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Preface

This book is devoted to the basic variational principles of mechanics: the
Lagrange-D’Alembert differential variational principle and the Hamilton
integral variational principle. These two variational principles form the
main subject of contemporary analytical mechanics, and from them the
whole colossal corpus of classical dynamics can be deductively derived as
a part of physical theory.

In recent years students and researchers of engineering and physics have
begun to realize the utility of variational principles and the vast possi-
bilities that they offer, and have applied them as a powerful tool for the
study of linear and nonlinear problems in conservative and nonconservative
dynamical systems.

The present book has evolved from a series of lectures to graduate stu-
dents and researchers in engineering given by the authors at the Depart-
ment of Mechanics at the University of Novi Sad Serbia, and numerous
foreign universities.

The objective of the authors has been to acquaint the reader with the
wide possibilities to apply variational principles in numerous problems of
contemporary analytical mechanics, for example, the Noether theory for
finding conservation laws of conservative and nonconservative dynamical
systems, application of the Hamilton—Jacobi method and the field method
suitable for nonconservative dynamical systems, the variational approach to
the modern optimal control theory, the application of variational methods
to stability and determining the optimal shape in the elastic rod theory,
among others.

In order to reach a level of practical effectiveness, numerous concrete ex-
amples are solved in order to clarify the vitality of the theory. It is hoped
that this book will be useful as a text in graduate and senior undergraduate
courses with an emphasis on mechanics and/or applied mathematics and
in graduate engineering courses. The exposition is intended to be sugges-
tive rather than (mathematically) rigorous. Thus, the mathematical level
has been kept as elementary as possible. Each chapter starts from widely
understood principles and brings the reader to the forefront of the topic
in a logical way. An important part of the material presented was already
published by the authors of this book in the numerous papers printed in
the current literature for the last 10 or so years, and the reader is directed
to these sources at the proper places in the text.

The book is divided into two parts. The first part contains four chapters.
In the first chapter we consider the basic forms of the Lagrange-D’ Alembert
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principle in the form of the central Lagrangian equation, Euler-Lagrangian
differential equations of motion for holonomic and nonholonomic dynamical
systems, the Hamilton canonical equations, canonical transformations, and
Poisson’s brackets.

The second chapter is devoted to the Hamilton—Jacobi method of inte-
gration of canonical equations. Special attention is paid to the analysis of
rheolinear oscillations and quadratic conservation laws of rheolinear sys-
tems with two degrees of freedom.

In the third chapter we study methods of obtaining the conservation
laws of conservative and nonconservative dynamical systems by means of
Noether theory. The necessary conditions for the existence of conserva-
tion laws are obtained by studying the invariant properties of the central
Lagrangian equation with respect to the infinitesimal transformations of
generalized coordinates and time, in the presence of the gauge function.
Generally, the generators of space and time transformations are supposed
to depend upon time, generalized coordinates, and generalized velocities.

In the fourth chapter, we consider a field method suitable for applications
in conservative and nonconservative dynamics. The essence of the method
is the supposition that one component of the momentum vector can be
represented as a field function depending on time, generalized coordinates,
and the rest of the components of generalized momenta.

The second part of the book is devoted to the Hamilton integral varia-
tional principle, and its various applications. It contains four chapters.

The fifth chapter is the introductory character for this part.

The sixth chapter contains the variational problems subject to natu-
ral boundary conditions, variable end points, the Bolza problem, and the
Jacobi form of the variational principle describing the trajectories of con-
servative dynamical systems.

Chapter 7 discusses constrained problems and the variational approach
to optimal control theory. The various specified and natural boundary con-
ditions are discussed in detail.

Chapter 8 contains applications of variational methods to the problems
of elastic rod theory. The variational methods are used to estimate the
critical load of elastic columns, to determine postcritical shape (the shape
after buckling), and to determine the optimal shape of elastic rods and
columns. By optimal we mean rods of minimal mass (volume) for specified
buckling load.

We are grateful to Prof. Dragan Spasic and assistant Mrs. Branislava
Novakovic for helping us in preparing the manuscript.

The book is gratefully dedicated to our children and grandchildren: Mil-
ica, Dragutin, Milena, Djordje Mihajlo and Bozidar (B.D.V.) and Jelena
and Milica (T.M.A.)

B. D. Vujanovic
Novi Sad, June 2003 T. M. Atanackovic
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Chapter 1

The Elements of Analytical
Mechanics Expressed Using
the Lagrange—D’Alembert
Differential Variational
Principle

1.1 Introduction

The text material of the present chapter is designed to be a more or less self-
contained introduction to analytical mechanics expressed in an invariant form
that is not connected to any privileged coordinate system. To accomplish this
goal we turn first to the Lagrange-D’Alembert differential variational principle,
whose applications are very wide and encompass holonomic and nonholonomic
dynamical systems and also conservative and purely nonconservative systems as
well. The elements of this part of contemporary analytical mechanics in fact,
constitute the content of this chapter.

1.2 Differential Equations of Motion
in Cartesian Coordinates

1.2.1 Free Dynamical Systems

We commence our considerations by regarding the simplest dynamical system
consisting of N material particles that are completely free to move in a Cartesian
inertial coordinate system Ozyz. Let us denote the position vector of the ith
particle by r;=z;e; + y;es + z;e3, where e, eq, and eg are the unit vectors of

B. D. Vujanovic, et al., An Introduction to
Modern Variational Techniques in Mechanics and Engineering

© Birkhiuser Boston 2004



4 Chapter 1. The Elements of Analytical Mechanics

the axes Oz, Oy, and Oz, respectively. In every problem of particle dynamics
the active (applied), impressed forces F; = Fye; + Fyes + F;e3, acting on
the ith particle should be given in advance. Generally, these forces are the
functions of time t, position vectors r;, and velocity vectors v; = dr;/dt = F; =
;€1 + Yiez + 2;e3, namely

Fi:Fi(t,l‘l,...,l‘N,Vl,.‘.,VN), i=1,...,N. (121)

Denoting by a; = d?r;/dt? = ¥; = i;e; + §;e2 + 7;e3 the acceleration vector of
the ith particle, and applying the second Newton’s law of motion, we arrive at
the following simultaneous system of differential equations of motion of a free
dynamical system:

mt; = F; (t,rq,...,rN,vy,..,vN), t=1,..,N, (1.2.2)

where m; denotes the mass of the ith particle.

For the motion of a free dynamical system, Newton’s law supplies all the
dynamical information that we need. Namely, the problem of finding the motion
of every particle of the dynamical system r; = r; (¢),7 = 1,..., N, is reduced to
that of integration of a set of N, vectorial (or 3N scalar) differential equations
of the second order (1.2.2). If we are able to integrate the system (1.2.2), we
find the positions r; of each particle at time ¢ if the values r; (t¢) and v; (o) are
prescribed in advance at the initial moment t = £g.

1.2.2 Constrained Motion. Lagrangian Equations with
Multipliers

Frequently, the particles of a dynamical system are not completely free to move
in the physical space, but are rather forced to be in permanent contact with
some material objects that can be described in a mathematical form (for exam-
ple, fixed or moving surfaces, curves, etc.). Such limitations to the freedom of
motion are known as constraints, and they are specified by certain geometrical
or kinematical relations.

Constraints may be classified in various ways,! and we shall use here the
simplest, but very important type of constraints named holonomic constraints,
which are of purely geometrical character and can be expressed as

fs (t,z1,y1,21, . ZN, YN, 2N) =0, s=1,.,k, wherek <3N. (1.2.3)

The explicit dependence on time in these relations means that physically the
constraints are in motion. Such constraints are usually referred to as rheonomic
or nonstationary, in contrast to the cases when they are fixed in space or scle-
romic or stationary constraints, that is, they do not depend on time ¢ explicitly,
namely 0f; /0t = 0. It is to be noted that the case k = 3N is not of any interest

1The reader can find a rather exhaustive classification of constraints as, for example, non-
holonomic constraints, bilateral, unilateral, etc., in the monographs of Pars [84], Santilli [95],
and Papastavridis {82]. Papastavridis has also considered servo constraints.



1.2. Differential Equations of Motion 5

since we could solve the complete system (1.2.3) and find all 3N coordinates
Ti, Vi, %, (1 = 1,..,N) as functions of time ¢, which means that the motion of
the dynamical system is given in advance.

If the dynamical system is completely mobile without restraints, all 3N co-
ordinates z3,¥1,21,...,ZN,YN, 2N Can vary separately, and such a dynamical
system is said to have 3N degrees of freedom. Naturally, the existence of con-
straints reduces the number of independent coordinates. In fact, we can use
the equations of constraints to eliminate as many coordinates as there are con-
straints. This would bring the number of coordinates down to the number of
degrees of freedom. Namely, we can eliminate k of 3N coordinates from (1.2.3)
and express them as functions of 3N — k independent coordinates. Then, it is
said that the dynamical system has 3N — k degrees of freedom. Consequently,
the minimum number of the geometrical parameters that uniquely determine
the position of the dynamical system at each moment of time is known as the
number of degrees of freedom. Also, we tacitly assume that the constraints
(1.2.3) are independent, that is, that they have been reduced to the least pos-
sible number, which implies that the functions fi, ..., fx are not connected by
a relation @ (f1, ..., fr) = 0. In many practical situations the elimination of the
k redundant coordinates can be tedious or difficult, and there are advantages
in retaining more coordinates than the number of degrees of freedom. We will
pursue this possibility in the next paragraph.

Since the particles of the dynamical system are compelled to be in permanent
contact with the given constraints, we have to suppose that, as the result of
interaction between the particles and constraints, there are forces of constraints
R; = R;ie1+Ryiea+ R 5e3,i = 1,..., N, acting on the particles. The differential
equations of motion in the presence of holonomic constraints are

m;¥; = F; (¢, r1,..., TN, V1, ., vN) + Ry, (1.2.4)

In contrast to the active forces F;, which are fully specified, the forces of con-
straint are not furnished a priori. They are among the unknowns of the prob-
lem and must be obtained from the solution we seek. On the other hand, it
is easy to see that the problem posed by 3N differential equations (1.2.4) does
not constitute a sufficient set of equations for finding 3N unknown coordinates
z1,%1, 21, ..., TN,YN, 2N as functions of time and 3N unknown orthogonal pro-
Jjections of the reaction forces R,;, Ry;,R.;,i =1,...,N.

In order to establish a consistent problem we have to introduce some addi-
tional assumptions about the character of forces of constraints R;. It is sufficient
to require that the constraints are smooth, that is, that the reaction forces R;
are directed toward the normal of the hypersurfaces (1.2.3) and the magnitudes
of reaction forces are not limited. In addition, it is of vital importance to un-
derline some kinematical properties of the constraints.

Let us differentiate the expression (1.2.3) totally with respect to time

N
Ofs.  Ofs. Of.\ , 0fs _ ~
;((%imﬁ oVt G zz) oy =0 s=1.k (1.2.5)
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The velocity vector of the ith particle v; = ;e +7;e2+2;e3 satisfies this relation
by all possible velocities that the dynamical system might have. However, the
velocity vector that is compatible simultaneously with (1.2.4) and (1.2.5) will be
referred to as the actual velocity vector. Equivalently, the actual displacement
vector of the ith particle dr; = v;dt = ¥;dt = dz;e; + dy;es + dz;e3, which
satisfies at the same time the differential expression

~(Ofs, . Ofs. . 0fs o
; (&Cidzl + o dy; + 5z—i—dz,) + e =0, s=1, ok, (1.2.6)
and the differential equations of motion (1.2.4) is said to be the actual displace-
ment vector of the ith particle.

Together with the actual velocity and actual displacement vectors, we shall
also introduce a new kind of infinitesimal displacement, usually referred as vir-
tual displacement or simply variation, which we denote by

br; = bz;eq + by;eq + bzie3. (1.2.7)

This kind of displacement is introduced in such a way that of smooth constraints
and notwithstanding of scleronomic or rheonomic systems, the relations

N
Z (6fs bz + %6% + %574) =0, s=1,...,k (1.2.8)
o1 8.2,' 8y1~ 821'
are satisfied for the arbitrary values of the vector (1.2.7) at the given instant
of time t. These displacements are called virtual to distinguish them from the
actual displacements dr; occurring in the time interval d¢t. They are the displace-
ments that would be possible at the constraints (1.2.3) if they were petrified in
the form that they have at the instant t. Note also that the virtual displace-
ments do not satisfy the differential equations of motion, and they have purely
geometrical significance since they are not influenced by the forces acting on
the particles. Comparing (1.2.8) and (1.2.6) it is evident that for the case of
rheonomic systems (9fs/dt # Q) the actual displacement vector of the ith par-
ticle dr; and the corresponding virtual displacement vector ér; do not coincide.
Moreover, if the constraints are scleronomic (9fs/dt = 0), it follows that both
vectors are belonging to the same class of displacements. Nevertheless, even
in the case of scleronomic systems we will make distinctions between these two
classes of displacements.

‘We now restrict ourselves to the dynamical systems for which the total vir-
tual work of the forces of constraints defined as §6A = Z:V=1 R; - 6r; is zero:

N N
8A= Ri-6ri=Y  (Reibxi + Ryiby; + R.:6z) =0, (1.2.9)

i=1 i=1

where we used - to denote a scalar product of vectors. The condition (1.2.9) is
one of the most important properties that is fulfilled for the case in which the
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constraints are smooth and the system is holonomic. Namely, the particles are
compelled to move on the constraints (surfaces, curves, etc.) and the reaction
forces are perpendicular to those surfaces, while the virtual displacement must
be tangent to them, hence the total virtual work vanishes. It should be stressed,
that for the rheonomic systems, the total work done by the forces of constraints
on the actual displacements dr; is not zero:

N
> Ry -dr; #0. (1.2.10)
i=1

Comparing conditions (1.2.8) and (1.2.9), we conclude that the reaction forces
can be expressed in terms of k& multipliers A; () in the following way:

k k
L= 0fs 8f5 _ 8fs .
Rmz—gAsaxiy Z/\ ) Rzz—§ASBZi, l—].,...,N,
(1.2.11)

where the multipliers A, (t) are related to the magnitude of the forces of con-
straints. Therefore, the 3V differential equations (1.2.4),

miZ; = Fyi + Rgi, mifi = Fyi + Ry, myZ = Fi + Ry, (1.2.12)

become

miiii = Fm + Z/\ 8fs
, ofs
- szx 3
. Ofs
miz = Fy +;Asa—%. (1.2.13)

These differential equations should be considered together with k equations of
constraints (1.2.3):

fs @t z1,91,21, 28,8, 20) =0, s=1,..,k, k<3N. (1.2.14)

Note that 3N differential equations (1.2.13) and k equations of constraints
(1.2.14) form 3N +k equations with 3N +k unknowns: 3N unknowns z;,y1, 21, -..,
ZN, YN, 2y and k unknown multipliers Aq, ..., \x. They express the equations of
motion for the general, holonomic dynamical system in a simple and conceiv-
able form. They are known as the Lagrangian equation of the first kind. Note
that equations (1.2.13), (1.2.14) are not quite useful in practical applications,
since the process of finding the solution requires simultaneous treatment of the
Cartesian coordinates z;,¥;, z;, and also the Lagrangian multipliers ;. In the
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text that follows, we will transform these differential equations into a different
form in which the A; do not appear.

As a simple illustration of the preceding theory, consider the triangular prism
with inclination « that moves with constant speed V on a horizontal plane Oz.
A particle of mass m slides down the smooth inclined face AB under the force of
gravity. The particle in motion is in contact with the moving constraint, which
represents the straight line AB moving parallel to the right, as shown in Figure
1.2.1, with constant velocity V.

yA

T
e z
Figure 1.2.1
The equation of constraint is therefore
kzx+y—k(Vt+a)=0, (1.2.15)

where BC' = a and tana = k. This equation represents a particular case of a
holonomic, rheonomic constraint of the type (1.2.14), for s = 1. The particle has
one degree of freedom since the projections of the virtual displacement vector
are connected by the relation éy + kéz = 0.

From Figure 1.2.1 it is seen that the force of constraint R is permanently
normal to the moving constraint AB and the virtual displacement vector ér
is orthogonal to R at each moment of time. It is also seen that the actual
displacement dr is not orthogonal to R, and the work done by this force on the
actual displacement dr is not zero.

The Lagrangian equations with multipliers (1.2.13) are of the form

mﬁ‘:z}\?—]—t=k)\

s , mj=-mg-+ AQJ: = X —myg, (1.2.16)

Ay
where g is gravitational acceleration.
From (1.2.15) it follows that, k% = —jj, and combining this with (1.2.16) we
easily find the components of the acceleration vector and multiplier A:
kg " kg mg

=—:M = — ———— = = ——
IR YT Ty e T 1+ k2

If the initial conditions are given in the form

(1.2.17)

z(0)=0, y(0)=h 20)=V, §(0)=0, (1.2.18)
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we find the motion of the particle

2 2
szTtJth, y:h—J—\g—. (1.2.19)

With (1.2.19) we can verify that the constraint (1.2.15) is identically satisfied.
According to (1.2.11), the projections of the reaction force R are

k 1
and the total force of constraint is
_(p2 ., p2\1/2 _ 1

1.3 An Invariant Form of Dynamics, the
Lagrange—D’Alembert Differential
Variational Principle for Holonomic
Dynamical Systems

The differential equations of motion of holonomic dynamical systems can be
described in a variety of mutually different forms, depending upon the coordi-
nate system we employ. In the previous section we have derived the differential
equations of motion in Cartesian coordinates. As mentioned already, the equa-
tions on the form (1.2.13) are not generally feasible when working with the
system with many degrees of freedom. Namely, in order to find 3N ~ k in-
dependent coordinates as functions of time, we must solve 3N + k equations
consisting of 3N Cartesian coordinates z;,¥;, z; and as many Lagrangian mul-
tipliers A, (s = 1, ..., k) as the number of holonomic constraints figuring in the
system.

1.3.1 The Principle

In this section we introduce a single invariant expression known as the Lagrange-
D’Alembert differential variational principle from which, due to its generality,
we can derive analytical mechanics as a part of physical theory independently
of any coordinate system we use, which is free of the unknown Lagrangian
multipliers A; and reaction forces R;.

Let us consider NV differential equations of motion (1.2.4) together with the
equations of constraints (1.2.3):

mif; = F; (¢,r1,...,TN,V1,..,vN) + Ri, i=1,..,N, (1.3.1)
and

fs (¢ x1,91, 21, oy TN, YN 2N) =0, s=1,..,k, k<3N, (1.3.2)
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where the forces of constraints R; satisfy the condition of orthogonality (1.2.9):

N
> Ri-6r; =0. (1.3.3)
=1

Multiplying (1.3.1) by the virtual displacement vector (i.e., by forming a scalar
product) and summing over i, we immediately arrive at the following equa-
tion which, together with the constraints equations, expresses the Lagrange—
D’Alembert variational principle:

N
> (mifi — Fy) - bri =0, (1.3.4)
i=1

fs (tyxlvyhzl,”~1$N1vazN)=07 §= 11""k' (135)

Or, written in coordinate form, the equation (1.3.4) reads
N
> [(madis — Fai) 6mi + (mifjs — Fyi) 6yi + (mazi — Fui) 6] =0.  (1.3.6)
=1

The significance of the Lagrange-D’Alembert principle can be summarized
in the following few remarks:

(i) This principle is formulated as a scalar product, which is one of the most
fundamental invariants used in physics and geometry, since the scalar product
does not depend on the coordinate system used but exclusively on the vectors
themselves.

(ii) By postulating scalar invariant (1.3.4) we actually replaced N vectorial
differential equations of motion (1.3.1) by a single scalar equation.

(iil) The differential expression (1.3.4) contains the total work of active forces
Z?’zl F;-6r; and the unknown forces of constraints R; do not figure into it. One
of the important advantages of the Lagrange-D’Alembert principle is the fact
that the active forces entering into equation (1.3.4) are not limited in structure.
Namely, they can be potential or purely nonconservative forces.

Besides classical mechanics, the Lagrange-D’Alembert variational principle
can be employed as a starting point in different branches of physics that are
not intimately connected with classical mechanics. Namely, in some sense, it
plays a unifying concept in physics due to its invariance and also due to the
structural similarity of many physical manifestations with the models of classical
mechanics. At this point it is of interest to invoke the remark of W. Heisenberg
[63, p. 49], that “the concept of classical physics will always remain the basis
for any exact and objective science.”

For example M. A. Biot [24] extended the applications of the Lagrange-
D’Alembert principle to nonlinear nonstationary heat conduction processes, and
V. V. Dobronravov [39] applied this principle to the electric machine theory, to
mention just two examples.
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1.3.2 Generalized Coordinates and Their Variations

Since the Lagrange-D’Alembert principle is invariant with respect to the arbi-
trary coordinate system we can, instead of the Cartesian coordinates used so
far, introduce coordinates of more general type. Namely, we shall introduce new
geometrical parameters gq; (t), ..., ¢, (t), whose number is equal to the number of
degrees of freedom, that is, n = 3N —k (where N denotes the number of particles
of the system and k is the number of holonomic constraints). These parameters
are known as the generalized independent coordinates and they uniquely deter-
mine the configuration of the dynamical system at the given moment of time.
By the term independent we understand that the set ¢i,...,¢, is the minimal
number of coordinates that are potentially able to specify the position of the
dynamical system.

From the definition of the generalized coordinates, it follows that they must
satisfy the following two requirements. First, the position vectors of each par-
ticle must be uniquely expressed in terms of generalized coordinates g; (t),s =
1,...,n, and time ¢,

ri=r;(t,q,..,qn), i=1,.,N, n=3N-—k, (1.3.7)
or

Ti = T4 (t,(h,...,qn), Yi=1Yi (tvqu“'vqn)v R = 2 (t!qlw"?qﬂ)' (138)

Second, the equations of constraint (1.2.3) must be satisfied identically by
the equations (1.3.8), which means that the sets of independent coordinates
gs,8 = 1,...,n, contain the constraint conditions implicitly in the transforma-
tion condition (1.3.7). Therefore

fs (ty vy Tg (t»QL JIn) yYi (taqla ,qn) ) 24 (tv q1, ,Qn) ’ ) =0.

i=1,.,N s=1,.,k (1.3.9)

To illustrate this, we turn to the example considered in the previous section
and shown in Figure 1.2.1. Let us introduce as the generalized coordinate the
distance AM = q. The position of the particle in terms of this coordinate is

z=Vt+qcosa, y=h—gsna. (1.3.10)

Entering with this into the constraint equation (1.2.15), kz+y—k(Vt +a) =0,
we verify that the identity of the type (1.3.9) is satisfied for ¥ = tanca and
h=atana.

By using (1.3.7), we can transform the Lagrange-D’Alembert principle in
terms of the generalized coordinates. Differentiating (1.3.7) totally with respect
to time we find the following expression for the velocity vector of the ith particle
in terms of generalized coordinates ¢; and generalized velocities ¢;:

. drl or; rl . .
F=v; = Z g i=1,..,N; (1.3.11)



12 Chapter 1. The Elements of Analytical Mechanics

that is, the velocity vector is the linear function of the generalized velocities.

Since the quantities dr; /0t and Or;/dq, depend only on the generalized co-
ordinates and time, it is easy to verify that the following two functional relations
are valid:

Bvi al‘i 6i‘i .
== =—, i=1,.,N, s=1,..,n, 1.3.12
94, dq a4, ( )
and
d Bri Bvi .
_—— = =1,..,N. 1.3.13
dt 6qs aqs7 1 1 b ( )

The virtual displacement vector (or variation) of the ith particle, according to
(1.3.7), is of the form

", r;

61‘,‘ a

Sigg,, i=1,..,N, (1.3.14)

where the variations of the generahzed coordinates are denoted by the symbol
6qs.

As mentioned previously, the variation as a differential operator does not
produce any infinitesimal change upon time, that is, 6t = 0. The variation of
velocity (1.3.11) is found to be

Zzaq o qp+Zar’ Zata (1.3.15)

s=1p=1

At the same time, the total time derivative of (1.3.14) (after simple interchange
of dummy indices) is of the form

Or; o%r;
ZZ aqa 3q.94, 304 P+Zars dt . 3q rBt (1.3.16)

The difference between the last two expressions gives

. d = Or;
6%; — a&ri 6 (6(1s % (6qs)) . (1.3.17)

It is to be noted that in the classical variational calculus and integral varia-
tional principles of Hamiltonian type, it is generally accepted that the following
commutative rules are valid:

d

dt (
that is, the variation of velocity is equal to the velocity of variation. However,
in the realm of the differential variational principles and especially in the for-
mulation of the Lagrange-D’Alembert differential principle, the commutative
rules (1.3.18) are not obligatory. Readers can find a very exhaustive discussion

concerning the commutative and noncommutative rules in analytical mechanics
in [68], [75], and [82].

8Gs — — (8g5) = O; (1.3.18)
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1.3.3 The Lagrange—-D’Alembert Variational Principle
Expressed in Terms of Generalized Coordinates,
Central Lagrangian Equations

Since by introducing the independent generalized coordinates the constraint

equations are eliminated (see (1.3.9)), we substitute (1.3.14) into (1.3.4) and
permute the sign of summation:

n N
> me-g—;"—zm-gzﬁ 8gs = 0. (1.3.19)

Transforming the first term in the following way and using relations (1.3.12)
and (1.3.13), one has

N N
. Or; _ d . Or; . d Or;
;mirz N aqs = i Zmzr'z N aqs - ;mzrz dt aqs
d o - ok
= Zm,rz 7. ;mlr aq, (1.3.20)

Let us introduce the kinetic energy of the dynamical system in terms of the
generalized coordinates

N
1 .. . .
T= Z [imiri -r,} =Rt q,d) T(t,q1sesqn,q1s-1Gn), (1.3.21)

=1

whereq ={q1,...,qn},q4=1{q1, -..,4n} . Differentiating this function partially with
respect to generalized velocities g, and generalized coordinates g, we have

or X o or & ow
[ = P, S = i —. 1.3.
5~ "N, Bg = 2", (13:22)
Thus, the equation (1.3.20) reads
N
- Bri _ d 3T 8T _
Zmirl . EI—S' = 'C'i;—a—‘q—s' - 8—q—;, § = 1,...,'”. (1323)

i=1

The second term in the brackets of equation (1.3.19) is usually termed the
generalized force of the corresponding generalized coordinate g5, s = 1,...,n:

N
Qs :ZFz
i=1

N
Or; dz; y; 0z

=S (FZ LR, 2 LR 25 5=,
94s ; ( 8gs + 0qs * ) ° "

ags
(1.3.24)
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Since, according to (1.2.1), the active forces F; are functions of position r;,
velocities v;, and time ¢, and in accordance with (1.3.7) and (1.3.11), these
vectors depend upon ¢’s and ¢’s. Using the introduced notation, the virtual
work of the active forces and its transformation to the generalized coordinates
can be represented as

N n
SA(F)=> Fi-bri=»  Qsbq,. (1.3.25)
=1 s=1

From this, it follows that a generalized force can be interpreted as a coefficient
of the independent variations of the generalized coordinates éqy, ..., 6g, in the
expression of the virtual work of the applied (impressed) forces.

Generally, the generalized forces are functions of the time ¢ generalized co-
ordinates ¢; and generalized velocities ¢s:

QS:QS (t7q1>"'7qn7q.ly"'7q’n)y S:11"'7n7 (1'3'26)

and they belong to the class of purely nonconservative forces.

As the case of special interest let the active forces F; = Fy;e1+Fyea+Fie3
(¢ =1,...,N) not depend on the velocities &;,¥;, 2; but are functions of z;,y;, z;
and the time ¢. It can happen at the same time that this type of forces is derivable
from a single scalar function usually referred to as the potential function

H:n(t,(Z],y],Z],-.-,IN,yN,ZN), (1327)

in the following way:

on ol oIl
Foi=—5—, Fy=—5—, Fu=-5—.
oz; 4 8yi 0z

(1.3.28)

In this case the generalized forces according to (1.3.7) and (1.3.24) can be written

0m (M2, w2
s dx; dgs 8yi 0qs 8z; 0gs Y
(1.3.29)

which is actually the same expression for the partial derivative of the function
~II{t,z1,91, 21, .- TN, YN, 2N ) With respect to gs:

oIl

Qs:_aqsy

(1.3.30)

where the potential function is expressed in terms of g; by means of the relation
(1.3.8), that is,

Hzn(t7q17'-'>qn)' (1331)
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Let us suppose that the dynamical system is subjected to n nonpotential
forces of the type (1.3.26) and also to n potential forces (1.3.30). The expression
(1.3.19) becomes

> (iﬁ'{ _OT o, + M s =0 (1.3.32)
9gs g,

Since, according to (1.3.31), the potential forces do not depend upon the gen-
eralized velocities ¢s the last equation can be written in the form

S (52 -2 -0)u -0 (13.33)

i=1

where we introduced a new function L known as the Lagrangian function or
kinetic potential or simply Lagrangian defined as the difference between the
kinetic energy and potential function

L= L(taqlv vy Qn,y q‘la ---7q'n) = T(t,fh, ~~-;¢1m¢h, "'7q'n) - H(t,qla '-‘7q’n) -
(1.3.34)

The scalar equation (1.3.33) plays the fundamental role in analytical mechanics
and is usually termed the central Lagrangian equation.

Note that the central Lagrangian equation can be transformed in a way
that can be of interest for additional considerations. In what follows we will
abandon the commutative rules, “the variation of generalized velocity is equal
to the velocity of the generalized variation” shown in equation (1.3.18).

Let us calculate the variation of the Lagrangian function (1.3.34):

~ (9L oL .  OL . . OL . .
6L = ; (-aaaqs +5g, 00 + g5, (00) — 5 (6gs) ) ) (1.3.35)

where we added and subtracted the term (8L/8¢;) (6¢s) . By using the iden-
tity (0L/84s) (8¢s) = % [(OL/84s) (6gs)] — & (OL/Dqs) bqs the last equation

becomes
“[/8L d 8L d (0L L
§L = = _-Z Rl g )|
;[(qu dtaqs)6qS+dt(aqs5qS>+aqs( %0 )]
(1.3.36)

Employing the central Lagrangian equation (1.3.35) we find

03 [0 s (o) + 22 (S—a)].

Let us introduce the generalized momentum vector p,; defined by the equation

oL
Pa= g s=lum (1.3.38)
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Note that this (covariant) vector will play a very important role in the subse-
quent text. Finally, with (1.3.38), the equation (1.3.37) becomes

d = _ C e
— D_Ps0s = 8L+ Y Qubge+ ) ps [(6g5) — 6ds] - (1.3.39)
s=1 s=1

s=1

This is the second form of the central Lagrangian equation. According to our
best knowledge the form of this equation was first published by Lurie [68, p.
257] and Neimark and Fufaev (75, p. 133)].

It is of interest to note that the variational equation (1.3.39) can be success-
fully employed if the commutativity rule (1.3.18) is accepted. For this case we
have

d & i
a ZPS6QS =6L+ ZQS&IS- (1340)
s=1 s=1

It is of importance to note that the derivation of the differential equations of mo-
tion do not depend on whether we accept the commutative or noncommutative
variational rules.

1.4 Euler-Lagrangian Equations

The central Lagrangian equation (1.3.33) is valid for an arbitrary set of gener-
alized coordinates q; (t), ..., g (t) for which we suppose that they are mutually
independent. Consequently, the corresponding virtual displacements 6qy, ..., 8¢,
are mutually independent and (1.3.33) can only be satisfied if the following n
equations hold:

4o _or  on
dt 8¢s; 0Oqs Ogs

~-Qs=0, s=1,..,n (1.4.1)

These equations are called the Euler-Lagrangian equations, or frequently La-
grangian equations of the second kind. They are valid for all holonomic dynam-
ical systems. Equations (1.4.1) are the ordinary differential equations of second
order with respect to the generalized coordinates g;. To show this, we write
(1.4.1) in the explicit form, taking into account that kinetic energy, according
to (1.3.21), is a function of t, g, and ¢;:

etr . O 9T _or ol
Bisim ™" 00gm " " 94500  04;  Ous

-Qs=0, s,m=1,..,n,
(1.4.2)

where the potential function II and generalized forces (); have the structure
given by (1.3.21) and (1.3.24), respectively.

Note that we have used the generally accepted summation convention, which
means that whenever an index occurs two times in a term, it is implied that the
terms are to be summed over all possible values of the index. Thus, in (1.4.2)
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the summation is performed with respect to the dummy index m. For the rest
of this book the summation convention will be permanently assumed (applied).
From the system of equations (1.4.2) it follows that the generalized accelerations
{, enter in these equations linearly. We will suppose that the equations (1.4.2)
are solvable with respect to the generalized accelerations, and to do so, the
following determinant must be different from zero:

T
94s94m
It is easy to see that if we integrate the Euler-Lagrangian equations of motion
and find the generalized coordinates as functions of time g1 (t),...,x (t), then
the motion of the dynamical system is completely determined. Indeed, entering
with ¢, (¢) into (1.3.5) we determine the motion of each particle r; = r; () ,i =
1,..., N, and the reaction forces follow from (1.3.1) as R; = m;¥; (t) ~F,.2 From
the previous analysis it follows that the Euler-Lagrangian equations play the
central role in the study of motion of holonomic dynamical systems, since they do
not contain redundant coordinates, they are free of equatioris of constraints, and
they are independent of unknown Lagrangian multipliers and reaction forces. In
general, the Euler-Lagrangian equations can be considered as the cornerstone
of the whole of analytical dynamics, and according to Pars [84, p. T6] they
are “rightly regarded as one of the outstanding intellectual achievements of
mankind.”

For the sake of completeness, note that the Euler-Lagrangian equations
(1.4.1) can be written in the form

aor oL
dtd4s  0gs

detl #0. (1.4.3)

=Qs, s=1,..,n, (1.4.4)

which follows directly from (1.3.33). Here the Lagrangian function L is defined
as the difference between the kinetic energy and potential function, as indicated
by (1.3.34). It is of special interest to note that in the case for which the general-
ized nonconservative forces are equal to zero, s = 0, that is, the case in which
all active forces acting on the dynamical system are of the potential character,
the Euler-Lagrangian equations of motion depend solely on one function L:

doL oL _ .
dtd¢,  Oqs

s=1,.,m (1.4.5)

We call this type of dynamical system the Lagrangian dynamical system. The
fact that the Lagrangian function depends explicitly on the time as indicated
by (1.3.34) signifies that the dynamical system is subjected to the rheonomic
constraints given by equations (1.2.3). However, if the Lagrangian function is
formed as the difference between the kinetic energy and potential function which
does not depend explicitly upon time t, that is, if

= H(Ql’-n,%), (146)

2Underlined indices should not be summed.
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which we call the potential energy function, and also if the kinetic energy does
not depend on time ¢, then we call the dynamical system characterized by the
Lagrangian

L:L(QI;-u,CIm‘jl;---,‘jn) (147)

the conservative dynamical system. Note that the Lagrangian dynamical system
whose Lagrangian function is given by L(qi, ..., gn,q1, .., Gn, t) 1.€.0L /0t # 0 is
also nonconservative since the total energy is not conserved. This fact will be
discussed in the proceeding paragraphs.

1.4.1 The Structure of the Kinetic Energy. Explicit Form
of Euler-Lagrangian Equations

In this section we will briefly consider the structure of the kinetic energy of a
holonomic dynamical system in terms of the generalized coordinates and the
structure of the Euler-Lagrangian equations whose form considerably depends
upon the structure of the kinetic energy.

As mentioned previously, the total kinetic energy of a dynamical system is
defined as

1 XN
= - . 2, 1.4.8
T 5 ;=1 mv; ( )

At the same time the velocity of the ith particle in terms of the generalized
coordinates gs and generalized velocities ¢; is, according to (1.3.11),

or; or;
i = =—(s + —, i=1,..,N, =1,..,n 1.4.9
Vv aqsqs + 8t ’ 1 s n ( )
Entering with this into (1.4.8), the kinetic energy becomes
T:To-f—T] +T2, (1.4.10)
where
1 ari\? .
Ty = i (3_1;> =F(t,¢1,- ), i=1,..,N, (1.4.1‘1)
N
Or; Or;
1 ;m T
= Ks(t,q1,-qn)ds, s=1,..,n, (1.4.12)
1 ..
T2 = éaks (t7q17 -‘w‘In)‘Ist, k,S = 17 N, (1413)

where in the last expression the coefficients agy (t,qi,-..,gn) are given by

N
or; Or;
Qg = Qs = mia_rz - a—r— (1.4.14)
=1 9s Ok
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It is evident from the structure of the equations (1.4.11) and (1.4.12) that, if
the dynamical system is scleronomic, that is, dr; /8t = 0, and if the constraints
are not moving constraints, the time does not occur explicitly in the coefficients
asx and Ty and T are equal to zero. In this case the kinetic energy becomes

1 .
T=Tp= 0ks (g1 Gn) Gxds- (1.4.15)

From this expression it is seen that the kinetic energy for the scleronomic dy-
namical systems represents a homogeneous quadratic form with respect to the
generalized velocities ¢;s.

Taking into account the form of the kinetic energy (1.4.11)—(1.4.13) let us
write the Euler-Lagrangian equations. First, we calculate the following expres-

sion:
490 9Nl ..
dt 8g,  dg, ) 3kmakdm

=% ksQk 2—0(]5 qkdm
. 8ak5 1 8akm .. aaks .
= ap, _ 1 98km ks 1.4.16
axsqr + <3qm 3 oq, ) qkdm + ar Ik ( )

Noting that

aaks _ laakm .
0qm 2 0g, ) TI™
l (aafks Otms Oakm

- eim = [km,s]drds, (1.4.17
b0 e O )qu ( ldrds, ( )

)

where the symbol

1 (Oaxs Oams Oarm
L P — = 14.
[km, s] = 5 (aq o 3. ) [mk, 5], (1.4.18)

denotes the Kristoffel symbol of the first kind. The differential equations of
motion (1.4.1) can now be written in the from

|
o

aksiik + [kma S] qum
k,s,m = 1,..,n, (1.4.19)

which are the explicit form of the Euler-Lagrangian equations we have been
seeking.

As mentioned previously, the generalized accelerations enter into (1.4.19)
linearly, and equations (1.4.19) can be solved with respect to §, since according
to the equation (1.4.3) the matrix A with elements a,,s is not singular; that is,
T

t = . 1.4.
det | o] = det faus| # 0 (1.4.20)
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Since the matrix A = [a,,] is a square nonsingular matrix, let us multiply equa-

tion (1.4.19) by inverse matrix A~! = [as‘rl] and, taking into account that

0 fork#r,

1 fork=r (1.4.21)

aksas_rl =bkr = {
where summation with respect to repeated indices goes from 1 to n, we find
.. _ .. _ o1 OF OK,. Oais.
qr + asrl [km, S} qxqm = a,s,,,l (Qs - %s- - 5; — W - ot qk) . (1422)
If we introduce the Kristoffel symbols of the second kind by the relation
allkm,s) =T%,, =TT, (1.4.23)

the equation (1.4.22) becomes

d(l+F) 0K, Oa k) (1.4.24)

Gr + Thimrdm = a3} (Qs B T T
It is to be noted that the Kristoffel symbols of the first and second kind, (1.4.18)
and (1.4.23), play an important role in Riemannian geometry and geometrical
interpretation of classical mechanics. For an elaborate discussion of the appli-
cations of Riemannian geometry in classical mechanics, see, for example, [106]
and {71].
In the case of scleronomic dynamical systems, the equations of motion (1.4.19)
and (1.4.20) are reduced to the simpler forms

I
axs Qi + [km, 8] grgm = Qs — o , s=1,..,n, (1.4.25)
94,
or
. .o _ oI+ F
Gr + ThpndiGm = a3 (Qs — Laq——z) , =1,..,n, (1.4.26)
S

which are the explicit form of the Euler-Lagrangian equations of motion.

At this point it is of interest to note that as far as the Lagrangian dynamical
systems are concerned, the prescription for finding the Lagrangian function
L =T ~1II1is a very important and reliable way to determine the corresponding
Lagrangian function L. However, it is also often possible to find some alternative
Lagrangian functions besides those formed by this rule. This point can be made
by noting that the given Lagrangian function L (¢, 41, .-, gn, 41, .-, §n ) can always
be replaced by a new Lagrangian L* in the following way:

d
L*=cL+ af(t,ql,...,qn), (1.4.27)

where c is an arbitrary nonzero constant and f is a function depending on time
t and the generalized coordinates q, ...,¢,. The Euler-Lagrangian differential
equations formed by means of the Lagrangian function L, and L* are the same

doLr oL* _dO9L 0oL (1.4.28)
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Note that the function f (¢,q1, ..., ¢») figuring in equation (1.4.27) is frequently
referred to as the gauge function.

Moreover, in many instances it is possible to find a Lagrangian function L*
satisfying the relation (1.4.28), where L* is not formed by the rule (1.4.27). As
an example, consider the simple harmonic oscillator whose differential equation
of motion is

§+w?q=0 (w = given constant parameter). (1.4.29)

Obviously, the rule L = T ~ II is equivalent to

L= % (¢ - w®q?). (1.4.30)

It is easy to verify that the time-dependent Lagrangian function of the form
1
L= 3 (4 + qw tanwt)? - (1.4.31)

will generate the correct differential equation (1.4.29). For w = 1 it is also
demonstrated in {92] and [96] that the following two Lagrangian functions,

. . .2
L= 9 arctan (2) - lln [qz <1 + %)] (1.4.32)
q q/ 2 q
and
1 . gcost —gsint
= - - - = 1.4.33
Ly p (gcost — gsint)In (qsint-}-q'cost)’ ( )

will also generate the same differential equation (1.4.29) and all three La-
grangians (1.4.31)-(1.4.33) are not formed by the rule L = T'—II or the pre-
scription (1.4.27).

The fact that the form of the Lagrangian functions in dynamics is not unique
raises the question of finding functions L for a given holonomic dynamical sys-
tem whose differential equations of motion are given in advance. This important
problem, usually referred to as the inverse Lagrangian problem, was first con-
sidered by Helmholtz in 1887 and later studied by numerous authors (see, for
example, [95], [122], and [27]).

Finally, it is of interest to note that the Euler-Lagrangian equations are form
invariant with respect to any one-to-one (i.e., punctual) transformation of two
systems of generalized coordinates; the “old” generalized coordinates qy, ..., g,
are transformed to the “new” generalized coordinates @1, ..., Qn by

q; = q; (t,Ql,...,Qn), 1= 1,...,')1. (1434)

Let us consider the given Lagrangian function L (¢, 1, ..., ¢n, 1, ---, ¢n) - By using
(1.4.34) one has

L (taqla '“7qn1q.la "'7471) =L" (tth seey QTUQ‘]: ey Qn) . (1435)
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For the analysis that follows we will need the following two identities, which are
similar to (1.3.12), (1.3.13):

0 d O0¢i 0§ _ Oq

50 = &30, 36, 50 (1.4.36)
Now we have
% - gqﬁj% - %L}gg?],-' (1.4.37)
Hence,
so (4010 0L (d0u)
dt 9Q; dtdq; ) 0Q;  9¢; \ dt 0Q;
We also have
oL 0L 0q;  OL 04 _OLBq; , OL d bg;
0Q; 0g; 0Q; 0¢; 0Q: 0q; 0Q: = 0g; dt Q)
From the last two equations, we have
%% _ (‘%i _ (%% _ g_(fj) gg{ (1.4.38)

Since the determinant det (9q;/8Q;) # 0, the invariance of the Euler-Lagrangian
equations with respect to the point transformation (1.4.34) follows.

1.4.2 Two Important Conservation Laws of the Euler—
Lagrangian Equations: Momentum and Jacobi
Conservation Laws

(i) Momentum Integral
The Euler-Lagrangian equations

d 0L 0L

Eia—q,s—%:—o, s_—l,‘..,n, (1439)
have a very suitable form for finding conservation laws (or first integrals) of
the dynamical systems whose behavior can be completely described by the La-
grangian function L(t, q1, ..., qn, q1, ---, §n)- By the term conservation laws or first
integrals we understand some specific functional relations between physical and
geometrical parameters figuring in dynamical systems, which are satisfied iden-
tically due to the differential equations of motion of the dynamical system in
question. The existence of conservation laws can considerably simplify the inte-
gration of the differential equations of motion. Before discussing two important
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conservation laws that appear frequently in analytical dynamics, we introduce
the generalized momenta ps by the relation

_ 8L
bs = aqsy

s=1,..,n. (1.4.40)

It can happen very often that there are generalized coordinates that do not
occur in the Lagrangian function L, although their time derivatives (generalized
velocities) do. Such coordinates are usually referred to as ignorable or cyclic
coordinates.

Let g; be an ignorable coordinate, where j is a fixed particular integer. In
this case 8L/0q; = 0, and from the equation (1.4.39) for s = j, it follows that
the momentum or cyclic integral

L
L= — = . 1.4.41
P; 3, const ( )

It is important to note that when L does not depend on g; (j-fixed), it is
invariant under the translation in the jth coordinate; that is,

7; =¢; +C, (C = an arbitrary constant). (1.4.42)

Note also that the existence of a momentum integral is a privilege of a particular
coordinate system in which the motion is studied.

(ii) The Jacobi Conservation Law. Energy Integral
To obtain the second, very important conservation law for the Euler-Lagrangian
equations (1.4.5), we form the total time derivative of the Lagrangian function
L and combine the result with the differential equations (1.4.5). Thus we have

dL _9L oL, 0L, oL ddL. 9L,
9L " 50,27 Bt T dtog T 9g,

(1.4.43)

dt ~ ot
From this, we find
d (JOL oL
— | =g, — = —— 1.4.4
dt (aqs s L) ot (1.444)

If the Lagrangian function L does not depend explicitly upon time, that is,
O0L/dt =0, we arrive at the Jacobi conservation law (first integral)

oL

——¢gs — L = E = const. 1.4.45
8. ( )

If the dynamical system can be represented by means of the kinetic and
potential energy, then the Lagrangian function is of the form

L=T-1L (1.4.46)
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Supposing that the kinetic energy is of the form given by equation (1.4.15),
T = (1/2) ai;4:g;, and the potential energy according to (1.4.6) depends only
on ¢,, we have

or oL
i = a;i:i6; = 2T = —§i, 1.4.47
3(j¢q ai;qiq; 3(qu ( )

and the Jacobi conservation law (1.4.33) becomes

T+ =E = const., (1.4.48)

which is a familiar expression for the conservation of the total mechanical energy:
the sum of the kinetic and potential energy is constant during the motion of the
system if the Lagrangian function is given in the form (1.4.46) and if it does not
depend explicitly upon time, namely dL/3t = 0. It can also be stated that the
existence of the energy integral is a consequence of the time invariance of the
Lagrangian function L with respect to the time translation

t=t+B, (B = an arbitrary constant). (1.4.49)

Ezample 1.4.1. Two masses on a string. As an illustration of the foregoing
theory, consider two masses m; and mo that are connected by a weightless string
of length I. The mass m; can move freely on a horizontal plane, while the string
can move frictionless through a small hole O in the plane so that the mass mo
moves vertically. To begin, let at ¢ = 0, the distance of the mass m; from the
hole O be r = rg, and the initial velocity vy of this particle be normal to the
string while the mass mg does not move. The system has two degrees of freedom
and we select as the generalized coordinates the polar coordinates of the mass
my, r, and ¢ as, indicated in Figure 1.4.1.

Figure 1.4.1

At the initial moment ¢t = 0,7 = rq, and 7 (0) = 0. The kinetic and potential
energy of the system are

1 . .
3 [(m1 +ma) 7% + mir?p?]

—mag (I — r) magr + const. (1.4.50)

T
II

Il
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The Lagrangian function is given by

1
L= 5 [(m1+m2)i® + mir?p®] — magr. (1.4.51)
It is obvious that the generalized coordinate ¢ is ignorable and the momentum

(cyclic) integral reads

oL 2.
Pp = 7 = myr p = C = const. (1.4.52)
14 6(,0
Since the Lagrangian function does not depend explicitly on time ¢, we have
also the energy integral T+ II = E, which in our case becomes

1
3 [(m1 + ma) 2 4 m1r2¢2] + mogr = E = const. (1.4.53)
Since our dynamical system has two degrees of freedom, we can base our analysis
on two conservation laws (1.4.52) and (1.4.53), ignoring the Euler-Lagrangian
equations of motion.

At t = 0 the constant C is found to be C = mrgvg, and from (1.4.52) it
follows that

ToUp

o =20 (1.4.54)
T

The total energy F is
1 2
E = §m1v0 + magrg. (1.4.55)

Entering with (1.4.54) and (1.4.55) into (1.4.53) we find after simple calculation
the following relation depending only upon variable r:

2 1
P2 = mog

2mag

myvgr
i (rog — 1) [rz —(r+mq) 1% 0] . (1.4.56)

The roots of the quadratic expression with respect to r in the square brackets
are found to be

. - Tn]’Ug m%vé mlng()
12 4dmag 16mig 2mag
2
= ﬁl—“ﬂ{u 1+822901 (1.4.57)
4mag my Vg

Therefore, 71 > 0,72 < 0, and the particle m; will oscillate between the bound-
ary circles rg and 1. The equation (1.4.56) can be written in the form

2 _ 2mag 1

e (ro—r)(r—r1)(r—r2) =®(r). (1.4.58)
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From this equation it follows that & (r) must be positive during motion. Since
the root rg is negative, the expression

2mag T — 719

is always positive. The right-hand side of (1.4.58) will be positive in the following
two cases:

(a) ro<r<ry (b) m<r<mrp. (1.4.60)

The trajectories of the particles m; for the cases (a) and (b) are depicted in
Figure 1.4.2a and b.

Figure 1.4.2

It is clear that the case (a) is the motion of the particle m, for which, at the
initial moment ¢ = 0, the centrifugal force of m, is greater than the weight of
the particle mo, that is,

my 'Ug
To

> mag, (1.4.61)

and the radius ro will start to increase from the initial point A if

vp > 42970, (1.4.62)
my

Similarly, the motion of m; will describe the trajectory represented in Figure
1.4.2b if at t = 0 the weight of the particle my is greater than the centrifugal
force of the particle my, so one has the following condition for the initial velocity
vo.

magTo

v < s (1463)
my

and the distance of the particle m, will start to decrease from the initial distance
corresponding to point A. Finally it may happen that the centrifugal force of
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the mass my is equal to the weight mog of the particle mgy, and we have the
motion of m; along the circle of the radius r for which3

v =, /m;—gl’"‘). (1.4.64)

Let us briefly describe the motion for the case (a). During the initial increasing
period from A to B the angular velocity ¢ given by (1.4.54) will decrease;
the velocity and centrifugal force are going to decrease also until the point m;
reaches the point B, where the weight m,g is equal to the centrifugal force. In
the subsequent motion from B to C the regime of motion is going to be the
opposite.
From equation (1.4.64) it follows that
dt =+, (1.4.65)
@ (r) '

since ® (r) > 0 we have to take the plus sign when r is increasing and the minus

sign when r is decreasing. For the case (a) the radius is increasing from ry to
r1 in accordance with the equation

T odr
t= / i (1.4.66)

The time from A to B (Figure 1.4.2a) is therefore

o dr
t = / _dr (1.4.67)
To V @ (T)
while the time needed to pass from the extreme point B to C' is
o dr o dr
by = _/ _dr =/ Ay (1.4.68)
1 /P(r) re VP(r)

Therefore, the period of this oscillatory motion from the point A to B and back
to C is finally

T

I

o dr
t1 +1i= 2/
To @ (r)

_ 2mmy) rdr 1.4.69
mag T/”\/(TO—T)(T'Tl)(T—Tz)’ ( )

and the amplitude of the oscillation of the mass m; is obviously

a=r;—T7o. (1.4.70)

3The circular motion of the particle m; and stability of the motion for which (1.4.64) is
satisfied is considered in (68}, pp. 635-638.
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The integral figuring in (1.4.69) is the elliptic type, and the integration can be
accomplished for given rg, r;, and ro.

It is of interest to note that for this type of oscillatory motion we can use
two equivalent formulas for the approximate period proposed by Pars ([84, p.

10}):
de\"V? e\ 7V?
Tapproz = 7 (11 = 10)'/? [(E)r:m - <717>r=ﬁ] (1.4.71)
or
Tapproz = m[A(ro) + A(r1)], (1.4.72)
where
A(r) = [T (r)] 2. (1.4.73)
For the case (a), that is, 7o < 7 < 71,
m T
Tapproz =T [\/A (T;’ —* 7 (r: —| (1.4.74)
with
A= _2m29 (1.4.75)
my + my

Finally, the second generalized coordinate ¢ can be found from the conservation
law (1.4.54)

" dr
oo / r /o= (r—r) (r—r2) (a7

1.4.3 On the Disturbed Motion and Geometric Stability
of the Scleronomic Potential Dynamical Systems

In this section we shall briefly discuss the problem of stability in the geomet-
rical sense, which is based upon Synge’s famous work, “On the Geometry of
Dynamics” [106]. Since the exposition that follows is based strictly on the
tensor calculus, we suppose that the reader is familiar with this mathematical
discipline, although a broad knowledge of this subject is not essential.

As we have seen in section 1.4.1 the kinetic energy of a scleronomic dynam-
ical system is given by equation (1.4.15): 2T = a;;¢;q;. We suppose that the
configuration of the dynamical system is specified by n generalized coordinates,
which we now denote by (g*, ...,¢”) . These coordinates define the so-called con-
figuration space V,, and introduce the metric of the configuration space in the
form

ds? = 2Tdt = a;;dq'dg’, (1.4.77)
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which is a basic invariant of V,,. Note that the quantity a;; (ql, o qj) represents
the covariant metric tensor in the configuration space V,,. Note also that the
quantity ds introduced by (1.4.77) is referred to as the basic line element in
V,, and configuration space defined in this way is also the Riemannian space.
Together with the covariant metric tensor a;; we can also introduce the con-
travariant metric tensor a (which is denoted by ai_j1 in equation (1.4.26)), and

we have that a;za® = &

1, Where 61 denotes the Kronecker delta symbol and
is equal to unity or zero when ¢ and j are equal or different, respectively. Let
us consider an arbitrary scleronomic dynamical system subject to generalized
forces @Q; (ql, ey q") . Using the tensorial notation we can write the differential
equations of motion of this system in two different forms (already indicated
by (1.4.25) and (1.4.26)). In the covariant form the differential equations of
motion are (nonconservative forces are equal to zero, Qs = 0, in (1.4.25) and

Qi = —011/dq")
aijijj -+ [jm,’L] q.jq"” =Q; s=1,..,n. (1478)

As demonstrated earlier in this section (see (1.4.19)), these equations can be
derived from the corresponding Euler-Lagrangian equations.
The equations of motion can also be written in the contravariant form

§F+Thdd* =Q =aQ;, r=1,..,n (1.4.79)

Note that the symbols [¢m, j] and T ; & denote the Kristoffel symbols of the first
and second kind, respectively, introduced earlier in this section.

After this introduction in the tensor notations, we now consider two mo-
tions: the undisturbed motion g¢'(t) and the infinitesimal disturbed motion
x* (t). These two motions take place along the neighboring curves in the con-
figuration space V,. We suppose that the undisturbed motion ¢*(t) satisfies
identically the differential equations (1.4.79). We call these trajectories, accord-
ing to Synge, the natural trajectories C. Let ¢",r = 1,...,n, be a point P of
C and q" + z” the coordinates of the corresponding (simultaneous) point P, of
disturbed natural trajectory C,,z" being infinitesimally small. We shall call the
vector with contravariant components z” the disturbance vector. If the distur-
bance vector between simultaneous configurations remains permanently small,
we say that the undisturbed motion is stable in the kinematical sense.

In order to obtain the differential equations of the disturbed motion, we
substitute the generalized coordinates ¢* by ¢* + z* in (1.4.79) and calculate the
corresponding Kristoffel symbols and generalized forces in the disturbed region
as

¢+ &'+ 0 (¢ +29) (¢ +25) = Q.7 (1.4.80)

where the asterisk denotes the quantities that should be calculated at P,. There-
fore, expanding I, and Q,* and retaining the first powers of small quantities
only, we have

Q!

o o . o
Lok =T +a™ b @ =Q "o

o™ 3k

(1.4.81)



30 Chapter 1. The Elements of Analytical Mechanics

Thus, the equations of the disturbances are

Q!

, 5 .
P+ qumgx_kF;'m +2I‘ pik =2l = ek

(1.4.82)
which are usually employed in solving concrete dynamical problems.

As demonstrated by Synge the equations of disturbed motion written in
tensorial form shed light on the geometrical structure of the disturbed motion
theory.?

Let us introduce the so called absolute derivatives of the disturbance vector.
The first absolute derivative of this vector is given as

(a)
§ zt

ot

=i+ l"’kq z* (1.4.83)

(a)
where % () denotes the absolute derivative with respect to time formed with
respect to metric tensor a;;. Differentiation with respect to time leads to

(a) |
d 6z

pri-alli :r’-{—l"}kq]a:k-i—l’;-qu +——F]qu z*

a m
+ (2™ + T%¢2*) Th, g (1.4.84)

Substituting ¢’ from (1.4.79) in this expression we obtain the second absolute
derivative of the disturbance vector in the form [68, p. 624]

(412) '
6zt o i d i T
'67 = T +ngk ((9 kF;m+st jm ~ Lt mr jk)
+2T%,¢7 2% + T%, Q%7 . (1.4.85)
Substituting i* from this equation into the equation of disturbed motion (1.4.82),

we have after simple manipulations the following equation of disturbed motion
in the contravariant form [106, p. 79], [68, p. 625]:

(a)

62 : i 0 i s % % s
6t2 + 2™ q éq—Jka a mF]k + karjs — tmst jk
= af (‘?}Q] +rle’°) (1.4.86)

4Concerning the geometrical interpretation of (1.4.82) which follows, Synge wrote [106,
p. 78], “The use of the tensorial notation is of greatest importance. The appearance of the
Riemannian curvature tensor makes it difficult to believe that similar results could be obtained
without the use of this method.”
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Note that the expression in square brackets represents the Riemann—Kristoflel
curvature tensor

j g i 0 i s 1 % H]
Ry’ = 8—qumk - aq_mr‘jk + s — Ths i (1.4.87)

Therefore, the equation of disturbed motion in the contravariant form becomes

(a)

8t igmaigk — 23, OF 1.4.88
”&T‘FkaJ’w F4q" =2'V;Q", (1.4.88)
where
i 0Qh
ViQ' =55 +T5Q° (1.4.89)

denotes the covariant derivative of the generalized force.
It is convenient to write the equations of disturbed motion (1.4.88) in co-
variant form

(@)
827

-7+ Rimjrd*@z™ — 2™V Qr =0, (1.4.90)

Qir

where Ry, denotes the covariant form of the Riemann—Kristoffel tensor Rprmn
= aps R,,,,°. The explicit form of the Riemann-Kristoffel tensor is

R _ l a2a'rn a2(7'.«sm _ 82arm _ 820'571
TSN T 29¢°0q™ | 8q"8q™  Og*Bqr  OqrOg™
+aP? ([rn, p| [sm, g] — [rm, p| [sn,q]) . (1.4.91)

Note that for the case of the potential forces, that is, Q; = —81I/8¢*, where
II=1I(q", ..., q") is the potential energy, the equations (1.4.90) become

(a)
&zt y o1 oIl oIl
. L gkgiem — _m TS —_ _p™m
a"_6t2 + Remjrd ¢’ T <_——8qm8qr 8q3> z""Vm <—8qr) .

(1.4.92)

We shall call the differential equations of disturbed motion (1.4.88), (1.4.90),
and (1.4.92) the Synge disturbed equations, which are all written in tensorial
(i.e., invariant) form.

The Synge disturbed equations form a basis for studying the stability of
motion by geometrical means. In many practical situations the geometrical
method has been used with advantage in various problems of mechanics and
optimal control theory. The reason is that the Liapunov method of stability
analysis, in spite of the fact that it is the strongest and most full method, is
not invariant in all coordinate systems. Namely, the same motion can be stable
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in one coordinate system and unstable in the other. That is the reason that
Pars [84, p. 174] stated that the Liapunov notion of stability “is fruitless in the
classical dynamics because it demands too much.”

The geometrical method for estimating the stability of motion, contrary
to the Liapunov method, is direct integration of the differential equations of
disturbed motion, given above. After the integration, the estimate of stability
is done on the basis of the intensity of the disturbance vector, z? = ai; Ttz

In the text that follows, we shall show that the disturbed equations (1.4.92)
together with the differential equations of motion (1.4.78) can be derived simul-
taneously from the following modified Lagrangian function [110]:

(@) .
Fooo N ) |
L(g,¢,z,%)= @ijdi g EI;-"B . (1.4.93)

Namely, it has been demonstrated that the Euler-Lagrangian equations based
upon the modified Lagrangian function (1.4.93), considering the generalized
coordinates ¢* and corresponding disturbances z* independently, produce the
following equations:

(a)
4oL oL &
dt 8¢ Oqm " 62

; on
+ Rimjrd®@z™ + 2™V (5{) =0, (1.4.94)
which are equal to the Synge disturbed equations (1.4.92) in covariant form.
Similarly, the Euler-Lagrangian equations formed with respect to the compo-
nents of the disturbance vector z* generate the equations of motion (1.4.78),
namely

dor ot
dt 8¢ Ozt

oI

= ai; @ + [im,i]¢'¢™ + 3¢ =0 (1.4.95)

Since the modified Lagrangian function L does not depend explicitly on time
t, in [110] it was shown that the energy-type first integral exists in the form
(8L/8¢') ¢' + (8L/0i*) &' — L = const. This expression written explicitly leads
to the following conservation law:

(a) |
bzt . Ol
aij—gt—q’ + Eq—kxk = const. (1.4.96)

Similarly, if the modified Lagrangian function (1.4.93) does not depend on a gen-

eralized coordinate q* but does depend upon corresponding generalized velocity
¢* (where i is a fixed integer), we have the cyclic conservation law

oL

5{; = C; = const., (1.4.97)
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which leads to (see [110])

a
(6)mk Jj ,mk
akiT + ap;Iy,,;2™¢" = C; = const. (1.4.98)
This conservation law does not have the tensorial character, which one should
expect, because the cyclic conservation laws are the privilege of special coordi-
nate systems only. The reader can find more conservation laws obtained by the
theory of E. Noether in {110]. Note also that applications of the Synge theory
of disturbed motion can be found in [93].
Recently, in [79], almost the same modified Lagrangian function was estab-
lished, the difference being that the authors of [79] allowed that the dynamical
system be rheonomic, that is, the Lagrangian depend on ¢, z*, and ¢.

1.5 A Brief Outline of the Nonholonomic
Dynamical Systems

Thus far we have considered the dynamics of holonomic systems where the num-
bers of generalized coordinates qi, ..., ¢, and corresponding virtual displacements
oq1, ..., 8¢, are precisely equal to the number of degrees of freedom of the dy-
namical system. Applying the Lagrange-D’Alembert principle and demanding
that the virtual work of the reaction forces (1.3.3) be equal to zero, we have
arrived at the central Lagrangian equation (1.3.33) in the form

— = —~—-—Qs) 8¢s =0, s=1,..,n, (1.5.1)

where the summation convention with respect to repeated indices is assumed.

In many problems, we are frequently faced with so-called nonholonomic con-
straints which are of a kinematical character. They are mostly given in the form
that is linear with respect to generalized velocities:

Agsds + Bo =0, a=1,..,r, r<n, (1.5.2)

where A, and B, depend upon generalized coordinates ¢; (s = 1,...,n) and
time ¢. It may also happen that nonholonomic constraints are the nonlinear
functions of generalized velocities

fo (tvqlv---v(Inyqla---ydn)201 a=1,..,r r<n (153)

The term nonholonomic is accepted as another name for nonintegrability of the
differential equations (1.5.2) or (1.5.3) and the impossibility of reducing them
to the form

0u (t,q1, ..., qn) = Co = const., (1.5.4)



34 Chapter 1. The Elements of Analytical Mechanics

since in this case we would have a holonomic constraint considered previously.
Thus, the nonholonomic constraints are frequently referred to as nonintegrable
constraints. For example, the constraint whose equation is of the form

q1d1 + g2d2 + q3¢3 =0 (1.5.5)

is holonomic, since we can integrate this relation and obtain the pure geometric
holonomic constraint

@ + ¢2 + g2 = const., (1.5.6)

while the constraint of the form
G2—q31 =0 : (1.5.7)

is nonholonomic. It is of interest to note [39, p. 9] that despite the fact that we
are able to show that the particular trajectory of equation (1.5.7) satisfies the
relation

q = tza g = t47 q3 = 2t27 (158)
we are still not able to find the surface

f (taqh q2, 513) =0 (159)

upon which are placed all possible trajectories that satisfy the constraint (1.5.7).

It can be demonstrated (see, for example, [68, p. 12]) that the constraints
given by equation (1.5.2) are integrable (holonomic) if the following conditions
are satisfied:

0Aue OAwx  0As, OB
dqr ~ B¢, ' Ot  Ogs’

However, if only one of the constraints (1.5.2) does not satisfy these conditions,
the system must be considered nonholonomic.

It is clear that the virtual displacements 8gs (s = 1, ...,n) figuring in the cen-
tral Lagrangian equation (1.5.1) are not independent in the presence of nonholo-
nomic constraints (1.5.2), (1.5.3). That means that for nonholonomic dynamical
systems, it is not possible to select generalized coordinates equal in number to
the degrees of freedom. Actually, in nonholonomic dynamics the number of de-
grees of freedom ¢ is always less than the number of the generalized coordinates
n, namely, (number of degres of freedom)= (number of generalized oordinates)—
(number of nonholonomic constraints):

(kys=1,..,n, a=1,.,7). (1.510)

c=n-—r (1.5.11)

In fact, the virtual displacements g, have to satisfy the following additional
relations introduced by Hertz and Hollder:®

Ausbgs =0, (a=1,..,r, s=1,..,n), (1.5.12)

5Some authors (see, for example, Mei Fengxiang [48]) call the conditions (1.5.12) Appell-
Chetaev conditions.



1.5. A Brief Outline of the Nonholonomic Dynamical Systems 35

and in the case of nonlinear nonholonomic constraints (1.5.3) these conditions
read

Ofa
04gs
We can now use (1.5.12) or (1.5.13) to reduce the number of virtual displace-
ments to their independent number. The method for elimination of these ad-

ditional displacements is the well-known procedure of Lagrange multipliers.
Namely, if the equations (1.5.12) hold, then it is also true that

AaAasbgs =0, (a=1,.,r, s=1,..,n), (1.5.14)

8¢; =0 (a=1,..,7, s=1,..,n). (1.5.13)

where Ao, =1, ..., 7, are Lagrangian undetermined multipliers that are gener-
ally functions of generalized coordinates g, and time ¢. Combining (1.5.1) and
(1.5.14) we find

(ia_L _or _ Qs — ,\QAM) 8¢ =0, a=1,.,r, s=1,..,n (1.5.15)

The virtual displacements 6q; are not independent as stated above, since they
are also engaged in the nonholonomic constraints (1.5.12). Moreover, the values
of A\, are arbitrary. Thus, let us select the last m of the virtual displacements
6qs by accomplishing the proper choice of the X factors, so that

d L 0L
o O 0, - MAw =0, s=n—-m+1,..,n. 1.5.16
&0 on Qs — AA 0, s=n—m+ n ( )
This leaves
d 9L 0L
(d_téa—a_qs——Qs—AaAas>6qs:0’ a=1,.,r, s=1.,n—m.

(1.5.17)

Now all ég, figuring in equation (1.5.17) are independent and the coefficients of
each §g,must be equal to zero. Therefore, we finally have

= — o~ Qs = Adas =0, s=1,..,n, a=1,.,r (1‘5'18)

These differential equations of motion of nonholonomic dynamical systems should
be considered together with the nonholonomic constraints (1.5.2):

Apsqs + Bo=0, a=1,.,r, r<mn. (1.5.19)

They form n + r differential equations with n + r unknown generalized coordi-
nates ¢, ..., gn and Ag, ..., A, unknown Lagrangian multipliers.

For the case of nonlinear nonholonomic constraints (1.5.3), by repeating the
similar procedure as demonstrated above, we arrive at the differential equations
of motion in the form [48]

d
_6_L_QI_’_QS_)\Q%:(), s=1,.,n, a=1,.,r (1.5.20)
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It is to be noted that the last term in (1.5.18), @* = A, Aqs, can be interpreted
physically as the generalized force which acts on the mechanical system in order
to satisfy the given nonholonomic constraints. At the same time, the nonholo-
nomic generalized force Q* can also be interpreted as the generalized reaction
force acting on the dynamical system.

In summing up this section it is important to note that a nonholonomic
dynamical system has to satisfy the following three obligatory conditions:

(a) the central Lagrangian equation (1.3.33) with specified Lagrangian func-
tion L (¢, q,q), which is formed in the same way as for the holonomic systems;

(b) the nonintegrable (nonholonomic) constraints in the form (1.5.2) or
(1.5.3);

(c) the Hertz—Holder conditions (1.5.12), (1.5.13).

For example, if the condition (c) is not prescribed, despite the fact that the
dynamical system is subject to nonintegrable constraints (1.5.2) or (1.5.3), the
system is not nonholonomic and must be considered as a variational problem
in the presence of a given set of differential equations (1.5.2) or (1.5.3) as con-
straints. For equations of motion, in this case, see Chapter 4, Section 7.4 of this
book.

Note that the nonholonomic dynamical systems fall into the category of
purely nonconservative systems, since the noholonomic generalized force Q* =
AaAas cannot be derived from any potential function. Therefore, there is no a
single Lagrangian functions by means of which the behavior of a nonholonomic
system can be completely described.

Let us underline finally that as far as the initial conditions are concerned
in nonholonomic dynamics, we can select the initial position g; (0),...,qn (0)
arbitrarily, but the initial velocities ¢; (0), ..., ¢n (0) should be chosen in such a
way that the given nonholonomic constraints are satisfied. This means that we
can arbitrarily assign only n — r initial generalized velocities.

The literature devoted to nonholonomic dynamical systems is very wide-
reaching since there exist many nonholonomic constraints in physics and engi-
neering. For example, an outstanding classical example whose history can be
traced to the times of Hertz is the rolling solid body upon a surface without
slipping. The examples of such motions are: sphere rolling on a fixed surface,
and a circular homogeneous disc rolling over a plane (see example 1.5.2). The
interested reader can find a variety of nonholonomic dynamical problems clearly
presented in the monograph of Neimark and Fufaev [75].

Ezample 1.5.1. Chaplygin sled. A rectangular thin plate can move on the
inclined plate, which makes a constant angle o with the horizon. A small knife-
edge is fixed on the center of gravity C of the plate and has the direction of the
line AB, as shown in Figure 1.5.1. In fact, the plate is moving in such a way
that the velocity ve of the center of gravity is always directed along the line
AB. The problem is to find the motion of the plate.
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Figure 1.5.1

This example is a simplified version of the so-called Chaplygin sled. (See also
(73, p. 110] and [82]). The configuration of the plate is determined by three
generalized coordinates: the coordinates of the center of gravity z.,y. and the
angle ¢ between the line AB and the axis z. Since the velocity v. has the
direction of the line AB we have

Te = Ve COSY, Yo = V. SINQY; (1.5.21)
hence we find that the constraint
f=9.—d.tanp =0 (1.5.22)

is of the linear nonholonomic (nonintegrable) character. Thus, we see that the
system has three generalized coordinates and one nonholonomic constraint, and
our dynamical system has 0 = 3 — 1 = 2 degrees of freedom.

Given that the mass of the plate is m = 1 and that the axial moment of
inertia of the plate for the axis normal to the plate and passing through the
mass center C is Jo = k2, the Lagrangian function of the system is

L= % (22 +92) + %kngQ + gz, sina, (1.5.23)
where ¢ is the acceleration of gravity. The Euler-Lagrangian equations,
d 0L 0L
ToE  om. AnX  (An = —tangp),
d 0L 0OL
—_——— — = fmad 1
205, 9. ApX (App=1),
d 9oL 0L
- - = A Az =0), 1.5.24
205 dp 13 (A3 =0) ( )
read
Z.—g = —MAtany, §=gsina= const.,

Je = X\ $=0. (1.5.25)
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From the third equation we find
» = wt + @, (1.5.26)

where w and ¢, are arbitrary constants. From the first two equations (1.5.25)
it follows that

Z.+jo.tanp = G. (1.5.27)

Differentiating the nonholonomic constraint (1.5.22) with respect to time we
obtain

Tow

Jo = Z.tanp + p— <p; (1.5.28)
combining (1.5.27) and (1.5.28) we arrive at the equation
Ee + fowtanp = gcos? p. (1.5.29)
By introducing the new variable
i = X, (1.5.30)

the differential equation (1.5.29) is reduced to the linear differential equation of
the first order, whose integration gives

X=i,= gsin<,0cos<p+Dcos<p, (1.5.31)
w
where D is an arbitrary constant. Integrating again, we find

g sin2<p
Tw? 2

D
+;sincp+E, (1.5.32)

c

where E is an arbitrary constant. Entering with (1.5.31) into nonholonomic
constraint (1.5.22) and integrating, we have

g 1. D
Yo = 27 ((p - 551112(,0) - —‘;costp+ K. (1.5.33)

It is interesting to note that if the initial position and initial velocity are given
in the form

Te (0) =Y (O) =0, z. (O) =Y (0) =0, ¢ (0) =0, ¢ (0) =W, (1534)

then the motion of the plate will be given in the form

1
z. = a’sin®wt, y. = a? (wt -3 sin 2wt) ,  p=uwt, (1.5.35)
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where

a? = 2—‘32- sin . (1.5.36)

Therefore, for the given initial conditions in the form (1.5.34), the plate rotates
with the constant angular velocity w, and the center of gravity of the plate C
describes the cycloidal trajectory.

Let us now consider the case when the plate is moving in the horizontal plane
20y for which o = 0.

For this case the Lagrangian function and the nonholonomic constraint are

1
L=5 (#+3) + 5K, de—betanp=0. (1.5.37)

The Euler-Lagangian equations are in this case
T =—Atang, P.=2A, @=0. (1.5.38)
Repeating the same procedure as in the case a # 0 we find
& = Dcos(wt+¢y), Yc=Dsin{wt+py), ¢ =wt+pg, (1.5.39)

where ¢, and D are constants. From (1.5.39) we obtain

D . D
Te = To = —sin (wt+w9), Ye—yo= — o8 (wt+ @) ; (1.5.40)

namely, the plate rotates with constant angular velocity w, while the center of
gravity describes a circular orbit

2
(ae=0)* + - = (2 (1.5.41

with the constant velocity D. Here xg,yp are arbitrary constants depending
upon the initial conditions.

Example 1.5.2. The rolling disc. Let us consider the motion of a thin, ho-
mogeneous circular disc, which rolls without slipping upon a rough horizontal
plane. Let the mass of the disc be m and its radius a. Introducing a fixed coor-
dinate system Ozxyz, we can describe the position of the disc by the specification
of five coordinates: Cartesian coordinates z,y of the point of the plane Oxzy in
which the disc is in contact with the plane and three Euler’s angles, 8,4, and
¢, which are depicted in Figure 1.5.2
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o

Figure 1.5.2

Ignoring for a moment the nonholonomic constraint, we first form the La-
grangian function for the disc. From Figure 1.5.2 it follows that

Tc =z —asinfsiny, yo =y +asinfcosy, zc = acosh, (1.5.42)

where z¢,yc, and z¢ are coordinates of the center of the disc. Therefore,

T = i—a9c0s9s1n¢—a1,bsin0cos1,b,
Yo = y+aécosecos1,b—a12)sin93inw,
(¢ = —afsiné. (1.5.43)

The kinetic energy of the disc is of the form
1 . . . 1
T=5m (2% + 9% +2%) + 3 (Jow?, + Jy w2 + T, wk), (1.5.44)
where C'z1, Cy1, and Cz; are the principal axes of the disc that are not fixed in
the disc. Let J;, = Jy, = A and J,, = C be the principal moments of inertia

of the disc.
From Figure 1.5.2 we conclude that

wg, =6, Wy, = ¥ cosé, Wz =@ — Psinb, (1.5.45)

so that the Lagrangian function L = T — I, with II = mga cos 8, becomes (see
{75, p. 305])

L = % (2% + 9*) + may (9c0390031[) - dzsinesinw)
—mat (9 cosfcosy + 1,b sin @ sin 1/1)
—}%1];2 (A cos? 6 + ma? sin? 6) + %92 (A+ ma2)

1 .
+—2—C’ (t'p — ¥sin 0) — mgacosd. (1.5.46)
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The nonholonomic constraints follow from the fact that the disc is relling with-
out slipping upon the horizontal plane. Thus, the rolling conditions are

T =apcosy, y=apsiny. (1.5.47)

Since the problem is of the scleronomic type, the virtual displacements are the
same as the possible displacements, namely

bz = abpcos, by =abpsiny. (1.5.48)

Noting that the generalized nonconservative forces ()’s are absent and applying
the equations (1.5.20) to the generalized coordinates z,y, 8, ¥, and ¢, we obtain,
respectively, the following differential equations of motion of the disc:

%[mzic—ma (9cos€sind)+121sin9cos¢)] = A1,

If

dit [m;z)+ma (9cos€cos1/}—1'b8ingsin1/’)] Az,

% {ma (4 cos B cos ¥ — & cosfsin ) + (A + ma?) (’9]
+ma [y (é sinf cos 1 + 1 cos O sin ¢)

— (8singsiny — 1])cos00051/))]

+9” (A —ma?) sinf cos

+Ccosb (ga - 1bsin9) — mgasing = 0,

% [(Acoszé' + ma?sin® 9) ¥ —ma (¢sin@siny + & sinf cos )
—C'sin6 (gb — 1Z)sin0)] +ma [y (('}cosb’sinw + 1lzsin9cosz/;)

+3 (Boosfcos — fsindsiny)| = 0,

C% ((,'0 — sin 0) +a; cosy + adgsing = 0. (1.5.49)

Entering with (1.5.47) into (1.5.49), we can easily eliminate Aj, A2,Z, and y.
Thus, we arrive at the following three differential equations:

(A+ ma2) 6+ (C+ maz) Qwcos @

+AQ%sinf cos§ — mgasind = 0,

[24Q5in 8 + Cw] 0 — AQcosf = 0,

(C +ma?) & — ma*QWcosf = 0, (1.5.50)
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where we introduced the notation

Q=9, w=¢—Psinb. (1.5.51)

Stationary States of a Rolling Disc

The differential equations of a rolling disc (1.5.50) and (1.5.51) are very conve-
nient for the study of its stationary motions. In fact a rolling disc can perform
(manifest) the following three steady state motions:

(a) the circular motion,

(b) the straight line motion,

(c) rotation of a disc about its vertical diameter.
The rolling disc will perform the circular motion under the following conditions:

@ = g = const., B0 =0q= const., ¥ = Q = const., (1.5.52)

whence, taking into account (1.5.51), we conclude that w = const. For this case,
the equation (1.5.51); becomes

(C’ + ma2) Qw + AQ?sinfy — mga tan g = 0. (1.5.53)

This equation represents the condition that has to be satisfied for the circular
motion of a disc. Combining (1.5.43), (1.5.47), and (1.5.52), we have

¢ =awcos(Qt +c), gYo=awsin(Q+c), (1.5.54)

where c is a constant of integration. Integrating these equations we find
aw aw
T = ﬁ—sm(ﬂt+c) +zc,, Yo = - cos (S + ¢} + Yoy, (1.5.55)

where x¢, and yc, are also arbitrary constants. Therefore, the trajectory of a
center of the disc is a circle:

(@c —20,)* + (Yo — ya,)* = (%)2 (1.5.56)

Readers can find the conditions of stability of circular motion of a rolling disc,
in [84, p. 122] and [75, p. 305).

We determine next the first-order stability for the straight line motion (case
(b)) and rotation of a disc about its vertical diameter (case (c)). Let us introduce
small disturbances £ (t),7(t), and { (t) by the relations

B=00+£(t), D= +n(t), w=wo+((t), (1.5.57)

where 6y, Qp, and wg denote the constant stationary values (1.5.52). Entering
with (1.5.57) into (1.5.50) and retaining only the first-order terms in £,7, and
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¢, we arrive at the following equations of the disturbed motion:

(A+ maz) £— [(C’ + ma2) Qowo sin By + AQZ cos 26y + mga cos 00] ¢
+ [(C + ma?) wg cos By + AQg sin 6p] 1 + (C + ma®) Qo cosfy =0,
(24 sin 0 + Cuwp) € — Afjcosfy =0,
(C +ma?) ¢ — ma®Qpé cosfy = 0. (1.5.58)

We use now (1.5.58) for the stability analysis.

(a) Stability of straight line motion. The disc will perform a straight line
motion in which the plane of the disc remains vertical and rotates with the
constant angular velocity, that is,

60=0, Q0 =0, ¢=uwy=const. (1.5.59)
The disturbed motion satisfies equations (1.5.58) that in the present case become

(A +ma?) & - mgag + (C +ma?) won + (C +ma?) = 0,

Cwof — An=0,  (C+ma®){=0. (1.5.60)
From (1.5.60)3 we obtain { = const. Integrating (1.5.60)2 we find
n= g;—r—oﬁ + const., (1.5.61)

and therefore, by substituting this into (1.5.60); we find

. C (C + ma? mga
7 EA + ma2; “6- 7 +€na2 § = const. (15.62)

From this it follows that the disc will perform small harmonic oscillations about
the vertical diameter if the expression in brackets is positive, namely, if
2 mgaA
wy > =57
07 C(C +ma?)’
which is the condition of the first-order stability of a circular motion.

(b) Stability of the rotation about the vertical diameter. The disc will rotate
about its vertical diameter with a constant angular velocity under the conditions

Bo=0, wo=0, 1= =-const. (1.5.64)

(1.5.63)

The equations of distributed motions (1.5.58) become

(A +ma?) £+ (AQF — mga) € + (C + ma®) Qp =0,

Anp =0, (C +ma?) ¢ — ma’¢ =0. (1.5.65)
From (1.5.65)2 we conclude that 17 = const. Repeating the same procedure as
in the previous case, we arrive at the differential equation

1

E+ Trmas [AQZ — mga + ma®Q) € = const. (1.5.66)
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Therefore, the condition of the first-order stability for the rotation about the
vertical diameter is

mga

0> ——
07 A+ ma?

(1.5.67)

1.6 Some Other Forms of the Equations of
Motion

In our previous considerations we have used the Euler-Lagrangian differential
equations of motion of holonomic and nonholonomic dynamical systems. In
fact, these differential equations occupy the central position in all analytical
mechanics due to their invariance with respect to the arbitrary selected coor-
dinate system in which a dynamical process is taking place. However, in the
evolution of the dynamics and especially in the field of nonholonomic mechan-
ics several various forms of differential equations of motion, different from the
Euler-Lagrangian equations, are discovered. Here, we briefly discuss two kinds
of differential equations that are equally valid in holonomic and nonholonomic
dynamics and also have invariant properties with respect to arbitrary selected
coordinate systems. If considered in the realm of holonomic dynamics they
are fully equivalent to the Euler-Lagrangian equations, but have quite different
forms.

1.6.1 The Gibbs—Appell Equations: Holonomic
Dynamical Systems

Let us consider a holonomic dynamical system consisting of N material parti-
cles, whose position in each moment of time can be specified by n generalized
coordinates qi, ..., gn. The position of every particle can be expressed in terms
of ¢g; and ¢:

ri=r;(t,q1,.,qn)- (1.6.1)
The velocity and acceleration vectors of the ¢th particle are

dl‘,‘ . 3]‘,‘ . 31‘,‘
i —_——— I ———— ‘_’ = 1’2’ seey ) 1-6.2
Vit % T8 T e f " (162)

and

d?r;  Or; r; 9%r; &%r;
i = i b —— G + 2y + 1.6.3
a dt? quq 8q36qkq a 28qs¢9tq ot? ( )

From these relations it is easy to verify that the following functional relations
hold:

Ori _Ovi 0a  ddvi Dvi  dda _,0v,
dqs O4s 0§’ dtdg, B¢, dtdq,  Ogs

(1.6.4)
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1t is easy to verify that the relations (1.6.4); and (1.6.4)3 can be prolonged with
respect to time derivatives

-1

o ovi o™y do%, o 8%

54;5-—8(js_“.—— 3(qns) 58("4;1)_71—16("—52).

(1.6.5)

Remembering that the kinetic energy of the dynamical systemis T = (1/2) va=1
m; (v; - v;), we write the central Lagrangian equation (1.3.33) in the form

40 Sl vy LS vy -0 s =0 (166)
dtaqs 2 (3 1 3 aqs i:12 2 T 1 8 (Is— ’ A

i=]

where the summation with respect to the dummy index s = 1, ..., n is assumed
and _Qs =-Qs+ g_;i

Performing the partial derivatives as indicated in (1.6.6) and the total dif-
ferentiation with respect to time in the first term of (1.6.6), we find

N
av; d Ov; ov; =
a0 ey GOV O 5 s —0. (167
[E <m,a 3. T Gge ™Y qu> Qj' q (1.6.7)

i=1 s

By using (1.6.4) the second and third terms are equal and can be omitted.
Employing (1.6.4); we arrive at the equation

u Oa;
> (miai - Qs> 8gs =0, (1.6.8)
i=1 aqs
whence
ii-l-m‘(awa-)—Q 8¢ =0 (1.6.9)
aq.s 1=1 2 1 1 1 s qs . M

We now introduce the Gibbs—Appell function or energy of acceleration

N
1
= = ; (a; - a; 1.6.1
S 5 ;=1 m; (a; - a;), ( 0)

whose structure in accordance with (1.6.1)-(1.6.3) in terms of the generalized
coordinates is of the form

S = S(t3Q1$ "'aqn9qu "'7q.n’(.1‘17 »CIn) . (1611)

Thus, we arrive at the central dynamical equation in the Gibbs—-Appell form

(6:5‘ —Qs> 8¢, =0, s=1,..,n (1.6.12)
d4s
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Since we have supposed that the system is holonomic, all virtual displacements
6qs (s =1,...,n) are mutually independent and arbitrary, and thus we have the
following system of differential equations of motion known as the Gibbs—Appell
equations:
98 4, s=1,.n (1.6.13)
94s

From the analysis just performed it is clear that the Gibbs—Appell equations
for the case of holonomic dynamical systems are fully equivalent with the Euler—
Lagrangian equations (1.4.1). As we have seen the principal function in the
Euler-Lagrangian equations is the kinetic energy of the dynamical system, while
the principal function in the Gibbs-Appell equations is the energy of acceleration
(1.6.10) or (1.6.11).

It is to be noted that in computing the energy of acceleration by means
of formula (1.6.10) it is necessary to retain only those terms that contain the
second derivatives of the generalized coordinates §;.

In general, for the case of holonomic and scleronomic dynamical systems the
acceleration vector given by the equation (1.6.3) is of the form

81'1* . 621',;

a = 20 o
i 345 qs + 54:00m qsqm,

i=1,..,N, skkm=1,.,n (1.6.14)
since, for the scleronomic case 82r;/8q,0t = 0,8%r;/8t*> = 0. Entering with
(1.6.14) into (1.6.10), we find after a simple but laborious calculation that the

energy of acceleration can be expressed in the form (for more details see [68, p.
163])

§ = Sakdode + [sk, m] 4sGrlim, (1.6.15)
where
N
or; Or;
Qs = Qg = mye— - — 1.6.16
o * ; 8‘]): 8(15 ( )

are the coeficients already defined by equation (1.4.14) and

1 6aks 3ams aakm
- - - 1.6.17
[km, s] 3 <3qm + B 34, ) (1.6.17)

are the Kristoffel symbols of the first kind introduced by equation (1.4.18). From
the first term in equation (1.6.15) it is evident that the coefficients of the terms
of the second degree in the §; in S are the same as the corresponding coefficients
of the terms of the second degree in ¢, in the kinetic energy t defined by (1.4.15).
The second term in (1.6.15) which is linear in the generalized acceleration must
be determined independently.

For the simple motions of a rigid body, the calculation of acceleration energy
is very simple.
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(a) If a rigid body is moving translatory, every particle has the same
acceleration and s is found to be

S = %M [£2 + 2 + £2] (1.6.18)

where M is the total mass M = Zfil m; of the body and where a. is the
acceleration of the mass center of the body C, that is, a2 = [x% + 2+ zf] .

[+
(b) If a rigid body rotates around a fixed axis 0z, the energy of acceler-
ation is

S:ELW,

: (1.6.19)

where J, is the moment of inertia about the 0z axis and ¢ is the angle of rotation
of the body.

(¢) For a rigid lamina moving in a plane, the energy of acceleration is
found to be

1

S=1Mﬁﬁ+gﬂ+2

5 Jo @2, (1.6.20)

where a, = [x% + yZ] 12 is the acceleration of the center of gravity of the lamina

and J, is the moment of inertia of the lamina about its center of gravity C.

It is to be noted that P. Appell (see [6, p. 341]) has suggested that the
differential equations (1.6.13) can be derived by introducing the function

R=8—(Q141 + Q22 + - - + Qnin), (1.6.21)
and that the equation of motion can be obtained from the equations

OR OR OR
oo, oo, oy 1.6.22
04y lip) Oin ( )

It was demonstrated (see also [84, p. 201]) that the expression R is minimal
with respect to the generalized accelerations §,. This fact can be connected with
the so-called Gauss principle of least constraint, which we will not consider in
this text. The interested reader will find more details about the Gauss principle
in [84], [122], [75], and [6], to mention just a few references.

Ezample 1.6.1. A particle on an elastic string. Let us consider the motion of
a material particle of the mass m that is fastened to an elastic massless spring of
the spring elastic constant ¢ whose other end is fixed as shown in the diagram.
The motion of this system is situated in the vertical plane z0y (see Figure 1.6.1).
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8y

mg
Figure 1.6.1

Let the unstretched length of the spring be lp. In the position of (vertical)
equilibrium state the weight of the particle is equal to the elastic force mg = cfs:,
where fs; is the deformation of the spring in the equilibrium position. Hence,
the length of the spring in the state of equilibrium is { = lop+mg/c. Let us denote
by z (t) the stretch in the spring beyond its equilibrium position. Therefore, the
length of the spring at an arbitrary instant of time is

mg

L(t)=lo+—2 +2(t). (1.6.23)

C

The position of the particle in the Cartesian system z0y is

x

(zo + 9 z) siné,
C

y (l() + 29 z) cosf. (1.6.24)
c

Thus, the system has two degrees of freedom and the generalized coordinates
are selected to be q; = z(t),qe = 0 (¢).
From (1.6.24) we find
i = Zsin@+ (I+2)8cosf+2:0cosf — (I + 2) ¢’ siné,
§ = Zcosf— (l+2)0sinf —2:0sin6 — (L + z) §” cos . (1.6.25)

The energy of acceleration is (the terms not containing second derivatives of
generalized acceleration are omitted)

S= %m[z'? + (4 2)28° —2(+2)0%5 + 4 (1 + 2) 260). (1.6.26)

To find the generalized forces @, and )y we note that the spring is linear and
the elastic force is proportional to the total deformation of the spring, that is,
Fo = c(fst + z) = c(mg/c + 2) . The direction of this force is depicted in Figure
1.6.1. The projections of elastic and gravitational forces are

X = —c(mg/c+ z)sinh, Y = —c(mg/c+ z)cosd. (1.6.27)
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The virtual displacements §z and 8y are found from (1.6.24) to be

6 = sin@ 6z + (lp +mg/c+ z)cosb 60,
&y cosb 6z — (lp + mg/c+ z)sin6 0. (1.6.28)

[l

Therefore, the virtual work of the active forces F,; and mg is
6A = X6z +Yby=[—cz—mg(l—cosb)|bz+ [—mg(l+ 2)sind}66. (1.6.29)

The generalized forces are therefore

Q,=—-cz—mg(l—cosb), Qp=-mg(l+z)sinb. (1.6.30)

The Gibbs—Appell differential equations 85/8% — Q. = 0 and 85186 — Qg =0
lead to the following system of nonlinear differential equations:

m.'z'—(l+z)92+cz+mg(1—c059) = 0,
(1+2)8+2:0+gsind = 0, (1.6.31)

where the second equation is divided by the common factor m (I + z). If the
pendulum is performing small vibrations, the system (1.6.31) becomes

F4(¢/m)z=0, 6+(g/l)6=0, (1.6.32)

whose solution is easily found to be

z=Asin(vefmt+a), 0=Bsin(\oflt+5), (1.6.33)

where A, «, B, and 8 are constants of integration.
Note that the small but still nonlinear vibrations of this problem have been
studied by means of asymptotic methods in [76, pp.185-189].

1.6.2 The Gibbs—Appell Equations: Nonholonomic
Dynamical Systems

The Gibbs—-Appell equations play a very important role in nonholonomic dynam-
ics since they can generate much simpler differential equations in comparison
to the Euler-Lagrangian equations for nonholonomic systems (1.5.18). Namely,
we shall demonstrate that the central dynamical equation (1.6.12) can be trans-
formed into a form that leads to the differential equations which are free of the
undetermined Lagrangian multipliers.

Let us consider a dynamical system whose position at an arbitrary moment
of time is specified by n generalized coordinates g, ..., ¢,. At the same time let
us suppose that the system is subjected to r nonholonomic constraints in the
form (1.5.2):

Aasgs +Ba=0, a=1,..,r, r<mn, (1.6.34)
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where the coefficients A, and B, are given functions of the generalized coordi-
nates gs (s = 1, ...,n) and time t. As demonstrated before, the virtual displace-
ments §q, are satisfying the Hertz—Holder conditions (1.5.12)

Ansbgs = 0. (1.6.35)

Thus, the system has o = n—r degrees of freedom. Let us divide the generalized
velocities and virtual displacements §g into two groups: dependent generalized
velocities ¢, and dependent virtual displacements &g, whose number is equal
to the number r of nonholonomic constraints, and independent generalized ve-
locities ¢, and independent virtual displacements 8¢, whose number is equal to
o = n — r, that is, number of degrees of freedom. From (1.6.34) and (1.6.35)
we can express the dependent generalized velocities and dependent virtual dis-
placements in terms of independent ones as

Gm = @mplp +bm, m=1,.,r, p=r+1Lr+2,..,n (1.6.36)
and
8m = Ampbgp, m=1,.,1, p=r+1,7+2,...,n (1.6.37)
Differentiating (1.6.36) totally with respect to time, we have
Gm = Qmplp + Am (,q1, s G, 41, -1 Gn) (1.6.38)

where A,, denotes the group of terms that are independent of the generalized
accelerations gs.

In analogy with the variational equation (1.6.37) we suppose that the virtual
accelerations 6§, satisfy the conditions

8Gm = mpbp, m=1,..,1, p=r+1,7r+2,.,n (1.6.39)

Employing (1.6.38), we can transform the Appell function S in terms of 3n—r+1
variables: ta g1, --+,9n, 41, 3] ‘jm (.j,-+1, ) (.in) namely

S = S(t»‘Il,---,‘Imql,---,(}mfil,---’iim)
S*(t,ql,...,qn,ql,...,tjn,(er,...,(jn), (1640)
whence
0s .. 08 _.

—bGs = —6q4,, s=1,.,n p=r+1,..,n. 1.6.41
a3, 7, o P ( )

This system of equations is equivalent to

oS 0S*
7599s = 70— =1,.., = yeees 1.6.42
3. oq a4, 8¢y, s=1,.,n p=r+1,..,n (1.6.42)

for all virtual displacements that satisfy (1.6.35).
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To find transformed (independent) generalized forces @5, we employ the fol-
lowing equation:

QRs6gs = Qpogp, s=1,.,n, p=r+1,.,n, (1.6.43)

where we employed the equation (1.6.39).
By using equations (1.6.42) and (1.6.43), the central dynamical equation
(1.6.12) becomes

0S* .
(a—q_p- - Qp) 6g, =0, p=r+1,..,n (1.6.44)

Since all g, are mutually independent and arbitrary, we arrive at the Gibbs-
Appell equations for nonholonomic dynamical systems

85
04,

s, p=r+1,..,n (1.6.45)

The number of these equations is equal to the number of degrees of freedom o =
n—r. Together with them, we must consider simultaneously the r nonholonomic
constraints (1.6.34) or (1.6.36). The most important property of the Gibbs—
Appell equations is the fact that they are free of the Lagrangian undetermined
multipliers, and at the same time, as has been noted by L. A. Pars [84, p. 202]
“The Gibbs-Appell equations provide what is probably the simplest and most
comprehensive form of the equations of motion so far discovered.”

As a simple illustration of the method, let us consider the example treated
in section 1.5 and depicted in Figure 1.5.1, which has been solved by the Euler—
Lagrangian equations with undetermined multipliers.

Since the plate moves in the plane z0y the energy of accelerations, according
to (1.6.20) reads

| S S 1.5.
§=5m (82 +92) + Ek%? (1.6.46)
Differentiating the nonholonomic constraint (1.5.22) with respect to time we
have §j, = &, tang + ¢i./ cos? p. Thus, the coordinate y is the dependent co-
ordinate and z. and ¢ are independent coordinates (compare with equation
(1.6.38)). Entering with this into (1.6.46) we find

-1 #2 sin ¢ 1l.o.9
== < pi—=—1 - 1.6.
S 2m <Cosch +- 2(pxCCOSSprS> + 2k , (1.6.47)

where the irrelevant terms not containing the second derivatives are discarded.
Since the active force mg is performing the virtual work only along the z-axis,
we find that §A = mgsin« 6z, and hence

Qe = Q; = mgsina, Qp, =0. (1.6.48)
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The Gibbs-Appell equations 95*/9i. = Q},05*/0¢ = Q}, lead to

Ze DT sinp - _ sina
cos? P oS3 e I '
p = 0 (1.6.49)
From the second equation we find

where w and ¢, are constants of integration. Then, the (1.6.49); becomes
fe+wi.tang = geos’p  (§ = gsina), (1.6.51)

which is precisely the equation (1.5.29), whose solution is presented in section
1.5.

1.6.3 Kane’s Equations

Euler-Lagrangian equations (1.4.1) are derived from the Lagrange-D’Alembert
principle (1.3.4). Two important concepts were used in the process of deriva-
tion: the concept of virtual displacements introduced in section 1.2, and the
orthogonality condition for the constraint forces (1.3.3). There is another ap-
proach to analytical mechanics, introduced by Kane in 1961 (see [57]), in which
equations of motion are derived without the concept of virtual displacement.
We briefly give an outline of the derivation of Kane’s equations.

The starting point in Kane’s approach is also D’Alembert’s principle, which
states that the active and inertial forces in the mechanical system are in equilib-
rium (see [52]). The conditions of equilibrium may be expressed in two different
ways. First they could be expressed (as did Lagrange, motivated by analytical
statics of Bernoulli) as a requirement that the sum of works of all forces on
virtual displacements be equal to zero, or (see (1.3.1))

N
> (mif; — Fi = Ry) - 6 = 0. (1.6.52)

i=1

Equation (1.6.52) together with the definition of ideal constraint (1.3.3), that
is, vazl R; - ér; = 0, leads to Euler-Lagrangian equations (1.4.1).

The second interpretation of D’Alembert’s principle is obtained if conditions
of equilibrium are expressed as the requirement that the resultant force and
resultant couple are equal to zero (Newton’s definition of equilibrium). In this
case we obtain (see [52, p. 218])

N N
> (miFi —Fi—Ri)=0, Y rix (mifi —F;—R:) =0, (1.6.53)

i=1 i=1
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where r; are position vectors of material points relative to an arbitrary fixed
coordinate system. Kane’s equations are obtained if (1.6.53) is projected on
specially chosen directions (see [55, p. 416]). These directions are the partial
velocity vectors of a point ¢ relative to the generalized coordinate g; and are
given as (see (1.6.4))

() avi

v, =—-—, s=1,..,n. 1.6.54

4 " By ( )

Note that from (1.6.4) it follows that v(i) = _g_u = %‘;{: = g—;}. By taking the
)

scalar product of m;¥; and F; — R; with \2 for each ¢ and summing, the

following relation is obtained:

A (@) al ovi av; 6.55
Zmirrvqﬁzz Fi--ég——l'Ri-—aq— . (1 . )
i=1 i=1 s s

The reaction forces are also assumed to satisfy 3", R; g—;’L =N R;-Ou 5a- =0,
so that from (1.6.55) we obtain

Qs +Q;=0, s=1,..,n, (1.6.56)

where (s are generalized applied forces and Q% are generalized inertia forces,
that is

N N

Bv ov; doT orT
2 : i *:_E ot 1.6.57
~ 0 @ 2 e, T @ 0g, g, .

where T' = %Efi] v; - v; is the kinetic energy. In writing the last equality in
(1.6.57), we used (1.3.23).

Equations (1.6.56) are Kane’s equations. The generalized forces and gen-
eralized inertia forces in equation (1.6.56), for the case of a rigid body, could
be determined either from (1.6.57) or in the following way. Suppose w and o
are angular velocity and angular acceleration of the body expressed in terms of
generalized coordinates g5 and generalized velocities ¢5. Let I be the inertia ten-
sor of the body calculated for the body’s mass center and let wy, = Ow /8¢, be
the partial angular velocity vector. Then the generalized forces and generalized
inertia forces are given as (see [55, pp. 365-379])

N

N
v (2F> RO
=1

i=1

Qs

N
Qs Ve (Z mi> a® twy, [FI-a—wx(I-w)], (1.6.58)
=1
where r{ denotes the position vector of the point of application of the ith force
with respect to mass center, a® is the acceleration of the mass center, and v
is the partial velocity vector of the mass center.



54 Chapter 1. The Elements of Analytical Mechanics

The procedure of forming Kane’s equations will be demonstrated in the next
example.

Ezample 1.6.2. Double rod pendulum. Consider a system shown in Figure
1.6.2 consisting of two equal homogeneous rods 1 and 2 having equal lengths [
and mass m. The system moves in vertical plane in a constant gravity field. As
generalized coordinates we take the angles between the vertical direction and
the rod axes, 8; and 65.

A\

y
Figure 1.6.2

The position vectors of the mass centers of the rods are

L. l
r ismﬁ,el + §cos f.eq,

l {
ry (l sin6; + §sin92) e; + (l cosf + 3 cosﬁg> ey, (1.6.59)
where e; and ey are unit vectors along the = and y axes, respectively. By
differentiating (1.6.59) we determine the velocities of the mass centers as

l. ) l.
vy = 501819’ vy = lfheg + 592929, (1.6.60)
where the vectors e;p = —sin#;e; + cosf;es,i = 1,2, are oriented along the
axis normal to the rod (see Figure 1.6.2) for the i th rod. The partial velocity

vectors (1.6.54) now become

l l l
vgll) = 5319 =3 sinf,e; + 3 cosfeg,
vég) = leg = —Ilsinb e; + lcosbey,

o)

l l
By = 0, V(z) = -l-egg = ——sin 9281 + — cos 9232. (1.6.61)

6: 2 2 2

The active forces are weights of the rods so that

F, =mge;, Fa=mgey,
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where g is acceleration of gravity. It could be shown easily that the kinetic
energy of the system reads

ngmﬂéf + %ml29192 cos (B2 — 01) + %mz%ﬁ. (1.6.62)

From (1.6.61) and by using (1.6.57), the generalized active and inertia forces
are

) l
Qo, = F1- véf) + Fy - vg) = mge; - (—5 sinfie; + 3 c0s01e2)

+mge; - (—lsinfie; + lcosbieq) = -—%mgl sin 4y,
Qe, = Fy- vél) +F,y- vgi)

1 l 1
= mge; - (-5 sin fse; + 3 cos 9292> = ~§mgl sin 6y,

o _der ot
T dtps, 96,
P 1,02 .
= —§ml 0, — Eml 02 cos (01 — 62) + iml 05 sin (62 — 67),
Q* — __ia_T_f_ir{
02 = Tdt5h, | 06,
1 a1 o 1,2 .
= ~§ml 02 — iml 01 COoSs (02 — 91) — —2-ml 91 s (02 - 91) .

(1.6.63)

From (1.6.56) and (1.6.63) we obtain the Kane’s form of the equation of motion
as

591+592cos(92—6’1)—iezsln(92—91)+§sm91 = 0,
1 T .
3 cos (62 — 01)0; + 592 -~ 591 sin (6, — 02) + 5gl. sinf, = 0.

(1.6.64)

1.7 Nielsen and Mangerone—Deleanu
Differential Equations

Another class of the differential equations of motion of the holonomic dynam-
ical systems, which are also fully equivalent to the Euler-Lagrangian equa-
tions, are known as the Nielsen and Mangerone-Deleanu equations. Let us
consider a dynamical system that has the Lagrangian function of the form
L=L(tq, . qn,q1, -, Gn) and at the same time is subject to the nonconserva-
tive forces (nonpotential forces) Qy, ..., @, depending upon time, the generalized
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coordinates ¢,, and generalized velocities ¢y, ..., ¢,. The Euler-Lagrangian equa-
tions are

d 0L 0L
L9r S8 o i=1,..n 1.7.1
dt 6q1 aq,- Q ' " ( )

Let us consider the time derivative of L,

oL oL dL

L==6 + =—d¢; + —, 1.7.2
a5t ogtt o (1.7.2)
whence
oL oL
—_ = . 1.7.3
oG 9g; ( )
Finding the derivative with respect to time of this expression, we have
ddL doL dL
[l ol i) 1.7.4
oG diog  oa O (1.74)
where we have used equation (1.7.1). From the facts
d 8L o’L %L %L
—— = 1i 1.7.5
it 06 ~ 56:05, 9 * 8g.04, 9 + a0t (1.7.5)
and
oL 8L L #L AL
= = o — o — 1.7.6
96; ~ 0394, * 300, * 340t T Bg; (1.7.6)
we find
8L d oL L
= — . 1.7.7
o4; ~ 405 * g, .77
Using (1.7.3) and (1.7.4), the last equation becomes
dL _d oL
=2————Q; 1.7.8
9q¢; dt g; @ ( )
or
d 8L oL
eoL oL _ o 1.7.9
dt 8g; 90¢; @ ( )

These differential equations are equivalent with the classical Euler-Lagrangian
equations, and we shall refer to them as the generalized Nielsen equations. They
contain only the first derivative with respect to time of the Lagrangian function
L.
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If the dynamical system contains only the fully nonconservative forces and
the Lagrangian function is just equal to the kinetic energy of the dynamical
system, the equation (1.7.9) becomes

d 3T (9T

= Q. (1.7.10)

For this case, from the equation (1.7.4) we have

doT oT
5= T +Q; (1.7.11)

Entering with this into (1.7.10), we arrive at the differential equations known
as the Nielsen differential equations (see [77])
or _,or
6(]1 an

=Q;, i=1,..,n. (1.7.12)

It is our opinion that the generalized Nielsen equations (1.7.9) derived here have
some advantages in comparison to the Nielsen equations for the following two
reasons: (i) The generalized Nielsen equations depend upon one function L,
while the Nielsen equations contain T and T. (ii) For the case of Lagrangian
dynamical systems for which the nonconservative forces are equal to zero, that
is, @Q; = 0, the generalized Nielsen equations become

ddL oL

— — = i =1,.. 1.7.13

@ag o t=hem (1.7.13)
while the Nielsen equations 2 3— — ng = 0 describe only the inertial motion of

the dynamical system, that is, the motion of a system that is not subjected to
any external forces and is characterized by the kinetic energy only.
It is possible to show that by introducing consecutive time derivatives of the

T V)
higher order of the Lagrangian function L, [, ..., L and repeating a procedure

similar to the one used above, we can derive differential equations of motion
that depend uniformly upon the corresponding derivative of the Lagrangian
function L. All those differential equations are fully equivalent to the “classical”
Euler-Lagrangian equations (1.7.1).

For example, let us consider the second derivative with respect to time of
the Lagrangian function L = L (¢, q, §)%:

P Qé.q.Jrg?_L_ 4o &L +28 +282L
= T Ut et 2g,5;90  2gaad T 2 agat
oL , 0*L 0L,
+—a?2- o B q, (1.7.14)

8For the sake of simplicity, we consider here the case of the dynamical system with one
degree of freedom. The transition to the case of many degrees of freedom is trivial.
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whence

8L, 8L
77 = 5 (1.7.15)

Differentiating this with respect to time and using the Euler-Lagrangian equa-
tions (1.7.1), one has

ddL daL oL
o7 ~da 9" 3 (716)
where @@ denotes the nonpotential force.
From (1.7.14) we find
oL L. 0L . 06°L\ oL
E]T = (—a-qﬁ_;q+5qfazq+@) +'a—q. (1.7.17)

The expression in the parentheses is equal to % %—5. Hence, employing again the
Euler-Lagrangian equations, we have

8L  _doL oL oL
Erl EZE}?+-5;—2Q+36—(] (1.7.18)
or
1 (6L 6L
5 (55 - 38_(]) =Q. (1.7.19)

If we had n generalized coordinates, we would have, instead of (1.7.19), the
following expression:

1({8L _oL
S 3% i, i=1,..,n 1.7.20
2<a<ii 3aq,-) @ i=1L..n (1.7.20)

We shall refer to these differential equations as the generalized Tzénoff equations.
In fact Tzénoff [109] derived the special form of these equations for which L = T,
namely,

1(of _oT .
3 (6—%—33—%') =@ i=1,..,n (1.7.21)

In order to unify the generalized Tzénoff equations with respect to the time
derivatives of the Lagrangian function, we substitute 8L/0q; from (1.7.16) into
(1.7.20) and obtain
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Finally, considering the structure of the equations (1.7.9) and (1.7.11) derived
from the L and L, we can derive the general case of the differential equations
of motion containing the arbitrary derivative of the Lagrangian function:

i oL  of
(p+ 1)E€'m——m:Qi, 1:1,...,n, p:0,1,2,3,..., (1723)
¢ 04

which we shall refer to as the generalized Mangeron—Deleanu differential equa-
tions of the holonomic dynamical system possessing the given Lagrangian func-
tion L and a set of purely nonconservative generalized forces @);. It is obvious
from (1.7.23) that for p = 0 we obtain the “classical” Euler-Lagrangian differ-
ential equations, for p = 1 the generalized Nielsen equations (1.7.9), and for
p = 2 the generalized Tzénoff’s equations (1.7.22). It is also to be noted that
on the basis of the classical Nielsen differential equations (1.7.12) and (1.7.21)
we can derive the case for the arbitrary derivative of the kinetic energy, namely,

——(p—i—l)—? =Q; i=1,.,n, p=1,23 .. (1724)

These equations are known as the Mangeron-Deleanu differential equations [69)].

As far as the holonomic dynamical systems are concerned, all differential
equations derived in this paragraph are completely equivalent to the ordinary
differential equations of Euler and Lagrange (1.7.1). However, some authors
[39], [48], [34] have demonstrated that Nielsen, Tzénoff, and Mangeron—Deleanu
equations can be advantageously used in nonholonomic mechanics, especially
when we are faced with the nonlinear nonholonomic constraints and nonholo-
nomic constraints containing the second time derivatives of the generalized co-
ordinates.

1.8 Hamilton’s Canonical Differential Equations
of Motion

Thus far, we have considered the differential equations of motion of holonomic
and nonholonomic dynamical systems which have been exclusively the differen-
tial equations of the second order with respect to the generalized coordinates g;.
In this section, we shall derive the famous differential equations of motion known
as the Hamiltonian or canonical differential equations, which are of the first or-
der with respect to the generalized coordinates ¢;, and a new sct of quantities
named generalized momenta p;, defined by the relations

oL
94’

Di i=1,..,n. (1.8.1)
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If the following determinant is different from zero:

%L

det —_—
04;04;

£0, (1.8.2)

we can solve n equations (1.8.1) with respect to generalized velocities ¢; in terms
of time ¢, generalized coordinates ¢;, and generalized momenta p;, to obtain

(ii = f (t’ q1,---,qn, P1, "-’p")’ 1’: 1’ ey T (18'3)

These equations represent the first group of the canonical equations, which we
will represent in a different form in the course of our analysis.

Let us now introduce a new function called the Hamiltonian function or
simply the Hamiltonian defined as”

H=p¢ —L(tq1, . qn,q1, - dn) - (1.8.4)

Entering with (1.8.3) into (1.8.4), we can express the Hamiltonian function in
terms of t,q;, and p;:

H=H (taQIa <y qn, P1, ---,Pn) . (185)

From (1.8.4) it follows that the Lagrangian function of the transformed system
can be written as

L:Pi‘ii _H(taqla"'7qnypla"~ypn)' (186)

Our further considerations will be based upon one of the forms of the central
Lagrangian equation given by (1.3.33) or (1.3.39). For example, let us consider
the central Lagrangian equation (1.3.39)

d X
a (piéqi) = 6L + Qibg; + p; [(5(]1') - 6qi] . (1.8.7)

Taking into account (1.8.6) this equation can be easily transformed into canon-
ical variables

d . )
p (p:6g;) = 8{pidi — H (t,q1, ..., qn, P1s -, Pn)] + Qibqi + p; [(69:) — 84i) .
(1.8.8)

Note that the purely nonconservative forces Q; (¢, q1,...,qn,q1, .., gn) figuring
into (1.8.7) are expressed in terms of the canonical variables g; and p; by means
of (1.8.3):

Qi=Qi(taQI,n-,QmPh~-~apn)1 iz]‘l"')n' (189)

7The transformation from the Lagrangian position coordinates qi, ..., ¢gn to 2n canonical
variables q1, ..., gn, P1, -.., Pn is usually referred to as the Legendre transformation.
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From (1.8.8) we find

g +pi (8¢:;) = &bpi + pibi;
OH OH

——=—06q; — —0p; + Qibqi + pi [(6¢:) — 6],

g ¢ 8pivaQ i + pi [(6g:) — 64i
(1.8.10)

whence
OH OH

), + —— — @i i —{qs bps = 0. 1.8.11
<p+(9qi Q>6q+(q+aps)p (1.8.11)

Since the generalized coordinates ¢; and generalized momenta p; should be con-
sidered mutually independent, the variations ég; and 8p; are also mutually in-
dependent and arbitrary. Thus, from (1.8.11), it follows that

. 0H 0H .

gs = a—ps, Pi:—'éa+Qz’(t,111;-.-,(1n,P1,---,Pn), z:l,...,n. (1812)
These are the Hamiltonian canonical differential equations of motion.

Tt is easy to demonstrate that the first group of these equations is equivalent
to (1.8.3). Calculating the partial derivative of (1.8.4) with respect to p;, we
find

OH

oH ' '8fj oL 3f;
Op; = Jitpi

: . 1.8.13
Op;  0d; Op; ( )

Using (1.8.1) and (1.8.3), the last two terms on the right-hand side cancel, and
we arrive at the first group of canonical equations (1.8.12).
If the dynamical system is not exposed to nonconservative forces, that is, if
Q; = 0, the most frequent form of the canonical equations is
0H 0H

= 2=, Pi=—a—, i=1..,n. 1.8.14

=g Pi=—g0 1 (1.8.14)
It is to be noted that the time derivative of the Hamiltonian function (1.8.5)
can help us to understand the physical meaning of the function. From (1.8.5)
we find

dH OH. 0H. OH

T e ot (1.8.15)
Substituting (1.8.12) into this equation one finds
dH OH 0H
kel s YO il 1.8.16
d = o (1.8.16)

Thus, if the generalized nonconservative forces are absent, Q; = 0, and the
dynamical system is scleronomic (i.e., 8L/0t = 8H/0t = 0), then it follows that
the Hamiltonian function is a constant of motion:

H = H(q1,--,qn,P1, ---,Pn) = const. (1.8.17)
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By using the Jacobi conservation law (1.4.45), (8L/8¢;)¢; — L = const., and
comparing this with (1.8.5)and (1.8.1), it is evident that the Hamiltonian func-
tion represents the Jacobi conservation law expressed in terms of 2n canonical
variables g; and p;. If the dynamical system is of such a nature that L =T —1II
the Hamiltonian function (1.8.17) (under the condition @; = 0) is the constant
of motion and represents the total mechanical energy H = E = const.

In subsection 1.4.3 we have defined a cyclic coordinate g; as one that does not
appear explicitly in the Lagrangian function. It is easy to see that if a generalized
coordinate does not appear in a Lagrangian function the same coordinate will
be absent from the corresponding Hamilton’s function H. Therefore, for the case
of the cyclic coordinate that does not occur in H, the corresponding momentum
is constant: p; = —9H/0q; = 0; that is,

pj = const. (j is a fixed number, and Q; = 0). (1.8.18)

It is clear that the general solution of the canonical system (1.8.12) is of the
form

g = qi(t,Cl,...,Czn),
b = pi(tvcly"wC’?n)) (1819)

where (Y, ..., Cy,, are constants of integration that can be determined from the
given initial conditions g; (0) and p; (0).
Note that from (1.8.6) the following relations follow immediately:

oL _ 9 OL_ OH _y . (1.8.20)
0g; 9q; at ot

The space of 2n dimensions whose point is defined by 2n coordinates ¢; and
pi (i =1,...,n) is referred to as the phase space. The motion of the dynamical
system can be interpreted as the motion of a point in the phase space. The
structure of the phase space can be geometrically described as the Cartesian
orthogonal space of the dimension 2n. Naturally, the space defined by 2n + 1
coordinates g, p;, and t is called the extended phase space.

We note that the forming of canonical equations of motion is based strictly
on the given Lagrangian function L and the given nonconservative forces Q; of
the dynamical problem in question. It is interesting that we can easily derive
the canonical equations of motion from the Lagrangian function expressed in the
form (1.8.6) and the given generalized nonconservative forces Q; = Q; (¢, 4:,pi) -
Considering the generalized coordinates ¢; and generalized momenta p; as mu-
tually independent parameters, it is easy to see that the Euler-Lagrangian equa-
tions

d 0L 0L d 8L 0L
oL = Q:, d_ta—p, - a—pz =0, (1.8.21)

will generate exactly the canonical equations (1.8.12).
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The formal procedure for forming canonical equations discussed above will
be illustrated by the following example.

Let us consider a mass m that has one degree of freedom; that is, its location
at any time is specified by one coordinate g (t). We shall study the vibration
problem for which the mass is subjected to the restoring force —cqg and the
viscous damping force —bqg, and thus the differential equation of motion is of
the form

m§ = —cq — bq. (1.8.22)

We shall write this equation in the standard form

G+ 2k +w?q =0, (1.8.23)
where

b ok S (1.8.24)

m m

The parameter k is called the damping coefficient and w is called the circular
frequency of the oscillator.

Despite the fact that the system is nonconservative since the damping force
is not of potential nature, a Lagrangian function exists and is of the form

L=z (¢ —w’q®) e (1.8.25)

8o =

Namely, it is easy to verify that the Euler-Lagrangian equation (0L/dq) —
OL/8q = 0 will generate the differential equation (1.8.23). The generalized
momentum according to (1.8.1) is found to be

OL _ . o
== = 1.8.26
P 94 qe ", (1.8.26)
thus
¢ = pe~ 2k, (1.8.27)

According to (1.8.4) the Hamiltonian function is
. Lo ok 1o o o
H=p¢—L(tq4q) = e + FwaeT (1.8.28)

The canonical equations of motion according to (1.8.12) are of the form

. _OH —2kt - OH 2, 2kt

= — = y = - = — € . 1829
=5, =¥ p=—", = W1 ( )
Since the Hamiltonian function (1.8.28) depends explicitly on time, this function
is not a constant of motion. In fact, totally differentiating (1.8.28) with respect
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to time and entering into the resulting expression with ¢ and p given by (1.8.29),
we obtain

H=—k (pZe_%t - w2qze2kt) . (1.8.30)

Since in this problem the nonconservative force Q = 0, it is easy to verify that
the equation (1.8.16), H = 8H/8t, holds. However, employing the canonical
equations (1.8.29), the right-hand side of (1.8.30) can be written in the form

H = —k(pd + pq), (1.8.31)
and we arrive at the conservation law of the form
H + kqp = const. = C, (1.8.32)

or writing explicitly using (1.8.28),

1
5P

- 2,2kt | %w2q282kt +kpg=C. (1.8.33)

If the damping coefficient is equal to zero, k = 0, we arrive at the harmonic
oscillator whose canonical equations are

i=p, p=-wq, (1.8.34)

and the corresponding Hamiltonian

H= %p2 + %qu2 = const., (1.8.35)
which follows directly from (1.8.33) by setting k£ = 0.

It is easy to express the conservation law (1.8.33) in terms of the generalized
coordinate ¢. Substituting p = ge?** from (1.8.26) into (1.8.33) we find the
following conservation law in Lagrangian form whose differential equation of
motion is given by (1.8.23):

-2 2.2
(‘17 L qu) 2R — O = const. (1.8.36)

This conservation law has been obtained by means of the Noether theorem in
[111] (see also [122]).

1.9 Canonical Transformations

‘We have seen at the end of subsection 1.4.2 that the Euler-Lagrangian equations

ddL 9L

—_— = = i=1,... 9.1
dt aql a‘h y 1,..,n, (1 9 )
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are invariant under the one-to-one point transformations of the generalized co-
ordinates

g =¢i(t,Q1,...,Qn), i=1,.,n. (1.9.2)

Namely, by substituting (1.9.2) into the Lagrangian function L (Z, ¢;, g;) we find
the new Lagrangian function L* (¢, Q1, ..., Qn, @1, ..., @n) whose Euler-Lagrangian
equations

4oL oLt
dt 8Q1 a2Q; -

0, i=1,.,n (1.9.3)

are generating the same dynamical trajectories of the dynamical system.

In this section we discuss the question of finding the class of transformations
of the generalized coordinates g; and generalized momenta p; for which the
canonical equations (1.8.14) will preserve their canonical form.%

Considering the generalized coordinates ¢; and generalized momenta p; as
completely independent, we introduce the transformations from the “old” vari-
ables g;, p; to the “new” variables Q;, P; by the following relations:

Qi = QZ (t"h:--vqn:])l:---,pn)’
Pi = Pi (t7QI:~--1Q1up17---’pn)' (194)

We will suppose that this transformation is reversible (nonsingular) and that
we are able also to find from (1.9.4) the following relations:

@ = q (t1Q17"'7QTL7P17“'7Pﬂ))
pi = pi(tanv---an7P17~--7Pn)' (195)

It is evident that the transformations (1.9.4) or (1.9.5) are much more general
in comparison with the point transformations (1.9.2).

The direct substitution of the transformation (1.9.5) into the Hamiltonian
function H = H (¢, ¢;, p;) will not preserve the Hamiltonian form of the result-
ing equations as was the case in the Euler-Lagrangian forms described above.
Therefore, our aim is to find such transformations (1.9.4) or (1.9.5) for which
the “old” canonical equations

OH O0H
ji = =, Pi=— 1.9.6
6= b % (1.9.6)
will be transformed into the form-invariant canonical equations
. OH* . oOH*
;= , b= ——, 1.9.7
Q BPi aQi ( )

8Unfortunately the theory of canonical transformations is valid only for the dy-
namical systems that are not subject to generalized nonconservative forces, that is,
Qi (6,91, n, P21y, Pn) = 0.
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where H* = H* (t,Q1, ..., Qn, P1, ..., P,) is the new Hamiltonian function (ob-
tained by substituting (1.9.5) into the Hamiltonian function (1.8.5)) whose form
will be determined in the course of analysis. The transformations that meet
these conditions are known as canonical transformations.

In order to determine canonical transformations we will use the fact demon-
strated in the last section that the equations (1.9.6) can be derived as the
Euler-Lagrange equations (see (1.8.21)) whose Lagrangian function is specified

by (1.8.6):

L =pigi — H(t,q1,-,qnsP1, -, Pn) - (1.9.8)

It is clear that the transformed canonical equations (1.9.7) can be derived from
the Lagrangian function of the form

L*=P0Q; - H* (t,Q1,...,Qn, P1, ., Pn) . (1.9.9)

Keeping in mind that L* is formed by means of the transformations (1.9.5),
we must ensure that the equations (1.9.6) and (1.9.7) will generate the same
dynamical trajectories. In section 1.4 (see (1.4.26) and (1.4.27)) we have demon-
strated that two Lagrangian functions are going to produce the same differential
equations if their difference is equal to a total time derivative of a gauge func-
tion. In our case, the gauge function must generally be a function of all old
variables g;, p;, new variables Q;, P;, and time ¢, namely,

d
L-L"= aF (tyQIy - qn, P1, "'ap‘n’Qly "'1QTL1P17 ey Pn) ) (1910)
or
: dr
PQi-H" =pigi~H - —. (1.9.11)

Multiplying (1.9.11) by dt and calculating the total derivative of F', we find

oF oF
(Pi - (7);) dg; + (—Pi - ;9—@) dQ:

oF oF oF (1.912)
H*-H-— — —dp; — =——=dP; =0.
* ( " ot ) dt Op; P~ 3R
This equation will be identically satisfied if
oF oF
i = 73— Pi=-24,
P g e
H* — <H + 6_1?_) y
Ot ] (pug)—(Pe@2)
OF oF
= = — =0. 1.9.13
op; 0. 3B ( )



1.9. Canonical Transformations 67

From (1.9.13); it follows that the gauge function depends only upon old and
new generalized coordinates and time, namely,

F=F (1,0 Q1,1 Qn). (1.9.14)

It should be noted that a fortunate selection of the gauge function F' whose
name in the theory of canonical transformation is traditionally denoted as the
generating function can considerably simplify finding of the solution of a canon-
ical system of differential equations of motion. Sometimes it is convenient to use
generating functions whose structure is different than that given by (1.9.14).

For example, let us consider the case in which we wish that the generating
function depends upon the old generalized coordinates ¢; and new momenta F;.
Starting from (1.9.11) multiplied by d¢, we have

Pde1 —H*dt :pidqi — Hdt — dF. (1915)
Using the identity P;dQ; = d (P.Q;) — Q:dP;, we write (1.9.15) in the form
d(F+P1Q1) = pdg; + Q:dP; + (H* —H) dt. (1916)

The expression F + P;(Q; represents the new generating function

F2=F2 (t,ql,...,qn,Pl,...,Pn), (1917)
and we have
BFQ 6F2 an
pi=—o—, Qi=o5, H'(,QiF)= (H + —) . (1.9.18)
Ba; OP: 0t ) (qup)—(@i,P2)

Analogously we can find the following two generating functions depending upon
Q:,pi and p;, B, respectively.

() If
F3 :F3 (thly"'7Qnyp1,'”,pn)y (1919)
we have
6F3 (9F3 6F3
= ——, == H*=H+ —. 1.9.2
“ae " (1:9:20
(i) If
F4=F4 (t,pl,...,pn,Pl,...,Pn), (1921)
we have
F.
=2 o 0B g g OF (1.9.22)

oP;’ Bt
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Ezample 1.9.1. Linearly damped oscillator. Let use consider again the case
of a linearly damped oscillator considered in the last section. The differential
equations in canonical form are found to be (see (1.8.29))

g=rpe 2 p=—wqe’*t, (1.9.23)

with the corresponding Hamilton’s function

H= %p2e_2kt + %wzqze%t. (1.9.24)

Let us introduce a generating function of the form
F=F(tq,Q) = -—-;-qz (k + Qtan Q) ¥, (1.9.25)
where
Q=(?-#)"2 (1.9.26)
From (1.9.13) we find

OF 2kt OFL ¢ @ 2kt
= = — Qtan P= e == . 1.9.2
7 q(k+Qta Q)e s 50 2 cos2Qe (1.9.27)

Expressing old canonical variables in terms of new ones, we find

q= e_kt\l 2§ cosQ, p=ert (—k\/% cos Q — v2PQsinQ> . (1.9.28)

Entering with this into the Hamiltonian function (1.9.24) we find

Pk? Pu?
Hgpy—0.p) = o cos? Q + 2Pk cos Qsin Q + PQsin® Q + (‘; cos? Q.
(1.9.29)
Similarly,
2
(%) _ 2P cos? Q — 2Pk sinQcos Q. (1.9.30)
(9.9)—(Q,P)

Therefore, according to (1.9.13)2, the new Hamiltonian function is of the form

oF
H*(t,Q,P) = (—aT’+H)
(g.p)—(Q,P)

= PQsin’Q+ g (w? — K?) cos® Q. (1.9.31)
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Using the relation (1.9.26) we finally have
H* = PQ. (1.9.32)

The canonical equations in the new coordinates are

. OH* . oOH*
_ _ =98 1.9.33
Q=S5 =0 P=-35 =0, (19.33)
whence
Q=MU+C, P=B, C=const., B =const. (1.9.34)

Now it is evident that the expressions for the canonical transformations (1.9.28)
represent, at the same time, the general solution of the damped oscillator, whose
canonical differential equations of motion are given by (1.9.23). Thus we have,
by combining (1.9.28) and (1.9.34),

'©
Sy

q = —g—z—e"kt cos (2t + C),

ekt (—k\/ég cos (Ut + C) — V2BQsin (% + O)> . (1.9.35)

3
It

It is easy to verify by repeating the same procedure that if we select the gener-
ating function in the form

P = 4%(12 [k + Qtan (Q + Qt)] 2, (1.9.36)

the new Hamiltonian function will have more a simple form than that given by
(1.9.32), namely,

H* =0, (1.9.37)
and the new canonical equations will be
R=C, P=B, (1.9.38)

where C and B are constants of integration. The important question of how
to find the generating function whose transformed Hamiltonian is equal to zero
will be considered in the subsequent text.

1.10 Poisson Brackets, the Conditions of
Canonicity of a Given Transformation

In the previous section we have seen how to find new canonical equations if one
of the four generating functions is given in advance. Let us briefly discuss the
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question of how to know if a given transformation between the old and new
canonical variables of the form (1.9.5) is canonical.

Before we give the answer to this question we shall introduce so-called Pois-
son brackets, which play the vital part in the Hamiltonian description of ana-
lytical mechanics.?

Let us consider two functions U and V depending upon time and canonical
variables ¢; and p;:

U =1U (t7 q1,---9n, P1, "'apn) ’
V = V(tyqu"'q‘nyply"'apn)- (1.10.1)

Let us define the expression

_(2_[{3_1/_++3_Uﬂ/__<?£8_l/-++2(_]_2‘£) (1]_02)
0q1 Op 0 Opn  \ 01 0q1 Opn 0gn )’ o

which is referred to as the Poisson bracket of the functions U and V and which
is denoted as

/U BV U 8V
(U V)gp = <___ - ___> - D), (1.10.3)
w ; 0q; Op;  Opi 9q; a,p

The following identities can be easily verified from the definition

U,0),,=0, (UV+K),,=UV),,+UK) (1.10.4)

.p’

and

(4,95)p = PisPi)gp, =00 (€isPs),, = bij) (1.10.5)

where §;; is the Kronecker delta symbol. The identities (1.10.4) and (1.10.5)
are usually named the basic Poisson brackets.
It is easy to verify that the canonical differential equations

0H . _ 0H

qi:a_pi: pbi= aqi,’

(1.10.6)

can be expressed by means of Poisson brackets in the form

qi = (qi,H)q’p, i)i = (pi’H)q,p‘ (1107)

One of the most important properties of the Poisson brackets is their invariance
with respect to canonical transformations. Namely, it can be demonstrated (see,
for example, [68, pp. 512-518]) that

U V)yo=UV)gp, (1.10.8)

9For a more complete description of the Poisson bracket theory, see, for example, (68, pp.
512-518).
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if the transformation from the old canonical variables g;, p; to the new canonical
variables Q;, F; is canonical. This fact can be employed to verify if a given
transformation is canonical or not canonical.

If the invariance property (1.10.8) holds, then it must be valid for the basic
identities (1.10.4) and (1.10.5), namely,

(995, = (0:45)gp =0,
(pivpj)q,p = (pi)pj)Q,P =0,
(9:05) g, = (@:Pi)g,p = bis; (1.10.9)

where we understand that the given transformation is of the form

9% = 4 (tana"'vQ'nAPly"an))
pPi = pPi (t,Qi,~--7QnyP1;---,Pn)- (11010)

Therefore, if the given transformation (1.10.10) is canonical it must satisfy the
relations (1.10.9), and this is the test of canonicity of the given transformation.
As an example, let us consider the transformation (1.9.28):

g=e"/ %}i cosQ, p=¢e (—k\/% cos @ — V2PS)sin Q> ,  (1.10.11)

and confirm that it represents a canonical transformation. Since the dynamical
system has only one degree of freedom (i.e., n = 1) there exists only one relation
(1.10.9)3, and it reads

_O0qdp O0q 9p

(¢,p)g,p = 309P  3P30" (1.10.12)

Thus,

k
q,p = —sichos+sin2Q~—I—C-sichosQ+cos2Q=1y (1.10.13)
QP T Q Q

and the transformation (1.10.11) is canonical.



Chapter 2

The Hamilton—Jacobi
Method of Integration of
Canonical Equations

2.1 Introduction

In this section we shall briefly discuss the famous Hamilton-Jacobi method,
which represents a general and effective method of integration of the Hamilton
canonical differential equations

0H O0H
= pi=———, i=1,.,n, 2.1.1
=T Mo 210
where H = H(t,q1,...,qn,P1,-.-,Pn) is the Hamiltonian function. In writing
(2.1.1) we assumed that the nonconservative (nonpotential) generalized forces
are equal to zero:

Qi :Qi(t:‘Ih--w‘In»Pl:--an):0- (212)

Note that for Q; # 0, the Hamilton—-Jacobi method is not applicable.

We will demonstrate that the integration of the system (2.1.1) can be re-
placed by an equivalent problem of finding a complete solution of a nonlinear
partial differential equation of the first order, referred to as the Hamilton-Jacobi
partial differential equation.

2.2 The Hamilton—Jacobi Partial Differential
Equation

We introduce a scalar field function called principal function

S=5(t,q1,. ), (2.2.1)

B. D. Vujanovic, et al., An Introduction to
Modern Variational Techniques in Mechanics and Engineering

© Birkhiuser Boston 2004
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which depends on time ¢ and generalized position coordinates ¢;. Let us define
the generalized momentum vector p; to be the gradient of this scalar function

a5
= — 2.2.2
P 0q: ( )
From the definition of the Hamiltonian function (1.8.6) we have
L (ty q1,-,qn, qu sy qn) = Pin - H(t7 q1,--,qn,P1, "')p‘n)' (223)

Using (2.2.2) and adding and subtracting the term 85/8t on the right-hand side
of (2.2.3), we find

. . 08 9SS, 08§ a8 as
L(t)qu--':qnv(hy ---an) = E + :9;' U E -H (quy coyQn, a_qu ey W) .
(2.2.4)

We will now split this equation into two parts. The first part, taking into
account the identity dS/dt = 3S/8t + (85/0¢;) ¢:, will be

das

Et— =L(taqu-'-7qnaql)"~vq'n)) (225)

namely,
S=/Lﬁ. (2.2.6)

This expression represents the so-called Hamilton action integral and plays the
central role in the variational description of analytical mechanics, which will be
discussed in the next part of this book. The remainder of (2.2.4) gives

S oS oS
-5;+H<t,q1,...,qn,éa,...,?az> =0. (227)

This is the Hamilton-Jacobi partial differential equation, which is formed by
replacing the generalized momenta p; in H by 35/8¢; and adding the term
0S5/t so that the result of the equation is zero.

We shall now prove the Jacobi theorem, which states that if we know any
complete solution of equation (2.2.7) containing n nonadditive arbitrary con-
stants and one additive constant, namely,

S=S(t,‘Il,n-,qul,---,Cn)+Cn+1y (228)

then the general solution of canonical system (2.1.1) is given by the equations

as a8

—az:pi, a—a =Bi=COTLSt., i=1,...,7l, (229)

where B; are new arbitrary constants.
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Let us note that the additive constant C,1 in (2.2.8) is not an essential
parameter in the Hamilton—-Jacobi method. Namely, since the principal function
S does not enter directly into the Hamilton-Jacobi equation, and since only the
partial derivatives of S figure to it, we can see that one constant should appear
additively in the complete solution, as indicated in (2.2.8). However, since
according to the Jacobi theorem (2.2.9) we need only the partial derivatives
of S, the additive constant C,,1 does not play any role in our considerations.
Therefore, the complete solution suitable for the application of the Hamilton—
Jacobi theory is actually of the form

S—:S(t,Q1,...,qn,Cl,...,Cn), (2210)

where C; are nonadditive constants that are considered mutually independent
parameters. The mutual independence of constants C;,7 = 1,...,n, means that
we have the condition that the Jacobian determinant is different from zero:

828
det (—aciaq) £0. (2.2.11)

The proof of the Jacobi theorem consists in demonstrating that the solution
(2.2.9) satisfies the canonical differential equations (2.1.1). To demonstrate this,
we start with the Hamilton—Jacobi equation (2.2.7), into which we substitute a
complete solution (2.2.10) to obtain an identity of the form

05 (t,q,C) 05 (t,q, C))
H(tq, 20D g, 2.2.12
Y + g 90, 0 ( )

The differentiation of this equation with respect to various parameters will gen-
erate new identities.
Let us differentiate partially with respect to C; the last expression

85 (t,q,C) , OH 8°S(t,q,C) N
Ops = =L.,n 2.2.1

Taking the total time derivative of the second group of equations (2.1.1), we
arrive at

d [85(,q9,C)] _ 325(t,q,0)+325(t,q,C)-4_0
it |~ ac; = T 580 8C,0q; U

ij = 1,..,n (2.2.14)

The last two systerns of equations represent a nonhomogeneous system of linear

equations with respect to —g’#j and ¢;, respectively. The coefficients of these two
systems are equal, and accofding to (2.2.11) are different from zero. Therefore

the roots of both systems have to be identically equal, namely,

O0H

1 = =— j=1,...,n. 2.2.15
q] Bpj’ J ) , T ( )
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This means that the first group of Hamilton’s differential equations (2.1.1) are
identically satisfied.

In order to demonstrate that the second group of canonical equations (2.1.1)
are identically satisfied too, we find the partial derivatives with respect to g; of
the identity (2.2.12) and use (2.2.15) to get

39S (t,q,C) 8H  9%S(t,q,C) .
ZEAn b E e 2 EA D s =0, 2.
dto; | oq | 0g:0q, U (22.16)

We compare this equation with the total time derivative of the first group of
equations in (2.2.9):

. 025 (t,q,C) . 825 (t,q,C)

= 2.2.17

Entering with (2.2.17) into (2.2.16), we prove that the second group of canonical
equations,

OH

, 9% 2.2.18
i o0 ( )

are also identically satisfied, which completes the proof of the Jacobi theorem
(2.2.9).

Therefore, we can conclude that the problem of integration of the Hamilton
equations of motion (2.1.1) is replaced by the problem of finding a complete
solution of the Hamilton-Jacobi partial differential equation (2.2.7). Namely,
if a complete solution of the Hamilton—Jacobi equation is known, we can find
the motion of the dynamical system without any additional integration by using
only the operations of simple partial differentiation and algebra.

Let us note at the end of this section that the Hamilton—-Jacobi method of
integration of the canonical differential equations of motion comprises one of
the central pillars of analytical mechanics, theoretical physics, invariant embed-
ding theory, and many modern branches of engineering, such as optimal control
theory. Contrary to the widespread opinion that the problem of integrating a
partial differential equation is usually more complicated than that of equations
of motion (2.1.1), numerous authors have made it a point to emphasize that the
canonical ordinary differential equations of motion “may be difficult to integrate
by elementary methods, while the corresponding partial differential equation is
manageable” [30, p. 107). Similarly, Arnold [7, p. 261] made the explicit state-
ment that the Hamilton—-Jacobi method is “the most powerful method known
for exact integration, and many problems which were solved by Jacobi cannot
be solved by other methods.”
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2.3 Some Applications of the Hamilton—Jacobi
Method

2.3.1 Linearly Damped Oscillator

In order to illustrate the Hamilton—Jacobi method, the linearly damped oscilla-
tor problem will again be considered. It was shown in section 1.8 that for this
problem the Hamiltonian function is (see (1.8.28))

T ; 2,2kt | ;w2q262kt (2.3.1)

and the canonical equations of motion are
g=pe 2 p=—w?qe?rt. (2.3.2)

The corresponding Hamilton—Jacobi equation is

95 1 (O5\" _om 1 o ok
— + = | = 2.3.
8t+2<8q) +2qe =0. (2.3.3)

To find a complete solution of this equation, let us seek a principal function in
the form

S = __f( ) g%e?Ft, (2.3.4)

where f (t) is to be determined. Substituting this into (2.3.3) we find
f+2f+ f2+w?=0, (2.3.5)
whence
[ @) =~k—Qtan (2t + C), (2.3.6)
where C' is a constant of integration and
P =w? -k w>k (2.3.7)

Therefore, the complete solution of (2.3.3) is found to be
S = ~%q2 [k + Qtan (2t + C)] ***. (2.3.8)

Applying the Jacobi theorem (2.2.9), we have

05

=5 —qk + Qtan (Q + C)) 2 (2.3.9)

and

88 (12 QeZkt

3C = _Em = B = const., (2.3.10)
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namely,
q=(—2B/Q)" 2 e ¥ cos (Ut + C). (2.3.11)

This is a well-known solution of the linearly damped oscillator whose differential
equation is of the form

G+ 2k§ +w?q =0. (2.3.12)
Substituting (2.3.11) into (2.3.13), we find that the generalized momentum is
p=k(—=2B/)"? ek cos (2 + C) — (-2BQ) * esin (Ut +C), (2.3.13)

and the equations (2.3.11) and (2.3.13) comprise the general solution of the
canonical system (2.3.2).

It is important to note that the principal function S is at the same time the
generator of a canonical transformation to constant coordinates and momenta.
Namely, if we take the constant C to be the new {constant) coordinate

C=Q (2.3.14)

and consider the principal function (2.3.8) as the generator of the canonical
transformation

F= —%ff [k + Qtan (Qt 4+ Q)], (2.3.15)

then the new Hamiltonian function H* (¢,P,Q) = (4f + H)qp_.Q p Wwill be

equal to zero and @) = C and P = B as demonstrated before by the equations
(1.9.37), (1.9.38).

2.3.2 Simple Harmonic Oscillator

For the case of a simple harmonic oscillator when the damping coefficient is
equal to zero, k = 0, the canonical equations

g=p, p=-uw’q (2.3.16)

and the corresponding Hamiltonian function

H— %,,2 N %wqu (2.3.17)

induce the Hamilton—Jacobi equation of the form

OH 1[8S\> 1 ,,
W*E(E;E) +2wtg? =0, (2.3.18)
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Naturally, a complete integral of this equation can be obtained directly from
(2.3.8) by putting k = 0, that is,

S= —%qu tan (wt + C), (2.3.19)

and applying the Jacobi theorem we obtain the solution of the canonical system
(2.3.16) in the form

= (—=2B/w)?cos(wt + C), p=—(—2Bw)?sin(wt+C), (2.3.20)

where B and C are arbitrary constants. However, since the simple harmonic
oscillator represents a conservative dynamical system we can find another com-
plete integral based on the fact that the motion is conservative. Namely, since
from the Hamiltonian (2.3.17) it follows that H = E = const., where F is the
total mechanical energy, we will seek a complete solution of (2.3.18) in the form

S(t,q)=—Et+F(q), (2.3.21)

where F (q) is to be determined. Inserting (2.3.21) into (2.3.18) we reduce the
problem to an ordinary differential equation of the form

2
(%‘5—) + w?q® = 2E = const., (2.3.22)

whence
F(q) = / V2E —w?q?dq+ D, D = const. (2.3.23)

Thus, a complete solution of (2.3.18) is found to be

4Et+/\/2E w2q2dq + D, (2.3.24)

where E is a nonadditive constant parameter and D is an additive constant that
can be ignored without loss of generality. It is to be stressed that whenever the
Hamiltonian function does not depend upon t explicitly the complete solution of
the Hamilton—Jacobi equation can be supposed in the form (2.3.21). Naturally,
in the case of the systems with many degrees of freedom we can take

S(t,q1, @) = —Et+ F(q1,...,qn) . (2.3.25)

Applying the Jacobi theorem to the expression (2.3.24) we find

—t+ / M _ B const. (2.3.26)
V2E — w2q?
Integrating, we have
1 . wq
—t 4 — arcsin =B 2.3.27
o aresin = ( )
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or

E _ _
q= sin (wt + B), B =wB = const. (2.3.28)

w

It is easy to see that the second equation 85/9q = p gives
p=V2E —w?q? = V2E cos (wt + B) . (2.3.29)

2.3.3 The Case When a Particular Solution of the Riccati
Equation is Available

‘We have seen in this section that a very convenient form for finding a complete
solution of the rheolinear dynamical systems with one degree of freedom is
S(t,q) = (1/2) f (t) ¢%, as suggested, for example, in equation (2.3.4). As a
consequence of this supposition we have to solve a Riccati differential equation
of the type (2.3.5).

However, in numerous problems a particular solution of the corresponding
Riccati equation can be easily found, and this fact can be an important help
in finding a complete integral of the corresponding Hamilton-Jacobi partial
differential equation. In general, the method that follows is simple, and we shall
demonstrate it by means of a few examples taken from [56].

Example 1 [56]. Let us find a general solution of the rheolinear differential
equation

i+3-9 _a—o, (2.3.30)

where a = const. It is easy to verify that this equation can be derived from
the Euler-Lagrangian equation (d/dt) (8L/3¢) — 0L /0q = 0, where Lagrangian
function is of the form

1., 1¢%
=_ — = . 2.3.31
L 54 t+ x + atq ( )
The corresponding Hamilton’s function is found to be
1p2 1 q2
=_-=— - =-=— —alq. 2.3.
H 57 3% atq (2.3.32)

The Hamilton—-Jacobi differential equation is therefore
S 1 (8S\*> 1¢
— 4+ —{—} —=— —atg=0. 2.3.33
ot o (aq) e (2:3.33)

The central point of the method that follows is that we are going to seek a
complete solution of this equation in the form

S(at)=5HOC+ RO+, (2.3.30)
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where fy (¢

), f2(t), and f3(t) are unknown functions of time t. Entering with
(2.3.34) into (2

)5
.3.33) we find

(f1 + = fl - —) +q <f2 + fifa— at) +f3+ tf% =0. (2.3.35)

Since this relation must be satisfied for arbitrary g and ¢, we arrive at the
following system of Riccati equations:

; 1 1
f1+;f12“z = 0,
fot+ fifa—at = 0,
: 1
f3+2—tf§ = 0. (2.3.36)

Instead of trying to find a general solution of (2.3.36), we try to find a particular
solution of the form

fi = At™, (2.3.37)

where A and m are unknown constants. Entering with (2.3.37) into (2.3.36)y
we arrive at

mAt'm—l + A2t2m—1 _ t_l =0. (2338)

This equation will be identically satisfied for m = 0 and A = +1. Taking the
root A =1, we find that

f1(t)=1. (2.3.39)
Entering with this f; into (2.3.36)2,3 we easily find after integration that

1 1
fo (t) = gatz + -t-C, f3=—

1
72
where C is a constant of integration and where an additive constant in the
expression for f3 (t) is not written since it is irrelevant.

According to (2.3.34), (2.3.39), and (2.3.40), 2, a complete solution of the
Hamilton-Jacobi equation (2.3.33) reads

-;;07: + %C%‘Q, (2.3.40)

=35 = - - == — -0t + ~ . 2.3.41
S(t,q,C) 2q (Bat + tC’) q 72a t 3Ct C*t ( 3 )

Applying the Jacobi theorem (2.2.9); (i.e., 8S/0C = B = const.), we have
2~ lat+3Ct=2 =B, or

1 1
= —= t2 Bt - "t_l 23‘42
g = zat’ + 5t ( )
which is the general solution of the differential equation (2.3.30).
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Ezample 2 [56]. As another example, consider the differential equation
i 2g+al 50 (2.3.43)
The Lagrangian function corresponding to this equation reads
L= % 2673 — 2¢%t75 + 5gt 2, (2.3.44)
and the corresponding Hamiltonian reads
H= %p2t3 +2¢%t75% — 5qt72. (2.3.45)
The Hamilton—Jacobi equation is given as

S 14/8S\® . .. s s
=43 (=2 2¢%75 —5¢t72 = 0. 2.3.46
i <6q> +2¢ q ( )

Let us suppose, as in the previous example, that S (t,¢) has the form (2.3.34).
Entering with (2.3.34) into (2.3.46) and grouping terms with ¢2,q, and free
terms, we arrive at the following system of Riccati equations:

A+Ef+475 = 0,
fot+ fifet® —5t72 = 0,
fa+ % 23 = 0. (2.3.47)

Assuming the form (2.3.37), it is easy to verify that equation (2.3.47); has a
particular solution in the form f; (t) = 2¢t~*. Substituting this into (2.3.47)2,3
and integrating we find f> (t) = 5t~!+Ct 2 and f3 (t) = —%tz——SCt- %02 Int,
where C is a constant of integration and an additive constant in f; (t) is dis-
carded. Therefore, a complete solution of the Hamilton—Jacobi equation (2.3.46)
is

25

S(t,q,C)=t""q+q(5t71 + Ct™?%) - —4—t2 — 5Ct — %(12 Int.  (2.3.48)

It is easy to verify that the equation 35/0C = B = const. leads to
q=5t3 4+ Ct?Int + Bt?, (2.3.49)

which is a general solution of (2.3.43).
Ezample 3 [56]. Let us find, by applying the Hamilton—Jacobi method, a
general solution of the differential equation

.. 1. ag® .
G+34— 3 = 0, a= given constant. (2.3.50)
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The Lagrangian function corresponding to this equation is

1 1
L= —t5® — ~ag? 2.3.51
Std" — Jad’, ( )
so that the Hamiltonian reads
1o, 14
= — Zaqg”. 2.3.52
H=2p"+ Jaq ( )
Thus, the Hamilton—-Jacobi equation becomes
S 1 (dS\* 1 ,
=2 (2= Zag? =0. 2.3.53
ot 2t<8q) e =0 (2:3.53)

Let us suppose, as in the previous two examples, that a complete solution of
this equation can be represented in the form (2.3.34). Substituting (2.3.34) into
(2.3.53) and equating terms with ¢2, q, and free terms, we obtain the following
system of Riccati equations:

. 1 2a
f1+;f12+? = 0,
: 1
f2+zf1f2 = 0
. 1
fat5fi = 0 (2.3.54)

In the analysis that follows we assume that a? > 0 so that
2a% = b2, (2.3.55)

with b real. Let us try to find a particular solution of (2.3.54); in the form
f1 = At™, with A and m constants. For this case it is easy to see that (2.3.54);
admits a particular solution

fi(t)=1ib, i=+v-1. (2.3.56)
Integrating (2.3.54)2 3 we find
. , c? .. C? .
—ib —iblnt —2ib —2ibInt
= = n = - = 2.3.57
fo(t) = Ct Ce . fa(t) 7 yrA ) (2.3.57)
where C is a constant and an additive constant in the expression for f3 is

discarded. Therefore, a complete solution of the Hamilton—Jacobi equation
(2.3.53) becomes

- _'L_ 2 —ibint 9i —2ibInt 2.3.58

S(t,q,C) = qu +qCe +4ibe . (2.3.58)

By applying the Jacobi theorem 3S/0C = B = const. and recalling the well-
known relations

eitlnt  _ g (blnt) +isin(blnt),
e”®Int  —  cos(blnt) —isin(blnt), (2.3.59)
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we find
q(t) = Acos(blnt) + Dsin(bint), (2.3.60)

where we introduced new constants

A=B- (%) , D=iB- (%) : (2.3.61)

The reader will easily show, repeating exactly the same procedure, that in the
case when

20 = -k <0, (2.3.62)

the complete integral of the Hamilton—Jacobi equation is of the form
k o e, O
§(t,¢,C)=zq° +Cqt™™ + —t7*, (2.3.63)
2 4k
From the Jacobi theorem it follows that the solution of the equation (2.3.50) for
20 = —k? is
q(t) = Bt* — %t‘k. (2.3.64)

We note that the interested reader can find numerous solutions of the rheolinear
dynamical systems obtained by means of the Hamilton-Jacobi method, in {21].

2.4 The Oscillatory Motion with Two Degrees
of Freedom

In this section we consider the application of the Hamilton—-Jacobi method in
the study of oscillatory motion of a scleronomic dynamical system with two
degrees of freedom, whose differential equations of motion are given in the form

Mm% +az+by =0, maij+bz+cy=0, (24.1)

where m; and mgy are masses and a, b, and ¢ are given constant coefficients. To
ensure that the motion of this system is oscillatory, we suppose that ac—b% > 0,
and a > 0 and ¢ > 0. In order to reduce the number of physical parameters
entering the system, we divide both sides of equation (2.4.1) with m; and obtain

- 1 -
z4+ar+by=0, Zﬂ+bz‘+6y=0, (2.4.2)
where
=2 p=b o 4™ (2.4.3)
mq my my ma
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The system (2.4.2) can be derived from the Euler-Lagrangian equations (d/dt)
OL/d% — OL/0x = 0,(d/dt) OL /08y ~ 8L/8y = 0, whose Lagrangian function is

L= % (552 + %g‘ﬁ) - % (az?* + 2bay + &y?) . (2.4.4)

Accomplishing the Legendre transformation, the corresponding Hamiltonian be-
comes

H= % (2 + Ap2) — = (az® + 2bzy + &) . (2.4.5)

[\

The canonical equations of motion are
T = Dz, y = Apyu pz = —azr — By» py = ——l_)ﬂf - Ey' (246)

The Hamilton-Jacobi partial differential equation becomes

85 1/aS\* 1,/88\° 1, s
E-&-g(%) +§A (8—y> +-2—(ax + 2bzy + 2y*) = 0. (2.4.7)

‘We suppose that a complete solution of this equation can be obtained by a trial
principal function of the form

§(65,9) = 35 (07 + 5 (09 + fs (v, (248)

where f1(t), f2(t), and f3(t) are unknown functions of time t. Substituting
(2.4.8) into (2.4.7) and equating to zero terms with z2 42, and zy, we arrive at
the following system of Riccati equations:

h+fP+Af2+a 0,
h+AfZ+f21+e = 0
fat+ Aifs+ Afifs+b = 0. (2.4.9)

Multiplying (2.4.9)3 by a constant parameter 2), (2.4.9)2 by A2, and adding
these equations with (2.4.9);, we obtain

(Fi +Ma) +A(fs + Af2) + A(fs + M)

+(fit+ Az +a+2x3+ A e=0. (2.4.10)
Repeating the same procedure with parameter p = const., we also have

(fr+ p1f3) + 1 (fs + pfa) + A(fs + nf2)?

+(fi + fs)? + @+ 2ub + p*c = 0. (2.4.11)
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In order to be able to integrate these two Riccati equations formally, we will
split them into two parts by introducing new constant parameters Q2 and w?.
Thus, we separate (2.4.10) into the following two equations:

(f1 + Af3) + (f1 + Af3)* + Q2 0,
Afs+A2) +A(fs+Ap)?+a+2X6+A%—02 = 0. (24.12)

i

Similarly, we decompose (2.4.11) into the following system:

(fr+ufs) + (A +ufs)+9° = 0,
p(fs +pfa) +A(fa+pf) +a+2ub+p%c—-0* = 0. (24.13)

By integrating each equation in (2.4.12), (2.4.13) we obtain, respectively,

fi+Afs = —Qtan(Qt+Cy),
a+ 220+ \’e— Q2
Mot s = —\/‘” ra
A(a+2X0+ \e- Q2
x tan \/7(a+ 2 ‘ )t+C'2 ;
fi+ufs = —wtan(wt+Cz),
@+ 2ub + p2c — w?
pfa+fz = —\/ & AM
a4 2ub+ 12T — P
><1;a,n|:\/;1(a+ £ -42-#6 w)t+C4 . (24.14)
7
where C1,...,Cy are arbitrary constants.
From (2.4.14); and (2.4.14)3 we find
Qu Aw
fi )\_Mtan(ﬂt+C'1) Py an (wt + C3) ,
i = e tan (U4 Ch) 4 L tan(wt+Cs).  (24.15)
A—p A—p

Solving (2.4.14), and (2.4.14)4 with respect to fo and f3, we also have

a b+ pu2e — w? A (@ 4+ 2ub + p2c — w?
f = \/a+2,ub+,uc w tanl:\/ (a+ HO T pC w)t+C4:|

A= p)? n?

B a+22b+ Az — 02
AN—p)?

A(@a+22b+ Ne— 02
X tan l:\/ (@+2)b+2%2 )t+ 02} (2.4.16)

A2
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and
2(a+2Xb+ A%z - 02 A(a+2)b+ 2% — 02
fz = (et + 5 )tan \/ (a+ t )t+02
AN —p) A
22 (@ + 2ub + p2e — w?)
AN =p?
A (@ + 2ub + p2e — w?
X tan \/ (@+2p tie ) vl . (2.4.17)
%

Equating corresponding terms for f3 from (2.4.15)2 and (2.4.17), we find

C1 = Cy C3=0C4,

\/;ﬂ (@+2Xb+ X\’c — 02)
Q = - ,
A
\/A (a+ 205+ X%z — 02)
Q = 5 ,
A
\/)\2 (@ + 2ub + p2c — w?)
w = - ,
A
A (@ + 2ub + p2¢ — w?
w = \/ (a+ ot i “?). (2.4.18)
W
Whence
2 - (@+2X0+X%) _ A(a+2)b+x%)
A+ p2 A+ N2 ’
N (a+2ub+p%)  A(a+2ub+ ple
R :“C) _ A+ 2ubtpie) (2.4.19)
A+ X A+ p?
From the last two expressions it also follows that
A = £A, (2.4.20)

and the sign will be determined later.

Using the relations given above, we can write expressions (2.4.16) in a simpler
form:
Y an(Qt+ C1) — —— tan (wt + Cy) (2.4.21)

— [#3) 3] B

(A= p) EPYC )
We have now to ensure that the differential equations (2.4.9); o 3 are satisfied for
f1, f2, and f3 given by (2.4.15)1,(2.4.17), and (2.4.15),. Thus, by substituting

fo=
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(2.4.15); and (2.4.15)7 into (2.4.9); we find

02 Aw? 02 02,2 AQ2
[—”——w——+a]+tan2¢l B .
A=p A-np A= (A=p)? (A-p)
2 w2 w?A? Aw?
+ tan” ¥, -3 + 5 + 5
(A=) (A-p)
— tan®; tan, [ AL 2‘“9’42} =0, (2.4.22)
A=) (A-n)
where
P, = Q+Cp, Yy=wt+ Cs. (2.4.23)
The expression (2.4.22) is identically satisfied for
A=—A, Abp=-= _EAC. (2.4.24)

In obtaining (2.4.24) from (2.4.22) we employed (2.4.19) in equating to zero the
first group of terms in the square brackets.

Note also that exactly the same relations (2.4.24) follow from (2.4.9)2 and
(2.4.9)3.

It is evident from (2.4.24) that the parameters A and p are roots of the
quadratic equation

72— Acl_)' 2z-4A=0, (2.4.25)
namely,
A —a Az —a\?
Z, = = - — A
! AT ( 2b ) a4
Ac—a Az —a\>
_ ,_Ac—a jfAc—a . 2.4.26
Z F="2% ( % ) +4 (2:4.26)

Thus, all parameters X, 1,2, and w entering into fi (t), f2(t), and f3 (t) are
expressed in terms of the given quantities @, b, ¢, and A defined by (2.4.3).

Therefore, a complete solution of the Hamilton—Jacobi equation (2.4.7) given
by (2.4.8), (2.4.15), and (2.4.17) is of the form

1 Q A
S(tr zvy7cl>c3) = 5 [/\ _u# tan¢l - ()\ —c‘)u) tand’?:l .’L‘2
1 Q w 2
+= | ————tany ——tanz,[)]y
2 [u(/\—u) DY R

+ [——A—_—‘uﬂ tan; + (Ti)—p.)— tanw2] zy, (2.4.27)
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or, collecting terms with tant); and tan,, we write the principal function in
more compact form:

S(t,z,y,C1,Cs) (pz — y)? tan (U + Cy)

8
21 (X = p)
w

~op g M) tan (et 4 G). (2428)

To find a general solution of the canonical system (2.4.6), we apply the Jacobi
theorem (2.2.9): 8S/8C, = By = const.,dS/0C3 = By = const., which leads to

pr —y = Ky cos (U +Cy), Az —y = Kycos(wt+Cs), (2.4.29)
where
2Biu(A—p)]"? -m]
[ _1”_~.__§) “)} = K = const., {_@8‘_@] = K3 = const.

(2.4.30)

Solving (2.4.29) with respect to = and y, we obtain the general solution of the
dynamical system (2.4.1). To find the momenta p, and p, we use p, = 85/0z
and p, = 05/9y, which completes the calculation of the motion of the system.

Note that the quantities pz — y and Az — y figuring in (2.4.29) denote the
normal coordinates of the oscillatory dynamical system. Thus, finding a com-
plete solution of the Hamilton—Jacobi partial differential equation (2.4.7) repre-
sents a method for reducing the system to normal coordinates by means of the
Hamilton-Jacobi method. In the next section we will present a much simpler
way to study the oscillatory system by means of the Hamilton-Jacobi method
in which we previously reduce the dynamical equation to the normal form. Still,
the method of solution of such systems demonstrated here has much more me-
chanical significance.

Ezample 2.4.1. A system with two degrees of freedom. As an illustration we
shall work out a particular example. Two masses my = m and mg = 2m slide
without friction on a horizontal plane. They are connected by three springs of
spring constant k; = k, ko = 2k, and k3 = 2k, as shown in Figure 2.4.1.

Figure 2.4.1
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Let us take as coordinates two absolute displacements of the masses x and y.

Then, in terms of these coordinates the kinetic and potential energies are given
by

1 .2 1 .9 1 .2 .9
T = s + 5may :—2-m(:l: +29%),
1 1 1
n=:§hﬁ+§b@—@ﬂé@f=iumﬁ4w+@%.
(2.4.31)
Thus, in accordance with (2.4.3) we have
a3k po %k o, L (2.4.32)
m m m 2

The canonical differential equations of motion (2.4.6) are of the form
1
T=pg, Y= 2P p: = —3Kz + 2Ky, p,=—2Kz—4Ky, (2.4.33)

where K = k/m.
The Hamilton-Jacobi partial differential equation (2.4.7) reads

s 1/88\? 1/068\* 1 . .
a2 = = - — 4 =0. 2.4.34
6t+2<6r> +4<8y) +2(3K:1: 4Kzy +4Ky®) =0.  (2.4.34)

From (2.4.26) parameters A and p are found to be
A=t #:_% (2.4.35)
and the frequencies § and w from (2.4.19) are
VP =K, =4K. (2.4.36)
A complete solution of (2.4.34) given by (2.4.28) becomes
S= _2_?_)\/_1_{ [(g + y)ztan (\/Et + Cl) +(z— y)2 tan (2\/I?t + C’g)] .
(2.4.37)
The equations 85/0C, = By = const. and 85/8C3 = By = const. are giving
;— +y = /B cos (\/Rt + Cl> , z—y=+/Bycos (2\5(_15 + 03) , (2.4.38)
or
z = %x/B_lcos (\/Rt+ C’l) + % Bs cos (2\/j(7t + C3) ,
y = %ﬁ_lcos (\/-I?t + Cl) - é\/_B—;cos (2ﬁt + Ca) - (2.4.39)
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The second pair of equations, p, = 85/0z,p, = 35/3y, by using (2.4.38), lead
to

pr = ~-§-\/K—131Sin(\/f?t+cl)*%\/K—BQCOS(Q\/_EI&'}‘C3)1

—gdeﬁm(JRH41)+§ K&am@wﬁv+@).
(2.4.40)

Il

Py

The equations (2.4.39) and (2.4.40) represent the general solution of the canon-
ical system (2.4.33). The four arbitrary constants C1, Cs, By, and By should be
determined from the given initial conditions x(0), y(0), p=(0), and p,(0).

Ezample 2.4.2. An application of the Hamilton-Jacobi method to the vibra-
tion theory. As the last illustrative example of application of the Hamilton—
Jacobi method to the vibration theory, let us consider again the dynamical
system with two degrees of freedom. Suppose that the dynamical system is
subjected to the potential forces and that the Lagrangian function L =T —1II
is of the form

1 . .. .
L= (a11d} + 20126142 + a2263) — = (c119? + 20100102 + c2203) . (2.4.41)

2

DN =

The Lagrangian equations of motion are

0,
0. (2.4.42)

I

a1141 + ai2go + c11¢1 + C12¢2
a12qG1 + azeda + c12q1 + 2292

Il

Since the kinetic and potential energies are positive definite quadratic forms, we
must have

ain > 0, a2>0, anax-— (1112)2 >0,
c11 > 0, Cco2 > 0, C11C99 — (012)2 > 0. (2443)

The direct use of the Hamilton—-Jacobi method in the dynamical system given
by (2.4.42) should be very complicated, and the transformation to the form
convenient for the Hamilton—-Jacobi analysis is necessary.

Let us multiply the second equation (2.4.42) by a constant multiplier A and
add to the first

(a11 + Aa12) §1 + (a12 + Xage) Go + (c11 + Aci2) @1 + (c12 + Acze) @2 = 0
(2.4.44)

or

aig + Aagg ..

+ (c11 + e +
a1 +)\a1242> ( 11 12) ((h

wu+Amﬂ<%+ Gz + Ae ):&

c11 + Acio 2
(2.4.45)
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We write (2.4.45) as

) + Aags +A +2A
(ql " a2 a2 q2) + c11 C12 (QI + €12 €22 qz) =9. (2.4.46)

ay + Aajpz a1 + Aagz c11 + Acy2
Denoting by

2 _ Cn + Acia

= 2.4.47
al + /\a12 ! ( )
it is clear that under the condition
a1z +Aap _ ciztAem K, (2.4.48)
aj; +Aaiz  ci1 + Acpe
we can write the differential equation (2.4.46) in the form
(G + Kda) + (g1 + Kg2) = 0. (2.4.49)

To find the multiplier A we have from (2.4.48) the following quadratic equation:

a22C11 — Q112 @12C11 — 211C12
p 2 L e £ L2 Wi A =0. (2.4.50)
azC12 — a12€22 a22C12 — @12C22

Denoting the roots of this equation by Ag;), ¢ = 1,2, we find that the circular
frequencies from (2.4.47) are

2 _ cutdpcr L, (2.4.51)
@7 a1+ Agar’ "
and the parameter K becomes

ezt AGaz iz + A
O e+ Aiaiz e+ Agce’

i=1,2. (2.4.52)

Finally, if we introduce the normal coordinates by the relation
Quy = a1 + Kiyge, i=1,2, (2.4.53)

we have reduced the initial system of differential equations (2.4.42) to the form
that follows from (2.4.49):

Q1 +0%Q1 =0, Q2+03Q2=0. (2.4.54)
Now it is relatively easy to analyze the uncoupled system (2.4.54) by means of

the Hamilton-Jacobi method.
Since the Lagrangian function for the system (2.4.54) reads

=3 (02 +a3) -5 (@3 + 938, (2.4.55)
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the corresponding Hamiltonian is

H =5 (P + B) + 5 (96Q% + 9303) (2:4.56)

The Hamilton-Jacobi partial differential equation is

2 2
885 L1 {(;&) N (_d%%> ] + % (2Q2 +92Q2) =0.  (2457)

The Hamiltonian function (2.4.56) does not contain the time explicitly, and
H = E = const. The Hamilton—Jacobi equation does not contain the product
terms but only the squared ones, so we are faced here with a so-called completely
separable system. Thus, we seek a complete solution of (2.4.57) in the form

S(t,Q1,Q2) = —Et + F1 (Q1) + F2(Q2), (2.4.58)

where E is the “total mechanical energy” of the transformed system (2.4.54).
Substituting (2.4.58) into (2.4.57) one has

(i‘i) + Q2Q2

1
2 | \d:

dF.
(#) + Q%Qg] = E = const. (2.4.59)

It is seen that the motion corresponds to two completely independent systems,
each of which has only one degree of freedom. Thus

1 drN\? ol

5[(3@) Q| = e = conet (2450
and

1] /7dR\2

2[(07@2) +Q2Q2] o et (201

where the relation

holds.

Since the complete integral of (2.4.57) contains only two nonadditive con-
stants, we shall express one of the parameters «; or ay in terms of E and the
second as ap = E — a;. From (2.4.58) and (2.4.60), (2.4.61) it follows that

s  dF
P = _— = = 2(1 _ QQ 2,
! dQl dg, V™ 101

~ 4R -
P = an -0 = \2(E — ) - 9303 (2.4.63)
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Separating variables and integrating we find a complete solution of (2.4.57) as

5(t,@1,Q2 Erar,) = —Et+ / 2 — 02Q3dQ,

4+ / V2AE - 1) ~ 03Q3dQz.  (2.464)

Applying the Jacobi theorem, that is, taking the partial derivative of § with
respect to aj, we find

o5 = / 4 / Qs = B; = const.
(201

den -~ ) (2B - an) - 0303
(2.4.65)
Thus, we obtain
1 Q1 . RQ
. w1l - - Bi. 2.4.66
gy avesin Jia, @, Moo NeGET) 1 ( )

This equation represents the trajectory in the orthogonal space of the normal
coordinates (Qq,Q2) .
The partial derivative of S with respect to E leads to

95 =—t +/ dQs 7z = By = const. (2.4.67)
oF 2(E - 1) — 93Q2]

Integrating, we find

2(E —
Q2 = —(gE;-Ll) sin [Qat + B2$Y] . (2.4.68)
2
To find Q) (t) we enter with (2.4.68) into (2.4.66), and employing the identity
arcsin X = X — 2nm,n =0, 1, ..., we find after simple calculation that

0 = Vé"‘ sin [t + (B + Ba) ). (2.4.69)
1

The generalized momenta (2.4.63) are of the form
P = 2ajcos[Qt+ (B + Ba) ] = Q1
Py = \/2(E = a;)cos [t + Ba) = Q2. (2.4.70)

To find the “old” variables q; and ¢o from the equation (2.4.53) for i = 1,2 we
find

Q1K2 — Q2K Q1 — Q2
_ 2 X1 217k 2.4.71
@ KK, ' 2 K"K ( )
The four arbitrary constants E,q;,Bj, and B can be determined from the
given initial conditions g; (0) = a, g2 (0) = b,¢1 (0) = ¢, g2 (0) = d.
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It is interesting to note that for Q2 = 2 = €2, that is, for the differential
equations in normal coordinates

O1+02Q1 =0, §Qr+02Q2=0, (2.4.72)

we can derive these equations from the Lagrangian function formed as the dif-
ference between the kinetic and potential energies, that is,

L= (G +@3) - 32 (@ + @), (24.73)

and solve the corresponding canonical equations of motion by the Hamilton—
Jacobi method using as the starting point the form of the complete solution
suggested by (2.4.58). However, the system of equations (2.4.72) can be equally
derived from the Lagrangian function of the form

L=1Q2 — 0%°Q1Qo, (2.4.74)

whose structure has a bilinear character. The Hamiltonian function based upon
Lagrangian (2.4.74) is

Hy = PP+ Q%Q1Qo, (2.4.75)

whose canonical equations of motion are

Ql = P27 QZ = P17
P = —02Q., Py=-0%Q. (2.4.76)
The corresponding Hamilton—-Jacobi equation reads
s oS oS 9
- — —_— =0. 2.4.77
5+ (357) (305) + P00 (2477)

To find a complete solution of this partial differential equation we select a trial
function of the form

S§=-Et+Qa2f1(Q1) + f2(Q1), (24.78)
where E is a constant. Entering with this into (2.4.77) we arrive at
dfy 2 ] df2
Q2 | g+ 920 + 21 @) (24.79)

Equating with zero and integrating the terms in the square brackets, we find

fi= \/m (2.4.80)

where C is an arbitrary constant. Substituting (2.4.80) into (2.4.79) and inte-

grating, we find
£ arcsin <C—2—lﬂ> . (2.4.81)

o[
Jo—P@ 0 e



96 Chapter 2. The Hamilton—Jacobi Method of Integration

Therefore, a complete solution of (2.4.77) is found to be

S (t,Q1,Q2,E,C) = Q24/C — Q2Q3 + g arcsin (9\71_02) — Et. (2.4.82)

Applying the Jacobi theorem, we find that the equation 8S/0F = By = const.
leads to

= g sin (Qt + 2By) . (2.4.83)

Similarly, 3S/8C = B; = const. gives the equation of the trajectory in the
@1, Q2 space

EC—32Q, n Q2
21 (38) 2o (%)

By simple manipulation and squaring, the form of the trajectory can be written
as

= By = const. (2.4.84)

Q? (B0 + 4B,02C~?) + 2EC~%/2Q1Q2 + Q% = 4B3. (2.4.85)

Thus, the material point whose differential equations of motion are of the
form (2.4.72) describe the elliptical trajectory in the plane Q1, Q2. Substituting
(2.4.83) into (2.4.84) we find the coordinate Q2 (t) in the form

Q2=

056 sin [Q (£ + B1)] + 2V B cos [ (¢ + By)). (2.4.86)
Finally, it is easy to verify that the second pair of equations P, = 85/8Q; and
Pz = 6S/3Q2 give

P = % cos [ (t + By)] — 2QVCB,sin [Q (¢ + By)],
P, = VCcos[Q(t+B))). (2.4.87)

2.5 Application of the Hamilton—Jacobi Method
to the Study of Rheolinear Oscillations
In this section we study the problem of finding the quadratic conservation laws

and the motion of a rheolinear (i.e., time-dependent) harmonic oscillator with
a single degree of freedom whose Hamiltonian function is given in the form

H= -;-a(t) P2 +b(t)pe + %m )22, (2.5.1)

where z (t) is a position coordinate, p is the momentum, and a(t),b(t), and
m (1) are arbitrary sufficiently smooth functions of time ¢. We will suppose that
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these functions are of such a nature that the solution of the canonical differential
equations of motion, which follow from (2.5.1) via Hamilton’s equations
. OH ) O0H
z = o =a(t)p+b(t)z, p:—%z—b(t)p-m(t)m, (2.5.2)
are oscillatory when a, b, and m are held constant.
Our objective is to find a complete integral of the Hamilton-Jacobi equation

8s 1 (8S\* s 1 .

Since the dynamical system has one degree of freedom the principal function is
of the form

S=S(tz]1), (2.5.4)
where [ is a nonadditive constant. According to the Jacobi theorem
as a5
— = —=K= t. 2.5.
=P Bl K = cons (2.5.5)

In order to reduce the problem to a simpler form we introduce a canonical
transformation that transforms the “old” variables x, p into the “new” variables
X, P whose generating function is

F = %A (t)z® — B (t) =X, (2.5.6)

where the unknown functions of time A (t) and B (t) are going to be determined
in the course of analysis. According to (1.9.13); 2 the function F; implies the
following transformation rules p = 8F;/8z, P = —0F; /0X, whence

1 A(t)

P =DB(t N — 2.5.7
)z, X B(t)p+B(t)x’ (25.7)
and the inverse transformation is of the form
1 At)
— _ - _ —~p 2.5.8

By means of this canonical transformation we find the new Hamiltonian function
H = (0F1/0t + H), ,y_(x,p) Which is of the form

B

1 —) PX + %aBzXQ.

H=5p

(A+aA2+2bA+m) P24 (—aA—b—B

(2.5.9)
It is easy to see that under the conditions

A+ aA? 4+ 2A+m — aB*
B+aAB+bB =

|
L e

(2.5.10)
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the new Hamiltonian function will be reduced to a much simpler form,
i= %aB2 (P? + X2, (2.5.11)
whose canonical equations are
X =aB%P, P=-aB*X. (2.5.12)
Note that this system admits the following quadratic conservation law:
X% 4+ P? =1 = const. (2.5.13)

The new Hamilton-Jacobi equation, which corresponds to the new Hamiltonian
function (2.5.11), is

85  _,[1788\* 1_,
L SCI S C Y 2.5.
n +aB |:2 <6X) +2le 0, (2.5.14)

where S is new principal function.
To find a complete integral of (2.5.14) we suppose that it is of the form

S = —% /aB2dt+<p(X), (2.5.15)
where C is a constant. Entering this into (2.5.14) we have
dy 1/2
== (c-Xx%)"". (2.5.16)

Integrating, we find that a complete solution of the new Hamilton-Jacobi equa-
tion (2.5.14) is

= c X 12, C . X
S = -5 /aBzdt+ 5 (c —X2) + 7 arcsin 7 (2.5.17)
Applying the Jacobi theorem we easily verify that the equation
S K
_— === t. 2.5.18
5C = 3 cons ( )
gives
X = VCsin ( / aB2dt + K) ) (2.5.19)

The second equation arising from the Jacobi theorem, that is, P = 85/0X =
dp/dX, gives

P=+Ccos ( / aB%dt + K) . (2.5.20)
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To find the old coordinates = and p in terms of time ¢ we enter with (2.5.19)
and (2.5.20) into (2.5.8) to get

z= El(—t)\/ﬁcos (/ aB%dt + K) (2.5.21)
and

p=—BVCsin (/ aB%dt + K) + %\/Ecos (/ aB%dt + K) . (25.22)

where A (t) and B (t) are any solution of the system of auxiliary differential
equations (2.5.10)1 2 subject to arbitrary initial conditions.

We can reduce this system of nonlinear equations to a single (nonlinear)
equation of the second order by introducing a new function w (t) by the relation

1
_— 2.5.2
B(t) o () il (2.5.23)
Thus, we obtain
A= 1a b (2.5.24)

aw ' 2ad® a
Entering with (2.5.23) and (2.5.24) into (2.5.10) we get the second-order auxil-
iary equation

ﬁH—(~—————i)+——62+am>w———:0. (2.5.25)
a

The general solution of the canonical system (2.5.2) can be expressed in the
form

z = \/E'wal/gcos</it2—+K>,
w

i dt
—\/amsm (/F—FK)

W <_“"_+1 dw _b_w) cos (/%H(), (2.5.26)

al’2 T 95273 T q1/2

=
Il

where w (t) is any solution of the auxiliary equation (2.5.25).

If the expressions for A and B given by (2.5.24) and (2.5.23) are substituted
into (2.5.7), the conservation law (2.5.13) can be written in the form

. . 2 2
_ |warrzp— (2 p L aw _ bw .
I= [wa D <a1/2 + 52 " az ) t s = const. (2.5.27)

It is evident from (2.5.19), (2.5.20), and (2.5.13) that the constant I is equal to
the constant C figuring in (2.5.17).

Remark. It is of interest to note that we can also find a complete inte-
gral of the Hamilton—Jacobi equation (2.5.3) directly, without passing to the
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transformed Hamilton-Jacobi equation (2.5.14) (see also {124]). In order to ac-
complish this, we nominate the generating function F; given by (2.5.6) as the
principal function, that is, F; = S. Then, from (2.5.6), it follows that

oFy 08S
Combining the first equation (2.5.7) with the conservation law (2.5.13) we have
p=2 _ae-B (- B (2:5.20)

Integrating this partially with respect to = one arrives at the equation

Stz 1,4 B) = %Axl’ - %Bzy/! _ (Bz)* — %-3- arcsin % +U @), (2.5.30)

where U (t) is an arbitrary function of time. Substituting this expression into
(2.5.3) we find

g(A+aA2+26A+m~aB4)

—azy/T - (Bz)? (B +aAB — bB) - (%IaB2 + U) = 0. (2.5.31)

This expression has to be satisfied identically for all values of z, and the terms

in the parentheses must vanish. Therefore, we arrive again at the equations
(2.5.10); 2 and

U(t) = ‘é / aB?dt. (2.5.32)

Employing the same transformations to the new function w (¢) as in equations
(2.5.23)-(2.5.25), we finally arrive at a complete integral of the Hamilton—Jacobi
equation (2.5.3) in the form

2 (W a b T AN
Stalw) = 7(;1;*@‘;)‘——“%@1/2 1~ ()

I . z I [adt
_-2— arcsin (m) - ‘5 / E, (2533)

where w (t) is any solution of the auxiliary equation (2.5.25). It is easy to verify
that the Jacobi theorem (2.5.5) generates the same solution of the canonical
system (2.5.2) as those indicated by equation (2.5.26).

It is of interest to note some special cases following these general considera-
tions.

(a) The Lewis invariant. As a case of special interest, let us consider the
harmonic rheolinear oscillator for which a(t) = 1,b(t) = 0,m(t) = w?(t),
where w (t) is the time-dependent circular frequency of the oscillator.
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The differential equations in the canonical form are
t=p, p=-w?(t)z. (2.5.34)

The general solution of this system follows from (2.5.26), namely,

T = ﬁwcos(/%%—l(),
w

——\/.T%Sin (/%H{) + VT cos (/%+K>, (2.5.35)

Il

p

where w (t) is any solution of the auxiliary differential equation

1
0 2 - = 2.5.36
W+ w? (t)w = 0, ( )
which follows directly from equation (2.5.25).
The conservation law (2.5.27) now becomes

2
I = (wp —wx)® + (5) = const. (2.5.37)

This conservation law has been obtained by Lewis [66], and the general form of
this conservation law was found by Symon [105] using quite a different approach,
which is not connected with the Hamilton-Jacobi method.

It is important to note that, if the circular frequency w (¢) is slowly varying,
we can take @ = 0 and a solution of (2.5.36) to the zeroth order in time derivative
as

W —= (2.5.38)

and the conservation law of the slowly varying harmonic oscillator takes the
form

2 2
) T - (2.5.39)
w\ 2 2 w

where E = (p?/2 +w?z%/2) = H denotes the total mechanical energy of the
harmonic oscillator.

The expression (2.5.39) is usually referred to as the adiabatic invariant of
the slowly varying harmonic oscillator.

Note also that for the case when the circular frequency is constant, the
auxiliary differential equation

W+ w?w — % =0 (2.5.40)
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has the general solution in the form®

1/2
w? = <$ + A%+ B2> + Acos (2wt) + Bsin (2wt), (2.5.41)

where A and B are arbitrary constants. If the constants A and B are equal to
zero we arrive again to the approximation (2.5.38).

We note that the conservation law (2.5.21) and corresponding auxiliary equa-
tion (2.5.36) have been discussed also by Courant [30].

(b) Bessel pendulum. As an example, let us consider the so-called Bessel
pendulum whose Hamiltonian function is given by

2 2
_P _1h2
H=73+ (t 4t> 5 (2.5.42)

and whose canonical equations are of the form

=P po (- L
¢=3, p= <t 4t) z. (2.5.43)

Comparing these equations with (2.5.1) and (2.5.2), we have

1 1
a(t)=+, b()=0, m(t)=t—_. (2.5.44)
t 4t
Thus, the auxiliary equation (2.5.25) becomes

W w— — =0, (2.5.45)
w

The general solution (2.5.41) of this equation for A= B = 0is w = 1 and the
conservation law (2.5.27) is of the form

1
Tt

2
(p n E) +tx% = const. (2.5.46)

I
2

The motion of the Bessel pendulum is, according to the first equation (2.5.26),
given by

z= \/gcos (t+ K), (2.5.47)

where I and K are arbitrary constants. This solution is a general solution of
the Bessel differential equation of the second order,

ti+ &+ (t - %) z=0, (2.5.48)

10The general solution of (2.5.40) in the form (2.5.41) is found in the section 3.8, pp. 148-
149.
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which is obtained by elimination of momenta p from the canonical system
(2.5.43). The momentum p (t) can be obtained from the second equation (2.5.26)
or by means of the conservation law (2.5.46) by substituting (2.5.47) into it.

(c) Elevated (inclined) pendulum. As another example let us find the adi-
abatic invariant of a pendulum of a constant length [ and the bob of mass m
mounted upon an elevated (inclined) frictionless plane, whose angle of elevation
« is a slowly variable function of time during many periods of small oscillations
of the pendulum (see Figure 2.5.1). The position of the point is given by the
equations

z=1cos®, y=h—IlcosOcosa, z=h-—1lcosOsina. (2.5.49)

Considering h, [, and « as constants, the kinetic energy of mass m is
1 1 :
T =gm (3 +9° + %) = ;mi*6%, (2.5.50)

Since the pendulum performs small oscillations, that is, the angle © remains
small, the potential energy of the point is

II=mg(h—IlcosO)sina ~ %mgl@2 sina, (2.5.51)

Figure 2.5.1

where ¢ is the gravitational acceleration. The constant term mghsina is dis-
carded and due to the assumption of small oscillations, we used cos © =~ 1-62/2.

Forming the Lagrangian function L = T'—11, the Euler-Lagrangian equation
with respect to the generalized coordinate © leads to

doL JL . g, .
= z = 2.5.52
7356 96 o+ l@sma 0 (2.5.52)
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or
6 +w'0=0, (2.5.53)

where w = /-Tll sin . Thus, we suppose that the circular frequency is a slowly
varying function of time. The solution of the equation (2.5.53) is

O = Ccos(wt + K), (2.5.54)

where C' is the amplitude and K is the initial phase. Entering with this solution
into the expression for the total energy E = E + II, we find

E::%mﬂczﬁna. (2.5.55)

According to equation (2.5.39) the adiabatic invariant is of the form E/w =
const., namely,

— = C?V/sina = const. (2.5.56)

From this expression we conclude that the amplitude of the oscillations of the
inclined (elevated) pendulum whose angle of elevation a is a slowly varying
function of time, and is changing according to

1/4

C = const. sin” " a. (2.5.57)

Finally, let us consider the vertical pendulum whose length ! is changing adia-
batically (see Figure 2.5.2) and find the corresponding adiabatic invariant.

z

Yy
Figure 2.5.2

Repeating the same reasoning as in the previous example we see that the fre-
quency and total energy of the small oscillations of the pendulum follows directly
from (2.5.53)2 and (2.5.55) for a = w/2. Namely,

W= \/E, E= %mglcz_ (2.5.58)
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Therefore, the adiabatic invariant reads
£ = %'lng]ﬂlg/?C’2 = const., (2.5.59)
w

whence
C = const. [73/4, (2.5.60)

where C is the amplitude of the oscillations of the vertical pendulum whose
length [ is a slowly varying function of time.

(d) The case of viscous dissipation. The general time-dependent Hamilto-
nian (2.5.1) contains the special case of the dynamical system subject to time-
dependent viscous forces that will be discussed here.

Let us write the canonical system of differential equations (2.5.2) in La-
grangian form, that is, by eliminating the momentum p we obtain

g‘c’+g’c<—9> +x(“—b—l}—b2+am> =0. (2.5.61)
a a
By taking
“Lo0k(t), b=0, am=w?(t), (2.5.62)
a

we have the differential equation of a rheolinear dissipative dynamical system
in the form

4+ 2k(t) 2 +w?(t)z =0, (2.5.63)

where k (t) is the time-dependent damping coefficient and w (t) is the circular
frequency.
From (2.5.62) we find

a(t)

Il

Coxp {4 / tk(u)du}, b(1) =0,

i

¢
m(t) —éwQ (t)exp [2/ E(u) du} . (2.5.64)
Therefore, for given k& (t) ,w (t), and C = 1, the Hamiltonian (2.5.1) becomes
[ ‘ Lo 2 '
H= 5" exp =2 [ k(u)du| + 3w ®)z%exp (2 [ k(u)du|. (2.5.65)
The canonical equations of motion are of the form

& = pexp [-2 /t k () du} = —w?exp [2 /tk(u) du] 5 (2.5.66)
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To find a general solution of this system by means of the Hamilton-Jacobi
method, we note that the corresponding partial differential equation is

%f. + -;- (g::-)Qexp [—2/ k (w) du] + %wz (£) 22 exp [2/ k (u) du} —0,
(2.5.67)

and using the general form of the principal function given by (2.5.33) and
(2.5.64), we find that the complete integral of (2.5.67) becomes

Stz Lw) = %(g—k)exp[2/tk(u)duj|
A2 (@) e[ ke
x\/f—(x/w)2 [2/tk(u)du]

I [zexp(thk(u)du)] I [t du

—— arcsin —
2 will/? w?’

(2.5.68)

where w (t) is any solution of the auxiliary equation (2.5.25) which is, subject
to (2.5.64), of the form

. 1
- 2 _ g2
— k2 k - — =0. 2.5.69
W+ (w ) W= ( )
It is easy to verify that the equation 8S/8I = K/2 = const. generates z (t) in
the form

t ¢ du
= - 1/2 — i —_—
z = ~I"?yexp [ / k (u) du} sin (/ oYy + K) , (2.5.70)
while p = 85/0z leads to

p = —I'Y?(—kw)exp [/tk(u)du} sin(/thl?u—)+l{)
_%fexp [/thdZT)} cos [/twj_i(‘uﬁx]. (2.5.71)

Finally, the conservation law (2.5.27) for the case considered here is of the form

I= {p’wexp [—/tk(u)du]
(i — kw) exp [/tk(u) du] }2

+ (%)zexp [2 / tk(u) du] = const.  (2.5.72)
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Note that this quadratic conservation law of the rheolinear dissipative oscillator,
together with the auxiliary equation (2.5.69), was obtained in [85] and [123] by
using a completely different approach.

(e) The case of viscous dissipation and the forcing term. Let us consider the
linear time-dependent system whose Hamiltonian function is of the form

H(t,z,p) = %er_QF + [%q(t)ar;2 - h(t)x] e (2.5.73)

where F(t) = ft k(u)du and ¢(t) and h(t) are given functions of time. The
canonical system of differential equations of motion are

¢ =pe 2 p=[—q(t)z + h(t)] . (2.5.74)

Under certain conditions, the equations (2.5.74) can represent a time-dependent
oscillator whose dissipation is characterized by the damping coefficient k(t), and
an external force is denoted by A(t).

The Hamilton-Jacobi partial differential equation is

2

We shall suppose that a complete solution can be sought in the form (see [127])
1
St 1) = 5A@) + B(t)a + % [T+ K(t) + 20(8)2 + A(t,I), (2.5.76)

where A(t), E(t), K(t), and C(t) are unknown functions of time, I is an arbitrary
constant [ = const., and A(¢, ) is an unknown function of ¢ and I. Substituting
(2.5.76) into the Hamilton—Jacobi equation (2.5.75) we find

%:c2 (A + AZe72F 4 quF) +z (E + ACe™2F 4 CBe2F — h€2F)
+%\/5 (K + 2ECe‘2F) +zV0 (C‘ + ACe"”)
+ (A + -12-E2e—2F + -;-1028—” + -;-Kc%—” ) =0, (2.5.77)

where 8 = I + K + 2Cz.
Equation (2.5.77) will be satisfied for each x and ¢ if the terms in round
brackets are equal to zero. Thus, we arrive at the following system of equations:

A+ A% 4 g = 0,
E+ AEe™?F 4 ¢3¢ 2F _pe?f = 0,
K +2ECe™% = 0,
C+ ACe™?F 0

o1
A+ 5e™® (B2 +1C° + KC?) =0

b

(2.5.78)
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In order to analyze this system we first introduce two unknown functions w (t)
and ¥ (t) and connect them with functions A (t) by the relation

/t [A(w)e™?F +k (v)] du = In[w (t)cos ¥ (t)]. (2.5.79)
Differentiating (2.5.79) with respect to time we obtain
At) = (g — Vtan ¥ — k) e*F. (2.5.80)
Entering with this into (2.5.78); we have
—i—+q—k2—k—\ilz-(ﬁl+2—$\i/)tan\ll=0. (2.5.81)

Let us select the function ¥ in such a way that ¥ + 2%‘1’ = 0. Integrating this

condition twice we find ¥ = C [ ¢ %‘; + C,, where C; and Cy are arbitrary
constants. However, for the sake of simplicity, we can take C; =1 and C; = Q.
Therefore

todu
- / oL (2.5.82)

and the equation (2.5.81) becomes

: 1
i+ [a(t) - K(8) - k(t)] w — —=0. (2.5.83)
This equation plays the basic role in our consideration and we will refer to it as
the auxiliary equation. The function A(t) given by (2.5.80) now becomes
A(t) = (% - % tan¥ — k) e, (2.5.84)

where ¥ is given by (2.5.82).
The equation (2.5.78)4 leads now to

d
40 _ 0 L ianwav + dF (2.5.85)
C w

Integrating, and setting the arbitrary integration constant equal to 1, we find

F

C(t) = (2.5.86)

wceos ¥’

where the integration constant C* is taken to be unity.
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Repeating the same procedure of integration we obtain from (2.5.78)2 and
(2.5.78)s

ef 1

- h(w)w(u) cos U(u)e! — ) du
E®) = w(t)cos‘lf(t)/ (,( Juw(u) cos ¥(u) w2(u)cos\I/(u)>d ’
* 1
Ko = =2 f W (€) cos? U (E)

3
X [/ (h(u)w(u) cos ¥(u)el’ — m) du] dg.
(2.5.87)

It is to be noted that the functions F(t), E(t), C(t), and K (t) are functions of
time, and they do not contain the constant I, so that the integral expression

1/t
5/ e ?F (E2(u) + C*(u)K (u) du = function of time (2.5.88)
will be called irrelevant term = (i.t.), since in the further analysis the Jacobi
theorem is not influenced by this term. Finally, integrating (2.5.78)5 we find

t
A(t,I):—é/ e C2(u)du +i.t. (2.5.89)

Therefore, the complete solution of the Hamilton—Jacobi partial differential
equation (2.5.75) in the form (2.5.76) is

S(t,a, 1) = %A(t)xQ + B(t)z+ % [+ K(t) + 20(8)a)*"?

It
—5/ e 2P (w)du +i.t., (2.5.90)
where A(t), E(t), K(t), and C(t) are given by (2.5.84), (2.5.87)1 2, and (2.5.86),
respectively.

Applying the Jacobi theorem we find

oS

1 1/2 1 [t 2 —92F M
J— 2 — = — = . RN
3] = 3 (I +K +2Cx) 2/ C*(u)e™*"du 5 const.,  (2.5.91)

where M /2 is a new arbitrary constant. Therefore

2

I+ K(@) / ' C2(w)e~2Fdu+ M| . (2.5.92)

1
"0 =""0w T 2m [

The momentum is fully determined from the second equation of the Jacobi
theorem:
0s

p=g-=A(t)e+E(t) + C(t) [ + K(t) + 20(t)a]' /% (2.5.93)
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Ezample 2.5.1. Let us consider the Hamiltonian function {127]

Qf’;(t)+ = f(Df(0)2® - QW) (t)z, (2.5.94)

where f(t) and Q(t) are arbitrary functions of time ¢. The canonical equations
are

=g b=—fOf O+ QO (2:5.95)

Comparing this system with the general canonical form (2.5.74) we find that
the dynamical parameters are

f@) f(®) Q)
t:_, kt = -, h(t) = =—=.

W=%e *O=Fa "=
The auxiliary equation (2.5.83) becomes w — 1/ w = 0, whose solution is found
to be w(t) = (1 + t2)!/2. Therefore, ¥ = f wl( 4y = arctant,sin¥ = t/(1+

t2)1/2 cos ¥ = 1/(1 + t2)'/2. We also find e = f(t). Note that

/ t ([h(u)w(u) cos U(u)] eF — Wc%s‘zW) du= / Qi —t,
(2.5.97)

(2.5.96)

and
[ e
w?(£) cos® ¥(£)
€
X [/ (h(u)w(u) cos U(u)ef — m) dujl d¢

- / t ( / ‘ Q(u)du) dé — % (2.5.98)

It is easy to verify that

o) = g =105 KO {/ (/ Q(udu>d£—~]

¢ = / P ()e du. (2.5.99)

Thus, from (2.5.92) we have

a(t) = R;’tMt o / ( / Q(u)du) de, (2.5.100)

where R = M? — I = const. The linear momentum p(t) we can calculate from
(2.5.93).
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2.6 A Conjugate Approach to Hamilton—
Jacobi Theory. The Case of Rheolinear
Systems

In the study of rheolinear dynamical systems it can be of interest to apply the
so-called Legendre’s dual transformation to the principal function S (¢, ¢1, ..., ¢n)
and form a new principal function V (t,p1, ..., pn) and corresponding conjugated
Hamilton—Jacobi partial differential equation. The Legendre transformation will
be accomplished from the generalized coordinates ¢; to conjugated variables
p; considering time t as a passive parameter that does not participate in the
following transformation.

Let us suppose that the principal function S is given and let us introduce
new coordinates p; by the relations

oS

e 6.1
pi=oe (2.6.1)

We suppose that we can solve these equations with respect to ¢;:
% =i (t,p1, -, Pn) (262)
and we introduce the new the function V (¢, ps, ..., pn) by the relation
V =qp; ~ 5. (2.6.3)

Substituting (2.6.2) into this relation we express the new function V in terms
of t and p; alone as

V=V(,p1,.Pn). (2.6.4)

Differentiating (2.6.3) and taking into account the last equation we have

av v o8 8s
- + 7—dp; = qidp; i\ pi— 5 ) — 7 db, 26.
D +3pi p; = qidp; + dg (p 8%) 8tdt (2.6.5)
whence
oS ov )%
ot~ ot T op (266)

Therefore, the Hamilton—Jacobi partial differential equation (2.2.9),

as s  as
=2 oy =2 =) =0, 6.7

can be transformed to its conjugated form:

WY
Ipr’ " Op, '

ov

S (2.6.8)

-H (tapla ooy Py
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If we are able to find a complete solution to (2.6.8) in terms of ¢,p;, and n
nonadditive constants Cj,

V:V(7p1!'”vp717C17-~—7Cn)y (269)

then the general solution of the dynamical system

OH OH
i=%—, Pi=—7, 2.6.10
"= P Og; ( )
can be obtained by means of the Jacobi theorem whose form is given by the
relations
av av
=, —=K;= t. 2.6.11
q %’ 90, cons ( )
Let us apply our considerations to the rheolinear dynamical system whose
Hamiltonian is of the form

H= %p2 + %wz (t) 22, (2.6.12)

and corresponding differential equations in canonical form are given by (1.8.14).
The Hamilton-Jacobi equation in conjugated form is

vV 1 ,, [OV\E 1,
— — — —— —_—— = . 2- -1
5 2% (t)(ap) P =0 (26.13)

To find a general solution we introduce a canonical transformation F, in the
form of an incomplete quadratic function which is conjugate to the generator
F} introduced in (1.9.36):

Fy(t,2, X) = —B (t) o X + %C(t) X2, (2.6.14)

where B (t) and C (t) are unknown function of time. By applying p = 0F>/0z, P
= —0F;/0X, we find

p C

= e — = - . 2- -1
X=-%; P=Ba+Zp (2.6.15)
As previously, we can show that the new Hamiltonian H (¢, X, P) admits a
conservation law of the form (2.5.37), namely,

1/2

I=X*+P% P=(I-X? (2.6.16)

Expressing (2.6.16) in terms of the old coordinates by means of (2.6.15), we find

_av_ C 1 32
=g =gt g (B). (2.6.17)
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Integrating this expression partially with respect to p, one has
c p

V=—
35+ 5 I'°B

where f (t) is an arbitrary function of time. Substituting (2.6.18) into (2.6.13)
and equating to zero the like powers of p, we obtain the following system of
ordinary differential cquations:

I .
5 VIB? —p?+ 5 arcsin ( ) + f (1), (2.6.18)

¢ 26B C?-1,

B B + BT v +1 = 0
5o,
w
. Tw?
f+m = 0 (2.6.19)

The structure of these equations indicates that the function B (t) can be taken
as a basic auxiliary variable. Putting C, given by (2.6.19)2, into (2.6.19)1, we
obtain the auxiliary equation

d [ B w?
= (F) +B - 25 =0. (2.6.20)

Therefore, the complete solution of the Hamilton—-Jacobi equation (2.6.13) is
found to be

5
V(tpBI) = —gm 2+21’; B =
I .
+§arcsm [1/23 /32 (2.6.21)

Applying the Jacobi theorem, we find from equation x = 0V/9p after squaring
the following quadratic conservation law:

N
2 B
I=I= (%) + (Bm + ﬁp) = const., (2.6.22)

where B (t) is any solution of the auxiliary equation (2.6.20).
Equation 0V/dI = K yields

p=I'2Bsin (/t ]“; ((Z)) du + K) . (2.6.23)

Combining this with (2.6.22), we find that the position coordinate is given by

T = —BL{;/? sin (/t ;22((10)(11L+K> + :’—l;cos (/t 222(( >)du+K>
(2.6.24)
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which completes the general solution of the canonical system (2.5.34).
Since the Lewis invariant (2.5.37)

I = (wp — 'u')x)2 + (%)2 = const., (2.6.25)

and the conservation law (2.6.22) of the time-dependent oscillator
t=p, p=-w?(t)z, (2.6.26)
are of different structures, it is of interest to examine under what conditions

these two quadratic first integrals will be equivalent.
Forming the difference I; — I we have

1 B L)\, . BB
11—12 = <—B—§+F—w)p +2(ww+7 pT
+ (32 o —) z2. (2.6.27)

Therefore, the conservation laws I; and I will be equivalent if the following
system of ordinary differential equations is satisfied:

: / 1 / 1
B =uw? wtﬁ, W= — BZ—E, (2.6.28)

Wi = ——- (2.6.29)

and

It is easy to verify that the last equation can be considered as a direct conse-
quence of the system (2.6.28). It is also easy to show that by eliminating B
from (2.6.28) we arrive at the Lewis auxiliary equation (2.5.36)

W + wlw ~ —13 =0. (2.6.30)
w
Similarly, by eliminating w from (2.6.28), the resulting differential equation is
identical with (2.6.20).
Substituting w and B given by (2.6.28) we arrive at a new “hybrid” quadratic
conservation law of the dynamical system (2.6.26) in the form (see [85])

2 pr + B22?, (2.6.31)

Iy = w?p? +2 (sz2 -1)
where w and B are any solution of the auxiliary system (2.6.28).

Therefore, the conservation laws (2.6.22) and (2.6.25) are fully equivalent if
the auxiliary functions w (t) and B (t) satisfy the system of ordinary differential
equations (2.6.28). Otherwise, they can be considered as mutually independent.
Thus, if w(t) and B (t) are not limited by the differential equations (2.6.28)
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then from two conservation laws I; and I, we are able to find the solution
of the dynamical system (2.6.26) by purely algebraic means, which will now
be demonstrated. Namely, if I; and I are independent, these conservation
laws can be employed for finding the motion of the dynamical system without
integrating the canonical differential equations (2.6.26) by calculating z (¢) and
p (t) from independent conservation laws I; and I,. However, to do this, we have
to know some solutions of auxiliary equations (2.6.20) and (2.6.30). Since both
auxiliary equations are nonlinear, it is difficult to find solutions of this system
in a closed form for arbitrary initial conditions. Thus, we will employ numerical
procedures by means of a computer.

Let us consider the following time-dependent oscillator formulated as an
initial-value problem

t=p, p=-w(t)’e, z(0)=1, p(0)=2 0<t<5, w(t)=e/2
‘ (2.6.32)

The problem is to find z (t) and p(¢t) from the expressions I; and I given by
(2.6.22) and (2.6.25), namely,

LN 2
] T2 P2 B
I = (wp — wz)? (_) L=(£) +(Ba+=p) . 2.6.33
v=@p—e)’ + (2), B=(L) 4 (Be+ Sp (26.33)
Here, w and Y are solutions of the auxiliary system, given as an initial value
problem,

B=Y, wO)=1, ¥=>-o@uv, Y(0)=00)=0. (2639

Furthermore,

2
Iy = % + (Zp +wz)?, (2.6.35)

where B and Z are solutions of the auxiliary system, given also as an initial-
value problem

w?

B=Zuw*(t), B(0)=2, Z:—B+-B—3,

Z0)=1, (ie, B(0)=1).
(2.6.36)

Note that the initial conditions w (0) ,w (0) , B (0), and B (0) listed in (2.6.34)
and (2.6.36) are selected arbitrarily. The only restriction is that they do not
satisfy the differential equations (2.6.28) and (2.6.29) at ¢ = 0.

The system of differential equations (2.6.34) and (2.6.36) has been integrated
numerically using the Runge-Kutta method. The time step is taken to be
At = 1076, In each step of the calculation the values of z and p have been
found from (2.6.33) and (2.6.35).

The results of calculations, that is, z and p versus time are depicted in
Figure 2.6.1 in the time interval 0 < t < 5. In order to check the accuracy
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of the calculations the dynamical system (2.6.32) has been directly integrated

numerically and Lo norms have been calculated for the difference of the so
obtained solutions, that is,

1/2

le=ail, = | [ (2 (0) 1 (1)) o] (26.37)

and

1/2

5
e~ pally, = [ [ co-noy dt] , (2.6.38)

where z; and p; are the values of 2 and p obtained from the direct integration
of (2.6.34) and (2.6.36) and 2 and p; are obtained as the algebraic solution of
the conservation laws (2.6.33) and (2.6.35). Both norms (2.6.37) and (2.6.38)

are practically equal to zero (the largest values of both norms are found to be
at t = 5 and are of the order 4 x 10~7).
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Figure 2.6.1

2.7 Quadratic Conservation Laws of Rheolinear

Dynamical Systems with Two Degrees of
Freedom

In this section we outline a method for finding the quadratic conservation laws
of the dynamical system described by the Hamiltonian of the form

H= %A(t)pg + %@(t)pz + % [a(t)2 + 2b(8)zy + m(t)y?] 2.7.1)
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where = and y are position coordinates and p, and p, are their conjugate mo-
menta; A(t), ©(t),a(t),b(t), and m(¢) are prescribed functions of time that are
continuously differentiable functions, otherwise they are arbitrary.

Since the coefficient b(t) is supposed to be different from zero we named this
case a “coupled dynamical system.” Note that quadratic conservation laws of
the rheolinear “uncoupled dynamical system” (with b(t) = 0 and also A(t) =
O(t) = 1) have been studied in detail by numerous authors (see, for example,
[51] and [97] and references cited therein).

Our method for finding conservation laws can be briefly described as follows.
First, we introduce the canonical transformations

(mvyyp:t»py) - (X7 Y7 PX7 PY) (27'2)

for the Hamiltonian (2.7.1), by means of which we transform (2.7.1) into an
absolute form-invariant Hamiltonian:

- 1 1 1 ’

H= §A(t)P)2( + 5@@)1{‘; +3 [a()X? +26() XY + m(t)Y?] . (2.7.3)
Note that to find a particular canonical transformation (2.7.2), which transforms
the Hamiltonian (2.7.1) into the new Hamiltonian (2.7.3), is an essential part
of our theory.

Second, the canonica) differential equations based upon Hamiltonians (2.7.1)
and (2.7.3) are

& = Alt)pa, X = A(t)P,,
= O(t)py, Y = O(t) Py,
pz - —a(t):v - b(t)y, Pz = _a(t)X - b(t)}/,
by = —bt)r—m(t)y, P,=—bt)X —m(t)Y. (2.7.4)

It is easy to verify that the eight differential equations (2.7.4) admit the
conservation law of the form

I =2P;, — Xp, +yP, — Yp, = const., (2.7.5)
and for the special case in which
A®) = (), alt) =m(t), b(t) #0, (2.7.6)

dynamical system (2.7.4) admits the angular momentum-type conservation law
of the form

I=zP,— Xp, +yPx — Yps. (2.7.7)

Thus, by supposing that we have succeeded in finding a concrete form of the
canonical transformation (2.7.2) we are able to express conservation laws in

terms of the original variables (x,y, pz, py) by finding the inverse transformation
(2.7.2).
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Following the method just described, we introduce the generating function
of the form

F = % [A(t)at:2 —2B(t)zX + C’(t)X2] + % [oz(t)y2 —28(t)yY +’y(t)Y2]
—K(t)zY — D(t)yX — T(t)zy — S(t)XY, (2.7.8)

where ten functions A(¢), ..., S(t) are unknown functions of time to be deter-
mined. This generating function specifies the equations of the canonical trans-
formation (2.7.2) in the following way:

oF OF OF oF
Pe =5 py__ég, PX_—E'(_’ PY__'E)T' (2.7.9)

Substituting (2.7.8) into the last system of equations, we express the old vari-
ables in terms of the new ones:

: = _i_[_ﬂPX+DPy—(ﬂC’+DS)X+(,35+’YD)Y]v

% [KPx — BPy — (CK + BS)X — (KS + By)Y],

y =
Pr = % {-(AB+TK)Px + (AD + TB)Py
—[A(BC + DS)+T(CK + BS)+ AB| X
+[A(BS ++vD) +T(KS + By) — AK]Y},
Py = —i— {(TB + aK)Px — (TD + aB)Py
+[T(BC + DS) + (CK + BS) — AD] X
~[T(BS + D) + o(KS + By) + Af| Y}, (2.7.10)
where
A(t) = D(t)K(t) — B(t)B(t). (2.7.11)

Expressing the new Hamiltonian H = H + 8F/8t in terms of the new variables
X,Y, Px, and Py, where H is given by equation (2.7.1), we obtain

- 1
H = o5 [WPE + WP+ MX*+ NpY?
~2N3XY - 2Q1Px Py +2Q2X Px

—2Q3X Py —2Q4Y Px + 2QsY Py]. (2.7.12)
The functions V1, V2, ..., Q5 are determined from the condition that the Hamil-
tonian A must be absolute form-invariant. Thus, by comparing the expressions
(2.7.1) and (2.7.3), it is obvious that the following system of equations must be
satisfied:
Vi A(t)A%, Vy = 0O(t)A?
Ny a(t)AQ, N = m(t)A2,
N3 = —b(t)A%, Q;=0, i=1,..,5, (2.7.13)

i
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or, written explicitly in the same sequence, this system is

Vi

Va

N,

N3

1

Q2 =

Qa4

Qs

= B2A+AA+OT? +a)+ K% (& +0a® + AT? + m)

+2KB(T + AAT + ©Ta — b),

= D?*(A+AA?+0OT?+a)+ B*(a+0a% + AT? +m)

+2BD(T + AAT + ©Ta — b),

= C?Vi + 5%V, +2C8Q; + AY(C + AB% + ©D?)

+2CA [Bﬁ — DK + AB(AB + KT) — ©D(T8 + Ka)]

+28A [BD — DB + AB(AD + BT) — ©D(DT + Ba)] ,
= SV +72Va +20SQ1 + A%(y + AK? + 08%)

+25A [BK _ KB — AK(AB + KT) — O8(TB + Ka)]

+29A [BB _ KD — AK(AD + BT) + ©8(DT + Ba)] ,

= SCV; +vy8Va+ (Cy+ SQ)Ql
+SA [Bﬂ — DK + AB(AB + KT) — ©D(TS + Ka)
YA [BD — DB+ AB(AD + BT) - ©D(TD + Ba)]
+CA [ﬂK KB — AK(AB + KT) + ©B(TS + Ka)

+SA [BB KD — AK(AD + BT) + ©B(TD + Ba)]
+A%(S - ABK — ©Dp),

BD(A+AA% + OT? +a) + BK (& + ©a® + AT? + m)
+(DK + BB)(T + AAT + ©Ta —b) = 0
CVi + SQq

+A [Bﬁ ~ DK + AB(AB + KT) — ©D(TS + Ka)] =0,

SVa + C@y

+A [BD — DB+ AB(AD + BT) — ©D(DT + Ba)] =0,
I e (A

+A [BK — KB~ AK(AB+ KT) + ©(T8 + Ka)| =0,
Va4 5Q1

+A [[33 — KB — AK(AD + BT) + ©8(DT + Ba)] ~0.

119

(2.7.14)
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To analyze this system of ten differential equations with ten unknown func-
tions A, B,C,a, 3,7, K, D, T, and S we proceed as follows.

Since, according to equations (2.7.13), Vi = AA% V, = OA2, and Q; = 0,
we write the equations (2.7.14)g—(2.7.14)1¢ in the form

BB — DK +AB(AB+ KT) - ©D(T + Ka) + ACA = 0,
BD — DB + AB(AD + BT) — ©D(DT + Ba) + 6SA
BK — KB — AK(AB + KT) + ©8(TB + Ka) + ASA
BB — KB — AK(AD + BT) + ©3(DT + Ba) + ©yA = 0.(2.7.15)

(]
e L

When solved for derivatives, this system can be written as

B+AB(A-C)+©(SK - DT) = 0,

D — A(BT + CD) +©(Da+S8) = 0,

B+A(DS - KT)+608(a—-v) = 0,
K+ A(AK + BS) -©(T8+K7) = 0. (2.7.16)

where the explicit form of A given by (2.7.11) has been taken into account.
Substituting equations (2.7.15) into (2.7.14)5 and supposing that A # 0 we
arrive at the equation

S — A(BK +CS) - O(DB+Sv) +b=0. (2.7.17)

Similarly, combining equations (2.7.15) with equations (2.7.14)3 and (2.7.14)4,
we obtain, respectively,

C~AC?-0S52+AB2+0D?—-a=0, (2.7.18)
and
¥+ AK? + 082 —AS? -0y  —m=0. (2.7.19)

By adding equation (2.7.15); and (2.7.15)s and keeping in mind that A =
KD — Bf3, we also have

A+ A(AA + Ba) — A(AC 4+ 69) = 0. (2.7.20)

Finally, solving equations (2.7.14);, (2.7.14), and (2.7.14)¢ for mutual terms
A+AA?+OT? + a,&+ Oa? + AT? + m, and T + T(AA + ©a) — b, we obtain

A+ AA2+0T?+a = AB?+OK?
&+0a2+ AT +m = AK?2+08,
T+T(AA+©a)—b = —ABD-OKp. (2.7.21)

In order to reduce the number of unknown functions, we take

C=-A ~y=-a S=-T, K=D. (2.7.22)
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For this case, four equations (2.7.16) are reduced to the following three equa-
tions:

B = —2AAB+20KT,
K = A(BT - AK)+0O(T8—- Ka),
B = 2AKT —20ap, (2.7.23)

while the six equations (2.7.17)-(2.7.19) and (2.7.21) are reduced to the following
three equations:

A+AA2 +OT? +a = AB?+OK?%
a+0a?+AT?>+m = AK?+08%
T+TAA+0Oa)-b = —K(AB+68). (2.7.24)

The remaining equation (2.7.20) is reduced to
A+ 2A(AA + 60) =0, (2.7.25)
where
A= K?— Bg. (2.7.26)

Thus, ten differential equations (2.7.14) are reduced to six differential equations

(2.7.23), (2.7.24) with six unknown functions A, o, 3, K, B, and T. The seventh

differential equation (2.7.25) is a direct consequence of the differential equations

(2.7.24) and can be usefully employed as a characteristic compatibility condition.
The inverse transformation of (2.7.10) is now

X = % (~(AB+ KT)z + (BT + aK)y + Bps — Kp,),
Y = K [(AK + BT)z — (KT + Ba)y — Kp, + Bp,),
Py = % {[B(K? - T?) — B(A% + B?) — 2AKT] =
+ [K(K? +T?) + T(AB+ Ba) + K(Aa — Bf)] y
+(AB + KT)p, — (AK + BT)p,},
Py = % {[K(K®+T?) + T(AB + Ba) + K(Aa — Bf)| =

+ [BK? ~ %) - B(a? + %) — 2KTa)] y
—(TB + Ka)pz + (KT + Ba)py} . (2.7.27)

Therefore, the conservation law of the rheolinear dynamical system whose mo-
tion is described by the canonical equations of the Hamiltonian (2.7.1) which
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are given explicitly by the left column of the differential equations (2.7.4) is, in
accordance with the equation (2.7.5) of the form

1

zPx — Xpz +yPy — Ypy

% {-Bp% — Bp’ + 2Kp.py
+[B(K? — T?) — B(A® + B®) — 2AKT) 2?
+ [B(K? - T?) — B(a® + B%) — 2KTa] y*
+2 [K(K? +T?) + T(AB + Ba) + K(Aa — Bf)] zy
+2(AB + KT)zp, — 2(TB + Ka)yp.
+2(KT + Ba)ypy} = const., (2.7.28)

where the six functions A(t), B(t), a(t), 5(t), K (t) and T'(t) are any solutions
satisfying the six differential equations (2.7.23), (2.7.24). Therefore, since the
auxiliary equations contain as many equations as unknowns, they will always
have solutions in terms of the arbitrary, prescribed initial conditions.

The structure of the auxiliary differential equations (2.7.23), (2.7.24) shows
that due to the nonlinearity of these equations, finding an exact or approximate
closed form solution is not an easy task. Nevertheless, each solution (exact, ap-
proximate, or numerical) of this system will generate a conservation law (exact,
approximate, or numerical) of our rheolinear dynamical system in the form of
equation (2.7.28).

2.7.1 An Alternative Form of the Quadratic
Conservation Law

The conservation law (2.7.28) can be expressed in an alternative form that, in
some sense resembles the corresponding conservation law of a single-degree-of-
freedom dynamical system studied in the proceeding section.

Instead of the functions A(t), B(t), a(t), B(t), and T'(t), let us introduce new
functions of time p,(t), po(t), W (t), M(t),['(t), and II(t) by means of the follow-
ing transformation formulae:

1 p 1 po I()
A = —C:——’ a:——’y:——-—, :—,
A(t) py o(t) p2 I
I(¢
T = —S:W—(t), K=D=m, B=——(2—). (2.7.29)
P1P2 P1P2 51
Equation (2.7.25) is now reduced to the integrable form
dA dp, dpz)
— =2 —+—==]. (2.7.30)
A ( Py P2
Integrating, one has
A= %, Q = const. (2.7.31)
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At the same time we also have
2(4) —
A=k? - pg= M -TOU (2.7.32)
PiP3
Therefore, we conclude that the functions M(t),'(t), and II(t) satisfy the rela-
tion
M?(t) — T(t)II(t) = Q = const. (2.7.33)

Substituting equations (2.7.29) into the auxiliary relations (2.7.23), (2.7.24) we
obtain, respectively,

: A I
I = 20MW M:W<—£+9—2—>,

3’ PP
. M MT
= 2AMW 12 W:bplpZ—A—F—G )
2 /-71 P2
PV S O AO(M* -W?)
1A TR I p19%
e) Q12 AO(M? - W?)
Dy + Ompy — —py = ‘ (2.7.34)
2 T8 T TR pipa

It is easy to see that relation (2.7.33) is a conservation law for the system of
differential equations (2.7.34).
Finally, the quadratic conservation law (2.7.28) expressed in new variables

becomes
b 2 Y 2
z = ——l.l'> +(Q-w? (—)
(pier B2} + @-w?) (£

- —(%)
) (oo ) < 0w (3)

( [ (Q+ w?) ipi + P1P2PePyTY — P1P2TPy — p2p1ypz:l
+2 < ) ) {mpm +ypy — A—ppl—lm (5;2@/2}
() [ - 2o
+2 (Wg—ﬂ [ é’;l Ty — Z—?xpy] — const. (2.7.35)

Unfortunately, it seems that the system of auxiliary equations (2.7.34) is of a
more complicated structure than the corresponding system of auxiliary equa-
tions (2.7.23), (2.7.24). The main reason for this fact is that equations (2.7.34)5 ¢
are of the second order.
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2.7.2 Some Examples

(a) Uncoupled oscillator. As an illustrative example let us consider the uncou-
pled linear oscillator for which b(t) = 0. The canonical differential equations of
motion are

i = AWp.,  9=00m,
Pz = -—a(t)z, Py = —m(t)y. (2.7.36)
For this case we first take
K(t)=T(t)=0. (2.7.37)
Hence, the auxiliary system (2.7.23) is reduced to two equations:
B=—2AAB, B=-20ap, (2.7.38)
and the set of equations (2.7.24) is reduced to two equations:
A+AA’+a=AB% a+0a®+m=0ps% (2.7.39)
Therefore, the quadratic conservation law of the rheolinear system (2.7.36) is,
according to equation (2.7.28),
I=— [(pz — Az)* + B%ﬂ + % [(py —ay)® + ﬂzyQ] : (2.7.40)

where A(t), B(t), a(t), and 3(t) are any solution of the auxiliary system (2.7.38),
(2.7.39), subject to arbitrary initial conditions.

However, for this degenerate case, the conservation law (2.7.40) together with
the auxiliary conditions can be split into two mutually independent conservation
laws

_1 AN2 ., p2.2
L=z [(pz Az)? + B% } , (2.7.41)
with the auxiliary conditions
A+AA% +a=AB? B=-2AAB, (2.7.42)
and
=1 [ 24 g2 2.7.43
2—E(Py—ay) + 87, (2.7.43)
with auxiliary conditions
a&+0a®+m=0p82 pf=-20ap. (2.7.44)

In analogy with the one-degree-of-freedom system (see (2.5.23)), by taking
B =1/p? B = 1/p3, where p; and p, are new unknown functions of time, we
find from (2.7.42) and (2.7.44), that A = p,/ (A(t)p;) and a = p,/ (O(t)p,) and

A A2 o o2
Pr=3 P1 s 2= gh2 Po s ( )
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The conservation laws (2.7.41) and (2.7.43) become

A A 22\ (v’
O R IR
1

Note that for A(¢) = ©(¢) = 1, the auxiliary conditions (2.7.45) and conservation
laws (2.7.46) are identical with the results of Giinter and Leach [51].

As an alternative possibility (see [123]) for finding conservation laws of the
uncoupled dynamical system (2.7.36), we take

B(t) = p(t) =T(t) = 0. (2.7.47)
For this choice, the auxiliary conditions (2.7.23), (2.7.24) are reduced to

K=-KWAA+0a), A+AA?+a=0OK? &+0a®+m=AK?
(2.7.48)

and the conservation law of the system (2.7.36) is

1
I= % [pzpy + (K2 + Ao)zy — Azp, — aypz] , (2.7.49)
where K, A, and o constitute a solution of the auxiliary equations (2.7.48) sub-
ject to the arbitrary initial conditions.

Similarly, as in the previous case, on taking A = p;/ (Ap;),a = py/ (©py),
the first equation of the set (2.7.48) is reduced to the integrable form

A __dpy_dpy

== ==, (2.7.50)
K pL P2
Integrating, we find
M
K =-—, M =const.#0. (2.7.51)
P1P2
The last two equations (2.7.48) are reduced to
PO S UV - PP roll (ars)
—=p ap, = —s, po——= MOy = —_ .
173~ 1 PR 2~ gl P2 220y
The conservation law (2.7.49) now becomes
1= 4 P1P2PzP +—pﬁgwy—p~lp zp
M 1F72Pzy A O A 24Py
P2 Ty
o e M EY 2.7.53)
Cl } P1 P2 (

where py, p, are any solutions of the system (2.7.52) for arbitrary initial condi-
tions, and M is an arbitrary constant.
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(b) Semicoupled oscillator: A(t) = O(t),a(t) = m(t). Let us consider the
dynamical system whose Hamiltonian is of the form

1 1 1 1
H =A(t) (§p§ + 5;0?,) + §az2 + bxy + 5czgf", (2.7.54)

with arbitrary A(t),a(t), and b(t).
For this case, if we take
A=a, B=p=0, S=-T, D=-K, C=-4, y=-A4, (2.7.55)
the auxiliary system of equations (2.7.23), (2.7.24) is reduced to

K+20AAK =0, T+2AAT —b=0, A+AA%+a=A(K?-T?),
(2.7.56)

and for this case, the angular momentum-type conservation law (2.7.7) will be
of the form

~i

[P - B2~ (12— K = )2 4 (T - K* - A%)y?
+2A(ypy — zpz) + 2T (yp= — zpy)] - (2.7.57)

1
2K

Taking A = p/ (Ap) as in the previous case, the first equation of the system
(2.7.56) can be integrated to give K = M/p?, where M is a constant of integra-
tion. The last two equations of (2.7.56) carbe written as

) . A - M2
T+2<§)T—b=0, b—%§+Aap=A2(F—T2P)< (2.7.58)

Thus, the conservation law (2.7.57) can be represented in the form

- 1 pz\’ yp\”
I = 2——{(%——1\—) —(ppy——A—)

+ (T2 (v% — 22) + T (yp= — zpy)]

M2 (%)2 - M? <%)2} . (2.7.59)

It is easy to see that for the special case b(t) = 0 the first auxiliary equation
(2.7.58) is satisfied for T = 0. Note that for T = 0 and A(t) = 1, the second
auxiliary equation (2.7.58) and the conservation law (2.7.59) become identical
with the so-called Fradkin-Leach tensor [51] and [63].

(c) A numerical ezample. As indicated previously, the possibility of finding a
quadratic conservation law of the rheolinear dynamical system with two degrees
of freedom with the given Hamiltonian function in the form (2.7.1) strictly de-
pends upon our ability to find any solution of the auxiliary differential equations
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(2.7.23), (2.7.24). 1t is obvious, taking into account the nonlinear structure of
these equations, that a solution cannot in general be found in a closed form
in terms of known functions. Similar difficulty arises in finding approximate
solutions in a closed analytical form due to the relatively large number of aux-
iliary equations. Besides that, even in the case of a single degree of freedom,
the approximate analysis of the corresponding auxiliary equation like (2.6.30),
as demonstrated by numerous authors, is a rather difficult mathematical task.

Here, we analyze a concrete dynamical rheolinear system employing purely
numerical procedures.

Let us consider the rheolinear dynamical system defined as an initial value
problem

, t
P = —35e'z—22(1+1t%)y, p.(0) =1,
Py = ~2(1+2)s—14(1+%y, py(0) =2,
0 < t<6. (2.7.60)

In accordance with the previously introduced notation, we have

Alt) = 3(1L+1%),

o) = 2(1+%),

a(t) = 35€,

bit) = 22(1+1t%),

m(t) 14(1 4+ ¢3). (2.7.61)

To obtain a solution of the auxiliary system (2.7.23), (2.7.24) we have to pre-
scribe some initial conditions for the variables A,«, 8, K, B, and T. For the
problem in question, we assume

A(0)=0, «(0)=0, T(0)=0, (2.7.62)
and from (2.7.24) it follows that

A(0)B(0) +O(0)K*(0) = a(0) = 35,
A(0)K?(0) + ©(0)5%(0) = m(0) = 14,
K(0) [A(0)B(0) + ©(0)8(0)) = b(0) = 22. (2.7.63)
Solving this system using equations (2.7.61) for ¢t = 0, we obtain
B(0)=3, K(0)=2, B(0)=1, (2.7.64)

which, together with (2.7.62), comprise the complete set of the initial conditions
for auxiliary variables.
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The differential equations of the dynamical system (2.7.60) and six auxil-
iary differential equations (2.7.23), (2.7.24) are integrated nurnerically using the
Runge-Kutta method. The step size of the dimensionless time has been taken
to be At = 107%. The motion of the dynamical system, that is, z(t), y(t), Pz (t),
and py(t), is depicted in Figure 2.7.1. The value of the conserved quantity I,
given by equation (2.7.28), has been calculated in each step of integration and
its closeness to the value along the exact trajectory I = 19 is assessed in Figure
2.7.1.

21 1 T 1 1 T 1 1 1 T
0
—20 1 1 1 1 I 1 i 1 1
0 02 04 06 08 1 12 14 1 18 2
t
Figure 2.7.1

The values of the auxiliary variables B, K, A, 3, and a are not presented in
Figure 2.7.1.

It is of special interest to note that the conservation law obtained can be
advantageously used as a reliable indicator of the quality of numerical solution
of the rheolinear system (2.7.60). In Figure 2.7.2. the solution of the dynamical
system is shown for values of the dimensionless time ¢t > 6.

45 T ! T T T T T T
T R
ot | |
° / il i I "“

\ () | v
-45 : . -

0 2 + 6 8 10

Figure 2.7.2

It is a well-known fact that every numerical solution of a system of ordinary
differential equations inevitably brings some errors into results. If the range of
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the independent variable is large, the accumulation of error can be of such an
order that the numerical solution becomes quite unreliable. In a comment of
the adaptive step-size control for the Runge-Kutta method, Press et al observed
that “sometimes accuracy may be demanded not directly in the solution itself,
but in some related conserved quantity that can be monitored” (88, p. 554].
The value of the related conservation law has been calculated in each step and
shown in Figure 2.7.2. The results shown clearly demonstrate that the solution
of the dynamical system can be considered correct until, approximately, ¢ = 10.
After this period, the value of the conservation law starts to decrease rapidly,
and the solution becomes inaccurate.



Chapter 3

Transformation Properties
of the Lagrange—
D’Alembert Variational
Principle: Conservation
Laws of Nonconservative
Dynamical Systems

3.1 Introduction

In this chapter we shall demonstrate that the Lagrange-D’Alembert differential
variational principle can be used for the study of conservation laws of conserva-
tive and purely nonconservative dynamical systems. The basic idea of this ap-
proach is to consider the transformation properties of the Lagrange-D’Alembert
principle with respect to the infinitesimal transformation of the generalized co-
ordinates and time. It is of interest to note that for the Lagrangian and Hamil-
tonian dynamical systems (i.e., for the systems that are completely described
by the Lagrangian or Hamiltonian functions and in which the nonconserva-
tive forces are absent, (); = 0) the way of obtaining the conservation laws is
identical with the famous theory of Emmy Noether, which is based upon the
transformation properties of the Hamiltonian action integral [ * Ldu. However,
the approach based upon the Lagrange-D’Alembert differential variational prin-
ciple admits the possibility to include into consideration purely nonconservative
dynamical systems for which @Q; # 0.

B. D. Vujanovic, et al., An Introduction to
Modern Variational Techniques in Mechanics and Engineering

© Birkhiuser Boston 2004
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3.2 Simultaneous and Nonsimultaneous Virtual
Displacements (Variations), Infinitesimal
Transformations

For the sake of completeness we will briefly describe the forms of the infinitesimal
transformations (variations, virtual displacements) used in the proceeding text.
Let the position of dynamical system with n degrees of freedom be specified by
the set of generalized coordinates

q1;---s9n, (321)

which are supposed to be continuous functions of time.

The symbol § will denote the simultaneous variation: a representative point
A that is on the actual path at time ¢t and is correlated to an infinitesimally
close point B occupied at the same time t in the varied path by the relation

@i(t) = qi(t) + bgs, (3.2.2)

where §;(t) and ¢;(t) are the coordinates of the point B and A, respectively (see
Figure 3.2.1).

q A

N C varied path

a(1) N

- B ! path

i) actual pat Aq
oq

q(t) . '
; ght
| »
t At 1
Figure 3.2.1

Note that the infinitesimal quantities §q; are identical to the components of
virtual displacement vector introduced in section 1.2.

At the same time, in order to consider a much broader class of infinitesimal
transformations, we introduce a new kind of variation by supposing that the
time ¢ suffers an infinitesimal deformation At, such that

t=t+ At (3.2.3)
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If the motion on the actual path is given by ¢;(t), we will determine the corre-
sponding infinitesimally close motion on the varied path, which is taking place
in accordance with the holonomic constraints acting on the system by g(f). Let
us define the nonsimultaneous (generalized) variation by the equation

Ag; = @i(t) — ai(t) = Gt + At) — qi(?).- (3.2.4)

Developing term G(t+ At) into a Taylor series and retaining the first-order terms
only, one has §;(t + At) ~ i(t) + G, (t) At, and hence (3.2.4) can be written in
the form

Ag; = 6g; + ¢:iAt, (3.2.5)

where we have employed (3.2.2). The geometrical interpretation of (3.2.2),
(3.2.3), (3.2.4), and (3.2.5) is provided in Figure 3.2.1.

We note that the relation (3.2.5) can serve as a useful pattern for finding the
nonsimultaneous variations of any scalar vector or tensor functional L(t,q, q),
where q = {q1,...,qn} and q = {d1,...,qn} . In fact, it is easy to show that

AL(t,q, &) =6L(t,q,q) + L(t, q, Q) At, (3.2.6)
where
. ___dq(F dqt
srgtad) = L(7a@D) 1 (a0 52)
oL oL oL
B oL, 9L, 3.2.7
&hAqﬂr 8qu1+ o A (3.27)
Also,
. _ dq(t dq(t
sptad) = L(ta0 20) - 1 (na0,52)
oL oL
= —0q; —_— .’i 2.
5. + g 0 (3.2.8)
and

: .. 0L 8L. AL,
L{t.qq) =5+ R (3.2.9)

We note that from (3.2.6) it follows that
Ag; = 8; + GiAL. (3.2.10)
Differentiating (3.2.5) with respect to time we find
(Aq) = (6g:) + GiAt + Gi(At)'. (3.2.11)
Combining the last two equations we find

Ad; — (Ag) = 6¢; — (6q;) — d:(At). (3.2.12)
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As usual in variational calculus and also accepting the commautative rules (1.3.18),
that is, 6¢; = (6¢;) , we see that

Agi — (Agi) = —4i(At), (3.2.13)

and this equation indicates that the symbols of nonsimultaneous variations are
not commutative, namely,

Ad(-) — dA() #0. (3.2.14)

Note for completeness that the formula (3.2.6) can also be applied to the “action-
type” functionals that are defined in the form of a definite integral,

t, t
o[ ptadd=s [ L@+ Leaady, (215
to to

where

t g _ dq(t _
s [ teaqa = | L(t,fI(t‘),id(Z])dt
to t
t

and to = to + At(to),f1 = t1 + At(t;). Also,

5[ L(t,q,a)dt = [ [L (t,q(t)ﬁ%) -L (t,q(t),d?i—it))] dt

b /0L 8L
o g + ——64; | dt. 3.2.17
/t(, <34i6q +3Qi6q) ( )

tq 131
5 L(t,q,q4)dt = SL(t,q,q)dt. (3.2.18)

to to

Consequently

At this point we are going to interpret equations (3.2.2) and (3.2.5) as the
infinitesimal transformations of generalized coordinates ¢;(t) and time ¢. Let us
suppose that the infinitesimal transformations are of the form

q_l(t—) = ql(t)+EF1(t;q(t):Q(t))a i= 17"')”7
P o= tteftalt)al), (3.2.19)
where the functions F;(t,q(t),q(t)) = Fi(t,q1, -, qn, 41, -, 4n),t = 1,...,n, and
f(t,a(t),a()) = f(,q1,--,qn, 41, ---, gn) are also called generators of the infinites-

imal transformation of space and time, respectively. The parameter € is a small
constant positive number. Comparing (3.2.19) with (3.2.4) and (3.2.3) we have

Agi = eFi(t,q(t),a(t), At =ef(t,alt), a(t). (3.2.20)

I
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The infinitesimal transformations of generalized coordinates and time (3.2.19)
constitute the general infinitesimal transformation in which the space and time
generators F; and f are supposed to be functions of generalized coordinates g;,
generalized velocities ¢;, and time ¢. From (3.2.5) and (3.2.13) with the notation
(3.2.20), we find

eIF(t alt), 4(t) - 4:f (¢, a), a(®))],
e [Ata®,a) - afta,am)]. G221

Finally, note that in the case when the time ¢ is not varied (i.e., 6t = 0) the
operators § and A coincide, that is,

Gi(t) = qi(t) + b6q; = q; + eFi(t, q(t),at)), f=t. (3.2.22)

5 q;
Ag;

I

By using the transformation rules (3.2.21) we shall transform the Lagrange—
D’Alembert principle into a form that reveals possibilities to obtain conservation
laws of conservative and nonconservative dynamical systems.

3.3 A Transformation of the Lagrange—
D’Alembert Principle

Let us consider a dynamical system of N particles subject to holonomic con-
straints. We shall assume that the given impressed forces Fi, ..., F y act at some
points of the system. The virtual displacements of these points are denoted by
ory,...,6ry. According to the Lagrange-D’Alembert principle of virtual work,
we have (see (1.3.4))

N
> (miFi = Fi) - 6r; = 0. (3.3.1)

=1

Introducing the generalized coordinates (3.2.1) in such a way that every po-
sition vector can be expressed as a function of these coordinates and time
r; = ri(t,q1,...,qn) and applying the procedure described in section 1.3, we
find (see equation (1.3.33)) that

(@55; — —BE — Ql) 6q1 = 0, 1= 17”.,’”, (332)

where L = L(t, q(t), 4(t)) is the Lagrangian function and Q; = Q;(t,q(t), q(t))
are the components of the nonconservative (nonpotential) generalized forces,
which are supposed to be arbitrary functions of time t, generalized coordinates
¢:, and generalized velocities ¢;.

We write equation (3.3.2) in the form

d (0L oL oL
=\ 550G ) — 564 — 7—b6q; — Q:6g; =0, 3.3.
dt <3di q) B; % g, 0%~ @idn =0 (33.3)
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where we have used commutativity rule 6¢; = (d/dt) 6g;. Taking into account
(3.2.5) and (3.2.10), that is, 6¢; = Aq; —¢; At and 6¢; = Ag; —§; At, the equation
(3.3.2) becomes

oL . oL oL 8L
% [6 (Ag; — int)] - (3 Agi + — % —Ag; GtAt>

oL oL oL

Gi + —q; + t—Q; (Ag — ¢;At) =0. 3.

+(Gri+ 3 + 5 ) At-Qu(Aa—db =0 (334
Denoting by
oL ,. OL oL
AL = i ; + . P -—At,
. OL. OL., 0L
L = g(th + B_qiqi + FTE (3.3.5)

we write equation (3.3.4) in the form

dt [3’“ (Agi — :At) + LAt} — AL - L(At) — Qi (Agi — ¢:At) = 0. (3.3.6)

By adding and subtracting the total time derivative of an arbitrary function
eP(t,q(t),4(t)), we can write (3.3.6) in the form

oL .
= [ 3 (Ag; — G:At) + LAt — EPJ

- [AL + L(AY) + Q; (Agi — ¢iAt) — eP] =0, (3.3.7)

which is the transformation of the Lagrange-D’Alembert principle we have been
seeking. As in the Noetherian theory based upon the integral variational princi-
ples, we are referring to the function P(t, q(t), q(t)) as a gauge-variant function.

3.4 The Conditions for the Existence of a
Conserved Quantity of the Given Dynamical
System

From the equation (3.3.7), which represents the transformed form of the Lagrange-
D’Alembert principle, it is obvious that if the relation

AL + L(At) + Qi (Agi — g:At) —eP =0 (3.4.1)

is satisfied, the dynamical system admits a conservation law of the form

g—; (Ag; — ¢iAt) + LAt — eP = C = const. (3.4.2)
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Introducing the generators F; and f of the infinitesimal transformations defined
by equations (3.2.19), we can write (3.4.1), (3.4.2) in the form

oL L /. .  OL : , -
9 F (B-df) + S+ Lf+QiFR-ap) -P=0  (343)

and
%(Fi—(jif)+Lf—P=const. (3.4.4)

Note that the equation (3.4.3) is usually referred to as the generalized basic
Noether identity.

Thus, we can state the following.

For every infinitesimal transformation of the generalized coordinates and
time of the form (3.2.18) and for every gauge function P(t,q(t),q(t)) that satisfy
the scalar equation (3.4.3), there exists a conservation quantity of the form
(3.4.4).

Note that this statement for the case when the dynamical system is fully
specified by the Lagrangian function L{¢, q(¢),q(t)) and @; = 0 can be consid-
ered identical with the famous theorem of Emmy Noether 78], whose results
have been based upon the invariant properties of the Hamilton action integral
i * Ldt with respect to the infinitesimal transformations of generalized coordi-
nates and time, with the generators depending only upon the generalized coor-
dinates. Equations (3.4.3) and (3.3.4) were first derived in [37] starting from a
generalized form of Hamilton’s variational principle. The invariant form of the
Lagrange-D’Alembert principle presented here have was first derived in [112]
(see also [122], where (3.4.3) and (3.4.4) were obtained by studying invariant
properties of Gauss and Jourdain differential variational principles). It is also of
interest to note that the generalized Noetherian approach to the study of con-
servation laws has been extended to more complex dynamical systems whose
structures demand introduction of quasi coordinates [36]. Djukic was the first
to introduce the gauge functions in his study of Noether’s theorem (see [35]).

The relations (3.4.3) and (3.4.4) can be easily expressed in the Hamiltonian
canonical variables ¢; and p;.

Recalling the relations introduced in section 1.8,

oL 0L

pPi = 5&:7 %Qi—L:H(tﬂh---7€I717P1,---,P11)7
oL 0H 0L oH
= = _ = = 3.4.
Oq; Oq;' Ot ot’ ( 5)
we write (3.4.3) and (3.4.4) in canonical form:
oH : : OH OH :
oo Furoihi—#f - S0 (7= G) 4 Plea.p) =0 @48)

and

I =pF;— Hf 4+ P = const. (3.4.7)
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Naturally, we suppose that the generators of the infinitesimal transformations
F;, f, the gauge function P, and the generalized forces @; are functions of time
t and the canonical variables ¢; and p;,i =1, ..., n.

Thus, we can formulate a similar result as stated above.

If the space and time generators Fi(t,q(t), p(t)), f(t, a(t),P(t)) and the gauge
function P(t,q(t), p(t)) satisfy Noether’s identity (3.4.6) identically along the
dynamical trajectory of the dynamical system

{i‘i = %I}j[_i’ ﬁi = —%g + Q,(t,q(t),P(t)), t= ly e Ty (348)
then there ezists a conservation law (3.4.7).

It should be noted that the term “along the trajectory” means that we
are able to express the acceleration vector g; in terms of ¢,q;, and ¢; by using
the Euler-Lagrangian equations of motion and to substitute this into Noether’s
identity (3.4.3). Similarly, for the dynamical problems expressed in the canonical
variables, we are generally able to express ¢; and p; by means of (3.4.8) in terms
of q;,p;i, and t and to substitute this into Noether’s identity in canonical form
(3.4.6).

As has been shown (see, for example, [122] and the references cited therein),
the basic Noether identity (3.4.3) can be considered from the various points
of views. Frequently, this identity can be transformed into a system of partial
differential equations. If any solution of this system is available, a conservation
law of the dynamical system follows immediately.

3.5 The Generalized Killing Equations

As noted at the end of the previous section, the basic Noether identity can be
decomposed into a system of partial differential equations. These equations are
frequently linear partial differential equations of the first order with respect to
generators F;, f and gauge function P.

For example, let us suppose that the set of n + 2 functions F;, f, and P
depends only upon time ¢ and generalized coordinates g;:

F, = Fi(t)q(t))x f= f(tvq(t))7 pP= P(t1q(t))1 i=1,..,n, (351)

where q = {q1,...,gn} and the generalized forces are absent, that is, Q; = 0.
Entering with this into the basic Noether identity (3.4.3), we find

. 0 of . oL oL
L{(t,q(t),4(t) (5{ + '8?41') + E-f + 5q—F’

oL (0F; | OF;. 0f. 0f. .\ 9P 9P,
oG \ ot oY tT T 3g 1Y :

Specifying the form of the Lagrangian function, this equation can be transformed
into a system of partial differential equations by equating to zero terms of the
corresponding degree of q(t).
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For example, let us consider a rheonomic dynamical system with n degrees
of freedom whose Lagrangian function is of the form

1 o1 ..
L=T-T=g59 (t,q) +ai (t,q) ¢ + 5% (t,a) gig; — 1L (¢, ). (3.5.3)

Entering with this into (3.5.2) and grouping the terms according to degree of q,
we have

%%(9f)—%(ﬂf)+;ggF %Fﬁai%?—%—f

i (GeFrage! oty qog ~Ugl+ G- o)
+%dsér (%g;iF,- + gisg—i - gm%% + 8;? f)

_%dsrm'p (gsraa; +gsp§; +grpgi> =0 (3.5.4)

for 4,s,7,p = 1,...,n. Note that the expression in parentheses with coefficients
gsqr and ¢sqrgp is written in symmetric form.

Equating each factor of the various powers of ¢ to zero, we obtain the fol-
lowing system of partial differential equations of the first order, which we refer
to as the generalized Killing equations:

23t(f) 8t( N+3 gji ZEE‘*“’%‘%—]Z: ’
ngﬂ+ai%2+gis%i+%g%—H(%{—s'i"a;:f'% =0,
889;:1%+gisg§: +gir%‘grs%{‘+ ag;sf =0,

gsrgf + spgf + T,,gqf =0. (3.5.5)

These equations were first derived for the case P = 0 in [111], and the case
P +#£ 0 was reported in [35]. The reason why we call this system the generalized
Killing equations lies in the fact that this system for the case of free, that is,
inertial motion of a dynamical system can be reduced to the Killing equations
well known in Riemannian geometry and general relativity.

To show this, we suppose that the following conditions are satisfied:

(a) The Lagrangian function does not depend upon time: 8L/dt =0

{(b) The time is not varied, i.e., f = 0.

{c) The space generators F; do not depend upon time ¢, i.e., F/dt = 0.

(d) The gauge function P is equal to zero: P = 0.

{e) The potential energy II (t,q) = 0. Therefore, according to (3.5.3) the
Lagrangian function becomes L = (3) g;4:¢;. Thus, the motion is inertial.
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With these suppositions, the equations (3.5.5)1,24 are identically equal to
zero, and the equation (3.5.5); becomes
OF; OF; .
- F,-+g,-sa—q:+gir5q—: =0, isr=1,..,n, (3.5.6)
which are classical Killing equations. Because g;; = g;i, they constitute a system
of n(n + 1) /2 independent equations, and in the general case they do not have
a solution. However, if for some particular dynamical system the solution exists,
according to (3.4.4) the dynamical system has a linear conservation law of the
form

9ijFig; = I = const. (3.5.7)

Note that for more complicated dynamical systems and more complex forms of
the generators of infinitesimal transformations and the gauge function, we are
faced with a more complicated system of partial differential equations that stem
from the basic Noether identity (3.4.3).

However, very frequently, we are able to find the conservation laws directly
from the basic Noether identity, without reducing it to the system of generalized
Killing equations.

For example, we are easily able to find two important conservation laws: the
Jacobi conservation law and the cyclic integral of the scleronomic dynamical
system, which are derived in section 1.4.

Ezxzample 3.5.1. Jacobi conservation law. Let us consider the scleronomic dy-
namical system whose Lagrangian function is L = L (q(t), q(t)), where q = {q1,
...,Gn} and the nonconservative forces @Q; are absent.

It is easy to verify that for

f=A=const., F;=0, P=0, (3.5.8)

the basic Noether identity (3.4.3) is identically satisfied. Therefore, from (3.4.4)
it follows that

oL
L - ——¢; = E = const., 3.5.9
a5 (3.5.9)
which is identical to the Jacobi integral (1.4.45). From (3.5.8) it follows that the
infinitesimal transformation which leaves the Lagrange-D’Alembert principle
invariant is of the form

G=a E=tted (3.5.10)

which is the time translation mentioned in section 1.4 (see equation (1.4.48)).

Similarly, considering the equivalent dynamical system expressed in canon-
ical variables whose Hamiltonian function is H = H (q,p) and Q; = 0, for
F,, f, and P given by (3.5.8), we see that the basic Noether identity (3.4.6) is
identically satisfied and from (3.4.7) we obtain that

H (q, p) = const., (3.5.11)
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which is identical with the previously obtained result (1.8.17) obtained by a
different reasoning.

Ezample 3.5.2. Conservation of the generalized momentum. If the La-
grangian function L does not depend upon a specific generalized coordinate,
say qi, but it depends on ¢y, then if @; = 0, the basic Noether identity (3.4.3)
will be identically satisfied for the infinitesimal transformations of the form

G =q+ EA» o =qa, t=1t, a= 2,..4m, (3512)
whose generators are obviously
Fy=A=const.,, F,=0, f=0 (3.5.13)

Again, the basic Noether identity will be identically satisfied for P = const.
and from (3.4.4) it follows that the conserved quantity that corresponds to the
infinitesimal transformation (3.5.12) is
oL
2
which is the well-known integral of momentum or cyclic integral discussed in
section 1.4.

= const., (3.5.14)

3.6 The Basic Noether Identity and Integrating
Factors of Equations of Motion

The basic Noether identity (3.4.3) is of a very complex structure and can be
connected with almost all vital and important parts of analytical mechanics.
In this section we demonstrate that this identity is intimately related to the
integrating factors of the differential equations of motion of holonomic noncon-
servative dynamical systems.
Rewriting (3.4.3) in the form

oLy 9L oL
dq; " Og th

F,-+<L— >f+ f+Qi(Fi—af)—P=0, (3.6.1)

and transforming the first and third terms by using Leibniz’s rule wv = (uwv) —

uv, we have
d [OL oL . oL d 0L
ANLp (- oL _d ol
it [aqi +(L 94: >f P]” (6%- dtaq)

*% <L - ééql> f+ f+Q1( —af) =0. (3.6.2)

It is easy to demonstrate by differentiation with respect to time that the follow-
ing identity holds:

d oL oL ., (0L dOL
TN PR (T AT
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Substituting this into (3.6.2) one has

0L d oL . d oL aL ,
(8%’ —'(Ra—qi‘f‘Qi) (Fi_Qif) [P—B—QLE— <L_3—q'_i(h) f] . (364)

T

Note that the expression in square brackets on the right-hand side is, according
to (3.4.4), a constant for every solution F;, f, and P of the basic Noether identity
(3.6.1). Thus it is evident that the expression (F; — ¢; f) can be interpreted as
integrating factors of the Euler-Lagrangian equations

d 0L OL

agq—l—gq—l—Ql:O, 2=1,...,n. (365)

More precisely, the terms (F; — ¢;f) # 0 are generally proportional to the
integrating factors, since the Euler-Lagrangian equations (3.6.5) can contain
the differential equations of motion (DEM) multiplied by some scalar factors
0y (t,a(t), q(t)) . Written symbolically, we can express (3.6.5) in the form

(DEM), 6;) (¢, q(t),4(t)) = 0, (3.6.6)

where the summation convention with respect to indices 7 does not hold. There-
fore, the actual integrating factors are

(Integrating factor) ;) = 6 (¢, a(t), a(t)) (F; — & f), (3.6.7)

where index 7 is not summed.

Note that a rather exhaustive account of the theory of integrating factors of
nonconservative dynamical systems and related conservation laws are published
in [38] from a different point of view.

3.7 Quadratic Conservation Laws of Euler’s
Equation

Let us consider the famous Euler’s differential equation
. a. b

where ¢ = z is a generalized coordinate and a and b are real constant parame-
ters. This equation can be derived from the Euler-Lagrangian equation whose
Lagrangian function is

1
L= %:’czt“ - Ebzzt“‘2. (3.7.2)

Note that the scalar factor 6 (¢, z, &) mentioned at the end of the last section is

o(t) =te, (3.7.3)
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since (see (3.6.6))

d oL OL a b

——— —— =t*{Zi4+ -2+ 5z ] =0. 3.74
it 9 0z <m+t +t2) (3.7.4)
In order to study quadratic conservation laws of this equation, with respect to
generalized velocity &, we shall suppose that the time generators f, the space
generator F, and the gauge function P are, respectively, of the form

t=At™, F=Kt'z, P=Rt'z’, (3.7.5)

where A, K, R, m, p, and s are unknown constants to be determined.
The basic Noether identity and the corresponding conservation law in our
notation are (see (3.4.3), (3.4.4))

oL . 0L . oL\ ; 0L .
and
oL AN
%F‘f‘ (L — %-x) — P = I = const. (377)

Substituting (3.7.5) into (3.7.6) and equating to zero terms with z?,zz, and %,
we obtain, respectively,

—bKttP=2 —;—Amt‘”m_g — Rst*™! — %Ab (a—2)totm=3 =

0
Kpt®*tP~1 _2Rt* = 0,
0

Ktotp — %An’l,ta"'"“1 + %(J,At“"""_1 =

(3.7.8)
These equations will be compatible with respect to the exponents for
p=m-1 s=a+m-2 (8.7.9)
Thus, equations (3.7.8) become
1 1
—bK — §Amb - §Ab (a~2)—Rs = 0,
Kp—2R = 0,
K — %Am-{— %aA = 0. (3.7.10)

From (3.7.10)2,3 and (3.7.9) we obtain

1 1
K= EA(m —-a), R= ZA (m—1)(m—a), (3.7.11)
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and (3.7.10); becomes
(m—-1)[4b+(m—a)(a+m—2)] =0. (3.7.12)

This cubic equation has three roots that are given as

mi=1, mo=1+1/(a—1)%—4b, mg=1-1/(a—1)°—-4b. (3.7.13)

A simple inspection shows that the constant A can be taken to be A = 1 since
f, F, and K are depending linearly on this constant, which is evident from (3.7.5)
and (3.7.11).

The generators of transformations and the gauge function are
Sy = 7, Fig = m —a]mo7lz,
1 a+mey— :
Py = 7Ime-1] [me—attmo0™? i=1,23. (37.14)
Multiplying both sides of (3.7.7) with —1, for ease, and substituting (3.7.14) we

find for each given parameters a and b the following three quadratic conservation
laws:

1-2a+mi 1 a+my—1,..
5% (>—§[m(i)—a]t O~z

2
+£4‘ {Qb + [m(i) - 1] [m(,') — a] } otme-2 = = —1I;) = const.,
i = 1,23 (3.7.15)
For the arbitrary a and b and m(;y = 1, the gauge function Py = 0, and we

have the following conservation law:

1 1

53':2t“+1 ~3 (1-a)t®zz + %bwzt“‘1 = —I(1) = const., (3.7.16)
while the other two conservation laws, for m(,),a = 2,3 given by (3.7.13),
become

%i_Zta+m(") . % [m(a) _ a] ta+m(,x)—lxi,

2
+% {2b + [m(a) - 1] [m(a) - a] } tatme—2
= —I(n) = const., «a=2,3, (3.717)

where a and b are also arbitrary.

It is now easy to verify that for each given 6y;), f(;), and F(;, we can find the
corresponding integrating factor of the differential equation of motion.

For the sake of simplicity let us find the integrating factor of the differential
equation (3.7.1) that generates the conservation law (3.7.16). For this case
may = 1, fay = t,F1) = 3 (1 —a) =, and since § = t* (see (3.7.3)) we have
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on the basis of (3.6.7) that the integrating factor of (3.7.1) is in accordance to
(3.6.7):

(Integrating factor) ;) = 0 (Foy = fyz) = s (1 —a)t®z — et (3.7.18)

o=

Therefore, it is easy to verify that the following relation holds:
b 1
(JL + %JL + t—z-m) [5 (1-a)tz — a':t““}

d1, 1 1
= — {232t — 2 (1 — q)t%xi + =bz?te !
pr [Qx 2(1 a)tzt + 50Tt

d
= = (~Iw) =0. (3.7.19)

As a concrete example, let us consider the case
. 6. 4

for which @ = 6 and b = 4. From (3.7.13) it follows that the exponent m has
the values m() = 1,7m9) = 4,m3) = —2. From (3.7.16) and (3.7.17) it follows
that the differential equation (3.7.20) possesses the following three quadratic
conservation laws:
1
2

120 .0 1 238
-zt t -zt
5310 +ait’ + 5a

5
227 Exg'ctﬁ +22%° = —Iy = const.,

—I(gy = const.,

i

%j:?t“ + dzitd + 82%t? ~I(3) = const., (3.7.21)
It should be noted that all three conservation laws (3.7.16), (3.7.17) and conse-
quently three conservation laws (3.7.21) are not mutually independent. In fact,
we can consider any two of the conservation laws (3.7.21) as mutually inde-
pendent, and the third one should be a consequence of the first two arbitrarily
selected.

To demonstrate this, we note that the differential equation (3.7.20) has two
linear conservation laws of the form

Cy = 4tz + 123, Ch =tiz + 5%, (3.7.22)

which can be considered as the general solution of (3.7.20). From (3.7.22) it
follows that

1 1 1
~Iy =500y, —Iy =503, I =5CF, (3.7.23)

which confirm our statement.
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3.8 Quadratic Conservation Laws of the
Scleronomic Duffing Oscillator

In this section we consider the possibility of finding the conservation laws of the
Duffing oscillator whose differential equation of motion is

i+ ki 4+ w?z + Az™ =0, (3.8.1)

where k,w, A, and n are given constant parameters.

One of the basic suppositions for treating this problem is that we will assume
that the velocity can be represented as a field depending on time ¢ and position
x, namely,!!

i=¢(t ). (3.8.2)

Despite the fact that the dynamical system (3.8.1) can be completely derived
from a Lagrangian function, we will treat it as a purely nonconservative system
whose Lagrangian function is L = 4% — Jw?z? — %Hz"“, and the nonconser-
vative force is ) = —kz.

If we select the generators of the infinitesimal transformations in the form
F = ~1,f =0, and the gauge function P = ¢ (t,z), Noether’s identity (3.4.3)
becomes

QEF+QF+J>: 0 (3.8.3)
Ox
or, in explicit form,
il + 4)@ + k¢ +w?z + Az = 0. (3.8.4)
at oz

In the next chapter we will call this quasi-linear differential equation the basic
field equation. Note that the equation (3.4.4) in this case reduces to an identity
(—% + 2 = 0), from which it follows that the constant appearing in (3.4.4) is
equal to zero. This fact means that we can consider the basic supposition
(3.8.2) as a conservation law of the dynamical system (3.8.1). Note also that
by combining (3.8.1) with (3.8.2) we can immediately derive partial differential
equation (3.8.4). However, we have demonstrated here that the method based
upon the theory of this chapter has a rather operative possibility. To find an
incomplete solution of (3.8.4) (which in fact represents a conservation law of the
dynamical system (3.8.1)), we select the solution in the form

¢ = ¢(t,x) = Az + [I] (t) + W (2)]'/?, (3.8.5)

where A and I are constants and f (t) and W (z) are unknown functions. En-
tering with this into (3.8.4) we find

I (f' +okf +2Af) + (AW’ + 2AW + 2kW)
+VR [22 (A% + kA +W®) + (W' +2Xz™)] =0, (3.8.6)

LiNote that this supposition will be widely used in the next chapter of this book.
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where VR = (If+ W)l/ % and prime denotes the differentiation with respect to
2. By equating to zero the terms in round brackets, we arrive at the following
system of generalized Killing’s equations:

F4+2kf+24f = 0, AaW’' +2kW + 24AW =0,
A2 kA+w? = 0, W +2x"=0. (3.8.7)
Integrating (3.8.7); we obtain

2X
W(z) = ———". (3.8.8)

Substituting this into (3.8.7)2 we find the following relation between the coefli-
cients k, A, and n:

k= —A"—;ﬁ. (3.8.9)

Now, from (3.8.7)3 it follows that

2
=4/ ——w. 3.8.1
A== n+1w (3.8.10)

Taking the minus sign, that is, selecting the damping factor to be positive, we
see that the coefficient k, the natural frequency w, and the nonlinear exponent
n are not independent:

1/2
k= ";3 (ni 1) . (3.8.11)

Finally, integrating (3.8.7); one finds
—/2n 1
£ () = el VA (38.12)

Therefore, from (3.8.8), (3.8.10)—(3.8.12), and (3.8.5) it follows that the nonlin-
ear, damped Duffing oscillator

. n+3

£ 4 w? m= 3.8.1
z+ 5 n+1wx+w T+ Az 0 ( 3)

has the conservation law

PO R \/Ie‘\/z("“)‘”t _ 2 (3.8.14)
n+1 n+1

2
(g‘c +4/ %wx) + Z:Ix"“ eVADOt — T — const. (3.8.15)
n 7

or
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For example, let n = 7, for which k = (5/2) w. Thus, the differential equation
Z+ gwi +lz+ 22" =0 (3.8.16)

possesses, according to (3.8.15), the quadratic conservation law of the form

:i:+1wz 2-{—&:58
2 4

As a next concrete example, let us consider the case of a conservative dynamical
system for which k& = 0. From (3.8.11) it follows that n = —3. Therefore, we
conclude that the differential equation

et = I = const. (3.8.17)

4wl + ;);- =0 (3.8.18)
has quadratic conservation law
- . 2 A 2iwt
T —iwr)’ ——|e = C} = const., 3.8.19
2

where ¢ = \/—1. Since the differential equation (3.8.18) is invariant with respect
to transformation z = —z,t = —t, we have another conservation law of (3.8.18)
in the form

[(x +iwz)? — ;\—2} e~ 2wt = Cy = const. (3.8.20)

Two first integrals (3.8.19), (3.8.20) are independent, and we can use them to
find the general solution of (3.8.18). Adding (3.8.19) and (3.8.20) and multiply-
ing the result by 22, we have

2 (z2)” — 2a* — 2\ — 2% (C1 €2t 4 Cre™2t) = 0. (3.8.21)

By subtracting (3.8.19) and (3.8.20) we have

. C1 g C2 ot
= 2L vt | 22 —Ziwt .8.22
= Gt 4iw© @ )
Integrating we find
C1 o Cy _o;
72 = __12.621“’3 — ___256 2wt 4 D, (3.8.23)

where D is a constant of integration which depends on C; and Cs. To find the
constant D, we substitute (3.8.22) into (3.8.23) to obtain

1C1Ca A
_ ./t 2 8.24
D=\7170 — 2 (3.8.24)
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Employing e*X = cos X + isin X we can write (3.8.23) in the form

2 . 1 C1C2 A
x* = Acos 2wt + Bsin 2wt + 1T (3.8.25)
where
Ci+Co —C1+Cs
A=t p Tt ty (3.8.26)

Finally, since A%+ B% = ;1;C1C5, we can write the general solution (3.8.25) of
the differential equation (3.8.18) in the form

2= \/A?+ B2 - —/\—2 + A cos 2wt + B sin 2wt, (3.8.27)
w

which is, for A = —1 identical with the solution of the equation (2.5.40) given
by (2.5.41).

It should be noted that the scleronomic differential equation (3.8.18) admits
the total energy conservation law of the form

i? 23:2 Al
Wi

3 5 — E-q;—Q = F — const. (3828)

Naturally, all three conservation laws (3.8.19), (3.8.20), and (3.8.28) are not
mutually independent. They are connected by the relation

C1Cy = (2E)?, (3.8.29)

which is easy to verify by direct calculation.

3.9 Conservation Laws of the Arbitrary Degree
of a Purely Dissipative Dynamical System

Let us consider a purely nonconservative dissipative dynamical system whose
differential equation is of the form

i =X (t,x) . (3.9.1)

Treating this system as purely nonconservative, we have

22
L= % Q(t,z,4) = X (t, ) . (3.9.2)
As a trial form of the space and time generators of the infinitesimal transfor-
mations, we take

F=Bi® [=AS(tz)i, (3.93)
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where A, B, a, and b are unknown constants and S (¢, z) is an unknown function
of time ¢ and the position z. We also suppose that the gauge function P is equal
to zero.

By noting that the time derivatives of the generators F' and f along the
dynamical system trajectory are

F=Bbi’X (t,z), f=A (‘Z‘j + %‘E + SX) (3.9.4)
the Noether identity (3.4.3)
oL . oL
8:1:F (L - a—m) f+QF - fi)=0 (3.9.5)

becomes

B(b+1) X+ %A?ﬁi“”—A[laS r(5+ 1)SX]¢“+2=0. (3.9.6)

Oz 2 0t
Taking
a=b-2, (3.9.7)
the Noether identity becomes
as oS
BX(b+1)X—-Aa—] 1_ Ad [§+SX(2 )] —0. (398)

Since the terms in brackets are independent of the velocity &, we arrive at the
following system of partial differential equations, which represents the general-
ized Killing system:

1 A 03§ s A b oS

§B(b+1)%=x(t’m)’ E+§2(b+1)s‘a?=0' (3.9.9)

The parameters A and B are free, and we select, for example,

= - = — 3.9.10
A=-2, B=p (3.9.10)
Thus, we obtain
S
=——= 3.9.11
and
a8 oS
— —-bS— =0. 3.9.12
ot S@x ( )
The generators of the infinitesimal transformations are
F= La‘cb, f=-25(@z)z""2 (3.9.13)

b+1
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Referring to equation (3.4.4), we conclude that the dynamical system

Z= —gg (t,z)z (3.9.14)
has the conservation law of the form
b1
rl + 8 (t,y) &* = I = const., (3.9.15)

where 5 (t,z) is any solution of the partial differential equation (3.9.12) and b
is an arbitrary constant parameter b # —1.
If we introduce a new function U (¢, z) by the relation

S (t, ) = %U (t,2), (3.9.16)

the equation (3.9.12) is reduced to a standard form,

ou ou
— -U—=0. 3.9.17
ot v Oz 0 ( )
A rather broad class of solutions of this equation is known to be

z+tU = R(U), (3.9.18)

where R (U) is an arbitrary function of U.
For example, if R (U) = U?/2, from the previous equation we have

Ult,z) =t + (82 +22) "% (3.9.19)

Thus,
S(t,x)= —lb— [t + (t2 + 2a:)1/2] . (3.9.20)

Therefore, from (3.9.14) and (3.9.15) it follows that the differential equation

1 1
o e 3.9.21
v b /(2 + 22) ¥ ( )

has a conservation law of the arbitrary degree (in our case b + 1) with respect
to a:

i_b-}-l

1
- 2 A g .
e + b [t ++/ (82 + 2a:)] i° = I = const. (3.9.22)
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3.10 Polynomial Conservation Laws of the
Generalized Emden—Fowler Equation

In this section we shall consider the existence of conservation laws of the gener-
alized Emden-Fowler equation

i+ %’x + Az®tk =0, (3.10.1)

where b, A, o, and k are constants. Note that this equation appears in many
branches of physics and engineering, for example, in stellar dynamics, quantum
mechanics, and fluid dynamics. The closed form solution of the Emden-Fowler
equation is rather scarce and the search for conservation laws, which can in
many respects shed light on the physical mechanism of the dynamical problem,
has its full vindication: In the following presentation we pursue [129].

Our interest will be focused upon the problem of finding conservation laws
of the fourth degree with respect to generalized velocity %, which we shall refer
to as the polynomial conservation laws. Recently, more interest in polynomial
conservation laws of the fourth degree has been aroused in theoretical physics
and quantum mechanics (see, for example, [2] and [3]).

The differential equation (3.10.1) can be derived as an Euler-Lagrangian
equation for the Lagrangian L given by

L= %ﬁt" - a—%z""’ltk“’. (3.10.2)
The crucial step in searching for conservation laws of any kind is the selection
of the generators of the infinitesimal transformations F (¢, z,%), f (t,z, ) and
the gauge function P (¢, z,z). Naturally, the structure of these functions has
to be selected in such a way that the conservation law of the given degree can
be obtained. According to our experience, the generators of the infinitesimal
transformations must contain as a basic germ the expression of the “total en-
ergy” of the dynamical system, namely E (¢, z,z) = (8L/01) £ — L, that can be
multiplied by some function that depends upon the dynamical variables.

Let the generator of the infinitesimal space transformation be equal to zero,
that is, F' = 0, and the generator of the infinitesimal time transformation be
given as the total energy of the dynamical system multiplied by the factor t™,
that is,

) oL . 126t A ksbt 3.10.3
tx T [ m m m' .1 .

Let the form of the gauge function be given by
P:fo(t,l)+f1 (t,l‘)j}+f2(t,:lf)i’2, (3104)

where fg, ..., fo are unknown functions of the position and time to be determined
in the course of analysis.
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The total time derivative of f and P along the dynamical trajectory are

Il

m- bz'2tb+m_1 4 Ak +b+m) gortlghtbrm

f(t,z, 1)

a+1
P(t,z,z) = ‘9;;0 Afrett + (% + % - Qfl — 2/\f2x“tk>
o (0 9
+i? ([fl + —51—2 Py -2 — 3\ faz®t )
3 (Of2 3f3 b Ofs.
3 gjs 3
+ < S+ 37 fs ) o (3.10.5)

The basic Noether identity (3.4.3) becomes

afo —Afiztk 4 X (2k +2b +m) 20+ 22k4 2bHm—1
(a+1)*

Ofo [ 0fi b ok
+i l:a—+‘5;*zf1“2)\f2xt}
2 [0h  0fs b, agk AE+m) 0yt kt2btmo1
+i [a + 2 -2 fy - Bttt 4 S ey

Ofr  Ofs b 0fs %btm—1| _
[ 2] 2 e o

(3.10.6)

Since the expressions in brackets do not depend on z, equating the different
powers of & to zero we get the following set of first-order partial differential
equations

afs 1 2btm—1
B +4( b) 0,
0f2 | 0fs _
T f3 =0
__ﬁ Ofa agk | (k+m) -1 ,k+2b+m—1
S 2f2—3)\fxt L _—
6f0 6f1 b ark
ar T i WM = 0,
9o Azt 2 (2k+2b:_m)x2a+2t2k+2b+m——l I
ot (a+1)
(3.10.7)

Integrating (3.10.7); with respect to = and neglecting an arbitrary function of
t, we find

f3(t,z) = ,i (m — 2b) xt?btm =L, (3.10.8)
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Substituting this into (3.10.7); and integrating, we obtain
fa(tz) = _% (m —2) (b— m + 1) 242+ m=2, (3.10.9)
Repeating the procedure, we find from (3.10.7)3 and (3.10.7)4 that

fi(tg) = --21—4 (m — 2b) (b — m + 1) (2 — m) gB2+m=3
(3am — 6ab + Tm + 4k — 6b)

-
4(a+1)(a+2) ’
fo (t,x) = 5% (m — 2(,) (b —m+ 1) (2 _ m) (b+m _ 3) pig2b+m—1
a+31k+2b+m—2 _ _
+/\x t (2b m)(b—m+1)

4 a+3
(3am——6ba+4k—6b)(k+b+m-—1)]

(a+1)(a+2)(ga+3) (3.10.10)

Finally, equation (3.10.7)5 becomes

$4t2b+m—5
e (=) (b—m+1) 2= m) b+ m —3) 26+ m - 4)
a+31k+2b+m—3 _ .
T (k+2b+m—2)[(2b m)(b-m+1)
4 a+3

+(3am——6ba+7m+4k—6b)(k+b+m—1)]

(a+1)(a+2)(a+3)
Lo+3k+2b+m—3

3am — 6ba + Tm + 4k — 6b)
)\2 2a+2t2k+2b+m—l (
e [ iat)(@t2)

(3.10.11)

2k +2b+m
(a+1)°

A simple inspection shows that this equation will be identically satisfied if the
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following algebraic system is satisfied:
(m—=20)(b—m+1)(2-m)(b+m—3)(2b+m—4) =0,

2b—m)(b—m+1)
a+3

(k+2b+m—2) [(

+(3am—6ba+7m+4k—6b)(k+b+m—1)
(a+1)(a+2)(a+3)

bE(m—2) (b= m+ 1) (2 - m) = 0;

Bomm — 6ba+ Tm + 4k —6b 2k +2b+m
4(a+1)(a+2) (a+1)°

(3.10.12)

Therefore, the problem of finding first integrals is reduced to an algebraic prob-
lem with three equations which depend upon four constants k, o, b, and n. Note
that the equation (3.10.12)3 can be written in the form

<a+ g) (e +3) — 2b (@ — 1) + 4K] = 0. (3.10.13)

Since the gauge function P (¢, z, 1) given by (3.10.4) is fully determined, taking
into account the time generator f (¢, z, ) of the infinitesimal transformation in
the form (3.10.3), the conservation law of the fourth degree of the dynamical
system (3.10.1) with respect to & given by the general expression (3.4.4) becomes

I = 1‘,1‘74t2b+m _ _1_ (m . 2b) $i3t2b+m—l
4 4
L ot ion 2
+ [—g (m — 2b) (b—m + 1) 22¢20+m=2 4 )\_a—+ -t + +m] i

1 m—
- [—QZ(m—2())(b-m+1)(2~m)m3t2b+ 3

+)\(

3am —6ab+ Tm + 4k — 6b) .o k+2b+m_1] .

x t T
4(a+1)(a+2)

1

+% (m —2b) (b—m+1)(2—m) (b+m — 3) z*¢?Fm—4

+l/\xa+3tk+2b+m—2 (2b—m)(b~m+1)
4 a+3
+(3a—6ab+7m+4k—6b)(k+b+m—— 1)}
(a+1)(a+2)(a+3)

1.2a+2

(——1)2t2k+21’+m = const. (3.10.14)
o+

+ 22
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Ezample 3.10.1. As a typical example, let us consider the case
m=23-0b, (3.10.15)

which satisfies equation (3.10.12);. Substituting this into (3.10.12)3 we obtain

9a® + 420 + 45 — b (9a° + 18a + 5) + 12k (a + g) =0 (3.10.16)
or
5 1
(a + 5) [3 (a+3)—3b (a + 5) - 4k] =0. (3.10.17)
Discarding the case « = —5/3, we have
b 3
k= Z(3a+1) - Z(04+3). (3.10.18)

Substituting (3.10.15) and (3.10.18) into (3.10.12)9, we find after a laborious
algebraic calculation

1 6 3 3a+1
(b—1)3{2(3a+5) [a+3 “3GTD (a+3)] —1} =0. (3.10.19)

Supposing that b # 1, we find « = —7. Thus, k = 3 — 5b. Substituting this and
m =3 — b into (3.10.1) and (3.10.14), we find that the differential equation

i+ ga'c + %t3‘5” =0 (3.10.20)

has a conservation law of the form

1= Lo 3 (b— 1) 2232 4+ 3p2z2mt1 _ 1y 6.2, -abt6
4 4 4 6
1 1
+7 (- 13 3at® — i,\ (b-1)z7% + %1-121&-9"”
2
—,\(—b-mix—“t“-“ = const. (3.10.21)

For the case b = 0, it follows that the differential equation

.. 1
has a conservation law
1. 3 . 3 1. _ 2 1.3 5,5\ -
1 = Z$4t3 — Zl’il?stz + (Zx2t bt 6)\56 6t6> - Z (m — /\l‘ t )iE
+§%)\2x"12t9 - 1—16.1:_4154 = const., (3.10.23)
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which is the same conservation law as obtained by Airault [2] by some undefined
method.

Note that for b = 1 the polynomial conservation law (3.10.21) reduces to a
quadratic, namely,

2
1 X
I= 31¢4t4 - é)\m_schtQ + glé)\%:_m = (%a’cth - g)\x_(’ = const.,
(3.10.24)
which means that the differential equation
. T 1
has a conservation law of the form
1.5, A
o — = const. .10.2
5& t Gt const (3.10.26)
Consider now the case @ = —5/3 and m = 3 — b, which means that the
equation (3.10.12)9 becomes
145 — 3b% (3k + 20) — 3b (27k* + 102k + 82)
— (54k3 + 243K? + 333k + 140) =0. (3.10.27)

This is an algebraic relation between parameters b and k. As an example, some
numerical values for b, k, and m = 3 — b are given in Table 3.10.1.

Table 3.10.1

No. b k m=3—-b
1 0 -5/6 3
2 0 —7/3 3
3 0 —4/3 3
4 | —5/7 0 26/7
5 -2 0 5
6 7 0 10
7 | =3/4 | -5/6 15/4
8 9/2 | -5/6 15/2
9 3/2 | ~7/3 3/2
10 9/7 | -7/3 12/7
11 3/7 | —4/3 18/7
12 3 —4/3 0

For example, selecting the data from the seventh case, we find, by using (3.10.14),
that the differential equation

3z 1
- == —_—m = 3.10.28
4t+>‘ 0 ( )

* £5/3¢576
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has a conservation law of the fourth order

14074 21 354 147 5,174 3, _2/307/12\ ;2
— g9 2o s Y t
I 4m 16xm /% + 6 Tt 2 T T
343 3. _3/4 21 y;3.5n2) .
(256”” TR *
47, 43,-7/12 , 92 —4/3,7/12

Similarly, for the case b = 3,k = —4/3, and m = 0 given in the 12th case of the
table, it follows that the differential equation
& 437+

has a fourth-degree conservation law of the form

I = i:ic“te + gxq':3t5 +3 (m2t4 - %,\x—z/%““) 2

+ (2z3t3 + 1—5Az1/3t11/3> &
2
+%)\z4/3t8/3 + 2/\21:_4/3t10/3 = const. (3.10.31)

Ezample 3.10.2. As another example, let us consider the case for m = 2. It
is evident that the algebraic equation (3.10.12); is identically satisfied. Then,
equation (3.10.12)3 reduces to

k:g(a—l)—-;—(a+3), (3.10.32)

where the common multiplicative factor a+5/3 has been dropped. Substituting
(3.10.32) into (3.10.12)3, we see that this equation is identically satisfied for the
arbitrary values of @ and b (except for @ = —1, -2, —3 and b = 1). For example,
taking o = 3 and b =4, it follows that k = 1.

Therefore, the differential equation

i+ 4% F A} =0 (3.10.33)
has the conservation law of the form
1 1
I = Zi4t10 + gm%g + (g—:czts + Z,\:::‘*t”) &2

+%)\x55vtl° + 1—16/\23:8t12 = const. (3.10.34)
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Chapter 4

A Field Method Suitable
for Application in
Conservative and
Nonconservative Mechanics

4.1 Introduction

As demonstrated in the last several paragraphs, the Hamilton—-Jacobi method
can be advantageously used in many practical situations as an exact method
for solving the canonical differential equations of motion. In addition, a variety
of approximate methods can be built up, based upon this method, for solving
nonlinear problems for which an exact, complete solution of the Hamilton-Jacobi
nonlinear partial differential equation is not available. An exhaustive review of
applications of the Hamilton—Jacobi method is presented in the monographs of
Kevorkian and Kole [60] and Neyfeh [76].

As indicated previously, the method of Hamilton and Jacobi can be employed
only with those dynamical systems described by the Lagrangian or Hamiltonian
function, and purely nonconservative (non-Hamiltonian) systems remain outside
of the areas treated by this method.

In this chapter we shall discuss a field method suitable for finding the motion
of conservative or purely nonconservative dynamical systems, which is conceptu-
ally different than the method of Hamilton and Jacobi. The main characteristic
of the field method presented here is that we are dealing with a single quasi-
linear partial differential equation whose complete solution leads to the general
solution of corresponding differential equations of motion. It is well known that
finding a complete solution of a quasi-linear partial differential equation is much
more manageable in comparison with the nonlinear partial differential equations
of the Hamilton—Jacobi type.

B. D. Vujanovic, et al., An Introduction to
Modern Variational Techniques in Mechanics and Engineering

© Birkhiuser Boston 2004
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4.2 The Field Concept and Its Partial
Differential Equation

In this section we demonstrate a method for solving the system of ordinary
differential equations of motion of a rheonomic dynamical system

Ty

T, =

(4.2.1)

One of the central points in this study is the supposition that we are able to
consider one of the variables entering in the system (4.2.1), say z;, as a field
function depending upon the time ¢, and the rest of the variables, xo,...,zp,,
that is,

zy =U (t,z2,....,Tn). (4.2.2)

This supposition was introduced in a series of papers (see [113]-[117]) and ap-
plied to various problems of Hamiltonian and non-Hamiltonian (nonconserva-
tive) dynamics and vibration theory (see also [122]).

By differentiating (4.2.2) with respect to time ¢ and using the last (n — 1)
equations (4.2.1), we write the first differential equation of (4.2.1) in the form

ou  aU .
Bt + BEXi (t, U, zg,...;xn) — X1 (4, U, 22, ..., 2,) =0, i=2,3,..,n.

(4.2.3)

We shall call this quasi-linear partial differential equation of the first order the
basic field equation.

Instead of integrating the system of ordinary differential equations (4.2.1)
directly, we shall demonstrate that we can find a general solution of (4.2.1)

from a complete solution of the basic equation (4.2.3). The complete solution
of (4.2.3) is of the form

I = U(t,.’ltg, ey Tp,y C], ...,Cn) y (424)

which, in addition to the variables ¢, z,, ..., z,, contains n arbitrary constants
Ch, ..., Cn and satisfies identically the basic field equation (4.2.3) for all admis-
sible values of parameters t, z,, ..., z,,C1, ..., Cp.

We shall now demonstrate that if a complete solution (4.2.4) of the basic
field equation (4.2.3) is available, then the solution of the system (4.2.1) follows
immediately without any additional integration. However, there are several
ways to obtain the solution of the dynamical system (4.2.1) by means of (4.2.4),
and we will demonstrate these ways briefly.
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4.2.1 The Bundle of Conservation Laws

As demonstrated in [103] every complete solution of a quasi-linear partial dif-
ferential equation can be expressed in the form

Oo (t,x1, ..., ) + D161 (t, 21, ..., Tn) + -

+Dn_19nﬂ.1 (t,xl,...,a:n)+Dn ’:07 (425)
where
0o (t,z1,...,2n) = Ko = const.,
01 (t,z1,....,z) = Kj = const.,
9n—1 (t7 L1y eeny l‘n) = Kn—l = const. (426)

are a complete set of the conservation laws of the dynamical system (4.2.1), and
n constants Dy, ..., D, are constant parameters depending upon the constants
Ci, ..., Cy, figuring in the complete solution (4.2.4). Therefore, every complete
solution of the form (4.2.4) can be precomposed in the form (4.2.5) from which
we find the general solution of the dynamical system (4.2.1) in the form (4.2.6).
It is clear from (4.2.5) and its equivalent (4.2.4) that these two expressions
represent a bundle of conservation laws of the dynamical system (4.2.1), that
is, a scalar equation that contains a complete set of conservation laws (first
integrals) fastened together by means of the arbitrary constant parameters D;,
which stand to mark these conservation laws.

Note also that we can recover all n conservation laws of (4.2.1) by giving
particular values to n — 1 constants C; in (4.2.4) in their relevant domain and
allowing one of them to be arbitrary. For example, we find n conservation laws
of (4.2.1) from (4.2.4) in the following way:

ry = Ul (tme*,“'v:cThCl)y OZZCS:"':CTL:O»
r1 = U2 (thQ*,"'vxn:CZ)? C]2:C3="":—Cn:0,
z; = U, (t,xz, ...,.Tn,cn) , Ci1=Cy=---=Cph-1=0. (4.2.7)

4.2.2 The Initial Value Problems

Let the variables of the dynamical system (4.2.1) be specified at the time instant
t=0as

2o (0) =aq, a=1,..,n, (4.2.8)

where a,, are given constants.
By substituting (4.2.8) into (4.2.4) and expressing one constant, say C; in
terms of a, and C;,a=1,...,n,i = 2,...,n, we obtain

1 =u(t, 22y, Tn, A1, oy Ap,y Ca, ooy C) - (4.2.9)
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We shall refer to this form of a complete solution of the basic field equation
(4.2.3) as the conditioned form solution.

We now prove the following statement that is the central result of this chap-
ter.

The initial value problem (4.2.1) and (4.2.8) has the solution given by (4.2.9)
and n — 1 algebraic equations

=0, i=2.,n (4.2.10)

under the condition that the following determinant is nowhere zero in the rele-
vant domain of z; and C;, that is,

det (<222 0, ij=2..n (4.2.11)
e 3C,0a; , L,i=2,..,n. 2.

To prove this statement we assume that (4.2.10) holds. By differentiating
(4.2.10) with respect to time, we find

9%u d%u
— 5= =2 ... 7. 4.2.12
ac;ot + 8C;0z; 25=0, 4 e ( )

Substituting (4.2.9) into (4.2.3) we obtain an identity. Making the partial deriva-
tives of this identity with respect to C; one has

82u 82u Bu BXJ 8X1 Bu
— = 4+~ " X. _—T = i, =2,... 4.2.13
aCiat T 8Cioz, 0 T (axj du  u ) ac; =0 BI=Zeon (4213)
Since aa—c‘fi = (0 by assumption, we find by combining the last two equations
u
— (i — X)) = i,7=2,.. 4.2.14
601_6:1:]_ (xJ XJ) 07 %7 2’ » 10 ( )

and since (4.2.11) is also satisfied, we conclude that the last n — 1 equations
(4.2.1) are satisfied for the arbitrary values of the constant parameters C;. To
show that the first differential equation (4.2.1) is satisfied, we calculate the total
time derivative of (4.2.9) by using the last n — 1 differential equations (4.2.1):
&1 = Ou/Ot + X;0u/0z;. Substituting this into (4.2.3) we conclude that the first
equation of the dynamical system (4.2.1) is satisfied, which completes the proof
of our statement.

At this point the following comments are of interest.

(a) From the foregoing discussion it is obvious that the theory presented
here can be equally applied to both non-Hamiltonian (nonconservative) and
Hamiltonian dynamical systems for which we can form corresponding Hamilton-
Jacobi partial differential equation.

(b) However, in contrast to the Hamilton—Jacobi partial differential equation,
which is always nonlinear, the basic field equation (4.2.3) is quasi-linear and its



4.2. The Field Concept and Its Partial Differential Equation 163

analysis for finding complete (or incomplete) solutions is, as a rule, considerably
simpler in comparison with the Hamilton—Jacobi method.

(¢) The main point of the method presented is in the fact that one of
the dynamical variables (generalized coordinate, say x1) is interpreted as the
basic field. Thus, the corresponding field equation is more intimately con-
nected with the dynamical problem than the Hamiltonian principal function
S =5(tx1,...,xn), which is not by itself a constituent of the dynamical prob-
lem

(d) For the case of linear rtheonomic (time-dependent) dynamical systems, a
complete solution of the corresponding basic field equation can be sought in the
form

n
gy =fi(6)+ ) fi (), (4.2.15)
i=2
where the unknown functions f; are functions of time.
To illustrate the foregoing theory we turn to a simple example of the har-
monic oscillator whose differential equations of motion are

i1 = a9, o= —wlmy,
z1(0) = a, z2(0)=a2. (4.2.16)
Taking the coordinate x; as the basic field
xy = U (t,22), (4.2.17)
the basic field equation reads
%_(tf _ US_ZWQ =0 (4.2.18)

Since the dynamical problem (4.2.16) is linear, we seek a complete solution in
accordance with (4.2.15) in the form

] = U(t7 332) =fi (t) + f2 (t) Tg. (4219)

Entering with this into (4.2.18) and equating to zero terms with z» and free
terms, we obtain the following system

f2 - w2f22 -1 = 09
fi—o*fifa = 0. (4.2.20)
Integrating, we find
Cy 1
S - R— == 2.2
fl cos(wt+01)’ f2 wtan(c‘)t+cl)7 (4 1)

where C; and Cy are constants of integration. A complete solution of (4.2.18)
reads

&

ST i (4.2.22)

21 =U (¢,22,C1,C2) = %tan (wt+Ch) +
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To obtain the bundle of conservation laws given by equation (4.2.5), we multiply
(4.2.22) by w cos (wt + Cy), develop sin (wt + C4) and cos (wt + C1), and group
corresponding terms, so that

T coswt — % sinwt + D, (a:l sinwt + 23 cos wt) + Dy =0, (4.2.23)
w

where Dy = —tanCy, Dy = —C3/ cos Cy. According to (4.2.6), two conservation
laws of dynamical system (4.2.16) are of the form

z

zy coswt — 22 coswt = Ko = const.,
w

Ty sinwt + 2 coswt = K, = const., (4.2.24)
w

where Ky and K are constants that can be determined from the given initial
conditions (4.2.16).

As shown in (4.2.7), we can find two conservation laws from (4.2.22) by
putting C; # 0,C2 = 0 and C; = 0,Cs # 0. Thus we have, respectively,

T wx
T, = —tan (wt+Ch), ie., C; = —wt + arctan (—1) ,
w z2
z9 Ca . T .
zy = Ztanwt+ —=—, ie., Cy=x coswt— —sinwt. (4.2.25)
w coswt w

Finally, to find the solution of the dynamical system (4.2.16) for the given initial
conditions z; (0) = ay, z2 (0) = aa, we enter with this into (4.2.22) and express
Cy in terms of Cy, that is, C3 = a; cos C; — (ag/w) sin Cy. The conditioned form
of the complete solution becomes

a; cosCy — (%) sin C
cos (wt + C1)

T2

z1 = u(t,z2,a1,a2,C1) = — tan (wt + C1) +

(4.2.26)

In accordance with (4.2.10) we easily obtain that the equation du/0C; = 0
under the condition (4.2.11), that is, 8%u/d220C; # 0, gives

2. —aj sinwt + 22 coswt. (4.2.27)
w

Substituting this into (4.2.26), the parameter C; completely disappears and,
after some elementary calculation, we obtain

z1; = ay coswt + 2 Gnwt. (4.2.28)
w

4.3 A Non-Hamiltonian Rheonomic System

To demonstrate that the field method presented in this chapter can be applied to
the dynamical systems that do not have Lagrangian or Hamiltonian structure,



4.3. A Non-Hamiltonian Rheonomic System 165

we consider a dynamical rheonomic system whose physical manifestations are
described by the following system of three differential equations of the first order
[56]:

r = y—z
y = z+y+it,
2 = zx+z+t (4.3.1)

Taking as the field function = = U (¢,y, z), we arrive at the basic equation of
the form
oU  oU

au
— Yt —(U+4y+t)+—U+z+t)—y+2=0. 4.3.2

Since the problem is linear, we seek a complete solution in the form suggested
by (4.2.15), namely,

2=U(t,9,2) = iy + (0 2+ f3(0). (4.33)

Entering with this into (4.3.2) and grouping terms with y, z and free terms, we
obtain the following system of equations:

J%1+f1(f1+f2+1)*1 0,
fo+fo(i+fo+1)—-1 0,

i

farfs(fi+fo)+(A+f)t = O (4.3.4)
By adding the first two equations we find that
d
S (h+f)+(h+ R)’ 4 (fi + f2) =0. (4.3.5)
Integrating, we have
e 436
fitfa= (=1 (4.3.6)

where Cy is a constant of integration. Entering with this into (4.3.4); and
integrating, we have

Cie t +Cy —te™t
= 4.3.7
fl Cz — et ’ ( 3 )

where Cj is a constant. From (4.3.6), (4.3.7) it follows that

et —Cre~t +te™t — Oy

= 4.3.8
f2 o= (4.3.8)
Substituting (4.3.6) into (4.3.4)3 and integrating, we have
Tt+1 C
[ Ut B (4.3.9)

Co—et Cy —et’
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where C3 is a constant.
Therefore, a complete solution of (4.3.2) is

Cie™t +Cy —te™
z = U(t,y,z,cl,cz,ca):( e )
et —Cie t+te=t — Cy e~ t(t+1) Cs
+< Cz-—e"t )z+ Cg—e_t +C2—e‘t.
(4.3.10)

Let us write this expression in the form of the bundle of conservation laws
suggested by (4.2.5). Multiplying (4.3.10) by c2 — e~* and grouping free terms
and the terms multiplied by C; and C5, we find

—le-—yttz(t+1)+t+1]et+C (y—2)e"
+Cy(—z+y—-2)+C3 =0, , (43.11)

whence we obtain the following complete set of the conservation laws of dynam-
ical system (4.3.1):

[t —yt+2z(t+1)+t+1et = K;=const.,
(y-2)e7t = Ky =const.,
—r+y—z = Kj=const, (4.3.12)

where K1, Ky, and K3 are arbitrary constants that can be determined from
the given initial conditions, which completes the calculation of the solution of
(4.3.1).

4.4 Some Examples with Many-Degrees-of-
Freedom Dynamical Systems

To illustrate the foregoing theory we consider in this section a couple of problems
with two degrees of freedom.

4.4.1 Projectile Motion with Linear Air Resistance

Consider the motion of a heavy particle of the unit mass moving in a vertical
plane with linear air friction depending on the velocity. If z and y denote the
horizontal and vertical axes, respectively, the differential equations of motion
are

where k and g are given constants. Let the initial conditions be

z(0)=0, y(0)=0, z(0)=wvpcosa, ¥(0)=rvpsing, (4.4.2)
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where vy is the initial velocity of the particle and « is the initial angle of incli-
nation.
Introducing new variables

T=zx1, Y=o, T =23, Y= Iy, (44.3)

we arrive at the following system:

T = 3,

Tg = x4,

{iig = —kwg,

iy = —kzq—g. (4.4.4)

Let us suppose that the variable z; can be interpreted as a field depending on
t and the rest of the variables x4, 23, and z4, namely,

I = U (t,l‘g, xg, l‘4) . (445)

Differentiating this with respect to time and using (4.4.4), we arrive at the field
equation

ou U au ou
QU —— — R —— — s = . .4.
D + B2g T4 — kz3 Er (kzs+9) i z3=0 (4.4.6)

In accordance with remark (d) given in section 4.2, we seek a complete solution
in the form

T = U = f2 (t) Zo + f3 (t) X3 + f4 (t) Ty -+ f5 (t) . (447)
Entering with this into (4.4.6) we find
@2 fo + 23 (fs —kfs— 1) + 4 (f4 + fa— kf4) + fs —gfs=0. (4.4.8)

This expression will be satisfied identically for the arbitrary values of z;,7 =
2,3,4, if

f:2 03
fa—kfsz -1 = 0,
fat+fo—kfs = 0,
fs—gfs = 0, (4.4.9)
whence
1 1 1 1
fo = o, f3=-E+EC3€kt, f4=EC2+EC4€kt,
1
fs = 1Cagt+ %ekt +Cs, (4.4.10)
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where Cj, ...,Cs are constants of integration. Therefore, the complete solution
of (4.4.6) is found to be (after grouping terms with respect to constants)

1 1 1 1
~I1+E3?3+02<732+E$4+k >+C3( z3e” )

1 1
+Cy (k.’l,‘4e + k:?ge >+Cs =0. (4.4.11)

This form of a complete solution is equivalent to (4.2.5). On the basis of (4.2.5)
and (4.2.6), we have the following complete system of conservation laws:

—z1 + %-733 = K = const., (4.4.12)
x+1a: +1t = Ko = const
2% £%4 k!] = 2= &
Ea:ge"t = K3 = const.,
1 1
Ex‘;e“ + -Eige = Ky = const.,

where K;,i = 1,...,4, are constants that can be determined from the given
initial conditions (4.4.2). After simple calculation we finally find the motion of
the particle

_ vecosa .y, . _-‘lt: g sina okt
z; = P (1—e™), z9= k+<k2+ - )(1 e ),
r3 = e_ktvo cosa, Ty4= —% + (% + vg sin a) e_kt, (4.4.13)

which completes the calculation of motion of the system.

To demonstrate how to find the conditioned form solution given by (4.2.10)
we substitute the initial conditions (4.4.2) into (4.4.11) and express the constant
Cs in terms of C2,C3, and Cy:

_ 1 Cs Cy Cy Cag
Cs = (k - ?) Vg COSx — (T + T) ’U()SlIla - k?2 . (4414)

Substituting this into (4.4.11) and separating terms with the constants C5, C3
and Cy, we obtain

1 1 1 1 1.
T = zvocosa—Ex:;%-Cz $2+E14+E9t_zvﬂsma

1 1
+Cs (—e T3 — V0 cos a)

9 vpsina g
+C4 ( .’1,‘46 + k2 kt —k- — -];5) . (4415)
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This expression is equivalent to the conditioned form solution of the basic equa-
tion given by (4.2.10). It is quite clear that the equations (4.2.11), namely,

6111 &rl 8.@1
50, = 0, 50, — 0, a0, 0, (4.4.16)
will generate the expressions for x () ,z3 (t), and z4 (t) given by (4.4.13), and
entering with this into (4.4.15) we obtain 1 (t) . It is also clear that all constants
Cs, C3,C4, and Cs remain undetermined.

Remark. It is intercsting to note that the system of original differential
equations (4.4.1) can be derived from the Lagrangian of the form

1
L= {5 (22 + v?) — gyJ ekt (4.4.17)
Thus, the corresponding Hamiltonian reads

_ 145
H= 2[12 kt 2p§ kt 4 gyeFt. (4.4.18)

The canonical differential equations are
T = pme—kt, Y= pye—ktv Pz =0, py= gekt- (4.4.19)

Therefore, the general solution of this system can be found by means of the
Hamilton-Jacobi method. The Hamilton—Jacobi partial differential equation is

s 1/8S\* _,, as\? _.
E+§ (%) e "4 2 (81) + gyett = 0. (4.4.20)

However, to find a complete solution of this nonlinear equation is much more
difficult in comparison with the quasi-linear equation (4.4.6). Note also that
despite the fact that the dynamical system is linear, we have no way of knowing
in what form the complete solution of (4.4.20) should be sought. Let us seek a
complete solution of (4.4.20) in the form

1
S(t,z,y) =V (t)+ 5A(t) 22ekt 4 f (1) yekt + 21{ y2ert, (4.4.21)
where V¥ (t), A(t), and f(¢) are unknown functions of time and K is an ad-

justable constant. Substituting (4.4.21) into (4.4.20) and equating to zero free
terms and terms of various powers of z and y, we arrive at the following system:

\i/Jr%fzekt 0,

A+kA+4%2 = 0,

f+kf+KF+g = 0,
Kk+ K 0. (4.4.22)
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Integrating, we find a complete solution to (4.4.20) in the form

1C% 4, t 1\ &
t = —— —_— e ————
S (t,z,y,C1,Cs) 5 € + Cag Pl
1 kCy 2 kt 1,29 kt
S gt ~k
+21—Cle—’“z +(Ca—gt)e y+ 5k ye
+ (terms not containing z,y, Cy,Ca2), (4.4.23)

where Cy and C; are constants. It is easy to verify that the first group of
equations of the Jacobi theorem

as as

s~ = B, 3G,

50, = By, (4.4.24)

where B, By are constants, generates the equations of motion of the particle,
having coordinates z (¢) and y (t), namely,

2B, _ Cs t 1 _
T = T (1 — Cle kt) , Y= ? —g (E - ﬁ) Bze kt. (4425)

Finding the constants Cy, Ca, By, and Bs, these expressions become identical
with z; (t) and 4 (t) given by (4.4.13).

From the remark just stated, the following are demonstrated.

(a) The field method described in the previous section can be applied to
nonconservative dynamical systems notwithstanding if they are describable by
the Hamiltonian or not.

(b) For linear dynamical systems, application of the field method is, as a
rule, more simple in comparison with the method of Hamilton and Jacobi.

4.4.2 Application of the Field Method to Nonholonomic
Dynamical Systems

As another example of application of the field method, let us consider the one
discussed in section 1.5, where a rectangular plate can move on the inclined
plane (the so-called Chaplygin sled problem); see Figure 1.5.1.

Keeping the same notation, the differential equations of the problem are
given by the system (1.5.25):

£, —§ = —Atany, (§= gsina = const.),
ijc = )\,
o = 0, (4.4.26)

where A is an undetermined Lagrangian multiplier and the nonholonomic con-
straint is prescribed in the form

Yo — & tanp = 0. (4.4.27)
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Differentiating (4.4.27) with respect to time and substituting the result into the
first two equations of (4.4.26), we find that

A= Zp + gsinp cos . (4.4.28)

Integrating the equation (4.4.26)3 and using the initial conditions (1.5.34), the
first two equations of the system (4.4.26) become

i, = —Twtanwt+7g cos? wt,
Jo = Zw+ Fsinwtcoswt. (4.4.29)

To solve this system of simultaneous equations, we employ the field method.
Let us denote by

LTe =Ty, =122, Yc=2T3, l./c = T4. (4430)

Therefore, we have the following completely nonconservative system of differen-
tial equations of the first order:

T = I,

Ty = —zrowtanwt+ g cos? wt,

Ty = x4,

T4 = Tow + Jsinwtcoswt. (4.4.31)

Let us suppose that the coordinate x1 can be represented as a field depending
upon time and the rest of the coordinates xg, z3, and z4:

z1 = U (t,x2,3,T4) . (4.4.32)

The basic field equation becomes

o + U (—wowtanwt + geos® wt) + ﬂ]—m
ot = Oxzg 2 wrTyg Ozs3 4
oU _ .
++— (zow + gsinwt coswt) — zo = 0. (4.4.33)

6I4

Since the problem is linear we can on the basis of (4.2.16) suppose that the
complete solution can be presented in the form

1= fi(t)+ fa(®) x2+ f3 (t) z3 + fa(t) 24 (4.4.34)

Entering with this into (4.4.33) we have

fl + fo5 cos® wt + fagsinwt coswt + xo (f2 — fowtanwt + faw — 1)

+a3f3 + 14 (f4 + fg) = 0. (4.4.35)



172 Chapter 4. A Field Method

This expression will be satisfied for the arbitrary z;, = 2, 3,4 if

fi + f2gcos® wt + fyfsinwtcoswt = 0,
fa— fowtanwt + faw—1 = 0,
f3 = 0)
f4 + f3 = 0 (4.4.36)
Integrating, we find
fi = —%)073 (%t + -;— sinwtcoswt> - ng,'i sin? wt
—& sinwt + Cq,
w
C 1 C
fo = =2 (wttanwt + 1) — Cy tanwt + — tanwt + -—2-,
) w coswt
f3 = C3)
f4 —_ C4 — C3t, (4.4.37)

where C}, ..., Cy are arbitrary constants.
Therefore, the complete solution of the field equation (4.4.33) is found to be

Ty = —%+x—2tanwt+02 ( T2 ——gsinwt)
2w w coswt w
gt g T
+C3 <_Qg_w - —2% sinwt coswt — x4t + Tot tanwt + :2 + :l:3)
+Cy (1‘4 — Ty tanwt) + Ch. (4.4.38)

Since, according to (1.5.34) and (4.4.30), the initial conditions are
21 (0) = z2 (0) = z3 (0) = x4 (0) =0, (4.4.39)

we find, entering with this into (4.4.38), that C; = 0. Hence the expression
(4.4.38) is at the same time the conditioned solution.
Applying the rule (4.2.11) we find that the equations

oz, Oz, 0z,
= = = = — =0, 4.4.40
0Cs T 0Cs T 90, ( )
will generate the following expressions
To — £l sinwtcoswt = 0,
w
Zy g gt
$3+U+w2ttanwt—x4t—ﬁ—i = 0,
T4 —xotanwt = 0, (4.4.41)

and from the rest of (4.4.38) we obtain

T = —E% sin wt + —:(%2 tanwt, (4.4.42)
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which comprise the solution of the problem. By solving these equations with
respect to x;,1 =1, ...,4 we finally have

g .
T = -—sm2wt, o =

202 -f: sin wt cos wt,
_ 1 _
r3 = —2—5—2 <wt ~3 sin 2wt> , Tq= %sin2 wt. (4.4.43)

It is of interest to note that Mei Fenxiang (see [42]-[47], [48]), in his numer-
ous papers devoted to the study of modern nonholonomic dynamical problems,
adopted the field method presented here as a basic tool in his analysis and
demonstrated that this method has important advantages in comparison to
other methods of integration.

4.5 Nonlinear Analysis

In this section we demonstrate that the field method presented in this chapter
can be advantageously applied to the study of motion and conservation laws of
nonlinear dynamical problems. However, in contrast to linear time-dependent
problems for which we can suggest a rather general procedure, the complete
solutions of nonlinear problems with one degree of freedom is frequently difficult
and strongly individual. To explain these facts, we turn first to some nonlinear
examples in which a complete solution of the corresponding basic field equations
can be obtained.
(a) Let us consider the nonlinear problem [125]

a(tzg — x1)2

(i?l = T2, .7'52 = t3 s (451)
where a is a constant. Taking as the basic field the coordinate o, namely,
z9=F(t z1), (4.5.2)
the basic field equation becomes
OF _OF a(tF —=z)”
- —_—— =0 4.5.3
Bt + 8.’131 t3 0 ( )

It is easily seen that F' = z1/t is a particular solution of (4.5.3). Therefore, it
seems natural to try with a complete solution in the form

F(t,e1) =X+ f(X)S(2), X:-J-Ct—l, (4.5.4)
where f (X) and S (t) are unknown functions. Substituting (4.5.4) into the basic
equation (4.5.3), we obtain two separated groups of terms, each of which should
be equated to an arbitrary constant M:

S , 1 df (X)

2 TS0 ax

+af(X)= M = const. (4.5.5)
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Integrating separately, we find

1

M o

5()

where G and D are new arbitrary constants. Thus the complete solution of
(4.5.3) becomes

% + DesX Cy + e3X
ey = _X 445!7
T =X+ T t o Gy (45.7)

where we have introduced two independent constants C; = G/D and Cy =
M/ (aD). Writing (4.5.7) in the form of bundle of the conservation laws

e“x (IE2—-X—1)
—(102~X)t+02 29— X

+C, =0, (4.5.8)

we find that in accordance with (4.2.5) and (4.2.6), the expressions

eaX
—m = K] = const.,
LX;—I—) = Ky = const. (4.5.9)
T2 —

represent two independent conservation laws of the dynamical system (4.5.1).
(b) Let us consider the nonlinear initial value problem

F-2 =0, z(0)=a, #(0)=b. (4.5.10)

5 tUs— = =0, (4.5.11)

where
p=z=U(tz). (4.5.12)

Let us suppose that the variables = and ¢ are separated, that is,

U=F(z)f(t). (4.5.13)
Therefore, one finds
S —-F' + r_ —C = const. (4.5.14)
f? T
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Integrating, we find f = 1/ (Ct— C}),F = Czlnz + Cjz, where C} and C5
are constants of integration. Hence
Czlnz+C5  zlnz+ Cozx

= = 4.r.15
UV="ti—c t—C; (45.15)

where C; = Cf/C,Cy = C3/C. Applying the initial conditions and expressing
Cs in terms of C1,a, and b, we find

z [In(z/a) — bCy /a]

U =
t—C

(4.54.16)
which is a conditioned form solution. The equation dU/9C = 0 gives
In (a) - b— =0. (4.5.17)

Substituting this expression into (4.5.16), the parameter C; disappears and one
has the momentum

p=bZ = bebtle, (4.5.18)
a

(c) Incomplete solutions of basic equation. It is important to note that
incomplete solutions of the basic field equation for the case of dynamical systems
with one degree of freedom represent the conservation laws of that dynamical
system and can be important in dynamical analysis of linear and nonlinear
dynamical systems [125]. The rather general representation of an incomplete
solution of the basic field equation can be anticipated from the form of the
Hamiltonian function. Here we briefly describe this representation. Let us
suppose that the dynamical system has the Hamiltonian of the form

2p %0 (t) + ZH (4.5.19)

where 6 (t), A; (t),IL; (), and N are specified. Naturally, the Hamiltonian
(4.5.19) is not a constant of motion since the problem is not conservative. Cal-
culating p from (4.5.19), we have

g 1N 1/2

25 -5 ;Hi (z) Mi (t)} ., 2H/0 # const. (4.5.20)
We shall demonstrate that a rather broad class of dynamical systems which
possess Hamiltonians of the form (4.5.19) also possess the incomplete solutions
of the basic field equation in the form

1/2

N
p=®(t,x)=A@t)z+C(t) [I - Z IL (z) A (t):| , (4.5.21)
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where [ is a constant of motion and A (t), B (t), and C (t) are unknown func-
tions of time that are to be determined in the course of analysis. Since (4.5.21)
contains only one constant I, it is clear that this expression represents an in-
complete solution of the corresponding field equation.

Let us apply the foregoing consideration to the case of a dynamical system
whose differential equation is given by

E4+2k(t)+q@t)z=Af(t)z", A= const. (4.5.22)

Note that Ranganathan [90] considered a class of dynamical problems which,
when reduced to a single degree of freedom, are of the type (4.5.22).
Taking as the basic field # = ® (¢, z), the basic field equation becomes
od o

9% 9% = n 45.
o T 5 2k Hqr =] (t)z (4.5.23)

As suggested by (4.5.21), we suppose that an incomplete solution (a conservation
law) of this equation can be selected in the form

AD (t) 2+

1/2
4.5.24
n+1 J ’ (4.5.24)

t=®(t,z)=A(t)z+ C(t) [I—B(t):z2+

where A (t), B (t), C(t), and D (t) are adjustable functions and I is a constant.
Substituting (4.5.24) into (4.5.23), we obtain

z(A+A2+2kA+q—BC’2) +—;—)\m" (C?D - 2f)

1 C 2 (,C B
+K{210<6+A+2k>—BCx <25+§+4A+4k)

+Az"t1CD 2% +%+(n+3)A+4k}} =0, (4.5.25)
where
ADznt1 12
_ _p.2 . .5.2
A 2[1 Br+n+1} (4.5.26)

Equating to zero terms with various powers of x, we arrive at the following
system of differential equations

A+ A*4+2kA+q-BC? = 0,
C’D-2f = 0,

C
—4+A+2k = 0,
cTA+
¢ B
_— — kj =
| 2~C+B+4A+4 0,
2€+2+(n+3)A+4k = 0. (4.5.27)

¢ D
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To analyze this system, we introduce a new function w (¢) by the relation
A(t) = % —k(t). (4.5.28)

Entering this into (4.5.27)3 and integrating, we find

C(t)= ge[“-l-t k(“)d“], C = const. (4.5.29)
w
Combining (4.5.27)3 and (4.5.28) with (4.5.27)5 we obtain D/D + (n + 1)(w/w
—k)= 0. Integrating, we find
D

———+—le[("+1)-w Kwde] P const. (4.5.30)
wn

D(t) =
Since the auxiliary equations (4.5.27) are not restricted by any initial or bound-
ary conditions, we are free to introduce any particular values for the integration
constants. Thus, by taking C' = 1 and D = 2, the relation (4.5.27)2 gives

Ft) = — el 1) EGwyan] (4.5.31)

nt3

Similarly, combining (4.5.27)3 and (4.5.27)5 with (4.5.27)4, one has after inte-
gration

. L y
B(t) = — el2/ " k(w)du] 4.5.32
()= e , (45.32)
where we selected the integration constant B = 1.
Substituting (4.5.28), (4.5.29}, and (4.5.32) into (4.5.27); we have the aux-
iliary equation in the form

W+ (q (t) — k2 (t) —k (t)) w— L 0. (4.5.33)

w3

By substituting A (t), B (t),C (t),D (), and f (¢) given here in (4.5.24), we can
formulate the following theorem.
The dynamical system

E42k(t) T +q(t)z = Af(t) " (4.5.34)

has a quadratic conservation law in the form

b = (E' _ k) 4 L= 1t k) {[ _ (E)Z J[2 k]
w

w w

2\ n+1 " 1/2
#2 (2) el kmdu}} , (4.5.35)
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if f(t) is given by (4.5.31) and w (t) is any solution of the auxiliary equation
(4.5.33). This conservation law can be written in a more traditional form as

I = {[a':w —z (b — kw))® + (.3)2} el2 /" k(u)du]

n+1 "
_nz—:\l (%) el D kW] — congt. (4.5.36)

As an illustration, several examples are in order.
Ezample 4.5.1. Let us consider the dynamical system

. T a n
— + —r= t 4.5.37
&4 5 +5r =2 (1), ( )
where a and ) are given constants and f (¢) is a function that will be specified

later. For this case, we have ¢ = a/2t,k = 1/4t, and the auxiliary equation
(4.5.33) becomes

a 3 1
D — 4 ——Jw——=0. 4.5.38
w+<2t+16t2)w =0 (4.5.38)
A particular solution of this equation is found to be w = (2t/a)1/ * . Therefore,

according to (4.5.31), f (¢) must be of the form

0=

The quadratic conservation law (4.5.36) of the dynamical system (4.5.37) for
f (¢) given by (4.5.39) is

=%+ (3)a® 21 (%)("+3)/4 :T; (4.5.40)

(4.5.39)

Ezample 4.5.2. Let a dynamical system be described by the differential
equation

b2

Note that the linear part of this equation, that is, A = 0, describes the equi-
librium configuration of an elastic rod with variable cross section (see [56, p.
447)).

Since k (t) = 0 and g (t) = b*/ (a® + t2)2 , the auxiliary equation is

; L 1 _o (4.5.42)
w + m w_—'l;g_ s .0,
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whose particular solution is w = (a® + t2)1/2/ (a® + b2)1/4. Equation (4.5.31)
gives
(a2 +52) "
= 454
Therefore, according to (4.5.36) we find that the dynamical system (4.5.41) with
f (t) given by (4.5.43) has a quadratic conservation law of the form
1012
I = [T ((L2 -+ t2)]/2 -t (a2 + b2) 1/2]

22 (a,2 + b2) Zntl (a2 + b2)("'+3)/4

- . 4.5.44
+ 2(a? +2) n+1 (a2+t2)(”+1)/2 ( )
Note that the case n = —3 and a = 0 were considered in [90]. For this case, the
differential equation (4.5.41) becomes
L b2 A
and has the conservation law
. ,  b2z? 2
I= (s —2)+ -t )\ZE—2 = const., (4.5.46)

which is identical to the result reported by Ranganathan [90].
Ezample 4.5.3. Let us consider a dynamical system whose differential equa-
tion is of the form

&+ Ztant 4+ x cos’t = Az™ cos? t. (4.5.47)

The linear case A = 0 was considered in [56]. For this case, we have k(t) =
(1/2)tant,q (t) = cos?t, and the auxiliary equation is

W+ (cos2t - itan2t— 2c332t> w— =0, (4.5.48)

A particular solution of this equation is w = (cos t)‘1/2. Since according to
(4.5.31), f (t) = cos?t, we have the conservation law of (4.5.47) in the form
-2 xn—{-l

X
I= 22\ )
cos2t+z n+1

(4.5.49)

4.6 Conservation Laws and Reduction to
Quadratures of the Generalized
Time-Dependent Duffing Equation

In this section we attempt to answer the following question: Under what con-
ditions will the time-dependent differential equation

P+ Qi) x+Qafe () 2® +Qsfs (t) 2 + Qafa(t) =0 (4.6.1)
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possess, the quadratic conservation laws and, simultaneously the solution to
(4.6.1) be obtained by quadratures? Here Q1,..., Q4 are constants and f; (t)
are supposed to be power-type functions of time ¢. Note that for Q2 = 0, the
equation (4.6.1) falls into the class of Duffing equation widely used in physics
and engineering, while for @; = Q3 = Q4 = 0 and @; = Q2 = Q4 = 0 the corre-
sponding equations can be classified as the Emden—Fowler equations. Thus, we
will conditionally call (4.6.1) the generalized Duffing equation. We shall demon-
strate that for a large class of dynamical systems for which the functions f; (¢)
are of the power form, that is, f; (t) = t*,i = 1,...,4, the differential equation
(4.6.1) has conservation laws with respect to velocity & which by application of
the Hamilton-Jacobi method can be reduced to quadratures.

By supposing that the linear momentum (i.e., velocity) can be represented
as a fleld depending on time and position z, namely, & = ¢ (¢,z), we write the
basic field equation in the form

% + ¢g§ + Qi) z+Qafa (t)2® + Q3f3 (t)2® + Qafa (t) =0. (4.6.2)

As demonstrated in the previous section regarding finding a quadratic conser-
vation law of (4.6.1), we can find an incomplete solution of equation (4.6.2).
Thus, we seek an incomplete solution in the form

T = ¢t,z)=Pt)+A(t)z
+C () [I+ K (t)+ M (t)z + B (t) z*

+D(t)® + E(t)z*]'"?, (4.6.3)

where P (t),A(t),..., E (t) are unknown functions of time and I is an arbitrary
constant. Substituting (4.6.3) into (4.6.2), we have

) 1 .
P+ AP+ 5C°M+Qufs(t) +2 [,44“4"’“5’02 +@Q1h (t)]
3
+z? [5 C?D + qo f2 (t):' + 23 [Q.E'C'2 +Q3f3 (t)]
L Tor (e AC CK +2CK +2ACK + CMP
g 21 (C+AC) + (CK +20K + )
tz (CM +20M + 3ACM + 2BCP)
22 (Bc +2CB +4ABC + 3CDP)
428 (CD +2CD +5ACD + 4CEP)
+a* (CE +2CE + 6ACE)] =0, (4.6.4)

where

1/2

A= (I + K+ Mz + Bz® + Dz* + Ex*) (4.6.5)
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Equating coefficients of equal powers of x, we arrive at the following system of
auxiliary differential equations of the first order:

. 1
P+ AP+ §O2M+Q4f4 ) =
A+ A2+ BC*+ Q1 /1 (t) =

gczD +Q2fe(t) =
2EC? + Q3f3(t) =
C+ AC
CK +2CK +24CK + CMP =
CM +2CM + 3ACM +2BCP =
BC +2CB +4ABC +3CDP =
CD+2CD+5ACD +4CEP =
CE +2CF + 6ACE

(4.6.6)

Therefore, we have obtained eight differential equations with eight unknown
functions P, A,C,K,M,B,D, and F, and two algebraic equations, (4.6.6)3 4.
It is clear that every solution of this system will generate a conservation law
of the dynamical system (4.6.1). However, it should be noted that there exists
some difference between the constant I introduced in (4.6.3) and the integration
constants obtained in the process of integration of the auxiliary system (4.6.6).
The constant I can be specified from the given initial conditions of the dynamical
equation (4.6.1), while the integration constants stemming from the integration
of the auxiliary system must be selected arbitrarily since the system (4.6.6)
is not confined by any initial or boundary conditions. It is also clear that the
auxiliary system cannot be integrated generally for the arbitrary functions f; (t)
and coefficients Q);,7 =1, ..., 4.

We shall seek a solution of the auxiliary system in the form of the power
functions of time. Namely, we suppose that the form of the unknown functions
introduced in (4.6.3) are

A(t) = Agt™®, B(t)=Bgt™® C(t)=Cot™e,
K(t) = Kot™* M(t)=Myt™™, P(t)=Pyt?P,
D(t) = Dot™?, E(t)= Egt"¢, (4.6.7)

where My, m,...,Ey and e are constants. Substituting A (¢) and C(t) into
(4.6.6)5, we find

—ct7l 4 Apt™® = 0. (4.6.8)
This equation will be identically satisfied for ¢ = Ag and a = 1. Thus

A= Apt™!, C=Cyt™ . (4.6.9)
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Repeating the same procedure, we find from equation (4.6.6)g that e = 44 and
therefore

E (t) = Egt~440, (4.6.10)
From equation (4.6.6)¢, we find that
Kok = PyMy, p—k+m=1, (4.6.11)
so that by using (4.6.6)7 one has
Mo (Ao —m) +2BoPy =0, b—m+p=1. (4.6.12)
From (4.6.6)s we have
By (249 —b) +3Dg Py =0, —b+d+p=1, (4.6.13)
so that (4.6.6)9 implies
Do (340 —d) + 4EgPy =0, e—d+p=1. (4.6.14)
Also, from (4.6.6); we find that

1
t—p-1 (——pP() + A()Po) + -Q-CgMot—zAﬂ_m +Q4fs (t) =0. (4.6‘15)

If the function f4 (t) is selected as fy (t) = t~P~! = t~240~™ equation (4.6.15)
is reduced to

1
Py (Ao —p) + §C§M0 +Qs=0, m—p=1-24,. (4.6.16)
By using (4.6.11)2—(4.6.14); and (4.6.16)2, we find

p = 2-3A), m=3-54g, d=1+ Ay, b=2-2A,
k = 4-8Ag, e=4A,. (4.6.17)

Therefore,
fa (t) = 34073, (4.6.18)
From (4.6.12);—(4.6.14); we have

4EoPy 6Eo Py
Dy = —20 py= 2200
° 240-1 %7 (249 ~ 1)
3 4
My = 2Bl g EoFs (4.6.19)
(240 — 1) (240 — 1)

Combining (4.6.17) and (4.6.19), equation (4.6.16); becomes

2EoC2P3 — 2(240 — 1)* Py — Q4 (240 — 1)* = 0. (4.6.20)
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Similarly, (4.6.6)2 becomes

—Ao + A%+ 6(—2%% t72 4+ Quf1 (t) =0. (4.6.21)
Selecting
fi(t)y=t72 (4.6.22)
we have
AR~ A+ 6(—% +Q;=0. (4.6.23)
Similarly, by taking
fa(t) =t717340 0 £y (t) = t7%4, (4.6.24)

equations (4.6.6)2 and (4.6.6)3 are reduced to

_ ECoR o @3
Q2= 62A0 1’ EoCy =— 5 (4.6.25)
Combining these two equations we get
| Qs
Ph=5(24-1 4.6.26
3 (240 - 1) 22 05’ ( )
Equations (4.6.20) and (4.6.23) now become
1 Qz 2 Q2
240 -1 —Q4=0 4.6.27
o+ (A — ) -G (46.27)
and
_ Q4
Ap(Ap—-1)=—-Q1 + (4.6.28)

3Qs

Finding Ao from (4.6.28) and substituting it in (4.6.27), it is seen that the
coefficients J;,7 = 1,...,4, are not independent but must satisfy the following
algebraic equation

2505 8@ 20 5 (4.6.29)

21Q2 3 Q3  3Qs

Without loss of generality we can take Cy = 1, and from (4.6.25)5 it follows
that

Eo = —%3‘ (4.6.30)
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Therefore, finding Ag and Fp from (4.6.28) and (4.6.26), the group of parameters
given by (4.6.19) can be expressed in terms of the coefficients @);. Recalling
(4.6.9) and (4.6.17) we find that the functions (4.6.7) can be expressed as

A(t) = At P(t)=—%(2Ao—1)%t3A0-2,

4
C (t) — t_AU, K (t) — L%tSAn—ti’

162 Q3
_ 2 Q3 540-3 103 54,0
D) = —§ta"‘°‘1, E(t) = —%t“4A°. (4.6.31)

We can now formulate the following result: if the coefficients Q1, ..., @4 in the
differential equation

&+ Qa2 + Qou?t 34071 4 Qaa3t7640 4 Q34— = ¢ (4.6.32)

satisfy the algebraic equation (4.6.29), the dynamical system (4.6.32) admits a
conservation law in the form (4.6.3), namely,

T = —l (2A0 - l) @t(aAO—Z) + Aol‘t—l
3 Qs

1/2

4
+t-A0 I— lQ :L't_AD + 1%1{(2‘40_1) (4 6 33)
2 %3 3Qs 7 -

where Ay is a solution of the equation (4.6.28) and I is an arbitrary constant.
It is of interest to note that for the classical time-dependent Duffing equation
Q2 = Q4 = 0, that is,

i+ Qzt™2 4 Qaa®t 840 =0, (4.6.34)
the algebraic equation (4.6.29) is identically satisfied for the arbitrary @Q; and

Q3. The expression (4.6.33) gives the following conservation law:

1 1/2
& = Agzt™! 41740 (1 - §Q3z4t‘4A“> , (4.6.35)
where Ay is a root of
Ao (A.() - 1) + Q1 =0. (4636)

As an example, consider the case treated by Ranganathan [90], for which @; =
2/9,Qs = a/9, where a is a constant. One of the roots of (4.6.36) is A9 = 1/3.
Therefore, the differential equation (4.6.34) becomes

i+ gxt_2 + %x3t-2 =0, (4.6.37)
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whose conservation law, according to (4.6.35), is

1y s a 4,—4/3\'/?
= -z - — 4.6.38
z 3Tt +t (I T t ) , ( )

which is the same as the result obtained in [90}, using a different method. For
the second root of (4.6.36), that is, A9 = 2/3, it follows that the differential
equation

F4 ot 4 Lt = 0 (4.6.39)
9 9
has a conservation law
R SN a 4,-8/3\'/?
= = - — ) .6.40
T S:Ct +t (I 183:15 ) (4.6.40)

Note that the analysis of the auxiliary equations (4.6.6) offers many possibilities
for obtaining solutions in the class of power functions of time considered here.
Therefore, the differential equations (4.6.32) and (4.6.34) and their conservation
laws (4.6.33) and (4.6.35) are just some of many possibilities. We do not be-
lieve that all possible cases and subcases can be exhaustively presented in this
monograph. Thus, we will discuss some cases that should be interesting to a
wide circle of readers.

4.6.1 The Case of Arbitrary Q’s (P =0)

For the cases considered previously in this section, it was shown that the con-
stant coeflicients @;,% = 1,...,4, are not independent; that is, they have to
satisfy the algebraic equation (4.6.29). In addition, it is evident that the con-
servation law is not valid for the case ()3 = 0. To avoid this drawback, we seek a
conservation law of the dynamical system (4.6.1) in the form (4.6.3) with P =10
in the auxiliary equations (4.6.6). Repeating exactly the same procedure as in
the previous case, we arrive at the following result: the differential equation

E+ Quat™? + Qoa®t /% 4 Quat 3 4+ Qa2 = 0 (4.6.41)

has the conservation law
. L1 -1y ~1/2 1 241
r = ‘—?-.’Et +1 I—2Q4.’L't -+ 5"‘@1 x°t
2 3,372 , 1 4,2 e
—gng t + §Q3$ t , (4.6.42)
where @1, ...,Q4 are arbitrary constants.

For example, considering again the case @2 = @4 = 0, we find that the
differential equation

F4+Quat 24+ Qa3 =0 (4.6.43)
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has a conservation law in the form
1 1 1 172
i= §zt_1 +¢71/2 [I + (Z - Ql) ot - §Q3$4t_2] ) (4.6.44)
where (); and @2 are arbitrary.

4.6.2 The Case Q3 =0 (E =0)

We mentioned previously that the case )3 = 0 should be considered separately,
which follows from (4.6.27) and (4.6.28). It is evident from (4.6.6)s that if
Q3 =0, then E (t) = 0, and the equation (4.6.6);¢ is identically satisfied. Thus,
the relevant equations for finding the functions P (¢}, A(t),C(t),K (t), M (¢),
B(t), and D (t) are (4.6.6);—(4.6.6)3 and (4.6.6)5—(4.6.6)9. By supposing that
these functions are of the form (4.6.7) and repeating the same procedure as
before, we find

Py = Pot(SAo—ii)’ At) = Aot_l, C(t)= t‘—A“,

3 2
K(t) = %t(mn—e), M) = _&}1)_2“7;40-4)’
12(240-1) (240 — 1)
i 2
B (2)?;——.3)““"2)’ D(t) = —3Qat 7% (4.6.45)

The functions of time figuring in the differential equation (4.6.1) are found to
be

) =172 f(t) =t fy(t) = t(BA=Y, (4.6.46)

where Ag and Py are roots of the algebraic equations

Q2P2 —12P (240 — 1)® —4Q4 (240 — 1) = 0,
2 Q2P _
Ay~ Ao+ Yy +@Q1 = 0, (4.6.47)

and the coeflicients @1, Q2, and Q3 are arbitrary.

Entering with (4.6.45)-(4.6.47) into (4.6.1) and (4.6.3), we can formulate the
following result.

The differential equation

&+ Quat ™2 + Qo540 4 QutP4~1) =, (4.6.48)
has a conservation law in the form

2 = PytA0=3) 4 Aogt?

3y 1/2
_ 2 B _
t Ao _ = —Ao _ t2(2A(' 1)
+ {I 32 [“’t 2(240 - 1) ’

(4.6.49)
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where Py and Ag are roots of the algebraic equations (4.6.47), I is an arbi-
trary constant to be determined from the given initial conditions prescribed to
(4.6.48), and Q1,@Q)2, and Q4 are a given set of constant parameters.

As a special case, let us consider the case @; = Q4 = 0 and (o = 1. From
(4.6.47) we find Py = 12 (24, — 1)® and 4942 — 494 + 12 = 0. The solution of
these equations read

4 12
Aoy = i Py = 313
3 12
= = =——. 4.6.50
Ao(2) = Poay 313 ( )
Therefore, from (4.6.48) and (4.6.49) it follows that the differential equation
i4 22207 =0 (4.6.51)
has a conservation law
12 3
o 226/ 2 g1
szt AT
2 6 312
A U e e 4.6.52
+ |:I 3 (z 9 , ( )

while the differential equation
&4 22T =0 (4.6.53)

possesses a conservation law in the form

12 3
o L6721
a3t T
371/2
P R GV B Y . (4.6.54)
3 19

Note that both conservation laws have been found by Leach, Marthens, and
Maharaj [64] using the method of the Lie point symmetry analysis.

4.6.3 Reduction to Quadratures by Means of the Hamilton—
Jacobi Method

In this section we shall demonstrate that the conservation laws obtained in the
previous section can be used as a starting point for the reduction to quadratures
of the corresponding dynamical systems.

First, we note that the dynamical system (4.6.32) can be written in the
canonical form

P
—Quat 2 = Qoat 3401 _ QgaBt 040 — Qg3 (4.6.55)

I
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It is easily seen that this system has the Hamiltonian structure and that the
Hamilton—-Jacobi partial differential equation is

S  1(88\* 1. o 4
+%Q2$3t'3""—1 + iQsI‘it‘ﬁA” + Quat3=? =, (4.6.56)

where the linear momentum p is a gradient of the field function S (¢, z), that is,
p=0S5/0z.

It is easy to verify that by differentiating this equation partially with respect
to z and denoting by 85/0z = ¢ (¢,z), we arrive at the basic field equation of
the system (4.6.55) for p = ¢ (¢, x):

9]
24 ¢—"’ + Quat™? + Qgz?t =341 4 QuaPt00 4 QutC4~Y = 0. (4.6.57)
Taking into account this connection we can employ the incomplete solution of
this quasi-linear equation in the form (4.6.33), namely,

i = p=g(tr) =25 - _Lag -1 )82

5 3 #(340-2) + Aozt~ 1

1/2
70 | T~ le ot~ A0 4 19200 ' (4.6.58)
2 3Q3 ’

as a starting point for finding a complete solution of the Hamilton-Jacobi equa-
tion (4.6.56). Thus, by partially integrating (4.6.58) with respect to z, we find

S(tz,I) = -= (2A0 -1) g 2t(340=2) 4 = A z?t!
—A Q2 (2491
+/zt 04§ gttt (I B %ng4> 1/2 v
+0(t,1), (4.6.59)
where
Y =zt~ 4 :1;?32 t(2A0=1) gy = t~Aody, (4.6.60)

and 6 (t,I) is a function of time and the constant I. Substituting (4.6.59) into
the Hamilton-Jacobi equation (4.6.56), one arrives at

6(¢, 1)+ %It““" + V()

_ 3403 [217 gg + = (240 — 1) = - 4]

+% [Ao (Ao — 1)+ Q1 — %%ﬂ -0, (4.6.61)
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where

1 Qo 2 1 Q3] 640-4
V()= |—==5(24p—1)" — — = [ t7"°7% 4.6.62
The expressions in the square brackets in (4.6.61) are equal to zero due to
(4.6.27) and (4.6.28). Therefore, the equation (4.6.61) is reduced to

0(t,I)+ %It‘m" +V(t)=0. (4.6.63)

Note that the function V (t) plays the role of a characteristic gauge function,
which has no influence in our considerations. Namely, since it does not contain x
or I, it will not affect the application of the Jacobi theorem p = 85/8x,9S/0I =
B = const. Thus, in the subsequent text, the group of terms stemming from
f ‘y (u) du will be denoted as irrelevant terms (i.t.} and in subsequent analysis
will not be written explicitly. Integrating (4.6.63), we find that the principal
function (4.6.59) represents a complete solution of the Hamilton-Jacobi equation

— 1 Q2 (340~2) 1 2,—1
Sz I) = —3(2A0~1)@xt +2A0.'Lt
1t”‘"+%%zt(2‘40_1) 1/2
+/ s <I~%Q3Y4> dy
1 17
-51 / u"ody + it (4.6.64)

Applying the Jacobi theorem, we find that the equation 85/ = B = const.
leads to

pt—A0 4 L Q24 (240-1)
[ET 0 [ i = cons
1/2 K
(1-3Qv)” (4665
4.6.65

which together with (4.6.58) completes the solution of the canonical system
(4.6.55).

Note that all differential equations and corresponding conservation laws con-
sidered in this section can be reduced to quadratures by the process described.
Since the treatment of each case is the same as for the case just considered, we
will not repeat all the details here, but give only the final results.

(a) For the Duffing equation (4.6.34) and the conservation law (4.6.35),

&+ Quat™? 4+ Qaadt~840 =0, (4.6.66)

and

1/2
&= Agwt~™! ¢4 (1 - %ng"t_‘m“) , (4.6.67)
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the corresponding Hamilton-Jacobi equation is (with Qo = 0)

oS 1/88
ot 2\ 0z

2
=+ —) + %le%—z + %an“t‘“" =0. (4.6.68)

A complete solution of this equation is of the form (xt—4° =Y)

zt~ A0

1 1 1/2
S (t, Z, I) = §A0.’L‘2t_l + / |:I — §Q3Y4] du
t
—%I / £72Moge 4+ it (4.6.69)

where Ay is a root of (4.6.36). The Jacobi theorem, 0S/01 = B = const., leads
to the solution of (4.6.66) in the form

zt~40 dY t
/ N — / ¢244¢ — B = const. (4.6.70)
[1 - 3QsY*]

(b) For the differential equation (4.6.37) and its conservation law (4.6.39),
L 2 0 G 3. 4 L2 -2/3 a 4,-8/3 1/2

+ = + = =0 == + - —z% 4.6.
z gact 5% t 0; =z 3zt t (I T ) , (4.6.71)

the Hamilton-Jacobi equation is

S 178S\° 1, 5 a 4,4
iy —_ — — - —_— = U. 4
3t+2(6.7:) +9:1:t +36xt 0 (4.6.72)

A corresponding complete solution is found to be (Ap = 1/3)

—2/3
zt 3

Stz 1) = %z%—l +/ (I -y ay - 15 4 ix,  (4673)

where Y = zt=2/3, According to the Jacobi theorem a general solution of
(4.6.71), is

xt™2/ -1/2
/ (1 - i“_w) " 4v —341/3 = B = const. (4.6.74)
Similarly, the solution of (4.6.39), Z + %zt'2 + 823t=* = 0, can be represented
as fzt_m (I- %Y“)—l/2 dY —3t~1/3 = B = const., where Y = at~2/3,
(c) The differential equation (4.6.41),
&+ Quat™? + Qaz?t™%/2 4+ Qax®t 3 + Qut ™32 = 0, (4.6.75)

can be transposed into the Hamilton—Jacobi equation
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88 1/85\* 1. 5 5. 1 4 gp
'5{4‘5(&) +—2-Q1xt +§Q2:Et

+%Q3z4t_3 + Qqut™3/2 =0. (4.6.76)

By integrating (4.6.42) with respect to z, we find a complete solution of this
equation in the form

1 zt— /2 1
Stz 1) = ‘696215_1 +/ {I —2Q4Y + (5 - Ql) Y?
2 1 2
—2QoY3 - ZQsY*Y|  — ZInt+it., (4.6.77)
3 2 2
where Y = z¢~1/2. Applying the Jacobi theorem 8S/8I = B = const., we arrive

at the general solution of (4.6.75) in the form

zt—l/‘z

day
> - 73 —Int
[1—2Q4Y + (3 — Q1Y2) — 3QaY3 — Q3]
= B = const. (4.6.78)

(d) Repeating the same process of solution by means of the Hamilton-Jacobi
method, we find that the solution of the differential equation (4.6.48), & +
Qrat=2 4 Qox2t540 4 Q4t(540~4) = 0, can be reduced to quadratures. Namely,
integrating (4.6.49), we find that the complete solution of the corresponding
Hamilton—Jacobi equation is,

S(t,x,I) = Pyxt®4=3 4 %on%‘l
zg—"‘u_._(v_ﬁ)z___jtz(z-"u—l) 1/2
n / e (1 - %QZY?’) dy
1 t
—51 / Mgt 4 it (4.6.79)
where
Py
Y=gt - 0 420240-1) 4.6.80
¢ 2(240 — 1) ) (4.6.80)

and Ag and Py are roots of (4.6.47). Applying the Jacobi theorem 8S/8I =
B = const., we find that the general solution of (4.6.48) can be written as

£2(2A0-1)

day

/"‘A"“ﬂﬁ——ls
—
(1 - 3Quv)"

¢
/ €244t = B = const.

(4.6.81)
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For example, for the differential equation of Emden—Fowler type given by (4.6.51),
(4.6.53), for which the coeficients Ag(; 2y and Pp(y,2) are given by (4.6.50), we
have that the general solutions are, respectively,

zt~3/76t2/7 /49 dy
/ 2+ TtV = B = const,, (4.6.82)
=)

with Y = 2t~3/7 — 6¢2/7 /49 for the differential equation (4.6.51) and

=37 —2/7
/ t +6t /49 ( dY + 7t—1/7 =B = const., (4683)

1-2y3)'?

where Y = 2¢t73/7 4 6¢t=2/7 /49 for the differential equation (4.6.53). Note that
the same results were obtained by Leach, Martens, and Maharaj in [64] using a
group-theoretical method.

4.6.4 The Case When a Particular Solution of the Riccati
Equation Is Available

‘We have seen in the preceding paragraphs that one of the vital points in applying
the field method is to find a solution of the corresponding Riccati equation.
However, in dealing with the linear rheonomic equations with one degree of
freedom, we are frequently able to find only some particular solutions of this
equation. In this part we shall demonstrate that the field method presented here
can be successfully applied if some particular solutions of the Riccati equation
are known.
The following two examples taken from [56] will demonstrate this case.

Ezample 1 [56]. Let us consider the following linear rheonomic equation:

i+ %:L‘ - t_lz.g; =a, a=const. (4.6.84)

Taking as a field function £ = ¢ (¢, z), the basic equation is of the form

o 86 1. 1

Since the problem is linear, we seek a complete solution in the form
t=¢(tz)=hH{)z+ f2(t). (4.6.86)

Entering with this into (4.6.85) and grouping the terms with z and free terms,
we obtain the following system of Riccati equations:

, 1 1 : 1
h+f+31h-5=0, h+thh+sf—a=0 (4.6.87)
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Let us seek a particular solution of (4.6.87); in the form
fi(t) = At™, (4.6.88)

where A and m are unknown constants. Substituting (4.6.88) into (4.6.87);, we
have

Amt™ 4 A% L At 72 = . (4.6.89)
This equation is satisfied for
Ar=1, Ay=-1, my=-1, mg=-1. (4.6.90)
Therefore, the particular solutions of (4.6.87) are
F = Do g (4.6.91)

Entering with this into (4.6.87)2 and integrating, we obtain
t3
= % P =at+Cy, (4.6.92)

where C; and Cj are constants of integration. Therefore, from (4.6.86) we have
the following conservation laws:

t
d=xt71 4 %+%, &= —at" ! +at+ Cy. (4.6.93)
Equating the right-hand sides of these equations, we find that the general solu-
tion of (4.6.84) is

1 C Cot
T ==at? - = =2

. 4.6.
3 2% 2 (4.6.94)

Ezample 2 [56]. Let us consider the following linear rheonomic equation:
2+ t%x =0; a= const. (4.6.95)
Taking the field function in the form & = ¢ (¢, ) = f1 (t) z+ f2 (t) and repeating

the same process as in the previous example, we arrive at the following system
of Riccati equations:

A+f+at2=0, fo+ fifa=0. (4.6.96)

Supposing the same form of a particular solution as given by (4.6.88), the first
Riccati equation gives

M (1) = B + ,/i —a] = V) = [% - %—a} 7L (4.6.97)
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Entering with this into (4.6.96)2, we find after a simple integration
9 = o= (i) D o= (3-30), (4.6.98)

where i = /~1 and C; and C, are arbitrary constants. Also, in writing (4.6.98),
we assumed that a > 4, so that

1 2

17°%7 -b (4.6.99)
with b real. Therefore, the two conservation laws
i=fVOz+ D, i= D)+, (4.6.100)

become
. L ), -1,—iblnt I Y, —1_ibInt
= §+zbt z+ Cit™ e , T= E—zbt z+Cit7 e ,
(4.6.101)

where we have used the relations t® = e?®!nt and t~% = e~**Int Equating the
right-hand sides of the equations in (4.6.101), we obtain the solution of (4.6.95)
in the form

z = t? [Acos (bInt) + Bsin (blnt)], (4.6.102)

where

_ Cy—C _ CL+Cs
===, B=22 (4.6.103)

Repeating exactly the same procedure, it can be easily verified that, for the
special cases when

a=—-6, a=-12, (4.6.104)
the solution of equations
- 6',53 =0, #-— 12t_2 =0 (4.6.105)

are, respectively,

T=Cit3 +Cot™2, z=Cyt*+Cot™3 (4.6.106)



Chapter 5

The Hamiltonian
Variational Principle and
Its Applications

5.1 Introduction

In the first part of this monograph we considered the differential variational prin-
ciples, especially the Lagrange-D’Alembert principle. This principle is based
upon the local characteristics of motion; that is, the relations between its scalar
and vector characteristics are considered simultaneously in one particular in-
stant of time. The problem of describing the global characteristics of motion
has been reduced to the integration of differential equations of motion.

In the second part of this book, we consider in some detail the integral varia-
tional principle of Hamilton (Hamilton’s principle of stationary action) in which
the global characteristics of motion occupy the central place. In addition, the
Hamiltonian principle contains in itself some inherent stationary and even opti-
mal characteristics by means of which the motion and evolution of the dynamical
system can be interpreted as inseparable aspects of the Hamiltonian action. Due
to these facts the Hamiltonian principle can be considered the cornerstone of
modern analytical mechanics. Note that the mathematical apparatus used in
applications of the Hamiltonian principle is applied variational calculus. Con-
versly, many problems occurring in physics and engineering, formulated with
the methods of the calculus of variations, can be interpreted as characteristic
formulations of the Hamiltonian principle. One important characteristic of the
Hamiltonian principle is that all problems treated by it are naturally defined
as the boundary value problems since as a prerequisite, the dynamical system
should be completely specified at the initial and terminal time (begining and the
end of time interval) in which the motion is taking place. Let us note also that
by employing the aforementioned global and optimal properties, the Hamilto-

B. D. Vujanovic, et al., An Introduction to
Modern Variational Techniques in Mechanics and Engineering

© Birkhiuser Boston 2004



198  Chapter 5. The Hamiltonian Variational Principle and Its Applications

nian principle can be reliably used in determining approximate solution in many
linear and nonlinear boundary value problems.

5.2 The Simplest Form of the Hamiltonian
Variational Principle

Let us consider a holonomic dynamical system whose position at any instant of
time ¢ can be specified by n independent generalized coordinates, ¢ (t), ..., gn (t),
where n is the number of degrees of freedom of the dynamical system. We
first consider the so-called Lagrangian systems in which all physical manifes-
tations and behavior are completely describable by the Lagrangian function
L(t,‘hw--,qmél, ,qn)

Let the configuration of the dynamical system be given at two instants of
time, ¢y and ¢;, such that

tg : qi(to) = A;, i=1,..,n, configuration A,
t1 gi(t1)=B;, i=1,..,n, configuration B, (5.2.1)

where A; and B; are a given set of constants and [t1,tp] is a given interval of
time in which the motion of the dynamical system is taking place. For example,
we can imagine that these two configurations are the result of an experimental
determination of the position of the dynamical system at the initial and terminal
instants of time. Otherwise, if we select completely arbitrary configurations A
and B, it can happen that there does not exist any actual trajectory joining
these configurations.

Let us suppose that for a given dynamical system there exists a motion that

(a) joins configurations A and B,

(b) satisfies the differential equations of motion,

(c) is in full agreement with the holonomic constraints, and

(d) is unique.!?
We refer to this motion as the direct or actual trajectory of the dynamical
system. Parallel with the direct trajectory, we also introduce virtual or varied
trajectories g; (t) , which are defined as a one-parameter bundle of curves defined
for all t € [t1,t0]:

3i(t) = qi(t) +8qi (t) = i (t) +ehi (t), (5.2.2)

where h; (t) are arbitrary continuously differentiable functions of time and 6¢; =
eh; (t),i = 1,..,n, are variations or virtual displacements of the dynamical
system (which are identical to already introduced “simultaneous” variations or
virtual displacements in section 3.2). Note that parameter € in (5.2.2) is an

121f the actual trajectory is not unique, that is, if between two fixed configurations A and B
there exists a finite or infinite number of actual trajectories connecting the initial and terminal
configurations for the same time interval [to,%1], we then say that the actual path contains
conjugate points or kinetic foci (see Example 6.5.1, pp. 233-235).
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infinitesimally small, constant. Note also that for ¢ = 0, all curves (5.2.2) are
identical to the actual trajectory. Let us suppose that the actual and varied
trajectories are passing through the initial and terminal configurations A and
B, which is equivalent to the following requirements:

6(11 (to) = 6q,- (tl) = 0, 1=1, O N (523)

This situation is depicted in Figure 5.2.1, where the actual trajectory APB and

APB are depicted together with the initial and terminal configurations A and
B.

qA ' . -
variation dq(t) _  varied trajectory g(t)
P

actual trajectory q(t)

\

Figure 5.2.1

One of the remarkable properties of the variations introduced here and in
the applied variational calculus is that the operators of variations 6 and differ-
entiation with respect to time are commutative (see also (1.3.18)):

2 sge. (5.2.4)

86 =
=G

Hamilton’s action integral for the given time interval [¢,¢1] of a holonomic
dynamical system is defined to be

t
I:/ L(tvqlﬁ"w%udl:~--74n)dt7 (5.2.5)
t

0

where L denotes the Lagrangian for the dynamical system. Note that the ex-
pression (5.2.5) is frequently called the functional or path functional.

Hamilton’s principle states: Among all varied paths (admissible trajectories)
connecting the given configurations A and B for a given time interval [to,t1],
the actual motion makes the action integral I stationary, that is,

th
6I=6/ L (yG1s o Qo s o ) . = 0. (5.2.6)
to

We will demonstrate that the Hamiltonian principle (5.2.6) leads immediately
to the Euler-Lagrangian differential equations of motion. Indeed, recalling the
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expression for the Lagrangian variation of the action integral (3.2.17), we have

ty t) —
o[ reade - (b0 ) -reaa)d
to to

ty ty
/ <8—L6qi + a—P&ji) dt = / 6Ldt = 0.
to aQi aqi to

(5.2.7)

Here, q =(q1, .-.,¢»). Employing (5.2.4) and integrating by parts, we find

t1 t
1 /9L d oL

to

oL
(51 = a—qitsqi

Taking into account the boundary conditions (5.2.3) and employing the fact
that the variations 6q; are completely arbitrary inside the interval (tg,?1), the
condition 61 = 0 yields

%% - % =0, i=1,..,n, (5.2.9)
which are Euler-Lagrangian equations of motion already considered in the first
part of this monograph (see section 1.4). However, these n differential equa-
tions of the second order should be obligatory considered together with the
2n boundary conditions (5.2.1). Thus, every dynamical problem formulated by
means of Hamilton’s principle, should be considered as a boundary value problem
(two-point boundary value problem).

In the simplest formulation of the Hamiltonian principle, the problem es-
sentially consists of selecting the actual trajectory g; (t),¢ = 1,...,n, satisfying
the boundary conditions (5.2.1), along which the functional (or action integral)
affords an ertreme value. Such a trajectory is termed the eztremal trajectory.
In light of these facts, we can restate Hamilton’s principle in the following form:
For the dynamical systems which are completely describable by means of the La-
grangian function, the actual motion gives the extremum to the action integral
(5.2.5).

Thus far we have considered the formulation of Hamilton’s principle in which
the Lagrangian function L plays the leading role. It is also of interest to express
the action integral in the canonical variables. By performing the Legendre
transformation of the Lagrangian L (see (1.8.6)) we introduce the Hamiltonian
action integral in the form

t
Tean = [pidi — L (t,q1, -1 4nrG1,s s Gn)] dL. (5.2.10)
to

This action integral should be considered under the conditions that the time
interval (tg,t;) is completely specified and that the boundary conditions are the
same as in the previous case, that is,

g (to) = Ai, @ (t1) = B, (6.2.11)
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where A; and B; are given constants.
It is easy to verify by the elementary calculations that the Hamiltonian
principle 61.,, = 0 leads to

b O0H
0ean = p15Q1 t, + / % 5101
v t apz

- (1 + ﬁ@) 6q,~] dt =0, (5.2.12)
0g;

which leads to the Hamiltonian canonical equation of motion

. OH | 0H

gi = p pi= a0’ i=1,..,n (5.2.13)
Note that by determining variation of (5.2.10) we have considered the canonical
variables mutually independent. Thus, these variables are independently varied
n (5.2.10).

As indicated previously, the Hamiltonian variational principle provides only
the necessary condition for the extremality of the Hamiltonian action integral
along the actual trajectory of the dynamical system. However, the question of
the character of the extremum (if it exists) can be judged on the basis of the
sign of the second variation §2I. The necessary condition for the action integral
(5.2.5) to attain a minimum is that the second variation is nonnegative; that
is, 6T > 0 along the actual trajectory of the dynamical system. A sufficient
condition for the functional I given by (5.2.5) to attain (a local) minimum is
that the second variation is strongly positive; that is, 62I >~ (||6q]|) ||6q]| , where
v (7) is a nonnegative function on (0, 00) such that lim o, (7} — oo and ||-||
is any norm on a linear space to which §q belongs (see {81, p. 39].

It can be shown that for sufficiently small time intervals (tg,¢1) the positivity
of the second variation, that is, 821 > 0, guarantees that I is minimum on the
actual trajectory of the dynamical system, when the Lagrangian L is taken to
be the classical energy difference T — II, where T is the kinetic and II is the
potential energy.

To prove this, we compute the second variation of the action integral

t1
8 = / §2Ldt, (5.2.14)
()
where
1 8%L 2L 1 9%L
8L = B
2 04:04; g:0g, 404 + 55 04; Bai0q, 0409 + 25 .04 Da.0q; 400
3,5 = 1,.n. (5.2.15)

Using the following estimation for the variation of the generalized coordinates
(see [68, p. 650} for i =1,...,n,tp <t < #3,

164 (8)] = lamt)dt‘s(u-to) sup |66 ()], (5.2.16)

to te(to,t1]
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and ignoring in (5.2.14) all terms containing factors (¢; — to) and (t; — t0)?, we
obtain
1 [ 8%L
I~ [ ——64:6¢;dt. 5.2.17
2 )y, 040 7 ( )
However, for the case of the scleronomic dynamical systems, the Lagrangian is
of the form (1.4.45). Thus, we have

%L o°T
AT = T = Q4. 5.2.18
8¢:9¢;  94:9q; - (5:2.18)
Therefore,
1 [
8 ~ 3 / ai;6;6¢;dt > 0, (5.2.19)
to

and since a;;64;64g; is a positive definite quadratic form with respect to variations
of the generalized velocities, we conclude that a;;6¢:6¢; (t) > 0 for all t € (to,t1) .

Let us note that this argument is strongly dependent upon the properties
of the Lagrangian formed as the difference between the kinetic and potential
energies.

It can be shown (see [54, pp. 78-80]) that for the case when we employ in the
action integral canonical variables g; (t), p; (t), given by (5.2.10), the equivalent
statement of (5.2.9) is expressed in the following min — max principle: For short
time intervals, the trajectory ¢; (t),p; (t),¢ = 1, ..., n, in a conservative field of
force affords a solution of the min — max problem

t

Hll]l[l—n},ax [Piqi—H(qu"'7qn1p1)~'-)pn)]dt'
i i to

Ezample 5.2.1. The Brachistochrone problem. As an illustration let us solve
the famous problem of brachistochrone, where a material point slides on a
smooth wire between two given points A and B in a constant gravity field.
‘We shall restrict the curves to lie in the half-plane Azy, and the y axis is drawn
vertically downward as depicted in Figure 5.2.2.

A

Figure 5.2.2
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Let us suppose that the initial velocity of the particle is zero (for nonzero
initial velocity, see [9]) and that x4 (0) = 0,y4(0) = 0. The total energy
E = (mv2 /2) — mgy = 0. Thus, we have that the velocity of the particle
is

v =1/ 4+ 9% = 1/29y. (5.2.20)

Now, we have & = /2gy/1/1 + (v')°, where & = dx/dt and y' = dy/dz. Whence,
dt =4/1+ (y’)zdm/\/Zgy. Therefore, the problem is to find tmi, = min, T of

the action integral (functional)

= 1 1+ @)
T:/ L(z,y,y)dx = —/ ——dx, (5.2.21)
0 ( ) V29 Jo Y

y(0)=0, y(zp)=uys, (5.2.22)

with

and where yp is a given constant.

Since the functional (5.2.21) does not depend upon independent variable
x explicitly, the Lagrangian function L admits the Jacobi conservation law
y'0L/0y' — L = const., which in our case leads to

1

—_—— = (C = const. (5.2.23)
2

VIV1+ ()

This differential equation can be reduced to the form y’' = f (y) and then to

separate variables. However, it is much simpler to introduce the angle u between

the tangent at the curve y (z) and the x axis as an independent variable. Thus,

d
"= Y — tanu. (5.2.24)
dz
Employing the relation cosu = (1 + tan? u) -2 , equation (5.2.23) becomes
cos?u 1
= =—— 0D . 5.2.25
y 8 503 (1 + cos 2u) ( )

Differentiating this, we have dy = (—2/C?) (sinucosu) du. Entering with this

into (5.2.24), we have dx = (~2cos® udu/C?) , whence by integration we arrive
at

! i 5.2.26

:C=D~555(2u+sm2u), (5.2.26)

where D is an arbitrary constant of integration.
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The equations (5.2.26) and (5.2.25) are the equations of the cycloids in the
parametric form, a curve generated by a point on a circle rolling without slipping
on a horizontal line.

It is easy to show that the angle u (¢) is a linear function of time. Indeed,
from Figure 5.2.2 it follows that

% =z = \/2gycosu; % = y/2gysinu. (5.2.27)
It was also shown that
Z% = (—%) cos? u; Z—z = <__Cz'—2) sinu cos u. (5.2.28)
From the equations (5.2.27); and (5.2.25), we have
Z—Z%‘ = /29 (COCS,Z")W cosu, (5.2.29)
whence
% = —%\/2? = K = const., (5.2.30)
that is,
u=Kt+ M, M =const. (5.2.31)

Let us denote the values of the angle u at the point A and B by
u(A)=a, u(B)=4p. (5.2.32)
Then, by employing (8.2.28) and (8.2.27) at the boundaries A and B, we have

0=D- <L) (2a +sin2a) ,

A= 2C2
ty = D- (2%*2) (28 +sin26),
yg = D-— (%) (28 + cos 20). (5.2.33)

From these four (complicated) algebraic equations we can find four constants,
C,D, e, and 8 in terms of the given values for z4,y4,zp, and ypB.
Finally, noting that

1+ (v)? 1 [1+tan?u N 2
'——:;’—— = E ——co‘—é{z—* (—2 COs udu) = —'Edu, (5.234)
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we find from (5.2.21) that the minimal time of travel of the particle is

2

ﬁ (a—B), (5.2.35)

minT = tpin =
y

and that completes the solution.

5.3 The Hamiltonian Principle for Nonconser-
vative Force Field

In the previous section we postulated the Hamiltonian principle supposing that
the behavior of the dynamical system in question can be completely described by
the single function: the Lagrangian function L(t,q1, ..., qn, d1, ..., ¢n). However,
if the dynamical system comprises purely nonconservative forces Q;(t,q1, .-, Gn,
G1,-,qn), i = 1,...,n, the form of the Hamiltonian principle has quite a different
structure, and the extremal properties of the actual trajectories are lost.

Let us begin our considerations from the Lagrange-D’Alembert differential
variational principle for the holonomic nonconservative dynamical system, which
is, according to (1.3.33), of the form

__.‘_f_Qi> 8¢; =0, i=1,..,n, (5.3.1)

where, as usual, the repeated indices should be summed. Now, we have

d (0L oL oL
= (8% ql> 7% (6q:) o 6q;i — Qibgi =0 (5.3.2)

Employing the commutativity rule (5.2.4) and recalling, in accordance with the
notation introduced in (3.2.8), that 6L = (8L/dq;) 6¢; + (0L /0¢;) 8¢i, we have,
after integrating over the time interval [to, 1],

t

oL

t
= - 6L+ Q;6q)dt = 0. 5.3.3
sota| - [ eL+ae (6:33)

ty 0

5%"
The first term vanishes, since 6¢; vanishes at to and ¢y, and thus

/ ! (6L + Qi8q) dt = 0. (5.3.4)

0

The equation (5.3.4) is a mathematical expression of Hamilton’s principle for
nonconservative dynamical systems.
The variational equation (5.3.4) can be written in the form

3
§I+ | Qibqdt=0, (5.3.5)

to
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where 81 # 0 is given by (5.2.6), namely,

t1
§I= [ 6Ldt. (5.3.6)

ty

It is clear that for @); = 0, the Hamiltonian principle represents a natural prob-
lem of variational calculus, and for this case, the equations of motion of the
dynamical system (the actual trajectories) are the extremals of the variational
problem. These extremals make the action integral minimal (for short intervals
of time). However, the variational equation (5.3.4) contains n + 1 functions L
and Q;,¢ = 1,...,n, and does not possess any extremal qualities in itself. In
fact, the equation (5.3.4) represents merely an integrated form of the Lagrange—
D’Alembert principle. Therefore, all optimal (extremal) characteristics of the
dynamical systems, for the case of nonconservative systems, are lost. We can
therefore state (5.3.4), that is, Hamilton’s principle for a purely nonconservative
dynamical system as: Along the actual trajectories of a purely nonconservative,
holonomic dynamical system, the time integral of the function 8L + Q:bq; is
equal to zero (see (122, p. 32]).

5.4 The Functional Containing the Higher
Order Derivatives

As a simple generalization of the previous considerations, let us suppose that
the action integral, or, more precisely the Lagrangian function, contains the
derivatives of the generalized coordinates higher than the first order, namely,

t n
I= / L (t,q, &6, ...,(q)> dt. (5.4.1)
to

For the sake of simplicity, let us consider the case of a dynamical system with
one degree of freedom, supposing that the Lagrangian function depends on the
first and second derivatives:

t

I= [ L{tq4,d)adt. (5.4.2)

to

The variation of this action integral is

L)) oL AL )
81 = ——b6q+ —6G + =64 ) dt. 5.4.3
/t(, (aq CNET AN TAS (5.4.3)

Employing the commutativity rules ¢ = %6q and 8¢ = j%-&q, the second term
is transformed in the usual way:

oL d d (3L ) d E)qu' (5.4.4)

g T & \9q™") " dtoq
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We next transform the third term in (5.4.3) twice, as follows:

OLd (doN _ 4 (0Ld.N d0Ld,
agat\at ) T @ \oga’?) " dtogar?
d 6L5. d iilig +£8—L6
at \35°?) " a \dt 931 a2 a5 ) °
(5.4.5)
Entering with (5.4.4) and (5.4.5) into (5.4.3), and integrating, we have
L d oL oL . |"
6 = -~ = %+ ———5q]
[(3q dt 561) 95,
“ /(L dOL  d? 8L
— 42—} bqdt. 5.4.6
+/t0 (aq' dtaq+dt2azj> ? (5:46)
The stationary condition 6I = 0 leads to the Euler-Lagrangian equation
0L d38L d? oL
=== T 5.4.7
8¢ dt dg = dt? 8¢ 0 ( )
and the boundary conditions at the ends of the interval, tg and ¢;, are
0L d oL oL
—————6 —6¢ = t t=t d t=t. 5.4.8
(84 dtc')éj) q+8(jq 0, a o an 1 (5.4.8)

The boundary conditions will be identically satisfied if the following two bound-
ary conditions are given in advance:

q (tO) = Av (j(tO) = B’ q (tl) = C: ‘j(tl) = D7 (549)

where A, B, C, and D are given constants.
In a similar manner, we can demonstrate that for the functional (5.4.1) the
Euler-Lagrangian equation reads

0L doL d?>9L d® oL d* OL

- — ——— ey — = U, 4.
5 didg a2 95 dBoq T drod 0 (5.4.10)

Note, finally, that equation (5.4.7) is an ordinary differential equation of the
fourth order, and the Euler-Lagrangian equation corresponding to the func-
tional given by (5.4.1) is of 2nth order.

5.5 The Functional Depending upon Several
Independent Variables

In this section we shall demonstrate that Hamilton’s principle does have impor-
tant applications in setting up partial differential equations arising in various



208 Chapter 5. Hamiltonian Variational Principle and Its Applications

branches of physics and engineering. We commence our considerations with a
brief discussion of the classical Hamilton’s principle adjusted for use in field the-
ory. In fact, the following discussion can be regarded as a natural generalization
of the Hamiltonian principle describing the behavior of a holonomic dynamical
system with a finite number of degrees of freedom with the given boundary
conditions, as considered in a previous section of the monograph.

Let the Hamiltonian action integral be formulated as

b Ou Ou Ou Ou
= t, 0.
A, /VL <t,fL‘1,.’l)2,.’B3, u, B.’tl 61‘2 63:2 8t> dVd (5 5 1)

where L denotes a given Lagrangian function depending on the time ¢, on
the spatial orthogonal coordinates z,,z3,z3, and also on the field function
u = u (¢, 1,2, 3), characterizing the physical field in question and its par-
tial derivatives. We suppose that the time interval (¢o,t;) is specified and also
that the volume V' over which the physical process is taking place is fixed. This
volume is bounded by a given surface S.
We introduce a small arbitrary increment éu of the field function u (¢,x),
x =(z1,z2,23), without any changes in the independent variables ¢ and x by
writing
a(t,x) = u(t,x) +6u=u(t,x)+eh(tx). (5.5.2)

We call eh (t,x) the variation of the field function. Here |¢| <« 1 is a small
constant and A (t,x) is a continuous function with continuous derivatives in
(to,t1) x V. Considering the variation as a differential operator we postulate
commutativity properties of the Lagrangian variation é with the partial deriva-
tives

0 0 a 0 )

8t6() 6{%()_0’ 8_x,6() 68 ()=0, ©=1,2,3, (5.5.3)

T;

and with the operator of integration

6/‘/(-)dV—/V6(-)dV—_~0. (5.5.4)

With these rules in mind, we can easily calculate the variation of the action
integral (5.5.1) for unchangeable and given boundaries

61 I (u)

[ ][4

- ; 5‘1_1 (W%@)] budVdt
/. L[ (™)

3.8 oL
+,Za_x,(—_(au 5 )]dvczt. (5.5.5)
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The condition for stationarity of the action integral is defined by the varia-
tional equation

61 = 0. (5.5.6)

This condition can be analyzed in a variety of ways, depending on the boundary
conditions of the physical problem in question. Here, we will focus our attention
on the simplest boundary conditions. Namely, let us suppose that the function
u (t,x) is fully specified at the instants of time ¢y and ¢1, which is equivalent to
the equations

bu(t,x) = 0, on the boundary S of V for every ¢,
bu (to,x)

{

bu (t1,x) = 0, everywhere in V including boundary S.
(5.5.7)

For this case, it is easy to verify, by applying the divergence theorem (see [49)]),
that the last two terms in (5.5.5) vanish. Hence, we have

/:/ [&u ( 3u/8t> Z&‘:n( 6u/c’) ))

However, since 6u is arbitrary, away from boundaries, this equation can be
satisfied only when

%% 5 (6(6u/8t ) Z O (W) =0 (5.5.9)

This is the Euler-Lagrangian equation for the field u = u (¢, z1,z2,@3) that
makes the action integral (5.5.1) stationary. It represents a partial differential
equation with the partial derivatives of the second order, and the variational
problem is reduced to the problem of finding a solution of this equation with
given boundary and initial conditions.

For the sake of simplicity, let us suppose that the Lagrangian function is of
the form

dVdtéu =0

(5.5.8)

(5.5.10)

L:L(t,m,u Ou 8u>.

"9t oz

It is easy to verify that the explicit form of the Euler-Lagrangian equation
(6.5.9) is

8%L 0%u 0%L 0%u
8 (Du/dt) & (du/dt) ot + 28(6u/8t) 9 (0u/0z) Otdx
4 0’L ?izi L L Odu N 0?L Ou
0(0u/0x) 0 (Ou/dx) 0z  Oud (Bu/dt) 8t = Oul (Ou/dzx) Oz
9L 9L oL

T 560 (0ujot) T 52 (Gujx)  ou (5.5.11)
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In a similar way we can analyze the case in which the Lagrangian function
depends upon the partial derivatives of the second and higher orders.
For example, it is easy to verify that for the Lagrangian function of the form

2 2 2
L=1L ( gy- Z—z %, a%(,—;—tg %) (5.5.12)
the Euler-Lagrangian equation is of the form
oL & oL 0 0oL L o? oL
Ou 0z d(0u/dz) 0Oyd(Ou/dy) z2 O (9%u/0z?)
02 oL 02 oL —0, (5.5.13)

+ 820y 8 (Puj0z0y) | 592 9(0%u/5v7)

which is a partial differential equation with partial derivatives up to the fourth
order.

Ezxample 5.4.1. Heat conduction with finite wave speed. Consider the gener-

alized heat conduction equation given as
o°T 8T 2

T—a—t—2-+g =aV*T, (5.5.14)

where T = T'(t, z1, 2, 23) is a nonstationary temperature field in a solid body,

a denotes the constant thermal diffusivity, 7 represents the material thermal

relaxation time (that we assume to be constant), and V? is the Laplace differ-

ential operator defined as V2 (-) = §2/0z2 (-) + 8%/823 (-) + 82/0z% (). Such

an equation is hyperbolic in nature and has a finite speed C of propagation of

thermal disturbance, equal to
a
=./-. 5.5.15
c \/: (5.5.15)

If 7 — 0, we have the classical Fourier parabolic differential equation of heat
transfer

oT
Bt

which has the physically inconsistent property that the effects of a thermal dis-
turbance are instantaneously manifested at a distance infinitely far from the
thermal disturbance, that is, C — oo. For example, if one end of an infinitely
long rod is touched by a hot body, all points of the rod are effected instanta-
neously, although by very small amounts, at large distances from the place of
the disturbance.

It is easy to verify that the Euler-Lagrangian equation (5.5.9) for the La-
grangian function of the form (see {122] and the references cited therein)

G R E

= aV?T, (5.5.16)
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will generate the equation

2T 9T
( % £ 607 _ ava) ot — 0, (5.5.18)

Since for the hyperbolic equation, e!/™ # 0, we arrive at the equation (5.5.14).

However, it was undoubtedly proved by numerous authors that the parabolic
heat conduction equation (5.5.16), together with the given boundary and initial
conditions, do not permit the variational description in the strict sense of the
Hamiltonian variational principle.

For the heat conduction equation (5.5.14) we can construct a time invariant
by using the results of section 1.8 (see (1.8.36)). The details of the procedure
are given in [10]. The main result is crucially dependent on the orthogonality
property of certain eigenfunctions. As an application for the construction of the
time invariant, consider a rod of length [ in which heat conduction is taking
place according to the equation (5.5.14). Suppose that boundary and initial
conditions are specified, so that the process is described by the following system
of equations (the one-dimensional variant of (5.5.14)):

8°T oT 0T
T—(‘)?_‘_E = G,—a;:—z—, 0<23<l, t>0,
8T (0,1) B
—5— = 0 Tln=0,
T (z,0
T@o) = he), T2 p@,  (5519)

where f; (z) and fo (z) are given functions. We assume the solution of (5.5.19)
in the form T'= X (z) U (t). By substituting this into (5.5.19) we obtain
fU o ex

Q
dt2U dt _ ?2 = const. = —w?. (5.5.20)

The temporal evolution U () is governed by the solution of the system of equa-
tions

d2U auv
= = 5.5.21
dt2 + + U =0, ( )
where w2 ,n'=1,2,..., are eigenvalues determined from
dQX
oy +wiX =0, (5.5.22)

subject to

== (0)=0, X(@)=0. (5.5.23)
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Equation (5.5.21) is of the type considered earlier (see (1.8.23)). We found that
(see (1.8.36) with 1/7 = 2k,a/T = w?)

1| (dUN? e, 1 (dU\| _
26 |:T (E) + ;U + TU a = C'm (5524)
where C,,n = 1,2,..., are constants.

Since (5.5.22), (5.5.23) generates the set of orthogonal functions X, =

Dy, cos (27Lnz) with D, = const. fol XnXmdx = 0, if n # m the expression

(5.5.24) leads to the following time invariant (see [10]):

B(t) = %/Ol et/ [T (%)2 + g (%—)2 + %T (%—f)} dz.  (5.5.25)

It is easy to verify that

aB _
dt
on the solution of (5.5.19). The property (5.5.26) could serve as a basis for

obtaining approximate solutions to (5.5.19). An example of such an application
is presented in [10].

0 (5.5.26)

Example 5.4.2. Generalized wave equation. Consider a partial differential
equation of the form
P o o

82 "ot "oz2 " oz

du(0,t) du(l,t)

o, 2 o, 5.5.27

Oz ! oz ( )

and suppose that certain initial conditions are specified. Equation (5.5.27);

arises in the wave theory [128]. It can be verified by applying (5.4.9) that
(5.5.27) is the Euler-Lagrangian equation of the following functional:

t opl k1 2 2
er~F 7T ou ou

so that 6] = 0 reproduces (5.5.27). By applying the procedure as presented
in [10] (separation of variables method) or by using the Noether-type theory
developed in [11], one can show that the following functional is a time invariant
for the system (5.5.27):

1 oLk 2 2
er kT Oou ou du
B= / 5 [ (5) +’“(£> +“?9?] de. (5.5.29)

Thus, for (5.5.29), we have

0, O<z<l, t>0,

= = (5.5.30)
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Ezample 5.4.3. Azially loaded elastic rod with external friction. Consider
now the system of equations describing the lateral motion of an elastic rod that
is simply supported at both ends and axially loaded by a constant force. We
assume also that there is external damping linearly proportional to the velocity
(see [65, p. 158]). The differential equation of motion reads

otu 8 u 0%u
El—
ot % +ﬂ8t+p8t2
with the following boundary conditions, corresponding to simply supported
ends:

=0, O<z<l, t>0, (5.5.31)

vw(0,t) = 0, u(lt)=0,
0?u 0%u
72 (0,t) = 0, a2 {{,t) =0. (5.5.32)
In (5.5.31), EI is the bending rigidity of the rod, X is the axial force, p is the line

density, and 3 is the viscous friction coefficient. All quantities are assumed to
be constant. The system (5.5.31), (5.5.32) could be derived from the stationary

conditions of the functional
2
Ou Ou
v — — d 5.

//e [ (a?) A(am) (m” xdt.  (55.33)
Again, we may construct a time invariant for the system (5.5.31), (5.5.32). We
shall use the procedure presented in [10]. Thus, we assume solution of (5.5.31),
(5.5.32) in the form v = X (z) T (¢), so that

d*X dX2 dT d*T
BFl—— e + )\ ,B?E + PE{; )

= T w?, (5.5.34)

where w? is a separation constant that is determined from
atx  dx? -

Eld—l“l +/\.dl—‘2 — W X, (0535)
subject to

X0 = 0, X(H=0,

d?X (0) d2X (1)
) = 0 e (5.5.36)

The temiporal part T (t) has a conservation law of the form (1.8.36) and since
(5.5.35), (5.5.36) generates an orthogonal set of functions, we conclude that

BB 2 (2) () 2 (B e s

It can be easily shown by direct calculation that dB/dt = 0.




Chapter 6

Variable End Points,
Natural Boundary

Conditions, Bolza Problems

6.1 Introduction

In this chapter we discuss some generalizations of the Hamiltonian variational
principle concerning the various that that can arise in applications. We shall
consider in particular the cases in which the initial or terminal configurations
(or both) are not specified. Also, it may happen that the time interval in
which the evolutionary process is taking place is not given. For these cases
the Hamiltonian principle usually produces characteristic information about the
boundary conditions and the transversality conditions. In order to express a
physical process correctly, we sometimes must add some terms outside the sign
of the action integral, and these types of optimization problems are usually
referred to as the problems of Bolza.

6.2 Time Interval (¢y,t,) Specified, ¢; (t), ¢ (t1)
Free

It can frequently happen that the time interval (tg,t;) in which the dynamical
process is taking place is specified, but the initial or terminal position, (config-
uration A and B or both) denoted by (5.2.1) are not given. For these cases we
shall demonstrate that the Hamiltonian variational principle will automatically
produce the necessary boundary conditions, which are usually named natural
boundary conditions.

(a) Consider first the case for which

g (to) = A;, A; given constants g; (t1) are not specified. (6.2.1)

B. D. Vujanovic, et al., An Introduction to
Modern Variational Techniques in Mechanics and Engineering

© Birkhiuser Boston 2004
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It is clear from the general expression (5.2.8) that &¢; (to) = 0, but ég; (£1) # 0
and is not specified. Thus, in order to satisfy the stationary condition 6I = 0,
besides the Euler-Lagrangian equations (5.2.9), we must also have

oL

=l =0, i=1,..n 6.2.2
AN (6.2.2)

This is a necessary set of natural boundary conditions that must be satisfied. It
serves for finding the constants of integration during the process of solution of
the Euler-Lagrangian equations (5.2.9). Let us stress, as we mentioned already,
that all types of boundary conditions considered in this chapter will never change
the form of the Euler-Lagrangian differential equations.

(b) Similarly, if

gi (to) are not specified, ¢;(t1) = B;, B; given constants, (6.2.3)
the natural boundary conditions are

oL

%l = 0, i=1,..,n (6.2.4)

t=tgy

(c) Finally, if the initial and terminal configurations A and B are not speci-
fied, the 2n natural boundary conditions are

oL oL
0g; 0q;

=0, i=1,.,n (6.2.5)

t=t,

t=ty

Combinations of these cases are depicted in Figure 6.2.1.

‘ %%O : %ZO
A 0¢=0 6¢=0 B
o sy O bt
(2 ®
oL oL

©
Figure 6.2.1
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If the Hamiltonian principle is expressed in terms of canonical variables g; (¢),
pi (t), we find from 6l.., = 0, given by (5.2.12), that the natural boundary
conditions for the cases discussed above are, respectively,

(a) pi(to) = 0,
t) = 0,
(c) pi(to) = 0, pi(t))=0. (6.2.6)

Example 6.2.1. The cylindrical brachistochrone. Let us consider the problem
of finding a curve on a vertical circular cylinder, a curve that evolves from a
given point A and terminates on the vertical line that is the generator of the
cylinder. Under the influence of gravity, a particle should move on this curve in
the least time. We shall assume that the particle starts from rest, that friction
force between the particle and the cylinder is negligible, and that the terminal
vertical line is located by a given angle 61, as shown in Figure 6.2.2.

~ terminal line
4
Figure 6.2.2

Since the particle has two degrees of freedom we shall select the cylindrical
coordinates g1 = 6,¢2 = z. As in Example 5.2.1 the total energy of the particle
is equal to zero, namely,

_Mm (252 2} _
E—Q(Té +z) mgz = 0, (6.2.7)

where 7 is the radius of the cylinder. Taking the angle 6 as an independent

variable, we find dt = (1/r2 + (2')%)/(v/297), where (-)' = & (). Therefore,
the problem is reduced to find the minimum t,;; = min T of the following

64 01 "2 N2
T:/ L(e,z,z’)de):L/ o EY g (6.2.8)
0 V29 Jo 2

We shall suppose that the location of the terminal line CD is specified by the
angle 01, while the position of the point B on this line is not given. Thus, a

functional:
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boundary condition is missing, although both boundaries in the integral (6.2.8)
are specified. From this, it follows that the missing boundary condition is given
by the case (a); that is, with equation (6.2.2)

Zl

= =0, (6.2.9)
=6, \/?,gz (7‘2 + (z’)2)

namely, we find the following natural boundary condition:

oL
0z

2 (6,) =0. (6.2.10)

Since the Lagrangian L defined by (6.2.8) does not depend upon the independent
variable 6, we employ the Jacobi conservation law (0L /8z') 2’ —L = const. which
leads to the relation

4 () =

%, K = const. (6.2.11)

We can easily integrate this differential equation in parametric form. Let

dz A
I-——: — e
Z =g =reoty, (6.2.12)

where A is a new parameter. From (6.2.11) we find that

z 1—cos)), (6.2.13)

=25
and from this, we have dz = (K/2r?) sin Ad\. Substituting this into (6.2.12) it

follows that rdfl = tan (A/2) dz = (K/2r?) (1 — cos A) d). Integrating, we arrive
at

K .
rd = ﬁ()\——sm)\)+K1, (6.2.14)

where K, is a new constant.

Let us select A in such a way that A = 0 when § = 0. Therefore, the constant
K, = 0. In order to determine K we apply the natural boundary condition
(6-2.10) from which we easily find K = 2r38, /n. Therefore, the brachistochrone
on the vertical cylinder is found to be

(1 —cos)), 6:%(/\—sin/\). (6.2.15)

Ezample 6.2.2. Transversal vibrations of a beamn [68], [130]. Let us consider
a straight uniform beam having a length ! whose mass per unit length (the line
density) is m (kg/m) . A cross-sectional moment of inertia is I, and a modulus
of elasticity is E. The beam performs small transverse bending vibrations in the



6.2. Time Interval (¢9,t1) Specified, q; (to) ,q; (t1) Free 219

vertical plane zAy. Using the Hamiltonian principle we shall find the differential
equation of motion and the corresponding boundary conditions. Let y (¢,z ) be
the transversal displacement of the beam. The kinetic energy of the beam is

1 Oy 2
T—Q/O m(a) dz, (6.2.16)

where t is the time and z is an independent variable oriented along the axis of
the rod, that is, = € [0,!] (see Figure 6.2.3).

2 l B
AL B
®~‘~. ------------ __a" T
gV
Figure 6.2.3

It is well known from the elasticity that the potential energy of bending is

M? 1/t 2%y
n_2/ L Zdx 2/31 (a 2) dz, (6.2.17)

where M is the bending moment of the beam, and M = EI, (82y/8x2). Note
that the influence of the shear forces on the deformation of the beam is neglected.
Thus (6.2.17) corresponds to the Bernoulli-Euler beam theory.

The action integral now becomes

[ () g () e o2

Performing a variation of I, we find

o= [ (@) (2 (2)s() e

Using the commutativity rules § (9y/0t) = (8/8t) by and § (8%y/dz?) = (8°/0x?)

by, we have
T ooy
/to /m(?t 5 (by) dzdt = ./0 [m—a—téy] dz—'/to /m8t2 (by) dzdt.
(6.2.20)

Next we integrate the second term in (6.2.19) by parts twice, as follows:
ty
/ / ( > o 5 (6y) dzdt
to
0%y b
= — EI ——6 dzdt.
/to [EI&EQ(S(@) EI éy”dt—k/to / ydzx

(6.2.21)
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Therefore, the stationary condition 61 = 0 becomes

T oy t 32 By 63y
t 34
/ / [m~— + EI, . 4:| Sydzdt = 0. (6.2.22)

Since by the definition of the varied path, 8y (z,t9) = 6y (z,t1) = 0, the first
expression on the right-hand side of (6.2.22) is equal to zero. Similarly, since
by (z,t) is arbitrary, we conclude that the third expression on the right-hand
side vanishes if

ty 1

dt
0

Py 0y EI
o= =0, b*=—"=.
a2 + ozt ’ m
This equation is at the same time the Euler-Lagrangian equation for the Hamil-
tonian principle, whose action integral is defined by (6.2.18).
Therefore, equation (6.2.22) becomes

(6.2.23)

wroty (8y\ &y |
6I = EI, —o6| =] — 6 dt = 0. .2.24
L, [ () -, 6220
Naturally, since this expression should be satisfied for every t € [tg, 1], we have
0y [0y &y
—_ —_— = = l x“n
8z26 (62:) p 730y=0, forz=0andz (6.2.25)

These two equations will serve for analyzing the boundary conditions, which
can be prescribed in accordance to the various end conditions of the beam.

It is useful to note that by applying the end conditions the following relations
can be employed with respect to the geometric variable z.

e The deflection is equal to y and is zero at any rigid support.
o The slope is equal to dy/0z and is zero at any clamped end.

o The moment is proportional to 3%y/8z% and is zero at any simply sup-
ported end.

e The shear force is proportional to 83y/8z2 and is zero at any free end.

Since the Euler-Lagrangian equation (6.2.23) is a fourth-order differential
equation, four boundary conditions must be specified for a correctly formulated
problem of transversal vibrations of the beam.

(a) Simply supported ends. This case is shown in Figure 6.2.3, and it is
obvious that the imposed conditions are

y(0,t) =0, y(,t)=0. (6.2.26)
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Since the variations 6 (9y/0z) are arbitrary, then vanishing of (6.2.25) requires
two additional boundary conditions
0%y (0,t) 0%y (L,t)

5z =0, 57 =0 (6.2.27)

(b) Clamped ends. The boundary conditions imposed on the beam are

9y (0,t) 9y (,,1)
t)= Ity = 2 =0; ———==0. 6.2.28
0. =0, yty=0, LD_o X (6228)
Therefore all of the boundary conditions are specified, and no natural bound-
ary conditions have to be added. Note that (6.2.25) is identically satisfied;
namely, from (6.2.28) we have 6y (0,t) = dy (l,t) = 0 and 6 (9y(0,t) /0z) =
§(dy(l,t)/oz) = 0.

(c) Left end built in; right end free. Let the beam be clamped at the point
z =0 and free at the x = [. The boundary conditions are

t
y(0,t) =0, 9y(0.%) =0, (6.2.29)
Ox
while y (1,t) and 8y (I, t) /Oz are not specified. In order to have (6.2.25) satisfied
we must have
%y (1,t) Py (L)

G =0, g~ =0. (6.2.30)

The conditions (6.2.30) have the important mechanical interpretation. Since
2
M(l,t) = EL 22N the condition (6.2.30); implies M (I,t) = 0. Also, the

transversal force is given as (see [14]) Fr (,t) = Efz%éﬂ. Therefore, (6.2.30)2
implies Fir (1,t) = 0. The conditions M ({,t) = 0 and Fr (I,t) = 0 define a free
end of a beam.

6.3 The Problem of Bolza

In section 1.4 we have seen that a given Lagrangian function L (t,q,q) can
always be replaced by a new Lagrangian L* in the following way:

d
Lr :L+EE\II (taqla-”)QTL)? (631)

where to given L is added a total time derivative of an arbitrary function ¥
depending on time ¢t and generalized coordinates g¢;, without changing the form
of the Euler-Lagrangian equations formed by means of Lagrangian function L,
namely,

- =0, i=1,..,n (6.3.2)
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Let us form the action integral I = :0' L*dt. Integrating (6.3.1) we have

ty
I=9(tqnga)lt +/ L(t,q1, s Gy ity ooy ) . (6.3.3)
to

This form of the action integral is usually named the Hamiltonian principle in
Bolza form. It is clear that the first term of this functional contributes to the
variation of the action integral at the end points and will therefore influence the
boundary conditions only.

Performing the variation of (6.3.3) and using (5.2.8) for the variation of

tt(,l Ldt, one has
tl+/tl(6L igé)é dt (6.3.4)
o Jto \OG dt 3¢ HE o

oY 0L
5.[ = 6 )

(6% * a‘h) %
Thus, the stationary condition §/ = 0 generates the Euler-Lagrangian equations
(6.3.2) and

_6_\11 + 6_L_ 5(11 =0 at t=tp, and t= ty. (635)
8(]1 6 qi

If the dynamical problem is formulated in such a way that the initial and ter-
minal configurations A and B are given in the form (5.2.1), then the expression
(6.3.5) vanishes since the variations 6g; (to) and 8g; (t1) are equal to zero (see
(5.2.3)).

If, however, the initial and terminal configurations are not given we have for
the specified time interval (£g,¢;) the following 2n natural boundary conditions:

0¥ 0L

P 3q,_0 at t=tg, and t=t;, i=1,..,n (6.3.6)

It can frequently happen that the Bolza problem should be formulated in a
slightly different form. For example,

I = (o, q (to)) + ¥2 (tn,a (tr)) + / ‘Libaad (637
or
= (t0,t1,q(t0) , @ (t2)) + / 'L(t,q,4) d. (63.8)

For these more complex cases the essential features remain unchanged.

Ezample 6.3.1. Sturm~Liouville problem. As an illustration we shall demon-
strate that the Sturm-Liouville equation

—gf {fl ® Z—ﬂ +fot)z=Xgo (t)z, to<t<t, (6.3.9)
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together with the Sturm boundary conditions (see [29])
ey (to) + cox (to) =0, cad (t1) +cax(ty) =0 (6.3.10)

can be represented as the extremal problem of Hamilton’s variational principle.
Here, the time interval (to,t;) is specified, A is a constant, fi(¢), fo(t), and
go () are given functions of time, and cy, ..., ¢4 are given constants.

Before forming the corresponding action integral, we note that the Sturm-—
Liouville differential equation (6.3.9) can be derived as an Euler-Lagrangian
equation of the functional whose Lagrangian function is

1'72

L= 0 () + 5 Do 8) — fo ()02, (63.11)

which is easy to verify.
Let us consider the following action integral in the Bolza form:

-2

= / {Lr0+3pa0-ho1}e
~57 ) (2) e+ 3 ) (2) . (6312

Since the functions fg,go, and f; are given functions of time, they are not
affected by the process of variation of (6.3.12). Thus, the variation of (6.3.12)
leads to

5 = /t ! {f1(t) 26% + [Ago (t) — fo (t)] zbz} dt — f1 (o) (%) 2 (to) 6z (to)

A () (—3) 2 (0) 62 (0 (6.3.13)

Using the commutativity relation & = (6z)" and noting that f; (t)i:%éz =
4 1f) (t) £62] — [f1 (t) & + fi1 (t) ] 6z, we have

5T = / {~ [ 0%] b - oo} soee

+f1 (tl) [
C3
f1 (to)

—'c—l‘ [Cl.'ji‘ (to) + cox (to)] ox (to) . (6314)

c3 (t1) + caz (1)) 6 (t1)

The requirement for stationary I, that is, 61 = 0, gives

(a) the differential equation (6.3.9), since the variation 8z is arbitrary in the
interval (to,%1);

(b) the Sturm boundary conditions (6.3.10), since 8z (¢9) and 6z (¢1) are not
specified at the boundaries and f; (¢1) /c3 and f2 (t0) /¢; are different from zero.

Ezample 6.3.2. Elastic vibration of a string. Consider as a second example
the problem of vibrating string. We take the problem of a uniform and slightly
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elastic string, stretched at a large tension P between its two points The end
points of the string, by means of two massless smooth rings A and B, are forced
to move along two vertical rods, as shown in Figure 6.3.1a.

Figure 6.3.1

The rings are connected with two elastic springs having the spring constants
c1 and cg, respectively. The length of the stretched string is [ and the springs
are not deformed when the string is horizontal and rings A and B are situated
at the horizontal axis Oz. The string is assumed to be perfectly flexible, and
it performs small transverse oscillations in the vertical plane Oy. We suppose
that the tension P is permanently constant throughout the motion.

The string is a continuous system and the displacement of an arbitrary point
of the string is a function of time ¢ and the horizontal coordinate z, which are
taken as independent variables.

Let the mass per unit length of the string be p. Then, if y(z,t) is the
displacement of a generic point, the kinetic energy of the string is

1 [t [by 2

while the potential energy, under the condition that the transversal displacement
of the string is small, reads (see [84, p. 39})

P [t /oy 2
Hs~5/0 (%) dz. (6316)

The potential energy of elastic springs at the end points (0,0) and (0,1) is

I, = 2er (0.8 + 5oy (10 (6.3.17)

The Lagrangian function of the system consisting of string and two springs is
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therefore L = T — II; — II,, and the action integral becomes

t 1t By 2 By
e [ [ () - (R e
——c1/ (0,2) dt—ECQ/ y(1,t)% dt, (6.3.18)

where the time interval (tg,t;) is specified. Further, we suppose that variation
of the initial and terminal configuration is equal to zero; that is, 6y (z,t0) =
6y (z,t1) = 0.

Calculating the first variation of I given by (6.3.18), we have

/ /[83’5(‘3’;) Pamé(gyﬂd dt

_61/ v (0,t) 6y (0,t) dt — cz /tly(l,t)éy(l,t)dt (6.3.19)

to 0

Employing the commutativity rules (5.4.3) and noting that

yo, _ 9( s\ _ s
p@t ot vy = at pat p8t2 Y,

8y 3 — 31/ 9%y

89: 8:c T 9z ( 9z y) _P‘a—xffsya (6.3.20)

we have by integration and grouping terms with the same variations

8l =J1+ Jo+ J3+ /t:l /0 <—p%—j—2?i + P%i—g-) bydzdt, (6.3.21)
where
L
J1 o= /0 p (%511 L %Mlm) dz,
Jo = —-/t’ [cly(O,t) — P—a—yéi’—t)] 8y (0,t) dt,
to
J3 = - /tt‘ [023/ (1,t) + P@g(i—’t—)] by (1,t) dt. (6.3.22)

Since 8y (z,tg) = by (x,t1) = 0, if follows that J; = 0.

Taking into account that the variation 6y (z,t) = 0 is arbitrary inside the
intervals of independent variables, that is, for 0 < z < [ and tg < t < t; and
at the places A and B where the rings are connected with the string, we con-
clude that the variations 6y (0,t) and 6y (I,t) are also arbitrary. Therefore, the
condition for stationary I, that is, 6] = 0 which follows from (6.3.21) generates
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(i) the Euler-Lagrangian equation of the vibration of the string

aQy zaZy 5 p
— —_— = —, . .2
oz =Kz K= (6.3.23)

(ii) the following two natural boundary conditions:

9y (0,¢) 9y (L,t)
- P = pP—=—==0. .3.24
a1y (O,t) p 9z 0, coy (l)t) + 9z (6 )
The partial differential equation (6.3.23) is of hyperbolic type and is known
as the wave equation. Writing the boundary conditions (6.3.24) in the form [49,
p. 158

dy(0,t) Ay (L,t) _
ay (0,t) + . = O By (1,t) + —5-—=0,
- _a - &
a= -3 8 B (6.3.25)

several special cases are in order.
(a) If the springs are removed (¢; = ¢z = 0) and the rings are able to move
freely along the vertical rods £ = 0 and z = [, the boundary conditions become

9y (0,t) dy(,t) _ .
or 0, o o
that is, the tangents at the points A and B to the string are during the whole
motion normal to the rods at z =0 and z = [.
(b) If the ends of the string are held fixed at £ = 0 and z = [, then putting
c1 — 00, and ¢ — 00, and dividing (6.3.24); 2 by « and 8, we arrive at the
boundary conditions

(6.3.26)

y(0,t)=0, y(,t)=0 (6.3.27)

The cases (a) and (b) are shown in Figures 6.3.1b and 6.3.1c.

Let us note that the wave equation (6.3.23) besides the transverse vibration
of a taut string considered in this section has the same mathematical form in the
study of longitudinal vibration of a bar, the longitudinal vibration of a helical
spring, and the torsional vibration of a shaft. It has also been indicated that the
gravitational waves traveling along an open channel are governed by the same
equation. In each of these cases, the constant k represents the velocity of wave
propagation in the direction of the coordinate z.

6.4 Unspecified Initial and Terminal Time,
Variable End Points

In deriving conditions for the stationary I, we have thus far assumed that the
time interval (t9,t1) in which the physical process is taking place is completely
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specified. We now consider a generalization of the variational principles formu-
lated above, in which the boundaries of the action integral,

t1
I:/ L(t7q17"'7qn7q15"‘7qn)dt7 (6.4.1)

to

are permitted to change freely.

In search of the optimal trajectory of the Hamilton principle (6.4.1), we
must suppose that the time should be varied together with the variation of
the generalized coordinates and generalized velocities. Consequently, we must
introduce the generalized or nonsimultaneous variations, which have already
been introduced in section 3.2 of this monograph.

We have seen in section 3.2 that the relation between the generalized (non-
simultaneous) variations A and Lagrangian (simultaneous) variations 6 of the
generalized coordinates are of the form (see equations (3.2.5) and Figure 3.2.1)

Ag; = bq; + ¢ At. (642)

However, here we will suppose that Ag; and At are continuous, infinitesimal
arbitrary functions of time, that is,

Ag; = eF; (t) , At=c¢f (t) . (643)

In fact, the functional structure of variations 6q, Aq, and At can vary depending
upon the purpose for which we use them.

As pointed out in section 3.2 the relation (6.4.2) can serve as a useful pat-
tern for finding the nonsimultaneous variations of any scalar, vector, or tensor
quantity. This formal analogy will be used here. Thus, if we put instead of g;
in (6.4.2), the integral (6.4.1), we shall have

) ty
. o o t
Al =A t L(t,q,q)dt =146 ) L(t,q,q)dt+ L(t,q,q) At],, . (6.4.4)
0 0
Note that this expression is identical to equation (3.2.15). The Lagrangian
variation of the integral on the right-hand side of this equation means that we
should vary this integral considering the ¢y and ¢; as given constants. Therefore,
from (5.2.7) and (5.2.8), we have

t t t
1 oL _ |" V(8L  d OL
§| L(t,qéd)dt= —6q — =22 §qqdt. 6.4.5
\ (t,q,q) Béi6q\t(,+/to (8% dtaqi)5q (6.4.5)

Substituting 8q; = Ag; — ¢;At into the first term on the right-hand side of
this equation, and entering with (6.4.5) into (6.4.4), we have after collecting
terms the following basic formula of the nonsimultaneous variation of the action
integral (6.4.1) whose end points are not specified:

131 t t
oL ! ' /8L d 0L

+ | L—- ¢ ) At +/ (— — -—-—) bq;dt. (6.4.6
to ( 04 ) 0w Jto \O@  dt g ? (646)

oL
Al = —Ag;
9 T
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Note that the integral term represents the partial variation of I caused by
the Lagrangian (simultaneous) variation 6q; inside the interval (Zg,t1) and the
rest of the terms in (6.4.6) are the partial variation caused by the deferences in
the end points. Together, these partial variations make up the general (nonsi-
multaneous) variation of the action integral I.

In order for the motion of the dynamical system defined by the action inte-
gral (6.4.1) with unspecified initial and terminal time to represent an extremal
process, the integral term in (6.4.6) must be equal to zero which leads to the
Euler-Lagrangian equations

OL d oL

Bl =1

— = = ey T 4.
BQi dtaqi ) y ey T (6 7)

Therefore, the boundary conditions at the initial and terminal time are specified

by the relationship
t
oL
+ <L - —.Qi> At
to aqz

ty
—0. (6.4.8)

to

oL
ar= g,
ag; Ag

Equations (6.4.7) and (6.4.8) are the key equations, since they summarize nec-
essary conditions that must be satisfied by an extremal curve.

It is of interest to note that the equation (6.4.8) can be conveniently written
in the canonical form, that is, expressed in terms of the canonical variables
q1,---1qn,P1, ---,Pn. Namely, since the generalized momenta p; are defined by
equation (1.8.1) as p; = 8L/8¢; and the Hamiltonian function is given in the
form (1.8.4), H = g—f;zj,' — L, equation (6.4.8) becomes

AI = piAgil;! — HAL = 0. (6.4.9)

The boundary conditions can be obtained by making the appropriate sub-
stitution in (6.4.8) or (6.4.9).

We will now discuss the following examples of these substitutions for de-
termination of natural boundary conditions. For the sake of simplicity we will
suppose that the initial time ty and initial position q; (t9) = A; are specified,
where A; is a set of n given constants.

1. The terminal position is specified and the terminal time is unspecified.
For this case, we obviously have that Ag; (to) = Ag: (t1) = 0 and At () = 0,
but At (t,) is arbitrary. Substituting this into (6.4.8) we have 2n prescribed
boundary conditions

qi (to) = Ai, ¢qi(t1) = B:, A, B; given constants,i=1,...,n, (6.4.10)

and

oL

-2
3 !

=0, for t=ty, (6.4.11)
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or
H=0 for t=1¢. (6.4.12)

Therefore, (6.4.10) and (6.4.11), or (6.4.12) constitute the system of (2n + 1)
equations to determine 2n constants of integration of the Euler-Lagrangian
equations (6.4.7) and unknown terminal time ¢;.

2. The terminal time and terminal position are not specified and are inde-
pendent. For this case we have

gi(to) =4; i=1,..,n, (6.4.13)

and At(tg) = 0, but At(t;) # 0 and Ag; (t1) # 0 are independent of one
another and arbitrary, hence their coefficients must each be zero. From (6.4.8)
we therefore have
oL
dg;

0, i=1,..,n, for t=1 (6.4.14)

and

0L

-2
3éiq

=0 for t=t;. (6.4.15)

However, the last two equations imply that
L(t>Q1y--~,Qnyqu~--:‘jn) =0 for t:tl (6416)

Thus, equations (6.4.13), (6.4.14), and (6.4.16) constitute a system of (2n + 1)
equations to determine 2n constants of integration of the Euler-Lagrangian
equations (6.4.7) and unknown terminal time ¢;.

3. The terminal time and terminal position are functionally related in a
prescribed way. Let us consider the case where the initial time ¢y and initial
position are given:

q; (to) =A; i=1,..,n, (6417)

but the terminal time ¢; and the terminal position g; (¢;) are not independent,
though they are constrained to satisfy the following relation:

qi (tl) :91 (tl), i= 1,...,?1. (6418)

In other words, the problem is to find the optimal trajectory of the dynamical
system ¢; (t),% = 1,...,n, which minimizes the action integral (6.4.1), where t,
and g; (to) are known and t; is the first time for which the optimal trajectory
intersects the “target set” 6; = 0, (¢1) .

Applying the generalized variation to (6.4.18), we have

do; (t,)

1

Aqi (tl) = Atl. (6419)
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Substituting (6.4.19) into (6.4.8) and taking into account that Ag; (to) = 0,
At (tg) = 0, we obtain, after collecting terms,

g—é (t1,a(t1),a(t1)) ['de:i_t(ltll - g (tl)] +L(t1,q(t1),a(t1)) =0. (6.4.20)

Therefore, equations (6.4.17), (6.4.18), and (6.4.20) constitute the system of (2n
+1) equations to determine 2n constants of integration of the Euler-Lagrangian
equations (6.4.7) and unknown terminal time ¢;.

Ezample 6.4.1. Motion of a two-degree-of-freedom system. Find the motion
of a dynamical system whose action integral is

ty ty
I= / Ldt= / (G1de + tay + g2) At (6.4.21)
0 0

and determine the relationship required to evaluate the constants of integration.
The boundary conditions are specified as

a1 (0)=0, q(t1)=1, q(0)=-4 q(t)=12 (6.4.22)

and ¢, is not specified.
From (6.4.7) the Euler-Lagrangian equations are found to be

G —1=0, g—t=0. (6.4.23)
The general solution of these equations are
t2 £3
n=5+0t+0, = E+Cst+c4- (6.4.24)

Substituting (6.4.22) into (6.4.24) we find Cy = (1/t1) — (¢1/2),C2 = 0,C3 =
(12/t1) - (t%/G) + (4/t1) ,C4 = —4. ThUS,

t2 1 t3 12 t2 4
= —_— = = — —_———t—]t—4. 6.4.25
a=3+(3-%)t o = (E-2+s (6.4.25)

Since the initial and terminal configurations are specified, the natural boundary
condition (6.4.11) is of the form L — (0L/8¢1) ¢1 — (0L/8¢2) g2 = 0 for t = t1.
Therefore,

t1qh (tl) + q2 (tl) —q (tl) 1)) (tl) =0. (6426)
Substituting (6.4.25) into (6.4.26), we have
t3 — 4t3 — 242 + 96 = 0. (6.4.27)

The positive root of (6.4.27) is t; = 2. Therefore, the motion of the dynamical
system is described by the equations

2t 3 22
—_Z = 4+t -4, 6.4.28
Q1 7 " 2= + 3 ( )
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Ezample 6.4.2. A system with one degree of freedom. We consider the prob-
lem of determining the curve that is extremal for the functional

t tq
I= / Ldt = / 1 (¢° — ¢°) dt, (6.4.29)
0 0 2

if ¢(0) = 0, and the terminal position is neither specified nor free but con-
strained, so that it satisfies the following relation:

q(t1) =0(t1), (6.4.30)
where
0(t)=(2-t)"°. (6.4.31)

From (6.4.7) the Euler-Lagrangian equation is § + g = 0, whose solution, which
satisfied the condition ¢ (0) = 0, is

q = C'sint, (6.4.32)

where C' is a constant.
Since ¢ (¢1) and t; are not specified, but they are connected with the given
relationship (6.4.30), we must apply the condition (6.4.20), namely,

oL [df
bl A - = .4.33
3 [dt q}-&-L 0 for t=t,, (6.4.33)
whence
1 ~2/3 Lo o 1.2
Ccost, -3 (2 —t1) — Ccosty| + —2-0 cos“t] — 5 sin t1=0. (6.4.34)
From this relation, we find

¢= _?; (2 t1) "2 costy, (6.4.35)

and the equation (6.4.32) becomes

2 —
g=-52-t)"%

3 3 costy sint. (6.4.36)

To find the terminal time t;, we must find the point of intersection of the
extremal (6.4.36) and the “target set” (6.4.31); that is, the equation (6.4.30)
gives after simple calculation

sin Qt] = 3t] — 6. (6437)

A numerical solution of this equation gives ¢; = 1.83. Thus C = 0.557 and the
equation of the extremal is ¢ = 0.557 sint.
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6.5 Jacobi’s Form of the Variational Principle
Describing the Paths of Conservative
Dynamical Systems

In this section, we shall demonstrate that Hamilton’s principle can be trans-

formed into a form suitable for studying the paths (orbits) of a dynamical sys-

tem, independent of the motion of the system. The considerations that follow

rest upon the supposition that the dynamical system is holonomic and conser-
vative, that is, that the total mechanical energy is conserved:

T+ =FE = const., (6.5.1)

where T' denotes the kinetic energy given by (1.4.15), T = ja;;¢;4;, and IT =
II(q1,...,gn) is the potential energy. The main idea underlying our study is
the elimination of time as the independent variable by means of generalized
coordinates, say ¢;. This is known as the Jacobi method.

Taking into account the structure of kinetic energy, the conservation law
(6.5.1) can be represented in the form

T (dt)” = ai; (q1, ..., gn) dgidg; = 2 (E — L) (dt)?, (6.5.2)

dt = ‘/%‘% (6.5.3)

Taking q; as the independent, we can write (6.5.3) in the form
[ G
Fop qul = dt, (6.5.4)

[a11 +2a15 (¢5) + @55 (95) (95)]) 5,5 =2,3,..,m, (6.5.5)

whence

where

G:

D =

and ﬁ; () = (-)’. By combining Hamilton’s action integral,

t,
I= / (T — ) dt, (6.5.6)
to
with (6.5.1), we can write it as
ty
I =/ 2Tdt — E (t1 — to) . (6.5.7)
to

Now, by means of (6.5.1) and (6.5.4), we have

q1(t1) q1{t1)
W= / o= ¢ gy = 2 G(E —Tda,, (6.5.8)
i Vi v

1(0) 7:(0)
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where W = I + E (t; — to) and ¢ (0) and ¢ (¢;) are the initial and terminal
values of the independent variable q;.

The integral (6.5.8) is usually called the Lagrangian action and Jacobi’s form
of the principle of least (stationary) action. It states that the integral

q1(t1)

W= / VRdg (6.5.9)
9:(0)

is stationary (i.e., 6W = 0) for the actual path, as compared with the neighbor-

ing paths joining the same two end points in the g, ..., ¢, space. The integrand

in (6.5.9) is given as

R=4G(E-T)=2(E - 1) [a11 + 2a1, (¢5)' + as; (¢5) (¢;)'] . (6.5.10)

Therefore, the problem of finding the paths (orbits) of a holonomic conser-
vative dynamical system is reduced to the problem of finding the extremals
of Lagrangian integral (6.5.9). In addition, the derivation of the differential
equations of extremals is not necessary, since it is possible to use the following
analogy in the notation: the role of the Lagrangian L in Hamilton’s principle
is replaced by the function v/R, while the independent variable t is replaced by
¢1- In this way we arrive at the differential equations for the paths in the form
of Jacobi:

d VR 8VR _
dq1 9(gs)"  94gs
Finally, we can determine the time by using the energy integral (6.5.3)

a1 (t1) VR
t1 - t() = / ———-—dql. (6512)
71(0) 2(E - 1)

(6.5.11)

The general solution to the problem contains 2n constants: to, F, and 2n — 2
arbitrary constants, arising as the result of integration of (6.5.11).

Ezample 6.5.1. Motion of a heavy particle in a vertical plane. Consider
the motion of a heavy particle of mass m in a vertical plane zOy, with z axis
positioned at the ground and z axis oriented vertically upward. By applying
the Jacobi form of the variational principle, we wish to find the path of motion
of a particle joining two points (zg, 20) and (z1, 21) .

The particle has two degrees of freedom, and we take for the generalized
coordinates q; = z, g2 = 2. The total energy of the particles

% (& + %) + mgz = E = const., (6.5.13)

where g is the acceleration of gravity. Taking z as an independent variable, the
function R defined by (6.5.10) becomes R = 2m (E — mgz) [(m’)2 + 1] , where
z' = dz/dz. Therefore

VR = y/2m (E — mgz) {(m’)2 n 1] : (6.5.14)
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Since the coordinate z is an ignorable coordinate (i.e.,  does not figure in \/I_Z),
we have the cyclic conservation law (see (1.4.40)) dv/R/dz’ = C = const. Hence

E—-mgz ,
Z T =C. 6.5.15
Viv@)?" (6.5.15)

By squaring and separating variables we have dxr = dz/(/—%5dz+ (5% - 1).

Integrating, one has z + D = —%,/—%ilz + (% —1), where D is a constant
of integration. Squaring again and calculating z = f (z), we have that the path

of a particle is of the form

mg o mgD mgD? E  C?
———E—z-.’l: — 2021,‘— o) +1—n—g—m—g. (6.5.16)

Since —mg/4C? < 0, we see that the path is a parabola, which is open down-
ward.

To find two constants of integration C and D, we first suppose for simplicity
that z (0) = 0 and 2 (0) = 0. Then, from (6.5.16), we have

= _Z _ = 6.5.17
mg mg  4C? 0. ( )
and the path is reduced to the form
_ mg o mgD

At this point it is convenient to introduce the initial elevation angle o be-
tween the horizontal axis Oz and initial velocity vector vg. Thus, tana =
(dz/dx),_, . Differentiating (6.5.18) with respect to = we get 2’ = — (mg/2C?) z
— (mgD/2C?) . Now by evaluating this expression at zg = zo = 0, we obtain
tana = —mgD/2C?, that is, D = —22 tan o. Entering with this into (6.5.17)

mg
we find C = VE cos a, so that
D= _2E sin a cos a. (6.5.19)
mg

Therefore, the path (6.5.18) becomes

mg 2

z=xtana —

This parabola has to pass through the point (zy, 21), and we can write the last
equation in the form

4E
tan? o — B tana + z12 +1=0. (6.5.21)
mgcy mgrs
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The selection of terminal point A (z;, z;) is not arbitrary if the total energy F
is given. Solving (6.5.21) with respect to tana we can find the elevation angle
o for which the path is going to pass through A:

2F 2
tan o = L [2E 5 - 4EZ12 - 1. (6.5.22)
mgry m2g2z%  mgzy
This solution depends upon the discriminant A = ;n—‘é—E’;—g — 4Bz _ 1 Namely,
9%z mowry

if A > 0 it follows that the terminal point A (z1,21) is the point of intersection
of two parabolas 1 and 2 depicted in Figure 6.5.1. From A > 0 it follows that
4E (E — mgz1) > m2g%z?, and from this we obtain the upper bound

n< (6.5.23)
mg

However, if A = 0, we have two identical roots, and it follows that for this case
a parabolic curve

== <__ - zl) , (6.5.24)

which represents the envelope of all possible parabolas emerging from the point
O. Thus, the point A (x4, z1) for the equal roots lays at the envelope.

The least-action path in Figure 6.5.1 is parabola 2, since the time needed to
traverse from O to A is less than that needed to travel along parabola 1. This
confirms the fact, stated earlier, that the long trajectories need not minimize
Hamilton’s action integral. It is obvious that a particle shot upward from the
origin with an initial inclination @ = 7/2 cannot cross the envelope TB. A
point on an extremal through O that touches the envelope (like the point B on
parabola 1) is said to be conjugate to O or to be a kinetic focus. On the other
hand, according to Jacobi’s necessary condition (see, for example, [83, p. 118]),
a minimizing arc OA cannot contain a point conjugate to O. Therefore, since
the point B on parabola 1 is a conjugate point, the path OBA is not a minimal
arc.

ZA
B _envelope
1
E/myg /
A(z,2) 9 /
0 N\

Figure 6.5.1
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6.6 Piecewise Continuous Extremals. The
Weierstrass—Erdmann Corner Conditions

Thus far in our development of Hamilton’s variational principle we have con-
sidered only the so-called smooth extremals for which the g; (¢) and ¢; () are
continuous in the whole time interval (Zg,¢;) . However, frequently we may be
confronted with the situation in which the extremal trajectory g; (t) is continu-
ous while the generalized velocity vector ¢; (t) can be only piecewise continuous,
that is, it may consist of segments of trajectories joined at points called corners
at which ¢; (t) is discontinuous. In this section we shall summarize the condi-
tions that should hold at these corners. These conditions are usually referred
to as the Weierstrass—Erdmann corner conditions. For the sake of simplicity we
will consider the case with one generalized coordinate g (t) only.

Let us consider the action integral with corresponding boundary conditions

ty
/ L(t,q,4)db,
t

0

q(to) = A, q(t1)=B. (6.6.1)

I

I

Let us suppose that the extremal of this problem has a discontinuous derivative
at the time 7 as depicted in Figure 6.6.1. Note that 7 is not fixed, nor it is
usually known in advance.

t
Y
Figure 6.6.1

It is obvious that for t € [to, 7] and t € [r,¢;] the extremal must satisfy the
Euler-Lagrangian equation

0L d oL

T (6.6.2)

Let us now express the action integral (6.6.1) as a sum of two action integrals,
T t
1= [ Leadis [ Leadd=h+h (6.6.3)
to T

Since the time 7 is not fixed in calculating the variation of (6.6.3) we must apply
the nonsimultaneous variations of the action integrals I; and I2. Therefore, on
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the basis of (6.6.4) we have AT = Al; + Al;, where

oL, |"- oL T - (8L d oL
AL = —A L—-——¢)|At — — —— |} bqdt,
o G s (oG] (5w
oL , |" oL (oL d oL
AL, = —A —=q | At — — —— | 8qdt,
2 = % qTﬁ(L aqq) Tﬁ/u(aq dt8q> ‘
(6.6.4)
where 7_ = 7 — 0 and 74 = 7+ 0. Since the Euler-Lagrangian equations are

satisfied for both time intervals, the extremality condition AI = 0 becomes

oL oL . _
AIl = EA(] (T) + (L — B_qq> At (T) for ™= T,
oL oL
AL, = _-é—quq (1) — (L — —é—gq) At(r)y for 7=714. (6.6.5)

From (6.6.5) we conclude that the extremal solution must satisfy

oL oL
*aE-ACI (r-) = 8_qu (T4) (6.6.6)
and
oL oL
L — —g =|L——=¢ . 6.6.7
( 9q >L ( 94 >T+ (66.7)

The last two equations constitute the Weierstrass-Erdmann conditions. As al-
ready mentioned, the Euler-Lagrangian equations must be satisfied at each part
of the extremals between (o, 7) and (7,%1). Since these equations are second-
order differential equations, their solution contains four constants of integration.
These constants should be determined from the given boundary conditions

q(to) = A= const., q(t;) = B = const., (6.6.8)

and two Weierstrass—-Erdmann conditions (6.6.6), (6.6.7), which require that %—Iq‘

and L — %q must be continuous across the corner.
Note that if we use the canonical variables g and p, then the Weierstrass—
Erdmann conditions are p,_ = p,, and H,_ = H,,.

Ezxample 6.6.1. Newton’s problem. In this example we consider Newton’s
famous problem of finding the optimal shape of a solid body of revolution, which
moves through a resisting medium in the direction of its axis of revolution with
the least possible resistance. The problem was set up and solved by Newton in
late 1685. However, this problem happens to be relevant in modern times since
its results agree very well with experimental data at hypersonic speeds (see [26]

and [73]).
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We shall consider the case when the solid is at rest in a steady stream. The
pressure drag of a body of revolution at zero angle of attack in hypersonic flow
is given by the expression

1
Drag force = 21rQ/ C, (9) ydy, (6.6.9)
0

where @ denotes the dynamical pressure, y = y () is the radius of the body,
dy/dz = tanf, and the pressure coefficient C,, (6) is given by

2(y)°

C,(0) = 2sin?9 = 271
2 (6) o

(6.6.10)

where @ is the angle between the tangent at the point (z,y) and the = axis (see
Figure 6.6.2).

y‘\

Flow B
—
—
—
— y()=R
—>
—
— >

0 c

Figure 6.6.2

We shall suppose that the body has a blunt tip whose radius at z = 0 is denoted
by y(0). Note that this radius in not given, and the problem is to determine
y(0) and the form of the Newton curve AB for which the resistance is minimal.
We suppose that the length [ and the maximal radius R of the body of revolution
are given.

The action integral of this problem is found to be

1

Drag force 2 '
—2 T TI= d. .6.
270 I=y (0)+/0 L(yy)dz, (6.6.11)

where the Lagrangian function is

Liyy) =2 W)

vy (6.6.12)

Since the radius y (0) is not given, but its place = 0 is given, we see that the
solution curve OAB has a corner at A; that is, it has a discontinuous slope.
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Since the Lagrangian function does not depend upon the independent vari-
able z, we have the Jacobi conservation law

"3
_.a_ﬁy’ — L= _ﬂ(_.y_)_——— = const. (6.6.13)
oy’

(1 + (1/’)2>2

Let us now apply the Weierstrass—Erdmann corner condition at the corner A,
where the slope of the extremal curve is discontinuous. Thus, by applying (6.6.6)
we have

oL oL
e . = o z=0+, (6.6.14)
whence,
6y (0) 2y (0 Mi)_ 24 (0
(1y’ o7 " Qy( : _ (1{’ 1) Ve , (6.6.15)

vor wort wooy wonr

This expression will be satisfied for y (0) = y (0+) and 3’ (0) — oco,y’ (0+) = 1.

We see from this that at the corner a a minimizing curve must cut the
vertical line OA at an angle of 45 degrees.

Note that we can draw the same conclusion by calculating the variation of
the action integral (6.6.11). Namely, since the Euler-Lagrangian equation has
the conservation law (6.6.13) and the boundaries of the action integral (0,[) in
(6.6.11) are fixed, the first variation of (6.6.11) reads

! —
1= [2 2y (0) [y (04) = 1],
y )
Since y (0) 1s not given, 6y (0) is arbitrary, and we have, again, that 3’ (0+) = 1.
Therefore, from (6.6.13) we conclude that the arbitrary constant is equal to

y (0). By using this in (6.6.13) we obtain the radius of the body in terms of the
slope ¢ = dy/dx = tan6 as

y(0+)=0. (6.6.16)

+wmﬂ@@=

z=0

2y2
y(a) = %O—)Q—qu)— q(0)=1. (6.6.17)

To find z in terms of g, we note that dz = édy (g), that is,

() (*35 _2 l) da. (6.6.18)
q q q

Integrating, we find

s(g) = LY (—f’}— + 211-2- n lnq) +D, (6.6.19)
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where D = const. Since for £ = 0 we have g = 1, the constant D is found to be
D = —Ty(0) /16. Hence, the equation (6.6.17) and the equation

y(0) [/ 3 1 7
- 4+ +lng— - .6.2
z(q) 1 (4q4+q2+nq 1 (6.6.20)
represent the parametric equations for the optimal shape in terms of the slope
q.
It is convenient to introduce a new parameter p = 1/q = dz/dy = cot 6 so
that the optimal shape of the body is expressed in the following way:

22
x(p)=#<z}2+ng‘—lnp—£), y(P)=y—§0~)‘(‘lj‘£l- (6.6.21)

Finally, the tip radius y (0) and the slope p; at = = [ are obtained by solving
the following system of transcendental equations, for specified ! and R:

R (+m})? 1 1(

3 7
2_ 94 _f
i+ 2P Inp, 4) . (6.6.22)

y©0)  p O y(0) 4

For example, let us suppose that R = [. From the last two equations we have

2
2,3, 7_(1+9)
2 - _—— = U 6.2
@)+ 7)) ~lnp -5 p (6.6.23)
whose solution is found to be p; = 1.917. Thus, the parameter p = 1/q = dz/dy
changes from 1 to 1.917. From the first equation of the system (6.6.22) it follows
that y (0) = 0.352R, and with this the optimal profile is completely specified.

The minimum-drag coefficient can be easily calculated from (6.6.11) and
(6.6.12):

Drag force 2 / "y ()
—— =2y"(0)+ | ——5dx. 6.6.24
TQ ) ( ) b 1+ (y,)z ( )

Remembering that y' = ¢ and substituting (6.6.17) and (6.6.18) into the last
equation, we obtain

Drag force y(O)2 a 3 5 1
o 92 A N —_——— d 6.2
pr y* (0) + 1 /1 q+q q, (6.6.25)

where ¢, denotes the slope at z = I. From (6.6.17), evaluated at z = [, it follows
that y (0) = 4Rq}/ (1 +q,2)2. Entering with this into the last equation and
integrating, we obtain the minimum drag coefficient as

c Drag force ¢
D —1 =
TQR? 1+ ¢2)*

For example, if R = l,q = 1/p; = 0.522, the minimum drag coeflicient is
Cp = 0.7494.

(17gf + 3+ 107 — 4¢;' Inq; +247) . (6.6.26)



Chapter 7

Constrained Problems

7.1 Introduction

In the previous sections we considered Hamilton’s variational principle in terms
of independent generalized coordinates ¢;,7 = 1, ...,n, where n is the number of
degrees of freedom of a dynamical system. In this chapter we will consider
several important situations in which the generalized coordinates are not in-
dependent but are restricted by given auxiliary conditions. Namely, it is not
uncommon in the analysis of applied variational problems to be faced with the
task of finding an extremal dynamical trajectory within the framework of a
certain number of restrictions that have physical origin

7.2 Isoperimetric Constraints

An isoperimetric!® problem is the one in which one seeks the extremal of the
given action integral

1
I =/ Lty s oos s 1, o i) (7.2.1)
t

0

for the class of trajectories for which the auxiliary conditions occur as a set of
degnite integrals which must have specified constant values Cy, k = 1,...,7, with
rzm, namely,

i1
Gr(t,q1, -1 qn,q1,---,4n) dt = Cy; C} are given constants. (7.2.2)
to

As indicated before, we might have an arbitrary number of conditions (7.2.2)
prescribed as auxiliary conditions.

13The term isoperimetric comes from one of the oldest problems of variational calculus for
which one has to find a simple closed curve of given length which closes the largest area.

B. D. Vujanovic, et al., An Introduction to
Modern Variational Techniques in Mechanics and Engineering

© Birkhiuser Boston 2004
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To find the extremal of isoperimetric variational problems, we shall employ
the method of Lagrangian undetermined multipliers, or the so-called Euler rule.
Namely, the constraints (7.2.2) are accounted for by introducing r unknown
constant Lagrangian multipliers A,k = 1,...,7, and defining the augmented
functional

t) 13}
Ia“!]‘ = / Lﬂug- (ta q; c‘lr A) dt = / [L( » A g ) + MGk (t q, q)} dta (723)
t

to 0

where q= (qlv ---»Qn) ) (.1 = (QIY ) qn) s and A = (/\ly ey A'r) .
Calculating the first variation of the expression (7.2.3), we obtain

oL Gy oL 0Gy,
aug. — i () dt
Hleus A, [(3(11 e )6q (3r1 R )&1]
i = 1,,n, k=1,..,n (7.2.4)

Employing the commutativity rule §¢; = (d/dt) 6g; and integrating the second
group of terms by parts, we arrive at

oL il oot rraL 3Gy
aug. = a5 i A ——
o g (6‘11 AT 04; )511 to +./t(, (afh M 0q; )i
oL 0Gy
i 7.2.
+ (6q, + Ap— B )] bq;dt. ( 5)

Let us suppose that the boundary conditions are given in the form of (5.2.1);
that is, g; (to) = A; = const.,q; (t1) = B; = const., and the time interval (¢o,%1)
is prescribed. The condition for extremal I, that is, 6I,, = 0, leads to the
Euler-Lagrangian equations

6Laug. d aLuug .
—_ — L= = cos s .2.
sq{ : ,q, 0, 1 1, R (7 6)

which together with the boundary conditions and isoperimetric constraints char-
acterized the solution.

Erample 7.2.1. One-degree-of-freedom isoperimetric problem. Find the ex-
tremal of the action integral

/2
= / (¢ — ¢?) dt, (7.2.7)
0
subject to the isoperimetric constraint
/2
/ gsintdt =1, (7.2.8)
0

if the boundary conditions are

q(0)=0, gq(r/2)=0. (7.2.9)
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Let us introduce the constant Lagrangian multiplier A and form the aug-
mented Lagrangian Lg,, = (q2 — ¢%) + Agsint. The Euler-Lagrangian equation
(7.2.6) is

g+q= % sint. (7.2.10)

The general solution of this nonhomogeneous differential equation is found to be
q = Cycost+ Cysint — (At/4), where C; and Cj are arbitrary constants. Ap-
plying the boundary conditions (7.2.9) we find ¢ = — (At/4) cost. Substituting
this into (7.2.8) we find

—4 32
T2 sintcostdt | T
Jo ! " tsint costdt

(7.2.11)

Therefore, the extremal function is ¢ = (8t/7) cost.

Ezample 7.2.2. Equilibrium configuration of a flexible rope. To illustrate the
proceeding discussion, let us determine the configuration (the form) in which a
perfectly flexible, uniform rope that is fixed at both ends will hang in a uniform
gravitational field, in equilibrium. The rope has a uniform mass per unit length
(constant line density) denoted by p. We propose that the rope will hang in such
a way that its potential energy is in minimum, subject to the constraint that
the length of the rope remain constant (inextensibility condition). The potential
energy of a rope, taking y = 0 as the zero energy level, is Il = 7g f;ol yds, where
g is the acceleration of gravity and zg, z; are coordinates of the points A and B
where the rope is hanged on the horizontal axis = (see Figure 7.2.1) and is the
s arc length of the rope axis.

yA

B(Euyx)

Alx,y)

sy

Figure 7.2.1

To simplify calculations, we introduce the action integral in the form

1
I= I =/ yds. (7.2.12)

pg

The isoperimetric constraint is of the form

z)
/ ds = L, given the length of the rope. (7.2.13)
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Here g denotes the acceleration of gravity and ds = 1/1 + (¢’ )2dz is the ele-

mentary arc length of the rope. Here () = Z‘i; (). The augmented Lagrangian
function (7.2.3) is

Laug. = (y = N) {1+ ('), (7.2.14)

where A is a constant Lagrangian multiplier.

Instead of writing the Euler-Lagrangian equation in accordance with (7.2.6),
we notice that the augmented Lagrangian function (7.2.14) does not depend
explicitly upon variable z. Thus, according to (1.4.44), there exists the Jacobi
conservation law Loyg. — (0Lgug./0Y')y' = C1 = const., which yields

(y=AN 1+ @) - Sy—-_—/\M = C; = const., (7.2.15)

Y1+ @)’

-2 -2
v = \/(i—lz—ﬁ. (7.2.16)
Ct

Separating variables and integrating, we find that

whence

o [ Y22 4 (122 2—1 —z-C (7.2.17)
1 C] C] = 2, Lo

where C is a new constant of integration. Therefore,

oA () ()
c + (01 ) l=e . (7.2.18)

The reciprocal of this expression leads to

y— A y—A 2 (-——}‘J)
_ —1= T /. 7.2.19
-y () 1= (7:219)
Combining, the last two expressions, we have
y— = Cycosh T2 (7.2.20)
G

Three constants C1,Cs, and X should be determined from the following three
conditions: (1) the curve must pass through the point A (zo,0); (2) the curve
must pass through the point B (x1,%;); and (3) the length of the curve as
computed by equation (7.2.13) must have prescribed value L.
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At this point the following two remarks are in order. First, by introducing
the coordinate transformation

! !

the curve (7.2.20) is represented in the form

z—Co
c,

The axis § is depicted in Figure 7.2.1 and it passes through the lowest point M
of the curve. The constants C; and Cy are also depicted. The constant C] is
referred to as the directriss, and the shape of the rope is called a catenary.
Second, it is easy to calculate the arc length of the catenary starting from
the lowest position, that is, from the point M. Since ds = /1 + (v/)°dz we
find from (7.2.13) that ds = C; cosh (E—E—?l> d (Ec—gi) , where we have used the
relation cosh®z — sinh? z = 1. Integrating from the lowest point M, we have

g = C} cosh (7.2.22)

1

s = Cysinh (x ;CQ> . (7.2.23)

In order to determine the constants C;, Cy, and A, we shall suppose that y; > yo
and ®; > xg, as shown in Figure 7.2.1. Now we have from (7.2.23) that

. xzy —Cy . zg — Co
L = —
Cy [smh ( G > sinh ( c )]

- —2
9C, sinh x12 zo z1 + 20 — 2C,

!

Il

7.2.24
G, cosh 5 , ( )

and from (7.2.20) one has

-y = C (cosh 7 g ¢ cosh 3205—02)

1 1
- —2
— 2C;sinh “2 C:’" sinh 21T xg,l 2 (7.2.25)

where we used the well-known relations sinh X — sinhY = QSinh% (X+Y) x
cosh 3 (X —Y) and cosh X — coshY = 2sinh § (X + Y)sinh § (X —Y). Com-
bining (7.2.24) and (7.2.25), we have

71 + 20 — 20 _ B

tanh
an . 7

(7.2.26)

Since the right-hand side of this transcendental equation is known, we can find
a unique solution of it in the form

1 + 29 — 2Co

c = 0 = const. (7.2.27)
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From (7.2.24) and (7.2.25) we have

VL% = (41 — v0)? = 2Cy sinh 222 (7.2.28)
2C,

Dividing both sides of this equation by

I — g

¢= 50,

(7.2.29)

we have the second transcendental equation

. [ra_ . _ . \2
sing _ YI2—i—w)” oy (7.2.30)

? T — T

where k is a given number.!* Therefore, by determining ¢ from the transcen-
dental equation

sinh ¢ = ke, (7.2.31)

we can easily find the constants C; and Cs from two algebraic equations (7.2.27)
and (7.2.29):

6
Cr= 51(—/) (71 —x0), Co= % [930 R P (21— 330)] : (7.2.32)

Finally, the Lagrangian multiplier A can be easily determined from the equation
(7.2.20).

7.3 Algebraic (Holonomic) Constraints

Let us determine a set of necessary conditions for the actual motion of a dy-
namical system whose trajectory is q =(q1 (t), ..., gn (t)) to be an extremal for
the functional of the form

ty
I= / L(taqu---,Qn,ély---ﬁn)dt; (731)

to

in the presence of the algebraic constraints
fsqyengn) =0, s=1.,k k<n (7.3.2)

We suppose that the time interval (tg, t;) is given. It is clear that the appearance
of these k constraint relations means that only (n — k) of n components of q
are independent.

M4For proof that k > 1, the reader can consult [6]. Determination of C1,C2, and A in [83],
which we follow, takes this fact for granted.
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Generally, it would be difficult or frequently impossible to calculate & de-
pendent coordinates, say qi, ..., gk, from (7.3.2) in terms of (n — k) independent
coordinates gky1,...,gn and to use these equations to eliminate k dependent
coordinates from I.

As a better approach we can use the Lagrangian multiplier method. First,
we form the augmented functional by adjoining the constraint relations to I,
and thus we have

t1
Toug. = / [L(t,q,q) + As (2) fs (¢, Q)] dt, s=1,.. k. (7.3.3)
to
Note that for the case when auxiliary equations (7.3.2) are satisfied, Joyg. = 1
for all unknown Lagrangian multipliers A (t), s=1,..., k.
Calculating the first variation in the usual manner (7.3.3), that is, introduc-
ing variations in the functions q,q, and A, we find

191
%w=/ OL 0I5\ sg + 2o+ 1,60, | at. (7.3.4)
t dq; Og; Jq;

Employing the commutativity rule 6¢; = (d/dt) 6¢;, integrating by parts, and
retaining only the terms inside the integral (supposing that the boundary con-
ditions g¢; (tg) = Ai,q: (t1) = B; hold), we obtain

t oL d 0L ofs
au = = T A s i séAs dty
Slowg. = [ (5 g 50 ) bo+ S |

i = 1,..,n. (7.3.5)

On an extremal, the variation 6I,,4. = 0. Also, the auxiliary equations (7.3.2)
must be satisfied by an extremal, that is, f; (¢,q) = 0,s = 1,..., k. Since the
holonomic constraints are satisfied, we can select k¥ Lagrangian multipliers A
arbitrarily. Let us select A’s in such a way that the coefficients of k components
of 8g;, say i = 1, ..., k, are zero over the whole time interval (¢o,¢1) . The remain-
ing n — k, components of q, that is, 6q;,7 = k — 1, ..., n, are then independent.
Thus, the coefficients of these components of §q must be equal to zero. The
final result is that in addition to k auxiliary equations (7.3.2), the equations

doL 0L | 0fs

dtd¢;  Oqi  ° g’
must be satisfied.

Therefore, n Euler-Lagrangian equations (7.3.6) and k algebraic constrained
equations (7.3.2) constitute a system of n + k equations for determining n + k
unknown generalized coordinates g; = g; (t) and k Lagrangian multipliers A, (¢) .

Note that the Euler-Lagrangian system can be written in a more concise
way if we introduce the augmented Lagrangian function

Laug. (£,9,4) = L(t,q,4) + As (¢) fs (, ) - (7.3.7)
Then, the system (7.3.6) can be written as
4 0Laug. _ OLaug.
dt 0¢; 9g;

)

i=1,...,n; s=1,..,k, (7.3.6)

=0, i=1,..,n (7.3.8)
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7.4 Differential Equations Constraints

In this section we examine the following constrained problem: Find the ex-
tremals of the action integral

ty
I:/ L(t'pqu'--9qn7q17"'yqn)dt7 (741)

to

subject to constraints in the form of k < n differential equations?®

hs (£,1, ey Gny @1y orGn) =0, s=1,..,k. (7.4.2)

It can be shown that the solution procedure of this constrained problem proceeds
along the same lines as the procedure for the problems considered in the previous
section. Namely, we can use the method of Lagrangian multipliers.

Let us form the augmented action integral

aw=/’wmqm+&mmmmmwa (7.43)

to

where ), (¢) are unknown Lagrangian multipliers and q = (q1, ..., ¢n) . Perform-
ing the variation of q, §, and A, we find that the variation of I .4 is given
as

“ oL oL
(SIau .= / [—5 i+—.6‘i
I t L9 ¢ 0q; e
+As ahs&qi+ %&L’ + hsbAs| dt. (7.4.4)
9gi 04
Employing the commutativity rule é¢; = % (6¢:) and integrating by parts, we
find
oL oh oo r/9L  d oL
6Ly, = (2= 42,228 g, oL 4oL
g (6%’ + 94q; ) b4 to + [;0 Kqu dt 9¢;
Oh . Oh d Oh
Asos — Agms — A== | 6qi + hobAs| dt. (745
+ 0q; A 04g; dt Oq,-) %+ } ( )

On an extremal, the variation should be equal to zero, that is, 61,,, = 0, and
the differential equation of constraints (7.4.2) must also be satisfied. Therefore,
the coeflicients of 8¢; and ) in (7.4.5) must be equal to zero.

Repeating the same reasoning as in the previous section (see discussion after
(7.3.5)), the final result is that the expression under the integral sign in (7.4.5)
must be equal to zero, which can be written in the form

d d 9
Og; (Lt Aehe) = 25

dt 9¢g;
15Note that differential equations (7.4.2) are not supplemented by Hertz-Holder conditions
(1.5.12) or (1.5.13).

(L+Ashs) =0, i=1,..,n. (7.4.6)




7.4. Differential Equations Constraints 249

The rest of the equation (7.4.5) becomes

OL Ohg
5Iaug. = ('87 + )\s 8(] > 5(]1

In conclusion we can state the following.

t)
=0, i=1..,m (7.4.7)

to

(a) The n Euler-Lagrangian differential equations of extremals (7.4.6), which
are equations of the second order, together with k differential equations of con-
straint (7.4.2), form a set of k + n differential equations for finding the n gen-
eralized coordinates (extremals) gqi,...,q, and k Lagrangian multipliers A, (t),
s=1,..,k

(b) The expression (7.4.7) obviously serves as the source for finding the
boundary conditions of the variational problem (7.4.1), (7.4.2).

(i) If the initial and terminal configurations A and B are given in the form
of (5.2.1), that is, if the boundary conditions are prescribed in advance, then
we have that 8¢; (to) = 6¢; (t1) = 0 and 8I,,4 = 0. Thus, the constants of
integration will be determined from the 2n given conditions (5.2.1).

(i) However, if the both configurations A and B, are not specified, or A or
B are not specified, then from (7.4.7) we obtain the following natural boundary
conditions:

<6—L + A %) = 0 if the initial configuration A
aQi 3q1 to
is not specified,
A “
(g—i + As %c-]:) 6q; = 0 1if the final configuration B
is not specified,
(8‘.L + A %) = 0 if both configurations A and B
aqi 8(]1 to
oL B b
(8_% + /\s%&:> 5q; = (0 are not specified. (7.4.8)

Ezample 7.4.1. Particle moving freely in a plane. The particle of unit mass
is moving in the plane Oxy frecly. By means of an electronic control system the
velocity of the particle in the z direction is constrained to be proportional to
the position of the particle in the y direction, that is,

h(t,z,y,2,9) =2 +y =0, (7.4.9)

where we assumed that the proportionality factor is equal to —1. Assuming that
the position of the particle is specified at the end points and the time interval
(0,T) is given, find the extremal of the motion, taking as the basic functional
(criteria of optimality)

T
I :/ %(:ﬁ + %) dt. (7.4.10)
0
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Since the particle is moving freely, its Lagrangian consists of kinetic energy only.
This was used in writing (7.4.10).
Introducing the augmented action integral, we have

T
1
Taug. = /0 [5 (B+9?) + 2@+ y)] dt. (7.4.11)
The Euler-Lagrangian equations (7.3.6) in our case are
i+A=0, §—A=0. (7.4.12)

These two equations together with the equation (7.4.9) form a system of three
differential equations for finding the extremal z () ,y (¢) and Lagrangian multi-
plier A(t). Since the initial and terminal configurations are specified, say,

T (0) = Aly Yy (0) = A2a T (T) = B]a y(T) = B2’ (7413)

it is evident that the expression (7.3.7) is satisfied, that is, that there are no
natural boundary conditions.
The integration of (7.4.12) and (7.4.9) is simple and yields the solution

z = —Cit—Cysint— Cscost—Cy, y=Cy— Cacost— Cssint,
A = Cycost+ Cssint, (7.4.14)

where C}, ..., Cy4 are constants of integration that can be easily determined from
the given boundary conditions (7.4.13).

7.5 The Simplest Form of Hamilton’s Variational
Principle as a Problem of Optimal Control
Theory

The problem of finding the extremals of an action integral in the presence of a
certain number of differential equations as constraints, considered in the previ-
ous section, can be easily translated into the language of optimal control theory
since this contemporary part of applied mathematics, physics, and engineering is
in its principal part based upon the applied variational calculus and Hamilton’s
variational principle.

In this section we shall demonstrate that the simplest form of the Hamilto-
nian variational principle considered in section 5.2 can be interpreted in terms
of optimal control theory.

Let us consider the action integral

t1
I= / L(taqu'-'uqn)qla'--aqn)dty (751)

to

where the time interval (tg,t1) is specified. Let us also assume that the initial
and terminal configurations A and B are specified, that is, ¢; (t0) = A; =
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const.,q; (t) = B; = const.,i = 1,...,n. We shall now reformulate Hamilton’s
principle 61 = 0 in the following way.

Consider the functional (criterion of optimality, objective functional, perfor-
mance measure, etc.)!6

ty
j:/ L(t,ql,“.,qmul,...,un)dt, (752)
to

subject to the differential constraints
41 =1Uui, (jg = Uz, ,qn = Un. (753)

Here, the generalized coordinates g;,7 = 1,...,n in accordance to the usual
terminology of the optimal control theory are named the state variables, and
the u; are called the control variables.

According to equation (7.4.3) let us introduce the augmented integral

ty
Toug. = / (L g1,y @y U1y ooy Un) + Ai (0 — Gi)] dt. (7.5.4)
t

0

Calculating the first variation of (7.5.4), using the commutativity rule, and
performing the partial integration, we find

- t oL
- ). |t ) )
5Iaug. = Ai (t) 6(]1 to + ~/t(, 1(8141 + Az) bu;
+ (gﬁ + A) 8qi + 68X (u; — qi)} dt. (7.5.5)

Since 6q; (tg) = 6q; (t1) = 0, the extremality condition 6I,ug. = 0 generated the
following system of equations:
oL oL

A= — A=, G = Uy 7.5.6
Ou; Jq; ¢ b ( )

Differentiating equation (7.5.6); with respect to time ¢ and combining it with
(7.5.6)2 and (7.5.6)3, the condition 8l,,4 = 0 leads to the Euler-Lagrangian

equations
OL d 8L
= _ = i =1,...n. 7.5.7
oq diog O T hLoon (75.1)

We show next that the augmented action integral can be transformed in such a
way that it generates the Hamiltonian canonical equations.
Let us introduce the Hamiltonian function as

H(t,q, A1) = L(t,q1, 0, Gn, Uty ony Un ) + Adls, (7.5.8)

16Since the terminology in the theory of optimal control is not quite unified, we have par-
enthetically noted several frequently used names for the integral (7.5.2) usually employed in
the literature.
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thus the action integral (7.5.4) becomes

ty
I_au9~ = / [I—{ (tvqy Aau) - )\1%] dt. (759)

to

Performing now the variation of this action integral, using the commutativity
rule and integration by parts, we find

_ 2 H .
5Ia,ug. = =X (t) 6q; z: +/ [(?— + /\z> bq;
! to Jg;
O0H 0H
+ ( ot q,) 6N+ o 5u1] d (7.5.10)

The condition 6I_aug, = 0 generates the following system of equations:

. oH 0H
i= , Gi=—-——, t=1,..,mn, 7.5.11
A 94: q £}V i=1 n ( )
and
0H =0. (7.5.12)
Bu,»

It is clear that with the identification \; = p;, where p; are generalized momenta,
2n differential equations (7.5.11) are identical with the Hamiltonian canonical
equations (1.8.14). Note that in analytical mechanics Hamilton’s function, ac-
cording to equation (1.8.4), is defined as H = —L+ p;q;, and here, in the theory
of optimal control, the Hamiltonian is traditionally defined by equation (7.5.8).

Thus, the optimal control approach yields the necessary conditions for the
simplest of Hamilton’s principle problems

It is easy to demonstrate that the Hamiltonian function H is a conservation
law on the optimal trajectory, that is, H/du; = 0, if the Lagrangian function
L is not an explicit function of time t

H = const. on the optimal trajectory. (7.5.13)

The proof of this statement is the same as in section 1.8.

7.6 Continuous Optimal Control Problems

In this section we will apply the Hamiltonian principle with differential equa-
tions as constraints, considered previously, to optimal control problems. We
shall confine ourselves to the cases in which the components of the control vec-
tor u =(uy,...,u,) are not restricted, which means that the vaeriation éu is
completely arbitrary in the space of admissible controls and in the whole time
interval (to,¢1) in which the physical process is taking place.

We note that the problem posed in this section can be considered as a special
case of the Pontryagin mazimum principle [49], [87], [26].
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Consider the dynamical system described by the following system of differ-
ential equations:

&= fi(t,q,u), to<t<t, i=1,.,n, (76.1)

where q = (q1,-..,qn) , 0 = (U1, ..., U, ) . We shall assume that the functions f;
have continuous partial derivatives with respect to q and u.

Consider also the following functional (criterion of optimality) in the Bolza
form:

[=0lt,q(t)] +/ "L (tq,u)dt, (7.6.2)

0

where ¥ and L possess continuous partial derivatives with respect to q and u.
In what follows, we shall suppose that the time interval (¢p,%1) is specified,
and also, the initial position of the system is given, that is,

qi (tg) = A; = const., (7.6.3)

so that 8¢; (to) = 0. However, the terminal position of the system is not specified,
thus

bqi (t1) # 0; (7.6.4)
that is, 8g; (1) is completely arbitrary. The problem is to find an optimal control
vector u = (uq (£), ..., um (t)) which induces the system of equations (7.6.1) to
follow an optimal trajectory q = (g1 (t) , ..., gn (t)) that minimizes (or maximizes)
the functional (7.6.2).

Let us adjoin the differential equations (7.6.1) to the functional I by intro-
ducing the unknown Lagrangian multipliers, which we are going to denote by

P1{t), ., pn (B):
Taug. = ¥ [t1,q (t1)] +/t l {L(t,q,u) +p;[fi (t,q,0) — g} dt. (7.6.5)

As suggested by equation (7.5.8), for the sake of simplicity, we can introduce
the Hamiltonian function as follows:
H(t!qip’u) = L(taq: u) +plf1 (tyqyu) ) (766)

and the functional (7.6.5) becomes

Taug. = U [t1,q (t1)] + / "[H (tq, p, w) — pidi] dt. (7.6.7)

to

Calculating the first variation of (7.6.7), recalling that —p;8¢; = — (d/dt) (p;6¢;)
+p;ibg;, and performing partial integration, we obtain

oy
6laug. = (8 A —Pi> bg;

qi

+ Pi5qi|t=to
t=t;

B /0H OH OH
5 ) 6gi + | =— — ¢ | Ops + =——6u, | dt.
+/t0 [(6% +p1> 6q; + <8p,- Qz> &p; + auSéu]

(7.6.8)
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A necessary condition for the extremality is that the first variation of Io.g.
vanishes for arbitrary 8q;,6p;, and §u;. Hence the coefficients of these varia-
tions inside the integral sign must vanish. Thus we obtain the following Euler—
Lagrangian equation in canonical form:

0H

G = 8p., or q; = fi (tv q, u) 3

. . oL of; . .

5 = —_—— i = — " — i~ y = 1) ceey Ty 7-6.9

p B0 or p oq; Y2 Ba; %7 n ( )

and
O0H oL 8f; .
= [ — — = ves = . . 6.1

aus 0 or aus +p18us 0, ? 17 PR s 1) ,m (76 0)

Equation (7.6.8) now becomes

5Iaug. = (6_\1i —jlh) 5(11

dg; + Pi&h‘t:tu f (7.6.11)

t=t;

whence, taking into account (7.6.3) and (7.6.4), we find the following n natural
boundary conditions:

pi = ov for t=t;; i=1,..,n. (7.6.12)
0g;

Therefore: in order that functional I given in equation (7.6.2) may be a
mazimum (or minimum) for a dynamical process described by equations (7.6.1),
with the initial conditions at t = to given by (7.6.3) it is necessary that there
exist a nonzero continuous vector function p = (p1,...,Pn) satisfying equations
(7.6.9)2 and (7.6.12) and that the control vector function u = (uy (), ..., um (t))
is so selected that the Hamiltonian function H (i,q,p,u) is a mazimum (or a
minimum,) for every t, tg <t < t;.

This statement actually summarizes, the famous Pontryagin mazimum prin-
ciple.

Note that the optimal control vector u, (£),s = 1,...,m is selected from the
set of algebraic equations (7.6.10), that is, 0H/du; = 0,s = 1,..., m. However,
these equations are valid only under supposition that the components of u are
not subject to any restrictions. If, however, the control vector is subjected to
some kind of restriction, so that it belongs to a certain set of functions u €U,
then the condition 8H/0u, = 0 is not valid. The condition (7.6.10) is, in this
case, replaced by a more general statement:

Lnei[r}H (t,q,p,u). (7.6.13)

To determine optimal control u = u* € U from (7.6.13), one often has to have
information about q and p, and this makes the process of optimization more
complex. The values of u = u* minimizing H (¢,q,p,u) are located on the
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boundary of the set U. The interior and boundary solutions are illustrated in
Figure 7.6.1.

‘We note that the rigorous proof of Pontryagins maximum principle is given
in [87) and will not be presented here. This principle “represents, in a sense,
the culmination of the efforts of mathematicians, for considerably more than a
century, to rectify the Lagrangian multiplier rule” [131, p. 230].

HA Interior solution
oH _
\ u =0
ant
|
{ | .
0 »
U uapt u
H
| | Boundary solution
' min H(t;q:p:u)
Hupt o uel
l
! .
0 u
U
Figure 7.6.1

As in the previous section, it is easy to verify that if H (or L and f;) is not

an explicit function of time ¢, we have that H is a conservation law of the

boundary value problem describing the minimization procedure. Namely, since

H (t,q,p,u), the total derivative of this function with respect to time reads
dH OH  0H 0H OH

—q; + =—P; + —Us + . 7.6.14
dt 8qiq + 8pip + Busu + Jt ( )

Using the equations of motion (7.6.8) and (7.6.9) and collecting terms, we obtain
ﬂ— 8_H+‘. f(t )+3_Hu +21:_I_
dt  \Bg ") G s e

Along the optimal trajectory, the first term vanishes because of the differential
equations (7.6.9). The second term vanishes because of (7.6.10). Thus, along
the optimal trajectory,

(7.6.15)

dd OH

dt ot
Therefore, if the problem is scleronomic (autonomous) in both L and f; then
the Hamiltonian is constant over time

H = const. (7.6.17)

(7.6.16)
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Ezample 7.6.1. Optimal control of a two-degrees-of-freedom system. As an
illustration, let us consider the dynamical system whose behavior is described
by the system of equations

41 :uly 42=‘Il+u27 0_<_t_<__ 1, (7.618)
with the initial conditions
@ (0)=0, ¢(0)=0. (7.6.19)

The problem is to determine the state variables (generalized coordinates) ¢ (t)
and ¢z (¢) and the optimal control variables u; (t) and uy (t) that minimize the
functional

1
I =agq, (1) +bgz (1) +/ (u? +us + q1) dt, (7.6.20)
0

where a and b are given positive constants.
The Hamiltonian of this problem, according to (7.6.6), is H = u? +u+q; +
p1ug + p2 (@1 + u2) . The second pair of the canonical equations (7.6.9) reads

O0H oH
)= —e— = —1 —py, pg=——=—— =0, 7.6.21
"N 9q1 p2 P2 an ( )

while the optimal selection of the components of the control vector follows from
the equations (7.6.10), namely,
oH OH
g1 _, -0 22 _o =0. 7.6.22
o, 2w +p1 =0, Buy ~ 2u2 +p2 ( )
In our case the Bolza term ¥ (g; (t1),g2 (t1)) = agi (1) + bgz (1), so that the
natural boundary conditions are, according to (7.6.12),

ov ov
1)= — = q, 1)= — =b. 7.6.23
p (1) i p2(1) 9, ( )
Integrating (7.6.21) and applying (7.6.23), we find that

p(t)=—04+bt+a+b+1, p(t)=0b. (7.6.24)

The components of the optimal control vector are therefore

1 b

ul(t)z——%:5[(1+b)t+a+b+1], us (t) = -3 (7.6.25)

Entering with this into (7.6.18), integrating, and determining the integration
constants from the initial conditions (7.6.19), we find that

%[(1—b)t2—2(1+a+b)t],

q (1)

) = 115 [+ —3(1+a+0)e - 6bt] . (7.6.26)
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7.7 Optimal Control Problems with
Unspecified Terminal Time

In the continuous problems of optimal control theory for which the final time
t; is not specified, several situations may occur. For various cases see [61, pp.
192-198]. Here we are going to limit ourselves to the case whose optimality
criterion is given in the Bolza form

I'=9t;,q(t1)] + /tl L(t,q,u)dt, (7.7.1)

where ¢ =(¢1,...,qn) ,u = (u1, ..., umm) . The behavior of the dynamical system
is described by the system of differential equations

ql:fl (tyquu)a izl:"'!"‘ (772)

We shall suppose that the initial time tq is specified and that, also, the initial
position of the system is prescribed, so that

qi (to) = A; = const. (7.7.3)

The terminal time ¢; is not given and the terminal configuration ¢; (1) can be
given or not given.

To include the differential equations constraints (7.7.2), we form the aug-
mented functional

Loy, = Ult1,q ()] + / Ltaqu) +pilfi (bqw) —dlbdt (17.4)

As in the previous section we introduce the Hamiltonian

H(t,q,u,p) = L(t,q,u) + pifi (t,q,u) (7.7.5)
and write (7.7.4) in the form
ty
Iaug, = \II [tluq(tl)] + {H (t’qa u) p) _p"-q"-} dt (776)

to

Since the terminal time ¢; is not specified, we shall use here the generalized
(nonsimultaneous) variations. Recalling the equation (6.4.4), which states that
the generalized variation of a functional

ty
I= / L(.)dt (7.7.7)
to
is given in the form

ty
AI:(S/ L(...)dt +LAt[g (7.7.8)

to
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the variation of (7.7.6) becomes

St = (Zanr )

7.7.9

ty
ty
+5/ {H(t,q,u,p) —pidi} dt + (H (t,q,u,p) — pigi) At ,
to

where we have taken into account that the initial time ¢y and initial position
are specified, so that Atp = 6tp = 0 and Ag; (to) = 6gi (to) = 0.

Performing the variation of the integral term in (7.7.9) and noting that
—pibg; = — (d/dt) (pibqi) + pi8q;, after partial integration, we arrive at

ty
[\ -pdlde = -pdal,
to
“/oH OH OH ]
97 vpi) 6+ [ 2= — i ) 6pi + ——6u, | dt,
+/tn [<3Qi+pl)6q +(8p,- q) P +8us v
i = 1, o n, S = 17 ey M (7710)

Employing the relation 8¢; = Agq; — ¢; At (see (3.2.5)) and entering with (7.7.10)
into (7.7.9), we obtain the following expression:

U
Algug. = {(g—: —Pi) Ag; + <%—t + H) At}
1 t
LT /oH oH oH
— 4+ pi ) 6qi + | =— — ¢ | 6pi + =—bu, | dt.
+£0 [(6%’ +p1)5Qz+(api q1)5p +6u36u]

(7.7.11)

We use the same arguments as in the previous section and conclude that the
optimal behavior of a dynamical system is described by the following Euler-
Lagrangian equations, in the canonical form

on

i = = fi(t,q,u),
i s (t,q,u)
. OH oL of;
= ——— = - — D ) =1,..,’Il,
P g~ 0g g
O0H oL af;
= : =1,..,m. 7.7.12
OQu, Oug tp Ou,’ §F hen ( )
Hence, (7.7.11) becomes
ov v
Aljyg = | — —p; | Aq; (¢ — +H|At(ty). 7.7.13
o= (G ~m) da) + (G + 1) ae(e) (7.3
The condition for optimality Al,,, = 0 will provide the necessary natural

boundary conditions. Let us consider the following two cases which frequently
arise in practical situations.
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(a) The final position is given, the final time t1 is not specified. Let q; (o) =
A; = const.,q; (t1) = B; = const., and the terminal time not be specified.
Therefore, Ag; (t1) = 0 and Aty is arbitrary, so that we have as the natural
boundary condition the following scalar equation:

68—‘3 +H=0 for t=t;. (7.7.14)

If the Bolza term is equal to zero, that is, ¥ = 0, we obtain
H=0 for t=t. (7.7.15)

This case, for n = 1, is depicted in Figure 7.7.1.

g A
q(t)=B
q(ty)=A ’
- »
o t= | A t
Figure 7.7.1

(b) The final configuration ¢; (t1) and the final time t1 are not given and are
independent. Since Ag; (t1) and Aty are arbitrary, from (7.7.13) the requirement
for extremality Al,.y. = O generates the following natural boundary conditions:

ov

pi(t1)) = +— , i=1,..,n,
9 t=t,
%\5+H = 0 for t=t. (7.7.16)

If the Bolza term is equal to zero, that is, ¥ = 0, we have

pi(ty) = 0, i=1,.,n,
H = 0 for t=t. (7.7.17)

Note that there exist a variety of special cases for which finding the natural
boundary conditions is a matter of making the appropriate substitutions into
equation (7.7.13). Note also that the natural boundary condition (7.7.15) and
(7.7.16)2 for the case when the Hamiltonian is not an explicit function of time
is equal to zero or is constant, respectively, for the whole time interval (¢o,t1, ).

Ezample 7.7.1. The brachistochrone problem as the problem of optimal con-
trol theory. Let us consider again the problem of brachistochrone discussed in
Example 5.2.1.
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First we note that in accordance with (5.2.27), the differential equations of
the motion of a heavy particle are

T =4/2gycosu, Y= +/2gysinu, (7.7.18)

where u (the angle between the tangent at the curve and the z axis) plays the
role of the control variable. The minimum-time curve (brachistochrone) can be
determined by minimizing the functional

T
I= / 1dt. (7.7.19)
0

We shall suppose that the initial conditions are
z(0)=0, y(0)=0, (7.7.20)
and
z(T)=z(B)=1, (7.7.21)

where [ is a given constant and y (T") = y (B) is not specified, hence the position
of the point B is not known.
Since L = 1, the Hamiltonian of the problem is, in accordance with (7.7.5),

H =14 p;+/2gy cosu + py+/29ysinu. (7.7.22)

The second pair of canonical equations (7.7.12)2 is

. OH . 0H 1 .
Pe=—p— = 0, py= ~ By = —\/ﬁ (pzgcosu + pygsinu),  (7.7.23)

while the condition (7.7.12)3 gives
—pz@sinu + py\/29y cosu = 0. (7.7.24)
The expression (7.7.13) for ¥ = 0, with a slight change in notation, becomes
Algug. — pz (T) Az (T) — py (T) Ay(T) + HAT = 0. (7.7.25)

Since Az (T) = 0 and y (T') and AT are not specified, it follows that we have
the following two natural boundary conditions:

py(T)=0, H=0, 0<t<T. (7.7.26)

Integrating (7.7.23); we find that p, = C = const., and from (7.7.24) it follows
that

py = C'tanu. (7.7.27)
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Entering with this into (7.7.5), since H = 0, we obtain 1 + /2gy/ cosu = 0,
that is,

y= 2—01—2; cos? u. (7.7.28)

Differentiating (7.7.27) with respect to time and entering with the result into
(7.7.23)2, one has

Dy = % = _—\/%E (Cgcosu+ Ctanusinu) . (7.7.29)
Combining this and (7.7.27), it follows that
U= du_ Cg = const., (7.7.30)
dt
or
u=Cgt+ D, (7.7.31)
where D is a constant.
From (7.7.18); we have
dz dzdu cos? u (1 + cos 2u)
L/ = =— . .7.32
&~ dwar - VAoveosu C 2C. (7.7.32)
Separating variables and integrating, we find
U sin 2u
=K — c— — —— 7.7.33
* 2C%9 4%’ (7.7.33)

where K is a constant.

Since y(0) = 0, it follows from (7.7.28) that »(0) = 7 /2. From (7.7.26),
and (7.7.27) it follows that u (T) = 0, and therefore D = 0 and C = —m/2gT.
Finally, from z (T) = [, it follows that K = [. We obtain from z{(0) = 0 the
minimum time of travel of the particle:

0=1—-—7X (7.7.34)
2
4g (49—@7)
whence
T=1/% (7.7.35)
g

Example 7.7.2. Linear system with one-degree-of-freedom system. Consider
a linear dynamical system described by

&= Az +pu, z(0)=0. (7.7.36)
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It is desired to minimize

T
I=AT + Bz (T) + / %uzdt, (7.7.37)
0
where T and z (T) are not specified, and Az, A, and B are given constant
parameters.
The Hamiltonian function in this case is
H= %uz +p(Az + pu). (7.7.38)
Now we have
p= _oA = —\p, (7.7.39)
Oz
and from the equation H/8u = 0, it follows that
U= —up. (7.7.40)

Integrating (7.7.39), one has
p=Cre~>, (7.7.41)

where C} is a constant. Entering with this into (7.7.36), after integration we
obtain z (t) = (u?C1/2X) e~ 4+ Cye*t, where C; is another constant. Matching
this with the boundary condition x (0) = 0, we obtain

#AC
2X
Since the terminal time T and the terminal position z (T) are not specified,
according to (7.7.16) we obtain the following two natural boundary conditions
p(T) = (0¥/0z)|,_r and (0¥/dt)|,_1 + H|,_p =0, where ¥ = AT + Bz (T).

Thus, we find C; = Be*T, from which it follows that

z(t)=—

2
(X —e™) = S Cisinhxt. (7.7.42)

2
z(t) = —%Be)‘T sin At (7.7.43)
and
p(t) = Be*Te ™, (7.7.44)

Combining (7.7.40) and (7.7.38) we have H = —(1/2) u?p® + Apz. From the
second natural boundary condition given above, we have

2
A- # +ap(T)z(T) =0, (7.7.45)
whence
A 1
AT _ z
e sinh A\T = ZFE % (7.7.46)

or, noting that sinh AT = (1/2) (e*” — e™*T) , the terminal time T is

T = % In (%) . (7.7.47)



Chapter 8

Variational Principles for
Elastic Rods and Columns

8.1 Introduction

In this section we shall use the results presented so far to formulate several
variational principles for the equations describing deformations and the optimal
shape of elastic columns. We shall use the classical (Bernoulli-Euler) rod the-
ory as well as generalized rod theories. The variational principles that we will
formulate will be used to

(a) estimate the critical (buckling) load of a column,

(b) determine postcritical shape of the column using Ritz method,

(c) determine the optimal shape of the column, that is, the shape of the col-
umn having smallest volume and being stable against buckling. This constitutes
the so-called Lagrange problem formulated in 1773 (see [31], [100]).

In formulating the variational principles for rods we shall first derive the
corresponding differential equations and then find the variational principle for
those equations. Variational principles are important because they may help
develop deeper understanding of the problem under consideration. As Anthony
[4] stated: “In theoretical physics a theory is often considered to be complete
only if its variational principle in the sense of Hamilton is known.”

Earlier, we noted that finding a Lagrangian for a given set of equations con-
stitutes the so-called inverse Lagrangian problem (see discussion after (1.4.25)).
Its solution (the Lagrangian that is found) is not unique. Sometimes the equa-
tions of the problem must be written in a special form in order to find a La-
grangian function for which the Euler-Lagrangian equations are equivalent to
the given system of equations. One such situation was treated in section 1.8,
where it was shown that the differential equation

G+ 2kg+uwiqg=0 (8.1.1)
B. D. Vujanovic, et al., An Introduction to

Modern Variational Techniques in Mechanics and Engineering

© Birkhiuser Boston 2004
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has a Lagrangian

L= (¢*-w?¢?) e (8.1.2)

B =

Note that the Euler-Lagrangian equation for (8.1.2) is e2¥* (§ + 2k¢ + w?q) = 0.
Thus (8.1.1), as such, does not have a Lagrangian. However, when multiplied
with a (nonzero) function e?*?, it has a Lagrangian given by (8.1.2). Another
example of this type was given in [27]. Namely, the equation

Z—ar=0, oa=const. (8.1.3)
as it stands does not have a Lagrangian, but the equation
1 . .
= (Z - az) =0, (8.1.4)
T
equivalent to (8.1.3) if z # 0, has a Lagrangian function
L =iln|z| + az. (8.1.5)

Thus, the Lagrangians that we formulate in this chapter are by no means the
only possible variational formulation of the corresponding differential equations.

8.2 The Column with Concentrated Force at the
End

The equation describing the shape of an elastic column loaded with the concen-
trated force at its end (see Figure 8.2.1) is

1 Fy

>~ TED (8.2.1)
where p is the radius of curvature of the central line of the column, F' is the
compressive force, EI is the bending rigidity, and v is the displacement of an
arbitrary point on the column axis. In what follows we shall formulate three
different variational principles for the equation (8.2.1) for three possible choices
of dependent and independent variables. All variational principles will be for-
mulated for the column shown in Figure 8.2.1

B 0] T

Figure 8.2.1
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Case 1. Suppose that the coordinate z is taken as an independent variable.
The lateral displacement of an arbitrary point on the column axis we denote by
y (z). Then, the curvature of the column axis 1/p can be expressed as

- = (8.2.2)

~—dxi——3 + K2y =0, (8.2.3)
2
[1 + (%) ]

where k? = F/EI. The boundary conditions corresponding to the column shown
in Figure 8.2.1 read

dy
= Z(z= = 0. 8.2.4
v =0, Le=2p)=0 (324)
Here we consider zp as given. With zp given, the length of the column is
L= [7"(1+(Z)?)!/2dz. Equation (8.2.3) with the boundary conditions (8.2.4)

is equivalent to the stationarity condition §I; = 0 for the functional

o\ 1/2
zp k2
I :/ (1+ <-;@> ) — —4?| dz. (8.2.5)
0 X 2

Since in the case of varying cross section, I is a function of S (not z), the
functional (8.2.5) is suitable for the columns with constant cross section.

Case 2. We take S, the arc length of the column axis, measured from the
point O as an independent variable and the angle § between the tangent to
the column axis and the z axis of the coordinate system xOy as the dependent
variable. The curvature is then given as 1/p = % and (see [14])

dy . dx
— = — . . 6
sin 6, 73 cos (8.2.6)

By differentiating (8.2.1) with respect to S and by using (8.2.6);, we obtain

d do .

Boundary conditions corresponding to the column shown in Figure 8.2.1 are

dé

5(8=0), #(S=L)=0. (82.8)
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The trivial configuration in which the rod axis remains straight is described by
6o = 0. (8.2.9)

The boundary value problem (8.2.7), (8.2.8) is equivalent to the stationarity
conditions 613 = 0, where

L 2
L= /0 [%EI(S) (%) +Fcos€] ds. (8.2.10)

Case 3. We take S as an independent variable. By using (8.2.6) we can write
the curvature as

1 4
o= (8.2.11)
p d
- (%)
Thus, (8.2.1) becomes
&y
7 S Y (8.2.12)
a2
1- (%)
with the boundary conditions
d
¥(0) =0, d—é’,— (L) =0, (8.2.13)

and L given. The coordinate zp is determined as zp = fOL cosd (S)dS. The
boundary value problem (8.2.12), (8.2.13) is equivalent to the stationarity con-
ditions 613 = 0, where

L dy\? 12 dy dy k% (S)
— B 4 —= in{ -2 | — —=242]| dS. 2.
I3 /0 (1 (dS) ) +dSarcsm (dS) 5 Y S, (8.2.14)

Since the Lagrangians of all variational principles stated in Cases 1-3 do not de-
pend explicitly on an independent coordinate if EI = const., they could be used
to obtain first integrals (Jacobi conservation law) of corresponding differential
equations by using (1.4.44). Thus we have

-1 k2

7z + —2—y2 = const. (8.2.15)

2
(1 + (%) )
as a conservation law for (8.2.3). For the case (8.2.7) we have

1/do\> F
=) - = 6= . 2.
5 (dS) 5 < const (8.2.16)
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as a conservation law, and finally

dy \ V2 e
—1-(== —y® = . 8.2.17
(1 (dS) ) + 5 Y const ( )

as a conservation law for (8.2.12). The conservation law (8.2.16) is the starting
point for obtaining the exact solution of (8.2.7) by the separation of variables
method.

In what follows we show an application of the principle 613 (y) = 0. Namely,
from (8.2.14) we have

1
615 = / [6y arcsiny’ — E2y6y] dt =0, (8.2.18)
0
where we introduced dimensionless arc length t = S/L and parameter k? = Fig .
Also, £ (-) = (). Note that from (8.2.13) and (8.2.8) we have
8y(0) =0, &y (1)=0. (8.2.19)

Since (8.2.18) is valid for any Sy satisfying (8.2.19) it holds for éy = y, where y
is the solution of (8.2.12). Thus, we have

1 1
/ y' arcsiny’dt = / k2y2dt. (8.2.20)
0 0

Relation (20) holds on an exact!? solution of (8.2.12). We shall analyze the first
deformation mode only. Thus we assume that

y(t)>0; o (t)>0. (8.2.21)
Next we estimate the term arcsiny’. From [12] and [74] we have'®
arcsiny’ > vy’ + —é— (y')3 . (8.2.22)
With (8.2.22) equation (8.2.20) becomes
1 s 1 4 1
/ {(y’) +5 ") ] dt < / E?y2dt. (8.2.23)
0 0

We distinguish now the following three cases.
Case 1. Suppose that k? (t) is a decreasing function.

17Basically we interpret the first variation (8.2.18) as a weak form of the Fuler-Lagrangian
equations (see {81, p. 33)).

18We consider the function Z (1) = 3‘—%};’7—}/—/ It is easy to see that Z is a decreasing

function (y' > 0,y < 0) so that minyegp,q Z (t) = Z(0) = 1/6. From this the estimate
(8.2.22) follows.
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In this case we can use the Tchebychef inequality (k? (¢) is a decreasing and
y? is an increasing function), so that [74]

/01 [(y')2 +%(y’)“] dt < ( /0 l E2dt) ( /0 l yzdt> . (8.2.24)

Also, the Cauchy-Schwarz inequality, applied to (y’ )2, gives

1/2

ly'))* = /0 L)< [ /0 W) dt] : (8.2.25)

1/2
where ||2]| = ( ful 22 (t)) denotes the Ly norm of z. Therefore, (8.2.24) be-
comes

1 =12
I/I1* + 5 1" < (1] Dl (8.2.26)
Finally, we need the inequality
s
'l > = Iyl (8.2.27)

which is (see [74]) a consequence of the boundary conditions (8.2.13). With
(8.2.27) the inequality (8.2.26) leads to

2
Iy/I* <6 {(%) ||l - 1] : (8.2.28)

The boundary condition y (0) = 0 implies that y () = fot y' (£) d¢, so that by
applying the Cauchy—Schwarz inequality we have

t t 1/2 t 2 1/2
y(t) = /0 y'(€)dE < ( /O dg) ( /0 CRG3)) ) <yl- (8.2.29)
From (8.2.28), (8.2.29) we get the following estimate of maximal deflection:

5 2 1/2
7112
f:t:}g)l]y(t)g{s [(;) 1l —1]} : (8.2.30)

We can also estimate the maximal value of the angle 6. From (8.2.1) we have

de

.2
- 2.31
=k (8.2.31)

so that

o= [ P ([ Bew) ([ @) <[Pl (23
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where Tchebychef and Cauchy-Schwartz inequalities have been used. From
(8.2.32), (8.2.27), and (8.2.28) we obtain

’ ’

- 1/
sup 6 (t) =6(0) < (" {6 K%)z ||,;||2 - 1} } . (8.2.33)

t€(0,1] (%)

Case ii. Suppose that k2 = const. In this case, instead of (8.2.24), we have

/0 1 [(y’)2 + % (y’)“} dt < k? ( A 1 y2dt> . (8.2.34)

Following the same procedure as in Case i we obtain

9 1/2
f=supy(t) < {6 {(2-) k2~ 1} } . (8.2.35)
te[0,1] ™

Since (%)2 k2= I‘;:L; 4= FL', with F,, = % being the Euler buckling force
for the column, equation (8.2.35) may be written as

F_ 1] }1/2. (8.2.36)

cr

= s < o]

t€(0,1]
If k% = const. the estimate (8.2.33) becomes

=0 9 2_ 1/2
s - s )

™

glf {6 [(%)2;;2 - 1} }1/2. (8.2.37)

Case iii. Suppose that k2 (t) is an increasing function. In this case, (8.2.23),
after the use of Cauchy—Schwartz inequality, becomes
1/2

/0] [(y’f + % (y')4] ét < (/01 E4dt> (/01 y4dt) “ (6239

To transform (8.2.38) we need an inequality for concave functions. In [12] such
an inequality was derived. In [22] an improvement of this inequality is presented
that we shall use here. Thus, from [22] we have

1/2

1/2

/01 Y2 (t)dt > -5—1; (/01 y4dt) (8.2.39)
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or
2 1 s 72 3 2
Iy'l" + 5 1yl <|k ||3mny|| : (8.2.40)

Now, (8.2.40), (8.2.27), and (8.2.29) lead to

NN 1/2
f:zzmy(t)g{s [% (;> ||k2||—1]} (8.2.41)

6(t)=9 ”Ellz 3_(2) P v 8.2.42
S Rk a(z) -1 - e2e
2

Now we apply the results obtained in this section to the important problem
of estimating the critical force for a column with variable cross section. We use
the inequality (8.2.30), from which we conclude that for the case when k2 (S) is
a decreasing function the buckling will take place (i.e., f > 0) if

and

2\? 152
~) lI®]"-1>0 (8.2.43)
or
e = [ FE s (7Y (8.2.44)
9= [ 7= (3) 2
Suppose that (see [102])
1(t) = Le™, (8.2.45)

where n is a given constant. By substituting (8.2.45) into (8.2.44) we obtain
that for buckling to take place, we must have

EIo7r2 —_n 1

Note that in the limit when n — 0 expression (8.2.46) reduces to the classical
Euler buckling force. In [102] several approximate expressions for the critical
force are presented that agree with (8.2.46). The advantage of the expression
(8.2.46) is that it gives an upper bound for the buckling force.

8.3 Rod with Compressible Axis and
the Influence of Shear Stresses on the
Deformation

In this part we consider the so-called Haringx’s model of an elastic rod. The
constitutive equation for such a rod takes into account both compressibility of
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the rod axis and the fact that the cross sections in the deformed state are not
normal to the rod axis due to the deformations caused by shear stresses. It
could be shown that the relevant equation describing the rod (see [14, p. 129]
and [40]) for the case of a rod with constant cross section reads

0, Fo F? /1 kY .
¢ +E—Ism¢_ﬁ<ﬂ_a) sin ¢ cos ¢ = 0, (8.3.1)

where F' is the axial force in the rod, ¢ is the angle of rotation of the cross
section, ET is the bending rigidity of the rod, EA is the extensional rigidity of
the rod, GA is the shear rigidity of the rod, & is the Timoshenko shear correction
factor () = d(-) /dS, where S € [0, L] is the arc length of the rod axis in the
undeformed state, and L is the length of the rod axis in the undeformed state.
For the rod welded at the end S = L and free at the end S = 0 (see Figure
8.2.1) the boundary conditions read

¢'(0)=0, ¢(L)=0. (8.3.2)

Introducing the dimensionless quantities

,\:FE_L;, a:%, ﬁ:%, t:%, (8.3.3)
the system (8.3.2), (8.3.3) becomes
d+A[1—=X(a—pf)cosd]sing =0, (8.3.4)
subject to
$(0)=0, ¢(1)=0, (8.3.5)

where (-) = d{(-) /dt. Note that for the case of inextensible, unshearable rod
a = 3 = 0 with constant cross section, that is, EI = const., equation (8.3.5)
reduces to (8.2.7). It is easy to see that (8.3.4), (8.3.5) is derivable from the
condition §I = 0, where

= [ (3o penmaa)] b o

Since the Lagrangian does not depend on ¢ we have a first integral of (8.3.4) in
the form

.9 A
%— +A {1 - (c0s¢ -3 (o — B) cos 2¢>] = const. (8.3.7)

The trivial configuration of the rod is described as

o = 0. (8.3.8)
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According to the energy stability criteria (see [86]), the trivial configuration is
stable if the functional I given by (8.3.6) is in weak local minimum!?® at ¢,. We
shall determine the value of the force, that is, A, for which ¢y = 0 is not a stable
configuration.

First we calculate the second variation of (8.3.6) at ¢y =0 as

821 (¢, 69) = fo 1 {(&55)2 —A[l=A(a—B)] (6¢)2} dt. (8.3.9)

The configuration ¢y = 0 is stable if I (dy) is in minimum. To examine the
sign of the second variation (8.3.9) we proceed as follows. Note that (8.3.5)
implies 6¢ (0) = 8¢ (1) = 0. This enables us to get the following estimate ([74]
or (8.2.27)):

/o1 (‘5‘}’)2‘“ z %2 /0 (2 d (8.3.10)

By using (8.3.10) in (8.3.9) we obtain

1
6% (¢, 6¢) > /0 {’;—2 ~A1=A(a- ﬁ)]} (6¢)% dt. (8.3.11)

From (8.3.11) we conclude that the trivial configuration is stable, that is, (8.3.6)
has a local minimum at ¢y = 0, if

2
% ~All=A(a=-B)]>0. (8.3.12)
According to the stability definition, the condition 621 (¢g, 8¢) = 0 determines
the stability boundary [86]. Thus, we conclude from (8.3.12) that the critical
value of the dimensionless force A = A, is determined from

7r2

'Z = Aer [1 - Aer (a - IB)] =0. (8313)

The result (8.3.13) is in agreement with the stability boundary obtained by
the Euler method [14]. We note that the sign of 821 given by (8.3.9) may be
analyzed by the method used in [62].

8.4 Rotating Rod

8.4.1 Bernoulli-Euler Theory

Consider an elastic rod BC of length L, fixed at end B and free at the other end.
Suppose that the rod has circular cross section, that its axis is straight, and that

19The functional I has a weak local minimum at ¢ if the condition 621 (¢, ¢) > c |6l
is satisfied for ¢ > 0, and for §¢ belonging to a small (in norm [f-]|;) neighborhood of ¢y,

. 1/2 )
where ||6¢]], = [suPte[O,l] [6¢ ()| + sup tepo,1) ‘645 (t)u (see section 5.2).
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it rotates with the constant angular velocity w about its axis. Let z—B—y be the
rectangular Cartesian coordinate system with the axis « oriented along the rod
axis in the undeformed state. Let IT be a plane defined by the system z — B —y
that rotates with the angular velocity w about z axis. At a certain velocity the
rod loses stability so that it could be bent under the action of centrifugal forces.
If the rod is bent it will assume a relative (with respect to the rotating plane
IT) equilibrium configuration (see Figure 8.4.1). Note, however, that during the
motion between two relative equilibrium configurations (one corresponding to
the initial state in which the rod axis is straight and one in which the rod axis
is bent) the axis of the rod is, in general, not a plane curve. The problem
of determining the critical rotation speed and the postcritical behavior of the
rod described has been the subject of many investigations. For a review of

generalized rod theories used in stability analysis of rotating rods, see [5] and
[14].

w

Figure 8.4.1

Suppose that the angular velocity with which the rod rotates, w = wg = const.,
and length of the rod L are given. Let S be the arc length of the rod axis, so
that .S € [0, L]. The equilibrium, geometrical, and constitutive equations for the
rotating rod are

H = 0, V =-pw’y
M = —Vcos6+ Hsiné,
’ ’ 7 M
7 — g 7 =siné 0 = — 8.4.1
T cos#, 7 =sin, T ( )

where H and V are components of the contact force in an arbitrary cross section,
M is the bending moment, 8 is the angle between the axis of rotation and tangent
to the rod axis, and Z and § are coordinates of an arbitrary point with respect
to the rotating Cartesian frame z — B —y. Also in (8.4.1) we use p, to denote the
line density of the rod (mass per unit length of the rod axis), F is the modulus
of elasticity, I is the second moment of the cross-sectional area of the rod, and
() =d(-)/dS. Note that p;, = pA, where p is the density of the rod (mass per
unit volume). We assume that the cross section of the rod is circular, so that

I=aA? (8.4.2)
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where A is the cross-sectional area and a = (1/4w). With this notation, the
volume of the rod is

L
W = /0 A(S)dS. (8.4.3)

To the system (8.4.1) we adjoin the following boundary conditions corresponding
to the rod shown in Figure 8.4.1:

H(L)=0, V(L)=0, z(0)=0, #0)=0, M(L)=0. (8.4.4)

Suppose first that the rod cross section is constant, I = const. By using the
dimensionless variables and parameters

,_ 5 3§ . _ML
=T Yoo "TED
2% g pwtLt
v = Fr °TD YT GE4 (84.5)
and a new dependent variable
v
- 8.4.6
u=-2, (84.6)
we obtain from (8.4.1)
W=y, m™=>Mucosf, y=sinf, &=cosl, O=m, (84.7)

where (-) = & (). The boundary conditions corresponding to the rod shown in
Figure 8.4.1 are

u(1)=0, m(l)=0, y(0)=0, z(0)=0, 6(0)=0. (8.4.8)

The system (8.4.7), (8.4.8) possesses a trivial solution in which the axis of the
rod remains straight for any value of the dimensionless rotation speed A. This
solution is

Uug = 0, mgo = 0, Yo = 0, 0() =0. (849)

The system (8.4.7) can be transformed to a system of two second-order equations
by differentiating (8.4.7); and (8.4.7)s, so that

i = Asind, 8= lucos, (8.4.10)
with the boundary conditions
w(0)=0, u(l)=0, 6(0)=0, 6(1)=0. (8.4.11)

It is easy to see that (8.4.10) are the Euler-Lagrangian equations of the func-
tional

1.2 /2

N 0

Iy = / [-—2- + 5 + Ausin 0] dt. (8.4.12)
0
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In [28] an analysis is presented which shows that (8.4.12) attains a local min-
imum on the solution of (8.4.10), (8.4.11). We note that the Lagrangian in
(8.4.12) does not contain time explicitly, so that a Jacobi-type first integral
exists:

a0
5 + 5 = Ausin @ = const. (8.4.13)

Consider the second variation of Iy at the trivial solution wy = (ug,8p) =
(0,0) and for A = A + A, with 0 < AX < 1. From (8.4.12) we obtain
1 N2
6210(u0, B0, A+ AN, bu, 60) = / {(611)2 + (59) +2(A + AN) (6u) (50)} dt.
0
(8.4.14)

We shall calculate 621, for specially chosen (§u,58). Namely, consider a lin-
earization of the system (8.4.10):

=X, 6=M\u, (8.4.15)

subject to (8.4.11). Eigenvalues of (8.4.15), (8.4.11) are solutions of the following
equations:

1+ cos A2 cosh A1/2 = 0. (8.4.16)

The smallest solution to (8.4.16) is Ayin = 3.516. It is easy to see that all
solutions of (8.4.16) are positive and that there are countably many of them.
Let A\{ = Amix be the smallest solution of (8.4.16) and u,8; corresponding
eigenfunctions, that is,

iiy = M0y, 01 =Mus. (8.4.17)

Note that by multiplying (8.4.17); by % and (8.4.17)2 by 6, integrating and
using boundary conditions, we obtain

1
/ (02 + 0% + M 26y }dt = 0. (8.4.18)
0
Taking §u = euy, 50 = €6y, with ¢ < 1 and X = )\ in (8.4.14), we obtain
62y (ug, B9, A + AN, bu, 66)

1 L\ 2
= 52/ {(ul)% (91) 4200 + AN ug0y | dt
0

-1

2e2 AN / w16 dt. (8.4.19)
0

I

From (8.4.15) it is easy to see that u (t) and 61 (t) are of different sign:

w(t) <0, 61(t) >0, (8.4.20)
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so that?° fol u161dt < 0. Thus, we conclude that the functional (8.4.12) is not
in a minimum at (up = 0, 6 = 0) if A > A;, where )\, is the smallest solution
of (8.4.16). This implies that the configuration (zg = 0,8 = 0) is not stable if
A > AL

We show now how the functional (8.4.12) could be used to obtain an approx-
imate solution to (8.4.10), (8.4.11) via the Ritz method. Namely, we assume an
approximate solution to (8.4.10), (8.4.11) in the form

@=At(2-t), U=B(1-t%), (8.4.21)

where A and B are constants to be determined. The functions © and U sat-
isfy the boundary conditions (8.4.11). Let us choose A% = 14. By substituting
(8.4.21) into (8.4.12) we obtain

I(A,B) = /01 {23%2 + % [4(2—t) — Af]?

+B(14)2 (1 - £2) sin [At (2 — t)] dt} . (8.4.22)

Minimization of (8.4.22) with respect to A and B, that is, 0Iy (4, B) /0A = 0,
08Iy (A, B) /0B = 0, leads to

A=04824, B=05. (8.4.23)

The simple approximate solution (8.4.23) agrees well with the numerical solution
of the nonlinear boundary value problem (8.4.10), (8.4.11) presented, as a special
case, in [13].

As a generalization of the problem (8.4.10), (8.4.11), consider the rod with
extensible axis. In this case, instead of (8.4.1) we have (see [13])

H 0, V' =—puwd,
M = —V(1+BVsinf)cosf+ H(1+ BVsinb)sinb,
& = cosf, § =(1+pBVsinf)sing, 6 = % (8.4.24)

where 3 = EI/ (EAL2), with E'A being the extensional rigidity of the rod.
Proceeding as in the previous case we obtain

u = A[sind — Mufsin’ 6], 9= Au[l — Aufsin ] cosb, (8.4.25)
and
L :/ u—+0—+)\ usin@—)‘iﬁsiHZO dt. (8.4.26)
, 12 72 2

It can be easily verified that the conditions for §2I; > 0 are the same as those
formulated for 6210 > 0. Thus, the extensibility of the rod azis does not influence
the critical value of A.

20That [} #101dt < 0 could be seen from (8.4.18) directly.
0
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8.4.2 Rotating Rod with Shear and Compressibility:
A Director Theory

Now consider again an elastic rod, as shown in Figure 8.4.1, whose axis in the
undeformed state is a nonintersecting curve C lying in a plane II. We assume
that the points on the curve C, in the coordinate system x — B — y, could be
represented as

X=X(S), Y=Y(S), (8.4.27)

where S is the arc length of C and X(.5), Y (S) are smooth functions. We further
assume that S € [0, L], where L is the length of the rod in the undeformed state.
Since C is nonintersecting it has a well-defined tangent at each point. Let e;
and e, be the unit vectors along the x and y axes, respectively. Then, if T(S)
is the unit tangent vector at the point (X,Y), the relations

cos©(S) =T - ey, sin©®(S) =T - ey (8.4.28)

determine a unique ©(S). We assume that the rod is fixed in such a way that
©(0) = 0. With ©(S) so determined, the curvature of C' is Kg = d©/dS. The
natural configuration of the rod is defined by two vector functions R(S) =
Xey + Yey and B(S) characterizing the points on the rod axis and orientation
of the cross section, respectively. B(S) is assumed to be of unit length and
lying in II. The natural configuration is stress free, so that the vector B(S)
(also called the director) is orthogonal to T(S). In this case

B(S) = —sin ©(S)e; + cos O(S)es. (8.4.29)
The equilibrium and geometrical equations in the system x ~ B — y are
H =0, V =-p?y,
M = V(1 +e)cosd — H(l +¢)sind,
Z = (l1+€)cosd, § =(1+¢)sind. (8.4.30)

where we used quantities already introduced, and ¢ is the axial strain; that
is, if r = Ze; + feq is the position vector of an arbitrary point on the rod
axis in the deformed state, then 1+ ¢ = |dr/dS|. To (8.4.30) we adjoin the
boundary conditions (8.4.4). The deformed configuration is specified when two
vector functions, that is, the position vector of an arbitrary point on the rod
axis r(S) and the director b(S) (a unit vector orthogonal to the cross section
in the deformed state), are specified. Let ( be the rotation angle of the cross
section. Then, b(S) becomes

b(S) = —sin(O + p)e; + cos(O + p)es. (8.4.31)
Let es = e; X e2. We define a = b X eg, so that

a(S) = cos(© + p)e; + sin(O + ¢)ey. (8.4.32)



278 Chapter 8. Variational Principles for Elastic Rods and Columns

The strains are taken to be the derivative of the rotation angle ¢’ and two
functions £(S) and 7(S) defined by

t =1 =[1+£(5)a+n(S)b. (8.4.33)

Introducing the shear angle v as the angle between a(S) and t, we obtain the
following relation:

=(0-0)-¢. (8.4.34)
With (8.4.34) the strains £(S) and 1(S) become [67]
€= (1+¢)cosn, n=(14+¢)siny. (8.4.35)

Let the internal (also called contact) force F and the resultant couple M in an
arbitrary cross section of the rod be represented as F = Qb+Na and M = Me;s.
Then we assume that (see [67])

N =FA|(1+¢)cosy—1], Q=GA(1l+e)siny, M=-Ely, (84.36)

where EA, GA, and EI are extensional, shear, and bending rigidities, respec-
tively. They are all taken to be positive constants. From the definitions of @
and N, we have

Q=—Hsin(©@+¢)+ Vcos(©+¢), N=Hcos(®+¢)+Vsin(O + ¢).
(8.4.37)

Thus H and V could be expressed in terms of £ and 7. In our case (8.4.37)
simplifies, since from (8.4.30),, (8.4.4); we get H(S) = 0. Then, introducing a
new variable ¥ = © 4+ ¢ in (8.4.30), we obtain

.2 2
wo_ ol sin“y  cos“
V' = —pw [51n1/;+V(EA + A )],
"o |4 1
P = ~FI [1 +V (EA GA) sme cosy + K. (8.4.38)

Finally, we introduce the nondimensional quantities (8.4.5) and additionally

ErI _EI f = qL?
EAL? *TGar T ED

Also, let u = —W/X be the new dependent variable, so that the system (8.4.38)
transforms to [15]

8= fo = KyL2. (8.4.39)

N
A 3
Au[l — du(B — p) siny]cosy + fa. (8.4.40)

Msin 9 — Au(Bsin? 9 + pcos® )] —

[<3H
I

<
I
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The boundary conditions corresponding to (8.4.40) are

wW0) =0, u(l)=0, (0)=0, ¥(1)=0, (8.4.41)
where () = % () . In writing (8.4.41)3 we assumed that the rod is “welded” at
t = 0. We call the rod described by (8.4.40), (8.4.41) the imperfect rod and we
call the initially straight rod that is not loaded by external load, that is, fi =0,

the perfect rod. In the case of the perfect rod system, (8.4.40) becomes
u = Msiny — Au(@sin? ¥ + pcos? )],
" Au[l — (B — 12) sin ] cos . (8.4.42)

The functions ug = 1y = 0 are solutions to (8.4.42), (8.4.41) for all values of \.
We call this solution the trivial solution for the perfect rod.
Consider now the functionals I; and Iy defined by

. 2 .2 2
]12/0 {%+%+A{usind)-/\%(ﬂsiHQerucoszw)]—L;+f21/’ dt

(8.4.43)

and

.2

1 .2
n=[ {%#%H[usinw—%@(ﬁsiﬁwmos?w)}}dt. (5.4.44)

The functionals Iy and I represent the total potential energy of outer forces
(loads) and inner forces for rotating rod and perfect rotating rod, respectively.

Note that from (8.4.44) we conclude that (8.4.42) possesses the following
first integral of Jacobi type (see section 1.4):

.2
u

.2
l/) . )\U2 -2 2
K=—+ 5 Alusiny — T('B sin® 9 + pcos® P)| = const.  (8.4.45)

.2
From the boundary conditions it follows that K = u (1)/2. Using this value
and (see definition of u given after (8.4.39) and (8.4.30),)

1
u = ——/\/t y(p)dp, (8.4.46)

we get

2 -2

2
Yoy v A lusing — ﬁ;—%(ﬂsin%[) + pcos? ¢)] = %QZ(U (8.4.47)
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For the perfect rod without the influence of shear and extensibility (6 = p = 0),
the system (8.4.40) reduces to

%= Asing, %= \ucosy, (8.4.48)

a problem that was treated earlier in this chapter (see (8.4.10)). In this case
the first integral (8.4.47) becomes

.2
.2 2

u P . A,
5+ 5 dusiny = 7Y (1). (8.4.49)

We treat the problem of determining the stability boundary for the perfect
rod described by (8.4.42), (8.4.41) by the use of I; given by (8.4.44). The second
variation of I calculated at ug = 0,%y = 0, A + AX reads

6% Iz (ug, Yo, A + AN, bu, 69)
1 2 N2
- /0 {(zm) + (59) +20+ 8
X [6ubp — (A + AN) (5u)2]} dt. (8.4.50)

Again, we consider the linearized problem (8.4.42), that is,

=AY —py), ¥ =y, (8.4.51)

subject to (8.4.41). Eigenvalues of (8.4.51), (8.4.41) are solutions of the following
equation:

2

1/2
prg _)\3# sin [Azu + VX2 4+ 4 ]
2

X sinh

1/2
[—A2u+ N +4/\Ejl /
2

1/2
0+ B VT
2 2

1/2
)2 g2 2
xcosh[ Apt 2’\“ +4}‘} =0. (8.4.52)

Equation (8.4.52) has a countable number of positive solutions. To see this,
note that (8.4.52) could be written as F;(\) = Fz()), where

Fi(\) =\,
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51/2
[ x25 4+ Vs 2]
2

1/2
sinh

Fg()\) = T St

A36 " [/\25 + VA% + 42
2

1/2
—(A%+ cosh

- 1 1/2
X264+ VAR + 4X2
5 .

L

o[22 T
2 2

(8.4.53)

Since Fy() is increasing and Fy()\) is oscillating with increasing amplitude,
that is, larger than the value of F;()), it follows that (8.4.52) has a countable
increasing sequence of eigenvalues. The eigenfunctions u,, and ¥, corresponding
to A\, are

3, — 26 s
U, = Cp {cos Sint + —s;”—;— cosh sant + [ : 2n .
5on n6 S1n sinh 82, — 82, 5N 515
o (53 + X38) cos s1n + (3, — A7) cosh 31
2
3 + Anb
X [sins1nt — S1n ginp s%t]} ,
S2n

Un
Y, = — 4+ Abu,. (8.4.54)

An

In (8.4.54) we used the following notation:

1/2 1/2
A28 4+ /A6 +4N2 “A26 44/ AA6 + 402
3 Son = .

Sin =

2 2
(8.4.55)

Let A = X;, where A; is the smallest solution of (8.4.52). Note that (8.4.51)
leads to

Log .2
/ {ug + 9y + M [2uiy, — pA2u2)}dt = 0. (8.4.56)
0
Taking fu = euy, 6¢ = eyp; with e < 1, in (8.4.50) we obtain
52[2(’“‘0,1/)03 A= >\1 + A)\y 6“’) 6¢)
1
= EQA)\/ {[2u1¥; — 2uAiud — pAju?

0

—u (A1 + AN)? uﬂ } dt. (8.4.57)

Since in the first mode, that is, for A = A;, we have u; (t) < 0,4, (¢) > 0,
we conclude that 6§21, < 0 if A\ > 0. Therefore, when A > X1, where )\ is
the smallest root of (8.4.53) the functional (8.4.44) is not in a minimum at
ug = 1Py = 0, and we have instability.
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8.5 Rod Loaded by a Force and a Torque

The problem of determining the stability boundary of a twisted and axially
compressed rod is indeed an old one. In this section we shall formulate a vari-
ational principle for such a rod and derive an equation that will be used for
optimization of the rod shape.

Suppose that the rod is loaded by a compressive force of intensity P and a
torsional couple of intensity M;, as shown in Figure 8.5.1. In our analysis we
shall follow [19].

Figure 8.5.1

The compressive force P = —Peyy is of constant intensity P = const. and ori-
ented along the z;9 axis of a fixed rectangular Cartesian coordinate system
Z10,Z20, and x3p with unit vectors eyq, ez, and egg, respectively. The couple
(torque) is given as T =M,e;o with M; = const. The end O; of the rod is fixed
to an unmovable rigid plate, laying in the z39 — x3¢ coordinate plane, so that
the cross section of the rod that is in contact with the rigid plate does not have
any rotation (welded end). At the end Os, the rod is welded to a movable rigid
plate that can move freely but must remain parallel to the coordinate plane
Z20 — x30. Let S be the arc length of the rod axis in the undeformed state, so
that S € {0, L], where L is the length of the rod. We specify the configuration
of the rod by one vector function r(S), specifying the position of a point on
the rod axis and by orientation of the Cartesian coordinate system with axes
Z1, %2, 3 oriented along the normal to the cross section (tangent to the rod
axis) and along the principal directions of the rod cross section at an arbitrary
point O of the rod axis, respectively. Thus we have

r (S) = z10€10 + T20€20 + T30€30- (8.5.1)

We denote by ey, ez, e3 the unit vectors along the x1,z2, 23, respectively. The
orientation of the system e;, ez, e3 with respect to the unit vectors parallel with
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€1p, €20, €30 and passing through point O is given by three Euler-type angles.
We take ship angles (see [68]) that bring ej9, €9, €30 to €1, €2, €3 by the sequence
of the following three rotations. The first is rotation of the amount 6; about
the Z1¢ axis. The next rotation is about the ¢ axis for an amount 63 (see Figure
8.5.2).

Figure 8.5.2

The last rotation is of the amount 85 about the axis Z. All rotations are per-
formed counterclockwise. The vector w ( “the angular velocity vector”) is defined
as

w= 0;910 + 9;;L+0/2e2, (8.5.2)

where, as usual, ()I =d/dS (-) and p is the unit vector along the ¢ axis. From
(8.5.2) we obtain the components of w in the local coordinate system ej, es, e3.
Thus, w =wje; + woey + wies with

w = 0; cos 04 cos O3 — 013 sinfy,
wy = 0; — 9; sin 63,
w3 = 0)cosbssinby + Oy cos bs. (8.5.3)
Note that
r =e. (8.5.4)

The three quantities (wy,w2,ws) are strains in the classical Bernoulli-Euler rod
theory that we use (see [5]). The equilibrium equations for the rod can be
written as

' '

F =0, M =-r xF, (8.5.5)
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where F =F\e; + Fye; + Fses is the contact force, M =Mje; + Maes + Mzes
is the contact couple, and we assume that there are no distributed forces. The
constitutive equation for the contact couple is taken in the form

M =Aj wie; + Azzwaen + Aszwses, (8.5.6)

where A;q, Agg, As3 are constants. A, is called torsional, while Ayy and A3z are
bending rigidities. In standard engineering notation we have A;; = Glo, A1 =
El,;, As3 = El33, where G is the shear modulus, F is the elasticity modulus,
Iy the polar moment of inertia of the cross section, and Iz and I3 are axial
moments of inertia of the cross section for the axes x5 and 3, respectively. By
using (8.5.6) in (8.5.3), (8.5.5) and by solving (8.5.3) for 6;,6,,8; We obtain

’ M3
Fi+ =2 _FR=3 =,
VT A T TP A
' M; M
Fo+ F-3 _p2L _ o,
27T Ay ¥An
, My M,
F,+Fp—~-F—= =0,
3T AL YA
M, (L-L)MM =0
! Ay  Ag) 00 ’
My+ (- L)mm = F
2 A33 All 13 = 13,
M+ (=2 L\, = —F
3 An Ax = »
’ C2M] 32M3
g, = 20 228

0 M M2 8283 M3
2
cz3 Ain Az c3 Ass
9’ Ml + ’
= — 83— Cyp——— T = C2C3
3 All A ) 10 )
1 ’
Tog = C1C283 + 8182, Tgp = C€28153 — C182, (8.5.7)

where c¢; = cos 1,51 = sin#f,, ..., s3 = sin #3, and the last three equations follow
from (8.5.4). Note also that in writing (8.5.7) we assumed that c3 # 0. The
boundary conditions corresponding to the rod shown in Figure 8.5.1 are

F(L) = -P, FR(L)=0, F(L)=0,
Mi(L) = M, 62 (L) =0, b3 (L) =0,
6:1(0) = 0, 62 (0) =0, 63 (0) = 0,
z10(0) = 0, x990 (0) =0, z30(0) = 0. (8.5.8)

In the analysis that follows, we assume that the rod has axial symmetry, so that
Agg = Aszs. The system (8.5.7), (8.5.8) has two first integrals:
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F\My + FyMy + FsMy = —PM,, F2+ F2+ F} = P2 (8.5.9)

The first integral (8.5.9); is the scalar product of vectors F and M, while the
second expresses the fact that the intensity of contact force in an arbitrary cross
section is constant. By using the axial symmetry in (8.5.7), we obtain

' 1
F+ —(F3M2 — F2M3) =0,

Az

Y M3 M1
F,+ 238 g
2T Ay T ¥ A

/ My My
Fo—Fl— + Fp— =

37 Ay, * Y An 0
M, =0,

P co83 My + Mo 8983 M3.
c3 A Ay cs Az’

! M1 3 ’
03 = —s9— + co——, T15= €23,
2

’ ’
Tog = C1C283 + $182, T3y = €28183 — C182,

(8.5.10)
subjected to (8.5.8). Note that (8.5.10), together with (8.5.8), leads to
M, = M,. (8.5.11)

Thus, the component of a moment at every cross section in the direction of the
tangent to the rod axis is equal to the applied torque. For further analysis we
shall need the system (8.5.10), in a slightly different form.

After the use of (8.5.11), (8.5.10) becomes

i’ 1
Fy + ——(FsMy — FyMs) =0,
A22

’ M3 Mt
FF+F——F—=0

2+ 11422 3All ’

/ M. M,
Fy—F=24+F-t =0,

Ao A
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M, =0,

7 1 1
M3 = Fj,
M2+(A22 Au)Mt 3=

! 1 1
M, — MMy = —F,
3 <A22 An) e 2

P M, L5 M;
17 A ez Ay’

g — C253 Mt M, 4 525 5283 M3
c3 Au Aga c3 A22

M;j

’ '
93 = -85 + C2A ’ xlO = €2C3,
22

An
13,20 = C1C283 + 8152, I;O = C28183 — C182.
(8.5.12)
Also, by use of (8.5.11) the first integrals (8.5.9) become
FiM, + F;M, + FsM3 = —PM,, F? F2+F2= P2 (8.5.13)
We introduce next the variables
Xo=MZ+ M2 Xs3=F,M+F3Ms;, X;=F,M;—F3M,. (85.14)
By differentiating (8.5.13); and using (8.5.12) we get
F =X

= — 8.5.15
1 A22 ( )
Further, by differentiating (8.5.14) and using (8.5.12) we obtain
. , M,
Xy = —2X4, X3=-—-—Xy,
Az
’ F] Mt 2 2
Xy = —— —X; Ry -P°). 8.5.16
§ o= Xt X+ ((R) - P?) (8.5.16)

It can be seen that the system (8.5.15), (8.5.16) has the following first integrals:
X2+ X2 = (P2 - (F1)2) Xa, X3=—M,(F+P); (8.5.17)
From system (8.5.15)~(8.5.17) we derive the following second-order equation:

[(AZQF{)I] (P2 - (F1)2) + Ap(F))?F

| PM?
Azz

(P+F)%+ (P‘Z—(Fl)?)2 —0. (8.5.18)
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The boundary conditions corresponding to (8.5.18) follow from (8.5.8) and the
condition of global equilibrium of forces in the z1g direction. Thus, we have

Fi(0)=-P, F(L)=—P (8.5.19)

Let 6 be the Euler angle of nutation, that is, the angle between e; and eqq.
Then,

Fy; = —Pcosé. (8.5.20)
With (8.5.20), equation (8.5.18) becomes
N M? sinf
PPsin®@ | (Al ) + ————— + Psind| =0. 8.5.21
I:( 2 ) Az (1 + 0059)2 ( )

If |6] < , from (8.5.21) we obtain

N M2  sind
Apf ) + - ——" 1 Psinf=0. 8.5.22
( 2 ) A3z (1 + cos §)? ( )

Note that in writing (8.5.22) we assumed P # 0. The boundary conditions
corresponding to (8.5.22) are obtained from (8.5.19) and (8.5.20) so that

9(0)=0, 0(L)=0. (8.5.23)

The system (8.5.22), (8.5.23) will be the basis for our optimization problem.
For the case P = 0, that implies Fy = F; = F3 = 0, from (8.5.12)56,8.9, with

X5 = c3so My + s3M3, Xg = —s3Ma + c359M3, (8.5.24)
we obtain
1 X5 ’
cosf) = ——, X,=0,
( ) A22 2
/ Xocosf M, o My
X, = - —X5, Xg=-—-—Xs. 8.5.25
° Ao Ay 07 Ay 0 ( )

The variable X5 in (8.5.25) is given by (8.5.14); and cos# = cyc3. By using the
same procedure as in the case P # 0 we obtain

N M? sin @
1 3 _t ——— =
sin” @ l:(AQQg ) + w0t cos0)2} 0. (8.5.26)

From (8.5.26) it follows that

N M2 sind
Agf ) 4t —"——=0. 8.5.27
( z ) A2 (14 cos 6 ( )

Thus, equation (8.5.22) is valid for all values of P.
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Equations (8.5.22), (8.5.23) are Euler-Lagrange equations of the following
variational problem: determine the minimum of the functional I given as

N2
L[ Ap (9) M2
I= — t d 5.2
/0 5 Aon (13 050) 4+ Pcos® | dS (8.5.28)

for © € C? (0, L) and satisfying (8.5.23). The necessary condition for the mini-
mum of I, that is,

81(6,66) =0, (8.5.29)

is satisfied on the solution of (8.5.22).

Note that the integrand in functional (8.5.28) does not depend on t if A9y =
const. (i.e., the rod has constant cross section). Then, there is a Jacobi-type
first integral of the Euler-Lagrange equations (8.5.22) that reads

"2
Aa(0)
2 + Azz (1 + cos8)

Also, the stability condition for the rod with constant cross section can be
obtained from the second variation of (8.5.28). Calculating 621 (o = 0, 66) , we
obtain

— Pcosf = const. (8.5.30)

821 (8 =0,80) = / ‘ [Am (59')2 - (ZMQ_i + P) (50)2] ds. (8.5.31)
0
From (8.5.23) we conclude that 66 (0) = 80 (L) = 0 so that (see [74])
a2 L ) L 3
() /0 (66)2dS < /O (6¢')° ds. (8.5.32)

By using (8.5.32), (8.5.31) we obtain that 621 (6o = 0,66) > 0, if the condition

Agy (%)2 > ((M2./A2) + P) is satisfied. Thus the critical load parameters
ery Per are determined from

mT\2 Mfr
an(2) = (A_m + p,,) . (8.5.33)

The stability boundary (8.5.33) agrees with the stability boundary obtained
by other methods [23]. Next we use (8.5.28) with Age = const. to obtain an
approximate solution to (8.5.22), (8.5.23). Let

s _ML |, _PL

t = -, A = 5 = . 85.34
L' 71T An 2T An ( )

Then, (8.5.22), (8.5.23) become
Geaz—mf 5 sine=0, 0(0)=06(1)=0, (8.5.35)

(1 + cos9)
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where (-) = d(-)/dt. The functional (8.5.28) with I = IL?/Agy reads

N
= —_— = A 0| dt. 8.5.36
! /(; (2 AY (1+ cos8) + Az cos ( )
Let us assume an approximate solution (8.5.35) in the form
0 = C1t* + Cat® + Cst* + Cut + Cs. (8.5.37)

The boundary conditions imply that Cs = 0,Cy = — (C1 + C2 + C3) . Thus, the
function (8.5.36) becomes

0= C1t4 + Czt3 + Cgt2 - (01 +Cy + C’;) t. (8.5.38)

We determine C1, Cy, and C3 by the Ritz method. Let A; =1, A2 = 10. By sub-
stituting (8.5.38) into (8.5.36) and using the conditions 81/8C; = 0,01/0C, =
0, we obtain

C1 =1946, Cp=-3.892, C3=0.151 (8.5.39)
With these values the approximate solution to (8.5.35) reads
O = 1.946t* — 3.892t3 + 0.151¢% + 1.795¢. (8.5.40)

In Table 8.5.1 we compare the numerical solution 8 to (8.5.35) with the approx-
imate solution © given by (8.5.40).

Table 8.5.1

t {0]02 0.4 0.6 0.8 1.0
0 0.337 | 0.544 | 0.544 | 0.337
© 1003370543 | 0.543 | 0.337 | O

o
o

8.6 Optimal Shape of a Simply Supported Rod
(Lagrange’s Problem)

The problem of determining the shape of the rod of greatest efficiency (a rod
having minimum volume for given buckling load) was, for the case of a simply
supported rod loaded by concentrated forces at its ends, formulated by Lagrange
in 1773. The solution of the problem was obtained by many authors. Here we
shall present a solution to Lagrange’s problem obtained by usc of the Pontryagin
principle. Consider a rod shown in Figure 8.6.1.

€ >
F —
yv =5

Figure 8.6.1
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The differential equation determining the rod axis reads (see (8.2.7))

d dé
—_ = ind =0. 6.1
dS(EIdS)-i—FsmG 0 (8.6.1)
The boundary conditions corresponding to the rod shown in Figure 8.6.1 are
de de
5 (S=0), 5 (S=L)=0. (8.6.2)

We assume that I = aA2(S), where o = const., so that (8.6.2) becomes
(aA%(S)¢')' + Fsing = 0. (8.6.3)
The trivial solution to (8.6.3), (8.6.2) is
8 = 0. (8.6.4)
Let § = 6y + Af. By substituting this into (8.6.3) we obtain (after linearization)
(a4?(S)0') + Fo =0, (8.6.5)

where we omitted A in front of Af. Introducing dimensionless parameters

S F A
in (8.6.5) we obtain
(azé)' +A0=0, (8.6.7)
subject to
6(0)=0, 6(1)=0, (8.6.8)
where £ () = (-). The dimensionless volume of the rod is
1
w= / a(t)dt. (8.6.9)
0

The Lagrange problem reads: determine the cross sectional area a(t) > 0,t €
(0,1), such that for given w the smallest eigenvalue in (8.6.7), (8.6.8) is mazimal.
Alternatively, we may assume that A is given and reformulate the Lagrange
problem as: for given A find a(t) > 0,t € (0,1), such that X is the smallest
eigenvalue of (8.6.7), (8.6.8) and w given by (8.6.9) is minimal.

We solve the second form of the Lagrange problem by using the Pontryagin
maximum principle. We introduce new variables

=0, z3=a30, (8.6.10)
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so that (8.6.7) becomes

T2

=5 i‘2 = ——)\1‘1, (8611)
a

subject to
X2 (0) = 0, T2 (1) =0. (8.6.12)

Then, we formulate an optimization problem as: find a (t) > 0 such that

I= /0 a(t) dt (8.6.13)

is minimal, subject to differential constraints (8.6.11). We form a Hamiltonian
(see 7.6.6) as

H=a+m % — p2Az1. (8.6.14)
From (7.6.9) we obtain
. O0H . 0H D1
[ — _ e = — 6.1
P Er Ap2, P2 . 2 (8.6.15)
subject to (see (7.6.11))
p1(0)=0, pi(1)=0. (8.6.16)
The condition (7.6.10) reads
OH o
It can be seen that the solution of (8.6.15), (8.6.16) is given as
T9 Iy
== = —. .6.18
P ) y P2 9 (8 )

There is a possibility to take p; = x2/2,ps = —x1/2, but this choice would not
provide a () > 0. With (8.6.18) the condition (8.6.17) gives

a=(s2)"*. (8.6.19)
Returning to the system (8.6.11) we use (8.6.19) to obtain (m = z)
. A
v+ — = 0, (8.6.20)
m

subject to

m(0)=0, m(1)=0. (8.6.21)
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Note that the optimality condition (8.6.19) reads

a® =m?, (8.6.22)
in agreement with [59]. By using i = 424h in (8.6.20) we get
% (m)* + g/\mz/3 = C = const. (8.6.23)

We take the constant in (8.6.23) as C = (3/2) )\Cg/ % where Cy is another
constant. By using the symmetry of the problem, that is, 7 (t = 1/2) = 0, we
conclude that Cy = m (t = 1/2) = my. Then, (8.6.23) leads to

.2 2/3
m 3 m
( 2) = 5,\(mo)2/3 [1 - (-m—o) } . (8.6.24)
Introducing a new variable
m \1/3
v <._) (8.6.25)
mo

and separating variables in (8.6.24) we obtain

1/3 1/3 2/3
E(m0)2/3l arcsin | —— (= 1- (2 =t+Cy,
A 2 mo my mg
(8.6.26)

where C} is another constant. Applying the boundary conditions 1 (t = 1/2)
= 0 and m (1) = 0 we obtain

_ /3 237 1 23 _ 2 [A
01—\/:(mo) 173 M) =45 (8.6.27)

Therefore (8.6.26) becomes

1/3 1/3 2/3
z[m(ﬂ) S R S
id mo mo my

The constant mg is determined from the constraint. Thus by using (8.6.25) and
(8.6.22) in (8.6.9) we get

1 1 222 3
_ 2 =2
w= 2/0 aov” — = Uzdu = 790, (8.6.29)

where ap = a(t = 1/2) . Also, from (8.6.29) we obtain

a0 = %w, (8.6.30)
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so that mp = (4w/3)3/2. Now by observing (8.6.22) we write (8.6.28) as

1 |:arcsin (i)l/z - (—a—)l/2 1-— (i>} =t= E (8.6.31)
™ ag ag ag L
Finally, (8.6.26), when substituted in (8.6.20), leads to
A= %ﬁ (a0)? = §W2w2. (8.6.32)
Thus, for given A we determine ag from (8.6.32) and the optimal shape of the

rod from (8.6.31). Often the solution is written in parametric form as follows.
Take m = mgsin® 6 and w = 1. Then (8.6.22) and (8.6.28) become [59]

o = %sin20, 0»—;-sin29=7rt, 0<t<1, (8.6.33)
A = §7r2.

The method used here is strongly dependent on the fact that A is a simple
eigenvalue of the problem (8.6.7), (8.6.8) or (8.6.11), (8.6.12). For the case
when X is not a simple eigenvalue, the optimality condition (8.6.22) is different.
We refer to {31], {99], and [101] for this case.

8.7 Optimal Shape of a Rod Loaded by
Distributed Follower Force

In this section we study the problem of determining a Pfliiger rod of greatest
efficiency. A Pfliiger rod is a simply supported rod loaded by a uniformly dis-
tributed follower—type load (see [86]). The uniformly distributed follower load
is a nonconservative load. It is interesting, however, that the Pfliger rod loses
stability by divergence, so that the stability analysis could be based on static
(Euler) method. We shall formulate an optimization problem to determine the
necessary conditions for the minimum of volume and determine the optimal
distribution of the material along the rod axis. We follow the presentation of
[16].

Consider a rod shown in Figure 8.7.1. The rod is simply supported at both
ends with end C movable. The axis of the rod is initially straight and the rod
is loaded by a uniformly distributed follower—type load of constant intensity go.
We shall assume that the rod axis has length L and that it is inextensible.

B /(\ :
o -,
ié?\\\\ pPrd
% M‘tl“::—— —_— —1_—:‘-;'/_‘//r =
dS
Yy
Figure 8.7.1
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Let © — B — y be a Cartesian coordinate system with the origin at the point B
and with the z axis oriented along the rod axis in the undeformed state. The
equilibrium equations are (see [14])

%—g— = —¢g, % = —qy, %%I =~V cosf + Hsinb, (8.7.1)
where H and V are components of the contact force along the z and y axis,
respectively, M is the bending moment, and 8 is the angle between the tangent
to the rod axis and the z axis. Also, in (8.7.1), g, and g, are components of
the distributed forces along the = and y axis, respectively. Since the distributed
force is tangent to the rod axis we have

gz = —qocosf, ¢, = —qpsinf. (8.7.2)

To the system (8.7.1) we adjoin the following geometrical relations:

dx dy .
75 = oS 6, 45 = Sin 9, (8.7.3)
and constitutive relation
do M
—_—— 7.4
dS EI (8.7.4)

In (8.7.3) and (8.7.4) we use z and y to denote coordinates of an arbitrary point
of the rod axis and ET to denote the bending rigidity. The boundary conditions
corresponding to the rod shown in Figure 8.7.1 are

20) = 0, y(0)=0, M(©0)=0
y(L) = 0, M(L)=0, H(L)=0. (8.7.5)

The system (8.7.1)—(8.7.5) possesses a trivial solution:

HO(S) = _qO(L—S)v VO(S):Oa MO(S)=07
22(8) = 8§, ¥%S)=0, S8 =0. (8.7.6)
In order to formulate the minimum volume problem for the rod, we take the

cross-sectional area A(S) and the second moment of inertia I(S) of the cross
section in the form

A(S) = Aga(S), I(S) = Ipa®(S), (8.7.7)

where Ag and I are constants (having dimensions of area and second moment
of inertia, respectively). For the case of a rod with circular cross section we have
the connection between Ay and Iy given by Iy = (1/47)A2. Let AH, ..., Af be
the perturbations of H, ..., § defined by

H = H°+AH, V=V°+AV, M=M"+AM,
t = 2%+ Az, y=y"+Ay, 0=460"+ A0 (8.7.8)
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Then, by introducing the following dimensionless quantities

AHL? AVL? AML
h = , V= y m = s
El, El, El,
Az Ay S qoL®
_ Bz Ay o _ Do 8.7.9
§ L ) 7) L ) t L ) >\ EIO ) ( )

and by substituting (8.7.7) in (8.7.1)—(8.7.5) we arrive at the following nonlinear
system of equations describing nontrivial configuration of the rod:

h = —M1-—cosf), ©=Asinb,
m = —wvcosf+[-A(l—t)+ hlsind,
§€ = l—cosf, n=sind; 0= :;%, (8.7.10)

where () = d(+)/dt. The boundary conditions corresponding to (8.7.10) are

£0) = 0, n(0)= 0, m(0) =0,
n(l) = 0, m()= h(1)=0 (8.7.11)
Note that the system (8.7.10)-(8.7.11) has the solution A{t) =0, ...,6(t) = 0 for
all values of A\. Next we linearize (8.7.10) to obtain
h o= 0, v=M0, m=—v—\1-t),
— 0, n=0, bH=_. (8.7.12)
a

By using boundary conditions (8.7.11) in (8.7.12) we conclude that A(t) = £(t) =
0, and the rest of equations (8.7.12) could be reduced to

LA
m+ Zﬁ(l —tym =0, (8.7.13)
subject to
m(0) = m(1) =0. (8.7.14)

The system (8.7.13)—(8.7.14) constitutes a linear spectral problem. For the case
when 0 < a(t) < oo, t € (0,1) the eigenvalues 0 < A; < Az < A; < o0, are simple
and the only accumulation point is at infinity. The theorem of Krasnoselskii,?!
when applied to our problem (see [89]), states that eigenvalues of the linear
spectral problem (8.7.13)—(8.7.14) determine the bifurcation points of the non-
linear system (8.7.10)~(8.7.11). Thus the bifurcation points of {8.7.13)(8.7.14)
are of the form (0, \,), where A, are eigenvalues of the system (8.7.13)-(8.7.14).

211f the eigenvalues of the linearized problem are of odd algebraic muitiplicity, then they
determine the bifurcation points of the nonlinear problem. In our case, eigenvalues of the
linearized problem are simple (algebraic and geometric multiplicities are equal to 1), and the
conditions of Krasnoselskii theorem are satisfied.
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Therefore, the rod of greatest efficiency is the one that has minimal volume for
fixed lowest eigenvalue A; of (8.7.13)—(8.7.14). Thus, for the rod of the greatest
efficiency we have to minimize

1
Vo=/ a(t)dt, (8.7.15)
0
subject to
A1 tm=0 8.7.16
m+a3(1—-)m—- , ( )

with boundary conditions (8.7.14). In (8.7.16) we consider A; to be known. Vj
in (8.7.15) denotes the dimensionless volume of the rod.

To determine a(t) such that V; is minimal, we shall again use the Pontryagin
maximum principle. Let us rewrite optimization problem (8.7.15)-(8.7.16) as
follows.

Find the control u(t) such that 0 < u(t) < oo, t € (0,1), for which the
optimality criterion

Vo = /0 Loy, (8.7.17)

attains minimum value. The governing differential equations are

T = Iy,

. A

Iy = —u—;(1_t)zl, (8.7.18)
subject to

z1(0) =0, z:(1)=0. (8.7.19)

For the system (8.7.17)—(8.7.18) the Hamiltonian (see (7.6.6)) reads
A
H=u+pzs— pgu—;(l — t)ay, (8.7.20)

where the variables p; and p; have to satisfy the following system of differential
equations (see (7.6.9)):

. OH X . O0H
P = Er F(l —t)pe, Po= T —p1, (8.7.21)
subject to
22(0) =0, pa(1) =0. (8.7.22)
The optimality condition (7.6.10) or (7.6.13) leads to
oH _ 1+ &(1 —t)z1p2 = 0. (8.7.23)

Ou u3
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By solving (8.7.23) for u we obtain
w=—[20 (1 —t)z1pg)*/?. (8.7.24)

Comparison of the boundary value problems (8.7.18)—(8.7.19) and (8.7.21)-
(8.7.22) lead to the conclusion that

pi(t) = 22(t), p2(t) = —21(t).- (8.7.25)
Therefore, the control variable u(t) given by (8.7.24) becomes

1/3

uw=[2A(1— t)a:ﬂ (8.7.26)

Note that by using (8.7.25) in (8.7.20) we have (92H/0u?) > 0 so that the
necessary condition for a minimum of H is satisfied. By substituting (8.7.26)
into (8.7.18) we arrive at a single differential equation

B4+ M1 —1) Y3713 =, (8.7.27)
subject to

2(0)=0, =z(1)=0. (8.7.28)

In (8.7.27) and (8.7.28) we used z(t) = z1(t), A = (\1/4)!/3. Note that the end
points ¢t = 0 and ¢ = 1 are singular points of the problem (8.7.27)—(8.7.28). To
examine the local behavior of the solution near end points, we first transform
the independent variable ¢ to ( =1 —¢. Then (8.7.27) becomes

i+ 233 =, (8.7.29)
subject to
z(0) =0, z(1)=0. (8.7.30)

In (8.7.29) we again used () = d(-)/d¢. Suppose that the solution z(¢) of
(8.7.29)—(8.7.30) in the vicinity of ¢ = 0 behaves as

() ~ C¢*[1+al+ a2® +as® + sl +- -,
¢ — 0, (8.7.31)

where C, a, and a;,7 = 1,2, ..., are constants. By substituting (8.7.31) in (8.7.29)
we conclude that

1< 1.2
a = 17 a; = _5/\0_4/3; ay = ——SGAZC 8/3’
— 2 _
a3 =~ X0 a4 = - XTI, (8.7.32)

1296 " 15552
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In (8.7.32) the constant C' remains undetermined. It is related to the first
derivative of x at { = 0, namely, C' = (0). Note that from (8.7.29) and (8.7.32)
it follows that

o p)
ggr‘l)x(g) = -G (8.7.33)

To solve (8.7.29) numerically we shall write the first-order system of differential
equations

&1 =19, dp=-A(a]3 (8.7.34)

Then, we choose z2(0) = C and solve (8.7.34) as an initial value problem. The
boundary condition z1(1) = 0 will be satisfied by the shooting method. In
the first integration step, the right hand-side of (8.7.34), will be equated with
(8.7.33).

We shall now formulate two variational principles for the boundary value
problem (8.7.27)—(8.7.28). Let X be the following function space:

X = {X(t): X(t) € C*(0,1); X(0) = X (1) = 0}, (8.7.35)

where C?(0,1) is the space of continuous functions mapping (0,1) into real R,
having continuous first and second derivatives. Next we consider the variational
problem

1
. _ Loo 35,0 1/3y2s
minl(X) = /0 [5)( 31— Ax at (8.7.36)

for X(t) € X. It is easy to see that the minimizing element of (8.7.36), if it
exists, satisfies (8.7.27)-(8.7.28). Therefore,

6I(z,6x) =0. (8.7.37)

Hamilton’s variational principle (8.7.37) is also called the primal variational
principle (see [8]). Calculating the second variation of (8.7.36) we obtain

1
8%1(z, 6z) = / [(55:)%%}(1-1:)1/%—4/3 (51)2] dt. (8.7.38)
0
From (8.7.38) it follows that
821(z, 6z) > ||6&l|%, , (8.7.39)
where |6z, = (fol (62)% dt)1/2. By combining (8.7.37) and (8.7.39) we con-

clude that on the solution z(t) of the boundary value problem (8.7.27)-(8.7.28)
the functional (8.7.36) attains a minimum (see discussion after (5.2.13)):

)l'(nElI}I(I(X) = I(z). (8.7.40)
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Now we proceed to construct the dual variational principle (see [8]). Let us de-
note by F(t, X, X) the Lagrangian function of the variational principle (8.7.37),
that is,

. 1.2
F(t,X,X) = 5X —g

M1 —t)1/3x2/3, (8.7.41)
We get the canonical form of (8.7.27)—(8.7.28) by introducing the variable P as
(see (1.8.1))

p=2_ X, (8.7.42)
X

and the function Hy(t, X, P), also called the Hamiltonian, connected with F' by
the Legendre transformation (see (1.8.6))

Ho(t,X,P)=PX —F = %PZ + 2‘7\(1 — )18 x2/3, (8.7.43)
The system (8.7.27)—(8.7.28) then becomes
: 0K : OK <
X =22 = 2 = N1 -t)¥M3x 173, .7.44
=P P=—gz=-31-9x (8.7.44)

In order to obtain the dual variational principle we first have to solve (8.7.43)

for F. Then, in the expression so obtained, we substitute X in terms of P from
(8.7.44)2 and use the resulting expression in (8.7.36). After partial integration
and application of boundary conditions, we obtain

P2

Let z(t) and p(t) be the solution of canonical system (8.7.44). Then it is easy
to show that the following dual variational principle holds:

6G(p,6p) =0, (8.7.46)

G(P)=I(P,X(P)) = — /0 1 Bzﬂ + %7\31—.——1 dt. (8.7.45)

where the variation 6p is ép = P — p and P is an admissible function, that is,
.2

PeY={P:PecCY01);[y[(1-1t)/P|dt < co}. Note also that I (z) =

G (p). The elements of Y need not satisfy any boundary condition. However, in

practical applications P is usually expressed as P = X, where X(t) € X. Also,
from (8.7.45) it follows that

1 31—t .
§2G(p,6p) = — /0 [<6p>2+3f—7(6p)2 dt < —|i6pll3, - (8.7.47)
P

By combining (8.7.46) and (8.7.47) we conclude that on p(t) the functional
(8.7.45) attains a maximum:

g}gG(P) = G(p). (8.7.48)
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From the results (8.7.37), (8.7.39), (8.7.46), (8.7.47) the following chain of in-
equalities could be derived:

G(P) < G(p) = I(z) < I(X). (8.7.49)

We shall use (8.7.36) and (8.7.45) to obtain an error estimate of an approximate
solution of (8.7.27), (8.7.28). This is achieved by using the inequality

62l = sup [s(t)] < Lok, (8.7.50)
“  te(o,1 \/§

)

valid for any éz(t) satisfying 6z(0) = 8z(1) = 0. From (8.7.49) and (8.7.50) we
obtain

oz, < [7(X) - GP)2. (8.7.51)

We present results of numerical integration of the system (8.7.18), (8.7.19). The
value of Ay was taken as the lowest eigenvalue of the rod with constant cross
section having unit volume. Precisely, we take a(t) = 1, Ag = mR3, Iy = nR} /4
in (8.7.7), where Ry is the radius of the cross-section that we assume to be
circular. Then, from (8.7.15) we conclude that Vp = 1. With these values ),
becomes Ay = 18.956266 (see [14]).

1.5
1.0

0.5

Figure 8.7.2

The numerical solution of (8.7.18), (8.7.19) is shown in Figure 8.7.2. Note that
in accordance with (8.7.24) the cross section of the rod (in our notation u) is
zero at both ends of the rod. By assuming that the optimal rod is also of circular
cross section with the radius (t) we can take u(t) = A(t)/Ao = (r(t)/Ro)?. The
radius r(t) of the optimal rod as a function of dimensionless arc length is shown
in Figure 8.7.3.

When the volume of the optimal rod is calculated from (8.7.17) we obtain

1
Vopt = / u(t)dt = 0.81051. (8.7.52)
0
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It is interesting to compare the critical force of the rod with constant cross
section having the same volume as the optimal rod. The radius of the cross
section of this rod is ro = 0.90028 Rg. The corresponding dimensionless critical
load is Ag = 12.452807.

We now use dual variational principles, described in the previous section,
together with the Ritz method, to determine an analytical approximate solution
of (8.7.27)-(8.7.28) for A; = 18.956266, already used in numerical treatment.
We assume the solution of the problem in the following form:

X(Ci,Cy, Cs,t) = ma(t) = Cit(1 — t)(1 + Caot + Cst?), (8.7.53)

where C1, Cs, and Cj are constants to be determined.

1.2 S B e T T

r t' R,
& To(t)/Ry

1.0

0.8

0.6

0.4

0.2

0.0 L s L L

0.0 0.2 0.4 : 0.6 0.8 1.0

Figure 8.7.3

Since x(t) in (8.7.27) represents the dimensionless moment (see (8.7.13)) we
used this in writing (8.7.53). The index attached to m indicates the number of
free constants that are to be determined. Note that X(¢) given by (8.7.53) is
an admissible function since it satisfies the boundary conditions for all values of
constants C1, Cz, and C3. By substituting (8.7.53) into (8.7.36) and minimizing
with respect to C;,Cy, and C3 we obtain ) = 1.3036,Cy = —0.4563,C3 =
0.2293 so that (8.7.53) and the corresponding value of functional I become

ma(t) = 1.3036t(1 — ¢)(1 — 0.4563¢ + 0.2293t2), I(m3) = —0.4052. (8.7.54)

For the functional G given by (8.7.45) we take the admissible function P(t) in
the form

P(D7D17D2):X(D17D27D37t)' (8755)

Substituting (8.7.55) in (8.7.45) and maximizing with respect to Dy, Dy, and
D3, we obtain

P(D,D1,D2,t) = D(1+2D1t+ 3Dat?) — Dt (2 + 3D1t + 4D,t?),

D; = 13128, Dy=—0.4646, Ds = 0.2353,
G(P) = —0.4088. (8.7.56)
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From (8.7.55), (8.7.56), and (8.7.51) we obtain the estimate of the error of the
solution (8.7.54) as

I8l < [I(X) — G(P)]'/* = 0.06. (8.7.57)

In Figure 8.7.4. we show the numerical (m(t)) and two approximate solutions
ma(t) (given by (8.7.54)) and my(t), obtained by minimization of the functional
I for the trial function with two unknown constants, that is, my(t) = Cyt(1 —
t)(1 + Cat). As could be seen from Figure 8.7.4 by increasing the number of
constants in the trial function from two to three, we obtained convergence of
approximate solutions to the exact one. Once we know the approximate solution
m3(t) we can determine the approximate cross-sectional area of the rod from

(8.7.26).

0.3 . i ,
025 F / /4.,*\\
02 | mt) o
a
015 My(t) cooe-
01 t m(t) L
/
005 |/
0.0 ) .
00 02 0.4 0.6 08 o
t
8]
Figure 8.7.4

A generalization of the problem presented here was given in [20], where it was
assumed that a compressive force F is acting at the moving end of the Pfliiger
rod. The resulting equation is (compare with (8.7.27))

B+ M —t)+2) 8 =, (8.7.58)

subject to
z(0) = z(1) = 0. (8.7.59)
In (8.7.58) and (8.7.59) we used X, = (-8 /4), A2 = (FE‘—I;:/4) The case treated

by Keller [59] and in section 8.6 corresponds to A; = 0, Az # 0. If the solution of
(8.7.58) and (8.7.59) is known, the cross section of the rod is determined form

a={2[4%(1 - t) + 433) 22}'7°. (8.7.60)

Equation (8.7.58) is the Euler-Lagrangian equation of the variational problem
6I; = 0, where

L(X) = /01 {%X? - g [ — ) + 2g)/? x2/3} dt, (8.7.61)
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and X belongs to the space X defined by (8.7.35). The procedure of solving
(8.7.58), (8.7.59) and after that determining the shape of the optimal rod (op-
timal cross section) according to (8.7.60) is similar to the previous case, and is
omitted.

8.8 Optimal Shape of the Rotating Rod

Our intention in this section is to formulate an optimization problem for the
rotating rod (see [17]). We start from the equations (8.4.1), (8.4.2), but we use
different dimensionless quantities. Thus we introduce

LS A g W
- La - LZ: y= Ly - L3)
MV, IR
™ = Bald 'TEalz T Ea (88.1)
and a new dependent variable
u= —-’A’-. (8.8.2)
From (8.4.1), (8.4.2) and (8.8.1), (8.8.2) we obtain
=)y, m=-lucosd, §=sinf, 0= —%. (8.8.3)

The boundary conditions corresponding to the rod shown in Figure 8.4.1 are
u(l)=0, m(1)=0, y(0)=0, 6(0)=0. (8.8.4)

The system (8.8.3), (8.8.4) possesses a trivial solution, in which the axis of the
rod remains straight for any value of the dimensionless rotation speed ), in the
form

Uy = 0, mo = 0, Yo = 0, 00 =0. (885)

To examine stability of the equilibrium configuration (8.8.5) we use the Euler
method. Thus, we assume that

u=ug+Au, m=mo+Am, .., 0=~60+ A0, (8.8.6)

where Au, ..., Afl, denote perturbations of the corresponding variables. Then,
by substituting (8.8.6) into (8.8.3) and linearizing the resulting expressions, we
obtain (omitting A in front of perturbed variables)

<;> =), (0a2) —u, §=6, (8.8.7)
subject to

u(1)=0, 4(0)=0, 6(0)=0, 6(1)a®(1)=0, y(0)=0. (8.8.8)
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For the bifurcation it is enough to consider

(%‘) =20, (0a®) =, (8.8.9)
subject to
u(1)=0, 40)=0, 6(0)=0, limb(t)a’(z)=0. (8.8.10)

By introducing new variables u = w;, % = we,0 = wa,é = wy and the vector
w = [w;, wa, w3, wy), the system (8.8.9), (8.8.10) can be written in compact form
as

d d
_dl,d - 8.11
F(A)w o [Adtw] +ABw =0, (8.8.11)

where A and B are given as

0 1/a 0 0 00 10
0 0 0 0 000 0

A=lo 0 o0 o | B=1000 0 (8.8.12)
0 0 0 a2 1000

Note that the boundary condition (8.8.10)4 that corresponds to m(1) = 0 is
equivalent to 6(1) = 0 if a(1) # 0. However, if a(1) = 0 (as it will be in our
analysis) the condition m(1) = 0 can be satisfied with 6(1) # 0. For fixed A the
existence of a nontrivial solution of (8.8.9), (8.8.10) is a necessary condition for
the loss of stability. The dimensionless volume of the rod is given as

w= / ety (8.8.13)
0

We now state the following optimization problem.

For given A determine a(t) > 0 for ¢ € (0,1), so that A is the smallest eigen-
value of (8.8.9), (8.8.10) and at the same time w given by (8.8.13) is minimal.

We call the rod with such a(t) the optimal rotating rod. Thus, the optimal
rotating rod is so shaped that any other rod with smaller volume w will buckle
at a rotation speed that is smaller than A. We note that A must be an isolated
eigenvalue in order for nonlinear equilibrium equations to have bifurcation points
at A, and we assume this to be true. Cox and McCarthy [32] pointed out that
the assumption about isolated eigenvalues may be violated if the cross-sectional
area a (t) vanishes too severely when ¢t — 1. Thus, in principle, our assumption
may be checked by the method similar to one presented in [32]. This rather
delicate analysis is outside the scope of our presentation.

22The system (8.8.9) could also be writen as (a%y) " - Aay =0.



8.8. Optimal Shape of the Rotating Rod 305

Let z1,...,z4 be a set of dependent variables defined by

u =1, E:xz, 0=uz3; a%0=uxy (8.8.14)
a

Then, the system (8.8.9), (8.8.10) becomes

fEl = axy, i:z = /\a:3, d?g = 2;—, :it4 = )\.’1)1, (8815)
a

subject to
21(1) =0, z2(0)=0, =x3(0)=0, =z4(1)=0. (8.8.16)

The problem of determining the shape a(t) of the optimal rod may be stated
as: determine the function a(t) > 0, t € (0,1), that minimizes the functional

[= /0 a(t)dt, (8.8.17)

when the system is described by (8.8.15), (8.8.16). To solve the optimization
problem we use the Pontryagin maximum principle. For system (8.8.15) the
Hamiltonian function H is

H = a+ p1axs + peAzs —|—p3% + paAz1, (8.8.18)
where the variables py, ..., py satisfy
. __8Hm)\ .___3_1—_1___(1
= 9z, = P4, P2 = 922 = —na,
. OH ) OH 3
_ _9H _ SR ] 8.8.19
P3 (9.’53 P2, P4 6134 a2 3 ( )
subject to
The optimality condition (see (7.6.10) or (7.6.13)) leads to
oH =1+pix2— 2p3z—§ =0. (8.8.21)
Oa a
By solving (8.8.21) for a we obtain
2p3z4 1/3
= — . 8.8.22
¢ { 1+p1z2 } ( )

Again we note that the solution of the boundary value problem (8.8.15), (8.8.16)
leads to a solution of the boundary value problem (8.8.19), (8.8.20) if we make
the following identification:

p1(t) = xa(t), po(t) = —z1(t), p3=124, pa=—73. (8.8.23)
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There is one more possibility to connect the solutions of (8.8.15), (8.8.16) and
(8.8.19), (8.8.20). This is given by the following identification of dependent
variables: p; = —x2, p2 = 11, p3 = —T4, ps = x3. However, this identification is
not of interest since it does not provide a(t) > 0 in (8.8.22) and (6?H/8a?) >
0 with H given by (8.8.18). Note that here we assumed that A is a simple
eigenvalue of (8.8.15), (8.8.16), so that there exist a single eigenvector with
components (z; (t),...,z4 (¢)). By using (8.8.23) the cross-sectional area a(t)

given by (8.8.22) becomes
5 Y1/3
o= 2 L (8.8.24)
1+ (z2)

Note also that with (8.8.23) substituted in (8.8.18) we have (82H/0a?) > 0 so
that the necessary condition for the minimum of H is satisfied. From (8.8.24)
and the boundary condition (8.8.16)4, we conclude that

a(1) =0. (8.8.25)

Thus the optimal rod is tapered so that it has zero cross-sectional area and zero
moment of inertia at its free end. Also, when the original variables (see (8.8.14))
are used in (8.8.24) we obtain

-2

LTS?T - % (8.8.26)
By using the boundary condition (8.8.10) in (8.8.26) we get
a(0)8°(0) = -;- (8.8.27)
We now transform (8.8.24). First we write it in the form
2 4p°
1+ (z2)2 = 2(aL§) = 2‘;—39 = 2af’". (8.8.28)

From (8.8.28) we conclude that a (t) # 0 for ¢t € (0,1) . Next, by differentiating
(8.8.28) and by using (8.8.14), (8.8.15) we get

(@d’) = /\E)g (8.8.29)

as the optimality condition. Now we transform the system (8.8.7) as follows.
Integrate (8.8.7); to obtain

u

(;> - A/Ot 8(¢)de, (8.8.30)
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where we used the fact that %(0) = 0 and a(0) # 0 (see (8.8.8)2 and (8.8.26)).
Substituting (8.8.30) into (8.8.29), integrating, and using (8.8.27), we obtain

ab” = 2 /0 t {9(&) / ()¢

Since i = 0 (see (8.8.7)3), the equation (8.8.31) that represents the condition of
optimality may be written as

dé + % (8.8.31)

aif? = % [1+2%7]. (8.8.32)

Finally, by differentiating (8.8.7)2 and using (8.8.30), we have

. t
(60%)" = (§?) " = Nie=Na / 8(6)d¢ = Nay. (8.8.33)
0
Therefore, the optimal shape a(t) of the rotating rod is determined from the
solution of the system (8.8.32), (8.8.33):
(jja2)" =May, ai?= % [1 + /\2y2] , (8.8.34)

subject to

y(0) =0, 9(0)=0, limj(t)a®(t) =0, gi_rg{[g(t)aQ(t)]'}:o. (8.8.35)

t—1

We next analyze system (8.8.34), (8.8.35). First, we formulate three different
variational principles corresponding to the system (8.8.34), (8.8.35). Also, we
construct a conservation law corresponding to (8.8.34), (8.8.35).

(a) The variational principle with two arguments. Let W, be the linear
function space defined as

W, = {W :(y7a’) ty € 04(05 1)7 y(()) = y(O) =0,

a€C?*0,1), a>0, a(l)=0}. (88.36)

Consider the functional

1
Li(y,a) = / Fydt, (8.8.37)
0
with the Lagrangian function
Fy = a%*® — Nay? — a. (8.8.38)

Suppose further that we want to determine the minimum of I; on W;. We claim
that I is stationary on the solution of (8.8.34), (8.8.35). To prove this, note
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that the condition of stationarity of Iy, that is, vanishing of the first variation
61, leads to the following Euler-Lagrangian equations:

. - a N, 1
(ia%)" = Nay, aij? — —2—y2 -5=0, (8.8.39)

and natural boundary conditions

#(1)a*(1) =0, {li(H)a?(®)] },_, =0 (8.8.40)
The system (8.8.39), (8.8.40) is equivalent to (8.8.34), (8.8.35).

(b) The variational principle with one argument. We can write system
(8.8.34), (8.8.35) as a single differential equation of fourth order if we deter-
mine a from (8.8.34)2 and then substitute the result in (8.8.34);. Thus we
obtain

- 1+ 2%
L—}g (1+ A2y2)2] - 2/\2y(———g—2—y—l =0, (8.8.41)

subject to

217:(—1) [14+2%2(1))% =0, ({F:(ﬁ [1+ A2y2(t)]2}.>t=1 =0. (8.842)

Consider the space

Wo={y:y e C*0,1); y(0)=y(0) =0} (8.8.43)
and the functional
1
I, = / Fadt, (8.8.44)
0
with Lagrangian function
1 A2 2 2
Fy= (—+—2—yl (8.8.45)
Y

Then the Euler-Lagrangian equation corresponding to 6I2 = 0 is equivalent to
(8.8.41). Note that the natural boundary conditions for the minimization of I
on the set (8.8.43) are identical to (8.8.42).

(c) The canonical formalism. The variational principle 6I; = 0 could be
used to write (8.8.39), (8.8.40) in canonical form. We define a variable (a “mo-
mentum”) p as

OF, _ ,(1+Xy?)?

P=gy = 7 (8.8.46)
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Then, the Hamiltonian (see [107]) function is

.. 3 2/3
Hy=pij—F = _pr (1+ X2 (8.8.47)
With (8.8.47) the canonical equations
. aHQ . 6H2
— =———— = e— 8.8~48
i=2, P=%, ( )
become
2 1/3 1/3
(1+2%%) v
TR DA AIL A P (VE JC IV N A T (R
(] [ " P Y T ) (0,1)
(8.8.49)

From (8.8.35) and (8.8.46) we obtain the boundary conditions corresponding to
the system (8.8.49) as

y(0) =0, §(0)=0, p(1)=0, p(1)=0. (8.8.50)
Consider the space Wj:

W= {w =(y,p) :y € C2(0,1), y(0)=0, #(0)=0,

peC*(0,1), p(1)=0, p(1)=0}  (8.8.51)

and the problem of determining the minimum on Wj of the functional

1
Iy = / Fydt, (8.8.52)
0

with

23 (8.8.53)

. 3 a3 2 2
F3=yp~mp/ (1+ X%?)
It is easy to see that the condition 673 = 0 reproduces the system (8.8.49).

Since F3 does not depend explicitly on ¢ we have a Jacobi-type first integral for
(8.8.49) in the form

.. 3 2/3

yp + 2—2/-§p2/3 (1+ Agyz) = const. (8.8.54)
We now determine the constant in (8.8.54). By using the boundary conditions
(8.8.50) it follows that

- 3 2/3 3
9P+ pp” (1+ %) P-c= 575 PO (8.8.55)
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We shall use (8.8.55) to check numerical integration of the system (8.8.49).
Namely, we shall, in each step of numerical integration, calculate the left-hand
side of (8.8.55) and compare the value so obtained with the constant on the
right-hand side.

Finally, we note that with (y, p) known, the cross-sectional area a(t) is de-
termined from the equations (8.8.32) and (8.8.46) so that

p2 1/3

a=a(t) = |———— . 8.8.56

© [25(1+/\2y2)] (8836)

For the optimal rod we now derive another important relation. To this end
we multiply (8.8.49); by p and integrate to obtain

1 1 2, 2y271/3
/ Gpdt = — / [2M] dt (8.8.57)
0 0

p

or
1 1 2/3
/y;bdt=‘21/3/ P23 (1+2%%) 7" dt. (8.8.58)
0 0

Similarly, by multiplying (8.8.49)2 by vy, integrating, and using (8.8.58), we
obtain

1 1 (1 4 A2,2)%3
/0 ypdt = 24/3 /0 (——’-pﬂg—)-—dtz&u, (8.8.59)

where we used (8.8.56) and (8.8.13). Now we use (8.8.58) and (8.8.59) in (8.8.55)
to obtain

[p(0))* = -23922/%. (8.8.60)
By substituting (8.8.60) in (8.8.56) we finally get
3
= — . .8.61
w= 750 (0) (8.8.61)

The equation (8.8.60) is used to check the (overall) accuracy of numerical in-
tegration of the system (8.8.49), (8.8.50). It also shows that by choosing w we
can determine p (0) from (8.8.60), or if a (0) is prescribed then the volume of
the optimal rod can be determined from (8.8.61) as a (0} = (10/3) w.

The system (8.8.49), (8.8.50) is integrated using the Runge-Kutta double-
precision procedure. Note that the point ¢ = 1 is a singular point for the system
(8.8.49), so that the equation (8.8.49); cannot be satisfied at t = 1. Thus we
proceed as follows: we constructed a sequence of numerical solutions (yn,pn),
n =1,2,..., with y,(0) = 9,(0) = 0 and y,(t) > 0,9n(t) > 0,p.(t) < 0,P,(t) >
0 for t € (0,1) and p,(1) = —en,p(1) = 8, with the constants e, > 0,68, > 0.
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For each solution (y,,, p,) the values of variables p,(0) and p,(0) and the cross-
sectional area a, = an(€n,0,) are determined (a, is determined according to
(8.8.56)). Then, the optimal cross-sectional area a(t) and corresponding initial
values p(0) and p(0) are obtained as lim a,, lim p,(0), and lim $, (0), when €, —
0, 6n — 0, respectively.

We performed the calculations for A = /10 and obtained the following
values p(0) = —0.195054200962, p(0) = 0.37907. With these values at ¢t = 1
we obtained p(1) = —3.744 x 1074, (1) = 4.649 x 10, The accuracy of
integration was controlled by evaluation of the first integral (8.8.55) in each
step of integration. The left-hand side in (8.8.55) was constant and equal to

5 [0.1950542) /* = 0.6356 up to 10"
From (8.8.56) we obtain a(0) = (p?(0)/2%)!/® = 0.10595. The dimensionless

volume w of the optimal rod is determined using (8.8.13) and (8.8.56). For
A = /10 we have

1
w= / a(t)dt = 0.037111. (8.8.62)
0

The condition (8.8.61) gives Wsmooth = %a(O) = 0.031781. This value corre-
sponds to the case when the conditions p (1) = p(1) = 0 are satisfied exactly.
It also shows that one should further increase the accuracy of numerical inte-
gration.

We note that in the neighborhood of the point ¢ = 1 the functions y (¢) and
a (t) can be expanded in a series. Thus, suppose that

y@)=b1-t)"°, (8.8.63)
where b and ¢ are constants. By substituting (8.8.63) into (8.8.34)2 we obtain

A2

1 442¢
=— -t (1t 8.8.64
@ 2¢2 (c+1)2 ( )+ 2¢2b2 (c+ 1) ( ) * ( )

For positive ¢ the equation (8.8.64) leads to

A2 4
Q= ——— (1 —t)". 8.8.65
2¢2 (c+ 1)2 ( ) ( )
By using (8.8.65) in (8.8.40) we conclude that 0 < ¢ < 5. Numerical experiments
show that ¢ = 2, so that (8.8.65) leads to

AZ

=25 (1- )" (8.8.66)

a

In numerical experiments we concluded that due to singularity at ¢t = 1, the
boundary conditions p (1) = p(1) = 0 is difficult to satisfy with high accuracy
(for arbitrary A) with the smooth solutions of (8.8.49), (8.8.50). Thus, we ex-
amine the possibility of the existence of broken extremals with the discontinuity
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in p(t). To do this, we write the functional (8.8.52) as

1
L= / Fydt, (8.8.67)
0

where Fy = yp + 223,31)2/3 (1+ A2y2)2/3. Broken extremals of (8.8.67) must
satisfy the Weierstrass—Erdmann corner conditions at the points of discontinuity.
For the functional (8.8.52) those conditions are given in section 6.6. For the
functional (8.8.67) those conditions read (see [108, p. 231])

OF,] . [0Fs dOF _
[aﬁ]t-‘o’ [615 0t aﬁ]t.“o’ (8.868)

where {f],. = ()0 — (f);+_o denotes the jump of f at t = t*. In our case
(8.8.68) becomes

ly ®i=e= =0, [§(O))py =0 (8.8.69)

Thus, if y (t) and g (y) are continuous, (8.8.69) is satisfied. The same conditions
follow from (6.6.6), which is equal to (8.8.69)2, while (8.8.69); is assumed in
deriving (6.6.6). Since p(t) represents transversal force, it can have value zero
only at the end point t = t* = 1, and the condition [F}),._, = 0 is automatically
satisfied since t* = 1, 6t* = 0. Thus the broken extremal is characterized by the
solution of

1/3
1+ 2%2)°
j=— l:g(_____y_) . p=-—248)%

2 1/3
p
, te(0,1),
- )] (0,1)

(1+A%y2

(8.8.70)

subject to the boundary conditions

y(©) =0, §(0)=0, limp(t)=0, lim p(t)#0, p(1)=0. (8871)
We performed numerical calculations with the same parameters as in the case of
smooth solutions. Thus with A = /10, we obtained the following values: p (0) =
—0.195054200962, p (0) = 0.3791 giving p (1) = —6.56 x 10713, lim;1_0p (t) =
5.69x 1073, The volume in this case is Werocken = 0.037088. This is the volume of
the optimal rod for broken extremals since the possibility of the optimal solution
with p(t) discontinuous, that is, solution of (8.8.70) with y(0) = 0,7 (0) =
0,limy—1-¢p(t) # 0,p(1) = 0,lim;;¢p(t) = 0, leads to w = 0.371133,
which is larger than the value obtained when p (1) is discontinuous.

Thus, the volume of the rod with a(0) = 0.10595 corresponding to a smooth
extremal determined by the solution of (8.8.49), (8.8.50) has the value Wsmooth =
%a(O) = (0.031781, which is smaller than the volume corresponding to broken
extremals and smooth extremal leads to the optimal rod. A cross section of the
optimal rod a(t), calculated according to (8.8.56), is shown in Figure 8.8.1.
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0.1

0.05

Figure 8.8.1

We show next that with the solution of (8.8.49), (8.8.50) for single \ we
can determine the solution for any A. Let (y,p) be the solution of the problem
(8.8.49), (8.8.50) and let a(t) be the corresponding cross-sectional area deter-
mined for the specified value of the dimensionless rotation A. Let (4, p) and a(t)
be the corresponding functions determined for the dimensionless rotation speed
A = (), with the constant 3 given. By using (8.8.49), (8.8.50), and (8.8.56) it
is easy to see that the following relations hold:

.1 R .
=gy P= Bp, a=pa. (8.8.72)

Thus, with the solution for single A, we have the solution for any A.

We now compare the volume of the optimal rod and the rod with constant
circular cross section if both are stable up to the same angular velocity w.
Suppose that both rods are made of the same material, that is, that E, p are
the same. Also, we assume that both rods lose stability at the same angular
velocity w. For the rod with constant circular cross section we have (see (8.4.5)
and [14])

2 pAW’L*  pw?L?

- o = 12362 (8.8.73)

where I = aA? with A = const. From (8.8.1) we have

272
A2 = P‘ij — 10. (8.8.74)
With (8.8.73), (8.8.74) we obtain
M2oA
F== 0). (8.8.75)

A rod with constant cross section A has the volume Weons:. = AL, while the
volume of the optimal rod is W,pima = wL?. By using (8.8.74) we obtain

2
Wconst. = /A\~2L37 (8876)
A
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so that
Wopt: 52
ﬁw = Fw = 0.04589. (8.8.77)
const.

Therefore, the volume of the optimal rotating rod, in the example treated here,
is just 4.59% of the volume of the rod that has same length and constant cross
section! However, if we choose the same cross-sectional area at ¢t = 0, then from
(8.8.61) we conclude that the ratio—vyw":%';‘t“—’ = %. Note also that from (8.8.75)
the dimensionless cross-sectional area of the rod with constant cross section
becomes @const. = 0.80893L2. Therefore, for the circular cross section, the ratio
of the radius of the optimal rod for ¢t = 0, that is, 7(0), and the radius of the
rod with constant cross section R is (r(0)/R) = 0.362. In Figure 8.8.2 we show
the radius of the optimal rod and the rod of the constant cross section that lose
stability at the same angular speed.

0.5

\i{rod with constant
033 section

-

Optimal rod

v

o

0.5 1
t

Figure 8.8.2

Finally, we analyze the functional (8.8.52) by the Ritz method. Suppose
that the approximate solution is taken in the form

Y=}, P=-Cp(1-1t)°. (8.8.78)

The functional (8.8.52) then becomes

1
I(C1,C) = / Fydt
0

1
3
/0 {36’1t2302 1- t)2 - Q_ZW (02)2/3

Il

x (-0 (14 2 () tﬁ)z/ 3} dt.  (8.8.79)
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We plotted I3 as a function of C; and Cs in Figure 8.8.3. It shows saddle-type
behavior (characteristic of a functional that is bilinear in generalized velocities).
Minimization of (8.8.79) with respect to C] and C5 leads to C; = 3.6,C2 = 0.21.

To show that I3 is a saddle-type functional we write it as (see (8.8.52),
(8.8.53))

v 3 2/3
o= [ g ()
0
1
. 3 2/3
- / U+ sr (14 X?) 3 a, (8.8.80)
0

where we used (8.8.50).

Figure 8.8.3

The functional (8.8.80) is of the type considered in [98, p. 219]. We write
the function under the integral sign in (8.8.80) as ~yp — R, where R (y,p) =
2.7331)2/3 (1 + >\2y2)2/3 . Note that — R is convex in p (i.e., 82R/8p? > 0) and con-
cave in y (i.e., 2R/dy? < 0). Thus, we conclude that I5 is a saddle functional.
The Ritz-type of approximate solution shown in Figure 8.8.3, qualitatively, rep-
resents the functional correctly.

A possible generalization of the problem consists in introducing a constant
axial force at the end of the rod. This load configuration is shown in the Figure
8.8.4. To the equilibrium and constitutive equations (8.4.1), (8.4.2) we adjoin
the following boundary conditions

Z(0)=0, §(0)=0, V(L)=0, H(L)=-F, M(L)=0  (8.8.81)

By using the dimensionless variables and parameters (8.8.1),

272y 1/2
[ pw°L R
AL = ( Ta ) , Ag = Fal? (8.8.82)

and a new dependent variable

U=—— (8.8.83)
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we obtain
= Aay, m=—Mucosd+ Asinf, y=sinf, 0= —% (8.8.84)

subject to
u(l)=0, m(l)=0, y(0)=0, 6(0)=0. (8.8.85)

The system (8.8.84), (8.8.85) possesses a trivial solution, in which the axis of
the rod remains straight for any value of the dimensionless rotation speed A;
and all values of the dimensionless compressive force A2 in the form

=0, mp=0, =0, B =0 (8.8.86)
The linearization of (8.8.84) about trivial solution (8.8.86) leads to

<;> =)0, (9a2) = Aju — \of, y=9, (8.8.87)

subject to (8.8.8). The dimensionless volume of the rod is, again, given by
(8.8.13). If a(t) in (8.8.87) is given, then the values of (A1, A2) € R? for which
(8.8.87), (8.8.8) have nontrivial solution define a set of curves C,, n = 1,2, ..
(see [5]), called the interaction curves. Let (A}, A}) be a point on the lowest
interaction curve C; (i.e., a curve corresponding to the first buckling mode).
Then a straight line connecting the point (0,0) with the point (A}, A\}) does not
intersect any other interaction curve.

Figure 8.8.4

Suppose now that (A1, Ag) are given. We define the lightest compressed rotating
rod as the rod so shaped that any other rod of the same length and smaller
volume will buckle under the given load characterized by (A1, A2). Thus, the
problem of determining the shape of the lightest compressed rotating rod could
be stated as follows.

Given (A1, A2), find a(t) € U, where U is the space of continuous functions,
having continuous first derivative on the interval [0, L], such that, the boundary
value problem, consisting of differential equations

©) - o
a

A1u — Ao, (8.8.88)

N
D
s

[

S—

II
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subject to
u(l) = 0, 4(0) =0,
6(0) = 0, tlinié?(t)cﬁ(t):o‘ (8.8.89)

has (A1, A2) as a point on the lowest interaction curve Cy and that at the same
time, the integral

Vo = /O 1 alt)dt (8.8.90)

is minimal.
Let z4,...,z4 be a set of dependent variables defined by (8.8.14). Then, the
system (8.8.88), (8.8.89) becomes

T4

jfl = axqg, ibg = )\1.'173, ii‘g == .’i}4 = )\1.’1}1 land )\2.’1}3, (8891)
a
subject to
z1(1) =0, z2(0)=0, =z3(0)=0, z4(1)=0. (8.8.92)
Proceeding as in the previous case, we form the Hamiltonian function H as
T
H = a+ pjarg + poAjz3 + pga—g- + pa [)\1:17] — /\2:173] s (8.8.93)
where the variables py, ..., py satisfy
5, o~ _9H _ - JOH _
= oz, 1P4; P2 = Ozy pia,
. OH . O0H p3
= 0 = hy = = .8.94
p3 8"113 )\1P2 + 2P4, P4 8I4 a2 ) (8 8.9 )
subject to
p1(0) =0, p2(1)=0, ps(1)=0, pa(0)=0. (8.8.95)
The optimality condition min, H (¢, z1, T2, p1, p2,a) leads to
OH T4
By solving (8.8.96) for a we obtain
, 1/3
0= {M} : (8.8.97)
L+pizg

A further procedure follows the analysis presented before in this chapter, but
with small differences. For example, instead of (8.8.34), (8.8.35) we obtain

(#a%)" = Nay — ha, ai® = 5 [1+Xy?], (8.8.98)
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subject to

¥(0)=0, §(0)=0, lmjj(t)a®(®) =0, lim {[§(t)a*(®)]'} = —Aoy(1).
(8.8.99)

Note that we can eliminate a from (8.8.98) to obtain the single equation

2 927" 2,2
[(1 +1;\31y ) ] — 22y (1 +1_;1y ) — 4o, (8.8.100)

with the boundary conditions

y(0) = 0, 9(0)=0,
2 2, 2127
. (L+2%?) . (14 232) _ .
lim = = 0, Jim = = —ay(1).

(8.8.101)

We can construct a variational principle for (8.8.100), (8.8.101). Thus we con-
sider the space

Ws={y:yeC*0,1), y(0)=y(0)=0} (8.8.102)

and the functional
1
I = / Fydt, (8.8.103)
0
with Lagrangian

2, 2\2
Fs = (1_+;_21_y_)_ + Ag7? (8.8.104)
Then the Euler-Lagrangian equation corresponding to §I5 = 0 is equivalent to
(8.8.100). Note that the natural boundary conditions for the minimization of I
on the set (8.8.102) are identical to (8.8.101). The variational principle 615 = 0
could be used to write (8.8.100) in canonical form. We define a variable (a
“hypermomentum”; see [107]) r as

e 0Fy _2(1 + )\%yz)zl

= B_y = 7 (8.8.105)
The “modified” momentum now becomes
OFs d . 14 A3y2)2\
p= —6?5 - d_: = 8Xoy + (2(—-—+—y;—y)—) , (8.8.106)
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so that the Hamiltonian function (see [107, p. 237]) is

—4M7%  (8.8.107)

(L N2\ 1+ M42)2
H:py+yT_F5:y<2( y;y))_?)( y_;y)

Since F5 does not depend on ¢ explicitly, we have

H = const. (8.8.108)

With (8.8.105), equation (8.8.100) becomes

2/3
5o—  _ol/3 (1 + /\??/2)
Yy = 7_1/3 )
2/3 1+ 222)%°
o= 2y — 8/\221/3(——%2—,
(1+ M3y?) r
t € (0,1), (8.8.109)
and
y(0) =0; 9(0)=0; r(1)=0; 8ly(1)~—7(1)=0. (8.8.110)
Consider the space W,
We = {w=(y,r):yeC?0,1), y(0)=y(0)=0,

reC?0,1), r(1)=0, 8\gy(1)—#(1)=0},(8.8.111)

and the problem of determining the minimum on Wy of the functional
1
Is = / Fedt, (8.8.112)
Jo
with

.. 3 2/3 .
Fs = g7 — WTW (14+23%)™" — axoy?. (8.8.113)
It is easy to see that the condition §Is = 0 reproduces the system (8.8.109).

Again, since Fs does not depend explicitly on ¢, we have the Jacobi-type first
integral for (8.8.109) in the form

3
9+ 257517 (14 035%)"7° — 49 = const., (8.8.114)

which is equivalent to (8.8.108). We now determine the constant in (8.8.114).
By using the boundary conditions it follows that
2/3 3

C = ——[r(0)]*3. (8.8.115)

3
.. .2 2/3 2,2
Up — 4x2y +W'r/ (1+X1y?) 2273
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We shall use (8.8.115) to check numerical integration of the system (8.8.109).
Finally, we note that with (y,r) known, the cross-sectional area a(t) is de-
termined from the equations (8.8.98) and (8.8.105), so that

2 1/3
a=a(t) = [25(1 " /\2y2)] . (8.8.116)
The optimal shape of the rod is shown in Figure 8.8.5 for a specific choice of
parameters A; = A2 = v/10. The initial values of the variable r are r(0) =
—11.882130, 7 (0) = 5.490713. With these values the boundary conditions at t =
1 are satisfied as r (1) = —6.339397 x 10714, 89y (1) — #(1) = 1.243450 x 10~13.
As is seen in Figure 8.8.5, the optimal rod is “cigar shaped” at the top. This
shape is characteristic for the optimal rod loaded with the concentrated force
only (see [59]). The optimal shape of the rotating rod without compressive force
at the end has a thin end (see Figure 8.8.2). The dimensionless volume of the
optimal rod is weptimar = 1.085. We compare this value with the volume of the
rod of constant circular cross section that is stable under the same compressive
force and angular velocity. Thus i in [14, p. 236] it is shown that the critical load
parameters A\; = M VAo = —0— satisfy

1/2
2 - XX 2sin [ 1/3y +<*22) +%
12
x sinh M+ (A;) %
1/2

2 -
- - i b
+ (2A1 + Ag) cos | 1/ A1 + (72) + 33

172
—
N <2 N 2 2
+ (2/\1 + )\2) cos ( A+ <-§') + >
o\ 172
x cosh | /31 + (";) 522 ~0. (8.8.117)

In the expressions for A; = “% and Ay = E%—Ii-i the moment of inertia must
be expressed as I = A2, Using this and (8.8.82) we obtain

< 1 L2 1
A=A =2 , A_A( ) =X, 8.8.118
! ! A lwconst 2 2 A 2(wconst)2 ( )

where Weonst is the dimensionless volume of the rod with constant cross section.
Using (8.8.118) with A; = A2 = /10 in (8.8.117), we obtain Wepnst = 1.585.
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Thus Woptimat/Weonst = 1.085/1.585 = 0.684. We note that for the classical
case (see [91], [59]), that is, Ay = 0, Az = 10, we obtain Woptimar = 1.743455,
while the solution of (8.8.117) yields weons: = 2.012. Thus, Woptimat /Weonst =
1.743/2.012 = 0.866 = /3/2, as is known (see [91, p. 106]). Thus, in the
special case of a rod loaded by compressive force only (A = 0,2 # 0), our
results reduce to those obtained before analytically. Numerical solution for the
case \; = \/m, Ao = 0 confirms our results obtained in the first part of this
section with one important difference. Namely, the case A\; = \/1_0, Ao = 0 has
lim;_,; @ = 0 while for the case \; = v/10, Ay — 0 we have lim;_,; & = —oo0,
that is, the rod is “cigar shaped” as in the case presented in section 8.6.

1 T

0
0.5 —
1 [l
0 0.5 1
t
Figure 8.8.5

8.9 Optimal Shape of a Rod Loaded by a Force
and a Torque

Next we determine the optimal shape of the compressed and twisted rod ana-
lyzed in section 8.5. We shall follow the presentation of [50].

Let 6 = 6o + Af. By substituting this into (8.5.22) and neglecting the higher
order terms, we obtain

’ ! 2
<A22A9 ) n {% n P} Af =0, (8.9.1)
A22
subject to
AB(0)=0, AB(L)=0. (8.9.2)

The existence of a nontrivial solution to (8.9.1), (8.9.2) is a necessary condition
for the existence of a nontrivial solution to (8.5.22), (8.5.23). If the eigenvalues
of the boundary value problem (8.9.1), (8.9.2) are simple, then this condition is
also sufficient. The eigenvalues of (8.9.1), (8.9.2) are simple if Ay (S) # 0 and
Z;Ag%)- +P#0for S e (0,L) Thus Az (S) > 0 guarantees that the eigenvalues
of (8.9.1), (8.9.2) are simple.

Let us assume that Agg (S) (the bending stiffness) is given as

Az (S) = aEA%(9), (8.9.3)
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where o = const., E is the modulus of elasticity, and A (S) is the cross-sectional
area. With (8.9.3), equation (8.9.1) becomes

I[Mf

(A2A0 ) +—|Fm+ P] A = 0. (8.9.4)
The volume of the rod is given as V = j;)L A(S)dS. If A(S) in (8.9.4) is given,
then the values of (M2, P) € R? for which (8.9.4),(8.9.2) has nontrivial solution
define a set of interaction curves. Let ((M2);,(P)1) be a point on the lowest
interaction curve so that a straight line connecting the point (0,0) with the
point ((M)1, (P)1) does not intersect any other interaction curve.

Suppose now that (M2, P) is given. As before, we define the lightest rod as
the rod having the shape that any other rod of the same length (in our case,
equal to L) and smaller volume will buckle under a given load characterized by
(M2, P). Thus, the problem of determining the shape of the lightest rod could
be stated as follows.

Given (M2, P), find A(S) € U such that

2ng) 4 L[ M -
(4200)) +— | Zi5 +P| A8 =0 (8.9.5)
subject to
AG(0)=0, A6(L)=0 (8.9.6)

has (M2, P) as a point on the lowest interaction curve C; and such that at the
same time, the integral

L
V= /0 A(S)dS (8.9.7)

is minimal.

The set U consists of admissible cross-sectional area functions. We assume
that it is the space of continuous functions, having continuous first derivative on
the interval [0, L], that is, U = C*[0, L]. Thus, we do not impose any restriction
on the minimal admissible cross section.

Introducing the dimensionless quantities

\4 M, P S

A
=1 VS NTgEp MTaEr YT (8.98)
in (8.9.5), (8.9.6) we obtain
. [a2
(a®2) + [—; + ,\2] u=0 (8.9.9)
a
subject to

u(0)=0, u(1l)=0, (8.9.10)
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where A8 = u, (-)’ = 2 (). The dimensionless volume now reads

v= /1 a(t)dt. (8.9.11)
0

Now we state the optimization problem as follows. Find the cross-sectional area
a(t) so that 0 < a(t) < oo, t € (0,1), for which the optimality criterion

v= / 1 a(t)dt (8.9.12)
0

attains minimum value and the constraints are given in the form (8.9.9), (8.9.10).
With new variables

T =u, zp=a1, (8.9.13)

the governing differential equations become

)\2
i‘l = x—;, i‘g = — [—;— + )\2:| Zy, (8914)
a a
subject to

For the system (8.9.12)-(8.9.14) the Hamiltonian function H could be easily
constructed as

A2
H=a +p1% — P2z {—é + /\2] , (8.9.16)
a a

where the generalized momenta p; and ps have to satisfy

0H 22 oH P1
0 9T 21 Dy = e = 8.9.17
Y4l 811 D2 |:Cl2 + )\Z:I y P2 6$2 a2’ ( )
subject to
The optimality condition leads to
OH x T
=1 21)1532 + 2,\§p2a—; =0. (8.9.19)

Solving (8.9.19) for a®, we obtain

a® =2 [p1z2 — Mpaai] . (8.9.20)
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The solution p;, p2 of the system (8.9.17), (8.9.18) could be obtained from the
solution xy, z2 of the system (8.9.14), (8.9.15) if we set

P1 =22, p2=-I1. (8.9.21)
With (8.9.21), equation (8.9.20) becomes

a® =2 [z + A223]. (8.9.22)
By using (8.9.21), the second derivative of H with respect to a becomes

o’H 3
Sz —6 +6,\2 1>0. (8.9.23)

Thus, H attains a minimum. Differentiating (8.9.22) using (8.9.14) and inte-
grating, we obtain

a= —g,\zzf +C, (8.9.24)

where C is an arbitrary constant. By observing (8.9.15); we obtain C = a (0).
With this value substituted in (8.9.24), it follows that

Aoz? = g [a(0) — q]. (8.9.25)

Substituting (8.9.25) into (8.9.22) and solving the result for A2x3, we get

Aozl = )\2—3 - —[a(0) —q]. (8.9.26)

Note that (8.9.25) implies a (0) > a (t). We shall analyze the symmetric defor-
mation mode, so that % (1/2) = 0. This condition implies

z9(1/2) = 0. (8.9.27)
By substituting (8.9.27) into (8.9.26) calculated at t = 1/2, we obtain

3x3 3,\2 ,\2 8

—ra(0) = Fa(1/2) + Fa®(1/2). (8.9.28)

Finally, by using (8.9.28) in (8.9.26), we have
2
dox? = %\—1 [a—a(1/2)] + % [a® —a%(1/2)] . (8.9.29)

Now, from (8.9.29), we conclude that a > a (1/2). Therefore,

a(1/2) <a(t) <a(0). (8.9.30)
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Now we make an important assumption. Namely, in the analysis that follows,
we assume that the couple M; # 0, so that

A > 0. (8.9.31)

Next we show that a(t) > 0, € [0,1/2]. Suppose a(t;) = 0 for ¢; € [0,1/2].
From (8.9.13), we conclude that z9 (¢1) = 0. By using this in (8.9.26) we have
that a (0) = 0. This, together with (8.9.30) implies a (t) = 0,¢ € [0,1/2], which
contradicts (8.9.22). Combining this with the symmetry assumption, we con-
clude that a(t) > 0,t € [0, 1]. Therefore, the boundary value problem (8.9.9),
(8.9.10) has simple eigenvalues. We determine now the cross-sectional area of
the optimal rod.
(a) Suppose that Ay = 0. From (8.9.25) we obtain

a(t) = a(0) = const. (8.9.32)
Using this in (8.9.9), (8.9.10) we have

M
u + a4—(0)u = 0, (8933)
subject to
v(0)=0, u(l)=0. (8.9.34)
Thus
A\ 172
a(0) = (7}) . (8.9.35)

(b) Suppose that Ay > 0. By differentiating (8.9.25), we obtain
2/\21‘13'71 = ——ga (8936)

In (8.9.36) we substitute ; from (8.9.14);, and in the resulting expression we
substitute i, o from (8.9.25), (8.9.26), respectively. The result is

a= —a%/g\/[a (0) — a] {A2a% — 333 [a (0) — al}. (8.9.37)

In writing (8.9.37) we choose the minus sign for @ in accordance with (8.9.30).
The connection between a (0) and a (1/2) follows from (8.9.28) and reads

a(0) =a(1/2) [1 + —3)\722—a2 Qa /2)] : (8.9.38)

1

By separating variables in (8.9.37) we obtain, after integration,

a(0)
1_v3 a*da (8.9.39)

202 Ly a0 —al {2~ 332 (a(0) — o]}
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where a (0) is given by (8.9.38). For given \;, Ay we determine a (1/2) and a (0)
from (8.9.38), (8.9.39) and then with a (0) known, we separate variables and
integrate (8.9.37) to obtain

V3 I a?da
t=—— . (8.9.40)
2 /) V1a(0) — al {Xea® — 3\ [a (0) o]}

Finally, from (8.9.40) we determine the shape of the optimal rod.

a(t)

= N W g N

o

01 02 03 04 05
t

Figure 8.9.1

Now we present the results obtained by numerical integration of correspond-
ing equations. First, we choose A} = m and then determine a(0) and a(1/2)
for a few values of Ay by solving the system (8.9.38), (8.9.39). The results are
shown in Table 8.9.1. It is evident from Figure 8.9.1 and Table 8.9.1 that the
rod has the smallest cross section in the middle.

Table 8.9.1

(A, M) | (m, 1) | (7,5) | (7,10) | (m,40) | (m,400)
a(0) | 1042 | 1213 | 1410 | 2.400 | 7.357
a(1/2) | 1.008 | 1.029 | 1.040 | 1.010 | 0.786

This cross section is different from zero, and that guarantees that the eigenvalues
of (8.9.9), (8.9.10) are simple. The shape of the optimal rod, that is, a (t) for
t € (0,1), follows from (8.9.40). The cross section of the optimal rod, shown
in Figure 8.9.1, is given for A; = 7 and for four values of Ao. Namely, A2 takes
values Ay = 5,y = 10, 2 = 40,2 = 400, and the corresponding curves in
Figure 8.9.1, are denoted as 1, 2, 3, 4, respectively.

The behavior of the optimal rod near the point t = 1/2 is shown in Figure
8.9.2. Note that in accordance with (8.9.37), (8.9.38) the cross section of the
optimal rod satisfies a(0) = 0 and a(1/2) = 0. From Figure 8.9.2 and Table
8.9.1 an interesting property of the optimal rod follows. Namely, if we fix A,
and increase Ag, the cross section of the optimal rod at the middle point of the
rod (¢ = 1/2) first increases and then decreases.
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Figure 8.9.2

8.10 Variational Principle for Small
Deformation Imposed on Large
Deformation of a Rod

In this section we shall formulate a variational principle for small deformations
imposed on large ones for elastic rods. In the context of three-dimensional
elasticity for the theory of small deformations imposed on large ones, see [70].
The motivation for the principle that we will formulate is given in [110], where
mechanical systems with a finite number of degrees of freedom were treated (see
also section 1.4.3).

Consider the elastic rod shown in Figure 8.2.1. Suppose that the rod has
constant cross section so that the differential equation (8.2.7) becomes

2

d“f
pIo) + Asinf =0, (8.10.1)

where A = FL?/EI and t = S/L, subject to
do
S =0, 6(1)=0. (8.10.2)

Equation (8.10.1) is of the type (1.4.78) with a;; = 1,4,7 = 1,¢ = 0, [jm,i] =
0,Q; = —Asinf = —9I1/90 with II = 1 — X cos 8. Suppose that for given A = Ag
the solution to (8.10.1), (8.10.2) is denoted by 8y, so that

d%8,

-— i =0. 8.10.3

T2 + Apsinfy =0 ( )
We assume that g is small (in bifurcation, theory from trivial configuration
By = 0; see (8.2.9) and (8.3.8)). Suppose further that A is perturbed, so that
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A= Ag + A, and AX is small. The solution of (8.10.1), (8.10.2) for this new
A we denote by 8 = 6y + £. The function £ (¢) represents a perturbation that
measures the additional deformation to which the rod is subjected. We call
it an ¢mposed deformation, and we assume that it is small. By substituting
A= X +AXand § =6y +¢ in (8.10.1), (8.10.2) and neglecting the terms of the

order higher than linear in A}, g, and &, we obtain?3
ﬂ Mo (cos@p) € =0 (8.10.4)
452 + Ao (cosbp)& =0, 10,
subject to
Lo=0 cw=o0 (8.10.5)

The system (8.10.4), (8.10.5) determines the perturbation £. In [110] and in sec-
tion 1.4.3 a variational principle was formulated that reproduces (in the context
of analytical mechanics of a system with finite number of degrees of freedom)
both equations of basic motion and equations for perturbations. Following this
idea in [18], a variational principle reproducing (8.10.1), (8.10.2) and (8.10.4),
(8.10.5) is formulated. It is easy to see that the Euler-Lagrangian equations for
the functional (compare with (1.4.92))

1
do d¢ .
I] (0,{,/\)—/ [d—ta - )\Esm0] dt, (8106)
0
where ¢ X and (€ X, with
X = {9: m =0, 6= 0} , (8.10.7)
dt
are
d20 . d2¢
Iz + Asinf =0, §7l + Mcos8) = 0. (8.10.8)

Thus, on the solution of (8.10.1), (8.10.2), (8.10.4), (8.10.5), the functional
(8.9.6) is stationary.

The functional (8.6.10) has a value equal to zero on the solution (8.10.1),
(8.10.2). To see this, integrate the first term under the integral sign partially
and use boundary conditions to obtain

1
2
I (9,5,,\)=/ [«%t—f - )\sin()] ¢dt. (8.10.9)
0

23In the case when Ag > Apifur, Where Apigyr is a value of A at the bifurcation point
(Abifur, B0) equation (8.10.4) holds for arbitrary o, since in that case AX = 0, that is, we ask
for different solution for the same value of Ag.
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Thus, I; (60,€,A) = 0. Further, we can interpret I; in the context of a weak
solution of the problem (8.10.1), (8.10.2). Namely, a weak solution of (8.10.1)
is defined as a function 6 € X for which (see [81], [33])

1

/ [%f% + /\qbsinH] dt=0 (8.10.10)
0
for all ¢ € Y. Here X are Y linear spaces of functions to which the solution
belongs and linear spaces of test functions (if X is the space of continuous
functions satisfying (8.10.2) having the first and second derivative continuous
in the interval (0,1), then (8.10.10) defines a classical solution). Therefore,
the functional I; is the functional defining the weak solution of (8.10.1). In it
both functions, 0 from the solution set and ¢ from the set of test functions, are
subject to variation.
Note also that the Lagrangian in (8.10.6) does not depend explicitly in time,
so that the following Jacobi-type first integral exists (see (1.4.45)):
deé d¢

s + Afsinf = const. (8.10.11)

The variational principle (8.10.6) could be used to study the bifurcation of the
trivial solution of (8.10.1), (8.10.2). In that case 8 = 0,AX # 0, and the
procedure is presented in [18].

For the problem (8.3.4), (8.3.5) we have

d2¢ , A .
Tz T A |sing — E(a — B)sin24| =0, (8.10.12)
subject to
de(0) de(1)
— = —= =0. 8.10.1
o 0, 7 0 (8.10.13)
We consider the functional
1
_ [ [dpd p A .
I= / {Egt— — X {smd) ) (@ — B)sin 2(/)} } dt. (8.10.14)

0

It is easy to see that the Euler-Lagrangian equations for (8.10.14) are

2
%tg)_ + A {Sin(/)— %(a -5) sin2¢] = 0,
3 .
y7) + Acosp — Ma— B)cos2¢l6 = 0, (8.10.15)
with boundary conditions for ¢:
&0 o 4 (8.10.16)

dt dt
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The first integral for (8.10.15) is

%% + A [ in¢ — %(a - B) sin2</>] = const., (8.10.17)

and we have

]{‘Z";ﬁ [ nd)——(a ﬁ)sm2¢]} (8.10.18)
0

on the solution of (8.10.12).
Finally, we consider the rotating rod problem described by (8.4.10), (8.4.11):

d?0

u
_ 1 = —_—— = .10.
i Asinf =0, 7 Aucosf =0, (8.10.19)
subject to
du(0) _ _ dg(l)
5 0, u(1)=0, 6(0)=0, prani 0. (8.10.20)

Let  and £ be the perturbations of u and 0, respectively. Then the equations
for (¢,7) read

@ — Xcosd =0, g2—E—)\[ cos¥ —ufsind] =0 (8.10.21)
) s 7o U] = .10.
and satisfy
dn(0) _ _ o (1)
i 0, n(1)=0, &)= pra 0. (8.10.22)
Consider the functional
1
_ dddé du dn
Ig—/ [dt priR prn + Ansin®d + Au cos?| dt. (8.10.23)
(o

The Euler-Lagrangian equations for the functional (8.10.23) read

d*u de
_— 1 = —_— 0 =
iz Asin@ 0, 72 Au cos 0,
d?
it — A[ncosf —ufsinf] = 0, & —Acosf =0. (8.10.24)

a2

Thus, we reproduce both (8.10.19) and (8.10.21). Finally, the system (8.10.24)
possesses a first integral of the type

do dg | dudn
dt dt T dt dt

a2

— Ansin @ — \u& cos @ = const. (8.10.25)
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Also, the relation

1

ded¢ dudn .

- hidhos t=10 .10.26

Iy /[dt dt+ 7 dt+/\nsm9+)\u§cosé’ d (8 )
0

holds on the solution of the boundary value problems defined by (8.10.19),
{8.10.20) and (8.10.21), (8.10.22).



Bibliography

(1] B. Abraham-Shrauner, Lie group symmetries and invariants of the Henon-

Heils equations. J. Math. Phys., 31, 1627-1631 (1990).

[2] H. Airault, Existence and construction of quadratic invariants for the

(5]

[6]

(7l

(8]

(9l

[10]

(11)

equation (E‘g-.;)v = A (§) (d%)v + F(&,v}. Int. J. Non-Linear Mechanics,
21, 197-203 (1986).

H. Airault, Polynomial invariants for the equation %v = A(§) iy
F (&,v). Int. J. Non-Linear Mechanics, 21, 331-339 (1986).

K.-H. Anthony, A new approach to thermodynamics of irreversible pro-
cesses by means of Lagrange-formalism. In Disequilibrium and Self-
Organisation (C.W. Kilmister editor) pp. 75-92. D. Reidel, Dordrecht,
the Netherlands, 1986.

S. S. Antman, Nonlinear Problems of FElasticily. Springer-Verlag, New
York, 1995.

P. Appell, Traité de mécanique rationnelle, Tome deuziéme. Gauthier-
Villars, Paris, 1953.

V. 1. Arnold, Mathematical Methods of Classical Mechanics. Springer-
Verlag, New York, 1980.

A. M. Arthurs, Complementary Variational Principles. Clarendon Press,
Oxford, UK, 1980.

T. M. Atanackovic, The brachistrochrone for a material point with arbi-
trary initial velocity. American J. Physics, 46, 1274-1275 (1978).

T. M. Atanackovic and B. S. Baclic, A new time invariant for heat conduc-
tion with finite wave speed. Zeitschrift fiir Ang. Mathematik und Mechanik
(ZAMM), 60, 168-169 (1980).

T. M. Atanackovic, On conservation laws for continuous bodies. Acta Me-
chanica, 38, 157-167 (1981).



334 Bibliography

[12] T. M. Atanackovic, Variational principles for column buckling. IMA Jour-
nal of Appl. Math., 27, 221-228 (1981).

[13] T. M. Atanackovic and M. Achenbach, Stability of an extensible rotating
rod. Continuum Mech. and Thermodynamics, 1, 81-95 (1989).

[14] T. M. Atanackovic, Stability Theory of Elastic Rods. World Scientific,
River Edge, NJ, 1997.

[15] T. M. Atanackovic, On the rotating rod with shear and extensibility. Con-
tinuum Mech. and Thermodynamics, 9, 143-153 (1997).

[16] T. M. Atanackovic and S. S. Simic, On the optimal shape of Pfliiger
column. Fur. J. Mech., A/Solids, 18, 903-913 (1999).

[17] T. M. Atanackovic, On the optimal shape of the rotating rod. Juornal of
Applied Mechanics (Transactions of ASME) 68, 860-864 (2001).

[18] T. M. Atanackovic, On a Vujanovic-type variational principle with appli-
cation to rod theory. Q. JIl. Mech. Appl. Math., 54, 1-11 (2001).

[19] T. M. Atanackovic and V. B. Glavardanov, Buckling of a twisted and
compressed rod. International Journal of Solids and Structures, 39, 2987
2999 (2002).

[20] T. M. Atanackovic, Stability bounds and optimal shape of elastic rods. In
Modern Problems of Structural Stability (A. Seyranian and I. Elishakoff,
editors), pp.1-56. Springer-Verlag, Wien, 2002.

[21] B. S. Baclic and B. D. Vujanovic, The Hamilton-Jacobi method for arbi-
trary theo-linear dynamical systems. Acta Mechanica, 163, 51-79 (2003).

[22] D. C. Barnes, Some remarks on a result by Atanackovic, IMA Journal of
Appl. Math., 29, 271-273 (1982).

[23] P. B. Beda, A. Steindl, and H. Troger, Postbuckling of a twisted prismatic
rod under terminal thurst. Dynamics and Stability of Systems, 7, 219-232
(1992).

[24] M. A. Biot, Variational Principles in Het Transfer. Clarendon Press, Ox-
ford, UK, 1970.

[25] F. Brezzi, J. Descloux, J. Rappaz, and B. Zwahlen, On the rotating beam:
Some theoretical and numerical results. Calcolo, 21, 345-367 (1984).

[26] A. E. Bryson and Y. C. Ho, Applied Optimal Control, Hemisphere, New
York, 1975.

[27] J. Cislo, J. T. Lopuszariski, and P. C. Stichel, On the inverse variational
problem in classical mechanics. In Particles, Fields and Gravitation (J.
Rembieliniski, editor), pp. 219-225. American Institute of Physics, Wood-
bury, New York, 1998.



Bibliography 335

[28] Ph. Clément and J. Descloux, A variational approach to a problem of
rotating rods. Arch. Rational Mech. Anal., 114, 1-13 (1991).

[29] L. Collatz, Figenwertaufgaben mit Technischen Anwendungen, Geest and
Portig, Leipzig, 1963 (Russian translation, Nauka, Moscow, 1968).

[30] R. Courant, Methods of Mathematical Physics, Vol. II, Partial Differential
Equations. Interscience Publishing, New York, 1962.

[31] S. J. Cox and M. L. Overton, On the optimal design of columns against
buckling. SIAM J. Mathematical Analysis, 23, 287-325 (1992).

[32] S. J. Cox, and C. M. McCarthy, The shape of the tallest column. STAM
J. Mathematical Analysis, 29, 547-554 (1998).

[33] R. F. Curtain and A. J. Pritchard, Functional Analysis in Modern Applied
Mathematic, Academic Press, New York, 1977.

[34] Dj. S. Djukic, On a generalized Lagrange equations of the second kind.
PMM, 37, 156-159 (1973).

[35] Dj. S. Djukic, A procedure for finding first integrals of mechanical systems
with gauge-variant Lagrangians. Int. J. Non-Linear Mechanics, 8, 479-488
(1973).

[36] Dj. S. Djukic, Conservation laws in clasical mchanics for quasi-coordinates.
Arch. Rational Mech. Analysis, 56, 79-98 (1974).

[37] Dj. Djukic and B. D. Vujanovic, Noether’s theory in classical nonconser-
vative mechanics. Acta Mechanica, 23, 17-27 (1975).

[38] Dj. S. Djukic and T. Sutela, Integrating factors and conservation laws on
non-conservative dynamical systems. Int. J. Non-Linear Mechanics, 19,
331-339 (1984).

[39] V. V. Dobronravov, Foundations of Mechanics of nonholonomic Systems
(Osnovi Mehaniki Negolonomnih Sistem). Vishaja Skhola, Moscow, 1970.

[40) V. V. Eliseyev, The nonlinear dynamics of elastic rods. Prikl. Matem.
Mekhan., 52, 635-641, 1988.

[41] N. W. Evans, On Hamiltonian systems of two degrees of freedom with
invariants in the momenta of the form p?p3. J. Math. Phys., 31, 600-604
(1990).

[42] Mei Fengxiang, A Field method for solving the equations of motion of
nonholonomic systems. Acta Mechanica Sinica, 5, 260-268 (1989).

[43] Mei Fengxiang, Parametric equations of nonholonomic nonconservative
systems in the event space and the method of their integration. Acta
Mechanica Sinica, 6, 160-168 (1990).



336 Bibliography

[44] Mei Fengxiang, Generalized Whittaker equations and field method in gen-
eralized classical mechanics. Applied Mathematics and Mechanics (Engish
Edition), 11, 569-576 (1990).

[45] Mei Fengxiang, On one method of integration of the equations of motion
of nonholonomic systems with the higher order constraints. PMM, 55,
691-695 (1991).

[46] Mei Fengxiang, A field method for integrating the equations of motion of
nonholonomic controllable systems. Applied Mathematics and Mechanics
(Engish Edition), 13, 181-187 (1992).

[47] Mei Fengxiang, On the integration methods of non-holonomic dynamics.
Int. J. Non-Linear Mech., 35, 229-238 (2000).

[48] Mei Fengxiang, Nonholonomic mechanics, Appl. Mech. Rev., 53, 283-305
(2000).

[49] I. M. Gelfand and S. V. Fomin, Variational Calculus. FM, Moscow, 1961
(in Russian).

[60] V. B. Glavardanov and T. M. Atanackovic, Optimal shape of a twisted
and compressed rod. Eur. J. Mech. A/Solids, 20, 795-809 (2001).

[51] N. J. Giinter and P.G.Leach, Generalized invariants for the time-
dependent harmonic oscillator. J. Math. Phys., 18, 572-576 (1977).

[52] G. Hamel, Theoretische Mechanik, Springer-Verlag, Berlin, 1949.

[53] W. Heisenberg, Philosophic Problems of Nuclear Sciences. Fawcet Publi-
cations, Inc., Greenwich, CT, 1966.

[54] M. R. Hestens, Elements of the Calculus of Variations. McGraw-Hill, New
York, 1956.

[65] H. Josephs and R. L. Huston, Dynamics of Mechanical Systems, CRC
Press, Boca Raton, FL, 2002.

[56] E. Kamke, Differentialgleichungen, Gevonliche Differentialgleichungen. 6
Auflage, Nauka, Moscow, 1971 (in Russian).

[57] T. R. Kane, Dynamics, Holt, Rinehart & Winston, New York, 1968.

[58] R. S. Kaushal, S. C. Mishra, and K. C. Tripathy, Construction of the
second constant of motion for two-dimensiona classical problems. J. Math.
Phys., 26, 420-427 (1985).

[59] J. Keller, The shape of the strongest column, Arch. Rational Mech. Anal.,
5, 275-285 (1960).

[60] J. Kevorkian and J. D. Kole, Perturbation Methods in Applied Mathemat-
ics. Springer-Verlag, New York, 1980.



Bibliography ‘ 337

[61] D. E. Kirk, Optimal Control Theory, Prentice-Hall, Englewood Cliffs, NJ,
1970.

[62] V. V. Kuznetsov, and S. V. Levyakov, Complete solution of the stability
problem for elastica of Euler’s column. Int. J. Non-Linear Mechanics, 37,
1003-1009 (2002).

[63) P. G. Leach, Invariants and wave functions for some time-dependent har-
monic oscilltor-type Hamiltonians. J. Math. Phys., 18, 1902-1907 (1977).

[64] P. G. L. Leach, R. Martens, and S. D. Maharaj, Self-similar solutions of
the generalized Emden-Fowler equation. Int. J. Non-Linear Mechanics,
27, 575-582 (1992).

[65] H. Leipholz, Stability of elastic systems, Sijthoff & Noordhoff, Alphen aan
den Rijn, 1980.

[66] H. R. Lewis Jr., Class of exact invariants for classical quantum time de-
pendent harmonic oscillator. J. Math Phys., 9, 1976-1986 (1968).

[67] A. Libai, Equations for the nonlinear planar deformation of beams. Jour-
nal of Appl. Mech. (transactions of ASME), 59, 1028-1030 (1992).

[68] A. I Lurie, Analytical Mechanics. FM, Moscow, 1961 (in Russian).

[69] D. Mangeron and S. Deleanu, Sur une classe d’équations de la méchanique
analytique au sens de I. Tzénoff. Dokl. Bolgar. Akad. Nauk, 15, 9-12
(1962).

[70] J. E. Marsden and T. J. R. Hughes, Mathematical Foundation of Elastic-
ity, Prentice-Hall, Englewood Cliffs, NJ, 1983.

[71] A.J. McConnell, Applications of Tensor Analysis. Dover, New York, 1957.

[72] 1. V. Meshcerskij, Collection of Problems in Theoretical Mechanics. Nauka,
Moscow, 1975 (pp. 378-379) (in Russian).

[73] A. Miele, Theory of Optimum Aerodynamic Shapes, Academic Press, New
York, 1965.

[74] D. S. Mitrinovie, Analytic Inequalities. Springer-Verlag, Berlin, 1970.

[75] L. Ju. Neimark and N. A. Fufaev, Dynamics of Nonholonomic Systems.
Nauka, Moscow, 1967 (in Russian).

[76] A. H. Neyfeh, Perturbation Methods. Wiley, New York, 1973.

[77] J. Nielsen, Vorlesungen iiber elementare Mechanik. Springer-Verlag,
Berlin, 1935.

[78] E. Noether, Inariante Variationsprobleme. Nach. Ges. Wiss. Gottingen,
Heft 2, 235-257 (1918).



338 Bibliography

[79] H. N. Niiez-Yépez, J. Delgado, and A. L. Salas-Brito, Variational equa-
tions of Lagrangian systems and Hamilton’s principle. In Contemporary
Trends in Nonlinear Geometric Control Theory and Its Applications (A.
Anzaldo-Meneses et al., editors), pp. 405-422. Proceedings of the Interna-
tional Conference, México City, México, 2000. World Scientific, Singapore,
2002.

[80] F. Odeh and I. A. Tadjbakhsh, A nonlinear eigenvalue problem for rotat-
ing rods. Arch. Rational Mech. Anal., 20, 81-94 (1965).

[81] J. T. Oden and J. N. Reddy, Variational Methods in Theoretical Mechan-
ics. Springer-Verlag, Berlin, 1983.

[82] J. G. Papastavridis, Analytical Mechanics, A Comprehensive Treatise on
the Dynamics of Constrained Systems. Oxford University Press, Oxford,
UK, 2002.

(83} L. A. Pars, An Introduction to the Calculus of Variations. Heinemann,
London, 1962.

[84] L. A. Pars, A Treatise on Analytical Dynamics. Heinemann, London, 1968.

[85] I. A. Pedrosa, Canonical transformations and exact invariants for dissipa-
tive systems. J. Math Phys., 28, 2662-2664 (1987).

[86] A. Pfliiger, Stabilititsprobleme der Elastostatik. Springer-Verlag, Berlin,
1975.

[87] L. S. Pontryagin, V. G. Boltjanskij, R. V. Gamerklidze, and E. F.
Mishchenko, The Mathematical Theory of Optimal Processes. Wiley, New
York, 1962.

[88] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Nu-
merical Recipes, The Art of Scientific Computing. Cambridge University
Press, Cambridge, UK, 1986.

[89] P. Rabier, Topics in One-Parameter Bifurcation Problems. Springer-
Verlag, Berlin, 1985.

[90] P. V. Ranganathan, Invariants of a certain non-linear N dimensional dy-
namical system. Int. J. Non-Linear Mech., 27, 43-50 (1992).

[91] J. Ratzersdorfer, Die Knickfestigkeit von Stiben und Stabwerken.
Springer-Verlag, Wien, 1936.

[92] G.D. Riccia, On the Lagrange representation of a system of Newton equa-
tions. In Dynamical Systems and Microphysics, (A. Avez, A. Blaquiére,
and A. Marzollo, editors), pp. 281-292. Academic Press, New York, 1982.



Bibliography 339

[93] R. M. Rosenberg and C. S. Hsu, On the gecometrization of normal vibra-
tion of nonlinear systems having many degrees of freedom. In Analytical
Methods in the Theory of Nonlinear Vibrations, Vol. 1. ISNV, Kiev, 1961.

[94] A.P. Sage, and C. C. White, III, Optimum Systems Control (second ed.),
Prentice-Hall, Englewood Cliffs, NJ, 1977.

(95] R. M. Santilli, Foundations of Theoretical Mechanics I, The Inverse Prob-
lem in Newtonian Mechanics. Springer-Verlag, New York, 1978.

[96] W. Sarlet, Symmetries, first integrals and inverse problem of a Lagrangian
mechanics, J. Phys. Appl. Math. Gen., 14, 2227-2238 (1981).

[97) W. Sarlet and L. Y. Bahar, Quadratic integrals for linear nonconserva-
tive systems and their connection with the inverse problem of Lagrangian
dynamics. Int. J. Non-Linear Mech., 16, 271-281 (1981).

[98] M. J. Sewell, Mazimum and Minimum Principles. Cambridge University
Press, Cambridge, UK, 1987.

[99] A. P. Seyranian, A solution of the problem of Lagrange. Sov. Physics
Doklady, 28, 550-551 (1983).

[100] A. P. Seyranian, New solutions of Lagrange’s problem. Physics Doklady,
342, 182-184 (1995).

[101] A. P. Seyranian and O. Privalova, The Lagrange problem on optimal col-
umn: Old and new results. Moscow State Lomonosov University. Preprint
60 (2000). Also in Structural Optimization (in press).

[102] S. C. Sinha and C. C. Chou, Approximate eigenvalues for system with
variable parameters. Journal of Appl. Mechanics (Transaction of ASME),
46, 203-205 (1979).

[103] V. V. Stepanov, Course in Differential Equations. Moscow Unlverslty Edi-
tion, Moscow, 1953 (in Russian).

[104] T. Sutela and B. D. Vujanovic, Motion of nonconservative dynamical sys-
tem via a complete integral of a partial differential equation. Tensor (NS),
38, 303-310 (1982).

[105] K. R. Symon, The adiabatic Invariant of the linear and nonlinear oscilla-
tor. J. Math Phys., 11, 13201330 (1970).

[106] J. L. Synge, On the geometry of dynamics, Phil. Transactions of the Royal
Soc. of London, Ser. A, CCXXVI, 31-106 (1926).

[107] B. Tabarrok and W. L. Cleghorn, Application of principle of least action
to beam problems. Acta Mechanica, 142, 235-243 (2000).



340 Bibliography

[108] V. A. Troickii, and L. V. Petruhov, Shape Optimization of Elastic Bodies.
Nauka, Moscow, 1982 (in Russian).

[109] I. Tzénoff, On a new form of the equations of analytical dynamics. Dokl
" Akad. Nauk SSSR, 89, 21-24 (1953).

[110] B. Vujanovic, Synge’s disturbed equations as a variational problem and
their first integrals. Bulletin de ’Académie Royale de Belgique, 51, 692—
698 (1965).

[111] B. Vujanovic, A group-variational procedure for finding first integrals of
dynamical systems. Int. J. Non-Linear Mech., 23, 269-278 (1970).

[112] B. D. Vujanovic, Conservation laws of dynamical systems via
D’Alembert’s variational principle. Int. J. Non-Linear Mechanics, 13,
185-197 (1978).

[113] B. D. Vujanovic, On the field momena method in mechanics. Tensor (NS),
33, 117-122 (1979).

(114] B. D. Vujanovic, On a gradinet method in nonconservative mechanics.
Acta Mechanica, 34, 167-179 (1979).

[115] B. D. Vujanovic, On the integration of the nonconservative Hamilton’s
dynamical equations. Int. J. Fngng. Sci., 19, 1739-1747 (1981).

[116] B. D. Vujanovic and A. M. Strauss, Linear and quadraic first integrals of a
forced linearly damped oscillator with a single degree of freedom. Journal
of the Acoustic Society of America, 69, 1213-1214 (1981).

[117] B. D.Vujanovic, Conservation laws and Hamilton-Jacobi-like method in
nonconservative mechanics. In Dynamical Systems and Microphysics Ge-
ometry and Mechanics (A. Avez, B. Blaquiere, and A. Morazollo, editors),
pp- 293-301. Academic Press, New York, 1982.

(118] B. D. Vujanovic, A field method and its applications to the theory of
vibrations. Int. J. Non-Linear Mech., 21, 381-396 (1984).

[119] B. D. Vujanovic and A. M. Strauss, Study of motion and conservation
laws of nonconservative dynamical systems. Hadronic Journal, 7, 163-185
(1984).

[120] B. D. Vujanovic and A. M. Strauss, Application of a field method to the
theory of vibration. Journal of Sound and Vibration, 114, 375-378 (1987).

(121] B. D. Vujanovic and A. M. Strauss, Applications of Hamilton-Jacobi
method to linear and nonlinear vibration theory. J. Math. Phys., 29, 1604—
1609 (1988).

[122] B. D. Vujanovic and S. E. Jones, Variational Methods in Nonconservative
Phenomena. Academic Press, New York, 1989.



Bibliography 341

[123] B. D. Vujanovic, Conservation laws of rheolinear dynamical systems with
one and two degrees of freedom. Int. J. Non-Linear Mech., 27, 309-322
(1992).

(124] B. D. Vujanovic, Application of Hamilton—Jacobi method to the study of
rheolinear oscillators. Acta Mechanica, 93, 179-190 (1992).

{125] B. D. Vujanovic, Application of the field-momentum method to rheonomic
dynamics. Int. J. Non-Linear Mech., 29, 515-528 (1994).

[126] B. D. Vujanovic, Conservation laws and reduction to quadratures of the
generalized time-dependent Duffing equation. Int. J. Non-Linear Mech.,
30, 783-792 (1995).

[127] B. D. Vujanovic, T. Kawaguchi, and S. Simic, A class of conservation
laws of linear time-dependent dynamical systems. Tensor (NS), 58, 243—
252 (1997).

{128] G. B. Whitham, Linear and Non-Linear Waves. Wiley, New York, 1974.

[129] B. D. Vujanovic, A. M. Strauss, S. E. Jones, and P. P. Gillis, Polynomial
conservation laws of the generalized Emden-Fowler equation. Int. J. Non-
Linear Mech., 33, 377-384 (1998).

[130] E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and
Rigid Bodies (fourth ed.), Cambridge University Press, Cambridge, UK,
1965.

{131} L. C. Young, Calculus of Variations and Optimal Control Theory. Saun-
ders, Philadelphia, 1969.



Index

A

absolute derivative of a vector, 30

acceleration vector in Cartesian
coordinates, 4

active forces, 4

adiabatic invariants, 101

arc length of the column axis, 265,
271

B

backling, 273

basic formula for nonsimultane-
ous variations of action
integral, 227

basic field equation, 146

bending rigidity, 264, 271

bending moment, 273

Bessel pendulum, 102

Bolza variational problem,
221-223

boundary conditions, 215-221

boundary value problems, 331

brachistochrone problem, 202-205

C

canonical transformations, 64-69,
308

Caplygin sled, 36-39

Cauchy—Schwarz inequality, 268

central Lagrangian equation, 15

column with concentrated force,
264, 289

conditions of canonicity, 69

configuration space, 29

contact couple, 284

contact force, 273, 278, 284, 294

continuous optimal control,
252-256

conservation laws of dynamical sys-
tems, 131-138

constrained motion (holonomic),
4

covariant derivative of a vector,
31

curvature of the column axis, 265,
266

critical load parameters, 288

cyclic integral, 23

cylindrical brachistochrone (vari-
ational approach),
217-218

D

differential equations of motion in
Cartesian coordinates, 7

disturbed motion, 30

disturbance vector, 30

double pendulum, 54-55

dual variational principle, 303

Duffing’s equation-scleronomic case,
146

E
elastic pendulum, 47-49
elevated pendulum, 103
Euler-type angles, 283
Euler backling force, 270
Euler-Lagrangian equations,
16-22
Euler-Lagrangian equations for non-
holonomic systems, 35
extensional rigidity, 271, 276
extended phase space, 62
extremal trajectories, 200



344 Index

F
field concept and its partial differ-
ential equation, 160-164
field method, 159
for non-Hamiltonian systerms,
164-170
in nonholonomic mechanics,
170-173
nonlinear analysis, 173-179
free dynamical systems, 3

G
gauge function, 21
generalized coordinates, 11
generalized forces, 14
generalized time-dependent Duff-
ing equation
(field method), 179-185
Gibbs—Appell equations, 44-47
Gibbs—Appell equations for non-
holonomic systems,
49-51

H
Hamilton-Jacobi method, 73-76
a conjugate approach,
111-112
application to rheolinear os-
cillations, 96-110
Hamilton—Jacobi partial differen-
tial equation, 73
Hamiltonian function, 60
Hamilton’s canonical equations,
59-62
Hamilton’s principle, 198
depending upon several vari-
ables, 207-213
for nonconservative systems,
205-206
in canonical form, 200-201
simplest form, 198-200
with higher order derivatives,
206-207
with variable end points,
215-216

Hamilton’s principle with
constraints, 241
algebraic (holonomic)
constraints, 246-247
differential
equations, 248-250
equilibrium configuration of
a flexible rope, 243-246
isoperimetric, 241-243
heat conduction equation with fi-
nite wave speed (varia-
tional approach),
210-212
Hertz—Holder relations, 34

I

incomplete solution of basic equa-
tion, 180-192

integrating factors of differential
equations of motion,
141-142

internal force, 278

invariant of generalized heat con-
duction equation,
212-214

invariant of an axially loaded rod
with external friction,
213-214

invariant properties of Euler—
Lagrangian equations, 22

inverse Lagrangian problem, 22,
267

J

Jacobi’s form of variational prin-
ciple for conservative sys-
tems, 232

Jacobi theorem, 74

K

Kane’s equations, 52-53

Killing equations (generalized),
138

kinetic energy, 18

Kristoffel symbols, 19-20



L
Lagrangian equations with multi-
pliers, 7
Lagrange-D’Alembert’s variational
principle, 10
for holonomic systems, 10-11
transformation properties,
135-136
Lagrangian function, 15
Lagrange problem, 263
Lewis invariant, 100

M

metric tensor (covariant and con-
travariant), 29

momentum integral, 23

N

natural trajectories, 29

Newton’s problem, 237-240

Nielsen and Mangerone-Deleanu
equations, 55-59

Noether identity (basic), 137

nonholonomic constraints, 33

nonholonomic dynamical systems,
33-44

(0]
optimal control problems with un-
specified terminal time,
257-262
optimal shape, 263
of rod loaded by distributed
follower force, 293
of rod loaded by force and a
torque, 321
of rotating rod, 303
of simply supported rod, 289
oscillatory motion with two de-

grees of freedom (Hamilton—

Jacobi method), 84-91

P
phase space, 62
Poisson brackets, 69-71

Index 345

polynomial conservation laws of
generalized Emden—Fowler
equation, 152-158

Pontryagin’s maximun principle,
252-256

possible velocities, 6

potential function, 14-15

primal variational principle, 398

projectile motion with linear air
resistence (field method),
166-170

Q

quadratic conservation laws of rhe-
olinear systems with two
degrees of freedom,
116-123

quadratic conservation law of Eu-
ler’s equation, 142-145

R
resultant couple, 278
Ritz method, 289, 301, 314
rolling disc, 39-44
rod, 263
compressible axis, 270
rotating, 272
rotating with shear and com-
presibility, 277
imperfect, 279
perfect, 279
loaded by a force and a torque,
282

S

saddle functional, 315

second variation of action integral,
201

shear rigidity, 271

simplest form of Hamilton’s prin-
ciple as a problem of op-
timal control, 250-252

ship angles, 283

small deformation imposed on large
(variational principle), 327



346 Index

stability boundary, 288
strains in the rod theory, 278
Sturm-Liouville problem (varia-
tional approach), 222-223
Synge’s disturbed equations, 32
in Lagrangian form, 32

T

Tchebychef inequality, 269

total mechanical energy, 24
transversal vibration of a beam

(variational approach),
218-221

A"
variational principles with unspec-
ified initial and terminal
time, 226-230
variations 6, 132
nonsimultaneous, 133
simultaneous, 132
varied trajectories, 199
vibration of an elastic string (vari-
ational approach),
223-226
virtual displacements (variations),

6

w
weak, 272
local minimum, 272
solution, 329
welded end, 279
Weierstrass-Erdman corner con-
ditions, 236-237, 312



