable to initiate convection as indicated in
Table 7.1. In the 4D-VAR experiment 4DV OBQV, an updraft of about 13 m s−1

is obtained from the 4D-VAR analysis. This updraft develops further in the first
30 min, reaching a maximum of 25 m s−1. The storm then dissipates due to the
lack of CAPE. The storm simulated by the experiment 4DV OBT in which the
low-level temperature is set back to the observations, bears the closest resemblance
to that in 4DV CTR35 that uses the control sounding. This is indicated by the plot
of the 40 dBZ contours in Fig. 7.10(b) and the rain-water correlation in Fig. 7.11
(dashed line). The rain-water correlation from the experiment 4DV OBQV is also
shown in Fig. 7.11 by the dotted curve. Since the storm dissipates after one hour
in 4DV OBQV, the correlation goes down to zero after 90 min. In contrast, the
correlation rises up to 0.4 in 4DV OBT. Comparing the threat score3 of the two-
hour accumulated rainfall from 4DV OBT with that from the control experiment,
it is seen from Fig. 7.12 that the two are very close. It should be noted that in
4DV OBT and BUB OBT the CAPE is not reduced as much as in 4DV OBQV
and BUB OBQV. The experiment 4DV OBT seems to suggest that the amount

3 Threat score is a verification measure of precipitation forecast performance equal to the total number of grid
points of correct forecast divided by the number of observations plus the number of misses.
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of CAPE in the environment plays a major role in determining the accumulated
rainfall, and a good initialization as well as an accurate estimate of CAPE are the
two key factors in producing a good forecast.

In summary, the prediction of the supercell storm is sensitive to the low-level
water vapor but not as much as it is to the low-level temperature. The change to
the wind profile produces a storm that has a different propagation track. Better
initialization of the cloud model using Doppler radar observations and the 4D-VAR
technique results in less sensitivity to the environmental conditions.

7.5 Conclusions and future directions

Numerical prediction of thunderstorms has drawn considerable attention in the
last decade. Early efforts have demonstrated some promising results, but there
remain great challenges. In this chapter, I briefly reviewed research progress in
numerical prediction of convection over the last 14 years. I then described some
of the techniques that were used for initialization of cloud-scale model. A recent
case study of a supercell storm was presented to show the feasibility of initializ-
ing thunderstorms using high-resolution radar data and its impact on the subse-
quent prediction. Sensitivity of the prediction of the supercell storm with respect
to the environmental conditions was investigated. The objective is to examine how
the performance of the prediction depends on the large-scale condition with and
without data assimilation. From this case study, the following conclusions can be
drawn.

� Data assimilation using the 4D-VAR technique and high-resolution radar data is able to
provide initial conditions for all of the prognostic variables of a cloud-scale numerical
model simultaneously.

� A two-hour prediction of the supercell storm of 29 June 2000 starting from the 4D-VAR
analysis using VDRAS showed good agreement with the observations.

� Forecasts are sensitive to low-level environmental conditions, especially to the low-level
moisture. VAD wind analysis can be used to adjust the observed large-scale wind and
result in better prediction.

� Data assimilation reduces the sensitivity of the initiation of moist convection to variations
of the environmental condition. In particular, with the initialization of radar observations,
the predicted storm is not very sensitive to a reduction in the boundary-layer temperature
of 3 K.

Although considerable progress has been made in the last 14 years in the research
of numerical prediction of thunderstorms, further effort toward the improvement of
initialization and modeling are necessary before the operational NWP can become a
reality. Although the capability of 4D-VAR data assimilation has been demonstrated
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in storm-scale initialization, it has been applied only to limited domains and obser-
vations from a single radar. To expand the effort to mesoscale convective systems, it
requires that observations from a number of WSR-88D radars be assimilated into a
mesoscale model. Given the current computation capability, we may need to resort
to a less costly technique such as 3D-VAR. In comparison with the 4D-VAR tech-
nique, the 3D-VAR has its difficulty in thermodynamic and microphysical retrieval.
Assumptions and approximations of dynamic relations must be made in order to
initialize all the model variables.

The high-resolution radar data have to be integrated with other types of data
(satellite, GPS, surface network) as well as other aspects of the physical systems
(soil type and soil cover) in order to produce longer-range forecasts of convection
and tackle the problem of convective initiation. The optimal integration of different
types of observations requires sophisticated data-assimilation techniques that can
retain as much information as each data type contains and meanwhile maintain
smoothness of the analysis.

Ensemble forecasting will play an important role in storm-scale NWP since
the storm-scale numerical prediction is sensitive to uncertainties in initial condi-
tions, large-scale variations, and physical processes and structures that are not well
observed or represented in current numerical models. Issues should be addressed
concerning the generation of initial conditions for various ensemble members. The
ensemble members should include not only variations in initial conditions but also
variations in model parameters.

The last issue concerns the operational implementation of convective-scale data
assimilation and weather prediction. Given that most weather systems on the con-
vective scale are often driven by highly local effects, it is probably most economical
to conduct the convective-scale NWP, and its data assimilation, in a distributed and
“on demand” manner. That means local forecast offices guide the execution of their
own customized version of a unified model (e.g., WRF, see Chapter 6 by Klemp and
Skamarock) and target areas of particular active weather. This scenario might prove
effective for both forecast and data assimilation. Research and operational tests are
needed to determine the most effective strategy for operational convective-scale
NWP.
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8.1 Introduction

Aircraft measurements that commenced during World War II allowed scientists
of that era to paint the first reasonably detailed picture of the wind and thermal
structure of tropical cyclones. This led to the first attempts to quantify the en-
ergy cycle of these storms and to understand the physical control of their struc-
ture. In this contribution, I review the history of research on the energy cycle
and structure of tropical cyclones and offer a revised interpretation of their
structure.

8.2 Energetics

The first reasonably accurate description of the energy cycle of tropical cyclones
appeared in a paper by Herbert Riehl (1950). To the best of my knowledge, this is the
first paper in which it is explicitly recognized that the energy source of hurricanes
arises from the in-situ evaporation of ocean water.1 By the next year, another German
scientist, Ernst Kleinschmidt, could take it for granted that “the heat removed from
the sea by the storm is the basic energy source of the typhoon” (Kleinschmidt,
1951). Kleinschmidt also showed that thermal wind balance in a hurricane-like
vortex, coupled with assumed moist adiabatic lapse rates on angular momentum
surfaces, implies a particular shape of such surfaces. He assumed that a specified
fraction, qf, of the azimuthal velocity that would obtain if angular momentum were
conserved in the inflow, is left by the time the air reaches the eyewall, and derived

1 Byers (1944) recognized that the observation of nearly constant temperature following air flowing down the
pressure gradient near the surface implies a sensible heat source from the ocean. The existence of isothermal
inflow has been called into question by more recent observations.
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an expression for the maximum wind speed:

v2
max = 2E

q2
f

1 − q2
f

, (8.1)

where E is the potential energy found from a tephigram, assuming that air ascending
in the eyewall has acquired some additional enthalpy from the ocean. Kleinschmidt
did not provide a specific method for estimating this enthalpy increase, and (8.1) is
sensitive to the arbitrary value of qf specified.

In his widely circulated textbook, now regarded as a classic, Riehl (1954) de-
scribed hurricanes as heat engines and showed that for air ascending in the eyewall
to be appreciably warmer than that of the distant environment, a condition for con-
version of potential to kinetic energy, the inflowing air had to acquire enthalpy from
the underlying surface.

The work of Riehl and his colleagues, most notably Joanne Malkus, culminated
in the publication of two papers in the early 1960s: Malkus and Riehl (1960)
and Riehl (1963). The first of these once again emphasized that the horizontal
temperature gradients that sustain tropical cyclones arise from heat transfer from
the ocean. Making use of the observation that the horizontal pressure gradient is
very weak at the top of the storm, that temperature lapse rates are very nearly moist
adiabatic in the eyewall, and that the temperature of lifted parcels is a function of
their boundary-layer equivalent potential temperature θeb, Malkus and Riehl (1960)
used the hydrostatic relation to calculate a relationship between the surface pressure
fall from the environment to the inner edge of the eyewall:

δps = −2.5 δθeb, (8.2)

where δps is the surface pressure drop in millibars, and δθeb is the increase in
boundary-layer equivalent potential temperature, in kelvin. In deriving this, the
horizontal isobaric height gradient was assumed to vanish at 100 mbar. This is a
simple quantitative relationship showing explicitly the relationship between a mea-
sure of hurricane intensity and the increase in boundary-layer entropy necessarily
arising from sea–air enthalpy transfer. Riehl (1963) showed that (8.2) is well verified
in observations of actual storms (with a best-fit coefficient of 2.56) and extended
the Malkus and Riehl work in several ways. First, he made use of the Riehl and
Malkus (1961) argument that outside the eyewall, where latent heat release is weak,
conservation of potential vorticity integrated over a volume capped by an isentropic
surface above the boundary layer leads to the conclusion that the curl of the surface
stress must vanish, which for an axisymmetric vortex gives

rτzθ
= const, (8.3)
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where r is the radius outward from the storm center, and τzθ
is the azimuthal

component of the surface stress. We will test this proposition in Section 8.3. Given
that the stress varies nearly as the square of the wind speed, (8.3) implies that

vθ ∼ r−1/2, (8.4)

where vθ is the azimuthal wind speed. Using (8.4) and assuming cyclostrophic
balance gives an approximate expression for the pressure drop from some outer
radius, ro, (at which the wind speed is assumed to become small) to the radius of
maximum azimuthal winds, rm:

v2
max � −ρδps, (8.5)

where vmax is the maximum azimuthal wind speed and ρ is a mean air density in
the boundary layer. Eliminating δps between (8.5) and (8.2), and using an estimate
of ρ gives

vmax � 14.1(δθeb)1/2, (8.6)

where vmax is in m s−1.
In the next step, Riehl estimated δθeb from conservation of entropy and angular

momentum in the inflow. I will slightly abbreviate and generalize his derivation here.
Assuming that both entropy (proportional to the logarithm of equivalent potential
temperature, θe) and angular momentum (M) are vertically uniform in the boundary
layer, integration of the conservation equations for entropy and angular momentum
through the depth of the boundary layer gives

ψ
∂θe

∂r
= Ck(θ∗

es − θe) r |V |, (8.7)

and

ψ
∂ M

∂r
= −r2τzθ , (8.8)

where ψ is the mass streamfunction of the flow in the r–z plane evaluated at the
top of the boundary layer, Ck is an enthalpy transfer coefficient, θ∗

es is the saturation
equivalent potential temperature of the sea surface, |V | is a surface wind speed, and
M is the absolute angular momentum per unit mass, given by

M = rvθ + 1

2
fr2. (8.9)

Eliminating ψ between (8.7) and (8.8) gives

∂θe

∂r
= −Ck(θ∗

es − θe)

rτzθ
|V |∂ M

∂r
. (8.10)
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Recall from (8.3) that rτzθ is assumed constant. Also assuming that |V | � vθ ,
we use (8.4) to express vθ as

vθ = vmax
(

rm/r
)1/2

,

where rm is the radius of maximum winds. Using (8.9) for M , we can integrate
(8.10) from rm to some arbitrary radius, ra, to get

δθeb � Ck(θ∗
es − θe)

2rτzθ
vmax

[
vmaxrm ln

ra

rm
+ 4

3
fr1/2

m

(
r3/2

a − r3/2
m

)]
, (8.11)

where we have assumed that (θ∗
es − θe) does not vary with radius. Now using rτzθ �

rmCDv2
max, where CD is the drag coefficient, we can write (8.11) as

δθeb � Ck(θ∗
es − θe)

2 CD

{
ln

ra

rm
+ 4

3

frm

vmax

[(
ra

rm

)3/2

− 1

]}
. (8.12)

Noting that, from (8.3) rmv2
max = rav

2
a , where va is the wind speed at radius ra,

making the approximation that rm � ra, and substituting (8.12) into (8.6) gives

v2
max � 100

Ck

CD
(θ∗

es − θe)

[
ln

(
ra

rm

)
+ 4

3

fra

va

]
, (8.13)

which is equation (27) from Riehl (1963), except that Riehl assumed that CD = Ck .
Note that this, together with rmv2

max = rav
2
a [from (8.3)], gives a transcendental

equation for the maximum wind speed as a function of the degree of thermodynamic
disequilibrium between the ocean and atmosphere, the Coriolis parameter, and the
wind velocity at some specified radius. (Riehl goes on to make what in my view is a
somewhat circular argument that there is another dynamic limit on the relationship
between vmax and rm which, together with (8.13), determines the radius of maximum
wind and an outer radius at the same time.) I shall show later that Riehl comes very
close, in (8.13), to an energetic limit on hurricane intensity.2

2 Malkus and Riehl (1960) came even closer. Their Equation (33) invokes conservation of θe along a boundary-
layer streamline, yielding

v
∂θe

∂�
= Ckv

θ∗
es − θeb

h
,

where θ∗
es is the saturation θe of the sea surface, θeb is the θe of the ambient boundary-layer air, h is the boundary-

layer depth, and the differentiation is along a streamline. Note that I have changed the notation for consistency,
and that Malkus and Riehl unintentionally omitted the factor h. Combining this with (8.2) gives

−v
∂p

∂�
= 2.5Ckv

θ∗
es − θeb

h
. (a)

This is essentially the unnumbered equation after (33) in Malkus and Riehl. They also wrote down an expression
(their Equation (35)) for conservation of energy along a streamline in the boundary layer:

−v
∂p

∂�
= CDρ

v3

h
. (b)
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Several years earlier, Miller (1958) had developed a theory for the minimum cen-
tral pressure in hurricanes. Miller also started by assuming a moist adiabatic eyewall,
but explicitly ignored any increase in entropy from the outer region into the eyewall,
opting instead to assume that the eyewall air starts out at sea surface temperature
and with a relative humidity of 85%. Miller then estimated a vertical profile of tem-
perature in the eye itself by assuming dry adiabatic descent modified by mixing with
the eyewall air, along the line of reasoning explored by Malkus (1958). Once the
eye temperature profile was constructed, the central surface pressure was calculated
hydrostatically, assuming a level of zero horizontal pressure gradient at the standard
pressure level nearest the level of neutral buoyancy for undilute pseudo-adiabatic
ascent in the environment. The calculated central pressures were in good agreement
with the minimum pressures recorded in a limited sample of intense hurricanes.

It is important to note here that Miller’s work departs in a significant way from
the line of reasoning adopted by Riehl and Malkus. The latter had emphasized the
crucial importance of enthalpy transfer from the ocean, while Miller regarded the
hurricane as resulting from the release of conditional instability of the ambient
atmosphere, requiring no enhanced air–sea enthalpy flux. He quotes Byers’ (1944)
statement that compared the hurricane to “one huge parcel of ascending air” and
states in his opening sentence that “the principal source of energy of the tropical
storm is the release of the latent heat of condensation,” a statement rather precisely
analogous to a claim that elevators are driven upward by the downward force on the
counterweights: both statements are true but miss the point. In hindsight, Miller’s
estimate of the maximum intensity of hurricanes is energetically inconsistent. As the
eyewall entropy is no larger than that of its environment, there can be no conversion
of potential to kinetic energy by the overturning circulation of the storm; at the same
time, the eye itself contains descending air with high temperature, a process that
converts kinetic to potential energy. Thus, the net effect of Miller’s energy cycle
is absorbtion rather than production of kinetic energy and so cannot maintain the
system against dissipation. In an important sense, Miller’s analysis presaged the
CISK3 thinking that became the dominant paradigm for tropical cyclone physics
after the publication of Charney and Eliassen (1964). This thinking emphasizes
the interaction between cumulus convection and the cyclone circulation rather than
enthalpy flow from the ocean.

Meanwhile, the development of new observational tools and techniques contin-
ued apace. By the late 1960s, the axisymmetric structure of mature hurricanes had

Had they eliminated pressure between (a) and (b), they would have obtained the correct expression for maximum
wind speed, my (8.21), albeit with fixed thermodynamic efficiency. Instead, they combined (b) with a balance
equation for sensible heat along a boundary-layer streamline, to obtain a peculiar relationship between maximum
wind and air–sea temperature difference (their Equation (36)).

3 CISK = conditional instability of the second kind.
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been well determined by aircraft and dropsonde observations. It had been known
for some time that hurricanes are warm-core vortices; the aircraft data showed that
much of the horizontal temperature gradient is concentrated in the eye and eyewall
and that in the upper troposphere, the eye temperature can be 15 K warmer than its
environment at the same pressure. Analyses of the entropy distribution (Plate IX)
tended to confirm the Riehl–Kleinschmidt–Malkus view of the energy cycle, with
a pronounced inward increase of equivalent potential temperature near the storm’s
eyewall. These observations made it clear that there is a strong surface entropy
source under the eyewall.

At about the same time, Ooyama (1969) published the results of the first success-
ful numerical simulation of a tropical cyclone, showing among other things that
intensification of such storms indeed relies crucially on surface enthalpy fluxes. A
decade later, Rosenthal published the results of a numerical simulation in which he
had accidentally omitted the cumulus parameterization; the simulated storm had no
difficulty intensifying into a mature tropical cyclone (Rosenthal, 1978). Influenced
by the Rosenthal and Ooyama results, Douglas Lilly started work on a steady-state
model based on conservation of certain key quantities along streamlines emanat-
ing from the boundary layer. As he was not satisfied with certain properties of his
model, Lilly put this work aside until 1984 when he learned of research on the
same subject being carried out by myself and Richard Rotunno. The three of us
conducted a lively correspondence over the following year, with the intention of
publishing our results in two or three papers. Although we wrote two conference
preprint papers together (Emanuel et al., 1985; Lilly and Emanuel, 1985) and my
own work was written up (Emanuel, 1986), Lilly never formally published his own
work on the steady-state hurricane model. As there are some interesting features of
this work and because it departs in certain substantial ways from Emanuel (1986),
it is worth reviewing here.

Assuming a steady, circularly symmetric vortex with reversible adiabatic flow
above the boundary layer, Lilly first derived the differential relationship

T ds + M

r2
dM − 1

ρr
ξdψ = d

[
E + 1

2
fM

]
, (8.14)

where M is the angular momentum per unit mass, s is the specific (moist) entropy,
ξ is the azimuthal component of the vorticity, ψ is the mass streamfunction, f is
the Coriolis parameter (assumed constant over the diameter of the storm), r is the
radius from the storm center, ρ is the air density and E is the energy content per
unit mass, defined as

E ≡ 1

2
|V|2 + cpT + Lvq + gz, (8.15)
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Figure 8.1. Showing the path of integration of (8.14) around a closed circuit
consisting of a pair of adjacent streamlines emanating from a boundary layer of
depth h.

where V is the three-dimensional velocity vector, cp is the heat capacity at constant
pressure, Lv is the latent heat of vaporization, q is the specific humidity, g is the
acceleration due to gravity and z is the altitude.

Lilly pointed out that the last term on the left-hand side of (8.14) vanishes
if hydrostatic and gradient wind balances are assumed. Ignoring that term and
integrating around a closed circuit consisting of adjacent streamlines, as illustrated
in Fig. 8.1, gives

1

r2
b

= 1

r2
o

− 2(Tb − To)
ds

dM 2 , (8.16)

where rb and Tb are the radius and absolute temperature, respectively, at the top of
the boundary layer, ro is the radius that the streamline passing through the maximum
surface wind attains at the point where the tangential wind vanishes, and To is the
absolute temperature at that point.

The expression (8.16) was derived on quite different grounds by Kleinschmidt
(1951) and later by Emanuel (1986). They assumed hydrostatic and gradient wind
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balance from the start, and simply integrated the thermal wind equation upward
along angular momentum surfaces assuming that the saturation entropy, s∗, is
constant on angular-momentum surfaces. Kleinschmidt argued, as did Lilly, that
air ascending in the core would be saturated and would preserve its values of both
entropy and angular momentum as it ascended; thus entropy would be invariant
along angular-momentum surfaces. I used a different (and I think more general)
argument: even outside the core, where the air is not saturated on the vortex scale,
slantwise moist convection should adjust the saturation entropy to be constant on
angular-momentum surfaces; this is just the condition for neutrality to slantwise
convection. This condition of slantwise neutrality has been well verified in simu-
lations using a nonhydrostatic model (Rotunno and Emanuel, 1987). Thus a more
general form of (8.16) is

1

r2
b

= 1

r2
o

− 2(Tb − To)
ds∗

dM 2 . (8.17)

We note here that Lilly’s approach has the advantage that neither hydrostatic
nor gradient wind balance has to be assumed; the approach of Kleinschmidt and
Emanuel has the advantage that there is no need to invoke energy conservation or to
assume that streamlines are along angular-momentum surfaces. Thus the approach
based on thermal wind balance is equally applicable to a non-steady vortex, as
long as the evolution of the vortex is slow enough that thermal wind balance still
applies. I argue that in contrast to (8.16), the relation (8.17) is valid everywhere that
moist convection occurs; in a mature hurricane, this is most everywhere, except
in the eye. Shutts (1981) also derived an expression similar to (8.16), except that
he assumed that dry entropy (potential temperature) rather than moist entropy or
saturation moist entropy is invariant on angular-momentum surfaces.

The relation (8.17) strongly constrains the structure of the hurricane vortex, a
fact we shall exploit in the next section. When coupled with relations governing
sources and sinks of entropy and angular momentum, this relation also places strong
constraints on the maximum wind speed of the hurricane. To demonstrate this, we
first put (8.16) in a form that makes explicit its reliance on entropy and angular-
momentum sources. Assuming that the radii ro to which angular-momentum sur-
faces flair near the top of the storm are very much larger than the radii (rb) that they
have at the top of the boundary layer, we can express (8.16) as

(Tb − To)
ds

dt
+ M

r2

dM

dt
= 0, (8.18)

in which it is understood that we shall be evaluating the sources of entropy and
angular momentum at the top of the boundary layer. Lilly took the top of the
boundary layer to be the top of the shallow convective layer, near the level where
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entropy (equivalent potential temperature) reaches a minimum value. In practice,
this is 3–4 km above the surface. I prefer to take the top of the boundary layer to be
the top of the well-mixed, subcloud layer, at an altitude of about 500 m (Emanuel
1986). In either case, the equations for the total derivatives of entropy and angular
momentum, integrated through a boundary layer of depth h, may be written

h
ds

dt
= 1

Ts
[Ck |V|(k∗

s − k) + CD|V|3 + Fb], (8.19)

and

h
d M

dt
= −CDr |V|V, (8.20)

where s and M are the entropy and angular momentum averaged through the depth
of the boundary layer, |V| is a near-surface wind speed, V is the azimuthal velocity
of air near the surface, Ck and CD are surface exchange coefficients for enthalpy
and momentum (drag), respectively, k∗

s is the specific enthalpy of air at saturation at
sea surface temperature and pressure, k is the specific enthalpy of boundary-layer
air, and Fb is the enthalpy flux through the top of the boundary layer. I have used
the classical bulk formulae for the surface fluxes of enthalpy and momentum, and
assumed that there is little turbulent flux of angular momentum through the top of
the boundary layer, owing to the very weak vertical gradients of angular momentum
found at lower levels in hurricanes. The first term inside the square bracket on the
right-hand side of (8.19) is the surface enthalpy flux; the second term is the entropy
source owing to dissipative heating, and the final term is the entropy source (usually
a sink) owing to enthalpy fluxes through the top of the boundary layer. Both Lilly
and Emanuel neglected to include the dissipative heating term, which Bister and
Emanuel (1998) later found to be of first-order importance.

Lilly’s approach, taking the boundary-layer depth to be that of the shallow cu-
mulus layer, has the advantage that it is plausible to assume that the enthalpy flux
through the top of the boundary layer, Fb, vanishes. On the other hand, since moist
entropy itself varies significantly with altitude within this layer, the relationship be-
tween s and the saturation entropy at the top of the boundary layer is problematic.
In my approach, taking the boundary layer to be the well-mixed subcloud layer,
the entropy should be well mixed in the vertical, while convective neutrality would
argue that s should be nearly equal to the saturation entropy above the top of the
boundary layer; on the other hand, Fb will usually be significant. In the eyewall of a
well-developed storm, however, both the vertical entropy gradient in the boundary
layer and Fb should be very small in the eyewall. Thus, in the eyewall, we may
assume that Fb ≈ 0 and s ≈ s. Also approximating M by rV in this region and
taking |V| ∼= V allows one to derive, by substituting (8.19) and (8.20) into (8.18),
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the relation

v2
max = Ts − To

To

Ck

CD
(k∗

s − k), (8.21)

in which we have assumed that the wind speed so computed represents an upper
bound, given that we have neglected enthalpy fluxes through the top of the boundary
layer, which are almost always negative. The expression derived by both Lilly
and Emanuel (1985) differs from (8.21) in that Ts rather than To appears in the
denominator, as a consequence of neglecting dissipative heating. I interpreted (8.21)
in terms of a Carnot cycle, in which enthalpy is added to the system at the high
temperature of the ocean and removed at the low temperature of the storm’s outflow
near the tropopause.

Equation (8.21) is in many respects similar to (8.13) from Riehl (1963), with
the same dependence on the ratio of the exchange coefficients and the ambient
thermodynamic disequilibrium between the ocean and atmosphere (though here
expressed in terms of enthalpy rather than entropy). But there are two differences:
unlike (8.13), (8.21) has no explicit dependence on outer radius, radius of maximum
wind, or wind speed at some particular radius; and Riehl’s factor of 100 is replaced
by a modified thermodynamic efficiency. Riehl’s assumption that parcels become
neutrally buoyant at 100 mbar has been replaced by an explicit dependence on out-
flow temperature, which depends on the level of neutral buoyancy of air ascending
in the eyewall. Also, Riehl’s use of a power-law dependence of wind on radius has
been replaced by the assumption of thermal wind balance and slantwise neutrality
(or, equivalently, by an assumption of energy equilibrium); this gets rid of the factor
in square brackets in (8.13).

The relation (8.21) suggests a strong sensitivity of hurricane intensity to those
boundary-layer processes that determine the exchange of enthalpy and momentum
with the ocean, and ocean temperature near the eyewall, which can strongly affect
k∗

s − k. It is sometimes remarked that (8.21) is especially sensitive to assumptions
about the value of the enthalpy (k) under the eyewall (Holland, 1997). But k is not a
free parameter. According to the subcloud-layer equilibrium hypothesis (Raymond,
1995), air in the boundary layer is very nearly neutral to adiabatic displacement
to a position just above the top of the boundary layer. This may be expressed as
k = h∗

b+ , where h∗
b+ is the saturated moist static energy just above the top of the

boundary layer. But h∗
b+ is not arbitrary: through the thermal wind relation (8.17) it

has a specific relationship to the unperturbed saturation moist static energy of the
environment. Since angular momentum increases outward, the saturation entropy
(and the saturation moist static energy) must increase inward, so that h∗

b+ (and
therefore k) is greater than the value it has in the unperturbed environment. In
(8.21), this offsets the inward increase in k∗

s that arises from decreasing surface
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pressure. These effects are quantified in the Appendix at the end of this chapter.
Emanuel (1986, 1995b) simplified the calculation of k at the radius of maximum
winds by assuming that the boundary-layer relative humidity is constant outside
the radius of maximum winds.

The predictions of (8.21) are in good accord with numerical experiments, begin-
ning with those by Ooyama (1969) and Rosenthal (1971) and continuing with many
others in the 1990s, in which the exchange coefficients are simply specified. Unfor-
tunately, little is known about how these coefficients behave at high wind speeds in
nature. As is apparent in Plate IX, most of the entropy increase in the inflow occurs
very near the eyewall; it is here that hurricanes are sensitive to the exchange coeffi-
cients. (For this reason the centers of hurricanes can approach very near to land
before their intensity begins to diminish.) Measurements at low to moderate wind
speeds suggest that the drag coefficient increases with wind speed, because of in-
creased surface roughness, but the enthalpy exchange coefficient remains approxi-
mately constant (Large and Pond, 1982); when extrapolated to hurricane wind
speeds, this would yield a ratio Ck/CD too small to explain the observed intensity
of hurricanes (Emanuel, 1995b). This suggests that other physical processes must
come into play to enhance the enthalpy exchange and/or diminish drag. Andreas
and Emanuel (1999) suggested that the relevant mechanism is re-entrant sea spray,
which transfers significant amounts of enthalpy to the air. Recent estimates of the
exchange coefficients from wind-wave tank measurements (Alamaro et al., 2004),
from measurements of the ocean current response to tropical cyclones (Shay, 1999)
and from wind profiles measured using dropwindsondes (Powell et al., 2003) sug-
gests that their ratio in high winds is not too different from unity. A field experiment
that took place in the summer of 2003 was designed to make measurements that
could help understand the behavior of surface exchanges at extreme wind speeds.
These data are now being analyzed.

The calculation of To is straightforward in principle. Since tropical cyclones are
subcritical vortices – internal waves can propagate inward against the outflow at
upper levels – the outflow temperature represents that environmental temperature
to which the entropy surface arising at the radius of maximum winds asymptotes
at large radius. It can be calculated given an environmental temperature sounding.
The saturation enthalpy of the ocean surface, k∗

s , is a function of surface pressure
as well as ocean temperature and must be calculated iteratively, using a second
relationship between pressure and wind speed. This is discussed in Emanuel (1986)
and Emanuel (1995b). Finally, the actual enthalpy of the boundary-layer air, k, must
be estimated using a boundary-layer model or by making an assumption about its
radial distribution outside the radius of maximum winds.

In spite of these limitations, calculations of the maximum wind speed made
using (8.21) are in good agreement with those attained in numerical simulations,
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reviewed above, in which the ocean temperature is fixed and for which, of course,
the exchange coefficients are known since they are specified. Real hurricanes are
never observed to exceed the limit given by (8.21) with Ck/CD = 1, but the vast
majority fall well short of this limit (Emanuel, 2000). This is probably due in part
to the fact that the ocean temperature cools as a hurricane passes over, owing to
strong upward mixing of cold water, but also to disruption of the energy cycle by
atmospheric interactions which serve, among other things, to import low-entropy
air into the storm’s core.

The sensitivity of (8.21) to local perturbations of sea surface temperature can be
seen by noting that under average tropical conditions, a local decrease of sea surface
temperature of only 2.5 K suffices to bring k∗

s − k to zero. (But note that large-scale
gradients of sea surface temperature are associated with similar gradients in k, so
that k∗

s − k may remain approximately constant over large areas of undisturbed
ocean.) This would suggest that the observed ocean cooling of order 1 K under the
storm core could have a significant feedback on hurricane intensity. But the first
simulation of a hurricane using a coupled ocean–atmosphere model, by Chang and
Anthes (1979), showed little effect of the ocean feedback on storm intensity, leading
to a period of roughly two decades during which ocean feedback was regarded as
unimportant, except perhaps for storms crossing the wakes of previous storms.
(In hindsight, the model used by Chang and Anthes had too coarse a resolution
and was integrated for too short a period to see appreciable effects from ocean
feedback.) Interest in ocean feedback was renewed after publications by Sutyrin
and Khain (1984), Gallacher et al. (1989), Khain and Ginis (1991), Bender et al.
(1993), and Schade and Emanuel (1999), all of whom used advanced coupled
models to demonstrate that ocean feedback has a first-order effect on hurricane
intensity. Emanuel (1999) demonstrated that the intensity of many hurricanes can
be accurately predicted using even a very simple atmospheric model coupled to an
essentially one-dimensional ocean model (Schade, 1997), as long as storms remain
unmolested by adverse atmospheric influences such as environmental wind shear,
which has been shown to be a statistically significant predictor of intensity change.

8.3 Physical constraints on hurricane structure

The derivation of (8.21) relies on the assumptions that the boundary-layer entropy is
equal to the saturation entropy above the boundary layer (i.e., convective neutrality),
that the angular momentum is dominated by r V and that we can neglect the turbulent
flux of enthalpy through the top of the boundary layer at the radius of maximum
winds. If these assumptions truly applied everywhere, then (8.21) would be valid
everywhere; clearly this is not the case as the right-hand side of (8.21) has only
a very weak dependence on radius. Here we argue that the main features that
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Mu Md
wc

Figure 8.2. Partition of vertical motions at the top of the subcloud layer into con-
vective updrafts Mu, convective downdrafts Md, and clear-air subsidence (vertical
velocity wc).

determine the radial structure of the hurricane vortex are radial variations in the
enthalpy flux through the top of the boundary layer (Fb) and, in the far outer region,
the decoupling of the boundary layer from the free troposphere in regions that are
stable to convection.

Observations (e.g., Powell, 1990a, b) and numerical simulations (e.g., Rotunno
and Emanuel, 1987) reveal that the main mechanisms for evacuating enthalpy from
the boundary layer are low-entropy convective downdrafts and turbulent entrain-
ment. In the spirit of simplicity, we represent these processes using a simple con-
vective scheme based on Raymond’s (1995) boundary-layer quasi-equilibrium hy-
pothesis. This scheme is described in detail in Emanuel (1995a). As shown in
Fig. 8.2, we represent convective updraft volume flux by Mu, convective downdraft
volume flux by Md, clear-air vertical velocity by wc, and total vertical velocity by
w. For convenience, we define Md and wc to be positive downward. The flux of
low-enthalpy air into the top of the boundary layer is then just

Fb = −(wc + Md)(hb − hb+), (8.22)

where hb and hb+ are the moist static energies of air in the boundary layer and
just above the top of the boundary layer, respectively. We have assumed that both
convective downdrafts and clear-air descent advect the same characteristic value of
moist static energy into the boundary layer, and that wc > 0, i.e., that the clear air
is actually sinking.

At the same time, mass continuity demands that

Mu − Md − wc = w, (8.23)
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i.e., that the three components add up to the total vertical velocity. Using (8.23) in
(8.22) gives

Fb = −(Mu − w)(hb − hb+). (8.24)

Using this in the boundary-layer entropy equation (8.19), and expanding the total
derivative of entropy in angular-momentum coordinates:

ds

dt
= ∂s

∂τ
+ dM

dt

∂s

∂M

allows us to write (8.19) as

hTs
∂s

∂τ
= Ck |V|(k∗

s − k) + CD|V|3 − (Mu − w)(hb − hb+) − hTs
dM

dt

∂s

∂M
.

(8.25)

Finally, using (8.20) for the boundary-layer sink of angular momentum in (8.25)
gives

hTs
∂s

∂τ
= Ck |V|(k∗

s − k) + CD|V|3 − (Mu − w)(hb − hb+) + TsCDr |V|V ∂s

∂ M
.

(8.26)

We have assumed here that both entropy and angular momentum are well mixed in
the vertical within the boundary layer.

We are going to use (8.26) in two different ways, depending on whether con-
vection is present or absent. Where convection is absent, it is assumed that the
boundary-layer entropy is decoupled from the saturation entropy aloft. We can then
use (8.26), with Mu = 0, to calculate the radial distribution of entropy in the steady
state. But there is little incentive to actually carry out the calculation, since the
boundary-layer entropy will then have no control over the vortex structure as a
whole.

Where convection is present, we invoke boundary-layer quasi-equilibrium,
which sets the left-hand side of (8.26) to zero, and use it as a closure for Mu.
We also assume that the saturation entropy above the boundary layer, s∗, is equal
to the boundary-layer entropy, s, when convection is active. Then, with the help of
the thermal wind balance (8.17) and once again neglecting 1/r2

o , we can write the
last term of (8.26) as

TsCDr |V|V ∂s

∂ M
� −CD|V|V Ts

Ts − To

M

r
.
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Approximating M/r by V, and |V| also by V , and using this in (8.26) gives the
closure for the convective updraft mass flux:

Mu = w + 1

hb − hb+

[
Ck V (k∗

s − k) − CDV 3 To

Ts − To

]
. (8.27)

Using boundary-layer quasi-equilibrium has allowed us to close on the convec-
tive mass flux, but in the process we have lost the prediction of boundary-layer
entropy. The missing ingredient is the thermodynamic balance above the boundary
layer. Along an angular-momentum surface (also a surface of constant s∗ by the
assumption of slantwise convective neutrality), the temperature (equivalently s∗) is
controlled by convection and radiation:

∂s∗

∂τ
= 	d

	m

[
(Mu − Md − w)

∂sd

∂z
+ Q̇rad

T

]
, (8.28)

where 	d and 	m are the dry and moist adiabatic lapse rates, sd is the entropy of
dry air, and Q̇rad is the radiative heating. We relate the downdraft mass flux to the
updraft mass flux by

Md = (1 − ε)Mu, (8.29)

where ε is a bulk precipitation efficiency. When it is unity, there is no downdraft,
while when it is zero the updraft and downdraft mass fluxes are equal. Using this
in (8.28) and assuming a steady state gives

w = −wrad + εMu, (8.30)

where

wrad ≡ −Q̇rad

/(
T

∂sd

∂z

)
.

Since the tropical troposphere is usually cooling radiatively, wrad is usually positive.
It is the rate at which air subsides in the troposphere under the influence of radiative
cooling. In this simple model, we shall just take it to be a constant.

In summary, in nonconvective regions in which (8.27) gives a zero or negative
value for the convective updraft mass flux, we have, from (8.30), that

w = 1

r

∂ψ

∂r
= −wrad when Mu = 0, (8.31)

where ψ is the mass streamfunction at the top of the boundary layer. But where
convection is active [i.e., when (8.27) yields a positive convective updraft mass
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flux], substitution of (8.27) into (8.30) gives

(1 − ε)
1

r

∂ψ

∂r
= −wrad + ε

hb − hb+

×
[

Ck V (k∗
s − k) − CDV 3 To

Ts − To

]
, when Mu > 0. (8.32)

To close the system, we use the steady-state form of the boundary-layer angular-
momentum equation, (8.20):

ψ
∂ M

∂r
= CDr2V 2,

or equivalently,

∂(rV)

∂r
= CDr2V 2

ψ
− fr. (8.33)

Thus the closed steady-state system consists of (8.33) together with either (8.31)
or (8.32), depending on the sign of Mu determined from (8.27).

This system of equations is appropriate to the outer region of the storm and to
the outer part of its eyewall, where we expect a match between the vertical motion
in the free troposphere and that demanded by Ekman dynamics at the top of the
boundary layer. However, it is not applicable at the inner edge of the eyewall, where
radial diffusion is necessary to balance the strong frontogenetical tendencies, or in
the eye where Ekman pumping produces upflow only through a shallow layer, while
inward turbulent fluxes of angular momentum drive an axial downflow above the
boundary layer (Emanuel, 1997). Thus we terminate integration of the equations
near the radius of maximum winds and do not use them to derive a maximum wind
speed.

I next proceed to a simple numerical solution of (8.33) with either (8.31) or
(8.32). Before doing this, we can absorb most of the parameter dependence of these
equations into scaling of the dependent and independent variables. I replace the
variables as follows:

V → vmaxV,

r → vmax

f
r,

ψ → CD
v3

max

f 2
ψ,

wrad → CDvmaxwQ,

Mu → CDvmax Mu,
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where vmax is defined by (8.21). With these substitutions, our system becomes

∂(r V )

∂r
= r2V 2

ψ
− r, (8.34)

1

r

∂ψ

∂r
= −wQ for Mu = 0, (8.35)

1 − ε

r

∂ψ

∂r
= −wQ + ε�(V − V 3) for Mu > 0, (8.36)

with

Mu = 1

1 − ε
[−wQ + �(V − V 3)] (8.37)

Here the additional non-dimensional parameter is defined:

� ≡ Ck

CD

k∗
s − k

hb − hb+
. (8.38)

Although � must vary with radius, since all of its components do, we shall take it
to be a constant here for simplicity; likewise, we shall neglect radial variations of
the bulk precipitation efficiency, ε.

The boundary condition for this system is that ψ vanishes at some outer radius
ro. From (8.34) V must vanish there as well. Although the system is second order
in r , we do not apply a second boundary condition since we terminate integration
at or outside the radius of maximum winds. The control parameters are then �, ε,
wQ and ro.

Before turning to numerical integrations, it is instructive to look at approximate
analytic solutions in the far outer region, where it will turn out that Mu = 0. In that
case, we can integrate (8.35) directly and, applying the boundary conditions, we
get

ψ = 1

2
wQ

(
r2

o − r2
)
.

Substituting this into (8.34) gives

∂(r V )

∂r
= 2r2V 2

wQ
(
r2

o − r2
) − r.

For wQ � 1, the dominant balance of the above gives

V 2 ≈ 1

2
wQ

r2
o − r2

r
. (8.39)

At r � ro, this gives the same r−1/2 dependence of V derived by Riehl (1963) on
the somewhat questionable premise that potential vorticity is conserved in the outer
region.
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Closer in towards the center, but still well outside the radius of maximum winds,
another approximate solution presents itself. Here we assume that convection is
active, so that both (8.34) and (8.36) apply. We also assume that ε�V 	 wQ but
V 2 � 1, so that (8.36) may be approximated by

∂ψ

∂r
� ε�

1 − ε
rV, (8.40)

while at the same time, the last term in (8.34) may be neglected (i.e., the relative
vorticity is much greater than the Coriolis parameter), giving

∂

∂r
(rV) � r2V 2

ψ
. (8.41)

The system comprised of (8.40) and (8.41) has the power-law solution

V ≈ r−n, (8.42)

where

n ≡ ε� − 2(1 − ε)

ε� − (1 − ε)
. (8.43)

Realistic solutions are thus obtainable only if

� > 2
1 − ε

ε
. (8.44)

Thus the bulk precipitation efficiency has to be relatively large and/or the relative
air–sea thermodynamic disequilibrium has to be large. Note that for the parameters
used in the numerical solution discussed presently, n = 2/3.

The numerical solution of (8.34)–(8.36) is straightforward. We start at r = ro

and proceed inward, using a radial step of 0.001. A particular solution for the
non-dimensional azimuthal wind velocity is shown in Fig. 8.3 and compared to
the profile obtained by running the model of Rotunno and Emanuel (1987) into a
statistical steady state and re-scaling the velocity and radius to map into the non-
dimensional coordinates. The agreement is quite good, especially considering the
crude approximation of neglecting any radial variations of ε and �. The longer
tail in the Rotunno–Emanuel model is likely owing to the fact that in that model
the radiative cooling is proportional to the temperature perturbation rather than
being a fixed constant. Thus the dry descent is weaker and must extend over a
broader area to carry the same mass flux. Corresponding solutions are shown for
the non-dimensional radial velocity (Fig. 8.4), and the total vertical velocity and
convective updraft mass flux (Fig. 8.5). Note that convection is absent in the far
outer region.
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Figure 8.3. Non-dimensional azimuthal velocity as a function of non-dimensional
radius as a solution of the steady-state model (dashed line), with � = 1, ε =
0.8, wQ = 0.1 and ro = 0.25. For plotting purposes, we let the azimuthal velocity
decrease linearly with radius to zero inside the terminal radius of the integration.
Shown for comparison (solid line) is the quasi-steady-state velocity profile from
a simulation using the nonhydrostatic model of Rotunno and Emanuel (1987),
scaled to these coordinates.
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Figure 8.4. Same as in Fig. 8.3 but showing the non-dimensional radial velocity
in the boundary layer (with positive values inward).
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Figure 8.5. Same as in Fig. 8.3 but showing the total vertical velocity (dashed
line) and the convective updraft mass flux (solid line).

Having obtained asymptotic solutions for the azimuthal velocity for large and
small V (but still well outside the radius of maximum winds), we can attempt to
patch these together to form a distribution approximately valid for the whole range
of radius outside the radius of maximum winds. At the same time, we can build
in an asymptotic limit for the wind profile in the eye, to get a distribution for the
whole storm. I have attempted to do this while at the same time altering the large-r
asymptotic limit to better fit the Rotunno and Emanuel numerical solution. The
result of this exercise is

V 2 = V 2
max

(
ro − r

ro − rm

)2 (
r

rm

)2m




(1 − b)(n + m)

n + m

(
r

rm

)2(n+m) + b(1 + 2m)

1 + 2m

(
r

rm

)2m+1


,

(8.45)

where n is given by (8.43), m is an exponent governing the wind profile in the
eye, Vmax is the maximum wind speed, rm is the radius of maximum winds, and b
is a weighting parameter that governs the transition between the two asymptotic
regimes. Note that (8.45) is valid as well using dimensional values of the radius,
since all the radii are normalized anyway. Also note that unless ro is unreasonably
small, the absolute angular momentum implied by (8.45) will be a monotonically
increasing function of radius.
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Figure 8.6. Radial profiles of azimuthal velocity from an integration of the
Rotunno and Emanuel (1987) model (solid line), from (8.45) (dashed line) and
from the analytic model of Holland (1980) (dotted line). See text for parameter
values used.

A solution to (8.45) taking Vmax = 74 m s−1 and rm = 14 km from the Rotunno
and Emanuel (R&E) numerical simulation, and using n = 0.9, m = 1.6, b = 0.25
and ro = 1200 km is compared to the R&E simulation results in Fig. 8.6. The fit is
quite good. Also shown is the best fit of Holland’s (1980) wind profile, taking his
b parameter to be 1.9. The Holland profile is a little too flat in the outer region but
quite good in the inner region. It has the advantage, though, of having a simpler
form than (8.45).

Once V has been calculated, the boundary-layer streamfunction can be obtained
from (8.34), whence the radial velocity in the boundary layer and the vertical
velocity at its top may be derived. These are shown for the same solution in Figs. 8.7
and 8.8, respectively. Note that while the vertical velocity is indeed negative in the
outer region, it is too small to distinguish from zero in the graph.

We have made one initial attempt to compare (8.45) with observed wind profiles,
using data collected from a NOAA WP-3D aircraft and made available by NOAA’s
Hurricane Research Division. Figure 8.9 compares a profile of azimuthal wind at
3 km altitude from a single radial aircraft pass to the profile in (8.45) using the
same parameters as before, except taking Vmax = 60 m s−1, rm = 32 km and using
n = 0.8. Thus this observed profile is a little flatter than the numerically simulated
profile just outside the radius of maximum winds.
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Figure 8.7. Magnitude of the inward radial velocity derived from (8.34) using the
azimuthal velocity obtained from (8.45).
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Figure 8.8. Same as Fig. 8.7 but showing the total vertical velocity. Note reduced
radial scale.
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Figure 8.9. Comparison of (8.45) to profile of azimuthal wind observed in
Hurricane Edouard of 1996. See text for parameter values.

8.4 Summary

Early work on tropical cyclone energetics by Riehl, Kleinschmidt, and by Riehl
and Malkus recognized that such storms are powered by enthalpy transfer from
the ocean. The latter authors came close to developing a correct closed-form ex-
pression for the maximum sustainable wind speed. Subsequent work by Lilly and
by the present author established such an expression, (8.21), although only in the
last decade was the importance of dissipative heating recognized. The energy cycle
makes clear that tropical cyclones are highly susceptible to small ocean cooling
under their eyewalls, and also emphasizes the importance of the outflow tempera-
ture, which is governed by the entropy of the air ascending in the eyewall and the
ambient temperature profile.

The intensification of tropical cyclones requires a rapid variation of downdraft
enthalpy flux across the eyewall (Emanuel, 1997); this process also determines
the radial profile of pressure and wind in this region. The wind profile in the eye
itself represents a balance between Ekman pumping, which acts to spin down the
circulation above the boundary layer, and inward turbulent diffusion of angular
velocity from the eyewall, which acts in the opposite sense. Outside the eye, the
surface wind controls the surface fluxes which, through the boundary-layer quasi-
equilibrium postulate, control the convective flux of enthalpy out the top of the
boundary layer. On the other hand, there must be enough upward motion to bal-
ance, by adiabatic cooling, the sum of the convective heating and the radiative
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cooling. But this upward motion must match that demanded by Ekman pumping,
which is determined by the radial variation of azimuthal wind. This requirement
strongly constrains the radial wind variation outside the core. I here developed a
set of nonlinear ODEs that govern this profile and found asymptotic solutions in
certain limits. By patching such solutions together, I derived a uniformly valid wind
profile, (8.45), which replicates that found in a numerical simulation using a non-
hydrostatic, axisymmetric model. While not as elegant as the simple analytic wind
profile proposed by Holland (1980), it does depend explicitly on environmental
parameters. In particular, it predicts a steeper decline of wind with radius just out-
side the core when the mid-level environment is moist, the air–sea thermodynamic
disequilibrium is large, and/or the bulk precipitation efficiency is large.

Appendix

The expression (8.21) for the maximum wind speed is not closed, because both k∗
s

and k vary with radius. The author (Emanuel, 1986; Emanuel, 1995b) developed
a closed-form expression by assuming that the boundary-layer relative humidity
under the eyewall is the same as that of the unperturbed environment. Here we
point out that the radial variation of both k∗

s and k depend on the outer vortex
structure. First, and without loss of generality, we write (8.21) in terms of moist
static energy rather than enthalpy:

v2
max = Ts − To

To

Ck

CD
(h∗

s − h). (8.A1)

Second, we make use of the boundary-layer quasi-equilibrium postulate, setting h
in (8.A1) to h∗

b+ , the saturation moist static energy just above the top of the boundary
layer. Variations in h∗

b+ at constant altitude are related to variations in the saturation
entropy by the first law of thermodynamics:

δh∗
b+ = Tbδs∗ + RdTbδ ln p, (8.A2)

where Tb is the absolute temperature at the top of the boundary layer, Rd is the gas
constant for dry air, and we have neglected the difference between total pressure
and the partial pressure of dry air. On the other hand, thermal wind balance, as
given by (8.17), relates radial variations of saturation entropy to radial variations
of angular momentum. In the limit of very large ro, (8.17) may be written

(Tb − To) δs∗ = − M

r2
δM. (8.A3)
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Now using the definition of angular momentum, (8.9), and the gradient balance
equation,

RdT
∂ ln p

∂r
= v2

r
+ f v,

we can re-write (8.A3) as

(Tb − To)δs∗ = −
[
δ

(
1

2
v2 + 1

2
frv

)
+ 1

2
f 2rδr +

(
v2

r
+ fv

)
δr

]

= −δ

[
1

2
v2 + 1

2
frv + 1

4
f 2r2 + RdT ln p

]
. (8.A4)

Substituting (8.A4) into (8.A2) and neglecting any radial variations of Tb or To, we
can integrate the result between the radius of maximum winds and the outer limit
of the vortex, where, by definition, v = 0, to obtain

h∗
b+ = h∗

bo − Tb

Tb − To

[
1

2

(
v2

max + frmvmax
) + RdTo ln

(
pm

/
pe

)
− 1

4
f 2r2

o

]
,

(8.A5)

where rm is the radius of maximum winds, ro is the outer limit of the vortex, and
pm and pe are the surface pressures at the radius of maximum winds and in the un-
perturbed environment, respectively. Note that boundary-layer quasi-equilibrium,
applied to the storm environment, gives h∗

b+ = hbo, the boundary-layer moist static
energy. Also note that gradient wind balance may be used to find pm/pe, given
vmax. This is where the outer wind profile does influence the maximum wind
speed, albeit weakly. Here we simplify matters by using an empirical relationship,
RdTs ln(pm/pe) ∼= −bv2

max, where b is an empirical constant. Using this, neglecting
frm in comparison to vmax and the difference between Tb and the surface temperature
Ts, and substituting (8.A5) into (8.A1) gives

v2
max

∼= Ck

CD

[
Ts−To

To
(h∗

s − hbo) − 1
4

Ts
To

f 2r2
o

1 − Ck
CD

(
1
2

Ts
To

− b
)

]
. (8.A6)

Note that there is also a pressure dependence of h∗
s , which we have not accounted

for in (8.A6). The lower pressure at the radius of maximum winds will increase h∗
s

over its ambient value, thus increasing the wind speed over that estimated using the
ambient value of the saturation moist static energy of the sea surface. Also note that
steeper wind profiles yield smaller values of b and thus greater maximum winds.
We estimate a typical value of b by using the idealized wind profile given by (8.45)
to evaluate the radial integral of the right-hand side of (8.A3) and then comparing
the result with the right-hand side of (8.A4) using Rd Ts ln(pm/pe) ∼= −bv2

max. This
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gives a value of b very close to 1, making the denominator of (8.A6) slightly larger
than 1 under typical conditions. Finally, as pointed out by Emanuel (1986), the last
term in the numerator shows that the maximum wind speed decreases with storm
size, though the effect is not large unless the outer radius becomes quite big, of
order 1000 km.
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Mountain meteorology and regional climates
Ronald B. Smith

Department of Geology and Geophysics, Yale University, New Haven, USA

9.1 Introduction

The subject of mountain meteorology advanced quickly in the twentieth century.
These advances can be organized into four broad themes: (A) local mountain cli-
mates and human adaptation; (B) airflow dynamics, the dynamic effect of terrain
on winds; (C) the thermal effect of hills and slopes on local circulations; and (D)
the influence of major mountain ranges on global circulations and climate. For the
most part, researchers in these four fields have worked independently with their
own tools, paradigms, meetings, and journals. This is especially true for theme
(A), including subjects that are generally found in geography and in the agricul-
tural, soil and social sciences (Peattie, 1936; Price, 1981). By contrast, themes
(B), (C), and (D) lie clearly in the realm of atmospheric science. Ranked by the
number of papers published, theme (B) has been the most active, perhaps because
simple mathematical problems are most easily formulated in this area. This ease
of formulation has brought together meteorologists and applied mathematicians
to develop elegant theories of stationary mountain waves in two and three dimen-
sions.

As in many areas of science, research in mountain meteorology has benefited
from the interaction between different approaches. This synergy between different
methods was evident in the 1970s and later, championed by Doug Lilly among
others. Lilly used research aircraft to observe the spectacular, and still prototypical,
11 January 1972 severe downslope windstorm (Lilly and Zipser, 1972). He also
used aircraft to gather statistics and understand the larger significance of wave
momentum flux and turbulence (e.g., Lilly, 1972; Lilly and Kennedy, 1973; Lilly
and Lester, 1974). Taking advantage of increasing computer speeds, he sought to
understand nonlinear mountain wave behavior using numerical models (Klemp and
Lilly, 1975, 1978; Lilly and Klemp, 1979). This mix of theoretical, observational
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and numerical studies established a standard that continues to influence the field of
mountain airflow dynamics.

While researchers can be justly proud of the remarkable advances they have made
in airflow dynamics, they face more difficult challenges ahead. First, the linkages
between airflow dynamics, climatology and the other traditional areas of mountain
meteorology (i.e., themes (A), (C) and (D) above) need to be strengthened. Second,
a number of new issues have arisen in areas of natural resources, natural hazards,
paleoclimate, and geophysics that deserve attention. These new linkages and issues
include:

� Water resources and flood forecasting in mountain catchments.
� Air pollution in basins and on mountain slopes.
� Mountain waves, rotors and clear-air turbulence.
� Mountain waves influence on stratosphere circulation and mixing.
� Mountain glaciers and the growth of continental ice-sheets.
� Orographic convection and its role on chemical transport.
� Orographic air mass transformation, rain shadows and deserts.
� Inter-ocean moisture transport and conveyor-belt circulations.
� Orographic triggering of baroclinic and convective storms.
� Climate of the world’s largest mountain ranges and basins (e.g., Tibet, Andes, Rockies,

Tauros-Zagros, Africa Rift, etc.).
� Global paleoclimate and the role of tectonic mountain building.
� Paleo lapse rate and snow line as an ancient thermometer.
� Mountain erosion and tectonic uplift.
� Paleo-altitude studies using fossil and geochemical indicators of ancient geography.

With these future challenges in mind, we will review the research tools of airflow
dynamics research and a few of its conceptual advances. The reader can also consult
reviews by Queney et al. (1960), Atkinson (1981), Reiter (1982), Lilly (1983), Smith
(1979, 1989a, 2001), Blumen (1990), Barry (1992), Baines (1995), Wurtele (1996),
Smith et al. (1997b), and Whiteman (2000).

9.2 Research tools of mountain airflow dynamics

Advances in mountain airflow dynamics have required the development of new
tools: observational, numerical and theoretical. These are reviewed below.

9.2.1 Observational techniques

The observation of orographically disturbed flows is challenging due to the in-
accessibility of mountain regions and the complexity of the terrain-induced flow
patterns. Since the 1930s, instrumented aircraft have played a central role in this
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work, but their limitations have become more and more evident. Foremost is the
fact that a single aircraft can only be at one place at one time. This limitation was
illustrated in an attempt by Lilly and Zipser (1972) to observe the Boulder wind-
storm. Orographic flows are often unsteady, and the attempt to measure complete
spatial structure competes with full temporal monitoring. As more instrumented
aircraft become available in the international research community, multiple aircraft
missions have become more common. The use of multiple aircraft, however, as in
the recent Mesoscale Alpine Program (MAP, Bougeault et al., 2001), only partly
overcomes the time–space sampling problem.

As orographically generated disturbances are associated with particular terrain
features, the precise measurement of aircraft position has always been a critical
requirement for successful aircraft observations. The development of the inertial
navigation systems in the 1950s and 1960s brought new capabilities to aircraft
mapping of mountain waves, but not until Global Positioning System (GPS) tech-
nology became available in the late 1990s, were position measurements in these
studies sufficiently accurate. Today, smaller less expensive research platforms
equipped with GPS have sufficient positional accuracy to contribute to mountain
wave research.

The development of onboard instrumentation for airflow research has developed
steadily. The use of gust probes for turbulence and wave analysis has had a very
significant impact on the field. Fast temperature, humidity, and tracer measurement
have also played a role.

Current advances are mostly in the area of remote sensing. Only remote sensing
can provide the volumes of data needed to trace spatial and temporal changes in flow
fields. Important new remote-sensing instruments include airborne radar, lidar and
dropsondes, and surface-based wind profilers. Downward-looking airborne lidar
and dropsondes have helped to solve the persistent problem of how to sample near
mountain peaks. Such areas are unsafe for aircraft surveying.

Over the last three decades these tools have been used in small studies and
occasionally in large joint field projects in the Alps (ALPEX and MAP), the Pyre-
nees (PYREX), the southern Alps of New Zealand (SALPEX), the Wasatch Range
(IPEX), and the Cascades ( IMPROVE). Large projects not only benefit from the
coordinated use of new observing technologies, but also from the cooperation be-
tween scientists from different organizations.

Satellites are increasing their impact on mountain meteorology. Space-based
microwave radar such as the Tropical Rainfall Measuring Mission (TRMM) can
map out regions of orographic precipitation. Space-based limb-scanners can de-
tect mountain waves reaching the stratosphere. Rapid-scan geostationary satellites
can follow diurnal orographic convection. Surface properties such as tempera-
ture and vegetative cover in mountain areas can be mapped with environmental
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satellites. Scatterometers can detect orographic influence on wind patterns over
the sea.

While these observational tools are quite powerful, most can only be deployed in
small regions for brief periods of time. Except for satellites, these techniques have
done little to improve our ability to continuously monitor weather and climate in the
world’s mountainous areas. This weakness in the global climate monitoring system
is not widely appreciated. According to a common view, it is the world’s oceans
that are considered to be the problematic “data void” regions. But recent advances
in satellite remote sensing have had by far their biggest impact on the oceanic
regions. Satellite-borne scatterometers can deduce global-scale patterns of surface
winds from ocean wave properties. No equivalent observations are possible over
land. Satellite-derived cloud-vector winds give an idea of winds at various altitudes
over the ocean. Over mountainous areas, stationary lenticular clouds confuse cloud-
tracking algorithms. Moreover, satellite-borne infrared sounders work best over the
oceans, where surface properties are more uniform.

Our observing capability in mountainous regions is not nearly so favorable.
Generally, mountain regions have fewer weather and climate stations than flat ter-
rain, and those existing stations are less representative of regional conditions. The
common practice of locating climate stations in valleys has the potential to bias our
climate estimates. Surface radar stations are usually unable to monitor precipitation
in mountains due to beam blockage. To make matters worse, high-resolution terrain
datasets are unavailable for most of the world. The well-known dataset GTopo30
is extremely useful, but its quality is rather poor in Africa and Asia. New terrain
datasets, such as those from the Shuttle Radar Topographic Mission (SRTM) are
just becoming freely available.

We conclude that the mountainous regions of the world are, and will remain, the
true “data void” regions on our planet.

9.2.2 Numerical models

Since 1975, numerical models have played an increasing role in research in moun-
tain airflow dynamics. One of the first major contributions by the numerical ap-
proach was the use of 2D hydrostatic models to investigate the nonlinear effects on
the severe downslope wind storms (Klemp and Lilly, 1975, 1978; Clark and Peltier,
1977; Peltier and Clark, 1979). Clark and Peltier showed that wave breaking triggers
a dramatic reorganization of the wave field, in which the lower tropospheric flow
decouples from the flow aloft, approaching a spilling “water-over-a-dam” geometry
(Clark and Peltier, 1984; Smith, 1985).

Since that time numerous advances in modeling technologies have occurred, see
Chapter 6 by Klemp and Skamarock. Such improvements include: nonhydrostatic
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models, higher spatial resolution, nesting, interchangeable parameterizations,
and advanced visualizations. Several problems still remain however. Turbulence
and cloud physics parameterizations are complex, slow, and uncertain. Terrain-
following coordinates occasionally cause problems in weak flows when flow cannot
climb over the mountain. Numerical diffusion and pressure gradient errors along
coordinate surfaces may degrade model accuracy. Parameterization algorithms are
also more difficult to apply in a curvilinear coordinate system. Additional work on
coordinate systems for mesoscale models may be required.

While some progress has been made on the rigorous testing and inter-comparison
of numerical models, further work remains. It has become routine to use linear
wave theory and wave drag formulae as a reference for numerical models (see
Section 9.6). For finite-amplitude disturbances, model inter-comparisons can be
useful (Doyle et al., 2000). To identify errors in diffusion or pressure gradient,
“no-flow” cases are studied. In spite of these positive examples, the modeling
community has yet to accept an extensive protocol for model testing and inter-
comparison. Ideally, new models should be tested on a suite of quantitative exercises
with known answers.

9.2.3 Theoretical and conceptual tools

Investigators engaged in theoretical work on airflow dynamics have their own set
of special tools. The same concepts and mathematical tricks appear over and over
again in the mountain wave dynamics literature. Some of the most widely used tools
are: the Boussinesq equations that remove the effects of compressibility and flow
divergence; linearization for simplifying the governing equations and for identifying
nonlinear effects; the hydrostatic approximation for simplifying wave propagation
and obtaining closed-form solutions; Long’s equation for treating steady, finite-
amplitude, 2D stratified flows; hydraulic theory for reducing the dimensionality of
the problem; Fourier transforms for solving differential equations; causality and
Galilean invariance; dimensional analysis; group velocity and the Eliassen–Palm
flux laws; and vorticity and Bernoulli conservation laws for identifying the effects
of dissipation. Students entering the field of mountain meteorology need a sound
understanding of these concepts.

One can identify a number of important theoretical problems in airflow dynamics
that have received attention over the last 50 years. While these problems are each
rather narrow in scope, together they form a broad foundation for our field. Many
of these issues were controversial when first studied, but most have been settled
by now. To give the reader a taste of the field, a few problems are listed below.
These problems are fully discussed in the reviews listed above, and in the primary
literature.
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� How do upper boundary conditions influence mountain wave patterns and drag? (The
radiation condition aloft requires that wave energy propagates upward and that wave
patterns tilt upstream, resulting in upstream deceleration and downstream wave drag.)

� What is the mechanism of severe downslope winds? (Turbulence and nonlinear grav-
ity wave resonance allows a continuously stratified fluid to behave much like a single
hydraulic layer.)

� How does Coriolis force modify gravity waves? (It limits horizontal divergences while
reducing and altering the phase of vertical motions.)

� What is the mechanism of gravity wave breaking? (Both overturning and shear instability
can generate turbulence that will dissipate the wave.)

� What is the reason for upstream blocking and deflection? (High pressure, caused by tilted
wave field aloft, decelerates and deflects the incoming flow.)

� Why does airflow accelerate through mountain gaps? (A cross-mountain pressure gradient
caused by tilted wave field aloft accelerates the gap flow.)

� How do mountains produce jets and wakes? (Lee-side Bernoulli loss and potential vorticity
gradients are caused by friction or wave breaking.)

� What is the role of mountain drag and wave momentum flux on the general circulation?
(Weakens the jet stream and induces meridional overturning in the stratosphere.)

� What causes lee cyclogenesis? (Several theories have been proposed. In one, potential
vorticity generation provides a trigger for baroclinic development.)

� Is there a mountain anticyclone induced by vortex shortening in the real atmosphere?
(This looks doubtful, in spite of the theoretical prediction. Reasons are unclear. Diurnal
heating and cooling may obscure the vortex effect.)

� What is the relative importance of forced ascent and elevated heating in orographic
disturbances? (Heating dominates in broad weak flows with strong insolation. Forced
ascent dominates in strong flows with weak solar heating.)

Some of these problems illustrate the pure reductionist approach to mountain me-
teorology. With extreme simplification, certain questions can be cleanly posed and
convincingly answered. Other problems do not allow such simplicity, as competing
mechanisms may be involved. A new intellectual approach to mountain meteo-
rology is emerging. Instead of focusing entirely on specific narrow physical or
fluid dynamic process, different mechanisms must be quantitatively compared and
assessed. As the field matures, new problems often include competing physical
mechanisms. Dominant processes may differ from location to location, season to
season, or event to event. Questions of dominance are just as subtle and challenging
as the earlier work on pure mechanisms. They require more extensive monitoring
or even a climatological approach. As progress is made on questions of dominance,
mountain meteorology will be able to make a greater contribution to weather pre-
diction and regional climate studies. Specific discussions of how to approach com-
plex problems of regional climate dynamics are given by Reiter (1982), McGregor
(1997), Giorgi and Mearns (1999), and Leung et al. (2003).

              

       



9.3 Flow splitting and gravity wave breaking 199

In the rest of this chapter, we consider four subject areas that go beyond the
analysis of pure single mechanisms. These are subjects for which competing mech-
anisms can be identified. A discussion of these topics will illustrate how pure results
can be synthesized to attack more complex problems.

9.3 Flow splitting and gravity wave breaking

An important prediction of mountain wave theory is the onset of flow splitting
and gravity wave breaking. Flow splitting is defined as the horizontal splitting of
the incoming flow so that it passes around rather than over a mountain peak. Wave
breaking is usually associated with the vertical overturning of potential temperature
surfaces. While geometrically quite different, these two phenomena share a common
attribute; they must be preceded by flow deceleration and incipient stagnation.
Streamline splitting requires that the low-level flow be decelerated to a stagnation
point. At a stagnation point, two wind vector directions can co-exist; a geometry
essential for streamline splitting. Gravity wave breaking, in a uniform background
state, usually begins by the steepening of the potential temperature surfaces, possible
only in decelerated flow. Wave steepening leads to overturning and turbulence.

In the ideal formulation (e.g., neglecting the Coriolis force), the parameters
that enter this problem are: upstream wind speed (U ), upstream buoyancy fre-
quency (N ), mountain width scale (a) and mountain height (h). Work on the
stagnation problem has mostly been focused on the hydrostatic limit where the
non-dimensional parameter Na/U is large. In this case, the nonlinearity parame-
ter Nh/U plays a dominant role, along with parameters describing the mountain
planform shape, such as horizontal aspect ratio (Fig. 9.1). We refer to ĥ = Nh/U
as the non-dimensional mountain height. The mountain width plays no role in the
hydrostatic limit, so intuitive ideas about the importance of mountain steepness
must be discarded.

The mechanism of flow deceleration is the same for both flow splitting and wave
breaking. In stably stratified air, a positive density anomaly is created by ascent.
According to the hydrostatic law, areas of high pressure will exist at the base of
these dense fluid anomalies. According to Bernoulli’s law for steady incompressible
flow,

B = p + (1/2)ρU 2 + ρgz = const, (9.1)

a constant value of Bernoulli function (B) requires that pressure (P) and wind
speed behave oppositely. As parcels approach a high-pressure region, their speeds
decrease due to the adverse pressure gradient. The height term (ρgz, where ρ is air
density, g the acceleration due to gravity and z is altitude) in (9.1), once thought
to be dominant, plays only a small role (Sheppard, 1956; Smith, 1989b, 1990).
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Figure 9.1. Regime diagram for flow splitting and wave breaking. Abscissa is
the horizontal aspect ratio of the hill. Ordinate is the non-dimensional mountain
height. Line A indicates the onset of stagnation aloft leading to wave breaking.
Line B indicates the onset of low-level flow stagnation leading to flow splitting.
Both curves are derived from linear hydrostatic mountain wave theory. Above
the curves, flows are nonlinear and dissipative with the generation of potential
vorticity, ηp.

As the non-dimensional mountain height (ĥ) increases, the strength of the high-
pressure regions increases at two special locations in the flow; on the windward
mountain slope (point B) and at a point directly above the hill at an altitude of
approximately z = (3π/2)U/N (point A). The relative magnitude of these two
potential deceleration points determines whether flow splitting or gravity wave
breaking occurs first (Smith, 1989b; Stein, 1992; Baines and Smith, 1993; Smith and
Grønås, 1993; Ólafsson and Bougeault, 1996). Estimates for the onset of splitting
and breaking based on linear theory are given in Fig. 9.1 for a range of hill aspect
ratios.

For a long ridge, or in strictly two-dimensional flow, the deceleration at point A
is stronger than at point B. Thus wave breaking occurs before low-level blocking,
starting approximately when ĥ = 0.85. For an isolated hill with circular contours,
the two points (A and B) are similar in their deceleration potential. Splitting and
wave breaking begin approximately when ĥ = 1.3. In 3D flow, the lateral dispersion
of waves aloft weakens the density anomalies, so a larger hill is required to stagnate
the flow. For hills aligned with the flow, the more rapid dispersion of the wave field
aloft prevents the generation of a deep positive density anomaly. Flow stagnation
requires a mountain height far greater than for airflow across a long ridge.

Once flow splitting or wave breaking begins, the flow pattern restructures itself
quite dramatically. The lee-side flow region takes on a complex vortical structure
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about which linear non-dissipative theory can say very little. Vortical wakes in
stratified flow have been investigated in the laboratory (Brighton, 1978; Snyder
et al., 1985; Gheusi et al., 2000) and with numerical simulation (e.g., Rotunno and
Smolarkiewicz, 1991; Miranda and James, 1992).

One important difference between pure gravity wave flow and flow with either
flow splitting or wave breaking, is the existence of potential vorticity (PV), which
we define as

ηp = (1/ρ)ξ · ∇θ, (9.2)

where ξ is the vorticity vector and θ is the potential temperature. Material changes
in ηp are governed by

dηp

dt
= 1

ρ
(∇ × F) · ∇θ + 1

ρ
ξ · ∇ Ḣ , (9.3)

where F and Ḣ are frictional force and internal heating rate, respectively. In pure
gravity wave flow, strong vorticity generation occurs due to baroclinic effects (i.e.,
pressure gradient torques), but these vorticity vectors are tangential to the potential
temperature surfaces so that ηp = 0 in (9.2). When wave breaking or flow splitting
occur, boundary-layer effects or internal turbulence produce friction and heat fluxes
that act in (9.3) to generate potential vorticity. After air parcels leave the violent
dissipative ηp-generating regions, ηp tends to be conserved once again, advecting
downwind into the wake region. These plumes of potential vorticity have been
called “PV-banners.” It is useful to define the “wake” as a region of potential
vorticity, to distinguish it from lee-side disturbances that may contain only lee
waves (Smith, 1989c). Recent analyses of ηp-generation mechanisms are given
by Schär and Durran (1997), Rotunno et al. (1999), Epifanio and Durran (2002),
and Schneider et al. (2003). Hints of vertical vorticity in non-dissipative, weakly
nonlinear solutions appear unrelated to real wakes with potential vorticity (Epifanio
and Durran, 2002), reinforcing the utility of defining wakes in terms of potential
vorticity. Helpful relationships between the Bernoulli constant (9.1) and potential
vorticity (9.2) are discussed by Schär and Smith (1993), and Schär (1993).

We conclude that mountain airflow situations can be classified into two cate-
gories.

� With strong winds, modest static stability and low mountains, air parcels easily climb over
the terrain. Conserved quantities like potential temperature, specific humidity, potential
vorticity, and tracer concentrations are flushed and equalized between lowland and high-
land sites. Mountain wave energy propagates vertically, even reaching the stratosphere.
No wake will be present.

� With weak winds, strong stability and higher mountains, low-level airflow will stagnate
or run parallel to terrain contours. This stagnant air fills the valleys and upslope regions.
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Winds aloft may still hit the exposed mountain peaks, causing gravity waves aloft. Low-
level wave breaking may occur. A wake may form downstream, as documented near
trade-wind islands such as Hawaii (Smith and Grubišić, 1993) and St. Vincent (Smith
et al., 1997a), and higher-latitude islands such as the Aleutians (Pan and Smith, 1999).

This relatively simple picture for flow splitting and wave breaking can be modified
when the ambient atmospheric profile has vertical structure or a turbulent boundary
layer, or if latent heat or Coriolis force play a role. For example, strong shear or
a shallow stable layer aloft may promote wave breaking by a Kelvin–Helmholtz
mechanism without requiring deceleration and overturning.

9.4 Lapse rates on mountain slopes

A common observation in mountainous terrain is the decrease of temperature with
altitude. Temperature lapse rates along mountain slopes vary widely, but are usu-
ally negative. Occasionally, positive lapse rates are seen, almost always connected
with the intersection of an elevated atmospheric inversion with the sloping terrain.
Examples of positive lapse rate are found in the Los Angeles basin in California
and the western slope of Andes in Peru. The cold California and Humboldt currents
cool the air from below while descending subtropical air aloft forms the inversion.
A third example is central Utah, where radiative heat loss in the winter generates
a cold pool of air lying in the Salt Lake basin. A further example is on the big
island of Hawaii, where the volcanic peaks penetrate up through the tradewind
inversion.

The extensive literature on mountain lapse rates suggests that a value of
−5 ± 1 K km−1 is a reasonable worldwide average (e.g., McCutchan, 1983; Barry,
1992). Thus, a 3 km mountain would experience a temperature 15 K lower than the
surrounding plains. In mid-latitudes, this temperature difference will push the up-
lands into a colder, less-hospitable climate zone. In the tropics however, the cooler
mountain conditions provide welcome relief from extreme heat and humidity.

The mountain lapse rate depends on several competing processes. Consider the
following limiting cases (see Fig. 9.2).

� With low terrain in a windy environment, the air is forced to rise along mountain slopes.
If this lifting occurs quickly enough, heat supplied by or lost to the earth’s surface can be
neglected and parcels will conserve potential temperature. The result, in a dry atmosphere,
would be an adiabatic lapse rate ofγ = −g/cp = −9.8 K km−1. In moist saturated ascent,
the magnitude of the cooling rate is reduced by the latent heat of condensation.

� With steep high isolated terrain and weak flow, the airflow would split and flow around,
exposing the hill to temperature and other properties of the undisturbed free atmosphere.
In this case, the mountain lapse rate might equal the lapse rate of the free atmosphere
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A

C

B

D

Figure 9.2. Schematic of mountain lapse-rate processes. (A) Dry ascent causing
a dry adiabatic lapse rate; (B) moist ascent causing a moist adiabatic lapse rate;
(C) stagnant air or airflow splitting allowing the free-atmosphere lapse rate to im-
pact mountain slope temperatures; and (D) isolated elevated surface, local energy
budgets control the surface temperature.

(see Section 9.3). The average free-atmosphere lapse rate is −6.5 K km−1. If the flow
is too weak, however, advection of heat from the surrounding free atmosphere will be
overcome by local surface radiative effects.

� With broad gentle terrain and weak flow, the influences of forced ascent or the free-
atmosphere advection are small compared to the local radiative heating and cooling
effects of the mountain surface. Such a mountain climate is isolated from both the sea-
level climate and the distant free atmosphere. Surface temperature will be controlled by
local energy budget factors.

Estimates of the surface temperature in radiative balance could be made from the
greenhouse formula

T =
[

S(1 − αs)(1 + τ0)

4σ

]1/4

= Teff(1 + τ0)1/4, (9.4)

where S is the solar constant, αs is the surface albedo, τ0 is the optical depth
for longwave radiation and σ is the Stefan–Boltzmann constant (Goody and
Walker, 1972). Also, Teff = [S(1 − αs)/4σ ]1/4 is the effective temperature for earth
(∼ 254 K). An inverse calculation for optical depth, using the actual average earth
temperature of T = 288 K, gives τ = (T/Teff)4 − 1 = 0.65. Now if the optical
depth is proportional to the total atmospheric mass above a point, i.e.,

τ (z) = τ0 exp (−z/H ), (9.5)

where H = RT/g ≈ 8.4 km is the density scale height, we obtain

T (z) = Teff[1 + τ0 exp (−z/H )]1/4. (9.6)
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Table 9.1. Mountain lapse-rate mechanisms.

Case Lapse rate (K cm−1)

Dry ascent −9.8
Moist ascent −3 to −8
Free atmosphere −6.5, but variable
Isolated greenhouse −4.8

Differentiating (9.6) and setting z = 0 gives a lapse rate for plateaus in the lower
atmosphere:

γ = −Teffτ0

4H
≈ −4.8K km−1. (9.7)

This “greenhouse lapse rate” arises from the fact that mountain plateaus lie above
some fraction of the atmospheric greenhouse gases. This lapse rate decreases expo-
nentially aloft. A more sophisticated computation of this effect is given by Molnar
and Emanuel (1999). Note that decreased surface albedo in (9.4), associated with
snow or barren ground, and variations in evaporative cooling (not included) will
influence energy budgets on high terrain. We summarize these competing lapse-rate
mechanisms in Table 9.1.

To test lapse-rate ideas in real complex terrain, we look at the Sierra Nevada range
in California. Detailed mapping of surface properties and temperature are available
in clear-sky satellite images such as those from the new MODIS (MODerate reso-
lution Imaging Spectroadiometer) instrument in the Terra and Aqua satellites. An
example from 30 October 2002 is shown in Plate X. We use MODIS channel 11
in the infrared window to estimate surface temperature, assuming that the emis-
sivity is equal to unity everywhere. The image was taken at approximately 10:30
local time, with the sun in the southeast quadrant. Temperature data combined with
terrain data from GTopo30 allows the influence of elevation on temperature to be
studied. This method requires cloud-free skies. Plates X and XI describe the San
Joaquin valley in California and the western slopes of the Sierras. Plates XII and
XIII describe the eastern slopes and inter-mountain plateau.

An important caveat is that satellite-derived brightness temperatures represent
a “skin” temperature rather than a low-level air temperature. During the night, the
skin temperature drops below the 2-meter air temperature. During a cloud-free day,
as in Plates X to XIII, the skin temperature may exceed the 2-meter air temperature
by several degrees. Still, when considering large differences between high and low
terrain, brightness temperature gives a useful estimate.

Plates X and XII are scattergrams in which pixel temperature is plotted against
altitude. Selected zones defined by height and temperature are identified on the
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accompanying maps (Plates XI and XIII, respectively). Generally, the west-facing
slopes cool rather quickly with altitude, at a rate approaching the adiabatic lapse
rate. The negative lapse rate weakens above 2 km.

The highest region (A) is the coldest, with a temperature near the freezing point,
consistent with the existence of snow fields near Mt. Whitney. Region B comprises
the upper western slopes. Region C, with the clearest and strongest lapse rate, is
located in the smooth western foothills. Region D, with an anomalous positive lapse
rate, probably cools westward due to maritime influence of the Pacific Ocean.

The eastern slopes show a different pattern. The high eastern slopes (regions E
and F) are 5–10 K warmer than the corresponding altitudes on the western slopes
(A and B). Regions G and H are two broad plateaus of the inter-mountain region.
Region G in the southeast quadrant ranges from 2000 to 2500 m above sea level
with temperature higher than 285 K. Region H covers the expansive area in the
northeast, with altitudes from 1100 to 1800 m. Temperatures in H exceed 288 K,
equal to those in the San Joaquin Valley 1.5 km below (C, D).

The application of the concepts A and B illustrated in Fig. 9.2 is inappropri-
ate in this case. High mountains, weak winds and lack of clouds make it unlikely
that air is passing over the range, equilibrating the surface temperatures to adia-
batic lapse-rate values. Concept C is also unlikely. Weak winds and the elongated
shape of the Sierras suggest that a free air mass cannot efficiently ventilate the
slopes. In any case, different air masses probably dominate the eastern and western
slopes. These domains are isolated from each other. The atmosphere is more likely
accommodating to the surface energy budget than vice versa.

The idea of local surface heat budget (D in Fig. 9.2) is probably most helpful
for interpreting our scene, but the simple greenhouse model (9.7) is inappropriate.
Strong solar heating is balanced by significant evaporation in the dense irrigated
cropland (C), keeping the skin temperature cool. By contrast, on the eastern slopes
and plateaus (G, H), lack of rainfall and stored ground-water nearly eliminate
evaporative cooling. Upland temperatures rise to high values in spite of the negative
free-troposphere lapse rate, increased albedo and reduced greenhouse forcing.

We conclude that mountain lapse rates in our scene are dominated by local
surface energy budgets, especially latent heat fluxes. The role of the Sierras is still
profound, however. The mountain barrier prevents precipitation from reaching the
interior plateaus and it separates contrasting air masses to the east and west. Note
that the wet–dry contrast across the Sierras arises from processes not present on
the day the MODIS image was taken. Precipitation in the region occurs during
cloudy winter days with strong westerly flows (see Section 9.5). On such days,
temperature patterns may be dominated by concept B in Fig. 9.2. On subsequent
weeks and months, clear-day weak-wind temperature patterns are dominated by
evaporation of stored soil moisture.

              

       



206 Mountain meteorology and regional climates

Clearly, no universal mountain slope lapse rate can be found. Temperatures on
mountain slopes respond to many factors. In some cases altitude effects may be
overwhelmed by local heat budget factors such as evaporation or surface albedo.

9.5 Orographic precipitation and air mass transformation

A problem of central importance to regional climatology is that of orographic pre-
cipitation and air mass transformation. The problem is quite complex as it involves
both airflow dynamics and cloud physics. The impact of new knowledge in this
area is quite high, however, as it relates to water resources, flood prediction and
the role of mountains in the formation of deserts and inter-ocean water transport.
Research activity has accelerated recently, with mid-latitude field projects in the
southern Alps (Sinclair et al., 1997), the Cascades (Colle and Mass, 1998) the
Sierras (Pandey et al., 1999), coastal California (Neiman et al., 2002), the Wasatch
Range (Schultz et al., 2002), the European Alps (Medina and Houze, 2003). Some
of the questions addressed by these projects are:

� How deep does orographic lifting extend?
� Does the depth of lifting control the amount of precipitation?
� Does latent heat influence the airflow dynamics?
� What fraction of the condensed water reaches the ground as precipitation?
� How well can this fraction be estimated?
� What process controls this fraction?
� How much precipitation spills over onto the lee slopes?
� What factors control spill-over?
� Does lee-side dryness arise from moisture exhaustion or local descent?
� How do mountain scales enter the problem?
� Do small-scale terrain features generate small-scale precipitation patterns?
� Are the cloud physics processes linear, i.e., will twice the lifting and condensed water

generate twice the amount of precipitation?
� How important are environmental parameters such as temperature and aerosol content?

Can existing mesoscale models capture the essential elements of orographic precipitation?
� Can even simpler models capture these elements?

In the text below we address a few of these questions.
To address the problem of precipitation efficiency, we review some findings from

the Mesoscale Alpine Program (MAP) project in 1999. In one well-studied case (20
September 1999) interpolations from several different numerical models were used
to estimate water-vapor fluxes, condensation and precipitation rates. During this
event, a trough over Spain brought strong moist southerly flow against the Italian
Alps. From the low-level humidity field (Fig. 9.3), it is clear that the Alps are drying
out the southerly flow. The specific humidity is reduced north of the Alps.
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Figure 9.3. Plan view of surface wind (m s−1) and specific humidity (g kg−1) on
20 September 1999. Fields are given by output from COAMPS, see text and Table
9.2. (From Smith et al., 2003.)

It has been shown by several authors that detailed water budgets are difficult to
construct using only directly observed wind and humidity fields. To best utilize these
measurements, one needs to assimilate them into a numerical model using nudging
or other techniques. Models bring the advantages of mass and moisture conservation
and accurate advection through time and space. In MAP, four models were used to
estimate water-vapor fluxes: COAMPS, MC2 and the ECMWF forecast and post-
event analysis. The pattern of water-vapor flux approaching the Alps, crossing the
45.5◦ latitude line, is shown in Fig. 9.4 for two models. The flux patterns from
COAMPS and MC2 are similar. In Fig. 9.4, the Alpine crestline is also shown, to
indicate how much lifting must occur for the air stream to cross the range. Time-
varying fields from these models were used to compute the inflow and outflow
fluxes in the control volumes (A, B, C) shown in Fig. 9.3.

According to Table 9.2, the four models agree fairly well on the flux of water
vapor approaching the Alps. Over the 24-hour period, between 42 × 1011 and 56 ×
1011 kilograms of water entered the control volume A. The models differ more
in the amount of precipitation. The COAMPS model precipitated 19 × 1011 kg,
while MC2 precipitated only 12 × 1011 kg. The difference is probably caused by
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Figure 9.4. Inflow cross-section along 45.5◦ N. (a) COAMPS, (b) MC2. Water-
vapor flux is shaded. The wind speed is contoured 5 m s−1 intervals. The Alpine
crestline is projected onto this section to indicate how high the air must rise to
cross the Alps. (From Smith et al., 2003.)

their different cloud physics parameterizations. At least in this event, MC2 was
less efficient at converting cloud water to precipitation. In row (e), we compute the
precipitation rate P from the well-known upslope model:

P = ρq0U · ∇h(x, y), (9.8)

assuming that forced ascent lifts saturated moist-neutral air and that all condensed
water falls immediately to the ground (Smith, 1979). In (9.8), q0 is the specific
humidity at the surface and h(x, y) is the mountain height field. Only positive
(i.e., upslope) values of (9.8) are retained. The wind and humidity output from
COAMPS and MC2 is used, along with a high-resolution 1 km terrain. Precipita-
tion computed in this way, about 100 × 1011 kg, exceeds the actual precipitation
by a factor of five. Even more striking is that the precipitation from (9.8) is twice
the incoming water-vapor flux; a physical impossibility. The large values of pre-
cipitation from (9.8) imply that the fine-scale terrain is repeatedly lifting the same
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Table 9.2. Alpine water-vapor fluxes, precipitation and drying ratios for
20 September 1999, derived from four models. Models and data are for

box A in Fig 9.7.

ECMWF ECMWF
Row Quantity COAMPS MC2 Forecast Analysis

a WV influx 56 53 42 44
b WV outflux 33 35 33 29
c Model precipitation 19 12 17
d Actual precipitation 19 (19) 19 (19) 19 (19) 19 (19)
e Upslope precipitation 95 108
f DR (c/a) 34 23 40
g DR (d/a) 34 36 45 43

Note: Water-vapor (WV) flux and precipitation values are accumulations over 24 hours,
in units 1011 kg. The drying ratio (DR) is given in percent. The ECMWF Analysis does
not have precipitation. Actual precipitation values are independent estimates from the
Federal University of Technology, Zurich (Frei and Haeller, private communication), and
the University of Vienna (in parentheses). (Data are taken from Smith et al., 2003.)

air parcels, always causing rain in the model. This error is scale dependent. The
higher the terrain resolution used, the more lifting events occur and the worse the
over-prediction becomes. The upslope model (9.8) goes wrong for three reasons.
First, the net air mass drying was neglected; second, the forced ascent was assumed
to reach all the moist layers and, third, the condensed water in small orographic
clouds was assumed to precipitate rather than being allowed to evaporate on the
lee side.

A measure of the air mass drying is the drying ratio

DR = Total precipitation/Incoming water vapor flux. (9.9)

The drying ratio computed from the observed precipitation and mesoscale model
fluxes is about 35% (Table 9.2). While this ratio is substantial, it does not seem
large enough to fully explain the gross overestimation of precipitation by the upslope
model. We therefore conclude that the lack of realism in (9.8) is due mostly to the
neglect of airflow dynamics and cloud physics. New attempts to understand these
processes have been made by Colle (2004), Jiang and Smith (2003), and Smith and
Barstad (2004).

One important constraint on orographic precipitation is the inability of condensed
water to fall quickly out of the cloud. A measure of this constraint is the precipitation
efficiency: the ratio of precipitation to condensation rate. One potentially useful
theory of precipitation efficiency involves the identification of a cloud physics
time scale (τ ) for hydrometeor generation and fallout. In a simple box model, the
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precipitation efficiency (eP) can be written in terms of this time scale, that is

eP = 1

(1 + τU/a)
, (9.10)

where U is the wind speed and a is the mountain half-width (Jiang and Smith,
2003). When the wind speed is high and the mountain narrow, the time taken for
an air parcel to cross the ridge (a/U ) is less than the cloud physics time scale.
Condensed water will be carried quickly to the lee slopes where it will evaporate in
descending air. The value of eP from (9.10) is very small in this case. Conversely,
for wide hills, slow winds and fast conversion, (9.10) predicts that a large fraction
of the condensed water will fall to the ground as precipitation. Further work is
required to evaluate this type of model for precipitation efficiency.

9.6 Gravity waves and wave drag over complex terrain

The importance of mountain wave drag and the propagation and deposition of mo-
mentum by waves has been appreciated for three decades. While some controversy
remains, there is good evidence that these waves have an influence on the large-
scale circulation of the earth atmosphere (Lilly, 1972; Palmer et al., 1986). Most
general circulation models (GCMs) include a parameterization of wave drag, de-
rived from simple linear models of mountain wave generation. In addition to this
application, analytically derived linear drag laws are often used to check numerical
models, or used as reference values to examine nonlinear effects. Drag laws are
sensitive indicators of errors due to numerical dispersion, dissipation and boundary
reflection.

As an aid to the development of drag parameterizations and the use of drag laws as
a model-evaluation tool, we have calculated values of appropriate drag coefficients.
Values for five simple mountain ridges are presented in Table 9.3. These were

Table 9.3. Area coefficient, CA and linear hydrostatic drag coefficient,
CD for ridges.

Mountain shape CA CD (exact) CD (value) Reference

Witch π π/4 0.7854 Queney (1947, 1948)
3/2 power bell 2 ∗∗ ∼0.824 ∗∗∗
Gaussian

√
π 1 1.0 ∗∗∗

Exponential 2 2/π 0.6366 ∗∗∗
Triangle 1 4 ln(2)/π 0.8825 ∗∗∗

Note: ∗∗ no analytical solution is known; ∗∗∗ derived for the present paper.
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Table 9.4. Volume coefficient, CV and linear hydrostatic drag coefficient, CD for
circular hills.

Mountain shape CV CD (exact) CD (value) Reference

Witch ∞* ∗∗ ∼0.968 ∗
3/2 power bell 2π π/4 0.7854 Smith (1988)
Gaussian π (2π )3/2/16 0.9843 Smith and Grønås (1993)
Exponential 2π π2/16 0.6168 ∗∗∗
Cone π/3 ∗∗ ∼0.555 ∗∗∗

Note: ∗ not convergent; ∗∗ no analytical solution is known; ∗∗∗ the present paper or an
unknown source.

derived using the following shape relationships, where hm is the maximum shape
(mountain) height:
the Witch of Agnesi,

h(x̂) = hm/(1 + x̂2), (9.11)

the 3/2 power bell-shape,

h(x̂) = hm/(1 + x̂2)3/2, (9.12)

the Gaussian,

h(x̂) = hm exp (−x̂2), (9.13)

the exponential,

h(x̂) = hm exp (−|x̂ |), (9.14)

and the triangle,

h(x̂) = hm(1 − |x̂ |) for |x̂ | < 1, h(x̂) = 0 for |x̂ | ≥ 1. (9.15)

For these shapes, the quantity x̂ = x/a is a non-dimensional distance from the ridge
crest, where actual distance x is normalized by a, the characteristic half-width of
the hill. The definition of a as a half-width does not imply that h(x = a) = hm/2,
as this is valid only for (9.11). The title “Witch of Agnesi” for (9.11) arises from an
improper translation into English of the term “turning” curve used by Maria Agnesi
(1718–99).

In Table 9.4, we construct an analogous list of isolated circular hills for which
(9.11)–(9.15) are still valid, but with x̂ replaced by a non-dimensional radius r̂ =
r/a. For ridges, the cross-sectional area is given by A = CAha and the drag per
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unit length is

DL = CDρUNh2. (9.16)

For circular isolated hills, the hill volume is V = CV ha2 and the drag is

D = CDρUNah2. (9.17)

Values in Table 9.3 have recently been re-derived and/or verified by the author and
compared against numerical Fast Fourier Transform computations.

Other linear wave drag laws are given by Phillips (1984) for elliptical hills,
and by Smith (1986) and Grubišić and Smolakiewicz (1997) for shearing flow. The
influence of hill shape and atmospheric structure was discussed by Lilly and Klemp
(1979), Blumen and Hartsough (1985), and Leutbecher (2001). The roles of friction
and Coriolis force were analyzed by Smith (1979), and by Ólafsson and Bougeault
(1997). All of these studies considered only smooth terrain of simple shape. Welch
et al. (2001) considered periodic terrain.

One persistent question has been whether simple linear drag formulae continue
to apply to high and/or complex terrain. For high smooth terrain, a sudden transition
to a “severe wind” or “high drag” state has been described by Clark and Peltier
(1977, 1984), Lilly and Klemp (1980) and Smith (1985), see the review by Smith
(1989a). Drag values in this state exceed the prediction of (9.17) by a factor of
two or more. The best atmospheric example of this state is still the observation
of the 1972 Boulder windstorm by Lilly and Zipser (1972). Bauer et al. (2000)
and Epifanio and Durran (2001) computed the effect of nonlinearity on drag from
elliptical hills.

The analysis of wave drag from terrain that is both high and complex, was un-
dertaken in the Pyrenees (Beau and Bougeault, 1998), and in the Alps in the recent
MAP project (Bougeault et al., 2001; Smith et al., 2002). In the MAP project, re-
search aircraft flew coordinated patterns over the Alps, measuring mountain waves,
while aircraft-deployed dropsondes and downward-looking lidar observed the flow
structures near and below mountain top. One well-studied event that occurred on 2
November 1999 in the vicinity of Mt. Blanc (Fig. 9.5, Smith et al., 2002). The wave
pattern found on that day is illustrated in Figs. 9.6 and 9.7. Attempts to reproduce
that wave pattern with linear theory were successful only when the concept of ref-
erence base altitude was introduced. According to this concept, the air is assumed
to be stagnant below zref. The synoptic-scale flow impacts only the terrain higher
than zref, producing gravity waves (Fig. 9.8). Obviously, the higher zref becomes,
the smaller are the effective mountains and the smaller is the wave drag (Welch
et al., 2001)

The only mountain shape in Table 9.4 that allows the influence of a stagnant layer
to be easily analyzed is the cone. A cone truncated at zref retains the perfect shape
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Figure 9.5. Plan view of Alpine terrain near Mt. Blanc (MB). Line indicates the
wind direction and the track of the research aircraft on 2 November 1999. South-
westerly flow over Mt. Blanc generates vertically propagating mountain waves.
LG is Lake Geneva. (From Smith et al., 2002.)

of a cone. Using the drag and volume formulae (9.17), the drag can be expressed
in terms of the exposed volume

D = CDρUN(3/π )(hm/a)V, (9.18)

where the ratio hm/a is the mountain slope. If the typical terrain slope is hm/a =
0.1, CD = 0.555, ρ = 1 kg m−3, U = 15m s−1, N = 0.01 s−1, (9.18) reduces
to D = 0.0079V newton(N) in SI units. Thus, as low-level blocking reduces the
exposed mountain volume (V ), the drag is reduced proportionately.

The stagnant air below zref has another less obvious influence on the wave drag.
On the day of the Mt. Blanc observations, a jet stream and reduced static stability
in the upper troposphere produced “evanescent” conditions for mountain waves.
According to wave theory, partial downward wave reflection will occur under these
conditions. In most cases of jet stream wave reflection, trapped lee waves will form
and after a few bounces between the earth’s surface and the jet stream, waves will
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Figure 9.6. Lidar cross-section through the Mt. Blanc wave field. Shaded fields
show the back-scatter intensity of laser light from clouds, roughly proportional
to cloud particle density. Solid black lines show the vertical displacement of air
parcels as they move from left to right in the diagram, computed from vertical
velocity measured on the three aircraft: Falcon, C-130, and Electra. Note that
the lenticular cloud at z = 7.5 km corresponds to a region of uplift detected by
the C-130. The Alpine terrain along the flight track is shown at the bottom of the
figure. (From Smith et al., 2002.)

leak into the stratosphere. In this case, however, the low-level stagnant air absorbed
the downward reflected wave energy on the first bounce. The result is a further
reduction in the wave momentum flux reaching the stratosphere. To represent this
effect, we introduce a reflection coefficient q at the lower boundary of the wave
domain. The quantitative effect of these zref processes is shown in Table 9.5. As
momentum flux is independent of altitude in steady flow, only one value is given
for each condition.
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Figure 9.7. Photograph of the clouds in the Mt. Blanc wave field, taken from the
cockpit of the C-130. Note the three levels of cloud: cirro-stratus, lenticular, and
cumulus. Note also the correspondence with Fig. 9.10. (From Smith et al., 2002.)

The results in Table 9.5 support the strong dependence of wave drag on exposed
volume, as least as predicted by linear theory. The ratio of drag (momentum flux)
to volume in the table (for q = 0.9) is about 0.003 N m−3, approximately half
the predicted value from (9.18). The difference may arise from a different environ-
ment, nonhydrostatic effects, inaccurate slope, mountain interference or nonconical
shapes.
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Table 9.5. Mt. Blanc regional momentum flux (M) on 2 November 1999 from
a linear model. (From Smith et al., 2002.)

zref (m) Volume (km3) M ; q = 0.9 (108N) M ; q = 0 (108N)

1500 6481 212 133
2500 988 24.4 16.7
3500 25 0.58 0.28

Note: The parameter q is a reflection coefficient (see text and Fig. 9.8).

Jet stream 

B
−q.B

zref

Figure 9.8. Schematic of wave reflections caused by the jet stream, and wave
absorption caused by a low-level stagnant layer. A and B are the amplitudes of the
up- and down-going waves; q is the reflection coefficient at the lower boundary.
(From Smith et al., 2002.)

The drag predictions of linear theories and nonlinear models can be tested in
two ways. A dedicated campaign of aircraft surveys for this purpose was de-
scribed by Lilly and Kennedy (1973), and Lilly (1982). A challenging problem
with this approach is achieving statistical significance and understanding the con-
trolling environmental factors. The PYREX and MAP projects used a different
approach. They validated numerical models using aircraft data, then used repeated
model runs to study the wave mechanisms and to evaluate wave drag parameteri-
zations.

9.7 Conclusions

In this chapter, we have introduced four subjects related to the influence of moun-
tains on regional climates: flow splitting and wave breaking; mountain lapse rates;
orographic precipitation; and wave drag. It is clear from the discussions that substan-
tial progress has been made in understanding these aspects of mountain meteorology
using the reductionist methods of physics; i.e., the formulation and analysis of sim-
plified problems capturing some aspects of the real world. While these methods
will continue to be fruitful, we must also tackle complex problems with competing
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while black means a downward displacement of 900 m. The thin white line shows
the wind direction (SW) and track taken by the research aircraft .“X” marks the
location of Mt. Blanc. (From Smith et al., 2002.)
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mechanisms. Only in this way will our research be relevant to regional climate
analyses and other emerging disciplines.
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Ólafsson, H. and Bougeault, P. (1996). Nonlinear flow past an elliptic mountain ridge.
J. Atmos. Sci., 53, 2465–2489.

(1997) The effect of rotation and surface friction or orographic drag. J. Atmos. Sci., 54,
193–210.

Palmer, T. N., Shutts, G. J. and Swinbank, R. (1986). Alleviation of a systematic westerly
bias in general circulation and numerical weather prediction models through an
orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112,
1001–1039.

Pan, F. and Smith, R. B. (1999). Gap winds and wakes: SAR observations and numerical
simulations. J. Atmos. Sci., 56, 905–923.

Pandey, G. R., Cayan, D. R. and Georgakakos, K. P. (1999). Precipitation structure
in the Sierra Nevada of California during winter. J. Geophys. Res., 104, 12019–
12030.

Peattie, R. (1936). Mountain Geography, Cambridge, MA: Harvard University Press.
Peltier, W. R. and Clark, T. L. (1979). Evolution and stability of finite-amplitude mountain

waves. Part II: Surface-wave drag and severe downslope windstorms. J. Atmos. Sci.,
36 (8), 1498–1529.

Phillips, D. S. (1984). Analytical surface pressure and drag for linear hydrostatic flow over
three-dimensional elliptical mountains. J. Atmos. Sci., 41, 1073–1084.

Price, L. (1981). Mountains and Man, Berkeley, CA: University of California Press.
Queney, P. (1947). Theory of Perturbations in Stratified Currents with Applications to

Airflow over Mountain Barriers. Misc. Report No. 23, Dept. of Meteorology,
University of Chicago.

(1948). The problem of airflow over mountains: A summary of theoretical studies. Bull.
Amer. Meteor. Soc., 29, 16–26.

Queney, P., Corby, G., et al. (1960). The Airflow over Mountains. Tech. Note No. 34,
World Meterological Organization.

Reiter, E. R. (1982). Where we are and where we are going in mountain meteorology.
Bull. Amer. Meteor. Soc., 63, 1114–1122.

Rotunno, R. and Smolarkiewicz, P. K. (1991). Further results on lee vorticies in
low-froude-number flow. J. Atmos. Sci., 48, 2204–2211.
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Dynamic processes contributing to the mesoscale
spectrum of atmospheric motions

Kenneth S. Gage
Aeronomy Laboratory, NOAA, Boulder, USA

10.1 Introduction

This chapter is a review of recent developments in our understanding of the
mesoscale spectrum of atmospheric motions. This topic has received considerable
attention in the two decades since Doug Lilly’s (1983) seminal paper on stratified
turbulence. The subject has not been without controversy as atmospheric scientists
and fluid dynamicists have debated the relative contributions of turbulent processes
and internal waves to the spectrum of atmospheric motions. In this review we
focus attention on the lower atmosphere, which is of primary interest to meteorol-
ogists.

Several papers that preceded Lilly’s work are worth noting. Gage and Jasperson
(1979) noted the variability in high-resolution sequential wind observations taken
with a novel balloon sounding system. Gage (1979) placed these observations in a
turbulence context and attributed much of the variability in these observations to
two-dimensional turbulence arguing that the scales were too large to be associated
with three-dimensional turbulence. Dewan (1979) examined stratospheric spectra
and concluded that while the spectra had many of the features generally associated
with turbulence they could also be explained by a spectrum of internal waves.
Similar arguments were made by VanZandt (1982) who argued for a universal
spectrum of internal waves analogous to the Garrett–Munk spectrum of internal
waves in the ocean (Garrett and Munk, 1972).

The importance of an improved understanding of mesoscale variability has re-
cently become evident as increasing importance is attached to the assimilation of di-
verse atmospheric data into numerical models. The current situation is summarized
by Daley (1997) who argues that model forecasts depend critically on the assimila-
tion of data with a specified error covariance. The error covariance has three com-
ponents: measurement error and model error are quantifiable by observationalists
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and modelers, respectively, but the variability of the fields being measured is often
unknown and must be estimated.

Sources of mesoscale variability have only recently come into focus. The advent
of radar wind profiling has contributed substantially to our ability to observe rapidly
changing wind fields and begin to resolve the space–time variability of mesoscale
fields of motion. Profilers have also enabled resolution of short-period internal
waves and inertia-gravity waves as well as continuous measurement of vertical
motions (Gage, 1990; Gage and Gossard, 2003). Aircraft observations have also
contributed substantially to our ability to resolve mesoscale atmospheric motion
fields. Mesoscale spectra from aircraft motion sensors have provided a wealth of
information on the spectrum of mesoscale motions (Nastrom et al., 1984; Nastrom
and Gage, 1985; Cho et al., 1999a, b).

The aim of this review is to synthesize some of the most important develop-
ments in understanding the dynamics of mesoscale atmospheric variability since
the publication of Lilly’s work. The advances reported here have been made by
many groups working in different disciplines.

The review begins with an examination of highly resolved samples of wind
variability. Examples of horizontal and vertical velocities in Section 10.2 are shown
to illustrate the variability intrinsic to these fields of motion even in the absence of
extreme weather events. The observed spectrum of mesoscale wind variability is
examined in Section 10.3, where spectra of horizontal and vertical velocities are
considered separately. Dynamic processes that contribute to the observed mesoscale
spectrum of motions are discussed in Section 10.4, followed by a consideration of
some spectral models that have been developed for internal waves (Section 10.5) and
stratified turbulence (Section 10.6). The consistency of the observed and modeled
spectra is examined in Section 10.7. Contributions of topography and convection
to meteorological variability on mesoscales are considered in Section 10.9. The
review concludes with a summary (Section 10.9) of some recent developments and
some thoughts about the direction of future research.

10.2 Space–time variability of mesoscale meteorological fields

As mentioned in Section 10.1, mesoscale variability of meteorological fields is
assuming greater importance owing to the fact that the success of numerical fore-
casts requires a specification of the variability of the fields being simulated. Per-
haps the best-studied meteorological field is wind. Wind variability research has
a long history and has benefited from remote sensing provided by radar profilers.
Even before the advent of wind profilers, experiments were conducted to examine
the variability of winds seen in sequential wind soundings from tracking rising
balloons.
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Early results in wind variability research are summarized by Elsaesser (1969).
Temporal wind variability is typically expressed in terms of σ (V )

τ defined in the
equation:

σ (V )
τ ≡ {[V (t) − V (t + τ )]2}1/2, (10.1)

where V is wind velocity, t is time, and τ is the time lag. In early work σ (V )
τ has

been expressed as a power law so that

σ (V )
τ = a + bτ p, (10.2)

and p is close to 1/3 although values closer to 1/2 have been reported (Elsaesser,
1969). Note that

σ (V )
τ ≡ [D(τ )]1/2 = 2(V ′)2[1−R(τ )], (10.3)

where D is the temporal structure function, V is the mean wind velocity, V ′ =
V − V and R(τ ) is the Eulerian autocorrelation function defined by

R(τ ) ≡ V ′(t + τ )V ′(t)

(V ′)2
. (10.4)

The expressions (10.3) and (10.4) are familiar from turbulence theory and help
place wind variability research within the context of turbulence (Elsaesser, 1969;
Gage and Jasperson, 1979; Jasperson, 1982). While Elsaesser made the connection
with turbulence theory and argued that the τ 1/3 dependence is consistent with
Kolmogorov turbulence theory, Gage (1979) argued that Kolmogorov 3D turbulence
theory could not possibly be germane to the mesoscale and that the existence of a
τ 1/3 dependence suggests two-dimensional turbulent processes may be relevant to
the atmospheric mesoscale.

Gage and Jasperson (1979) and Jasperson (1982) examined the mesoscale vari-
ability of lower tropospheric winds under fair weather conditions utilizing a novel
balloon sounding system known as METRAC (Gage and Jasperson, 1974). The
METRAC system was a self-contained differential Doppler navigational system
that permitted the location of a lightweight transmitter within 10–30 cm inside
the baseline of the receiving array. With this novel system it was possible to ob-
tain high-resolution wind soundings with sufficient precision (with error from all
sources less than about 1 m s−1) to determine mesoscale variability at very short
spatial and temporal scales (Gage and Jasperson, 1979; Jasperson, 1982).

The wind field below 5 km is shown in Fig. 10.1. It reveals the temporal variability
of the lower tropospheric winds seen on 31 March 1976 at St. Cloud, Minnesota.
The top panel shows the variability of the zonal wind and the bottom panel shows
the variability of the meridional wind. Both panels contain a composite of wind
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Figure 10.1. Sequential vertical profiles of (top panel ) the zonal, u, and (bot-
tom panel) the meridional, v, wind components (in m s−1) from high-resolution
soundings taken at St. Cloud, MN, on 31 March 1976. (After Gage and Jasperson,
1979.)

profiles on the left side, which show clearly the variability of the winds during the
seven-hour field campaign. Altogether fourteen flights spaced thirty minutes apart
were made during this brief campaign.

The statistics of the variability observed in this campaign are shown in Fig. 10.2.
In this figure the variability was first determined for 100 m intervals and averaged
for 500 m height increments. The results for 500 m height intervals are contained in
Fig. 9 of Gage and Jasperson (1979). Combining the statistics for all heights leads
to the results shown in Fig. 10.2. For this campaign both components of the wind
followed a 1/3 power law.

In a subsequent series of field experiments, Jasperson (1982) examined the space
and time variability of the lower tropospheric winds at St. Cloud. In his larger
sample of data Jasperson found the wind variability fit the 1/3 power law under
anticyclonic conditions but that under cyclonic conditions, when the transverse
wind was changing with time, the transverse component of winds more closely fit
a 1/2 power law even though the longitudinal component still fit the 1/3 power
law. Jasperson attributed the 1/2 power law to the influence of a changing mean
wind.
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Figure 10.2. Variability σ (m s−1) of zonal, u, and meridional, v, wind components
averaged over fifty 100 m intervals. (After Gage and Jasperson, 1979.)

Doppler-radar profilers also provide a wealth of high-resolution wind informa-
tion since they observe continuously over a range of altitudes (Gage and Balsley,
1978; Balsley and Gage, 1982). Early observations of jet-stream winds observed by
the Sunset radar near Boulder, Colorado, were analyzed by Gage and Clark (1978).
These authors showed that the temporal variability of winds also followed a 1/3
power-law relationship for the component of the wind, as can be seen in Fig. 10.3.

Since the work reported above was completed, it has become increasingly evident
that the representativeness of observed winds or any observable is an important
issue when assimilating observations into models. Kitchen (1989) has considered
the representativeness of radiosonde soundings of wind, temperature, and humidity.
Basically, the issue is whether individual soundings can possibly replicate the large-
scale wind field simulated in a numerical model. From the modeler’s perspective a
measure of the wind that is representative of the larger scale is of far more value
than a measurement that is influenced by local effects. This issue is of greater
impact in models that do not resolve mesoscale features. For such models the high-
resolution details introduce noise into the model even though the observed features
are real. From this perspective, these high-resolution features represent errors to the
large-scale fields and are generally regarded as observational errors by modelers.
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Figure 10.3. Variability of wind observed by the Sunset Radar during a jet-stream
passage. (After Gage and Clark, 1978.)

To grasp the magnitude of these representativeness errors it is necessary to have
knowledge of the natural variability of the mesoscale fields. Clearly, time-averaged
or volume-averaged quantities are of greater value to the large-scale model than are
point measurements.

Kitchen (1989) examined representativeness errors within the context of the UK
radiosonde network. His analysis includes special radiosonde observations during
campaigns designed to document mesoscale variability at time and space scales that
lie within the synoptic-scale sampling routinely provided by operational radiosonde
networks. Kitchen’s analysis also considers temperature and humidity in addition
to wind fields. The rms difference in a measured quantity q is related to the temporal
variability and spatial variability and measurement error εq by the equations

(�q)2 = (
σ (q)

τ

)2 + 2ε2
q , (10.5)

or

(�q)2 = (
σ (q)

x

)2 + 2ε2
q . (10.6)

Equations (10.5) and (10.6) apply to temporal variability at a fixed location, and
spatial variability at a fixed time, respectively. More generally, the rms difference
will depend on both time and space variability so that

(�q)2 = (
σ (q)

τ

)2 + (
σ (q)

x

)2 + 2ε2
q + Fτ,x

(
σ (q)

τ , σ (q)
x

)
, (10.7)
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where Fτ,x represents a function of both temporal and spatial variability that van-
ishes when either time lag or spatial difference becomes very small, and εq refers to
the measurement error. In practice (�q)2 is typically dominated by the variability of
the q field except at the smallest spatial differences and time lags. Indeed, one way
to estimate the measurement error is to take the limit of vanishingly small τ and x in
(10.7). In common practice temporal and spatial variability are examined separately.

The analysis by Kitchen (1989) extends the earlier work of Gage and Jasperson
(1979) and Jasperson (1982) in several respects. For the most part the time scales
considered by Kitchen are synoptic scales varying from 6–60 hr while space scales
range from roughly 100–1000 km. An exception is the special soundings taken
from Larkhill and Beaufort Park. Jasperson (1982) considers temporal variability
primarily in the range 30–360 min and at fixed separations of 20 m, 4.415 km
and 20.91 km. While the experiments of Jasperson were primarily in fair weather,
the observations analyzed by Kitchen cover all weather conditions. The results of
Kitchen’s analysis yield a power-law dependence of 0.3–0.6 for temporal variabil-
ity of the vector wind over the range 6–24 hr and 0.3–0.8 for spatial variability
in the range 200–500 km. Kitchen also finds a power-law dependence of 0.4–0.5
for temporal variability of temperature and a power-law dependence of 0.4–0.6 for
spatial variability of temperature. In comparing the results of Kitchen and Jasperson
it is worth noting that Kitchen’s results extend to higher altitudes as well as consid-
erably larger time and space scales. Kitchen comments that while the power laws
for spatial and temporal variability are not equal they are close enough that over
limited ranges the Taylor transformation may be a useful approximation.1 Kitchen
also gives some limited information on the variability of relative humidity. He finds
that the variability is dominated by gradients associated with stable layers that do
not correlate well on synoptic scales. Historically, relative humidity has been prone
to measurement errors making it difficult to determine variability statistics. Obser-
vations taken in the recent International H2O Project (IHOP) campaign should help
quantify the variability of humidity fields (Weckwerth et al., 2003).

Direct vertical wind measurement is not routinely made except by radar profilers.
Figure 10.4 contains a composite profile of vertical velocities measured on the ver-
tical beam of a 50 MHz profiler operated at Liberal, Kansas, during the Pre-STORM
experiment. This figure illustrates the fact that local vertical velocity variability
is very large compared to the small values associated with mean synoptic-scale
motions. While it is possible to resolve coherent vertical motions associated with
convection and gravity waves, vertical velocities are typically dominated by an
incoherent spectrum of gravity waves having an rms value on the order of a few tens

1 A Taylor transformation relates spatial to temporal scales by means of a mean advection velocity and enables
temporal variability to be converted to spatial variability.
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Figure 10.4. Vertical velocity observed at Liberal, Kansas during Pre-STORM.
(After Gage, 1990.)

of centimeters per second. It has been found that substantial averaging is required of
vertical velocity data to obtain a value representative of atmospheric mean motions.
Unlike (horizontal) wind and temperature, a single sounding of vertical velocity is
not representative of large scales of motion. Vertical velocity can be averaged to
reduce the geophysical noise under certain circumstances (Nastrom et al., 1985,
1990a; Gage et al., 1991). This topic will be explored further in Section 10.3 where
observations of the mesoscale spectrum of atmospheric motions are reviewed.

10.3 Observed spectra of mesoscale variability

10.3.1 Frequency spectra of horizontal and vertical velocities

Radar wind profilers provide a nearly continuous measurement of atmospheric
velocities in the same volume of the atmosphere. These data are ideal for the
determination of the frequency spectrum of wind throughout the range of altitudes
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Figure 10.5. Power spectrum of zonal wind observed at Poker Flat, Alaska. (After
Balsley and Carter, 1982.)

accessible to wind-profiler measurement. The first spectral analysis of profiler-
measured wind reproduced in Fig. 10.5 was published by Balsley and Carter
(1982) using observations from the Poker Flat MST (Mesosphere–Stratosphere–
Troposphere) radar in Alaska. The remarkable result of the Poker Flat frequency
spectra was how faithfully they followed a −5/3 power law.

Profilers can also measure vertical motions and have been utilized by many
authors to study gravity waves; see, for example, Gage and Gossard (2003)
and references therein. The spectrum of vertical velocities, which are seen in
the vertical beam of wind profilers, has a nearly universal shape as demon-
strated by Ecklund and colleagues (Ecklund et al., 1985, 1986). Reproduced in

              

       



232 Dynamics contributing to mesoscale spectrum of atmospheric motions

101

100

10−1

(16) (8) (4) (2) 60 30 15 8 5 3 2

R
ad

ia
l p

ow
er

 s
pe

ct
ra

l d
en

si
ty

 (
m

2  
s−

2  
H

z−
1 )

 

Period – (h) min

Site 1
Heights 3.9−6.1 km

12, 13, 14 May 1982

Heights 10.6−12.9 km
17, 18 April 1982

Figure 10.6. ALPEX vertical velocity spectra seen in quiet conditions. (After
Ecklund et al., 1985.)

Fig. 10.6 is the spectrum of vertical motions observed in weak wind conditions
during the ALPEX (ALPine Experiment) campaign in southern France (Ecklund
et al., 1985). The observed spectra illustrate a systematic change in shape and am-
plitude between the troposphere and stratosphere consistent with the concept of a
nearly universal spectrum of internal waves similar to the Garrett–Munk spectrum
in the ocean (Garrett and Munk, 1972, 1975). Figure 10.7 shows the contrast of
active and quiet spectra seen at ALPEX. As can be seen in the figure, these spectra
are changed dramatically under disturbed conditions at least at sites in the vicinity
of complex terrain. In order to understand the nature of the vertical velocity spectra
and their relationship to underlying terrain the Flatland radar was constructed in
central Illinois in 1988. Vertical velocity spectra observed at Flatland are discussed
in Section 10.8.

10.3.2 Wavenumber spectra of horizontal velocities

The ability to resolve the frequency spectrum of atmospheric motions has led to a
great improvement in our knowledge of mesoscale variability of the atmosphere and
the contributions of internal waves to that variability. However, there is uncertainty
about the nature of the dynamic processes that contribute to the observed spectra. In
order to gain further insight into these dynamic processes it is important to examine
the wavenumber spectrum. In the mid 1980s several studies (Lilly and Petersen,
1983; Nastrom et al., 1984; Nastrom and Gage, 1985; Gage and Nastrom, 1986)
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Figure 10.7. Spectra of vertical velocities observed in southern France during the
ALPEX field campaign in quiet and active periods. (After Ecklund et al., 1985.)

were made of aircraft spectra and an effort was made to place the aircraft and
profiler spectra in a common framework (Gage and Nastrom, 1985).

Spectra of horizontal velocities measured with an on-board inertial navigation
system on commercial aircraft were analyzed by Nastrom and colleagues (Nas-
trom et al., 1984; Nastrom and Gage, 1985). These data had been collected during
the NASA Global Atmospheric Sampling Program (GASP) and provide a reason-
able climatology of the wavenumber spectra of horizontal velocities and temper-
ature over the North American continent. Figure 10.8 contains the wavenumber
spectra of horizontal velocity deduced from several hundred flights. These spectra
show definite power-law dependence very close to −5/3 for both components of
the horizontal velocity. Note that the −5/3 power law extends to scales of about
700 km and that at larger scales there is a transition to a power-law dependence
of −3.

10.3.3 Vertical wavenumber spectra

Vertical wavenumber spectra have been reported by many authors (Smith et al.,
1987; Fritts et al., 1988; Tsuda et al., 1989; VanZandt and Fritts, 1989). Example
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one decade to the right for clarity of presentation. (After Nastrom et al., 1984.)

spectra (Fritts et al., 1988) from the MU (Middle and Upper Atmosphere) radar in
Japan are shown in Fig. 10.9(a, b). Viewed as energy density F(kz) these spectra
fall off as k−3

z , where kz is the vertical wavenumber. Figure 10.9(c, d) show the
same spectra plotted in energy-content form, kz F(kz), and clearly show dominant
vertical scales in the range 2–3 km. In the energy-content form equal areas make
equal contributions to the energy spectrum. The vertical wavenumber spectra are
usually interpreted in the framework of internal waves although, as Lilly (1983)
pointed out, vertical variability is an important part of stratified turbulence and so
a vertical wavenumber spectrum is also expected within the context of stratified
turbulence.
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Figure 10.9. Power spectral densities of (a) eastward (solid line) and north-
ward (short-dash line) radial velocity, (b) normalized temperature between 13
and 20.5 km for 24–25 October 1986. Long-dash lines show saturated PSDs. The
corresponding area-preserving spectra are of (c) radial velocity and (d) normal-
ized temperature. Observations are from the MU radar observatory near Shigaraki,
Japan (After Fritts et al., 1988.)

10.4 Dynamic processes contributing to mesoscale variability

In this section, some of the dynamic processes that contribute to mesoscale variabil-
ity are considered separately. These processes include internal waves and “turbu-
lence.” Short-period internal gravity waves and low-frequency inertia-gravity waves
are important contributors to vertical velocity and horizontal velocity, respectively.
In addition, a class of motions often referred to as the vortical mode appears to
be important. Mesoscale turbulent processes referred to as stratified turbulence or
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quasi-two-dimensional turbulence are thought to make important contributions to
the mesoscale variability of horizontal winds.

Internal gravity waves represent oscillations of air parcels in the gravitational
force field that arise from vertical displacements which can be caused by turbu-
lence, convection, or flow over complex terrain, etc. These waves can be found
almost everywhere except the convective boundary layer where unstable thermal
stratification precludes their existence. For a more complete description of waves
in the atmosphere see Gossard and Hooke (1975).

Much progress has been made in the past decade in recognizing various modes of
atmospheric waves and identifying their sources. It has been known for some time
that the wave motions in the lower atmosphere have a profound influence on the
dynamics of the middle and upper atmosphere (e.g., Hodges, 1967; Lindzen, 1981;
Fritts and Alexander, 2003). Indeed, as waves propagate into the middle and upper
atmosphere their amplitude increases as atmospheric density decreases. This fact
is responsible for the dominant role that waves play in the dynamics of the middle
and upper atmosphere. Also, as waves propagate to higher altitudes the waves of
short vertical wavelength become unstable and break. The breaking of these waves
produces a stress on the winds of the middle and upper atmosphere.

10.4.1 Short-period internal gravity waves

Ecklund et al. (1982) reported observations of waves in vertical motions in the lee of
the Rocky Mountains in Colorado using wind-profiler observations. These authors
showed a clear relationship between the magnitude of vertical velocity fluctuations
and the strength of winds over the nearby mountains. Indeed, when the winds blew
from the east where the terrain is relatively flat, much of the vertical wind variability
ceased. The Flatland radar was constructed in Illinois to contrast the vertical veloc-
ity variability over flat terrain with what was observed in Colorado. VanZandt et al.
(1991) report results of an analysis of vertical velocity variability at Flatland Atmos-
pheric Observatory and show that the variability is substantially less in Illinois than
in Colorado. Furthermore, there appears to be a background spectrum of vertical
motions seen at Flatland that is reasonably consistent with the idea of a universal
spectrum of internal waves (VanZandt, 1982) as will be discussed in Section 10.5.

Several studies have been made using profilers to identify the dynamics of inter-
nal gravity waves in the lower atmosphere. Three spaced profilers were operated
in southern France during the Alpine Experiment (ALPEX, Ecklund et al., 1985).
The profilers were located on the southern coast of France in relatively flat terrain
downwind of the Alps. During mistral winds, the magnitude of the vertical wind
variability was clearly seen to be related to the strength of winds and their direction
relative to the mountains. The existence of multiple profiler sites, separated by
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Figure 10.10. Short-period quasi-sinusoidal internal gravity waves observed
25 January 1990 using the 50 MHz profiler at Piura, near the Andes in northern
Peru. (After Liziola and Balsley, 1998.)

5–6 km, provided an opportunity to explore the propagation characteristics of the
waves. Data collected in the ALPEX campaign were carefully analyzed by Carter
et al. (1989). Only a few cases of monochromatic waves could be identified at
each of the sites and cross-correlated to yield wave parameters. Typical horizon-
tal wavelengths were 10–20 km and horizontal phase speeds were in the range
4–15 m s−1.

Before the advent of profilers, detailed case studies of wave events that revealed
their vertical structure were rare. Ralph et al. (1993) analyzed a mesoscale ducted
gravity wave observed during FRONTS 84 in southwestern France. Vertical veloc-
ities observed by a 50 MHz profiler and surface-pressure fluctuations observed by
a network of surface pressure sensors revealed a trapped 90 min-period wave on 19
June 1984 that was found to have an approximate 76 km wavelength. The wave was
trapped within a duct formed between the ground and a stable lower tropospheric
layer bounded above by an unstable or near-neutral layer. In addition there was a
critical layer (where the mean wind speed was equal to the ground-relative phase
velocity) present near the top of the duct.

Liziola and Balsley (1998) have investigated the occurrence of quasi-horizontally
propagating waves in the troposphere using the Piura radar, which is part of
the NOAA/CU Trans-Pacific Profiler Network (TPPN). Figure 10.10 contains
an example of multiheight time series of vertical velocities observed at Piura on
25 January 1990. In this example the waves have peak amplitude near 1.5 m s−1

and period close to 10 min. Note that there is very little or no phase change with
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altitude which is typical of the waves seen in the profiler observations. It is very
likely that these are trapped waves that are propagating horizontally. Liziola and
Balsley (1998) constructed a closely spaced antenna array with spacing of a few
hundred meters and were able to determine phase velocities of propagating waves
up to a few meters per second. Horizontal wavelengths were found to be in the range
1–3 km. They also investigated the climatology of the waves and found that they
were most common during August when easterlies (from the Andes) were strongest.

The observations of vertical motions using wind profilers have provided much
new information on the dynamics of wave motions in the atmosphere. The relatively
frequent occurrence of quasi-periodic disturbances at locations near significant
topography and the relative lack of such quasi-periodic disturbances at places like
Christmas Island and at the Flatland Atmospheric observatory (Nastrom et al.,
1990b) in central Illinois implicates orography as the cause of these disturbances.
These facts suggest the development of trapped non-stationary waves associated
with wind flowing over mountains and other complex terrain.

10.4.2 Inertia-gravity waves

In addition to the short-period internal gravity waves discussed above, longer-period
inertia-gravity waves have been observed at many locations. The inertia-gravity
waves are long-period waves with an intrinsic period somewhat shorter than the
local inertial period. They are most clearly identified in hodographs of wind sound-
ings, which reveal a characteristic turning of the horizontal wind with height (Cadet
and Teitelbaum, 1979; Gill, 1982; Sato, 1989, 1993, 1994). An example of an inertia-
gravity wave observed by the MU radar in Japan during the passage of Typhoon
Kelly in October 1987 is reproduced in Fig. 10.11 from Sato (1993). The wave
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Figure 10.11. Inertia-gravity wave observed by the MU radar near Shigaraki,
Japan. (After Sato, 1993.)
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parameters found were: a period of 20 h, a vertical wavelength of 2.7 km and a hor-
izontal wavelength of 300 km. Many studies have shown that inertia-gravity waves
are commonly observed in wind-profiler soundings at many locations (Cornish and
Larsen, 1989; Thomas et al., 1992, 1999; Sato, 1994; Riggin et al., 1995; Yamanaka
et al., 1996; Sato et al., 1997). Fritts and Luo (1992) in a theoretical study have
examined the excitation of inertia-gravity waves by the geostrophic adjustment
process. Their work builds on earlier studies by many authors and concludes that
the geostrophic adjustment process is a likely source for low-frequency gravity
waves.

10.4.3 Vortical modes and stratified turbulence

Fluid motions can be partitioned into divergent and non-divergent vorticity-bearing
flows. Lilly (1983) following Riley et al. (1981) demonstrated that the equations
of motions governing mesoscale motions could be separated in the low-Froude-
number limit into a set of equations governing internal waves and a set of equations
governing stratified turbulence. According to this separation only the vortical mode
carries potential vorticity. Riley and Lelong (2000) have reviewed what they refer to
as “potential vorticity modes” and their significance in geophysical fluid dynamics.
Müller et al. (1988) review the evidence for the existence of the vortical mode in
the ocean to explain the observed variability within the range of frequencies that
lie between the Coriolis frequency f and the Brunt–Väisälä frequency N . Earlier
work by Müller et al. (1978) cited the difficulties of attributing the entire observed
variability in the ocean to the spectrum of internal waves.

10.5 Spectral models for mesoscale atmospheric variability
based on internal waves

Internal atmospheric waves can arise from many sources. Of course, they are most
easily identified as monochromatic waves and other large-amplitude wave disturb-
ances. However, waves are ubiquitous and as they interact they lose their identity
with their sources and create a background spectrum of waves that can be nearly
universal in character (Staquet and Sommeria, 2002). The situation in the atmos-
phere is similar in some respects to what is found in the ocean except that the
speed of ocean currents is much smaller than atmospheric winds and the ocean
has a definite upper boundary that reflects waves. VanZandt (1982) pointed out
that a spectrum of waves similar to the Garrett–Munk spectrum found in the ocean
should be present in the atmosphere. In this section we review the empirical evi-
dence supporting the existence of a nearly universal spectrum of waves in the
atmosphere. We focus attention here on the spectrum of vertical motions.
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The temperature lapse rate is the most important factor governing small-scale
waves in the atmosphere. For example, a parcel of air displaced upward for whatever
reason will tend to oscillate with the Brunt–Väisälä (buoyancy) frequency N defined
by N 2 = (g/θ )(dθ/dz) where θ is potential temperature and g is acceleration due to
gravity. A buoyancy wave or internal gravity wave typically has periods between the
Brunt–Väisälä period and the local inertial period defined by 2π/2Ω sin ϕ; where Ω

is the angular velocity of the earth in radians per second and φ is latitude. A typical
period of buoyancy waves in the free troposphere is 15 min and the inertial period
at 45 ◦ latitude is close to 17 hr. Here the term internal gravity waves is used to refer
to those waves which may have an intrinsic frequency ω anywhere in the range
N ≥ ω ≥ 2Ω sin ϕ. Short-period internal gravity waves have intrinsic frequencies
close to the Brunt–Väisälä frequency while low-frequency internal gravity waves
possess quasi-horizontal motions and have intrinsic frequencies closer to the inertial
frequency. These waves are usually referred to as inertia-gravity waves.

The simple physical description of air motion within internal waves refers to
a frame of reference moving with a background wind velocity U . The intrinsic
frequency ω is related to the observed frequency ωo seen by a ground-based observer
by

ω = ωo − Uk, (10.8)

where k is a characteristic wavenumber, so that the frequency of an internal wave
seen by a ground-based radar or pressure sensor differs from the intrinsic frequency
by an amount Uk that is due to Doppler shifting. While Doppler shifting occurs
in a uniform wind, a more complex form of Doppler shifting occurs when waves
propagate in a height-dependent mean wind (Bretherton, 1969). Under these cir-
cumstances waves propagating vertically conserve their phase speed c and their
horizontal wavelength relative to the ground. The observed frequency ωo = kc
does not vary as the wave propagates but the intrinsic frequency changes in accord
with (10.8). The intrinsic frequency ω is related to other wave parameters through
the gravity wave dispersion relation:

ω2 = N 2k2
x,y + f 2k2

z

k2
x,y + k2

z

(10.9)

where f is the inertial frequency (= 2Ω sin ϕ), kx,y is horizontal wavenumber and
kz is vertical wavenumber.

In accordance with (10.9), changes in ω must be accompanied by changes in
kz . For example, if the intrinsic frequency of a wave increases as it propagates
through a wind shear it will become trapped if ω = N and the vertical wavelength
λz becomes infinite. If the wave encounters a critical level where c = U then ω→0
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and λz becomes very small consistent with critical-layer absorption. Internal waves
do not propagate through critical layers or regions of the atmosphere where their
intrinsic frequency would be greater than N .

As pointed out in Section 10.3, fluctuations of velocity measured by Doppler-
radar profilers show evidence of a broad spectrum of incoherent motions. This
suggests that one interpretation of the velocity fluctuations seen on Doppler radars
is that they are comprised of a broad spectrum of internal waves similar to what is
found in the ocean.

The spectrum of internal waves is generally thought to dominate the spectrum
of ocean current variability over periods ranging from the Brunt–Väisälä period to
the inertial period; see Olbers (1983) for a review. The Garrett–Munk spectrum is
essentially an empirical model of internal wave spectra that provides a framework
for the synthesis of diverse ocean spectra. These spectra include dropped spectra
(kz spectra), towed spectra (kx spectra), and moored spectra (ω spectra).

The Garrett–Munk spectrum is assumed to be comprised of linear internal waves
and Doppler-shifting effects are neglected. Internal waves must satisfy the disper-
sion relation (10.9) and the polarization relation (Fofonoff, 1969; Eriksen, 1978)
that can be expressed in the form

Eh(ω) =
(

N 2 − ω2

ω2

) (
ω2 + f 2

ω2 − f 2

)
Ev(ω), (10.10)

where Eh(ω) is the frequency spectrum of horizontal motions and EV(ω) is the
frequency spectrum of vertical motions.

VanZandt (1982) examined atmospheric spectra of Eh(ω), Eh(kx ) and Eh(kz)
and concluded that it was possible to define a model spectrum in the atmosphere
analogous to the Garrett–Munk spectrum. In order to fit the model spectrum to the
atmosphere, VanZandt chose ω−5/3 for the frequency dependence of the horizontal
velocity spectrum whereas the ocean’s spectrum is generally regarded as following
ω−2.

The VanZandt model spectrum represents an early attempt to fit atmospheric
spectra to an internal wave spectral model. The frequency spectrum of vertical
motions Ev(ω) was not considered and Doppler-shifting effects were not taken into
account. As pointed out by Gage (1990), the Ev(ω) is implicitly determined in the
VanZandt model through (10.10). Thus the Ev(ω) spectrum provides an important
test of consistency for the VanZandt model and any internal wave model designed
to fit atmospheric spectra, as will be shown in Section 10.7.

With a few notable exceptions, the horizontal wind velocities in the atmosphere
are several orders of magnitude larger than the vertical velocities. While typical
instantaneous vertical motions can be as large as 1 m s−1 in the free troposphere,
vertical velocity standard deviations are typically at most a few tens of cm s−1
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(Ecklund et al., 1986; VanZandt et al., 1991; Williams et al., 2000) and long-term
mean vertical motions averaged over many hours rarely exceed a few cm s−1.

As shown in Section 10.3, the spectrum of vertical motions has been described
by Ecklund et al. (1985, 1986) based on observations with vertically directed wind
profilers in a number of locations. The characteristic shape of the vertical velocity
spectrum is fairly flat with a peak near the Brunt–Väisälä period. Indeed, Ecklund
et al. (1986) showed that the amplitude of the spectrum is less in the stratosphere than
it is in the troposphere, as expected for internal waves (cf Fig. 10.6). The spectrum
of vertical motions as observed by profilers appears to have a fairly universal shape
under undisturbed conditions and far from sources, very similar to what is found
in the ocean for the Garrett–Munk spectrum.

Over the past two decades considerable progress has been made in identifying
wave motions in atmospheric observations. Much of this work has been facilitated
with the advent of wind-profiling radars that have permitted the direct measurement
of vertical velocities simultaneously over a large range of altitudes. The efforts
of VanZandt (1982) and Scheffler and Liu (1985) have established a model spec-
trum for the atmosphere analogous to the spectrum of internal waves in the ocean
commonly referred to as the Garrett–Munk spectrum. However, in the initial stages
of formulating the atmospheric models the vertical velocity spectral amplitude and
shape were largely unknown. Yet the vertical velocity spectral shape and amplitude
are implicitly determined by the internal wave spectral models. It is therefore a crit-
ical test for the internal wave spectral models to see how consistent they are with
the frequency spectrum of vertical motions. Another important issue is Doppler
shifting which is more important in the atmosphere than in the ocean. These topics
will be revisited in Section 10.7.

10.6 Stratified turbulence and mesoscale variability

It is well known in fluid mechanics that, as turbulence decays in a stably stratified
environment, propagating waves are radiated and quasi-horizontal motions pos-
sessing vorticity are left behind (Müller et al., 1978; Lilly, 1983; Hopfinger, 1987;
Riley and Lelong, 2000). The vorticity-possessing quasi-horizontal motions, often
referred to as the vortical mode, have been reproduced in the laboratory and by Di-
rect Numerical Simulation (DNS). This topic has been reviewed recently by Riley
and Lelong (2000) who point out that these motions take place under conditions of
low Froude number (Fr = urms/N L) where urms is a rms turbulence velocity, L is
a length scale of the energy-containing motions and N is the buoyancy frequency
introduced in Section 10.5. Riley and Lelong refer to this component of motion as
PV modes since they possess potential vorticity and the propagating waves do not.
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Rotation is known to have an important influence on these flows and is character-
ized by the Rossby number (Ro = urms/fL) where f is one-half the system rotation
rate. Rossby numbers ≥ 1 are relevant to stratified turbulence that can be regarded
as a regime of strong stability and weak rotation.

In the atmosphere this class of motions is thought to contribute substantially to
the mesoscale spectrum of atmospheric motions (Gage, 1979; Lilly, 1983; Gage and
Nastrom, 1986). Lilly referred to these motions as stratified turbulence although the
same class of motions is often referred to as quasi-two-dimensional turbulence be-
cause the vertical motion is suppressed in strongly stable environments and because
the motion fields have considerable vertical structure. Their frequency spectrum oc-
cupies the same spectral range as internal wave motions which makes it difficult
to differentiate stratified turbulence from a spectrum of waves (e.g., Dewan, 1979;
VanZandt, 1982). Riley et al. (1981), Lilly (1983), and Riley and Lelong (2000)
give scaling arguments for two sets of equations of motion governing the wave
component and the vortical mode, respectively.

Section 10.5 developed some of the background for the spectrum of internal
waves in the atmosphere. In this section emphasis will be placed on stratified tur-
bulence as a source of much of the fine structure observed in the atmosphere. It
is important to recognize, however, that low-frequency inertia-gravity waves can
also produce vertical structure. Stratified turbulence has been investigated in the
laboratory and by DNS. Laboratory studies are necessarily restricted in their size
and cannot possibly replicate the range of scales and parameter space covered in
the oceanic or atmospheric mesoscale. Nevertheless, considerable insight has been
obtained concerning stratified turbulence from laboratory experiments. Several lab-
oratory experiments have simulated some of the fundamental dynamics of stratified
turbulence (Itsweire et al., 1986; Itsweire and Helland, 1989; Maxworthy, 1990;
Narimousa et al., 1991; Yap and van Atta, 1993). Narimousa et al. (1991), and Yap
and van Atta (1993) concentrate on the spectra and energy transfers and show that
in the laboratory it is possible to simulate the inverse cascade of stratified turbu-
lence with k−5/3 spectra at scales larger than the scale of energy input and steeper
spectral slopes at smaller scales. Hopfinger (1987), and Riley and Lelong (2000)
concentrate on issues surrounding the collapse of three-dimensional turbulence in
strongly stratified flows and its relationship to the residual motions that are left be-
hind in wakes after waves are radiated away. Laboratory experiments demonstrate
that a region of strongly stratified turbulence will decay into a field of quasi-two-
dimensional horizontal motions that possess vertical vorticity with a characteristic
collapse of vertical motions, and an increase in the horizontal dimension of the
layer similar to the dynamics of wake collapse described in Hopfinger (1987).

In addition to the laboratory experiments, considerable progress has been made in
the DNS of stratified flows. These studies help to interpret laboratory experiments,
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understand the energy transfers within the stratified flows and the structures that
develop as these flows evolve. One long-standing issue is the difficulty of sim-
ulating high-Reynolds-number flows, which makes it difficult to simulate many
atmospheric flows with high resolution.

Numerical studies to date have focused on decaying turbulence in stratified flows
and forced turbulence. Métais and Herring (1989) analyzed decaying turbulence in
a strongly stratified flow and found the same general features reported in laboratory
studies by Itsweire et al. (1986). Bartello (1995) has examined the interaction of
PV and wave modes in decaying turbulence and found them to be closely coupled.
Herring and Métais (1989) examined the dynamics of forced, non-rotating, strongly
stratified flows with varying amounts of vertical variability. The existence of the
vertical variability, which reflects the tendency of layered structure to form in
stratified turbulence, was found to inhibit the k−5/3 inverse cascade to larger scales
of motion. Lelong and Riley (1991) consider wave/vortical mode interactions in
strongly stratified flows. Riley and Lelong (2000) point out that the inverse cascade
is a result of PV/PV mode interactions and, in the presence of vertical variability,
wave/PV mode interactions dominate the dynamics and result in the cascading of
PV mode energy to smaller scales. Métais et al. (1994) considered both two- and
three-dimensional forcing with varying degrees of rotation. The results showed that
in the presence of rotation the inverse cascade was more likely to develop. Vallis
et al. (1997) and Lilly et al. (1998) used low-resolution meteorological models to
show that a k−5/3 regime develops when convectively driven turbulence is present
at the mesoscale with or without rotation. Bartello (2000a) suggests that the model
atmosphere behaves more two-dimensionally in a low-resolution model because of
the lack of vertical variability.

Many of the laboratory experiments cited above have been designed primarily to
simulate oceanographic structure and dynamics while the numerical studies have
been motivated also by the need to improve the understanding of the dynamics
of waves and turbulence in the atmosphere. Observational studies addressing the
issues discussed in this section have been relatively sparse perhaps owing to the
difficulties of unraveling the issues involved. Nevertheless, several studies have
been reported that are summarized next.

10.7 Comparison of observed mesoscale spectra with model spectra

The concept advanced by Lilly (1983) of stratified turbulence placed the earlier
work of Gage (1979) on a more solid theoretical footing incorporating the idea
developed by Riley et al. (1981) of a separation of the governing dynamic equations
for waves and turbulence into a set governing waves and a set governing stratified
turbulence. Fundamental to the concept of stratified turbulence was the idea that a
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Figure 10.12. Schematic of quasi-two-dimensional or stratified turbulence. (After
Larsen et al., 1982.)

small-scale source of turbulence could lead to a reverse cascade filling the mesoscale
with quasi-two-dimensional turbulence. This concept has much appeal since the
free atmosphere is known to be stably stratified under most conditions and the
diffusivity of the atmosphere is highly anisotropic. Indeed, layered structure is
commonly observed even on fairly small vertical scales, see e.g., Gage and Green
(1978), Gossard et al. (1985), Salathé and Smith (1992), and Dalaudier et al. (1994).
A schematic of the inverse cascade is reproduced in Fig. 10.12.

Gage and Nastrom (1985) transformed the radar-derived horizontal kinetic-
energy frequency spectra to wavenumber spectra using a Taylor transformation and
combined the transformed radar spectra with energy spectra from other sources in
a format first used by Lilly and Petersen (1983) as reproduced in Fig. 10.13.

Masmoudi and Weil (1988) analyzed sodar observations collected from four
sites during the MESOGERS 84 campaign (Gers is a region in southwest France
and MESO refers to the mesoscale nature of the campaign). The analysis tested
the Taylor hypothesis over the domain of the network of stations and examined
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Figure 10.13. Synthesis of horizontal kinetic energy spectra deduced from differ-
ent sources. (Adapted from Lilly and Petersen, 1983.)

structure functions of horizontal wind speed. The spectra of the wind speed followed
a k−5/3 spectral slope and otherwise appeared consistent with stratified turbulence.
Högström et al. (1999) have analyzed the mesoscale velocities over the Baltic
Sea also finding consistency with stratified turbulence. Cho et al. (1999a) reported
horizontal wavenumber spectra of winds, temperature and trace gases measured
by aircraft during the Pacific Exploratory Mission (PEM). The spectra determined
from the PEM flights were similar to those reported by Nastrom and Gage (1985)
for the Global Atmospheric Sampling Program (GASP). A detailed analysis of the
PEM spectra was reported by Cho et al. (1999b). They tentatively concluded that the
observed spectra were likely from several sources including quasi-two-dimensional
turbulence. Cho and Lindborg (2001) and Lindborg and Cho (2001) analyzed data
collected from the European MOZAIC (Measurement of Ozone and water vapor
by Airbus in service) program and, using a third-order velocity structure function
(Lindborg, 1999), could find no support for an inverse cascade even though the
analysis yielded spectra with slopes similar to those reported by Nastrom and Gage
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(1985). However, Cho et al. (2001) reported an analysis of aircraft observations
that does give support to a reverse cascade. Clearly, more research is needed to sort
out these issues.

In the remainder of this section observed spectra are examined for their internal
consistency with models. In particular, the observed frequency spectra of horizontal
and vertical velocity will be compared to the internal wave spectral model without
Doppler shifting. Then the influence of Doppler shifting will be considered by
comparing observations with theoretical models.

10.7.1 Observed vs model spectral amplitudes

While models are constructed to fit observations they can be tested by examining
their internal consistency and by checking implications of the models. In this section
we presume the spectrum of vertical velocities observed under quiet conditions
represents an unambiguous spectrum of internal waves and consider the consistency
of the horizontal velocity spectrum of internal waves associated with this spectrum
compared to the observed spectra.

The gravity wave spectral model advanced by VanZandt (1982, 1985) and Schef-
fler and Liu (1985) provides a way to predict the horizontal velocity spectrum due
to waves when the vertical wave spectrum is known. Gage (1990) compared the
observed horizontal velocity spectra with the horizontal velocity spectrum due to
waves and argued that there was more energy in the observed spectrum than was
consistent with the gravity wave model fit to the observed vertical velocity spectrum.
More recently Högström et al. (1999) also examined the frequency spectrum of ver-
tical velocity deduced from aircraft observations and compared it to the horizontal
velocity spectrum. They concluded that the vertical velocity spectrum was due to
waves and that the horizontal velocity spectrum was due to quasi-two-dimensional
turbulence.

The VanZandt spectral model was normalized to fit the observed horizontal
velocity spectrum in frequency, horizontal wavenumber and vertical wavenumber
space. Since it was not normalized to fit the vertical velocity spectrum, comparison
of the vertical velocity spectrum with the model spectrum is a critical test for
the model. Figure 10.14 contains a comparison of the tropospheric vertical velocity
spectrum presented in Fig. 10.6 with the horizontal velocity spectra of Vinnichenko
(1970) and Balsley and Carter (1982). The calculated horizontal velocity spectrum
was obtained using the polarization relations that relate the energy in the horizontal
velocity spectrum with the energy in the vertical velocity spectrum (Fofonoff, 1969;
Eriksen, 1978; Olbers, 1983). Note that the horizontal velocity spectrum contains
much more energy than the vertical velocity spectrum. A similar result was found
by Högström et al. (1999).
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Figure 10.14. Model internal wave horizontal frequency spectrum without
Doppler shifting (dash line) compared with two observed horizontal frequency
spectra (upper solid lines). (After Gage and Nastrom, 1985.)

10.7.2 Doppler-shifting effects

Gravity wave spectral models considered so far do not account for the influence of
Doppler shifting, which is more important in the atmosphere than in the ocean. Next
the influence of Doppler shifting on a spectrum of internal waves is considered.
Then the consistency of spectral models that account for Doppler shifting with
observations made at Platteville, Colorado, is examined.

Fritts and VanZandt (1987) and Scheffler and Liu (1986) have carefully consid-
ered the effect of Doppler shifting on a model internal wave spectrum. According
to Fritts and VanZandt (1987), the influence of a mean wind on the spectrum of
internal waves can be parameterized by

β = Um∗/N (10.11)
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Figure 10.15. Doppler-shifting effect on a model spectrum of internal waves.
(After Fritts and VanZandt, 1987.)

where U is the mean wind, m∗ is a characteristic vertical wavenumber and N is
the Brunt–Väisälä frequency. The parameter β provides a convenient measure
of the mean wind scaled to the phase velocity as shown by Fritts and VanZandt
(1987). Doppler shifting only affects the gravity wave spectrum in the direction of
the mean velocity.

The results of the Fritts and VanZandt (1987) analysis on the horizontal velocity
spectrum are summarized in Fig. 10.15, which shows that qualitatively the influence
of the mean wind is to increase the spectral amplitude at the high-frequency end of
the spectrum and to decrease the spectral amplitude at the low-frequency end of the
spectrum. The net effect of the Doppler shifting is to increase the slope of the fre-
quency spectrum above the –2 value of the non-Doppler-shifted spectrum. While
this is in the sense needed to fit the observed horizontal frequency spectrum it
is important to examine quantitatively the magnitude of this effect compared to
observations.

Observations of zonal velocity spectra from Platteville stratified by wind speed
have been examined by Gage and Nastrom (1988) and used for a quantitative com-
parison with the Doppler-shifting model spectrum. To complete the comparison
a simple turbulence model was used by Gage and Nastrom to provide a quanti-
tative measure of Doppler-shifting influence on a spectrum of turbulent motions.
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(dotted line) models. (After Gage and Nastrom, 1988.)

The turbulence model was based on a horizontal wavenumber spectrum that ap-
proximates the observed GASP spectra (Nastrom and Gage, 1985). The Taylor
transformation was used to determine the frequency spectrum of turbulence seen
by a fixed observer when the specified wavenumber spectrum was advected past at
a specified velocity (Gage and Nastrom, 1988).

The results for the turbulence model and the wave model are compared with
observations in Fig. 10.16. In this figure, the changes of spectral density ratio
with mean wind speed are plotted for several frequencies. The frequencies for
comparison are the Brunt–Väisälä frequency N , and frequencies equal to 0.1N
and 0.01N . While the observed frequency spectra did not extend to 0.01N , the
model results are shown for these frequencies. To determine the change in spectral
density ratio for the wave model it is necessary to assign a value to the characteristic
wavenumber m∗. For this purpose a value of m∗ = 0.75 × 10−3 m−1 has been used
which is consistent with values anticipated by Fritts and VanZandt (1987). For the
summertime troposphere pertinent to the observed Platteville spectra a value of
N = 1.67 × 10−3 s−1 has been used, implying β = 0.45U .

There are six curves in Fig. 10.16. Each curve gives the values of the spec-
tral density ratio as a function of wind speed. Curves with positive (negative) slope
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have increasing (decreasing) spectral density ratio with increasing wind speed. Two
curves are plotted for the observed change corresponding to frequencies of N and
0.1N . These curves show a modest increase in slope with decreasing frequency. The
turbulence model result does not depend on frequency so only a single curve is plot-
ted. Three curves are plotted for the wave model for frequencies N , 0.1N and 0.01N ,
respectively. The slopes for the three curves decrease markedly with decreasing
frequency. This is the opposite sense to the change noted in the observed spectra.

Eckermann (1990) introduced the idea that the polarization of internal waves
could be used to discriminate between waves and turbulence. The internal grav-
ity waves are elliptically polarized with the major axis aligned with the direction
of propagation. In the case of aircraft measurements (Cho et al., 1999b) the ve-
locity variances parallel to the aircraft heading would be associated with maxi-
mally Doppler-shifted waves, whereas velocity variances transverse to the aircraft
heading would be caused by waves suffering no Doppler shift. Consequently, if
Rpt ≡ (u′)2

||/(u′)2
⊥, the ratio of variances between parallel and transverse directions,

Rpt > 1 is expected for waves and Rpt < 1 is expected for stratified turbulence and
vortical modes. Cho et al. (1999b) found that Rpt < 1 for PEM westward flights at
latitudes greater than 15◦ whereas Rpt > 1 for latitudes smaller than 15◦.

Cho et al. (1999b) also considered application of the Stokes parameter analysis of
Vincent and Fritts (1987) to the PEM westward spectra. Waves should have definite
phase relations between u and v components. Velocity and potential temperature (θ )
fluctuations should have phase differences close to ±90 degrees. Only occasionally
were Cho et al. (1999b) able to find evidence of definite phase relations between u
and v and θ fluctuations. These authors concluded that their observations support
the dominance of rotational modes in the mesoscale spectrum with the exception
of near-equatorial latitudes.

In this section the consistency of horizontal and vertical velocity frequency
spectra have been examined within the framework of a non-Doppler-shifted model
of internal wave spectra analogous to the Garrett–Munk spectrum in the ocean.
While the vertical velocity frequency spectra bear a striking resemblance to the
model wave spectra, the horizontal velocity frequency spectra appear to be too
energetic to also be due to waves. Even accounting for Doppler shifting does not
explain the differences seen between observed and model internal wave spectra.
Furthermore, critical tests designed to differentiate between waves and turbulence
have thus far been inconclusive and do not support the idea that the entire spectrum
of mesoscale variability is due to waves. Thus, it would appear to be reasonable to
conclude that the vertical velocity spectra are due to waves but that the horizontal
velocity frequency spectra are influenced or even dominated by stratified turbulence.
The idea of co-existing spectra of waves and turbulence is consistent with the ideas
contained in Lilly (1983). Clearly, much more work will be required to establish
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those observed during ALPEX (see Fig. 10.7). The Flatland spectra are contained
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(After VanZandt et al., 1991.)

quantitatively the relative contributions of wave and turbulent processes to the
mesoscale spectra of atmospheric motions and to mesoscale variability.

10.8 The role of topography and convection as a source
of mesoscale variability

In order to investigate the influence of complex terrain on vertical motions, the
Flatland radar was constructed in central Illinois. At Flatland, the vertical velocity
spectrum was found to be very similar to that found in other locations of complex
terrain under undisturbed conditions of low winds or winds blowing over flat terrain.
As reported by VanZandt et al. (1991) and shown in Fig. 10.17, a flat spectrum is seen
at Flatland Atmospheric Observatory (FAO) under all wind conditions although the
magnitude of the spectrum does vary with wind speed. VanZandt and colleagues
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were able to demonstrate, using a spectral model, that the magnitude variations
seen in the Flatland spectra are explicable assuming they are indeed a spectrum of
waves. This success in modeling the dependence of the spectrum on wind speed by
incorporating Doppler-shifting effects considerably strengthens the interpretation
of the vertical velocity spectrum as a wave spectrum. The behavior of the vertical
velocity spectrum under disturbed conditions near mountains is considered next.

Also shown in Fig. 10.17 is the spectrum under disturbed conditions of strong
winds blowing over complex terrain. Under these circumstances the spectrum is
substantially modified with a greatly enhanced magnitude and a slope approach-
ing −5/3. Worthington and Thomas (1998) have shown that similar spectra are
observed during mountain wave events at Aberystwyth, UK. Several authors have
considered possible explanations for the occurrence of the −5/3 spectral slope
in the frequency spectra during disturbed mountain wave conditions. Gage and
Nastrom (1990) hypothesized that quasi-horizontal rotational motions along tilted
isentropic surfaces might be responsible for these frequency spectra owing to the
fact that the vertical velocity frequency spectra resembled the horizontal velocity
spectra observed at the same time albeit with reduced amplitude. However,
Worthington and Thomas argued that at Aberystwyth the frequency spectra are actu-
ally vertical motions of the mountain waves and not due to quasi-horizontal motions
created by the tilting of isentropic surfaces. Instead, they show that a simple stochas-
tic model with a pattern of mountain waves that moves stochastically with respect
to the ground produces a spectrum that resembles the observed frequency spectrum.

The role of topography in the generation of gravity waves has been documented
by several studies in addition to the work reviewed in the previous section. Nastrom
et al. (1987) and Jasperson et al. (1990) examined the relationship of the variance
of mesoscale winds measured by commercial aircraft during GASP with the under-
lying surface. The variance was found to be highly correlated with the roughness
of the topography. Variance in the troposphere was also related to wind speed. The
variance of wind and temperature on scales of 4–80 km was found to be as much
as six times greater over mountains than over oceans. At larger scales variance was
also greater over mountains compared to oceans but by a smaller amount.

Nastrom and Fritts (1992) extended the earlier work with two case studies aimed
at an improved understanding of the linkage between wind variance observed in the
GASP flights, underlying terrain and meteorological conditions. They found that,
while in most instances variances were greater over mountains than over plains and
oceans, in some cases the variances were not enhanced by topography. Instances of
small variances over the mountains were clearly related to regimes of weak wind
over the local terrain and high static stability in the lower troposphere that would
suppress convection. These results can be compared with the wind-profiler results
from Platteville (Ecklund et al., 1982) and Flatland results of Nastrom et al. (1990b).
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For Platteville the vertical velocity variance was directly related to wind speed at
a pressure of 500 mbar, and at Flatland the vertical velocity variance was most
closely related to stability in the lower troposphere independent of wind speed.

In the aircraft data the variability was due either to waves or to stratified turbu-
lence (Nastrom et al., 1987), so a less ambiguous determination of the influence
of topography on the generation of gravity waves would be examination of vertical
motions. This has been done at many locations using profilers as reviewed in the
previous section. Nastrom et al. (1990b) investigated sources of gravity wave ac-
tivity seen in the vertical velocities at Flatland. Generally, the magnitude of vertical
velocity variance was found to be less than at Platteville in the lee of the Colorado
Rockies. Observations from Flatland have provided an opportunity to investigate
the contributions of other sources to gravity wave generation over very flat terrain.
The occurrence of large vertical velocity variance in Flatland observations is re-
lated to specific events such as frontal passages or thunderstorms. Statistical studies
showed variances systematically larger under cloudy skies than under clear skies
suggesting a link with convection. Variances under these disturbed conditions were
typically 50% greater than under clear undisturbed conditions where the variance
was typically in the range 100–300 cm2 s−2.

Fritts and Nastrom (1992) used the GASP dataset to investigate the relationship
of enhanced wind and temperature variability to fronts, convection and jet streams.
In case studies they were able to relate enhanced variability with one or more sources
and found enhancements as large as one to two orders of magnitude extending to
scales of 64 km or more. Horizontal velocity variances in apparently source-free re-
gions are typically near 0.1–0.4 m2 s−2 and temperature variance is less than 0.4 K2.

Near-surface outflow from deep convective storm systems often creates a soli-
tary wave that can be observed by radar and lidar (Fulton et al., 1990; Doviak
et al., 1991; Koch et al., 1991). Solitary waves are long nonlinear waves that are
trapped below an inversion and propagate intact for long distances (Christie, 1989).
Trapping mechanisms for the low-level internal gravity waves were discussed by
Crook (1988) who pointed out that while trapping requires an inversion it is aided
by opposing winds. The theory for solitary waves in the atmosphere has been re-
viewed by Rottman and Einaudi (1993). They developed the theory for two classes
of solitary waves. The first class of solitary waves is confined to the lowest few
kilometers of the troposphere possessing horizontal scales of a few kilometers and
phase speeds of the order of 10 m s−1. The second class of solitary waves occupies
the entire troposphere and has horizontal scales on the order of 100 km and phase
speeds on the order of 25–100 m s−1. The solitary waves may play an important
role in the propagation of squall lines (Carbone et al., 1990; Koch et al., 1993;
Trexler and Koch, 2000) with important implications for mesoscale predictability
(Koch and O’Handley, 1997).
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Another class of waves, known as convection waves, develops over convective
boundary layers in clear weather. While internal gravity waves are precluded from
propagating within the hydrostatically unstable atmosphere, convection waves of-
ten develop in the stable free troposphere above the convective boundary layer.
These waves have been seen in aircraft observations (Kuettner et al., 1987; Hauf,
1993) and are observed by profilers as reported by Gage et al. (1989). Their ob-
servations were made in Liberal, Kansas, on 29 June 1985, on a clear day, during
Pre-STORM. Liberal, Kansas, is located on very flat terrain far from any moun-
tains. The observed waves appear to fill the entire free troposphere and possess
little or no phase progression with altitude suggesting that these are trapped modes.
Clark et al. (1986) have simulated convection waves in a model. Convection waves
appear to develop when the convective boundary layer possesses a corrugated top
and winds flow over this surface under favorable synoptic conditions.

10.9 Concluding remarks

In this chapter, the spectrum of mesoscale atmospheric variability and its dynamic
causes have been reviewed. Special emphasis has been placed here on the devel-
opments surrounding the seminal work of Lilly (1983) introducing the concept of
stratified turbulence with an implicit inverse cascade from a small-scale source of
turbulence. Stratified turbulence accounts for the rotational modes of energy that
occupy the atmospheric mesoscale horizontal velocity, temperature and related
fields. Internal wave spectral models analogous to the Garrett–Munk spectrum in
the ocean have also been considered in some detail.

Since Lilly published his paper on stratified turbulence and the mesoscale vari-
ability of the ocean there has been considerable research to establish in a quantitative
manner the dynamics of stratified turbulence. Laboratory studies have established
the essential features of stratified turbulence. Direct numerical simulations have
also contributed substantially to the current state of our knowledge. The contribu-
tions of stratified turbulence to ocean dynamics are addressed by Müller (1995)
and Thorpe (1998). These authors view the contributions of rotational modes of
stratified turbulence as important to fully account for ocean variability but there
appears to be substantially less energy in stratified turbulence than in the internal
wave field in the ocean. In the atmosphere it appears that stratified turbulence plays
a much more important role than in the ocean. A likely scenario consistent with
observations is that the internal wave field and stratified turbulence co-exist with
stratified turbulence dominating the mesoscale variability of horizontal velocity at
least in the lower atmosphere. Stratified turbulence may also play an important role
in the maintenance of persistent turbulent layers in stable environments (Riley and
deBruynKops, 2003).
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Issues involving atmospheric mesoscale variability and stratified turbulence are
important to resolve in the context of numerical modeling of atmospheric circula-
tion. Bartello (2000b) points out that at larger scales where k−3 spectrum is found
low-resolution wind observations are sufficient to define scalar fields but are not suf-
ficient to do so at smaller scales where the energy spectrum has k−5/3 dependence.
Palmer (2001) suggests that imperfect parameterization of subgrid-scale processes
in large-scale numerical models may be causing problems in predicting large-scale
circulation because of the neglect of processes such as stratified turbulence.

Detailed knowledge of atmospheric mesoscale variability is important for several
reasons. The mesoscale variability of meteorological fields is often the dominant
component of observational error since it determines the representativeness of ob-
servations. The spectrum of mesoscale variability also provides a good test for
models. Koshyk et al. (1999), and Koshyk and Hamilton (2001) have been able
to simulate the mesoscale spectrum of variability in the GFDL (Geophysics Fluid
Dynamics Laboratory) SKYHI model. Tung and Orlando (2003) have simulated
the Nastrom–Gage spectrum in a two-level quasi-geostrophic model. Klemp and
Skamarock (see Chapter 6 of this book) have shown that the new Weather Research
and Forecasting (WRF) model being developed by NCAR (National Center for
Atmospheric Research) is able to replicate the main features of the Nastrom–Gage
spectrum especially for high-resolution model runs. Of course, the simulation of
the observed spectrum in a numerical model is insufficient to guarantee that the
model physics is realistic.

While the basic ideas considered in this review were developed over twenty years
ago, many issues remain to be resolved fully, and active research is continuing on
many fronts. Much of the ongoing research has focused on DNS although there are
still issues about resolving the full range of motions especially at large Reynolds
numbers typical of geophysical flows. The topic of mesoscale variability is taking
on renewed importance because of the need to specify error fields for assimilation
of meteorological data into numerical models. As models become faster and more
sophisticated it is likely that the dynamic processes discussed in this review can
be studied more completely, yet observational studies will still be needed to fully
understand the processes involved.
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Métais, O., Bartello, P., Garnier, E., Riley, J. J. and Lesieur, M. (1994). Inverse cascade in
stably stratified rotating turbulence. Dyn. Atmos. Oceans, 23, 193–203.

Müller, P., Olbers, D. J. and Willebrand, J. (1978). The IWEX spectrum. J. Geophys. Res.,
83, 479–500.

              

       



References 261

Müller, P., Lien, R.-C. and Williams, R. (1988). Estimates of potential vorticity at small
scales in the ocean. J. Phys. Oceanogr., 18, 401–416.

Müller, P. (1995). Ertel’s potential vorticity theorem in physical oceanography. Rev.
Geophys., 33, 67–97.

Narimousa, S., Maxworthy, T. and Spedding, G. R. (1991). Experiments on the structure
of forced, quasi-two-dimensional turbulence. J. Fluid Mech., 223, 113–133.

Nastrom, G. D., Gage, K. S. and Jasperson, W. H. (1984). Kinetic energy spectrum of
large- and mesoscale atmospheric processes. Nature, 310, 36–38.

Nastrom, G. D. and Gage, K. S. (1985). A climatology of atmospheric wavenumber
spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42,
950–960.

Nastrom, G. D., Ecklund, W. L. and Gage, K. S. (1985). Direct measurement of
large-scale vertical velocities using clear-air Doppler radars. Mon. Wea. Rev., 113,
708–718.

Nastrom, G. D., Fritts, D. C. and Gage, K. S. (1987). An investigation of terrain effects
on the mesoscale spectrum of atmospheric motions. J. Atmos. Sci., 44,
3087–3096.

Nastrom, G. D., Gage, K. S. and Ecklund, W. L. (1990a). Uncertainties in estimates of the
mean vertical velocity from MST radar observations. Radio Sci, 25, 933–940.

Nastrom, G. D., Peterson, M. R., Green, J. L., Gage, K. S. and VanZandt, T. E. (1990b).
Sources of gravity wave activity seen in the vertical velocities observed by the
Flatland VHF radar. J. Appl. Meteor., 29, 783–792.

Nastrom, G. D. and Fritts, D. C. (1992). Sources of mesoscale variability of gravity waves.
Part I: Topographic excitation. J. Atmos. Sci., 49, 101–110.

Olbers, D. J. (1983). Models of the oceanic internal wave field. Rev. Geophys. Space
Phys., 21, 1567–1606.

Palmer, T. N. (2001). A nonlinear dynamical perspective on model error: A proposal for
non-local stochastic–dynamic parameterization in weather and climate prediction
models. Quart. J. Roy. Meteor. Soc., 127, 279–304.

Ralph, F. M., Crochet, M. and Venkateswaran, S. V. (1993). Observations of a mesoscale
ducted gravity wave. J. Atmos. Sci., 50, 3277–3291.

Riggin, D., Fritts, D. C., Fawcett, C. D. and Kudeki, E. (1995). Observations of
inertia-gravity wave motions in the stratosphere over Jicamarca, Peru. Geophys. Res.
Lett., 22, 3239–3242.

Riley, J. J., Metcalfe, R. W. and Weissman, M. A. (1981). Direct numerical simulations of
homogeneous turbulence in density stratified fluids. In Nonlinear Properties of
Internal Waves, B. J. West, ed., La Jolla Institute, American Institute of Physics
Conf. Proc. #76, 79–112.

Riley, J. J. and Lelong, M.-P. (2000). Fluid motions in the presence of strong stable
stratification. Ann. Rev. Fluid Mech., 32, 613–657.

Riley, J. J. and deBruynKops, S. M. (2003). Dynamics of turbulence strongly influenced
by buoyancy. Phys. Fluids, 15, 2047–2059.

Rottman, J. W. and Einaudi, F. (1993). Solitary waves in the atmosphere. J. Atmos. Sci.,
50, 2116–2136.
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Plate 1 (a) Streamlines and (b) isotachs of the July average surface winds as
determined by the SeaWinds scatterometer aboard QuikSCAT and as estimated
by Neiburger et al. (1961). The QuikSCAT average, shown in (a), is for July
of the years 1999–2002 (only July 19–31 was available for 1999) and has
0.5◦ latitude/longitude resolution. The Neiburger et al. average, shown in (b),
is actually a redrafted version of McDonald’s (1938) Charts 9 and 21, in which
the wind speeds are contoured in Beaufort units. We have converted the Beaufort
units to m s−1 with the arrow notation, e.g., 4 → 7.2 meaning 4 Beaufort units is
equivalent to 7.2 m s−1.
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Plate 2 The color analysis shows the divergence field associated with the
QuikSCAT winds displayed in Plate 1. For comparison the July mean divergence
estimates of Neiburger et al. (1961) are shown by the solid black isolines, labeled
in units of 10−6 s−1. The white areas adjacent to the North American coast, the
Hawaiian Islands, the Aleutians, and Guadalupe are regions where the divergence
could not be calculated.

Plate 3 Simulated splitting supercell thunderstorms evolving in strong environ-
mental wind shear, displayed at 2 h. The cloud field is shaded in gray, surface
temperature is colored in shades ranging from red (warm) to blue (cold), and
surface wind vectors are included at every fourth interval. The model integration
employed �x = �y = 1 km, �z = 500 m, within an 80 × 80 × 20 km domain.
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(b) CK + 4th-order filter(a) CK = 0.1--0.3

Plate 4 Power spectral density of vertical velocity at a height of 3 km in the
cross-line (x) direction, obtained using the TKE scheme for turbulence closure.
(a) Influence of CK ranging from 0.1 to 0.3; (b) Effects of fourth-order horizontal
filter with and without the TKE scheme. Cε = 0.93 for all TKE runs. A dashed
k−5/3 line is also plotted for reference. (From Takemi and Rotunno, 2003.)

Plate 5 15–18 UTC accumulated precipitation from 10 km WRF and 12 km
operational Eta model forecasts initialized at 12 UTC on 4 June 2002. The observed
15–18 UTC precipitation is also displayed. (From Baldwin and Wandishin, 2002.)
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Plate 6 Power spectra for the observed 15–18 UTC accumulated precipitation
on 4 June 2002 along with spectra for the forecast precipitation from the 10 km
WRF, the 22 km WRF, and the 12 km operational Eta model. (From Baldwin and
Wandishin, 2002.)

36 h forecast 12 h forecast Radar composite 

Plate 7 36 h and 12 h real-time 4 km WRF BAMEX forecasts for composite
reflectivity valid at 12 UTC on 8 June 2003. Observed composite reflectivity from
NEXRAD Radar are also displayed for comparison.

              

       



Plate 8 Power spectral density of kinetic energy from experimental WRF 22 km
grid CONUS forecasts, 10 km grid BAMEX forecasts, and 4 km grid BAMEX
forecasts. Also included is the observational spectral data from commercial aircraft
presented by Nastrom and Gage (1985).
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Plate 9 Equivalent potential temperature (K) as a function of pressure and radius
from the centre of Hurricane Inez on 28 September 1966, based on aircraft data at
500 m, and at pressures of 750, 650, 500 and 180 mbar. Contours are at intervals
of 2 K with a minimum value of 336 K (light blue) and a maximum value of 376 K
(yellow). (After Hawkins and Imbembo, 1976.)
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Plate 10 Terrain elevation and temperature of the Sierra Nevada range in Califor-
nia. Temperature map was derived from thermal infrared channel 11 on MODIS
instrument on 30 October 2002. The scattergram is partitioned to show four cooler-
than-average regions (A, B, C, D) at different altitudes.

 

Plate 11 Map view of Sierra Nevada range. Partitions in Plate 10 are shown in the
same color and labeled A, B, C, D.

              

       



Plate 12 Same as Plate 10, but for warmer-than-average regions (E, F, G, H).

 

Plate 13 Same as Plate 11, but for the regions identified in Plate 12.
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