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Preface

Physicists pretend not only to know everything, but also to know everything bet-
ter. This applies in particular to computational statistical physicists like US. Thus
many of our colleagues have applied their computer simulation techniques to
fields outside of physics, and have published sometimes in biological, economic
or sociological journals, and publication flow in the opposite direction has also
started.

If one sets plates, knifes, and forks onto a dinner table, one has to put in human
organisation to order the pieces properly. The magnetic atoms in iron, on the other
hand, order their magnetic orientation parallel to each other (over small distances)
by themselves, and similarly water molecules in vapour cluster all by themselves
into small drops when it rains. Such effects are called “self-organisation” (or
“emergence”) and are typical for “complex systems” of many simple elements,
often different from each other, which altogether generate effects which cannot
be seen from the properties of a single element. The whole is not the simple su-
perposition of its many parts. 65 years after van der Waals wrote his thesis with
what may be regarded as the first theory to explain self-organisation in complex
systems, computers became available and simulations on them triggered the sys-
tematic research activity on this field. These studies flourished during the last few
decades.

Many other natural phenomena outside physics are related to the terms “com-
plexity”, “emergence”, etc., in particular, evolutionary dynamic systems, where
a population of agents evolves in time, the behaviour of each influencing the be-
haviour of others. Biological evolution through natural selection is the master
example, but the same general concepts apply also to distant subjects, such as
the occurrence of earthquakes. Other examples can be seen in diverse social be-
haviour and human activities such as the distribution and evolution of languages,
elections, the diffusion of opinion, terrorism, etc.

The present book reviews selected applications to evolutionary biology (Chap-
ters 3 and 4), social sciences (5 and 6) and geosciences (7), while Chapter 2
explains the general concepts of evolutionary dynamical systems, and why com-
puter simulations of agent-based-models are the basic tool for these studies. The
book as a whole is intended for graduate students and researchers not only in
physics. No deep knowledge concerning the many different subjects or computer
programming is required to follow the book, which can therefore be useful (we
hope) to a wide and general audience. The parts we marked with asterisks con-
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vi Preface

tain mostly additional information, not fundamental for the comprehension of the
book as a whole.
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Chapter 1

Introduction

Computational Physics is now a multidisciplinary line of research. A long time
ago, it was not like that, computers were used by physicists only in order to solve
classical problems resistant to the analytical approach: One is able to model the
problem at hands through, say, a set of coupled differential equations, but the
analytical solution for these equations is not available. The solace is the numerical
solution, and the old branch of Computational Physics consists in providing fast
and precise numerical methods to be applied to these cases.

Some systems, however, resist even to this numerical strategy, for instance the
life cycle of a bacterium with 10 thousand proteins, a rather “simple” biologi-
cal organism. The concentration of each protein varies in time according to the
current concentrations of the others, and also to external stimuli. Suppose one
models how each concentration depends on all others by writing down a set of 10
thousand coupled differential equations, which depend also on the possible exter-
nal stimuli. Furthermore, suppose one is able to solve this mathematical problem
on a computer, within a reasonable time: then, one can run the program for a
given set of initial concentrations and external stimuli. In order to study the be-
haviour of this “simple” system, one would need to run the program again and
again, for different conditions, and try to extract some useful information. Some
particular stimulus may result in some particular behaviour, if it occurs when the
concentration of some particular protein is high. Has it the same effect when this
concentration is low? Does it depend on the concentrations of other proteins? Is
the effect of two superimposed stimuli obtained simply by adding the individual
effects of each one? How long does one need to wait, after the onset of some stim-
ulus, in order for the system to have reached a state in which a renewed triggering
of the stimulus would generate the same effect anew? How does this waiting time
depend on the concentrations? This is an endless approach, which in some very
lucky cases may be circumvented by a reductionist reasoning: to consider only the
effect of some dozen proteins and stimuli, forgetting all the rest. Beyond a simple
bacterium, the reader can imagine the mess one reaches in the study of a bacterial
colony. Also, even worse than a 10 thousand protein life cycle is a system for
which there are no fundamental equations relating the various important quan-
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2 Chapter 1. Introduction

tities. Biological evolution, where there is no Darwin equation, is an example.
Social behaviour within a human population is another, as well as the dynamics
of economics. Normally, one cannot even model such a system by a set of coupled
differential equations.

An alternative is population dynamics: one keeps on the computer memory the
current features of each individual, and simulates the whole dynamic evolution
by programming the interaction rules governing the influences of these individu-
als on each other, as well as external stimuli. A crucial ingredient is randomness,
which is included through the use of some pseudo-random number generator.
The long-term evolution of the same system is repeated many times, for different
randomness and initial conditions, and averages are taken at the end. Besides
the numerical solution of equations, this simulational approach is the second,
modern branch of Computational Physics, introduced by the pioneering work of
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953)half a century ago.
First applied to equilibrium models of Statistical Physics, simulations are now
applied to many different problems outside physics and out of equilibrium. The
reason for this success is a subtle concept known as universality, discovered within
the study of critical phenomena where the simulational approach has a fundamen-
tal position.

Equilibrium critical phenomena occur in macroscopic systems which present
long-range correlations: The behaviour at some position X depends on the current
state of another far position Y. If one slightly “shakes”, or perturbs, the system
at Y, an observer at X feels the effect of the shake in spite of the long distance
X-Y. Indeed, as the distance increases, the intensity of the effects of the perturba-
tion decays, but not according to the normal exponential decay, for which there
is a characteristic correlation length beyond which correlations can be neglected.
Within critical systems, instead, the decay normally follows a power-law, lacking
any characteristic length: no matter how distant X is from Y, the effects of the
perturbation cannot be neglected. All length scales are equally important. The re-
ductionist approach of taking only a small, localised piece of the system clearly
does not work: critical systems must be studied as a whole. Outside equilibrium,
in most cases, the power-law decays responsible for the long-range spatial cor-
relations also appear defining the time dependence of the various quantities of
interest: they produce long-memory effects, small contingencies occurred a long
time ago can be determinant for the present situation of the critical system. All
time scales are equally important. These features turn it very difficult to model a
critical system through simple space-time differential equations.

On the other hand, the length and time scale-free behaviour of critical phe-
nomena provides an interesting feature: Both the microscopic details and the
short-term dynamics are not crucial for the long-range and long-term evolution
of the system under study. Only some general characteristics as the spatial di-
mension and symmetries matter. Systems sharing the same spatial dimension and



Chapter 1. Introduction 3

symmetries fall into the same universality class, in spite of the big differences in
what concerns the microscopic and short-term behaviour of each one. For criti-
cal systems in equilibrium, this universality concept was already well understood
through the Wilson’s renormalisation group. An equivalent general theory for
systems out of equilibrium is still lacking, but the evidences of universal time
dependent behaviour joining together completely different systems are ubiqui-
tous. Universality allows us to model complicated real systems by toy models
belonging to the same universality class, simplifying a lot the study of these sys-
tems. Even so, due to the long-range and long-memory features, one cannot hope
to solve the toy model by the reductionist paradigm, by following only a small
piece of the system during a small interval of time. The population dynamics
simulational approach appears instead as the most important instrument for these
studies.

This book shows some examples of critical dynamic systems studied through
computer simulations. They belong to different fields, not just Physics, and are
connected by two very general features. First, they are critical, presenting long-
range correlations and long-term memories. Second, they are modelled by simple
rules one can easily program on a computer, turning it possible to follow in sec-
onds what corresponds to centuries of the real system under study.

We wanted to avoid, also because of the way references had to be put in this
edition, to present a book which would mainly be a list of references surrounded
by little text. Thus, not only have we selected a few fields of interdisciplinary
computer simulations with which we are more familiar, but also chose to reference
within these fields papers which we feel are the most important, as seen both
from today’s perspective and from our restricted interests and knowledge. We
are aware of the fact that important papers will for sure be missing from our list
of references, and we apologize to the reader and to the authors for that mostly
unwanted omission.

We start inChapter 2with general principles of evolution, and then apply them
to biology in Chapters 3 (ageing) and 4 (speciation). Then comes the presently
fashionable field of languages (Chapter 5) and the related one of sociophysics
(Chapter 6). Finally, Chapter 7gives applications to earthquakes. Our summary
in Chapter 8tries to point out the similarity in the methods used in the previous
chapters. An appendix,Chapter 9, lists and explains selected complete computer
programs, written in Fortran – for the desperation of half the authors and as an
early example of Galam conservatism model explained in Section6.3.1.
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Chapter 2

Evolution

The word “evolution” is directly linked with time. Something which evolves is not
static, it varies as time goes by. A variable quantityx describing such a dynamic
system is a function of time,x(t). The speed of its variation is measured by the
first derivative dx/dt of this function, the acceleration by the second derivative
d2x/dt2, and so on. The canonical way to study this kind of problems is through
the so-called differential equations, i.e., mathematical relations linkingx with
dx/dt , d2x/dt2, etc.

A famous example is Newton’s law

m
d2x

dt2
= F(x)

which describes the movement of a particle with massm along theX axis.F(x)

is the external force which drives the movement.
Another famous example is the Schrödinger equation

ih̄
d|ψ〉
dt

= H |ψ〉

which tells us how the state|ψ〉 of a quantum system evolves in time.H is the
Hamiltonian operator for this system, essentially its energy.h̄ is the Planck con-
stant, andi =

√
−1 is the imaginary unit for complex numbers (nothing to do

with complexity).
Diffusion also obeys a differential equation

∂ρ

∂t
= D∇2ρ

whereρ(�r, t) represents the local density of the diffusing material at position
�r = (x, y, z) and timet . The Laplacian operator∇2 sums up the second deriva-
tives with respect tox, y andz, andD is the diffusion coefficient. This problem
was studied by Einstein, in one of his five famous papers published in 1905, “Ein-
stein’s Miraculous Year” (Einstein, 1998). Now, exactly one century later, UN
and UNESCO commemorate the “World Year of Physics, WYP2005”, with a lot
of events all over the world. Diffusion describes, for instance, how an ink drop
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6 Chapter 2. Evolution

diffuses in a glass of water: as time goes by, the ink rapidly occupies the whole
glass, resulting in a homogeneous mixture at the final equilibrium situation.

Unfortunately, we are not able to write down a fourth example, because Darwin
legacy did not include a “Darwin equation”. However, would this equation exist, it
would certainly be a differential one, involving the time. Instead, his famous book
(Darwin, 1859) describes a series of concepts and rules for biological evolution.

Fortunately, dynamic systems can also be studied by tools other than differ-
ential equations. One important such a tool is computer programming, where
the computer is instructed to follow some dynamic rules imposed by the re-
searcher/programmer, for instance some of the rules one can read in Darwin’s
book. At the two last sections of this chapter, we will treat some very simple
evolutionary models under this point of view.

First, we discuss why evolution is a subject which resists analytical treatments
through differential equations. We emphasise the very special dynamics followed
by evolutionary systems, during which the space of possibilities is not completely
covered. Unlike the ink drop’s fast diffusion through the water glass, evolutionary
paths slowly grow like a tree. They do not spread over the whole space of pos-
sibilities. Only a tiny fraction, a fractal, is actually covered by the evolutionary
dynamics. In between the tree branches, the great majority of the space remains
unvisited forever. As a consequence, no final equilibrium exists, the evolving tips
of the growing tree continue their slow walk inside this space, forever.

2.1. Linearity

This book belongs to the series “Nonlinear Science and Complexity”. Why these
two concepts, nonlinearity and complex behaviour, are put together? In order to
answer this question, we need first to treat linearity, the basic, simplest possible
behaviour for a system which evolves in time.

A linear dynamic system is one described by the simplest possible differential
equation of the form

x + τ
dx

dt
+ γ

d2x

dt2
+ · · · = K

where neither the dynamic variablex(t) itself nor its derivatives appear under
complicated forms like squares, square roots, etc. All these variables are propor-
tional to each other, through the multiplicative constantsτ , γ , etc. In short, their
dependence is linear. In what concerns the constants dimensions,τ is a time,γ
is a time squared, etc.K is another constant sharing the same dimension ofx(t),
maybe a distance, a number counting, or whatsoever.

Among the simplest, let’s take the simplest case

(2.1)x + τ
dx

dt
= 0
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Figure 2.1. Two different plots for equation(2.2)with x0 = 1. The normal plot, with linear scales in
both axis, appears on the top. For this rapid decaying function, it does not allow a good visualisation
of the final tail. Below, with logarithmic scale along the vertical axis, one can better appreciate this

tail: the upper curve becomes a straight line. In both cases, the timet is measured in units ofτ .

for which the solution is

(2.2)x(t) = x0 e−t/τ

where the new constantx0 is the initial value ofx, at timet = 0. In what concerns
the time flow,x0 is unimportant, as we shall see in the next paragraph. In our
conceptual analysis, the only important constant isτ , which defines the system’s
characteristic time scale. It is the natural unit to measure the timet = τ , 2τ , 3τ
etc.Figure 2.1shows the plot of this solution, in two different representations.

A concrete example is radioactivity. Nuclide tables show lifetimes ofτ = 2 min
for 82Rb, orτ = 43 years for137Cs. The radioactivity of these materials virtually
ceases after a time of, say, 10τ , as shown inFigure 2.1(the factor 10 is only
an estimate, maybe also 5, 8, 15, etc.). In this case,x0 represents the sample’s
initial radioactivity, determined by the starting number of not-yet-decayed nuclei.
Being proportional to its mass,x0 is a measure for the sample’s size. Curiously,
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Figure 2.2. Plot of equation(2.2) again, now withx0 = 100 (top curve);x0 = 10 (middle); and
x0 = 1 (bottom). Logarithmic scales were adopted in both axis.

these nuclid tables do not mention how much material they refer to. Maybe a
sample of82Rb with mass of 1 g, another sample of 10 g, or a third one of 100 g:
after 10τ = 20 min, the radioactivity has already nearly vanished for any of these
different sized samples.Figure 2.2explains why.

The bottom curve shows the same data onFigure 2.1, now with logarithmic
scales in both axis. By performing a scaling transformation on the vertical axis,
i.e., by multiplying all its values with the same factor 10 or 100, for instance,
this curve is risen as a whole, generating the two upper curves inFigure 2.2.
The effect on the horizontal axis, however, is much smaller: only an additive, not
multiplicative increment is observed on the waiting time (≈ 10τ ) needed to reach
the same final level of radioactivity (10−4).

We have used the name “lifetime” for the parameterτ , based on a naive analysis
of Figures 2.1 and 2.2. It refers to the macroscopic sample’s radioactivity as a
whole. However, one can also formally define the average lifetime of a single
nucleus, how much time one needs to wait for its decay, averaged over all nuclei.
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x(t) represents the number of not-yet-decayed nuclei at timet . Thus,

−dx = x(t) − x(t + dt) = x0 e−t/τ dt

τ

is the number of nuclei which decay in betweent andt + dt , those contributing
with lifetime t to the average over all nuclei. So, the average lifetime is given by
the integral

1

x0

∞
∫

0

x0 e−t/τ dt

τ
t

the result of which coincides withτ , justifying its name.
The lifetimeτ of a linear dynamical system does not depend on its size. Due

to linearity, there is no relation between time and size scales of the same sys-
tem. The scaling properties of the variablex have nothing to do with the scaling
properties of the timet . In order to better understand this important concept, let’s
take again the radioactivity example. Each not-yet-decayed nucleus will decay in
some unknown future time. One can know only its probability of decaying in the
next dt seconds (or whichever unit of time one uses). This probability is dt/τ ,
and depends only on the internal features of the nuclei itself, nothing to do with
other neighbouring nuclei. In other words, there is no correlation at all between
different nuclei located at different positions of the sample. Without spatial corre-
lations, one can conclude that the number−dx of nuclei decaying together within
the same time interval dt is proportional only to the current numberx(t) of not-
yet-decayed nuclei so far. This is precisely what the linear equation(2.1)states.

Let’s compare the decaying population of radioactive nuclei with a population
of living individuals going towards extinction. Could we follow the same rea-
soning above? To consider each individual as an isolated entity whose destiny
is completely independent from other individuals? Certainly not! First, unlike
radioactive nuclei, living individuals reproduce, creating new individuals of the
same species. Second, they compete against each other for many different reasons.
Third, groups of living individuals collaborate among themselves, sometimes
against other groups, sometimes in favour. These intricate connections between
different individuals of the same population represent some kind of spatial corre-
lation. As we shall see later, long-range correlations drive this kind of problems
out of linearity.

Another, independent remark concerns the finite lifetimeτ of the linear sys-
tems. In Darwinian sense, they cannot represent an evolutionary system, for which
the eternal search for new forms, better than the current one, is imperative. Evolu-
tionary systems should obey another kind of dynamical rule, certainly not linear,
in order to allow such “infinite lifetimes”, as required.
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2.2. Chaos

In the example of equations(2.1) and (2.2), the dynamic variablex(t) vanishes at
the end. Other systems would converge to other stationary states. For instance, by
keeping the constantK in the right-hand side of equation(2.1), instead of zero,
the solution would change tox(t) = K + x0 e−t/τ . The fast, exponential rate of
convergence, however, is the same. The final stateK is called the attractor. Other
linear or nonlinear systems could converge to more complicated attractors, for
instance a cycle where the dynamic variablex(t) becomes a periodic function at
the end. Yet more complicated are the strange attractors, final situations which
are not periodic, and occupy a fractal portion of the whole space of (in principle
available) possibilities.

Some of these systems are called chaotic, a denomination which refers to the
speed they reach their final attractor, also exponentially fast, not to the kind of at-
tractor itself. Let’s consider the same system evolving from two slightly different
initial conditions,x(1)

0 andx
(2)
0 distant�0 = x

(1)
0 − x

(2)
0 from each other, at time

t = 0.
As time goes by, the distance�(t) = x(1)(t) − x(2)(t) also evolves. The sim-

plest possible dynamics is

(2.3)
d�

dt
= λ�

which is formally the same equation(2.1) if one replaces the lettersλ by −1/τ

and� by x. Of course, the solution is also the same

(2.4)�(t) = �0 eλt

whereλ is the so-called Lyapunov exponent which can be positive or negative.
Regular systems are those with a negative Lyapunov exponent, for which�(t)

fast vanishes within a lifetimeτ = −1/λ. An example is a clock pendulum fol-
lowing its characteristic go-and-back movement. Let’s consider a very precise
mechanism which keeps the pendulum reaching its rightmost position every in-
teger second (and consequently every integer minute, hour, etc.). At some time
t = 0, when it is precisely passing through that positionx

(1)
0 , somebody inciden-

tally gives it an additional impulse, suddenly changing the position tox
(2)
0 . For a

while, the subsequent movement also changes, but exponentially fast the former
trajectory is restored. After a time of 10τ , nobody can notice there was some in-
cident in the past, it was forgotten. This system presents a short-term memory, or,
in other words, a finite lifetime before reaching the final equilibrium.

Chaotic systems are those with a positive Lyapunov exponent. The system fol-
lows its normal trajectoryx(1)(t). At t = 0, some external agent promotes a very
small instantaneous perturbation, slightly changing its position fromx

(1)
0 to x

(2)
0 .
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At the very beginning, the new trajectoryx(2)(t) nearly follows the old one, both
are still correlated to each other. However, their distance�(t) increases exponen-
tially fast, while the quoted correlation decreases at the same rate. The lifetime
for this decay isτ = 1/λ. After t = 10τ , the correlation is already negligible, the
new trajectory does not keep any memory of the old one. Although very differ-
ent from regular systems in what concerns the final destiny, chaotic systems also
present short-term memory.

Consider a gas confined in a box. A classical example of chaotic system is the
zig-zag movement of its molecules. They frenetically collide with each other and
against the box walls. Imagine it would be possible to take a movie of them, a se-
quence of instantaneous pictures. Stretching a little bit the imagination, suppose
one can restart the same movement with all molecules at their original positions
and velocities, but one particular moleculeA which starts from a slightly differ-
ent initial position and/or velocity. Take a second movie. At the very beginning,
both movies seem to be the same, they are correlated. Only moleculeA presents
slightly different trajectories, comparing one movie to the other. This holds up
to the first collision between moleculeA with B. From now on,A andB will
present slightly different trajectories in the second movie, compared to the first,
up to the next collision between moleculeA or B with C. And so on. After the
finite lifetime τ (or 10τ to be sure), the movies are no longer correlated.

Although the final microscopic situation is not static, after a time of 10τ the
gas (or the chaotic system, in general) is considered in “equilibrium”. More pre-
cisely, the system is in thermodynamic equilibrium. This concept concerns the
macroscopic behaviour of the system, not the microscopic detailed movement of
each molecule. All macroscopic quantities such as the internal energy, pressure,
density, temperature, mean molecular speed, entropy and so on no longer evolve
in time, after the equilibrium is reached. Although the frenetic movement of the
molecules goes on, in a continuous change from one microscopic state to another,
all these micro-states correspond to the same macroscopic situation, the same
averaged quantities, independent of the initial condition which was completely
forgotten.

Moreover, all possible microscopic states compatible with the external con-
straints (volume, temperature, etc.) are likely to be visited by the chaotic system,
an important property denominated ergodicity. Consider, for instance, all gas
molecules initially located at one half of the box, the other half completely empty
at t = 0. Surely, this is not an equilibrium situation, after 10τ all the box volume
will be occupied. Ergodicity, in simple words, is the property a chaotic system has
to visit all the available points in the final space of possibilities, covering all its
regions.

The wordfinal in the last phrase has an important meaning. Consider the gas
not only confined inside the box, but also isolated from the rest of the world. The
box is a Dewar vessel avoiding any energy exchange through the walls. Thus, the
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internal energy is rigorously fixed, the system is closed. The initial situation could
be any distribution of molecular positions and speeds compatible with the fixed
energy. This is what we call the initial space of possibilities. Independent of which
particular initial situation one chooses, maybe all molecules into the left half of
the Dewar vessel, or any other, after the final equilibrium is reached all possible
micro-states compatible with the fixed energy are likely to be visited. Thus, for
closed chaotic systems like this example, the final space of possibilities is exactly
the same as the one at beginning.

Obviously, biological evolution cannot be classified as a closed chaotic system.
First, one cannot study the evolution of all potentially living beings of the uni-
verse, past, present and future. One necessarily needs to restrict the study to a
particular population, a single species, a group of species, or something like that.
Then, this restricted set cannot be considered closed, one needs to include the
environment. Second, within a closed chaotic system the final equilibrium is fast
reached, and evolution would be stopped from this moment on.

However, chaotic systems are not closed in general, some interactions with the
environment could be allowed. Of course, the final space of possibilities cannot
be larger than the initial one, but it can be shorter. The environment influence
can shrink this space as time goes by, gradually forbidding the system to return
back to some micro-states which were allowed in the past. The final space of
possibilities is called the attractor, an already quoted notation. Let’s call these
open systems dissipative (we don’t mean dissipative in energy, but in entropy, the
quantity which measures the number of available micro-states compatible with
the observed macro-state). Normally, these dissipative chaotic systems present a
lower-dimensional attractor, a sub-space of the whole initial space of possibil-
ities. A lower dimension sub-spaces of a larger spaceS means the following:
(1) take a random point ofS; (2) the probability to find this point insides van-
ishes. A simple example is a straight line (s, with dimension 1) inside a plane
(S, with dimension 2). Would the dimension ofs be a non-integer number, it is
called a strange attractor.

Again, biological evolution does not fit into the class of chaotic dissipative sys-
tems. Being rapidly trapped into the tiny attractor, such a system loses forever
the chance to visit other parts of the whole space of possibilities. This fast be-
haviour could be useful in optimisation processes, where the interest is to extract
the best options among the whole set of possibilities, nothing to do with evolu-
tion which requires diversity. The attractor depends on the environment, and one
cannot suppose the environment is fixed. It certainly varies. Within a chaotic dissi-
pative dynamics, the current tiny attractor which corresponds to the current “best”
options is no longer the best as soon as the environment changes a little bit. The
current population trapped into the former tiny attractor is no longer adapted to
the new environment, and could not survive enough to re-adapt. That is why di-
versity is a key ingredient for evolution. Somehow, the dynamics should preserve
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other forms different from the current supposed “optimum”. Definitely, evolution
and eugenics are not the same concept.

In short, biological evolution certainly does not follow any chaotic dynamics
(λ > 0). On the other hand, neither a regular dynamics (λ < 0) can describe
biological evolution: in this case the final situation would be a completely uniform
population.

2.3. Nonlinearity

Beyond linearity, the simplest nonlinear form is a square. Thus,

(2.5)x2 + x1τ
dx

dt
= 0

is the simplest possible nonlinear differential equation. However, it is not so sim-
ple. Compared to equation(2.1), now the multiplicative constant in front of the
derivative can no longer have the dimension of time. The formx1τ is chosen
for this constant in order to explicitly show the coupling of two different scales,
namely the already used time unitτ and the new constantx1 which is the scale for
the variablex (distance, number counting, or whatsoever). The solution for this
equation is

(2.6)x(t) = x1

( t

τ

)−1
.

The mathematical formvariableraised toconstant exponenton the right-hand
side of equation(2.6) is called a power-law (in the present particular case, the
exponent is−1, in general, any other constant). It is the reverse of the exponential
form constantraised tovariable exponentobtained as solutions for linear differ-
ential equations in general, Section2.1.

Power-laws are ubiquitous is Nature, not only to describe time dependences
as equation(2.6), but also relations between other quantities. As an example,
Figure 2.3shows the numberN of earthquakes in Southern California, classi-
fied according to the energyE they released. For each value ofE, the counter
N includes all earthquakes which released more energy thanE, during the period
2000–2004 (data fromwww.scec.org). The straight line behaviour is the signature
of a power-law

N ∝ E−b

where the symbol∝ means proportionality, generally used in order to omit mul-
tiplicative constants. The slope of the straight line measures the power-law ex-
ponentb, in this caseb ≈ 1. The so-called Richter scale defines the magnitude
M for earthquakes as the logarithm of the released energy measured in a proper
unit. Thus, along the horizontal axis, the exponents displaying the powers of 10

http://www.scec.org
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Figure 2.3. Earthquakes occurred in Southern California in the period 2000–2004, classified accord-
ing to their magnitudes.

correspond to the Richter magnitudes from 0 to 6. Earthquakes are discussed at
Chapter 7.

The saturation effect seen at the leftmost part ofFigure 2.3is supposedly due
to the loss of sensibility of seismographs to the smallest earthquakes. On the other
hand, the dangerous events are displayed by the rightmost points, the last one with
magnitudeM ≈ 6. Although the statistics is not so good at this region, one cannot
see any trend of deviation from the straight line.

Let’s return back to the nonlinear time evolution theoretical example, equa-
tions(2.5) and (2.6). Note thatx1 is the natural unit forx(t) in the same way asτ
is the natural unit fort . However, contrary tox0 which appears only in the solution
(2.2), not in the linear differential equation(2.1) itself, nowx1 appears already in
the nonlinear differential equation(2.5)as well as in its solution(2.6). As we shall
see now, for nonlinear evolving systems, the scales fort andx(t) are unavoidably
linked to each other.Figure 2.4shows the plot of equation(2.6) in the same two
different representations ofFigure 2.1, repeated now in dashed lines, by choos-
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Figure 2.4. Two different plots for equation(2.6)with x1 = 1, in solid lines. For comparison, dashed
lines correspond again to equation(2.2)with x0 = e. The timet is measured in units ofτ .

ing x0 = ex1. With this choice, both the exponential form, equation(2.2), and
the power-law, equation(2.6), start from the same position with the same slope
at t = τ , allowing thus a fair comparison between both decaying rates from this
moment on—note that equation(2.6) forbids to start att = 0, thus we choose the
arbitrary initial time ast = τ . As we can see, the exponential decay, dashed lines,
is much faster than the power-law one, solid lines. Times up tot = 10τ are not
enough to appreciate the much longer power-law tail. The question is: how much
faster is the exponential decay, compared with the power-law?

In order to answer this question, let’s imagine a radioactive sample decaying
according to equation(2.6) instead of equation(2.2). Following the same reason-
ing of Section2.1, the number of nuclei decaying betweent and t + dt would
be

−dx = x(t) − x(t + dt) = x1 τ dt

t2
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and the lifetime average over all nuclei would be given by the integral

1

x1

∞
∫

τ

x1 τ dt

t2
(t − τ)

the result of which diverges to infinity! Fortunately for all living beings on the
planet, mother Nature did not follow our crazy imagination. All radioactive sam-
ples actually decay within some finite lifetime, according to equation(2.2), maybe
as large asτ = 43 years for137Cs, but finite. Instead, equation(2.6)describes an
endless dynamics. Thus, the correct answer to the question posed at the end of
last paragraph is: the comparison is not possible, these decays are qualitatively
distinct, and cannot be quantitatively compared.

In practice, however, a dynamics with “infinite” lifetime is nonsense. Where is
the puzzle?Figure 2.5guides the answer.
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Figure 2.5. Plot of equation(2.6), in solid lines, withx1 = 100 (top line);x1 = 10 (middle);
andx1 = 1 (bottom). Logarithmic scales were adopted in both axis. Curved dashed lines display

exponential decays, equation(2.2)with x0 = ex1, for comparison.
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The lowest solid and dashed lines show the same data asFigure 2.4, now with
a much wider time scale, far beyond 10τ , allowing one to appreciate the power-
law tail along the straight line. The other lines correspond to different size scalings
performed on the vertical axis, variablex, in proportion 1: 10 : 100. It is exactly
the same scaling transformation already done inFigure 2.2for the exponential
decay, now shown in dashed lines for easy comparison. Different from the expo-
nential decay, where the multiplicative scaling performed on the system’s sizex

(vertical axis) generates only a small, unimportant additive increment in the life-
time (horizontal axis), the power-law decay shows the size scaling fully reflected
in the time scaling. No surprise, we have already noticed that size and time scales
are entangled with each other through the productx1τ , since the original nonlinear
differential equation(2.5)was written down.

The size of any physical (biological, social or whatsoever) nonlinear system
is certainly finite. Then, its lifetime is also finite. Nonlinearities in size, such as
the simplex2 term exemplified in equation(2.5), appear because the many in-
dividual components of the system (its “molecules”) are spatially correlated to
each other. The behaviour of such a component located at position A directly
influences another neighbouring component at position B, which also directly in-
fluences another neighbouring component at position C, and so on. Although the
direct action of each component concerns only its nearest neighbours, the net re-
sult is the emergence of a long-range correlation involving a macroscopic set of
components. The information needs time to propagate from one component to all
others. The larger the correlation range, the larger the corresponding time. How-
ever, even within a would-be infinite correlation range, the system itself is finite:
its boundaries impose a cutoff on this range, and a consequent cutoff on its life-
time. A biological species will become extinct in some finite future, because its
current population is finite. Would the same species have a smaller (larger) pop-
ulation now, by evolving under the same conditions it would be extinct earlier
(later). Only a would-be infinite population could escape from extinction.

Nonlinear differential equations like(2.5)can hold only for “infinite” systems,
a crazy but very useful concept which exists on the imagination of physicists and
mathematicians, not in reality. Within such a system, an infinite-range correlation
would be conceivable, all system’s components influencing all others, directly or
indirectly. Accordingly, this imaginary system would present an infinite lifetime,
and could be represented by nonlinear differential equations of the same kind of
(2.5). Although out of reality, infinite size models are useful because they can also
represent the corresponding finite real system, provided one does not overflow the
maximum allowed size and time scales, namely the size of the finite system itself
and its corresponding finite lifetime. Beyond these limits, equations like(2.5)
no longer hold. In reality, plots likeFigure 2.5always bend downwards at the
rightmost part, deviating from the straight line when the system’s finite lifetime is
approached.Figure 2.6is an example. The data used to construct the plot were the
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Figure 2.6. Return probability of earthquakes with the same magnitude to the same region, in this
case Southern California, measured during the period 2000–2004. The time lagt is the number of
days between successive occurrences. The dashed line guides the eyes, and its slope measures the

power-law exponent.

same used before inFigure 2.3, www.scec.org, collected during the period 2000–
2004. This restricted dataset limits the time lagt to approximately 1800 days, just
the end point of the rightmost bending tail ofFigure 2.6. No surprise, it is only an
example of the cutoff always present in any power-law behaviour, due to the size
and time limits of the system itself.

Figure 2.3does not bend downwards! Would this behaviour remain after im-
proving the statistics? Inwww.scec.orgone can find registers for earthquakes
since 1932! Thus, instead of the 5-years period 2000–2004, one could superim-
pose a new plot toFigure 2.3, with data corresponding to all earthquakes occurred
during the 50-years period 1955–2004, a 10-fold time scaling (we will let this task
as a homework for the reader). In principle, we could also stretch the time scaling
once more, by searching for earthquake registers since 1505, a 100-fold time scal-
ing (fortunately for the exhausted reader, there are no earthquake registers before
Columbus). The result of superposing two further plots onFigure 2.3is easily

http://www.scec.org
http://www.scec.org
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Figure 2.7. Neuronal avalanches classified by size, experimental data kindly provided by professor
Dietmar Plenz from the National Institute of Mental Health, Bethesda, Maryland, USA.

predictable: it would present three parallel straight lines, similar toFigure 2.5.
The 50-years period plot would display earthquakes up to magnitudeM ≈ 7, and
the 500-years data up toM ≈ 8, a terrifying scenario: simply by scaling up the
observation time, the maximum earthquake strength would be scaled up by the
same factor! Fortunately, this scaling certainly has a cutoff due to the finite size of
the San Andreas fault, forcing the straight line plot to bend downwards for large
enough earthquakes. Unfortunately, this upper bound has not yet been reached by
the available data registered by seismographs up to now.

A nice example of finite size cutoff can be seen inFigure 2.7. Slices of rat cor-
tical tissue were placed over a square grid of tiny electrodes distant 200 µm from
each other. These electrodes measure neural activity which occurs in cascade: the
activity of one neuron can trigger activity on another, which could activate a third
one, and so on. After some time, the whole system becomes quiet until a second
cascade suddenly starts again, and so on. Each electrode is activated as a response
to neural activity above it. The size of the avalanche is measured by the number
of electrodes activated during each neural cascade. Three different measurements
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were displayed with different symbols. On the left plot, a grid with 15 electrodes
was used, 30 on the middle plot, and 60 on the right one, defining three different
size limits for the whole system. In each case, before reaching the corresponding
limit, the number of avalanches follows a power-law as a function of the avalanche
size, the same straight line for all inFigure 2.7. Beyond the limiting grid size, the
finite size cutoff appears. A complete description of the experiment can be found
in the original paper (Beggs and Plenz, 2003).

2.4. The edge of chaos

Equation(2.3)is incomplete when the Lyapunov exponentλ vanishes. Indeed, the
linear form on its right-hand side is only the first term of a series likeλ�+γ�η +
· · ·. In Section2.2, we treated only the cases where this first term dominates, the
others were omitted, and the dynamic systems were classified as regular (λ <

0) or chaotic (λ > 0). At the edge of chaos (λ = 0), however, those possible
nonlinear terms cannot be omitted anymore.

Systems evolving in time with zero Lyapunov exponent are said to follow a
critical dynamics. For them, the distance�(t) = x(1)(t) − x(2)(t) between two
initially neighbouring trajectories evolves according to

(2.7)
d�

dt
= γ�η = z�

1/z

1

τ
�1−1/z

where�1 = x
(1)
1 − x

(2)
1 is its value at timet = τ , the same time unit already

introduced before. On the right-hand side, the constantsγ andη were replaced by
convenient combinations of�1, τ andz, explicit showing the proper dimension
of γ . Of course, the exponentsη and z are dimensionless. The solution is the
power-law

(2.8)�(t) = �1

( t

τ

)z

which replaces the exponential solution(2.4) for the linear equation(2.3), valid
for regular or chaotic dynamics. Now,z is the critical dynamic exponent.

The first comment concerning such a critical dynamics is the intrinsic coupling
between the scales for both quantities involved, namely the timet and the dynamic
variablex (or �), the same characteristic entanglement we have already found at
the beginning of last section. The nonlinear character of equation(2.7) is again
responsible for that.

The second comment is the endless behaviour of critical dynamics, imposed
by the power-law mathematical form. This feature is called long-term memory, in
contrast with short-term memory characteristic of the exponential form.

We have already illustrated this point in the last section, in the frustrated at-
tempt to calculate the average lifetime for the dynamic evolution described by
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equations(2.5)or (2.6): the result is infinite! Before, in Section2.2, we have ob-
tained a finite memory time 1/|λ| for both regular or chaotic dynamics. Now, with
λ = 0, there is no characteristic time scale after which the system “loses its mem-
ory”. On the contrary, the very first initial deviation�1 is “remembered” forever,
as we shall see now.

First, let’s consider the discrete version of dynamic evolutions in general, by
following the time sequence

t = 0, 1, 2, 3, . . . , n, n + 1, . . .

in units ofτ . Accordingly, a trajectory is described by the sequence

x0, x1, x2, x3, . . . , xn, xn+1, . . .

where we have used the short notationxn for x(t = nτ). The presence of only the
first derivative in the corresponding differential equations such as equation(2.1)
or (2.5) characterises the system as Markovian, i.e., for any trajectory, the next
entryxn+1 depends only on the currentxn, not on the pastxn−1, xn−2, etc. Math-
ematically, one can write

xn+1 = f (xn)

wheref represents some function defining the dynamics, and plays the same role
as the differential equation.Figure 2.8illustrates this time evolution for a chaotic
dynamics.

An example of Markovian system is the genetic evolution of a population, if
we take the simplified version of non-overlapping generations. The genetic pool
xn+1 of the next generation is defined exclusively by the genetic poolxn of their
parents. Of course, in this case, the dynamic variablex is not a simple number,
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Figure 2.8. Chaotic dynamics. Starting from slightly different initial points, two possible histories

x
(1)
n andx

(2)
n of the same Markovian systemxn+1 = f (xn) are shown, for which the next valuexn+1

depends only on the current one,xn. The next dispersion�n+1 also depends only on the current one,
�n.
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but a distribution of genes among the population. Analogously, instead of a sim-
ple difference,�n represents the genetic diversity characterising generationn,
where we have used again the short notation�n for �(t = nτ). Physicists and
mathematicians usually refer to dispersion, instead of diversity.

Restricting ourselves to the chaotic or regular cases, we can use equation(2.4)
to express�n+1 as a function of�n, namely

�n+1 = eλτ�n regular or chaotic

Thus, for a Markovian evolution of the dynamic variablex, the conclusion is: if
the system is regular or chaotic (λ 	= 0), the evolution of its diversity or dispersion
� is also Markovian.

What about critical dynamics?Figure 2.9shows the picture. In this case, we
should use equation(2.8), trying to express�n+1 as a function of�n. It is not
possible! The best one can do is

�n+1 =
(

�
1/z
n + �

1/z

1

)z

critical

By comparing the two last equations, we observe the eternal influence of the
very first dispersion�1 on all subsequent future evolution for critical dynamics,
a feature not shared neither by regular nor chaotic cases for which the initial
dispersion�0 is forgotten. Even being Markovian, the system which follows a
critical dynamics presents long-term memory concerning its dispersion, as time
goes by. Again, a good example is the genetic evolution of a population. The
genes of each individual of generationn+1 were copied only from individuals of
generationn, notn − 1, norn − 2, etc. The genetic diversity of generationn + 1,
however, cannot be defined only from the current genetic diversity of generation
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Figure 2.9. Critical dynamics. As in the previous figure, the next valuexn+1 depends only on the
currentxn. The diversity or dispersion�n, however, follows equation(2.8), starting from the initial
value�1 at t = τ . Contrary to the previous figure, now the next�n+1 depends not only on the current

one,�n, but also on the very first diversity�1.
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n. The evolution of diversity depends on small contingencies occurred on a remote
past, an effect geneticists normally call the “founders effect”.

There is a legend according to which Ghengis-Khan had a lot of children in
many places, much more than any other human being of his time. Thus, his
own genes were widespread over the population during the following generations.
Let’s suppose this is true, and raise the possibility of an alternative history accord-
ing to which Ghengis-Khan was dead at an age of 10 years, with no children at
all. According to this alternative scenario, the current human genetic pool would
be different than it actually is, due to a single minor contingency which occurred
a long time ago! Critical dynamics present this important feature: dependence
on minor contingencies occurred in a remote past. The system evolves in trees,
does not occupy the whole space of possibilities, and always leaves most part
of the space unvisited for further explorations. Mathematically, the exponential,
explosive growth of diversity characteristic of chaotic systems, equation(2.4), is
responsible for the fast occupation of the whole space of final possibilities (the at-
tractor), like a drop of ink inside a glass of water. For critical dynamics, however,
this relation is replaced by the much slower power-law, equation(2.8), which al-
lows only a tree-like growth where branches bifurcate from each other, keeping
the most part of the possibilities unvisited. Some branches can also die. The actual
branches occupied during the evolution of a particular history are not necessarily
the same for another alternative history.

The same story of Ghengis-Khan is usually told concerning the first Brazilian
emperor, Dom Pedro I, who ruled the country from 1822 until 1831. In this much
more recent case, the huge number of children widespread over the country is
easily verifiable, and really true. Undoubtedly, the genes inherited from D. Pedro
I are strongly present in the Brazilian population nowadays. He was a 10 years old
child when he arrived in Brazil in 1808, inside a ship coming from Portugal, when
the royal family was transferred in order to escape from Napoleon. Had this ship
be sunk during this trip. . . (the reader already knows the tale end). But let’s tell
another tale. In principle, D. Pedro I could be a descendant from Ghengis-Khan,
who knows? Within this hypothesis, the genetic pool of the Brazilian population
could have a strong influence from Ghengis-Khan!

Jealous because of the Brazilian tale, the German author wants to tell his own,
not related to genetics, but to historical evolution: if Adolf Hitler had died at the
age of 10 years. . .

Of course, in what concerns the past, a single history matters, the true one
which really occurred. However, in what concerns the possibility to foresee the
future, the many-histories scenario should be taken into account. For chaotic dy-
namics, reaching equilibrium after a finite time, one can make averages over all
the potentially possible current situations, at present, in order to predict the prob-
abilities of the various possible futures. For critical dynamics, this average over
potentially possible presents is not useful to predict anything: one needs to follow
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the real history since a remote past. It is not theaveragegenetic pool of the Brazil-
ian population at the beginning of the XIX century which was strongly passed on
to the future generations. They were the genes of D. Pedro I himself, a single
individual!

2.5. Complexity and criticality

The title above is the same as a recently published book (Christensen and
Moloney, 2005), and also the same as the entire issue of Physica A dedicated
to Per Bak (Bak, 2004). In both, the reader can find examples of complex, critical
systems covering a wide set of subjects: evolution, speciation, genetic regula-
tion, epidemics, neuroscience, earthquakes, forest fires, astrophysics, cosmology,
turbulent flow, plasma physics, magnetism, traffic, surface physics, economic
market, networks, adaptive learning, and also (of course) computer modelling.
The pioneering book byPer Bak himself (1997)also shows a lot of examples. The
title links two distinct concepts which are nevertheless entangled to each other in
the very same way as time and size scales do in nonlinear systems, Section2.3.

Complexity (de Oliveira, 2005) is not an easy concept, the precise definition
is not yet settled by the scientific community. Let’s take a simple definition, as
follows. A complex system has a large number of components and evolves in
time. Each component exerts direct influence on some neighbours, and its behav-
iour also depends on direct influences exerted by others. The intricate network
of influences, direct or indirect, is spatially long-ranged. Some different influ-
ences acting on the same component can generate conflicts. These are the basic
properties a system should have in order to be classified as complex. A much
richer analysis concerning the meaning of complexity can be found in the excel-
lent paper by Giorgio Parisi, entitled “Complex Systems: a Physicist’s Viewpoint”
(Parisi, 1999).

Criticality is a much older concept, well studied by physicists since the nine-
teenth century, seeStanley (1971). Boiling water at a temperature of 100 degrees
Celsius (absolute temperatureT = 373 K) and pressure of 1 atmosphere (I do
not use Pascal, though it is not as bad as Fortran) is a combination of liquid
and vapour, two phases with different densities sharing the same closed vessel.
Let’s denote the density difference, liquid minus vapour, bym. By warming the
whole system to a higher temperature, sayT = 393 K, the liquid-vapour co-
existence remains, provided one tunes the proper pressure higher than 1 atm.
Hotter than before, the almost incompressible liquid suffers a small dilatation,
its density decreases, while the compressible vapour becomes denser. The density
differencem(T ) itself decreases, it is a decreasing function of the temperature.
Warming more and more, the liquid-vapour coexistence is maintained by control-
ling the proper pressure, up to the critical valueTc = 647 K, where the liquid
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Figure 2.10. Density differencem between liquid and vapour water.

and vapour collapse into a single densityρc = 322 kg/m3, under the pressure
pc = 217.7 atm. Above this point, water is found in only one homogeneous phase
we will hereafter callgas in order to distinguish from the vapour which can co-
exist with liquid belowTc. The critical temperature defines a phase transition, not
to be confounded with the ordinary transformation of liquid water in vapour. We
refer to the coexistence of two distinguishable phases, only possible belowTc,
versus the single homogeneous gas above.Figure 2.10shows the plot form(T )

nearTc.
Phase transitions can also be interpreted as bifurcations. Instead of the density

difference, we can plot the fluid density itself,Figure 2.11, a single curve for
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Figure 2.11. Densities for coexisting vapour (left) and liquid (right) water, below the critical temper-
ature. Above, the homogeneous gas density under constant pressure.
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the homogeneous gas above the critical temperature, and two separate curves for
liquid and vapour, below it.

At room temperature and pressure, only small vapour bubbles appear. By press-
ing the fluid beyond 1 atm, but keeping the room temperature, the small bubbles
shrink and disappear, the liquid phase remains alone. The compressibility is not
high, because the liquid is almost incompressible and its volume remains nearly
the same. Relaxing back the pressure to 1 atm, the small bubbles reappear.

By warming the vessel to higher temperatures, and keeping the proper liquid-
vapour coexistence pressures, vapour bubbles inside the liquid increase in size.
They grow more and more as the temperature increases towards the critical value.
Thus, the compressibility also increases, as shown inFigure 2.12.

Near the critical temperature, the compressibilityκ becomes enormous. The
fluid becomes completely soft, responds with a large volume decrement (in-
crement) to any small compression (decompression). For the gas, aboveTc, κ

decreases again, but remains larger than the corresponding values for the liquid-
vapour coexisting phases belowTc.

In order to estimate the typical diameter of the bubbles, more precisely the
Coniglio–Klein droplets (Coniglio and Klein, 1980), one can resort to the so-
called correlation lengthξ(T ), obtained by simultaneously measuring the density
fluctuations at different positions inside the vessel, as a function of the distance.
Figure 2.13shows the plot of this typical length. Above the critical temperature,
of course, there are no longer vapour bubbles surrounded by liquid, only a single
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Figure 2.13. Plot of the correlation lengthξ . Below the critical temperature, it is an indirect measure
for the mean diameter of vapour bubbles observed inside liquid water.

gas big bubble exists, the size of which is limited by the vessel itself. However, the
density–density fluctuations do exist along the whole range of temperatures, so its
characteristic lengthξ(T ) continues to exist beyondTc. For a would-be infinite
system, the correlation length really explodes to infinity atTc. In practice, only
the finite size of the vessel itself limits the otherwise endless growth ofξ(T ) as
one approaches criticality. There, the single, critical big bubble is an entity as a
whole, any shake at one side of the vessel is reflected on the far opposite side.
Above Tc, the correlation length shrinks back, becomes smaller than the vessel
size again, and criticality is lost. Although one continues to have a single gas
bubble occupying the whole vessel, the long-range correlation no longer holds,
the shake on one side is no longer felt on the opposite one.

From a practical point of view, the first remarkable feature of a fluid like wa-
ter near its critical point is its already mentioned softness: a tiny increment on
the external pressure generates an enormous decrement on the volume, and vice-
versa. The reason for that is the very large size of the vapour bubbles, completely
susceptible to compression. This property is also shared by many other systems
with practical applications, for instance to construct artificial muscles or micro-
engines. All modern electronics is based on this same phenomenon, translated into
other physical quantities. Electronic devices give a measurable electric current as
response to a tiny voltage increment. The plotcurrentversusvoltageis similar to
Figure 2.10, read from right to left: the vanishing current for voltages below the
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critical value suddenly grows up as soon as it is crossed. Magnetic data storage
devices (hard disks, for instance) are also based on this. Small magnetic fields
are able to produce enormous magnetisations on localised places of the storage
media. We could generalise the first phrase of this paragraph: the first remark-
able feature of a critical system is the ability to give large responses to very small
inputs.

From a conceptual point of view, the second, related feature of all critical sys-
tems is the long-range correlation between its component units, i.e., the explosion
of the correlation length near the critical point, shown inFigure 2.13. We can
define critical systems as the ones for which the correlation length overflows the
system size itself. The reader certainly remembers the discussion in Sections2.3
and 2.4concerning critical dynamics. Here, we are using the same wordcritical
for static systems which (macroscopically) do no evolve in time. The reader also
remembers the intrinsic dependence of long-term memory (time) and long-range
correlations (size) necessarily present in any nonlinear dynamic system. That is
why the wordcritical is the same. Water near its critical point is an example of
systems for which one cannot apply the reductionist approach of dividing the sys-
tem into small isolated pieces. On the contrary, the macroscopic system should be
treated as a whole, because any small perturbation performed at a given position
propagates through the whole sample. The various microscopic components do
not behave independently from each other. In studying the behaviour of a given
individual component, one cannot neglect the influence of any other, even those
very far from it. Of course, under these circumstances, the system will take a
long time to reach the equilibrium situation we assumed in describing the water
properties, above. The dynamic evolution of a critical system is also critical.

The third, also related feature of critical systems is the mathematical description
through power-laws. The plot onFigure 2.10, for instance, corresponds to

(2.9)m ∝ (Tc − T )β with β = 0.326± 0.004

near the critical point. Below the critical temperature,Figure 2.11also follows the
same mathematical form,ρ − ρc ∝ ±(Tc − T )β with the same exponentβ for
liquid (+) and vapour (−) phases.

Analogously, near the critical point,Figure 2.12corresponds to

(2.10)κ ∝ |T − Tc|−γ with γ = 1.239± 0.003

andFigure 2.13to

(2.11)ξ ∝ |T − Tc|−ν with ν = 0.627± 0.002

where the symbol|x| denotes the absolute value ofx.
The numerical values of the so-called critical exponents,β, γ , ν, etc. were

obtained through extensive computer work, including both mathematical series
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expansions and (mainly) Monte Carlo simulations (see, for instance,Ferrenberg
and Landau (1991)). That is why the error bars appear in equations(2.9), (2.10)
and (2.11).

Critical exponents are universal, i.e., this same set of values is obtained for com-
pletely distinct systems sharing only two general properties: (1) three-dimensional
geometry, as the volume of water; and (2) one-dimensional order parameter, as the
liquid-vapour density difference (a simple scalar number, not a multidimensional
vector). That CO2 shares with water the same set of critical exponents, in spite
of a different critical point,Tc = 304 K, pc = 73.0 atm andρc = 468 kg/m3,
may be not a surprise for the reader: both are gases with triatomic molecules. The
surprise is that also mono-atomic helium has these exponents: microscopic de-
tails as the molecular form do not play any role in defining the critical exponents.
Equations(2.9), (2.10) and (2.11), including the exponent’s numerical values, are
valid also for uniaxial magnetic solid materials as the anti-ferromagnet MnF2 for
which the critical temperature isTc = 67.3 K. In this case, the order parameter
m is the spontaneous staggered magnetisation (spontaneous means to keep the
system under zero magnetic field, the equivalent of controlling the liquid-vapour
coexistence pressure on the fluid). Of course,m vanishes above the critical tem-
perature, meaning that a macroscopic magnet loses its magnetisation when heated
too much. These magnetic materials share with water almost nothing but the two
very general properties mentioned at the beginning of this paragraph (remember
that both the liquid-vapour density differencem and the uniaxial magnetisationm
are simple scalar numbers, not vectors).

A very simple model, the so-called Ising model (Ising, 1925) also shares the
same general features with fluids and uniaxial magnets. One considers a large
three-dimensional lattice, each sitei hosting a microscopic magnet which can
point either up or down, denoted bysi = +1 or si = −1, respectively. The mag-
netic interaction holds only for nearest neighbours (direct influence). Consider a
pair of neighbouring sites. If the corresponding magnets point in the same sense,
both up or both down, the pair contributes with a negative value−J to the total
energy. Otherwise, one magnet pointing up and the other down, the contribution
+J of this pair is positive. The magnetisation is simply the thermal average of the
sum

1

N

∑

i

si

a simple scalar number. Thus, this model also falls into the same universality
class of all ordinary fluids and all uniaxial magnets (including anti-ferromagnets
like MnF2, for which J is negative). Indeed, the numerical values presented in
equations(2.9), (2.10) and (2.11)correspond to Monte Carlo simulations of this
model.
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Figure 2.14. Three-dimensional Ising model. Plot of the magnetisation, to be compared withFig-
ure 2.11. The curvature corresponding to the critical exponentβ is the same for both.

Of course, it is much easier to study the simple Ising model than, for instance,
the complicated quantum behaviour of water molecules, each one subjected to
translation, rotation, vibration, etc., besides their mutual interactions and colli-
sions, a real mess. The critical behaviour, however, is the same, including the
critical exponents’ numerical values.Figure 2.14shows the Ising model magneti-
sation as a function of the temperature. AboveTc, the magnetisation vanishes. By
cooling the system belowTc, it suddenly becomes positive or negative: magnetic
domains (bubbles) pointing either up or down coexist inside the same macro-
scopic sample.

If site i is interpreted as “occupied” forsi = +1 or “empty” for si = −1,
the same model is called a lattice gas. Perhaps this alternative interpretation helps
the reader to accept that a complicated system like water could be described by
such a simple model. However, the only relevant features are the scalar charac-
ter of the order parameter and the three-dimensional geometry, not the particular
microscopic interpretation.

Unfortunately, in spite of the extreme simplicity and the huge amount of work
performed during the last 80 years, no analytical solution is available for the
three-dimensional Ising problem. Only in two dimensions under zero magnetic
field we do have analytical solution (Onsager, 1944; Lee and Yang, 1952). Con-
cerning other models, except for some particular cases most of them in two
dimensions, analytical solutions are very rare in the whole field of statistical me-
chanics (Baxter, 1982). The ubiquitous presence of long-range correlations turns
things difficult within this discipline. Perhaps this fact could explain why critical
behaviour was studied since the nineteenth century, but the universality behind it
was understood only at the end of twentieth century (Wilson, 1971, 1979), when
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computers started to be available. Even so, this understanding concerns only static
systems without time evolution, as the phase transitions commented above.

However, criticality and the corresponding universality are also ubiquitous in
dynamic evolving systems, and the understanding of this amplified phenomenon
is not yet complete. Besides spatial long-range correlations, to take into account
also long-term memory is a further difficulty. The relaxation timeτ also diverges,
similarly to the correlation length,Figure 2.13. Near the critical point, these sys-
tems suffer from what physicists call a critical slowing down. In some cases, the
dynamical system automatically tunes their internal parameters in order to remain
always near the critical point, a phenomenon called self-organised criticality (Bak,
1997), for which biological evolution is a special example.

Nowadays, the prime tool to study complex systems, besides experiments and
real observations, is the computer. In particular, for dynamic evolving systems,
agent-based models are simulated as follows. One keeps on the machine memory
the individual features ofN agents. These features are updated as time goes by,
according to some dynamic rules describing the problem at hands. The action
of each agent depends on other’s. Fluctuations can also be introduced during the
evolution through random numbers which help to decide the action of each agent.
By running the same program many times, possibly starting from different initial
conditions, one can appreciate the many possible final situations, and measure the
quantities of interest.

These models are usually criticised based on two arguments: (1) they are con-
sidered too simple to reproduce the behaviour of so complicated real systems;
and (2) they are reductionist. We will try to convince the reader that none of these
criticisms are valid. The first argument ignores universality. In order to reproduce
the critical behaviour of the complicated real system under study, the simplified
model does not need to share all its complicated features, only the very general
characteristics defining the universality class to which both belong (for instance,
the three-dimensional geometry and one-dimensionality of the order parameter,
shared by the various fluids and the Ising model). The researcher’s duty is to
invent the proper model which respects the general features characterising the
universality class to which the real system belongs. This is not easy, particularly
for dynamic evolving systems for which one does not completely understand the
mechanisms leading to universality. Also the model should be simple enough to
be programmed on a computer, where it is supposed to run within an acceptable
time. The second argument confounds simplicity with reductionism. The sim-
ple model supposed to reproduce the critical behaviour of the real system should
present the same long-range correlation properties. Thus, it cannot be solved by
breaking the whole into small pieces and summing up the various pieces at the
end, which would be just the reductionist approach. It is impossible to exactly
solve the Ising model for a large 3000× 3000× 3000 cube. As a solace, the
exact solution for a tiny 3× 3 × 3 cube is feasible, one can write down its ther-
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mal averages through analytical equations. Unfortunately, the result for the larger
3000× 3000× 3000 cube is not the superposition of 109 tiny cubes. Size scaling
is not trivial. The intrinsic nonlinearity of critical systems can be simply stated as:
the whole is not the sum of the parts.

Analogously, a dynamical model supposed to reproduce the complex behaviour
of a real system should share with the latter the same long-term memory proper-
ties. One can study the evolution of this model within a small time interval, repeat
this task for slightly different environments (in order to include fluctuations), and
take the average over them after this small interval. From this averaged situation,
one can proceed the evolution during a further small time interval, take the average
again, and so on. Unfortunately, this strategy does not work, remember Ghengis-
Khan and D. Pedro I in Section2.4: the final result is not the same one would
obtain by taking the average only after a very large time interval. Time scaling is
not trivial. No reductionist strategies could work in the study of complex systems,
in both space and time.

2.6. Mean-field theories

In order to treat a critical system, one needs to consider it as a whole, one can-
not break the system into smaller pieces. An attempt to circumvent this difficulty
is the so-called mean-field strategy, which unfortunately is quite often unreliable
and always gives wrong quantitative predictions for the critical exponents and
other important issues. Anyway, it is a very intuitive approach which gives some
insights on the problem itself. It is very often used in models of population dy-
namics. However, mean-field approaches should be used with care, it is not easy
to separate among the results what is trustable from what is only an artifact of the
approach itself.

Let’s take the simplest example, the Ising model mentioned in last section:
a cubic lattice withN magnetic atoms, each site surrounded by 6 neighbours.
Picking a particular configurationc for theN magnets pointing up or down, the
total energy is

(2.12)Ec = −J
∑

〈ij〉
sisj

where the sum runs over all pairs〈ij 〉 of neighbouring sitesi andj . Similarly, the
magnetisation for this particular configuration is

mc = 1

N

∑

i

si

the sum running over all sites.
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Without approximations, in order to calculate the thermally averaged magneti-
sationm, one needs to computeEc andmc for each configurationc, and the sums

(2.13)m =
∑

c mc e−Ec/T

∑

c e−Ec/T

with 2N terms. The temperature enters into the scene through the Boltzmann fac-
tor e−Ec/T which properly weights the configurations for the thermal average (the
Boltzmann constant which simply transforms temperature into energy is omitted,
i.e.,kB = 1, for simplicity). Even for moderate lattice sizes, this is an impossible
task.

In mean-field approximation, one replaces each of the 6 neighbour magnetssj
surrounding sitei by the averagem, in equation(2.12)which is then transformed
into the friendly form

2Ec = −6Jm
∑

i

si

and renders feasible the (mean-field) solution for equation(2.13). The result is

m = tanh
(6Jm

T

)

where the desired quantitym appears in both sides.
The last equation can be numerically solved form, leading to the plot inFig-

ure 2.15, which looks qualitatively correct, if compared withFigure 2.14. A care-
ful look, however, reveals a different curvature, near the critical point. Indeed, by
expanding the hyperbolic tangent up to the term inm3, one realises thatm cor-
rectly follows a power-lawm ∝ (Tc − T )β but with the wrong critical exponent
β = 0.5 instead ofβ = 0.326. Furthermore, the mean-field critical temperature
Tc = 6J is overestimated.

The reason for this drawback is simple to understand:by replacing the fluc-
tuating sense of the 6 magnets surrounding a given site by the fixed averagem,
one neglects fluctuations which are just responsible for the long-range correlation
leading to critical behaviour.

Sometimes, mean-field approaches also qualitatively fail, leading to more se-
rious problems. A classical example of this further drawback is the mean-field
prediction of a spurious transition in one geometrical dimension (it is enough
to replace above the constant 6 by 2, the number of neighbours along a chain).
However, at non-zero temperature one cannot observe order in one geometrical
dimension, because a single broken link along the chain is enough to destroy the
long-range order. Mean-field approaches can wrongly introduce phase transitions
or bifurcations where they really do not occur.

Biological speciation, for instance, falls into the general bifurcation descrip-
tion sketched inFigures 2.11or 2.14, where the vertical axis represents the time
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Figure 2.15. Plot of the magnetisationm for the Ising model within the mean-field approximation.

downwards. Mean-field approaches could induce the researcher to predict speci-
ation events where they do not exist, underestimating the required conditions to
observe this phenomenon. Moreover, to replace the curvature ofFigure 2.14with
the wrong curvature ofFigure 2.15could be a disaster if the purpose is to study
the speed of speciation: the researcher would falsely conclude in favour of a much
slower process.

Also the dynamics of economic markets usually face bifurcations of the same
kind of Figures 2.11or 2.14(Arthur, 1990; Anderson, Arrow and Pines, 1988),
and mean-field approaches represent the same danger. Fluctuations are also im-
portant in population dynamics, thus one cannot completely trust in such models
where the influence of each individual on others is replaced by some kind of aver-
age. Analytical approaches, even the more sophisticated ones, normally hide such
an approximation, sometimes unnoticed.

2.7. Scaling

For systems in thermodynamic equilibrium, universality was understood after the
so-called renormalisation group theory, invented by Kenneth Wilson and based
on earlier works by Leo Kadanoff, Michael Fisher, Ben Widom and others. The
first is awarded with the Nobel prize, and all four won the Boltzmann medal, the
most important award within Statistical Physics. Below, there is an intuitive view
of the corresponding concepts, the fundamental ingredient being the presence of
long-range correlations,ξ = ∞, and the basic tool being a scaling transforma-
tion successively performed on the system under study. Soon, the reader will
realise that similar reasoning could be extended to dynamic evolving systems
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where long-range correlations and long-term memory are present, in particular
biological evolution.

The reductionist approach of dividing a system into smaller parts, studying
each part separately, and finally joining the pieces together, is generally adopted
because it allows one to reduce the number of variables of the problem, rendering
it solvable. However, we have already verified the inadequacy of this approach
in the study of (infinite size) critical systems, due to the presence of long-range
correlations: the artificial boundaries introduced when a small piece is separated
from the larger system also introduce a cutoff on these long-range correlations,
destroying the criticality itself. The renormalisation group strategy is to reduce
the number of variables (degrees of freedom) without transforming the initially
infinite system into a finite one. One applies a length scaling transformation which
keeps the renormalised system still infinite. The same procedure is applied again
and again, gradually reducing the degrees of freedom.

Let’s take a concrete example, the Ising model on an infinite cubic lattice, where
each magnetic site interacts with many others in the neighbourhood, according to
some set of couplingsJ (r) which depend on the distancer (not necessarily only
the 6 first neighbours). These couplings measure the system’s magnetic energy
which aligns the individual magnets: for low enough temperatures, the majority
of them point into the same sense. For higher temperatures, the thermal energy
dominates and breaks the magnetic order, giving rise to the phase transition at the
precise critical temperatureTc, which therefore depends on the set of couplings
J (r).

In our imagination, we can group these sites into small 3×3×3 cubic cells, as-
signing to each cell a single magnet pointing up or down, according to the majority
inside the cell. Instead of the original lattice of sites, we have now a cubic lattice
of cells, each one collapsed into a single renormalised magnet. As the original
number of sites is infinite, the number of cells remains infinite, although 27 times
smaller than the former number of sites. Of course, the functionJ (r) defining
the couplings will be transformed into another functionJ ′(r). The ironic reader
may argue we have transformed a problem which is unsolvable due to its infi-
nite number of variables into another problem with 27-fold-less variables, which
nevertheless remains equally unsolvable. Right! But we are not trying to solve the
problem, only to understand why different problems fall into the same universality
class.

In order to make the lattice of (collapsed) cells closer yet to the original lattice
of sites, we can see it through a 3-times reducing lens, a negative zoom transform-
ing all original distancesr into r ′ = r/3. The couplings of the new lattice will
be noted byJ ′(r ′). The already quoted correlation lengthξ(T ) is one particularly
important distance which will be transformed into

(2.14)ξ(T ′) = ξ(T )

3
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Figure 2.16. Scaling of the correlation length by a factor of, say, 1/3: the temperatureT runs away
from the critical point (filled circle).

where a new temperature

(2.15)T ′ = R(T )

appears as a consequence of the whole scaling transformation.Figure 2.16helps
to understand what is going on.

For temperaturesT = 0 andT = ∞ (both out of range inFigure 2.16), the
correlation length vanishes, thus the system is invariant under scaling transforma-
tions at these extreme temperatures. The same invariance also occurs at criticality,
T = Tc, where the correlation length diverges,Figures 2.13or 2.16. Because only
ξ = 0 or ξ = ∞ are insensitive to the scaling transformation, these three temper-
atures,T = 0, T = Tc andT = ∞ correspond to the only three situations where
the system is scaling invariant. For any other temperature, the negative zoom de-
creases the correlation length. Therefore, according toFigure 2.16, aboveTc the
temperature increases towards the attractorT = ∞, by iteratively repeating the
scaling transformation. On the other hand, belowTc the temperature decreases
towards the other attractorT = 0. In this way, the thermodynamic phases are
identified with the renormalisation group basins of attraction. All temperatures
corresponding to the ordered phase, where the spontaneous magnetisation ap-
pears, are attracted towardsT = 0, whereas the disordered phase corresponds
to temperatures attracted towardsT = ∞. Figure 2.17sketches this behaviour.
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Figure 2.17. Flux diagram of the temperature under repeated scaling transformations. The critical
pointTc remains unchanged, while temperatures below (above) it are attracted toT = 0 (T = ∞).

Consider a temperature belowTc. Then, the symmetry is broken, the total mag-
netisation is not zero. Let’s consider it positive, for instance, the majority of the
individual magnets pointing up. The lattice is a big sea of up-magnets with many
islands of down-magnets. By looking to this lattice through a negative zoom,
those minority islands shrink inside the still infinite big sea of up-magnets. A fur-
ther negative zoom makes the islands even more unimportant, and so on. After
many successive zooms, one sees no more islands, all (renormalised) magnets are
aligned up. This is just the characteristic situation atT = 0, where correlations
were completely washed out.

Let’s open a parenthesis for a technical point. The smart reader may argue the
final words of the last paragraph are wrong, the situation where all magnets point
into the same sense would correspond to the maximum possible correlation, not to
the complete absence of correlations as we affirm. The correlation functionC(r)

between two magnetssi andsj distantr from each other is

C(r) = 〈sisj 〉 − 〈si〉〈sj 〉
where the symbol〈· · ·〉 means thermal average. Why did we not write simply
C(r) = 〈sisj 〉? Answer: because this last form includes trivial correlations which
do not depend on the distancer! We are interested just on the correlation lengthξ

which measures how much correlations decay with distance. If one has a major-
ity of magnets pointing in the same sense, the local averages themselves do not
vanish, i.e.,〈si〉 = 〈sj 〉 	= 0, and therefore〈sisj 〉 	= 0 too, independent of the
positions of these two magnets on the lattice. They would be correlated, no mat-
ter how far they are from each other, generating an infinite correlation length for
any temperature belowTc. Thus, in order to retain only the contributions which
really depends on the distancer, the product〈si〉〈sj 〉 is subtracted in the above
definition of the correlation function. The correlation length becomes finite also
belowTc. Closed parenthesis.

On the other hand, if the temperature is aboveTc, the magnetisation is zero.
Within fluctuations determined by the temperature itself, any large enough region
of the lattice presents as many up- as down-magnets. The successive application
of negative zooms would not change this behaviour, except for the shrinking size
of the quoted regions. After many zooms, each (renormalised) magnet points up
or down independent of the neighbourhood, the characteristic situation atT = ∞.
Again, correlations were completely washed out.
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In short, the renormalisation group transformation consists in applying a nega-
tive zoom to the system, and comparing the new configuration with the former in
order to determine the new temperature, equation(2.15). By successively apply-
ing this transformation, the corresponding flux of the temperature is monitored.
The overall effect is to wash out any trace of correlations the initial system could
present. The final destiny is two fold, eitherT = 0 or T = ∞. In both cases,
the former correlations no longer exist. The only exception occurs if the initial
temperature equals the critical value,T = Tc. In this case, the correlation length
diverges,ξ = ∞, being thus insensitive to the zoom.

To obtain the renormalisation group transformationR, equation(2.15), is not
an easy task. Some approximations are available, with different accuracy degrees.
Suppose we know this transformation. Then, the critical exponentν can be ob-
tained by combining equations(2.11), (2.14) and (2.15), which yields

dR(T )

dT
= T ′ − Tc

T − Tc
= 31/ν

where the derivative ofR(T ) is taken atTc. The important point is to realise that
ν depends on the rate according to whichT runs away fromTc after the scaling
transformation, in the neighbourhood ofTc, Figure 2.17.

The one-dimensionalFigure 2.17does not add much more information. One
can better appreciate the power of renormalisation group by looking at its coun-
terpart in the multidimensional space of the couplingsJ (r). Instead of a single
quantityT which varies under the scaling transformation,T → T ′, we can follow
the behaviour of the whole set of couplingsJ (r) → J ′(r ′), a multidimensional
flux. Figure 2.18is again a sketch of this behaviour. As the paper sheet of this
book has only two dimensions,Figure 2.18considers a two-dimensional space of
couplings, but in general this space has much more dimensions.

The derivative ofR along the steepest descent direction (indicated by the
straight arrows at C, inFigure 2.18) provides the value for the critical exponentν.
Further directions, not shown in this two-dimensional diagram, could be included
in order to provide the values for the other critical exponents. Technical details
like how to obtain theR transformation or how to derive it in order to calculate
the critical exponents do not concern our purposes here. The important informa-
tion comes from realising that each point sufficiently near the critical line, which
represents a generic system near criticality, goes first towards point C. Only after
reaching the neighbourhood of C, it gets away from the critical line. Thus, the
critical exponent defined by the speed of this run-away is the same for all these
different systems. The universality class is set by point C.

An important conceptual point concerns the irrelevance of microscopic de-
tails, for instance the fact that each site has just 6 nearest neighbours within the
cubic lattice. Also, how exactly each site interacts with its neighbours is irrele-
vant. When a group of 27 neighbouring individual magnets belonging to the same
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Figure 2.18. Flux diagram in the space of couplings. Two attractors denoted byT = 0 andT = ∞
define the magnetic and disordered phases, respectively, separated by the frontier line ACB. All points
along this line are critical withξ = ∞, each one representing a different critical system. Point C,
however, plays the special role of attracting all other critical points: it defines the same set of critical

exponents for all these systems.

3 × 3 × 3 cell were replaced by a single magnet, such microscopic details were
washed out. They do not play any role after many successive applications of the
scaling transformationR, the successive zooms turn them irrelevant. The com-
plicated interaction mechanism between water molecules plays exactly the same
role as the simple±J pair energy between Ising magnets.

Physicists call “scale-free” these systems for whichξ = ∞. They are invari-
ant when seen through a reducing lens which omits the microscopic details. By
superimposing such a lens over another, another yet, and so on, one sees always
the same scenario. Geometric fractals are old examples. Scale-free networks such
as the Internet are modern, fashionable examples (seeChapter 5and Section6.2).
One can classify the various Internet nodes widespread over the world according
to their “sizes”, i.e., how much each one is accessed during a day. Then, one can
count how many nodes fall in each class, and construct a plot of these countings
versus the “size”. We are sure the reader will guess the resulting double logarith-
mic plot: a straight line, determining a power-law relation.

The kind of correlations observed in such isotropic materials as fluids and sim-
ple magnets is the simplest possible: the correlation between two points depends
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only on the distance they are from each other, not on the direction. The influ-
ence exerted by a given point spreads out in all directions, equally, as the wave
observed on a liquid surface when a small rock drops from above. Anisotropic
crystals may behave differently, correlations spread more effectively along certain
directions than others, giving rise to different geometric patterns. Examples are
stripes, swirlings, etc. More complex patterns could be observed in the so-called
liquid crystals, used in computer screens and other displays, which in reality are
not crystals. In principle, one can design the underlying material in order to dis-
tribute the correlations (positive, negative, weak, strong, etc.) over each pair of
points according to a previously defined, programmed pattern. This task is just
what mother Nature dynamically does during embryo development. An initial
single cell is successively divided into others, which gradually acquire different
forms and properties, specific for each different position inside the embryo. Of
course, in these more complex cases, the equivalent to the renormalisation group
could not be the simple global scaling transformation obtained simply by dividing
all lengths by the same factor. A more sophisticated transformation should be ap-
plied. However, the idea seems to be the same, according to the famous biologist
John Maynard Smith (1998): “ . . . during development the embryo is successively
divided into smaller and smaller regions, whose subsequent growth is to a degree
autonomous, although signals do pass between regions, serving to integrate the
whole process. . . modularity has important consequences for evolution”. Any-
way, the simplest isotropic critical materials and the much more sophisticated
embryos share the same important feature: long range correlations. Does it also
imply some kind of universality for embryo development? For evolution?

2.8. Biological evolution

The concept of biological evolution was introduced by the French naturalist Jean-
Baptiste de Lamarck more than two centuries ago (Lamarck, 1802). The term
evolutionitself was not yet used at his time, but the wordBiologie (in French)
was invented by Lamarck. According to him, the various currently living species
are neither static nor independent entities. They are the result of many small
modifications occurred in ancient species, accumulated during very long times.
Furthermore, species living today are also under this slow modification process.
The whole system of living beings eternally changes. Evolution is a long-term,
endless process. A very interesting interpretation of Lamarck’s work and ideas
can be found in the amusing book byAndré Langaney (1999).

During his lifetime, Lamarck felt into disgrace because his theory contradicts
most religious dogmas. Nowadays, Lamarck also felt into disgrace, because he
believed the traits acquired during one individual’s life could be passed on to its
descendants as a genetic inheritance. In reality, this criticism is not fair. Except
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for Weissman, all scientists of the nineteenth century believed the same, including
Darwin according to his own book(1859). The reason is simple: genetics was
not known during this time, only after the pioneering work ofGregor Mendel
(1866)which became completely unknown up to the beginning of the twentieth
century. Then, chromosomes could be observed on microscopes, and the concept
of physical transmission of genetic characteristics to the offspring was settled
down. Before this, no clear difference between, for instance, genetic and cultural
inheritance could be made.

In order to put Lamarck’s idea about what nowadays we call biological evolu-
tion close to our language, let’s consider the space of all possible living forms.
Later in this section, we will make this concept a little bit more concrete. For a
while, we ask the reader to imagine a multidimensional mathematical space where
each point is a possible living form. Better yet, let’s consider a small lamp located
at each site of this space, the majority of which are currently off. Only a few
lamps are on, emitting light, and correspond to the currently living beings over
the Earth surface, belonging to all living species. The lamp corresponding to each
individual is switched on at birth, and off at death.

Each offspring of a given individual corresponds to a lamp near the parent’s,
differing from it and the siblings by small mutations. (For the sake of simplicity,
let’s consider a single parent for each newborn, because sex does not play any role
in our present discussion. Sex will introduce a further source of diversity, besides
mutations, but the newborn lamp position will be located near the parent’s any-
way.) The wordnear introduces a metric in our space, the concept of genetic dis-
tance which will also be made concrete later in this section. In order to retain this
concept, we will refer hereafter to thegenetic spaceof all possible living forms.
Each offspring can generate its own offspring, and so on, according to a branching
process of lamps switched on and off at the same region, sharing the same root,
the same grand-grand-. . . -parent. As time goes by, some dangling-end branches
stop to emit light (extinction), while others grow forever. Most lamps are never
switched on, but they are there, each one representing a potential living form.

The space would look as a crowded soccer stadium at night, where smokers
continuously set light in their cigarettes, producing a succession of small flares
here and there all the time. However, different from the crowded soccer stadium
where smokers are located everywhere, our space presents no light over large
regions. Blinking light comes only from some specific concentrated clouds of
lamps which correspond to the currently living species. The space is sparsely
populated by such clouds, where some lamps currently blink, one cloud separated
from the others by much larger dark regions.

Let’s concentrate our attention in one of these clouds, taking a zoom inside
it, an instantaneous snapshot of a single species. One sees a sea of lamps, some
few of them emitting light. Some time thereafter, a lamp which was off before is
suddenly switched on, a newborn. Following the behaviour of this single cloud
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during the short-term of few generations, one sees some lamps being switched
on, while others are switched off, like the blinking lights on the crowded soccer
stadium. By tuning a small negative zoom, one can see the blinking cloud as a
whole inside the field of vision. It does not seem to move, its “centre of mass”
seems to stay at rest. This is exactly the image dominating the religious minds of
the nineteen century, static species.

Extending the observation time to some not-so-few generations, however, one
can note a slow movement of the blinking cloud as a whole. One does not expect
it will collide with another cloud in the future, because the highly inhomoge-
neous occupation of the genetic space provides an extremely sparse pattern for
the clouds. Alternatively, we can imagine the movement back to the past, by re-
versing the arrow of time. In this case, our cloud certainly collides with another
similar one, merging themselves into a single cloud from this moment back, until
colliding with another cloud, back again and so on. For any two randomly chosen
individuals, one can traceback their ascendents: it is certain to find a common
ancestor. In the same way, two species have a common ancestor species. Re-
turning to the normal sense of the time arrow, we conclude that nowadays living
species are descendants of ancient species which suffered a cascade of bifurcation
processes, the so-called speciation. A currently living species, if not caught by ex-
tinction, will also suffer the same process, generating new species in the future,
and so on. Evolution follows a branching dynamics not only on the scale of an
individual and its offspring, but also on the much larger scale of species.

Lamarck’s idea, however, did not inform us how evolution acts on the indi-
vidual level. This key ingredient was provided by Darwin’s concept of natural
selection (Darwin, 1859). Individuals more adapted than others to the current
environment generate more offspring, on average, spreading more effectively
their genetic information over the following generations. The overall effect is to
provide the slow movement of clouds (species) inside the genetic space. The pop-
ulation density increases in a region where life is more adapted to the current
environment, and the cloud’s “centre of mass” is driven towards this region. In
cases where two or more such better adapted regions appear at the same time, one
could observe speciation.

It is important to note that other species belong to what we callenvironment,
in the study of a single species. Therefore, the slow movement of one cloud is
not completely independent of the others. However, in order to study this interde-
pendence, we need to extend more our size scale, to take a further negative zoom
allowing us to see many clouds, not just one. How many? Where should we stop
the zoom-out process? Which is, then, the new zoom scale?

Nature itself answers these questions for us. We are now focused on a single
blinking cloud under our field of vision, a single species. This is the first step
of a sequence of zoom processes, as follows. By further zooming-out, we find a
first neighbouring cloud entering into our field of vision, another similar species.
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A little bit further, other clouds successively appear. After a certain zoom degree,
no more clouds enter through the borders of our field of vision, an enormous dark
space surrounds the already caught group of species. Then, we stop the zoom
process at this point, for a while. We reached the second level, an isolated group
of neighbouring species, called a genus. One sees a set of small blinking clouds
(species), separated from each other by large dark regions. Now, we interpret each
small cloud where some lamps are currently on as a single, renormalised lamp,
also switched on, a whole-species lamp. They are separated from each other by
large dark regions. Déjà-vu! One sees the very same scenario we have already
seen at the first zoom level of a single species.

After the second level focusing on a single genus, we can proceed the zoom-out
process. Other genera will enter into our field of vision up to the situation where
a complete set of neighbouring genera is already caught. This is the third level,
and the set of neighbouring genera inside our field of vision is called a family.
Again, each genus is a blinking cloud (of clouds) separated from the others by
large dark regions. By interpreting each such a cloud (of clouds) as a single (re-
renormalised) lamp switched on, a whole-genus lamp, we observe again the same
scenario. The zoom-out process proceeds. A set of neighbouring families is called
an order. A set of neighbouring orders is a class.

The scaling reasoning presented above is very similar to the renormalisation
group treated in last section. However, it has a further ingredient: the time evo-
lution. Now, we are dealing with a more sophisticated phenomenon. For systems
in equilibrium, after Kenneth Wilson and others, physicists were able to put the
length scaling process under complete control. A complete theory for equilibrium
critical phenomena exists, its most important feature being the explanation for the
observed universality of critical behaviour. On the other hand, for evolving critical
systems, for which one needs to control also the time scaling process, physicists
were not able to construct a complete theory up to now. Nevertheless, an enor-
mous progress was achieved during the two last decades, mainly through results
obtained from computer simulations. In particular, we have now a lot of examples
where universality insists to appear also in these out-of-equilibrium situations.

An important feature concerns the relations between size and time scalings,
in the process leading from individuals to species, from species to genera, etc.
Imagine the instantaneous picture of a given species, with all its currently alive in-
dividuals. One can traceback all parents, grand-parents, grand-grand-parents etc.,
and pick-up the first common ancestor to all currently alive individuals. (Note that
this common ancestor did not live alone. Other individuals belonging to the same
species lived at the same time, but their lineages were extinct, only the lineage
of the quoted common ancestor survived. See Section3.5.) The average time one
needs to go back in order to find this common ancestor depends on the species
size. The corresponding time to find the common species ancestor for a whole
current genus is much larger. To trace back the genus ancestor of a given family
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spends a larger yet time, and so on. Size and time scalings are intrinsically linked
to each other.

Let’s return to our genetic space. How to define such a mathematical entity?
The answer to this question was given byGregor Mendel (1866), considered the
founder of genetics. He worked with sexual reproducing pea plants, and published
a short paper entitled “Experiments with Plant Hybrids”. Even without knowing
chromosomes, he was able to set the main concept: inherited traits do not mix.
A single parent’s gene (a word out of Mendel’s vocabulary) is either inherited by
the offspring or not, with no intermediate possibilities. There is not such a thing as
half a gene, or any other fraction.John Maynard Smith (1998), again: “The philos-
ophy behind this approach is that the genes carry, in digital form, the instructions
for making an organism”. The worddigital should not be interpreted as dealing
with numbers expressed in decimal basis. The correct meaning intended by May-
nard Smith is discreteness, not the numerical basis. He means the same storage
strategy used to record music overdigital CDs, not theanalogstorage over vinyl.
The gene is a discrete entity. Either it is there or not. Genetic information is coded
according to ayes/noprotocol, 1-bits and 0-bits. Perhaps the adjectivebinary
would be better thandigital as applied both to genetic information and CDs.

Therefore, the genetic information an individual carries in its chromosomes is
a bit-string. Let’s take the simplest interpretation. Consider an ordered sequence
of all possible alleles for all possible genes. The genetic information of a given
individual is a bit-string with a 1-bit on every position which corresponds to al-
leles/genes this individual indeed carries along its chromosomes, and 0-bits on
every other position. We will call “genome” this bit-string. Now, we can under-
stand what the genetic space is: the set of all possible (very long) bit-strings. The
(enormous) dimension of this space is the bit-string length, virtually infinite in
our simple theory.

The distance between two different points of this space is counted by bit-to-
bit comparison. The simplest option is the Hamming distance which sums the
number of positions along the two compared chains where bits differ, divided by
the total length,Figure 2.19. We will interpret this quantity as the genetic distance.
Two nearest neighbours on the genetic space differ from each other by just one
bit. More sophisticated definitions taking different statistical weights to different
bits, or different sets of bits, can also be used.

In order to satisfy the taste of some readers, we can also quote an alternative
interpretation for the genetic bit-strings, by using Mother Nature’s alphabet: each
adjacent pair of bits 00, 01, 10 or 11 corresponds to one of the four chemical bases
A, T, G or C, in just the same way each three adjacent such bases correspond to
some aminoacid, a simple translation code. This interpretation is mandatory for
simulations based on real DNA data, because a single genetic code was found on
Earth. On the other hand, by no means this is the only possible or even the “best”
codification. A lot of other equivalent interpretations could be invented, giving to
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first individual genome

0 1 0 0 1 1 1 0 1 0 0 1 1 0 0 0

0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0

second individual genome

Figure 2.19. Genetic distance between two asexually reproducing individuals, counted by comparing
their genomes bit-to-bit. In this example, we count 5 different bits along the genome length of 16, the

genetic distance readsd = 5/16.

the researcher the possibility of modelling different problems, according to what
she/he judges the important features at hands. Independent of any particular inter-
pretation, the important feature is the discrete form in which genetic information
is stored and used, as we learned from Mendel, whose consequence is the possi-
bility of coding this information along bit-strings.

For a population of sexually reproducing, diploid individuals, each genome is
represented by two homologous, parallel bit-strings A and B. The genetic space is
the set of all possible such pairs. In order to define the genetic distance separating
two individuals, one can perform the comparison in two ways: (1) chromosomes
A × A and B × B; or (2) A × B and B× A, Figure 2.20. Perhaps the better
choice is to take the genetic distance as the smallest among the values obtained
within these two ways.

first individual genome

A 1 1 0 1 0 0 1 1 1 0 1 0 1 1 0 0

B 0 0 1 0 1 0 1 1 0 0 0 1 0 1 1 0

A 1 1 0 1 0 0 0 0 0 0 1 0 1 0 1 1

B 0 1 0 1 0 1 1 1 0 0 0 0 1 1 1 0

second individual genome

Figure 2.20. Genetic distance between two sexually reproducing individuals. By comparing chro-
mosomes A× A and B× B, one finds 6 and 7 different bits, a total of 13. The alternative comparison
would be A× B and B× A, resulting in 5 and 12, a total of 17 different bits. One chooses the smallest

result, 13 different bits along a genome of 32, thusd = 13/32.
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asexual parent’s genome

0 1 0 0 1 1 1 0 1 0 0 1 1 0 0 0

mutations

offspring’s genome

0 1 0 1 1 1 1 0 1 0 0 0 1 0 1 0

Figure 2.21. Asexual reproduction. Mutations on the offspring genome as compared to the parent’s.

Thanks to Mendel’s idea, we can now translate biological evolution to computer
language, and invent models. Each individual of a population is characterised by
a long bit-string, its genome. Sexually reproducing, diploid individuals carry two
parallel bit-strings. They are born, live, reproduce and die according to some rules
where chance and necessity play crucial roles (Monod, 1973). During reproduc-
tion, chance appears as mutations, for instance a bit randomly chosen along the
parent’s genome which is flipped on the offspring’s genome,Figure 2.21.

Also, for sexual reproduction, after crossing and recombination were per-
formed on one parent’s genome, chance decides which among the two possi-
ble gametes will be passed on to the offspring,Figure 2.22. The same process
repeated on the other parent’s genome provides the second gamete which com-
pletes the offspring diploid genome. During an individual’s life, chance can

sexual parent’s genome

A 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 1

B 0 0 0 1 1 0 1 0 1 0 1 1 0 0 0 1

0 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1

crossing and recombination

0 1 1 1 1 0 1 0 1 0 0 1 0 0 0 1

mutations

gamete passed to offspring

Figure 2.22. Sexual reproduction. In this example, the genome of one parent is crossed at the position
marked by×, and the left part of chromosome A is recombined with the right part of B to form one

gamete. Finally, mutations are set.
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also decide part of its destiny, for instance which contingencies would influ-
ence it, when and where this occurs, which other individuals would it meet, etc.
Chance is introduced through random number generators, the equivalent to coin-
toss.

Necessity corresponds to Darwin’s natural selection, the phenotypic features
of an individual, at least in part determined by its genome, define how it deals
with the contingencies occurred during life, genetic diseases, resistance to other
diseases, capacity to escape from predators, etc. One can invent such rules and
program them in some computer language (modern Brazilian researchers in C,
other old-fashioned German Herr Professors in Fortran). For each individual,
the phenotype is defined as a function of the genome. It is used to determine
the death probability and fertility of that individual. Also the environment in-
fluence should be programmed. Many other features can be included as ageing,
sexual selection, maternal care, etc. Further bit-strings could be included in order
to represent particular important phenotypic traits, as exemplified inChapter 4
for speciation. These further bit-strings can also represent non-genetic charac-
teristics which nevertheless play important roles in evolution, an example is
the learning of cultural traits introduced byTicona and de Oliveira (2004), as
follows. A “cultural” bit-string is assigned to each newborn, thenth bit corre-
sponding to the futurenth birthday of that individual. Initially, all bits are set
to zero. At each new year, the individual can learn something which helps its
survival, and then the bit corresponding to its current age is set to one. If it
misses the opportunity to learn, the corresponding bit remains zero. Then, the
distribution of 1-bits accumulated so far is one of the ingredients used in order
to determine its death probability within the next year. In the computer pro-
gram, the manipulation of bitwise fast operations (de Oliveira (1991), see also
the first section of Appendix) is important, most times decisive concerning the
feasibility of the computer simulation within the available time and memory fa-
cilities.

The rest of this book describes some of such computer models, invented not
only for the study of biological evolution, but also for other related systems which
evolve in time. In general, the same program with the same parameters runs many
times, starting from different initial populations and/or following different con-
tingencies occurred along the individuals’ lives. From these many runs, one can
determine the proper statistical averages and fluctuations, at the end. Some advan-
tages of the simulational approach, in what concerns evolutionary systems, are
discussed inde Oliveira (2002). This computer strategy is an important tool for
these studies for at least two reasons. First, as already commented before, because
we have not a Darwin equation to solve. Second, because this agent-based strategy
does not neglect fluctuations at all, therefore avoiding the already quoted problems
introduced by mean-field alternative approaches, Section2.6. These problems are
present in virtually any formulation based on differential equations, for which
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some kind of population-average is always hidden behind the formulas, most of
them unnoticed.

Let’s give an illustrative example of such a mean-field approximation. In-
stead of keeping the genetic information of all alive individuals, by storing every
genome, it is much cheaper to record only the current frequency with which each
possible gene/allele appears among the whole population. Instead of storing one
bit-string per alive individual, one records just a single array displaying, for each
gene/allele, the number of individuals sharing it, i.e., the current genetic distribu-
tion counting how often each gene/allele is spread over the whole population. In
order to describe the whole genetic dynamic evolution, one simply updates this
array, generation after generation, according to some model rules. This is indeed
a very useful approach, in reality very often applied to evolutionary problems
(see, for instance,Redfield (1994), Dieckman and Doebeli (1999), Kondrashov
and Kondrashov (1999)). However, it implies a crucial assumption: the genetic
distribution of the next generation should be determined exclusively from the
knowledge of the current genetic distribution. In other words, this approach cor-
responds to assume a Markovian dynamics for the genetic distribution itself. Is
this assumption plausible? Yes,if the corresponding dynamics is either regular
or chaotic, as discussed in Section2.4. On the other hand, this assumptionfails
for critical dynamics, as also discussed in Section2.4. As a matter of fact, the
latter is just the kind of dynamics which describes biological evolution. Thus, this
approach is at least dangerous as applied to evolutionary problems. In particu-
lar, any kind of founders effect could not be described by the genetic frequency
single-array approach, which completely rules out Ghengis-Khan and D. Pedro I
(Section2.4).

Why do we classify this approach as a mean-field approximation? We can in-
terpret it as follows. In reality, the genetic information is stored onall genomes
of all currently alive individuals, a bit-string for each. By contracting this infor-
mation into a single array storing the frequency of each gene/allele among the
whole population, one is replacing the set of all individuals by a single “average
individual”, exactly the same procedure we have exemplified in Section2.6 for
the simple Ising model, neglecting fluctuations. Indeed, the consequences should
be the same, for instance the wrong curvature ofFigure 2.15as compared with
the correct, non-mean-fieldFigure 2.14, and many other false conclusions one
could reach. As already commented before, due to its simplicity, the mean-field
approach can be very useful in order to shed light into some cumbersome issues,
sometimes helping a qualitative understanding, but its results are not trustable at
all (on the other hand, also simulational computer programs contain errors, par-
ticularly those written in Fortran by some German Herr Professors). Special care
should be taken with possible mean-field false-positive diagnosis in favour of the
existence of a phase transition, a speciation process, a bifurcation and alike.
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2.9. A simple evolutionary model

Let’s consider the evolution of individuals which die and breed at the same rate,
keeping nearly constant the population which fluctuates aroundP0 = 1000 in-
dividuals. First, each of them produces one offspring, with the help of a sexual
partner, doubling the population for a while. Then, half of the population is killed,
on average, according to a selection rule described later, restoring the original
numberP0.

Let’s first describe the breeding process. Sexual reproduction is adopted with
diploid individuals. Each genome is a pair of bit-strings withL = 1024 bits each.
In order to breed, both bit-strings of individual M (the mother) are cut at the same
random position, crossed and recombined (seeFigure 2.22, last section). Two
gametes are then formed, two new bit-strings also withL = 1024 bits each. One
of them, randomly chosen, will be passed on to the offspring, after mutations are
set as follows. Just one random bit of this gamete is flipped from 0 to 1 or vice-
versa. Besides this gamete, the offspring also inherits the mother’s family name,
without mutations. Another individual F (the father) is randomly chosen, and the
same process of crossing, recombination and mutation is performed in order to
produce the second gamete for the quoted offspring, which is now complete. The
whole procedure is repeated for a new individual, the new mother, and so on,
generating as many offspring as parents. These offspring are then included in the
population.

In order to save computer time and memory, we do not divide the population
into two genders, neither males nor females separately. Every individual breeds
once as mother, but can also be chosen as father, the partner of another mother.

Now comes the death step, where selection acts. Sequentially following the
two parallel bit-strings representing individuali, we count the numberNi of ho-
mozygous loci where two homologous bits 11 are found. The larger this quantity,
the larger the death probability of the individual. Although the particular biolog-
ical interpretation for phenotypes is not important within such a simple model,
one can here interpret 1-bits as representing harmful mutated genes, and suppose
the existence of only recessive diseases which reduce the life expectancy. This
quantityNi will be referred to as the genetic load of individuali. Normally, the
term “genetic load” is used for the population average ofNi/L, see, for instance,
Ridley (2003). We assume a survival probability which exponentially decreases
with the genetic load. Let’s callx the survival probability for individuals with
Ni = 0, carrying only 00, 01, or 10 loci along the whole genome. Then, the sur-
vival probability forNi = 1 individuals, those with just one 11 pair, isx2. That
for individuals withNi = 2 isx3, and so on. After breeding, the doubled popula-
tion P should be reduced back to the former valueP0. First, we need to find the
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proper value ofx by solving the polynomial equation

P
∑

i=1

xNi+1 = P0

where the sum runs over all individuals (including newborns), or alternatively

L
∑

N=0

H(N)xN+1 = P0

whereH(N) counts the current number of individuals withN homologous 11
bit pairs. Besides the genome of each alive individual, we keep in the computer
memory the current histogramH(N).

After the above polynomial equation is numerically solved forx, finding the
root just below 1, the death roulette starts once per individual. A random num-
ber r is tossed between 0 and 1 and compared withxNi+1. Individual i survives
only if r < xNi+1. After the roulette has already passed through all individu-
als, the normal population (near)P0 is restored. One complete simulational step,
or generation, is then finished. It is time to record the interesting quantities in
accumulating registers, for later averages and statistics. Finally, the evolutionary
process restarts towards the next generation.

After many generations, sayT = 10 000 (any number a little bit larger than
P0 = 1000 suffices), a sort of dynamic equilibrium is reached, the distribution
H(N) stabilises with fluctuations. Then, we start to count the time, witht = 0.
Each individual belonging to this generation founds a new family, and receives
a family name. We suppose no family records were stored before. These 1000
different names will be passed on to offspring, every time the individual breeds as
mother, following the maternal lineage. Here, the difference concerning genetic
inheritance is only the absence of mutations in family names.

But names become extinct. Now and then, some family disappears forever from
the population. The number of alive families monotonically decreases. At the end,
after many generations, all individuals belong to a single family. A single individ-
ual who lived at generationt = 0 is ancestor of the whole current population.
Let’s call it Eve (see also Section3.5.1). This is not a novelty, it is exactly the
predictions of the coalescence theory, seeExcoffier (1997)for a friendly and ex-
cellent review. It is worth to remark that Eve was not a single female in paradise,
just other 999 reproductive “females” lived together att = 0. However, all their
999 lineages were extinct sooner or later during the past history. Would we re-
peat the history following distinct contingencies, different coin-tosses, Eve would
be another individual who also lived att = 0. Even by repeating the result of
all coin-tosses but one (Ghengis-Khan, D. Pedro I, etc., Section2.4) perhaps Eve
could be another individual.
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The reader could ask whether this behaviour limits the necessary genetic diver-
sity required by evolution. This question will be answered soon. First, we should
realise that it is unavoidable, a mathematical constraint based on rigorous theo-
rems. We should recognise also that mathematical constraints are imposed over
any God or Nature, who both should obey the rules established by mathemati-
cians as Kolmogorov, in his theorems concerning the coalescence theory. Genetic
diversity should be kept in spite of the common ancestor coalescence. How Nature
deals with this constraint?

One of the big advantages of a computer program is the possibility to run it
again, getting exactly the same result. Even when contingencies play an important
role, one can also repeat the same sequence of random numbers. Our program
simulating the evolution model described above works like that. At the end of the
first run, we only verify which is the common family name of all alive individuals,
in order to identify who was Eve among all possible ancestors alive att = 0. Now,
for the second run, starting exactly from the same initial population att = 0, we
already know a priori who will be Eve.

During this second run, after each new generationt is complete, we measure
the genetic distancedi between each alive individuali and Eve (Figure 2.20, last
section), and determine the population average〈d 〉all over all alive individuals.
Some of them carry the same family name as Eve, and we also perform a re-
stricted population average〈d 〉Eve only over her descendants. Finally, we define
the genetic similarity with Eve

(2.16)g(t) = 〈d 〉all − 〈d 〉Eve

〈d 〉all

which starts withg(0) = 1, and eventually vanishes after many generations when
all alive individuals descend from Eve. We also compute the fraction of alive
families

(2.17)f (t) = number of alive families

P0

which also starts withf (0) = 1, and decreases towards the final steady value
1/P0 ≪ 1. Figure 2.23shows the plots of these two quantities as functions of
time, averaged overA = 1000 samples, each of them corresponding to a differ-
ent initial population and to another sequence of random numbers. Eve’s genetic
trace remains among the population only during a few initial generations, com-
pared with the much larger time required to reach a single family. Indeed, after
64 generations we count 57.8 alive families, on average, still far from the final
situation.

Which is the mathematical functional form ofg(t)? In order to answer this
question,Figure 2.24shows the same plots again, now with vertical logarith-
mic scale. The straight line at the beginning denotes an exponential decay,
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Figure 2.23. Fraction of still alive families, equation(2.17), and genetic similarity with Eve, equa-
tion (2.16). Both decay as time goes by,g(t) much faster thanf (t).

g(t) ∝ e−t/τ (compare withFigures 2.1 and 2.4). After this initial straight line,
the vertical logarithmic scale also allows to appreciate the decaying tail, hidden in
the linear plot,Figure 2.23. This tail is dominated by random noise, because we
used a finite populationP0 and also the statistics corresponds to a finite num-
ber A of samples. The expected order of magnitude for this random noise is
1/

√
AP0 = 10−3, in agreement with the plot inFigure 2.24. Would we adopt a

larger population and more samples, this noise would decrease as well. However,
the important feature is the straight line behaviour observed before the system is
dominated by statistical noise. In spite of the coalescence of the whole population
into a common ancestor, the genetic features of this single individual are rapidly
forgot, according to an exponential rate. No genetic trace of Eve can be found
after a finite number of generations. Similarly, suppose some catastrophe kills al-
most all individuals of a real population, leaving only a few remaining founders
for the next generations. After this bottleneck, the genetic diversity is restored ac-
cording to a fast exponential rate. How fast? Depends on the slope of the quoted
straight line, the inverse of which provides the characteristic decaying timeτ . It
is essentially determined by the mutation rate.
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Figure 2.24. The same asFigure 2.23. To be compared withFigure 2.4.

Also, after a bottleneck, the genetic diversity is restored much faster for sexual
reproducing species, compared to the asexual case. This behaviour is due to the
crossing and recombination processes, which are much more effective than muta-
tions alone to promote diversity, or to increase the entropy in physicists’ jargon.
Perhaps this is the explanation for the emergence of sexual reproducing species in
a world where only asexual species existed at beginning (see, for instance, Sec-
tion 3.2.2or Martins (2000)).

Which is the mathematical functional form off (t)? BothFigures 2.23 and 2.24
are aborted at generationt = 64, not enough to appreciate the decaying tail of
f (t). Figure 2.25shows again the same data, now with logarithmic scales in both
axes (compare withFigure 2.5). The horizontal scale is now much larger, and goes
up tot = 104. The straight line observed forf (t) denotes a power-law behaviour,
asymptoticallyf (t) ∝ t−1, in complete agreement with the mathematical theo-
rems of the coalescence theory. Indeed, the slope measured inFigure 2.25gives a
critical exponent of−0.98.

Finally, we have also measured the size of each family, i.e., the total number of
individuals sharing the same family name during the whole history, sincet = 0.
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Figure 2.25. The same asFigures 2.23 and 2.24. To be compared withFigure 2.5.

Then, we have grouped these families according to their sizes and counted how
many families belong to each group (size). The result is shown inFigure 2.26,
another power-law with exponent−1/2.

The model treated in this section is an example of how Nature deals with
slow power-laws versus fast exponential decays, in order to provide biological
diversity. This is a crucial ingredient without which the evolution through natural
selection cannot proceed. In this case, the genetic diversity (or entropy) is created
according to an exponential fast rate. Its main source is the continuous appearance
of mutations, but crossing and recombinations accelerate and enhance very much
the process of visiting different parts of the genetic space.

On the other hand, it is equally important to preserve the diversity already ob-
tained during the past history, avoiding the extinction of genetic characteristics
which could be useful in the future. Let’s show an example of this, concerning
recessive diseases like phenulketonuria, falciform (sickle cell) anemia, etc. (see
alsoJacquard (1978), Cavalli-Sforza (1996)). These genetic diseases are caused
by the inheritance of a defective genep from both parents, instead of the wild,
functional alleleN . In early days, when no medical treatment was available, ho-
mozygouspp individuals died before they had the chance of breeding, therefore
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Figure 2.26. The whole set of families is classified according to how many individuals have belonged
to each one, during the whole history sincet = 0.

they were unable to pass the “bad” genep to the next generations. Heterozy-
gousNp individuals are the only source of this gene for the next generations.
The obvious conclusion is the unavoidable extinction of the defective allelep, in
the absence of any other evolutionary pressure, i.e., only homozygousNN indi-
viduals will be found in some future generation. How fast will be this extinction
process? According to Albert Jacquard, the phenulketonuria defective gene occurs
nowadays in France with frequency 0.95%, and will decrease to 0.90% within 6
generations, i.e., a century and a half from now, again supposing the absence of
any other evolutionary pressure. It will further decrease to 0.50% only after 95
generations, i.e., 20 centuries! Indeed, a very slow process.

Let’s return to our genetic space, Section2.8, where each position along the
bit-strings corresponds to a possible gene/allele. The dimension of this space
is the number of bits along each individual bit-string, the number of different
genes/alleles available among the whole population. The extinction of a gene
corresponds to the definitive drop of a whole direction of this space, thus de-
creasing its dimension. It seems that Nature avoids this kind of gene extinc-
tion, postponing it forever, in the case of recessive diseases. The correspond-
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ing gene is kept alive among the population, although within a very low fre-
quency.

Why Nature behaves like this? A possible answer is advanced in the quotes used
above, when we refer to the “bad” gene. Is it really bad? Even in the possibility of
being bad now, will it remain bad in the future, when another still unknown envi-
ronment will be set? Falciform anemia is widespread in some African regions, the
frequency of the correspondingp gene is much larger than in other regions of the
world. Coincidentally, in these same regions malaria is endemic. Malaria is not a
genetic disease, it is transmitted by the bite of a mosquito (a small flying insect). It
was found that heterozygousNp individuals (for the falciform anemia) are more
resistant against malaria than homozygousNN individuals. Thus, we cannot sim-
ply consider thep gene as bad. It is bad in what concerns falciform anemia, but it
is not bad in what concerns malaria. Maybe another new disease, transmitted by
the bite of a mosquito or by other means, will appear in France within the next 20
centuries. Maybe heterozygousNp individuals (for phenulketonuria) are more re-
sistant to it thanNN individuals. In this case, the French health authorities would
profit from the still existingp gene at this time, within a very low (but non zero)
frequency of 0.50%.

How Nature deals with the mathematics behind the recessive disease gene ex-
tinction? How is it so slow? Let’s considerxt = x the frequency of the defective
allele p among the current generationt . Therefore, 1− x is the frequency of
the normal alleleN . The purpose is to calculate the corresponding frequency
xt+1 = x for the next generationt+1.Table 2.1shows random couplings between
NN andNp individuals belonging to the current generation. Nopp individuals
are considered, because they do not survive enough in order to breed.Np in-
dividuals do not suffer any handicap, compared toNN individuals. The same
table shows also all their possible offspring and the corresponding relative fre-
quency.

The symbol † indicates individuals which will die soon, due to the disease.
Because they arepp, the frequency according to which they appear in generation

Table 2.1

couples offspring frequency

NN + NN NN (1 − x)4

NN + Np NN 2x(1 − x)3

Np 2x(1 − x)3

Np + Np NN x2(1 − x)2

Np 2x2(1 − x)2

pp x2(1 − x)2 †
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Figure 2.27. Recessive disease gene frequency decaying towards extinction. The data points follow
a straight line signifying a slow power-law decay, with its characteristic infinite lifetime. This is the

strategy adopted by Nature in order to avoid the unavoidable extinction: to postpone it forever.

t + 1 isx 2, i.e.,

x 2 = x2(1 − x)2

(1 − x)4 + 4x(1 − x)3 + 4x2(1 − x)2
.

By simplifying the common factors to both the numerator and the denominator
and taking the square root, we finally obtain

xt+1 = xt

1 + xt

.

By successively iterating this last equation, starting for instance withx0 = 0.5,
one can determine the whole evolution of the frequency,x1, x2, x3 etc., genera-
tion after generation. The result (plotted for clarity only at generations which are
integer powers of 2) is shown inFigure 2.27. The straight line observed on this
double logarithmic plot is the signature of a power-law.

Contrary to the fast creation of genetic diversity, exemplified with our sim-
ulational model, and described by the exponential functiong(t) plotted inFig-
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ures 2.23, 2.24 and 2.25, now Nature adopts the opposite strategy, i.e., a slow
power-law decay in order to preserve the same diversity.

2.10. Another simple model

The title above is not completely fair. Better than this would be “The same model,
with some minor modifications, but under completely different questions”, a too
long sentence. The minor modifications, compared with last section, are not im-
portant, and soon the reader will verify them. The new questions are related to the
behaviour of the dynamic system for different genome lengths. Specifically, how
should the mutation rate vary if one increases the genome length.

In real organisms, mutations are due to “errors” when the DNA is copied in
order to produce the offspring. A point mutation, the simplest case, corresponds
to one chemical base T, A, C or G being wrongly copied into another among
the same set, for instance a T on the parent’s genome transformed into a G on
the offspring’s copy. In our bit-string model, a point mutation is represented by a
1-bit transformed into a 0-bit, or vice versa, during reproduction.

The first, naïve idea about this process is to assume the numberm of point
mutations being proportional to the genome lengthL, or, in other words, the same
mutation rate per bit,m/L, independent ofL. Unfortunately, this simple reasoning
does not work, as we shall see.

The first evolutionary bit-string model is that invented byEigen (1971), after
he got a Nobel prize, see alsoEigen, McCaskill and Schuster (1989). He was in-
terested in replication of molecules, the origin of primitive life on Earth. Thus, his
bit-strings represent these molecules, not the individual genomes of an evolving
population. However, the particular interpretation is again not important. Eigen
himself invented the name “quasi-species” to denote the various possible bit-
strings of his model, indicating that his own interpretation is much more general
than the mere coexistence of self replicating molecules on some primordial chem-
ical soup, supposed to have founded life on Earth 4 billion years ago. We are also
interested in the replication mechanism of bit-strings and its consequences under
Darwinian evolutionary rules, not in what precisely these bit-strings represent.

Within the Eigen quasi-species model, each individual is represented by a sin-
gle bit-string, which corresponds to our haploid, asexual individuals,Figures 2.19
and 2.21, not our diploid, sexual population model treated in Section2.9. The se-
lection ingredient, however, is similar: the larger the number of 1-bits, the smaller
the fitness of the corresponding individual face to the current environment. Thus,
there is a master sequence, all bits set to 0, representing the best possible fitness.
Even starting the dynamic evolution with a population where all individuals corre-
spond to that master sequence, other sequences containing 1-bits will appear, due
to mutations. Entropy increases, diversity appears. After many generations, some
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sort of dynamic steady state is reached, where different quasi-species coexist. One
important feature we should require for this dynamic steady state is to keep alive
the quoted master sequence. The selection mechanism should be strong enough to
avoid what is callederror catastrophe, where all individuals present a lot of 1-bits
along the genome, in spite of the selection pressure. In other words, the genetic
diversity of the steady population, after many generations, should be distributed
near the master sequence, all individuals with relativelyfew 1-bits, and a finite
fraction of them with only 0-bits.

The preservation of the master sequence is important because the model sup-
poses afixed environment. As discussed in Section2.8, one cannot study the
whole set of all real and potential forms of life at once, an artificial borderline
should be adopted separating the population under study (a restricted set of in-
dividuals, a single species, a set of species, a whole genus, etc.) from the rest.
This “rest” is the environment, which is not fixed at all, but is supposed to evolve
within a much slower time scale than the population under study. An eventual
change in this environment would change the Eigen master sequence to another
neighbouring configuration, say with only one 1-bit, a single gene/allele which
was well adapted to the former environment but which is now replaced by a
new form better adapted to the slightly modified environment. If, in the steady
population, all individuals arenear the former master sequence, then they are
as wellnear the slightly modified master sequence, and evolution can proceed
with no further troubles. The dynamic evolution of the model itself does not need
to be changed. Instead, one can re-define the genomes of all currently alive in-
dividuals by flipping the bit corresponding to the specific position where the
environment modification acts. After that, the new master sequence has again
all bits set to 0, and the evolution proceeds with the quoted modification unno-
ticed.

Some models, as the ones presented in this chapter, keep the population con-
stant (the total number of individuals). It is a very useful artifact but rules out
the possibility of extinction. Some other models allow the population to fluctuate,
and can therefore exhibit the extinction phenomenon, normally calledmutational
meltdown: the genetic capacity of the individuals to face the current environment
gradually deteriorates, and the whole population is eventually extinct. Instead,
within the constant-population models, extinction is represented by the quoted
error catastrophe, as follows. One can interpret the constant population as a rep-
resentative sample of a much larger population, for which the number of individ-
uals varies. When mutational meltdown occurs within this larger population, the
smaller sample taken from it contains only genetically deteriorated individuals,
far from the master sequence. Extinction could be the next step. SeeLynch and
Gabriel (1990), Bagnoli and Bezzi (2000).

Let’s introduce now the asexual version of our model. We start withP0 =
100 000 individuals, the genome of each is a single bit-string withL 0-bits, the
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Figure 2.28. Frequency histogramh(N), plotted against the fractionN/L of 1-bits, after many gen-
erations of the asexual model. Different symbols correspond to different genome lengthsL. The curves
collapse into a single one for large enough values ofL (the largest lengthL = 2048 is represented by

the full circles).

master sequence. We have testedL = 32, 64, 128, 256, 512, 1024 and 2048. The
number of 1-bits along the genome of every individuali is Ni = 0, at beginning.
Due to mutations,Figure 2.21, after many generations one will find also individ-
uals withNi = 1, 2, 3, etc., as the reader can see inFigure 2.28commented later.
The selection rule is similar to the one introduced before, Section2.9: the sur-
vival probability for each individuali exponentially decreases with its numberNi

of 1-bits. Let’s callx the survival probability for individuals withNi = 0. First,
in order to obtain its value, we need to solve the polynomial equation

P0
∑

i=1

xNi+1 = P0(1 − b)

whereb = 0.02 is the death rate, i.e., 2% of the current population die after each
generation (and is restored with newborns, as explained soon). Equivalently, one
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can solve

(2.18)
L

∑

N=0

h(N)xN+1 = 1 − b

whereh(N) is the frequency of individuals with justN 1-bits along the genome.
At the beginning of each new time step (a new generation), after solving one

of the above equations in order to find the precise value forx, the death roulette
scans all the population. Individuali survives with probabilityxNi+1, and is kept
in the population in this case. After the whole process, only 98% of the former
population remains.

Let’s open a parenthesis, returning to the equivalence betweenerror catastro-
phe, the run-away from the master sequence, which may occur for a constant
population, andmutational meltdown, where a fluctuating population becomes ex-
tinct due to genetic deterioration. Depending on the mutation rate, this run-away
may occur during the evolution of a given population when the frequencyh(N),
initially something likeFigure 2.28, leaves the originN = 0 and becomes sharply
distributed inside a narrow range around a certain average mutation loadN . The
larger the genome length, the larger this valueN . In this case, the solutionx for
equation(2.18)approaches the maximum possible valuex = 1, meaning that all
individuals survive with probability 1. Selection no longer holds, no deaths, no
births, no evolution at all, hence the denominationerror catastrophe. The degree
of mutations was chosen too strong, and could not be controlled by the selection
mechanism. The simplest interpretation is that this particular population would
become extinct, the computer simulation does not need to proceed, and can be
aborted.

However, a real extinction could be easily obtained by imposing an upper limit
to the value ofx, as follows. The limitxmax should be slightly smaller than 1 but
larger than 1− b, for instancexmax = 0.999, in our case. This procedure will not
change anything while the master sequenceN = 0 and its neighbouring forms
N = 1, 2, 3, etc. are still present in the population, because in this case the rootx

obtained from equation(2.18)satisfies the conditionx < xmax. However, as soon
as the run-away occurs, this condition fails and the killing process is performed
according to probabilitiesx N+1

max instead ofxN+1. Soon, all the population will
be killed, showing the equivalence between the concepts oferror catastropheand
mutational meltdown. This shows also the adequacy of keeping a constant number
of individuals, in order to model a real population, provided the frequencyh(N)

does not run-away from the master sequence. Closed parenthesis.
Let’s return to our constant population model, after deaths were already imple-

mented. Now, the missing 2% will be restored, i.e., just(1 − b)P0 newborns will
be included. Each one is the offspring of a randomly chosen individual, among the
98% which remain. The parent’s genome is copied, and random mutations are set
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according to a rate ofm/L, where the numberm is fixed since the beginning, not
necessarily an integer value. First, we toss a random numberM of mutations to
be performed in between 0 and 2m. Then, we perform int(M) random mutations,
i.e., we flip int(M) bits randomly chosen along the genome, where the symbol
int(. . .) means the integer part of the argument. Then, with probability frac(M),
where the symbol frac(. . .) means the fractional part of the argument, we perform
a last mutation.

The steady state histogramh(N), afterT = 1 000 000 time steps is shown in
Figure 2.28, averaged over the last 100 000 generations, for each genome length
L. Here, we adoptedm = L/32, i.e., a mutation rate of 1/32 per bit. The ob-
served collapse of all curves into a single one, for large enough values ofL, is
the indication that both actors, mutation and selection, play their roles. Neither of
them dominates the other, both together define the final destiny of the population,
in an equilibrated dispute where mutations tend to increase the diversity while
selection breaks the eventual explosive error catastrophe. Physicists would prefer
to say that mutations create entropy, and selection minimises the free energy.

In order to better understand this competition between mutations and selection,
let’s resort to the extreme cases. First, imagine we have a too strong selection,
overwhelming the role of mutations. In this case, the histogram would be a sin-
gle point atN = 0, all individuals sharing the same master sequence. Of course
this uniform scenario, without diversity, does not correspond to any evolutionary
process. On the other hand, if mutations dominate the process, with no selection,
the curve would be a narrow distribution aroundN/L = 0.5. In this case, the
genomes would represent only a random noise, with 0 and 1-bits randomly dis-
tributed. This is just the maximum entropy situation characteristic of a chaotic
system as described in Section2.2. Again, this scenario would not correspond
to any kind of evolution, it would correspond to the extreme case of the already
quoted error catastrophe.

Furthermore,Figure 2.28shows the class ofN = 0 individuals (the master
sequence) surviving, not extinct. Error catastrophe (or mutational meltdown) is
avoided. This asexual version model is the basis for a more complete study on
lineage branching, the speciation process for asexual reproduction, Section4.3.2.

Here, we are interested in the sexual version, with a diploid population, as
follows. For haploids, the diversity (or entropy) created by mutations alone was
controlled by selection, by keeping the same mutation ratem/L independent of
the genome lengthL. What will occur for diploid populations with sexual repro-
duction, for which crossing and recombination,Figure 2.22, are a further source
of diversity besides mutations?

The sexual version of our model starts withP0 = 10 000 diploid individuals,
each of them with two parallel bit-strings containing only 0-bits at beginning.
After each new generation, they reproduce with crossing and recombination plus
mutations,Figure 2.22, producing also individuals with 1-bits in various configu-
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rations along the parallel bit-strings. At each new time step, we start by the death
roulette, where the genetic loadNi counts the total number of loci containing at
least one 1-bit along the genome of individuali (both dominant and recessive ge-
netic diseases are counted). The same polynomial equation, i.e., equation(2.18),
is solved in order to obtain the survival probabilityx for N = 0 individuals, and
then each individuali is killed with probability 1−xNi+1. The global death rate is
b = 0.02. The initial populationP0 is then restored by including newborns. They
are offspring of random couplings tossed among the 98% survivors.

We have adopted different values for the genome length,L = 32, 64, 128. . .
up to 16 384, and the evolution was followed up toT = 10 000 000 generations
(for L � 1024) orT = 1 000 000 (forL � 2048). The numberm of mutations
is fixed for each run, and our purpose was to study the behaviour of the steady
state population as a function ofm. The first observed behaviour is the inexorable
run-away from the master sequence, i.e., the error catastrophe for large enough
genome lengths, when we kept the same mutation rate per bit,m/L, for different
values ofL. Contrary to the haploid, asexual case, now this quantitym/L cannot
be considered intensive, the same constant for any genome lengthL. We have
tested also other sub-intensive scalings, namelym ∝ Le, for diverse values of
the exponente < 1, but the run-away from the master sequence always appears.
Only with e = 0, i.e., by keeping the sameabsolutenumberm of mutations in-
dependent of the genome lengthL, we succeed in avoiding the error catastrophe.
In other words, sex with crossing and recombination turns the numberm of mu-
tations into an intensive quantity, when related to the genome lengthL, i.e., it
should not vary whenL increases.

This surprising behaviour, if extrapolated to real life, can be interpreted as fol-
lows. First, a larger genome length presents the advantage of allowing the storage
of more genetic information. However, there is a price to pay: the chemical ma-
chinery responsible for the DNA copying process during reproduction should
be improved in order to keep the same number of “errors”, independent of the
genome length. In this case, at least part of the further information capacity should
be used for this, to store the larger genetic information required by the more so-
phisticated chemical machinery. Why we, humans, have 23 pairs of chromosomes,
not just a single, long one? Maybe the answer to this question keeps some rela-
tionship with the intensivity exhibited by our simple model.

Returning to it, for eachL andm, we have measured the final distribution of
N , among the whole population, averaged over the last 100 000 generation.Fig-
ure 2.29shows the mean genetic load〈N〉 (divided byL) obtained from these
steady population distributions as a function ofm, for L � 1024. It shows a clear
phase transition, see Sections2.5 and 2.7, in particularFigure 2.10. Due to our
laziness, we will not present the plot equivalent to the asexualFigure 2.28, with
the intensive variableN/L along the horizontal axis. Instead, we describe it in
words.
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Figure 2.29. Phase transition observed within the sexual version model, measured after the steady
population is reached. Theabsolutenumberm of mutations appears along the horizontal axis, not the
mutation rate per bit. Form smaller than a certain critical value (heremc ≈ 1.043) all individuals
keep their genomes near the master sequence with genetic loadN = 0. On the right-hand side ofmc,
however, one observes the error catastrophe. For each fixedm on that side, the population distribution
runs away from the master sequence, all genetic loadsN 	= 0 remain close to the average〈N〉 which
can be read on the vertical axis. The smallest and largest genome lengthsL = 32 andL = 1024 are

represented by full diamonds and circles respectively.

First of all, for the sexual case these distributions do not collapse any more
into a single curve for different genome lengths, as they do for the asexual case,
Figure 2.28. Let’s take a fixedm below the critical pointmc, Figure 2.29. By
increasing the genome lengthL, the steady population distribution (similar to
Figure 2.28, but not collapsed) becomes more and more narrow, compressed near
the leftmost pointN/L = 0. Its fate is to converge into the uninteresting distri-
bution where only the master sequence survives (within fluctuations proportional
to 1/L, as we shall see). On the other side, for a fixedm abovemc, the steady
population distribution runs away from the master sequence, and becomes a bell
shaped curve centred around the non-vanishing value of〈N〉/L displayed inFig-
ure 2.29for the corresponding value ofm. The larger the genome lengthL, the
narrower this bell shaped curve as a function ofN/L.
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Figure 2.30. Steady population distributions for the sexual version model, withm = 1, a little bit
below the phase transition,Figure 2.29.

The procedure of plotting the steady population distributions against the inten-
sive variableN/L is no longer good for the present sexual case. Instead, it is better
to plot the distributions against the extensive genetic loadN itself. One of these
plots is shown inFigure 2.30, corresponding to a value ofm just below the crit-
ical pointmc. Now, the curves collapse again into a single one, for large enough
genome lengthsL, as expected. This behaviour shows once more the effect of the
crossing and recombination sexual process into the dependence between genetic
load and mutation rate: it was an extensive dependence within asexual reproduc-
tion, but becomes intensive with the introduction of sex. BecauseFigure 2.30was
taken very near the critical situation, the collapsed distribution is also very near the
run-away process, as one can verify by looking to the small (but non-vanishing)
presence of the master sequence.

On the other hand,Figure 2.31shows the steady population distributions form

just above the phase transition. Now, one can clearly see the run-away from the
master sequence occurring for the largest sizeL = 1024 (note the big interval on
the horizontal axis).
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Figure 2.31. Steady population distributions for the sexual version model, withm = 1.044, just
above the phase transition,Figure 2.29. The largest genome lengthsL = 512 (left) andL = 1024

(right) are displayed by continuous lines.

For a low enough degree of mutations per offspring,m < mc, all individuals
become similar to the master sequence. In average, everybody differs from it by
a limited genetic load〈N〉 which does not increaseif one increases the genome
lengthL, Figure 2.30. Under an evolutionary point of view, this situation is not
interesting, because it lacks the required diversity. Thus, Nature’s task is to tune a
larger value form, in order to enhance diversity. However, it cannot be so large,
because the error catastrophe waits on the right-hand side ofmc, Figure 2.29, as
one can verify by the run-away from the master sequence observed inFigure 2.31.
Nature should tunem near the critical pointmc. We have run other simulations
with other values of the parameters, and observed thatmc indeed changes a little
bit. This means thatm should be adapted to the environment conditions, for in-
stance by tuning the proper birth (or death) rateb in order to keep the population
always near the critical situation.

We have also implemented a mean field version of this same model, see Sec-
tion 2.6and the last two paragraphs of Section2.8. It is defined hereafter, accord-
ing to the same general approach widespread among biologists (see, for instance,
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Redfield (1994), Dieckman and Doebeli (1999), Kondrashov and Kondrashov
(1999)). Instead of keeping in the computer memory the genomes of all alive
individuals, we keep only a singleL-entry array with the frequency distribution
h(N). It is the equivalent toFigures 2.30or 2.31. Because this distribution will
vary from generation to generation, we will denote it by the symbolht (N), where
t refers to the generation. Following what we have done with the simulations, we
also start the dynamic evolution of this mean field approach by taking all genomes
identical to the master sequence, i.e.,h0(0) = 1 andh0(N 	= 0) = 0.

Each time step starts with deaths. They are implemented by first solving
equation(2.18) for x, and then multiplying all entries of the arrayht (N) by
xN+1/(1 − b), where the denominator 1− b is necessary in order to restore the
normalisation condition

∑

N ht (N) = 1.
Then, we construct an auxiliary arrayh0(N) for the offspring which later will

be included into the population. Near the transition point, the genetic loadsN

are small if compared withL, supposed a large length. Thus, we can neglect the
few instances of homozygous 11 loci. As a consequence, the genetic loadN is
just the double of the total number of 1-bits along both bit-strings of a diploid
individual. As a further consequence, we can consider the genetic loadN0 of the
offspring, after crossing and recombination performed on the parents’ genomes,
as the simple average(Nm + Nf )/2 of the parents’ genetic loadsNm andNf .
Thus, apart from mutations, the offspring frequency distribution is obtained by
the convolution

h0(N0) =
L

∑

N=0

ht (N)ht (2N0 − N)

As a technical point,N is always an integer number in the interval[0, L]. How-
ever, N0 = (Nm + Nf )/2 can be a half-integer inside the same interval. In
order to restore the restriction to only integer numbers, allh0(N0) obtained by
the above convolution for half-integer values ofN0 are re-distributed half-to-half
between the two neighbouring integersN0 ± 1/2. Therefore, after this process,
h0(N0) is another frequency distribution defined at theinteger genetic loads
N0 = 0, 1, 2, . . . , L.

Now, we will introduce one mutation (a single one, for a while) on the offspring
distribution, as follows. A fraction of(1 − N0/2L)2 is subtracted fromh0(N0),
and then transferred toh0(N0+1). Analogously, a fraction of(1−N0/2L)N0/2L

is subtracted from the sameh0(N0) and transferred toh0(N0 − 1). We do that
for all values ofN0 in parallel. If the numberm of mutations is an integer, then
we perform the whole parallel procedure justm times, sequentially. Otherwise,
we repeat it int(m) times and then repeat it once more with the above factors
multiplied by frac(m).
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Finally, the frequency distributionht+1(N) of the next generation is obtained
by mixing the parents with their offspring, i.e.,

ht+1(N) = (1 − b)ht (N) + bh0(N)

Note that no random numbers are needed during the whole process, which is
then completely deterministic. The frequency distribution of each generation is
completely determined by the previous one, no fluctuations, no contingencies.

The whole procedure (deaths, convolution, mutations and generation mixing)
is iterated sequentially, up to equilibrium, i.e., until we obtain a no longer vary-
ing frequency distributionht (N), after a sufficiently large timet . The result is
twofold: (1) if m is less than a critical valuemc, the equilibrium distribution is
concentrated nearN = 0; or (2) if m is larger thanmc, it is equally concentrated
nearN = L. Figure 2.32shows this behaviour forL = 1024. The symbols cor-
respond to data really obtained from the computer, the step line is a guide to the
eye.
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Figure 2.32. Mean field approximation for the sexual version model, genome lengthL = 1024, to
be compared with the simulational resultFigure 2.29. This is a good example of the danger of using

mean field approaches near phase transitions.



2.11. Conclusions 69

We have already commented in Sections2.6 and 2.8the usual drawbacks of
these mean field approximations. In particular, we have detected the problem’s
source: no fluctuations at all are taken into account. As we have also commented
in Section2.5, fluctuations are of fundamental importance in defining the critical
behaviour near phase transitions like that exhibited inFigure 2.29. Here, the mean
field approximation predicts a wrong value for the transition point,mc ≈ 0.336
instead of the correct valuemc ≈ 1.043. Nevertheless, this drawback is not the
most important. Worse yet inFigure 2.32is the absence of the curvature observed
in Figure 2.29. The run-away from the master sequence, if one just surpasses
the critical number of mutationsmc, is not so drastic as the mean field approach
indicates. The wrong jump from〈N〉 = 0 directly to 〈N〉 = L would forbid
any kind of evolution, due to the complete lack of diversity in both sides of the
transition, leaving no space for the action of selection.

2.11. Conclusions

In this chapter, we have introduced a lot of subtle concepts originally used in the
study of critical phenomena and phase transitions, a branch of Statistical Physics.
In particular, the ubiquitous appearance of power-laws, instead of exponential de-
cays, describing the behaviour of various quantities as functions of both distance
and time. We have also shown that this behaviour is not restricted to these phys-
ical studies, it appears also in many other systems outside Physics, in particular
evolutionary dynamics through natural selection. The power-laws impose a strong
difficulty, forbidding to separate a small piece of the system under study from the
rest, or a small slice of time. All scales of both time and length should be consid-
ered, one can neglect neither the larger distances nor the remote past. The correct
approach for these studies are the successive scaling transformations described in
Section2.7, which nevertheless are very difficult to be implemented by analyti-
cal mathematical treatment. The alternative is the computer simulation, the main
object of this book. Fortunately, the length and time scale-free character of these
systems gives to them a remarkable feature: the behaviour of distinct systems,
which are very different from each other on the microscopic or short term scale,
could be the same. Completely different systems belong to the same universality
class, including some very simple computer toy models which nevertheless de-
scribe very well the critical behaviour shared with their partners. There are some
few universality classes: inside one of them there is a real, very complicated sys-
tem, but perhaps also a simple computer toy model which allows the researcher
to study the critical behaviour of the whole class.

The last two sections were dedicated to two particular very simple evolutionary
computer models, I used as introductory examples for the many others my three
co-authors will describe in the following chapters.
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Chapter 3

Biological Ageing

We are born, learn to walk, to speak, to read and write, and some of us even
become professors. Then ageing sets in: we get more fat and wrinkles, become
less original, retire and die. Why do we not stay youthful and healthy until we die
for whatever reasons? Actually, Pacific Salmon has achieved this aim: It survives
for years until it produces children once in life, and then rapidly deteriorates until
it dies. Why do we not win football championships at an age of 100 years, and die
of “old age” a few months later?

Beauty and scientific originality are difficult to measure, and thus we restrict
the discussion of ageing to the most objective and reliable quantity, the mortality.
If you become 30 years old in a peaceful rich country, then it is likely that you also
reach 35; someone who celebrates the 100th birthday should not rely on reaching
the 105th. Thus the probabilityμ(a) da to die within the next small age interval
da, after having reached agea, increases with age for adults. This effect we call
ageing andμ the mortality function. Before we go into computer simulations, we
review some facts and theories.

3.1. Facts and theories

3.1.1. Facts

The medical progress of the last two centuries has not only increased human life
expectancy,Figure 3.1, but also got humans closer to the above ideal of living
healthily until a quite sudden death:Figures 3.2–3.4. There we see that child mor-
tality was decreased by a large factor during the 20th century, while the mortality
function near 90 years did not change much (in relative terms; note our logarith-
mic scale forμ). If this trend would continue over a long future (according to
Yashin, Begun, Boiko, Ukraintseva and Oeppen (2001)it has already stopped)
then the mortality over most of our life would fall to nearly zero, but stay constant
near 100 years, as dreamed above. The probability of survival would be close to
unity up to about 100 years and then drop towards zero rapidly; thus this trend is
also called rectangularisation, or compression of mortality,Figure 3.4.

71
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Figure 3.1. Life expectancy of Swedish women; from Wilmoth’s mortality data base and the Swedish
Statistical Central Bureau:www.scb.se.

Looking at present reality inFigure 3.2, we see a complicated behaviour in
childhood, a shoulder near 20 years, and then a transition to a straight line in this
semilogarithmic plot, i.e., an exponential increase of the mortality functionμ(a)

with agea

(3.1)μ(a) ∝ eba

known as the Gompertz law of 1825. (The original paper is terrible to read and
thus not cited here.) The straight line inFigure 3.2indicates this exponential in-
crease. The Gompertz slopeb increased during the 20th century,Figure 3.3, and
is nearly 0.1 per year, i.e., the probability to die increases each year by about 10
percent of its previous value.

The Gompertz law applies presently to many industrialised countries;Fig-
ure 3.5shows the male mortality function of Sweden, quite similar toFigure 3.2
except that young Swedish men seem to live more reasonably than Germans.
There besides the straight line for the Gompertz law, equation(3.1), we also
show the Makeham modification, also going back to the 19th century, which adds
a small constant to the Gompertz exponential increase. Now ages between 20
and 30 years fit better due to this extra parameter, andGavrilov and Gavrilova
(1991)have emphasised the Makeham correction. However, the mortalities be-

http://www.scb.se
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Figure 3.2. Recent mortality functions fromwww.destatis.defor German men.

low 20 years are far from being described by either the original Gompertz law or
the Makeham corrections. (Figure 3.3suggests that the Makeham correction was
more important in the 19th century when it was suggested.) We mostly ignore here
these childhood deaths and deal with adult mortalities. The possible downward
deviations for the oldest old, about 100 years and above, are also discussed later
for social simulations in connection with retirement demography, Section6.1.3;
they are visible in the upper right corner ofFigures 3.2 and 3.5. (This later Sec-
tion 6.1.3will also complain about lawless women disobeying Gompertz.)

If S(a) is the probability of surviving from birth up to agea, then the mortal-
ity function isμ = −d ln S(a)/da. Usual human life tables are given in yearly
intervals, only for babies also weekly and monthly tables for their first year are
widespread; with only yearly data we have to approximateμ = ln[S(a)/S(a+1)].
Except for the oldest old this mortality function (or “force of mortality”,Thatcher,
Kannisto and Vaupel (1998)) roughly agrees with the mortalityq = [S(a)−S(a+
1)]/S(a) which is the fraction of people alive at agea and dying within the next
year. Of course,q � 1 cannot obey the Gompertz law, since for largea the expo-
nential function goes to infinity, and thus we will not use it here.

Thus far we only talked about humans, but also most (perhaps not all:Finch
(1998)) other animals age. To find their intrinsic mortality we have to put them
into protected environments like laboratories or zoos; in the wild, they are eaten

http://www.destatis.de
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Figure 3.3. Older mortality functions for German men, for 1905, 1933 and 1950 (West Germany
only for 1950). From the Statistical Yearbooks of Germany.

by predators or die from starvation, thirst, or bad weather. Then also the Gompertz
law is fulfilled, except that some flies at old age have a mortality plateau (Carey,
Liedo, Orozco and Vaupel, 1992; Curtsinger, Fukui, Townsend and Vaupel, 1992;
Vaupel, Carey, Christensen, Johnson, Yashin, Holm, Iachine, Kannisto, Khazaeli,
Liedo, Longo, Zeng, Manton and Curtsinger, 1998). Also single-cell yeast ages,
if you don’t kill it earlier by producing beer or bread. Even some bacteria age
in the sense that they produce less offspring after many divisions (Ackermann,
Stearns and Jenal, 2003). Mayflies (ephemerals,Carey (2002)) disobey Gompertz
and have a mortality function increasing linearly with age; they are thus the coun-
terpart of Pacific Salmon where the deviation from Gompertz is in the opposite
direction of rectangularisation.

3.1.2. Theories

In a recent collection of reviews on ageing from the biological, not the computa-
tional point of view (Cell, 2005), Kirkwood on page 437 overviews many theories;
we list here only some of them and refer to Kirkwood for the historical references,
except for the last two theories not mentioned by him. He givesHydra as an ani-
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Figure 3.4. Survival probabilitiesS(a) from birth to agea, scaled by 105, for German men in 1905,
1933, 1950 and 2001, as used forFigures 3.2 and 3.3. The curves show the possible approach towards

a rectangle: Survival up to about 100 years followed by sudden death.

mal without ageing. A review much closer to what we will present here was given
by Cebrat and Łaszkiewicz (2005)from a genetic institute.

At the end of the 19th century Weissmann suggested that we die to make place
for our children; this death could be due to external reasons like for most animals
in the wild, or due to ageing like for today’s humans and for animals in a zoo. We
will discuss at the end of Section3.4a simple simulation giving some (very late)
justification to Weissmann.

More successful is the half-century old mutation accumulation theory of
Medawar which is the foundation of most of the simulations. It assumes that age-
ing is due to inherited life-threatening diseases, each of which starts to act at a
certain age. If such a disease kills an individual at young age before any offspring
is produced, then this disease is not inherited by anyone and vanishes from the
population. A hereditary disease killing us, after we got all the children of our
life, was given on to them but is less detrimental for the species as a whole, since
it does not prevent reproduction; if we die after finishing this book, the publisher
does not have to pay us millions in royalties, our colleagues can use our offices,
and the government saves on retirement funds. Williams’s antagonistic pleiotropy
happens if an inheritable mutation has good effects in the youth and bad effects
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Figure 3.5. Recent mortality functions for Swedish men, together with a Makeham curve. The Gom-
pertz law corresponds to a straight line in this semilogarithmic plot.

at old age (or the reverse); for example, a mutation increasing the amount of cal-
cium in the body is good for children to build bones but bad at old age due to
arteriosclerosis.

Kirkwood’s disposable soma theory has similar effects: The body has a limited
amount of resources to produce offspring and to ensure its own longevity. Some
compromise is made by Darwinian evolution which optimises overall survival.
Similarly, you may balance your money between spending it all in the youth, or
saving it for retirement. One cannot haveeverythingin life. Thus both Williams
and Kirkwood lead to a trade-off between longevity and youthful strength.

Damage to bones, wings and other body parts may accumulate during life,
like for professional athletes. We include in this effect also cancerogeneous sub-
stances produced by human pollution. One particular aspect of this damage are
new bad mutations created during the life of one individual by oxygen radicals
which damage the genome (DNA). Then the affected cells no longer work prop-
erly, endangering the life of the whole organism.

Programmed cell death happens during the development of each individual
from the original single cell (zygote); otherwise we would be spherical with 2t

cells aftert cell divisions. Perhaps there is a similar death gene hidden somewhere
which kills us at old age. Recent experiments point in this direction: Genetic
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modification has increased enormously the life expectancy of nematode worms
Caenorhabditis elegans(but seeDavenport (2004)) and to a lesser extent for some
other animals.

Telomeres are parts of the DNA strands at their end, and at each cell division
some telomeres are lost if they are not restored later by the enzyme telomerase.
For cells in vitro this leads to the Hayflick limit known since nearly half a century
(Hayflick, 2003): After a few dozen cell divisions the cells no longer divide.

Most recently, Shklovskii explained ageing as a result of an exponentially rare
escape of abnormal cells from immunological response; this lead to the Gompertz
law (Shklovskii, 2005).

Finally, also cars and other non-living objects age, similarly to humans (p. 17 in
Wachter and Finch, 1997; Vaupel group, 1998). This can be explained by reliabil-
ity theory (Gavrilov and Gavrilova, 1991) where each important function may be
fulfilled by many similar components of the system. First one function, and then
the whole system, fails if all the components fulfilling this function have failed.

Not all these competing theories are mutually exclusive: The mutation ac-
cumulation theory obviously is based on mutations, which could be produced
by oxygen radicals, against which the body has built defences which could be
strengthened by suitable genetic modifications. The situation has been compared
before by others to the difference between hardware and software in computing:
Mutation accumulation theory is the software, and it is realised by mutations from
oxygen radicals playing the role of the hardware. Genetic manipulation to increase
the defence against oxygen radicals then corresponds to making the program more
efficient.

It is not the aim of this book on simulations to determine which is the best
theory; perhaps all of them are true and ageing is a multi-causal phenomenon.
We discuss now those which have been used for simulations, and that is mainly
the mutation accumulation theory (sometimes including antagonistic pleiotropy)
and to a far lesser extent its combination with Weissmann’s idea as well as some
telomere simulations.

Many more older biological references are given in our previous book (de
Oliveira, de Oliveira and Stauffer, 1999) and thus not listed here.

3.2. Penna model: asexual

3.2.1. Basic model

The Penna model (Penna, 1995), invented in September 1994 by a computational
physicist at age 30, is by far the most widespread way to simulate ageing. It im-
plements the mutation accumulation theory and was the first model to give the



78 Chapter 3. Biological Ageing

Gompertz law. (With “model” we denote a description of individual elements and
their interactions, as is customary in physics; other sciences may denote any math-
ematical formula, like equation(3.1), as a model.) It uses bit-strings, that means
chains of zeroes and ones, as were introduced in biology long time ago (Eigen,
1971). Zero means health, one means a life-threatening inherited disease. This
bit-string forms the genome, is inherited, but undergoes mutations at birth. In this
Section3.2we review the asexual version, in the following Section3.3the sexual
version.

More precisely, each position of the bit-string of typically 32 bits (also lengths
from 8 to 4096 were simulated) represents one time interval in the life of the
individual, like a day for flies or several years for humans. We will denote this
time interval simply as “year”, being accustomed to German Shepherds. A bit set
to one means that from that age on until death this inherited disease reduces the
health of the individual. If the number of active diseases reaches a thresholdT ,
the individual dies. If it survives and is not younger than the minimum reproduc-
tion ageR, it produces at every iterationB offspring, each of which inherits the
genome apart fromM bad mutations each of which randomly selects one bit and
sets it to one independent of what its previous value was. A program is given in
our appendix, Section9.2.

If all diseases (bits set to one) are given on to the offspring, and only new dis-
eases (bits switched from zero to one) may be created by mutations, without any
back mutations (bits switched from one to zero), why does the population not
die out? If the genome gets worse at each generation and never better, mutational
meltdown (Lynch and Gabriel, 1990) is unavoidable: The mortalities rise while
the birth rates stay constant; thus finally more individuals die than are born, and
the species becomes extinct. Traditional theoretical biology assumes a constant
population without checking first for mutational meltdown and thus is closer to
biblical creationism than to Darwinian evolution. In the Penna model, the expla-
nation for a stable population came from the analytical solution of the salmon
model (Penna, de Oliveira and Stauffer, 1995). If a mutation hits a bit which is
already mutated to one, then nothing happens. Thus with appreciable probability
some offspring escape the mutational meltdown and have the same genome as the
mother, not a worse genome. These children keep the species alive. If the muta-
tion rule is modified such that it always searches for a zero bit to mutate it to one,
then mutational meltdown happens and the population dies out quickly.

The parameters should be chosen such that the population neither dies out nor
reaches an age of 32; typical values areT = 3, R = 8, B = 3. To prevent
the population sizeN(t) from growing to infinity, one applies an additional death
probabilityN(t)/K, as in the logistic equation suggested by Verhulst in the 19th
century. The denominatorK is an input parameter limiting the population size.
The equilibrium population then is determined through thisK. These Verhulst
deaths are due to the lack of food and space if the population size gets closer to
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Figure 3.6. Mortality functionμ for the standard asexual Penna model. The parameters do not matter
much within reasonable limits. FromStauffer (2002d).

the carrying capacity of the environment. (They may be applied either to all ages,
which is computationally better, or to the babies only as introduced byMartins
and Cebrat (2000), which is biologically more realistic.) At each age, or at birth,
the individual is killed if a random number is smaller thanN(t)/K. About 104

iterations are usually needed to get a good equilibrium. The many young people
reach their equilibrium population sooner than the few old people; thus watching
the totalN(t) may give the wrong impression that already after 103 iterations an
equilibrium is reached.

The semi-logarithmic plot ofFigure 3.6shows that the mortality function
roughly obeys the Gompertz law, equation(3.1), which corresponds to a straight
line. Deviations exist at young ages belowT = 3 where the number of active bits
cannot yet reach the dangerous thresholdT , and at old age whereμ diverges giv-
ing a maximum lifespan, according to an analytic calculation ofde Almeida, de
Oliveira and Penna (1998). (We hate to admit that this prediction of a maximum
age occurs at ages barely reachable in simulations, a situation quite similar to real-
ity.) The mortalityμg in this figure describes only the genetic deaths and does not
include the Verhulst deathsμV which are age-independent in these simulations;
since forT > 1 they are equal to the total mortalityμt in the first year, we can eas-
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Figure 3.7. Distribution of mutated bits, averaged over 200 samples, each with thousands of individ-
uals having four mutations at birth andR = 8, T = B = 4.

ily subtract them from the total mortality at older ages:μg(a) = μt (a) − μV (a)

with μV (a) = μt (a = 0).
If one population of sizeN is simulated over long times, with the number of it-

erations much larger thanN , then all survivors have one common ancestor, which
the Bible called Eve. The genome then has typicallyT −1 bits set at ages younger
than the minimum reproduction ageR, and the positions of these bits are the
same for nearly the whole population. (To avoid this effect one can average over
many independent populations.) For ages afterR the fraction of mutated bits rises
rapidly and reaches unity at an age which then gives the maximum age of the
population,Figure 3.7.

3.2.2. Applications and modifications

If one assumes that reproduction occurs only once in life, then the Penna model
agrees with the reality for Pacific Salmon: everybody dies after reproduction
(Penna, de Oliveira and Stauffer, 1995). In this case, the survival probability
instead of decreasing smoothly with age as inFigure 3.4jumps abruptly to
zero at ageR + 1. This is a clear success for the mutation accumulation the-
ory and difficult to reproduce in other theories (e.g.,Meyer-Ortmanns, 2001;
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Jan, 1994). Kirkwood (p. 437 inCell (2005)) feels that his disposable soma theory
also explains the salmon effect but offers there no mathematical or computational
evidence.

Brigitte Bardot has been blamed for the vanishing of Northern Cod off New-
foundland and the eastern coast of Canada in 1993. For in the 1980s she led a
protest boycott against what some called the brutal slaughter and others the pro-
fessional harvesting of baby seals on the ice floats there each spring, to produce
white pelts commercially. She succeeded, pelts were no longer bought and thus
baby seals were no longer killed. Therefore, the accusation goes, the baby seals
survived and grew by eating cod fish, bringing it to extinction there. Men feel
it entirely appropriate to blame women for their errors; Adam did so already at
the beginning of the Bible. In this case, however, baby seals are now killed again
as much as before, but the cod has not returned. And before her boycott, both
seals and cod fish lived there together. Simulations of human over-fishing with
the Penna model (de Oliveira, Penna and Stauffer, 1995) showed that it can lead
to a rapid extinction, while sparing the young fish would help both the fishermen
and the fish species. For lobsters, it is better to spare also the old ones (Penna,
Racco and Sousa, 2001), since their fertility increases with age. It seems doubtful
that European governments have learned from the Canadian experience; they still
try to save short-term employment in fishing, endangering both the herring and
long-term employment.

Both the number of births per iteration, and the number of offspring born in
one birth, could be diminished by a large number of active mutations and thus
decrease with age. This effect was studied thoroughly byDesai, James and Lui
(1999).

Child mortality in reality is much higher than the extrapolation of the Gom-
pertz law to the first year of human life would predict,Figure 3.2. The group of
the geneticist Cebrat (Łaszkiewicz, Szymczak, Kurdziel and Cebrat, 2002; see
also Magdon-Maksymowicz, Sitarz, Bubak, Maksymowicz and Szewczyk, 2002)
explained enhanced child mortality by adding housekeeping genes to the Penna
model. These are genes regulating the basic mechanism of life, not yet the type
of complex organism which these mechanism are supposed to support. Failure of
household genes causes early death during the development; in fact, most human
zygotes never become a baby leaving the mother. In this sense, child mortality is
simply the tail of the high death probability right after the formation of the first
cell (zygote).

On the opposite end of the age spectrum we have the mortality plateau for flies
(Carey, Liedo, Orozco and Vaupel, 1992; Curtsinger, Fukui, Townsend and Vau-
pel, 1992) for the oldest old. Several modifications of the Penna model were pro-
posed (de Oliveira, de Oliveira and Stauffer, 1995; Sousa and de Oliveira, 2001)
to reduce the old-age mortality. The latest success comes fromCoe, Mao and
Cates (2002)who applied an old idea (Thoms, Donahue and Jan, 1995) that the
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genes do not kill us deterministically when the number of active diseases reaches
the thresholdT . Instead they kill us with a smooth probability which increases
from zero to unity when the number of active diseases increases from far belowT

to far aboveT . Then both analytically and in simulations they found a mortality
plateau for the oldest old, using the Fermi function from statistical physics for
this probability. Other reasonable choices gave similar results (Schwämmle and
de Oliveira, 2005).

Downward deviations from Gompertz at old age are also obtained if one does
not equilibrate long enough, both in the Penna model and elsewhere (Mueller
and Rose, 1996). And the mortality maximum inde Oliveira, Stauffer, de Oliveira
and Martins (2004)vanished when a programming error was corrected; obviously
those authors should never be trusted. (SeeSousa and de Oliveira (2001)below
in Section3.5.2for more reliable simulations.)

Human genomes vary a lot, and human mortality is described by the Gompertz
law which is found also in the Penna model. In contrast, inbred laboratory animals
may all have approximately the same genome. If all individuals have exactly the
same genome in the Penna model, their genetic death age is the same except for
the probabilistic modification ofThoms, Donahue and Jan (1995)andCoe, Mao
and Cates (2002). Geneticist Pletcher did not like this, and in a nice example of
productive criticism of the Penna model,Pletcher and Neuhauser (2000)incorpo-
rated elements of reliability theory (Gavrilov and Gavrilova, 1991) into the Penna
model to repair this defect.

Thus far no spatial structure was taken into account, as is appropriate for highly
mobile individuals. For plants, civil servants, or other barely moving individuals
it is more appropriate to put them onto a square lattice. Offspring can survive
only if put on an empty lattice site besides the mother (Sousa and de Oliveira,
1999a). The random Verhulst deaths now can be avoided completely (Makowiec,
2001). The main results of the Penna model without lattice are confirmed by these
lattice simulations.He, Pan and Wang (2005)put wolves, sheep and grass onto a
square lattice, with the animals ageing according to the Penna model. The wolves
eat sheep, and the sheep eat grass. Three possible equilibrium states were found:
coexistence of wolves, sheep and grass, extinction of the wolves and survival of
sheep and grass, or extinction of both animals and survival of grass only. Strong
oscillations were found similar to the Lotka–Volterra differential equations for
prey and predator.

3.2.3. Plasticity

At the Atlantic coast of the USA, the Virginia Opossums live partly on the conti-
nent when their life is endangered by predators, and partly on islands where their
predators are missing. The island mammals not only live longer than those on the
continent, which is plausible, but also mature later (Rose, 1991; Austad, 1993).
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Thus the environment influenced over thousands of years through selection and
mutations the ageing process (the minimum reproduction age). And this happened
not in an artificial laboratory experiment but in reality. Non-evolutionary theories
of ageing, like those built on oxygen radicals damaging the DNA, have difficulties
to explain such a change of genetic properties, which is called “plasticity” by ex-
perts. Recent experiments on other animals, including the cod fish simulated ear-
lier in Section3.2.2, confirmed this reduction of reproductive age through higher
predation (Olsen, Heino, Lilly, Morgan, Brather, Ernando and Dieckmann, 2004;
Branco and Sherman, 2005). This plasticity requires many generations and is
therefore not the simple genetic change in children through traits acquired by
their parents, on which Lamarck and others built their theories two centuries ago,
Section2.8.

For guppies, however,Reznick, Bryant, Roff, Ghalambor and Ghalambor
(2004) found the opposite effect: The minimum reproduction age went up for
higher predation risks. This was thought to contradict evolutionary theories. Com-
puter simulations ofAltevolmer (1999), published long before the surprising new
results on guppies, show that these new results are fully compatible with the Penna
model. He assumed that the risk of predation is not constant over the whole age,
but is particularly high for the weak, i.e., for the young and for the old. At mid-
dle age, animals can defend themselves better against predators, for example by
running away fast. He also assumed self-organisation for the minimum reproduc-
tion age, which can mutate by±1 from parent to offspring. If in the computer
simulations, only the old animals were killed by predators, then the minimum re-
production age went down, as for the Virginia Opossums. If, on the other hand,
the predators kill only the young, then the minimum reproduction age went up,
as for guppies. Thus the mutation accumulation theory is compatible with both
effects: The sign of the change depends on the ages at which animals are eaten by
predators.

How is this Penna-type simulation made? IfR, the minimum age of reproduc-
tion, is kept as a constant input parameter, then by definition one cannot see a
change inR. Thus (Ito, 1996) one needs mutations inR such that the fittestR
emerges by self-organisation. Therefore at the time of birth theR of the mother
is given on to the child, apart from a random mutation by one unit, up or down.
If this is the only effect, thenR would diminish to zero or one, such that even
at the lowest age offspring can be produced. This limit is biologically nonsense
for all species which require growth of the offspring before it reaches maturity;
we are not dealing now with bacteria. Thus a counter effect has to be intro-
duced, like a risk(1 − x)2 for mother and child to die at birth, wherex is the
age divided by the maximum age (= length of bit-string.) Thus attempting to
give birth at age one would lead almost certainly to death and thus would hardly
represent a high fitness leading to lots of offspring. These methods (Ito, 1996;
Altevolmer, 1999) are standard to achieve self-organisation of biological para-
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meters and correspond closely to half a century of Monte Carlo simulations for
Boltzmann distributions in statistical physics.

3.3. Penna model: sexual

3.3.1. Basic model

Hundreds of million years ago Mother Nature invented sex by copying Holland’s
genetic algorithm: Children get half of their genome from the father and the other
half from the mother. Genetic algorithms assume that mixing the lines of two
different versions of a program could make it more efficient. Similarly, one could
program sexual reproduction by still giving everyone one string of 32 bits, and
the child gets on half of the positions the paternal bits and on the other half of the
positions the maternal bits. This, however, is not how nature works and how the
program (appendix inde Oliveira, de Oliveira and Stauffer (1999)) was written. To
formulate it simply, Nature distinguishes between asexual haploid (e.g., bacteria)
and sexual diploid (e.g., humans) living beings. Haploid means that the genetic
information is stored only once, as in the single string of 32 bits in the asexual
Penna model. Diploid means that the genetic information is stored twice, one set
coming from the father and the other set from the mother. Thus in the sexual
version of the Penna model each individual has two bit-strings of the same length,
typically 32. Now we call these two bit-strings the upper and the lower one and
imagine them arranged horizontally:

0 0 0 1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

To get a child with the same number of bit-strings as each of the parents, and not
twice as many, Nature as well as the computer program produces haploid gametes:
sperm and egg cells. Two gametes, one from each type, are then combined in
ways not described in this book, to form a combination: the diploid zygote. This
zygote then starts dividing and becomes a new individual. The production of these
gametes is programmed as follows: One position along the bit-string is determined
randomly as crossover point, and one gamete consists of the bits to the left of the
crossover point x from the upper bit-string plus the bits to the right of the crossover
point from the lower bit-string. The other gamete combines the remaining bits:
lower left plus upper right. The two gamete genomes in the above example, if the
crossover point x is between bits 4 and 5, look like:

0 0 0 1x0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 0x0 0 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Figure 3.8. Semilogarithmic plot of mortality function versus age for the sexual Penna model. From
de Oliveira, de Oliveira and Stauffer (1999).

One of these two gametes from the father is then selected randomly for the
zygote, and the same happens in the mother. In this way the sexually produced
offspring differs genetically from both mother and father, but combines features
of both, just as is the end result in the simpler genetic algorithm. (Results barely
change if instead of recombining left and right parts one recombines the bits ran-
domly.) Then, random mutations are introduced in both gametes. The sex of the
child is determined randomly.

How do we now count the life-threatening diseases in these bit-strings? Typi-
cally six of the 32 bit positions are selected randomly as dominant and all others
as recessive. On dominant positions one bit set to one suffices to produce a dis-
ease, on recessive positions both the maternal and the paternal bit have to be one
to produce a disease.

How do the individuals find partners? We know that women think that all men
are alike. Thus they select a partner randomly, check if he has reached the mini-
mum reproduction age, and if not they look for another randomly selected man,
up to 20 times. Do you select the oxygen atoms which you breathe?



86 Chapter 3. Biological Ageing

The simulation inFigure 3.8shows somewhat more curvature than in asexual
reproduction but roughly the mortality function there still obeys the Gompertz
law which corresponds to a straight line in this semilogarithmic plot.

3.3.2. Applications and modifications

Women have menopause, and the same cessation of reproduction at middle age
applies to many animals, even a fly species (Austad inWachter and Finch (1997),
Figure 5 inNovoseltsev, Novoseltseva and Yashin (2003)). (The old claim, that
only humans and pilot whales show it, was based on observation in the wild when
animals die long before their genetic death age; we humans are not so special.)
According to the above mentioned simulations of Pacific Salmon, mutation accu-
mulation theory kills individuals after their last act of reproduction. Also in the
sexual Penna model one may introduce a maximum reproduction age for the fe-
males, but then both males and females can survive beyond that age. Why this
difference to asexual reproduction?

It is the presence of the males which helps females to survive menopause or its
analogs. Men can reproduce until old age; on the other hand the sex of the child
is determined randomly. If all the bit positions above the menopause age would
be equal to one, they would not only kill all the post-menopausal females but also
the males above that age, and thus would reduce the number of births.

This argument can be generalised. For a given individual, to have a 0-bit at
a given agea is a selective advantage, compared to other individuals, only if
this age falls into the reproductive period of its descendents. This advantage is
the more pronounced the larger is the number of descendents which will be still
reproductive at that same agea.

In a population where all individuals stop reproduction at a given maximum
reproductive ageM, individuals with a 0-bit at agea have selective advantage
over others only ifa � M. There is no selective advantage at all fora > M.
Thus, genetic drift will sooner or later populate all individual genomes with 1-bits
at ages beyondM. The consequence is the catastrophic senescence, like Pacific
Salmon.

In populations where the maximum reproduction age is not the same for all
individuals and is not given on unchanged to all offspring, the above assertion
continues to be valid. Namely, to have a 0-bit in some agea is a selective advan-
tage for the individual. Even if the maximum reproduction age of this particular
individual falls belowa, the 0-bit still configures an advantage, provided some fu-
ture descendents can reproduce beyonda. If, for instance half of its descendents
are supposed to do so, the 0-bit is a “half advantage”, compared with another
individual for which all descendents will be able to reproduce at agea, a “full-
advantage”. The important point, here, is to realise that the 0-bit at agea is a
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selective advantage forany individual, independent of its own maximum repro-
duction age being smaller or larger thana.

Survival after menopause is just a particular realisation of the above mentioned
case. Both males and females have the quoted “half-advantage”, because in both
cases the descendents are half-to-half divided into male and female offspring.
There is absolutely no advantage at all of males over females. Taking into ac-
count the slight male-female difference due to X-Y chromosomes for male and
X-X chromosome for female mammals, evolution could kill the females after
menopause only by putting in a deadly gene into the X chromosome ata = M

and at the same time putting into the (small) Y chromosome a gene counteracting
this deadly gene. That seems more improbable than a victory by the first author at
the Olympic Games in London.

S. Cebrat pointed out that for men staying faithful to their wives the argument
does not apply; the men then would also stop reproducing after their wives reach
menopause. Humans are known to live beyond 50 years; we do not have here the
space to discuss what this tells the wives about their husbands.

But why did menopause arise? Again some people like to give reasons which
make us humans special, like grandmothers helping to teach the children, Sec-
tion 3.5.3 (Voland, Chasiotis and Schiefenhövel, 2005). Indeed, some correla-
tions between the survival of grandmothers and grandchildren were found for
humans (Lahdenperä, Lummaa, Helle, Tremblay and Russell (2004), and the ac-
companying News and Views comments of Hawkes), but not for lions. However,
without any such cultural traits the sexual Penna model gave a self-organisation
of menopause if the risk of giving birth increases with the mother’s age and the
offspring needs the mother in order to stay alive during the first few years (de
Oliveira, Bernardes and Martins, 1999). Thus starting without menopause, the sur-
vival of the fittest simulated by the program with these two modifications creates
menopause,Figure 3.9, the other big success of this model apart from reproducing
the Gompertz law.

Also the correlations between children and their grandmothers, observed em-
pirically by Lahdenperä, Lummaa, Helle, Tremblay and Russell (2004), are re-
produced by this menopause Penna model without any human traits,Figures 3.10
and 3.11, with and without considering maternal care and the risk of giving birth.
(In Figure 3.10the upper data correspond to a higher birth rate than the lower
ones.) Good genomes are inherited and are therefore partly in common for each
individual and its grandparents (de Oliveira, de Oliveira, Bernardes and Stauf-
fer, 1998). Of course, we do not deny thatin additionparticularly for humans the
grandmothers help, following the principle: “Marry early so that your parents take
care of your children while you go to the movies.”

Returning to the question whether husbands are faithful to their wives,Sousa
and de Oliveira (1999b)were afraid of their spouses and claimed that, under cer-
tain circumstances, marital fidelity is better genetically, even though a Brazilian
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Figure 3.9. Self-organisation of menopause or its analog (de Oliveira, Bernardes and Martins, 1999).
The variablepc is the number of iterations over which parental care is required for the children. With
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no menopause. If longer parental care is needed, the menopause age self-organises far below this

maximum lifespan.

movie shows how one woman was married successfully with four men (simulta-
neous updating, not sequentially like Liz Taylor).

Why do men die sooner than women? The forces of evil (wives, medical doc-
tors, . . .) claim that men eat too many steaks and drink too much alcohol. The
Penna model blames Mother Nature (Schneider, Cebrat and Stauffer, 1998) and
with a larger diploid genome distinguishing between X and Y chromosome could
reproduce typical human reality: Mortalities for men are twice as high as for
women up to very old age where the ratio of the two gets close to unity. The
reason is that an “error” in one X chromosome can be counteracted by the other
healthy X chromosome for women, but not for men since they have only one X
chromosome. In this way, men have something else to blame for their weakness.
They may not be entirely correct, however.Figure 3.12shows the difference be-
tween female and male life expectancies from Sweden over two centuries: Women
always lived longer but their advantage changes more rapidly than the species
changes. Thus, both male behaviour and their discrimination by nature seem to
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Figure 3.10. Correlations between the age at death of grandmothers and the number of her grand-
children, in the menopause Penna model without human traits, but with child care and risk of giving
birth. These simulations follow the empirical observation ofLahdenperä, Lummaa, Helle, Tremblay

and Russell (2004).

play a role. (Mortality functions for Swedish men and women will be presented
later inFigure 6.1.)

A crucial test for this XX-XY chromosome explanation are the life expectan-
cies of birds, since there the females have two different and the males the
same chromosome, opposite to the X and Y chromosomes for mammals. Indeed
Paevskii (1985)found in general male birds to live longer than female birds but
Austad (2001)in later independent work found no reliable difference between
mammals and birds on male-female life expectancies; see alsoCarey and Judge
(2000). Understanding this difference could led to medical treatment prolonging
at least men’s lives by years,Figure 3.12. But while lots of money is spent on
cancer research, which if successful may lead to a similar prolongation of human
life expectancy, letting numerous birds live and die in a zoo or laboratory is appar-
ently not “sexy”. Outside of Russia, the book of Paevskii was cited in journals of
the Science Citation Index only by us physicists who got it from geneticist Cebrat.
And for Austad’s review of 2001 we could not find any journal citation.

If men are merely faulty versions of women, why did nature invent them? Why
did it not continue with asexual cloning of haploid individuals, like the bacteria?
Thus we do not discuss here why today sex is useful; the asexual individuals
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Figure 3.11. As inFigure 3.10but for the standard sexual Penna model, without child care and
without maternal risk at birth.

of old times might not have been convinced that they should switch to sexual
reproduction in order that the city of one of the present authors can establish a sex
tax hundreds of million years later. Sex must have been useful already after a few
generations since otherwise sex would have died out again.

Sexual reproduction gives offspring different from parents, and so sex hinders
parasites to adjust well to a host (Howard and Lively, 1994; Martins, 2000). But
were there already parasites important when sex was just invented? Sex also helps
survival after a catastrophic change of the environment (Martins and de Oliveira,
1998; see alsoHe, Ruan, Yu and Yao, 2004) and recent experiments on yeast
by Goddard, Godfray and Burt (2005)confirmed this; but the catastrophe may
come too late to allow the first generations with sexual reproduction to compete.
Are there intrinsic advantages for sex which counteract the loss of births by a
factor two? Males (mostly about half the population) do not get pregnant (with
the exception of His Honor the present governor of California) and compete with
females for food and space. Much of the sex simulations of physicists were trig-
gered by zoologistRedfield (1994)who found the cost of sex for females too high.
It lead to later propaganda with article titles “Why sex—Are men useful for any-
thing” and even “On the uselessness of men—Comparison of sexual and asexual
reproduction”. Men were saved from this feminist danger byMartins and Stauffer
(2001)who modified the Penna model such that sexual reproduction overcame
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Figure 3.12. Difference in life expectancy between women and men in Sweden, versus calendar
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the loss of a factor two: There, each deleterious mutation diminishes the survival
probability in every time interval by a small percentage, in addition to the usual
lethal effect if the thresholdT is reached,Figure 3.13.

They were supported byScharf (2004)who simulated pre-selection: many bad
mutations may already reduce the ability of, e.g., the sperm cells to swim towards
the egg cell. Thus only the fitter males produce offspring in his model and help
the species to survive. For asexual cloning, neither selection of a partner nor this
pre-selection exists to improve the offspring fitness. Depending on parameters,
sex was preferred or rejected,Figure 3.14. Maybe men are useful, or we follow
Hitchcock and claim: The trouble with Eve is over.

A technical remark: Evolutionary selection of the fittest acts on individuals and
their genes, not on populations as a whole. A proper computer simulation compar-
ing two populations (in the present case one sexual and one asexual one) would
have to put both into one common simulation in one common environment. This
requires many changes in the computer program and thus has a high probabil-
ity for programming errors. Instead, one may approximate the truth by simulating
both populations separately, but with the same carrying capacityK for both. Then
the population with the larger stationary population in the comparison of the two
separate simulations uses the resources better and is fitter. This trick was tested

http://www.scb.se
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Figure 3.13. Fitness difference, measured through the population size in the same environment, be-
tween asexual and sexual Penna model, with the modifications ofMartins and Stauffer (2001). If all
bit positions are relevant, sex wins; if only the first 22 of 32 bits may reduce survival probabilities, sex

loses.

successfully in some simple cases; it may be incorrect if one population size fluc-
tuates much stronger than the other.

The same conclusion that sexual reproduction is better than asexual one for
some parameter values and not always, was also found byBagnoli and Guardini
(2005)in a different model and agrees well with reality: Bacteria are not divided
into males and females (though they practice parasex:de Oliveira, de Oliveira and
Stauffer (2003)), and live on Earth since a much longer time than sexual species.

The crucialRedfield (1994)paper was more or less repeated bySiller (2001)
while Otto and Nuismer (2004)from the same department as Redfield propose a
more complicated model; both papers do not cite the Redfield paper. And all three
papers were ignored in the review of sexual reproduction by Partridge, Gems
and Withers on p. 461 inCell (2005). High impact factors of journals do not
necessarily ensure quality for every article in them.

Finally, why are there only two types, male and female, with diploid genomes?
As can be seen from Danny de Vito in the film “Twins”, having more than one
father may cause problems, as was later simulated bySousa, de Oliveira and Mar-
tins (2003).
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3.3.3. Scaling

In all these simulations, time is discrete and increases in unit steps. This makes
sense for animals and plants with lives strongly depending on seasons. But even
then, the time unit is not one year except if the typical life expectancy is about
a dozen years, since the Penna model gives a typical life expectancy of about a
dozen iterations. In general, we need a continuous time, just as for the mortality
functionμ one should let the time interval go to zero to get a derivative. Therefore
a proper ageing model would have the number of bits going to infinity, and the
age interval associated with each bit would go to zero, such that the total life
expectancy (product of number of bits and size of age interval) remains the same
if measured in years.

This is easily said but not so easily done (Malarz, 2000; Brigatti, Martins and
Roditi, 2004; Łaszkiewicz, Cebrat and Stauffer, 2005) but the last of these three
papers, for the sexual Penna model, gave good agreement,Figure 3.15, for bit-
string lengths between 32 and 512 if the age associated with the bit position is
suitably normalised depending on the length of the bit-string. There was one mu-
tation per genome (as in Section2.10, i.e., not one mutation per bit), and one birth



94 Chapter 3. Biological Ageing

Figure 3.15. Probability to survive birth to agea, plotted versus scaled age. The scaled age is the
age, multiplied by 32, and divided by the length of the genome which varied here between 32 and 512

bits. FromŁaszkiewicz, Cebrat and Stauffer (2005).

per iteration. For the asexual case no such scaling was found yet; thus sex helps
to get proper scaling.

3.4. Other models

Shklovskii (2005)argues that dangerous cells (cancer,. . .) are removed by our
immune system with a reliability decreasing linearly with age. The immune sys-
tem hasn random opportunities to remove these cells, and this numbern follows
a Poisson probability distributionnn

0 exp(−n0)/n! about its averagen0 = 〈n〉.
Thus the immune system fails, i.e.,n = 0, with probability exp(−n0) and leads
to a mortality functionμ ∝ exp(−n0). If n0 decreases linearly with agea by
an amountba, then the mortality functionμ(a) ∝ exp(ba) obeys the Gompertz
law, as desired. Sincen0 cannot become negative, this linear decrease cannot con-
tinue forever and presumably is replaced byn0(a → ∞) = const, leading to
a mortality plateau as inGavrilov and Gavrilova (1991). This Shklovskii theory
requires no simulations but is included here because of its simplicity. It can be
tested by quality experiments on species without immune system, like the uni-
cellular yeast; the yeast mortalities given by theVaupel group (1998)seem too
unclear for a test.

Telomeres are sections at the end of each DNA strand in the genome, and at
each cell division, which requires duplication of the DNA, telomeres are partly
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Figure 3.16. Comparison of telomere model including cancer and telomerase (+), with the same
German data (x) as inFigure 3.2. Simplified fromMasa, Cebrat and Stauffer (2005).

lost. Thusin vitro, i.e., in a laboratory vessel outside the living body, cells can only
divide a few dozen times; then their telomeres are exhausted: Hayflick limit. This
simple counting does not require any computer simulations;Tan (2005), Proctor
and Kirkwood (2002)andAviv, Levy and Mangel (2003)published more sophis-
ticated simulations.

In a living body, the enzyme telomerase restores the telomeres, and thus cells
can divide longer. Can we live forever by just getting more telomerase and thus
more telomere restoration? Actually, some cells are indeed immortal, and these
are the cancer cells. But instead of making us living forever, cancer kills us. Thus
real life is a delicate balance between cell death (which leads to our death if the
cell is not replaced) and cell survival (which leads to cancer if the cells proliferate
too much). If for little worms with no cell division in adult life one can prolong
life enormously by genetic manipulation, it does not necessarily mean that reliable
anti-ageing medication for humans will appear in the new future.

Masa, Cebrat and Stauffer (2005)took into account telomere attrition and as-
sumed that at every iteration 10 percent of the adult body cells die, and the body
tries to replace them by “asking” a randomly selected cell of the same type to di-
vide. If that cell has reached the Hayflick limit it cannot divide, and one cell is lost
for the body. If the body has lost too many cells, it dies. This simple model gives a
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Figure 3.17. Survivors versus age for shorter (+,stars) and longer (×,squares) initial numbers of
telomeres. Without the probability to develop cancer (+,×), the larger number is better, with the pos-
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be bad.

mortality increasing with age, but not strong enough to follow the Gompertz law,
equation(3.1). Then these authors included telomerase and cancer, resulting in
a much more realistic mortality function,Figure 3.16. Increasing the amount of
telomeres increases the Hayflick limit but also the dangers to cancer. Perhaps real
life has already obtained the optimal number of telomeres such that any artificial
increase of their number reduces via cancer the life expectancy, as seen inFig-
ure 3.17. Recent experimental facts howcellular senescence fights cancer were
summarised bySharpless and de Pinho (2005).

TheDasgupta (1994)model precedes the Penna model and was based on earlier
work of Partridge and Barton, of Ray, and of Jan. It does not have an explicit
bit-string as a genome but rather survival probabilities (see alsoCharlesworth,
2001). Originally it had only two age intervals, and the generalisation to many
ages (Heumann and Hötzel, 1995) was made efficient only with modifications by
Medeiros and Onody (2001). It was generalised to sexual reproduction bySousa
(2003b).

Similarly, also a Weissmann-type mutation accumulation model (Stauffer,
2002d; Stauffer and Radomski, 2001) does not have an explicit genome. Instead
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the properties inherited and mutated are the minimum reproduction ageR and
the genetic death ageD. Both are given on to the offspring except that they both
can be mutated by±1. If Weissmann’s old idea, that we die to make place for
our children, would be generally valid, then the death ageD should self-organise
to a stationary finite value. However, for a constant birth rate, the death age in-
stead increases fluctuatingly towards infinity, which is unrealistic. Only if we take
into account a trade-off between birth rate and longevity by assuming a birth rate
∝ 1/(D − R), i.e., by assuming that each individual has the same number of
children during its genetic life span, do we get a reasonable stable death age of
order 102. It was modified for lattices and for sexual reproduction bySousa, de
Oliveira and Stauffer (2001)and could explain menopause (Sousa, 2003a). How-
ever, except for additional assumptions (Makowiec, Stauffer and Zieliński, 2001),
the mortality function increases more linearly than exponentially with age, and
also the Pacific Salmon is not as well described as with the Penna model (Meyer-
Ortmanns, 2001).

3.5. * Additional remarks

3.5.1. Eve effect

According to some religions and Section2.9, all humans are offspring of Adam
and Eve. Simulations of the Penna model, as well as older theories, confirm this
assertion, as reviewed byde Oliveira, de Oliveira and Stauffer (1999). (However,
the female and the male ancestor of all living humans according to the simulations
in general never met each other, if one does not start the simulation with only one
pair.) Initially all N individuals are equal, without any mutations. Then acciden-
tally some become better than others genetically. They and their offspring will
slowly overwhelm the others since the Verhulst factor keeps the total population
roughly constant. If for asexual reproduction we call the whole offspring of one
individual a family, then the numberf of families decreases from its initial value
N until finally there is only one family left, which remains “forever”. Since men
are so often oppressed by women, this reduction of ancestry was called the Eve
effect, not the Adam effect, in the literature. It also exists for sexual reproduction
and for real humans (Cann, Stoneking and Wilson, 1987). In the asexual case,
recent simulations (Sitarz and Maksymowicz, 2005) showed that the decay off

with time t is not a simple power law (in the sexual case,f decays as 1/t). At
the beginning one sees a plateau, which extends over longer times if the Verhulst
deaths apply only to the babies (Sá Martins and Cebrat, 2000). Then the decay sets
in smoothly, reaching 1/t2. Afterwards the decay becomes less rapid, roughly as
1/t , and finally approaches zero iff (t) = 1 is constant.Figure 3.18shows the
whole story for an equilibrium population of 22 million; iff − 1 instead off is
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plotted the figure barely changes, even in its right tail. It looks different from the
simple sexual model shown earlier inFigure 2.25.

3.5.2. Antagonistic pleiotropy

Pleiotropy means that one allele (one version of a gene, one bit value in the Penna
model) has different effects, which may become active at different ages. It is
antagonistic when one effect is good and the other is bad for the body. As we
mentioned at the beginning of this chapter in Section3.1.2, calcium is helpful in
the youth and dangerous at old age. And this is typical for the examples in the
literature: first good, later bad.

Sousa and de Oliveira (2001), in contrast, simulated an antagonistic pleiotropy
which is first bad and then good, and which is connected with bit positions 9
(maturity) and 16 (old age) in the 32-bit sexual Penna model. If bit 9 is mutated
to 1, then it is detrimental starting from that age on. However, if the individual
nevertheless survives up to age 16, then the positive effects of the mutation at age
9 become active. From age 16 on at each “year”, i.e., at each iteration which makes
one more bit visible, the number of active mutations is decreased by one, with
cleaning probabilityp. Since we deal with the sexual case and two bit-strings, the
mutation at bit 9 acts only if either both bit-strings have a 1 there, or the position
is one of the dominant ones and at least one of the bit-strings has a 1 there.
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Figure 3.19. Improved survival chances for old age, at the expense of health at age 9, in a sexual
Penna model with antagonistic pleiotropy. The cleaning probabilityp is zero (standard model), 0.2,
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As a result, the mortality self-organises to have a small peak at age 9, but is
reduced and even may have a maximum at old age, asFigure 3.19shows, in
agreement with fly experiments at old age. Such a mortality maximum is therefore
compatible with mutation-accumulation ant antagonistic-pleiotropy theory. This
result is analogous to people who save lots of money at young age in the hope to
use it after their retirement (see Section6.1).

3.5.3. Grandmother effect

We discussed nearFigure 3.9already the origin of menopause and mentioned the
grandmother hypothesis of anthropologists, according to which a grandmother
who no longer can give birth to children helps her daughters to raise the grandchil-
dren (Voland, Chasiotis and Schiefenhövel, 2005). Figure 3.9showed, however,
that without any specifically human traits, menopause can self-organise if we as-
sume a need for childcare, and a risk of giving birth increasing with the age of
the mother. The results ofFigure 3.10, corresponding to anthropological obser-
vations, can even be explained rather trivially: A long-living grandmother can
produce more children and thus also have more grandchildren. Therefore the an-
thropological figure wisely starts only at age 45.
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Figure 3.20. Correlation between death ages of grandparent and grandchild in standard asexual
Penna model.

Less trivial is the genetic effect that long-lived grandmothers may have health-
ier genes than short-lived grandmothers, and give them partially on to their chil-
dren and grandchildren. This effect was simulated byde Oliveira, de Oliveira,
Bernardes and Stauffer (1998)for the relation between the ages of death of par-
ents and their children, and is presented inFigure 3.20for the relation between
grandparent and grandchild, using the standard asexual Penna model. We sepa-
rate all deaths of grandchildren into different statistics (shown as different curves
in this figure) depending on the death age of the grandparent. We see little cor-
relation for the normal death ages, but for particularly long lives we see a peak
in the grandchild’s distribution of genetic death ages. The position of this peak
moves to longer life if the death age of the grandparent increases. These his-
togram show clearly that the Penna ageing model agrees with the general wisdom:
A good method to live long is to select the proper parents. Longevity is partially
hereditary and can explain correlations for real humans between grandmothers
and grandchildren, without assuming any specifically human traits like trans-
mission of culture by grandmothers, or their help in rearing their grandchildren.
Menopause can be explained otherwise and its analogs may, and actually do, exist
for other sexually reproducing species.
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Figure 3.21. Self-organization of menopause age in case only the mother (M) and also the grand-
mother (GM) offers childcare up to the child age given in parentheses. This histogram complements

the histogram ofFigure 3.9where only the mother helps the child.

Anthropologists could clarify the role of the grandmother effects by comparing
it with the grandfather effect. Usually fathers contribute half of the genome but
less than half of the household work. What correlations exist between the survival
of grandfathers and grandchildren? If the grandfather effect is about as large as
the grandmother effect, then genetics should be the main cause; if the grandfa-
ther effect is much smaller than whatLahdenperä, Lummaa, Helle, Tremblay and
Russell (2004)found in their anthropological studies for the grandmother effect,
then the help of grandmothers in rearing their grandchildren is really important
and could enhance the self-organisation of menopause specifically for humans or
other species with helping grandmothers and lazy grandfathers. Indeed, simula-
tions similar toFigure 3.9but including help from the grandmother show that the
population is higher (in a fixed environmentK), if also the grandmothers and not
only the mothers help the children to survive,Figure 3.21.

3.6. Conclusions

A dozen years of ageing simulations by physicists, in cooperation with some bi-
ologist like Cebrat, gave good agreement with the Gompertz law of exponentially
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increasing mortalities, simulated Pacific Salmon, predicted that more predation
can also decrease instead of increase senescence, explained menopause without
needing any special human properties, and could explain the emergence of sexual
reproduction. The future will show which other models have combined at least
the same advantages.



Chapter 4

Biological Speciation

The common ancestors of today’s humans and today’s chimpanzees presumably
lived several million years ago. Then, due to genetic mutations and/or changes in
the environment, the population split into the ancestors of humans and the ances-
tors of chimpanzees. Such a separation of one species into two is called speciation.
It involves the division of a species on an adaptive peak, so that each part moves
onto a new adaptive peak without either one going against the upward force of
natural selection. This process is readily envisioned if a species becomes subdi-
vided, for example, by a river, whereby each part experiences different mutations,
population fluctuations and selective forces. If they sufficiently diverge, then even
if the river dries and the two parts can make contact again, inter-breeding between
them will not occur, two new species have been formed. This kind of speciation
is called allopatric and is currently accepted by the majority of the biologists.
Besides a geographical barrier to prevent gene flow, it requires a long time to
be completed. In contrast, conceiving the division of a single population and
radiation onto separate adaptive peaks without geographical isolation, in what
is called sympatric speciation, is intuitively more difficult (Tauber and Tauber,
1989). Through which mechanism can a single population of interbreeding or-
ganisms be converted into two reproductively isolated segments in the absence
of spatial barriers or hindrances to gene exchange? Many evidences and exper-
imental data have appeared in recent years giving support to the existence of a
sympatric mechanism of speciation. The cichlid species living in volcanic lakes
of western Africa (as well as in some lakes of Nicaragua) are probably the most
studied examples. The main features of these lakes are the environmental homo-
geneity and the absence of micro-geographical barriers (Bagnoli and Guardini,
2005). It is interesting to mention that while this book was being concluded (un-
der the pressure of the exhausted senile author), a paper appeared (McBrearty
and Jablonski, 2005) showing that fossil chimpanzees were found in the African
rift valley, the same region where fossil homo-species were found. So, perhaps
we separated from them bysympatricspeciation andnot because the rift valley
separated us.

103
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The largest part of this chapter is devoted to computational models which cor-
respond to an extension of the Penna model, just reviewed in the previous chapter,
and that have been developed in order to study the origins and dynamics of this
speciation process.

4.1. Sympatric speciation

According to SaraVia (2001)the idea that natural selection can lead to divergence
and speciation of sympatric populations dates back toDarwin (1859). However,
in the mid-1900s the pioneer work ofMayr (1963)on the allopatric mode of spe-
ciation shifted the focus of speciation research away from natural selection as the
driving force and towards the role of geography in limiting gene flow and pro-
moting genetic drift. The main point of Mayr’s theory was that geographically
isolated populations can diverge freely, while those found in sympatry (sharing
the same habitat) can only escape from the homogenising effects of gene flow
under very special circumstances. Such a point of view has been the dominant
one for many decades, turning sympatric speciation an extremely controver-
sial process. Recently, however, a variety of approaches and laboratory studies
have provided increasing evidence that reproductive isolation may set in due to
multiple selective forces, suggesting that sympatric speciation can be in fact a
rather common phenomenon (Rice and Hoster, 1993; Tregenza and Butlin, 1999;
Odeen and Florin, 2000).

One of the most important ingredients to obtain sympatric speciation is sexual
selection, that is, mating partners are chosen assortatively instead of randomly. We
may say that sexual selection plays the role of a geographical barrier preventing
mating between individuals of too different phenotypes. But how does assortative
mating develop? Consider for instance an ecology which presents a broad distri-
bution of seed sizes such that birds that feed on these seeds can equally compete
for them, independently of their beak sizes. Suppose now that due to oscillations
in the rainfall regime, this distribution of seed sizes becomes bimodal, peaked
at very large and very small seeds. In this case the number of birds with inter-
mediate beak sizes rapidly decreases, since they lose out in competition for either
resource. So the establishment of a bimodal distribution of resources provokes the
so calleddisruptive selectionwhich splits the population into two distinct ecolog-
ical characters determining adaptation to the environment. Such a splitting of the
ecological character is called polymorphism and may be considered as a first step
towards sympatric speciation. However, with random mating, individuals with in-
termediate beak sizes would continue to be produced and the great majority would
die of starvation before the minimum reproduction age. The development of as-
sortative mating is then a kind of self-organisation of the population to guarantee
the perpetuation of the species and to stabilise the two distinct ecological charac-
ters, concluding the speciation process.
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This is the mechanism proposed byKondrashov and Kondrashov (1999)to ex-
plain speciation in sympatry. At the same time, and in fact in the same issue of Na-
ture,Dieckman and Doebeli (1999)presented a model ofevolutionary branching
which does not require a bimodal distribution of resources to obtain speciation.
Starting from a Gaussian resource distribution, the population first concentrates
around the phenotype with the highest fitness, that is, the phenotype for which the
available resource distribution is maximum. Then, due to the strong competition,
the population splits into two different groups that later become reproductively
isolated due to selection through assortative mating. Anyway, assortative mating
again evolves as a consequence of competition for resources, since less fit pheno-
types suffer less competition than the most fit ones.

Many models have been proposed during the last ten years to explain sym-
patric speciation (for a review seeTurelli, Barton and Coyne (2001)as well as
Via (2001)). Some of these models (Panhuis, Butlin, Zuk and Tregenza, 2001)
focus on the process leading to reproductive isolation, usually neglecting ecologi-
cal divergence. Other models focus on ecological differentiation (Schluter, 2001)
without giving much attention to the mechanisms underlying the evolution of mat-
ing structure. We prefer to followvan Doorn and Weissing (2001), who argue that
both approaches present mutually dependent rather than conflicting explanations
of sympatric speciation. Thus the results we are going to present were mostly
obtained through computational models that consider both, competition and as-
sortative mating, as the fundamental ingredients to obtain sympatric speciation.

4.1.1. Minimal model: Speciation defined by a single bit

The most simple strategy to obtain sympatric speciation using the sexual version
of the Penna model (Chapter 3) was adopted byLuz-Burgoa, de Oliveira, Mar-
tins, Stauffer and Sousa (2003). In this case, one bit position of the bit-string pair
that represents the individuals genomes was defined, which was taken as position
11, as an identifier of the species influencing mating. Each diploid individual has
n = 0, 1, or 2 bits set at this position. A female withn such bits at position 11
selects only partners with the same numbern of such “speciation bits” (assorta-
tive mating). Due to the randomness of mutations and crossover, its children do
not necessarily haven speciation bits set to one, and this randomness allows the
emergence of a new species out of the initial one where alln were zero. At every
time stept three populationsNn, depending on the numbern = 0, 1, 2 of specia-
tion bits set to one, may coevolve, and each of these three sub-populations is half
male and half female.

Coexistence is achieved by replacing the completely random Verhulst factor
into three separate Verhulst factors for the separate populationsn = 0, 1, 2 (intra-
specific competition). We may imagine, for example, that the original population
n = 0 is vegetarian, and that the second populationn = 2 emerging out of it con-
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sists of carnivores. Both populations are limited by the amount of food, but their
food sources are completely different; thus, there is no competition between the
two different populations, but the meat-eating females will not select any herbi-
vore males for mating, and vice versa. The population withn = 1 can be regarded
as one that feeds in both niches. It is added half ton = 0 and half ton = 2 for the
evaluation of the two intra-specific Verhulst factorsV0 = (N0 + N1/2)/Nmax and
V2 = (N2 + N1/2)/Nmax and has the arithmetic average of these two Verhulst
factors as its own food-limiting Verhulst factor.

The simulations start with a single population ofn = 0 individuals.Figure 4.1
shows how the new speciesN2 emerges, within about a hundred iterations, from
the old speciesN0. The intermediate populationN1 is only about one percent of
the total and is not shown.

Shifting the speciation bit position from 11 to 21 or to 1 does not change much
the results. If the birth rate is changed from 1 to 1+ n, wheren is the number of
bits set in the female’s genome, then the new speciesn = 2 ends up with a larger
population than the original one but still may both coexist (not shown).

Sousa (2004)obtained similar results using this same simple model but distrib-
uting the individuals on a square lattice. The simulation starts randomly distribut-
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ing a single individual per site and at every time step each one has a probability to
move to the neighbouring site that presents the smallest occupation, if this occupa-
tion is smaller or equal to the current individual’s site. Again mating occurs only
between individuals of the same species: A female already able to reproduce (age
� R) chooses a neighbouring able male with its same value ofn to breed. Each
of theB offspring is placed randomly at one of the neighbouring sites according
to the following rules:

(1) The selected site occupation must be� 1;
(2) A newborn withn = 0 (n = 2) can occupy an empty site or one already oc-

cupied by an individual withn = 2 (n = 0). This rule means that individuals
with n = 0 andn = 2 do not dispute for the same food resources and so may
share the same habitat.

(3) A newborn withn = 1 can occupy only an empty site, which means that the
n = 1 population feeds in both niches.

(4) If it is not possible to find a place respecting the constraints above, the new-
born dies.

Again a newn = 2 population emerges from the originaln = 0 one, and the
intermediaten = 1 population corresponds to 0.5% of the total population. The
new feature of these simulations is the complete absence of random deaths, that
is, the intra-specific Verhulst factors are replaced by the above occupation rules
for the newborns.

As pointed bySousa (2004), in spite of the simplicity of the model its results
fit very nicely to the real situation of three different snake species inhabiting the
Australian Fogg Dam Natural Reserve. They differ considerably in body sizes and
dietary habitats. The water python species feeds almost exclusively on a single
type of native rodents; the keelback species feeds primarily on frogs and the third
species, the slatey-grey snake, has a broad diet consisting of reptile eggs, frogs,
small mammals and lizards. According toBrown, Shine and Madsen (2002), the
population of slatey-grey snakes is smaller than the other two during the whole
year. Particularly from April to May, when neither the frogs nor the rats are very
abundant, the water-python and the keelback populations are almost of the same
size, while the population size of the slatey-grey snakes is around 1/7 of this
value.

4.1.2. Speciation defined by a single phenotypic trait

The more realistic computational model introduced byMartins, de Oliveira and
de Medeiros (2001)was the first one to add a non-age-structured part to the
original genome of the Penna model, to represent a given individual pheno-
typic characteristic. It can be interpreted as a blow-up of a certain region of the
genome, where the genes of a particularly important characteristic are found. We
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will call this extra, non age-structured bit-string the “phenotype”, for simplic-
ity. The purpose of the authors was to study the genetic patterns generated by
the order-disorder conflict between selective pressure and mutation accumulation
in the presence of an environment that favours particular phenotype configura-
tions. Their biological motivation was the evidence of a stable polymorphism
observed in the population of ground finches inhabiting the Galapagos Islands,
also known as Darwin finches. In fact, the assumptions that selection, medi-
ated through rainfall and its effects on the availability of different sized seeds,
can have a dramatic impact on the beak morphology of the finches that feed
on these seeds (and that much of this morphological variation is genetically
inherited), are reasonably well established since the field work of Grant and
his collaborators (Boag and Grant, 1978; Boag and Grant, 1981; Grant, 1986;
Grant and Grant, 1989).

In the computational model, the beak morphology is represented by a single
pair of bit-strings (of 32 bits each) added to the genome of each individual. The
dynamics of reproduction and mutations are the same for both the age-structured
and the new pair of bit-strings – for the latter, a mutation that changes a bit from
1 to 0 is also allowed (seeFigure 4.2). The beak size is computed by counting
in this new pair the number of recessive bit positions (chosen as 16) where both
bits are set to 1, plus the number of dominant positions with at least one of the
two bits set. It will therefore be a numberk between 0, meaning a very small
beak, and 32, for a very large one. Its selective value is given by a fitness function
F(k). For a given value of the beak sizek, F(k) quantifies the availability of
resources for individuals with that particular morphology. The probability of death

0 1 0 1 0 0 01

0 0 1 1 0

1 2 3 4

01 1 1 1 0 0 0

1 01

Figure 4.2. Schematic representation of gamete formation, using bit-strings of only four bits. The
left side corresponds to the Penna age-structured part where only bad mutations can occur. The right
side corresponds to the portion of the genome that encodes the beak morphology and which can
suffer mutations in both directions. The arrows indicate the positions where random mutations were
introduced. This process of crossing, recombination and mutation occurs with both parents genomes.
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by competition at each time step is given by:

(4.1)V (t) = N(t)

Nmax ∗ F(k)

whereN(t) accounts for the population that competes for resources available to
individuals of beak sizek, andNmax is a constant proportional to the carrying ca-
pacity, as already mentioned inChapter 3, and related to the maximum number of
individuals that the environment can support. Observe that if an individual’s phe-
notype is perfectly adapted to the consume of the available resources, itsF(k) = 1
and for this individual the probability to die due to competition for food is the
same given by the standard Penna model. Less fit individuals haveF(k) < 1,
which increases the Verhulst factor given by equation(4.1)and consequently en-
hances their chances to die at every iteration.

A final addition refers to mating selectiveness.Martins, de Oliveira and de
Medeiros (2001)introduced into the genome a single locus that codes for this
selectiveness, also obeying the general rules of the Penna model for genetic her-
itage and mutation. If it is set to 0, the individual will not be selective in mating
(panmictic mating), and it will be selective (assortative mating) if this locus is set
to 1. When a female is ready to mate, she chooses a partner according to the ex-
pression of this gene. A randomly selected male in the population, to be accepted
as a partner, has to either feed on the same niche, in which case the mating selec-
tion gene becomes irrelevant, or, if he feeds on a different niche, both parents have
to be non-selective in their mating preferences for reproduction to occur. The off-
spring inherit the mating preferences of either the mother or the father, randomly
selected at birth, and this gene can also suffer a mutation in either direction with
probability 0.001.

At the beginning of the simulations all individuals are non-selective. Assorta-
tive mating following the establishment of a stable polymorphism is essentially
equivalent to speciation in this context, and one of the purposes of the simulations
was to follow the rising of the fraction of the population that becomes sexually
selective as a result of the evolutionary conflict between selection and mutation.

In this model there is a single phenotypic trait, the beak size, and this trait acts
both on the individual’s fitness and on its sexual selectiveness. In fact, the sexual
imprinting-like mechanism is apparently ubiquitous in Darwin’s finches and is
present in some species of all orders of birds examined so far (Grant and Grant,
1996). It has been shown that as a consequence of beak evolution there have been
changes in the structure of finch vocal signals (Podos, 2001). Patterns of corre-
lated evolution among morphology and song are consistent with the hypothesis
that beak morphology constrains vocal evolution. Different beak morphologies
differentially limit a bird’s ability to modulate vocal tract configurations during
song production. Data (Podos and Nowicki, 2004) illustrate how morphological
adaptation may drive signal evolution and reproductive isolation, and furthermore
identify a possible cause for rapid speciation in Darwin’s finches.
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Results without sexual selection

In order to study the effect of an abrupt change in the ecology alone, the program
was first run considering only random mating. The simulations start with a small-
sized beak population (k = 0 for all individuals) immersed in an ecology with a
broad distribution of edible seed sizes available, peaking at middle-sized seeds.
During this period the whole population competes for the same general food re-
source andN(t), in equation(4.1), is equal to the total population. This ecology
is represented by the fitness function:

(4.2)F(k) = 1 − |16− k|
128

where the denominator 128 ensures a mild selective pressure for middle-sized
beaks (k = 16). The population evolves for 200 generations, when a snapshot
of the phenotype distribution is taken. This distribution is bell shaped, with its
peak located atk = 16, corresponding to middle-sized beaks. Because mutations
can both increase or decrease the beak size, and because the number of positions
where each allele is dominant is the same (dominance= 16), there is no inherent
bias to the equilibrium distribution: Its position can sit at the same position as the
one for the fitness function, as shown by the circles inFigure 4.3.

After 200 generations, for instance due to a variation in the rainfall regime
whose effect is to decrease the availability of seeds, the functionF(k) changes
to a two-peaked shape, with maxima atk = 0 andk = 32; the food resources
concentrate on either small or large seeds, with a vanishing number of medium-
sized ones. The fitness function that expresses this new ecology is:

(4.3)F ′(k) = |16− k|
16

.

Now only small(large)-beaked individuals – those withk < (>)16 – can com-
pete for the small(large) seeds, that is, competition becomes intra-specific. For
that reason, the death probabilityV (t) of an individual withk < (>)16 is com-
puted by assigning toN(t) the number of individuals withk < (>)16 plus
half of the population that hask = 16. An individual withk = 16 competes
either for small or large seeds, and this choice is random. As a consequence,
the beak-size distribution splits into a double-peaked one, centred on large and
small beaks, as shown by the squares inFigure 4.3. However, since mating se-
lectiveness has not been introduced this polymorphism is reversible: If, in a
subsequent time step, the pattern of availability of edible seeds reverts to its
original configuration, so does also the distribution of beak sizes, that becomes
again unimodal. This reversibility is indicated by the small bump atk = 16:
Since there is no reproductive isolation, mating between birds feeding on different
niches generate offspring with medium-sized beaks. This is in complete agree-
ment with the field observations in the Galapagos ground finches (Lack, 1983;
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Figure 4.3. Distribution of the beak-sizes before and after a climate induced-change in food supply.
The circles correspond to the equilibrium population when there is a broad distribution of seed-sizes
available peaking at middle-sized seeds. The squares correspond to the equilibrium population after
the change, when only small or large seeds can be found. In this simulation there is no assortative
mating and finches with medium-sized beaks continue to be produced after the change, as shown by

the small bump atk = 16 (squares).

Grant, 1986), whose beak sizes vary according to the seasonal amount of rain in
a continuous and very fast process of adaptation.

Results with assortative mating

The simulation above was repeated now considering the gene for selectiveness,
but starting with a completely non-selective population. In this case, before the
splitting of the distribution of seed-sizes only 0.3% of the population becomes
selective. However, after the splitting, this fraction rises to 94%: Now, even if the
climate changes again, there will be no cross-mating between the two extreme
beak-sized populations.Figure 4.4shows the distribution of beak-sizes when sex-
ual selection is considered. It can be seen that the medium-sized beaks completely
disappear after the ecological change.
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Figure 4.4. The same as in the previous figure, but now considering sexual selection; the small bump
atk = 16, after the ecological change, disappears.

4.1.3. Speciation in a food chain

A model rather similar to the one just described was developed byLuz-Burgoa,
Dell and de Oliveira (2005)in order to study sympatric speciation in a simple food
web. Initially, the web consists of a primary food source and a single herbivore
species that feeds on this resource. In this case the herbivore is the top species
of a two-species food chain. Subsequently they introduce a predator that feeds on
the herbivore, simulating a three-species food chain. As will be seen, sympatric
speciation is obtained for the top species in both cases, and the speciation veloc-
ity depends on how far up, in the food chain, the focus population is feeding. The
main difference of their model to the previous one is that competition is main-
tained constant during the whole simulation, instead of changing according to the
ecology. That is, in the previous model, before the splitting of the seed-size dis-
tribution, competition was not intra-specific: All individuals disputed equally for
the available resources. In the present model competition is intra-specific since
the beginning of the simulation.

Two-species food chain

Their two-species food web consists of a basal resource (plants) and a consumer
that feeds on this resource (herbivore). The herbivores have the same genetic
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properties as in the previous model, represented by the two pairs of bit-strings.
The phenotypes are again characterised by the integerk, computed from the
non-structured pair, and the death probability by intra-specific competition for
extremal phenotypes is now given by:

(4.4)V1(2)(k, t) = P1(2)(k, t) + Pm(k, t)

Nmax ∗ F(k, t)

whereP1(2)(t) accounts for the population with phenotypek < 16 (k > 16),
respectively, andPm accounts for the population with phenotypek = 16. The
Verhulst factor for intermediate (m) phenotypes is:

(4.5)Vm(k, t) = Pm(k, t) +
[

P1(k, t) + P2(k, t)
]

∗ 0.5

Nmax ∗ F(k, t)
.

Now individuals with extremal phenotypes (P1, P2) compete for small/large
plants among the individuals with its same extremal phenotype, and also with the
whole intermediate population(4.4). Individuals with intermediate phenotypes
(Pm) compete among themselves and also with half of each population presenting
an extremal phenotype(4.5). Again at every time step, and for each individual, a
random number is generated; if this number is smaller thanV , the individual dies.

Mating selectiveness is also encoded by a single locus introduced into each
genome, but females that are selective choose mating partners according to one
of the following mating strategies:

(1) If a female has phenotypek < 16 (�16) it mates with the first randomly
chosen male that presents the same phenotypek < 16 (�16).

(2) The female chooses, among six males, the one with the smallest difference
between its own phenotypekF and the male’s phenotypekM .

(3) The mating of a pair occurs with probability= |(kF − kM)|/32, wherekF is
the female phenotype andkM is the male phenotype. The female tries to mate
for at most six times; if it doesn’t find a proper male, than it mates randomly.

The fitness function that expresses the individuals ability in using the available
resources is now given by:

(4.6)F(k, t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1.0 − |16− k|
20

, t � 250 generations,

0.1 + |16− k|
20

, t > 250 generations,

which is essentially the same as the one of the previous model, since it first favours
herbivores of medium sizes and suddenly changes, favouring extreme-sized indi-
viduals.

The resulting distribution of phenotypes for the mating strategies (1) and (2)
are the same, and shown inFigure 4.5.
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Figure 4.5. Phenotype distributions of the herbivores before (squares) and after (filled circles) the
abrupt change of the basal resource species distribution, for mating strategies (1) and (2).

If we compareFigure 4.4with Figure 4.5we notice that in the latter the
extreme-sized populations, after the ecological change, are smaller. The reason
is that in the present model these populations compete with the whole interme-
diate population(4.4), while in the previous model each one competes only with
half of the intermediate population. The crucial effect of the competition level be-
tween extreme and intermediate phenotypes will appear in a much clearer way in
Section4.1.4, where we will show that a phase transition may occur, depending
on the value of this competition level between different populations.

Still concerningFigure 4.5, observe that in case of mating strategy (1) the
female follows the drift direction of the ecological change and it is easy to under-
stand why the final distribution of phenotypes is bimodal and how reproductive
isolation has driven the elimination of all intermediate phenotypes. However, with
mating strategy (2) females do not know this direction and even so, the ecological
change drives their preferences in the same way as with strategy (1). With mating
strategy (3) the intermediate phenotypes are not totally eliminated, asFigure 4.6
shows, since in this case random matings may occur.

Three-species food chain

Now there are predators that compete among themselves also according to equa-
tions (4.4) and (4.5), and that feed solely on the herbivores. All animals have
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Figure 4.6. Phenotype distributions of the herbivores before (squares) and after (filled circles) the
abrupt change of the basal resource species distribution, for mating strategy (3).

the genetic properties already presented, but only the predators have mating pref-
erences: The herbivores mate randomly. The basal resource species distribution
(plants) on which the herbivores feed is still given by equation(4.6). Before the
change of the plant distribution, the unimodal phenotype distribution of the herbi-
vores is stationary, represented by the open squares inFigure 4.7. However, after
the ecological change, this distribution becomes bimodal and presents an oscil-
latory behaviour: Sometimes there are more individuals with one of the extremal
phenotypes than with the other. The period of these oscillation was found to be
equal to the minimum reproduction ageR. This oscillatory polymorphism is rep-
resented by the circles and triangles inFigure 4.7.

In this three-species food web, speciation is not always obtained for the preda-
tors (top species), that is, for them to speciate it is necessary to have the herbivores
polymorphism, but not sufficient. Observe that now the change in the plants dis-
tribution is directly felt by the randomly mating herbivores which feed on these
plants, but acts on the predators only in an indirect way, turning this popula-
tion very sensible to the fluctuations that may occur in the herbivores population.
When speciation occurs, the predators populations withk < 16 andk > 16 also
oscillates with the same frequency as the herbivores ones, as shown inFigure 4.8.
However, the amplitude of these oscillations is small if compared to the herbivores
one which makes the phenotype distribution of predators to remain stationary and
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again almost equivalent to the one shown inFigure 4.5, for mating strategies (1)
and (2). For mating strategy (3) predators with intermediate phenotypes do not
disappear, as obtained for the herbivores in the two-species food web where they
were the top species with mating preferences (Figure 4.6).

The most important difference between the two food chains is the speciation ve-
locity, measured through the time evolution of the fraction of selective individuals
in the populations.Figure 4.9shows that intermediate phenotypes disappear faster
in the two-species food chain than in the three-species one, which leads to the con-
clusion that higher level consumers take longer to speciate when the distribution
of the basal resource is altered. A process of speciation that possibly fits into this
model and respective results is the one that has occurred with one of the three lin-
eages of the Darwin’s finches, named the tree finches. There are six species in this
group; all of them, except the vegetarian finch,P. crassirostris, are insect eaters.
Inside this lineage, according to analysis made in mitochondrial DNA sequences
(Sato, O’h Uigin, Figueroa, Grant, Grant, Tichy and Klein, 1999), the vegetarian
tree-finch may have diverged from the ancestral stock before the divergence of
the rest of the tree-finch group (probably due to some irreversible climate change
that modified the existing distribution of plants).
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4.1.4. Phase transition in the sympatric speciation process

As explained at the beginning of Section4.1, in theKondrashov and Kondrashov
(1999)model an abrupt change in the ecology was introduced in order to pro-
voke a disruptive selection which may lead to a stable polymorphism that, if
followed by assortative mating, gives rise to speciation. The model we are going
to present now has been recently developed (Luz-Burgoa, Schwämmle, Martins
and de Oliveira, 2005), and does not require any splitting of the resources distri-
bution to obtain speciation; in this way, it is closer to the model fromDieckman
and Doebeli (1999)also mentioned at the beginning of Section4.1. Anyway, the
present model also has competition between common (intermediate) and extreme
phenotypes and sexual selection as its main ingredients. As we will see, the de-
gree of competition between these two classes of phenotypes plays the role of
a control parameter in a phase-transition-like behaviour found in the speciation
process.

The model considers a single initial species, let us say of birds, living in an
environment where there is a constant supply of seeds of all sizes. All individuals
have the same ability (fitness)F = 1 to use the resources, independently of their
beak sizes. Competition is intra-specific since the beginning of the simulations
and given by:

(4.7)V (k, t) =
{

V1(k, t), 0 � k < 13; extreme phenotypes
Vm(k, t), 13 � k � 19; intermediate phenotypes
V2(k, t), 19 < k � 32; extreme phenotypes

where

(4.8)V1(2)(k, t) = P1(2)(k, t) + Pm(k, t)

Nmax

and

(4.9)Vm(k, t) = Pm(k, t) +
[

P1(k, t) + P2(k, t)
]

∗ X

Nmax
.

Now intermediate phenotypes are not only those withk = 16, equation(4.7),
and the competition degreeX between the intermediate population and the ex-
treme ones can vary between zero and one, equation(4.9), instead of assuming a
constant value equal to 0.5, equation(4.5).

Another difference between this and the previous food web model is the mating
rule, which is now stronger: A selective females chooses, amongNm males, the
one that lies deepest into its phenotype range. That is:

• If kfemale< 16 then it selects the male with the smallestkmale;
• If kfemale> 16 then it selects the male with the largestkmale;
• If kfemale= 16 then the female chooses randomly to act as one of the above.
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The simulations start with non selective populations of random phenotypes.
The phenotypes distributions rapidly converge to a Gaussian centred at some in-

termediate phenotypek, independently of the value ofX. However, forX = 0 the
distribution remains unimodal for the whole simulation, while forX = 1 in some
moment it splits into a bimodal one, centred at some opposing extreme pheno-
types. Observe that now there is no ecological change: The splitting (speciation)
occurs only due to the high degree of competition. The shape of these distributions
are equivalent to those shown inFigure 4.5, where the squares would represent
the situation for the non-speciation caseX = 0, and the filled circles would rep-
resent the caseX = 1 where competition drives the population to reproductive
isolation.

For X = 0.5 the scenario is quite different.Figure 4.10, upper part, shows the
phenotype distributions at three different moments. At the very beginning the dis-
tribution is also a Gaussian centred at some intermediate value ofk, but the final
distribution is not stationary: It remains oscillating between the distributions rep-
resented by filled circles and triangles, respectively. The lower part ofFigure 4.10
shows the time evolution of the density of selective females,ρs , for the three val-
ues ofX. It is nearly zero for the non-speciation caseX = 0, goes very fast to one
for X = 1 and presents strong fluctuations forX = 0.5.

Observe thatρs = 0 andρs = 1 characterises two very different states of
the population organisation: In one of them mating is completely random and
in the other totally assortative. In order to analyse the behaviour between these
two states the authors performed 10 long simulations (10 different initial random
seeds) for each value ofX; in each simulation they calculated the final density of
selective females (averaged during the last 104 time steps). The ten final densities
obtained were then averaged producing, for each value ofX, the mean density of
selective females〈ρs〉. The upper part ofFigure 4.11shows the behaviour of〈ρs〉
as a function ofX; the lower part shows the log-log plot of the standard deviation
of 〈ρs〉, σ(〈ρs〉), as a function ofX.

The behaviours of the curves presented inFigure 4.11are very typical of
phase transitions in physical systems, where the average density〈ρs〉 plays the
role of the order parameter, as the magnetisation in a magnetic system, andX

plays the role of the control parameter, like temperature. Within this analogy,
σ(〈ρs〉) is equivalent to the magnetic susceptibility. In one “phase” (X < 0.5)
there is a single species of intermediate phenotypes and in the other (X > 0.5)
there are two species with extreme opposing phenotypes. However, for this
“biological system” such a phase transition is, by definition, a non-equilibrium
one.

In Figure 4.12we show the behaviours of〈ρs〉 and its fluctuations,σ(〈ρs〉), as
a function ofX for different values of the bit-strings lengths. In this case the bit-
string length seems to be equivalent to the size in a magnetic system. To decide
the order of such transition it would be necessary to increase the bit-strings up to



120 Chapter 4. Biological Speciation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  5  10  15  20  25  30

R
el

at
iv

e 
fr

eq
ue

nc
y

Phenotype K

X=0.5

t = 200
t = 20000
t = 40000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

403530252015105

D
en

si
ty

 o
f s

el
ec

tiv
e 

fe
m

al
es

, 
s

Time in units of 10,000 steps

Figure 4.10. Upper part: Phenotype distribution of the whole population forX = 0.5, which after
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64 or more bits, and check whether the value of the susceptibility peak increases
or not (in a second order phase transition of an infinite system this value goes to
infinity, that is, the susceptibility diverges at the critical point). More simulations
are being developed to clarify this point.



122 Chapter 4. Biological Speciation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

s

X

32 bits
16 bits

8 bits

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 0.1  1

s

X

32 bits
16 bits

8 bits

Figure 4.12. Mean value (upper part) and standard deviation (lower part) of the selective females
density as a function ofX, for different values of the bit-strings lengths.

All simulations presented above were done assuming that each female could
choose to mate, amongNm = 50 males, the one whose phenotype lies deepest
in the female’s phenotypic group. When this number of choices is decreased to
Nm = 3, the transition is destroyed, as can be seen fromFigure 4.13. Continuing
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with the same analogy, the number of choicesNM seems to play the role of the
inverse of the magnetic field in a ferromagnetic/paramagnetic transition. Appar-
ently, life is interesting if and only if women have a large number of men to choose
from (something that only one of this book’s authors finds perfectly reasonable).
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Luz-Burgoa, Schwämmle, Martins and de Oliveira (2005)also performed sim-
ulations where the individuals ability in using the available resources,F , is not
constant but depends on the phenotype numberk in the following way:

(4.10)Fσk
(k) = C ∗ exp

(

−(k − 16)2/σ 2
k

)

.

Observe that for large values of the parameterσk, the value ofFσk
∼ C, that is, all

individuals present the same fitness, as has been considered until now; the smaller
the value ofσk is, the smaller is the fitness of the extreme-sized phenotypes, as
shown inFigure 4.14.

Figure 4.15shows the behaviour of〈ρs〉 as a function ofX, for different values
of σk. From this figure we see that even forX = 1, when medium-sized pheno-
types have to compete with the whole extreme-sized populations, equation(4.9),
there is no speciation forσk = 10 (triangles) since the amount of food avail-
able for the extreme-sized populations is not large enough to compensate the high
degree of competition to which the intermediate phenotypes are submitted to.

Figure 4.16shows the final distributions of the phenotype numbers for differ-
ent values ofσk, whenX = 0.6. From this figure we see that whenσk is too
small (triangles), the intermediate phenotypes completely dominate in spite of
competition; on the other side, for largeσk values (squares) speciation occurs and
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only the extreme phenotypes remain in the population. For intermediate values
of σk (stars) we have the most interesting situation where almost all phenotypes
coevolve, which signals that the phase transition may be a first order one.
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A much simpler mean-field version of this computational model also predicts
a phase transition, depending on the strength of competition between different
phenotypes (Schwämmle, Luz-Burgoa, Martins and de Oliveira, 2005).

4.1.5. Models with two phenotypic traits

In the computational models presented until now the ecological character related
to the ability in using the available resources was the same as used for sexual
selection. However, it is also possible to obtain speciation considering these two
characters as independent ones; in fact this is the case of the mean-field like mod-
els of Kondrashov and Kondrashov (1999)andDieckman and Doebeli (1999).
The first simulations based on the Penna model considering two phenotypic traits
were performed byLuz-Burgoa, de Oliveira, Martins, Stauffer and Sousa (2003).
They added to each individual’s genome a third pair of non age-structured bit-
strings, that suffers crossing, recombination and mutations (in both directions) in
the same way as the other two pairs. The number of bits 1 in this new pair is also
computed considering dominance (equal to 16), and the result is again an integer
k′ between zero and 32. In this way each individual is characterised by three pairs
of bit-strings, the first one age-structured and related to genetic diseases, the sec-
ond one related to some ecological trait (e.g., size) and the third one related to
mating preference (e.g., colour). As before, sexual selectiveness is assigned by a
single independent locus inherited with some mutation probability (in both direc-
tions). The mating rule is the same strong one used in the previous Section4.1.4.

The authors followedKondrashov and Kondrashov (1999)strategy and also
considered an abrupt change in the ecology. The behaviours of the fitness func-
tion (ecology) and intra-specific competition are the same as those presented in
Section4.1.2, that is,F(k) is single-peaked up to step 12 000 when it becomes
bimodal. The distribution of the fitness trait (size) is single-peaked atk = 16 at
step 12 000, as a consequence of the number of loci (16) where the 1 allele is
dominant, and moves into a polymorphism after the ecology becomes bimodal.
The sexual selection trait (colour) also shows an unimodal distribution at step
12 000 centred atk′ = 16, and splits the population in two groups afterwards. But
now a strong correlation develops between these traits, that is, a female chooses
a mating partner because of his colour, and its correlation with size allow them to
generate viable offspring.

The correlation between traitsk (size) andk′ (colour) is given by:

R(t) = 〈kk′〉 − 〈k〉〈k′〉
σkσk′

where

〈k′〉 =
N(t)
∑

i=1

k′
i

N(t)
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Figure 4.17. Distribution of sizes (squares) and colours (stars) at the end of the simulation. In this
case the traits are positively correlated, and the population with fitness trait (size) to the left has its

sexual trait (colour) also to the left of the plot.

is the mean value of the colours distribution of the whole population at time-step
t , N(t) is the population size andσk′ is the width of the distribution. The same
calculation is done for traitk and the productkk′. Observe that this correlation can
be positive or negative. When it is positive most individuals withk > 16 (< 16)
have alsok′ > 16 (< 16) while when it is negative individuals withk > 16
(< 16) preferk′ < 16 (> 16). If for instance we consider thatk < 16 (> 16)
means small (large) fish andk′ < 16(> 16) means blue (red) fish, the simulations
start with fish of all sizes and colours and finish, for instance, with all small fish
blue coloured (positiveR) or all small fish red coloured (negativeR).

Figure 4.17shows the distribution of both traits at the end of the simulation
andFigure 4.18presents the correlation between them. In the latter figure we also
present a case where speciation failed. Sexual selectiveness also develops as a
result of the evolutionary dynamics. At the end of the simulation all females are
selective, and again assortative mating and reproductive isolation are the proxies
in this model to the development of two separate species out of the single one that
existed at the beginning.

4.1.6. Conclusions

Individual-based computational models have been successful in simulating the
sympatric speciation process, using competition between different phenotypes
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Figure 4.18. Correlation between the fitness trait and the sexual trait as a function of time, for two
different numbers of available males a females has to choose in the moment of reproduction. A higher

number of choices increases the speciation probability and the correlation between the traits.

and assortative mating as its main ingredients. When disruptive selection is in-
duced by an abrupt change in the available resources, speciation is obtained
even for moderate levels of competition (Section4.1.3, equation(4.5)). When
the environment is kept constant, it is necessary to have a strong competition
between intermediate and extreme phenotypes in order to provoke disruptive se-
lection, which, followed by assortative mating, leads to reproductive isolation
(Section4.1.4, equation(4.9)). In this case a phase-transition has been observed
between a non-speciation state, where the females mate randomly, for low val-
ues of the competition level, and a state where all females mate assortatively,
occurring for larger values of the competition level. If sexual selection is not in-
cluded, competition will induce only a polymorphism (Sections4.1.2 and 4.1.3)
and the speciation process remains incomplete. The most important aspects of
these computational models are that they offer the possibility of verifying whether
speciation is likely to occur depending on different contingencies (which means
that the outcome of two different simulations with identical parameters may de-
pend strongly on the random number seed used in each one), and to measure the
speciation velocity (Figure 4.9) which, as already emphasised in Section2.6, is
related to some critical exponent. The importance of fluctuations, absent in mean-
field approaches, will appear again in the next section.
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4.2. Parapatric speciation

As mentioned in the introduction of this chapter, allopatric speciation occurs when
a physical barrier divides an original population into two geographically sepa-
rated ones; in this case genetic drift and adaptation to the environment are the
main ingredients for speciation. In case of sympatric speciation the two popula-
tions inhabit the same region, and its most important ingredients are competition
for resources and assortative mating. Parapatric speciation is an intermediate
case where there is no physical barrier but there is a gradient of temperatures
or altitudes, for example, across the same region (for a review seeGavrilets
(2004)as well asCoyne and Orr (2004)). The idea of traits being differentially
adapted in different spatial locations is not new (Endler, 1973; Lande, 1982;
Sanderson, 1989; Kirkpatrick and Barton, 1997), although still under investiga-
tion. The interesting question is how much does gene flow actually retard the
development of geographic differentiation within a species. Here we concentrate
on a numerical model which is, as far as we know, the first one to adapt the
Penna ageing model to simulate parapatric speciation (Schwämmle, Sousa and de
Oliveira, 2005). In this case the age structure is very convenient, since it allows
a measurement of the life span of the individuals according to age and so to de-
termine whether the hybrids are viable (survive until the minimum reproduction
age) or not.

The model considers a single phenotypic trait, that is, a single pair of non age-
structured bit-strings, and individuals survival probabilities are connected to this
trait and to their geographic positions. Initially individuals are randomly distrib-
uted on a two dimensional square lattice of linear sizeL. They move at every
iteration, with a ratemm, to a randomly chosen less or equally populated nearest
neighbouring site. If all nearest neighbours are more populated than the current in-
dividual’s site, the movement is not carried out. This strategy guarantees a fast and
balanced distribution of individuals over the whole landscape. The reproductive
females select their mating partners randomly from the reproductive males lo-
calised at the same or at a nearest neighbouring site. Reproduction between differ-
ent phenotypes,k, is allowed. Offspring are distributed into empty nearest neigh-
bouring sites. If there is no empty site, the offspring is not produced, which means
that the population size is controlled by the size of the lattice (Makowiec, 2001;
Sousa, 2004).

The probability of an individual to die, at every iteration, depending on itsx-
position and phenotype numberk is given by:

(4.11)Pdeath(x, k) = S ×
(

1 −
∣

∣

∣

∣

g(x) − k

32

∣

∣

∣

∣

)

.

In this equationS is a parameter between zero and one representing the environ-
mental selection pressure andg(x) = x/(L − 1), where the coordinatex is an
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Figure 4.19. Pdeath(x, k) according tox-position for three different values of the phenotype number,
k. Individuals with high or lowk survive better on opposite sides of the lattice whereas the ones with

intermediate phenotype numbers have a higher death probability everywhere.

integer between zero andL − 1. For extreme phenotypes withk = 0, the perfect
region in which to live corresponds tox = L − 1, wherePdeath(L − 1, 0) = 0,
while for extreme phenotypes withk = 32 the perfect region corresponds to
x = 0. Individuals with intermediate phenotypes also live better at the extremes
of the lattice, but are less fitted than those with extreme phenotypes living in the
correct extreme of the lattice.Figure 4.19illustrates the death probability behav-
iour for three different values ofk.

The results we are going to present were obtained using the following fixed
parameters:

• Threshold number of genetic diseasesT = 3;
• Minimum reproductive ageR = 8;
• Birth rateb = 4;
• Rate of bad mutations in the chronological genomem = 1;
• Number of dominant positions in the chronological genomeD = 5;
• Mutation rate of the phenotypic traitmp = 0.15 ormp = 0.2;
• Number of dominant positions in the phenotypic traitDp = 16.

The simulations started with all genomes randomly filled with zeros and ones,
and all individuals randomly distributed on the lattice. During the first 1000 it-
erations the probability to die given by equation(4.11) is set to zero and the
initial distribution of the phenotype numbers is regulated solely by the mutations.
It presents the usual Gaussian behaviour shown by the squares inFigure 4.20.
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mm = 0.99.

After these transient steps the ecology is abruptly changed by switching on equa-
tion (4.11). Disruptive selection driven by the new ecology leads to a better
survival of individuals with high and low phenotype numbers, depending on their
current positions on the lattice.

The crucial parameters to obtain speciation in this scenario are the selection
pressureS and the movement ratemm. At low selection pressures, independently
of the movement rate, the distribution of phenotype numbers remains unaltered,
that is, a Gaussian centred atk = 16. The population decreases slightly at inter-
mediatex-positions, but gene flow prevents disruptive selection from dividing the
system into two sub-populations.

For intermediate selection pressures and movement ratesmm ∼ 1, shortly after
turning disruptive selection on, equation(4.11), the system reaches an extremely
dynamical state where fluctuations may or may not drive the system to diver-
gence. That is, for the same set of parameters, speciation may or may not occur
depending on the initial random seed. When it does not occur, the adaptation of
the phenotypes on one of the lattice sides is faster and gene flow forces the individ-
uals on the other side to adapt themselves to the opposite phenotype. In this case
the phenotypes distribution is unimodal, given by the circles inFigure 4.20, and
the lattice is occupied by one of the extreme phenotypes, as shown inFigure 4.21.
When speciation occurs, that is, when phenotypic adaptation is balanced, the final
distribution is bimodal (represented by stars inFigure 4.20) and there is a clear
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Figure 4.21. Final occupation of the lattice in a case where speciation didn’t occur. One of the
sub-populations with extreme phenotype randomly dominates and finally occupies the whole lattice.
The left side remains less populated because in this case it is the worst side for this extreme phenotype

to survive (black sites are empty).

Figure 4.22. Initial (left) and final (right) occupation of the lattice in a case where disruptive selection
led to speciation. Black sites are empty; different phenotype numbers are represented by different grey
tones, ranging from white to dark grey. Initial phenotypes are randomly distributed between 0 and 32.

division in the lattice occupation between the extreme phenotypes, as shown in
Figure 4.22.

From Figure 4.20we can notice that even when speciation occurs, hybrids
(intermediate phenotypes) do not completely disappear, since there is no sex-
ual selection preventing their production. However,Figure 4.23shows that the
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Figure 4.23. Histogram of the final fraction of individuals withk = 16 that die at a given age. Circles
correspond to a simulation where equation(4.11)was not switched on, presented for comparison.

majority of these hybrids die at low ages and do not generate offspring. Their
low viability characterises a speciation process (Porter and Johnson, 2002) in
a situation where a small gene flux between different extreme phenotypes per-
sists. Models with small population sizes or mating over large geographical
distances need assortative mating in order to obtain speciation (Gavrilets, 1997;
Doebeli and Dieckmann, 2003).

A cline is defined as a gradient in a measurable character. Relative to the dis-
persal rate of a species, the strength of a cline between regions is indicative of the
extent to which the inhabitants have differentiated. A steep cline means sharp
differentiation while a gentle cline means indistinct divergence between areas
(Endler, 1973). In the present case the authors chose the phenotype numberk

as the measurable character.Figure 4.24shows the fraction of individuals with
k = 0 andk = 32 at each positionx of the lattice, for the case where speciation
occurred. A steep cline can be observed for bothk = 0 andk = 32 populations.

In this model low movement rates or very high selection pressures (as also
found byDoebeli and Dieckmann (2003)) prevent speciation events. In both cases
a great part of the population dies out at the time when the ecological function
(4.11)is set. Fluctuations dominate divergent adaptation and the initial Gaussian
distribution of phenotypes moves to one of the extremes. For small population
sizes fluctuations also seem to always prevent speciation, independently of the
movement rate: No speciation events were obtained for lattice sizes smaller than
L = 150.
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Figure 4.24. Frequency of individuals with phenotype numbersk = 0 andk = 16, for each position
x of the lattice, averaged over the last 10 000 time steps.

It is important to emphasise that the speciation models presented in this chapter
allow fluctuations of all quantities, which hinders adaptation and the division of
the system into two different phenotypic populations, even for intermediate val-
ues of the ecological selection pressure. This could explain the not so frequent
occurrence of speciation in Nature, where many environmental factors act on the
different population quantities, like the phenotypic distribution, and where fluc-
tuations of these quantities are ubiquitous. Even if the conditions are optimal,
speciation remains a statistical event. (The main differences between the mean-
field approaches, where fluctuations are neglected, and those presented here have
already been explained in detail inChapter 2.) In the present case the results
suggest that parapatric speciation occurs preferably when a large population un-
dergoes a sudden disruptive selection over large geographical distances compared
to the range of individuals movements.

4.3. * Many-species models

Biological evolution of species presents some universal behaviour due to its
time-and-size scale-free character (see, for instance,Kauffman (1993)andChap-
ter 2). A parallel between this feature and critical phenomena has already been
explored in Sections2.5 and 4.1.4. Why would the idea of universality ap-
ply to evolutionary systems is an interesting and important conceptual ques-
tion. Some hints towards a possible answer can be seen inDoebeli and Rux-
ton (1997), Geritz, Kisdi, Meszéna and Mertz (1998)and Parisi (1999). A fa-
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mous example of a scale-free behaviour is the classification of extinct gen-
era according to their lifetime, a long-term study of fossil data performed by
paleontologists John Sepkoski and David Raup (Sepkoski, 1993; Raup, 1986;
Raup, 1991). The frequency distribution they found is compatible with a power-
law decay with exponent 2. The same exponent was confirmed by at least two
distinct theoretical computer models (Newman and Roberts, 1995; Solé and Man-
rubia, 1996). The computational models we are going to explore in this section
are characterised by these scale-free behaviours, related to long-term memory and
diversity, as pointed out in Section2.4.

4.3.1. The Bak–Sneppen model

Slightly modifying an earlier model for surface growth (Sneppen, 1992), Bak
and Sneppen (1993)introduced their now-famous model for biological evolution,
based on an extreme value dynamics (see alsoBak (1997)). In this model there
areN species, each one occupying one site of an one-dimensional lattice (a ring).
Each species has a random survival fitness 0� fi � 1. At the beginning, all
fitness are uniformly tossed at random between 0 and 1. The simulation evolves
according to the following dynamical rule:

• Search for the smallestfi corresponding to speciesi;
• changefi , fi−1 andfi+1 into 3 other values randomly chosen between 0 and 1

(mutation or extinction);
• repeat.

One time step consists in iteratively applying this ruleN successive times (an
N -cycle), whereN is the same number which measures the population size. Thus,
the timet = 0, 1, 2, 3 . . . is a discrete variable. 1/N -fractions of the time unit can
also be measured, by considering incompleteN -cycles. Thus, for larger and larger
values ofN , one obtains more and more the continuous time.

At the start of the simulation the fitness on average grows, although there are
fluctuations up and down. However, after a transient period, the system reaches a
stationary critical state where the fitness does not grow any further on average: All
species have fitness above some threshold (state of “stasis”), which is very close
to 2/3 for long enough times (Paczuski, Maslov and Bak, 1995). That is, the band
of distributed fitness starts between 0 and 1, but shrinks until all fitness become
distributed between the threshold and 1.Figure 4.25shows the time evolution of
the lower bound of this band for aN = 100 000 species system.

Consider a point in time when all species are over the threshold; at the next
step the least fit species (right at the threshold) will be selected, eventually start-
ing an avalanche or “punctuation” of mutation events. (Whenever the fitness of
a given species changes, it is possible to think that the species has undergone a
mutation or that it has become extinct and replaced by a new one.) After a while,
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Figure 4.25. Evolution of the lower bound for the band of fitness in the Bak–Sneppen model for a
system of 100 000 species.

the avalanche stops, when again all species have fitness above the threshold. The
avalanche lifetime corresponds to the number of steps needed to recover the state
of stasis and the avalanche size to the number of active species between two con-
secutive states of stasis. When this process is repeated for large systems (large
number of species), one obtains the numberNa(S) of avalanches of sizeS (in-
volving S species) given by the power law:

Na(S) ∝ S−τ .

This distribution means that there is no characteristic size for the avalanches, as
would happen if instead of a power law it had an exponential behaviour. The
larger the system, the larger the possible maximum size of an avalanche. Small
avalanches, in which a few number of species become active, are much more
frequent than large ones; however, the probability that a system-sized avalanche
occurs, activating all species, is not zero. Such a dynamical behaviour can explain
the extinction of the dinosaurs without using any external agent, such as mete-
orites colliding with Earth (but of course does not exclude such a possibility).

On the other hand, the non-vanishing band-width of this model characterises a
diversity which remains forever. In fact, the transient timeT one needs to wait in
order to reach the thresholdfc ≃ 2/3 is of the same order of magnitude as the
system size, i.e.,T ∼ N . In the limit of larger and larger sizes,N → ∞, the sys-
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Figure 4.26. Binary tree where the sequence{0.54, 0.29, 0.43, 0.77, 0.15, 0.65, 0.37, 0.16, 0.89,
0.79} is stored in this order.

tem would evolve in an eternal transient. This is the main difference between an
evolutionary system and a simple optimisation process. In the latter, one searches
for the single best situation among many possibilities, discarding all other op-
tions. Evolution, in contrast, preserves many alternative options, not only a single
“best”, in order to keep the system able to adapt itself to future environmental
changes.

In order to implement this model on computers, the program needs to find the
minimum fitness among all individuals. The simplest approach is to scan all of
them, sequentially, registering at each step the minimum value so far. The cor-
responding Fortran code can be found in the appendix, Section9.3. However,
this requiresN comparisons, which forbids the simulation of very large systems.
A good alternative is to construct abinary treewith theN fitness. This tree has a
root; below it there are two other sites, one on the left and one on the right. Below
each new site, another pair, on the left and on the right, and so on, as shown in
Figure 4.26.

The sequence ofN fitness is stored on this tree as follows. The first entry is
located at the root. If the second entry is larger than the first, it is stored on the right
side below the root; otherwise, on its left. For each new entry along the sequence,
one compares its value with the root, deciding to go downwards to the left or to
the right. Then, one repeats the comparison at this new place, deciding again to
go downwards to left or right, and so on, until a vacant site is reached. In this way,
in order to get the minimum value stored on the tree, one simply goes downwards
always to the left, until the last occupied site. That is, one follows only a single
branch along the tree, which average length is of the order of log2(N), much
smaller thanN , moreover for large systems. The following C-language routine
does the job.

unsigned minimum() {

/* finds the minimum on the binary tree */

unsigned i,j;

j = root;
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do i = j; while(j=left[i]);

return(i);

}

Then, the following routine puts a new entry on the tree.

void put(new) unsigned new; {

/* includes a new entry into the binary tree */

unsigned i,j,lf,f;

j = root; f = F[new];

do {i = j;

if(f<F[i]) {j = left[i]; lf = 1;}

else {j = right[i]; lf = 0;}

} while(j);

top[new] = i;

if(lf) left[i] = new; else right[i] = new;

}

Finally, below is a third routine designed to remove an entry from the tree. In
order to remove entry K, one considers entries L and R below it (left and right,
respectively), as well as entry A below L (right). If L is empty, K is replaced by
R, otherwise by L. Furthermore, if L, R and A are all three occupied (generating 2
right branches below L, instead of only 1), then A is transferred to the first empty
position along the leftmost branch below R.

void remove(K) unsigned K; {

/* removes an entry from the binary tree */

unsigned t,L,R,A,i,j;

t = top[K]; L = left[K]; R = right[K];

top[K] = left[K] = right[K] = 0;

A = right[L];

if(t) {

if(L) {

if(K==left[t]) left[t] = L; else right[t] = L;

top[L] = t;

if(R) {top[R] = L; right[L] = R;

if(A) { /* re-position of A */

j = R;

do i = j; while(j=left[i]);

top[A] = i; left[i] = A;

}

}

}

else {

top[R] = t;

if(K==left[t]) left[t] = R; else right[t] = R;

}
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}

else { /* remove root */

if(L) {root = L; top[root] = 0;

if(R) {top[R] = root; right[root] = R;

if(A) {

j = R;

do i = j; while(j=left[i]);

top[A] = i; left[i] = A;

}

}

}

else {root = R; top[root] = 0;}

}

}

Certainly there are more efficient ways to implement the binary tree, in particu-
lar by using recursivity and pointers. However, the resulting code is more complex
and so more complicated to understand. A complete C-version of the program us-
ing the routines presented here can be found inMartins and de Oliveira (2004).

4.3.2. Lineage branching

Branching processes in general show scale-free behaviour. In this case, an impor-
tant class, with multiples of 1/4 as exponents, is ubiquitous. This interesting issue
was studied by G.B. West and collaborators (West, 1999; Enquist, Brown and
West, 1998; West, Brown and Enquist, 1997). For a recent overview seeSavage,
Gillooly, Woodruff, West, Allen, Enquist and Brown (2004); see Demetrius
(2003) for an alternative. Studying blood transport networks, they proposed a
model based on three basic ingredients: A hierarchical branching pattern, where
a vessel bifurcates into smaller vessels and so on; a minimum cut-off size for the
smallest branches, which makes the branching mechanism a finite process, and
a free-energy minimisation constraint. From these three basic hypotheses, they
were able to show the emergence of the exponents 1/4, 1/2, 3/4, etc. Of course,
not only blood vessel systems follow this general framework, and the same class
of exponents, multiples, of 1/4 were indeed measured within many other con-
texts. The model that follows, proposed byde Oliveira, Martins, Stauffer and de
Oliveira (2004), was developed with the idea that biological speciation could fit
very well into the general branching process framework described by West.

The asexual population size is kept constant, withP (typically 105 or 106)
individuals representing a sample of a much larger set. Each individual is charac-
terised only by its genome, represented by an array ofg bits (typically 32, 64, 128,
. . ., 2048) zeros and ones. At the beginning, all bits are zeroed, and all individuals
belong to a single lineage. The survival probability of each individual is given by
xNi+1, whereNi is the number of bits 1 along the genome of individuali, that
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is, the larger the number of bits 1 along the genome, the larger is the individual’s
death probability. At each time step, a certain fractionf (typically 1% or 2%) of
individuals die, each one according to its own death probability, as the outcome
of intra-lineage competition.

At each time step, the simulation first obtains the value ofx (before the death
cycle) by solving, as in Section2.10, the polynomial equation:

∑

i

xNi+1 = P(1 − f )

where the sum runs over all living individuals. This requirement keeps the popu-
lation constant. Equivalently, one can solve

∑

N

H(N)xN+1 = P(1 − f )

where now the sum runs overN (0, 1, 2, . . .), andH(N) counts the current num-
ber of individuals with preciselyN bits set along the genome. After computing
the value ofx, we scan the whole population (i = 1, 2, . . . , P ), tossing a real
random number between 0 and 1 for each individuali, in order to compare it with
its survival probability: If the random number is larger thanxNi+1, the individual
dies.

After each death, another individual is chosen at random to be the parent of a
newborn. Its genome is copied, and some random mutations are introduced at a
fixed rate per bit (typically 1/32) which does not depend on the genome length.
Each mutation flips the current bit state (from 0 to 1 or vice-versa) at a position
tossed along the genome. After all mutations are performed, the newborn is in-
cluded into the population.

If the newborn presents fewer bits 1 than its parent, it receives the label of
the potential founder of a new lineage. During the time steps that follow, all its
descendents will be monitored: If, at some future time, the number of those de-
scendents still alive reaches or surpasses a minimum thresholds0 (typically 10),
then all descendents of the now confirmed founder, including itself, are consid-
ered to belong to a new lineage. On the other hand, extinction occurs when the
last individual of a given lineage dies. Although a rare event, a lineage can also
become extinct if all its individuals descend from the same potential founder, be-
ing altogether transferred to another, new, lineage, by reaching the thresholds0.
A similar model, but without the lineage branching step, was already used before
(de Oliveira, de Oliveira and Stauffer, 2003).

Figure 4.27shows the number of living lineages as a function of time. Each
time step corresponds to a scan of the whole population performing deaths and
births. The number of living lineages are divided by the constant number of in-
dividuals, in order to show that one lineage indeed corresponds to a considerable
number of individuals (varying from approximately ten thousand, on average, for
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Figure 4.27. Number of living lineages normalised by the population size, as a function of time, for
genome lengths 32, 64, 128, 256, 512, 1024 and 2048;P = 100 000,S0 = 10 andf = 0.02.

the largest genome length of 2048 bits, down to fifty individuals for the smallest
genome length of 32 bits).Figure 4.28shows the results after averaging over the
last 105 time steps, in a total of 106 time steps. The exponent obtained through
a linear fit to the simulation data is−1.24 (error bar within the last digit), which
remained the same for other runs with different sets of parameters. Observe that
this value is very close to 5/4, falling into the same family of simple multiples of
1/4 already mentioned.

Figure 4.29shows the number of lineages which become extinct each time
step, as a function of time. Extinction becomes more difficult for larger genome
lengths.Figure 4.30shows the total numberN of extinct lineages, during the
whole one-million-time-step history, as a function of the genome length. Again a
power-law behaviour is observed, with an exponent very close to 1.

The distribution of lineage lifetimes as a function of genome sizes is illustrated
in Figure 4.31. Now the exponent obtained is very close to 2, in agreement with
the exponent found by paleontologists John Sepkoski and David Raup (Sepkoski,
1993; Raup, 1986; Raup, 1991) from fossil data.

The authors (de Oliveira, Martins, Stauffer and de Oliveira, 2004) were also
able to derive analytically scaling laws and relations between exponents that agree
with their simulational results. As they pointed out, their lineage model presents



142 Chapter 4. Biological Speciation

100 1000
Genome length

10

10

10

10

10
N

or
m

al
is

ed
 n

um
be

r 
of

 li
ne

ag
es

Figure 4.28. Number of living lineages normalised by the population size and averaged over the final
105 time steps, as a function of the genome length.

the same three fundamental ingredients that West and collaborators demonstrated
to give rise to exponents multiple of 1/4, namely:

(1) a multiple hierarchical branching: In this case, lineages born from others;
(2) a size-invariant limit for the final branch: In this case, a fixed minimum pop-

ulations0 is required in order to have branching;
(3) a free-energy minimisation process: In this case, the growing-entropy ten-

dency provided by the random mutations (in the direction of randomising the
bits along the genome as time goes by) is balanced by the selection mecha-
nism (which gives preference to individuals with the smallest possible number
of bits 1).

Another interesting model dealing with many species and also presenting scale-
free behaviour is now being developed bySchwämmle and Brigatti (2005). The
preliminary results we present below were obtained using the age-structured
genome of the Penna model plus an integer numberk (0 � k � P ) to represent
each asexual individual. The integerk accounts for all the phenotypic charac-
teristics that determine the individual’s adaptation to a specific ecological niche;
individuals with close values ofk belong to the same species. Those that succeed
in reaching the minimum reproduction ageR generate, at each time-step, one off-
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Figure 4.29. Number of lineages which become extinct per time step, averaged over intervals of 103

time steps, as a function of time for various genome lengths, as given by the numbers on the curves.

spring. The age-structured part of the offspring genome is inherited according to
the asexual Penna model (Section3.2.1), and its value ofk is the same as the
parent’s one except for an eventual mutation of±1, that occurs with a given prob-
ability specified at the beginning of the simulation and that is the same for all
individuals.

The death probability of any individual with a givenk value is given by:

D(k) = 1

Nmax

P
∑

l=1

Nl exp

(

− (k − l)2

2b2

)

whereNl represents the number of individuals with phenotypel, Nmax is the car-
rying capacity andb is a control parameter. Observe that the sum in the above
equation spans all the possible configurations in the phenotype space and compe-
tition decreases according to phenotypes distance.

Since the model deals with an asexual population, the biological definition of
a species as a reproductively isolated population has to be modified: In this case
a species is defined as a group of individuals that share most of their phenotypic
features but which differ for some traits. According to this definition the used
algorithm associates different species to different clusters of individuals that have
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Figure 4.30. Total number of extinct lineages as a function of the genome lengths.
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Figure 4.32. Piece of an evolutionary tree generated forP = 500. The horizontal axis corresponds
to the phenotypic numbersk and the vertical axis to time.

a small (for instance, just one unit) phenotypic distance between them. In this
way the space between two clusters cannot be occupied by individuals and the
dynamics allows the self-organisation of a varying number of phenotypic clusters,
each of them subjected to extinction or branching. An example of a stable and
living evolutionary tree generated with standard parameter values can be see in
Figure 4.32.

Figure 4.33shows the number of extinct species according to lifetime. Again
the power law behaviour with an exponent close to two is observed, except for
very long times (as also obtained byChowdhury, Stauffer and Kunwar, 2003).
A detailed version of this model (without the Penna age-structure) and corre-
sponding results will appear elsewhere.

4.3.3. Ecosystems

Thus far we dealt mostly with the problem how one species can split into two;
Schwämmle and Brigatti (2005)had many species but no prey nor predators. Real
life contains numerous species, grouped as mentioned in Section2.8 into genera
like homo, then families like hominides, orders like primates, classes like mam-
malia, phyla like chordata, and kingdoms like eukaryotes of which animals are
just one part. Animals kill to eat, and usually the larger animals eat the smaller
ones. One may arrange the various prey-predator relations into a food chain (He,
Pan and Wang (2005); see also end of Section4.1.3) where the top animal (e.g.,
wolves) eats the middle animal (sheep), which eats the lowest species (grass). It
is much more realistic to look at food webs, as reviewed by Drossel and McKane,
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Figure 4.33. Distribution of extinct species as a function of lifetime. Deviations from a power law
are observed for very long lifetimes.

p. 218 inBornholdt and Schuster (2003). There each species may eat several oth-
ers on a lower food level, and can be eaten by several other species on a higher
food level. We neglect parasites which are small animals living in and profiting
from a larger species, as well as cannibals or similar cases where animals eat oth-
ers on the same food level. In agreement with the rest of this book we concentrate
on simulations likeDroz and Pȩkalski (2004)which treat each individual sepa-
rately: birth, maturity, death. The Chowdhury model, starting with the spin-glass
approximation ofChowdhury, Stauffer and Kunwar (2003), seems the most com-
plicated one and was recently reviewed in greater detail byStauffer, Kunwar and
Chowdhury (2005)and, in a more general context, byChowdhury and Stauffer
(2005).

On top of the food web in this model is one species in level 1, followed by two
species on level 2, four on level 3, and in general 2ℓ−1 on levelℓ. Some species
may be extinct; thus this number 2ℓ−1 is the number of possible species, i.e., the
number of ecological niches. For each non-extinct species, animals having at least
the minimum reproduction ageR generate offspring with a probability(1−V )A,
with a Verhulst death factorV = N/K whereN is the current number of living
individuals in that species, andK the carrying capacity. Thus the Verhulst deaths
occur only at birth (Martins and Cebrat (2000); see Section3.2.1). The above
ageing proportionality factorA decreases linearly with age, from one at ageR

to zero at the maximum genetic life span taken asX = 100· 2(1−ℓ)/2 iterations.
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Animals then give birth toM offspring simultaneously. If they are not eaten by
others, they die with a Gompertz probability exp[0.05(a −X)/M] for agea � R.

Animals of speciesi may eat speciesk from the lower adjacent food level;
then their couplings areJik = +1, Jki = −1; otherwise both couplingsJ are
zero. Thus in addition to the above Verhulst and Gompertz deaths, animals may
die because they are eaten by predators, or because they do not find enough prey.
These deaths are determined by insufficient food, given by a sum over the lower
food level of prey, and by predators, given by a sum over the upper food level of
predators.

The parametersR, M, and the prey-predator matrixJ are self-organised, that
means their values emerge via random mutations by±1. Also the total number of
food levels is self-organised: If the total biomass is below some fixed threshold,
then with some probability a new food level is added. Thus Darwinian survival
of the fittest brings these values close to their optima but the continuous stream
of new mutations also makes them sub-optimal. Therefore these values are not
the same for all, but follow some distribution (Stauffer, Kunwar and Chowdhury
(2005)and literature cited there).

Speciation may happen when other species became extinct, leaving empty their
niches in the ecosystem. Then one species, selected randomly from the highest oc-
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cupied food level below that of the empty niches, occupies with some probability
all the empty niches. There it may from then on have mutations different from
those on its original place in the lower food level, and thus in each of the now-
filled niches of the upper food level, a new species starts: sympatric speciation.

Finally, one can put each of these ecosystems onto a small square lattice, with
different random numbers used for each site. With some probability, a random
fraction of the population moves into a neighbour site (with periodic boundary
conditions) provided the randomly selected neighbour is empty at the particular
niche from which the invading population comes. Thereafter it has new mutations
there, thus leading to parapatric speciation.

Figure 4.34shows that the distribution of species lifetimes roughly but not
precisely follows a power law relation with an exponent−2; the tail may be ex-
ponential. Different version of this model all gave similar curves.Figure 4.35
shows that the maximum number of food levels, which starts at three, increases
about logarithmically with time. The mortality of the top species increases not
very strongly with age (Kunwar, 2004) since many die from starvation; if applied
to humans the situation thus corresponds to ancient and not to modern times.
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Figure 4.35. Evolution of the maximum number of food levels, averaged over all 16 sites of a 4× 4
lattice. Not all levels are necessarily occupied at a give time; a new level may be created only if the
total number of animals on that lattice site is below 100 (lower data) or 150 (upper data). Note the
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Similar results were found byHe and Yu (2006)with a modified model where the
prey-predator relations depend on the difference between the food levels.

In contrast to the Rikvold–Zia model (see, e.g.,Rikvold (2005)) and the Penna
ageing model ofChapter 3and its application to speciation bySchwämmle and
Brigatti (2005), the Chowdhury model does not have a bit-string as an explicit
genome. Instead different species are distinguished by differentR,M, Jik similar
to the Weismann-type ageing model (Stauffer, 2002d; Stauffer and Radomski,
2001). Using these parameters one can build a taxonomy, e.g., by defining a genus
as all species having the sameR andJ but differentM. Then one sees (last figure
in Stauffer, Kunwar and Chowdhury (2005)) how the probability to belong to the
same taxonomic level decreases with time if initially all animals agreed in the
relevant parameters: The tree of life grows in this model.

For the simple Lotka–Volterra equations of only two species, prey and predator,
the two population numbers oscillate. What are their correlations in the Chowd-
hury model with many species, often acting as both prey and predator?Figure 4.36
shows that they are slightly anti-correlated: If one level (here: food level 5) has
few surviving species, then its prey level (here: level 6) sometimes has few and
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Figure 4.36. Anti-correlations between prey (level 6) and predator (level 5). The horizontal axis
shows the numbern2 of species living on level 6 while the vertical axis shows how often for this value
of n2 the level 5 containsn1 living species. The plus signs (broad curve) correspond ton1 = 1, the
full squares ton1 = 13, the other data to intermediaten1 increasing from right to left. 4× 4 lattice.
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fixed at six (smaller numbers) and ten (larger numbers). (SeeRohde and Stauffer (2005).)

sometimes has many living species. If, on the other hand, the predator level 5 has
many living species, then only few prey species survive on the lower level 6 (black
squares in this figure).

Finally, on a 4×4 lattice one may simulate tropical, subtropical, temperate and
cold climates, with life getting more difficult for the colder regions (Rohde and
Stauffer, 2005). Figure 4.37shows how the numbers of species (lower data) and
animals (upper data) increase with temperature for a fixed number (six or ten) of
food layers, a low probability 0.001 of trying to move to a neighbouring lattice
site, and a low probability 0.0001 of speciation. This geographical variation was
achieved by assuming the rate of successful births to increase proportionally to
the line number in the lattice.



Chapter 5

Languages

Whether we human beings deserve to be calledhomo sapiensseems questionable
once we read, hear or watch the news about our latest actions. But certainly we
talk a lot ashomo loquens. Nevertheless, also birds have their songs for commu-
nication, ants communicate via pheromones (Anderson, 2004), and what we will
discuss in this chapter applies to any formalised way of communication, also to
human alphabets. The computational methods employed here are very similar to
those in biology, and therefore we insert this chapter here between the two bio-
logical ones and the following sociophysicsChapter 6.

5.1. Empirical facts

According to the Bible, people started to speak different languages after the
tower of Babylon was destroyed. Thus it is somewhat surprising that competition
between different languages, similar to survival of the fittest in biology (Cavalli-
Sforza, 1997), has only recently been simulated by more than one group at a time.

Children usually learn easily to speak their mother language, old people have
much greater difficulties to learn a new language, and scientists have wondered
how a language is possible at all. We discuss here not how from the sounds of apes
or early humans the first proto-language arose, or how children learn their mother
language (Cangelosi and Parisi, 2002; Solé, 2005; Gong and Wang, 2005); instead
we concentrate on the competition between different languages of adults, just as
our biological discussions inChapters 3 and 4dealt with already existing species,
not with the origin of life. So, the lack of fossil records for languages is less
hindering for us, since we can concentrate more on well-documented history and
present reality (Sutherland, 2003). Numerical studies of the 1990s are reviewed
by Livingstone (p. 99 inCangelosi and Parisi (2002)), and thus we concentrate
here on later work. A longer review is given byStauffer and Schulze (2005).

Today thousands of languages are spoken on Earth (Sutherland, 2003), with
a particularly high density of languages in New Guinea (Novotny and Dro˙zdż,
2000). Roughly,Figure 5.1, the distribution of language sizesS is log-normal,
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Figure 5.1. Size distribution of human languages (Sutherland, 2003; Science, 2003) with a fitted
log-normal function to show the deviation for small sizes. FromStauffer and Schulze (2005). The
language sizes are binned by factors of 10 in this log-log plot; e.g., all sizes between 100 and 1000 are

put together.

i.e., proportional to exp[−const(logS)2] whereS is the number of people speak-
ing a language as mother tongue. Chinese has the largest size while dozens of
languages on their way to extinction are spoken by only one person. The number
of languages with less than 10 speakers is larger than what the log-normal distrib-
ution would predict. (Gomes, Vasconcelos, Tsang and Tsang (1999)instead fitted
two power laws to the right tail of the cumulative language distribution.)

5.2. Differential equations

Let us assume that in one region two languages are spoken, like English and
French in Montreal (Canada), with fractionsx and 1− x of the total popula-
tion speaking mainly the first or the second language. ThenAbrams and Strogatz
(2003)assume

(5.1)dx/dt = (1 − x)xas − x(1 − x)a(1 − s)

with a free exponenta > 1 to be fitted on experimental data, and a status variable
s with 0 � s � 1 indicating how advantageous it is to use the first of the two lan-
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Figure 5.2. Variation of the fraction speaking the first language in the Abrams–Strogatz language
model for the neutral case: The initial majority wins.

guages;s = 1/2 means neutrality.Figure 5.2gives the resulting time dependence
for various initial fractionsx; since the above equation is nonlinear, the results
depend on this initial fraction and let the initial minority language die out. For
initially equally many speakers of the two languages,Figure 5.3shows how the
language with higher status overwhelms in the course of time the one of lower
status. Finally,Figure 5.4combines the variation of status with an initial fraction
of only ten percent for the first language: The higher the statuss of the minority
language is, the slower is its decay fors < 0.6; for s > 0.7 the initial minority
even wins while the initial majority language approaches extinction.

For the neutral cases = 1/2, the free exponenta was taken as 1.31 to fit
four examples, like Welsh versus English in Wales. The fitted statuss varied
slightly between these four examples. However, the empirical data to whicha

ands were fitted are very poor, a situation happening quite often in sociophysics.
Of course, since only two languages are simulated, this model cannot explain
the language size distribution ofFigure 5.1. Mira and Paredes (2005)generalised
equation(5.1) to three populations by adding bilingual people, and found good
agreement with the use of languages in Galicia (Spain). The special casea = 1 of
equation(5.1) leads to Verhulst’s logistic equation, applied to languages by Shen
already in 1997, as reviewed byWang, Ke and Minett (2004).
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Figure 5.3. Variation of the fraction speaking the first language in the Abrams–Strogatz language
model with status: Higher status wins. FromStauffer and Schulze (2005).

This differential equation is a mean-field approximation averaging over all peo-
ple and ignoring that they are born, mature and die, that they may influence their
neighbours, and that their total number is finite. Later we will present different
simulations avoiding such unrealistic aspects. Nevertheless the simplicity of this
model is very attractive, like the famous Lotka–Volterra equations for prey and
predator in biology.

Patriarca and Leppänen (2004)put this model onto a square lattice, in order to
study the coexistence of two different languages in neighbouring regions (some-
what similar to parapatric speciation inChapter 4). To get this coexistence they
assume the statuss of the first language to be higher in the left part, and of the
second language to be higher in the right part. Then the left part speaks the first
language, and the right part the second language, with a sharp interface in be-
tween. We dislike here that they put in through the status variable what they
got out: The first language dominates in the left and the second language in the
right part. Their work triggered later simulations to be presented below where this
asymmetry built into the parameters is avoided and where we are thus closer to
self-organisation of the interface.

Many languages were studied numerically earlier byNettle (1999a)using

(5.2)dL/dt = 70/t − L/20
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for the numberL of language groups, e.g., on the American continents. Here the
time t is measured in thousands of years. He argues that after the initial settlement
by humans the low population density allowed a rapid growth of the number of
languages, while later at higher population densities and stronger contact the num-
ber of different languages shrinks again. This equation leads toL(t → ∞) → 0,
hardly correct, but only for times longer than the existence ofhomo sapiens.

Nowak, Komarova and Niyogi (2002)reviewed more complicated differential
equations to describe a multitude ofL languages. They apply them to the learning
of languages or grammars, but we think their mathematics can also be used for
our problem of competing languages of adults. The fractionxj of people speaking
languagej is assumed to be

(5.3)dxj/dt =
(

∑

i

fiQijxi

)

− φxj

wherefi = ∑

k Fikxk is the “fitness” of languagei due to the advantageFik of an
i-speaker to be understood by someone who speaksk. Qij is the probability that
children fromi-speaking parents will speakj ; thus

∑

j Qij = 1 for all i. Finally,
φ = ∑

i fixi is the average fitness and is needed to keep the sum of all fractions
constant.
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The huge number of free parameters in the twoL × L matricesF andQ make
general statements difficult. For suitable parameters a phase transition was found
where at some “coherence threshold” one switches from one dominating language
to a fragmentation into many languages, Section5.5.

5.3. Agent-based simulations

Agent-based are those simulations where each individual is treated separately,
like in Monte Carlo or Molecular Dynamics simulations of physics since half
a century. They can give drastically different results than mean-field approxi-
mations like the above differential equations. As warned already in Section2.6,
mean field theory predicts for the one-dimensional Ising model a positive phase
transition temperature to ferromagnetism, while a proper treatment of the atoms
or agents gives no such transition. If, on the other hand, there is no spatial
structure and everybody can interact directly with everybody, then for infi-
nitely large populations the agent-based model may agree with mean field the-
ory. These differences and similarities are also relevant for the other chapters,
not only for languages. Thus we regard agent-based studies as the appropriate
method in general, and for languages that means to treat each person. Again
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we can distinguish models for two languages (Kosmidis, Halley and Argyrakis,
2005; Schwämmle, 2005) and for many languages (Schulze and Stauffer, 2005;
Teşileanu and Meyer-Ortmanns, 2006; Schwämmle, 2006). In all of them, ba-
bies are born, inherit a (changing) language from their parents, mature, produce
children, and die. All three models use bit-strings, following a long tradition in
biological modelling (Eigen, 1971, Section2.10); each bit is either zero or one.
(Chapter 3reviewed in detail the Penna bit-string model of ageing,Chapter 4sum-
marized bit-string models for speciation.) But the interpretation of bits is different
in each model.

5.3.1. Two languages

Kosmidis, Halley and Argyrakis (2005)identify each bit with a word of the lan-
guage. Thus the words of the first language are the first half of the bit-string, and
those of the second language are the second half of the bit-string. A bit set to one
means the word has been learned by the person while a zero bit means the word
has not been learned. Only two languages are possible but people can become
bilingual.
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These agents diffuse on a square lattice, and when they bump into a speaker of
the other language (s)he can teach them words from this other language. The
more words they learn the higher is their fitness as measured by the chances
for reproduction. (Kosmidis, Halley and Argyrakis (2005)fail to cite the movie
“Groundhog Days” which is an earlier publication of this principle that learning
French helps men in seduction.) In this way their language can contain synonyms,
i.e., words meaning the same thing but coming from different original languages.
Depending on the details of the model, at the end everybody speaks about half
the words from one and half the words from the other language (like the merger
of French and German into English after the 1066 Norman conquest), or every-
one speaks both languages nearly perfectly (like French and Flemish in Belgium)
having nearly all bits set.

Schwämmle (2005)uses the bit-strings to describe the ageing in the Penna
model, and also has two languages and a square lattice for motion. This motion
is not random as for diffusion but prefers jumps into less occupied neighbour
regions. The agents age over 10 to 20 iterations before they die, with the Penna
model ofChapter 3. Reproduction is sexual, with the child learning the language
of both father and mother and thus possibly becoming bilingual. Also, languages
are forgotten if most of the neighbouring people do not use them.Figure 5.5
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languages spoken by at least ten people. FromStauffer and Schulze (2005).

shows that if initially half of the lattice is speaking one and the other half the
other language, as inPatriarca and Leppänen (2004), then at the end still one
language may dominate and the other language together with the bilinguals dies
out. But a stable coexistence, as will be shown below inFigure 5.18for a different
model, is also possible.

LaterSchwämmle (2006), after empirically observing the senile author, mod-
ified this model and allowed learning of a foreign language only in youth. For
small mutation rates, one language dominates, for larger ones fragmentation is
observed. This phase transition seems to be of first order for many possible lan-
guages and of second order for only two languages. The threshold mutation rate
increases if the age limit for learning a foreign language is increased.

5.3.2. Many languages: Homogeneous systems

Schulze and Stauffer (2005), followed byTeşileanu and Meyer-Ortmanns (2006),
interpret each different bit-string of lengthℓ as a different language and thus allow
for 2ℓ languages, i.e., 256 for 8 bits and 65536 for 16 bits. Each bit may be a
grammatical structure like the ordering subject-verb-object or subject-object-verb
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and Schulze (2005).

(Science, 2003). A set of 30 independent binary grammatical parameters, i.e.,
ℓ = 30, was regarded as reasonable byBriscoe (2000), and 8 � ℓ � 64 was
simulated (Stauffer and Schulze, 2005).

A new child gets the bit-string from the mother (asexual reproduction) except
that with probabilityp one randomly selected bit is toggled (changed from 0 to
1 or from 1 to 0). (Up to here the simulation is similar to one mentioned for bio-
logical speciation:de Oliveira, Martins, Stauffer and de Oliveira, 2004.) Also, at
each iterationt , a person with languagei adopts the language of another randomly
selected person with probability

(5.4)r =
[

N(t)/N(t → ∞)
] (

1 − x2
i

)

wherexi is the current fraction of people speaking languagei in the whole popula-
tion N(t), andN(t → ∞) is the equilibrium population established by a Verhulst
death probability∝ N(t) applied to everybody; as inChapter 2, ∝ denotes pro-
portionality. (The first factor [...] can be omitted if one starts already with the
equilibrium population size; the second factor was replaced by(1 − xi)

2 in some
simulations.) The first factor in this equation means, as was argued before by
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FromStauffer and Schulze (2005).

Nettle (1999a), that for low population densities languages barely compete with
each other. For high densities when the first factor is near unity, the second factor
induces speakers of small languages to switch to a more widespread language.
(If instead of selecting randomly another person one selects randomly another
language then large languages are not favoured enough and the dominance to be
mentioned below may become impossible.) Section9.4 in the appendix lists a
program.

Figure 5.6from these simulations has some similarity withFigure 5.1from
reality: roughly the distribution of language sizes is log-normal with a higher
value for the smallest sizes.

If we varyp we see a first-order phase transition, the position of which depends
on the length of the bit-string and the size of the population: For smallp one lan-
guage comprises about four fifths or more of the population, and most of the
remaining people speak a language differing from this dominating language by
only one bit. For largerp we get a fragmentation into many languages of roughly
equal size; the relative width of the size distribution shrinks towards zero if the
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The curve corresponds to 8 bits, the nearly straight line to 16 bits. FromStauffer and Schulze (2005).

population size increases. This fragmentation-dominance transition seems similar
to the coherence transition ofNowak, Komarova and Niyogi (2002). The simula-
tions do not exclude that the creation of dominance out of an initially fragmented
population is a fluctuation effect which would vanish for infinite populations.Fig-
ure 5.7compares the distribution of language sizes for dominance (vertical bars,
p = 0.224 for 16 bits) and fragmentation (parabolic curve,p = 0.256). The dom-
inating language is accompanied by 16 languages differing from the dominating
one by only one of the 16 bits, and by many much smaller languages; in the other
case of fragmentation, all language sizes are between 20 and 500, roughly log-
normally distributed.

When we start with one “Eve”, the population first grows, and so does the lan-
guage diversity,Figure 5.8. When the population reaches its saturation value, then
language competition becomes fierce, as already stated byNettle (1999b), most
languages die out, and the surviving languages are the dominating one and those
which differ from it by one of the 16 bits. Due to accidental mutations during the
first time steps, not the original language but one of its mutants becomes domi-
nating.
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Figure 5.12. Emergence of a mixture language 2 (English, line) out of languages 0 (French, +)
and 3 (German,×). Initially French and German are spoken equally often, thus their symbols are
shown for even and odd times, respectively, in the left upper curve. The lower stars correspond to
language 1, which dies out, and overlaps with the line in the left part. The flight from small languages,

equation(5.4), is switched on after 100 iterations.

The transition from dominance at low mutation rate to fragmentation at highp

is of first order,Figure 5.9, that means the size of the largest language jumps by
several orders of magnitude at somep value which differs from sample to sample.
We start with one person and thus initially have dominance. The figure thus shows
when this dominance is stable for 1000 iterations (giving a population of nearly
one million speaking this language) and when it decays into fragmentation when
the largest language is spoken by only about 5000 people. 10 samples are shown
with p increasing from 0.24 to 0.33.

The hysteresis as well as strong finite-size effects are shown inFigure 5.10
where we start with the equilibrium population and either have them initially all
speak the same language (upper curve) or distribute them initially over all 256
possible languages (lower curve). For mutation ratesp above the curve we end
up with fragmentation, while below the curve we get dominance. Thus the final
result strongly depends on the initial distribution, just as at low temperatures a
ferromagnet stays with the magnetisation direction we started with, even if later
a small external magnetic field wants to turn the magnetisation into the opposite
direction.
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Figure 5.13. Competition of languages 00000000 and 11111111 at intermediate mutation rate
p = 0.4. We show the sizes of the most important (+, stars) and the second-most important (×,
squares) language versus time. The two pairs of curves differ only by the random number seeds. As
seen already inFigure 5.9, sometimes one gets dominance (+,×) and sometimes fragmentation (stars,

squares).

Figure 5.10also shows strong trends of the transition lines when we increase
the population size from 3000 to 10 million; it thus seems possible that in an
infinite population no dominance would arise out of a fragmented population.
Thus a mean-field approach to infinite populations by deterministic differential
equations for equivalent languages, as in Section5.2might not get this transition
to dominance. More simulations regarding the nucleation of dominance are given
by Stauffer and Schulze (2005).

We may generalise the model by introducing a transfer probabilityq in addi-
tion to the mutation probabilityp. Then, at each mutation, the bit is not flipped
randomly but with probabilityq assumes the value which the corresponding bit
has in a randomly selected other agent. Thus with probabilityq we learn from
other people, who may speak a different language. The higher this transfer prob-
ability is, the easier it is to get dominance.Figure 5.11shows this effect more
quantitatively for 8 and 16 bits. In the lower right part of thisp-q-diagram we
have fragmentation, in the upper left part we have dominance. We see here an un-
usually strong difference between 8 bits (curve) and 16 bits (nearly vertical line).
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If we use 32 and 64 bits the transition point forq = 0 remains about the same as
for 16 bits (not shown).

Teşileanu and Meyer-Ortmanns (2006)consider the case where the replacement
of a language by another one is determined by their mutual Hamming distance, see
Figure 2.19. Again a transition between dominance and fragmentation is found,
which is also reflected in the Hamming distance between the two languages with
the largest and second to largest number of speakers. They also consider the case
where the population is localised on a square lattice and the interaction of indi-
viduals is restricted to a certain distance.

We mentioned at the end of Section5.3.1that the model ofSchwämmle (2006)
was simulated for both two and several languages.

5.3.3. Many languages: Mixing, nucleation, interface

The English language is a mixture of German words, spoken by the Anglo-
Saxons, and French words, spoken by the Norman invaders of 1066.Kosmidis,
Halley and Argyrakis (2005)obtained such a mixture quite easily under condi-
tions where the 20 bits are more or less random: Then on average 5 of the first
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Schulze (2005).

10 bits (meaning French words) are set, and so are 5 of the last 10 bits (mean-
ing German words). The average person then knows 10 words of which half are
French and half are German. Also in theSchulze and Stauffer (2005)model one
may find roughly random bit-strings, and this was called fragmentation. But there
the interpretation is different, since different bit-strings mean different languages.
Thus the mixing into English was simulated differently by Schulze and Stauf-
fer: For eight bits, they used 00000000 for French, 00000011 for German, and at
the beginning do not apply the flight of equation(5.4) from small to large lan-
guages whenever the small language starts with six zeroes. Starting with half the
population speaking French and the other half German, under conditions where
fragmentation is avoided, after some time nearly one quarter still speaks French,
nearly one quarter still speaks German, but nearly one half speak 00000001 or
00000010 which is interpreted as English. If then the flight via equation(5.4) is
switched on, meaning closer social interaction between the ethnic groups, one of
the four languages 0= 00000000, 1= 00000001, 2= 00000010, 3= 00000011
dominates; this happens to be language 00000010 = English inFigure 5.12. The
other English possibility 00000001 dies out together with German and French.

For a better comparison with the several models mentioned above having only
two languages, let us start with two equally strong languages in the standard
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and Schulze (2005).

Schulze–Stauffer model without this trick to avoid flight from languages start-
ing with six zeroes.Figure 5.13shows how depending on the random numbers,
for the same parameters we may either get one of the languages dominating such
that it is spoken by hundreds of million people, while the other language loses out;
or we get fragmentation where both initial languages are spoken by aboutN/256
of theN people (8 bits). For dominance, the losing language dies out completely,
asFigure 5.14shows; some 1-bit mutant of the dominating language becomes the
second-most important language.

If in the Schulze–Stauffer model we start with fragmentation and check for
the development of dominance, thenFigure 5.15shows that we have to wait the
longer the larger the populationN is; hereN varies between 103 and 108. With
1000 samples instead of only one,Figure 5.16shows how the average time〈t〉
to get dominance from fragmentation increases with increasingN , while its scat-
tering σ decreases; the distributions forN � 104 are roughly log-normal (not
shown here; seeStauffer and Schulze (2005)). Here we define the averaget as
exp(〈ln t〉) andσ 2 = 〈(ln t)2〉 − 〈ln t〉2. Thus for huge populations the distribu-
tion of the times needed to nucleate dominance seems to become a delta function
in log(time), while the times themselves diverge. Some explanations of this size
effect were attempted byStauffer and Schulze (2005).
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With these slowly increasing times one may question whether the phase dia-
gram inFigure 5.11is reasonably equilibrated. Thus for two different population
sizes 104 and 105 we determined from 9 samples the median timeτ after which
dominance emerged from fragmentation. Does this time just become exponen-
tially large like exp(const/q) instead of diverging at some finiteqc? Figure 5.17
says no: the quantity 1/ ln τ seems to vanish at someqc near 0.8, and not atqc = 0,
for N = 105; for N = 104 the data are more difficult to interpret. Thus for a large
but finite population we seem to have a phase transition, not a gradual freezing in.

Similarly toPatriarca and Leppänen (2004), one may also put this model onto a
square lattice,Figures 5.18 and 5.19, with thousands of people per lattice site and
a small probability 0.01 to move to a neighbour site. With probabilityq they learn
a bit from a speaker on the same site or on one of its four neighbour sites, and
with probabilityr they select the whole language of another speaker on the same
site. In the left half of the 20× 20 lattice initially everybody speaks 00000000, in
the right part everybody speaks 11111111; otherwise no status difference was as-
sumed. Then a smooth interface develops where the probability of a zero speaker
to survive in the right half decays exponentially with the distance from the inter-
face center, similar to electrons in quantum mechanics penetrating into regions
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Figure 5.18. Interface profile of the two dominating languages in a square lattice, plotted
semi-logarithmically. FromStauffer and Schulze (2005).

forbidden to them without quantum tunneling. We did not succeed in getting such
phase separation by starting with a fragmented population. Results similar toFig-
ure 5.18were obtained in theSchwämmle model (2005). Finally, on a lattice
the quantitative agreement with real language-size distributions can be improved;
Figure 5.20could apply to a region with many small languages like New Guinea
(Novotny and Dro˙zdż, 2000).

Penna (2005)used this lattice model to check if a language spoken in a geo-
graphically compact region, can win over a language spoken by as many people
but geographically scattered over a larger region, where also many other lan-
guages exist. Usually, the scattered language ends up as a majority but the com-
pact language does not die out, for large populations.

A different lattice model was simulated byde Oliveira, Gomes and Tsang
(2006), with a fitness of a language proportional to the number of people speak-
ing it, and with a mutation probability inversely proportional to this fitness. The
number of languages spoken in an areaA of the lattice varied asA0.4 as in real-
ity; strong interactions between the populations reduced this exponent for large
A > 105. This variation with area does not come out as nicely in the model of
Schulze and Stauffer (2005), Figure 5.21; as we see there the results depend only
weakly on the transfer probabilityq.
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Figure 5.19. Same data as inFigure 5.18but plotted linearly. FromStauffer and Schulze (2005).

5.4. * Wang–Minett model

The Monte Carlo simulations ofWang and Minett (2005b)come from a combi-
nation of linguistic and mathematical experience but are somewhat similar to the
above physics models.

Each language is a string of integers 0, 1, 2, . . . . First, a small language tree
is constructed by random bifurcations; thus some early languages split into many
present languages, and some only into two. Then each node on this tree is filled
with a language; the proto-language at the root of the tree is a string of zeroes. For
all present languages the time since the start with the proto-language is the same,
and thus not given by the number of branchings in the tree. As inFigure 5.11
above, two competing processes change the languages: mutations and transfer.
The mutation probability during timet is 1−r t wherer is the retention probability
per unit time; a mutation gives the integer in the string a unique new value, like
2 if it was 1 before. The transfer takes the integer value of another language with
which the considered language is in contact. The retention and transfer rates are
not always the same but may fluctuate within some interval. (It is useful to get the
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Figure 5.20. Simulated size distribution on small lattices with diffusivity 0 and 0.01; 8 bits. As in
Figure 5.6the language sizes are binned by factors of 2, e.g., sizes 9 to 16 are put together.

additional material of these authors fromwww.philsoc.org.uk/transactions.aspin
order to understand their simulations.)

The model deals with interacting languages, not with interacting speakers of
languages. It thus does not include the flight of speakers from small to large lan-
guages. The intention of the model was not the competition between languages
and the possible dominance of one of them, but to help linguists analyze the histor-
ical language tree when transfer between languages in contact makes this analysis
difficult.

Finally we remark that both the “vertical” transmission of languages from one
generation to the next, and the “horizontal” transfer of language elements through
personal contact, in this model as well as in that ofSchulze and Stauffer (2005)
of the previous section, are analogous to biology, e.g., for bacteria (de Oliveira,
de Oliveira and Stauffer, 2003).

5.5. * Additional remarks

The differential equations(5.3) were intended for thelearning of a language
(Nowak, Komarova and Niyogi, 2002; Komarova, 2004) but we see no reason why

http://www.philsoc.org.uk/transactions.asp
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the same mathematics cannot be applied for thecompetitionbetween languages
of adults, emphasised in this chapter. The fundamental problems with differential
equations were already discussed inChapter 2, but since in most of this present
Chapter 5we reported on agent-based simulations, we can compare the results.

For a large numberL of such languages, the then quite hugeL×L matricesFij

andQij contain numerous free parameters. Thus first we followKomarova (2004)
and assumeFij = a exceptFii = 1 andQij = p/(L − 1) exceptQii = 1 − p

wherea andp are free parameters between 0 and 1; 1− p is called “learning
accuracy” by Komarova (who denotesp by q), and thusp is called here the mu-
tation rate, analogous to our previous sections. (Thisa has nothing to do with
the exponent in equation(5.1).) We also follow her in settinga = 0.3 and start
the simulation either fragmented (all languages equally strong) or dominated (one
language spoken by everybody).Figure 5.22for L = 30 languages confirms Fig-
ure 1 of Komarova: Already a small mutation ratep prevents a fragmented state
to change into a dominated one, but a much largerp is needed to destroy an initial
dominance. (When we start fragmented, the fractionx1 for the first language is
enlarged by 0.001 to allow an instability to develop.)
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Figure 5.23. As previous figure but with random matricesFij andQij and showing the first and the
fifth of 30 languages.

But why should allQij be equal except for the diagonal elements? The same
question arises for theFij matrix. In the tradition of statistical physics and some
previous models in this chapter, we therefore assume all off-diagonal matrix el-
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Figure 5.24. As inFigure 5.3bottom, but witha only 0.1 instead of 0.3. Besides languages 1 (+,
starting language) and 5 (most successful language) also several other of the 30 languages are shown.

ements to be random between zero and twice the above value. ThenFigure 5.23
again shows the transitions of the preceding figure, except that the decay of dom-
inance now also happens near 0.3. Note that in the bottom part of this figure
everybody speaks the first language at the beginning, but it is the fifth language
which may dominate. For larger numberL of languages and observation time
1000, the maximum mutation ratep allowing nucleation of dominance out of
fragmentation gets much smaller, between 0.02 and 0.03 for 4000 languages,
while the minimump to destroy dominance is roughly independent ofL, near
0.275 forL = 4000.

Thus the results are quite similar to those ofSchulze and Stauffer (2005): There
is a transition between dominance and fragmentation. However, the crazy be-
haviour in the nextFigure 5.24, with a = 0.1 instead of 0.3, shows that not
everything is about the same; we used the same random number sequence as
in Figure 5.23. Also, the histogram of language sizes is rather narrow in the
case of fragmentation, though we cannot exclude that with suitable values for
the numerous free parameters it gives what we want: something likeFigure 5.1.
If for the case of dominance we ignore the largest language, the histogram is
nicer: Figure 5.25. In this last figure up to about as many languages are simu-
lated as there exist now for mankind in reality. In the traditional version of this
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model (Nowak, Komarova and Niyogi, 2002; Komarova, 2004), all languages
except the possibly dominating one have the same size; it is the randomness
of the coefficients, not the differential equation, which now produces this bet-
ter result ofFigure 5.25. To the left side of the maximum near 0.1/L in this
log-log plot, the curves increase roughly with unit slope, which means (due to
our exponential binning) that the number dL of languages with a size within
a small interval dx is roughly constant for smallx and then decays rapidly
for largex.

One may reduce drastically the number of free parameters and the computer
storage requirements for the matricesQij andFij by assuming that they can be
factorised:Qij = QiQj andFij = FiFj . Now only 2L coefficientsFi andQi

are needed and selected randomly, instead of 2L2 for L languages;Q1 andF1 are
taken as large. But now no transition between dominance and fragmentation was
found in tests; the first language was always stronger than the others.

Finally we mention thatKinouchi, Martinez, Lima, Laurenço and Risau-
Gusman (2001)made computer simulations not of linguistic graphs but on them:
A walker looks for “neighbours” of words in a large table of synonyms, and in
this way finds out the network structure.
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5.6. Conclusions

Agent-based simulations of language competition seem to start only now, thanks
to the simple model ofAbrams and Strogatz (2003), while emergence and learn-
ing of languages has a longer history (Nowak, Komarova and Niyogi, 2002;
Cangelosi and Parisi, 2002; Wang, Ke and Minett, 2004; Wang and Minett, 2005a;
Cavalli-Sforza, 1996; Cavalli-Sforza, 1997). The size distribution of real lan-
guages is qualitatively recovered, phase transitions are found, languages can
merge like French and German into English or into a bilingual population, and
stable interfaces may exist separating regions of different languages. The ageing
model ofSchwämmle (2005)could serve as a bridge between the language com-
petition discussed here and the language learning reviewed byNowak, Komarova
and Niyogi (2002). It would be nice to have a more quantitative agreement be-
tween the language size distributions in reality,Figure 5.1, and in simulations,
Figure 5.6. The field would profit from further constructive criticism from lin-
guistics, as made byWang and Minett (2005a)about the above models of Abrams
and Strogatz, Patriarca and Leppänen, and the Nowak group.
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Chapter 6

Social Sciences

In biology, people are accustomed to think that from simple animals up to di-
nosaurs, all species originated by Darwinian evolution and selection of the fittest.
Once the principle is applied to human beings, some people dislike it and rely in-
stead on creationism. Similarly for sociophysics, not much emotion is aroused if
ants are simulated by mathematically defined probabilities. But to apply the same
type of modelling to humans is disliked by some: We are not just atoms. Of course
we are not; neither is the planet Earth a point mass. Nevertheless, for Kepler’s
laws of how Earth rotates around our sun, a point mass is a good approximation.
And with respect to humans, already more than two thousand years ago Empe-
dokles observed that some groups of people are like wine and water, mixing well,
while others are like oil and water, mixing badly (according to J. Mimkes). More
recently, Edmond Halley (famous through his comet) three centuries ago tried to
estimate the survival probabilities of people; Gompertz in 1825 was more success-
ful in that task; and life insurances, pension plans, and similar tools of modern
society are well established since decades. If they go bankrupt it’s not because
people’s death cannot be predicted by probabilities but only because changes in
these probabilities were wrongly estimated. All these well known methods rely
on the idea that the individual is difficult to predict, but averages over thousands
and millions can be estimated quite accurately. Similarly, mass psychology is dif-
ferent from individual psychology. In this well-established spirit we review here
some aspects of human action and thinking, as recently simulated on computers.
Before any of the authors were born, the theoretical physicistEttore Majorana
(1942)suggested to apply quantum statistical physics to social sciences;Weidlich
(2000)studied such questions since 1971, the same year in which non-physicist
and 2005 economics NobelistSchelling (1971)published his Ising-like agent-
based simulations for ghetto formation;Galam (2004)gave a personal testimony
of sociophysics going back to his 1982 publication. Besides this Weidlich book,
other books were written bySchweitzer (2003)andArnopoulos (2005). As was
wisely remarked by W. Selke, if already the Ising model is so difficult to under-
stand (e.g.,Sumour and Shabat, 2005), why should human relations be simpler?

179
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6.1. Retirement demography

As Chapter 3discussed, ageing is part of life. Who supports us in retirement?
We may have beautiful rights written down in present laws, supported by ac-
cumulations of our payments into pension funds or by our savings in vari-
ous forms. But one must not forget that also by the year 2030 retired people
will be consuming mostly only those goods and services which are produced
at about that time by working people. If more money is available than things
one can buy, inflation eats up the excess money. And if you want to play it
safe and buy gold, first ask one of us who did that in 1980. In short, retire-
ment problems are related primarily to the number of people within and outside
working age; money is a secondary effect. Here we review the socio-econo-bio-
physics papers (Stauffer, 2002a; Bomsdorf, 2004; Martins and Stauffer, 2004;
Zekri and Stauffer, 2005) where the ratio of retired people to working-age people
is extrapolated for the next decades. Both the increased life expectancy and the
decreased birth rate will make retirement support more difficult in the future than
it was in the past.

6.1.1. Mortality and birth rates

As discussed inChapter 3, the mortality functionμ at middle age increases expo-
nentially with agea:

(6.1a)μ(a) ∝ exp(ba).

Roughly this is the fraction of people who are alive at agea and die within one
year; more precisely,μ = −d ln S/da whereS(a) is the number of people still
alivea years after their birth. Moreover, for different calendar years and different
countries the Gompertz slope parameterb differs, but other parameters are the
same (Strehler and Mildvan, 1960; Gavrilov and Gavrilova, 1991; Azbel’, 1996,
2005), if the mortality function (which has the dimension 1/time sincea has the
dimension time) is written in a dimensionless form:

(6.1b)μ(a)/b = A exp
[

b(a − X)
]

whereA ≃ 10 andX ≃ 100 years for all humans.
This Gompertz law is not valid for ages below 30 years, and perhaps also not

for centenarians,Figure 6.1. However, in rich and peaceful countries the num-
ber of people dying before the Gompertz law starts to be valid, is of the order
of one percent, less than the accuracy of our extrapolations. And the “mortality
deceleration” claimed, e.g., by theVaupel group (1998)for the oldest old will be
questioned below. So we work with equation(6.1a).

Perhaps the universality of equation(6.1b) is not valid since about 1970 in
Western Europe:Yashin, Begun, Boiko and Ukraintseva (2001)found that the
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Figure 6.1. Mortality functions for Swedish men (top) and women (bottom), 1993–1997. From
Stauffer (2002d).

survival curves since then are shifted parallel to higher ages, instead of getting
more and more rectangular; see also Figure 4 inTuljapurkar (2005). (We could
not confirm this for West Germany.)Wilmoth, Deegan, Lundström and Horiuchi
(2000)similarly give a change around 1970, in the age of the oldest Swede dying
in each year. If correct, this means that before 1970 the Gompertz slopeb in-
creased at constant characteristic ageX, while afterwardsX increased at constant
b. We thus assumeb to increase linearly with calendar year from 0.070 in 1821 to
0.093 in 1971 and to stay constant thereafter, whileX was constant at 103 years
before 1971, and increased by 1.8 months every year thereafter, to give a rising
life expectancy. (The remaining life expectancy at the median age, emphasised by
Sanderson and Scherbov (2005), then remains roughly constant after 1970.) This
possible change of behaviour around 1970 is not yet established very well, and
soBomsdorf (2004), in contrast to us, ignores it and extrapolates the logarithm of
the mortality linearly in time.

This rising life expectancy, whether due to growingb or to growingX and
shown already inChapter 3, Figure 3.1, is complemented by the fall in birth rates
after the use of contraceptive pills and the improvement of living conditions. For
West Germany, the average number of children born to a woman (the fecundity)
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is approximated as

(6.1c)2.2 − 0.4 ∗
[

1 + tanh
(

(t − 1971)/3
)]

decreasing from about 2.2 to about 1.4 within a few years. Actually, East and
West Germany, then separated enemies, were around 1970 the first industrialised
countries where the birth rate sunk below the replacement rate of slightly more
than two children per woman. At that time the Club of Rome had warned about
the limits of growth and the dangers of overpopulation, and only a quarter of a
century before, World War II had ended which was started by Hitler’s Germany
demanding more living space for its master race. Thus at the time a reduction of
births was seen as favourable. Italy and Spain followed later but sunk to a lower
level with 1.2 children per woman, while in France the reduction was weaker, and
in the last decade the number of children per woman even increased in France
from 1.7 to 1.9 (www.ined.fr). Thus Germany (now united enemies) is about typi-
cal for continental West-Central Europe; retirement in countries like Bulgaria with
emigration of young people will be even worse.Michard and Bouchaud (2005)
fitted numerous European fecundities to an error function (integral over Gaussian
function instead of the tanh in equation(6.1c)) and found scaling.

6.1.2. Extrapolation

With the above assumptions, i.e., with a linear increase of life expectancy of 1.8
months per year and a constant number of 1.4 children per woman one can ex-
trapolate into the future. The farther away this future is, the less reliable is the
extrapolation. The numerical evaluation starts centuries ago to give a good “equi-
librium” today and changes the population in each yearly age cohort by the above
mortalities and birth rates. First we assume everybody to work from age 20 to
62 years and prevent net immigration. Children below the age of 20 are added to
the people above retirement age since both groups need support and do not earn
money.

Then the top curve inFigure 6.2shows the extrapolation of the status quo: An
enormous increase of the ratio of people needing support to the people of working
age, and no end in sight. Also (not shown), the total population shrinks. A much
better picture is seen in the middle curve where a net immigration (= immigration
minus emigration) of 0.38 percent per year of the total population stabilises the
total population; the immigrants are assumed to be 6 to 40 years old. (According
to the Census Bureau of the USA, 22 percent of the whole population there were
at least 55 years old in 2004, while for the fastest growing group, the “Hispan-
ics”, this percentage was only 11;Files (2005).) In addition, retirement age after
2010 is assumed (similarlySanderson and Scherbov (2005)) to increase from 62
years by about half the increase of the life expectancy (just as a similar fraction
of our salary’s increases goes into taxes etc.). Then one can stabilise the support

http://www.ined.fr
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Figure 6.2. Extrapolation of the status quo (top curve) for the ratio of old plus young people to
working-age people. The middle and lower curves assume an increase of the retirement age after
2010 and a controlled immigration of less than 0.4 percent per year. In the top and middle curves
the children are added to the old people, while they are ignored in the bottom curve. FromZekri and

Stauffer (2005).

ratio after the year 2040, as shown in the middle curve ofFigure 6.2. Omitting
the children in this ratio one recovers the lower curve as published byMartins
and Stauffer (2004). The years around 2030 are the problem years: Then the 70-
year old people are expected to be the strongest age cohort in Germany, while
at present the majority of Germans want to retire at age 60 or earlier. Also with
respect to immigration, Germans at present seem more worried about illegal im-
migration from Ukraine than about the need of immigration once unemployment
has been reduced appreciably. Also experts who should know better have pro-
claimed the nonsense that immigration does not help since also immigrants get
older. Bomsdorf pointed out that one could similarly claim that births do not help
since also babies get older; one does not need our computer program (available as
file “rente16.f” fromstauffer@thp.uni-koeln.de; simpler version in our appendix,
Section9.5) to understand that births are needed for a stable population.

In developing countries (Berquó and Cavenaghi, 2005) like Algeria (Zekri and
Stauffer, 2005) the extrapolations are much more optimistic if the present number
of births per woman is assumed to be constant. Then the status quo is quite stable.
They should learn from the European errors.

mailto:stauffer@thp.uni-koeln.de
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As pointed out above, extrapolations are dangerous. We assumed for the fu-
ture a linear increase of life expectancy by 0.15 years every year. Watched over
250 calendar yearst , the life expectancy does not increase linearly and can for
Swedish women be approximated by 60+26∗ tanh[(t −1910)∗0.013] as if there
is a maximal life expectancy of 86 years,Figure 3.1in our ageingChapter 3. In-
deed, from 1998 to 2002 this life expectancy increased only from 81.94 to 82.11;
but then it jumped to 82.43 in 2003 and 82.68 in 2004 (fromwww.scb.se), killing
the idea that a plateau was nearly reached. Only a comparison of different ex-
trapolations by different reasonable assumptions using many past years can give
a plausible prophecy.

A more “microscopic” simulation of demography, based on individuals who
are born, age and die (analogous to physics simulations based on individual atoms
instead of our mean-field averages which could become wrong after many gener-
ations, Section2.8) was given by the geneticistsCebrat and Łaszkiewicz (2005);
that journal issue also contains other ageing reviews. These and our simulations
gave general trends only; specific studies for particular countries have to take into
account, e.g., the changes in the percentage of people still working at ages 55 to
64 years, which in 2004 was 69.1 in Sweden, 30.5 in Italy, and 40.5 (36.6 in 2000)
for the whole European Union.

6.1.3. Mortality deceleration?

For flies, the Gompertz law is violated for the oldest ages, where the mortality
reaches roughly a plateau after 99.9 percent of the flies have died.Chapter 3men-
tioned computer simulations reproducing this effect. But do humans die like flies
(Stauffer, 2002d)? On pp. 18, 47 and 122 of the collection of reviews edited by
Wachter and Finch (1997)we find: “mortality decelerates at older ages.. . . the
rate of increase slows down”; “mortality continues to rise throughout adult life,
but at a decreasing rate after the age of 75 or 80”; “beyond 85 years, the mortality
rate stops increasing exponentially and becomes constant, or actually decreases”.
Earlier such claims were recently reviewed byGavrilov and Gavrilova (2005). It
is difficult to reconcile all these claims with the Swedish data ofFigure 6.1. Older
data from the USA showed mortality maxima above the age of 100, and also nu-
merous people living beyond 124 years (Klement and Doubal, 1997); presumably
this effect was due to incorrect statistics and is no longer seen in more recent US
life tables. A downward deviation from the Gompertz law, as seen inFigure 6.1,
does not necessarily mean a deceleration (negative second time derivative): if at
the start of a Formula 1 car race, Michael Schumacher (Cologne district) over-
takes Rubens Barichello (Brazil), it does not mean that Barichello used the brakes
to decelerate; he just accelerated less strongly than Schumacher.

The downward deviation seen for Sweden inFigure 6.1is weaker than that
found in England etc. (Thatcher, Kannisto and Vaupel, 1998) and much weaker

http://www.scb.se
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than in the old data from the USA. The USA control their citizens less than Europe
(no national identity card) and thus their demographic statistics are less reliable.
Sweden avoided war since nearly two centuries and has a tradition of caring for its
citizens; therefore Sweden may have the best statistics for natural development.
Thus the better the data, the smaller are the deviations from the Gompertz law;
perhaps with no errors in the birth dates and no war, the deviations would vanish
completely.

Also, as found out in 2005 by the president of Harvard University, women are
different from men. They are usually less law abiding then men, as can be seen
in Figure 6.1: While men there obey the Gompertz law up to about 90 years, the
lawless women after about 75 years try to catch up with men, and their mortality
becomeshigher than the Gompertz extrapolation from middle age. At even older
ages, the two mortality curves in this figure become nearly parallel and show
slight downward curvature. Thus women should not be trusted to test deviations
from the Gompertz law at old age, since they disobey it anyhow. Males usually
follow Gompertz up to a higher age and thus test better for downward deviations
of the oldest old. But less men survive up to 100 years than women, making the
statistics worse.

Thatcher, Kannisto and Vaupel (1998)found excellent fits for mortality func-
tions above 80 years of age by the Kannisto expression:

(6.2)μ(a) = exp(ba)/
[

const+ exp(ba)
]

which gives for old age a mortality plateauμ(a → ∞) = 1. But here a dimen-
sionless exponential function is mixed with the mortality which has the dimension
1/time. In other words this fit works only if we look at the yearly mortality func-
tion, not at the 12 times smaller monthly mortality. It seems questionable that
human life should be determined that much by the yearly seasons.

TheVaupel group (1998)claims a mortality deceleration for the oldest old for
humans, flies and several other animals. The paper does not make clear whether it
plots the mortality functionμ(a) (also called the “force of mortality” or “hazard
factor”), or the fractionq(a) of individuals living at agea which die within the
next time interval; obviously thisq cannot become larger than one and gives a
mortality plateau or maximum as a mathematical triviality.

One of the best single papers on the statistics of the oldest people, besides
Gavrilova and Gavrilov (2005)for the USA, isRobine and Vaupel (2001). They
name more than 100 Europeans aged 110 years and above and find a mortality
plateau. They distinguish between medium and high quality data. With both sets
combined the data are not a smooth continuation of the Swedish data ofFig-
ure 6.1if we plot survivors versus age; with only the high-quality data included
the slopes are continuous but the curvature changes at an age of about 110. Again,
the higher the quality the weaker are the deviations from Gompertz. They do not
cite Suematsu and Kohno (1999)who found without quality check a plateau for
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Japanese mortalities, but already after 100 years. Moreover, Robine and Vaupel
plot the age of the oldest person dying in one calendar year. Including the data
of medium quality they get a break such that after 1970 the data increase much
faster than before, as inWilmoth, Deegan, Lundström and Horiuchi (2000); with
only the high-quality data included, this effect nearly vanishes.

Similarly, Gavrilova and Gavrilov (2005)show in their Figures 3 to 6 for the
USA: The better the data, the smaller the deviation from Gompertz. For their
Americans born in 1891, the monthly mortality function increases exponentially
up to 105 years, and then scatters in both directions from the extrapolated expo-
nential. Thus they “expect that cohorts born after 1891 would demonstrate even
better fit by the Gompertz model than the older ones because of improved quality
of reporting”.

Thus there are still important systematic errors due to overstated ages; elimina-
tion of these errors may eliminate the deviations from the Gompertz law for the
oldest old (Stauffer (2002d), as warned also byGavrilova and Gavrilov (2005)),
but may also invalidate our above assumptions in Section6.1.2for the breaks in
b andX around 1970, in favour of the linear extrapolations ofBomsdorf (2004).
Careful checks for deviations from Gompertz law should rely on male mortalities,
using all ages above 30 years for the fit, and should watch out for and possibly
reduce systematic errors. And since the human mortality plateau of Robine and
Vaupel applies to one person in a million, while that of flies helped one out of
a thousand, a repetition of the fly experiments (Curtsinger, Fukui, Townsend and
Vaupel, 1992; Carey, Liedo, Orozco and Vaupel, 1992) would be useful.

6.1.4. Conclusions

The literature needed for the ageing simulations ofChapter 3gives a worrying fu-
ture for retirement in some parts of the world, and mankind’s hope to get closer to
eternal youth via mortality deceleration and mortality plateau may not be justified
yet. People in the rich countries with low birth rates may have to retire later; role
models are bank robbers in Germany in their seventies, or the American woman
who at age 78 shot her “boy” friend, aged 85, when he became attached to another
woman.

6.2. Self-organisation of hierarchies

Societies, not only of humans, often develop hierarchies; some leaders are on
top and others follow them. Why? How come one guy is a full professor, living
luxuriously surrounded by several women, while others are badly paid associate
professors, close to starvation. The idea that kings are in that position by the
grace of God is less widespread now. Instead we can explain things by higher
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intelligence, racial quotas, etc. On the other hand, if statistical physics is applied
to this question, the basic assumption is obvious: Everybody is originally equal,
and then due to random events some people get ahead of others. This indeed
is whatBonabeau, Theraulaz and Deneubourg (1995)did (in a paper which lay
dormant for several years before it was simulated again (Sousa and Stauffer, 2000;
Stauffer, 2003); a program and more details are published inStauffer (2005)).

In this Bonabeau model, people diffuse on a square lattice filled with density
p. Whenever a person wants to move onto a site already occupied by someone
else, a fight erupts which is won by the invader with probabilityq and lost with
probability 1− q. If the invader wins, the winner moves into the contested site
whereas the loser moves into the site left free by the winner; otherwise nobody
moves. Each visitor adds+1 to a history variableh, and each loss adds−1 to h.
At each iteration, the currenth is diminished by ten percent, so that roughly only
the last ten time steps are kept in memoryh. The probabilityq for fighteri to win
against fighterk is a Fermi function:

(6.3)q = 1/
[

1 + exp
(

(hk − hi)σ
)]

whereσ with σ 2 = 〈q2〉 − 〈q〉2 is the standard deviation in these probabilities.
Initially everybody starts withh = 0; thenq = 1/2 for all fights. After some
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time, historyh accumulates in memory,q differs from 1/2,σ(t) becomes positive,
measures the amount of inequalities in society at that time stept and is obtained by
averaging over all fights occurring during this iterationt . We thus have a feedback:
σ enters into the calculation of theq and afterwards is calculated from theseq

values for the next iteration.
A phase transition is observed if the concentrationp increases above a thresh-

old near 0.32,Figure 6.3: The social inequalityσ jumps from zero to a nonzero
value, which in the history of humanity may correspond to the transition from the
more egalitarian nomadic society to agricultural life with property of land, cities,
and nobility. Wealth can develop only if there is a surplus of food etc. (Angle,
1986).

If a hierarchy has developed at high concentration, it can be destroyed again
if the concentration is lowered,Figure 6.4. We can interpret this lowering as an
increase of the number of people who refuse to follow the rules and thus do not
participate in the power game. This destruction of hierarchies can be interpreted
as a glorious revolution where we get rid of the politicians, or as universities
descending into chaos and no longer regarding us professors as infallible.
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One might think that winners repel each other since in any collision between
them one will be the loser. Their stupidity, however, prevents any obvious spatial
ordering, asFigure 6.5indicates.

In the above model, people fight for the purpose of fighting; for example, an
invader may win a fight and thus move to the right, and later may again win a fight
and move to the left, forcing the inhabitant of the left site to move back to the
same right site from which this loser was expelled before. Typical male?Naumis,
del Castellino-Mussot, Pérez and Vázquez (2006)behaved more reasonably and
distinguished attractive from less attractive sites; then the concentration threshold
is decreased.

In this simple version, as well as when different people have different fighting
abilities distributed symmetrically (Schulze and Stauffer, 2004), there are as many
leaders as are followers. An asymmetric version with less leaders was given by
Stauffer and Martins (2003)who also looked at people on a scale-free network
instead of a square lattice. An asymmetry was also found in a modified mean-
field version byBen-Naim and Redner (2005). These and similar networks were
investigated more thoroughly byMalarz, Stauffer and Kułakowski (2005), Gallos
(2005), andSousa (2005)and may correspond to fights over important positions
in society instead of over territory on the square lattice.
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In conclusion, being on top is an accident; if you are unhappy with your life,
blame the random numbers.

6.3. Opinion dynamics

How do people convince each other to reach a consensus, or fail to do so? In line
with the rest of this book we do not look at specific people and specific arguments,
but at the general principles. Mostly we will review work starting in 2000, but
first we look at some older models, some of which were reviewed by us already
in our earlier book (de Oliveira, de Oliveira and Stauffer, 1999). While also some
animals must find a consensus on where to move (Couzin, Krause, Franks and
Levin, 2005), we concentrate here on humans.

6.3.1. Before 2000

Ising-type models

The Ising model was already applied decades ago to explain how a school of
fish aligns into one direction for swimming (Callen and Shapero, 1974) or how
workers decide whether or not to go on strike (Galam, Gefen and Shapir, 1982);
no new simulations were needed then. The social impact model ofLatané (1981),
modified byKohring (1996), was also applied to languages (Nettle, 1999b) and
gave a phase transition (Bordogna and Albano, 2006). In this Latané model the
Ising spinsSi = ±1 are updated,Si(t + 1) = Si(t) signhi(t), according to the
sign of their local field

(6.4)hi =
∑

j

[

J s
ij (1 + SiSj ) − J

p

ij (1 − SiSj )
]

coming from the other peoplej . HereJ s is a supporting force encouraging not to
change opinion, andJp a persuasive force trying to change it. The model may give
a consensus, a fragmentation into many different opinions, or a leadership effect
when a few people change the opinion of lots of others. A thorough review was
given byHołyst, Kacperski and Schweitzer (2001). A random-field Ising model
was suggested early by Galam in a rare collaboration with a psycho-sociologist
(Galam and Moscovici, 1991). They were able to ground it in the field of opin-
ion formation on the basis on real experiments from experimental psychology.
Random-field Ising models were also applied, e.g., byMichard and Bouchaud
(2005). Later Galam focused on linking the zero temperature properties to ra-
tional decision making (Galam, 1997) and several limited agent-based numerical
experiments were subsequently performed (Galam and Zucker, 2000). The influ-
ence of contrarians who are always against the majority was studied in several
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papers since 2004, as cited byde La Lama, López and Wio (2005)andCaiafa and
Proto (2006).

To some extent the voter model ofLiggett (1985)is an Ising-type model: Opin-
ions follow the majority of the neighbourhood, similar toSchelling (1971); see
Dornic, Chaté, Chavé and Hinrichsen (2001), Suchecki, Eguíluz and San Miguel
(2005)andCastellano, Loreto, Barratt, Cecconi and Parisi (2005)for recent ap-
plications, andSan Miguel, Eguíluz, Toral and Klemm (2005)for a nice intro-
duction.Efros and Désesquelles (2005)showed how a few zealots can produce
a phase transition to bad behaviour in a community of individually good people;
the transition from Bach and Beethoven to Auschwitz comes to our mind (see also
Michard and Bouchaud (2005)).

Also related are models for the formation of ghettos where within one large
city one sees large districts with ethnically rather pure populations coexisting
with each other. In the simplest case this is approximated as black and white,
simulated with two Ising spin orientations. Then, of course, if the temperature is
above the Curie temperature of the Ising models, black and white mix apart from
some short-range correlations, whereas at lower temperature one has “infinitely”
large domains of parallel spins (e.g., mostly black) with equally large domains
of opposite spin direction (e.g., mostly white).Schelling (1971)in the first issue
of Journal of Mathematical Sociology simulated this with conserved “magnetisa-
tion” (“Kawasaki” dynamics) on a dilute lattice. Thus one person can migrate to
a neighbouring empty site with a probability depending on the number of neigh-
bours of the same or the opposite colour. Later work (Meyer-Ortmanns, 2003),
with up to seven different groups (Schulze, 2005), studied the effect of tempera-
ture increasing with time while a minority group immigrates into a country. This
social temperature measured the tolerance towards people of other ethnic groups.
If this temperature increases fast enough, no large domains are formed and ghetto
formation is avoided.

Schelling’s paper does not mention the Ising model of 1925 or related physics
work, and presumably in 1971 no physicist had yet published simulations of Ising
models with Kawasaki dynamics and annealed dilution. This excuse does not ap-
ply to much later work (Zhang, 2004). The pioneering work of Schelling shows
that the same type of simple models made by physicists are also made in the fields
to which these simulations are applied. Physicists should not claim they were first,
and sociologists should not put down physics models.

Galam conservatism

Galam (1990)suggested an analytically solvable model on how majority de-
cisions are arrived at in complex societies. A group of four people may elect
one representative, who together with the elected representatives of other groups
selects a super-representative, and so on further up in the hierarchy until the
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highest group of four people makes the final decision based on their four opin-
ions. Only two choices, yes and no, are open for this decision. If on any level
there are two votes for yes and two votes for no, then this means a no (or sta-
tus quo). For a random distribution of yes and no votes on the lowest level,
one needs a high percentage of yes votes, about three quarters, to arrive af-
ter many hierarchies at the top with a yes decision. This model could explain
how a dictatorship, once established (corresponding to no or status quo) can stay
in power even if some not overwhelming majority of the people want change
(yes). The model was extended to any group size and also mixture of sizes.
When the dynamics is applied to opinion dynamics instead of voting it could
explain why any reforms are so difficult. Even the leading French journal Le
Monde reported about it on Feb. 26, 2005, in connection with the referendum on
the European constitution. Also some computer simulations were made (Galam,
Chopard, Masselot and Droz, 1998; Galam and Wonczak, 2000; Stauffer, 2002b;
Tessone, Toral, Amengual, Wio and San Miguel, 2004; Schneider, 2004; Stauffer
and Martins, 2004). More literature on Galam models is cited inSousa, Malarz
and Galam (2005).

Axelrod multiculturality

Axelrod (1997)simulated how people from different cultural backgrounds can
interact with each other and still keep different cultural identity. This model trig-
gered lots of follow-up, see, e.g.,Klemm, Eguíluz, Toral and San Miguel (2003)
or the very nice review ofSan Miguel, Eguíluz, Toral and Klemm (2005). Each
agent’s culture is represented byS variables (e.g., binary: zero or one), and when
two agents meet one may take over one of the variables of the other. Thus in
contrast to most opinion models, people form an opinion not only on one ques-
tion, but onS different questions. This pioneering paper was also the foundation
for the multi-opinion papers, Section6.3.3, on missionaries (Sznajd-Weron and
Sznajd, 2005), negotiators (Jacobmeier, 2005) and opportunists (Fortunato, La-
tora, Pluchino and Rapisarda, 2005) of the next subsection.

6.3.2. Three recent models

This subsection deals with the Deffuant negotiators (Deffuant, Amblard, Weis-
buch and Faure, 2002), the opportunists ofHegselmann and Krause (2002)and
the missionaries ofSznajd-Weron and Sznajd (2000), all three invented appar-
ently independently from each other around 2000. All three are different in their
rules of opinion change but quite similar in their results: They lead to a final status
with, depending on parameters, one opinion (“consensus”), two opinions (“polar-
isation”) or more than two opinions (“fragmentation”). These names, of course,
are arbitrary and should be changed for different applications where, e.g., con-
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sensus means dictatorship. They were studied with continuous opinions, or with
integer opinions including the binary case (yes or no) as the simplest choice. Peo-
ple were put onto lattices, networks, or simply allowed to interact with everybody.
A somewhat longer review is given byStauffer (2005), and programs byStauffer
(2002c).

In all three models, the concept of bounded confidence was used. It means that
we authors from Niterói might be willing to discuss and to agree with people
from Rio de Janeiro, but certainly not with Argentinians (particularly if born near
Neanderthal). Thus if we have five opinions, corresponding, e.g., to five parties
represented in parliament and ordered politically from left to right, then party 4
might make a compromise with parties 3 and 5, but hardly with party 1. Thus
only people whose opinions differ by not more than a confidence bound (equal to
one in this example) discuss with each other. Since the extremists (1 and 5) have
opinion neighbours on only one side, a consensus usually is based on a centrist
opinion like 3. In the simplest case, when we have only two possible opinions,
this confidence bound makes no sense and is omitted.

Negotiators

At present the Deffuant negotiators seem the most realistic agents simulated by
more than only one group of authors. Two people do not agree immediately but
get closer in their opinions after their discussion. At every iteration, each agent
selects randomly one other agent for discussion. If their opinions differ by more
than the confidence bound no opinion changes; otherwise each opinion moves
closer to the other, by an amount proportional to the difference between the opin-
ions. (If for integer opinions the two agents differ by only one unit, then one of
them, randomly selected, accepts the opinion of the other.) For continuous opin-
ions between 0 and 1, up to 450 million people were simulated, corresponding to
the opinions on the constitution draft for the European Union.Figure 6.6shows
the similarity between these negotiators and the opportunists reviewed below, at a
confidence bound of 0.15 for opinions between 0 and 1. (Only for the presentation
of this figure we rescaled opinions from 0 to 5 and binned them into unit inter-
vals.) For confidence bound above 1/2, consensus is found (Fortunato, 2004b);
if the confidence bound decreases below this threshold, first polarisation happens
and then fragmentation, with the number of surviving opinions inversely propor-
tional to the confidence bound. For this case of everybody having a chance to
talk with everybody,Ben-Naim, Krapivsky and Redner (2003)made an accurate
mean-field approximation. (Typically, if two opinions move towards each other,
they move by 30 or 31.6 percent of their difference in the simulations presented
here.)



194 Chapter 6. Social Sciences

0

20000

40000

60000

80000

100000

120000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Opinion

Final votes in Hegselmann-Krause (+) and Deffuant et al (x) model; eps=0.15; opinions scaled to 5

Figure 6.6. Comparison of the opinion distribution for 300 000 negotiators (×) and opportunists (+)
at the end of their discussions at a confidence range of 15 percent, allowing the survival of three major

opinions. FromStauffer (2005).

Opportunists

In the Krause–Hegselmann model (Hegselmann and Krause, 2002) each oppor-
tunist also can talk to everyone, but now each agent talks to all agents simulta-
neously and assumes their (weighted) average opinion. This arithmetic average
(other averages were also used:Hegselmann and Krause (2005a)) ignores all
agents outside the confidence bound. Again, for large enough confidence bounds
(above 0.2) only one opinion survives, for smaller ones we have two or more
opinions. (Krause prefers the characterisation by compromise instead of oppor-
tunism.)

Missionaries

The Sznajd model (Sznajd-Weron and Sznajd (2000); seeSznajd-Weron (2005)
for a recent review) of missionaries assumes that two lattice neighbours sharing
the same opinion force this opinion onto all their neighbours. Thus in contrast to
the opportunist, voter and Ising models, information now flows from inside out
instead of from outside in. It is the most popular of the three recent models and
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mostly simulated with integer opinions, in particular only two. For unit confidence
bound, in general one gets a consensus forQ = 2 or 3 possible opinions, but not
for Q � 4. Figure 6.7shows this for various lattices; of course, the technology
of the 21st century will be based mainly on five dimensions, the last point in this
figure.

Missionaries with two possible opinions have a phase transition in two and
more dimensions but not in one: If initially half the people have opinion A and
the other half opinion B, randomly distributed on the square lattice, then at the
end everybody has the same opinion: A in half of the samples and B in the other
half. If, however, initially one opinion occurs slightly more often than the other,
then at the end in large square lattices everybody has the initial majority opinion.
The larger the lattice is the sharper is this transition (Sousa and Stauffer, 2000);
for a modified model, a thousandL×L lattices were simulated (Schulze, 2004) to
show that the width of the transition, as measured in the size of the initial majority,
vanishes as 1/L for 10 < L � 10 000.
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Applications

All three models were applied to the question of how a single event influences the
whole development. How would the 20th century look like if Adolf Hitler would
have been killed during the first World War? Thus one simulates the same system
twice, with the same random numbers and the same initial distribution. The only
difference is that in the lattice centre we change one opinion. Physicists call this
type of study “damage spreading”. The influence of this initial damage on the later
development depends on the parameters and was recently reviewed byFortunato
and Stauffer (2005); seeWeisbuch, Deffuant and Amblard (2005), and Sahimi
andStauffer (2005)in a different model, for the influence of a few extremists.
Chapter 2mentioned already the genetic analog: How would mankind’s genes
look like if Ghengis-Khan or Emperor Pedro I would have had no children.

The Penna ageing model ofChapter 3was combined with the missionaries by
Sun, Luo, Mao and He (2005)such that young children follow the parents while
older people follow the opinion of similar age groups; the influence of the family
then hinders the spread of new opinions.

Only Sznajd missionaries were thus far found to agree with election results in
Brazil and India, perhaps because the other models were not yet tested on these
accurate social data. Empirically, in elections of many candidates the probability
that one candidate getsv votes decays as 1/v for intermediatev while for both
very large and very smallv the probabilities are smaller: No candidate can get half
a vote, or more votes than were cast. This power law plus the deviations from it
were well reproduced by missionaries on a Barabási–Albert scale-free network at
intermediate times before a complete consensus was reached (Bernardes, Stauffer
and Kertész, 2002; González, Sousa and Herrmann, 2004): Figure 6.8.

Physicists like scaling laws: Having measured the magnetisation as a function
of magnetic field at one temperature near the Curie point, scaling laws predict the
magnetisation-field curve also for a temperature only half as far away from the
critical temperature. Mathematically, scaling means that a functionF(x, y) is a
scaled function of only one variablez = y/xa if a functionf can be found such
that

(6.5a)F(x, y)/xb = f
(

y/xa
)

= f (z)

holds for smallx and y, wherea and b are two critical exponents. Thus the
quantity (magnetisation)F , scaled by some power of the variable (temperature
difference)x, is ax-independent function of the variabley, provided that variable
is scaled byxa . A more physical presentation of scaling, using the renormalisa-
tion group, was already given inChapter 2, tested for a biological model as shown
in Figure 2.29, and Section3.3.3applied it to the shape of the mortality function.
Scaling thus means more than just power laws; it means the similarity of whole
functionsF(x, y). (If x and/ory goes to infinity instead of zero in the region of
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Stauffer and Kertész (2002).

interest, then the above scaling can be tried in the reciprocal variable as we use it
below.) Actually, it is quite difficult to invent a functionF(x, y) of two variables
which does not obey this scaling asymptotically.

For opinion dynamics, scaling is particularly simple in all three dynamics
(negotiators, opportunists, missionaries) if we make the opinions discrete and as-
sume that people discuss only with others sharing the same opinion or differing
by only one unit from it (Stauffer, Sousa and Schulze, 2004; Fortunato, 2004a;
Rodrigues and Costa, 2005). The number of surviving opinions, corresponding
to 1/F in the above formula, depends on the numberQ of possible opinions,
corresponding to 1/x, and the number of people, corresponding to 1/y. But the
exponentsa andb, which general scaling theory does not predict, are trivially
equal to one here. This can be seen by definingz = y/x = number of possible
opinions per person, and by looking at the limitsz ≫ 1 (i.e., number of peo-
ple much smaller than the number of possible opinions) andz ≪ 1 (much more
people than possible opinions). In the first case, everybody can stick to his/her
original opinion meaningF = y; in the second case, there are so many people
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that each opinion can find a follower, and thereforeF = x. Thus the scaling result
is

(6.5b)F(x, y)/x = f (z), z = y/x

wheref (z ≫ 1) = z (i.e., F = y) andf (z ≪ 1) = 1 (i.e., F = x). The
numerical results (summarised byStauffer (2005)) confirm this scaling law for
large numbers of opinions and people, with deviations clearly visible in all three
models for small numbers of possible opinions: Scaling is valid only asymptoti-
cally. In this sense, opinion dynamics offers a simple introduction into the scaling
laws near critical points in physics. (Things become more complicated if the con-
fidence interval is not just±1 as assumed above, but becomes a third independent
variable in addition tox andy.)

6.3.3. * Additional remarks

Cluster sizes

If at the end of an opinion simulation, everybody shares the same opinion, one
may say that all people form one cluster. If, on the other hand, all people keep their
original opinion which is not shared by anybody else, then each person can be said
to form a separate cluster of size one. Thus in general, people can be grouped into
clusters such that within one cluster everybody has the same opinion, and people
in different clusters have different opinions. Following the tradition in percolation
theory (Section6.6 below) we denote the number of people in a cluster by the
cluster sizes, and the number of clusters of sizes by ns . The aboveFigure 6.8
is, in this sense, a cluster size distribution. Numerically, it is much easier to check
whether or not two opinions agree if the opinions are discrete integers between
1 andQ; for continuous variables one needs a small threshold∼ 10−6 such that
opinions count as identical if they did not differ by more than this threshold.

Figure 6.9shows for continuous Deffuant negotiators the cluster size distribu-
tion on directed scale-free networks, and the following figure illustrates how they
are formed as a function of time. (In normal or symmetric networks, if node A
is neighbour to node B then B is also neighbour to A; in directed networks, if A
influences B then B does not influence A.) It is important to vary the sizeN of the
whole system. Then one sees for largeN that there are two types of clusters. Small
ones have anns/N roughly independent ofN , i.e., the numberns of isolated sites
s = 1, pairss = 2 and tripletss = 3 increases proportional toN . Large clusters,
on the other hand, have a sizes proportional toN and exist perhaps only about
once in a network. Percolation experts know that such behaviour is expected for
concentrations slightly above the percolation threshold, see Section6.6below.
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Ising comparison

Physicists like Ising models where usually spins are up and down, and thus opin-
ion dynamics with only two choices can be compared with Ising models. (We
mentioned already the 1971 Schelling model of sociology which is an Ising vari-
ant.) For negotiators and opportunists, only two opinions make little sense, but
missionaries were invented for and mostly simulated with two choices only, and
sometimes the literature even denotes them as Ising models.Figure 6.11shows
that the similarity is limited: The white regions (one opinion) are very white,
black regions (other opinion) are very black, and there are a only few isolated
black points in white regions, and only a few single white points in black regions.
In contrast, for an Ising model at finite temperatures one always will see some
isolated overturned spins or small clusters, while at zero temperature the standard
Ising model with nearest neighbours on the square lattice does not order well: The
domain growth is blocked for Ising, while the missionaries finally convince the
whole lattice of one opinion.
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Several themes

The Axelrod model of 1997 already introduced the possibility that people have
opinions onS different subjects; on each question the opinion is either an inte-
ger between 1 andQ, or a real number between 0 and 1. For example, people
have one opinion about politics and another about football. If these opinions
are treated completely separately, then nothing new comes out, one just hasS

separate systems of opinion dynamics. Thus it is more interesting to introduce
some coupling through the bounded confidence. For the above three recent mod-
els in Section6.3.2two people did not even discuss with each other when their
opinions were too far away from each other. Thus now one calculates the opin-
ion distance between two people by summing up, e.g., the absolute values of
their differences in each of theS fields. Then either this sum must be smaller
than some threshold to allow for discussion (Sznajd-Weron and Sznajd, 2005;
Jacobmeier, 2005; Fortunato, Latora, Pluchino and Rapisarda, 2005), or the prob-
ability for discussions to happen diminishes with increasing sum of differences
(San Miguel, Eguíluz, Toral and Klemm, 2005). This last paper applied these
methods to the Axelrod model where one person takes over the opinion of another,
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while Sznajd-Weron and Sznajd (2005)used the missionary model,Jacobmeier
(2005) negotiators with discrete opinions, andFortunato, Latora, Pluchino and
Rapisarda (2005)opportunists.

For example, a consensus in the Axelrod model on scale-free networks (see
Section6.5.2below) was possible only if the numberQ of possible opinions was
lower than a thresholdQc (see alsoFigure 6.7above), which increased towards
infinity if the network size grew (San Miguel, Eguíluz, Toral and Klemm, 2005).

Negotiators forS = 10 themes on such networks at the end either agreed in
most themes, or in none or only few, because of the coupling; very rarely they
agreed in half of the themes as shown inFigure 6.12(Jacobmeier, 2005). These
negotiators discussed only if the sum of the absolute differences in their opinions
was at most 10 (+), 20 (×), 30 (starts) and 40 (squares). This figure summed
up 5000 samples with 1000 people (upper part) or 100 samples with 5000 peo-
ple (lower part), surrounding a core of three people, with each surrounding node
having three neighbours. We see that size effects seem to be weak.

For the opportunists with opinions between 0 and 1, the threshold for consen-
sus was about the same forS = 2 as forS = 1 (Fortunato, Latora, Pluchino
and Rapisarda, 2005). Also for the missionaries,S = 2 was chosen representing
political and economic opinions (Sznajd-Weron and Sznajd, 2005). But these two
themes were treated with different rules; as a result, initial opinion differences on
economics could be removed more easily than those on politics.
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Extreme events

Reactions of human beings on extreme events can be simulated by damage spread-
ing, as reviewed byFortunato and Stauffer (2005)for single themes,S = 1: One
person changes opinion due to the event, and then the question is how the opin-
ions of the other people evolve compared to the case when the initial opinion
change did not happen. ForJacobmeier’s (2005)version ofS = 10 themes with
Q = 10 possible opinions on each (negotiators on a directed scale-free network),
Figure 6.13shows that for a bounded-confidence parameterε = 0.1 the damage
is very small (four plus signs in lower left corner); for 0.2 and 0.3 it affects a large
part of the population, and for 0.4, 0.5 and 0.6 it dies out after some time. (The
simulations stop when the damage has gone to zero or when no opinion changed
anymore. The initial damage for opinions distributed randomly between 1 andQ

changes opinionO to opinionQ + 1 − O.) This result is quite different from
Figure 4 inFortunato and Stauffer (2005)with single-theme simulation ofcontin-
uousopinions, where the damage remained large for allε > 0.05. (ε here is the
confidence bound: ForQ opinions andS subjects, the sum of the absolute opinion
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Figure 6.13. Multi-theme damage spreading: Influence of an initial opinion change for the network
core on the rest of the population, as a function of time. The confidence-bound parameter is 0.1 (+),
0.2 (×), 0.3 (stars), 0.4, 0.5, and 0.6 (all with lines). Only for intermediate values of this parameter

can this “damage” spread. 5000+ 3 people were simulated once.
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differences has to be not larger thanεQS to allow negotiations. The damage is the
sum of the themes at which one person changes opinion due to the extreme initial
event, summed over the whole population.)

100 samples, each with 1000 people surrounding the core of 3 people who
switch opinion, andQ = S = 10, confirm the picture ofFigure 6.13more quan-
titatively: For ε = 0.1 the damage mostly stays at its small initial value 30; at
0.2 it remains large in all and at 0.3 in nearly all cases; and at 0.4, 0.5 and 0.6 it
survives in only a fifth of the cases. This last fraction decreases with population
size increasing from 200 to 5000. For symmetric instead of directed networks, the
situation is similar.Figure 6.14shows in the directed case the opinion spectrum:
A consensus is impossible, but we see in this figure a transition from a broad
opinion spectrum to a near-consensus on the two centrist opinions 5 and 6. For
9 instead of 10 possible opinions, only the centrist opinion 5 becomes heavily
adopted. In the directed case withQ = S = 10, with increasing population size
the equilibration time increases and may develop a singularity at a phase transi-
tion nearε ≃ 0.25,Figure 6.15. This time is the number of iterations needed until
either the damage died out or both simulated samples simultaneously no longer
changed at nonzero damage. Ifε increases from below to above this transition
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value, most people agree on a centrist opinion, while at a higherε ≃ 0.35 dam-
age mostly ceases to spread. (For one instead of ten themes, but still ten possible
opinions, these two transitions happen at somewhat lowerε.)

How can damage spread if the simulation is made with parameters leading to a
consensus? How can a stable society be influenced strongly by a single extreme
event? For continuously varying opinions this is possible if even very tiny opinion
differences are counted as damage. For discrete opinions, the concept of damage
(agreement or disagreement) is better defined, and this is what was presented
above. For this discrete case, the extreme event, simulated above by influencing
initially only the network core, may change the whole population from one cen-
trist opinion to the neighbouring centrist opinion, for example from 5 to 6 if the
opinions range from 1 to 10. So, in both the damaged and the undamaged sys-
tem, one has a widespread consensus, but the two consensus opinions are slightly
different. At the time of this writing, this effect just seems to be happening in
England as a result of terror attacks in July 2005.

Figure 6.16illustrates this effect in the simpler case of only one theme, for
which ten opinions are possible. The upper part shows that the final damage at
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increases roughly proportionally to the system size, while on the right side it is much smaller and dies

out for the larger systems. (One theme, ten possible opinions.)

low ε � 0.2 is scattered between zero and the population size 104, while at large
ε � 0.4 it is mostly zero and in a few cases 104. The lower part shows for the
same simulations the final opinions of the very first site, which are widespread for
small and centrist for largeε. For 50 000 instead of 10 000 people, damage healed
out in all 100 samples for the largeε values,Figure 6.17, for 100 000 also atε =
0.4. (With nine instead of ten opinions, the final consensus was nearly always on
opinion 5.) For our ten opinions, only confidence bounds ofε = 0.1, 0.2, . . . , 0.9
make sense, corresponding to maximum opinion differences of 1, 2, . . . , 9. Thus
a large damage is not necessarily a drastic shift of opinion, but can be a small
change affecting everybody.

A very different simulation of human reaction to extreme events was given
by Altmann, Hallerberg and Kantz (2005). When such an event occurs, like a
flood, humans build protection against it. But then they slowly forget about it,
the protection deteriorates, and the next catastrophe appears. In this way a nearly
periodic recurrence of catastrophes becomes possible, instead of an exponential
distribution of times between extreme events at constant protection.

In summary, the simulations of reactions to extreme events strongly depend on
whether the opinions are continuous or discrete. For continuous opinions the dam-
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age increases smoothly from affecting only a few people to influencing nearly the
whole population, if the confidence boundε increases from zero to 1/2, for both
negotiators and opportunists: Figures 4 and 5 inFortunato and Stauffer (2005).
For discrete opinions, the influence of extreme events on the negotiators is more
complicated and vanishes for large confidence bounds like 0.4 and higher,Fig-
ures 6.13 to 6.17above. The damage spreading transition point forε does not
agree with the consensus transition point.

Parties

A thorough investigation of political elections in a southern part of Germany was
made bySchneider and Hirtreiter (2005). They found that the membership in the
two major political parties there increased (decreased) if that party gained (lost)
votes in two consecutive elections for parliament. Then these authors modified the
missionary model to include a possible party membership in addition to the usual
opinion; party members are then more convincing than other people, and are less
convinced to flip. The simulations showed that initially the election victories fluc-
tuated between the two parties, but then one party (Hirtreiter’s, not ours) always
stayed in power, and the other stayed in opposition but did not die out, exactly as
in reality of the last 60 years there.

These political applications do not tell us which party or candidate will win.
They indicate general trends of parties, whatever the real political issues are. Sim-
ilarly, a constitution and its election laws normally do not state which party should
win the leading role; they leave that question to the electorate. Constitutions and
election laws rule the general principles according to which political power is dis-
tributed, whatever the later policy issues will be. Or, as stated by George Orwell
in “Animal Farm”, all animals are equal.

But as we learned there, some animals are more equal than others, and in
physics examinations we usually grade the student’s answers as right or wrong,
with intermediate possibilities. So, we assume that there is some truth in physics,
but it is difficult to find and to learn. The physics truths of one century were often
the half-truths of the next century in the sense that they were special cases of the
later more general understanding. So, what about putting in some truth into these
opinion dynamics?

Assmann (2004)andHegselmann and Krause (2005b), see alsoKuznetsov and
Mandel (2005), did exactly that by assuming that some opinions are superior to
others. Assmann studied discrete opinions of negotiators on directed Barabási–
Albert scale-free networks. The opportunists of Hegselmann and Krause follow
their standard rule (everybody can contact everybody) with one simple modifi-
cation: at each time step, with some probability the agent does not follow the
standard rule but adopts one opinion called Truth. This truth is the same for
everybody while the probability may differ from person to person. Depending
on parameters, a consensus to this truth may happen.
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Political parties need advertising which reaches everybody, besides the per-
sonal contacts simulated in the standard models. Two independent simulations of
missionaries (Schulze, 2003; Sznajd-Weron and Weron, 2003) showed that the
larger the population is the smaller has the convincing power of the advertisement
have to be in order to flip the general opinion. However, this advertising should
not come too late when most have already fixed their opinion.

A non-political but similar problem was simulated byBrandau and Trimper
(2006) who suggested: Let’s have a party. Their parties are not political but
weekend meetings of people for enjoyment. The participants at the various si-
multaneous parties tell each other on mobile phones how they like it, and people
may switch from a boring to an interesting party. Will everyone at the end be at
one single large party? Brandau is a mathematician; physicists of course work on
weekends, for example by studying econophysics with minority games at the El
Farol bar in Santa Fe (USA).

Simultaneous updating

Simulators of Ising models or cellular automata know the difference between si-
multaneous (= parallel, synchronous) and sequential updating. If elementi is
influenced by elementk, then simultaneous updating means thati at time step
t is influenced by the value ofk at the preceding time stept − 1, whereas for
sequential updatesi is influenced by the current value ofk. That current value
may be the one at time stept − 1 if k has not yet been updated at the current
time stept ; but it is the new valuek(t) if k has been updated beforei. Thus for
sequential updates the order in which we go through the system may be relevant,
while for parallel updates this does not matter. Programming, however, is simpler
for sequential updates, and that choice may also be more realistic.

Simultaneous updating of Sznajd missionaries was studied, e.g., byTu, Sousa,
Kong and Liu (2005), who cite four earlier papers on this subject. The other
simulations of missionaries in this Section6.3 all refer to sequential updates.
It is obvious that simultaneous updating may lead to frustration. What should
an agent do if a pair from the left demands one choice, and a pair on the right
demands the opposite choice? It does nothing, as in Galam conservatism of Sec-
tion 3.3.1. Similarly, a student who is told to be at two different lectures at the
same time feels frustrated. Thus for the missionaries, reaching a consensus under
simultaneous updating is much more difficult, on square lattices and on vari-
ous types of networks to be defined soon in Section6.5. One may thus learn
that committee meetings with simultaneous voting are better if one does not
want a consensus, whereas continuous person-to-person contacts facilitate con-
sensus.
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Figure 6.18. Support for terrorists: 40 million people are partially made susceptible (+), excited
(×), or fanatic (*) by the network core of four initial fanatics in a directed Barabási–Albert network
(Stauffer and Sahimi, 2005). The general population is not shown and varies between 40 and 37

million.

Terrorism

In connection with bio-terrorism,Castillo-Chavez and Song (2003)applied dif-
ferential equations similar to epidemiology to opinion dynamics. The general
population (G) rejects terrorism, some may become susceptible to it (S), these
in turn can become excited (E), and the latter ones finally may become fanatics
(F ), with G + S + E + F = 1 for the sum of the four population fractions.
All of them may also become directly part ofG. People become more inclined
towards terrorism only after being convinced by someone who is more inclined
than they are at present; for example,S can be convinced to becomeE only by
members of groupsE andF . With the abbreviationC = S + E + F = 1 − G,
their deterministic differential equations are:

dS(t)/dt = β1CG − β2S(E + F)/C − γ1S,

dE(t)/dt = β2S(E + F)/C − β3EF/C − γ2E,

dF(t)/dt = β3EF/C − γ3E.
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Here, the variousβ andγ are suitable rate coefficients. The causes of terrorism are
not part of these differential equations, which only deal with the opinion dynam-
ics. Of course, instead of terror we may have in mind discussion of other questions
for which different degrees of agreement and the directional convincing process
make sense. For small ratiosβ/γ of the rate coefficients, finally everybody joins
the normal populationG. Probabilistic simulations of independent agents on lat-
tices or networks gave results similar to these differential equations (Stauffer and
Sahimi, 2005).

However, differential equations cannot check the influence of a single person,
like Ghengis Khan on genetics, on the opinions of the whole population (“dam-
age spreading”,Fortunato and Stauffer (2005); see Section6.3.3 above under
“Extreme events”). ThusStauffer and Sahimi (2005)asked: Can a few fanat-
ics influence the opinion of a large segment of the society? They use a directed
Barabási–Albert network with 4 neighbours selected by every person added to the
network, and assume everybody except the initial core of 4 fanatics to belong to
the general population.Figure 6.18indicates that these 4 initial people can make
2.7 million others susceptible for some time, in a population of 40 million.

An empirical analysis of number of victims in single attacks from terrorism
or guerilla warfare was complemented byJohnson, Spagat, Restrepo, Bohórquez,
Suaárez, Restrepo and Zarama (2005)with a simple model: The number of vic-
tims is proportional to the size of the attack unit. At each step, an attacking person
is selected randomly, and the corresponding unit is either split into single people
(with probability of one percent), or joined to another unit (with probability of
99 percent) to which another randomly selected person belongs. This leads to a
power law distribution (non-cumulative) with an exponent−2.5 for the number
of victims. By assuming the above joining probability to decrease with a power of
the unit size, more slowly decaying power laws were obtained in better agreement
with reality.

6.3.4. Conclusions

The example of elections inFigure 6.8makes clear what sociophysics can and
cannot do: It can explain general (statistical) properties of elections, but cannot
predict which candidate will win which election. Similarly we can explain the
pressure of an ideal gas as a function of density and temperature, but not which air
molecule will be where one minute from now, Section2.2. Averaging over many
people allows the application of statistical methods and computer simulation; each
individual has its own unpredictable fate. Insurance companies have used such
methods much longer than physicists have simulated social phenomena.

Moreover, many different models gave similar results;Figure 6.6is only an
example.Behera and Schweitzer (2003)and Galam (2005)showed that many
properties of Sznajd missionaries can also be obtained from different models. This
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is nice and shows that details don’t matter much, fully in line with universality
experience for physical phase transitions, Section2.5.

6.4. * Traffic jams

Traffic jams are a common sight in the big cities and on the expressways of
rich countries, and China at present makes big steps to repeat the errors of the
“West”. The senile author, citizen of the country where the automobile was in-
vented, is happy to have sold his last car 15 years ago. Others have to worry
about the reasons why traffic jams occur, and this field is an important part
of (socio-)physics since the publications in 1992 of Nagel, Schreckenberg, Bi-
ham, Middleton, Levine,. . . . We refer to the extensive reviews ofNagel, Esser
and Rickert (2000), Chowdhury, Santen and Schadschneider (2000)or Helbing
(2001), and toMahnke, Kaupuzs and Lubashevsky (2005)for a recent paper. Here
we mainly explain the Nagel–Schreckenberg model (to be abbreviated as NaSch,
not as NS= National Socialism).

Just as for stock market crashes, people like to find specific reasons for a spe-
cific traffic jam. But just as no external reason was found for the 1987 crash on
Wall Street, also some traffic jams appear without any specific reason. Of course,
if an accident happens or if a road is narrowed by construction work, we have a
clear reason for a jam. It is also obvious that jams occur more often at high than
at low car densities. But why does it happen at the same road and the same traffic
density today, when yesterday under the same conditions it was avoided? Ran-
domness seems to play an important role here and was implemented in the NaSch
model through a probability for drivers to needlessly slow down.

The rules of these NaSch “cellular automata” are simple: The street is a long
chain of lattice sites, each accommodating at most one car. The speed of each car
is allowed to be only an integer between zero and a maximum, say, five. Drivers
are assumed to drive as fast as possible within safety constraints and other rules.
At each time interval, all car positions and velocities are updated as follows: The
velocity is increased by one unit if the distance to the car ahead is at least as
large as the new velocity and if this new velocity is not larger than five. Then,
however, with some probability the velocity is decreased by one unit (but not to
a negative value), because the driver does not pay full attention. Finally, each car
moves forward by the amount of sites given by its new velocity.

We get the “fundamental diagram” ofFigure 6.19: Traffic flux versus traffic
density. In the ideal case all cars would travel with maximum velocity five and
thus never hit each other: Flux= five times density. However, since half of them
at any time slow down to velocity four, the ratio flux/density should only be near
4.5. This is indeed the case at low densities in this figure, as indicated by the
straight line there. But at higher densities we no longer can look only at an aver-
age driver; instead each driver may influence the cars behind. The figure shows
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Figure 6.19. Car traffic on an expressway: The number of cars passing through per unit time, is
plotted versus the car density, at a probability of 1/2 to slow down needlessly. The program in the

appendix, Section9.6, simulated 100 000 and 300 000 cars on a circle of length 1 000 000.

that now the flux first deviates slightly from the straight line, then has a rather
sharp maximum when about one in every 12 sites is occupied, and then for higher
densitiesdecreases. In this decreasing region, simulations of small systems dif-
fering only in their random numbers may give vastly different results, including
metastable and jammed traffic, in agreement with the unpredictability of reality.
More sophisticated simulations were applied, e.g., to Portland (Oregon, USA), as
reviewed byNagel, Esser and Rickert (2000).

Pedestrians also form traffic, not only cars. On a sidewalk, with people walk-
ing in opposite direction, separate “lanes” self-organise, where people walk in the
same direction behind each other. Here also alternatives to cellular automata were
used. Rules very different from NaSch and more similar to molecular dynam-
ics simulations of fluids gave these and other aspects of reality (Helbing, 2001).
A practical application is the rapid evacuation of a room filled with people: Jams
at the door can be reduced if a pillar before the door prevents people from pushing
and thus hindering each other.

We see in the traffic jams the same effect as in the hierarchies of the Bonabeau
model of Section6.2 of this chapter, the possible dominance of one language
in Sections5.3 and 5.5, the Eve effect in Sections2.9 and 3.5, and many other
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complex systems: Randomness in one single element can influence the whole
system, and not every victory or loss is based on justified reasons. “Life is unfair”,
as Nobel Laureate Jimmy Carter said in 1980.

6.5. * Networks

Solid state physics deals with regular lattices, or perhaps small lattice defects.
Trees in an orchard may also be planted on a regular square lattice, and so sit
students sleeping in our lectures. However, in general living beings do not form
regular lattices, but more complex networks. One simple way to get such a net-
work is to occupy randomly only a fraction of the lattice; this leads to the so-called
percolation problem invented by Flory before any of the present authors ex-
isted (see Section6.6below), and improved by mathematicians and mathematical
physicists at the time the junior authors of this book were born (random graphs
are a limit of percolation for infinite interaction range). The brain is a complex
network of neurons and was modelled first by Mc Culloch and Pitts when the se-
nile author was born. More recentlyWatts and Strogatz (1998)invented a “small
world” model to take into account that with a short chain of mutual acquaintances
one can connect most people on Earth with each other. We emphasise here the
scale-free networks ofBarabási and Albert (1999)(pronounced approximately
BOrobashi-OLbert according to Kertész who suggested the inclusion of this sec-
tion). Also these networks have roots in the 1950s, as reviewed in a nice book
(Barabási, 2002). Only at the end we go back to neural nets. In line with the in-
tention of the whole book, we concentrate on simulations of networks, and not
on the analysis of existing friendship networks in a Karate club or an Antarctic
research station, of collaboration networks of film actors or scientists (Newman,
2001), or of connections between computers or web-sites on the Internet. As men-
tioned in Section2.7, Albert and Barabási (2002)offered a much more thorough
review.

6.5.1. Small world

The Watts–Strogatz networks start from a lattice with nearest-neighbour connec-
tions, often a one-dimensional chain. Then with some small probabilityp a site
cuts the connection to one of its neighbours and replaces it by a connection to
a randomly selected other site on the lattice. At the end one has a network with
a mixture of nearest-neighbour bonds and infinite-range bonds. The two extreme
casesp = 0 andp = 1 correspond to regular lattices and random graphs, respec-
tively.

This clear separation between close and far-away neighbours makes these net-
works quite unrealistic; we talk with our office neighbours and family more often
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Figure 6.20. DistributionN(k) of the number of sites which havek neighbours each on a scale-free
BA network. The data in this log-log plot follow a straight line with slope−3. We summed over ten
lattices of 70 million sites each, withm = 3 neighbours selected by every new member of the network.

On average 10 sites in each network had more than 10 000 neighbours.

than with other people, but these other people are not all equally likely to be
contacted by us, even in the age of e-mail. A more realistic way would be to
have distance-dependent probabilities for these other connections, as assumed by
Moukarzel and de Menezes (2002)andHuang, Zou, Shao, Tan and Jin (2004)for
nodes and atoms, not for people. As an example relevant for the opinion dynamics
summarised above we mentionElgazzar (2001)who put the missionaries of the
Sznajd model onto a Watts–Strogatz network and found that even there they can
reach a consensus. The main merit of these small-world networks seems that they
were a stepping stone to the more realistic scale-free networks ofBarabási and
Albert (1999)described now.

6.5.2. Scale free (BA)

A Barabási–Albert (BA) network grows via preferential attachment, which takes
into account that famous people attract new acquaintances easier than normal
people. Thus one starts with a fully connected core ofm nodes. Then, step by
step, new nodes are added as follows: each new member of the network selects
exactlym neighbours from the already existing network nodes. This selection is
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not made randomly; instead them neighbour nodes are selected with a probability
proportional to the numberk of connections these nodes had already before: The
well-connected get even better connected, the rich get richer. The simulation stops
if the network has reached the predetermined size.

It would be inefficient and not accurate if each new network member would
go m times through all previous nodesi, each havingki neighbours, and select
each with a probability equal toki/

∑

j kj . Then only on average the number
of neighbours of the new member would bem. It is better to select exactlym
neighbours by a random selection from a list in which each node appears as often
as it has neighbours. This algorithm is explained in the appendix, Section9.7. No
geometry is involved; the network is only topology, and the only distances one
can define are the number of connections needed to link two nodes.

Such a simulation gives for each sitei a numberki of neighbours whereki � m.
The last-added sites haveki = m while most of the earlier sites haveki > m since
they were selected later as neighbours. Typically, them members of the initial
core are among the most-connected sites, but usually also one of the later sites
has more neighbours than one of the initial sites: The rich get richer on average
but not in every single case, as you may have noticed in 2000 when you invested
in information technology stocks during the 1990s.

The numberN(k) of sites havingk neighbours each varies as 1/k3, except for
small k; N(k < m) = 0. This power law, which is also explained theoretically
(Barabási and Albert, 1999), gave the networks the name “scale free” since there
is no characteristic scale in the distributionN(k); if instead the distribution would
have been a Gaussian centred at someK, or a decay∝ exp(−k/K), then this
K would have been the scale of the distribution, and the width of the Gaussian
could introduce a second scale.Figure 6.20demonstrates this distributionN(k),
using the program of our Section9.7. The parameterm does not influence qual-
itatively the results as long as 1< m ≪ max where max is the total size of the
network. This wide distribution of the numberk of neighbours makes the scale-
free networks much more realistic in the description of social and other networks
than regular lattice, dilute lattices (percolation), random graphs, or Watts–Strogatz
small worlds, which all have a rather narrow distribution ofk.

Modifications have been published givingN(k) ∝ 1/kγ with γ different
from 3. In some senseγ = 3 is the most interesting case since it is the border
between two different regimes. We leave these aspects to detailed reviews, e.g.,
of Albert and Barabási (2002)or Newman (2003). The simulations of reactions to
extreme events and terrorism, presented in Section6.3.3, used already these BA
networks.
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6.5.3. Selected properties of BA networks

Just as in small-world networks, also in the scale-free BA networks two randomly
selected nodes have a rather short distance from each other, as measured by the
number of network links needed to connect them. This number on average grows
only logarithmically with the network sizeN . If we randomly cut a fractionp
of links, the network as a whole still remains connected provided 1− p is not
smaller than a threshold vanishing as 1/ log(N). On the other hand, if we destroy
the most connected fraction of nodes, then already a very smallp suffices to cut
the network into small parts.

Applied to computer network these effects explain why accidental failure of
many computers barely affect the connectedness of the whole network, while tar-
geted attacks by hackers on important computers can block the communications
between the remaining ones (Cohen, Erez, Ben-Avraham and Havlin, 2000). Also
airlines have noticed long ago the usefulness of networks: To bring passengers
from A to B it may be inefficient to have a direct flight from A to B; instead it
may save fuel to bring them from A to some hub C and with a different plane
(and partly different passengers) from C to B, even if the distance A-C-B is much
bigger than the distance A-B. You only have to look at the route map of airlines
to see these hubs as centres of the network.

We mentioned already for opinion dynamics,Figure 6.8, that Sznajd mis-
sionaries were put onto BA networks to simulate successfully election results
(Bernardes, Stauffer and Kertész, 2002; González, Sousa and Herrmann, 2004).
And we mentioned in Section6.3.3damage spreading among networked nego-
tiators. Galam voters, Kauffman genes, Ising spins, neural nets and other models
also were combined with scale-free networks.

6.5.4. Modifications of BA networks

Pütsch (2003)looked at the 185 papers from 555 authors which up to October
2002 cited the original BA paper (Barabási and Albert, 1999); at the time of this
writing there are about 1000 such papers. He defined clusters of authors (simi-
larly to Newman (2001)) by defining two authors as connected if in this subset of
185 papers they had at least one publication together. One huge cluster from the
human genome project coexisted with many smaller clusters. Thus this situation
is very different from BA networks, where only one single cluster is grown. He
then modified the BA algorithm by letting with a low probabilityp each newly
added site form a new BA cluster, instead of joining the existing ones. In this
way, an assembly of finite BA clusters was simulated, andFigure 6.21shows a
nice agreement of reality and simulation, quite rare in this sociophysics chapter.
Note, however, that different collaboration networks obey different size statistics
and were modelled differently (urn transfer) byFenner, Levene and Loizou (2005)
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Figure 6.21. Cluster size distribution of real authors (bars) and averaged over 10 000 simulations
(+) for scientific papers. Authors are defined as being part of one cluster if they published at least one

paper together citingBarabási and Albert (1999). FromPütsch (2003), with permission.

and with focus on triangular author relations byLambiotte and Ausloos (2005);
seeSimkin and Roychowdhury (2005)for modelling scientific citations.

Even though Section3.3 explained everything you always wanted to know
about sex, some people likeGonzález, Lind and Herrmann (2005)are still in-
terested in this old-fashioned subject. They complain that BA networks do not
describe well the monogamous people but only those with many sex partners.
Thus they model the growth of sexual networks by particle aggregation: Male and
female particles collide on a two-dimensional plane, and in contrast to granular
materials theygain energy in a collision. The set of particles having had such
collisions with each other forms the sexual network of past experiences. At the
beginning one has only single particles of while one is marked, then the network
containing this marked particle grows, and finally everybody belongs to this net-
work. In contrast to scale-free networks, the distributionN(k) of the number of
k partners for each participant is a power law∝ 1/k3 only for largek while
for small k it varies much slower, as claimed in reality (Liljeros, Edling, Ama-
ral and Stanley, 2001). A practical application of such studies of sexual networks
is immunisation: Cohen, Havlin and Ben-Avraham, Chapter 4 inBornholdt and
Schuster (2003)suggested not to immunise the most-connected person (which is
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not known generally), but random people who then have a higher probability to
be connected with the “hubs” of the network.

For computer networks it is nice that random break-downs still leave the net-
work as a whole connected, as mentioned above in Section6.5.3. However, the
same effect is bad if applied to computer viruses or human epidemics: One sick
person may infect directly, or indirectly with a few links, an appreciable fraction
of the whole population, if the connections between people follow a BA network.
We refer toGallos, Cohen, Argyrakis, Bunde and Havlin (2005)andXu, Wu and
Wang (2006)for recent papers.

6.5.5. Neural networks

A little baby soon learns to distinguish the face of the mother from other faces.
Did you try to log in on a computer recently by just sitting in front of it’s screen?
At least I had always to type in precisely my user name and password. Human and
animal societies are based on recognising differing signals as always meaning the
same thing: faces, words, smells,. . . How can we teach computers to do that?
That means, how can we for example present a picture to a computer and let the
computer find out that this is just a modified version of one of the many pictures
which we had stored in the computer before? Experts call this associative memory,
and we explain here only the basic Hopfield model with Hebb rule, not the many
modifications of the last half-century. We concentrate here on the efficient trick of
Penna and de Oliveira (1989)for simulations and give a program in the appendix,
Section9.8.

Similarly to Ising magnets, or more precisely to spin glasses (Binder and
Young, 1986), Hopfield neural networks assume an array ofN variablesSi = ±1,
coupled by synaptic strengthsJik = Jki (i, k = 1, 2, . . . , N). In biological reality
theSi are neurons which either fire (+1) or do not fire (−1) electrical impulses
along their dendrites to the synapses connecting the neurons. PositiveJ means
that the neurons strengthen each other in their present state (excitatory synapses),
while negativeJ means they oppose each other (inhibitory synapses). Each neu-
ron i feels the input

hi =
∑

k

JikSk

from all other neurons and reacts accordingly at the next time stept + 1:

Si(t + 1) = Signhi(t)

where Sign =±1 is the sign function.
P different patternsξμ

i = ±1 (μ = 1, 2, . . . , P ) are stored in memory; these
may correspond to the faces ofP different people. To recognise them, the Hebb
rule recommends the assumptionJik = ∑

μ ξ
μ
i ξ

μ
k for all J , and this works: If now
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Figure 6.22. Critical ratioP/N of number of stored patterns to number of neurons, as a function
of reciprocal network size, using different analysis techniques. If more patterns are stored, the neural

network no longer can recognise them. FromOstfalk (2005).

we present to the computer a patternS(t = 0) which is similar but not identical to
the stored pattern numberν, then after several of the above iterationst = 1, 2, . . . ,
the updated patternS(t) will become very similar to the desiredξ ν . That means
the computer has recognised pattern numberν from the somewhat incorrect initial
patternS(t = 0), just as the baby recognised the mother’s face. (We denote here
the set of allSi with i = 1, 2, . . . N , by S without subscript; analogously for the
ξμ.) More quantitatively, the similarity of two patterns is given by their overlap
m, like

mμ(t) =
∑

i

Si(t)ξ
μ
i

for the two patternsS(t) andξμ. (This overlap is related to the Hamming distance,
Figure 2.19.) If a pattern is recognised completely,Si = ξ

μ
i for all i, this overlap

is N ; if there is no correlation between two patterns, their overlap is≪ N .
Thus we want to start from a low overlap and want to get an overlap close

to N . The Hopfield model with Hebb rule actually achieves this aim, provided
the numberP of stored patterns is not too high. IfP/N is smaller than 0.14 for
random patterns of±1, then most patterns are recognised to more than 90 percent;
for largerP/N the overlaps jump down to about 20 percent.Figure 6.22shows
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Figure 6.23. Rank plot of simulated movie successes; the film with the most visitors is placed on
rank 1, that with the second-most number of visits on rank 2, etc. FromStauffer and Weisbuch (2003).

the latest estimates of the position of this first-order phase transition. Each student
should get from these simulations that one should not learn too much before an
exam; otherwise the brain capacity is overloaded and one cannot answer even
simple questions.

For N = 105 neurons, we haveN2 = 1010 matrix elementsJ . The Penna–
Oliveira trick of 1989 avoids to store them and requires only to store theP

overlaps, besides the storedP patterns ofN bits each. Thus lots of memory is
saved ifP ≪ N as is the case for good recognition. It works for the above Hop-
field model with Hebb rule:

hi(t) =
∑

k

JikSk(t) =
∑

k

[

∑

μ

ξ
μ
i ξ

μ
k

]

Sk(t)

=
∑

μ

ξ
μ
i

[

∑

k

ξ
μ
k Sk(t)

]

=
∑

μ

ξ
μ
i mμ(t).

Thus we have to evaluate and store theP current overlapsmμ, but they are of
interest anyhow to observe the recognition progress. A simple program is given
in the appendix, while the original paper describes the additional trick of single-
bit handling, to save more memory and time (Penna and de Oliveira, 1989).
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Figure 6.24. Rank plot of real movies, as evaluated on IMDb.com. FromStauffer and Weisbuch
(2003); similar results were published earlier byde Vany and Walls (1996).

If Hopfield neurons are put onto a Barabási–Albert network of the preceding
section, they work more efficiently if the sizem of the fully connected network
core is much larger than one though still much smaller than the total network size
(Stauffer, Aharony, Costa and Adler, 2003).

6.6. * Social percolation

“Percolation” was already mentioned repeatedly, but never defined. This we do
here and then apply it to social percolation, a field between sociophysics and
econophysics. One paper has even made it to a marketing journal, and some work
was partially supported by K-Mart International; but in contrast to Kai Nagel
(public communication) we do not blame it for the 2002 “bankruptcy” of that
company.

In standard percolation theory, each site of a large lattice is randomly occupied
or empty. A cluster is a set of occupied neighbours, and an “infinite” cluster spans
from one side of the lattice to the opposing side. For occupation probabilities
p below some percolation thresholdpc, only finite clusters exist; forp > pc

also an infinite cluster appears, usually one. Atp = pc the largest cluster is
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Figure 6.25. Increase of movie quality with time towards the percolation thresholdpc = 0.592746,
followed by beginning of instability (increase towards infinity). The time is measured by the number

of released movies.

fractal and sometimes spanning. Usually one looks only at nearest neighbours;
if every site can be neighbour to any site independent of the distance, we get
the so-called random graphs, which have the same critical exponents as the mean
field theory. Percolation theory was invented in 1941, for sol–gel phase transitions
which happen in rubber vulcanisation or when you boil an egg for breakfast.

Social percolation was suggested bySolomon and Weisbuch (1999)and sim-
ulated in many papers, as reviewed byWeisbuch and Solomon (2003). They
modelled the success or failure of a Hollywood movie. At the start, a few peo-
ple see it and tell their neighbours how they liked it. These neighbours trust this
information and, if the reported qualityq exceeds the personal quality standard
pi of neighbouri, this person goes to the movie and reports its qualityq to other
neighbours. In this way the information spreads through the population, and if the
quality was high enough, and the quality standards low enough, the population of
movie-goers percolates from Hollywood to Manhattan (infinite cluster on square
lattice); otherwise the movie visitors remain a finite cluster, and the film becomes
a flop instead of a hit. If the distribution ofpi is random between zero and one,
then this social percolation is nothing new yet, and the border between hit and
flop isq = pc, the standard percolation threshold.
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Figure 6.26. Histogram of the quality standardspi for the simulation of the previous figure. At time
500 (+), the peak atpc is accompanied by a broad distribution ofpi , while at time 1000 the peak has

started to move to the right, and the distribution has narrowed.

The model becomes more interesting ifq, and later also thepi , become time de-
pendent. Successful movies often have one or more sequels, which are sometimes
of lesser quality. Thus social percolation assumes that a hit reduces the qualityq

of the next movie by a small amount 0.001, while a flop increases the quality of
the next movie by the same amount. This effect is well known from some students
who try to learn only as much as is needed to pass an examination. (Professors,
of course, never write just as many pages for a book as the editor wants.) For
students and movies alike, theq value now approaches the thresholdpc and then
oscillates about it. Experts call this motion towards the criticalpc “self-organised
criticality”, see alsoChapters 2 and 7, while in biology an analog is often de-
scribed as evolution to the edge of chaos. Onceq is nearpc, the clear distinction
between hits and flops vanishes, and the number of clusters withs visitors each
decays roughly as a power law, slightly faster than 1/s2.

Now also thepi change, again by±0.001. If someone has just seen a movie,
that person in general will not immediately see another one except if that sec-
ond movie is better. On the other hand, if there were no good movies to see for
some time, one may visit also some not so good movie. Thus for each lattice site
(person)i which visited a movie, thepi goes up by 0.001; for each person who
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Figure 6.27. Example of a successful movie (number 501 inFigure 6.25) spanning from the bottom
to the top. The simulation stopped when the top was reached.

was informed about the current movie but did not visit it,pi goes down by 0.001.
Now the dynamics gets coupled: First the qualityq moves fast towardspc, and
then bothq and the averagepi jointly change for each new movie by the same
amount.

That latter effect is somewhat unrealistic, so it may be better to change only
q and not thepi . Also a little bit advertising, reaching everybody, has been in-
cluded, leading to the simulations inFigure 6.23, in reasonable agreement (note
the different vertical scales) with reality,Figure 6.24. For illustration only, the
next three figures show social percolation on a small 99× 99 lattice, with bothq
andpi changing with time.

6.7. * Legal physics

Computer applications to legal questions were published byYee (2001)and
Hausken and Moxnes (2005). They were one of the new aspects at the Third
Workshop on Dynamics of Social and Economic Systems, Mar del Plata (Ar-
gentina), June 2005, but not published in the proceedings, e.g.,Rosenfeld and
Martínez (2005). Perhaps here a new avalanche of papers started; interested read-
ers should check for papers also by others: L. Devia, N.L. Olivera, N. Lipskier,
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R. Miro, all from Argentina, in the literature outside the natural and mathematical
sciences. At present, no concentration on one problem of law is evident.

The Yee model of 2001 for the quality of court judgements is a simplification
of the Bak–Sneppen model of 1993 for biological evolution, discussed in Sec-
tion 4.3.1. The quality of a judgment, or the fitness of a biological species, is
initially distributed randomly between 0 and 1. Then at each iteration the judg-
ment with the lowest quality is removed and replaced by a new one with randomly
selected quality. (In the Bak–Sneppen model, also the two neighbour species are
removed, which makes the model lattice-dependent.) In spite of the random qual-
ity of the new judgment, the overall quality of the many judgments increases
towards the maximum of 1, as seen inFigure 6.28. In contrast to the Bak–Sneppen
model of Section4.3.1andFigure 4.25there, in the Yee model at the end every-
body is perfect, contradicting the conclusion of the movie “Some like it hot”.



Chapter 7

Earthquakes

Earthquakes near densely populated urban centres are capable of causing enor-
mous damages, both in human lives and in financial assets. In the last 400 years,
the mean annual number of fatal earthquakes has increased roughly in proportion
to population growth. The fatality rate in events involving fewer than 30 000 fa-
talities is approximately 6000 people/year by the late twentieth-century, and the
historical data allows a fairly reliable estimate of a 30% increase in this rate in the
next 30 years. Similar growth is noted for earthquakes involving larger number
of fatalities, although future rates for these are less easy to forecast because the
data become decreasingly regular (Bilham, 1996). Fatalities can also be caused
by side effects of powerful earthquakes, and the memory of the tragic tsunami
of December 26, 2004 in the eastern Indian Ocean, with its toll above 200 000
dead, still haunts us. Other recent examples are the January 26, 2001 7.6 earth-
quake that shook the Indian province of Gujarat, causing a death toll of more than
19 000 and more than 160 000 injured, with economic losses in excess of $ 1000
million; and the January 16, 1995 earthquake of magnitude only 6.9 that hit Kobe,
Japan, and produced an estimated $ 200 000 million loss. That country has a very
active earthquake prediction program, but it failed to predict the event. Since the
Pacific plate boundary is a very active seismic region, a similar scenario is possi-
ble in a number of densely populated urban centres around it. Why is it so difficult
to develop successful prediction or forecasting methods? The answer lies in the
failure to identify so far any regular pattern in the occurrence of these great dam-
aging earthquakes. These large events repeat at irregular intervals of hundreds to
thousands of years, resulting in a limited historical record that has frustrated phe-
nomenological studies. In recent years, coupled to the developments reported in
early chapters of this book, emerged an alternative approach, based on a new un-
derstanding of earthquake physics arising from the construction and analysis of
computational simulations. These computer simulations allow earthquake physics
to be studied in numerical laboratories, where the simulation data they generate
is used to develop theoretical understanding, that may be subsequently applied to
observed data. Some refer to these developments as the birth of a new science
of geocomplexity, that focuses on the temporal and spatial evolution of strongly
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correlated earth systems. Within this new science, the study of earthquakes stands
out as central, since it is directly related to the modern ideas of self-organisation
and criticality (Section2.5), which were put together to label the class of so-
called self-organised critical (SOC) models, and emergent structures. Many of
the results and methods from within this field have shown impact in other areas
of physics, beyond earth sciences. In particular, ideas about scaling regimes and
friction are being used as paradigms in explaining the behaviour of threshold sys-
tems in general, that display sudden transitions and avalanche phenomena, such
as neural networks, driven foams, charge density wave semiconductor devices,
superconductors, and even the expansion of the early universe.

The purpose of this chapter is to show a few examples of how computer simula-
tions are being used in this field to add to the understanding of earthquake source
processes, and, in particular, to unravel a physical ingredient that may be the cause
for the non-scaling regime observed in the seismic record of some faults. It is by
no means exhaustive or complete, and reflects solely the (unfortunately little and
marginal) experience that one of the authors has had as a post-doc and visiting
scientist in one of the most active research groups in the field, led by Professor
John B. Rundle, now at the University of California at Davis. It is mandatory to
mention explicitly some other scientists that, while in Rundle’s group, either as
members or external collaborators, had an important role in the development of
some of the results mentioned here. These were Professors William Klein and
Kristy F. Tiampo, and Dr. Marian Anghel, to whom this chapter is dedicated.

7.1. Computational models for earthquakes

The power law frequency distribution of earthquake magnitudes, as synthesised
by the Gutenberg–Richter phenomenological law, appears to be the most well
documented evidence of critical behaviour in a natural system – seeFigure 2.3.
The first goal to be met by any model of earthquake source processes is to repro-
duce this scaling behaviour. In the early days of the field of earthquake modelling,
Burridge and Knopoff (1967)succeeded in representing the basic physics in-
volved in tectonic processes and were able to obtain a frequency distribution
consistent with that law. In its first version, their model was a one-dimensional
chain of a few massive blocks, representing the asperities or points of contact
in the boundary between two moving tectonic plates, connected to each other
by elastic forces (springs). The driving mechanism was modelled as a set of addi-
tional springs, connecting each block to a moving rod, and the threshold dynamics
was ensured by the pinning caused by friction between blocks and the ground.
The set of coupled second-order differential equations representing this physics
was then solved numerically. Qualitatively, the main feature of the model can be
described by focusing on the moment in which the resulting force on one of the
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blocks exceeds the threshold value of friction: the block slides, and the impact of
its motion on the resulting forces on its neighbours may in turn cause their depin-
ning. This chain reaction, or avalanche, is the model’s proxy for an earthquake.
Energy release during an avalanche can then be measured and its magnitude com-
puted. The frequency distribution of the magnitude is then compared to a scaling
law, which is the approach used in most models of this class. A power law statis-
tics was obtained by Burridge and Knopoff when a friction force that decreases
with velocity was used in the model.

Computational models are able to increase greatly, both in number of elements
and dimensionality, the ability to investigate the above physics. The trade-off is to
eliminate the massive terms of the equations, by considering that these are related
to seismic waves, that carry typically less than 10% of the energy released in an
earthquake. By so doing, the differential equations can be easily discretised, and
the resulting model is a real-valued – or continuous – cellular automaton (CCA).
Several models with these characteristics appeared in the literature in recent years
– Nakanishi (1990), Rundle and Brown (1991), andFisher, Dahmen, Ramanathan
and Ben-Zion (1997)are a few of those – and the most successful of them, at least
in the physics community, was that ofOlami, Federsen and Christensen (1992),
henceforth abbreviated by OFC, which were the first to claim the observation
of SOC in a non-conservative model. A feature shared by all these models is a
dynamical field, usually referred to as the stress, that is updated in each cycle of
the automaton. Its value at each point in a discretised space increases by the action
of some driving mechanism and relaxes as a threshold critical value is reached. As
a result of this relaxation, stress is transfered to other points in space coupled by
some interaction to the one where the threshold value first was reached. Because
of this transfer, an avalanche of relaxations, or earthquake, may be triggered. One
can divide these models into two classes, according to the range of the transfer
interaction.

7.2. Short-range interactions

Using the language of the OFC model, the physics is contained in the dynam-
ics of a single field, a real-valued dynamical variableEi , the stress, defined on
theN = Ld sites of ad-dimensional cubic lattice. The dynamics of this field is
completely deterministic, except for the initial configuration, which sets the ini-
tial value of the field at a sitei by a random choiceEi between zero and a critical
valueEc, usually set to one. The driving is uniform and homogeneous, and at
each step of the driving time scale the field evolves withEi → Ei + ν, where
ν is an indirect measure of this time scale. Relaxation, which happens when a
site i becomes criticalEi � Ec and topples, follows the ruleEi → 0 for this
event initiator site andEnn → Enn + αEi for its qi nearest neighbours. These
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sites may, in turn, become critical, and the process proceeds untilEi < Ec for
all i. This cascade, or avalanche, of topplings is an earthquake in the model, and
data can then be collected on the statistical distribution of such events. The pa-
rameterα has an important role, since it measures the intrinsic dissipation ratio
of these dynamics: the amount of stress that is lost by the system after sitei

topples isEdis = (qiα − 1)Ei , and the system would be called conservative if
α = maxi(qi)

−1. One is usually interested in the zero-velocity limitν → 0,
since there is an intrinsically very large time scale separation between the driving
and relaxation mechanism in the real earthquake process. This is easily imple-
mented in the model by driving it to relaxation in a single step of the simulation:
since the driving is homogeneous, the site with the largest stress at the comple-
tion of an avalanche will be the event initiator of the next. So, the new driving
rule for the zero-velocity limit is to computeE∗ = maxi(Ei) and then perform
Ei → Ei + (Ec − E∗) for all i. Care must be taken when working with the
model, for its approach to a statistically stationary state proceeds rather slowly,
and transients are very long. One has to wait typically for∼ 109 avalanches in a
2D, L ∼ 102 model before collecting meaningful data.

The OFC model with nearest neighbours has been extensively studied lately,
and a plethora of information gathered about the nature of its (quasi-) critical at-
tractor state. The signatures of this state become first visible near the borders, and
it spreads through the lattice from there on. The model has a strong tendency to
synchronisation, which generates spatial correlations and is partially responsible
for critical behaviour. This behaviour is lost when periodic boundary conditions
are used, and synchronisation forces the system to periodic non-critical behav-
iour. The inhomogeneity induced by an open boundary is enough to destroy the
periodic state while leaving intact correlations, thus allowing for the establish-
ment of the (quasi-) critical attractor. The real nature of the attractor, and the
issue of criticality for that matter, in the OFC model is still a matter of intense
debate among experts. There is general agreement on the fact that the model is
indeed critical in 2D if α > αc, but there is no such agreement on the critical
value itself. Estimates forαc vary widely in the literature, ranging all the way
from αc = 0 (Middleton and Tang, 1995), to αc ≃ 0.18 (Grassberger, 1994;
Corral, Perez, Diaz-Guilera and Arenas, 1995), while strong arguments do exist
in favour of αc = 0.25, which corresponds to the conservative limit mentioned
above, and the notion of a quasi-critical state to describe the nature of the attractor
whenα is close toαc (Prado and de Carvalho, 2000). On the other hand, there is
no question about the fact that the OFC shares with a few other statistical models,
such as the eight-vertices model, the unusual dependence of the exponent of the
scale-free frequency distribution of earthquake sizes on the value of the conserva-
tion parameterα.
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7.3. Long-range interactions

Other flavours of CCA models have been studied that involve long-range interac-
tions, in particular by the geophysics community (Dahmen, Ertaş and Ben-Zion,
1998; Preston, Martins, Rundle, Anghel and Klein, 2000). These versions are sup-
posedly more “realistic”, since viscoelastic interactions in the earth’s crust are
known to be long-range, presumably decaying as the third power of distance. Al-
though some of the excitement involved in the emergence of long-range order
from short-range interactions is lost in these models, they still present interesting
features and deserve the attention of the physics community. The infinite-range in-
teraction model, where each site interacts with all other sites in the lattice, is one
of those, and its mean-field character has served well the purpose of establishing
a test ground for the exploration of new ideas.

As mentioned above, CCA models have usually very long transients, forcing
the researcher in the field to be very demanding on the efficiency of the computer
code used in the simulations. Useful comments on this subject for the beginner
can be found inGrassberger (1994)andPreston, Martins, Rundle, Anghel and
Klein (2000). To begin with, one should only deal with one-dimensional data
structures, and draw the code aiming at an efficient use of these structures. As
an example, the address of a site in a 2-D lattice, usually taken as an ordered
pair (i, j), should be transformed into a single integer as inindex = i*L +

j. The integer operations of division and remainder are then used to get back
the ordered pair, when needed, from this single integer. The dynamical field is
then a 1-D real vector, and loops sweeping the lattice are controlled by a sin-
gle integer variable. Another extremely useful strategy is to have moving failure
and residual stresses: instead of sweeping the whole lattice each time the driving
mechanism brings the site closest to failure – the initiator of the next avalanche
– to its critical stress, the value of the critical stress itself is updated to the value
of the stress of this initiator, and the residual stress is also moved to keep the
difference between these two constant. The usage of “last in, first out” (LIFO)
stacks is also good advice, in particular when running long-range models, for it
allows a simple way of keeping track of only a few sites to examine for failure at
each step of the relaxation avalanche. Here is a short description of an algorithm
using these ideas for a 2-D model, expressed in a – hopefully – self-explanatory
meta-language:

– site address structure:(i,j) → index = i*L + j

– initialisation: (e.g.,Ei = random between 0 andEc)
– main loop:do

• selects sitei with maximumEi

• moves failure and residual stresses:Er → Er + Ec − Ei, Ec → Ei

• avalanche
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• if time > transient, collects statistical data
until time is up.

The key routine is the relaxation algorithm, the avalanche procedure. In this
example, we use two separate stacks (stack1 andstack2), wherestack1
stores the addresses of the sites that will topple in the present relaxation step,
while stack2 keeps track of the sites that will topple in the next step.

– avalanche:
• setduration to one, avalanchesize to zero, and stacks the address of

the site with maximumEi : i → stack1 (this is the initiator)
• whilestack1 NOT emptydo:

· unstacks site address fromstack1;
· increments avalanchesize;
· computes stress drop at this site;
· resets stress at this site to residual value;
· dumps stress on neighbours (n): if En > Ec, n → stack2;
· if stack1 is empty, butstack2 is not, exchangesstack1 andstack2

and incrementsduration.

The routine ends whenstack1 gets empty. Variableduration ends up with
the number of cycles of stack changing, whilesize stores the number of sites
that toppled during the avalanche.

7.4. The Rundle–Jackson–Brown model

A real geological fault is a highly disordered environment. Friction, for instance,
is by no means uniform or homogeneous. Irregular gouge deposition and age-
ing act to create this disorder in space and time. In a computational model
such as the ones we have described, disorder can be added to the dynamical
behaviour by the introduction of some stochastic field into the equations of
motion. We will call a CCA model with this feature a stochastic continuous
cellular automaton (SCCA). We will briefly present here the Rundle–Jackson–
Brown (RJB) SCCA model for an earthquake fault (Rundle and Jackson, 1977;
Rundle and Brown, 1991), in its uniform long-range interaction, zero-velocity
limit, mean-field version (Preston, Martins, Rundle, Anghel and Klein, 2000).
Extensive work has recently focused on a near-mean-field version of this model,
where the interaction range has a cutoff. The model can then be mapped into
an Ising-like Langevin equation (Klein, Anghel, Ferguson, Rundle and Martins,
2000). In its original formulation, the RJB model has as dynamical variables two
continuous real-valued fields, slipsi(t) and stressσi(t), defined on the sitesi of a
lattice and coupled by a constitutive equation. It can be recast into a single-field
model, which is how it is usually implemented in computer simulations. In this
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form, it closely resembles the OFC model, except for the interaction range and the
noisy component. Its appeal to the geophysics community is enhanced by a care-
ful choice of language. Thus, the interaction between sites is summed up by the
stress Green’s function matrixTij , KC = ∑

j 	=i Tij is the model’s equivalent of
the combined effects of the coupling springs of the OFC formulation,KL parame-
terises the loading interaction,K = KL +KC is the elastic stiffness, related to the
intrinsic stress dissipation measured by the factorδ = KL/K, andTii = −K. The
inter-event, or loading, dynamics of the standard RJB model is thus very simple:
in the same way as in the OFC model, the stress field undergoes linear growth.
When the stressσi at a sitei reaches a threshold for failureσF the site topples and
a fast stochastic relaxation takes over. The stress drop|�σi | – which, in the OFC
model, always resetsσi discontinuously to its zero residual value – is now noisy:
after toppling, the stressσi is

(7.1)σi = σR + Aηi(t)

whereσR is a uniform residual stress,A is the noise amplitude, andηi(t) is a
random number from a uniform distribution in the interval(0, 1), tossed anew for
each toppling site and each time it topples. The ensuing stress drop is then redis-
tributed among all the sites of the system, according to the stress Green’s function
connecting each sitej to the one that toppled and some internal dissipation:

(7.2)�σj = Tji

K
|�σi |

wherei is the site that failed. This increase may cause other sites to fail as well,
and the process continues until all sites have stress below failure. This cascade of
failures, or avalanche, is the model’s equivalent for an earthquake. The RJB model
may be used as the basis for a number of variations that serve the purpose of being
a testing ground on which to simulate a number of ideas and conjectures about
the physics of friction in earthquake source processes, the role of heterogeneity in
loading and relaxation, to name but a few. One of such variations is described in
the next section.

7.5. Precursory dynamics

The existence of an inter-event dynamical cycle is suggested by recent laboratory
experiments addressing issues of solid-on-solid friction. A stable slip, with a slow
velocity that increases with the stress level, is observed prior to failure, leading
to a partial release of the accumulated stress (Tullis, 1996). This stress leakage
mechanism is analogous to a temperature-dependent viscosity that has been ob-
served in laboratory for the creeping of crystalline rocks, and can be modelled by
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the equation

(7.3)
ds(t)

dt
= α

σ(t) − σR

K

wheres(t) andσ(t) are the displacement and the stress at timet , σR is some resid-
ual stress value to which the system decays afterσ(t) reaches a failure threshold
σF , K is the elastic stiffness andα measures the intensity of this stress leakage
effect. This last parameter, with dimensions of inverse time, will in general be
dependent on both the stress level and the temperature. An analogous leakage
mechanism may also be present in other threshold systems, such as an integrate-
and-fire neural network (Hopfield, 1994), and it is likely that the results here
reviewed will also hold in that context.

One is thus led to study what effects the stress leakage mechanism would cause
in threshold models in general. As an extra and important motivation, it was hinted
that such an effect could be the physical ingredient behind the recurrent large-
magnitude earthquakes observed in some faults in Southern California, such as
those in the Parkfield region.

Building on the ideas put forth in the last section, the stress leakage dynam-
ics was introduced into the framework of the infinite range uniform RJB model
(Martins, Rundle, Anghel and Klein, 2002). In this mean-field version, the inter-
action matrixTij = Kc/(N − 1), whereN = 1/� is the number of sites in the
lattice, is uniform. The resulting equations of motion in the inter-event cycle can
then be decoupled. The analytical solution for inter-event stress temporal evolu-
tion can then be added to the computational SCCA.

The important effect of the leakage stress dynamics in the pattern of failures
of the system comes from the reduction it causes in the statistical spread of the
stress field with time. A simple measure of this smoothing is obtained through
the evolution of the variance of the dimensionless stress fieldη as a function of
dimensionless timeτ

(7.4)var
[

η(t)
]

= var
[

η(0)
]

exp

{

−
[

1 − δ�

1 − �

]

φτ

}

.

Because of this exponential smoothing of the stress field, the probability of a site
to reach failure after receiving a transfer from a failing neighbour increases, and
is an increasing function of the time-to-failure. As a consequence, the branching
ratio, defined as the average number of failures caused by each failing site, also
increases. The system is more likely to undergo larger avalanches, which may
even be system-wide when the time-to-failure is large enough.

Figure 7.1shows a log-log plot of the frequency distribution of events as a
function of their size. The effect of the stress leakage dynamics shows up clearly
in the excess over scaling obtained for large events asφ is increased from 0,
together with a depletion of the distribution in the intermediate size range. The
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Figure 7.1. The frequency distribution of earthquakes synthesised by the RJB model is shown, as a
function of their magnitude measured as the fraction of the lattice that suffered rupture. Parameterφ

is a dimensionless measure of the intensity of the stress leakage effect, and its value in the plot runs
from zero – no leakage – to 2. As it increases, the shape of the distribution changes, as commented in

the text.

slope of the scaling part of the plot also gradually becomes steeper, starting from
the mean field value 1.5. This means that a progressively larger depletion in the
distribution occurs as the event size increases. The smoothing effect of the leakage
dynamics, together with the resulting larger stress average that it causes in the
field as a whole, results in a higher probability for large events to grow, eventually
causing total rupture of the fault.

This increase in slope is reflected also in the distribution for the number of top-
plings. Here, a counter is updated each time a site fails, even if it had failed before
in the same avalanche. This number reflects more closely the model’s equivalent
for the moment release in an event. The fraction of multiple failures vanishes in
the exact mean-field limit, and the two distributions are equivalent. This is no
longer true for the model with stress leakage. The model with leakage reflects an
excess of longer events over scaling: events with some range of large durations
are more frequent.

The SCCA models with no leakage dynamics show no signs of a characteristic-
event regime. The power spectrum of the distribution of inter-event times for large
size events is white. The inclusion of leakage dynamics however changes this
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Figure 7.2. The distribution of (dimensionless) inter-event times for large earthquakes is shown for
the synthetic seismic catalog generated by the RJB model with stress leakage, forφ = 2.0. The

appearance of a characteristic inter-event time is clear.

aspect radically, as shown inFigure 7.2. The distribution of inter-event times has
a pronounced maximum, corresponding to a characteristic period, or a time lag
more frequent than shorter or longer times, between large rupture events. This
feature, whose presence was conjectured byWesnousky (1994)after an analysis
of the seismicity record of some individual faults in Souther California, is tuned
by the leakage parameter, and will be more dominant as this parameter increases.

The introduction of a stress leakage process as an inter-event dynamics in a
SCCA model for earthquake faults, such as the RJB, changes in a dramatic way
the space-time patterns that it generates. In particular, theα value for a fault may
determine its overall behaviour as of a scale-invariant or a nucleation type, with
a mixed composition in between. The importance of this new parameter could in
fact be recently evaluated. Its tuning to match the characteristics of each segment
in a complex computer representation of the fault network of Southern Califor-
nia allowed the generation of space-time patterns of rupture of unprecedented
realism (Rundle, Rundle, Tiampo, Martins, McGinnis and Klein, 2001). These
patterns were also instrumental as test ground for a conjecture on the role of the
eigenvalues and eigenvectors of a space-time correlation operator in the statistical
forecasting of earthquakes. A method based on these ideas was put forth recently,
and its results are so far encouraging (Rundle, Tiampo, Klein and Martins, 2002;
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Tiampo, Rundle, Martins, Klein and McGinnis, 2004). Another conjecture,
namely that the natural earthquake fault system may undergo ergodic dynamics,
have benefited from the leaking SCCA model. The patterns of the time evolution
of the Thirumalai–Mountain metric mined from real data have a close counterpart
in those generated by the model (Tiampo, Rundle, Klein, Martins and Ferguson,
2003; Tiampo, Rundle, Klein and Martins, 2004).

7.6. Conclusion

Computer simulation models have changed dramatically the way research is done
in various fields of Geosciences. The study of earthquake source processes, in
particular, has progressed substantially since their introduction. Much has been
learned on the basic physics underlying these processes and the trend towards
their massive usage is clear. Several research groups around the globe share the ex-
pectation that the development of a General Earthquake Model, which would put
together computer simulations and real-time analysis of seismicity, would bring
us one step closer to earthquake forecasting. This expectation is supported by
the dramatic increase in the quality of weather prediction caused by the General
Circulation Models for the Earth’s atmosphere, with which it shares both meth-
ods and scope. We presented in this chapter a brief introduction to some simple
models of earthquakes, going all the way from the simple OFC nearest-neighbour
automaton to a much more sophisticated one, the leaking RJB. We hope our pre-
sentation may encourage some of the readers to join this exciting effort.
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Chapter 8

Summary

What have we learned from the research presented in this book? As usual, one
can learn methods, and one can study results.

For methods, Chapter 2warned against simple approximations, known in
physics as mean-field theories, and represented, e.g., by differential equations
for populations as a function of time. Instead, microscopic models should be
used, based on individuals (“agents”), as done in most of our chapters (except
Section9.5 for demography). Each individual has its own properties: genome,
opinion, . . . , and simulations are easier if these properties are integers and not
continuous variables. If they are binary±1 variables, they can even be stored in
single bits, saving computer memory and time (Section9.1). The latter techniques
were used throughoutChapters 3 to 5.

Examples forresults are: good agreement with the exponential increase of
human adult mortality as a function of age,Figure 3.6; self-organisation of
menopause and analogs without the need for any specifically human properties,
Figure 3.9; establishment of sympatric speciation in many simulations of suitable
environments,Figure 4.3; possible survival of many different languages without
overwhelming dominance of any single one,Figure 5.6; explanation of typical
vote distributions in political elections,Figure 6.8; a possible deviation from the
earthquake power law,Figure 7.1.

Does it mean that biologists, linguists, sociologists and geologists take us se-
rious? Some do: Biologists published papers with us, a famous linguist wanted
to hear a talk aboutChapter 5, the editor of a sociology journal repeatedly sent
us papers to referee. But these are more the exception than the rule; the citations
of these interdisciplinary papers of physicists by non-physicists are not many. Of
course, why worry about not being cited by ageing biologists who don’t cite each
other?

There are good reasons for the less-than-overwhelming reception of interdisci-
plinary research of physicists by non-physicists, besides the natural rejection of
anything alien known from immunology: Where is the reallybig effect? Physics
itself is taken serious (not necessarily in a positive sense) since the explosion of
the first atomic bombs six decades ago. Nothing like that has happened thus far
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for computational biology, linguistics, sociology or geology. If it would lead to
anti-ageing medicine or to the reliable prediction of revolutions or earthquakes,
the situation would be different, and perhaps this will come in the future. Mankind
took centuries, from the description of planetary motion by Kepler to human land-
ing on the Moon. The short-term task of Kepler was to write horoscopes for a
famous general, and, in this task, he was not very successful: The general was as-
sassinated. Similarly, the work summarised in this book may later lead to progress
on unexpected questions, using the methods described here. These drawbacks and
possibilities are shared by us together with computational biologists etc.

Thus let us follow Kepler and keep our minds open, without demanding imme-
diate large-scale applications.



Chapter 9

Appendix: Programs

To encourage readers to start their own simulation we give here some selected
programs. They may be simplifications compared to those which we really have
used, for example by omitting the evaluation of less important quantities. Note
that often the random numbers are produced not by a built-in random number
generator likerand but by explicit multiplication of an odd integer with 16807,
1313 (for 64-bit integers only), or 65539 (= 216 + 3, which may also be imple-
mented by suitable shifts). Our programs are supposed to be understood, not to be
merely used.

9.1. Single-bit handling

Good science says yes or no. Many variables in this book are binary,±1 (alter-
natively 0 or 1, or: true or false). It is a waste of computer memory to store such
a variable in a computer word of 32 or 64 bits as is done if one uses the Boolean
variable typelogical in Fortran. By reducing the word length frominte-
ger*8 (64 bits) orinteger*4 (32 bits) to 16 bits viainteger*2 or to 8 bits
via (regrettably)byte in Fortran (or analogous declarations in C) for these binary
variables, one can save some memory, but the most efficient way is to use the sin-
gle bits. This was possible with C since the beginning, while only the Fortran 90
standard made these commands legal there, unfortunately not in the simple way
in which some compilers handled these Fortran extensions decades earlier. For
example, let us find the value (0 or 1) of the third bit in a wordi. Then we define
a bit mask which is zero everywhere except in its third position, The logical AND
of i with this bit mask them gives only the third bit ofi, at its original position;
everything else is zero. Shifting this bit to the right end of the word, we get an
integer which is zero or one, and equal to the original third bit ofi.

These techniques were used for the genomes in Section2.8 andChapters 3,
and 4, for the languages inChapter 5, and for some papers on opinion dynamics
and neural nets (Chapter 6). For Ising models or cellular automata like the “Game
of Life” not discussed here, these techniques may not only save memory but also
computer time since one single bit-string command may then deal with, say, 32
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variables at once (de Oliveira, 1991). Physics simulations with these techniques
started to our knowledge at the beginning of the 1970s.

We now list the relevant Fortran commands, giving their C analogs in paren-
theses, and explain them with true and false; “iff” means if and only if. Each
command deals with all (32 ?) bits of the words at once:

iand(i,k) (in C: i & k): True iff both are true.
ior (i,k) (in C: i | k): False iff both are false.
ieor(i,k) (in C: i ∧ k): True iff the two are different (exclusive or).
not(i) (in C: ∼ i): True iff bit is false (reverses all bits).
ishft(i,k) (in C: i << k): Shift to left by k positions ifk > 0.
ishft(i,-k) (in C: i >> k): Shift to right by k positions ifk > 0.

Usually the bits shifted over the ends of the word byishft are lost, and zeroes
are inserted at the other end of the word. But it is better to check this, if it is
important. Circular shifts can be constructed by combining shifts to the left and
right with anior.

Counting all the bits in a wordi can be done in a simple inefficient way by
shifting the word 32 times to the right after reading its rightmost bit and adding
it to a sum through+iand(i,1). More efficient is a table of length 256 for
each 8-bit section of the word (or of length 65536 for each 16-bit section) which
contains for the binary number in that section the number of bits set to one, like
itable(7) = 3. This small table is filled at the beginning of the program
once, using the primitive method. With suitable shifts and ANDs with bit masks,
the wordi is divided into its few sections, for each section the number of one-bits
is read off, and the results are added. Perhaps your compiler has a bit-count built
in saving you the trouble.

9.2. Ageing in Penna model

This program and its description are taken from the appendix of our book (de
Oliveira, de Oliveira and Stauffer, 1999) except that the genetic death age is cal-
culated right at birth. Only the asexual version is given here, where the last letter
f of a variable name means “female”; the male variables are missing.

c Asexual; genetic death age calculated at birth,

c stored in DATA

implicit none

integer popdim

parameter(popdim=80000)

integer popmax,inipop,maxstep,medstep,minage,fage,

1 lim,fmut,birth,n6,t,verhu,i,p,seed,ibm,gene1,fa,

2 n,imut,age,nmut,fpop, fymed(0:32),fnumber(0:32),

3 bit(0:32),gen1f(popdim),dataf(popdim),dage,
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4 gd(0:33),gdeath(0:33)

parameter(popmax=200000 , inipop=popmax/10,

1 maxstep=10000,medstep=maxstep/2,minage= 8,fage=32,

2 lim=3, fmut=1, birth=3, seed=1, n6=63)

data gdeath/34*0/

c

ibm=2*seed-1

print *, popmax,inipop,maxstep,medstep,minage,

1 fage,lim,fmut,birth,seed

fpop=inipop

bit(0)=1

do 2 i=0,32

if(i.gt.0) bit(i)=ishft(bit(i-1),1)

fymed(i)=0

fnumber(i)=0

2 ibm=ibm*16807

fnumber(0)=fpop

do 6 i=1,fpop

dataf(i)=ishft(33,6)

6 gen1f(i)=0

c dataf: age at bits 0 to 5, genetic death

c age at 6 to 11

do 7 t=1,maxstep

verhu=(fpop*2.0/popmax-1.0)*2147483647

print *, t,fpop

do 3 age=0,33

3 gd(age)=0

i=1

fa=fpop

9 age =iand(n6,dataf(i))

dage=iand(n6,ishft(dataf(i),-6))

fnumber(age)=fnumber(age)-1

age=age+1

if(age.ge.dage) gd(age)=gd(age)+1

ibm=ibm*16807

if(ibm.lt.verhu.or.age.ge.dage) then

c death

if(fpop.le.1) goto 1

gen1f(i)=gen1f(fpop)

dataf(i)=dataf(fpop)

fpop=fpop-1

if(fpop.ge.fa) then

i=i+1

else

fa=fa-1

endif
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else

c survival

fnumber(age)=fnumber(age)+1

dataf(i)=ior(age,ishft(dage,6))

if(age.ge.minage.and.age.le.fage) then

do 12 n=1,birth

c birth

gene1=gen1f(i)

do 13 imut=1,fmut

ibm=ibm*16807

p=bit(ishft(ibm,-27))

c mutations in mother

13 gene1=ior(gene1,p)

fnumber(0)=fnumber(0)+1

fpop=fpop+1

if(fpop.gt.popdim) goto 1

gen1f(fpop)=gene1

nmut=0

do 11 age=1,32

nmut=nmut+iand(gene1,1)

if(nmut.ge.lim) goto 21

11 gene1=ishft(gene1,-1)

21 dataf(fpop)=ishft(age,6)

12 continue

c if(female suitable) then

endif

i=i+1

endif

c if(death) .. else (survival, birth) ..

if(i.le.fa) goto 9

c end of selection and birth, now start averages

if(t.lt.maxstep-medstep) goto 7

do 10 i=0,32

gdeath(i)=gdeath(i)+gd(i)

10 fymed(i)=fymed(i)+fnumber(i)

7 continue

print 100, (i,fymed(i)*1.0/medstep,

1 gdeath(i)*1.0/medstep,i=0,32)

100 format(1x,i3,2f11.2)

stop

1 print *, ’error’

stop

end

The crucial array is calleddataf and is basically the passport for the living
females (no males yet fordatam). In the rightmost (least significant) 6 bits of the
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32-bit worddataf is stored the age, and in the next 6 bits to the left the genetic
death age.

Loop 7 goes over the time steps, from 1 tomaxstep, with averages taken
only over the lastmedstep iterations. The Verhulst factor is newly calculated
for each new time step, but within one time step stays constant for all survivors.
After label 9 we read off fromdataf (by shifts to the right and logical AND
with the bit-string 111111) the current age and the genetic death age. The number
fnumber of females at this age is decreased by one, and the age increased by one.
A new random numberibm is drawn, and compared with the Verhulst factor. If
the random number is smaller than the Verhulst factor (normalised to the interval
from −231 to +231 to speed up the program), or if the new age is no longer below
the genetic death agedage, then this individual dies; otherwise it survives and
can give birth. Already before this if-condition, a genetic death is counted in the
arraygd(age).

Death means that the information (gen1f anddataf) for the last individ-
ual simulated is placed into the array positions for the dead individual and the
population is decreased by one.

Survival means that the numberfnumber of females of the new age is in-
creased by one. The genetic age and the current age are stored in the passport
dataf, via shifts to the left and logical OR operations. Now, if the age is be-
tween the minimum and maximum ages for reproduction (minage andfage),
births can happen.

At birth, each of thebirth daughters produced in loop 12 gets the genome
gen1f of the mother, except that atfmut randomly selected bit positions be-
tween 0 and 31 (obtained by looking at the five most significant bits of the random
numberibm) the bit in the daughter genomegene1 is set equal to one through a
logical OR with a suitable array elementp. The number of babies,fnumber(0),
then is increased by one, and so is the populationfpop. The genetic death age
of the new babyfpop is evaluated in loop 11 by going through the bits of the
baby genomegene1 and checking at which age the numbernmut of set bits
up to the positionage reaches the lethal limitlim. The new baby gets a pass-
portdataf(fpop) containing the genetic death age and also the current age of
zero.

The 48 lines followingi=1, up togoto 9, are the loop over all individuals
i = 1, 2, . . . , fpop. Since the populationfpop varies due to the death and birth
processes, we did not deal with them in a fixed loopi=1,fpop, and instead
used the backward jumpgoto 9 and the numberfa of adult individuals; at the
beginning of the iteration all individuals are adult:fa = fpop.

After all individuals have been dealt with at this time, we collect the age dis-
tributionfnumber into the arrayfymed during the latter part of the simulation.
After the time loop 7 is finished the average population and the number of genetic
deaths are printed out as a function of age. For quality simulations, 64-bit integers
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should be used foribm,verhu,fymed,gdeath, as in the language program
of Section9.4.

9.3. Bak–Sneppen evolution

parameter(n=1000 ,np1=n+1)

dimension ir(0:np1), ihist(0:1000)

data iseed/123456789/,max/100000 /,maxn/2147483647/

1 ,ihist/1001*0/

print *, n,iseed,max

ibm=2*iseed-1

factor=0.5d0/2147483648.0d0

do 1 i=0,np1

ibm=ibm*16807

1 ir(i)=ibm

do 2 istep=1,max

min=maxn

do 3 i=1,n

if(ir(i).gt.min) goto 3

imin=i

min=ir(i)

3 continue

ibm=ibm*65549

ir(imin+1)=ibm

ibm=ibm*16807

ir(imin )=ibm

ibm=ibm*65539

ir(imin-1)=ibm

2 continue

do 4 i=1,n

k=1000*(0.5+factor*ir(i))

4 ihist(k)=ihist(k)+1

do 6 k=0,1000

6 print *, k, ihist(k)

stop

end

The program fragments in Section4.3.1 would be quite useful for learning
how to keep track of the smallest element in a large evolving set, had they been
written in an understandable language. However, since they were written in C,
this section presents a simple program for teaching Bak–Sneppen simulation in
Fortran, without binary trees. Brazilians may call this primitive search for the
minimum the Portuguese method, while Germans say one should not use a big
cannon to shoot at a sparrow. The program took 35 minutes on a fast workstation
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for N = 100 000 species up to time= 100, as inFigure 4.25. A ten times bigger
simulation for the same time would last hundred times longer and thus is not
recommended.

The species fitness is taken here as an integerir between−231 and +231

and initially is random. The outer loop 2 runs over all steps, of which each time
unit needsn for n species. The innermost loop 3 determinesir(imin) as the
smallest of them, with the valuemin. When loop 3 is finished, loop 2 continues
with replacingir(min) and its two neighbours by three new random numbers.
After loop 2 is finished, we bin all the fitnessir into thousand intervalsk =
1, 2, . . . , 1000 and print out the histogramihist.

9.4. Language competition

implicit none

integer popdim,nbyte,nbit,nshift,len,irun,nrun,

1 nhist(1000000)

real fmut,rand,select

parameter(nbyte=1,popdim=20000 ,nbit=8*nbyte,

1 len=2**(nbit-1))

c integer*2 gen1f(popdim), gene1, p, bit(0:nbit)

byte gen1f(popdim), gene1, p, bit(0:nbit)

integer popmax,inipop,maxstep,fage,k,nlog(0:30),j,

1 birth,t,i,seed,fa,n,fpop,nlabel(-len:len),number,kmut

parameter(popmax=popdim,inipop=1,maxstep=1000,nrun=1,

1 fage=nbit,birth=1,seed=1)

integer*8 ibm,verhu,mult,imut

nshift=0

if(nbyte.eq.2) nshift=60

if(nbyte.eq.1) nshift=61

if(nshift.eq.0) stop 9

ibm=2*seed-1

mult=13**7

mult=mult*13**6

fmut=rand(seed)

print *, popmax,inipop,maxstep,

1 fage,birth,seed,nbit,nrun

do 18 kmut= 600,600,100

fmut=kmut*nbit*0.0001

print *, fmut,kmut

if(fmut.ge.1.0) stop 9

imut=2147483648.0d0*(fmut*4.0d0-2.0d0)*2147483648.0d0

bit(0)=1

do 2 i=0,nbit

if(i.gt.0) bit(i)=ishft(bit(i-1),1)
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2 ibm=ibm*16807

do 15 k=1,1000000

15 nhist(k)=0

do 11 irun=1,nrun

fpop=inipop

do 6 i=1,fpop

6 gen1f(i)=0

select=2.0/popmax

c

do 7 t=1,maxstep

verhu=2147483648.0d0*(fpop*4.0/popmax-2.0)

1 *2147483648.0d0

do 3 i=-len,len

3 nlabel(i)=0

do 4 i=1,fpop

4 nlabel(gen1f(i))=nlabel(gen1f(i))+1

if(t.eq.(t/100)*100) then

number=0

do 5 i=-len,len

5 if(nlabel(i).ge.10) number=number+1

print 8,irun,t,fpop,number,nlabel(0),

1 (nlabel(2**i),i=0,4)

8 format(2i5,3i10,5i8)

end if

i=1

fa=fpop

9 if(rand(0).lt.fpop*(1.0-(nlabel(gen1f(i))*1.0/fpop)

1 **2)*select) then

14 k=1+rand(0)*fpop

if(k.le.0.or.k.gt.fpop) goto 14

gen1f(i)=gen1f(k)

end if

ibm=ibm*16807

if(ibm.lt.verhu) then

c death

if(fpop.le.1) goto 1

gen1f(i)=gen1f(fpop)

fpop=fpop-1

if(fpop.ge.fa) then

i=i+1

else

fa=fa-1

endif

else

c survival

do 12 n=1,birth
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gene1=gen1f(i)

fpop=fpop+1

if(fpop.gt.popdim) goto 1

ibm=ibm*mult

if(ibm.gt.imut) goto 13

c Exactly one mutation is made with probability fmut

ibm=ibm*16807

p=bit(ishft(ibm,-nshift))

gene1=ieor(gene1,p)

13 continue

gen1f(fpop)=gene1

12 continue

i=i+1

endif

c if(death) .. else (survival, birth) ..

if(i.le.fa) goto 9

7 continue

do 10 i=-len,len

if(nlabel(i).eq.0) goto 10

k=min0(1000000,nlabel(i))

nhist(k)=nhist(k)+1

c if(irun.eq.nrun) print *,i,nlabel(i)

10 continue

11 continue

do 19 k=0,30

19 nlog(k)=0

do 16 j=1,1000000

k=1.0+alog(float(j))/0.69315

16 nlog(k)=nlog(k)+nhist(j)

do 17 k=0,30

17 if(nlog(k).gt.0) print *, 0.707*2**k, nlog(k)

18 continue

stop

1 print *, ’error’,fpop

end

The program allows for bit-strings of lengthℓ = 8 stored in words of type
byte, or of lengthℓ = 16 using typeinteger*2. This choice has to be made
in theparameter line and the line following it. We have 2ℓ possible languages,
each of which can be stored easily. Forℓ = 32 and 64 we used a different, more
time consuming program available from us aslanguage20.f.

Our random numbers are 64-bit integersibm with −263 < ibm < 263 pro-
duced by multiplication with 16807 or withmult = 1313; in addition we use
a built-in random number generatorrand(0) to give real numbers between 0
and 1. If only 32-bit integers are available, readers have to adjust the lines where
2147483648= 231 appears.
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Loop 7 is the main time loop, and we now describe in the order of the program
what happens at each iteration. Loops 3 and 4 count innlabel(.) how many
individuals speak a given language. Every 100 time steps the totalnumber of
languages spoken by at least ten people is determined and printed out together
with some of the language sizesnlabel.

The 37 lines followingi=1, up togoto 9, are the loop over all individuals
i = 1, 2, . . . , fpop. Since the populationfpop varies due to the death and birth
processes, we did not deal with them in a fixed loopi=1,fpop, and instead
used the backward jumpgoto 9 and the numberfa of adult individuals; at the
beginning of the iteration all individuals are adult:fa = fpop. (We explained
this already for the ageing program, from which the present program was devel-
oped.)

The six lines starting with label 9 simulate the switching from a rare language
to that of a randomly selected individualk. Then comes anif then else

endif choice between Verhulst death and survival. In case of death, the last
individualfpop is put into the place of the now dead individuali, and iffpop
was a child born during the same iteration, then the counteri for the individual is
increased by one since this child is not subject now to Verhulst deaths. Otherwise
the numberfa of adults to be treated decreases by one.

In the case of survival instead of death, the counteri always increases by one,
and loop 12 allows for the birth of several children. Each child increasesfpop by
one, gets a random bit positionishft(ibm,-nshift) between 1 andℓ, and
has the bit at that position changed with an exclusive-or commandieor.

After the if then else endif choice between death and survival, we
jump back to label 9 if the counteri is not larger than the numberfa of adults
to be treated. In this way all the adults, including the ones which replace the dead
ones, are treated once, while the children born during this iteration neither die nor
give birth.

9.5. Retirement demography

If the mortality functionμ(a) = −d[ln S(a)]/da obeys equation(6.1b), then the
probabilityS(a) to survive from birth up to agea is (Wachter and Finch, 1997)

S(a) = exp
[

−A · e−bX ·
(

eba − 1
)]

.

In the computer program,μ is denoted byq and a by iage. We assume the
characteristic ageX to be 102 years before 1971 and to increase by 0.15 years
every year afterwards, while the Gompertz slopeb from the year 1821 up to 1971
increases linearly fromb0 = 0.07 tobmax = 0.093 and stays constant thereafter.
These assumptions make our extrapolations different from traditional ones like
Bomsdorf (2004).
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The number of births per woman is assumed to increase linearly from 2.17 in
1821 to 2.2 in 1971 and to follow equation(6.1c) thereafter; more precisely it
takes the smaller of these two values. Births happen with equal probabilities for
ages 21 to 40 of the mother. These birth rates are not the fecundities of real de-
mography but the number of children reaching age 21, when they can get children
themselves. For rich countries today about 99 percent of all babies reach this age;
in earlier times much more babies were born and died during childhood, making
them negligible for population growth. Immigrants and emigrants are assumed to
be between 6 and 40 years old, with equal probability for all these ages.

real*8 S(0:130),pop(0:130),q(130),A,b,X,X0,babies

data X0/103/,d/0.15/,A/7.0/,b0/0.07/,bmax/0.093/,

1 birth0/2.17/,menop/40/,c/.0000/

c Yashin X=X0+d*t; Gavrilov-Azbel-Gompertz

c q/b = A*exp(b(a-X))

print *, X0, a, birth0, menop, b0, c, d

b=b0

X=X0

const=(2.2-birth0)/150.

do 3 iyear=1321,2100

birth=birth0+min0(150,iyear-1821)*const

1 -0.4*(1+tanh((iyear-1971)*0.33))

if(iyear.ge.1821.and.iyear.le.1971)

1 b=b0 + (iyear-1821)*(bmax-b0)/150

if(iyear.gt.1971) X=X0+d*(iyear-1971)

do 1 iage=0,130

S(iage)=dexp(-A*dexp(-b*X)*(dexp(b*iage)-1.0d0))

c S = survival probability for Gompertz law

c pop = actual survivors, can be larger than one

c q = mortality function calculated from s

if(iyear.eq.1321) pop(iage)=S(iage)

1 if(iage.gt.0) q(iage)=dlog(S(iage-1)/S(iage))

babies=0.0d0

do 4 iage=21,menop

4 babies=babies+pop(iage)*(0.5d0/(menop-20))*birth

pop(0)=babies

do 6 iage=130,1,-1

6 pop(iage)=pop(iage-1)*(S(iage)/S(iage-1))

if(iyear.gt.2005) then

do 2 iage=6,40

2 pop(iage)=pop(iage)+tot*c/35.0

endif

worker=0.0

pensio=0.0

tot =0.0
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expect=0.0

c numbers of: workers, pensioneers, population,

c life exp. at 65

do 5 iage=1,130

if(iage.gt.65) expect=expect+S(iage)/S(65)

ss=pop(iage)

tot=tot+ss

if(iage.gt.20.and.iage.le.60) worker=worker+ss

c5 if(iage.gt.60. or.iage.le.20) pensio=pensio+ss

5 if(iage.gt.60) pensio=pensio+ss

3 if(iyear.gt.1820)

1 print 100,iyear,tot,birth,pensio/tot,pensio/worker,

2 expect,b,X

100 format(i4,7f8.3)

stop

end

The first lines set the various parameters. The main loop 3 starts in the year
1321 to have a reasonably stable age distribution when the real simulation starts
in the year 1821. Then for each year, the births per womanbirth, the Gom-
pertz slopeb, and the characteristic ageX are calculated according to the above
assumptions (Azbel’, 1996).

Loop 1 first calculates the survival probabilityS(iage) from the formula
given at the beginning of this section, and then the mortality function (which
is not used later but could be printed out if desired); it also initialises the age
distributionpop(iage) such that the population of babies less than one year
old is normalised to unity.

Loop 4 simulates the birth of daughters; sons are negligible for this program.
Their numbers are put intopop at zero age. (Sons would have to be treated sep-
arately if we assume that the fraction of women employed for work changes with
time, while that for men does not.) Loop 6 calculates the new age distribution
from the survival probabilitiesS(iage). Loop 2 adds immigrants to the popula-
tion, a fractionc of the total population each year. Now the population dynamics
is finished.

The remaining lines of loop 3 calculate in loop 5 the life expectancy
∫

S(a) da

at age 65, the total population (arbitrary units), the number of people in the work-
ing ages from 21 to 60 (taking into account that many retire before the official
retirement age if that exists), and the number of retired people. (The omitted line
c5 would include the children among the pensioneers.)

9.6. Car traffic

This car-following program of the NaSch model is a simplification of what An-
dreas Schadschneider gave to the senile author years ago, and was improved by
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students. It stores the velocity of each car but not its position, and thus simpli-
fies the periodic boundary conditions and does not require a memory element for
each lattice site. Instead of the position, the distance between each car and the one
before it is stored.

c Nagel-Schreckenberg car following program

implicit none

integer vmax,L,N,step,j,vsum,dist,iter0,iter1,ibm,

1 iseed,ip,distjm1

real p,vav

parameter (N=2000 ,L=10000 )

dimension vel(0:N),dist(0:N)

byte vel

data p/0.5/, vmax/5/, iter0/5000 /, iter1/20000/,

1 iseed/4711/

print *, p,vmax,N,L,iter0,iter1,iseed

if(N.ge.L .or. iter1.le.iter0) stop 9

ibm=2*iseed-1

ip=(2*p-1)*2147483648.0d0

c Initialisation from jam; dis(j-1) is gap between

c j-1 and j. 1 2 3 4 5 ... N moving to right.

c At the start only N moves

do 1 j=1,N

vel(j)=0

1 dist(j)=0

dist(N)=L-N

dist(0)=L-N

vav=0.

c End of initialisation; now iter1 steps

do 2 step=1,iter1

c Begin to update velocities and distances

vsum=0

vel(0)=vel(N)

do 3 j=1,N

vel(j)=min(vel(j)+1,vmax,dist(j))

ibm=ibm*16807

if (ibm.lt.ip) vel(j)=max(0,vel(j)-1)

dist(j-1)=dist(j-1)+vel(j)-vel(j-1)

3 vsum=vsum+vel(j)

dist(N)=dist(N)+vel(1)-vel(N)

c End updating velocities and distances;

c calculate average

c Ignore first iter0 iterations for averages

if (step.gt.iter0) vav=vav+vsum
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if(mod(step,100).eq.0) print *, step, vsum*1.0/N

2 continue

vav=vav*1.0/(iter1-iter0)

print *, ’density, current,

1 velocity = ’, N*1.0/L,vav/L,vav/N

stop

end

Initially, all N cars stand bumper-by-bumper in one huge jam at the left end of
the single-lane one-way street, loop 1. (Other initial conditions may give different
results because of metastability.) Loop 2 goes over all time steps, after which
three averages are printed out. The crucial part is the innermost loop 3. This loop
3 starts with the deterministic possible increase of the velocity, if the distance
dist ahead and the maximum velocity allow it. Then a random numberibm

determines whether or not the velocityvel needlessly decreases by one unit.
Finally, the velocity is summed up invsum for later averaging.

9.7. Scale-free networks

This program only builds a network ofmax nodes; for applications one may wish
to have for each site the list of its neighbours, not only their number as is counted
here. For small networks this is easily done by amnb× max neighbour matrix
wheremnb must at least as large as the largest number of neighbours for any node.
Large networks then need a more efficient but complicated way of storage. If one
wants to avoid these complications for large networks and nevertheless needs a
list of neighbours for each site one can work with directed networks (Newman,
Strogatz and Watts, 2001; Dorogovtsev, Mendes and Sanukhin, 2001), where a
new site selectsm bosses from the existing networks, but these bosses do not
have the new site as a boss. Then every node has exactlym neighbours which are
easily stored in am× max matrix. Such a program was published bySumour and
Shabat (2005). Now we deal with the simple case without neighbour list.

parameter(nrun=1 ,maxtime=7000000 ,m=3,iseed=1,

1 max=maxtime+m,length=1+2*m*maxtime+m*(m-1))

integer*8 ibm

dimension k(max), nk(10000), list(length)

data nk/10000*0/

print *, nrun, maxtime, m, iseed

ibm=2*iseed-1

factor=(0.25/2147483648.0d0)/2147483648.0d0

c factor=0.5/2147483648.0d0

do 5 irun=1,nrun

do 3 i=1,m
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do 7 j=(i-1)*(m-1)+1,(i-1)*(m-1)+m-1

7 list(j)=i

3 k(i)=m-1

L=m*(m-1)

if(m.eq.1) then

L=1

list(1)=1

endif

c All m initial sites are connected with each other

do 1 n=m+1,max

do 2 new=1,m

4 ibm=ibm*16807

j=1+(ibm*factor+0.5)*L

if(j.le.0.or.j.gt.L) goto 4

j=list(j)

list(L+new)=j

2 k(j)=k(j)+1

do 8 j=1,m

8 list(j+L+m)=n

L=L+2*m

1 k(n)=m

print *, irun

do 5 i=1,max

k(i)=min0(k(i),10000)

5 nk(k(i))=nk(k(i))+1

do 6 i=1,10000

6 if(nk(i).gt.0) print *, i,nk(i)

stop

end

The initial core ofm nodes needs to be treated separately in loop 3 since there
every node has onlym − 1 neighbours. (One may simplify the code by making
each node also neighbour to itself.) Therefore the casem = 1 needs to be treated
separately after loop 3. The important part of the program is the loop 1 over all
the nodes which are added to the network after the core has been built.

In that loop 1, we go for each new node throughm neighbour selections. This
is done in loop 2, wheren is the new node. First,j is a random index between
1 andL whereL is the current length of the Kertészlist. (In the rare case that
rounding errors putj outside this interval, a new random integeribm is selected.)
Thenj changes its meaning to become that node which stands at positionj of
the Kertész list. This node has now been selected as a neighbour, it is added to the
list, and the numberk(j) of neighbours of this node is increased by one since
the new site is also a neighbour ofj. After loop 2 is finished, loop 8 adds the new
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sitem times to the list, and the numberk(n) of neighbours for this new noden
is set tom.

In this way, the neighbour relations are symmetric (undirected), that means if
n is neighbour toj then alsoj is neighbour ton. And the Kertészlist con-
tains, in a rather disordered way, each site exactly as often as it is a neighbour.
Thus selecting randomly an element of that list gives us a node with a probability
proportional to the number of neighbours i that node has.

In the final lines of the program, we calculate the numbernk of sites havingk
neighbours and print out its nonzero elements up to a maximum neighbourhood of
10 000 nodes. The program allows to average (sum) overnrun networks through
loop 5, since a single network is not self-averaging (Stauffer and Aharony, 2004).

9.8. Neural Hopfield–Hebb networks

In order to simplify the programming and to allow understandable print-outs of
small patterns, we do not store many random patterns but only two nonrandom
ones: the first one is a cross× and the second one a plus+. Loops 1 and 2
initialise these two patternsξμ. They, and the later time-dependent patternS are
printed out only if the patterns of sizeL × L have the linear dimensionL = 38.
The “fuzzy” patternS, which later should agree with one of the stored patterns, is
initialised in loop 3: With probability of 55 percent it agrees with patternμ = 1,
and in 45 percent of theL2 sites it disagrees. Now the iterations of loop 4 start.
Loop 5 calculates the overlapsmμ(t) betweenS and the stored patternsμ = 1, 2.
If nothing changed in the last iteration, nothing will change in the future since a
fixed point has been reached (ifixed = 0), and the simulation stops. Otherwise
the inner loop 4 calculates the newifixed and the fieldshi = ∑

μ ξ
μ
i mμ(t),

and from the sign of the fields the newSi(t).

program neuron

parameter(L=16000,n=L*L)

dimension ixi(n,2),is(n),m(2)

byte ixi,is

prob=0.450

ibm=2*1-1

iprob=(2.0*prob-1.0)*2147483648.0d0

c probability for initial pixels to differ from

c desired pattern

print *, prob,ibm

ifixed=0

do 1 mu=1,2

do 1 i=1,n

1 ixi(i,mu)=1

do 2 line=1,L
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Lm1=line-1

ibm=ibm*65539

ixi(line+Lm1*L ,1) = -1

ixi(L-Lm1+Lm1*L,1) = -1

ixi(N/2+line ,2) = -1

2 ixi(L/2 + LM1*L,2) = -1

do 3 i=1,n

ibm=ibm*16807

is(i)=ixi(i,1)

3 if(ibm.lt.iprob) is(i)=-is(i)

if(L.eq.38) print 100, (ixi(i,1),i=1,n)

c initialisation of 2 patterns + 1 noisy version

c of 1st pattern

do 4 itime=1,100

if(L.eq.38) print 100, (is(i),i=1,n)

do 5 mu=1,2

m(mu)=0

do 5 k=1,n

5 m(mu)=m(mu)+is(k)*ixi(k,mu)

print *, itime,m(1),m(2),ifixed

if(ifixed.eq.n) stop

ifixed=0

do 4 i=1,n

isold=is(i)

ifield=ixi(i,1)*m(1)+ixi(i,2)*m(2)

is(i)=1

if(ifield.lt.0) is(i)=-1

4 ifixed=ifixed+isold*is(i)

100 format(1x,38i2)

end

In three iterations and less than ten seconds on a fast workstation with a Giga-
byte of memory, patternμ = 1 is recovered without any error. The above patterns
each have 256 million bits±1, and so the synaptic matrixJik has nearly 1017 el-
ements, 108 times more than what is stored here. We leave it to the critical reader
to see that only in this teaching example and not in general the Penna–Oliveira
trick saves memory by a factor 108.



This page intentionally left blank



References∗

Abrams, D.M., Strogatz, S.H., 2003. Nature 424, 900.
Ackermann, M., Stearns, S.C., Jenal, U., 2003. Science 300, 1920.
Albert, R., Barabási, A.-L., 2002. Rev. Mod. Phys. 74, 47.
Altevolmer, A.K., 1999. Int. J. Mod. Phys. C10, 717.
Altmann, E.G., Hallerberg, S., Kantz, K., 2005. Preprint.
Anderson, S.R., 2004. Doctor Dolittle’s Delusion: Animals and the Uniqueness

of Human Language. Yale University Press, New Haven.
Anderson, P.W., Arrow, K.J., Pines, D., 1988. The Economy as an Evolving Com-

plex System. Addison-Wesley Publishing, New York.
Angle, J., 1986. Social Forces 64, 293.
Arnopoulos, P., 2005. Sociophysics: Cosmos and Chaos in Nature and Culture.

Nova Science Publishers, New York.
Arthur, B., 1990. Scientific American 262 (February), 80.
Assmann, P., 2004. Int. J. Mod. Phys. C 14, 1439.
Austad, S.A., 1993. J. Zool. 229, 695.
Austad, S.N., 2001. The Comparative Biology of Aging. Cristafalo, V.J., Adel-

man, R. (Eds.), Annual Review of Gerontology and Geriatrics, vol. 21.
Springer, New York.

Aviv, A., Levy, D., Mangel, M., 2003. Mech. Ageing. Dev. 124, 829.
Axelrod, R., 1997. J. Conflict Resolut. 41, 203.
Azbel’, M.Ya., 1996. Proc. Roy. Soc. B263, 1449.
Azbel’, M.Ya., 2005. Physica A353, 625.
Bagnoli, F., Bezzi, M., 2000. An Evolutionary Model for Simple Ecosystems.

Stauffer, D. (Ed.), Annual Reviews of Computational Physics, vol. VII. World
Scientific, Singapore. P. 265.

Bagnoli, F., Guardini, C., 2005. Physica A347, 489 and 534.
Bak, P., 1997. How Nature Works: the Science of Self-Organized Criticality. Ox-

ford University Press.
Bak, P., 2004. Physica A340, entire volume.
Bak, P., Sneppen, K., 1993. Phys. Rev. Lett. 71, 4083.
Barabási, A.L., 2002. Linked: The New Science of Networks. Perseus Books

Group, Cambridge, MA.
Barabási, A.L., Albert, R., 1999. Science 286, 509.

∗ Citations like physics/0501097 refer to the e-print server atwww.arXiv.orgwhich is freely acces-
sible. Listing is alphabetical according to the first author’s family name, then first initial, then year.
For each first author, single-authored papers are listed before collaborations.

259

http://www.arXiv.org


260 References

Baxter, R.J., 1982. Exactly Solved Models in Statistical Mechanics. Academic
Press, New York.

Beggs, J.M., Plenz, D., 2003. J. Neurosci. 23, 1167.
Behera, L., Schweitzer, F., 2003. Int. J. Mod. Phys. C14, 1331.
Ben-Naim, E., Krapivsky, P., Redner, S., 2003. Physica D183, 190.
Ben-Naim, E., Redner, S., 2005. J. Stat. Mech. L11002.
Bernardes, A.T., Stauffer, D., Kertész, J., 2002. Eur. Phys. J. B 25, 123.
Berquó, E., Cavenaghi, S., 2005. Ciência Hoje 37 (9), 28.
Bilham, R., 1996. Reduction and Predictability of Natural Disasters. Addison-

Wesley, Reading. P. 19.
Binder, K., Young, A.P., 1986. Rev. Mod. Phys. 58, 801.
Boag, P.T., Grant, P.R., 1978. Nature 274, 793.
Boag, P.T., Grant, P.R., 1981. Science 214, 82.
Bomsdorf, E., 2004. Exp. Gerontology 39, 159.
Bonabeau, E., Theraulaz, G.G., Deneubourg, J.-L., 1995. Physica A217, 373.
Bordogna, C.M., Albano, E.V., 2006. In: DYSES05 Proceedings. Int. J. Mod.

Phys. C17 (1).
Bornholdt, S., Schuster, H.G. (Eds.), 2003. Handbook of Graphs and Networks.

Wiley–VCH, Weinheim.
Branco, M.A., Sherman, P.W., 2005. Trends Ecol. Evol. 20, 271.
Brandau, M., Trimper, S., 2006. Int. J. Mod. Phys. C17 (2), physics/0507179.
Brigatti, E., Martins, J.S. Sá, Roditi, I., 2004. Eur. Phys. J. B42, 431.
Briscoe, E.J., 2000. Language 76, 245.
Brown, G.P., Shine, R., Madsen, T., 2002. J. Tropical Ecology 18, 549.
Burridge, R., Knopoff, L., 1967. Bull. Seism. Soc. Am. 57, 341.
Caiafa, C.F., Proto, A.N., 2006. In: DYSES05 Proceedings. Int. J. Mod. Phys. C17

(1).
Callen, E., Shapero, D., 1974. Physics Today 27 (2), 23.
Cangelosi, A., Parisi, D. (Eds.), 2002. Simulating the Evolution of Language.

Springer, New York;
See also Culicover, P., Nowak, A., Dynamical Grammar. Oxford Uni-
versity Press, Oxford, 2003, and current literature inhttp://www.isrl.uiuc.
edu/amag/langev.

Cann, R.L., Stoneking, M., Wilson, A.C., 1987. Nature 325, 31.
Carey, J.R., 2002. Exp. Gerontology 37, 567.
Carey, J.R., Liedo, P., Orozco, D., Vaupel, J.W., 1992. Science 258, 457.
Carey, J.R., Judge, D.S., 2000. Longevity Records: Life Spans of Mammals,

Birds, Amphiphiles, Reptiles, and Fish. Odense University Press, Odense,
Denmark.

Castellano, C., Loreto, V., Barratt, A., Cecconi, F., Parisi, D., 2005. Phys.
Rev. E71, 066107.

http://www.isrl.uiuc.edu/amag/langev
http://www.isrl.uiuc.edu/amag/langev


References 261

Castillo-Chavez, C., Song, B., 2003. Models for the transmission dynamics of fa-
natic behaviors. In: Banks, H.T., Castillo-Chavez, C. (Eds.), Bioterrorism —
Mathematical modeling applications in homeland security. SIAM, Philadel-
phia, ISBN 0-89871-549-0, p. 155.

Cavalli-Sforza, L.L., 1996. Genes, Peuples et Langues. Odile Jacob, Paris.
Cavalli-Sforza, L.L., 1997. Proc. Natl. Acad. Sci. USA 94, 7719.
Cebrat, S., Łaszkiewicz, A., 2005. J. Insurance Medicine 37, 3.
Cell, 2005. Cell 120, 435–567. (Collection of reviews on ageing by several au-

thors.)
Charlesworth, B., 2001. J. Theor. Biol. 210, 47.
Christensen, K., Moloney, N.R., 2005. Complexity and Criticality. Imperial Col-

lege Press, London.
Chowdhury, D., Santen, L., Schadschneider, A., 2000. Physics Reports 329, 199.
Chowdhury, D., Stauffer, D., 2005. J. Biosci. (India) 30, 277.
Chowdhury, D., Stauffer, D., Kunwar, A., 2003. Phys. Rev. Lett. 90, 068101.
Coe, J.B., Mao, Y., Cates, M.E., 2002. Phys. Rev. Lett. 89, 288103. Phys. Rev.

E 72 (2005) 051925.
Cohen, R., Erez, K., Ben-Avraham, D., Havlin, S., 2000. Phys. Rev. Lett. 85,

4626. Phys. Rev. Lett. 86 (2001) 3682.
Coniglio, A., Klein, W., 1980. J. Phys. A13, 2775.
Corral, A., Perez, C.J., Diaz-Guilera, A., Arenas, A., 1995. Phys. Rev. Lett. 74,

118.
Couzin, I.D., Krause, J., Franks, N.R., Levin, S.R., 2005. Nature 433, 513.
Coyne, J.A., Orr, H.A., 2004. Speciation. Sinauer Associates, Sunderland.
Curtsinger, J.W., Fukui, H.H., Townsend, D.R., Vaupel, J.W., 1992. Science 258,

457.
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