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Preface

The topic Avalanches in Functional Materials and Geophysics is a highly resear-
ched area of science with significant cross-fertilization between approaches in the
two fields. Avalanches occur in many physical systems spanning microscopic to
macroscopic length scales. Beyond the usual snow avalanches and seismic activity,
acoustic emission measurements identify avalanches during phase transitions, the
collapse of porous materials under pressure and many other materials related pro-
cesses. One of the major objectives of the book is to identify common experimental
characterization, theoretical and simulation techniques as well as statistical data
analysis, and similar predictive modelling and phenomenology in materials science
and geophysics. The book is likely to be broadly accessible and caters to beginning
researchers, graduate students as well as experts.

The book contains a dozen chapters, which represent partly a review with a wide
perspective and original research aimed at identifying open issues. The first two
chapters invoke the statistical mechanics approach to earthquakes and an associated
mean-field theory to study avalanches. A series of simple models of earthquake
faults is investigated. The role of fault geometry, friction and noise in determining
the statistics of earthquakes is explored. The statistics and the dynamics of slip
avalanches in slowly deformed solids are reviewed. These results have implications
for materials testing, failure prediction, and hazard prevention. The next three
chapters address how to mimic earthquakes in a laboratory setting (“labquakes”)
in porous materials as well as geological aspects such as the role of various rock
types in earthquakes. A review of recent acoustic emission experiments during the
compression of synthetic porous materials under controlled force rates is presented.
The statistical analysis of the recorded signals of laboratory experiments allows a
comparison with the statistics of earthquakes from available seismic data. Different
methods to characterize individual acoustic emission avalanches and their time
correlations are discussed. The results indicate that the failure dynamics of materials
can be studied by measuring strain drops under slow compression, opening the
possibility to study earthquake dynamics in the laboratory at non-ambient
conditions.
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Similarly, in rock physics sudden changes in internal stress associated with
microscopically brittle rupture events lead to acoustic emissions that can be
recorded on the sample boundary, and used to infer the state of internal damage.
Crackling noise is inherently stochastic, but the population of events often exhibits
remarkably robust scaling properties, in terms of the source area, duration, energy,
and in the waiting time between events. Despite the stationary strain rate and the
lack of any time-dependent weakening processes, the results are all characterized by
emergent power law distributions over a broad range of scales, in agreement with
experimental observation. As deformation evolves, the scaling exponents change
systematically in a way that is similar to the evolution of damage in experiments on
real sedimentary rocks. The potential for real-time forecasting of catastrophic
failure obeying such scaling rules is then examined by using synthetic and real data
tests, e.g. prior to volcanic eruptions.

Chapters 6–9 deal with avalanches in structural phase transitions, particularly in
martensites, and more generally both the experimental and the simulation studies of
pinning and avalanches in ferroelastics—materials in which strain serves as the
order parameter for phase transitions. Solids subject to continuous changes of
temperature or mechanical load often exhibit discontinuous avalanche-like
responses, e.g. avalanche dynamics have been observed during plastic deforma-
tion, fracture, domain switching in ferroic materials or martensitic transformations.
The statistical analysis of avalanches reveals a very complex scenario with a dis-
tinctive lack of characteristic scales. Efforts to understand the characteristics of
avalanches in martensites through mathematical modelling are reviewed.
Analogously, nano-scale multiferroics often display sudden, jerky domain move-
ments under weak external fields. These domain movements include retracting twin
domains, kinks in domain walls, jamming between walls and changes in complex
tweed patterns. It is shown that the probability density function of the jerk distri-
bution follows power law statistics at sufficiently low temperatures and thermally
activated jumps at high temperatures, which explains the mixing of thermal and
athermal events during acoustic emission.

Time-lapse optical microscopy of certain ferroelastic single crystals allows the
propagation and retraction of individual needle domains to be observed under
conditions of slowly varying shear stress. Optical observation and thermodynamic
analysis show that the continuous behaviour is thermally activated. The avalanches
follow power law behaviour in agreement with self-similar avalanches close to the
depinning threshold. Singularities of the characteristic (Larkin) length occur when
the front line breaks. Three physical systems are discussed in which the distribu-
tions of certain variables are centred around a most probable value. Each
microstructural-related event proceeds through a multitude of smaller mesoscopic
events that span several orders of magnitude. Statistical analyses of other variables,
associated with the mesoscopic events, follow a scale-invariant power law distri-
bution. The origins for the co-existence of events at different scales and their
different statistical distributions are discussed for the physical characteristics of the
explored systems.
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Chapter 10 studies avalanches in metallic glasses whereas Chap. 11 deals with
yield and irreversibility in amorphous solids. The atomistic mechanism of defor-
mation in metallic liquids and glasses is discussed in view of the local topology of
atomic connectivity. In crystals the topology of atomic connectivity network is
fixed, and deviation from it defines lattice defects. In liquids and glasses, however,
the topology is open and flexible, and fluctuates in time and space. Collective
phenomena, including shear-transformation-zones and their avalanche, govern the
macroscopic deformation in supercooled liquids and glasses. The description of the
structure and dynamics of liquids and glasses through local topology is likely to
advance the field. Similarly, a fundamental problem in the physics of amorphous
materials is understanding the transition from reversible to irreversible plastic
behaviour and its connection to the concept of yield. Under periodic shear, amor-
phous solids undergo a transition from deterministic, periodic behaviour to chaotic,
diffusive behaviour as a function of strain. It has been related to a depinning-like
transition in which cooperative avalanche events span the system. An overview of
recent work focused on the nature of yield in amorphous systems from a cooper-
ative and dynamical point of view is presented.

Finally, Chap. 12 describes avalanches in the context of fluid imbibition. In
particular, the invasion of an open fracture by a viscous wetting fluid is reviewed in
the context of research on the spatiotemporal dynamics of fronts in disordered
media. Competition of forces at different length scales leads to an initially flat front
undergoing a kinetic roughening process, leading to a statistically stationary state
characterized by critical interfacial fluctuations and a collective avalanche
dynamics. A scale-dependent statistical analysis of the temporal behaviour of the
spatially averaged velocity of the front reveals the presence of non-Gaussian
fluctuations, strongly intermittent dynamics and global avalanches.

These 12 chapters discuss a multitude of open questions and set the stage for
future research in this highly multidisciplinary field. They also provide a much
needed integration between two broad subject areas, materials and geophysics,
which is expected to usher into further insights and a better understanding of
avalanches. However, much remains to be improved such as the detailed analysis of
avalanche processes. Besides seasoned researchers the book will also serve as a
valuable resource for graduate students in materials science and engineering,
condensed matter physics, geophysics and other related disciplines.

Cambridge, UK Ekhard K.H. Salje
Los Alamos, USA Avadh Saxena
Catalonia, Spain Antoni Planes
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Chapter 1
Statistical Mechanics Perspective
on Earthquakes

W. Klein, Harvey Gould, K.F. Tiampo, James B. Silva, Tyler Gu,
Javad Kazemian, C. Serino and J.B. Rundle

Abstract We report on theoretical and numerical investigations of a series of simple
models of earthquake faults. We find that the range of stress transfer, the nature of
the friction force, the magnitude of the noise, and the “fault” geometry all play an
important role in determining the statistics of earthquakes. In addition to providing
some understanding of the nature of faults and fault systems, these studies raise
interesting questions about the nature of equilibrium.

1.1 Introduction

Earthquakes are similar to avalanches in that there is a build up of a “force” which
is relieved by a breakdown, or event that can vary in size. In the case of earthquakes
the force is the stress, usually caused by tectonic plate motion, and the event or
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avalanche is an earthquake. One reason that these systems are of considerable interest
is that there are aspects of earthquake phenomenology that are suggestive of phase
transitions. One such aspect is Gutenberg–Richter scaling in which the number of
events with seismic moment magnitude m, nm , scales as a power law:

nm ∼ m−b (1.1)

Similar to “avalanches” in other systems the statistical distribution of earthquakes
depends not only on an underlying self-organization or “phase transition,” but there
is also a strong influence of factors such as the roughness of the faults, the noise, the
nature of the friction force, and the range of the stress transfer.

Unlike many other systems, the study of earthquakes is hampered by the lack of
ability to perform controlled experiments, and the difficulty of observation because
what we need to know, such as the structure of the fault, is hidden from view. For
these reasons it is useful to study simple models of earthquake faults to understand
the relation between the underlying self-organization and other factors, such as those
mentioned, associated with structure.

Our approach was motivated by a block and spring model introduced by Burridge
and Knopoff (BK) [1]. We will describe this fully dynamic model in detail in Sect. 1.2,
as well as the details of the other models we study. Here we simply note that the BK
model is computationally intensive and for that reason Rundle and collaborators [2,
3] formulated a cellular automaton (CA) version of the BK model. The Rundle,
Jackson, Brown (RJB) model [2, 3] is also a block and spring model. Several years
later Olami, Feder, and Christensen (OFC) introduced a lattice CA model [4], which,
as we will show, is essentially equivalent to the RJB model, but is easier to simulate
and modify to include structure. Although the OFC model is the simplest to simulate,
the RJB model is easier to understand theoretically. The BK model can be used to
probe the effect of the inertia and friction, which are both absent in the CA models.

In addition to the relation between structural factors and the underlying self-
organization, the study of these models has raised important questions about the
nature of driven dissipative systems and the nature of equilibrium.

The structure of the remainder of this paper is as follows: In Sect. 1.2 we introduce
the BK, RJB and OFC models. In Sect. 1.3 we discuss the relation between the OFC
and RJB models and present the results of both simulation and theory for these models
where the “fault” is taken to be homogeneous. In Sect. 1.4 we present the results of
simulations of the BK model and compare the results to those of the homogeneous
RJB and OFC models. In Sect. 1.5 we introduce various forms of structure in the OFC
model and discuss the results of simulations and compare them with those obtained
from the homogeneous models. In Sect. 1.6 we discuss our results and possible areas
of further research.
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1.2 Models

1.2.1 Burridge-Knopoff Model

The BK model [1] consists of blocks with mass m connected by Hooke’s law springs
with spring constant KC resting on a surface with a velocity dependent friction
force. The blocks are also connected to a loader plate, which moves with a constant
speed V , via Hooke’s law springs with spring constant KL (see Fig. 1.1). Due to the
computational difficulty of this model, it has been simulated in one dimension [1, 5,
6] and two dimensions [7] for only a limited range of parameters. It was found that
the nature of the statistical distribution of earthquakes depends on the nature of the
friction force [6]. However, the system size was small and the time over which the
system was simulated was short. These limitations contributed to the formulation of
the RJB CA version of the BK model.

1.2.2 RJB Model

Rundle and collaborators use the same blocks and springs but instead of a friction
force the blocks are assigned a failure threshold σF and a residual stress σR . The
blocks are assigned initial positions and the stress (the sum of the forces due to the
inter-block springs with spring constant KC and the loader plate springs with a spring
constant KL ) is calculated. If the stress on the i th block has a stress σi < σF , the
block does not move. If the i th block has σi ≥ σF , the block is moved a distance

�x = σi − σR

KL + q KC
, (1.2)

where z is the number of neighbors of a block. In d = 1, z = 2. In this way the stress
on the i th block is reduced from σi to σR . In many applications of the model noise
is added, so that �x is given instead by

Fig. 1.1 Schematic of the
one-dimensional
Burridge-Knopoff model loading    plate V

fixed plate with frictional surface

KL
KC

1D Nearest-Neighbor Burridge Knopoff Model
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�x = σi − σR + η

KL + q KC
, (1.3)

where η is usually chosen from a flat random distribution. This procedure is followed
until there is no block that has σi ≥ σF . The loader plate is then moved until the block
with the largest value of the stress is brought to failure. This procedure is referred to
as the zero velocity update.

The number of blocks that failed before the loader plate is moved is the size of
the “earthquake.” The process is then repeated and the number of events that have s
failed blocks is counted.

This model has also been studied in dimension d = 1, but because it is so much
simpler to simulate, a more realistic two-dimensional model can also be studied. In
the two-dimensional model the stress on the blocks is always parallel or anti-parallel
to the direction that the loader plate moves, so that the springs that are perpendicular
to the direction of the loader plate motion are leaf springs (see Fig. 1.2). The original
model used only nearest neighbor springs. In real earthquake faults the stress transfer
is due to an elastic force which is long range. For this reason we have also simulated
the model with long-range springs between blocks. As we will see, the addition of
long-range springs changes the model in significant ways. We can also calculate
the energy for the system by simply summing up the energy stored in the springs.
Obviously for this CA model there is no kinetic energy as there is in the BK model.

Why do the earthquakes stop in this model? To ask this question in another way,
what dissipates the stress that is put into the system when the loader plate is moved?
To answer this question we first note that if there were no loader plate springs, then a
movement of a block would conserve the stress in the system because the springs are
linear. Consequently, the stress dissipation comes only from the loader plate spring
and the change �x in the position of the block. Therefore, when a block is moved a
distance �x , the amount of stress dissipated �σdiss = KL�x . Using (1.3) we have
that the amount of stress dissipated when a block is moved is given by

�σdiss, RJB = KL

[
σi − σR + η

KL + q KC

]
. (1.4)

Fig. 1.2 Schematic of the
two-dimensional
Burridge-Knopoff and
Rundle Jackson Brown
model model

moving plate

V

frictional surface
fixed plate

KC
KC

KL
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1.2.3 OFC Model

The OFC model is also a CA model and is, as we will see, almost identical to the
RJB model. The OFC model is a lattice model, and we consider only a square lattice.
In a way similar to the RJB model we assign a failure threshold σF and a residual
stress σR to each site. Stress is initially distributed at random to each site. The stress
on the i th site is checked to see if it is greater than σF . If σi ≥ σF , we reduce the
stress on the site to σR . We then take a fraction α of σi − σR and throw it away and
transfer (1 − α)(σi − σR) to the neighbors. We can transfer the stress to only the
four nearest neighbors, or we could use a longer range stress transfer. We normally
use a square neighborhood as shown in Fig. 1.3.

As with the RJB model we can add a noise so that the amount of stress dissipated
is

�σdiss, OFC = α(σi − σR + η). (1.5)

As for the RJB model this process is continued until there are no sites with σi ≥ σF .
The site with the largest stress is then located and the amount of stress that brings the
stress on that site to σF is added to all of sites in the system. This reloading process
is also referred to as the zero velocity update. The process described above is then
repeated. Similar to the RJB model, the size of the earthquake is the number of sites
that failed before the system is reloaded.

L

2R+1

iσ

Fig. 1.3 Stress transfer region in the OFC model
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1.3 Results for Homogeneous CA Models

In this section we discuss the similarity between the RJB and OFC models and present
some results for the models with uniform failure thresholds and residual stress.

1.3.1 Equivalence of RJB and OFC Models

Assume that the initial conditions for the OFC and RJB models are identical and we
are using the same random number generator and the same seed for both. In addition,
we take both σF and σR to have the same values in the OFC model as they do in the
RJB model. Note that this assumption requires that we have identified each block
in the RJB model with a site in the OFC model. Consider first what happens to the
stress on a block in the RJB model and a site in the OFC model that are both above
the failure threshold. Because their initial stress is the same and the random number
generated for the noise is the same, the stress on the two sites after the failure (that
is, σR + η) will be identical. In the OFC model we now dissipate, or throw away, an
amount of stress equal to

α(σi − σR + η). (1.6)

In the RJB model the amount of stress dissipated is given by (1.4), which we repeat
here for convenience.

�σdiss, RJB = KL

[
σi − σR + η

KL + q KC

]
.

If we set

α = KL

KL + zKC
, (1.7)

then the amount of stress remaining to be transferred to the neighbors is the same for
both models. Because we have identified each block in the RJB model with a site in
the OFC model, the number of neighbors of each site z is the same for both models
so that after the stress is transferred each block and its corresponding site has the
same stress. These considerations imply that the stress on each site is identical to that
on the corresponding block throughout the failure process. When no site has a stress
greater than the failure threshold, the plate in the RJB model is moved so that the
site with the largest stress is brought to the failure threshold. The amount of stress
added to each site, given by KL�x = σF − σmax,i , is the same as the stress added
in the OFC model. These considerations show that the stress on each block in the
RJB model and the stress on the corresponding site in the OFC model are identical
throughout out the simulation of the models. Hence, as far as the stress is concerned
the models are the same, independent of dimension and stress transfer range.
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1.3.2 RJB Model

Because the RJB and OFC models give identical results for the stress, we have
performed most of our simulations using the OFC model because it is easier to
simulate. However, one difference is that the RJB model has a natural definition of
energy, namely, the energy stored in the springs, while there is no natural definition
of the energy in the OFC model. The importance of a lack of a definition of energy
in the latter is that it has been shown that the driven dissipated RJB model, which
is in a steady state after it has been run long enough to eliminate transients, is
in thermodynamic equilibrium in the limit that the stress transfer range goes to
infinity [8]. To show that the RJB model is in thermodynamic equilibrium and not
simply in a steady state, we can plot the ratio of the fraction of systems with energy
E for two values of the noise. If the system is in equilibrium, then the probability
that the system will have an energy E is proportional to a density of states, which is
independent of the temperature, or noise, multiplied by e−βE . Because the density
of states is independent of the noise, a log-linear plot of the ratio of the probabilities
versus E should be a straight line, consistent with the Boltzmann distribution. As
the figure in [9] shows, this ratio is indeed a straight line.

We have also derived a Langevin equation that describes the evolution of the
RJB model in the limit that the stress transfer range goes to infinity. The driving
force in the Langevin equation is the functional derivative of an action [10, 11]. As
shown in [12], the existence of a driving force guarantees that the system approaches
equilibrium in the limit of infinite time.

1.3.3 OFC Model

Because we are interested in what we can learn about earthquake faults from these
simple models, we will concentrate on the OFC model with long-range stress transfer.
We will present our results for the OFC model with the understanding that all of these
results are valid for the RJB model as well.

Although we have no definition of energy for the OFC model. there is a test that
we can employ to check for ergodicity, a necessary condition for equilibrium. We
will use a metric first proposed by Thirumalai and Mountain [13]. To construct the
metric we take the time average of the stress on the i th site

σi (t) =
∫ t

0
dt ′σi (t

′), (1.8)

and the spatial average of the time average

<σ(t)> = 1

N

N∑
i=1

σi (t), (1.9)



8 W. Klein et al.

where N is the number of sites in the system. The metric is defined as

�(t) = 1

N

N∑
i=1

[
σ(t) − <σ(t)>

]2

. (1.10)

Thirumalai and Mountain [13] showed that for the system to be ergodic, a necessary,
but not sufficient condition is that the metric �(t) approach zero as 1/t [13]. In
Fig. 1.4 we plot the inverse of the metric normalized by �(t = 0) for R = 20. The
stress transfer is done within a square block 2R on a side so that the number of sites
within the stress transfer range is (2R + 1)2 − 1. As can be seen the inverse metric
is a straight line, which is consistent with the Boltzmann distribution found for the
RJB model.

In Fig. 1.5 we plot the number of events (earthquakes) with s failed sites, ns [14].
If a site fails more than once, we count it only once. However as the range of stress
transfer R increases, the number of sites that fail more than once goes to zero as
R → ∞. For R = 20 the number of sites that fail more than once is exceedingly
rare [15]. (Reference [15] considered the RJB model, but the isomorphism guarantees
that the same conclusion holds for the OFC model [16]).

The derivation of a Langevin equation description of the RJB model [10, 11]
indicates that the scaling of the events is associated with a spinodal. This association
leads to an explicit prediction for the scaling exponent in Fig. 1.5. The histogram in
Fig. 1.5 can be fit by the function

ns = A
exp

[ − �hsσ
]

sτ
. (1.11)

 0
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Fig. 1.4 The time-dependence of the inverse metric for the OFC model with R = 20
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Fig. 1.5 Log-log plot of ns for ≈5 × 107 events for R = 30. The slope is consistent with τ = 1.5

Here A is a constant and �h is the distance from the spinodal. If there is indeed a
spinodal, we must have

∫ ∞

0
ds s2ns = �h−γ (1.12)

∫ ∞

0
ds sns = �hβ, (1.13)

where γ and β are the exponents associated with the susceptibility and the vanishing
of the order parameter as the spinodal is approached. Hence, given the mean-field
values of γ and β we have

3 − τ

σ
= 1

2
and

τ − 2

σ
= 1

2
, (1.14)

or τ = 5/2 and σ = 1. These relations are similar to the mapping of the spinodal
onto a percolation problem [17]. Here the clusters are grown from a seed so that
the effective τ that we measure is equal to τ − 1 = 3/2 [18] in agreement with
simulations of the model.

1.4 Burridge-Knopoff Model

Before we consider the effect of structure, it is important to ask what is the effect of
friction and inertia on the CA results we have obtained for systems with long-range
stress transfer in the OFC model and long-range springs in the RJB model. To this end
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we have simulated the BK model with long-range springs [6]. Our results indicate that
the situation is somewhat complicated. We employed a velocity weakened friction
force and found that the relation between the CA results and the BK results depend on
how fast the friction force decreases with velocity. The decrease was parameterized
by the parameter α (not to be confused with the dissipation parameter in the OFC
model.) The larger the value of α, the faster the friction force decreases with velocity.
For large stress transfer range (range of the springs) and α ≥ 1, the BK model appears
to have the same scaling behavior as the RJB and OFC models. However, for smaller
α the relation is more complicated. There is a lack of scaling, and quasi-periodic
behavior and mode switching between scaling and periodic behavior appears. It is
clear that more work needs to be done in order to understand the relation between
the BK and the CA models.

1.5 CA Models with Structure

1.5.1 Role of Dissipation via Microcracks

We investigated the behavior of the CA models vary when we include structure. The
first of the two variations that we have studied is the inclusion of different levels
of fracture or microcracks in the fault. To mimic the effect of this structure we
removed a fraction q of the sites from the OFC model. When stress is transferred to
an empty site, it is simply dissipated as it would be with microcracks. If we were to
run the model with every site in the stress transfer range of every other site, that is,
a fully connected model, this removal would simply be equivalent to increasing the
dissipation parameter α [14]. For a finite but long-range system it is somewhat more
complicated. However, we find that the larger the value of q, the further the system
is from the spinodal critical point mentioned above (see Fig. 1.6).

We can fit these curves by

ns = 1

1 − q

exp[−q2s]
s3/2

. (1.15)

What is more interesting about this approach is that it allows us to understand
how it is possible to have fault systems that satisfy Guttenberg–Richter scaling, even
though most of their individual faults exhibit very poor Gutenberg–Richter scaling,
and how fault systems in different parts of the world can have Gutenberg–Richter
scaling with different exponents (b values). From Fig. 1.6, we see that the smaller the
value of q, the better the fit to Gutenberg–Richter scaling and a critical point picture.
However, in a fault system there will be faults with different values of q. To obtain a
Gutenberg–Richter distribution we need to integrate over different values of q. That
is, for a fault system we have
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Fig. 1.6 The number of
events of size s for different
values of q

ñs =
∫

dq ns ∼
∫ 1

0
dq

Dq

1 − q

exp[−q2s]
s3/2

, (1.16)

where the weighting factor Dq is the fraction of faults with damage q between q
and q + dq. If we associate the damage with microcracks, which are known to have
a fractal distribution [19], then it is reasonable to assume a scale free or power law
distribution Dq ∼ q−x , where the exponent x varies depending on the fault system.
If we are interested in scaling, we can do an asymptotic expansion [14] for large s
so that we can approximate (1.16) by

ñs ∼ 1

s2−x/2
. (1.17)

Hence different fault systems, with different values of x , can have different b values.
In addition, as can be seen in Fig. 1.7, which shows ns versus s for different values
of x , the range over which Gutenberg–Richter scaling fits the data is considerable
larger than what is seen for most models with a fixed value of q.

If the mechanism we are proposing, that is, a critical-like point such as a spinodal,
is responsible for the frequency-magnitude scaling of single faults, we expect the
data obtained from real faults to vary from fault to fault. This variation is captured by
a single parameter in an otherwise universal distributions in (1.11). By using scaling
arguments, we can rewrite (1.11) as

n A ∝ exp
[ − �h A2/3

]
A

, (1.18)

where A is the slip area. In Fig. 1.8 we show the number of events with area A from the
Advanced National Seismic System Catalog [20]. The fits (solid lines) are to (1.18)
and the straight line has unit slope. This data appears to support the idea that at least
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Fig. 1.7 The number of events of size s for different values of the parameter x , where the distribution
of the number of microcracks is given by Dq ∼ q−x

Fig. 1.8 The number of events with area A from the Advanced National Seismic System Cata-
log [20]. The plots are of the number of events with magnitude greater than or equal to the minimum
magnitude of completeness [21] versus the area of each event occurring between 1980–2008 within
a 20 km swatch on either side of the San Jacinto (crosses), Fort Tejon segment of the San Andreas
fault (diamonds), and the creeping section of the San Andreas fault (triangles). To see the data
clearly, the various faults have been offset by factors of ten

some faults have Gutenberg–Richter scaling that can be explained by an underlying
critical point. However, there are faults, such as the Parkfield fault, that do not fit
this pattern. This fault does not appear to have a range of Gutenberg–Richter scaling
that can be fit by (1.18), and there is an event of magnitude approximately six every
(roughly) twenty-two years.
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1.5.2 Role of Structure

Large events on the Gutenberg–Richter scaling curve in the OFC model do not seem
to have either foreshocks or aftershocks. To model these phenomena we introduce
structure into the model.

One obvious deficiency of the CA models we have discussed so far is the fact that
the failure thresholds are all the same. Because the failure thresholds are supposed to
represent the breaking strength of the rock at that point in the fault, it is unrealistic to
assume that they are all identical. The simplest way to account for their differences
is to have a spatially varying failure threshold in the OFC model. In this paper we
will only consider the effect of a large (compared to the other sites) failure threshold
on a single site chosen at random. The inclusion of only one asperity is unrealistic,
but it is important to understand the effect of one asperity before several asperities
are included so that we can better separate the effect of a higher failure threshold
from the interaction of the asperities with each other.

The single asperity acts as a sink for stress, that is, as an effectively larger dis-
sipation coefficient α. The difference between the asperity and a larger dissipation
coefficient is that when the single asperity fails, a large amount of stress is released
into the system. One question is then does the single large asperity impose a period-
icity on the event sequence which is associated with the failure of the asperity site? If
the system has noise, we would not expect that the system would be exactly periodic,
so we first look at the system with zero noise.

As can be seen in Fig. 1.9 the addition of a single asperity appears to enhance the
GR scaling. The slope appears to be approximately the same, but the range of the
scaling has increased due to the presence of larger events apparently caused by the
release of a large amount of stress due to by the failure of the asperity.

In Fig. 1.10 we plot the stress in the system as a function of time for the system
with and without the asperity. The stress with zero noise is almost periodic but the
presence of the asperity makes the system somewhat less periodic. To understand
this behavior we perform a spectrographic analysis of the system stress. In Fig. 1.12
we see that there is a clear band at 10 Hz with a sampling rate of 8000 indicating a

Fig. 1.9 The OFC model
with zero noise with one
asperity with σF = 100. The
other sites have σF = 2.
Note that the scaling is very
good with a slope of
≈ − 1.55. The maximum
event size increases from
1000 to 15000. The
simulations were with
R = 10, linear dimension
L = 200, and α = 0.025
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Fig. 1.10 Time series of the
total stress for a system
without asperities and a
system with one asperity.
The period with one asperity
is around 900, which is much
smaller than the period of
5330 for the system without
an asperity. Also the periodic
behavior of the system with
one asperity is not as regular

periodicity of 800. In Fig. 1.12 we see that the period of the asperity is about 70,000
plate updates.

As can be seen in Fig. 1.9 the addition of a single asperity appears to enhance the
Gutenberg–Richter scaling. The slope appears to be unchanged, but the range of the
scaling has increased due to the presence of larger events apparently caused by the
release of a large amount of stress due to the failure of the asperity.

In Fig. 1.10 we plot the stress in the system as a function of time (plate updates) for
a system with and without the asperity. The stress with zero noise is almost periodic,
but the presence of the asperity makes the system less periodic. To understand this
behavior, we perform a spectrographic analysis of the system stress. In Fig. 1.11
we see that there is a clear band at 10 Hz with a sampling rate of 8000 indicating
a periodicity of 800 updates. In Fig. 1.12 we see that the period of the asperity
is about 70,000 plate updates. This behavior implies that the observed periodicity
in the system with the single asperity in Fig. 1.9 is due to an interaction between
the periodic behavior of the stress with zero noise and no asperity and the period
associated with the failure of the asperity. This behavior suggests that the periodic
behavior associated with single faults such as Parkfield is not a simple matter of an

Fig. 1.11 Spectrogram of
the total stress for the
zero-noise OFC model with
one asperity. A sampling rate
of 8000 is used for the
analysis and 5 × 106 plates
updates were analyzed. The
strong band around 10 Hz
means the period is about
800. There is a transient of
about 1.6 × 106 updates after
which the periodic behavior
becomes more regular
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Fig. 1.12 Time series of
event sizes (red) and stress
on an asperity site (blue).
The period of the stress on
the asperity site is about
69500. The peak of the time
series of the events may have
the same period, but the
periodic behavior is less
regular. The failure of the
asperity does not result in the
largest event in the time
series

Fig. 1.13 Time series of the
stress on the asperity site
(green curve) and the
corresponding time series of
the event size (red curve).
The asperity site failed 12
times in 5000 plate updates.
The failure of the asperity
site does not directly result in
large events

asperity failing over and over with a set period, but is a more complicated interaction
of the fault structure with the underlying dynamics.

To support this point of view, we plot in Fig. 1.12 the stress on the single asperity
and the event size versus time. We see that, as mentioned, the period of the failure of
the asperity is not the same as the period of the largest event in the system. Figure 1.12
shows the surprising result that the largest event does not occur when the asperity
fails, but it lags the asperity failure by approximately 2–3 ×105 plate updates. Why
this lag occurs is not understood and further simulations are being done to test several
hypotheses. We also investigated the effect of the strength of the asperity (all other
parameters are the same as for the asperity strength of 100). The period associated
with the failure of the asperity appears to depend linearly on the strength of the
asperity [22]. As can be seen in Fig. 1.13 the fact that the failure of the asperity does
not coincide with the largest events does not seem to depend on the size of the failure
threshold of the asperity.
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Finally we look at the effect of asperities for non-zero noise. If the noise is small,
which is what we would expect in real earthquake faults, we would not expect much
of a change from the zero noise case. However, as we can see in Fig. 1.14, there
is a significant difference in the scaling with and without the asperity (with failure
threshold of 100) for small noise [22]. As the noise increases, the two cases, asperity
and no asperity, have less of a difference. In addition, the periodicity of the system
is much less pronounced as seen in Fig. 1.15.

Fig. 1.14 Scaling for without asperities and one with σF = 100 for different values of the noise η.
If η < 0.1%, the asperity has a significant impact on the scaling; the scaling fits a power law better
with the asperity than without. If η > 1%, the asperity has little impact on the scaling
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Fig. 1.15 Stress on the
asperity (blue line) and size
of the event (red dots) as a
function of time for a system
with a single asperity and a
10% noise. Compared to a
system with 0% noise the
evolution is less periodic

1.6 Conclusions

The study of CA models allows us to understand several aspects of the phenomenol-
ogy of earthquake faults and fault systems. For example, we were able to construct
a paradigm that can explain how we can have faults at different distances from an
apparent critical point, but a fault system made up of those faults that exhibit a very
good fit to Gutenberg–Richter scaling, with a larger range of the power law behavior
than any one of the individual faults and a different exponent than the one that char-
acterizes the scaling on the individual faults. This behavior indicates how the fault
structure interacts with an underlying critical point. In addition, we begun the study
of the interaction between asperities and the underlying critical phenomena.

Future studies will include the addition of several asperities with various distrib-
utions of strengths (failure thresholds) as well as their spatial distributions. We will
also address the fact that when neighboring sections of the faults fail they do not
always lead to a loading of adjacent sections but will sometimes result in a reduction
of stress on the neighboring fault sections(sites), i.e. stress is a tensor in real faults.
More studies are needed on how the behavior of the CA models is affected by the
inclusion of friction and inertia to see if the results we obtained from the CA models
are changed by their inclusion as we would have in the BK model.

Acknowledgments This work was funded by the DOE through grant DE-FG02-95ER14498.
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Chapter 2
Mean Field Theory of Slip Statistics

Karin A. Dahmen

Abstract A simple mean field model for the statistics and the dynamics of slip
avalanches in slowly deformed solids is reviewed. Its universal scaling predictions
are compared to experiments on slowly compressed single nanocrystals, microcrys-
tals, bulk metallic glasses, and rocks, as well as to slowly sheared jammed granular
materials, and to earthquakes. The remarkable agreement between model and exper-
iments spanning 12 decades in length and a wide range of material structures implies
that results on the slip statistics can be transferred from one solid material to another
and from one scale to another. Potential applications of the results include materials
testing, failure prediction, and hazard prevention.

2.1 Introduction

Slowly sheared crystals, bulk metallic glasses, composite materials, ferroelastic
materials, densely packed granular materials, rocks, and the earth’s crust all deform
in a jerky way via (slip-) avalanches, such as earthquakes. These slip avalanches have
a broad distribution D(S) of sizes S, following simple functions that are independent
of the microscopic details of the material. Recent experiments, analytic models, and
simulations show that the avalanche size distribution typically follows a power law
over a broad range of sizes, similar to the Gutenberg Richter law of earthquakes. The
power law region is cut off at a size S = Smax that may depend on the applied stress,
strainrate, temperature, or sample size [1–5].

A simple mean field model [5] has proven useful not only for gaining an intuition
for these slip avalanches (also called “serrations” of the stress strain curves), but
also for organizing the experimental data. The model also predicts the observed
statistics of the avalanches, the avalanche dynamics, the time series properties
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of the avalanches, and their dependence on the experimental tuning parameters
[1–4, 6, 11]. In the following we briefly review the model, its predictions, and its
comparison to first experiments.

2.2 The Model

The model assumes that a solid material has weak spots [5]. As the material is slowly
sheared the local shear stress increases everywhere. Each weak spot is stuck until
the local shear stress exceeds its random failure threshold. When that happens it
slips by a random amount, and the released stress is redistributed to the other weak
spots. This may trigger some of the other weak spots to slip also, leading to a failure
cascade, or slip avalanche. The avalanche stops when everywhere in the material the
local stress is below its respective local failure threshold.

After an avalanche is completed, the applied stress is slowly increased further
until the next weak spot slips, thereby triggering the next slip avalanche. The model
can be written [5] either in a continuum description or a discrete description. Both
are reviewed below.

2.2.1 Continuum Version of the Model

One can write the following equation of motion for the model [5, 8]:

η ∂u(r,t)/∂t= F + σint(r, t) − fR[u, r, {(u(r, t′ < t)}] (2.1)

where η is a damping constant, F is the applied shear stress in the x direction (using
scalar elasticity). u(r, t), is the accumulated slip in the x direction at point r and at
time t (e.g. the displacement discontinuity across the slip plane or shear band, or
earthquake fault), and

σint(r, t) =
∫ t

−∞
dt′

∫
d2r′ J(r − r′, t − t′) × [u(r′, t′) − u(r, t)] (2.2)

is the shear stress accumulated at point r, at time t, resulting from elastic stress
transfer from all previous slips in the solid since time t = 0 when the system started
in a relaxed state. f R represents the quenched random “pinning” stress, that prevents
slips until the local stress exceeds the local failure threshold, as discussed above.
This failure threshold may be history dependent (see also the discussion of the dis-
crete version of the model below). A renormalization group analysis of the model
for positive couplings shows that the coupling between slips of weak spots is suf-
ficiently long range (for example, J(r) ≡ ∫

dt J(r, t) ∼ r-2 for parallel straight edge
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dislocations) that mean field theory (MFT) gives the correct scaling behavior in all
dimensions [5, 8]. For small patches slipping along a fault-like plane surrounded by
elastic material J(r) ≡ ∫

dt J(r, t) ∼ r-3 and mean field theory is expected to apply for
2 and higher dimensional slip planes [5, 8]. In most solids the slips or slip avalanches
organize predominantly along shear bands or glide planes, and the positivity of the
coupling applies during avalanches [8–10]. In fact the predictions of MFT agree
with the scaling behavior of the avalanche statistics seen in experiments on crystals,
bulk metallic glasses, high entropy alloys, rocks, granular materials, and earthquakes
[1–3, 6, 11].

2.2.2 Discrete Version of the Model

A simple discrete version of the model can be easily solved in mean field theory.
For a block of material two different loading conditions may be applied:

(I) a slowly increasing shear stress F applied to the boundaries
(II) a small strain rate imposed at the boundaries.

The model predicts that the scaling behavior for both boundary conditions is the
same, as was recently also confirmed by experiments [32].

In the discrete version the material is modeled by N lattice points marked by
l=1,…,N. Each lattice point (or weak spot) has its own random local failure shear
stress τ s,l . We assume it deforms elastically until the local shear stress exceeds this
local threshold. When that happens, the weak spot slips until the local shear stress is
reduced to a lower arrest stress τ a,l (“sticking stress”). τ s,l and τ a,l vary randomly in
space, to model the disorder in the material. After re-sticking the weak spot locally
acts again elastically until the local stress again exceeds the failure stress.

Brittle materials: To model brittle (or hardening) materials, the failure stress is
assumed to weaken (or strengthen, respectively) after the initial slip in an avalanche.
For brittle materials, after a point l slips for the first time during an avalanche, the
local failure threshold is weakened from the static value τ s,l to a diminished value
τ d,l with τa,l < τd,l < τs,l . The failure stress remains at τ d,l until the avalanche has
been completed. The amount of weakening is given by the weakening parameter
ε= (τs,l– τd,l )/τs,l [5, 8]. After the completion of an avalanche all weakened failure
stresses are reset to their initial static values τs,l .

Hardening Materials: In contrast, for hardening materials upon slipping the failure
thresholds are strengthened by an amount proportional to ε < 0, to model the local
energy absorption due to dislocation pair creation and entanglement etc. [4, 5].

Avalanches: The stress that is released during a slip is redistributed to all other
cells in MFT. In MFT the coupling is replaced by a function that is constant in space:
J (r)≡J/N. The coupling causes slip avalanches. The local stress τ l at a lattice point
l is given by τl = J/NΣm(um − ul) + F [5], where F is the applied stress and ul

is the local displacement discontinuity. As described above, each point fails when
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Fig. 2.1 Figures reprinted from [6]. Avalanche statistics for quasistatic uniaxial compression of two
specimens of Zr45Hf12Nb5Cu15.4Ni12.6Al10. The predictions of the mean field model are shown by
the dashed red lines. The data in the scaling regime are also highlighted in red. a The distribution
of stress drop sizes for the 3744 avalanches; the data in the scaling regime have the expected mean
field exponent of –1/2. b The avalanche duration as a function of avalanche size. The data in the
scaling regime have the expected mean field exponent of 1/2

the local stress is bigger than the local failure threshold (slip stress) τ f,l≡ τ s,l (or
τd,l ). When site l fails, it slips by an amount Δul resulting in a stress reduction
τ f,l − τa,l ∼ 2GΔul where G ∼ J is the elastic shear modulus. After a slip the site
resticks and the released stress is redistributed to the other sites in the system. A
local slip can then trigger other sites to slip in a slip-avalanche. The avalanche ends
when at all sites the local stresses are below their local failure stresses τ l< τ f,l . In
the adiabatic (slow driving) limit, the applied stress F is increased only after a slip
avalanche has been completed, until the next site fails. For small applied strain rate
Ω the stress F in the dynamical equation is replaced by KL(Ωt − ui ) where KL is
an effective loading spring constant [5, 8], which is proportional to G/N (1/2).

This model can be solved analytically [5, 8]. It predicts the observed scaling
behavior of the slip statistics without the need for any fitting parameters or any
assumptions about length scales or material structures. As a result, it predicts the
same slip statistics for a wide range of scales and materials (Fig. 2.1) [1, 5]. The key
model parameters are: the weakening ε, the boundary conditions, τs,r ,τa,r and their
distributions, the values of η and the elastic constants, and the form of J (r, t)>0.
Among these, only ε, and the range of J (r, t) affect the universal (i.e. detail inde-
pendent) aspects of the behavior on long length scales.

2.2.2.1 Model Predictions for Avalanche Statistics
and Comparison to Experiments

For zero weakening (ε=0) the model predicts the scaling behavior of the slip statistics
on long length scales for a wide range of materials, irrespective of the microscopic
details. In particular it predicts the probability distributions of D(S) of finding
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avalanches of size S at applied shear stress F [5, 8]:

D(S, F) ∼ 1/Sκ GS(S(F − Fc)
1/σ ) where in MFT κ = 1.5 and 1/σ = 2

and GS(x) ∼ A′exp( − B ′x),

with A′ and B ′ non-universal constants. Fc is the flow stress or critical stress. The
avalanche size S could be the total slip for experiments with slowly increasing applied
shear stress, or total stress drop for experiments at imposed slow strain rate. Similarly
it predicts the probability of finding avalanches of energy E at stress F to scale as
[12].

D(E, F). ∼ 1/E−ηG E (E(Fc − F)(2−συz)/σ ) with η=4/3 and (2−συz)/σ = 3,

συz = 0.5, σ = 0.5 and G E (x) is another universal scaling function [3, 13]. Here
the energy E scales as E ∼ ∫ v2(t) dt, and v(t) is proportional to the instan-
taneous growth rate of the avalanche (either the slip rate for slowly increas-
ing stress or the stress drop rate for slow strain rate boundary conditions). In
some experiments histograms of avalanche energies or sizes are collected over
the entire stress range, in that case D(S, F) and D(E, F)are integrated over the
applied stress F , from 0 to Fc, which yields the power law stress-integrated his-
tograms Dint (S) ∼ S−(κ+σ) Gint ,S (S/Smax ). Here Smax is a measure for the largest
observed avalanche size, which is usually a function of the tuning parameters
in the system, such as temperature, sample size, etc. Gint,S(x) is another scal-
ing function. In some acoustic emission experiments the energy may be defined
as Em ∼ (v(t))2

max i.e. as proportional to the highest slip-velocity squared dur-
ing an avalanche [1]. In MFT histograms of this quantity scale as D(Em, F) ∼
(Em)−(μ+1)/2 G Em(Em/Em,max )wi thEm,max ∼ (Fc − F)−2ρ where (μ + 1)/2 =
1.5 and 2ρ = 2 in MFT and G Em(x) is yet another scaling function. Correspond-
ingly the stress integrated distribution scales as Dint (Em) ∼ (Em)−[(μ+1)/2+1/(2ρ)]
Gint,Em(Em/Em,max )) ∼ (Em)−2 Gint,Em(Em/Em,max ) [14, 15]. Table 2.1 sum-
marizes some of the results from MFT. All symbols with a subscript “max” (or
“min”) denote maximum (or minimum) values of the scaling variable, that typi-
cally depend on experimental tuning parameters, such as temperature, sample size,
and others. The results shown in Table 2.1 are compiled from references [1, 5, 12,
14, 15]. Table 2.1a, b show some of the scaling relations predicted by mean field
theory, while Table 2.1c shows the comparison to a wide range of recent experi-
ments. A comparison of some of these predictions to experiments on the slow shear
of nanocrystals, amorphous materials, rocks, granular materials, and the earth’s crust
is shown in [1].

The most extensive comparison to experiments has probably been done for bulk
metallic glasses (BMGs), which shows agreement with the model predictions for
more than 12 different statistical quantities [6]. For BMGs that are compressed at
slow strainrate, Fig. 2.1 shows the complementary cumulative stress drop size dis-

tribution C(S) = ∞∫
S

D
(
S′) d S′ which gives the probability to observe avalanches

larger than size S. For deformation in the steady state, the mean field model
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Table 2.1 Results form MFT

(continued)
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Table 2.1 (continued)

(continued)
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Table 2.1 (continued)

*Exponents from experiments and observations quoted here have a 10% error range due to statistical
fluctuations [1]. Exponents from previous rock experiments were obtained from [19, 20] at the largest
stresses, using that the Gutenberg Richter exponent, b, in [19] is related to our exponents via b =
3(κ-1)/2 (see [8, 21]). For the relationship between the slip-size and the acoustic-emission signal
see [21], the Supplementary Information of [3, 15], and references therein

predicts C(S) ∼ S−(κ−1) for a certain scaling regime range of (small) avalanche sizes
Smin < S < Smax , with κ = 1.5. Power laws fitted to experimental data on crystals
and bulk metallic glasses are consistent with mean field theory κ − 1 = 0.51 ± 0.03
[3, 5, 6, 19]. For models of brittle materials, such as BMGs, the weakening parame-
ter ε >0 and the model predicts additional large (i.e. system spanning) avalanches
that recur almost periodically, with the power law distributed smaller avalanches
observed in between the occurrence of the large avalanches [5, 6, 23]. Both small
and large avalanches have recently been observed in experiments on BMGs [6, 7].

2.3 Model Predictions for Avalanche Dynamics
and Comparison to Experiments

The MFT model also predicts average temporal profiles of the avalanches, The time
profile for the average stress drop rate < −dσ/dt (t)|T >, which is obtained by
averaging the stress drop rate -dσ/dt (t) > 0 over all avalanches of the same duration
T , is predicted by mean field theory to follow a parabola. (An avalanche starts when
-dσ/dt (t) first becomes positive and it stops when it becomes negative again.). The
predictions for the scaling behavior of these profiles have recently been tested for
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bulk metallic glasses for the first time [6]. Machine stiffness effects can flatten out
the shape [6]. An asymmetric profile, i.e. one that is tilted to the right or to the left,
can be an indication that either inertia or delay effects play an important role in the
slip dynamics [5, 23, 28–31].

Also, the time profile for the average stress drop rate < −dσ/dt (t)|S >, which
is obtained by averaging −dσ/dt (t) over all avalanches of the same total stress drop
size S, is predicted by MFT to follow a function of the form < −dσ/dt (t)|S >∼
S1−συzG ′(t/Sσυz) with συz = 0.5 in MFT, and G ′(x) = A′xexp(−B ′x2) where A′
and B ′ are experiment-specific constants [1, 5, 6].

Examples of these shapes are shown in Fig. 2.2. References [2, 6] contain the
comparison of many more statistical properties with the model predictions.

Fig. 2.2 Figures reprinted from [6]. a The average avalanche shape constructed from all avalanches
in the scaling regime. The stress drop rate is scaled by the maximum stress drop rate for each
avalanche on the vertical axis and by the avalanche duration on the horizontal time axis. The mean
field prediction is also shown. b The unscaled shapes for several small avalanches of various sizes
are shown in the inset. When both axes are scaled by S−1/2, the shapes collapse to the form predicted
by the mean field model (black dashed line). (From [6])
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2.4 Conclusion

Initial measurements indicate that mean field theory makes many predictions for
experiments, some of which have been tested for a range of materials. Initial com-
parisons of theory with experiments suggest that the universality class of the simple
mean field model may be surprisingly large [1]. Table 2.1 shows that so far only a
subset of the model predictions have been tested in experiments. More experimental
tests, especially tests at high time resolution on a wide range of materials are needed
to fully test all predictions of the model and to establish the size of the underlying
universality class. Regardless of whether or not a material’s slip statistics agree pre-
cisely with the predictions of the simple model for the scaling exponents and scaling
functions, the model provides valuable intuition and guidance for organizing the data
of experiments and simulations. As recent experiments show [1, 6], the model pre-
dictions agree with experiments on a surprisingly wide range of materials, including
crystals, BMGs, rocks, granular materials, and earthquakes [1].The reason for this
agreement of the simple mean field model with so many experiments likely lies in the
fact that most experiments show some kind of slip localization so that the avalanches
typically propagate in gilde planes, shear bands, or earthquake faults. For this kind
of slip localization one can use tools from the theory of phase transitions, like the
renormalization group, to show that the elastic interactions are positive along such
shear bands and that the discussed mean field theory is expected to fully describe the
scaling behavior on long length scales, in 3 dimensions (up to negligible logarithmic
corrections) [8]. Experiments and simulations of other systems, such as ferroelas-
tics also give related results [12, 33]. Potential applications of the model include
materials testing, failure prediction and hazard prevention [34].
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Chapter 3
From Labquakes in Porous Materials
to Earthquakes

Eduard Vives, Jordi Baró and Antoni Planes

Abstract A review of recent Acoustic Emission experiments during the compres-
sion of synthetic porous SiO2 (Vycor c© and Gelsil) under controlled force rates is
presented. The statistical analysis of the recorded signals allows comparison with the
statistics of earthquakes from available public seismological catalogues. We discuss
different methods to characterize the properties of the individual acoustic emission
avalanches and the time correlations between them.

3.1 Introduction

For quite a long time there has been a lot of interest in designing laboratory exper-
iments that can be used as low-scale models for earthquakes with the final aim of
predicting earthquake occurrence. To this end, the focus has been on brittle frac-
ture experiments in heterogeneous materials [1–5] since both phenomena display
crackling noise response under slow external stimulation. Actually, all these sys-
tems belong to a class that show scale invariant intermittent dynamics when exter-
nally driven. These processes occur as sequences of well-separated events, usually
called avalanches, which occur in the absence of characteristic time and size scales.
This intermittent collective dynamics has been reported in magnetization processes
(Barkhausen noise), plasticity and martensitic transitions, among others. The exis-
tence of scale invariance associated with avalanches suggests that in spite of the
disparity of scales expected in earthquakes and laboratory-scale experiments, the
most fundamental laws that govern the statistical behavior of earthquakes may also
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emerge in brittle fracture experiments. These empirical laws establish that a number
of earthquake features are power-law distributed, which is the fingerprint of scale
invariance. The Gutenberg–Richter, Omori, Productivity and Universal Scaling laws
summarize this striking behavior.

The Gutenberg–Richter law describes the relation between magnitude and fre-
quency of occurrence of earthquakes and can be expressed in the sense that earthquake
energies are power-law distributed. Omori’s law is concerned with the existence of
aftershocks following a large event. It expresses how the rate of aftershocks decays
with time and reveals the existence of correlations in the occurrence of earthquakes.
The productivity law is connected with Omori’s law and assumes that the rate of
decay of aftershocks depends on the magnitude of the main event. However, these
last two laws have raised some controversy since they depend on how the main
event and the subsequent aftershocks are defined. When the study of correlations
was acknowledged as providing a suitable method to forecast catastrophic events,
numerical tools aimed at detecting earthquake correlations, which are independent
of the definition of main event and aftershocks, were proposed. Along these lines, a
new idea of universality has been suggested, which starts from analysis of the distri-
bution of waiting or silent times between consecutive events. It has been noticed that
while this distribution exhibits strong dependence on the studied catalogue (defined
by the seismic process corresponding to a given region), distributions corresponding
to different catalogues can be scaled into a universal function, which defines the
Universal Scaling law.

The failure of porous materials subjected to compressional forces has recently
received much attention not only in connection with earthquakes, but also due to
its relevance in the collapse forecast of both natural and artificial structures such
as mines, buildings, or bones. It has been shown that when mining materials are
subjected to a compressive stress, failure can be heralded by significant precursor
activity. In this precursor regime, the response of the system to the applied compres-
sive stress has been shown to be not smooth and continuous as classically expected for
elastoplastic materials, but, instead, occurs as a sequence of avalanches. Experimen-
tally, it has been shown that avalanches stem from sudden changes of the internal
strain field (displacement discontinuities), which usually lead to shrinking of the
sample and can be detected by measuring the acoustic emission (AE) originating
from contraction. AE avalanche behavior has been reported in a number of synthetic
and natural (mineral) porous materials. The case of the porous glasses Vycor and
Gelsil is especially appealing since the statistical characteristics of the AE events, or
labquakes, has been shown to share strong similarities with seismicity arising from
failure of the Earth’s crust due to stresses induced from plate tectonics. In the present
chapter we study the statistical features of energies, aftershocks and waiting times
of labquakes detected from AE experiments in Vycor and Gelsil and compare the
obtained behavior with those of earthquakes. The chapter is organized as follows:

In the two following subsections we present firstly a summary of the statistical
laws that describe seismic activity in Sect. 3.1.1 and secondly the Epidemic Type
Aftershock-Sequence (ETAS) model in Sect. 3.1.2 which is a phenomenological
model that reproduces most of these laws. In Sect. 3.2 we present the experimen-
tal data. This includes details of the compression setup in Sect. 3.2.1, details of the
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samples in Sect. 3.2.2, analysis of the shapes of individual signals in Sect. 3.2.3, cor-
relations between different signal properties in Sect. 3.2.4, the statistical distribution
of energies, amplitudes and durations of individual signals in Sect. 3.2.5, Omori’s
correlations in Sect. 3.2.6, distribution of waiting times in Sect. 3.2.7 and study of
the local Poisson character of the signals in Sect. 3.2.8. Finally, in Sect. 3.3 we both
summarize and draw conclusions.

3.1.1 Revisiting the Statistical Laws for Earthquakes

Earthquakes are complex phenomena that have been the focus of scientific studies in
the last several hundred years. In this section we are mainly interested in reviewing
the very general statistical and collective properties of earthquakes with the aim
of comparing them with the acoustic emission that occurs during compression of
materials in laboratory experiments. Thus, we will adopt a very simple, holistic
description of earthquakes, reducing them to a sequence of events k = 1, . . . , N that
occur at times tk and at positions rk , which can be characterized by a magnitude Mk .
This is the standard information that can be found in the accessible public catalogues.
Earthquake magnitudes are logarithmic estimations of the energy of an earthquake.
Historically, the measurements were obtained from analysis of the consequences
of the earthquake. Different quantitative methods have been proposed to measure
magnitudes. Modern catalogues use the “moment magnitude” (Mw) which is obtained
from the so-called seismic moment, which is an estimation of the energy released at
the source of the event (fault area × mean displacement × shear rigidity). Despite
the fact that such a measurement is not always accessible, we will systematically
translate earthquake magnitudes to the so-called “minimum strain energy drop” using
the commonly accepted relation:

log10 E = (3/2)Mw + 4.8, (3.1)

where the energy E is given in Joules. Typical recorded magnitudes are in the range
0–9, thus corresponding to a range of ∼14 orders of magnitude, from 104–1018 J.
From now on, we will use the generic symbol M to denote the magnitude of earth-
quakes reported in catalogues, irrespectively of the exact details of its measurement.

To date, our laboratory experiments with porous materials (as will be reviewed
in the next section) have been performed in small samples with typical sizes of sev-
eral mm. Spatial location techniques are still not good enough to find the position
of the source of the AE events at this resolution. Therefore, comparison with real
earthquakes will be performed by neglecting the information related to their spatial
correlations. In what follows, we will consider that an earthquake catalogue cor-
responds to the information {(tk, Ek) k = 1, . . . N }. Within mathematical language
this is referred to as a marked stochastic point process [6].

Figure 3.1 shows examples of earthquake catalogues, which will be used to illus-
trate the examples in this section. Plots represent the cumulative number of events
as a function of time and circle sizes indicate the energy of each event.
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Fig. 3.1 Cumulative number of registered events as a function of time for three different catalogues
defined in the text. The circles are proportional to the logarithm of the energy of each event. a
Corresponds to Japan, b to California–Nevada and c to El Hierro

The first catalogue corresponds to the area of Japan and includes all the seismic
events in the ANSS [7] catalogue from 2000/01/01,00:00:00 to 2011/11/09,17:32:36
within the region enclosed between latitudes 28 and 48◦N and longitudes 128 and
148◦E. The registered data correspond to the N = 14509 events above M = 2.7,
where the Tōhoku earthquake of 2011/03/11 was the most serious event with an
estimated magnitude of M = 9.0.

The second catalogue corresponds to the San Andreas Fault system beneath the
region occupied by the states of California and Nevada. The data analyzed here cor-
responds to the seismic signals registered as earthquakes in the ANSS [7] catalogue
with its epicenter located within the area of latitudes between 30 and 42◦N and longi-
tudes between 114 and 126◦W during the period between 2000/01/01,00:00:00 and
2011/11/09,17:43:00. In order to avoid the presence of possible background noise,
we selected only those earthquakes with a magnitude greater than M = 0.4. The
largest earthquake, corresponding to Gorda plate, was recorded on 2005/06/15 off
the Coast of Northern California with a magnitude of M = 7.2. The full data set has
N = 453372 events.

As a third example we consider a completely different seismological phenomenon
(very localized both in space and time): the recent submarine volcanic eruption of La
Restinga off the island of El Hierro (Canary Islands), which started in the summer of
2011. The volcanic activity triggered an earthquake swarm [8] which was expected to
have quite different behavior from typical tectonic processes. We considered the data
obtained from the IGN [9] catalogue from 2011/06/08, 00:00:00 until 2013/02/04,
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9:15:00 in the region limited by latitudes from 27.5 to 28.0◦N and longitudes from
17.50 to 18.50◦W. The data set has N = 18877 events.

There are four main empirical laws that describe the statistical properties of such
stochastic processes:

1. Gutenberg–Richter law Given a sufficiently large catalogue, their energy distri-
butions is such that the logarithm of the number of earthquakes with a magnitude
larger than a certain value M , decreases linearly with M : log10 N> ∝ −bM , with
the slope b exhibiting values close to 1. Using the above-mentioned relation of
the magnitude with the energy (3.1), the Gutenberg–Richter law [10] translates
into a power-law distribution for energies:

p(E)d E ∝ E−εd E, (3.2)

with ε = (2/3)b + 1, that will typically take values close to 5/3 � 1.67. Never-
theless, it has also been suggested that ε could be closer to 1.33 (which corre-
sponds to b = 0.5) [11]. Figure 3.2a shows examples of histograms corresponding
to energy distributions of earthquakes in the three above-mentioned catalogues.
As can be clearly seen the three catalogues render a power-law distribution of ener-
gies with almost the same slope when represented on log-log scales. The precise
value of the exponent can be quantitatively fitted with the Maximum Likelihood
(ML) method. A standard method to perform the fit consists of estimating ε while
constraining the data to energies above a varying threshold Elow. The existence
of a plateau extending for various decades in the plot of the fitted exponent versus
Elow (as shown in Fig. 3.2b) indicates that data are well described by a power-law

Fig. 3.2 a Energy
distribution of earthquakes
from three different
catalogues as indicated by
the legend. Note that bins are
logarithmic. b Maximum
likelihood fitted exponent as
a function of the lower
energy threshold Elow. The
plateaus of the three curves
reveal the value of a common
critical exponent ε � 5/3
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distribution. In this case, the value ε = 1.66 is compatible with the three cata-
logues for a large number of decades. It should be mentioned that the ML method
also renders an estimation of the error bars (also shown in Fig. 3.2b). However,
these error bars do not take into account systematic sources of uncertainties and,
therefore the true error bars should be enlarged significantly by comparing fits
in different energy ranges, different catalogues, etc. More sophisticated methods
have been described in [12–15].

2. Omori’s law This is the first evidence of the non-Poisson character associated
with instants of occurrence of earthquakes tk . When a large earthquake (main
shock, MS) has occurred in a certain region, there is a sudden increase in the rate
of earthquake activity in the neighboring region [16, 17]. The subsequent extra
events are called aftershocks. The rate of aftershocks rAS (number of AS per unit
time) after a time Δt from the mainshock decreases as:

rAS = k

(c + Δt)p
, (3.3)

where c is a constant that prevents the rate from diverging exactly after the
mainshock, with values that range from 0.01 days to 1 day, k is a proportion-
ality constant, and p is the Omori exponent that takes values in the range 1–1.6
[18, 19]. Note that the total number of AS after a certain MS will behave as

NAS =
∫ ∞

0
rasdΔt = k

p − 1

cp−1
. (3.4)

If we want this number to be positive and finite, p should be larger than 1.
Two examples of Omori behavior can be seen in Fig. 3.3. They correspond to
the aftershock sequences after the largest earthquakes in the Japan and California
catalogues.
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Fig. 3.3 Activity rate (number of aftershocks per minute) after two large earthquakes (Tohoku plate
earthquake in Japan and Gorda plate earthquake in California–Nevada) as a function of the time to
the mainshock, Note that time bins are logarithmic. The thick gray lines indicate the behavior of
the theoretical Omori law with p = 1 and the constants k = 1000, c = 1500 min for Tohoku and
k = 200, c = 400 min for Gorda-plate
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Omori plots can be obtained not only for the largest earthquakes in a catalogue,
but also for smaller ones. In fact, one might well consider as MS all the events
in a certain energy range defined by two thresholds and then obtain the averaged
Omori plots that reveal a similar trend to those corresponding to individual very
large events.

3. Productivity law The productivity law [18] reveals the existence of correlations
between the energies of the events and the aftershocks. It establishes a relation
between the magnitude of the main shock MM S and the total number of aftershocks
induced by the MS. It can be expressed as:

log10 NAS = αMM S + β, (3.5)

where β is a constant and α is an exponent that characterizes the power-law
increase of the number of AS with the energy of the MS. The value of α has
been found to be close to 0.8. When this law is expressed in terms of the main-
shock energy EM S and it is combined with the Omori law, the rate of aftershocks
becomes

rAS = k ′ E
2
3 α

M S

(c + Δt)p
, (3.6)

where k ′ is a constant that depends on the energy threshold for the detection of
events, and the time units selected for the definition of the rate. A consequence
of this empirical formula is the so-called Båth’s law that states that the strongest
aftershock has typically a magnitude that equals MM S − 1.2, as was shown by
A. Helmstetter [18].

4. Unified Scaling Law This law has been discovered more recently [20]. It does
not hold the same consensus as the previously mentioned laws within the seis-
mology community. The Unified Scaling Law reveals the critical character of the
earthquake random process. It refers to the statistical distribution of waiting times
(or silent times) that we will denote as δ. These values can be recorded in a certain
geographical region R, during a certain period T , after fixing a threshold E0 for
event detection. In general, the probability density for the waiting times p(δ)dδ

will depend on R, T and E0, but it can be shown that all the spatial, temporal and
energy dependences can be summarized within a unique function Δ(R, T, E0),
so that:

pR,T,E0(δ)dδ = Φ
(
δ/ΔR,T,E0

) dδ

ΔR,T,E0

, (3.7)

where Φ is a universal function expressing the Unified Scaling Law (USL). By
integration, it is easy to check that the function ΔR,T,E0 is proportional to the
average waiting time 〈δ〉 or equivalently, inversely proportional to the average
rate 〈r〉. These quantities can be estimated from the total number of signals of the
catalogue and the total duration of the catalogue T
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Fig. 3.4 Distribution of
waiting times p(δ)

corresponding to a small
region with a width of 5◦ in
latitude and longitude
(31–36N, 120–115 W) for
different magnitude (energy)
thresholds. The lines show
the double power-law
behaviors, with exponents
−(1 − ν) = −0.75 and
−(2 + ξ) = −2.2 as
explained in the text
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Consequently, the waiting time distributions from different regions, different time
periods and corresponding to different energy thresholds should overlap when
represented as 〈δ〉p(δ) versus δ/〈δ〉, or as p(δ)/〈r〉 versus δ〈r〉. There has been
some discussion about the shape of the universal function Φ [21]. If the analyzed
set of δ values correspond to mixtures of regions and include data from areas
with clearly different activity rates, or if the durations of the studied catalogues
are large enough so that there have been strong fluctuations in basal earthquake
activity, the function Φ should show a double power law shape

Φ(x) ∝
{

x−(1−ν) if x � 1

x−(2+ξ) if x � 1,
(3.9)

where the exponents are ν ∼ 0 and ξ ∼ 1. Examples of these universal scal-
ing laws can be obtained, for example, by restricting the data to sub-catalogues
of small enough regions that have undergone repeated changes of activity rate
within many orders of magnitudes. Figure 3.4 shows some of these examples cor-
responding to subregions of the California–Nevada catalogue. If the catalogues
correspond to regions and time windows in which the basal activity rate is con-
stant for the whole duration of the catalogue (as usually occurs when catalogues
extend to vast regions), then Φ shows exponentially damped power-law behavior:

Φ(x) ∝ x
−(1−ν) exp −x/θ, (3.10)

where θ is a characteristic scale.

An example of this scaling can be seen in Fig. 3.5 which shows the behavior of p(δ)

for the full catalogues corresponding to Japan and California–Nevada. For these large
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Fig. 3.5 Distribution of
waiting times corresponding
to the full catalogues of
Japan and
California–Nevada, as
indicated by the colors. The
different lines correspond to
different energy thresholds.
The gray line shows an
exponentially damped power
law with −(1 − ν) = −1.45
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areas, activity rates are relatively constant, and thus one obtains the exponentially
damped behavior for the Universal Scaling Law Φ(x).

Omori’s law, the Productivity Law and the USL reveal the existence of correla-
tions, but their behavior can be affected also by the non-homogeneous character of
the activity rate.

Bi et al. [22] proposed an statistical test some years ago that reveals whether or not
a process is locally compatible with a Poisson process (uncorrelated), independently
of the fact that the activity rate may vary in time. The test considers all the events
above a certain threshold occurring at times tk with k = 1, . . . , n. For each event we
define a variable Hk as follows:

Hk = δtk
δtk + 1

2δτk
, (3.11)

where δtk is the minimum of the temporal distances tk+1 − tk , and tk − tk−1, and δτk

is measured as

δτk =
{

tk+2 − tk+1 if tk+1 − tk < tk − tk−1

tk−1 − tk−2 if tk − tk−1 < tk+1 − tk .
(3.12)

A rather simple analysis shows that if the process is locally Poisson, the val-
ues Hk should be uniformly distributed between 0 and 1. Thus, one can apply a
Kolmogorov–Smirnov test to check whether the values Hk are compatible with a
uniform distribution. This is done by comparing the experimental cumulative dis-
tribution function Fn(H) with the theoretical cumulative distribution function of a
uniform random variable F(H) = H , both functions defined in the interval (0, 1). Bi
test plots usually show the difference Δ f (H) = √

n (Fn(H) − H)). By fixing a con-
fidence level it is possible to obtain the thresholds indicating the limits of acceptance
of Δ f (H). The plots typically correspond to one of the three situations illustrated in
Fig. 3.6.
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Fig. 3.6 The three kinds of outcomes expected from a Bi test for the local Poisson hypothesis.
Gray shadows indicate the limits for acceptance of the hypothesis at a certain confidence level

Fig. 3.7 Kolmogorov–
Smirnov test revealing that
data from the
California–Nevada and Japan
catalogues is not compatible
with a Poisson hypothesis
when one considers a 99.5%
confidence level
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If Δ f (H) never exceeds the thresholds (see left-hand panel in Fig. 3.6), the local
Poisson hypothesis is accepted. If the curve exceeds the threshold levels, the local
Poisson hypothesis cannot be accepted. The rotated “S” shape in the central panel of
Fig. 3.6 reveals an excess of Hk values concentrating at H = 2/3. This is indicative of
a process which is more regular than expected for a Poisson hypothesis. On the other
hand, the “N” shape of the right-hand panel, evidences an excess of small H values,
indicating the existence of data clustering. This N shape is what is expected when
Omori’s aftershocks occur. Figure 3.7 shows that the California–Nevada and Japan
catalogues exhibit correlations, in particular clustering of data due to the aftershocks.

3.1.2 ETAS Model

The Epidemic Type Aftershock Sequence (ETAS) model was introduced by Ogata in
1988 [23]. Despite the fact that the model does not contain many physical ingredients,
it provides understanding of the difference between events caused by endogenous
effects (essentially aftershocks) and those caused by exogenous effects such as, for
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instance, an increase of the driving rate. The model incorporates the Guttenberg–
Richter law, Omori’s law and the productivity law. As already mentioned, here we
discuss a simple version of the model for which the location of the events is not taken
into account.

The random occurrence of an event during an interval (t, t + dt) is determined
by an intensity function μ(t) that accounts for the rate of events at time t . In the
trivial case, the intensity is constant μ(t) = λ, and the model renders a pure Poisson
process with independent occurrence of events. In a certain time interval Δt , the
average number of events is 〈N 〉 = λΔt and the waiting times between events are
exponentially distributed according to

p(δ)dδ = λe−λδdδ. (3.13)

Instead, in the ETAS model, a key point is assumed that the intensity μ(t) increases
additively each time tk that an event occurs with energy Ek by a term φk(t) given by

φk(t) = K
(Ek/E0)

2α/3

(c + t − tk)
1+θ

when t > tk . (3.14)

The values of Ek are drawn randomly and independently according to a (Gutenberg–
Richter) power-law normalized between E0 and ∞, given by

p(E)d E = (ε − 1)
Eε−1

0

Eε
d E . (3.15)

The dependence of φk on E2α/3
k in (3.14) allows the productivity law to be reproduced.

The denominator with an exponent θ is introduced in order to get Omori-like behavior.
At a given time t the intensity μ(t) depends, therefore, on all the previous events as:

μ(t) = μ0(t) +
∑

k;tk<t

φk(t) = μ0(t) +
∑

k;tk<t

K
(Ek/E0)

2α/3

(c + t − tk)
1+θ

, (3.16)

where μ0(t) accounts for the external changes of the basal rate and the sum for all
the cumulated endogenous effects.

Figure 3.8 shows an example of a numerical simulation giving a sequence of events
generated by the ETAS model. It is interesting to compare qualitatively some of the
features with Fig. 3.1. In particular, the existence of rounded steps in the cumula-
tive number of events after large events. The lower panel shows the corresponding
evolution of μ(t) with time.
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Fig. 3.8 Cumulative number of events as a function of time generated by an ETAS model with
parameters θ = 0.3, c = 2, k = 0.1, α = 0.5, ε = 1.67 and a basal rate evolving in time according
to 0.1(1 + cos(π t/100000))

The average number of events that can be considered as directly generated by an
individual main-shock at tk with energy Ek can be estimated from (3.14) as [24]:

n =
∫ ∞

tk

dt
∫ ∞

E0

d Ekφk(t)p(Ek) = K
ε − 1

cθ (ε − 1 − 2α/3)

∫ ∞

0

dz

(1 + z)θ+1
=

= K
ε − 1

θcθ (ε − 1 − 2α/3)
.

(3.17)

The latter equality only holds if θ > 0.
The relation between the exponent θ of the ETAS model and the exponent p of

the observed Omori behavior is not fully evident. Essentially, when one considers
the decrease of the rate after a large event in the ETAS model, one observes not
only the direct events produced by the MS (first generation of AS), but also a second
generation of AS, a third generation of AS, etc. Thus, the exponent θ does not
correspond to the Omori exponent p.

It is interesting to note that analysis of the waiting times in simulations of the
ETAS model do also reveal the existence of a Unified Scaling Law. When the basal
rate term μ0(t) is constant, one obtains the USL defined in (3.10). However, if one
considers a basal activity rate that changes in time by many orders of magnitude,
one gets the double power-law USL given in (3.9). For example, in Fig. 3.9 we show
the distribution of waiting times obtained with an ETAS model for which the basal
activity rate changes in time according to a sinusoidal function.
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Fig. 3.9 Distribution of
waiting times corresponding
to different energy thresholds
and scaled with the mean
waiting time. Parameters for
the simulation are the same
as in the previous figure.
Lines indicate the double
power-law behavior
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3.2 Experimental

3.2.1 Compression and Acoustic Emission Setup

The uniaxial compression setup consists of two parallel aluminum plates. The lower
plate hangs from the load cell at the top of the arrangement and is static. The upper
plate is pulled downwards at constant force rate d F/dt by guiding rods which slide
along three Teflon-covered holes in the bottom plate. The contact zone of the upper
and lower plates with the compressed sample is reinforced by embedded stainless
steel disks in order to minimize noise due to indentation.

A mechanism allows a constant stress rate to be applied. It consists of a large
container (up to 100 l) hanging from the guiding rods. The mechanical setup includes
ball and socket joints that ensure a good alignment of the setup and the sample. A
controlled water flow increases the weight of the container by means of a small pump
that allows flows as small as 0.001 l/s.

A laser extensometer (Fiedler Optoelektronik) measures the vertical separation
between the plates, h, with a nominal resolution of 50 nm. Unavoidable mechanical
and electrical noise, nevertheless, increase the absolute uncertainty in h up to 200 nm.
The load cell (1 kN range) signal is measured with a lock-in amplifier and has been
calibrated with standard weights. The resolution is about 1 N. During compressive
stress, the release of localized strain energy in the sample through acoustic emission
(AE) is measured. The AE signal is detected by piezoelectrics transducers embedded
in the compression plates and mechanically coupled by a thin layer of vaseline to
the stainless steel disks. The transducers are centered at a distance of 2 mm from the
sample surface. The sensors are encapsulated in stainless steel to reduce electrical
noise. The electric signals from the transducers are pre-amplified (60 dB), band fil-
tered (between 100 kHz and 2 MHz) and transferred to a PCI-2 acquisition system
from Europhysical Acoustics (Mistras group) working at a nominal time resolution
of 40 MHz. The registered signal is a voltage U (t). For identification of individual
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AE events (also called hits), a threshold Uth above the instrumental noise is set. In
most of our experiments it is fixed at a value between 23 dB (=0.0141 V)–27 dB
(=0.0224 V). A hit is defined to start with the first crossing of the threshold. The
end time of a hit is the time at which the signal voltage falls below the threshold and
remains below it for more than a preset hit detection time (HDT = 100 µs). After
the hit has finished, the system re-arms again in a short time called the Hit Lockout
Time, fixed at HLT= 2µs, and is ready for the detection of new signals. Changes of
these parameters do not affect the analysis presented below very much. Recently a
detailed analysis of the influence of the threshold, HLT and HDT parameters on the
critical exponents has been presented for the case of AE associated with dislocation
movement [29].

Once individual signals are identified, several characteristic properties can be
measured. Here we concentrate on hit energies E , amplitudes A and durations D. The
system allows the energies of the hits to be determined by fast numerical integration
of the square voltage U (t)2, as

E = 1/R
∫ t f

ti

U 2(t) dt, (3.18)

where ti and t f are the starting and ending times of the signal and R = 10kΩ is
a reference resistance. The duration of the events is given by D = t f − ti , and the
amplitude A is a logarithmic measurement (given in dB) of the maximum voltage of
the hit, Umax given by

A = 20 log10

(
Umax

1V

)
+ 60. (3.19)

Waiting times between signals correspond to the elapsed time between starting
times of consecutive signals. The AE activity is defined as the number of hits regis-
tered per unit time (measured over large intervals, typically above 1 s).

3.2.2 Vycor and Gelsil Samples

In this chapter we will summarize the uniaxial compression experiments performed
with different mesoporous synthetic silica (SiO2) glasses [3, 26, 27]. Experiments on
other synthetic compounds [25] and natural minerals [26, 28] have also been carried
out. As a general trend, experiments performed with natural minerals or with synthetic
porous materials but not based on SiO2 render much fewer AE signals (above the
threshold) during the compression experiments. This implies that statistical error
bars associated with any measured property (exponents, averages, etc.) are much
larger. Other observed deviations for natural minerals will be discussed in Sect. 3.3.

We have studied three types of synthetic SiO2 materials: Vycor, Gelsil 2.6 and
Gelsil 5. Porous Vycor 7930 is synthesized (Corning Inc. NY) via phase separation
of a Na2OB2O3-SiO2 melt, followed by leaching, which leaves a 98% pure SiO2
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Table 3.1 Pore characteristics of the studied materials and Vycor. Data for Gel2.6, Gel5 and Vyc
are from [30]. The density of quartz is 2.648 g/cm3

Gel2.6 Gel5 Vyc

Average pore diameter
(nm)

2.6 5.0 7.5

Density (g/cm3) ∼1.6 ∼1.2 ∼1.5

Porosity φ 0.36 0.54 0.40

skeleton containing interconnected pores of random length, direction and density.
Pores in our samples show a mean diameter of 7.5 nm and a rather narrow pore-size
distribution (as obtained from N2-adsorption experiments and BET/BJH analysis).
Nevertheless, it should be clarified that analysis of samples purchased in different
years shows a certain variability of this mean diameter between 6 and 10 nm. After
cutting and sanding, cleaning of these samples is carried out using a 30% solution
of H2O2 for 24 h. Drying is done under vacuum at 400 K for another 24 h.

Gelsil monoliths are produced (4F International Co., Gensville, FL) in a sol-gel
process by hydrolization of silica containing precursor liquids, followed by con-
densation and heat treatment. Silica molecules condense to spheres on stochastic
sites within the hydrolized silica precursor. Subsequent gelation, drying and con-
solidation leads to a network-like arrangement of pure silica spheres or grains. The
voids between these spheres constitute a random network of interconnected corri-
dors and pockets and show a large pore size distribution. Mean void diameters of
2.6 and 5.0 nm are found in our Gelsil 2.6 and Gelsil 5 samples, respectively, from
N2-adsorption experiments and BET/BJH analysis [30]. Cylinder shaped samples
were cut from the initial Gelsil samples. Before the compression experiments, Gelsil
samples were cleaned with a 30% solution of H2O2, for 24 h and dried at 130 ◦C.
The main characteristics of the three kinds of studied samples are summarized in
Table 3.1.

Typical compressed specimens are prismatic, with initial heights of 5 ∼ 6 mm and
transversal sections in the range 12 ∼ 45 mm2. The exact values of the transversal
sections are chosen in order to be able to fully break the sample with less than 1000
N (this is a limitation of our experimental setup). Different transversal shapes were
studied: circular, semicircular, squared, and irregular. The results that we will discuss
do not seem to depend on this shape. Note that the initial transversal section may
well change after the first small avalanche events. Typical compression rates range
between 0.2 to 7 kPa/s. For the case of Vycor a fast experiment was performed at
12.2 kPa/s.



46 E. Vives et al.

Fig. 3.10 Summary of a
typical compression
experiment of a Vycor
sample. The upper panel
shows the sample height as a
function of time. The second
panel indicates the energies
of the individual AE signals
recorded during the
experiment. The third panel
shows the cumulated number
of signals and the lower
panel shows an estimation of
the rate evaluated in time
intervals of 100 s 10-2
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3.2.3 Avalanches During the Compression Process

Figure 3.10 shows a typical example of a compression experiment of a Vycor sample.
The sample transversal section was 16.99 mm2, and the compression rate 1.6 kPa/s.
The top panel shows the evolution of the height of the sample as a function of time,
as registered by the laser extensometer. One can clearly distinguish the existence
of steps. The largest one corresponds to the collapse of almost the whole sample.
The height decreases by a 80% of the initial sample height. The second panel corre-
sponds to the energies of the individual AE signals recorded by the transducers in the
compression plates. It is clear that AE events already start from the beginning of the
experiment. For the first initial 4000 s it seems that the energy of the signals is not as
large as for the remaining events. Note the vertical logarithmic scale. This could be
due to the fact that the sample surface is in a process of adapting to the compression
plate during the early stages. The most energetic events occur at times that corre-
spond to the steps in the sample height, but not only at these times. Some large events
are not clearly correlated with changes in sample height. It is also interesting to note
that after the large collapse occurring at ∼15500 s, there are still many AE signals
recorded, some of which have still quite large energies. This activity corresponds to
the compression of the debris between the plates. As will be seen, from a statistical
point of view, its behavior is pretty similar to the behavior of the initial sample.

The third panel shows the cumulated number of recorded signals, which reaches
a number above 3 × 104 signals at the end of the experiment. The interest of this plot
is that it reveals that there are steps corresponding to a clear increase of activity and
that these steps occur abruptly but end smoothly, displaying a rounding behavior.
This is an indication of the existence of aftershocks. It is interesting to compare this
panel with the Figs. 3.1 and 3.8 corresponding to real earthquake catalogues and to
ETAS model simulations, which shows similar trends. The lower panel in Fig. 3.10
shows the activity rate, calculated over time windows of 100 s. As can be seen, the



3 From Labquakes in Porous Materials … 47

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  500  1000  1500  2000  2500  3000  3500  4000
 10.1

 10.2

 10.3

 10.4

 10.5

N

h(
m

m
)

t(s)

h(mm)
N

Fig. 3.11 Detail of the initial part of a typical compression experiment of a Vycor sample. The
decreasing curve shows the evolution of the sample length in time, while the increasing curve shows
the cumulated number of AE signals. Circles indicate the energy of the largest individual signals.
The smallest circles correspond to signals with 102 aJ while the largest one represents a signal with
more than 108 aJ. The value of h on the right-hand scale corresponds to the distance between marks
on the compression plates. The real sample height was 9.80 mm

rate exhibits variations that expand several orders of magnitudes during the whole
experiment, from 10−2 events per second to 102 events per second.

Interestingly many of the observed features remain unaltered when the plots are
magnified ×10 or ×100. Figure 3.11 shows a magnification of the initial part of a
compression experiment of another Vycor sample. In this case the sample is pris-
matic, with a transversal surface of 28.13 mm2 and the compression rate was 7.0 kPa/s.
Only the initial decrease corresponding to the first compression of 0.4 mm before the
big collapse is shown. This plot allows us to see in detail the correlation between the
most energetic events and the increase of activity in detail, in a very similar way to
that described by the function μ of the ETAS model.

It is also interesting to study the response of the system under repeated cycling.
Figure 3.12 corresponds to a sequence of compression-decompression loops, which
reach, during each loop, higher and higher loads approaching the failure strength. In
all cases the load after each loop is decreased back until 80 N. The left-hand panel
shows height versus load trajectories and the right panel shows the height versus time,
with circles indicating where large AE signals have been detected. Three interesting
results should be pointed out: (a) Firstly, a large fraction of the strain is recoverable
when the load is decreased. Part of the deformation is thus elastic. (b) Secondly,
the decreasing-load branches show a certain degree of hysteresis and almost no
AE. (c) As regards the loading branches, AE mostly occurs when the load exceeds
the maximum load reached in the previous cycle. Associated with the existence of
this AE at the end of a load branch, when the load is reversed, a certain amount
of unrecoverable deformation occurs. Look at, for example, the third loop which
exhibits a great deal of AE and, correspondingly, final strain after releasing the load
increased by more than 0.05 mm.
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Fig. 3.12 Sequence of repeated compression experiments up to greater and greater loads. Left-
hand panel shows the sample height against the applied load. Right-hand panel shows sample
height against time. Black circles indicate the energies of the detected AE signals

This result shows that AE is essentially associated with fracture events. The defor-
mation process, elastic or not, does not produce AE.

As in Vycor, uniaxial compression in Gelsil occurs very similarly, by jumps in
strain release until the major collapse at the failure point [26]. The failure strength is,
however, much higher in Vycor (∼30 MPa) than in Gelsil (∼1 MPa for Gel2.6 and
∼8 MPa for Gel5). This led us to perform experiments using much smaller transversal
sections. The larger strength of Vycor has been suggested to be a consequence of its
non-granular nature.

3.2.4 Correlations Between Properties of Individual Signals

An interesting preliminary analysis of the properties of the individual hits is to deter-
mine whether or not, the energy E , the duration D and the amplitude A are inde-
pendent variables that carry information about different physical properties of the
physics of the source events that generate the AE avalanches. This can be easily stud-
ied by plotting bivariate frequency maps of the signals recorded during the whole
compression experiments [31]. Figures 3.13, 3.14 and 3.15 show the A versus D, the
E versus A and the E versus D maps corresponding to three experiments done on
Vycor at different compression rates: 0.2, 1.6 and 12.3 kPa/s. Color scale indicates
the density of recorded signals.
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The first surprising result is that the bivariate distributions exhibit sharp crests
along well defined lines, thus indicating strong statistical correlations between these
three variables. This is a first indication that avalanches have an intrinsic shape φ(t)
characterized by very few degrees of freedom. In fact, within the context of critical
systems, it has been proposed [32] that avalanche profiles should follow a model that
predicts a universal “shape” function Ξ according to:
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φ(t) =

⎧⎪⎨
⎪⎩

0 if t < T

T γ Ξ(t/T ) if 0 < t < T

0 if t > T,

(3.20)

where Ξ is typically chosen as a simple function exhibiting a peak, like a parabola.
In the simplest case, even a rectangular shape with constant Ξ can be considered.

Therefore, avalanche signals are expected to be characterized by only two para-
meters: T which will be called true duration and the exponent γ . Note that γ relates
the maximum value of φ(t) with T according to φmax ∝ T γ . Note that we have
defined a true duration T differently from the measured duration D. One should take
into account the fact that in the AE measurements the physical avalanche signal at
the source φ(t) (which might correspond, for instance, to the speed of the advancing
fractures) is distorted due to transmission through the sample, contact with the trans-
ducer, and due to the transducer and preamplifier responses. A very simple hypothesis
is that the measured voltage signal (recorded by the experimental setup) is given by
the following convolution:

U (t) = Geiω0t
∫ t

−∞
dt ′T γ Ξ(t ′/T )e− t−t ′

τ , (3.21)

where ω0 is the characteristic frequency of the transducer and G and τ are the gain
and the time constant of the acquisition system. Assuming that Ξ(z) is a rectangular
shape (with Ξ = 1 for 0 < z < 1 and Ξ = 0, otherwise) it is possible to calculate the
relation between the measured maximum voltage Umax and the measured duration
D with the parameter T and the exponent γ [31]:

Umax (T ) = τGT γ
(
1 − e−T/τ

) �
{

GT γ+1 for T � τ

τGT γ for T � τ
(3.22)

D(T ) = τ ln

(
τGT γ

Uth

[
eT/τ − 1

]) �
⎧⎨
⎩

τ ln
(

GT γ+1

Uth

)
for T � τ

T + τ ln
(

τGT γ

Uth

)
for T � τ

(3.23)

Note that within this model we will get essentially D � T for signals with a true
duration larger than the system characteristic response (T � τ ).
From (3.22) one can then deduce that Umax ∝ Dγ and consequently
A = 20 log10 Umax + 60 ∝ 20γ log10 D. This justifies the linear behavior observed
in the panels of Fig. 3.13. A straight line fit to the linear part of the crest renders
γ = 1.4. The curvature observed for small values D is also justified by numerically
fitting the model given by (3.22) and (3.23), as shown by the white line. From the fits,
one can confirm the same value of γ , and also get τ = 75µs and log10 G = 13.9 V.

Deviations from the proposed model can be easily interpreted as arising from
saturation of the amplifier for A =80 dB, and the presence of background noise
below A =26 dB or E =1 aJ which corresponds to the threshold in this case.
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Using the preceding assumptions, one can compute the integral of the square
detected signals U (t)2 and obtain [31] the following expression for the energy of the
individual hits:

E(T, Umax ) = τ

2R

(
T
τ

− 1 + eT/τ

(
1 − e−T/τ

)2 U 2
max − 1

2
U 2

th

)
. (3.24)

This expression justifies the behavior log10 E = 0.1A (equivalent to E ∝ U 2
max )

that can be observed in the panels of Fig. 3.14 for moderate and large amplitudes A.
Similarly, the model does also explain the E versus D dependence in Fig. 3.15 as
shown by plotting the numerical solution of the model (white line) over the experi-
mental bivariate histogram map.

3.2.5 Statistical Distributions of Energies, Amplitudes
and Durations

Figures 3.16, 3.17 and 3.18 show histograms corresponding to the marginal distri-
butions of energies, amplitudes and durations for Vycor [3, 27] and the two Gelsil
specimens [26]. Data correspond to the set of AE hits recorded from full compression
experiments. The panels below show the ML analysis revealing that the right-hand
tails of the three histograms can be well described by power-law distributions. As can
be observed the distribution of energies p(E) decays as E−ε with ε = 1.40 ± 0.05

Fig. 3.16 a Distribution of
energies corresponding to
Vycor and Gelsil
compression experiments. b
Power-law exponents fitted
with the ML method as a
function of the lower energy
cutoff
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Fig. 3.17 Distribution of
amplitudes corresponding to
Vycor and Gelsil
compression experiments.
The line shown corresponds
to the exponent a = 1.78
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Fig. 3.18 a Distribution of
durations corresponding to
Vycor and Gelsil
compression experiments. b
Power-law exponents fitted
with the ML method as a
function of the lower energy
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for at least 5 decades for the case of Vycor. Detailed fits also give ε = 1.37 ± 0.03
and ε = 1.36 ± 0.03 for Gelsil 2.6 and Gelsil 5, respectively, for at least 3 decades.
This is good evidence of a lack of a characteristic scale of the AE events, in a way
that is very similar to the Gutenberg–Richter Distribution for earthquakes. The three
histograms could well be described by a common exponent. The distributions of
amplitudes in Fig. 3.17 also shows very good linear behavior in this semilog plot.
This means a dependence p(A) � 10−a A/20 with a � 1.78. Note that, given that A is
a logarithmic measure of Umax (see 3.19) this is equivalent to power-law behaviour
for p(Umax ) ∼ U−(a+1)

max .
The distribution p(D) also shows a power-law tail but, apparently, with an anom-

alous plateau for low values of D. This is not surprising and can be easily under-
stood from the bivariate maps in Figs. 3.13 and 3.15. The experimental lower cut-off
in amplitudes at 26 dB (or energies at 1aJ) does not allow all the signals that with
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Fig. 3.19 Distribution of
energies corresponding to a
Vycor compression
experiments. The different
histograms correspond to
different time windows
throughout the full
experiment, as indicated in
the legend
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exhibit small durations to be recorded, except for the fraction that turns out to have
large enough amplitudes. Thus, the correct physical behavior describing our exper-
imental data, which is not affected by the limitations of our set-up, corresponds to
the right-hand tail of p(D), which is also a power-law.

It is also very interesting to note that such distributions of energies, amplitudes and
durations are quite stable throughout the duration of the experiment [3]. To illustrate
this fact, we show the distributions of energies corresponding to the compression
experiment of Vycor at a rate of 1.6 kPa/s in Fig. 3.19. The different histograms
correspond to data recorded during time windows of 3000 s, as indicated by the
legend. The AE activity of this experiment has been shown in Fig. 3.10. Note that
the histogram of energies for the initial 3000 s corresponds to data recorded quite
away from the large collapse of the sample. Despite this fact, the distribution of
energies is very similar to the one corresponding to the central parts of the experiment.
Something similar can be said about the final 3000 s of data, which correspond to
signals recorded after the large collapse, when essentially only small pieces of debris
are being compressed.

Finally, it should also be noticed that the distributions of energies are also quite sta-
ble when the compression rate is changed within reasonable values (0.2–12.2 kPa/s)
[3, 27]. See Fig. 3.20 for an illustrative example. Fitting the exponents with the ML
method does not see significant differences between the three studied rates, which
fall in the range ε = 1.40 ± 0.05.

Very recently we have repeated the measurements on more than 30 samples of
Vycor with different shapes, aspect ratios, and corresponding to different synthesis
processes with slightly different porosities. We have obtained a more conservative
estimation of ε = 1.37 ± 0.06, which is more similar to the values found for Gelsil.

3.2.6 Omori Correlations

The lack of characteristic scales in energies, durations and amplitudes suggests a
strong similarity of the AE during the compression of porous materials and real



54 E. Vives et al.

Fig. 3.20 Distribution of
energies corresponding to
Vycor compression
experiments at three different
compression rates. The line
indicates the slope
corresponding to the
exponent ε = 1.39
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Fig. 3.21 Rate of
aftershocks after MS above a
certain threshold (as
indicated by the symbols in
the legend) as a function of
the time distance from the
mainshock. The vertical
scale has been scaled by
dividing by the mean activity
rate 〈r〉 and the factor E2α/3
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earthquakes. In the remaining subsections, we will see that these similarities also
extend to the existence of time correlations in the sequence of recorded AE events.

The first possible analysis is to study the behavior of the activity rate after big
events. One selects an arbirtrary threshold in energy EM S and one denotes main-
shocks (MS) as those events exceeding this threshold. After every MS we study the
number of recorded events in logarithmic time windows, until a new MS is found.
The obtained histograms are averaged over all events that have been classified as
MS in the experiment. The results obtained for a Vycor sample [3] and two Gelsil
samples [26] are presented in Fig. 3.21. In order to compare the different sets of data
(corresponding to different samples and to different EM S thresholds) on the same plot,
we have normalized the horizontal (vertical) axis by multiplying (dividing) by the
mean activity rate 〈r〉. In addition, in order to also test the existence of the productivity
law, the vertical axis has been multiplied by E2α/3. The values of α used for each
sample are detailed in Table 3.2. The collapse of the data is quite good and indicates
a linear decay on a log-log scale. This is a clear demonstration that the occurrence
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Table 3.2 Critical exponents reported for Gel2.6, Gel5 and Vycor. We also include the range of
values found for the equivalent exponents in real earthquakes

ε p α 1 − ν 2 + ξ

Gel2.6 1.37 ± 0.03 0.71 ± 0.04 0.50 ± 0.10 1.02 ± 0.05 2.8 ± 0.3

Gel5 1.36 ± 0.03 0.73 ± 0.03 0.55 ± 0.05 1.05 ± 0.05 3.1 ± 0.3

Vycor 1.40 ± 0.05 0.75 ± 0.10 0.50 ± 0.10 0.93 ± 0.05 2.45 ± 0.1

Earthquakes 1.3–1.67 1–1.6 0.8 0.75–1.0 2.3–2.5

of AE events is not Poisson distributed, but instead are compatible with Omori-like
behavior with exponent p � 0.75. The particular fits for each sample are reported in
Table 3.2. Note that a good collapse also suggests the existence of a productivity law,
i.e. larger mainshocks induce more aftershocks than smaller mainshocks, as occurs
with real earthquakes.

3.2.7 Waiting Times Distribution

A second interesting analysis is to test the Universal Scaling Law for the distribu-
tion of waiting times. Following a protocol similar to that in the preceding analysis,
we define a threshold Emin and study the waiting times between signals above the
threshold. We then study the distribution of the waiting times by performing his-
tograms with logarithmic bins. The histograms obtained for Vycor [3] and Gelsil
[26] samples are presented in Fig. 3.22. Data have been plotted in the scaling form
proposed in (3.7).

The collapse is compatible with the double power law universal scaling law pro-
posed in (3.9) with exponents 1 − ν � 1 and 2 + ξ � 2.5 [3, 26]. Detailed fits for
each sample are reported in Table 3.2. The fact that we obtain double power-law
behavior for the Universal Scaling Law is not surprising since in our experiments
the activity rate exhibits many increasing and decreasing ramps extending several
orders of magnitude. This is similar to what happens in a long lasting catalogue of
earthquakes corresponding to a small area of the Earth’s crust. In similar experi-
ments in porous rocks for which only time windows with constant activity rate were
considered, a damped power law USL was obtained [1].

3.2.8 Bi Test

Finally, in order to check that the observed time correlations are not a consequence
of the variation of the activity rate during the experiments we can perform a Bi test in
order to check whether the events are locally Poisson or not. Figure 3.23 shows three



56 E. Vives et al.

Fig. 3.22 Universal Scaling
Law for the distribution of
waiting times for Vycor and
Gelsil experiments. Data
have been analyzed by
considering different
thresholds Emin . The vertical
scale has been scaled by
dividing by the mean activity
rate 〈r〉. The horizontal axis
has been scaled by
multiplying by 〈r〉
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Fig. 3.23 Bi test for Vycor
compression experiments at
three compression rates and
for two Gelsil samples. The
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examples of typical Bi test for Vycor (compressed at three different rates) and the two
Gelsil samples [31]. As can be seen, the difference Δ f (H) = √

(n) (Fn(H) − H))

clearly exceeds any reasonable threshold of the Kolmogorov–Smirnov test. This
occurs for most of the analysis performed. The only exception corresponds to the
cases for which a very high energy threshold is used, and the number of signals
above threshold is not large enough to rule out local Poisson behavior. The general
trend is always an “N” shape, indicating a clustering of the events, as expected from
Omori-like aftershocks.
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3.3 Summary and Conclusions

We have presented results corresponding to the statistical analysis of AE avalanches
detected during the compression of different synthetic porous materials based on
SiO2. The distribution of energies and the correlations between the signals can be
described by statistical laws that show a lack of characteristic scales, and therefore
reduce to simple or double power-law behavior.

From the evidence presented above two interesting conclusions can be drawn.
First of all, the results establish clear common behavior in Vycor and Gelsil samples.
In spite of having a distinct structural constitution giving rise to different macroscopic
mechanical behavior, the statistical properties of AE avalanches are very similar in
all the studied SiO2 synthetic porous materials. Critical exponents that characterize
energy distribution, aftershock time correlations, and waiting time distributions, sum-
marized in Table 3.2, are equal to within error bars. Nevertheless, these exponents are
different from those reported for other granular porous materials. This discrepancy
could be explained as follows. For granular materials failure under uniaxial com-
pression is known to occur by means of a double mechanism: breaking of bonds and
relative grain displacements, which involve friction. However, only bond breaking
is expected to occur in Vycor. It has been proposed that when only bond breaking
occurs the system displays criticality; that is, in this case the failure process occurs
with the absence of characteristic scales (length, time energy). The relative impor-
tance of the two mechanisms in granular materials determines the deviations from
criticality. In Gelsil, the friction mechanism is less important than in other porous
granular materials due to a strong adherence between SiO2 grains. As a consequence,
this material displays critical behavior to a very good approximation, within the same
universality class of Vycor. In agreement with this scenario, it is worth noting that
strong deviations from criticality have been found in some sandstones subjected to
uniaxial compression and other porous minerals such as goethite. Sandstones are sed-
imentary rocks constituted of grains composed mainly of quartz (SiO2). However,
in contrast to synthetic Gelsil, in these materials the grains are cemented together by
other minerals. In this case, the adherence of the grains is much less stronger than in
Gelsil and friction occurs during the failure process which results in deviations from
criticality.

The second important conclusion is the existence of a clear similarity between the
statistics of AE events recorded during the compression of synthetic porous SiO2-
based materials and real earthquakes in the Earth’s crust. In this case, the sets of
exponents are not totally equivalent, but it should be remarked that the variability
of the exponents characterizing real earthquakes is very large. This can be due to
the fact that detection of earthquakes and measurements of their magnitudes are
performed with different instruments over many years. Systematic recording of data
with consistent instruments has been done only in recent years and only represents
a very short period of time compared with the geological time needed to record the
evolution of a fault.
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The compression of SiO2-based porous materials in the laboratory, with well-
controlled parameters and systematically using the same wave detectors, amplifiers
and recording instruments, gives excellent synthetic catalogues (labquakes) that can
be very useful in the future, for testing algorithms with predictive power.

Acknowledgments We acknowledge Ministerio de Economia y Competitividad (Spain) for finan-
tial support (grants numbers MAT2013-40590-P and MAT2015-69777-REDT).
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Chapter 4
Towards a Quantitative Analysis of Crackling
Noise by Strain Drop Measurements

Viktor Soprunyuk, Sabine Puchberger, Wilfried Schranz, Andreas Tröster,
Eduard Vives and Ekhard K.H. Salje

Abstract The method of measuring strain drops with a Dynamic Mechanical Ana-
lyzer (DMA) at slowly varying stress has a considerable potential to become an
interesting complementary tool for the study of mechanical failure and earthquake
dynamics in micron-sized materials. Evidence for this claim is provided by mea-
surements of the SiO2-based porous materials Vycor and Gelsil under slow uniaxial
compression at constant force rates of 10−4−10−3 Ns−1 using a Diamond DMA
(Dynamical Mechanical Analyzer, Perkin Elmer). The jerky evolution of the sam-
ple’s height with time is analyzed in order to determine the corresponding power-law
exponents for themaximumvelocity distribution, the squaredmaximumvelocity dis-
tribution as well as the aftershock activity in the region before macroscopic failure. A
comparison with recent results from acoustic emission (AE) data on the samemateri-
als (J. Baró, Á. Corral, X. Illa, A. Planes, E. K. H. Salje,W. Schranz, D. E. Soto-Parra,
and E. Vives, Phys. Rev. Lett. 110, 088702 (2013)) shows similitude in the statistics,
although the two methods operate on different spatial and temporal scales. More-
over, the obtained power-law exponents are in reasonable agreement with theoretical
mean-field values (M. LeBlanc, L. Angheluta, K.Dahmen,N.Goldenfeld, Phys. Rev.
B 87, 022126 (2013)). The results indicate that the failure dynamics of materials can
be well studied by measuring strain drops under slow compression, which opens
the possibility to study earthquake dynamics in the laboratory also at non-ambient
conditions, i.e. at high temperatures or under confining liquid pore pressure.
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PACS numbers 62.20.mm · 89.75.Da · 91.30.Dk

4.1 Introduction

The failure of porous materials [1–3] subjected to compressional forces is an exam-
ple of a phenomenon that produces crackling noise [4, 5]. Other examples are the
“Barkhausen effect” in magnetic materials [6, 7], plastic deformation in metals
[8–11], martensitic transitions [12–14] or paper fracture [15–17]. All these systems
have in common that upon variation of an external field (magnetic, mechanical stress,
etc.) avalanches of the conjugated variable (magnetization, strain, etc.) appear due
to inhomogeneities or disorder in the sample. Understanding the complex spatio-
temporal behavior of the microstructure evolution that produces crackling noise is
an important problem in Earth science and engineering [2, 18].

Measuring avalanche statistics is very difficult because large data sets with a high
dynamical range of the signals are needed for any reliable statistical analysis. Sig-
nals are often short time singularities (referred to as ‘jerks’). A reasonable avalanche
analysis requires the observation of several 1000 such jerks. This is clearly a tall task
for the experimentalist. Only very few experimentalmethods are available,with prob-
ably acoustic emission (AE) on large samples as the outstanding champion. Acoustic
emission (AE) technique is a highly sensitive tool for extracting real-time informa-
tion regarding a broad variety of microstructure evolution that produces crackling
noise. In a series of compression experiments we have measured the AE during the
stress induced collapse of porous materials including Vycor [2], Gelsil [19], berlinite
[20] and alumina [21]. Their statistical characteristics concerning the energy of AE
events, their duration as well as those of waiting times between events share striking
similarities with the corresponding figures obtained in analyzing natural earthquake
statistics. Nevertheless, even in case of AE only porous collapse and somemartensite
transformations can bemeasuredwith sufficient resolution. Furthermore, AE fails for
micron-scale samples which are increasingly important for nano-technology applica-
tions. Ferroic transformations [22] and ferroelastic twinning are even harder to quan-
tify and only few tens or hundreds of signals are usually available [23]. Alternatively,
nano-indenters were usedwith some success [8] although their statistical relevance is
at the very limit to show the anticipated power law behavior of the avalanche dynam-
ics. Finally, heat flux measurements have been successful in martensitic transitions
[12] but AE techniques were needed to extend the measurement range to equally
analyze the waiting time distributions. Summarizing the situation, it is fair to say
that no ideal method exists up to date. There is an urgent need to develop alternative
methods which combine the advantages of these techniques, namely small sizes for
nano-indentation and high dynamical range of AE.

In the present paper we investigate the potential of an approach based on mea-
suring the strain-collapse as sample shortening under weak external stress with a
Dynamic Mechanical Analyzer (DMA), possibly enhanced by a further instrument
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development. To see how the numerical results obtained from such DMA data com-
pare with those based on AE, we analyze the statistical characteristics of strain drop
data �h(t) for porous silicates Vycor and Gelsil with different pore sizes measured
by a Diamond DMA by Perkin Elmer. It turns out that the power-law exponents
obtained from strain drop data of Vycor and Gelsil are in quite good agreement with
the corresponding power-law exponents from AE. Admittedly, the limited time res-
olution (≈1s) of the present DMA apparatus, which is much lower in comparison
to AE, produces a more restricted data set. Nevertheless, we find sufficient evidence
to believe that this method will open the way to overcome one of the main obstacles
of AE in Earth Science applications, namely its limited sensitivity under extreme
conditions.

The paper is organized as follows. In Sect. 4.2 we provide basic sample infor-
mation and describe the experimental arrangement. Experimental results for Vycor
7.5nm, Gelsil 5nm and Gelsil 2.6nm are presented in Sect. 4.3 and the distribution
functions are analyzed to determine corresponding power-law exponents. In the last
section we discuss assets and drawbacks of the proposed method and summarize the
main conclusions of the work.

4.2 Experimental

4.2.1 Sample Properties

We performed slow uniaxial compression experiments on mesoporous silica Vycor
and Gelsil with different pore sizes. Vycor originates from spinodal decomposition,
resulting in a skeleton of nearly pure SiO2 containing a network of interconnected
nm-sized pores of narrow pore size distribution, random in length and direction [25].
The mean ratio of pore length l over pore diameter d was found to be l/d ≈ 4. Gelsil
monoliths are produced in a sol-gel process by hydrolization of silica containing
precursors liquids, followed by condensation and heat treatment. Silica molecules
condensate to spheres on stochastic sites within the hydrolized silica precursor. Sub-
sequent gelation leads to a network-like arrangement of spheres. Via heat treatment
the gel turns either into a bulk-like powder or monoliths. Thus, the dried and consol-
idated end product can be approximated as an assembly of stochastically arranged
andmonodisperse pure silica spheres [26]. Spheres are touching and also penetrating
each other. The voids between these spheres constitute a random network of inter-
connected corridors and pockets and show a larger pore size distribution compared
to Vycor. Table4.1 summarizes the main characteristics of the samples.

To produce samples for dynamic mechanical analysis measurements we cut the
as-produced rods with a diamond wire saw into bars. Parallel faces and rectangular
corners were gained using a steel u-formed tool on which samples are mechanically
clamped and sanded with finely grained sandpaper. Gluing samples on surfaces as
used for polishing crystals is not recommended, since the glue may permeate the
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Table 4.1 Characteristics of the studied samples. From [27, 28]

Sample Vycor 7.5 Gelsil 5 Gelsil 2.6

Average pore diameter (nm) 7.5 5 2.6

Porosity � (%) 40 54 36

Density (g/cm3) 1.9 1.2 1.2

Surface area (m2/g) 70 510 590

Surface fractal dimension Ds 2.3 2.24 –

Mass fractal dimension Dm 2.31 2.87 –

Approximate failure stress σ f (MPa) 30 10 0.5

sample’s pores. Bymounting the sample, sanding, checking angles and shapewith an
optical microscope, rotating and mounting the sample again repeatedly, rectangular
bars with a typical size of 0.5 × 0.5 × 1.0mm3 were produced. The geometrical
accuracy of this method, measured by height variations along as-prepared sample
faces, was better than 10µm.Cleaning of all samples has been done in a 30% solution
of H2O2 for 24h. Afterwards samples were dried in a high vacuum chamber at
10−6 mbar and 120 ◦C for another 24 h.

4.2.2 Dynamic Mechanical Analysis

The measurements were performed with a Diamond DMA (Perkin Elmer) at room
temperature. Small parallelepipeds were mounted between steel rods with parallel
faces and slowly compressed at constant force rates of 10−4−10−3 N/s (Fig. 4.1). We
performed various kinds of stress ramps, i.e. stress cycling until macroscopic failure
occurs as well as slow stress increase up to a maximum stress. Corresponding results
are shown below.

Themaximum force that can be appliedwithin theDiamondDMAsetup is Fmax =
10N, with a resolution of 0.002N. To increase the maximum force we used for
some experiments a home-made holder, which can add an extra constant load of few
Newtons. Nevertheless, the small value of the maximum force required us to select
small sections for samples in order to reachmacroscopic collapse. Typical dimensions
of the samples were 0.5 × 0.5 × 1.0 mm3 for Vycor and 1.0 × 1.0 × 1.7 mm3 for
Gelsil, i.e. one order of magnitude smaller as compared to the ones used for AE
measurements in [19]. When the sample did not collapse until the maximum force
was reached, we sometimes repeated the compression ramp until failure. In some
cases this required up to 9 cycles (Fig. 4.2), i.e. 15h. The spatial resolution of the
DMA apparatus of about 3nm is well adapted to the heterogeneity of themesoporous
silica (pore sizes between 2.6 and 7.5 nm) samples. The temporal resolution is the
weak point of this method. In acoustic emission experiments the temporal resolution
is a few orders of magnitude better as compared with Dynamic Mechanical Analysis



4 Towards a Quantitative Analysis of Crackling Noise … 63

Fig. 4.1 Geometry of a
typical compression
experiment of Vycor or
Gelsil using a Diamond
DMA (Perkin Elmer)

while the possibility to put samples under extreme conditions is more restricted.
Nevertheless, as we demonstrate in the present paper, the resolution of DMA is
sufficient to collect a reasonable data set for calculating power law exponents that
compare well with those obtained from AE and are presently not too far from those
predicted by theory.

Altogether about 40 long time compression experiments with slowly increasing
force on Vycor 7.5, Gelsil 5 and Gelsil 2.6 have been performed and analyzed to
test reproducibility of the results and to compare with recent results from acoustic
emission [1, 2, 19]. For more details about the DMA method see e.g. [24, 29].

4.3 Results

Figure4.2 shows the time evolution of the sample height h(t) (top graph) and its
temporal derivative v(t) = (dh/dt) (bottom graph) for the 11 cycle experiment of
Vycor 7.5. From the shapes of v(t) corresponding maxima vm = (dh/dt)max can be
identified, by finding local maxima including 2 neighboring points. To get a rough
idea about the energies involved in the strain bursts we estimate Em = Mv2

m/2,
where the mass M that is moved is assumed to be of the order of the sample mass,
i.e. M ≈ 3 × 10−7 kg. With vm varying between 1 and 1000nm/s the burst energies
vary between 10−5−101 aJ (Fig. 4.2). On the other hand, the elastic energy change
Eel associated with a crack of size a is [30] Eel ∝ σ 2a3/E , where σ is the applied
stress, E the Young’s modulus and a the typical crack size. An estimate of Eel using
σ ≈ 1MPa, E ≈ 100GPa yields a release of elastic energy during the collapse of
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Fig. 4.2 Top graph Long time compression experiment of Vycor 7.5 showing 11 stress cycles
(black line). The green line displays the measured sample height h with an initial height of h(t =
0) = 0.68mm, sample area A = 0.3mm2. The sample fails after 9 cycles at the force Ff = 8.5N,
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drop velocity maxima v2m = (dh/dt)2max . The inset shows the jerky behavior of the sample height.
Bottom graph Drop velocity peaks v(t) on a magnified scale. vm denotes peak maxima

one pore (plane of pores) of size a ≈ 10 nm of Eel ≈ 10−5 aJ. The good agreement
between these two estimates suggests that the elastic energy released by the collapse
of the pores can be well determined by measuring the squared drop velocities, the
smallest energies corresponding to the collapse of a single plane of pores of size a
(approx. 10nm for Vycor and 3–5 nm for Gelsils).
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Peak heights in energy are observed to vary over more than 5 decades during the
experiment (Fig. 4.2). More than 400 peaks corresponding to discontinuous strain
drops where found for each cycle spanning about 6000s. About 200 of these peaks
with corresponding height jumps smaller than ca. 5nm where identified as noise, but
more than 200 peaks remained usable for the calculation of exponents within each
cycle, implying a sample of about 2000 peaks for the 11 cycle experiment on Vycor
(Fig. 4.2).

Figure4.3 shows the distribution of themaxima of drop velocitiesN(vm ) forVycor
in the region before failure. The histogram displays the accumulation of signals (peak
maxima) over eight cycles [31], corresponding to about 1600 events (peaks). At small
values of peak velocities the distribution has a maximum, whereas at large values
of vm it clearly follows a power-law, i.e. N (vm) ∼ v

−μ
m . We may associate the two

regions with two different physical processes. The peaks on the low-velocity side are
most probably due to irregular oscillations of the DMA-machine producing a large
number of small bursts and the large bursts produced by the intermittent cracking of
the sample which display a power-law behavior.

Before analyzing the data in detail we always removed the large peak occurring at
the end of each stress cycle (Fig. 4.2) as well as all other positive peaks (about 10–30
peaks for each stress cycle with positive drop velocity), since these correspond to
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Fig. 4.3 Log–log plot of the distribution N (vm)ofmaximumdrop velocities ofVycor 7.5 calculated
from the height drop data of Fig. 4.2. The solid red line corresponds to N (vm) ∝ v
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m with μ = 2,

implying good agreement with the corresponding mean-field value for constant stress [35]. The
inset shows the ML-fitted exponent μ as a function of a lower threshold vm,min . Green and red
arrows mark the threshold values beyond which less than 200 and 50 data points contribute to the
ML estimate (4.1), respectively. These threshold values are also marked by corresponding arrows
in the main plot. The slopes corresponding to the mean-field value μ = 2 and the ML estimate
μ = 2.4 are indicated by the solid and broken red lines, respectively
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elastic recovery rather than to strain burst events. To assess the power-law exponents
we employ the following method:

• In a first step, the data (e.g. vm) are logarithmically binned (using the logarithm
based on 10 for convenience), resulting in a histogram Ñ (log10 x)which for power-
law distributions has the advantage of reducing the number of zero and low count
bins at larger values of e.g. vm . To compensate for the effect of logarithmic binning
in the accompanying probability measure, we then define corrected histogram bin
entries N (x) ≡ Ñ (log10 x)/x . Assuming the non-Gaussian large-x “tail” of this
histogram to follow a power law with exponent μ, a corresponding log–log plot
of log N (x) against log10(x) should exhibit a linear slope in the asymptotic range
x → ∞ with a slope equal to −μ. Admittedly, choosing the fitting range (i.e. the
smallest x-value from where one would expect the assumed power law to hold
asymptotically) is to some extent a matter of taste. Moreover, simply applying a
weighted linear regression to the logarithm of histogram entries is problematical,
mainly because it is not clear how to deal with empty bin entries in this approach.
In a log–log plot such bins must obviously be ignored, despite the fact that they
also encode information about the underlying probability distribution, so ignoring
themmay introduce a bias to the resulting fit. On could try to avoid this problem by
resorting to a log-linear fit instead. However, assuming Poissonian statistics for the
bin entries of the original histogram Ñ (x), it is still unclear how to assign mean-
ingful weights to the empty bins. Increasing the bin size may eventually eliminate
the occurrence of empty bins, but at the expense of destroying an unacceptable
amount of valuable statistical information. Apart from these statistical imponder-
ables, a possible dependence of the obtained numerical results on the chosen bin
size is expected to creep into such calculations anyhow, but for the examples we
have studied so far, the resulting exponents turn out to be not very sensitive against
binning with various meaningful intervals and well reproducible for all different
experiments, provided the specimens are well prepared and close to macroscopic
failure with failure stresses of σ f ≈ 30MPa for Vycor, 10MPa for Gelsil 5 and
0.5MPa for Gelsil 2.6, respectively.
Nevertheless, in view of all these difficulties log–log plots of logarithmically
binned histograms must be taken with a pinch of salt. Therefore we complement
this kind of evaluation by using the Maximum Likelihood (ML) approach.

• In theory, a Maximum Likelihood (ML) estimation of the power law exponent
should be superior to the above heuristics [32, 33], the main reason being that
there is no need to bin the data. Thus, in a ML analysis we neither have to juggle
with empty bins, nor do we have to worry about error bar assignment to individual
bins or how to deal with any spurious dependence of the obtained results on the
chosen binning width. Furthermore, assuming that the power law holds for all
observed values xi , i = 1, . . . , n of x for which x ≥ xmin , the analytical formula

μ̂(xmin) = 1 + n

[
n∑

i=1

ln
xi
xmin

]−1

(4.1)
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Fig. 4.4 Deviation (in percent) of the ML estimate (4.1) μ̂(n) ≡ μ̂(xmin(n)) from the exact value
μ = 2.0 as a function of the number n defined by n ≡ |{xi > xmin}| for an artificial dataset of
30,000 values generated from an ideal power law with exponent μ = 2.0

which gives the ML estimate μ̂ for the exponent μ with a standard error of [32]

σ = μ̂(xmin) − 1√
n

(4.2)

represents the optimal guess based on the given data, with no need to perform any
kind of fitting procedure. To study the dependence on the lower threshold xmin , we
would expect that in a plot of μ̂(xmin) as a function of xmin the data range in which
the power law distribution actually holds should be detectable by a corresponding
plateau of μ̂(xmin) at the “true” value of the exponent μ. The caveat is, however,
that the estimate (4.1) turns out to be biased unless n is large enough. In fact, in
[32] on may find the recommendation that (4.1) and (4.2) should only be trusted for
roughly n � 50. For (4.2) this is not a major issue, since the statistical error can
always be alternatively assessed by standard methods of statistics like the jackknife
or bootstrap estimates [34]. To illustrate the effect of n on the precision that can be
expected from the estimate (4.1) in practice, we applied (4.1) to an artificial dataset
of some 30,000 datepoints generated from a pure power law distribution with an
exponent of, say, μ = 2. As Fig. 4.4 reveals, even for this ideal case the ML estimate
not only exhibits a very irregular behavior for less than 50 data points, but even for
n ≈ 200 systematic wavy oscillations of an amplitude of some 5% around the true
value μ = 2.0 are still observed. Unfortunately, for experimental datasets in which
only a relatively small number of the biggest values can be expected to contribute
to the power-law tail of the distribution, these oscillations may therefore mask the
flat plateau naively expected in a plot of the ML estimate for μ, thus hampering the
detection of the power law region and thus a reliable numerical determination of
the underlying exponent.
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An attempt to determine the power-law exponent of N (vm) ∝ v
−μ
m for the case

of Vycor 7.5 may serve to illustrate the resulting numerical ambiguities. From the
inset of Fig. 4.3, which exhibits a plateau in the ML estimate of μ around a threshold
value vm,min for which the condition n > 200 is already met, one would conclude
that μ ≈ 2.4 would be a reasonable guess. Interestingly, this value of vm,min is also
found to roughly coincide with the onset of the power law range visible in the main
plot of Fig. 4.3. Indeed, a tentative linear regression of the corresponding log–log plot
in this range then results in μ ≈ 2.0, in excellent agreement with recent mean-field
calculations (μ = 2) of maximum velocity distributions [35].

This trend persists for the distribution of the squared drop velocity maxima, which
are fitted as N (v2

m) ∼ (v2
m)−ε′

with ε′ = 1.4 ± 0.1, which agrees equally well with
the theoretical mean-field value ε′ = 1.5 reported in [35], while the ML method
would suggest a slightly higher value of ε′ ≈ 1.7. (Fig. 4.4). There is of course some
redundancy when showing the distributions N (vm) and N (v2

m), since the correspond-
ing exponents are related as ε′ = (μ + 1)/2. In terms of probability densities, this
simple scaling relation may be understood by taking into account the Jacobian of the
corresponding density measure. Alternatively, it can be directly derived from theML
exponent estimator (4.1). However, the behavior of other estimators (least squares,
etc.)might be slightly altered e.g. in the crossover region fromnon-universal to power
law behavior (compare Figs. 4.3 and 4.5). Thus, we decided to always present both
distributions.
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An extremely small force rate of ≈10−4 Ns−1 was used to produce the strain drop
data for Gelsil 5 (Fig. 4.6). Figures4.7 and 4.8 show the resulting maximum velocity
and squared maximum velocity distributions. Although the power-law character of
the distributions - detectable as the onset of a linear slope in the corresponding log–
log plots - is not masked by the noise produced by the DMA, one may conclude that
in this case the quality of the dataset is insufficient for a reliable determination of
the corresponding power-law exponents. Fortunately, we have observed that in most
cases we could increase the quality of the observed data set significantly by perform-
ing experiments with many stress cycles. Based in the strain drop data of Figs. 4.9,
4.10 and 4.11 show the maximum velocity and squared maximum velocity distribu-
tions for Gelsil 2.6 obtained from such experiments. Here the power-law character
of the distributions is clearly observed, allowing now for a good determination of the
corresponding power-law exponents.

Summarizing the discussion so far, our strain drop data yield power-law expo-
nents for the distributions of the maximum velocities as well as the squared maxi-
mum velocities of Vycor and Gelsils that are in good agreement with corresponding
theoretical mean-field values [35] μ = 2 and ε′ = 1.5. Unfortunately, a direct com-
parison of results for the energy exponent of Vycor and Gelsil obtained from our
approach with recent AE ones [1, 2, 19] is delicate: In AE the energy distribution
is usually calculated from the squared voltage signal U (t) measured in a detector
by integration over the time period T of an event (avalanche) divided by a reference
resistance R, i.e. EAE = 1/R

∫
T U (t)2dt . To compare the corresponding exponent

with the one of our present DMA experiment, we would have to calculate the energy
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distribution from integration of squared drop velocities v(t) over corresponding
peaks, i.e. E ∝ 1/T

∫
T v(t)2dt . However, at present, our estimates of power-law

exponents obtained from time integrated histograms are probably contaminated by
relatively large systematic errors that creep in due to our rather coarse time resolution
and so we are forced to postpone this kind of comparison to future experiments with
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improved time resolution of DMA-techniques. Nevertheless, we can check consis-
tency with AE data of Vycor and Gelsil by comparing the time dependence of the
velocity peaks measured by DMA with the time dependence of energy peaks mea-
sured by AE. In doing so, it turned out that all events with peak velocities below the
region where power-law holds for the distributions of N (vm) (Figs. 4.3, 4.7, 4.10) or
N (v2

m) (Figs. 4.5, 4.8, 4.11) yield a Gaussian distribution of events in time (inset of
Fig. 4.12). This is quite in agreement with the assumption that the “humps” in the
distributions are due to irregular oscillations of the DMA-machine.

In contrast, events with peak velocities above the maximum value of the distrib-
utions show quite different time dependencies. A clear decay of the activity rate is
observed (Fig. 4.12) for these jerks in agreement with Omori’s law, which states that
immediately following a main earthquake there is a sequence of aftershocks whose
frequency decays with time [36]. For further analysis of these peaks we considered
as mainshocks (MS) the largest events (largest vm

′s) corresponding to strain drops
and counted the number rAS(t) = dn/dt of events within time intervals �t = 300 s
until an event with an energy of the same order than the energy of the MS was found.
Based on the data treatment discussed mentioned, we report that the corresponding
aftershock activities were indeed found to follow Omori’s modified law (4.3)

rAS(t) = k

(t + c)p
(4.3)
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for earthquakes remarkably well (Fig. 4.13) for Vycor as well as Gelsil 5 and Gelsil
2.6. As shown in Fig. 4.13 we obtain fits of similar good quality for c-values varying
between c = 0 s and c = 10 s, yielding a power law exponent p = 0.7 ± 0.1 which
is quite compatible with the value found in [2] (p = 0.75 ± 0.1). The fact that we
cannot narrow down these limits in c-values results from our present coarse time
scale.

From the present analysis it should be evident that from drop velocity measure-
ments one can extract similar information on earthquake dynamics as fromAE, albeit
with somewhat reduced accuracy resulting from our sparser data set.

4.4 Discussion and Conclusions

We have presented a careful investigation of the fracture of porous SiO2-based mate-
rials, i.e. Vycor andGelsil bymeasuring and analyzing the statistics of corresponding
strain drops under slow uniaxial compression (10−4−10−3 Ns−1). The main moti-
vation of this work was to propose a new experimental tool (Dynamic Mechanical
Analyzer) for the study of failure dynamics of small size nanoporous materials. In
addition we wanted to test a correspondence of Acoustic emission activity [2, 19]
with strain bursts clarifying to which extent the AE signal is proportional to the
dissipated energy during the failure process. A Dynamic Mechanical Analyzer (Dia-
mond DMA, Perkin Elmer) turned out to be one of the rare devices that is capable of
delivering an adequate resolution in the applied force (2 mN) as well as a sufficiently
precise length detection (10 nm). Altogether we performed about 40 experiments on
Vycor (7.5 nm pore size) and Gelsils (5 and 2.6nm pore sizes). From the resulting
strain drop data h(t)we calculated the power-law exponents for the maximum veloc-
ity distribution N (vm) in avalanches and also the squared values N (v2

m) and carried
out a comparison to Omori’s law of aftershock activity rates.

It turns out that the peak-velocity distributions aswell as the squared peak-velocity
distributions followpower-laws N (vm) ∼ v

−μ
m and N (v2

m) ∼ (v2
m)−ε′

in regions span-
ning 2–4 orders of magnitude, respectively. Analyzing the data using the maxi-
mum likelihood method yields exponents for Vycor and Gelsils μ = 2.4, (2.3) and
ε′ = 1.7, (1.6) that are slightly above the corresponding mean-field values [35, 37],
whereas a simple log–log treatment of the data with logarithmically binned his-
tograms yields exponents that are quite consistent with μ = 2 and ε′ = 1.5. Within
the present resolution of the apparatus we are unable to draw a definite conclusion
of the exponents, i.e. we can determine them only with an estimated accuracy of
about 20%. In addition to the velocity and the energy-distributions we also studied
the dynamic behavior of the jerks. We found that the aftershock activity rates follow
Omoris law for Vycor and Gelsils with an exponent p ≈ 0.7 that is very similar to
those found in AE [2] (p = 0.75 ± 0.1), albeit on a much coarser time scale in the
present case.

Of course, despite this nice agreement of our novel attempts with theoretical
predictions and with recent AE data one may nevertheless question its absolute
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significance due to the inherent limitations of our presently available data-set. Should
such a DMA-technique can become an adequate tool for a precise study of avalanche
statistics [38], these teething troubles, which at present are mainly due to a limited
time resolution (≈1s) as well as due to the noise produced by the DMA-machine,
should definitely be overcome. In future we should be able to increase the sampling
rate by a factor of 100 by using another DMA system, which should then allow a
more reliable comparison of advanced and more mature techniques like AE.

Summarizing, the present results demonstrate that - provided one can overcome
the present limitations in the sampling rates - the proposed method of measuring
strain drops with DMA at slowly varying stress could become a complementary
tool for the study of mechanical failure and earthquake dynamics in micron-sized
materials with the added benefit to be extendible also to non-ambient conditions, like
high or low temperature or at pore filling with various liquids.
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Chapter 5
Crackling Noise in Digital and Real
Rocks–Implications for Forecasting
Catastrophic Failure in Porous Granular
Media

Ian G. Main, Ferenc Kun and Andrew F. Bell

Abstract ‘Crackling noise’ occurs in a wide variety of systems that respond to
steady-state external forcing in an intermittentway, leading to sudden bursts of energy
release similar to those heard when crumpling a piece of paper or listening to a fire.
In rock physics sudden changes in internal stress associated with microscopically-
brittle rupture events lead to acoustic emissions that can be recorded on the sample
boundary, and used to infer the state of internal damage. Crackling noise is inherently
stochastic, but the population of events often exhibits remarkably robust scaling prop-
erties, in terms of the source area, duration, energy, and in the waiting time between
events. Here we describe how these scaling properties emerge and evolve sponta-
neously in a fully-dynamic discrete element model of sedimentary rocks subject to
uniaxial compression applied at a constant strain rate. The discrete elements have
structural disorder similar to that of a real rock, and this is the only source of hetero-
geneity. Despite the stationary strain rate applied and the lack of any time-dependent
weakening processes, the results are all characterized by emergent power law distri-
butions over a broad range of scales, in agreement with experimental observation.
As deformation evolves, the scaling exponents change systematically in a way that
is similar to the evolution of damage in experiments on real sedimentary rocks. The
potential for real-time forecasting of catastrophic failure obeying such scaling rules
is then examined by using synthetic and real data from laboratory tests and prior to
volcanic eruptions. The combination of non-linearity in the constitutive rules and an
irreducible stochastic component governed by the material heterogeneity and finite
sampling of AE data leads to significant variations in the precision and accuracy of
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the forecast failure time. This leads to significant proportion of ‘false alarms’ (fore-
cast too early) and ‘missed events’ (forecast too late), as well as an over-optimistic
assessments of forecasting power and quality when the failure time is known (the
‘benefit of hindsight’). The evolution becomes progressively more complex, and the
forecasting power diminishes, in going from ideal synthetics to controlled laboratory
tests to open natural systems at larger scales in space and time.

5.1 Introduction

There is widespread interest in the prospect of forecasting system-sized catastrophic
failure events in porous media and in the Earth, from the failure of stone-built bridges
to landslides, rockfalls, volcanic eruptions and earthquakes, both natural and induced.
Most methods for investigating this problem rely on the recording of elastic waves
on the Earth’s surface or the rock sample boundary, in turn caused by much smaller
earthquakes or acoustic emissions that result from locally-brittle fracture and/or shear
events. Such analysis is often combinedwith changes in bulk properties such as stress,
strain, and elastic wave velocities where available. In the Earth it is not possible to
measure the stress directly – a significant handicap compared to a controlled lab-
oratory environment. Unfortunately, the search for reliable precursors to damaging
earthquakes has not so far proven fruitful despite the large literature on candidate
precursors [63]. Themany claimed ‘precursors’ can largely be attributed to the uncon-
scious biases that are associated with retrospective selection of data containing an
irreducible stochastic component ([21], see also example in [35], their Fig. 5.5). This
has in turn led to modern testing programmes that require forecasting of event prob-
ability to be made publically in real time as a ‘blind test’, and only then evaluated in
retrospect by the community (e.g. http://www.cseptesting.org/).

Many current models for such forecasting are statistical, based on empirical scal-
ing laws for seismicity that are also features of laboratory acoustic emissions on
a smaller scale. In turn they are part of a much larger family of systems exhibit-
ing ‘crackling noise’, where competition between local interactions and random
fluctuations in disordered media results in broad-band power-law scaling and clus-
tering in the resultant populations of discrete avalanches or ‘bursts’ of energy release
[53, 57].

In this paper we first introduce some of the conceptual models that have been
applied to populations of brittle rupture events in Earth materials on different scales
in space and time. We then describe some of the phenomenology observed in the
build-up to catastrophic failure in a controlled laboratory environment, and compare
these to the results of some recent numerical simulations for the emergent scaling
laws in space, time and event magnitude. Modern discrete element models are shown
to reproduce much of the phenomenology of acoustic emissions in real rock samples,
and highlight the fundamental role of structural disorder in controlling the emergent
behaviour in the population dynamics, including the evolution from spatially-random

http://www.cseptesting.org/
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to localised brittle failure events. Finally we assess the implications of the emergent
behaviour in forecasting system-sized brittle failure events on different scales in
space, time and event magnitude.

5.2 Conceptual Models for the Population
Dynamics of Brittle Rupture

The population dynamics of brittle failure events is often addressed using theories
derived from the analysis of phase transitions in thermodynamics and statistical
mechanics. This approach has a relatively long pedigree. Griffith’s theory [15, 16]
for crack nucleation closely parallels Gibbs’ earlier theory [14] for the nucleation of
raindrops, substituting intact or broken solid as phases rather than liquid or vapour, the
specific surface energy for surface tension, the strain energy held in the bulk sample
for the degree of super-saturation in the cloud, and critically the degree of permanent
structural disorder (pre-existing micro-cracks or flaws) for fluctuations in tempera-
ture as a source of randomly-distributed potential nucleation sites. While raindrops
eventually fall out of cloud under gravity at a critical size, the original Griffith nucle-
ation theory allows arbitrarily large or system-sized avalanches to occur when the
pre-existing stable crack exceeds a critical length associated with the maximum in
free energy as a function of crack size. In practice a crack nucleating in a hetero-
geneous medium can also be stopped by random fluctuations in strength [51]. The
growing crack can also be ‘blunted’ by a stress shadow caused by a cloud of damage
or ‘process zone’ occurring ahead of the crack tip [4], also associated with random
strength fluctuations [52].

In more recent times the notion of phase transitions has been extended to describe
the population dynamics of far-from equilibrium systems, including earthquakes
and acoustic emissions, notably the statistical physics of critical point or near-critical
point systems. For example, in the laboratory themean source crack length y =< c >

and the cumulative number of acoustic emissions y = N inferred from acoustic
emission data both increase according to an inverse power law under steady-state
loading conditions of constant stress or constant applied strain rate

y = y0

(
1 − x

xc

)−ν

, (5.1)

where x may be strain or time, which diverges at a critical value xc, and the exponent
ν>0 [28, 29]. At the same time the scaling in the frequency-size distribution of
source energy (or seismic moment - the product of the shear modulus, the rupture
area and the average source displacement) take the form of a power-law with an
exponential cut-off

N = No (E/E0)
−B exp

(
− E

E∗

)
, (5.2)
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where the exponent B >0, subscripts zero denote characteristic values, and E* is a
characteristic energy related to the correlation length of the population of seismic
sources (approximately the size of the largest cluster of broken elements). While
a finite E* is required to maintain a finite flux of strain energy [31], it can often
be difficult to pin down in natural earthquake samples due to the small samples
currently available in instrumental and historical data compared to the timescales of
geological processes [7, 33]. Under these conditions the frequency-distribution can
be approximated as a pure power law for seismic energy ormoment, or an exponential
one in magnitude m – a form known as the Gutenberg–Richter law, log(N ) = a-bm,
where a is related to the total number of events and b = 3B/2 [31].

Equations (5.1) and (5.2) imply that the correlation length also diverges as in
(5.1). This inverse power law acceleration of the correlation length and the power-
law scaling of the size distribution are both characteristic of the approach to a critical
point in a variety of physical systems [11]. The analogy is complete when we regard
the stress drop (related to the difference in strain energy between intact and ruptured
phases) as an appropriate ‘order parameter’ which diminishes to zero at the critical
point [34].

The systems above require tuning of an external variable to bring the system to a
critical state, represented by a system-sized rupture in our case. In theEarth (andmany
other systems driven slowly at a constant rate of external forcing, and which release
energy intermittently in discrete dynamic events or avalanches) the system instead
appears spontaneously to have arrived at a steady state of near-critical behaviour,
where the system is perpetually in a state of near failure, including locations remote
from plate boundaries [1]. This state is commonly referred to as ‘self-organised
criticality’, a relatively loose term which includes near but not precisely critical
behaviour [34]. It describes the long-term averages in the system, and explains much
of the phenomenologyof earthquakes and faulting in a single unified theory, including
the observed power-law frequency-size distribution of events, the scale-invariant or
self-affine nature of observed fault structures and the ease with which earthquakes
can be triggered by relatively small natural or man-made stress perturbations in the
subsurface [31]. It also provides a physical basis for the assumption of long-term
stationarity in time-independent probabilistic seismic hazard estimation [30].

In a state of ideal strict self-organised criticality the timing of the next system-
sized event would be random and unpredictable. Such temporally-random behaviour
is also an explicit assumption in time-independent seismic hazard estimation. The
size of an individual event, modelled as a cascade or avalanche of neighbouring
failures, is an outcome of an inherently stochastic process in the absence of detailed
direct knowledge of the state of stress at each microscopic location in the Earth.
The question remains ‘does an earthquake know how big it is going to be when it
nucleates’? The answer is that itmay to some extent, in that there is aweak correlation
between the rate of seismic moment released in the first few seconds and the ultimate
seismic moment of earthquakes, albeit with a large scatter [13]. The moment rate
function is on average front-loaded, also consistent with the stacked data shown in
Fig. 5.4 of [41] and laboratory experimental data [59]. These results are consistent
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with each other despite the large differences in scale, but are inconsistent with the
mean field model of ([57], see their Fig. 5.7).

The large scatter between the seismic moment release soon after earthquake or
fracture nucleation and its eventual total originates from the large variability in the
complexity of the moment rate function [24, 57], and places significant constraints
on the precision with which one could estimate an ultimate earthquake size in time
to provide early warning (Kanamori, 2008). This large scatter is also consistent with
rupture propagation and arrest being controlled by details of the local strength and/or
dynamics that would be inaccessible to direct observation before it has occurred.
Together with the absence of systematic and reliable earthquake precursors [21],
this has led to a reduction in confidence in the viability of reliable and accurate
deterministic earthquake prediction as a realistic scientific goal (http://www.nature.
com/nature/debates/earthquake/equake_frameset.html). Nevertheless, the small but
finite stress drop in the Earth allows at least in principle a degree of ‘intermittent
criticality’ [22, 34]. Unfortunately the search for the implied acceleration to failure
of the form of (5.1) has so far not passed the rigorous statistical testing needed to
establish this as a general phenomenon in natural earthquake populations [17].

On the other hand purely statistical models for the probability of earthquake trig-
gering, including aftershocks, can lead to a significant probability gain in identifying
periods of transiently-elevated hazard when compared with random process, even in
real time [23]. Currently the best model for such ‘operational earthquake forecasting’
is based on an epidemic-type point process [49], itself a variant of a more general
class of self-exciting processes [19]. This model combines a random background rate
with a triggering probability for consequent events which satisfies a time-reversed
form of (5.1) known as the Omori law. In cases of induced or volcanic seismicity,
or during earthquake ‘swarms’ the background rate may be non-stationary. In the
Epidemic-Type Aftershock Sequence model of [49] earthquake size is randomly
sampled from the scaling relation (5.2) and the triggering rate depends on a ‘pro-
ductivity factor’ related to the triggering event magnitude (a logarithmic measure of
source energy or seismic moment). The magnitude difference can be negative in rare
cases due to the random sampling, leading spontaneously to occasional triggering of
larger events by a smaller one. The model can be expressed mathematically in the
following form:

λ (t) = μ + A
∑

i,ti <t
exp[α (mi − mC)]

(
1 + t − ti

c

)−p

(5.3)

where λ(t) is the event rate at time t , μ is the ‘background’ rate of independent
events above a threshold magnitude mC , c is a time constant ensuring finite event
rate at t = ti , p is theOmori–law exponent,α is the productivity factor for earthquake
magnitude mi , and A is an amplitude factor [49].

The model can be modified to include spatial clustering in the probability of trig-
gering, either solely by distance or also by azimuth relative to the parent fault orien-
tation, calculated by simulations of the immediate stress feedback and redistribution

http://www.nature.com/nature/debates/earthquake/equake_frameset.html
http://www.nature.com/nature/debates/earthquake/equake_frameset.html


82 I.G. Main et al.

after a large event (e.g. [40]). Longer-term ‘stress renewal’ models which incorporate
ongoing loading and a stochastic element have also been used to estimate the effect
of longer-term memory on the system, but their probability gains above a random
process remain low [50].

5.3 Approach to Catastrophic Failure
in a Laboratory Environment

In laboratory experiments on ceramic materials, glasses and rocks, catastrophic
failure can occur below the critical stress for failure in vacuo, due to environmentally-
assisted crack growth, even under static load. Sub-critical crack growth by thermally-
activated chemical weakening processes under stress is also an intermittent, locally
dynamic process that results in acoustic emissions – themacro-crack grows in jumps,
and is associated with a cloud of damage associated with micro-cracks observed
around the growing fracture, concentrated near the crack tip (e.g. [18]). The consti-
tutive behaviour is often described empirically by a power law

V = dc

dt
= V0(K/K0)

n , (5.4)

where V is velocity, K is stress intensity (a measure of stress concentration, pro-
portional to the stress and the square root of nucleating crack length c), subscripts
zero denote initial values and n is an exponent known as the ‘stress corrosion index’
[43]. Similar power-law behaviour can also be seen in the acoustic emission event
rate dN/dt [42, 43]. This equation can be solved under conditions of constant stress
to predict accelerating crack growth c(t) or the total number of events N (t) of the
form of (5.1), with statistically-indistinguishable behaviour occurring under finite
but slow stress loading conditions [32].

The intermittent and non-linear nature of quasi-static, sub-critical, crack growth is
captured in the ‘lattice-trapping’ model, where the specific surface energy term in the
Griffith nucleation theory is modulated by a sinusoid representing periodic strength
variation in a crystal lattice, and the time-dependent intermittent crack growth rate is
controlled by the height of the resulting local free energy barrier and hence the rate
of the relevant chemical weakening reaction, modelled as a kinetic process ([27],
Chap. 6). This results in a thermally-activated, intermittent crack growth even at
constant stress, as well as other aspects of time-dependent behaviour such as static
creep or fatigue. The theory predicts an approximately exponential dependence of V
on K , but neglects the material disorder in the surrounding medium that is the origin
of damage away from the crack tip, and also likely to be a fundamental control on
the emergent power-law and the value of its exponent [28].

Time-dependent behaviour implies that the rate at which stress or strain is applied
will affect the rheology. At high strain rates rocks produce much more brittle behav-
iour under compressive loading, but also more associated damage and associated
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‘crackling noise’ in the surrounding medium that provide much more warning in the
sub-critical stage. At lower strain rates (5.1) still holds, but the onset of detectable
precursory acoustic emissions is delayed, thematerial becomesweaker (peak stress is
reduced), the acceleration to failure curve becomes much sharper and the proportion
of smaller events increases as the loading rate is reduced [48]. This strain-rate depen-
dent behaviour has also been seen in other systems, including twinning avalanches
occurring during high-speed impact events [53, 65].

In terms of spatial scale, the probability that one of the randomly-distributed
Griffith flaws or stress concentrators being activated increases with the volume of
the loaded specimen. Thus, catastrophic fracture initiates earlier for a large specimen
and themacroscopically-deduced critical stress is smaller. In terms of observation and
damage mechanics modelling, the material becomes both weaker and more brittle in
this respect as it increases in size, behaving more like a continuumwith a single flaw,
as expected by the theory of Linear Elastic Fracture Mechanics [55]. Again in the
limit of a very large system size, catastrophic failure would occur without warning
in such a system.

On both counts we would expect predictability of individual system-sized events
to degrade as the loading rate decreases and the system size increases. The logical
deduction from such scaling effects is that prediction of individual earthquakes is
intrinsically much harder than those of laboratory-scale fracture, and may not be
possible in practical terms. This is consistent with our experience of the practical
problem of deterministic earthquake prediction [23], including well-instrumented
areas where a positive absence of precursors and sudden-onset rupture has been
observed [2].

5.4 Squashing the Digital Rock

The above discussion has concentrated on empirical observation and models for
fracture of disordered or damagedmedia based largely onmean-field approximations
(damagemechanics), or simple cellular automatonmodels that capture the avalanche-
like nature of the dynamics, at the expense of reducing the dimensionality of the
problem to two, and the disorder to random processes acting on a geometrically-
regular grid of elements (e.g. [1]).However, in critical phenomena the relevant critical
exponents are known to depend to first order on the dimensionality of the model,
and empirically the observed structural disorder of porous media is more amorphous
than a grid. As a consequence it is necessary to tune the models to obtain the correct
values of exponents such as B in (5.2), notably the dissipation factor on stress transfer
after failure [34, 47].

Accordingly many researchers have turned to discrete element modelling of
porous media. In the model of [25, 26]; see also [3] three-dimensional particles
are represented by hard, unbreakable elastic spheres. Their diameter is selected ran-
domly from a broad-band (log-normal) distribution, similar to that observed in a
natural aquifer or hydrocarbon reservoir rock such as sandstone. The particles are
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Fig. 5.1 The digital rock: a
Illustration of its formation
under sedimentation; b final
configuration. Smaller
particles are in blue,
intermediate in darker
shades of red and larger ones
in bright red (from [25])

dropped into a cylinder under gravity, bounce around and settle in a sedimentation
process that introduces a realistic structural disorder (Fig. 5.1). The particles are then
cemented together by elastic bonds that can fail in either tension or torsion (shear),
in both cases when the relevant stress exceeds a uniform local bond strength. The
top few layers of particles are cemented by unbreakable bonds, effectively clamping
the top and bottom of the sample to the boundaries where the load is applied. Some
20,000 particles were used in the above references. For a typical reservoir rock with a
peak diameter at 200 microns, the equivalent bulk sample diameter is 6–7mm. This
is much smaller than the typical laboratory deformation testing range (2.5–10cm
diameter), but comparable to modern experiments aimed at elucidating the micro-
scopic mechanisms of failure using high-resolution CT scanning using X rays [10]
or neutron diffraction. At this stage of the modelling no layering or any other form
of correlation above that produced by random sedimentation is introduced. This is
not because we believe it to be unimportant. Instead it is because it is only with a
controlled comparison with a randomly-uniform disordered medium that we could
isolate the effect of such additional complexity at a later stage. The random uniform
properties of the digital rock are shown in Fig. 5.2.

The digital rock is then squashed by applying a load at constant displacement
rate to the upper surface of the cylinder, the lower one remaining fixed (see inset
on Fig. 5.3). The combination of elastic interactions with initial structural disorder
produces emergent stress heterogeneity, in the form of stress concentrations on ‘force
chains’, and stress shadows in between. Once a bond is broken the particles are free
to move dynamically and re-settle into a new configuration, arrested by the Hertzian
forces acting between neighbouring spheres in contact. The Hertzian contact is the
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Fig. 5.2 Properties of the digital rock (from [25]). a Probability density function for particle radius
R, normalised to its minimum value, based on sampling from a log-normal distribution. The vertical
line indicates the average value <R>. b Variability of <R> as a function of vertical position z,
normalized to the cylinder height H. c Probability density function for the number of contacts each
particle has with its neighbours nc. The vertical red line shows the average< nc > or ‘co-ordination
number’. d Co-ordination number as a function of z/H

basis for emergent frictional behaviour at the macroscopic level [56]. The broken
bonds do not heal, and stress is redistributed dynamically to the neighbouring bonds,
producing avalanches or cascades of bond ruptures representing correlated ‘bursts’ of
energy release. While elastic radiation does take place, there is no need to put model
transducers on the digital rock boundary and infer the source parameters. Instead
parameters such as event time, hypocentre location, source energy, rupture area (or
the number of broken bonds � as a proxy), average slip, the related seismic moment
(product of shear modulus, rupture area and average slip), inter-event time can all be
calculated directly from the model. The collective properties of this population are
then a direct analogue for the source parameters of the ‘crackling noise’ observed in
real rock samples during a laboratory test, with the advantage of having a complete
sample of all local failure events.
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Fig. 5.3 Squashing the
digital rock. The inset shows
the digital rock, diameter D0
and Height H0, with the top
few infinitely strong layers
highlighted in yellow, and
the direction of uniaxial
force as an arrow. The black
curve shows the stress σ as a
function of strain ε, the
vertical red lines represent
the rupture area proxy � for
each event, and the blue line
the average < � > (from
[26])

5.5 Properties of the Crackling Noise

The event sizes� are also shown in Fig. 5.3, both as a ‘comb’ plot of discrete individ-
ual events and as a running average. Crackling noise starts early –well before any sign
of non-linearity in the stress-strain curve, and the mean event size accelerates rapidly
after the yield point, in a manner similar to (5.1). The frequency-size distribution has
the same form as (5.2) over a broad range of length scales in Fig. 5.4. As deformation
progresses the best fit power-law exponent decreases (the slope becomes flatter) and
the implied correlation length (related to the largest rupture size) increases. System-
sized failure near the critical strain εc is marked by large apparent outlier events
from the trend in (5.2) often termed ‘dragon kings’ [58] or, for natural seismicity,
‘characteristic earthquakes’. Such a large gap between the largest and the next largest
correlated cluster of broken bonds, allied with the large stress drop, is more reminis-
cent of a first order phase transition. However, establishing such ‘dragon kings’ are
meaningful statistical outliers in natural data is often very difficult [45].

The event locations are dominated by the random disorder initially (see locations
of nucleation points illustrated in Fig. 5.4), but increasingly localise on an incipient
fault plane [25], just as occurs in experimental data on sandstone [28]. At the same
time the correlation function of nucleation points spontaneously tends to a power
law, with a power-law exponent (correlation dimension) decreasing to D2 = 2.25
near the failure time [25]. This behaviour is in good quantitative agreement with the
results of laboratory acoustic emission locations, where similar to the range observed
in laboratory tests where D2 starts off at around 2.75 when the deformation is more
randomly distributed, and then decreases to around 2.25 near the failure time [20].
At the same time the incremental frequency-rupture area exponent (for the range of
events shown) decreases from 1.1 to 0.4 (Fig. 5.4).
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Fig. 5.4 The left-hand diagram shows the evolution of the probability density function for source
size p(�), split up into consecutive increments of normalised strain indicated by the event numbers
shown. The diagram on the right plots the location of the nucleation points for dynamic rupture
cascades, an analogue for the location of acoustic emission sources

Figure5.5 compares the results of the discrete element model with those of a
laboratory test on natural sandstone. Themean event size for the digital rock increases
in a similar way to that expected from combining (5.1) and (5.2), and the real data
for event rate follow (5.1) directly, i.e. both are inverse power laws. The exponent ξ
of the probability density function p(�) decreases monotonically in the model from
around 4 to 1.5. The Gutenberg–Richter ‘b-value’ shown for the real data is defined
by the slope of the cumulative or incremental frequency curve for event magnitude,
itself a logarithmic measure of energy. For a sensor acting as a velocity transducer
and a constant stress drop model for acoustic emission sources, the b-value is related
to B in (5.2) by b = 3B/2 with E ∼ A1.5 and p(A) ∼ A−b−1 (e.g. [31]). Assuming
rupture area scales linearly with the number of broken bonds, A ∼ �, the values of ξ
imply a b-value decreasing from around 3 to 0.5 as failure approaches. This compares
with the observation on Fig. 5.4 that 1.5< b <0.5 in the laboratory tests. The absence
of higher b-values early in the loading cycle in the laboratory tests could be due to
a break down in the scale-independent stress drop model, or to data censoring of
smaller events below ambient noise levels. Nevertheless, the inferred b-values for
the later part of the real and laboratory tests are quantitatively similar, and exactly
the same (around 0.5) immediately prior to catastrophic failure. A b-value prior to
catastrophic failure of around half of the long-term average is also consistent with
values reported for earthquake foreshocks, in cases where they are observed after the
fact [44].

For the digital rock, the scaling may not be strictly self-similar. The energy of
the bursts E scales with � as E ∼ �1.15 [26]. This may be because the scaling of
slip to rupture area is self-affine (power-law of slope less than 0.5) rather than self-
similar, and/or because the parameter� (the number of broken bonds) does not scale
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Fig. 5.5 Comparison of the model simulation results (left hand column, replotted after [25, 26])
with a real dry rock (right-hand column, from [54]). The upper diagrams show the acceleration of
event size for the model (as in Fig. 5.3) compared to the event rate data (top right diagram). The
lower left diagram show the power-law exponent of the probability density function for source size
� (one curve for a constant strain window as in Fig. 5.4, and one for a constant number of events
in each sub-sample) compared to the seismic b-value evolution in a laboratory test

linearly with rupture area A. If we assume instead that magnitude is a logarithmic
function of energy, then the observed scaling range for ξ implies that the exponent
B for the energy distribution ranges from 2.9 to 0.37 or so, or an implied b-value
range for a scale-independent stress dropmodel of 4.3< b <0.55, i.e. a slightlywider
range for the early part of the loading cycle but a similar value immediately prior to
system-sized failure.

After catastrophic failure the digital rock is broken in two main intact blocks,
separated by a fault that takes the form of a deformation band of broken fragments
- as observed in laboratory tests (Fig. 5.6). The deformation band contains a fault
‘gouge’ of fragments or isolated original particles with a broad bandwidth of sizes –
with large fragments floating in a ground mass of smaller ones. There is significant
damage (local micro-fractures) in the zone around the main fault, and a complex
three-dimensional rugged geometry of the fault walls, with variable fault thickness
along the fault trace. The probability density function for particle mass in the digital
rock deformation band for particles containing at least two elements has the same
form as (5.2) with a power law exponent τ = 2.1 over two orders of magnitude [26],
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Fig. 5.6 Post-failure
structure. The upper diagram
shows a photo-micrograph of
a thin section of a deformed
laboratory sample of
sandstone (colour version of
the diagram shown in [37]).
The rock has been injected
with a fluorescent-dyed
epoxy resin to preserve the
structure and highlight
locations of fracturing in
blue. The lower diagram
shows the digital rock after
dynamic failure (from [25]):
a The broken elements are
shown in yellow, and the
intact in red. b Image with
broken elements removed

or (for the spherical particles of the discrete element model) an implied power-law
exponent for the incremental frequency of particle diameter of D = 3.3. For real
rocks the exponent of the frequency-particle length distribution for tests similar to
those that produced the thin section in Fig. 5.6 (from [36], their Fig. 4.15), and those
of real fault gouges (e.g. Table3.1 of [61]) is D ≈ 2.6. Themain differences are likely
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to be due to the angularity of the fragments in the real rock, the unbreakable nature
of the discrete elements in the digital rock, and the lack of a confining pressure in the
digital rock simulations. These remain a computational challenge that is currently
being addressed in fully 3D simulations [38].

Emergent power laws of the form of (5.2) are also observed in the probability
density functions for energy p(E), duration p(T ), and waiting time between events
p(tw) in the period before peak stress ([26], their Fig. 5.3). The distributions for
energy and duration both show evidence of roll-offs in probability for smaller val-
ues associated with a lower cut-off to scale-invariant behaviour, whereas the source
area proxy distribution p(�) does not. Best fits were obtained with the power-law
exponents α = 2.02, β = 2.4 and z = 2.0 for the probability density function of
burst energy, duration and waiting time respectively, averaged over the period prior
to the peak stress. This compares to an implied α = 1.67 for an average b = 1 in
the laboratory test of Fig. 5.5, and to α = 1.40 ± 0.05 for the uniaxial compression
experiments of Vycor, a synthetic silica ceramic of ∼40% porosity [5].

The exponent for thewaiting time distribution prior to peak stress in our numerical
model z = 2 is significantly higher than that found by [5] with z = 0.93 ± 0.05 for
most of the time range of their laboratory tests. This discrepancy is most likely
due to the absence of time-dependence in the properties of the digital rock at this
stage of the modelling. References [5, 60] showed that a power-law inter-event time
can be explained as an emergent property of the distribution of background and
‘aftershock’ events, based on the epidemic-type aftershock sequence (ETAS) model
for earthquake populations. Even without aftershocks or more generally triggered
events, a power law scaling in the inter-event time probability distribution can result
from a non-stationary linear increase in the rate of independent events [64]. The
lack of time dependence in our model means the properties of the digital rock do not
depend on the loading rate, also in contrast to that seen in laboratory experiments [48],
and would not result in long term creep and fatigue – another limitation compared
to real rocks and other kinds of porous media. Despite these caveats, the similarity
between the behaviour of the digital rock and laboratory samples, as well as the
scaling to the properties of the Earth’s crust are quite remarkable.

5.6 Implications for Forecasting

There are a number of clues to when catastrophic failure might occur, both in the
models and in the observations collected in laboratory tests described above. These
include event rate accelerating towards a singularity according to (5.1), reducing
b-value, increased localisation of events in space along an incipient fault plane,
and systematic changes to other exponents. In the laboratory or the digital rock a
visual yield point is clear and the peak stress is a strong indicator of the onset of the
final approach to failure. In the limit of an extremely brittle material catastrophic
failure does occur at peak stress, but for many porous rocks system–sized failure
occurs at a critical strain significantly beyond the peak stress, as captured in Fig. 5.5.
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The most accurate failure forecasting model will then involve a combination of
these metrics. This may be with a physical model (that also accounts for stochastic
fluctuations), or a statistical approximation that may have more Information content
(equally good fit with fewer free parameters). In practical scenarios there may be
insufficient data for such a rigorous approach due to lack of data. For example
practical volcano forecasting is often done using Bayesian ‘event trees’, where event
rate and b-value changes can be included formally, along with other more subjective,
‘expert’ knowledge [39].

Let us now consider an ideal case, where the underlying AE rate accelerates
to the critical point according to (1) plus or minus random fluctuations associated
with material heterogeneity and/or finite sampling (counting errors). This defines
the absolute limits of predictability of such an approach in an ideal case. By run-
ning several Monte-Carlo realisations [6, 8] mapped out the systematic and random
errors involved in fitting (5.1) to infer the forecast failure time and its uncertainty
for this case. To simulate a real-time or prospective forecast scenario they performed
the inference at different times prior to the pre-determined failure time. First they
showed that linearized versions of (5.1), often used for example in analysing seis-
micity associated with volcanic eruptions, introduce a systematic bias to the forecast
failure time, even when data including the failure time are used. Instead a fully non-
linear maximum likelihood fit to (1), assuming an underlying non-stationary Poisson
process, produces a less biased fit. The random or statistical uncertainties are initially
very large, and reduce significantly as more data are collected, and the most accurate
forecast is after the system-sized event has occurred. This highlights the practical
difficulties in evaluation of the significance of precursors retrospectively as descried
by [21].

In evaluating such behaviour it is also critical to test competing hypotheses for
the underlying behaviour of the time series. Accordingly [8] tested (i) stationary, (ii)
exponential acceleration and (iii) (5.1) models concurrently, selecting the preferred
model using a Bayesian Information Criterion, a modern form of Ockham’s razor
that accounts for the balance between the model residuals and the number of free
parameters. A precursor is detected when the stationary model can be rejected, and
a system-sized failure time cannot be defined unequivocally until (5.1) is the pre-
ferred model. The results showed that it is relatively easy to define a precursor, but
an unequivocal failure time cannot be determined until relatively late in the cycle.
Therefore it is possible to identify periods of enhanced probability of failure, but the
precise failure time may not be known until very near or after the fact.

In real volcanic earthquake data the acceleration (determined after the fact) can be
more complex that (5.1), leading to systematic errors in the best fit eruption time [7].
Such real data shows that accelerating sequences most often end in intrusions, where
magma freezes in place underground rather than being extruded in eruptions [12].
Unfortunately the statistics of these two processes cannot currently be distinguished,
so it is not possible to discriminate between them in real time unambiguously. This
implies that local Civil Protection authoritieswould then have to livewithmany ‘false
alarms’. In real volcanic data (1) can be a good fit, but often the exponential model is
preferred throughout or until just before the failure time. This limits the possibility of



92 I.G. Main et al.

a successful planned and orderly evacuation based on such a deterministic forecast.
In this case there may be many ‘misses’ when the forecast time is after the eruption
time, as well as ‘hits’ when the two are the same within the extrapolated uncertainty.
Over time the ratio of ‘hits’, ‘misses’ and ‘false alarms’ will help quantify the hazard
and risk probabilities, and also help educate the public on the practical limits of what
science can do in forecasting such a complex, non-linear system [9]. Nevertheless,
this probabilistic, risk-based approach has achieved some remarkable successes,
leading to successful evacuations at the right time, for example at Mount St Helens,
US, in 1980 and at Pinatubo, Philippines, in 1991.

5.7 Influence of Material Heterogeneity
on Forecasting Power

TheGriffith theory highlighted the important role of heterogeneity due to initial flaws
(cracks and/or pores) in the fracture process of an otherwise intact material. Accord-
ingly it would not be surprising if material heterogeneity would have a significant
effect on the forecasting power. To test this notion Vasseur et al. [62] generate a suite
of synthetic samples porous silicate liquids undergoing the glass transition with vari-
able heterogeneity. A heterogeneity (disorder) parameter is defined by H = ϕ − 0.5,
where ϕ is the porosity, such that H = 0 when ϕ=0 (perfect order) and H = 1 when
ϕ=0.5 (perfect disorder). These synthetic porous media consisted of a range of sam-
ples of the same material, but with different porosity and microstructure (see their
Fig. 5.1), in turn controlled by the gas volume fraction held in the cell during their syn-
thesis. They then placed the synthetic rock under uniaxial compression, and recorded
the AE generated in the approach to catastrophic failure.

In analysing the data (Fig. 5.7, from [62]) the exponential model is preferred when
H is low, and the inverse power law when the degree of heterogeneity is high, as
anticipated by the fibre bundle model of [46]. If a best-fit inverse power law is forced,
then its prediction error (the normalised difference between the estimated failure time
and the actual one) decreases significantlywith the increasingmaterial heterogeneity.
In this sense catastrophic failure is easier to predict in heterogeneous materials. The
material with high H has fewer events (Fig. 5.7a) most likely because of a greater
proportion of ‘silent’ damage due to elastic pore closure as porosity increases. This
variability in behaviour as a function of the degree of material heterogeneity may
explain the large variability observed in real systems, and in time may improve the
reliability and accuracy of operational forecasts, if it can be used to constrain the
forecasting power in different settings.
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Fig. 5.7 Test of forecasting power as a function of the heterogeneity index H = φ − 0.5, where
φ is the porosity (from [62]). a Cumulative AE events (solid lines) and their maximum-likelihood
best-fit curves (dashed lines). b Model selection using the difference in the Bayesian Information
Criterion �BIC between exponential and inverse power-law acceleration in (a) The inverse power
law is preferred when �BIC < 0. c Heterogeneity-dependence of the forecast error, defined as the
absolute difference between the predicted failure time and the experimental failure time, normalised
by the deformation time, expressed as a percentage

5.8 Conclusion

A discrete element model with a particle size distribution similar to that of porous
sandstone can now reproducemany of the scaling relationships observed in crackling
noise in real rocks with similar properties. Despite the stationary loading rate and the
lack of any time-dependent weakening processes, the results are all characterized by
emergent power law distributions over a broad range of scales, in quantitative as well
as qualitative agreement with experimental observation. As deformation evolves, the
scaling exponents change systematically in a way that is similar to the evolution of
damage in experiments on real sedimentary rocks. The combination of non-linearity
in the constitutive rules and an irreducible stochastic component governed by the



94 I.G. Main et al.

material heterogeneity and finite sampling ofAEdata leads to significant variations in
the precision and accuracy of the forecast failure time using constitutive rules derived
from the model. The evolution of the crackling noise becomes progressively more
complex, and the forecasting power diminishes, in going from the ideal behaviour
revealed by the discrete element model to controlled laboratory tests to open natural
systems at larger scales in space and time. Material heterogeneity plays a significant
part in the emergent power-law scaling, and also affects the forecasting power. The
results imply significant forecasting power above a randomprocess that could be used
in operational forecasting scenarios involving non-stationary seismicity, including
seismicity induced by subsurface engineering projects and by magmatic processes
leading up to volcanic eruptions.
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Chapter 6
Modelling Avalanches in Martensites

Francisco J. Perez-Reche

Abstract Solids subject to continuous changes of temperature or mechanical load
often exhibit discontinuous avalanche-like responses. For instance, avalanche dynam-
ics have been observed during plastic deformation, fracture, domain switching in fer-
roic materials or martensitic transformations. The statistical analysis of avalanches
reveals a very complex scenario with a distinctive lack of characteristic scales. Much
effort has been devoted in the last decades to understand the origin and ubiquity of
scale-free behaviour in solids and many other systems. This chapter reviews some
efforts to understand the characteristics of avalanches in martensites through math-
ematical modelling.

6.1 Introduction

The physical properties of many materials follow a sequence of abrupt changes
when the material is driven by smoothly varying the temperature or an external field.
The abrupt changes are referred to as avalanches. Examples of processes exhibit-
ing avalanche dynamics include plastic deformation [1, 2], fracture [3, 4], domain
switching in ferroic materials [5, 6] or martensitic phase transitions [7–11]. In fact,
avalanche dynamics are not exclusive to driven solids but have been reported for a
wide variety of processes including earthquakes [12], stock market fluctuations [13],
biological extinctions [14], epidemics [15], neural dynamics [16] or motion of animal
herds [17].

A common feature to all these systems is that avalanches are typically charac-
terised by a remarkable variability with magnitudes that extend over several decades.
In most cases, the probability density function ρ(x) for the magnitude x of avalanches
is found to be long-tailed with a power-law decay, ρ(x) ∼ x−α , in a wide interval
of x ∈ [xmin, xmax]. A pure power-law distribution corresponds to the case xmax = ∞
(i.e. a Pareto distribution) and implies a lack of characteristic scales [18]. In this
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case, the distribution of avalanche magnitudes is the same irrespective of the scale
we look at it. Exact scale invariance is never detected in experiments due to several
factors which may include limitations of the experimental devices, the finite size
of systems or the very nature of the avalanche dynamics which may not be exactly
scale-free (for instance, large characteristic events can coexist with power-law distri-
bution [19, 20]). In spite of that, a power-law decay over a wide interval [xmin, xmax]
implies a large dispersion for x and defining a meaningful scale for the magnitudes of
avalanches is essentially impossible (i.e. the statistics may be considered as scale-free
in practice). For instance, the mean value E[x] is typically well defined for exper-
imentally obtained distributions. However, taking E[x] as a characteristic scale for
the magnitude of avalanches is typically meaningless since it is much smaller than
the dispersion of the data and is not a representative quantity.

The large variability of magnitudes observed in non-equilibrium avalanche dynam-
ics is reminiscent of the critical phenomena observed in equilibrium second-order
phase transitions [21–23]. Following this similarity, the term criticality is broadly
used to refer to scale-free avalanche dynamics [24, 25]. Avalanche criticality has
indeed been associated with second-order phase transitions for a wide range of sys-
tems [5, 25, 26]. However, the mechanisms for robust scale-free avalanche behav-
iour are still a matter of debate for a number of systems, including martensites
[9, 27, 28].

This chapter focuses on modelling of avalanche dynamics in martensitic transfor-
mations which are solid to solid first-order phase transitions responsible for unique
phenomena such as shape memory and pseudoelasticity [29] or caloric effects [30].
In particular, we will mostly deal with avalanches in shape-memory alloys under-
going martensitic transitions from an open crystalline structure to a close-packed
structure with lower symmetry [29, 31, 32]. The martensitic transformation can be
induced by decreasing the temperature of the material or by applying a mechan-
ical load. Avalanches in shape-memory alloys have been detected using a range
of experimental techniques including acoustic emission [7, 8, 33, 34], calorimetry
[10, 35], resistivity [9] or strain imaging [11]. Avalanches of similar origin have been
also observed in ferroelastic materials with optical microscopy [36, 37] and are also
predicted by molecular dynamics simulations [38, 39].

The specific details of phase transformations may depend on the material compo-
sition, the particular sample at hand, etc. However, avalanche statistics and other
features are qualitatively similar for different materials. For instance, scale-free
avalanches have been reported for many different phase transforming alloys and
the value of the power-law exponent α only depends on generic features such as the
crystal symmetry of the martensitic phase [33]. Following this observation, many
theoretical studies have relied on toy models that aim for a basic understanding of
key universal features exhibited by many systems. Within the context of marten-
sites, it is common to use spin models with quenched randomness and metastable
dynamics [40–45]. Most of these models can be viewed as extensions of prototype
spin models such as the zero-temperature Random-Field Ising model (RFIM) which
was originally proposed to study avalanches in fluid invasion [46] and magnetisation
reversal [47]. In Sect. 6.2, we review these models which indeed capture important
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features of martensites including their hysteresis and scale-free avalanches. In con-
trast, they are not suitable to study mechanically-induced transformations and, for
instance, miss the fact that in most shape-memory alloys scale-free avalanches are
only observed after a training process which consists in cycling several times through
the phase transition [33, 48, 49]. During this process, shape-memory alloys develop
dislocations [50–53] which are believed to play an important role in the scale-free
character of avalanches in well-trained materials [27, 54]. In this respect, marten-
sites are essentially different from many other apparently similar systems, say driven
ferromagnets displaying Barkhausen noise, because in those systems training is not
required to reach a scale-free behavior. Motivated by these facts, spin-like models
were developed in [27, 28, 54, 55] which are applicable to both mechanically and
thermally induced transformations. In addition, they are able to simultaneously han-
dle the phase transition and dislocation activity. In order to unify these two processes,
it is necessary to deal with the global symmetry group of crystals which includes
large shearing and naturally account for the formation of dislocations [56–61]. These
arguments are reviewed in Sect. 6.3 for homogeneous lattices and then extended in
Sect. 6.4 to deal with heterogeneous deformations which are ubiquitous in marten-
sites. After these general considerations, in Sect. 6.5 we formulate the Random Snap-
Spring model (RSSM) which is a minimal framework to study avalanches in both
thermally and mechanically driven transformations. Particular cases of the RSSM
are studied in Sects. 6.6 and 6.7 for thermally-driven and mechanically-driven trans-
formations, respectively.

6.2 Avalanches in Spin Models

The zero-temperature Random-Field Ising Model (RFIM) is a prototype model for
avalanche dynamics that has been applied to study a wide range of phenomena includ-
ing magnetisation reversal [47, 62], fluid invasion [46, 63], capillary condensation
in porous media [64, 65] and even opinion shifts [66]. The RFIM is defined as a set
of N spin variables {si = ±1; i = 1, 2, . . . , N} with Hamiltonian [62, 67]

H = −
∑

i,j

(
Jij − Jinf

N

)
sisj − H

∑
i

si −
∑

i

hisi. (6.1)

Here J = {Jij} is a matrix giving a positive interaction Jij = J > 0 between nearest
neighbours and zero otherwise. The term Jinf/N is an infinite-range interaction which,
in the case of magnetic materials, is associated with demagnetising fields [67]; in
martensites, it can be associated with the stiffness of mechanical loading devices
(see Sect. 6.7). The spins are acted globally by an external homogeneous field, H,
and locally by quenched random fields hi which are often normally distributed with
zero mean and standard deviation r. The parameter r gives an effective measure of
the degree of disorder. The system is quasistatically driven by sweeping the field H
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and thermal fluctuations are neglected. Two different spin flip dynamics have been
considered in the past. Nucleation dynamics assume that any spin can flip provided
this leads to a local decrease of the energy [47]. The other possibility corresponds to
front propagation dynamics in which spins can only flip if this leads to a decrease of
the energy and they are neighbouring a previously flipped spin [46, 63]. A necessary
condition for a spin to flip in any of the two dynamics is that the flip induces a
decrease of the energy. From (6.1), the energy change associated with the flip of a
single spin si is ΔH (si → −si) = 2sif̂i, where

f̂i =
∑

j

(
Jij − Jinf

N

)
si + H + hi, (6.2)

is the local field acting on si. A stable configuration s = {si} is such that all those spins
si that are allowed to flip must be aligned with their local field, i.e. sif̂i > 0. In this
case, the energy cannot be decreased by flipping any single spin (the simultaneous
flip of more than one spin might lead to a lower energy but this corresponds to other
dynamics [68] that will not be considered here). Avalanches start when at least one
spin becomes unstable under the driving. The unstable spin flips and may induce
other spins to flip, thus generating an avalanche of spin flips which finishes when
all the spins in the system are stable again. The number of spins flipped during the
avalanche gives the avalanche size, S.

Many different numerical and analytical studies have been carried out to char-
acterise the properties of magnetisation (m = ∑

i si/N) and avalanches in the zero-
temperature RFIM. One of the most frequently analysed characteristic of avalanches
is their size probability distribution which has been studied as a function of the
applied field, D(S, H), and also pooling avalanches observed at any field, Dint(S) =∫ ∞
−∞ D(S, H)dH. The behaviour predicted by the model depends on the degree of

disorder, the dynamics for spin flips and the presence (Jinf > 0) or absence (Jinf = 0)
of infinite-range interactions. We now summarise the behaviour of the model for
each dynamics assuming that H increases monotonically in the interval [−∞,∞].

6.2.1 Propagation Dynamics

In order to study the propagation dynamics, the system is initially prepared with a
finite domain of spins flipped up (s = +1) and the rest are down (s = −1). Upon
increasing H, the domain of up spins grows and the transformation dynamics reduce
to the propagation of the domain boundary in a disordered medium. Let us consider
the case for Jinf = 0 first. The domain boundary remains pinned for small values
of the applied field and depins at a critical field Hp(r) which is a function of the
degree of disorder, r. The morphology of the propagating front is self-affine for
small disorder, r < rp, and self-similar for r > rp [46, 63]. The avalanches at the
pinning-depinning transition obey a power-law distribution, D(S, Hp) ∼ S−τp , where
the exponent τp depends on the morphology of the propagating front. For r < rp, the
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critical behaviour belongs to the quenched Edwards-Wilkinson (QEW) universality
class of driven self-affine interfaces; the value of the exponent for a 3D system is
τp � 1.3 [5, 46, 63]. In the high disorder regime, r > rp, the avalanche size exponent
takes the value τp � 1.6 which corresponds to the universality class of isotropic
percolation [46, 63].

A positive value for infinite-range interaction Jinf brings a restoring force that
keeps the domain boundary in the neighbourhood of the pinning-depinning transi-
tion generalisations of the Blume-Emery-Griffiths model with a three-stateion, thus
providing a feedback mechanism which self-tunes the model to a critical state [67,
69, 70]. This phenomenology is interpreted as self-organized criticality. Within
the framework of driven elastic interfaces, an analogous self-tuning to a pinning-
depinning critical regime is obtained if the interface is driven through a weak spring
which provides a feed-back mechanism [71, 72].

6.2.2 Nucleation Dynamics

Nucleation dynamics allow the flip of any spin that leads to the decrease of the
energy. We assume an initial configuration with all the spins in the state s = −1
which is stable at the initial field H = −∞. If Jinf = 0, one observes three dif-
ferent avalanche responses depending on the degree of disorder: pop, crackle
and snap [25, 55]. Figure 6.1 shows examples of Dint(S) for each regime. Pop
behaviour is observed for large disorder when the transition proceeds through a

Fig. 6.1 Size probability
distribution Dint(S) for
avalanches observed during
the complete transformation
in the RFIM with nucleation
dynamics. Different panels
correspond to different
values of disorder: a r = 1.7,
b r = 2.21 and c r = 2.6.
The data correspond to a 3D
system of linear size L = 24,
i.e. with N = L3 spins [From
[80], Fig. 1, pp. 134421–4]

<

∼

>

(a)

(b)

(c)
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sequence of many avalanches of small size (see Fig. 6.1c). In this regime, the magneti-
sation exhibits a smooth hysteresis loop. Snap behaviour is observed in systems with
disorder smaller than a critical value, ro. In this regime, the magnetisation hysteresis
loop exhibits a discontinuity associated with a macroscopically large avalanche that
spans the system even in the thermodynamics limit. The peak at large avalanche
sizes in Fig. 6.1a corresponds to the snap event. The pop and snap regimes are sep-
arated by a critical disorder (ro) where avalanches have a broad range of sizes. This
crackling regime corresponds to an order-disorder (OD) continuous phase transition
associated with a T = 0 critical point (ro, Ho) in the space spanned by the disorder
and driving field [47, 68, 73–79]. The avalanche size distribution obeys a power law,
D(S, Ho) ∼ S−τo , at the critical point. The exponent τo depends on the dimension-
ality of the system and, for example, takes the value τo � 1.6 in 3D. At the critical
disorder, the integrated avalanche size distribution also obeys a power-law decay,
Dint(S) ∼ S−τ ′

o , with an exponent τ ′
o that can be expressed as a function of τo and

other exponents of the system. For a 3D system, τ ′
o � 2 [80]. Such a decay is illus-

trated in Fig. 6.1b; the deviation from a pure power law at large avalanche sizes is a
finite size effect which becomes negligible in large systems [80].

For Jinf > 0, the infinite-range interaction prevents avalanches from growing
indefinitely. This implies that an infinite avalanche analogous to the one observed for
r < ro in systems with Jinf = 0 cannot exist. In contrast, the system self-organises to
display front-propagation critical behaviour [69, 70]. The size of avalanches follows
a power-law distribution, D(S) ∼ S−τp , where τp corresponds to the QEW univer-
sality class. In general, τp differs from its OD counterpart, τ0, meaning that infinite-
range interactions lead to a change of universality class. In Sect. 6.7 we will show
that a change in universality class of this type can be induced for mechanically-
induced martensitic transformations by varying the stiffness of the loading mechan-
ical device [55].

6.2.3 Spin Models for Martensites

Several extensions of the zero-temperature RFIM with nucleation dynamics have
been proposed to describe martensitic transformations (although avalanches have
been only studied in few of them). A key feature of such extensions is the use of
spin variables that take more than two values in order to capture the multiple variants
of the martensitic phase. The simplest possibility in this direction corresponds to
generalisations of the Blume-Emery-Griffiths model with a three-state spin variable,
s ∈ {−1, 0, 1}, which allow the transition from austenite (s = 0) to two variants of
martensite (s = ±1) to be described [40–44]. In particular, the avalanche size dis-
tribution in thermally-driven martensites was studied in [40] for a zero-temperature
Random-Field Blume-Emery-Griffiths model (RFBEG) with Hamiltonian

H = −
∑

i,j

Jijsisj −
∑

i

his
2
i − g(T)

∑
i

s2
i , (6.3)
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where g(T) is a function of temperature that acts as a driving parameter. The fraction
of martensite, q = (1/N)

∑
i s2

i , is an increasing function of g(T) so that the austenite
and martensite phases are stable for sufficiently positive and negative values of g(T),
respectively. In common with the RFIM, the RFBEG predicts a critical regime with
crackling noise associated with an OD critical manifold which separates snap and
pop regimes at small and large disorder, respectively.

A Random-Field Potts model with vectorial three-state spins and more realistic
dipolarlike interactions than previously considered for the RFBEG was proposed in
[45]. The model predicts more realistic properties for microstructure and hystere-
sis than previously obtained with the RFIM or the RFBEG. Criticality is however
associated with an OD transition analogous to those exhibited by simpler models.

Phenomenological extensions of the zero-temperature RFIM do not explicitly
include elasticity. As a consequence, they are not suitable to describe the behaviour
of mechanically-driven martensites. In contrast, mechanically-induced transforma-
tions were modelled using a different type of discrete systems consisting of inter-
acting bi-stable elastic units which mechanically behave as snap-springs1 [81–86].
Snap-spring models gave interesting insight on the stress–strain hysteresis of marten-
sitic transformations. They were not designed however to capture the emergence of
transformation-induced defects and the complexity of avalanches in martensites.
Indeed, they traditionally aimed for analytical transparency by assuming simple
topologies (e.g. 1D chains) and neglecting spatial heterogeneity.

6.3 Homogeneous Deformations of Bravais Lattices

The deformation of martensites is highly heterogeneous but, before dealing with such
heterogeneities, it is instructive to study the subtleties of homogeneous deformations
of crystalline solids [56–61]. Let us consider 2D crystals (nets) as a benchmark. Its
structure is given by a simple Bravais lattice, defined mathematically as a discrete
set of points in the Euclidean space,

L (ua) = {R ∈ R
2 : R = naua, na ∈ Z}. (6.4)

Here, the Einstein’s summation rule is used. R gives the position of atoms and {n1, n2}
are the components of R in the lattice basis defined by the independent pair of vectors
{u1, u2}.

A homogeneous deformation transforms a lattice L (ua) into a new one, L (va),
spanned by basis vectors {v1, v2} which are linearly related to the original lattice vec-
tors, i.e. va = Fb

a ub. Here, {Fb
a ; a, b = 1, 2} are real-valued elements of an invertible

matrix F. Figure 6.2 shows a homogeneous deformation of a square lattice by a direct
shear of magnitude β given by the deformation matrix,

1A snap-spring in elastic materials can be viewed as the analogue of a spin in magnetic materials.
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Fig. 6.2 Direct shear of a square lattice corresponding to the deformation matrix F given by (6.5).
The lattice parameter is a. Different panels correspond to different values of the shear parameter
β. The shaded squares in a and c show that the lattice is identical for β = 0 and β = a (assuming
that the lattices extend to infinity). In contrast, the lattice basis vectors, {u1, u2}, are not identical
in a and c

F =
(

1 0
β/a 1

)
, (6.5)

where a is the spacing of the square lattice.
Some deformations lead to new lattices that are identical to the original one, i.e.

lattices are symmetric with respect to certain deformations. Such symmetries can be
classified into two fundamental types. The first one is the symmetry under orthogonal
transformations (i.e. rotations and reflections) and the second is linked to the fact
that there are infinitely many different bases describing the same Bravais lattice. We
discuss each symmetry type separately in Sects. 6.3.1 and 6.3.2. We then use the
developed concepts to distinguish between weak and reconstructive transformations
and describe the energy of a crystal under homogeneous deformations.

6.3.1 Orthogonal Transformations

The relative position of points in Bravais lattices remains unchanged for deformations
induced by an orthogonal matrix, i.e. for F = Q ∈ O(2). The physical properties of
lattices must then be invariant under such transformations. This means that they must
be functions of the lattice metric, C, which is a 2 × 2 Gram matrix with elements
given by,

Cab = uT
a ub. (6.6)

Following this observation, a lattice L (ua) can be defined in terms of the corre-
sponding metric and denoted as L (C). All nets can be represented by a point in the
metric space M spanned by the elements of C. Due to the symmetry C12 = C21,
all 2D nets can in fact be described in terms of three independent matrix elements,
{C11, C12, C22}.
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Fig. 6.3 Fundamental domain, FD, in the lattice metric space M spanned by the independent
matrix elements, {C11, C12, C22}. (Left panel) The brown (dark gray) wedge-shaped region shows
the Lagrange FD (6.7). The dashed line indicates the path associated with the shear deformation
given by the matrix in (6.5). The points a, b and c correspond to the lattices shown in Fig. 6.2.
The blue (light gray) plane corresponds to the locus of points satisfying C11 + C22 = 1. The thick
black triangle shows the boundaries of the region where FD intersects the plane C11 + C22 = 1.
(Right panel) The blue (light gray) triangular domain shows the intersection of the FD with the
plane C11 + C22 = 1 projected on the (C11, C12) plane. The schematic shapes indicate the different
lattice groups: oblique (inside the triangle), rectangular (horizontal line with C12 = 0), fat rhombic
(vertical line with C11 = 1/2), skinny rhombic (diagonal line with C12 = 1

2 C11) and hexagonal
(C11 = 1/2 and C12 = 1/4)

The six types of Bravais lattices in 2D can be represented in a subset ofM referred
to as a fundamental domain (FD). A possible choice for FD is the wedge-shaped
domain shown in Fig. 6.3(left) which defines the Lagrange FD [59]:

FD =
{

C ∈ M , 0 < C11 ≤ C22, 0 ≤ C12 ≤ C11

2

}
. (6.7)

As shown below, this is just one of the infinitely many possible choices for an FD. In
Fig. 6.3(left), the points inside the domain (excluding the boundaries) correspond to
oblique (O) lattices. Rectangular (R) lattices are located on the C12 = 0 plane; square
(S) lattices correspond to the limiting case along the line C11 = C22. Rhombic (R)
lattices are located on the vertical plane along the line with C11 = C22 and the inclined
plane with C11 = 2C12. Hexagonal (H) lattices are located at the intersection of the
latter two planes. The location of different lattice types can be better visualised in
the intersection of the FD with the plane C11 + C22 = 1 (Fig. 6.3(right)).

6.3.2 Equivalent Lattices

A lattice base defines a unique Bravais lattice but the contrary is not true. Indeed,
there are infinitely many bases which generate the same lattice (Fig. 6.4 shows some
examples). The necessary and sufficient condition for two bases, ua and va, to
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Fig. 6.4 Examples of
different lattice bases
generating a rectangular
lattice

represent the same lattice is that va = mb
aub. Here, mb

a are integer entries of 2 × 2
matrices m with det m = ±1, i.e. matrices belonging to the general linear group
GL(2,Z). Figure 6.4 shows three different bases, ua, va and wa spanning the same
rectangular lattice. The bases va and wa are related to ua by the matrices

mv =
(

1 0
2 1

)
and mw =

(−1 0
0 −1

)
,

respectively. The metric C changes as C′ = mCmT under the action of matrices
m ∈ GL(2,Z).

The equivalence of lattices spanned by different basis vectors implies that there
are infinitely many copies of each lattice type in M . For instance, the three different
lattice bases shown in Fig. 6.4 give three different copies Cu, Cv and Cw in M of the
same rectangular lattice.

The concept of fundamental domain introduced in Sect. 6.3.1 can be more rigor-
ously defined as a subset of M containing one and only one copy of any given lattice
under the action of m ∈ GL(2,Z). This means that a given point in a fundamental
domain, FD, transforms to a different point in the metric space, C′ = mCmT , which
is necessarily outside FD for any m ∈ GL(2,Z) different from the identity. In the
example of Fig. 6.4, Cu belongs to the Lagrange FD; Cv and Cw are outside this
domain. Lattice invariance under m ∈ GL(2,Z) also implies that there are infinitely
many copies of a given fundamental domain in the metric space (see Fig. 6.5).

6.3.3 Weak and Reconstructive Transformations

Some matrices m ∈ GL(2,Z) correspond to orthogonal transformations, Q ∈ O(2),
meaning that they induce a rotation or reflection which transforms the lattice back
into itself, i.e. C = mCmT . Such matrices provide a formal definition of the lattice
group G (C) of any lattice L (C). As depicted in Fig. 6.3(right), there are six dif-
ferent lattice groups for nets [58, 59]: square (S), oblique (O), rectangular (R), fat
rhombic (F-Rh), skinny rhombic (S-Rh) and hexagonal (H). Lattice groups are finite
subgroups of the global symmetry group GL(2,Z) and, as such, are not sufficient to
capture all the symmetries of crystalline solids. In spite of that, a description in terms
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Fig. 6.5 Intersection of the metric space M with the plane C11 + C22 = 1 projected on the
(C11, C12) plane. The dashed domain corresponds to the EPN of the square lattice at (C11, C12) =
(1/2, 0). The dotted triangles show copies of the fundamental domain outside the EPN of the
square lattice. The dashed thick line shows the path of the lattice under a shear deformation. Energy
wells for square austenite and oblique martensite are shown by circles with solid and dashed lines,
respectively. The four variants of oblique martensite within the EPN of square S0 are denoted as
O1 − O4. O−

1 , O+
2 and S±

0 are copies of the lattices O1, O2 and S0, respectively, which lay outside
the S0 EPN

Fig. 6.6 Group-subgroup
relationships between the six
lattice groups of nets (S:
square, O: oblique, R:
rectangular, F-Rh: fat
rhombic, S-Rh: skinny
rhombic and H: hexagonal)

of only lattice groups can be suitable for weak structural phase changes between
lattices L (C) and L (C′) that have a group-subgroup relationship, G (C) ⊆ G (C′).
Figure 6.6 shows the possible structural changes in 2D with a lattice group-subgroup
relationship. A number of Landau theories which only account for lattice group
symmetries have been proposed to study structural phase transitions in ferroelas-
tic materials and martensites [87–93]. Such theories can successfully describe phase
transitions leading to small deformations which are typically the case in ferroelastics.
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Indeed, a necessary condition for two lattices L (C) and L (C′) to have a group-
subgroup relationship is that C′ corresponds to a sufficiently small deformation of C.
More precisely, C′ must be restricted to a sufficiently small open2 neighbourhood of
C in the space M . This is the so-called Ericksen–Pitteri neighbourhood (EPN) of C
which was formally introduced in [56, 94] (see also [58, 59, 61, 95]). For example,
the dashed region in Fig. 6.5 is the EPN for the square lattice (the boundaries are
excluded). To explore the concept, let us consider again the direct shear of magnitude
β with deformation matrix given by (6.5); the deformed lattice describes the trajectory
C′(β) in M indicated by the dashed line in Fig. 6.3(left). For values of 0 < β < a/2,
the deformed lattice is oblique (O1) and it is a subgroup of the square lattice group
(see Fig. 6.6). In contrast, for β = a/2, C′ reaches the skinny rhombic lattice group
which is not a subgroup of the square lattice. At this point, the system reaches the
boundary of the EPN for the original square lattice, S0. Note that the lattice group
at the boundary does not have a group-subgroup relationship with the square lattice,
thus illustrating the idea that the EPNs are open domains in M .

Increasing β beyond the EPN of C leads to lattices that cannot be related to lattices
in the EPN by elements of the lattice group G (C). Phase transitions inducing large
deformations that go beyond the EPN of the parent lattice are reconstructive [96]
and, strictly speaking, require dealing with the global symmetry group (GL(2,Z) for
nets). Nevertheless, dealing with the global symmetry group is challenging and the
global periodicity of the lattice is often approximated using transcendental periodic
order parameters [96–98].

6.3.4 The Energy of a Crystalline Solid

The energy of a lattice is a function of the relative position of atoms and the temper-
ature, T . For homogeneous lattices, the relative position of atoms is fully determined
by the lattice vectors and the energy must be invariant under the symmetry transfor-
mations described in Sects. 6.3.1 and 6.3.2. For a 2D Bravais lattice, these symmetries
imply that the energy is a function φ̃(C; T) of the lattice metric C (cf. (6.6)) which
must be invariant under the action of matrices m ∈ GL(2,Z), i.e.

φ̃(C; T) = φ̃(mCmT ; T). (6.8)

At a given temperature, stable lattices correspond to metrics C that minimise
φ̃(C; T). Note that the global symmetry given by (6.8) implies that every stable lat-
tice is represented by infinitely many energy wells in M . Minimisers of φ̃(C; T)

at high and low temperatures correspond to the structure in austenite and marten-
site, respectively. For instance, the EPN of the square lattice in a square to oblique

2Meaning that the boundaries of the neighbourhood do not belong to the neighbourhood itself.
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transition contains the well for the square parent phase, S0, and four wells of oblique
(O1 − O4); these wells are infinitely replicated inM outside the S0 EPN (see Fig. 6.5).

In the study of martensitic transformations, it is convenient to take the lattice in
austenite as a reference and measure the change of energy associated with deforma-
tions from such structure. Let ua and va = Fb

a ub be the lattice vectors of the austenite
structure and a deformed lattice, respectively. The energy of the deformed lattice can
be written as a function of the stretch tensor [58], E = (FT F − I)/2, as follows:

φ(E; T) = φ̃(uT
a (2E + I)ub; T) − φ̃(uT

a ub; T), (6.9)

where I is the identity matrix. The reference lattice corresponds to F = I or, equiv-
alently to E = 0, and has energy φ(0) = 0.

For nets, E is a 2 × 2 symmetric matrix containing at most three independent
elements. Any transformation path in M can therefore be parametrised by three
scalar quantities e, e′ and e′′. Transitions between different energy wells in M are
associated with non-convex dependence of the energy on one or more of these scalar
parameters. Here we illustrate the effects of the energy periodicity following the
assumption proposed in [27, 54] that φ(e, e′, e′′) is a non-convex function of one of
the parameters, e, and it is convex with respect to e′ and e′′. More explicitly, we use
the following expression for the energy:

φ(e, e′, e′′) = f (e, h′; T) + C′

2
(e′)2 + C′′

2
(e′′)2, (6.10)

where C′ and C′′ are elastic constants and f (e, h′; T) is a non-convex function of e;
the variable h′ is a stress coupled to e.

For a square-oblique transition as the one shown by the dashed line in Fig. 6.5, we
approximate f (e, h′; T) by a piece-wise parabolic function of the direct shear strain
parameter, e = β/a (cf. (6.5)):

f (e, h′; T) =
1∑

s=−1

∑
d∈Z

[
1

2
(e − w(s, d))2 + g(T)s2 − h′e

]

× Θ(e − e−(s, d))Θ(e+(s, d) − e). (6.11)

Fig. 6.7 shows a plot of f (e, h′; T) as a function of e at fixed temperature. In (6.11),
Θ(x) is the Heaviside step function which is zero for x < 0 and one for x ≥ 0. The
domain of periodicity of the energy is given by the integer variable d which takes
the value d = 0 for the EPN of S0. For given d, the variable s may take the value 0
or ±1 for austenite and the two variants of oblique martensite, respectively. The bot-
toms of the wells are located at e = w(s, d) = d + εs, where ε is the transformation
strain. Weak transformations correspond to values of ε < 1/2; reconstructive trans-
formations correspond to the limiting value ε = 1/2. The energy difference between
martensite and austenite wells is g(T) which acts as a driving parameter for thermally
driven phase transitions, analogous to the driving parameter in the RFBEG described
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s = −1 s = 0 s = +1
d = −1 d = 0 d = +1

e1 1/2 ε 0 ε 1/2 1

f(e;T )

g(T )

EPN

S−
0 O−

1
O2 S0 O1 O+

2 S+
0

Fig. 6.7 Piece-wise parabolic approximation of the energy of a solid undergoing a square-oblique
martensitic phase transition through a direct shear e (e.g. follows a path in M indicated by the
dashed line in Fig. 6.5). The shaded region shows the EPN of the S0 square net which is used as a
reference frame. The insets on top show the shape of the element corresponding to the bottoms of
the wells. The dashed lines indicate the lattice structure; the shapes of the mesoscopic elements are
shown in red. The shapes in the domain with d = 0 correspond to elements in square austenite, S0,
and two variants of martensite, O1 and O2. The rest of shapes are slipped lattices identical to those
of the basic shapes (compare the dashed lines). [Adapted from [27], Fig. 1, pp. 075501–2]

in Sect. 6.2.3. The functions e± give the limits of stability of each well which depend
on g(T) and the well identity variables s and d as follows:

e±(s, d) =

⎧⎪⎨
⎪⎩

εs + d ± (ε/2 + g/ε), AM phase change, s = 0 → s′ = ±1,

εs + d ± (ε/2 − g/ε), MA phase change, s = ∓1 → s′ = 0,

εs + d ± (1 − 2ε)/2, Slip, (s, d) = (±1, d) → (s′, d′) = (∓1, d ± 1).

(6.12)

Here, AM and MA refer to Austenite-Martensite and Martensite-Austenite phase
changes, respectively.

6.4 Heterogeneous Deformations. Mesoscopic Description

In order to account for the complex microstructure of martensites, the theory
described in Sect. 6.3 must be extended to incorporate heterogeneous deformations.
Mesoscopic models [27, 54, 99] exploit the fact that the deformation in the marten-
sitic phase is in fact homogeneous within domains of linear dimensions which range
from several nanometres to millimetres. In 2D crystals, such domains represent
homogeneous regions at mesoscopic scales between atomistic (∼Å) and macro-
scopic (∼cm) distances. Following this observation, mesoscopic models capture the
heterogeneity of deformations by assuming a set of elastically compatible elements
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which mechanically behave as multi-stable snap-springs [27, 54]. Each snap-spring
represents a homogeneous deformation at mesoscopic scales but an ensemble of
snap-springs can describe heterogeneous deformations at macroscopic scales. Sim-
ilar approaches have been applied to study the plastic deformation of crystals
[100, 101] and amorphous solids [102]. For crystals with typical lattice spacings
around 5Å, the linear dimension of martensite domains corresponds to 10 − 106 lat-
tice units. Accordingly, a snap-spring can be well approximated by an infinite lattice
in most cases so that its deformation obeys the rules given in Sect. 6.3. In the limit of
very small snap-springs compared to the crystal, this assumption becomes equivalent
to the Cauchy–Born rule used to derive continuum theories of lattices [58, 60]. In
such theories, snap-springs become points r in the continuum space occupied by
the solid. The Cauchy–Born rule assumes that, under a deformation field F(r), the
lattice vectors at r transform as va(r) = Fb

a (r)ub(r), i.e. transform as a homogeneous
infinite lattice located at a point r.

Elastic compatibility between adjacent snap-springs means that they must fit
together perfectly. This imposes constraints on the discrete deformation field, F(r),
defined by snap-springs [103]. Here, r = (i, j) is the coordinate of a snap-spring in
the square grid of snap-springs, as indicated in Fig. 6.8. For relatively small defor-
mations (linear elasticity), the constraints are given by the St. Venant compatibility
[90, 91, 99],

Δ × (Δ × El(r))T = 0, (6.13)

(a)

(b)

Fig. 6.8 a Description of the deformation of a 2D solid in terms of mesoscopic kinematically
compatible elements (snap-springs) placed on a square grid. The lattice structure of the snap-
springs marked by O2 is oblique and belongs to the EPN of the square lattice S0 (see Fig. 6.5). The
snap-spring in the well O−

1 also corresponds to an oblique lattice but it is outside the EPN of S0.
Such lattice is shown in the inset where two possible bases are indicated. The base {v1, v2} shows
that the lattice is just a copy of the lattice O1 outside the S0 EPN. b Identical deformation field as
in a showing that a mixture of snap-springs belonging to different EPNs (in this case O2 and O−

1 )
can be viewed as a solid with mesoscopic dislocations



114 F.J. Perez-Reche

where El(r) is the stress tensor which approximates the stretch tensor in linear
elasticity. The symbol Δ is a discrete difference operator analogous to the gradient
vector in continuum systems. Given a field A(r), it acts as ΔA(r) = (A(i + 1, j) −
A(i, j), A(i, j + 1) − A(i, j)).

The snap-spring model provides a unified description of phase transitions (between
wells within an EPN) and slip (transitions between energy wells belonging to different
EPNs). Note that a compatible deformation field F(r) can involve snap-springs that do
not belong to the same EPN (cf. snap-springs in wells O2 and O−

1 in Fig. 6.8). There-
fore, slip does not necessarily lead to a violation of elastic compatibility between
snap-springs.

An interesting consequence of elastic compatibility in heterogeneous deformation
fields is that slip can occur locally [104] even when the phase transition of isolated
snap-springs is weak (i.e. when martensite wells belong to the EPN of austenite).
Recall that the theory described in Sect. 6.3.3 would only predict the occurrence of
slip for reconstructive transitions. In contrast, local slip is indeed possible for hetero-
geneous weak deformations due to elastic compatibility which brings an interaction
between snap-springs that may force some of them to explore regions of M outside
the EPN of the parent phase. We then conclude that slip is much more frequent in
heterogeneous deformations than it is for homogeneous crystals. In addition, the
EPN concept is not enough to determine the conditions for slip in heterogeneous
deformation fields.

Figure 6.9 shows a phase diagram presented in [54] that quantifies the possible
slip within a snap-spring due to interaction with other snap-springs in the crystal.
The stability boundaries for the martensite and the austenite phases can be derived

Fig. 6.9 Slip phase diagram
for a snap-spring in the space
(ε, g(T)). The inset indicates
the energy barriers h1, h2 and
h3 used to define three
characteristic zones in the
domain of phase coexistence
SOT [Adapted from [54],
Fig. 5]
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from the limits given by (6.12) and are indicated by the lines OS and OT, respec-
tively. The possibility of slip in weak transformations can be heuristically analysed
by comparing the energy barriers indicated in the inset of the figure for each transi-
tion type: austenite-martensite (h1), martensite-austenite (h2) and slip (h3). One can
distinguish three regions in the space (ε, g(T)). In region 1, h3 > h1 and slip can
be typically neglected. In region 2, h2 < h3 < h1 and slip is possible but not likely.
Finally, in region 3 the barriers satisfy h3 < h2 < h1 meaning that the barrier for slip
is smaller than the rest and slip may easily develop. Note that region 3 is close to
the limit ε = 1/2 for reconstructive transitions but plasticity can already develop for
ε < 1/2.

Following the arguments presented in Sect. 6.3.4, the deformation of a snap-spring
i can be given by three scalar parameters ei, e′

i and e′′
i . The energy of a solid consisting

of N snap-springs can then be expressed as a sum over the energies of individual
snap-springs as follows:

Φsolid(e, e′, e′′) =
N∑

i=1

φ(ei, e′
i, e′′

i ), (6.14)

where e = {ei; i = 1, 2, . . . , N}; the sets e′ and e′′ are defined analogously. Here,
one should also keep in mind that the parameters e, e′ and e′′ are not independent
from each other due to elastic compatibility.

6.5 The Random Snap-Spring Model (RSSM)

Mesoscopic models of the type described in the previous section were proposed in
[27, 28, 54] and [55] for thermally and mechanically driven materials, respectively.
In this section, we present an extended formulation of these models to encompass
the two types of driving.

The energy Φ of the system consists of two contributions, Φsolid and Φmech, asso-
ciated with the crystal (see (6.14)) and the mechanical load, respectively.

Φ = Φsolid + Φmech. (6.15)

As shown in the scheme of Fig. 6.10, mechanical driving is applied through an
elastic device attached to the system. The driving parameter is the global “elongation”
of the system, eG , which is assumed to be parallel to the order parameter e for
simplicity. The energy associated with the loading device is

Φmech = cN

2
(eG − ē)2, (6.16)



116 F.J. Perez-Reche

Material

Position
controlled

cN

T,  e

eG

Fig. 6.10 Schematic representation of a solid attached to an elastic loading device with stiffness
c N . Structural phase changes can be induced by sweeping the temperature, T , or the global strain
of the system, eG , by controlling the position of the loading device

where ē = 1
N

∑N
i=1 ei is the average strain of the system of snap-springs. The stiffness

of the loading device is c N ≥ 0, where c is an specific stiffness which is assumed to
be independent of the system size. The energy Φsolid increases with the system size
(i.e. it is extensive). By defining the stiffness c N as an extensive variable we make
sure that the energy Φmech is also extensive and can represent a finite contribution to
the total energy irrespective of the system size N . In addition, chosing an extensive
stiffness ensures that finite elongations of the loading device, eG − ē, can represent a
non-zero driving force for the snap-spring system irrespective of N . The value of the
specific stiffness, c, can vary between 0 and ∞. The limit as c = ∞ defines a hard
device where the loading parameter must be eG = ē in order for Φmech and thus Φ to
be finite. In this case, controlling eG is equivalent to controlling the average strain of
the system. In the opposite limit as c → 0, the driving force vanishes unless e → ∞
and the product ceG remains finite. This is a situation in which the system is loaded
by a very soft spring with large elongation and controlling e becomes equivalent to
applying a stress σ ≡ ceG .

The energy of the solid is assumed to be given by (6.14) with φ(ei, e′
i, e′′

i ) taking
the form proposed in (6.10), i.e.

Φsolid(e, e′, e′′) =
N∑

i=1

[
f (ei, h′

i; T) + C′

2
(e′

i)
2 + C′′

2
(e′′

i )
2

]
, (6.17)

where fi(ei, h′
i; T) is given by (6.11). The local stress variables, {h′

i}, are defined as
quenched random variables analogous to the random fields in random-field models
(see Sect. 6.2). Within the context of the RSSM, random fields provide an effective
description of the effects of, e.g. local impurities or dislocations at atomic scales
(crystal dislocations). Point defects are responsible for interesting effects in marten-
sites such as tweed precursors or strain-glass behaviour [105]. Such phenomena
have been modelled for weak transformations using Landau theories [93, 106–108]
and spin models [43, 109]. By including quenched random fields in the RSSM, we
extend such theories to account for evolving disorder associated with transformation-
induced slip and its interplay with quenched disorder (see Sect. 6.6). Crystal dislo-
cations are also an important factor in martensites. Arbitrary distributions of crystal
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dislocations within snap-springs may in general lead to a non-zero Burgers vector
at mesoscopic scales and this translates into a lack of elastic compatibility between
snap-springs. The non-compatibility effects were analysed in [110, 111] using Lan-
dau theories for weak phase transitions. In principle, such methods could be extended
to be included in the model described here. We will however focus on systems with
particular distributions of crystal dislocations giving a zero net Burgers vector within
snap-springs so that snap-springs are elastically compatible.

The system is either thermally or mechanically driven through variation of the
parameter g(T) or the global elongation eG , respectively. Under quasistatic driving
and negligible thermal fluctuations [38, 112], the model exhibits avalanche dynam-
ics which can be described in terms of automata [27, 54]. Avalanche dynamics are
characterised by quiescent periods in which the system remains in a local energy
minimum with fixed configuration fields s = {si,j} and d = {di,j} interrupted by
avalanches leading to changes in s and/or d. Avalanches start when the stability
condition e− < ei < e+ is violated by at least one snap-spring i and stop when the
condition is again satisfied by all snap-springs. We now describe the steps followed
to obtain an automaton representation of the model.

The relaxation of the harmonic variables e′ and e′′ is assumed to be instanta-
neous with respect to the time scales of both driving and relaxation of the primary
order parameter, e. In this case, e′ and e′′ can be adiabatically eliminated by set-
ting ∂Φ/∂e′

i = 0 and ∂Φ/∂e′′
i = 0 subject to the elastic compatibility conditions

[90, 91, 99]. This allows the energy of the system to be expressed in terms of the
primary order parameter only [27, 28, 54]:

Φ̃(e) = 1

2

N∑
i,j=1

Kijeiej +
N∑

i=1

fi(ei, h′
i; T) + cN

2
(eG − ē)2. (6.18)

From this expression, the RSSM can be viewed as a set of snap-springs with energy
fi(ei, h′

i; T) which, due to elastic compatibility, interact with an interaction kernel
K = {Kij}.

The variables e are assumed to obey overdamped dynamics given by the following
set of equations:

1

γ

∂ei

∂t
= −∂Φ̃

∂ei
, i = 1, 2, . . . , N, (6.19)

where γ is the ratio between the rate of relaxation of the system to the local minimum
of energy and the rate of driving. In the quasistatic limit, γ → ∞, and the left hand
side in (6.19) vanishes. As a result, the dynamics project onto the local minima of Φ̃

which form a discrete set of branches with state variables e(eG; s, d). Each branch
corresponds to a different configuration of s and d. Minimization of Φ̃ gives the
following expression for the strain along equilibrium branches:
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ei = cki

1 + ck∞
eG + ε

N∑
j=1

(
Jij − kij(c)

N

)
sj +

N∑
j=1

(
Jij − kij(c)

N

)
dj + hi. (6.20)

Here, {Jij} are the elements of a matrix J = (I + K)−1, hi = ∑
j Jijh′

j are renormalised

disorder variables, ki = ∑
j Jij, k∞ = 1

N

∑
i ki, and {kij(c)} are the elements of an

effective stiffness matrix defined as

kij(c) = ckikj

1 + ck∞
. (6.21)

The values taken by kij(c) are limited to the interval 0 ≤ kij < kikj/k∞ where the
lower and upper bounds correspond to c = 0 and c → ∞, respectively.

6.5.1 The RSSM as a Random-Field Model

Comparison of (6.20) with the local field for the RFIM (6.2) reveals that, along the
equilibrium branches, the RSSM behaves as a random-field model with applied field
proportional to eG , and two types of random fields. The first type, hi, represents
generic heterogeneity while the second type,

hs
i =

N∑
j=1

(
Jij − kij(c)

N

)
dj (6.22)

is associated with slip. We will assume that random fields, hi, are quenched and
are given by a Gaussian distribution with zero mean and standard deviation r. In
contrast, slip fields, hs

i are not quenched in general since they are associated with the
slip variables, d, which evolve as the system is driven through the phase transition
and slip is generated.

The behaviour of the RSSM along equilibrium branches reduces to that of a
random-field model for the discrete variables si and di. The interaction between
these variables consists of two contributions: the kernel J = {Jij} originated by elastic
compatibility and an infinite-range contribution kij(c)/N associated with the stiffness
of the mechanical constraint.

Substituting the strain given by (6.20) in (6.18) and using (6.11) with wi =
εsi + di one gets the following energy for the RSSM along equilibrium branches:

Φ̂ = Φss + Φdd + Φsd + Φh + Φmech. (6.23)

Here, we have neglected constant contributions and have defined
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Φ̂ss = −ε2

2

∑
i,j

(
Jij − kij(c)

N
− 2

g(T)

ε2
δij

)
sisj, (6.24)

Φ̂dd = −1

2

∑
i,j

(
Jij − kij(c)

N

)
didj, (6.25)

Φ̂sd = −ε
∑

i,j

(
Jij − kij(c)

N

)
sidj, (6.26)

Φ̂h = −
∑

i

hi(εsi + di), (6.27)

Φ̂mech = cNeG

1 + ck∞

(
eG

2
− k∞

N

∑
i

(εsi + di)

)
. (6.28)

The contribution Φ̂ss gives the interaction between snap-springs associated with their
phase state, s. Φ̂dd gives an analogous interaction for the slip state, d. The energy Φ̂sd

gives the interaction between phase transition and slip. Φ̂h accounts for the effects
of snap-spring heterogeneity on the phase and slip states of snap-springs. Finally,
Φ̂mech is the energy associated with the mechanical loading.

6.6 Thermally-Driven Transformations

In order to illustrate the behaviour of thermally-driven structural transformations,
we study the RSSM for mechanically unconstrained 2D solids by setting c = 0. The
interaction kernel, J, can in principle be explicitly calculated through minimisation
of the energy of the system with respect to the strain fields e, e′, e′′, as described
in Sect. 6.5. An explicit calculation of this type is presented in [28] for a highly
anisotropic model which makes the calculation more tractable. A simpler alternative
method consists in assuming periodic boundary conditions and then calculate the
Fourier transform of the kernel K in (6.18) from which one can obtain J = (K +
I)−1 [90, 91, 100, 101, 107]. Irrespective of the method used to calculate the kernel
J, one always finds the following key features: anysotropy, sign indefiniteness and
long-range decay. For illustration purposes, here we assume a short-range anisotropic
and non-positive definite J as in [27, 54]; more realistic long-range interactions have
been considered in [28] within a similar setting. We use the following kernel:

Jij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J0, i = j

J1 > 0, i n.n. j

−J2 < 0, i n.n.n. j

0, otherwise,

(6.29)
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where ‘n.n.’ and ‘n.n.n.’ indicate nearest and next-to-nearest neighbors, respectively.
We further assume that

∑
i,j Jij = 0 which ensures that the inhomogeneity of the

field w = εs + d is penalised. For snap-springs on a square grid, this condition gives
J0 = −4(J1 − J2).

In the following two subsections, we present results obtained through numerical
simulation of a 501 × 501 ensemble of snap-springs placed on a square grid with
open boundary conditions. The interaction terms are set to J1 = 0.062 and J2 = 0.03.
The system is initially prepared in a homogeneous austenite phase with a minimal
dislocation loop in the centre. Thermal loading is applied by cyclically sweeping
g(T) through the complete transformation.

6.6.1 Evolution of Slip in Systems Without Quenched
Disorder

We now study the effect of transformation-induced defects in systems in which the
only source of heterogeneity between snap-springs is associated with the slip field
d; Gaussian quenched disorder is set to r = 0.

Figure 6.11 shows the results for a system with ε = 0.47 inside region 3 in Fig. 6.9
where transformation-induced slip is expected. The upper panels in Fig. 6.11a show
the spatial distribution of s in the martensitic phase after cycle 1 and after cycle
1000. The complexity of the phase microstructure clearly increases during the train-
ing period. In the lower panels one can see that the system develops some slip
(d = 0) induced by the phase transition. The increase of slip with thermal cycling is
clear in Fig. 6.11b which shows the density ρ of nearest neighbor snap-prings with
differing values of di. As argued in Sect. 6.4 and illustrated in Fig. 6.8, neighbouring
snap-springs with different values of di imply dislocations at a mesoscopic scale.
Accordingly, the density ρ is a measure of the dislocation density at a mesoscale.
The evolution of ρ is marked by a steep initial increase (training period) which after
approximately 150 cycles leads to a steady regime (shakedown).

Figure 6.11c shows the distribution of avalanche sizes, Dint(S), calculated by pool-
ing avalanches observed during complete cooling runs. Dint(S) evolves from a super-
critical behaviour (peak at large values of S) during the first cycles towards a power
law, Dint(S) ∼ Sτ ′

, in the steady state regime. A peak at large values of S indicates
the occurrence of a snap event as in the low-disorder regime of random-field models
presented in Sect. 6.2. The exponent of the power-law in the steady state regime takes
a value τ ′ � 1.2 which is compatible with the exponent for a 2D RFBEG [40]. These
results suggest that thermal cycling generates slip disorder that allows the system to
cross a critical manifold associated with an OD transition of the type observed for
random-field models with nucleation dynamics. In [28] we present a more detailed
analysis of the origin of robust criticality in the RSSM and its link to OD critical
transitions. We find a different value for the exponent τ ′

LR � 1.6 when consider-
ing a more realistic long-range interaction kernel J. Training effects predicted by
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Fig. 6.11 Evolution under thermal cycling of a solid without quenched disorder undergoing a close
to reconstructive transition with ε = 0.47. a The upper and lower panels show the phase (s) and
slip (d) microstructures, respectively, after cycle 1 and cycle 1000. A dislocation loop was initially
placed in the centre of the system. b Dislocation density ρ during the first 1000 cycles. c Distribution
of the avalanche sizes, Dint(S), after cycle 1 (triangles) and in the stationary state after 1000 cycles
(squares)

models with short-range interactions are qualitatively similar to those observed for
long-range interactions but the universality of critical avalanches is different.

6.6.2 Interplay Between Quenched and Evolving Disorder

We now explore the combined effect of Gaussian quenched disorder in intrinsically
disordered solids and evolving slip disorder induced through thermal cycling. The
predictions of this study are relevant to solids with impurities exhibiting, e.g., tweed
precursors or strain-glass phases [105]. We consider a system with smaller transfor-
mation strain than in the previous section, ε = 0.46, such that slip generated in the
absence of quenched disorder is negligible (see the panels for r = 0 in Fig. 6.12). In
general, the amount of transformation-induced slip increases for increasing degree
of quenched disorder (see panels for r = 0.06 and r = 0.08 in Fig. 6.12). In other
words, the RSSM predicts that a large amount of quenched microscopic defects
will typically induce larger amounts of transformation-induced slip. The density of
dislocations in systems with quenched disorder, r > 0, takes larger values than for
systems with r = 0 and also takes longer to reach a steady state (compare Fig. 6.13a
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Fig. 6.12 Systems with quenched and evolving disorder after 1000 cycles. The transformation
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Fig. 6.13 a Dislocation density, ρ, during 5000 cycles in a system with quenched disorder r = 0.06
and transformation strain ε = 0.46. b Avalanche size distribution pooling avalanches registered
during cycles 1 − 1000 and 2000 − 5000

and Fig. 6.11b). The avalanche size distribution, Dint(S), is also affected by the degree
of quenched disorder. Systems with large enough r develop high levels of slip under
thermal cycling and obey a subcritical Dint(S) (i.e. an exponential decay for large S),
reminiscent of the response of random-field models in the pop regime. In addition,
the cut-off of Dint(S) at large avalanche sizes becomes increasingly pronounced as
the levels of slip increase with cycling (see Fig. 6.13b).
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6.7 Mechanically-Driven Transformations

This section presents some predictions of the RSSM for mechanically-driven sys-
tems [55]. We consider weak transformations with ε → 0 so that slip can be
neglected. In this regime, it is useful to set ε as the unit for strain in such a way that
the bottom of the martensite wells are located at e = ±ε = ±1. Let us also assume a
particular case at low temperature, g(T) < −ε2/2, so that all the snap-springs are in
the martensitic phase. The resulting energy for a snap-spring, f (e, h′; T) (cf. (6.11)),
is illustrated in Fig. 6.14. These conditions correspond to the shape-memory regime
in shape-memory alloys [31, 32]. In the following subsections, we present the stress–
strain curves, transformation mechanisms and avalanche statistics predicted by the
RSSM depending on the degree of quenched disorder, r, and stiffness of the loading
device, c.

In the numerical simulations presented below, the system is initially prepared
in a state with all snap-springs in the variant s = −1. The global elongation, eG ,
is then quasistatically increased until all the snap-springs have transformed to the
variant s = +1. We assume relatively simple settings for the snap-spring ensemble.
The snap-springs are placed on the nodes of a simple cubic lattice of linear size
L = N1/3. This will allow us to compare with the well-studied zero-temperature
RFIM in 3D. The interaction kernel J takes a short-range form with Jii = J0 ≥ 0,
Jij = J1 > 0 between nearest neighbors, and Jij = 0 beyond nearest neighbors (in
numerical simulations, we set J0 = J1 = 1). The non-negative character of the kernel
ensures that the fraction f+ = (

∑
i si/N + 1)/2 of snap-springs in the variant s = +1

increases monotonically with increasing eG (i.e. no backward flips occur). We use
periodic boundary conditions such that the quantity ki = ∑

j Jij does not depend on i
and takes the value k∞ = J0 + 6J1 for snap-springs on a cubic lattice. The elements
of the effective stiffness matrix kij defined in (6.21) are all equal to

k(c) = k∞
[

ck∞
1 + ck∞

]
. (6.30)

Fig. 6.14 Piece-wise
parabolic energy for a
snap-spring at low
temperature in the limit of
small transformation strain,
ε, which is taken as the strain
unit

e
h’-1 h’+1

f(e,h’;T)

0

s 
= 

+1

s = -1
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Within this simplified setting, the behaviour of the RSSM along equilibrium branches
can be mapped to the RFIM described in Sect. 6.2 with nearest-neighbour interaction,
J, and an infinite-range interaction, Jinf = k(c).

6.7.1 Stress–Strain Curves

The stress is an intensive quantity defined as σ = N−1 ∂Φ
∂eG

which, from (6.15), (6.16)
and (6.17) reads as

σ = c(eG − ē). (6.31)

The average strain along the equilibrium branches can be obtained by introducing
the equilibrium values ei from (6.20) in the definition ē = 1

N

∑
i ei. One obtains,

ē = 1

1 + ck∞

(
ck∞eG +

∑
i kiwi

N

)
. (6.32)

The stress corresponding to the equilibrium branches can be obtained from (6.32)
and (6.31) which give

σ = c

1 + ck∞

[
eG −

∑
i kiwi

N

]
. (6.33)

The soft-device limit corresponds to c → 0 with finite ceG which gives ki = 0 and
σ = ceG , as argued in Sect. 6.5. The limit c → ∞ corresponds to a hard device with
stress

σ = 1

k∞

[
eG −

∑
i kiwi

N

]
. (6.34)

The stress (6.32) can be alternatively expressed as a function of ē as follows:

σ = 1

k∞

[
ē −

∑
i kiwi

N

]
. (6.35)

From this expression, it becomes clear that the stress consists of two contributions:
a contribution proportional to the deformation of the sample (first term in the rhs
of (6.35)) and a restoring component (second term in the rhs of (6.35)) associated
with the configuration w of snap-springs. Note that (6.35) reduces to (6.34) in the
hard-device limit when ē = eG .

Figure 6.15 shows the stress–strain curves for two values of the disorder. For
k = 0, a second-order phase transition occurs for a value of the disorder ro � 2.2.
Such transition is associated with a critical point at (ro, σo) = (2.2, 0.34) which
is equivalent to the OD critical point in the 3D-RFIM [62, 68, 80]. In the low
disorder regime (r < ro) the system exhibits snap behaviour marked by a macroscopic
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Fig. 6.15 Stress–strain
curves obtained by
increasing eG in systems of
size L = 64 with degree of
disorder a r = 1.5 < ro and
b r = 2.5 > ro. The three
curves plotted in a
correspond to effective
stiffness k = 0 (dotted line),
k = 0.5 (dashed line), and
k = k∞ (continuous line).
The labels a , b , and c
along the continuous line
indicate the stress–strain
values for the snapshots
shown in Fig. 6.16a, b and c,
respectively. The curve in b
corresponds to a hard device
loading with k = k∞. The
inset in b shows the
stress–strain curves for
k = k∞ (continuous line)
and k = 0 (dotted line) in the
scale indicated by the dashed
square in the main plot
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discontinuity of the strain ē associated with an infinite avalanche. Such avalanche
occurs at a nucleation stress σn which is a decreasing function of r [55]. In the high
disorder regime (r > ro, Fig. 6.15b), the transition proceeds through a sequence of
small avalanches characteristic of pop behaviour. A disorder-induced transition of this
type can indeed be inferred from the results in [113] for impurity doped martensites.
The martensite and strain-glass phases in doped martensites would correspond to the
regimes with low and high disorder predicted by the RSSM.

The stiffness of the loading device does not play a significant role for systems in
the pop regime (see the inset in Fig. 6.15b). In contrast, the snap behaviour in the low
disorder regime is modified in a non-trivial manner for k > 0. As shown in Fig. 6.15a,
the transformation starts at the stress σn as in the case with k = 0 but then decreases
linearly with ē (cf. (6.31)). More precisely, the behaviour of systems with k smaller
than a certain value kp(r), the behaviour is similar to that observed for k = 0 in the
sense that the system is fully transformed in a single snap avalanche to the branch
with f+ = 1 (recall that f+ is the fraction of snap-springs in the phase s = +1). In
contrast, for k > kp(r), the system reaches a stable branch with 0 < f+ < 1 and the
transformation then proceeds along a saw-like path with lower values of the stress,
σp, until the saturation branch with f+ = 1 is reached. Section 6.7.2 shows that the
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saw-like path corresponds to a propagation regime where the phase transformation
is dominated by the growth of a single domain of the new phase.

The nucleation peak predicted by the RSSM at some stress σn is indeed observed
experimentally in mechanically-driven shape-memory alloys [31, 114]. The exis-
tence of such peak suggests that the stability limit of equilibrium branches for the
RSSM has a re-entrant behaviour in the space (ē, σ ). This behaviour is similar to
that observed in the magnetisation-driven RFIM [115, 116] and is reminiscent of the
re-entrant behaviour of the boundaries of the region of typical3 states reported for
the RFIM [117, 118].

Extending the conclusions of a recent study of the spinodal transition in the zero-
temperature RFIM [119] to the RSSM studied here, one would expect the nucleation
peak to be a finite-size effect disappearing in the thermodynamic limit (L → ∞).
The version of the RSSM studied in this section is however highly simplified and
the size-dependence of the nucleation peak in more realistic settings with, e.g., a
long-range and anisotropic J, remains to be studied. In principle, an argument based
on the RFIM or the simple version of the RSSM studied does not necessarily imply
that the nucleation peak will disappear in the thermodynamic limit for martensites.

6.7.2 Transformation Mechanisms: Nucleation
and Propagation

To illustrate the effect of the loading stiffness on the transformation mechanisms of
the system, we consider the particular case with k = k∞. When increasing eG as in
Fig. 6.15a, the new phase nucleates in multiple isolated snap-springs for values of
the stress smaller than σn (see the snapshot in Fig. 6.16a). At σn, one of the nuclei
starts growing in a process reminiscent of the infinite avalanche occurring for k = 0.
Such propagating domain is unique because the probability that two or more domains
become unstable at the same stress, σn, is zero since σn is a real number.

During the growth of the propagating domain, the stress relaxes at constant driving,
eG , until a stable branch is reached. At this point, the new phase stops growing and
eG is increased again. The system evolves elastically (i.e. snap-springs do not change
their energy well) along the reached equilibrium branch until the stability limit of such
branch is reached. At this point, the transformation resumes. Figure 6.16a, b show
that the transformation proceeds by the intermittent propagation of the boundary of
the propagating domain. The domains of the new phase other than the propagating
domain that nucleated before reaching σn were stable for σ = σn and thus remain
stable during the propagation regime which occurs at lower values of σ . Most of
these domains are absorbed by the propagating domain.

The evolution of the system in the propagation regime consists of a sequence
of pinning-depinning (PD) transitions of the boundary of the propagating domain

3Typical states have magnetisation m that can be represented by an exponentially large number of
microscopic spin configurations, s.
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(a) (b) (c)

Fig. 6.16 Snapshots showing the transformed domains in the system following the stress–strain
curve of Fig. 6.15a for k = k∞. The system size is L = 64 and disorder is r = 1.5. The red regions
correspond to snap-springs that have already transformed to the phase s = +1 at a f+ = 0.005
(ē = −4.14, a in Fig. 6.15a), b f+ = 0.04 (ē = −3.41, b in Fig. 6.15a), and c f+ = 0.2 (ē = −1.79,
c in Fig. 6.15a). Blue regions show the transformed snap springs if the driving is slightly increased
from the value corresponding to the configurations in red. Snapshot a illustrates the transformation
mechanism in the nucleation regime before a propagating domain starts growing. Under a small
increment of the driving, the transformation activity is spatially sparse. The propagation regime
is illustrated by snapshots b and c where the snap-springs in blue show that only the propagating
domain grows when increasing the driving

(henceforth referred to as the propagating front). The propagation stress σp corre-
sponding to the upper limit of stability of each branch plays the role of a critical force
for depinning of the propagating front.

Extrapolating the arguments of [119] to our model, one can argue that droplets of
the new phase can in principle nucleate and start growing at the propagation stress, σp

(i.e. can nucleate and grow before the driving reaches a larger nucleation stress, σn).
The nucleation of such domains is however very unlikely and they are only expected
to be frequent for very large systems where there are many possible nucleation events.
If one of such nuclei leads to a rare droplet able to grow at the propagation stress,
σp, the system will transform without a nucleation peak at σn > σp.

6.7.3 Universality Classes of Avalanches

The results of the previous section show that the transformation mechanisms strongly
depend on the stiffness of the loading device, being nucleation-dominated for soft
devices (k < kp(r)) and propagation-dominated for harder devices (k > kp(r)). The
avalanche behaviour is different depending on the transformation dynamics. For
k < kp(r), the model displays an OD transition between pop and snap regimes
which belongs to the universality class of the zero-temperature RFIM with nucle-
ation dynamics. For hard enough loading (k > kp(r)), the system self-organizes to the
QEW universality class for driven interfaces; in the RSSM, the interface corresponds
to the phase boundary of a propagating domain. Interestingly, the driving-induced



128 F.J. Perez-Reche

1

2

3

4

4′

SNAP

POP

QEW

OD

Fig. 6.17 Schematic RG flow for the RSSM model. Separatrix 1 is the QEW universality class
manifold which indicates the RG flow from the neighborhood of the OD fixed point to the QEW fixed
point. The RG-flow towards SNAP and POP regimes is indicated by arrows 2 and 3, respectively.
Lines 4 and 4′ correspond to systems which display QEW critical exponents with supercritical or
subcritical cut-offs for k < kp(r) and k > kp(r), respectively. [From [55], Fig. 4b, pp. 230601–4]

crossover between these two transformation mechanisms and critical behaviours was
first proposed theoretically in [55] and then observed experimentally [120, 121].

The variety of nonequilibrium regimes observed in the mechanically-driven
RSSM can be explained using Renormalization Group (RG) arguments [55]. The RG
studies the way physical systems change under coarse-graining in order to under-
stand the behaviour at large scales [22, 23, 25, 122]. Fixed points in the model
parameter space remain invariant under the RG transformation and correspond to
systems that remain invariant under coarse-graining. Under the RG transformation,
systems flow towards a fixed point which dictates their behaviour at large scales. Four
fixed points where assumed for the RSSM, see Fig. 6.17. Snap an pop behaviours
are associated with trivial, fully attractive fixed points where the correlation length
between snap-springs vanishes (these points are analogous to those of bulk phases in
thermodynamics equilibrium [22]). In contrast, scale-free responses associated with
OD and QEW universality classes are dictated by critical fixed points characterised
by infinite correlation length between snap-springs.4 The OD critical response is
associated with a fully repulsive critical point which can be reached only by tuning
all four parameters of the model: σ = σo, r = ro, k = 0 and L−1 = 0. In contrast,
QEW is a saddle point with a stable manifold which governs the large scale behav-
iour of the systems with r < ro, σ = σp(r), k = 0, and L−1 = 0; the corresponding
systems lay on the critical manifold connecting the OD and QEW points [arrow 1 in
Fig. 6.17]. Note that k = 0 is a necessary condition for pure critical behaviour of any
type since k > 0 introduces a restoring force that prevents avalanches from grow-
ing indefinitely. This leads to a truncated power-law distribution for the avalanche
sizes with a cut-off being increasingly pronounced for increasing k (see Fig. 6.18).
This implies that finite systems which require k ≥ kp(r) ≥ 0 to reach a propagation

4See [76] for an explicit calculation of the spin-spin correlation function near the OD transition.
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Fig. 6.18 Log-log plot of the distribution of sizes of avalanches exhibited by systems of size L = 64
and disorder r = 1.5 in the propagation regime. Different symbols correspond to different values
of the stiffness k, as marked in the legend. The curves for k = 0.6 and k = 7 have been displaced
vertically for clarity. The dashed line indicates a power-law D(S) ∼ S−τp with τp = 1.3

regime are close to the critical QEW manifold [arrow 1 in Fig. 6.17] but eventually
flow towards the POP fixed point under the RG transformation [arrow 4’ in Fig. 6.17].
The situation in the thermodynamic limit can be different if rare droplets are able to
grow by front propagation at σp [119]. In this case, there is no nucleation peak and
the system can reach the propagation regime for arbitrarily small k so that the QEW
criticality could be exactly reached.

6.8 Conclusions

In this chapter, it has been highlighted the idea that a complete description of the
deformations occurring during martensitic transformations requires going beyond
the usual assumption that the energy of solids is invariant under certain point group
elements [56–61]. Indeed, crystallographic point groups are just finite subgroups
of a global, infinite and discrete symmetry group which includes nonorthogonal
and shearing deformations. Accounting for such deformations is crucial to model
the emergence of defects such as dislocations induced by many martensitic phase
changes. In essence, transformation-induced defects can be viewed as an inherent
feature of many martensites which is built in their space of possible deformations. We
have presented snap-spring (i.e. pseudo-spin) models which effectively account for
such effects and provide an explanation for the emergence of scale-free avalanche
behaviour after a training period. Such models account for both elastic and non-
elastic properties of solids and this makes them ideal to study the interplay between
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defects and the phase transition in both thermally and mechanically driven martensitic
transformations.

Using a simple version of a random snap-spring model, it has been shown that
criticality in mechanically-driven transformations depends on the stiffness of the
loading device. The analysis presented here has only considered weak transformation
and assumed short-range positive-definite interactions. Such simplification allowed
us to compare with well-studied random-field models but a complete description
of mechanically-induced transformations will require using long-range interactions
and allowing for transformation-induced defects.

The role of transformation-induced defects was analysed for thermally-driven
transformations. In this case, the evolution to criticality was initially interpreted
in terms of the self-organized criticality (SOC) paradigm [27, 54]. This interpre-
tation was however challenged by experiments on well-trained martensites which
suggested that criticality requires tuning the driving parameter (temperature) to a
critical value [9]. These results would support the existence of a critical point of
the type displayed by random-field models rather than self-organized criticality. In
a recent work [28] we extended the random-snap spring model reviewed here to
propose an explanation that unifies the two seemingly conflicting interpretations
proposed in [9, 27, 54, 92]. More explicitly, we identified a critical manifold in the
temperature-disorder space of martensites where they are marginally stable [123].
The evolution of disorder during the phase transition allows the system to approach
the critical manifold at a critical temperature without extrinsic tuning of disorder.
This mechanism is reminiscent of the criticality paradigm proposed in [19] which
postulated that a suitable coupling between driving and order parameters can lead
to robust criticality. Our model predicts that a coupling of this type between the
temperature and slip disorder explains the robustness of criticality in martensitic
transformations.

Following the tradition of statistical mechanics, the models reviewed in this
chapter are intended to capture generic properties of martensitic transformations.
They are based on a number of simplifying hypotheses which include neglecting
thermally activated effects or assuming infinitely slow driving fields. Thermal fluc-
tuations are indeed a secondary factor for many shape-memory alloys [112]. The very
fact that avalanches are observed as separated events in slowly driven systems indi-
cates that thermally activated events are not frequent. In spite of that, some thermally
activated events can occur [112] and spin models can be extended to study their effect
on avalanches. This was done in [8] which focused on systems with weak thermal
fluctuations and also investigated the effects of finite driving rates on avalanches.
Both finite driving and thermal fluctuations promote the merging of avalanches that
would be detected as separated events in athermal, quasistatically driven systems.
As a consequence, the exponent for the distribution of avalanche sizes is smaller
when thermal fluctuations are active and/or the driving is not quasistatic. In sys-
tems with stronger thermal fluctuations, individual avalanches are strictly speaking
undetectable but bursts of transformation activity can still be distinguished. Mole-
cular dynamics simulations show that the energy of such bursts deviates from the
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power-law behaviour as thermally activated effects become stronger [38]. The mech-
anisms responsible for such deviations are still not fully understood.

Understanding the consequences of relatively strong thermal fluctuations within
the framework of spin and/or snap-spring models is an interesting challenge for future
studies. Another interesting task would consist in extending the proposed random-
snap spring model to incorporate more realistic interactions and study generic phase
transition paths in 2D and 3D systems. Such extensions will lead to a better under-
standing of the factors responsible for training effects and universality classes of
avalanche dynamics in realistically complex materials. The random-snap spring
model sets a good basis to achieve these goals.
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Chapter 7
Ferroelastic Domain Collapse and Acoustic
Emission: Non-equilibrium Behaviour
of Multiferroic Materials

Ekhard K.H. Salje and Xiandong Ding

Abstract Nano-scale multiferroics often display sudden, jerky domain movements
under weak external fields. These domain movements include retracting twin
domains, kinks in domain walls, jamming between walls and changes in complex
tweed patterns. The time evolution of such patterns under weak forcing may also
contain additional continuous movements such as the propagation of a twin wall
under stress. Other movements remain jerky such as pinning-depinning events that
may lead to acoustic emission. We show that the probability density function, PDF,
of the jerk distribution follows power law statistics at sufficiently low temperatures
and thermally activated jumps at high temperatures. The overall Vogel Fulcher dis-
tribution of the PDF is explained by the mixing of thermal and athermal events
during AE.

7.1 Introduction

High memory capacities and electric wiring on a much finer scale than achievable
with current technologies may be possible when the active elements in devices are
not the bulk but where only domain boundary structures contain the desired func-
tionalities [1–14]. The first step was to explore the possibility to generate highly
conducting domain walls as a replacement of wires in device applications. Such
domain boundaries were designed to carry high currents and it was indeed the dis-
covery of superconducting twin boundaries that opened a wide field of applications
in ‘domain boundary engineering’ where the domain boundary is the device and were
the design of the device materials depends largely on tailoring the domain boundary
structure [1, 4, 13, 15, 16].
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The second step was to introduce polarity to the domain wall so that switchable
ferroelectricity was confined to domain walls and would not interfere with depo-
larization fields and additional switching of domains in the bulk. The length scale
of the active device was then restricted to the thickness of domain walls or even
smaller structures such as Bloch walls inside domain walls [17–22]. Similar ideas
were also explored in magnetic materials [23–30]. These approaches require – at
least at the present sensitivity for the detection of ferroic functionalities – that many
walls cooperate to induce a measurable macroscopic response to applied fields. If
we use ferroelectricity as example, we would expect that a ferroelectric hysteresis
requires at least 1% of all atoms to take part in a switching cycle in order to be
observable on a macroscopic level. Domain wall ferroelectricity will have, in case
of sparse domain walls, only ca. one in a million (1 ppm) particles switching, which
will not be observable under currently available laboratory conditions. More sensitive
means of detection may emerge in future, but the current analytical work is largely
focused on materials were the domain boundary density is very high. Some materi-
als such as cryogenic SrTiO3 already contain very high domain boundary densities
near the crystal surface [31, 32]. Computer simulations helped to identify alternative
approaches to increase the domain wall densities, such as by external shearing of a
sample (∼cold shearing) [33–36] instead of rapid temperature quenches.

The domain wall density seems to be limited when the intrinsic length scale of the
wall, namely its intrinsic width w, competes with the wall-wall distances L. Empirical
values for L for pattern with densely stacked walls under thermal quench are L > 10w.
For higher wall concentrations (and L < 10w) a new type of global domain pattern
was predicted: the domain glass with non-ergodic responses to external forcing. The
concept of a domain glass was introduced only in 2014 [37] while ‘domain’ related
glass states (such as encountered in polar nano-regions [38]) were long understood
to exist in relaxor materials where non-ergodicity is one of the defining properties of
the relaxor state [39–43]. Little it is known how the breaking of ergodicity occurs in
the limiting case of weakly disordered systems, however. It is controversial whether
highly structured ferroic materials can show glassy behaviour when the disorder is
induced by nano-scale domain structures or whether they always follow the classic
uniform transition pathway. One scenario is that decreasing the strength of defect
related random fields in a ferroic phase transition will make the transition increas-
ingly more ergodic and one may be tempted to assume that the fully ordered system
undergoes a phase transition without any ergodicity breaking. This is not necessarily
born out by experiments or by computer simulations. Lloveras et al. [44] have already
shown that spatially heterogeneous states that occur in ferroelastic transitions depend
crucially on the elastic anisotropy with tweed type microstructures for anisotropic
interactions and mottled structures with almost spherical nano domains for isotropic
interactions. Defect free systems (in computer simulations) or in materials that con-
tain very small defect concentrations (experimentally) may show glassy behaviour
- which has lead to claims that such materials are relaxors without the relaxor-type
dispersion relations [45–53]. The glassiness in such systems is not related to some
disorder in the structural matrix but stems entirely from ferroelastic, ferroelectric, or
ferromagnetic microstructures, which perturbed the matrix only very slightly.
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A key issue is how to monitor and ultimately control the formation of complex
domain glasses with high domain boundary densities. Some classic spectroscopic
techniques include hard mode Raman and Infrared spectroscopy [54–58]. Moreover,
non-functional domain walls such as in Pb3(PO4)2, leucite and anti-ferroelectric
materials such as titanite need to be identified and ultimately excluded from this
research because the expectation of polarity based on group theory simply ignores
some other fundamental restrictions on low-dimensional polar patterns [59–68]. This
result shows that domain wall functionalities must be tested simultaneously with a
careful assessment of how many walls are generated during the nucleation process. A
significant breakthrough was achieved when resonant piezoelectric methods where
applied to domain walls [69–80]. In Resonant Piezoelectric Spectroscopy, RPS, a
weak electric field couples with local polarity to excite acoustic standing waves which
can then be detected by mechanical transducers. This method can be combined with
acoustic emission, AE, to detect the number density of domain walls. Neutron scat-
tering, x-ray diffraction, and surface sensitive methods (AFM, PFM) were previously
employed with much success [64, 81–89] in specific studies to explore the proper-
ties and thicknesses of domain walls. In addition, acoustic emission techniques are
possibly the most promising avenue for future research in the dynamics of domain
movements in ferroelastic materials [90] because they can be employed on a very
small length scale during the production process of piezoelectric domain wall devices.
This approach is new and depends on two key ingredients: firstly the AE equipment
needs to be sensitive enough to detect nucleating and moving domain walls and, sec-
ondly, the ability to interpret the AE spectra with sufficient insight to correlate main
wall-related events to specific AE signals or to specific statistical fingerprints such as
avalanche activities and wall-wall correlation effects. None of this has been achieved
yet but it is very likely that research in the next few years may lead to significant
progress in this field. In this paper we summarize some of the relevant results known
so far, hoping that they may constitute the starting point for much enhanced future
research activities.

7.2 Acoustic Emission, AE

Domain patterning processes have been observed to be ‘jerky’ when measured with
a very high time resolution. The reason is pattern formation, which involves nucle-
ation, fast domain movements, jamming, and other heterogeneous processes [1, 2,
8, 14, 34–36, 91–95]. We call AE events and all other singularities dues to the pat-
tern formation ‘jerks’ to indicate that they are observables with whatever statistical
distribution. Jerks may not relate to avalanches but often they combine to produce
‘crackling noise’ [91–95] that may point towards the formation of avalanches where
each nano-structural movement triggers others with bursts of activities and charac-
teristic waiting times between such avalanches. The probability P(J) of a jerk J to
occur is often power law distributed P(J) ∼ J−ε F(J) where F(J) is some (exponen-
tial) cut-off function. Similar power law distributions exist for waiting times between
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avalanches (for an extensive study we refer the reader to [93]). In most disordered
materials such avalanches are described by a narrow range of dynamical exponents
both for the energy distributions and the waiting times between avalanches [92–110].

Several experimental observations, theoretical models, and computer simulations
of dynamical evolution of ferroic nano-structures [91–108] depict a fairly clear pic-
ture of transition dynamics involving domain pattern formation and reconstruction.
Nevertheless, there is an obvious lack of experimental observations which prevents us
from distinguishing between different local mechanisms. Experimental observations
of ‘jerks’ over very short time scales are indeed difficult. We can compare the AE
jerks with those of other experimental techniques. In case of ferroic transitions, we
find suitable jerks in fast heat flux measurements (∼thermal jerks) [96], as acoustic
emission (∼mechanical jerks) [93, 97] or spikes in the polarization (∼electric jerks)
or magnetization (∼magnetic jerks or ‘Barkhausen noise’) [98, 99]. Acoustic emis-
sion, AE, plays a special role amongst these techniques because it appears to be more
sensitive to small nano-structural changes than the other methods [100–102]. The
key advantage is that AE carries the whole temporal and spatial information of the
acoustic source mechanism with time series that enables us in the most successful
measurements to determine the energy and duration of avalanches and waiting time
between successive hits. Major advances were made when investigations focused
on porous and martensitic materials where all quantities derived from AE display
power law distributions corroborating the existence of avalanche criticality [103–
107] (Fig. 7.1). In addition, space localization of the avalanches is also possible from
AE measurements. Localization of the avalanches is important because it provides
information regarding the spatial distribution of minima of the free energy landscape,
which are the origin of criticality. This is only possible from surface observations in
opaque martensites while most ferroic oxides are transparent which makes the local-
ization of jerks rather easy [108]. The probably most advanced studies of martensitic
transitions include [109, 110].

These examples show that great progress has been made for the AE for the detec-
tion of martensitic transitions and the investigations of the collapse of porous materi-
als. Nevertheless, AE studies in ferroelectric and weakly ferroelastic materials are less
advanced. The reason is that AE signals are usually very weak and often extremely
sparse. In Ferroelectric materials only 90◦ boundaries carry sufficient strain to gen-
erate AE while the strain involved in 180◦ boundaries is much weaker [111–114].
Detailed computer simulations of AE in ferroelectrics have shown that most nano-
structural changes in ferroic materials contain too little elastic energy to generate
measurable AE signals [139]. This result also questions the way we analyze AE in
ferroic materials: visible AE events are due to a complex combination of a multi-
tude of various domain boundary movements over a very short time interval (large
jerks) and it is virtually impossible to distinguish between individual events (the
AE fine structure). Most importantly, the movement of jerks inside domain walls
and the common movement of twin domain needles contain similar AE energies
(and are hence indistinguishable from their energy spectrum). In virtually all cases
investigated so far, one can only measure the energy of the total, complex pattern
formation, such as the ‘yield’ in [34–36]. This generates a different perspective of AE
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Fig. 7.1 Power law determined from AE determination of jerks emitted during the collapse of
nano-scale, porous SiO2

investigations in ferroic materials: the details of the structural changes may be hidden
in the fine-structure of the AE spectrum while other parameters such as transition
temperatures, the development of coherency in patterns at T*, the split of a transition
point, etc. becomes prominent [115, 116].

Two serious limitations exist when the jerk-statistics is investigated by AE. Firstly,
no continuous domain movements can be observed in the AE spectrum. Smooth
domain movements are common in adaptive structures [8] and will simply be missed
by AE. Secondly, jerks in ferroic materials can be observed when no avalanches occur.
Examples are repeated pinning/depinning processes of a ferroelastic needle domain
(serration), which generate several large jerks and cannot be distinguished from the
more complex formation of avalanches where many depinning movements interact
[117–119]. In these cases, the totality of all jerks may follow a power-law statistics
but there is no fine-structures inside each jerks which is due to avalanche formation.
AE can not distinguish between these two scenarios unless the time resolution is
good enough to see the jerk fine-structure which has not been demonstrated so far.

A similar scenario was discussed for avalanches generated by dislocations [120].
These authors argued that two mechanisms coincide when, on one hand, correlations
among individual dislocations are weak and fluctuations are roughly Gaussian, which
makes the homogenized description adequate. On the other hand, a different point
of view emerged from the analysis of high resolution acoustic emission (AE) data
in plastically deforming crystals which showed that temporal fluctuations may be
power-law distributed in size and energy [121] and may be clustered in both space
[122] and time [123]. It has been long noticed that AE in plastically deformed crystals
may include both continuous background and discrete bursts [124, 125]. While the
continuous AE was thoroughly studied, the bursts were generally simply counted
[126], or omitted as spurious even though sudden slips at irregular intervals could
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be also observed directly [127–129]. The relative contribution of plastic avalanches
responsible for bursts and simple Gaussian fluctuations were measured in [121] and
showed that ice single and polycrystals generate nearly 100% of plastic movements
were released through AE bursts. In contrast, for aluminum, the contribution due to
avalanches is small, reaching under cyclic loading at most a few percent during the
first cycles, when the dislocation substructure has not yet fully developed. Copper
and CuAl alloys stay in between.

In other systems, jerks have been detected with a variety of other experimental
techniques: induction by magnetic Barkhausen jumps [130, 131], magnetization
measurements [132], calorimetry [96, 105], resistivity [133, 134] and capacitance
measurements [135], and optical observations [14, 136]. In comparison with these
techniques, AE appears to be the most popular method for the observation of intense
jerks, with over 1500 publications per year in physics and material science journals.
Despite this colossal effort, it often remains unclear which atomic processes are
actually observed in AE experiments.

A very instructive comparison between the collapse of porous materials under
stress and the effect of twinning of a martensite is discussed in [137]. Two sequences
of AE signals were investigated in the same sample. The two processes occur simulta-
neously. De-twinning at the early stages of compression generated one AE sequence.
Fracture dominated the later stages. Fracture also determines the catastrophic failure
(big crash). For high-porosity samples, the AE energies of both sequences display
power-law distributions with exponents ε � 2 (twinning) and 1.7 (fracture). The
two power laws confirm that twinning and fracture lead both to avalanche criticality
during compression. This result shows that it is possible to observe highly resolved
AE even when more than one process occurs at the same time in the same sample.
The AE signal due to twinning is much weaker than the fracture signal.

7.3 Computer Simulation of AE During Nano-Patterning
of a Ferroelastic Crystal

When twinning is identified as origin of AE, it remain unclear how the twinning
actually occurs. A very detailed study [138] identified the AE signals of retract-
ing needles, kinks, collapsing spanning domain walls and their combination in
major yield events under shear strain based on the analysis of a very simple but
generic model [34–36]. The model uses a generic two-body potential to represent
the interactions of atoms in a 2D system. The potential energy U(r) contains three
parts, the first- nearest atomic interactions of 20(r − 1)2, the second-nearest interac-
tions −10(r − √

2)2 + 2000(r − √
2)4, and the third- nearest interactions −(r − 2)4,

where r is the interatomic distance in units of the length of the crystallographic unit
cell. This potential was developed based on Landau theory by choosing the shear
angle as “order parameter”. The details of properties obtained by this potential are
described in [33–36]. Extensions of the model to three dimensions did not change
the principal results of the simulations [139].



7 Ferroelastic Domain Collapse and Acoustic … 143

These simulations followed the tradition of large-scale simulations with open-
(free-) boundary conditions and the equilibrated unit cell has the shape of the par-
allelogram with the shear angle of 4◦. The equilibrium lattice constant is set to a
= 0.1 nm and atomic mass to M = 100 amu.The initial configuration contains two
horizontal twin boundaries (HTBs). The surface ratio of the intermediate layer to the
whole sample is fixed to be 0.5. The size of the present simulations is based on a
400a × 402a box, except when a 200a × 202a box is used to capture the collapse of
one single vertical needle domain under detwinning conditions. The calculated cell
contains two buffer layers (each has three atomic layers) at the top and bottom of
the 2D sheet. These buffer layers were sheared by the external boundary conditions
(fixed external strain, hard boundary conditions). The system was first relaxed using
a conjugate gradient refinement procedure to find the optimal position for each lattice
point under the initial conditions of the sample shape. Molecular dynamics (MD)
was then performed to anneal each configuration at a given temperature for 3 × 106

time steps. The only relaxations, which occurred during this procedure, were surface
relaxations. After the relaxation and strain-free MD, external strain was applied via
a global shear of the two buffer layers. We use a constant strain rate of 10−5/ps and
display our results as function of time to directly connect with the dynamics of AE.
The temperature of the sample was held at T = 0.6 K by a Nose–Hoover thermostat
(Fig. 7.2).

The time evolutions of the domain formation and the de-twinning sequence are
shown on a long timescale in Fig. 7.3. The initial crystal (Fig. 7.4a) is heavily twinned
during a yield event between time t1, when the first twin nucleates, and time t2,
when the external strain is compensated by the shape change of the sample. The
crystal decays into a multitude of twins (Fig. 7.4b). The twinned area then decreases
under further shear (Fig. 7.4c–e), and a single crystal is recovered in Fig. 7.4f. The
AE signal is largest during the yield event, where most experimental results were
obtained. During the yield event, a complex mixture of domain movements will
occur, with needle domains, kinks, and junctions all forming almost simultaneously.
During de-twinning, the same movements occur, but they are spread out over a long
time period. The AE of each event is much less than the total AE during yield,

Fig. 7.2 The model with
nearest-neighbor (black
springs),
next-nearest-neighbor (red
springs), and
third-nearest-neighbor
(green lines) interactions
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Fig. 7.3 Evolution of potential energy Pe (a) and kinetic energy Ke (b) during the shear deformation.
The rectangles A, B, C correspond to the yield, kink, and horizontal needle regimes in Fig. 7.4

but, if the de-twinning AE could be accumulated in full, it would lead to the same
energy change.

The main AE will usually happen when the strain passes the yield point. The
yield point is characterized by the nucleation of a complex domain pattern, which
consists of needle domains, spanning domain boundaries, and kinks inside domain
boundaries. The yield event is sometimes visible in AE experiments and constitutes
the “big bang” in ferroelastic and martensitic materials. The phonon energy in the
twinning case decays very rapidly because the excess potential energy is transferred
to the twin boundary energy, while no such twin boundaries exist in the de-twinning
case, so that the kinetic energy leads to the ringing of the sample. AE under stress is
composed of several events, which constitute the fine structure of the signal. They
occur under strain increase (twinning) and strain release (de-twinning). The total
avalanche energy is an extensive quantity for large samples. In the simulations shown
in Figs. 7.3 and 7.4, a very small avalanche releases some 3.7 meV/atom, which is
already a significant energy for AE. Most of this energy is consumed by lattice
distortions and surface energies of the nucleating twin boundaries. Only a small
part leads to increased vibrational amplitudes (ringing of the sample). Avalanches
of this kind are the same as those generated during phase transformations and have
been observed experimentally. Other events are part of such avalanches, both during
twinning and de-twinning and constitute a fine structure of the AE signal which has
so far eluded experimental observation.
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Fig. 7.4 Pattern evolution during shear deformation. Patterns shown in (a)–(f) correspond to the
blue dots in Fig. 7.3 with the full time scale t1–t6, where t1 is the time when the upper yield point
is passed. The microstructure is shown before yield in (a) and after yield in (b). At time t3, kinks
move towards the surface (c). At times t4–t5, secondary patterns form (d), (e), while at t6 (f), the
single domain state is reestablished. The color scheme relates to the total shear angle between
adjacent atoms. This angle is defined as θ = |θver | − 4 + θhor . θver and θhor denote the local shear
angle in the vertical direction and horizontal direction, respectively, and are calculated over three
neighboring atoms

The energy release for kinks, vertical needles, and horizontal (spanning) domains
is much smaller than the yield energy. This means that the energy of the pattern
formation at the yield point corresponds to typically more than 10 elementary events
such as needle formations or kink propagations. Only very high resolution spectra
would allow the observation of time resolved sub-jerks. Ringing during de-twinning,
when energy is transferred into vibrational energy, will be dampened in real systems
by internal friction. We did not consider friction in our simulations because damping
times are generally longer than our run times. We always find heat spikes near
the collapse point. These heat spikes have similar energies as those in AE signals,
which are determined by the longitudinal displacements of the surface atoms. These
displacements are up to 1.8 Å for the major yield event, 0.7 Å for the collapse of the
horizontal needle, 0.15 Å for the kink crashing into the surface, and 0.0014 A for the
collapsing vertical needle. The equivalent energy releases are 3.7, 0.56, 0.017, and
0.017 meV/atom, respectively. We expect that AE can observe energies larger than
0.5 meV/atom so that the yield event and large needle domain nucleation and growth
events can be observed while all other events may remain undetectable in AE.

7.4 Avalanche Exponents for Ferroelastics

The results of atomistic simulations show that the avalanches over the full strain
regime at low temperatures follow power law statistics and become Vogel Fulcher
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Fig. 7.5 The jerk spectra of three microstructural regimes at 10 K (a). b shows the expanded green
rectangle region in (a), depicting the jerky energy signal profiles during yield events, while relatively
smooth profiles occur in the early elastic and plastic regimes

distributed at higher temperatures [34–36]. Separating the Probability Distributions
Functions, PDFs, of the strains in the yield regime and the plastic regime reveals a
more complex pattern, however. The power law statistics of the yield regime is only
weakly temperature dependent and shows energy exponents ε in the range between
1.3 and 2.3 for most ferroelastics and/or martensitic twinning. The value 1.3 coincides
with the expected mean field value [92]. Avalanches in the plastic regime follow Vogel
Fulcher statistics even for relatively low temperatures [139]. The overall behaviour
is then determined by the mixture between the behaviours in the yield regime (large
amplitudes at low temperatures) and the plastic regime (small amplitudes and low
temperatures). In Fig. 7.5, we compare the jerks in the elastic, the yield, and the plastic
regime. Figure 7.5a shows that the amplitudes of jerks are highest in the yield regime
(black). Weak jerks are found in the elastic and plastic regime, where virtually all
excitations are strongly temperature dependent. A surprising difference between the
yield regime and the other regimes is that the individual jerks are smooth functions
of the applied strain outside the yield regime. During yield, all the jerks are rugged
with fine structures inside each event. This observation places emphasis on the scale
invariance of jerks during yield: jerks represent avalanches, whereby each avalanche
contains sub-avalanches that follow each other without the main avalanche coming
to rest (Fig. 7.5b). This effect is even more obvious in the case of low-temperature
avalanches in the yield regime. In Fig. 7.7, we show that the jerk distribution at low
temperatures (0.5 and 1K) has a clear onset for small strains and remains active for
very large strain intervals.

Collective jerks also occur in the elastic regime, which contains the
low-temperature strain-tweed dynamics. The jerks become smooth and uncorrelated
at higher temperatures, when the elastic regime is dominated by both tweed dynam-
ics and some front propagation of the twin boundaries. Such individual, uncorre-
lated jerks dominate at high temperatures at all conditions outside the yield regime.
The integrated distributions for the given regimes are summarized in Fig. 7.6. Jerks
related to extended avalanches are approximately power-law distributed, with an
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Fig. 7.6 The probability distribution of the jerk energy P(E) and waiting time P(twaiting) in four
regimes at 1 and 10 K. The black open circles and blue open squares represent 1 K and 10 K data,
respectively. a Power-law–Vogel–Fulcher transitions of P(E) are shown in the elastic and plastic
regimes. Their waiting times are exponentially distributed (b). e The P(E) in the yield regimes
follows approximately a power-law distribution, and the data at 0.5 and 20 K show the variations
in the power-law exponent. f The waiting times are also power-law distributed, with an exponent
around 2.4. c The distributions of P(E) in the elastic regime just before the yield point are power
law, while their waiting times show transitions from exponential to stretched exponential under
cooling (d)

energy exponent ε = 1.30 at T = 10 K and ε = 1.7 at T = 1 K. The waiting time
correlation follows a power law with an exponent of 2.0 at 1 K and a larger expo-
nent at 10K. The yield behaviour is hence essentially athermal and scale-invariant,
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but shows different inter-jerk correlations with power-law distributed waiting times
between jerks [93]. Increasing the temperature from 1 to 10 K does not fundamentally
change the avalanche mechanism (although the energy exponent changes slightly in
the simulations). The main difference is that the large avalanche at 1 K is broken
up at 10 K into smaller segments. The increase in the energy exponent at higher
temperatures appears empirically to be related to this breakup. The waiting time
distributions show strong correlations between the individual jerks, similar to the
results for the collapse of porous materials and earthquakes [93]. The exponent of
the waiting time power-law distribution is 2.4. The effect of temperature is much
stronger outside the yield regime than in the yield regime. Thermal excitations, and
hence the appearance of an energy scale, are very pronounced in the elastic and the
plastic regimes, where we find that exponential distributions apply for jerks and for
the waiting times between jerks. The only power-law distribution occurs just before
the yield regime with a characteristically larger energy exponent and a strong expo-
nential tail at high energies. At low temperatures, we find power-law distributions
for jerks in all regimes besides the near-yield regime, where stretched exponentials
characterize the crossover between the power law and the exponential regime.

Computer simulations hence confirm the earlier discovery of a temperature-
generated crossover between thermal and athermal regimes [34, 95]. The origin of
the crossover is related to the strain regimes outside the yield regime. These elastic
and plastic regimes are thermally activated at high temperatures, while such activa-
tions are frozen out at sufficiently low temperatures. The spectra of the jerks show
quasi-continuous profiles for each jerk, which relates to the continuous movement
of kinks and needle domains under the applied strain field. These movements are
thermally activated at sufficiently high temperatures. At low temperatures, we find
that domain boundary freezing is in close agreement with the experimental observa-
tions [140, 141]. The Vogel Fulcher temperature is similar to that observed during
a domain freezing process. Domain freezing is much less important during yield
events with energies much larger than the thermal energy. Domain nucleation during
yield is scale-invariant and not thermally activated.

Jerks during yield constitute geometrically one big avalanche at very low temper-
atures, while all the other events are jerks with very weak correlations. It is therefore
crucial to distinguish between jerks related to avalanches during the yield events and
other jerks, which can be thermally induced and do not lead to extended avalanches
or power law PDFs. The jerk profiles can be used to identify the two types of jerks.
Averaged jerk profiles were defined by summing over the interpolated profiles where
the number of data points per jerk varies dramatically. The normalized profiles for the
various regimes and temperatures are shown in Figs. 7.7 and 7.8. Subtle changes in
the profiles show parabolic distributions in the yield regime (large-scale avalanches),
while Gaussian distributions occur for cases where the excitation is mainly related
to phonons in the plastic regime. In addition, AE signals in the yield regime show -
at least in computer simulations – a fine structure of ‘jerks during jerks’ while the
AE signals in the other regimes are much smoother.
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Fig. 7.7 Jerk distributions for yield regimes at four different temperatures. All the low-temperature
distributions (a), c show the onset of avalanches and their continuation over an extended strain
interval. These represent large-scale avalanches, while the thermal activations at 10 and 20 K (b),
d show the collapse of jerks to zero energy between events. The ‘avalanches’ exist only over very
small strain intervals and represent the advance of individual needle domains rather than collective
avalanches, which are composed of large numbers of needle domains [135]

7.5 Conclusion

In the quest for domain boundary engineering, multiferroic domain patterns are
designed to be the functional part of the material: the domain wall is the device. In
this chapter we discussed how the characterization of domain patterns may be based
on their dynamic behavior. Nucleation and growth of twin boundaries, as example,
generate power law statistics at low temperatures. Glassy Vogel Fulcher statistics
dominates at higher temperatures when thermal excitations become important. The
emphasis was on the ferroelastic nature of the domain pattern.

The next step in research needs to incorporate effects like polarity and ferroelec-
tricity into the patterns. A first attempt was made in [142] where nonconventional
ferroelectric switching was shown to originate from a highly non-linear interaction
between pattern-related dipoles and bulk dipoles. Typical antiferroelectric hysteresis
loops were predicted despite the observation that neither the bulk not the walls were
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Fig. 7.8 The statistical jerk
profiles in the early elastic,
yield and plastic regimes. All
the individual jerks are
normalized in width, and the
integration over all jerks
results in the statistical jerk
pro- files shown in this
figure. The normalized
statistical jerk profiles in the
early elastic and plastic
regimes show Gaussian
distributions, while the jerk
profiles in the yield regime
are parabolic

antiferroelectric. Similar effects are expected in magnetic materials and, on an even
smaller length scale, in ferroelectric Bloch wall states [22].
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Chapter 8
Avalanches and the Propagation
and Retraction of Ferroelastic Needle
Domains

R.J. Harrison and Ekhard K.H. Salje

Abstract Time-lapse optical microscopy of single crystal LaAlO3 allows the
propagation and retraction of individual needle domains to be observed under condi-
tions of slowly varying shear stress. The propagation of a single ferroelastic needle
domain consists of two parts: a continuous front propagation and jerky avalanches.
Optical observation and themodynamic analysis show that the continuous behavior
is thermally activated. The avalanches follow power law behavior with an energy
exponent ε = −1.8 ± 0.2 in agreement with self-similar avalanches close to the
depinning threshold. Twin walls remain smooth during propagation, whereas the
one-dimensional front line of the needle tip shows “wiggles” caused by interac-
tions with defect fields. The front line becomes highly distorted during approach to,
or retraction from, the sample surface. Singularities of the characteristic (∼Larkin)
length occur when the front line breaks. Elastic forces produce planar twin walls with
very large Larkin lengths, whereas the front line is not restrained by the compatibility
energy and displays considerably shorter Larkin lengths.

8.1 Introduction

Avalanche statistics in granular and porous materials have been extensively investi-
gated [1–3]. The collapse of porous media under uniaxial stress is a prime example
for the self-similarity of avalanche dynamics, with six ormore orders ofmagnitude of
stresses yielding the same power law dependence of the acoustic emission during the
collapse [4, 5]. The sizes of the collapsing cavities range from some nanometers to
millimeters. While the acoustic emission, AE, of the collapse is easily measurable,
it proved impossible to observe the actual geometrical collapse and other, related
structural modifications using any of the currently available experimental methods.
This limitation can be overcome when the movement of ferroelastic microstructures
replaces the geometrical origin of the avalanche, namely the collapse of holes [6–10].

R.J. Harrison (B) · E.K.H. Salje
Department of Earth Sciences, University of Cambridge, Downing Street,
Cambridge CB2 3EQ, UK
e-mail: rjh40@esc.cam.ac.uk

© Springer International Publishing AG 2017
E.K.H. Salje et al. (eds.), Avalanches in Functional Materials and Geophysics,
Understanding Complex Systems, DOI 10.1007/978-3-319-45612-6_8

157



158 R.J. Harrison and E.K.H. Salje

The advantage of this approach is that switching of ferroelastic microstructures is
often limited to the movement of needle domains on a scale, that is easily observed
optically [6]. Furthermore, the close connection of avalanche dynamics of ferroelas-
tic movements under stress has been explored in much detail by computer simulation
[11]. It has been shown that the prime candidate for emission of acoustic waves is
the propagation and retraction of needle domains and that its dynamics is identical to
that of hole collapses [12]. This means that we can investigate optically observable
changes of ferroelastic microstructures under stress as a model case for a much wider
class of crackling noises and self-similar avalanche dynamics by ‘jerk’ movements
[6, 7].

8.2 Propogation of Ferroelastic Needle Twins

Careful investigations of the forced propagation of domain walls in ferroelastic mate-
rials have found that propagation happens by a superposition of ballistic movements
and jerks [6, 8, 13–18]. These jerks are associated with pinning by extrinsic defects
and can also be generated by mutual jamming of domain walls [19, 20]. Ferroelas-
tic movements [21] play a special role amongst ferroic and multiferroic materials
because most walls, such as ferroelectric 90◦ boundaries or magnetostrictive mag-
netic walls, have strong coupling to an elastic degree of freedom. Understanding the
forced movement of ferroelastic walls, therefore, is essential for the analysis of a
much wider class of walls [22, 23].

Microscopic observation shows that wall movement in the archetypal ferroelastic
material LaAlO3 occurs predominantly as propagation of needle domains. One single
needle sufficed to produce noise signals P(E) ∼ E−ε with characteristic energy
exponents of ε = 1.8, as in the case of collective avalanches [1]. Such collective
noise patterns could be rationalized if a multitude of defects pin a wall, leading to
significant deformations of the wall profile on several length scales. This was not
found, however. The twin walls at the shafts of the needles [24] remain smooth and
no geometric indication of elastic interactions was observed (Fig. 8.1). The restoring
forces, namely, the wall bending and compatibility energy, appear to exceed the
pinning energies and ensure the shape invariance of the needle domain. It is sufficient,
therefore, to analyse the behaviour of the front of the wedge-shaped domain. This
front, FL, is a straight line under standard boundary conditions (cube shaped sample,
no defects, weak shear forces); while under forcing in a sample with defects, this
line meanders and moved locally with slightly different speeds (Fig. 8.1).

Harrison and Salje [7] observed the front line (FL) in an optical microscope under
crossed polars. The sample is a 0.25mm thick single crystal of LaAlO3 cut parallel to
the (001) faces of the pseudocubic unit cell. They observed a set of (101) needle twins,
withwalls oriented at 45◦ to the sample surface. Contrast is caused by the 90◦ rotation
of the optical indicatrix inside the needle, which leads to a change in birefringence
that is proportional to the projected thickness of the needle. The projected thickness
becomes vanishingly small at the FL (Fig. 8.1) [25], resulting in a complete loss of
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Fig. 8.1 The tip of a wedge-shaped needle domain, with the shaft at the left and the propagating
front at the right. Note that the twin walls at the shaft and at the needle end are smooth, while
only the FL “wiggles” as it adapts to the various defect fields. Inset shows view direction for the
experimental setup

contrast ahead of the FL. The advancement and retraction of a single needle domain
in the crystal are followed optically by time-lapse digital microscopy (interval of
60 s between each frame). The propagation of the FL in Fig. 8.2 shows characteristic
behaviour in several frames: the initial sample (a) shows vertical twin walls along
the elastically easy direction (see Fig. 8.2, enhanced online for time-lapse movie).
An applied shear stress [6] leads to a retraction of the inner domain. The FL remains
partly attached to the crystal surface (left hand side) and joins the main domain after
some rough and wiggly stretch (b). A very small further movement of the domain
leads to a thinning of the surface attached FL (c), and finally, the FL snaps and
loosens from the surface (d). Without the surface attachment, the FL is short and
appears to be relatively smooth. The following experiments were performed after
the FL detached from the surface.

Under additional applied force, the FL first retracts to its equilibrium position,
and then slowly creeps back towards the sample surface. The typical profiles in
Fig. 8.3 show that the FL is first a collection of rather smooth segments (a), (b) which
suddenly break at the left hand side when the FL is sufficiently stretched by the
elastic driving force (c), (d) (see Fig. 8.3, enhanced online for time-lapse movie).
The singularity appears as a break of the FL near the surface. The break indicates
that we have now two wedge shaped domains with the same shaft but different FLs.
This means that a kink must exist in the thinned end of the wedge, although this kink
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Fig. 8.2 Time evolution of a wedge shaped domain after attachment to the surface (a), partial
attachment (b) and (c), and after the link snapped (d). Black lines (guides to the eye) show the
position of the FL

is very short and exists only at the very thin end of the wedge. The FL is digitized
from the intensity changes in the photographic image in the microscope (Fig. 8.3).
Here, it becomes clear that any break of the FL is amended when the profile is taken
further inside the domain. The second (red) profile in Fig. 8.3 is close to linearity and
shows the equilibrium profile of the wedge away from the FL, while the FL itself
remains rough and wiggly.Wemeasure the degree of “wiggliness” by subtracting the
observed profiles from the averaged linear profile (Fig. 8.4b) and then measure the
autocorrelation of the profile A(x) = ∫ δr(x)δr(x + Δ)dΔ, where δr is the height
of the wiggle of the FL at the position x of the linearized FL. Profiles A(x) away from
the FL are flat and show purely random autocorrelations. At the FL, the function A(x)

changes dramaticallywith strong positive correlations for small shifts x and amassive
anti-correlation for larger distances. The length scale of the anticorrelation (90 μm
in Fig. 8.3c) is a measure of a macroscopic Larkin length (Lc), which represents
the length scale over which the elastic energy of the FL is balanced by the defect
pinning potential. Comparing our results with simulations [26] shows that their main
conclusion, namely, the breakup of the FL for sufficiently long sample length scales
L (Lc � L), is indeed observed [27]. These simulations are based on an elastic string
moving though a random potential. It is now tempting to identify such a string with
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Fig. 8.3 Digitalization of the FL (lower) and a similar profile slightly inside the wedge domain
(upper). Smoothed versions of the profiles are shown in b, both before and after sub- traction of the
average slope of the upper profile (shifted vertically for clarity). The autocorrelation of the profile
c shows random noise inside the domain but strong correlations and anti-correlations for the FL

(a) (b)

(c) (d)

Fig. 8.4 Representative examples of the time evolution of the needle tip position (black line; blue
in online version) and the differentiated curve (grey line; red in online version) where the height
of each peak measures the energy of the jerk. The insets in b and d show the depinning transitions
near a deep pinning center (expansions of the regions shown by dashed rectangles)

our FL. The condition for the breakup is that the dynamical roughness coefficient is
positive, so that for long length there is an unlimited extension of the FL, leading
inevitably to its break up. A direct determination of the roughness exponent is not
possible for our wedge domains because the fluctuations are too course. However, we
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have demonstrated successfully that (a) fluctuations and roughness during the jerky
propagation of ferroelastic needles occurs at the FL, rather than in the ferroelastic
twin walls themselves, (b) that these fluctuations are strongly influenced by surfaces
and defects, and (c) that the fluctuations are large enough to warrant the frequent
breakup of the FL, in agreement with the model in [27].

8.3 Noise Exponent for Needle Domain Propogation

The size/energy exponent of the jerky wall propagation was investigated in [6].
Defining the time dependence of the needle front requires a good knowledge of the
needle shape and its invariance under the applied stress. Although the exact shape of a
full needle domain and its wall profile next to the needle tip is very well understood,
its dynamical behaviour is much less clear. Using DMA experiments [28, 29] it
was found that the propagation and retraction of needles could be described by an
extended Debye model. The dynamical response followed the momentum driven
susceptibility of Cole-Cole semicircles. Similarly, Jacobs et al. [30] presumed for
the dynamical behaviour of domain walls ballistic propagation where the dynamical
force is balanced by the first time derivative of the loci of the needle tip mdx /dt ∼
dG/de ∼ σ external, where G is the Gibbs free energy of the system, e is the stress
coordinate, and σ external is the applied stress.

The advance of the jerky part of the front propagation follows power law depen-
dence with an energy exponent of ε = 1.8 (Figs. 8.4, 8.5). The idea of avalanches
as critical phenomena is generally related to a multitude of individual jerks which,
statistically are described by power laws related to the probability to observe an

Fig. 8.5 Log–log plot of the
jerks observed for one needle
both propagating and
retracting (combining data
from 12 individual
propagation/retraction
cycles). Data were analyzed
using logarithmic bins. The
power law exponent is
−1.8 ± 0.2, obtained after
fitting to the range of data
indicated by the fit line. The
same exponent was obtained
using linear binning (Color
figure online)
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avalanche with a certain energy or amplitude [1]. Alternatively, Natterman and col-
laborators have argued that interfaces themselves can show power law behaviour
close to the depinning force [31].

8.4 Outlook

The simultaneous measurement of ferroelastic avalanche exponents and the direct
optical observation of the underlying microstructural changes constitute a unique
opportunity with no similar experimental observations reported previously. Never-
theless, future work may identify other ferroelastic systems where avalanche behav-
iour during the fluid dynamics part of the switching ferroelastic hysteresis will be
measured [21]. Typical examples are the archetypal ferroelastic materials Pb3(PO4)2
[32] and leucite [33], where ferroelastic switching was previous confirmed but where
no correlations between the avalanche formation and the domain movement was
reported. Other systems exist in the geological context [34] or in metal-insulator
transitions [35]. Martensitic alloys show very similar switching properties, although
the domain movements are not usually optically visible. In a recent study Soto-Para
et al. [10] showed that even in porous, twinnedmaterials, the stress collapsemaintains
two crucial ingredients, namely the power law for the de-twinning process and a sec-
ond power law for the porous collapse. The two sequences of events have been found
that have been identified as de-twinning and fracture, respectively. The energies of
de-twinning signals display a power-law distribution with a characteristic exponent
that is independent of porosity. For fracture signals, the energy distribution seems
to approach the power-law behavior only for samples of high enough porosity. The
corresponding exponent is in agreement with the exponent reported for other porous
minerals under compression. Therefore, for high porosity the criticality associated
with both twinning–de-twinning and fracture mechanisms occurs simultaneously
during the compression process and is characterized by different critical exponents.
Fitting procedures found ε = 2.0 ± 0.1 for signals of the lower branches (twinning
and detwinning), which can be assumed to be independent of porosity within the
errors. Acoustic emission signals originating from de-twinning have the same values
of the energy exponent expected for a martensitic transition taking place from cubic
to monoclinic (as in the studied sample) [36, 37]. Interestingly, the exponent ε � 1.7
estimated for signals originating from fracture is in good agreement with values
obtained during failure under compression of porous minerals such as goethite [5]
or different kinds of sandstone [38] but not in porous SiO2 ceramics such as Vycor
and Gelsil [39]. This result is of fundamental importance because it demonstrates
that it becomes possible, under rather optimal circumstances, to investigate complex
avalanches, which may originate from very distinct physical processes. It appears
that ferroelastic switching corresponds in this case to energy exponents between 1.8
and 2. They are hence slightly greater than the predicted mean field exponents.

Computer simulations of the ferroelastic switching process demonstrate a limi-
tation of the current approach: athermal switching was found only below a Vogel-
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Fulcher temperature [14] while thermally activated movements become important
at higher temperatures [40]. The Vogel Fulcher temperature is often near the upper
stability temperature of the ferroelastic phase where atomic movements become
thermally activated (such as Ti switching in BaTiO3) and small needle domains and
kinks can be driven in a temperature field. The details of the domain switching process
(kinks and needle movements) were simulated in detail in [11].

Finallywe comment on the highly disordered ferroelastic domain structures. It has
been argued that so-called domain glasses can nucleate if the local domains interact,
jam and form complex patterns such as structural tweed [41]. Domain glasses share
the same characteristic temperatures as structural glasses (the glass temperature, the
coherency temperature, the Vogel-Fulcher and the Kauzmann temperature) [41–43].
Domain glasses are hence expected to display thermally assisted avalanche dynamics
between theVogel-Fulcher temperaturewhere full domain structures nucleate and the
Kauzmann temperature below which domains freeze. No experimental observations
are known to the authors, which could clarify the domain movements in this regime
and characterize the avalanche exponent.
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Chapter 9
Microstructural Effects During Crackling
Noise Phenomena

Eilon Faran and Doron Shilo

Abstract Crackling noise phenomena typically exhibit scale-free statistical distrib-
utions (e.g., power law) of the measured variables. Such a universal behavior reveals
little information regarding the physical mechanisms and microstructures that are
either responsible and/or affect crackling behavior. Here, we address this issue and
show three physical systems in which the distributions of certain variables are cen-
tered around a most probable value, which is related to a characteristic size of the
internal microstructure. These variables represent microstructural-related events. At
the same time, each microstructural-related event proceeds through a multitude of
smaller mesoscopic events that span several orders of magnitude. Statistical analy-
ses of other variables, which are associated with the mesoscopic events, follow a
scale-invariant power law distribution. The origins for the co-existence of events at
different scales and their different statistical distributions are discussed in light of
the physical characteristics of the investigated systems.

9.1 Introduction to Crackling Noise and Open Questions

Numerous physical systems respond by discrete impulsive events when subjected to
a slow and continuous change applied on their boundary conditions (e.g., an elon-
gation/contraction of a material, a change in the temperature, or an application of
externalmagnetic/electric field) [1, 2]. Individual events are termed ‘jerks’, which are
formed during changes of temporal patterns and constitute ‘crackling noise phenom-
ena’. This term relates to the acoustically emitted noise that often appears as a result
of the emitted energy during impulsive events (see, e.g., [3] and references therein).
Crackling noise phenomena are commonly analyzed based on the statistical distrib-
ution of the magnitude ω of individual events. For infinite systems at criticality, the
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probability density function (PDF) p of finding an event with a magnitude ω reveals
a power law of the form [1–4]:

p(ω) ∝ ω−α (9.1)

with exponents α predicted for various universality classes and amplitude/energy
distributions. Equation (9.1) exhibits the same behavior if plotted on different scales
(ω can span many decades [5]), and is hence scale-invariant. The symbol ω in (9.1)
may represent different measured variables that are used for quantifying the size
of individual events. For example, ω can be related to emitted energy in acoustic
emission (AE) tests [6–8], to heat flux in calorimetric measurements [9, 10], to
changes of themagnetizationduringmagnetic domain switching [2], or tomagnitudes
of stress drops in mechanical experiments [11]. Deviations from criticality (see e.g.,
[12, 13]), as well as measurement errors and limited time resolution, which are
inherent to every experimental data, impose truncation of pure power law behavior.
As a result, experimental data are sometimes analyzed using the following PDF
[12–15]

p(ω) ∝ ω−αexp(−λω) (9.2)

where the parameter λmeasures the deviation from a power law distribution. In other
cases, stretched exponential PDFs of the form [9, 11, 14, 16, 17]:

p(ω) ∝ ωβ−1exp(−λωβ) (9.3)

with β < 1, have been used to account for finite size effects of otherwise power law
distributed data [18].

The PDFs described in (9.1)–(9.3) are different, but they share several similarities.
First, all are monotonously decreasing functions that have no peak related to a most
probable value around which the PDF is distributed. Second, although (9.2) and (9.3)
have a characteristic size, this size represents either a deviation from criticality [12,
13] or a detection limit of the experimental system [9, 11, 14, 17]. In both cases, it
does not represent a most probable value around which the PDF is distributed.

Several types of models that explain and predict a power law distribution of
avalanche events (9.1) in terms of classical criticality [2] or self-organized critical-
ity [19] have been suggested. In general, power law behavior appears in dynamic
systems that have numerous degrees of freedom and interactions between them that
lead to numerous locally stable states [20, 21] or to an energy landscape that is
characterized by numerous metastable states [22]. As a result, the system responds
to a change of the boundary conditions through a sequence of transitions between
different locally stable states. Each transition is characterized by a different energy
barrier and forms an avalanche with a different magnitude. Different models provide
different conditions, e.g., a specific relation between the amount of disorder and the
strength of long range interactions, at which the collection of all avalanche magni-
tudes is distributed according to a power law. In all models, it is assumed that thermal
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fluctuations are negligible compared with the energy barriers separating the locally
stable states, such that the transitions between states occur in an athermal process.
In cases where the latter condition is not met, avalanche PDFs follow an exponential
law in accordance with the Vogel–Fulcher behavior [16, 23].

The above-described conditions can appear in many different dynamic systems
and therefore the power-law distribution has been interpreted as a universal law,
which is valid for many different physical processes regardless of the specific char-
acteristics of each physical system [2, 4]. However, the universality comes at a
price: the power law behavior does not provide information about the forms (spa-
tial arrangement) of metastable states; the barriers and mechanisms of transitions
between states; and material properties that govern all these aspects [1]. The lat-
ter information is often obtained by means of theoretical models and experimental
methods different than those used for studying the crackling noise phenomenon. An
example for such knowledge, related to one physical system, twin boundary motion
in Ni-Mn-Ga, at which crackling noise phenomenon has been observed, is presented
in Sect. 9.2. The relations between the type of barriers, the mechanisms of motion
for overcoming them, and the resulted distributions of crackling noise, are still open
issues.

A more critical unsolved problem is related to the scale-less nature of the power-
law distribution, which implies that either the physical system has no characteristic
length-scale or the length-scale has no effects on the crackling noise response. Com-
mon theoretical models that explain and predict the power-law behavior, such as the
random field Ising models (e.g., [2, 24]) and mean field models (e.g., [17, 25, 26]),
require some amount of disorder in the material/physical system. However, in these
models the disorder is quantified only in terms of its strength, assuming that it has a
uniform or arbitrary spatial distribution, without any characteristic length-scale. In
practice, the disorder arises due to material defects, which usually have a character-
istic length-scale (e.g., average distance between defects). Moreover, many of the
physical systems at which scale invariant behavior have been reported have some
characteristic length scale, which comes from the microstructure of the involved
materials (e.g., grain, twin, or domain sizes). The microscopic mechanisms respon-
sible for crackling noise are expected to be sensitive to the material microstructure
or to the average distance between defects. Such sensitivity is expected to unfold
through the PDF of ω, e.g., by being distributed around some characteristic value
that is related to the characteristic length scale.

In this chapter, we investigate three very different physical systems that share one
common feature: all systems have an intrinsic ‘microstructure’, with a characteristic
length-scale that is expected to affect crackling noise response. In all systemswe show
that the internal ‘microstructure’ separates the material into volume elements that
tend to respond separately, thus forming large-scale ‘macroscopic’ events, which are
distributed in accordance with the characteristic length-scale of the microstructure.
Yet, the dynamic response of each volume element is composed of numerous smaller
‘microscopic’ events, which are scale-free.

The latter distinction between ‘macroscopic’ and ‘microscopic’ events calls for a
deeper understanding on different types of events. Since events occur due to barriers
between locally stable states, we seek to obtain information not only on the intensities
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(energy) of the barriers, but also on their sizes (length-scale) and spatial distribution.
Therefore, in order to deeply understand the investigated physical problem, one
has to consider not only the statistical data of the crackling noise, but also other
experimental and theoretical information about the specific barriers and the processes
for overcoming them.

In light of the above understanding, this chapter starts (Sect. 9.2) by focusing
on one physical system, twin boundary motion in Ni-Mn-Ga. This section provides
a comprehensive discussion about the barriers and mechanisms of motion relevant
for this system. In Sect. 9.3, we use the knowledge presented in Sect. 9.2 to distin-
guish between three different types of events and evaluate the orders of magnitude
of their volume, duration, and energy. In particular, we correlate the ‘macroscopic’
events to microstructural features (typically at the µm-scale) and refer to them as
microstructural-related events. At the same time, the ‘microscopic’ events are cor-
related with lattice-scale (i.e., nm-scale) phenomena. While Sect. 9.3 is based on
information obtained for twin boundary motion in Ni-Mn-Ga, it also presents sev-
eral broad concepts related to types and length-scales of avalanche events and to
detection capabilities of different experimental methods (including calorimetry and
AE), which are relevant for a variety of physical systems. Sections9.4–9.6 present
experimental results and analysis of crackling noise during twin boundary motion
in Ni-Mn-Ga, martensitic transformation in Cu-Al-Ni, and the collapse of a stack of
corrugated fiberboards (see [27, 28]). All these studies are based on low-rate uniaxial
compression tests. Finally, a brief summary is presented in Sect. 9.7.

9.2 Barriers and Mechanisms for Twin Boundary Motion
in Ni-Mn-Ga

Ni-Mn-Ga exhibits both shape memory and ferromagnetic behaviors and is the most
common ferromagnetic shape memory alloy (FSMA) [29, 30]. As common to shape
memory alloys, Ni-Mn-Ga is characterized by a high symmetry (austenite) crys-
tallographic phase and a low symmetry (martensite) crystallographic phase. The
low symmetry phase is associated with a spontaneous strain and exhibits a twinned
microstructure, in which the crystal is divided into different twin variants separated
by twin boundaries [31, 32]. Each of these variants has a different orientation of the
unit cell and in accordance different magnetic easy axis (an energetically favorable
direction of the magnetization). When subjected to an external driving force (either
mechanical or magnetic in the case of Ni-Mn-Ga), one twin variant may expand at
the cost of the other through nucleation and propagation of twin boundaries, in a
process collectively known as twinning or martensitic reorientation. The twinning
transformation is associated with a significant strain change (i.e., beyond elasticity)
and is therefore used in a variety of actuation applications [33–39].
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A quantitative description of a twinning–basedmacroscopic response requires the
knowledge of a kinetic relation. This fundamental material law describes the velocity
of an individual twin boundary vTB as a function of the external driving force g [40].
For example, following the common ‘discrete twin boundary dynamics’ modeling
approach, which is similar to the discrete dislocation dynamics approach (see, e.g.,
[41]) but is more simple and straightforward, the macroscopic strain rate ε̇ can be
described by the relation:

ε̇ = 1/V0

∑
n

A(n)
TB N (n)

TB · ε
(n)
T v(n)

TB (g) (9.4)

The index (n) represents a twinning system, i.e., a transformation between two
specific twin variants. V0 is the crystal volume and ATB is the area of a twin boundary.
NTB is the number of mobile twin boundaries, εT is the strain jump across the twin
boundary (i.e., the twinning strain), and vTB(g) is the kinetic relation. In most of
the cases, only one twinning system is activated and there is no interaction between
twin boundaries beyond the nm-scale. In addition, NTB is often constant and known
for a given crystal (e.g., when active twin boundaries are stabilized [42]). The only
unknown variable in (9.4) is vTB(g). Consequently, knowledge of vTB(g) is crucial
for the simulation of twinning-based response. Generally, different types of kinetic
relations arise for different ranges of the driving force and temperature, reflecting on
the different mechanisms of motion that are active under different loading conditions
[43–45].

While a kinetic relation bares fundamental importance in the quantitative descrip-
tion of twinning dynamics, the concept of such a relation assumes that the twin
boundary velocity depends only on the driving force, thus ignoring local barriers and
temporal processes by which the twin boundary overcomes these barriers. Conse-
quently, a kinetic relation is meaningful for describing the average twin boundary
velocity over length-scales much larger than those of relevant barriers for motion.
This understanding emphasizes the need for the identification and characterization of
the energy landscape under which a twin boundary propagates. This landscape may
be generated by barriers of different intensities (amplitude) andwidths (length scale),
as well as different spatial distributions within a given crystal. Knowledge about the
physical characteristics of the different barriers, as well as the mechanisms of motion
is required both for modeling twinning transformation and for the development of
new and improved materials.

The energy barriers for twin boundary motion can be classified according to their
typical length scale. In particular, we distinguish between atomistic-scale lattice
barriers to much longer range (typically µm scale) barriers. The former arises from
resistance imposed by the lattice potential [46–48], while the latter is associated
with larger scale interactions due to microstructural features and various crystal
defects [49–52]. Twin boundaries can overcome the different energy barriers through
different mechanisms of motion. Each of these mechanisms can be viewed as a
collection of individual “events” with different length, energy and temporal scales,
which can be estimated based on the physical characteristics of the different energy
barriers.
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The effects of the different barriers on the kinetics of individual twin boundaries
in Ni-Mn-Ga were identified and analyzed through a combination of analytical and
experimental investigations [27, 43–45, 53, 54]. It was shown that atomistic scale
barriers result in different kinetic relations at different ranges of the driving force,
while µm scale barriers are responsible primarily for the threshold driving force
below which twin boundary motion does not take place. This important material
property is commonly referred to as the twinning stress.

9.2.1 Twin Boundary Motion Under the Lattice Potential

At the atomistic scale, the periodicity of the crystal induces several energy barriers,
which exist even in a crystal free of imperfections (see Fig. 9.1). First, we consider
the lattice barrier that resists the uniform motion of a twin boundary as a flat plane.
This 2D potential represents the change of the twin boundary energy (per unit area)
as a function of its position (see, for example, [43, 44, 46, 48, 55–58]), and follows
the periodicity of the lattice in the direction normal to the twin boundary. In a similar
way, we can consider the 1D lattice potential for twinning dislocations, which are
line defects that represent steps on an existing twin boundary and possess the char-
acteristics of ordinary dislocations [59, 60]. The 1D lattice potential, also known as
the Peierls potential [61], represents the periodic change of the twinning dislocation
energy as a function of its position on the twinning plane. Depending on the driving
force and rate limiting step, both the 1D and 2D lattice potentials can give rise to
several possible mechanisms of motion, which result in different kinetic relations.

The effects of the lattice barrier on twin boundary motion in Ni-Mn-Ga single
crystals have been studied by means of a pulsed magnetic field method. In this
method, a pulse with a constant amplitude (driving force) and tunable duration in the
range of 10 − 120µs is applied and the displacement of individual twin boundaries
is measured by optical visualization before and after the pulse. The average veloc-
ity, vTB of a twin boundary is calculated by dividing the measured distance traveled
during a single pulse by the pulse duration. Figure9.2 demonstrates an example for
experimental results obtained using this method, showing average velocity measure-
ments over a relatively large range of the driving force. All measurements shown in
Fig. 9.2 were obtained from the same twin boundary. The scattering in the measured
velocity values indicates the presence of interactions with crystal defects, which
lead to the slowing down of the twin boundary motion. At the same time, for a large
enough number of data points, there are instances in which the twin boundary does
not meet a defect. In these cases, the average velocity is approximately equal to the
instantaneous velocity under the driving force value of the pulse amplitude because
the driving force is nearly constant throughout most of the pulse duration. Therefore,
the maximum velocities under each value of the driving force represent the kinetic
relations in a defect-free crystal, which are governed by the lattice barrier [7–9].

Studies using the above described method [43, 44] showed that above a certain
transition driving force (denoted as gtrans in Fig. 9.2) the twin boundary overcomes
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Fig. 9.1 a A schematic representation of the lattice potentials that form barriers for twin boundary
motion. The boundary plane is marked in light green, and contains a step whose edges (marked
in red) are twinning dislocations. Black solid and dotted rectangles represent “hills” and “valleys”
(respectively) of the periodic 2D potential, which resists themotion of a twin boundary as a flat plane
along the e1 direction at velocity vTB. Red solid and dotted lines represent “hills” and “valleys”
(respectively) of the 1D potential, which resists the lateral propagation of twinning dislocations
along the e2 and e3 directions at velocity vTD. The periodic energy landscapes induced by the 2D
and the 1D potentials are shown schematically in (b) and (c), respectively

the 2D lattice potential in an athermal manner and moves as a flat plane. This type
of motion is described by a kinetic relation that follows a square root dependence
on the driving force (see pink trend line in Fig. 9.2), and can lead to twin boundary
velocities as high as several meters per second [33, 43, 44, 54]. Below the transition
driving force, slower motion proceeds through nucleation and motion of twinning
dislocations. This type of motion is described by an exponential type kinetic relation
(see green trend line in Fig. 9.2), which reflects the thermally activated mechanisms
that dictate the overall boundary motion [43, 44].

For the thermally activated type of motion, one can evaluate the physical char-
acteristics of individual events that constitute the overall boundary propagation. For
example, the transformed volume due to nucleation of a twinning dislocation, which
can be described as a two dimensional circular step on the twin boundary plane, is
given by:
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Fig. 9.2 Velocities of an individual twin boundary as a function of the driving force, obtained
from high rate pulsed magnetic field measurements in Ni-Mn-Ga. The maximal velocity values are
marked by empty squares and follow two trends that are fitted by two types of kinetic relations (see
text for details). The transition value, at which slow thermally-activated motion switches to fast
a-thermal motion is marked as gtrans

�V = dr2c (9.5)

Here, d ∼= 4 · 10−10 m, is the minimal thickness of the step (which is equivalent to
the lattice spacing between adjacent twinning planes) and rc is the critical radius of
the step. The actual value of rc in Ni-Mn-Ga can be extracted by fitting an analytical
kinetic relation to experimental results, as was done in [44], resulting in rc

∼= 20nm.
Substituting these values in (9.5) results a value of �V ∼= 5 · 10−7 µm3. The energy
associated with a nucleation of a twinning dislocation step is [44]:

�E = gdr2c (9.6)

A substitution of a typical driving force value, e.g., g = 100kJ/m3 (see Fig. 9.2) in
(9.6) provides �E ∼= 5 · 10−20 J. The nucleation rate of such steps can be estimated
based on standard nucleation theory:

Ṅ = dc0f0exp

(
− Q

kT

)
(9.7)

Here, c0 is the atomic density, f0 is the typical vibration frequency of atoms in
the metal, Q is the activation energy for nucleation and kT is the thermal energy.
The activation energy Q can be extracted based on an expression for the overall twin
boundary velocity, which, for a process governed by nucleation of two dimensional
steps, is given by [44]:

vTB = v0exp

(
− Q

3kT

)
(9.8)
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Here, v0 is the pre-exponential velocity term which can be obtained by fitting an
expression for the kinetic relation to the measured data (see, e.g., [44]). Combining
(9.7) and (9.8) results:

Ṅ = dc0f0

(
vTB

v0

)3

(9.9)

Equation (9.9) allows estimating the magnitude of Ṅ from the values of vTB and
v0, which can be obtained from fitting an exponential type kinetic relation to the
measured data [44, 45]. This procedure leads to nucleation rates on the order of
1021 − 1023 s−1 (depending on the value of g). The duration of individual nucleation
events is determined by f −1

0 and is at the pico-second scale.

9.2.2 Long Range Energy Barriers: The Origin and
Characteristics of the Twinning Stress

Another experimental method for studying the dynamics of the twinning transforma-
tion is based on low-rate displacement-controlled uniaxial loading. In this method,
the prescribed displacement rate dictates the average twin boundary velocity, and
the driving force required for obtaining this velocity is measured. Traditionally, this
method is used for measuring a fundamental property of SMA, which is termed the
twinning stress. This value, which is taken as the average value of the stress plateau
in the loading curve of the martensite phase, represents the threshold stress required
to initiate twin boundary motion at low velocities. Figure9.3a shows a typical uni-
axial loading curve of a type I twin boundary in a NiMnGa single crystal, which
was measured at a loading rate that corresponds to an average boundary velocity of
v̄TB = 2.8 × 10−6 m/s (smaller by three orders of magnitude than the minimal veloc-
ity that can be detected by magnetic pulse tests described in Sect. 9.2.1). The load
profile shows a typical plateau-type response, which, upon magnification reveals a
saw tooth pattern (see Fig. 9.3b). The average value of the plateau stress (marked by
the black line in Fig. 9.3a) represents the twinning stress σts, which, for this boundary
type equals about 0.85MPa. This value corresponds to a driving force of gts ≈ 50 kJ

m3

that is smaller than the transition driving force associated with the lattice potential
(gtrans ≈ 110 kJ

m3 , see the pulsed field data in Fig. 9.2). Mechanical experiments con-
ducted at different loading rates,which correspond to different average twin boundary
velocities in the range of 10−7–10−2 m/s (all slower than the typical values measured
in the pulsed field method), reveal no significant change in the value of the twin-
ning stress [54]. This result indicates that the twinning stress property represents
a threshold driving force value below which twin boundaries are immobile. This
observation implies that although gtrans > gts, the barrier associated with the lattice
potential (related to gtrans) can be overcome by thermally activated processes while
the twinning stress barrier (related to gts) cannot. Consequently, the length scale of
the barrier responsible for the twinning stress is expected to be much larger than that



176 E. Faran and D. Shilo

of the lattice potential, and as such may be responsible for the scattering observed in
our pulsed magnetic field experimental data.

At length scales larger than the atomistic scale, possible barriers for twin boundary
motion can arise from interactions with other crystal defects (e.g., dislocations [62],
clusters of point defects and surface defects [63]) as well as barriers imposed by the
complex internal twinning microstructure often found in various types of SMA and
ferroelastic materials. The latter type is characteristic to Ni-Mn-Ga, in which the
internal microstructure consists of a hierarchical laminated micro-twinning structure
[52, 64–66], as well as a conjugate 180◦ magnetic domain pattern [67]. Recently, we
have shown that the barriers for twin boundary motion at low velocities (i.e., barriers
related to the twinning stress property) are determined primarily by the mechanical
microstructure, and that the contribution of the 180◦ magnetic domains to the barrier
is negligible [68].

The internal twinningmicrostructure inNi-Mn-Ga originates from the small mon-
oclinic distortions of the otherwise tetragonal 10Mmartensite phase [64]. This gives
rise to additional twinning systems (shown as grey and white layers in Fig. 9.4)
that exhibit much smaller strains compared to the strain jump across a macro-twin
boundary. These finer twins are often referred to as a − b laminates [64] and share a
common c axis direction of the nearly tetragonal unit cell. The resulting microstruc-
ture on both sides of a macro twin boundary consists of alternating a − b twinning
laminates with a typical laminate width of few tens of microns [69]. Twinning lami-
nates are oriented differently at different sides of the macro twin boundary [64] (see
Fig. 9.4), but at the same time must satisfy strain compatibility across the macro twin
boundary [52, 70]. Full compatibility (i.e., minimal strain energy) is achieved when
laminates of the same kind meet across the entire twin boundary (see Fig. 9.4a, b).

The internal twinned volume on either sides of the macro twin boundary main-
tains its self-similar strain compatible structure each time the macro twin boundary
advances by a distance �x that is directly determined by the lamella thicknesses
(Fig. 9.4b). We note that according to our optical observations during pulsed field
tests in NiMnGa, the macro twin boundary remains relatively flat as it propagates, at
least down to the sub-µmscale [43, 44]. Contrary, advancement by a distance smaller
than�x leads to a situation in which laminates of different kinds meet across parts of
the macro twin boundary (as illustrated in Fig. 9.4c) and results in an excess energy
due to strain incompatibility. In order to reduce this excess energy, needle twins may
nucleate and grow inside the laminated structure, as illustrated in Fig. 9.4d. We note
that while nucleation and growth of needle laminates dictate the overall motion of
the macro twin boundary, it introduces a negligible amount of macroscopic strain
change (due to the relatively small twinning strain associated with a − b laminates).
The macroscopic strain change is induced primarily by the motion of the macro-twin
boundary.

The above discussion indicates that themotion of themacro twin boundary, which
is commonly described by a single parameter (the twinning stress), is expected to
follow a sequence of locally metastable states (e.g., Fig. 9.4a, b), which are dictated
by the typical width of twinning lamellas. Between these metastable states, local
events at much smaller scales are expected to take place (as in Fig. 9.4d).
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Fig. 9.3 a Low rate, displacement controlled uniaxial stress-strain curve showing a plateau type
response at a nominal value ofσts.bAzoom in on the plateau region reveals a saw tooth pattern of the
load profile. The blue and green markers represent local maxima and minima points, respectively,
which define individual µm scale events (color figure online)

The “jerky” load profile shown in Fig. 9.3 implies that the twin boundary prop-
agates from one local metastable state to the next through individual events. The
orders of magnitude of some of the physical characteristics of these events can be
evaluated from the experimental curve. For example, the energy change associated
with a single event can be roughly evaluated based on the change in the total elastic
energy due to a stress drop of magnitude �σ:

�E = V0
�σ · σ

Y
(9.10)

Here, σ is the nominal stress value (i.e., the twinning stress), Y ∼= 5GPa is the
elastic constant [71] and V0 is the volume of the crystal, which is typically on the
order of several mm3. For stress drops �σ in the range of 0.001–0.1MPa, we obtain
�E ≈ 10−6–10−8 J. Another way to roughly evaluate the energy of an individual
event is through the product of the transformed volume �V and the mechanical
work (σεT ) associated with twin boundary motion (note that in mechanical tests
g = σεT ):

�E = �V σεT (9.11)

Here, εT = 0.06 is the twinning strain [72]. Combining (9.10) and (9.11) provides
an evaluation for the transformed volume:

�V = V0
�σ

YεT
(9.12)
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Inserting typical values in (9.12) results �V ≈ 105–107 µm3. The representative
stress drops shown in Fig. 9.3b allow estimating the durations of individual events
�t ≈ 0.2–2 s, and the frequency at which they occur f ≈ 0.05–3s−1.

9.3 Different Types of Events and the Order of Magnitude
of Their Volume, Energy, Duration and Rate

The analysis performed in the previous section for the Ni-Mn-Ga material system
provides estimations of the orders of magnitude of several physical characteristics
of individual events that constitute the overall motion of a twin boundary at differ-
ent scales. These values are summarized in Table9.1, and provide several important
insights, which can be relevant for transformation phenomena in other material sys-
tems.

First, events associated with the lattice barrier are below the lateral, energetic and
temporal resolutions of any experimental method that has been used for studying
crackling noise. In addition, the high rate of the lattice-scale events indicates that at
any moment there are numerous events that occur simultaneously. The small energy
of these events, which is on the order of the thermal energy (kT ≈ 10−21 J), allows
their thermal activation and therefore their statistical distribution does not follow a
power-law.

Second, the lattice-scale andmicrostructural-scale events are separated by a range
of twelve orders ofmagnitude of volume, energy and duration.Within this vast range,
there are probably other types of events, whichwe denote asmesoscopic-scale events.
An example for such an event may be the formation of a needle twin (or needle
domain) as illustrated in Fig. 9.4d and as observed in many ferroelastic materials
[31, 73, 74]. It is possible, for example that a ‘large’ microstructural-scale event
occurs through a formation of many needle twins and their subsequent motion. This
means that any microstructural-scale event is composed of numerous mesoscopic-
scale events (see the illustration of Fig. 9.4d). The mesoscopic-scale events are not
sensitive to the microstructure and are therefore expected to exhibit a scale-free
probability distribution.

Third, the relatively large size of microstructural-scale events is not unique to Ni-
Mn-Ga. Many shape memory and ferroelastic single crystals, as well as polycrystals

Table 9.1 Different types of events during twin boundary motion in Ni-Mn-Ga and the orders of
magnitude of their volume, energy, duration and rate

Barrier/scale Volume (µm3) Energy (J) Duration (s) Rate (s−1)

Lattice barrier 10−7–10−6 10−20–10−19 10−12–10−11 1021–1023

Microstructural-
related
barrier

106–108 5 · 10−8–5 · 10−6 0.2–2 0.05–3
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Fig. 9.4 a A schematic representation of the macro twin boundary (solid black line) in Ni-Mn-Ga.
The single crystal is cut along {100} planes of the parent austenite phase, such that the macro twin
boundary forms an inclination angle of 45◦ with regard to the crystal surface. A laminated twinning
microstructure (“grey” and “white” stripes) is present on either side of the macro twin boundary
with an equilibrium thickness of a pair lamella, λ. The lattice parameters of the nearly tetragonal
unit cells represent the orientations of each laminate. b An advancement of the phase boundary by
a distance �x = λ maintains the self-similar structure of the laminated volume. c An advancement
of the twin boundary by a distance smaller than λ leads to excess strain energy due to incompatible
laminated twins. d The excess energy associated with the incompatible structure shown in (c) can
be reduced by formation of needle twins inside the laminated structure

with large grains exhibit an internal twin/domain microstructure at this length-scale
[31, 75, 76]. One such example is given in Sect. 9.4, in which we present a study of
crackling noise during a martensitic phase transformation in Cu-Al-Ni single crystal.
On the other hand, there are materials with much finer microstructure, e.g., nano-
grained materials, in which the microstructural-scale is smaller than the scale of
mesoscopic events. In these cases, each mesoscopic-scale event spans over many
grains and therefore it is not sensitive to the microstructure. An example for such
situation is demonstrated in [77], in which all detected events span over many grains
and exhibit a scale-free power-law distribution.

It is worthwhile to compare the orders ofmagnitude presented in Table9.1with the
detection capabilities of common methods for measuring avalanche events. Calori-
metric measurements with state of the art instruments, which are designed to obtain



180 E. Faran and D. Shilo

the best resolution for small events, and under extremely slow rates (10−6–10−5 K/h),
are able to detect avalanche events with energy as small as 10−5 J (see [9]). This
experimental setup has been applied for studying crackling noise during martensitic
transformation in Cu-Zn-Al and demonstrated well-separated avalanche events dis-
tributed according to a power law within an energy range of 10−5–10−2 J [9]. Taking
into account the latent heat of Cu-Zn-Al (370 J/mole = 48.7J/cm3, [9]), the latter
energy range is related to a range of transforming volume of 2 · 105–2 · 108µm3.
This volume range overlaps with the volume range related to the microstructural-
scale events observed in Ni-Mn-Ga (see Table9.1). Note that in the above mentioned
calorimetric studies [9, 10] the martensitic transformation has been induced by a
temperature change, which resulted in no preference for a specific martensitic vari-
ant. In Sect. 9.4 we present results for stress induced martensitic variant, in which
the transformation to a single variant results in a well-ordered microstructure with a
characteristic length scale.

Studies which combined calorimetry with AE [10, 78] showed that AE can detect
a larger number of avalanche events (at least an order of magnitude). This indicates
that AE is more sensitive to smaller events and can detect events typical to the
mesoscopic scale in Table9.1. Setups for AE filter the emitted waves usually in the
range of kHz–MHz. As a result, event durations are usually limited to the range of
10−6–10−3 s. Therefore, the duration of microstructural-scale events in Ni-Mn-Ga
are too long to be detected by AE. It is likely that AE will detect such events as a
collection of numerous smaller mesoscopic-scale events. While AE measurements
can provide important information on mesoscopic-scale events, they may miss the
fact that groups of such events constitute larger microstructural related events.

9.4 Crackling Noise During Twin Boundary Motion
in Ni-Mn-Ga

The uniaxial loading curve presented in Fig. 9.3 provides the essential database for
a statistical analysis of avalanche events [27]. The identification and evaluation of
individual events is based on the following analytical analysis. Under constant dis-
placement rate conditions that are applied by a much stiffer loading frame compared
to the tested samples, the total strain ε, which is dictated by the constant displacement
rate c, is expressed as the sum of two contributions:

ε = ct

L0
= σ

Y
+ εtrans (9.13)

Here, t represents the elapsed time, L0 is the sample’s initial length along the
loading direction and Y is the elastic constant. The first term on the right hand side
of (9.13) is the uniform elastic strain while εtrans represents the strain due to the
twinning transformation, which in our case occurs through the motion of a single
macro twin boundary.
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We note that the jerky load profile (a representative part of which is shown in
Fig. 9.3b) is composed of alternating linear rising segments and rapid load drop
segments. During the linear rising segments the sample responds as a linear elastic
material (i.e., deforms uniformly) and εtrans is constant, i.e., the boundary velocity is
practically zero. Complementary,when the time derivative of the load is negative, i.e.,
during the load drop segments where σ̇ < 0, the transformation strain rate exceeds
the average value imposed by the external displacement rate, c/L0. In this case,
avalanche events can be characterized by the displacement xTB of the twin boundary,
which induces a macroscopic strain change

εtrans = (xTB/L0) · εT (9.14)

where εT is the strain associatedwith suchmotion (i.e., the twinning strain). Equations
(9.13) and (9.14) lead to explicit relations for the boundary’s displacement:

xTB = ct

εT
− L0σ

εT E
(9.15)

The first step in analyzing the experimental loading curve (Fig. 9.4) is the identi-
fication of points along the loading curve, which are associated with the beginning
and finish of twin boundary motion events. In the case of saw tooth pattern shown
in Fig. 9.3, these points are the local maxima xTB,max,i and minima xTB,min,i points,
at which stress is maximal or minimal (see markings in Fig. 9.3b). The difference
xTB,max,i − xTB,min,i between adjacent extrema points defines the irreversible twin
boundary displacement �xTB,i. Next, the distributions of all values of �xTB are eval-
uated statistically. Interestingly, the distribution of �xTB (Fig. 9.5) reveals a clear
peak, which represents the most probable value around which the PDF is distributed.
The characteristic value of �xTB

∼= 15µm associated with the peak of the PDF, is
in excellent agreement with the thickness λ of a − b twinning laminates [52, 64,
69] (see Fig. 9.4). The exact shape of �xTB distribution is determined by the distri-
bution of the length-scales of the internal microstructure in the Ni-Mn-Ga crystal.
Curve fittings of log-normal PDF to the measured distribution exhibits reasonable
agreements.

Recalling the values given in Table9.1, we note that the transformed volume asso-
ciated with twin boundary advancement by �xTB

∼= 15µm is about 5 · 107 µm3 (the
twin boundary area is about 3mm2). Based on Table9.1 and the related discussion,
one can expect that a single microstructural-related event is composed of a multitude
of much smaller mesoscopic events. Naturally, our experimental resolution does not
allow capturing the mesoscopic events, but rather provide some average information
over many of them. Yet, we wish to explore what type of information can be obtained
on the mesoscopic events based on our experimental results.

To answer the above question we study another variable that characterizes the
crackling noise events, i.e., the velocity of the process, vTB. An analytical expression
for the velocities of the twin boundary can be directly obtained by taking the time
derivative of (9.15):
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Fig. 9.5 Distribution of twin boundary displacement �xTB in NiMnGa. Individual values are cal-
culated according to (9.15) and divided by 1m to obtain unit-less variables. The peaks around which
the PDF is distributed reveal a characteristic value that is associatedwith the internal microstructure.
Fittings of the measured distributions to a log-normal function provide R2 value 0.95

ẋTB = vTB = c

εT
− L0σ̇

εT Y
(9.16)

Equation (9.16) indicates that the velocities of interest (i.e., positive velocity
values) take place primarily during the load drop segments of the curves (in which σ̇

is negative). In addition, we observe that different microstructural-related events of
similar total displacement exhibit very different shapes of the displacement versus
time curves. This is demonstrated in Fig. 9.6, which shows five representative curves
of xTB versus time (curves were calculated based on (9.15)). While all paths describe
similar total displacements of 10–20µm, each exhibits different local variations in
the slope, i.e., in the temporal velocity. This observation indicates that the velocity of
the twin boundary vTB varies during an individual microstructural-related event, as
well as between separate events. Thus, load drops are not accompanied by a single
determined “path” in terms of vTB, but rather exhibit noticeable variations, which can
be attributed to the existence of many microscopic events. In addition, we notice that
the global maximal measured value of vTB, in all measuredmicrostructural-related, is
smaller by at least an order of magnitude than the velocity measured under the same
driving force but higher loading rates [54]. This means that any temporal measured
value of vTB is a contribution of numerous mesoscopic events separated by waiting
times which are much longer than the propagation times.

Such behavior motivates a statistical analysis of all temporal values of vTB. Using
(9.16), temporal velocities during all load drops along the curves in Fig. 9.3a are
calculated and evaluated statistically. The distribution of twin boundary velocity is
found to follow a scale invariant power law p(vTB) ∝ vTB

−α , with α = 2.02, over the
vast majority of the measured velocity range (see Fig. 9.7). The small deviation from
power law at vTB > 10−4 m/s can be attributed to the finite temporal resolution, which
may limit our detection capabilities at the higher velocities range or to a deviation
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Fig. 9.6 Representative
displacement-time paths of a
twin boundary in NiMnGa
during several
microstructural-related
events. The paths, marked by
different color curves, are
calculated using (9.15) for
five representative load drops
along the stress-time curve

Fig. 9.7 Complementary
cumulative distribution
functions (CCDF) of
temporary velocity values
vTB. The red line shows a
power law statistical trend
(color figure online)

from criticality. The distribution of vTB implies that the mesoscopic events follow the
monotonously decreasing statistical distributions according to (9.1). Yet, at the larger
microstructural-related length scale, our analysis clearly shows that twin boundary
motion is influenced by typical microstructural characteristics.

It is also worthwhile to discuss the distribution of the potential energy release
rate U̇p, which is related to the magnitude of AE events. We note that the potential
(elastic) energy is given by:

Up = AL0
σ 2

2Y
(9.17)

Taking the time derivatives of both sides in (9.17) results:

U̇p = AL0

Y
σ(σ̇ ) (9.18)

The nominal stress σ during the load-drop typically varies by less than 10%,
while (σ̇ ) varies by several orders of magnitude. Thus, to a good approximation, U̇p
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is proportional to (σ̇ ). Combining (9.16) and (9.18) we get that U̇p is proportional
to vTB, and exhibits the same type of scale-free statistical distribution.

Previous experimental measurements of crackling noise during the phase trans-
formation in NiMnGa exhibited a power law distribution with no signs for a charac-
teristic length scale [79–82]. These observations can be explained taking into account
that the austenitic parent phase had no internal twinned microstructure and that the
phase transformation took place simultaneously in different places in the crystal.

9.5 Crackling Noise During Martensitic
Transformation in Cu-Al-Ni

Materials undergoing stress-inducedmartensitic transformations are often character-
ized by a unique internal microstructure at the austenite martensite phase boundary
(see, e.g., [66, 83–85]). The microstructure originates from the absence of a coher-
ent interface between the austenite and any single martensite variant. As a result, a
laminated structure of two twin-related variants of martensite (see Fig. 9.8) is formed
near the phase boundary with the austenite. The lamella thickness ratio, i.e., the ratio
between the thicknesses of the “black” and “white” twins in Fig. 9.8, is dictated by
average strain compatibility requirements [86, 87]. In addition, the local mismatch
strain between the austenite and each of the martensite twin variants results in a local
strain energy field. This energy is smaller for a finer twinned structure. However, a
finer structure increases the total area of twin boundaries and thus the amount of twin
boundary energy. Consequently, there exists a characteristic size for the thickness of
a lamella pair (marked as λ in Fig. 9.8a), which minimizes the total energy [86].

Cu-Al-Ni is a widely investigated shape memory material, which undergoes a
martensitic transformation. In this alloy, several possible microstructures can form
along the austenite-martensite phase boundary (see, e.g., [83, 84, 87–89]). Despite
differences between the possible microstructures, all of them contain a laminated
twinned structure (similar to that shown in Fig. 9.8a), with a typical lamella-pair
thickness that is on the order of few tens of microns [84].

The twinned volume maintains its self-similar strain-compatible structure, as
shown in Fig. 9.8b, each time the phase boundary advances by a distance �xPB that
is directly determined by the twin lamella thicknesses. For example, for a lamella-
pair thickness ratio of one, �xPB = λ/2sin θ . Contrary, advancement by a distance
smaller than�xPB results in deviations from the equilibrium thickness ratio in the two
lamella pairs located at the edges of the phase boundary (pairs 1 and 4 in Fig. 9.8c).
This leads to local strain incompatibilities and to an increase in the total strain energy.

An advancement of the phase boundary by �xPB does not necessarily occur via
a uniform propagation of the phase boundary as illustrated in Fig. 9.8b, c. It is more
likely that this advancement proceeds through several sub-processes at much smaller
scales (e.g., the mesoscopic scale events discussed in Sect. 9.3). These include the
nucleation,motion and annihilation of twin boundaries, aswell as the local nucleation
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Fig. 9.8 a A schematic representation of the interface between a single martensite variant (Md) and
austenite (A) in Cu-Al-Ni single crystal. Near the phase boundary, the martensite forms a laminated
twinning structure with a fixed ratio between the two twins (“black” and “white”). The thickness of
a pair lamella, which are numbered 1 to 4, is λ. The inclination angle of the twins with regard to the
crystal surface is θ . b An advancement of the phase boundary by a distance �xPB that maintains
the self-similar structure of the laminated volume and the thickness ratio between the two twinning
laminates. c An advancement of the phase boundary by a distance smaller than �xPB leads to strain
incompatibilities due to deviations from the optimal thickness ratio in pairs 1 and 4. d Possible
intermediate sub-processes that occur during the advancement of the phase boundary from state a
to state b. The small arrows indicate the direction of motion of twin and phase boundaries

and motion of steps on the austenite-martensite phase boundary (see, for example,
the sub-processes sketched in Fig. 9.8d). Yet, the microstructure sketched in Fig. 9.8d
has a higher energy than the microstructures sketched in Fig. 9.8a, b. Each of these
sub-processes, which can occur simultaneously at different locations along at the
phase boundary, is accompanied by a different amount of local strain change, and
can proceed at a different rate. In particular, we note that the nucleation andmotion of
twin boundaries induce significant local strains, due to the twining strain associated
with the two types of twin variants. At the same time, an advancement of the phase
boundary by �xPB, from the state illustrated in Fig. 9.8a to the state illustrated in
Fig. 9.8b, induces a change in the macroscopic strain �εtrans:

�εtrans = (�xPB/L0) · εPT (9.19)
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Here, L0 is the relevant sample’s dimension and εPT is the strain associated with
the phase transformation from austenite to a single martensite twin variant.

The above discussion indicates that the martensitic transformation is expected to
follow a sequence of locally stable states (e.g., Fig. 9.8a, b), which are dictated by the
microstructure of the twinned martensite. Switching between these states is expected
to form relatively large jerky events. Yet, within each of these microstructural-related
events, the martensitic phase transformation proceeds by a multitude of smaller
mesoscopic events that can span over various length and temporal scales.

For the experimental part of the investigation, a prismatic shaped 2.65 × 2.65 ×
11.5 mm single crystal of Cu-14.3Al–4.2 Ni (wt. %) is tested (see also [84, 90]). The
faces of the crystal are parallel to the {100} planes of the cubic austenite phase. In
this crystal, the austenite phase is stable at room temperature (Ms ≈ 10 ◦C). Uniax-
ial compression along the long axis at room temperature results in a stress induced
transformation to a single martensite twin variant, which is preferred by the external
load [85]. Optically, it is observed that the stress induced transformation proceeds
by the propagation of a single phase boundary along the main axis of the crystal.
The resulting stress induced martensite is metastable at room temperature, due to
the excess energy associated with the nucleation of the twinned volume at the inter-
phase boundary [90]. Consequently, the reverse transformation to austenite requires
heating the crystal to a temperature above 90◦C. Several compression experiments
are conducted at a constant strain rate of 1.5 × 10−5 s−1. The load is measured by a
250kg full scale load cell, and the overall noise level of the measurement system is
about ±0.02MPa (see inset in Fig. 9.9b).

A typical stress-time curve is shown in Fig. 9.9a, and is characterized by a nominal
transformation stress on the order of 100MPa. The overall strain associated with the
transformation of the entire crystal is approximately 8%. Zooming in on the plateau
region of the loading curve reveals the existence of fine features (Fig. 9.9b). The
features are relatively “smooth” and do not display the distinct saw-tooth pattern as
in the case of twin boundary motion in Ni-Mn-Ga. Therefore, our analytical analysis
is slightly different and the identification of individual “events” is performed based
on the strain rate profile.

Tests are performed under constant velocity of the cross-head bridge, c, that
imposes a constant strain rate ε̇ = c/L0. Similar to (9.13), the overall strain is writ-
ten as:

ε = ct

L0
= σ

Y
+ εtrans (9.20)

where t is the elapsed time, L0 is the sample’s initial length, σ is the stress, Y is
the elastic constant, and εtrans represents the strain due to the phase transformation.
Taking the time derivative results an expression for the transformation strain rate,
ε̇trans:

ε̇trans = c

L0
− σ̇

Y
(9.21)
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Fig. 9.9 a A typical loading
curve of a Cu-Al-Ni single
crystal. The plateau region
corresponds to the stress
induced martensite phase
transformation. b Zoom in
on the stress profile showing
local variations in the stress
along the plateau region. The
inset at the top shows a
typical noise profile of the
measurement system,
indicating that it is much
smaller compared to the local
stress variations. c Zoom in
on the transformation strain
rate profile, calculated
according to (9.21), shown
on a logarithmic scale. The
local minima’s correspond to
instants at which the
transformation temporarily
halts. The same points are
marked also in (b), where
they correspond to the
maximal positive derivative
of the stress profile. The
locations of these points in
the stress profile are used to
calculate propagation
distances of the phase
boundary according to (9.22)

Equation (9.21) allows us to calculate individual values of ε̇trans over the entire
loading profile. A representative portion of the calculated ε̇trans profile is shown in
Fig. 9.9c, revealing a pattern that consists of relatively short periods during which
ε̇trans drops (up to few orders of magnitude) below the average value of c/L0 =
1.5 × 10−5 s−1. These periods are separated by longer periods during which ε̇trans is
higher than c/L0 and changes in a more moderate manner. The identified minima
points in the strain rate profile (Fig. 9.9c) correspond to points in the stress profile
where the local (positive) time derivative of the stress is maximal (see Fig. 9.9b).
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Fig. 9.10 The density
function of phase boundary
displacements �xPB during
stress induced martensite
transformation. The
distribution exhibits a
log-normal behavior that is
centered around a value of
about 30µm

We can assume that the local minima points in the strain rate profile, at which the
transformation practically halts, correspond to instances at which the phase boundary
has reached a position of local equilibrium, as shown in Fig. 9.8a, b.

The above observation motivates us to calculate the intermediate displacements
of the phase boundary �xPB that take place between sequential minima points in the
ε̇trans profile. The combination of (9.19) and (9.20), provides

�xPB = c

εPT
�t − L0

εPT Y
�σ (9.22)

where �t and �σ are the time and stress differences between these points, respec-
tively. Events with a stress drop larger than 0.06MPa (i.e., three times the noise level)
were taken into account. The PDF of the calculated �xPB values (see Fig. 9.10) fol-
lows a log normal distribution, which is centered around a most probable value
of ∼30µm. This value is in agreement with the typical thickness of the twinning
lamellas near the phase boundary [83–85, 89], and indicates on a the direct relation
between the microstructure and locally stable states during the phase transformation.

As evident from Fig. 9.9c, the temporal propagations of the phase boundary pro-
ceed at strain rates that span several orders of magnitude. Next, we evaluate the
statistics of all temporal strain rate values ε̇trans (calculated according to (9.21)). The
resulting PDF of ε̇trans (see Fig. 9.11) exhibits scale-free behavior and fits well to
a power law of the form (ε̇trans) ∼ ε̇trans

−α , with α ∼= 2.7, over the majority of the
data range. Similar values of α were reported in AE measurements that revealed the
crackling noise response during martensitic phase transformation in Cu-Al-Ni alloys
[78, 82, 91–93].

The scale-free distribution of ε̇trans implies that the phase transformation proceeds
through a multitude of mesoscopic events that takes place at various scales, smaller
than the ∼30µm value of �xPB, but larger than the atomistic-scale mechanisms, as
discussed in Sect. 9.3. The broad range of strain rate values can be attributed to the
various sub-processes, as sketched in Fig. 9.8(d).
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Fig. 9.11 Complementary
cumulative density function
(CCDF) of the temporary
ε̇trans values, showing
scale-less behavior. The red
line is the best fit of a power
law of the form
p (ε̇trans) ∼ ε̇trans

−α , with an
exponent α = 2.7

Wenote that previous investigations on the dynamics ofmartensitic phase transfor-
mation in Cu-based shape memory alloys using calorimetric and AE measurements
(see, e.g., [8–10, 78, 93]), usually revealed power law distributions of the measured
variables. The absence of microstructural effects in these works may be attributed to
the fact that the martensitic transformation was thermally induced under no mechan-
ical constraints. These loading conditions promote a twinned martensite structure,
which evolves from the parent austenite phase through numerous nucleation events
at different locations inside the tested volume. These nucleation events may not be
affected by the internal microstructure. In our case, the stress induced transforma-
tion under uniaxial loading leads to an energy preference of a single twin variant.
As a result, a twin laminated structure with a well-defined characteristic thickness is
formed near the phase boundary with the austenite, as illustrated in Fig. 9.8. More-
over, stress-induced martensitic transformation at low rates often takes place through
the propagation of one (or few) austenite-martensite interphases, as in our case (see,
e.g., [94–96]).

In summary, analysis of temporary strain rate during stress induced martensitic
transformation in Cu-Al-Ni reveals the influence of the internal microstructure on
the crackling noise response. The characteristic size of the twinned microstruc-
ture dictates “discrete” µm-scale propagation events of the phase boundary. These
microstructural-related events take place through numerous mesoscopic events that
display no characteristic scale, and can be correlated to the various sub-processes by
which internal interfaces (e.g., twin boundaries) propagate locally at the vicinity of
the austenite-martensite phase boundary.

9.6 Crackling Noise During the Collapse of a Stack
of Corrugated Fiberboards

Another example of a physical system, which exhibits direct effects of the internal
microstructure on crackling noise behavior, is an engineered stack of corrugated
fiberboards (for basic details on corrugated fiberboards see [97]). The corrugated
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Fig. 9.12 a Schematic description of compression setup of an engineered corrugated fiber board
structure. The structure consists of 15 identical fiber board sheets with a total initial height of
about 100mm. Each sheet is square shaped, B/C flute commercial type, cut to lateral dimensions
of 94× 94 mm2 b An optical image of the cardboard structure showing individual sheets with a
flute structure. c A schematic description of the collapse process of a single layer, which takes place
through multiple local buckling events between adjacent anchoring points (marked as blue circles)
(color figure online)

fiberboard structure (see Fig. 9.12) is characterized by a well-defined length-scale,
i.e., the flute size or the thickness of individual layers within the boards. Under
uniaxial compression, this structure also exhibits a jerky loading profile (Fig. 9.13a),
which is related to local collapses of fluted sheets within the fiberboards.

Compression tests were performed at constant displacement rates of c=5mm/min
(corresponds to strain rate of 8.33 × 10−4 s−1). Under these conditions, the total
displacement of the loaded sample u is given by

u = ct = F

k
+ up (9.23)

where t represents the elapsed time. The first term on the right hand side of (9.23)
is the uniform elastic deformation, where F and k are the instantaneous force and
stiffness of the loaded sample, respectively. The term up represents the local “plastic”
displacement, i.e., the displacement due to the collapse of individual fiberboards.
Rearranging (9.23) results an expression for up:

up = ct − F

k
(9.24)
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Fig. 9.13 a A typical
compression loading curve
of a stack of corrugated
fiberboards. b Zooming in
reveals local variations in the
load profile. c The
corresponding velocity
profile of the collapse
process ((9.25), shown on a
logarithmic scale) is
characterized by local
minima that are used for the
identification of individual
events. The temporal
locations of these minima
points are marked by red
points, and are shown also on
the load profile in (b)

As in the case of the Cu-Al-Ni system, the jerky loading curve of the corrugated
fiberboards does not exhibit sharp saw tooth pattern but rather smooth variations of
the force (see Fig. 9.13). Consequently, individual collapse events are identified based
on local minima of the plastic-displacement rate profile (see Fig. 9.13c), i.e., time
periods at which the velocity of the collapse process is substantially lower compared
to the majority of data points. The displacement rate profile is obtained by taking the
time derivatives of (9.24):
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Fig. 9.14 a PDF of fiberboard displacements that take place during individual events marked
in Fig. 9.13. The distribution is well fitted by a log normal function and is centered around a
most probable value that is directly related to the internal structure of the fiberboard stack. b
Complementary cumulative distribution function of the temporal velocities during the collapse
process, showing a stretched exponential type distribution

u̇p = vcollapse = c − Ḟ

k
(9.25)

We note that the local minima in the velocity profile are not as “sharp” as in the
case of the Cu-Al-Ni (compare Figs. 9.9c and 9.13c). This indicates that the time
periods during which the collapse velocity of the fiberboard stack is either slower or
higher than the average value are comparable.

The distribution of irreversible displacements that take place within individual
events (calculated using (9.24) for ten similar experiments) reveal a clear peak,
which represents the most probable value around which the PDF is distributed. The
characteristic values of�up = 1.5–2.5mm is excellent agreement with the thickness
of an individual layer in the corrugated structure. Curve fitting of log-normal PDF
to the measured distribution exhibit reasonable agreement.

Similar to the previous systems, we evaluate the temporary velocity values, i.e.,
all values obtained by (9.25) and shown graphically in Fig. 9.13c. Such an analysis
results a distribution that follows a stretched exponential function (9.3), with β =
0.74. This implies that each microstructural related event, which is associated with a
collapse of a complete fiberboard layer, is composed of a multitude of much smaller
(mesoscopic) events (see, e.g., the schematic in Fig. 9.12c), that may span several
orders of magnitude and follow a scale–less, monotonously decreasing, distribution
function (Fig. 9.14).
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9.7 Summary

This work unfolds the effects of an internal microstructure on the dynamics of sys-
tems undergoing crackling noise phenomena. We show experimental evidences for
such effects in three different physical systems that are characterized by an inter-
nal microstructure. In all the investigated systems, the mechanical process proceeds
through numerous events at different length, energy and time scales. These orig-
inate from the different energy barriers that separate metastable states and resist
the overall process. In the cases of twin boundary motion in Ni-Mn-Ga and the
stress induced martensitic phase transformation in Cu-Al-Ni, we identify atomistic
and µm-scale events that originate from the lattice barrier and the fine twinned
microstructure, respectively. While atomistic events (or rather mesoscopic events
that contain a multitude of atomistic events) follow typical scale-less statistics over
several orders of magnitude, the µm-scale events are dictated by a characteristic
length scale that is directly related to the internal microstructure. A similar observa-
tion, only at larger length scales, is demonstrated for a stack of corrugated fiberboards
undergoing mechanical collapse. In this system, the internal layered microstructure
dictates mm-size events, which proceed through amultitude of smaller local collapse
events.

This work demonstrates the ability to extract important physical insights from
crackling noise experimental data through identification and quantitative analysis
of different variables. This allows quantifying microstructural effects on crackling
behavior, which contribute to a better understanding of the physical mechanisms
that are responsible for this unique and important behavior in a variety of physical
systems at various scales. We believe that this approach provides new perspectives
on crackling noise phenomena and promotes further theoretical and experimental
work on other physical systems.
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Chapter 10
Mechanical Deformation in Metallic Liquids
and Glasses: From Atomic Bond-Breaking
to Avalanches

T. Egami, Y. Fan and T. Iwashita

Abstract The atomistic mechanism of deformation in metallic liquids and glasses
is discussed from the view point of local topology of atomic connectivity, based
mainly on the results of computer simulation. In crystals the topology of atomic
connectivity network is fixed, and deviation from it defines lattice defects. In liquids
and glasses, however, the topology is open and flexible, and fluctuates in time and
space. We focus on the action of atomic bond being cut or formed, which changes
the local topology of atomic connectivity, and discuss how the bond cutting and
forming determine viscosity of liquids. We then discuss how collectivity of such
actions, including shear-transformation-zone (STZ) and their avalanche, governs the
macroscopic deformation behavior in supercooled liquids and glasses. The collectiv-
ity of topological change is directly connected to the local potential energy landscape
(PEL), particularly the density of the local minima in PEL. The density of PEL min-
ima defines the effective temperature, and is influenced by processing conditions,
such as cooling rate through the glass transition. The description of the structure and
dynamics of liquids and glasses through local topology of atomic connectivity and
the atomic-level stress could advance the field to the level the current mean-field
approach would not be able to attain.
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10.1 Introduction

In crystalline materials mechanical deformation occurs through motion of lattice
defects, such as dislocations and vacancies. However, in glasses and liquids defects
cannot be easily defined because of extensive structural disorder, and consequently it
is more difficult to discuss how deformation takes place at the atomic level. At present
the concept of shear-transformation-zone (STZ) is the most successful approach in
explaining mechanical deformation in metallic glasses [1–3], but the microscopic
details of STZ remain elusive.

The most persistent and dangerous obstacle in developing understanding of the
glassy state could be our tendency to apply our approaches developed for crystalline
materials directly to glasses, rather than developing a new description unique to
liquids and glasses. The concept of defect is one of such examples. In crystalline
materials defects can readily be identified as local deviations from the lattice peri-
odicity. In liquids and glassy materials defects cannot be uniquely defined in the
absence of the reference structure. Of course because of the structural heterogeneity
the response to shear stress varies from place to place, and one can find correlations
between local properties, such as local softness, and the start of plastic deformation
[4–8]. However, such correlations are usually weak. Furthermore efforts to ascribe
local weakness to particular structural features have been largely futile. Given a
structural model it still is virtually impossible to predict where the next plastic defor-
mation event will start. In other words, it is impossible to tell where the STZs are
in a structural model. Then the logical conclusion is that STZ does not pre-exist;
STZ is recognized only after deformation happens. Therefore STZ formation is an
emergent process. This emergent nature of deformation and STZ was recognized
by early leaders [1, 3, 9] and was suggested in a recent work [10], but it is often
misunderstood or unrecognized in the community at large.

A major reason why deformation is an emergent process is the fact that the local
atomic displacements involved in plastic deformation are relatively large in magni-
tude. For each local deformation event some atoms move as much as 1 Å or more
[11, 12]. Such a distance is way out of the range of applicability of linear elasticity,
whereas various concepts we use, such as strain or elastic modulus, are based upon
linear expansion with infinitesimal strain increment. Furthermore a number of atoms
are involved in the process, and the many-body nature of the process makes it virtu-
ally impossible to predict the course of event before it happens. The structure before
deformation is quite different from the structure after. The process of local plastic
deformation is much closer to a chaotic process than one would assume. This is very
different from what happens in a crystalline material. One can easily recognize the
motion of a dislocation in a crystal, because the local structure of a dislocation is the
same before and after the motion because of lattice periodicity. In glasses, however,
the structure is different from place to place, and every action of atomic rearrange-
ment produces different outcome. Details of the process of deformation, therefore,
are different each time.
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In this article we discuss our recent progress on this subject based upon the
concept of the dynamics of local topology of atomic connectivity, derived mainly
from the results of computer simulation. The mechanism of deformation in glasses
is a subject which has been discussed by many researchers. Also the concept of
atomic connectivity is an old one, used mainly for oxides and other network glasses.
However, focusing on its dynamics is relatively new, and brings new perspective and
deeper understanding of old problems. Even though we primarily discuss metallic
glasses [13] because they represent a simplest type of glasses having atoms as the
structural unit, some of the discussions here could be applied to other groups of more
complex glasses and liquids including polymers, polymer melts and colloids.

10.2 Topology of Atomic Connectivity and Local
Topological Excitations

The structure of a crystal is well-defined by the lattice symmetry and the lattice con-
stants. In comparison we lack effective metrics to specify the structure of liquids and
glasses. It is usually described by the pair-density correlation function (PDF) which
gives the distribution of interatomic distances [14, 15]. The PDF has a major advan-
tage that it can be directly determined by scattering experiments [16, 17]. However,
often two-body correlation alone is insufficient to elucidate properties of liquid or
glass, and higher level many-body correlations have to be considered. To go beyond
two-body correlation in describing the structure of a physical or computer model,
Voronoi polyhedral analysis of the local atomic structure is frequently used [14, 15].
This analysis is certainly useful and conveys some three-dimensional information,
but still the results do not directly allow qualitative elucidation of properties.

We prefer a related but slightly different approach, based upon atomic connec-
tivity. In analyzing the structure of a simulated model we focus on the topology of
atomic connectivity, rather than the actual position of each atom. This approach rep-
resents tremendous simplification of our view of the structure. Firstly this allows us
to separate the vibrational and configurational degrees of freedom. The configura-
tional degrees of freedom are important even below the glass transition as we discuss
below, and become dominant in the liquid state. Secondly, this allows us to define
the multiplicity of the state in liquids and glasses, and to construct new statistical
mechanics of the liquid state. The analysis of atomic connectivity is augmented by
the concept of the atomic-level stresses which facilitate linking local topology to
physical properties [18].

In metals covalency of atomic bond usually is weak. Thus it might appear that
defining atomic connectivity in metals is fraught with serious ambiguity. However,
arguments below justify this approach. The PDF of a liquid or glass shows separation
of the first and second peaks, as shown in Fig. 10.1 [19]. This implies there is a force
to separate the nearest neighbors from the second neighbors. There are two principal
components of this force.
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Fig. 10.1 Differential
pair-distribution function
(PDF with Ni or Mo at the
center) of glassy Ni50Mo50
determined by resonant
(anomalous) x-ray scattering
[19]

(1) Steric effect: When an atom is already surrounded by large enough number of
nearest neighbors, the second neighbor cannot go too close to the atom at the
center.

(2) Potential effect: The interatomic potential tends to have a negative curvature
over a range beyond the nearly harmonic part. In metallic materials often there
is a maximum between the first and second neighbors because of the Friedel
oscillation [20]. A pair of atoms at a distance in this range are unstable and tend
to be either attracted or separated.

Because of these effects atoms are less stable at the minimum of the PDF between
the first and the second peak. Therefore, we can use this distance as the cut-off, rc,
to define the nearest neighbors and thus define the network of atomic connectivity.
Thus we are justified to define the atomic bond between the nearest neighbors.

Note that this definition of the cut-off distance is not related to the actual range
of the interatomic potential. The long-range part of the potential may contribute to
cohesion, but usually does not influence the structure very much. The structure of
liquid and glass is dominantly determined by the steric effect due to the repulsive
part of the potential and the short-range attraction. This explains why the all PDFs of
liquid look alike, except for the size effect. The Voronoi polyhedral analysis is very
similar to this approach of defining connectivity, but has a slight problem that all
Voronoi faces are counted equally. Often a neighbor with a very small Voronoi face
is counted as the nearest neighbor even though the actual interatomic distance is not
short. Consequently the coordination number, the number of nearest neighbors, NC ,
is overestimated. The value of NC for the close-packed crystal structure (f.c.c. and
h.c.p.) is 12, and our estimate of the ideal NC in the glassy state is 4 π = 12.56 [21].
In comparison the value of NC in the Voronoi analysis tends to be around 14 [14].
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Once we define the “bond” between the adjacent atoms, we can define the action
of breaking or forming bonds for two atoms crossing the cut-off distance [22]. Such
a description is meaningful because rc represents a distance at which a pair of atoms
are unstable; they tend to decrease or increase the distance when the distance between
them is close to rc. The action of bond-breaking or bond-forming changes the local
connectivity of atoms, therefore they are local topological excitations. We named
these topological excitations anankeons [23], after Greek Goddess, Ananke, who
represents force, constraint and destiny. From now on, we will discuss the atomic
dynamics in liquids and glasses in terms of the anankeons. At high temperatures
anankeons are independent of each other, but as temperature is lowered they interact
and show collective dynamics. In supercooled liquid and in glass a small number of
anankeons organize themselves into STZs and produce mechanical deformation.

As shown in Fig. 10.1 the PDF of a glass has a deep minimum between the first
and the second peaks at rc, but the value there is not zero. For atoms near the cut-
off distance the separation of vibrational and configurational degrees of freedom
(phonons and anankeons) is not straightforward, because regular vibration results in
crossing the cut-off distance at each vibration, and appears to alter the configuration.
The best way to separate these two is to quench the system at each time to the
so-called inherent structure [24], the structure without kinetic energy, obtained by
quenching the model to T = 0 K and relaxing the model by the steepest descent
method. Vibrational motion (phonon) is eliminated by going to the inherent structure,
and only the configurational change (anankeon) survives. Alternatively we can time-
average the structure over a time long enough to average out regular vibrations, e.g.
ten times the inverse Debye frequency. Either way we can distinguish vibrational
motion from configuration-altering motion even for atoms at a distance close to rc.

10.3 Atomic-Level Stress

Topology has no lengthscale, and describes only the connectivity network. However,
in reality the bond lengths have a relatively narrow distribution defined by the width
of the first peak of the PDF, because atoms cannot be too close to each other due to
strong repulsion and the cut-off at rc which limits the upper end of the bond length.
This constraint introduces interplay and correlation between topology and geometry.
For instance the coordination number NC is related to volume [25]. As shown in
Fig. 10.2 [21] when an element A with the atomic size RA is embedded in the glass
of element B with the size RB, the value of NC depends on the size ratio x = RA/RB,
and increases with the atomic size ratio; the larger is the atom at the center the
larger is NC . Also high-symmetry Voronoi polyhedra, such as icosahedra, are more
stable [14]. Actually because an icosahedron has such a beautiful symmetry and as
first pointed out by Frank [26] it is well-known as the example of local topology
which resists crystallization, there have been a number of attempts to associate the
liquid stability directly to formation of icosahedra [27–29], or related local topology
[30]. However, in multi-component liquids icosahedra are not necessarily the most
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Fig. 10.2 Coordination
number of element A with
the atomic radius of rA in
glass of element B with the
atomic radius of rB [21]. The
curve expresses 10.1

preferred local atomic arrangement. The preferred local atomic arrangement depends
on atomic sizes and chemistry. Therefore it may be a misguided effort to focus on
particular topology such as an icosahedron in discussing liquid stability. A more
general approach is required to discuss the structure-property relationship in liquids
and glasses.

The concept of the atomic-level stress was introduced for such a purpose. As
shown in Fig. 10.2 NC depends on the atomic size ratio, x = rB/rA. Our approximate
expression is [21]

NC (x) = 4π

(
1 −

√
3

2

)
(1 + x)

(
1 + x + √

x (x + 2)
)

. (10.1)

This gives NC(1) = 4 π. A converse is that if one places an atom in a wrong envi-
ronment it will be under pressure (negative or positive). Similarly if one places a
spherical atom in non-spherical environment it will suffer a shear stress. This situ-
ation is analogous to the case of a continuum model of inclusion by Eshelby [31].
When one places an elastic object into a hole in a large elastic matrix as an inclusion,
if the shapes of the inclusion and the hole in the matrix are not identical the inclusion
will be under stress.

Stress is a concept usually defined for a continuum elastic body. However, the
definition can be expanded to the network system as long as the two-body force can
be defined. For an assembly of atoms the atomic-level stress tensor on the i-th atom,
¯̄σi, can be given by [18],

σ
αβ

i = 1

Ωi

∑
j

f α
ij r

β

ij , (10.2)
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where α and β are Cartesian indices, Ωi is the atomic volume of the atom i, f ij is
the two-body force and rij is the separation, between the atoms i and j. Hydrostatic
pressure is given by its trace,

pi = 1

3
Tr

( ¯̄σi
) = 1

3

(
σ xx
i + σ

yy
i + σ zz

i

)
, (10.3)

and the volume strain and the local volume are given by

εvi = pi
Bi

, Ωi = (
1 + εvi

) 〈Ω〉 , (10.4)

where Bi is the atomic-level bulk modulus, and < .... > represents volume average.
It is convenient to use the spherical harmonics equivalents, for which the � = 0 term
corresponds to pressure and the five � = 2 terms are the shear stresses [25]. The
atomic-level stresses can readily be calculated for a model with a classical potential,
and can also be evaluated with the ab-initio quantum-mechanical calculation, for
instance using the density functional theory [32].

The atomic-level stress enables us to connect the topology of atomic connectivity
network with physical properties as discussed in more detail in [33]. For instance
(10.1) gives the size of an atom for which p = 0 given the value of NC . Thus if the
actual atom size is not equal to this value this atom will not fit the atomic cage of
the nearest neighbors a la Eshelby, and will be under non-zero pressure. At high
temperatures the equipartition theorem is valid, and

〈Ω〉 〈
p2

〉
2 〈B〉 = 〈Ω〉 〈

σ 2
s

〉
2 〈G〉 = kT

4
. (10.5)

where σs is any of the five shear stress components [34, 35]. This is because at
high temperatures phonons are no longer elementary excitations of atomic vibration
and are replaced by anankeons, as discussed below. Consequently the magnitudes
of fluctuation in the atomic-level stresses, expressed by the second moments as in
(10.5), are the order parameters [22, 23].

10.4 Atomic Dynamics in Liquids

10.4.1 Origin of Viscosity

Viscosity is one of the most fundamental properties of a liquid. Nevertheless the
origin of viscosity at the atomic level has not been understood. This long-standing
problem was solved by focusing on the atomic connectivity. Viscosity, η, defines the
timescale for liquid dynamics, the Maxwell relaxation time,

τM = η

G∞
, (10.6)
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where G∞ is the instantaneous shear modulus [36]. Through the molecular dynamics
(MD) simulation of various metallic liquids at high temperatures it was found that
at temperatures above the crossover temperature, TA,

τM = τLC , (10.7)

as shown in Fig. 10.3 [22]. Here τLC is the time for an atom to gain or lose one nearest
neighbor by forming or breaking the atomic bond, i.e. by anankeons. Therefore, this
equation means that the anankeon excitation determines the viscosity, providing the
atomic-scale explanation of the origin of viscosity. TA is the crossover temperature
above which the Angell plot (a plot of logη vs. Tg/T , where Tg is the glass transition
temperature [37]) shows an Arrhenius behavior.

The reason why anankeon excitation determines viscosity is as follows. Through
the Green–Kubo equation of fluctuation-dissipation theorem [36] viscosity and G∞
are given in terms of the shear stress auto-correlation by,

η = V

kT

∫
〈σ xy (0) σ xy (t)〉 dt, G∞ = V

kT

〈
(σ xy (0))

2〉
, (10.8)

where V is the sample volume. We can express the shear stress in terms of the
atomic-level shear stresses;

Vσ xy (t) =
∑
i

Ωiσ
xy
i (t) . (10.9)

Thus,
V 2 〈σ xy (0) σ xy (t)〉 =

∑
i,j

ΩiΩj

〈
σ
xy
i (0) σ

xy
j (t)

〉
. (10.10)

Fig. 10.3 The ratio τM/τLC
(see text for definition) for
various models as a function
of T/TA, where TA is the
crossover temperature [22]
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Therefore the Maxwell relaxation time is equal to the correlation time of the atomic-
level shear stress [38, 39]. Now the atomic-level stress depends on the local topology
of the nearest neighbors. So excitation of an anankeon, the action of losing or gaining
a neighbor which changes the local topology of atomic connectivity, changes the
atomic-level stress enough to lose the stress correlation. This is why (10.7) is observed
above TA. This is a very significant result, because it directly connects a macroscopic
property, η, to a microscopic quantity, τLC , the time-scale of anankeon, and explains
the atomistic origin of viscosity.

Now above TA, it was found that the phonon propagation length, ξ = cTτM , where
cT is the transverse phonon velocity, is shorter than the mean atomic distance, a, as
shown in Fig. 10.4 [22]. In the Debye model, ωD ∼ cTπ/a, so that 1/νD ∼ 2a/cT . In
other words when the time-scale of phonon becomes equivalent to τM the structure
changes so fast that it changes before the phonon travels between the nearest neighbor
atoms. Thus anankeons cannot communicate with each other, and are independent.
That is why a single anankeon excitation determines viscosity at T > TA. Below
TA, however, anankeons communicate by exchanging phonons. Consequently they
become more collective, and actions of local atomic rearrangements involve more
than one anankeons. Thus the ratio, τM/τLC , is unity only above TA, and below TA it
increases as temperature is decreased.

Equation (10.10) needs a bit more explanation. At high temperatures the self- and
distinct stress correlations,

Σself =
∑
i

ΩiΩi
〈
σ
xy
i (0) σ

xy
i (t)

〉
, Σdist =

∑
i �=j

ΩiΩj

〈
σ
xy
i (0) σ

xy
j (t)

〉
, (10.11)

have similar lifetimes, because anankeons are independent, and one anankeon exci-
tation changes the stresses on one atom and one of its nearest neighbors. Thus the

Fig. 10.4 Phonon mean free
path as a function of
temperature for liquid
Zr44Cu56 [22]
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self-correlation and the nearest neighbor correlation are affected at the same time,
whereas long-range correlations are weak.

Above TA, the dynamics of anankeons can be described by the local potential
energy landscape (PEL) of one atom, as a function of its coordination number as
shown in Fig. 10.5 [40]. In the conventional PEL picture the system is supposed to
fly above the PEL at high temperatures, and start to feel the PEL only below TA [41].
This picture is not correct, because viscosity shows thermally activated Arrhenius
behavior above TA [37]. The correct picture is that at high temperatures collectivity
in dynamics is absent, therefore the local PEL of a single anankeon describes the
behavior of the system.

A recent study of liquid viscosity in metallic liquids suggests remarkable univer-
sality in the temperature dependence of viscosity in many liquid alloys as shown
in Fig. 10.6 [42]. Whereas the full implications of this result need further studies, it
justifies a simple view of viscosity as thermally activated process with temperature
dependent activation energy,

η (T) = η∞ exp

(
Ea (T)

kT

)
, (10.12)

where η∞ is nearly independent of composition. Above TA, Ea is independent of
temperature [22, 41, 42], and is similar in magnitude with the atomic bond energy,
justifying the picture that a single anankeon excitation controls liquid flow. By sim-
ulation the value of τ∞ = η∞/G∞ is of the order of 10−14 s (∼300 meV), similar to
the bond energy. However, the experimental value of τ∞ is about 3 × 10−16 s [40],
corresponding to h/τ∞ = 12 eV. Therefore, it is entirely possible that electronic
excitations are determining these values. At high temperatures as the anankeon fre-
quency increases the Born-Oppenheimer adiabatic approximation would fail, and the
dynamics of bond cutting may be dictated by the electronic excitation between the

Fig. 10.5 Local potential
energy landscape as a
function of coordination
number calculated for liquid
Fe [40]
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Fig. 10.6 a Viscosity of liquid Zr64Ni36 plotted against 1000/T . b Scaled viscosity, η/η0, against
TA/T [42]

bonding and anti-bonding states. Most of liquid alloys studied are transition metal
alloys, where bonding is primarily determined by d-electrons. Indeed the width of
the d-band (∼10 eV) is comparable to h/τ∞.

Below TA, anankeon dynamics slows down, and a single anankeon excitation
would induce only locally confined atomic rearrangements without resulting in
flow. Thus multiple anankeon excitations are necessary for shear flow, and the ratio,
τM/τLC , increases from unity, as shown in Fig. 10.3. It is not difficult to image that
this would increase Ea, resulting in a super-Arrhenius behavior in the Angell plot,
culminating in the glass transition.

10.4.2 Second Crossover: Comparison to Relaxor
Ferroelectrics

Before the glass transition is reached, however, another crossover phenomenon is
observed, just in-between TA and Tg . This is the point where high-temperature
equipartition law, (10.5), starts to fail, and shear stresses start to become spatially
correlated below Ts, as shown in Fig. 10.7 for supercooled liquid Fe. For this sys-
tem TA = 2300 K [22], Ts ∼ 1500 K and Tg = 900 K [34]. Also the statistics of
local icosahedral cluster is changed around Ts [29]. Recently a pronounced change
in behavior was observed by the MD simulation of Cu44Zr56 at a temperature,
Tc ∼ 1.4Tg [43]. Furthermore a maximum in the second derivative of relaxation
time with respect to temperature was observed at a temperature significantly above
Tg in some, but not all, glass forming liquids [44]. Dynamic heterogeneity (DH)
is also observed in a similar temperature range [4, 45–47]. These observations
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Fig. 10.7 Temperature dependence of the shear stress correlation for the nearest neighbor with
� = 2 (left) and the second neighbor with � = 4 (right) [34]

suggest that the nature of a supercooled liquid changes in a subtle but important
manner before it freezes into a glass. However, the nature and origin of this change
is unclear.

It is instructive to make reference to relaxor ferroelectrics in which a very pro-
nounced second crossover is observed. Relaxor ferroelectrics are strongly disordered
ferroelectrics, such as Pb(Mg1/3Nb2/3)O3 (PMN) [48]. PMN maintains the simple
perovskite structure at a macroscopic scale at all temperatures, with Pb occupying the
A site. But the B site is occupied by both Mg2+ and Nb5+, with only partial chem-
ical order. Because of the strong chemical and electrostatic disorder in the B site
ferroelectric order is heavily disturbed, and a glassy, strongly frequency dependent
dielectric behavior is observed [49]. The ferroelectric transition is diffuse, and the
ordering temperature (Curie temperature) is frequency dependent. For applications
diffuse transition is advantageous, because a sharp transition results in strong tem-
perature dependence of permittivity, which is problematic for application, whereas
relaxor ferroelectrics show high permittivity over a wide temperature range.

The dielectric response of PMN becomes frozen, frequency independent, below
Tf = 217 K [49]. This clearly corresponds to the glass transition in regular glasses.
Above Tf there are local dynamic polarizations [50], which disappear above the
Burns temperature, Td ∼ 600 K [51]. The Burns temperature is very similar to the
crossover temperature, TA, in liquids. Now diffuse ferroelectric transition occurs
around TC ∼ 300 K, between Tg and Td . Below TC PMN forms dynamic nano-scale
ferroelectric domains called polar nano-regions (PNR) [52]. At the same time because
of piezoelectricity the lattice becomes locally and dynamically distorted, which can
be observed by pulsed neutron pair-density function (PDF) analysis as shown in
Fig. 10.8, in terms of distinct temperature variations of some of the PDF peaks [53].

In relaxor ferroelectrics, TC is obviously the Curie temperature made diffuse
because of structural disorder. Because of strong piezoelectricity the lattice becomes
locally distorted below TC , making PNR readily observable by the PDF method
[53]. In supercooled liquid metals such obvious local distortions are not observed.
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Fig. 10.8 The PDF of PMN at various temperatures (above) and temperature dependence of the
PDF peak height at r = 9.09 and 8.5 Å [53]

Nevertheless, there could be a certain hidden phase transition well-defined in the
mean-field approximation but made diffuse and frustrated by disorder. Such an idea
has been discussed by many. Kivelson et al. [54, 55] used this as the central idea for
glass transition.

A possible transition is the transition to the icosahedral state. A thirteen atom
icosahedral cluster is locally more stable than the f .c.c. or h.c.p. clusters, and is
often found in liquids, contributing to its stability and preventing crystallization, as
pointed out by Frank [26]. As a liquid is cooled indeed the population of icosahedral
clusters grows rapidly [27–30]. However, its five-fold symmetry prevents it from
filling the space; the icosahedral order is frustrated in three-dimensional (Euclidian)
space [56]. Consequently the growth is halted, resulting in a glass. But it may be
wrong to associate the crossover with a particular geometry such as an icosahedron,
because icosahedra are frequently found in monoatomic systems, but not in liquids
with different compositions. The more fundamental principle is more efficient local
packing of space [14, 15, 30, 57]. An icosahedron is just an example of efficient
local packing.

Now the principle of local packing is appropriate for a hard-sphere systems,
whereas metals are not hard-sphere systems [58, 59]. Therefore, it is possible that a
different principle dictates the local ordering in metallic liquids. A strong candidate is
the elastic stress field. Because atoms are deformable, they are under strong atomic-
level stresses as discussed above. In the supercooled liquid below TA the atomic-level
stresses interact via the elastic Eshelby field [60]. Correlations are created to minimize
the elastic field energy by locally rearranging atoms [61]. A possible correlation thus
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produced is a bond-orientational correlation (BOC) with � = 2 nematic order [62].
This local order is very similar to the piezoelectric local distortion that forms PNR
in relaxor ferroelectrics, making the comparison with the relaxor ferroelectrics very
relevant.

The glass transition in the mode-coupling theory (MCT) is similar in charac-
ter [63]. Because of the mean-field approximation invoked in the MCT, viscosity
diverges at TMCT

C , which is about 1.2 Tg , and the MCT fails to explain viscosity below
this temperature [63, 64]. Various changes in the behavior is predicted to occur at
TMCT
C , such as the temperature dependence of viscosity changing from the Vogel–

Fulcher type to power law [63]. However, the MCT is based solely on two-body
density correlations, and will not be able to describe the BOC which is a four-body
correlation. Even though the equation of motion in the MCT includes four-body
density correlations, they are decoupled into the products of two-body correlation
functions in the random-phase approximation. Our earlier simulation clearly shows
the emergence of shear stress correlation below Ts (Fig. 10.8 [34]) which represents
real four-body correlation, suggesting that the decoupling may not be justified. For
this reason we raised caution against such decoupling in the MCT [34]. Thus, even
though the MCT predicts viscosity divergence in the mean-field sense, the physics
involved is different, and could not be related to the BOC based upon the spatial
elastic interaction.

10.4.3 Equivalence of Stress and Temperature

Viscosity of a liquid depends on shear rate, and decreases as shear rate is increased.
This phenomenon is called shear thinning, and is very widely observed for all liq-
uids. Nevertheless, its origin has been controversial [65, 66]. One way to explain
shear thinning is to invoke the concept of effective temperature. Because driving
a liquid with shear exerts mechanical work on the liquid, it infuses kinetic energy.
Consequently the structure becomes more disordered and viscosity goes down. This
process can be described in terms of the increase in the effective temperature, Teff ,
although its definition is slightly controversial [3, 13, 67, 68]. This approach is based
upon the idea that applying shear stress to a liquid is similar to increasing temperature
[69, 70]. The plot of equal viscosity lines as a function of temperature T and stress σ

in Fig. 10.9 illustrates this equivalence. It was found that T and σ are scaled by [70]

T

T0 (η)
+

(
σ

σ0 (η)

)2

= 1. (10.13)

Note that reversing the sign of σ simply reverses the direction of shear and does
not change physics. Thus only the terms with even power of σ should appear in
the equation, and indeed only the σ 2 term is seen in (10.13). The glass transition
temperature is defined byTg = T0(ηg), where ηg is arbitrarily chosen (conventionally
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Fig. 10.9 The equal
viscosity line in the
normalized
temperature-stress diagram
obtained by the simulation of
steady state flow for glassy
Zr50Cu40Al10 [70]

1013 poise = 1012 Pa s for experiment, and a much lower value for simulation) to
define glass transition. At T = T1 = T0(η1), for σ �= 0,

T0 (η) = T1 + ∂T0

∂η
Δη = T1

1 −
(

σ
σ0(η)

)2 = T1

[
1 +

(
σ

σ0 (η)

)2

+ ....

]
. (10.14)

Thus,

Δη = T1
∂T0
∂η

(σ0 (η1))
2
σ 2. (10.15)

Because ∂T0/∂η < 0, (10.15) naturally explains shear thinning.
Now it is instructive to examine (10.13) in the spirit of (10.12). Extending (10.12)

to include the effect of stress we may write,

η (T , σ ) = η∞ exp

(
Ea (T , σ )

kT

)
, (10.16)

Then,
Ea (T , 0)

kT0 (η)
= Ea (T , 0)

kT

(
1 −

(
σ

σ0 (η)

)2
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= Ea (T , σ )

kT
,

Ea (T , σ ) = Ea (T , 0)

(
1 −

(
σ

σ0 (η)

)2
)

.

(10.17)

Thus the applied stress reduces the activation energy, and results in shear thinning.
We will return to this equation when we discuss the activation volume concept for
glasses.
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10.4.4 Atomistic Mechanism of Flow and Glass Transition
in Correlated Liquids

As temperature is lowered below TA anankeon excitations become more correlated
in time and space. One anankeon excitation can induce another in the neighborhood,
creating cascade action, or local avalanche. Consequently anankeon distribution in
space will not be homogeneous, producing dynamic heterogeneity (DH). In a sim-
ple binary picture, DH leads to bifurcation of the liquid-like regions and solid-like
regions. The distribution of the atomic-level pressure can be used in defining these
two states [71], and the loss of percolation of the liquid-like states results in the glass
transition [72, 73]. The glass transition temperature thus calculated agrees quite well
for metallic glasses as shown in Fig. 10.10 [73].

When a liquid is subjected to external shear stress field the flow of atoms will not
be homogeneous, reflecting DH. Simulation at temperatures below Tg indicates that
locally elastic zones develop in liquid, as shown in Fig. 10.11 [40]. The size of the
elastic zone, ξ , depends on shear rate, and decreases with increasing shear rate, γ̇ , as

ξ = ξT

(
ln

γ̇c

γ̇

) 1
2

. (10.18)

where γ̇c is the critical shear rate above which no elastic zone is formed [40]. Also
the shear stress, σ , is dependent on ξ by,

σ = σc exp

(
− ξ

ξσ

)
. (10.19)

Fig. 10.10 Normalized
glass transition temperature,
kTg/2BV , plotted against the
Poisson’s ratio. The solid
line represents theory [73]
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Fig. 10.11 Atomic-level
shear strain between atoms
apart by r during the steady
state flow as a function of
strain rate simulated for Fe at
T = 300 K [40]

Simulation on supercooled liquid Fe indicates ξT ∼ ξσ ∼ 4a, where a is the average
nearest neighbor distance [40]. Now viscosity is related to shear rate by η = σ/γ̇ ,
so from (10.18) and (10.19),

η = σc

γ̇c
exp

(
− ξ

ξσ

+
(

ξ

ξT

)2
)

. (10.20)

Because ξ > ξT ∼ ξσ and ξ is reduced as shear rate is increased by (10.18), (10.20)
indicates that viscosity is reduced as shear rate is increased. Thus (10.20) provides a
microscopic elucidation of shear thinning.

10.5 Deformation of Metallic Glasses

10.5.1 Absence of Elasticity in Glass at Atomic Level

In the glassy state below Tg viscosity becomes so large that τM exceeds the experi-
mental time-scale. When the applied stress is less than the yield stress, σ Y , the strain
response to the external stress is linear, so that the Hook’s law, ε = Cσ , where C is
the elastic constant, appears to hold. However, at the atomistic scale that is not the
case. The local strain tensor may be defined by

R′
i = (

1 + ¯̄εi
)
Ri (10.21)

where Ri is the position of the i-th atom before deformation, R′
i is the position after

deformation and ¯̄εi is the strain tensor. If deformation is affine, ¯̄εi is the same for all
atoms. In a crystal deformation is affine for small strains because all atoms are in the
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same environment. However, in glasses they are not, and ¯̄εi is different for each atom.
Consequently atomic displacements are not collinear, resulting in reduction of the
shear modulus [12, 74]. In addition, some atoms move so much even for small stress
that some atomic bonds are cut or formed (anankeon excitation). In other words local
topological changes are induced by stress [13, 75]. Because the number of bonds
affected is linear with strain deformation appears to be elastic, but microscopically
it is plastic. This effect is particularly pronounced for shear deformation. Strictly
speaking, therefore, there is no elasticity in glasses [76].

For small strain these plastic events are localized and damages are contained.
However, as strain is increased more of these events occur, and finally they perco-
late through the system to result in macroscopic yield. At temperatures close to
Tg deformation is macroscopically uniform and shows a typical creep behavior
[13, 77]. At lower temperatures deformation becomes localized as shear bands
[9, 78]. In this article we will not discuss these mesoscopic behaviors, but will
focus on the atomic-level phenomena.

10.5.2 Plastic Deformation as Stress-Induced Glass
Transition

The plot in Fig. 10.3 shows that the glass transition is not a point in the diagram, but
is represented by a line. Glass transition can be induced by stress, and this naturally
explains the nature of mechanical failure as stress-induced glass transition. Earlier
there have been experimental reports that the temperature within the shear band
is significantly raised, suggesting that this local heating could explain shear band
formation [79, 80]. However, it is more likely that heating is a consequence of flow
in the shear band rather than the cause [80]. Spaepen [81] proposed increased volume,
rather than temperature, is enough to initiate shear bands, based upon the free-volume
theory [56]. But the free-volume theory is less successful for metals [56, 57], and
indeed the pressure dependence of strength is quite small for metallic glasses [82]. On
the other hand, simulation to produce Fig. 10.9 was done with constant volume and
temperature. It shows shear stress alone, without the aid by volume or temperature,
can induce glass transition and resultant mechanical failure.

Most theories of glass deformation [1–3, 77] assumes the double-well structure
and the effect of stress is expressed by the activation volume, Ω , which changes the
energy of the defect by,

E±
D (σ ) = ED (0)±Ωσ

2
. (10.21)

Thus the rate equation becomes,

γ̇ = γ0ν∞
[
e−(ES−E+

D )/kT − e−(ES−E−
D )/kT

]

= γ0ν∞e−Ea/kT sinh

(
Ωσ

kT

)
≈ Ω

kT
γ0ν∞e−Ea/kTσ

. (10.22)
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where γ0 is the critical shear strain and ν∞ is the attack frequency [77]. This picture
presumes the presence of a defect with the volume Ω on which the applied stress
exerts force. However, deformation in glass is an emergent phenomenon without pre-
existing defects. In glasses once local deformation occurs, or the STZ is activated,
the structure changes extensively, so that even when a reverse stress is applied the
system almost never goes back to where it was. Therefore the concept of a double-
well potential is very misleading. Indeed in the STZ theory the STZ disappears after
it is activated [2, 3]. The concept of the activation volume requires careful scrutiny
as we will discuss below.

It is interesting to note that in the liquid state the effect of stress on the activation
energy is quadratic as in (10.17), rather than linear as in (10.21). This is most likely
related to the issue of the back-stress in the glassy state which breaks the symmetry.
In the liquid state anankeons are nearly independent, and the applied stress alters
the local elastic energy through (10.17). In the glassy state each atom already has a
static atomic-level stress. The applied stress merely adds to the existing stress, so the
activation energy for the i-th atom is,

Ei
a (T , σa) = Ea (T , 0)

(
1 −

(
σi + σa

σ0 (η)

)2
)

= Ea (T , 0)

(
1 −

(
σi

σ0 (η)

)2

− 2σi

(σ0 (η))2 σa

)
.

(10.23)

where σa is the externally applied stress and only the linear term in σa was retained
because σa is much smaller than the atomic-level stresses. Thus the atomic site with
a large atomic-level stress with the same sign as the applied stress gets activated,
because the existing atomic-level stress becomes added to the applied stress. There-
fore we have the definition of an apparent activation volume,

Ω i
aγ0 = 2Ea (T , 0) σi

(σ0 (η))2 . (10.24)

This implies that the stress sensitivity, the activation volume, varies greatly from
atom to atom, and is proportional to the local atomic-level shear stress, σi. However,
because atomic displacements involved in deformation are large, σi keeps changing as
deformation proceeds. Therefore, the initial value of σi is not the most representative
of the whole emergent process. Therefore, it may be more reasonable to assume,

〈Ωa〉 γ0 = 2Ea (T , 0)

(σ0 (η))2

〈(
σ 2

)〉 1
2 . (10.25)

Equation (10.25) also suggests that the distribution of the activation energies should
reflect the effective temperature. Indeed the internal friction measurement shows that
is the case. The activation energy spectrum depends on the annealing temperature in
the Arrhenius fashion [83]. Equation (10.25) represents a simplest picture in which
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Fig. 10.12 Potential energy
landscape with the saddle
point (middle) and the final
relaxed point [12]. The inset
shows the atoms involved in
rearrangement

the activation energy depends on one atom. This is not realistic, because the atomic
motions are more collective as we discuss below. Nevertheless it conveys the idea of
competition and cooperation between the existing atomic-level stress and the applied
stress in determining the local dynamics of atoms under stress.

10.5.3 Atomistic Mechanism of Deformation

We now discuss the atomistic mechanism of mechanical deformation in metallic
glasses using the language we introduced above. We focus on two steps in the PEL,
the saddle point which represents the activation barrier, and the final point to which
the system relaxes after going over the saddle point (Fig. 10.12) [12, 84]. To study
this behavior we have to go beyond the MD simulation, because the longest time that
MD can simulate is of the order of nanosec., which is too short for our purpose. If
we use a conventional thermal activation model,

τ = τ0 exp

(
Ea

kT

)
(10.26)

where τ0 is the inverse of the attempt frequency, usually about 10−13 s corresponds to
9 kT, or 0.23 eV at room temperature. Processes with higher activation energies are
not accessible by MD. For this reason we used the activation-relaxation-technique
(ART) to simulate thermal activation. Using this method we simulated a large number
of local deformation events (>103), and examined the atomic displacement for each
event.
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We prepared two models of Cu56Zr44 glassy alloy, one quenched from 2000 K
(liquid state far above Tg ∼ 700 K) and relaxed at 0 K, System I, and the other
equilibrated at 1000 K and cooled slowly (1012 K/s) through Tg , System II [85].
System I is highly unstable and the spectrum of activation energies is approximately
Gaussian around zero, as shown in Fig. 10.13. System II represents a stable glass,
and the spectrum of activation energies shows a large pseudo-gap up to 1 eV within
which activation is suppressed. If we plot the changes in the atomic-level shear stress
due to deformation against the atomic displacement for each atom most atoms behave
in an elastic manner (within the dashed lines), but some show non-elastic behavior,
as shown in Fig. 10.14a. Atoms outside the elastic range are called “atoms involved
in the plastic event”. These atoms are clustered, and the spectrum of displacements
shows deviation from the exponential distribution for elastic atoms [12].

Surprisingly the distribution of the number of atoms involved in the plastic event at
the saddle point (Fig. 10.14b triangles) was found to be almost the same for Systems
I and II, in spite of vast difference in stability [12]. The average is just about five,
much smaller in number than discussed in experimental literature [86–89], but closer
to those by simulation or theory. Now even though the distribution of the activation
energies was similar for Systems I and II, the displacements involved, Da, were not
the same (Fig. 10.15). Larger displacements were involved in System II than for
System I. Because the magnitude of displacement needed to overcome the activation
barrier, dave, is related to the general distance between the PEL minima, L [90], it can
be argued that in System I the PEL minima are more closely spaced than in System II
as shown in Fig. 10.16. The density of the PEL minima, thus the STZ density, ρSTZ ,
is related to L, and dave, and the effective temperature, Teff , by

ρSTZ = e−χ = 1

L3n
∼ 1

(dave)3n , (10.27)

Fig. 10.13 Distribution of
activation energies for
unstable system (sys-1) and
stable system (sys-2) [85]
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Fig. 10.14 a Change in the atomic-level shear stress against displacement indicating that most
atoms behave elastically but some do not. b Distribution of number of atoms involved at the saddle
point (triangles) and at the relaxed point (circles) [84]

Fig. 10.15 Distribution of
magnitudes of atomic
displacement to reach the
saddle point for two systems
[12]

Fig. 10.16 Schematic PEL
of stable and unstable
systems. In a stable system
local minima are less in
density and far in-between
[12]
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where

χ = ESTZ

kTeff
, (10.28)

n is close to the number of atoms involved, and ESTZ is the STZ creation energy
[2, 3].

In addition we note that the height of the activation barrier is determined at the
saddle point, but the process goes on to relax the system down to the next minimum
in PEL (Fig. 10.12). After relaxation more atoms are involved (Fig. 10.14b), with
the average number of 15, which again is the same for Systems I and II [83]. The
distribution of the number of atoms involved is nearly Gaussian, but distribution in
System I was more spread beyond the Gaussian distribution, forming a tail at high
end as shown in Fig. 10.14b. The distribution of the energy of relaxation, Erlx =
Esaddle − Efinal, also has a long tail as shown in Fig. 10.17. The distribution at the
high end approximately follows the power law, P(E) ∼ E−τ

rlx with τ = 1.6, whereas
the low energy portion follows the exponential law. Such a power law is commonly
seen for the avalanche phenomena, with τ typically equal to 1.5 [91]. Thus the results
show that in the unstable System I STZ can cause avalanche of other STZs.

It is most likely that the large values of activation volume observed by experiments
are due to these avalanches. In other words deformation observed in most experiments
is caused by a collection of STZs in avalanche, not due to a single isolated STZ.
So-called dynamic heterogeneity (DH) observed in supercooled liquid also reflects
multiple STZ chain reaction in avalanche, because the time-scale of DH represented
by χ4, the four-body correlation function, is of the order of 10 ps [44], much longer
than the STZ time-scale of 1 ps or less.

Another reason of discrepancy between the magnitude of activation volume deter-
mined by experiment and simulation could be the definition of activation volume. Let

Fig. 10.17 Distribution of
the relaxation energy
(Esaddle − Efinal). Localized
events have an exponential
distribution, whereas the
avalanche events have a
power law distribution [84]
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us examine the number of atoms involved in light of the apparent activation volume
given by (10.25). If we assume,

Ea (T , 0) = NaVa
(σc (η))2

2G
, (10.29)

where Na is the number of atoms involved, Va is the atomic volume and σc(η) is the
stress on these atoms at the saddle point, then,

Ωa = NaVa

(
σc (η)

σ0 (η)

)2
ε0

γ0
, (10.30)

where ε0 =< σ 2 >1/2 /G. If σc(η) = σ0(η), and ε0 = γ0, Ωa is indeed the activation
volume. However, if these equalities are not realized some multiplying factor would
appear. It will be instructive to examine these quantities by simulation.

The STZ avalanche will have a profound effect on the mechanical properties.
A single STZ activation is local and causes either anelastic effect or uniform flow
(creep), but STZ avalanche will lead to percolation of STZ actions and local plas-
tic flow. Therefore high propensity of STZ avalanche will result in ease of plastic
deformation and ductility. Metallic glasses become brittle after annealing [13], most
probably because the reduced STZ density due to annealing prevents STZ avalanche.
Conversely if we find the way to keep the STZ high in spite of annealing we should
able to develop ductile glass which does not lose ductility even after annealing.
Understanding the mechanism of deformation could lead to such engineering possi-
bilities.

10.6 Conclusion

Mechanical deformation of glass and liquid is a complex phenomenon and presents
a major challenge to the effort toward its accurate microscopic description. However,
through careful analysis of the simulation results and introduction of new concepts
we should be able to make progress. The first step is to recognize that it is advan-
tageous to describe an amorphous structure as a random network system of atoms
and molecules, even when we deal with metallic glasses. Once we define the nearest
neighbors and connectivity of atoms, we can define the structural state in terms of
the topology of atomic connectivity or the bond network. An action to change it,
local topological excitation, is breaking and forming of a bond. In high temperature
liquid such excitations are directly linked to viscosity, and can be identified as a
microscopic origin of viscosity. They replace phonons as elementary excitations, as
phonons are overdamped and marginalized. We name them anankeons.

Anankeons are independent of each other in high temperature liquid above the
crossover temperature, TA, but below TA they are coupled through elastic fields
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(phonons), and in supercooled liquids they form a collective action unit called shear-
transformation-zone (STZ). In the glassy state belowTg STZ is responsible for anelas-
tic behavior. STZs, however, are not pre-existing defects such as lattice defects in
crystals. They are emergent, and disappear after activation. The propensity of acti-
vation depends on the structure in a subtle way, defined in terms of the effective
temperature. In a system with high effective temperature, an unstable system, STZ
activation can cause avalanche of other STZs, resulting in plastic, ductile deforma-
tion. Thus through the hierarchy of dynamic topological changes, from anankeon,
STZ, to STZ avalanche, we should be able to achieve microscopic elucidation of
seemingly complex deformation phenomenon of glasses.
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Chapter 11
The Irreversibility Transition in Amorphous
Solids Under Periodic Shear

Ido Regev and Turab Lookman

Abstract A fundamental problem in the physics of amorphous materials is
understanding the transition from reversible to irreversible plastic behavior and its
connection to the concept of yield. Currently, continuum materials modeling relies
on the use of phenomenological yield thresholds, however, in many cases the transi-
tion from elastic to plastic behavior is gradual, which makes it difficult to identify an
exact yield criterion. Recent work has shown that under periodic shear, amorphous
solids undergo a transition from deterministic, periodic behavior to chaotic, diffusive
behavior as a function of the strain amplitude. Furthermore, this transition has been
related to a depinning-like transition in which cooperative avalanche events become
system-spanning at the same point. Here we provide an overview of recent work
focused on an understanding of the nature of yield in amorphous systems from a
cooperative and dynamical point of view.

11.1 Introduction

Amorphous solids such as plastics, window glass and amorphous metals are an impor-
tant and ubiquitous form of matter. Industrial processing of such materials commonly
involves plastic deformation. Although a microscopic mechanism of plastic deforma-
tion in these materials was identified [1–3], the collective behavior on the mesoscale
is still being debated [4–7]. The main issues are the definition and nature of yield,
how to describe the structural changes that occur during plastic deformation (this is
related to the topics of ergodicity and entropy production which are some of the main
issues in the general problem of the statistical mechanics description of glasses) and
the role of long-range elastic interactions. As we will explain below, these issues
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play a role in the irreversibility transition discovered not long ago. Recent experi-
ments and simulations on superconductor vortices, dilute colloidal dispersions and
loosely packed granular materials show that these materials undergo a transition from
reversible to irreversible diffusive behavior by varying the strength of an oscillatory
external field [8–17]. These transitions have been ascribed to chaotic scattering [11]
and/or to an absorbing phase transition [10].

11.2 Yield as an Irreversibility Transition

Recently, a similar transition was observed in amorphous solids under oscillatory
shear, in simulations and experiments performed by several groups [8, 17–28]. These
simulations and experiments studied highly condensed jammed materials (well above
the jamming transition) under oscillatory shear and showed that for small strain
amplitudes, after a transient, the system reaches a configuration which is completely
reversible in the sense that particles return to the same position after one or more
cycles (see Fig. 11.1). For large strain amplitudes, however, the particles are always
diffusing (see Fig. 11.2). There have been several suggestions as to what causes this
transition. One suggestion is that the transition from reversible to irreversible dynam-
ics is an absorbing phase transition [24], which is a second order non-equilibrium
phase transition, possibly of the directed percolation universality class [18]. The
motivation behind this interpretation is that if one looks at the displacement of the
particles from their positions before and after a cycle, at low strain amplitudes, one
observes transient patches of moving particles which keep decreasing in size until one
cannot observe any motion. This is very similar to the dynamics in directed percola-
tion systems where below the percolation threshold there is random dynamics which
stops after some time. The state where there is no dynamics is called the “absorbing
phase” [29]. While this description is appealing, a closer look shows that there are
states in which there is no overall diffusion but the particles do not return to their orig-
inal positions after one cycle. However, after several cycles, the particles do return to
their original positions and for that reason there is no overall diffusion. Furthermore,
in all cases the dynamics during a cycle exhibits random particle rearrangements
of considerable sizes [30, 31]. These rearrangements are dissipative and thus result
in energy fluctuations, but they are completely repetitive (see Fig. 11.3). Therefore,
the work being done on the material is transformed wholly into heat and structural
rearrangements are reversible. Above a critical strain amplitude, the system does not
settle into a limit cycle and the motion is chaotic with a positive maximal Lyapunov
exponent. This allows us to define a yield point with a physical meaning. A yield point
can be difficult to determine from a standard stress–strain curve since the behavior
can be monotonic and there need not be a stress–peak as this depends on the way that
the system is prepared. For example, the green curve in Fig. 11.6 was prepared by a
fast quench compared to the blue curve in the inset which was prepared via a slow
quench. Identifying and understanding the underlying dynamical behavior opens the
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Fig. 11.1 (color online) Experimental evidence for the existence of irreversible states in a sheared
colloidal suspension: dark colors represent areas that did not return to their original positions after
a different number of cycles: a the first cycle of deformation with γ0 = 0.07, b after 7 cycles, c
cycles 1–3 and d cycles 10–12 (Taken from Keim et al. [17])
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Fig. 11.2 Mean square displacement from simulations with different values of the maximal strain
amplitude: γmax = 0.07 (dark blue circles), 0.08 (blue squares), 0.09 (greed diamonds), 0.1 (green
down facing triangles), 0.12 (orange up facing triangles), and 0.14 (purple stars). The simulations
were averaged over different runs with samples of N = 4000 particles quenched from T = 0.466
(closed symbols) and T = 1.0 (open symbols). Note the transition between an arrested and diffusive
regime as γmax is increased (Taken from Fiocco et al. [18])

possibility for a quantitative description of the structural changes in these systems
after yield and their relation to the dynamics.

In all of the experiments and simulations that are mentioned, the strain is applied
in a periodic manner: either in a “sawtooth” fashion or as a sinusoidal function [17].
For the “sawtooth” strain profile, the strain is applied in the following manner: First,
positive strain steps are applied. When a maximal pre-decided strain εmax is reached,
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Fig. 11.3 (color online) The potential energy as a function of cumulative strain during two cycles
(red line marks the end of the first cycle)

Fig. 11.4 (color online) Transient behavior of the potential energy before reaching a limit-cycle
for three different strain-amplitudes (strain amplitude growing from top to bottom). Red lines are
the point at which periodic behavior begins

the strain is reversed by applying strain steps in the opposite direction. This proceeds
until the strain reaches the negative value of the maximal strain −εmax . At this point
the strain steps are reversed until the system returns to zero strain, completing the
elementary cycle of a specific maximal strain amplitude. The elementary cycle is
then repeated and the response of the material per cycle is observed.

Different experiments and simulations [8, 17–24, 27, 28] have found that for small
strain amplitudes these systems show random dynamics which gradually settles into a
periodic limit-cycle (see Fig. 11.4). As the strain amplitude is increased, the transient
times increase accordingly, until the transient time is so large that the system does
not reach a limit cycle. Two main approaches have been suggested for describing
the level of periodicity of the system. The first approach focuses on comparing the
positions of particles before and after a limit-cycle. The long-time dynamics is than
analysed by comparing how many particles changed their positions after a cycle [24],
how much particles diffused and how the potential energy changed [18]. A limitation
of this approach is that the dynamics inside the limit-cycle, which has interesting
characteristics, as we will see below, is ignored. A different approach, is based on
examining the dynamics inside the limit-cycle and comparing consecutive cycles in
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order to understand what happens as the system approaches the critical point [19].
In order to measure the time it takes for the system to reach a periodic limit cycle,
a cycle decorrelation function was defined using the total potential energy of the
system U (t):

R(n) =
∫

dt |U (t, n) − U (t, n − p)|. (11.1)

When p = 1, this function compares the difference between potential energy fluctua-
tions in two consecutive cycles (n is the number of cycles that the system underwent).
For small strain amplitudes this function reaches a value close to zero after n cycles.
However, in some cases the system reaches a limit cycle of periodicity p larger
than one. Therefore, if periodic behavior is not observed p is increased by one and
the function is recalculated. The process was repeated until a value of p for which
the function reaches R(n) = 0 for some n was reached. If periodicity smaller than
p = 11 was not observed p was set to its default value p = 1. In all cases period-
icity larger than p = 5 was not observed. Figure 11.5 shows this function averaged
over 30 different samples of size N = 16,384, each prepared from a different initial
condition in the liquid state and than quenched using the same protocol that was
used to create the green curve in Fig. 11.6. One can observe that for the strain ampli-
tudes γ = 0.06, 0.07, 0.75, 0.85, 0.88, 0.09, 0.093, 0.095 the function relaxes, after
a transient time, to zero, while for larger strain amplitudes (γ = 0.12, 0.15) the func-
tion R(n) does not decay to zero but relaxes to some asymptotic finite value. In the
inset to Fig. 11.7 we can see that the relaxation time, the time it takes the cycle-
decorrelation function to go below 1% of its initial value, follows a power-law with a
critical point at γc = 0.11. This critical strain amplitude is close to the yield strain as
estimated from the blue linear stress–strain curve in the inset of Fig. 11.6, even though
for the oscillatory shear that was used the faster quench protocol that corresponds
to the green curve in Fig. 11.6. The transition from a repetitive to random behav-
ior in a deterministic, dissipative system (no external noise is added) suggests that
the transition might be a “transition to chaos” which is a well known phenomenon
observed in various dynamical systems from the low-dimensional Lorenz system
[32] to the high dimensional coupled chaotic maps [33] and involves a divergence
(usually power-law) in the time it takes the system to reach periodic behavior as a
parameter is varied. A transition to chaos might be associated with a phase transition
as we will discuss below, though the connection between the two was not studied
extensively, as much as we are aware. The main indication that a system exhibits
chaotic behavior is sensitivity to initial conditions: trajectories starting from close-
by initial conditions diverge exponentially [34, 35] (see Fig. 11.8). The sensitivity
to initial conditions is estimated by measuring the maximal Lyapunov exponent λ
which describes the rate of growth of the distance between two phase-space trajecto-
ries (solutions of the equations of motion with different initial conditions) x(t) and
xε(t) which are initially separated by a diminishing distance |x(0) − xε(0)| = ε:

λmax = lim
t→∞ lim

ε→0

1

t
ln

|x(t) − xε(t)|
ε

. (11.2)



232 I. Regev and T. Lookman

Fig. 11.5 Cycle decorrelation function as a function of the number of cycles, for system size N =
16,384 particles for strain amplitudes γ = 0.06, 0.07, 0.75, 0.85, 0.88, 0.09, 0.093, 0.095 (from
left to right). (inset) The same function for strain amplitudes γ = 0.12 (blue), γ = 0.15 (green)

Fig. 11.6 (color online) Stress–strain curve from molecular dynamics simulations for 16,384 parti-
cles under quasi-static shear. Red dots represent the number of cycles, n, required to reach periodic
behavior under oscillatory shear (scale is on the right side of the figure in red). The red line is
the strain amplitude for which the time to reach reversible behavior diverges. Inset Stress–strain
behavior for the same parameters as the green curve but with different initial particle configurations
- the red line is the same as in the larger figure

For a periodic system λmax = 0 whereas a chaotic system will have λmax > 0
[34]. There are different methods for calculating the maximal Lyapunov exponent.
In [19] the method suggested by Kantz [35, 36] which extracts the largest Lyapunov
exponent from a time-series of one of the observables (in our case the potential
energy: ui = {u0, u1, u2, . . .}) was used. The advantages of this method is that it
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Fig. 11.7 (color online)
Slowing down: Accumulated
strain to reach a limit-cycle
as a function of the maximal
strain amplitude minus the
critical strain amplitude
�c = 0.11
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Fig. 11.8 (color online) In a
chaotic system, the distance
between phase-space
trajectories diverges
exponentially fast
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has been widely tested, a highly tested code is available in the author’s website and
that the results give a relatively clear distinction between chaotic and non-chaotic
time-series, as we shall see below. Since we are analyzing a time-series, instead of
looking at the distance between two different solutions of the equations of motion,
we look for points in the time-series which are at some-point close to each other,
i.e. |ui − uk | < ε and check how the distance grows over time d� = |ui+� − uk+�|.
However, since ui is a one dimensional function of the multi-dimensional phase-
space, a simple measure of the distance between them does not reflect the actual
distance of the phase-space coordinates that generated them. To overcome this we
use Taken’s delay embedding theorem [37] which asserts that for an embedding
dimension m > 2DA where DA is the dimension of the chaotic attractor (the part in
phase-space at which the chaotic behavior occurs), a set of m variables generated by
sampling the time-series at regular intervals τ m:

(un−(m−1)τ , un−(m−2)τ , . . . , un−τ , un), (11.3)

will have an attractor with the same topological properties as the underlying attractor.
As an example we show the reconstruction for the Lorenz system:
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Fig. 11.9 Phase space
trajectory which is part of the
“strange” attractor of the
Lorenz system

dx

dt
= σ(y − x) ,

dy

dt
= x(ρ − z) − y ,

dz

dt
= xy − βz. (11.4)

In Fig. 11.9 we show the dynamics as a function of all three coordinates which
shows the famed Lorenz attractor which is chaotic for the parameters that we chose.
To demonstrate reconstruction we take the time-series of one of the coordinates
(Fig. 11.10) and construct three new coordinates using time-delay:

(xn−2τ , xn−τ , xn), (11.5)

where we chose m = 3 and an appropriate τ . We now plot the new coordinates in
Fig. 11.11. One can see the resemblance in the structure of the reconstructed attractor
and the original one (Fig. 11.9).

Typically, in a dissipative system, a chaotic attractor will have a smaller dimen-
sionality than the phase space-dimension. Defining:

sn = (un−(m−1)τ , un−(m−2)τ , . . . , un−τ , un). (11.6)

as the delay-coordinates vector, for large enough τ and m, the distance d = |si − sk |
will represent the actual phase-space distance and if the underlying dynamics is
chaotic, d� = |si+� − sk+�| will grow exponentially fast. The value of τ is usually
taken to be the de-correlation time of the time-series (τ ≈ 600 in this case) but m is
unknown since we do not know a-priori the dimension of the attractor. In order to
find a numerical estimate of the largest Lyapunov exponent the algorithm calculates
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Fig. 11.10 A representative time-series of the x-coordinate of the Lorenz system in the chaotic
regime

Fig. 11.11 Attractor
reconstructed from the x
coordinate which shares the
same topological structure as
the original attractor

the finite-time maximal Lyapunov exponent for a trajectory starting at a point i :

λi
� = 1

�
ln

||si+� − sk+�||
ε

. (11.7)

where ||si − sk || < ε with respect to some norm ||..|| (the actual norm used in the
algorithm is ||si − sk || = |ui − uk | for reasons explained in [35]). For each point si

and a small distance ε a set of points sk such that ||si − sk || < ε is gathered which
allows to calculate the average distance from the point si as a function of �:
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λi
� = 1

�
ln

1

Ui

∑
k

||si+� − sk+�||
ε

. (11.8)

where Ui is the total number of points sk that are ε close to si . The process is repeated
for different initial points si which leads to further averaging. The actual function
that we calculate is:

S� = 1

W
∑

i

ln

(
1

Ui

∑
k

||si+� − sk+�||
ε

)
. (11.9)

where W is the number of starting points i collected. Since this function describes
the ln of the averaged growth of distances as a function of time, we expect that in a
chaotic system (λmax > 0) S� will show linear behavior with a positive slope for large
enough �. However, there are two caveats for this: the maximal Lyapunov exponent
becomes dominant only after several time steps �0:

||si+� − sk+�|| =
∑

i

ai e
λi � ≈

�>�0
amax eλmax �. (11.10)

The second caveat is that for large � the distance ||si+� − sk+�|| can reach the size
of the attractor and thus the trajectories start to fold back. When that happens S�

saturates. In Fig. 11.12 one can see the function S� for a potential energy time-series of
a system of size N = 4096 sheared at maximal strain amplitudes γ = 0.12, 0.15, 0.2
which are all above the critical amplitude [19]. Since the dimension of the attractor
is not known a-priory all the values of m starting from m = 1 were checked until
the shape of S� did not change under further increase (remember that according to
Takens theorem the delay coordinates should give the right result for any m > 2DA

where DA is the dimension of the attractor). For m values 5, 6, 6 respectively, the
function S� shows a linear regime with a positive slope which indicates a positive
maximal Lyapunov exponent.

In Fig. 11.13 we can see the result of applying the algorithm for one of the periodic
limit-cycles with different values of m. One can see that the behavior is significantly
different from that observed for the chaotic time-series: there is no linear regime and
the values of S� are negative for large enough values of m. This function shows a
distinct behavior when calculated for chaotic time-series: for an intermediate range
of � it will have a linear, positive slope where the value of the slope is the value of
the Lyapunov exponent. In Fig. 11.12 we can see the function S� for a time-series
of potential energy values for a system of size N = 4096 sheared at maximal strain
amplitudes γ = 0.12, 0.15, 0.2 all above the critical amplitude. In all three cases
the function shows linear behavior for intermediate values of � indicating a positive
Lyapunov exponent and hence chaotic behavior. These results are consistent with
previous results for the maximal Lyapunov exponent for amorphous solids under
linear shearing obtained in experiments [38] and simulations [39]. These results
suggest that amorphous solids undergo a transition to chaos at a strain amplitude
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Fig. 11.12 Estimation of
Lyapunov exponents: The
function S� of the time delay
� for a system of size
N = 4096 under oscillatory
shear in different strain
amplitudes larger than the
critical amplitude. The
straight lines are shown as a
guide to the eye

Fig. 11.13 The function S�

applied for a periodic
limit-cycle. The behavior is
strikingly different than the
one shown in Fig. 11.12 and
includes negative values

coincident with yield at least under oscillatory shear. One should note that a transition
to chaos is not necessarily accompanied by a nonequilibrium phase transition and
although it shows behavior similar to critical slowing down, it is not necessarily
accompanied by critical fluctuations and a growing correlation length, which are
expected in a non equilibrium phase transition such as directed percolation. However,
it has been suggested that in high dimensional systems, such as fluid turbulence and
ecological systems, a transition to chaos (or turbulence) can be accompanied and
even be a result of, a non equilibrium phase transition such as directed percolation
[40, 41]. Below we discuss how the transition to chaos is related to a different non
equilibrium phase transition.
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Fig. 11.14 Displacement
field after a local particle
rearrangement. Arrows
indicate the direction and
magnitude of displacement
of each of the particles

11.2.1 Analysis of Periodic Behavior

As we explained above, for strain amplitudes smaller than the critical value, after a
transient regime, the system shows fluctuating but periodic behavior. This resembles
the reversible regime of dilute colloidal systems, of the types studied in [10, 11]. How-
ever, in these systems, the dynamics in a limit-cycle is quite trivial since the response
becomes periodic only once the particles reach a configuration in which they do not
touch each other during the cycle. On the contrary, in a highly condensed amorphous
solid, particles change positions and rearrange in a non trivial manner, causing non
affine deformation, even during a reversible limit cycle. Typically, this involves a
large number of rearrangements of the T1 type (two next-nearest neighbours becom-
ing nearest neighbors) which generate elastic-inclusion like displacement fields (see
Fig. 11.14) and appear as energy drops in the potential energy time-series. The repet-
itive behavior can also be observed by following the trajectory of any single particle
over consecutive cycles (blue and red lines in Fig. 11.15). The non-affine nature of
the displacement of the particle is clearly seen in the figure. One should note that
contrary to the usual notion the rearrangement events that are observed in the limit
cycles are completely repetitive so that one can think of the dynamics inside a limit-
cycle as a special form of non-linear elasticity rather than plasticity. It seems that
the oscillatory loading reveals a distinction between plastic and nonlinear elastic
rearrangements (for example, the phenomenon of super-elasticity in shape memory
alloys [42–44]) which is somewhat subtle.

In Fig. 11.16 energy drops (rearrangement events) are identified and marked as
black lines. The points in the limit cycle where these drops occur are marked as black
dots in the columns of Fig. 11.17 where time advances from bottom to top. The x-axis
in Fig. 11.17 is the strain amplitude. This is repeated for different strain amplitudes
with the same initial conditions. It was found that for small strain amplitudes limit-
cycles that start from the same initial conditions are similar to each other and an
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Fig. 11.15 Two consecutive
trajectories of one particle
taken when the system is in a
limit-cycle: blue is the first
cycle and red is the one just
after it. The trajectories are
very similar

Fig. 11.16 (color online)
Analysis of one limit cycle
with a certain strain
amplitude: Energy drops
(rearrangement events) are
identified and marked as
black lines on this curve

Fig. 11.17 (color online) A
plot of the position of energy
drops (marked as black dots)
on the limit cycle as a
function of the strain
amplitude (x-axis) for one
system of size N = 1024.
The y-axis is the time inside
a limit-cycle

increase of the strain amplitude changes the limit-cycle in a gradual manner. How-
ever, for large strain amplitudes small increments in the strain amplitude result in a
completely different limit-cycle. This might be a manifestation of the coexistence of
many different limit-cycles which occupy different parts of the state-space and of the
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existence of “riddled basins of attraction” where infinitesimally close initial points
in state-space lead to completely different attractors [34, 45]. In Fig. 11.18 we can
see the effect of applying Langevin noise to a system that is already in a limit-cycle
(these simulations were performed using overdamped dynamics). After a few cycles
the system escapes from the initial limit-cycle and settles in a different limit-cycle.
This is another indication that there are a large number of nearby limit-cycles and also
shows that a limit-cycle can survive a small level of thermal noise. While the limit
cycle that is shown in Fig. 11.15 repeat themselves after one cycle, for large strain
amplitudes cycles that repeat themselves after 2, 3, 4 and 5 cycles were observed (see
Figs. 11.19, 11.20) which is a phenomenon observed in many dynamical systems and
in some cases can lead to a transition from periodic to chaotic behavior. This can
happen in systems that show “frequency locking” or “period doubling bifurcations”.
In a system showing a transition to chaos due to period doubling, the period of the
limit-cycle doubles for certain values of the control parameters. A succession of
period doubling bifurcations (a period doubling cascade) leads to an infinite period
and chaos. Below we will describe a possible explanation for the connection between
the observed period doubling and the transition to chaos in amorphous solids.

Fig. 11.18 Effect of thermal
noise: System relaxes into a
limit-cycle after initial
overdamped dynamics
(green). It is then subject to
the same dynamics
accompanied by a small
Langevin noise. After some
time it “hops” to another
limit-cycle

Fig. 11.19 (color online)
Periodic limit cycles with
period 5 at strain amplitude
γ = 0.09. The green curve is
the applied strain (not to
scale). Red lines represent
the start and the end of a
cycle
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Fig. 11.20 Limit cycles: Repetitive particle trajectories in a period-two limit-cycle. a shows the
entire system, b shows local environment and the trajectories that each particle is undergoing
and c shows the trajectory of one particle. d shows the strain applied using the Lees Edwards
boundary conditions (purple arrows show how the Lees-Edwards boundaries move with respect to
the simulation square when the system is sheared in the positive direction). Since the limit cycle has
period two the trajectories repeat themselves only after two shearing cycles (the blue and green lines
in d). The particle starts from the orange initial point and moves to the right on the blue trajectory,
due to the external strain that shears the material to the right, then moves back to the center and
to the right, when the strain is changed accordingly (blue curve on d). When the strain is set back
to zero, the particle reaches the purple point. Then, when the strain is applied again to the right,
the particle moves accordingly, but this time on the green trajectory. The particle then moves to the
center and to the left due to the applied strain (green curve in d). Eventually the particle comes back
to the orange point, the initial condition. The next two cycles repeat the same two trajectories, and
the same for the following cycles

11.3 Ergodicity

The emergence of chaotic behavior can explain an important aspect of the physics
of amorphous solids. In previous studies [46–48] it was shown that the effective
or “fictive” temperature that describes the structure of an amorphous solid depends
on the initial quench of the system. However, when the material is deformed, the
effective temperature of systems that were quenched using different cooling protocols
converge to the same steady-state value which depends on the work performed on the
system (and on the thermal bath temperature, when it is larger than zero). This has
been described as overaging or rejuvenation of the amorphous solid [46], depending
on whether the effective temperature increases or decreases. We can understand
this behavior in terms of the onset of chaos. The existence of a positive maximal
Lyapunov exponent is an indication that the system is not only chaotic, but that the
dynamics is ergodic on a chaotic attractor which occupies part of the state-space (this
is different than ergodicity in Hamiltonian systems in which the entire state-space
for a given energy is explored). Since every initial condition ends up on the attractor,
and the dynamics on the attractor is ergodic, averaged observables will eventually
show the same values independent of the initial configuration. In Fig. 11.21 we see
three different limit cycles all simulated with the same system size and sub-yield
strain amplitude but with different initial conditions. We observe that whereas the
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Fig. 11.21 (color online)
Several different limit-cycles
that were obtained using the
same control parameters
(number of particles,
shearing steps, amplitude of
shear) but different initial
conditions

period is the same, the details of the cycles (energy fluctuations) depend on the initial
configuration which indicates that the final state depends on the initial conditions, as
we expect from a non-ergodic system. This dependence on initial conditions is clearly
seen when one looks at the average potential energy as a function of the cumulative
strain (Fig. 11.22 taken from Fiocco et al. [18]). One can observe that starting from
two different initial quenches, with different potential energies, the final potential
energy depends on the initial quench when the maximal strain amplitude is sub-yield
and does not depend on the initial conditions when the maximal strain amplitude is
above-yield which indicates that the system regains some kind of ergodicity above
yield.

11.4 Interactions and a Non-equilibrium Phase Transition

It is well known that solids under plastic deformation exhibit power-law noise due to
large correlated plastic events which resemble avalanches [31, 49] (see Fig. 11.23).
A connection between the avalanche statistics and the irreversibility transition was
explored by studying the avalanche statistics for different maximal strain amplitudes
and system sizes [30]. Since the simulations were athermal, potential energy drops
were identified with plastic rearrangement events. For each simulation, all of the
energy drops in the last shear cycle (to avoid transient effects), were extracted and
used to create a histogram of the energy drops which was used to calculate the average
energy drop for each maximal strain amplitude [30]. We observe in Fig. 11.24 a cusp
in the average potential energy at the point at which the irreversibility transition
occurs, followed by saturation to a value which depends on the system size, at large
strain amplitudes. The cusp suggests that the irreversibility transition is related to a
change in the avalanche dynamics, and the system size dependence of the saturation
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Fig. 11.22 Ergodicity breaking - Potential energy per particle E for zero-strain configurations, for
different maximal strain amplitude γmax [0.07 (dark blue circles), 0.08 (blue squares), 0.09 (green
diamonds), 0.1 (green down facing triangles), 0.12 (orange up facing triangles), and 0.14 (purple
stars)], averaged over different runs with samples of N = 4000 particles quenched from T = 0.466
(closed symbols) and T = 1.0 (open symbols). (Taken from Fiocco et al. [18])

suggests that there is a saturating correlation length both indicative of critical behavior
[50, 51].

The avalanche statistics was interpreted using a simple model [52] that belongs
to the same universality class as the theory of front depinning which was originally
developed to explain the motion of an interface in a random media. This motion
involves parts of an interface overcoming local energy barriers due to external forc-
ing and neighbouring locations in the interface “pulling” the site back. The forward
motion of the interface occurs in avalanches. In the case of long-range interactions,
such as the ones that exist in elasto-plastic systems, the notion of a “front” becomes
more abstract since sites that are far apart affect each other and the notion of locality
becomes blurred (see Fig. 11.25 for illustration). This explains why the same equa-
tions can also describe avalanche behavior associated with the plasticity of amor-
phous solids in which the dynamics involves overcoming random energy barriers and
long-range interactions, even if an actual front may not exist. The equations of motion
describing the time evolution of the plastic displacement field u(r, t) controlled by
overdamped dynamics are [52]:

η
∂u(r, t)

∂t
=

F +
∫

d2r ′ J (r − r′) [u(r′, t) − u(r, t)] − fR(u, r), (11.11)
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Fig. 11.23 Reversible (repetitive) Avalanches. An avalanche in a sub-critical limit-cycle for a sys-
tem with N = 16,384 particles and maximal strain amplitude � = 0.1. Even though the avalanche
spans a large part of the system, it is repeated under repeating strain cycles of identical strain
amplitude. The arrows mark the displacement during the avalanche and the colors represent the
magnitude of the displacement (warm - large displacement, cold - small displacement)

Fig. 11.24 Mean energy
drops. The mean energy
drop as a function of the
maximal strain amplitude for
the largest system size. Note
the distinct cusp at the
irreversibility point
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whereη is the viscosity, F is an externally applied force, r is a position of a deformable
region (Shear transformation zone), J (r − r′) is the Green’s function for the elastic
interaction between different “soft” regions located at points r and r′ and fR(u, r)
is a random pinning potential representing the structural disorder inherent to such
systems. This model assumes that the nature of the structure (the distribution of the
random pinning forces fR(u, r)) does not change as a function of time. In amorphous
solids the randomness is self-generated and can (and typically does) change under
plastic deformation. However, when the system is at a steady-state under linear or
cyclic shearing, one can assume that the disorder is fixed. Also, the scaling behavior
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Fig. 11.25 Depinning theory in the amorphous plasticity context. a Depinning theory describes
the motion of an elastic interface (here a one-dimensional front) in a random potential. The circles
represent the (plastic) displacement of each point in the front. The front is subject to an applied force
which causes it to move but elements of the front are pinned locally and need to overcome energy
barriers. The different elements of the front are connected by springs so that if one pinned site
overcomes the energy barrier it is pulling its nearest neighbors (and only them). b If the interactions
are long range, different pinned elements of the front interact with distant elements and the actual
structure of the front becomes immaterial. c In this case there is no real difference between the
equations that describe a front and the equations that describe the interaction of some collection
of pinning sites distributed in the material. A simple model of plasticity [52] that belongs to the
depinning universality class, has been shown to describe the dynamics of an amorphous solid under
shear where “shear transformation zones” or “weak spots” are dispersed in the material and affect
each other with long-range elastic interactions

of the model predictions do not change if the pinning stresses randomly change
in time. This model exhibits a non-equilibrium phase transition between a pinned,
static state and a flowing state as the stress is slowly increased past a critical force
Fc [52]. The transition is a critical point involving correlated displacement jumps.
These correlations are described in terms of a scaling theory, which was derived from
a mean-field (infinite interaction range) approximation and renormalization group
theory [52, 53]. This theory was indeed shown to give a good description of the
statistics of avalanches during plastic deformation in crystals [54–57] and is now
also being applied to amorphous solids [58–60]. For an applied external force, at
zero velocity (quasi-static limit) it was found that at a critical force Fc the avalanche
size distribution scales as:

D(S) ∼ S−τ , (11.12)

where S is the avalanche size and τ is a universal critical exponent. Below Fc the
distribution follows the same power law but with a maximal size (cutoff):
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Smax ∼ (Fc − F)−1/σ, (11.13)

where σ is the cutoff exponent. Then the distribution function takes the form:

D(S, F) ∼ S−τD(S/Smax) ∼ S−τD(S(Fc − F)1/σ), (11.14)

where D(x) ∼ A e−Bx is a universal cutoff scaling function but the constants A and
B are system specific [52, 53].

11.4.1 Statistics Under Oscillatory Shear

The application of depinning theory for amorphous solids under oscillatory shear
involves modifying the theory to take into account different factors that were not
included in the theory described above which assumes a steady force. One issue
is that the disorder in amorphous solids is not quenched which can affect the sta-
tistics. For example, there could be weakening effects during an avalanche event,
where the same site can be triggered more than once. This has been addressed by
Dahmen et al. [52] and was shown to affect the stress–strain curve but not the scaling
exponents [53]. The second effect of having dynamic disorder is that the distribution
which describes the random variable fR(u, r) can change during a cycle. This issue
was avoided by performing statistics only for avalanches in “steady-state” cycles,
when the avalanche statistics is stable. It is known that the exact distribution of the
disorder does not affect the avalanche statistics so even if the disorder is different
in different cycles, that should not change the scaling functions. Another issue is
that the forcing is a “sawtooth”, periodic strain profile. In order to take that into
account (11.14) was rewritten in terms of the strain and integrate over the different
strain amplitudes. The relation between the stress and the strain shows hysteresis
due to the nonlinear nature of plastic deformation. One immediate consequence of
the existence of avalanches (and plastic events in general) is that the stress–strain
curve becomes non-linear and exhibits hysteresis - the stress becomes a multivalued
function of the strain (see Fig. 11.26). In principle, this nonlinearity can be deduced
directly from the avalanche statistics. In the case of amorphous plasticity, however,
in order to get an analytical solution certain approximation were needed as will be
explained below. Since the forward and reverse straining branches of the hysteresis
curve are statistically identical, we take into account only the forward direction. For
the forward branch, we can model the relation between stress and strain using the
scaling relation:

(�c − �) ∼ (�c − �)δ. (11.15)

where �c is the critical strain and �c is the critical stress which is related to the critical
force Fc in a manner which will be explained below. The exponent δ was found to
be δ = 1.25 by fitting (see Fig. 11.27). The increment in plastic displacement u p due
to an infinitesimal change in the force is [52]:
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dup ∼ 〈S〉Fd F, (11.16)

for a small force increment dF over the current force F (the avalanche size S is
the amount of slip or displacement in an avalanche event and 〈S〉F is the average
avalanche size for a constant applied force F). This can be translated to an equation
for the force-displacement behavior, using the theoretical scaling law for 〈S〉F :

dup

d F
= C

(
Fc

Fc − F

)α

= C f −α, (11.17)

where C is a constant with dimensions of length/force, f = Fc−F
Fc

and α is a crit-
ical exponent. When the avalanche size diverges, the behavior will be affected by
finite size effects. If we assume that the irreversibility transition under oscillatory
shear occurs at the same maximal strain amplitude as the non-equilibrium phase
transition one can explain the finite-size dependence the results obtained by Fiocco
et al. [18] which observed that the critical strain amplitude for the irreversibility
transition decreases with system size: The maximal strain amplitude � is related to
the maximal displacement by � = u/L . If we integrate (11.17) directly, we expect
to get up ∼ ln L−1/ν when F → Fc, where ν is the critical exponent associated with
the correlation length since the correlation length ξ ∝ f −ν must be smaller than
the system size L . This gives a system size dependence of the plastic critical strain
amplitude:

�p,c ∼ ln L

L
. (11.18)

However, the total yield strain is the sum of the elastic �p,c and the plastic �e,c yield
strains:

�c = �p,c + �e,c ∼ b
ln L

L
+ �c/μ (11.19)

such that for L → ∞
�c → �c/μ, (11.20)

where μ is the shear modulus, b is a constant and �c is the critical stress for depinning.
This prediction is compared in Fig. 11.28 to the transition to chaos points obtained
from our simulations for three different system sizes. By fitting the critical strain was
estimated to be �c ≈ 0.11 for infinite systems. This should also be compared with
other theoretical results that predict a yield strain due to the appearance of a system
spanning plastic event [61]. We substitute (11.15) into (11.14) and obtain a scaling
relation for the avalanche size distribution as a function of the strain amplitude:

D(S, �) ∼ S−τD(S(�c − �)δ/σ), (11.21)

which would be expected to describe the avalanche statistics close to the critical
strain amplitude. However, for oscillatory driving, the scaling function D(S, �)
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Fig. 11.26 Stress–strain
curve exhibiting Hysteresis.
Red and green branches are
the relevant parts of the
curve for the avalanche
statistics. In the calculation
we assume that they provide
identical statistics
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Fig. 11.27 Comparison of
30 stress–strain curves from
simulations (N = 16,384,
� = 0.097) with (11.5) in
the main text, (thick
dark-yellow curve) with a
critical exponent δ = 1.25

Fig. 11.28 Finite size
effects in the critical strain
amplitude
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requires corrections since the avalanche size distribution measured is a result of
integration over a varying amount of applied strain. Since the strain increases and
decreases periodically, the system spends time both below and above the critical
strain amplitude. Because we are averaging over cycles, we need to integrate over
the different strain amplitudes.

Below the transition we get the equation:
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P(S, �) ∼
∫ �

−�

dε S−τD(S(�c − ε)δ/σ), (11.22)

where P(S, �) is the distribution of avalanche sizes at maximal strain amplitude �,
and ε is the instantaneous strain amplitude during a cycle ε ∈ [−�,�].

By changing the variable of integration in (11.22), we get:

P(S, �) ∼
∫ �

−�

dε S−τD(S(�c − ε)δ/σ)

=
∫ �

0
dε S−τD(S(�c − ε)δ/σ)

+
∫ 0

−�

dε S−τD(S(�c − ε)δ/σ). (11.23)

Next, we make two simplifications: first, we perform the integral only in the forward
shearing direction (the red part of the curve in Fig. 11.26) since the statistics are
symmetric to the shearing direction, second, we neglect the second integral because
for strain amplitudes that are away from the critical point (the blue parts of the
curve in Fig. 11.26) the fluctuations are very small (the distribution function is an
exponential). Substituting for D(x), we get:

P(S, �) ∼
∫ �

0
dε S−τD(S(�c − ε)δ/σ) (11.24)

=
∫ �

0
dε S−τ Ae−BS(�c−ε)δ/σ (11.25)

substituting
x = BS(�c − ε)δ/σ (11.26)

ε = �c −
( x

BS
)σ/δ

(11.27)

we get:

P(S, �) = −S−τ−σ/δ Aσ/δ

Bσ/δ

∫ BS(�c−�)δ/σ

BS(�c)δ/σ
dx xσ/δ−1e−x (11.28)

close to the critical point � → �c the typical avalanche size S is very large. Therefore,
we assume that taking the lower limit to infinity will contribute a negligible change
to the result:

∼ −S−τ−σ/δ Aσ/δ

Bσ/δ

∫ BS(�c−�)δ/σ

∞
dx xσ/δ−1e−x (11.29)
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Fig. 11.29 Fluctuations:
Energy drop distribution
generated from log
histograms for five different
maximal strain amplitudes
below the transition for
strain amplitudes
� = 0.05, 0.07, 0.08, 0.085
and 0.093
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This gives the scaling function for the fluctuations below the critical point:

P(S, �)Sλ ∼ F(S(�c − �)χ), (11.30)

where λ = τ + σ/δ and χ = δ/σ. The scaling function is generally unknown. How-
ever, for mean-field depinning theory it was calculated to be F(x) = −γ(1/χ,−x),
where γ(a, x) is the complementary gamma function and seems to agree with the
data collapse (see Figs. 11.29, 11.30). Avalanche sizes in plasticity are usually asso-
ciated with the amount of slip, which is proportional to the stress drop. However, as
was shown in refs [49, 62], in the steady-state the fluctuations of stress and potential
energy drops are proportional due to a sum rule. This was assumed to apply here as
well. If the maximal strain amplitude � is larger than the critical value, we have to
average over the statistics both below and above the critical strain amplitude. Due
to the quasi-static forcing (zero strain-rate), for strains larger or equal to the criti-
cal strain amplitude, the system is expected to be exactly at criticality [63], and the
avalanche statistics is expected to behave as a pure power-law:

D(S, ε ≥ �c) ∼ S−τ . (11.31)

Substituting, we obtain:

P(S, �) ∼
∫ �c

0
dε S−τ Ae−BS(�c−ε)δ/σ

+ (� − �c) S−τ ,

where we have performed the integral over the last term.
As demonstrated by Lerner et al. [62] and further developed by Salerno et al. [64]

when the system is in a steady-state, there is a simple relation between an energy
drop and the concurrent stress drop. The relation stems from the fact that at the
steady-state, the work done on the system by the straining is balanced by the energy
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Fig. 11.30 Data collapse:
Data collapse for five
different maximal strain
amplitudes below the
transition compared to the
mean-field scaling function
F(x) = −γ(σ/δ,−x),
where γ(a, x) is the
complementary gamma
function (marked by a black
line)
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Fig. 11.31 Average energy
drops versus stress drops for
three different maximal
strain amplitudes. The figure
shows that the energy drops
grow linearly with the stress
drops
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drops. Thus, they got the sum rule:

〈�s〉
4μ

∑
i

��i =
∑

j

�Uj (11.32)

where μ is the shear modulus, ��i is a stress drop, �Uj is an energy drop and we have
assumed that there is a well-defined average stress 〈�s〉 at the steady-state. Under
oscillatory shear conditions the steady-state stress depends on the strain amplitude,
but for a small strain interval this relation should still hold. Therefore, at the steady-
state the sum of the energy drops is proportional to the sum of the stress drops. For
large avalanches, which are dominant in determining the power-laws, this suggests
that individual stress and energy drops are also proportional. This was confirmed in
the simulations by Salerno et al. [64]. Indeed, this behavior was also observed for
oscillatory shear where the stress and energy drops were found to be proportional
(see Fig. 11.31).
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Using (11.30), data collapse was found for five maximal strain amplitudes � =
0.05, 0.07, 0.08, 0.085 and 0.093 at system size N = 16,384 (Figs. 11.29, 11.30)
from which λ and χ were extracted.

We expect to have data collapse only for intermediate strain amplitudes - for strain
amplitudes smaller than � = 0.05 the statistics are not good enough because there
are not many energy drops (about 10 per cycle or less). Furthermore, far from the
critical point the avalanche statistics is not expected to show the same behavior since
the system is far from the singularity. For strain amplitudes that are too close to the
critical point, finite size effects dominate. Close to the critical point we typically use
the following expression:

g( f ) = ξα/νg0(L/ξ) (11.33)

where ξ = f −ν is the correlation length, f = F−Fc
Fc

is the rescaled force, g(x) is our
scaling function, L is the system size, α and ν are the critical exponents (ν is the
critical exponent of the correlation length) and g0(x) is the finite size scaling function
who’s properties are:

g0(x) → xα/ν, x → ∞ (11.34)

and:
g0(x) → C, x → 0 (11.35)

where C is a constant. Therefore, close to the critical point we get:

g( f ) ∼ Lα/ν (11.36)

which means that one cannot use the same function to describe the scaling behavior
for maximal strain amplitudes in the intermediate range and close to the transition.

Using the estimate of δ, the critical exponents values τ = 1.04[0.26], σ =
0.59[0.04] were found from the data collapse. The exponents deviate from the expo-
nents found using mean-field depinning theory, which are τ = 1.5 andσ = 0.5. There
are several possible reasons for that. The first possibility is that inertia effects are
changing the exponents as was suggested by Salerno et al. [49], for simulations under
direct shear (not alternating). This might be an issue since in [19, 30] the FIRE (Fast
Inertial Relaxation Engine) algorithm was used to minimise the potential energy.
Another possibility is that since the elastic interactions can be both positive and neg-
ative, contrary to the only positive interactions exhibited by most depinning models,
the mean field is in a “marginal state” [65] which dictates different scaling behavior.
The main caveat to this approach, as we see it, is that the theoretical predictions that
assume such behavior, based on scaling arguments [66, 67] and analytic calculations
for hard spheres at infinite dimensionality [68] does not show the behavior that we
are observing here. We believe that the discrepancy from both depinning theory and
marginal stability might be a result of having anisotropic interactions which causes
the formation of plastic events in specific directions [69], something that as much
as we are aware, is not been taken explicitly into account in both theories. Another
possibility is that the upper critical dimension is higher in amorphous solids than in
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standard depinning and in that case one may have to take into account corrections to
the critical exponents. We hope that further work will clarify these points.

11.4.2 Average Fluctuations

From the relevant critical exponents we can obtain the average energy fluctuations
introduced in Fig. 11.24 using similar analysis as above. In order to calculate the
average fluctuation size in a cycle we integrate over the same probability distributions
but divide by the strain amplitude:

〈Sn〉� ∼
∫ Sco

0
dS SnS−τ 2

�

∫ �

0
dε Ae−BS(�−ε)δ/σ (11.37)

for � < �c and:

〈Sn〉� ∼
∫ Sco

0
dS 2

�

∫ �c

0
dε SnS−τ Ae−BS(�c−ε)δ/σ (11.38)

+
∫ Sco

0
dS 2

�

∫ �

�c

SnS−τ (11.39)

for � > �c. After integration:

〈Sn〉� ∼
∫ Sco

0
dS 2

�

∫ �c

0
dε SnS−τ Ae−BS(�c−ε)δ/σ (11.40)

+
∫ Sco

0
dS SnS−τ (� − �c)

�
(11.41)

〈S〉 ∼
∫ Sco

0
dS 2

�

∫ �c

0
dε S1−τ Ae−BS(�c−ε)δ/σ

+ (� − �c)

�

∫ Sco

0
dS S1−τ , (11.42)

where Sco is a cutoff avalanche size which depends on the system size in an unknown
way, and the integral was divided by � in order to perform a cycle-average. The values
of the critical exponents τ and σ that where used where τ = 1.04 and σ = 0.59
which were obtained from the data collapse shown in Figs. 11.29 and 11.30. For the
critical maximal strain amplitude the values �c = 0.135 for N = 1024, �c = 0.12
for N = 4096 and �c = 0.115 for N = 16,384 were chosen since they correspond
to the values found for the transition to chaos. The maximal cluster size Sco was
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assumed to be proportional to a power-law of the system size since at the steady-
state the correlations span the entire system (ξ ∼ L):

Sco = KN�. (11.43)

where K and � are constants. The parameter values K ∼ 0.4, A ∼ 4.547, B ∼ 30.51
and � ∼ 0.482 were found by minimising the normalised L2 norm of (11.42) with
respect to the data from simulations:

L2 = 1

N

√∑
i

(〈�U〉sim,i − 〈S〉theory,i)2 (11.44)

the best fit resulted in L2 ∼ 0.114. Note that the value of � ∼ 0.482 is approximately
consistent with avalanches concentrated along a shear-band and thus proportional to
the linear system size L ∼ N 1/2. Figure 11.32 shows the first moment of the potential
energy fluctuations 〈�U〉 obtained from the simulations as a function of the maximal
strain amplitude �, compared to (11.42) for three different system sizes. The most
obvious features of 〈�U〉 as a function of the maximal strain amplitudes is the
crossover (cusp) in behavior at the critical point (Figs. 11.32, 11.33), which was
mentioned above, and the system size dependent saturation of 〈�U〉 for very large
strain amplitudes. As one can see in the figures, both of these features are described by
the theory. The saturation, and dependence on system size can be explained by noting
that for very large maximal strain amplitudes � → ∞, the normalized distribution
function converges to the usual power-law statistics P(S) ∼ S−τ and respectively
〈�U〉 ∼ 〈�S〉 → S−τ

co . One feature that was observed in the simulations that is not
explained by the current theory is that �c changes slightly with the strain amplitude
due to structural rearrangements. In the theory (11.11), structural rearrangements
will amount to a change in the properties of the distribution of the random pinning
fR(u, t). However, this effect is small (changes in �c are less than 5%) and was not
taken into account when fitting the data to the theory. By analyzing the avalanche
statistics using scaling forms predicted by depinning theory, it was shown that there is
a critical point at a critical strain amplitude � = �c which is the same strain amplitude
at which the system undergoes an irreversibility transition. However, this raises the
question of why the two occur at the same point. An explanation for this intriguing
concurrency will be provided below.

11.5 Connection Between Dynamics and Critical Behavior

The most interesting question that arises in view of the findings mentioned above is
the connection between depinning and the observed dynamics in the reversible and
irreversible regimes. The essence of this connection is that at depinning, the external
force F suppresses all the energy barriers (see Fig. 11.34a, b) which changes the
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Fig. 11.32 First moment:
Average potential energy
drops versus maximal strain
amplitude for different
system sizes: N =
16,384( ), N = 4096(�), N
= 1024(�). The yellow lines
are the theoretical results
(11.42) where the integral
was calculated numerically.
The red dashed line marks
the transition to chaos point
for N = 16,384
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topology of the energy landscape - instead of a set of disconnected energy minima,
we have a fully connected set of energy minima in terms of strain. This affects the
dynamics and reversibility of the system (a related explanation was suggested for
the dynamics of supercooled liquids, see [70]).

Limit cycles: Since the system is dissipative, it will always flow to an attractor
occupying a limited part of phase-space (see Fig. 11.34c and [34]). This attractor will
be composed of a finite or infinite set of configurations of the system connected to
each other by elastic or plastic displacement (see Fig. 11.34d). For a system under
linear shear, when the external forcing is below depinning, it is guaranteed that after
some amount of strain the system will find a local minimum of the potential energy
(will become pinned). For cyclic strain, if the maximal strain amplitude is below
depinning, the system will find, after transient dynamics, a set of configurations all
below the critical stress. Since the stress is lower than the critical depinning stress,
this set of states is guaranteed to be linearly stable or nonlinearly stable. In the
case that is nonlinearly stable, if the stress is increased, the system will overcome
a close-by energy barrier but will “fall” into an adjunct energy barrier (see also
Fig. 11.34a) which means that the next configuration in the attractor is separated by
a finite energy barrier. Therefore, in this case, the attractor is not chaotic and it must
be a limit-cycle (periodic). This situation is not so different to an absorbing phase
transition, which was suggested as an explanation for similar phenomena [10, 24],
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Fig. 11.34 Nonlinear stability: a Tilted energy landscape - nonlinearly stable. b Tilted energy
landscape - completely unstable. Chaotic behavior is possible in this scenario. c A simple example
of an attractor: for a dissipative system, different initial conditions which are in the same basin of
attraction result in trajectories (blue and green lines) which end-up in the same limit-cycle. d Below
the critical strain amplitude, for each strain amplitude, the system finds, after a transient (arrow), a
stable configuration (circles)

although we suggest that depinning provides greater physical insight into the reason
for the system to reach an absorbing state.

Chaotic attractor: When the stress is close to depinnig values, a small increase in
stress, due to a strain step will supress all of the energy barriers (see Fig. 11.34b). In
this case the system will be completely unstable, for a short time. In the quasi-static
shearing scenario, the system will reach another minimum of the potential energy
when the minimization algorithm or dissipation lowers the energy again but before
that happens it will spend some time in boundless motion. Since there are effectively
no energy barriers in this time, there are no retrieving forces and chaotic motion is
possible (in some systems with quenched disorder and with a “no passing” property
fulfilled [71], such as charge density waves and certain random magnets, chaotic
motion is not possible and there always is a limit-cycle [72], but this is not the case
in plasticity in amorphous solids in which disorder is not strictly quenched and for
which the no passing rule is broken).

Period doubling: when the system is close but still not exactly at criticality, there
are less and less stable “pinned” configurations. Therefore, the likelihood of the
system being able to “construct” a limit-cycle that returns to the same point after
one period is smaller and it may be required to have more than one cycle before the
system can return to the initial configuration.

To summarize, if the strain amplitude is below depinning, the system can always
self organize into cycles composed of states in which the stress fluctuations never
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reach depinning values. In that case the dynamics will always be bounded, either
linearly or nonlinearly (overcoming one energy barrier). If the strain amplitude is
large enough, there are always states in which the stress is very close to depinning.
In that case small increase in the stress, due to straining, will generate stresses that
are larger than the depinning value, and thus will cause unbounded motion which
can lead to sensitivity to initial conditions and chaos.

11.5.1 Relaxation Dynamics

Depinning mean-field theory predicts that close to a depinning transition, the system
will “slide” for a long time before it becomes pinned due to critical slowing-down.
Therefore, the accumulated strain to reach a steady-state (the number of cycles times
4�) is expected to diverge as function of the applied force:

εacc ∼ (Fc − F)−zν, (11.45)

with mean-field depinning theory, which was derived for linear shear, predicting a
value of zν = 1 [52]. Since the steady-state is a limit-cycle composed of a set of
pinned states, we expect that also under oscillatory shear, the accumulated strain to
reach a steady-state will scale in the same way as the strain needed to pin one
state. Since the control parameters was the maximal strain amplitude, we obtain on
substituting:

εacc ∼ (�c − �)−zνδ. (11.46)

The simulations found [30] power-law scaling with zν ∼ 2.4 for a choice �c = 0.11
(Fig. 11.7), and zν ∼ 1.38 for a slightly smaller �c = 0.1 for the largest system that
was (N = 16,384). The dynamical exponent zν = 1 predicted by mean-field theory
is in rough agreement with the scaling of the time to reach steady-state measured
in the experiments of Nagamanasa et al. [24] on colloidal glasses which gave zν ∼
1.1/δ ∼ 0.88.

11.6 Summary

The recent discovery of a reversibility transition connected to yield has raised the
possibility that yield is a result of a transition from periodic to chaotic behavior.
However, a number of questions arise regarding the nature of the transition and
the implications to ergodicity and entropy production in these systems. The results
described in this chapter suggest that the critical behavior might be caused by a
transition to chaos [19], a phenomenon well studied in dynamical systems theory,
which seems to be a result of a change in the topology of the energy landscape [30].
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Furthermore, it is suggested that the change in energy landscape topology may be a
result of a depinning-like dynamical non-equilibrium phase transition.

The existence of an irreversibility transition is supported by several experimen-
tal results based on the shearing of colloidal suspensions [17, 20, 24]. Similarly,
experiments on granular piles have also shown that the onset of irreversible behav-
ior is associated with the appearance of system spanning events [12], consistent
with our findings. Therefore, it appears that the existence of an irreversibility transi-
tion/transition to chaos in colloidal systems is reasonably well substantiated. How-
ever, it is still not clear what happens in the thermodynamic limit and in molecular
amorphous solids, such as bulk metallic glasses. Furthermore, the existence and
nature of a non-equilibrium critical point at yield is still under debate. There are sug-
gestions that the transition is actually first-order in nature rather than showing critical
behavior [73, 74]. It will be interesting to see if one can explain the irreversibility
transition based on a first-order non equilibrium phase transition.
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Chapter 12
Avalanches, Non-Gaussian Fluctuations
and Intermittency in Fluid Imbibition

Jordi Ortín and Stéphane Santucci

Abstract We review our work on the invasion of a model open fracture by a
viscous wetting fluid, in the context of research on the spatiotemporal dynamics of
fronts in disordered media. The model consists on a Hele-Shaw cell with randomly-
distributed dichotomic variations of gap thickness. Distortions of the advancing front
produced by fluctuations in capillary pressure and permeability are damped by inter-
facial tension and fluid viscosity. Competition of forces at different length scales
makes that an initially flat front undergoes a kinetic roughening process, leading to
a statistically-stationary state characterized by critical interfacial fluctuations and a
collective avalanche dynamics. Using fast and high-resolution imaging we are able
to track the evolution of the advancing front in space and time with high accuracy.
The motion of the front takes place by localized bursts whose lateral sizes, areas and
durations are found to be power-law distributed–up to a cutoff scale which diverges as
the capillary number of the displacement Ca → 0, a limit corresponding to a critical
depinning transition. A scale-dependent statistical analysis of the temporal behavior
of the spatially-averaged velocity of the front reveals the presence of non-Gaussian
fluctuations, strongly intermittent dynamics and global avalanches.

12.1 Introduction

Many nonequilibrium systems with spatial degrees of freedom respond to a smooth
and continuous external driving with jerky and discontinuous events of correlated
activity. These fast, abrupt events, separated by intervals of slow or no activity, receive
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the generic name of avalanches. They have been observed in physical and geological
settings with very different time and length scales, from motion of vortex flux lines
in superconductors to slip motions of the Earth’s crust (earthquakes) [6, 14, 29, 35,
48, 54, 60, 62, 68, 85, 95, 100]

Among model systems of slowly driven interfaces with complex interfacial
dynamics, fluid fronts in disordered media have received substantial attention in
recent years [1, 49]. Theoretical and experimental studies have addressed the motion
of contact lines in the presence of wettability defects or obstacles [10, 19, 41, 50, 61,
79, 86], the collective motion of the interface formed by the different fluid menisci
that invade the pores and throats of a porous medium during capillary rise [4, 20,
45], and the imbibition of a fluid by a Hele-Shaw cell with wettability defects [28,
65, 66], glass-beads [22, 87], or randomly-varying gap thickness [1, 3, 23, 56, 70,
75, 85].

In this paper we focus on stable imbibition displacements. A fluid that preferen-
tially wets the walls of the disordered medium (e.g. oil) displaces a less wetting and
less viscous fluid (e.g. air) originally residing in the medium. The advancement is
highly intermittent. Local capillary bursts induce front distortions, which eventually
trigger a cooperative motion of the invading front.

Advances in the understanding of the dynamics of imbibition displacements in
disordered media in the 80 and 90s were reviewed in depth, from a statistical physics
perspective, by Alava, Dubé and Rost in a celebrated review paper [1]. The emphasis
at the moment was put on the kinetic roughening of the imbibition front. Compar-
atively, avalanches of imbibition fronts received then much less attention. In this
chapter we deal with new studies of the dynamics of stable imbibition displacements
that have been done since the publication of the review by Alava and coworkers
in 2004. Specifically we focus on the burst-like dynamics of slowly-driven stable
imbibition fronts. We review the insights gained from new experiments that have
been carried out in our laboratory model in Barcelona through the last ten years.
Advances in image acquisition have allowed us to record the front dynamics with
unprecedented spatial and temporal resolution, which has made possible to investi-
gate velocity correlations, velocity fluctuations, and front avalanches in great detail.

In order to make this chapter self-contained, we begin by introducing in Sect. 12.2
basic concepts of the dynamics of two-phase flows in disordered media which are
relevant for our results. The experimental setup and the experimental methods that
give access to local front velocities are described in Sect. 12.3. The setup consists
on a horizontal Hele-Shaw cell with a two-valued gap thickness that fluctuates ran-
domly in space, following a predefined pattern. The invading fluid moves in the free
gap between the two parallel plates, but fluctuations in gap thickness give rise to
localized and abrupt distortions of the advancing front. The dynamics of the invad-
ing front are studied in Sect. 12.4. We begin this section with a brief introduction of
the linearized interfacial equation that describes stable imbibition displacements in
this particular setup, following the work of Pauné and Casademunt [67]. The pres-
ence of disorder leads to a jerky, collective motion of the front. The front moves by
avalanches, i.e. localized front displacements in which local front velocities are very
high and spatially correlated. They are studied in Sect. 12.4.2. In very slow displace-
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ments, where the flow is dominated by capillary forces, avalanches are expected to be
scale-invariant in a wide range of sizes and durations. Local velocity bursts in stable
imbibition displacements have been studied experimentally [17, 22, 72, 85], theoret-
ically [24, 56, 75, 80] and numerically with phase-field simulations [56, 75, 80]. In
Sect. 12.4.3 we study the front dynamics at increasing spatial scales. We focus on V�,
the average velocity of the front in a window of lateral size �–typically much smaller
than the lateral width of the system L . We study different statistical properties of this
global–on scale �–temporal signal, which plays the role of a crackling noise in our
system. First we show that its normalized values exhibit anomalous (non-Gaussian)
fluctuations. The non-gaussianity is a consequence of the non applicability of the
central limit theorem to correlated systems [7, 11, 12]. Non-Gaussian fluctuations of
the global velocity in stable imbibition have been observed in phase-field numerical
simulations [77, 80] and in experiments [18, 70, 77]. Next, we study the statistics
of the temporal increments of V�(t). We show that this global velocity displays the
characteristic features of an intermittent signal: periods of low velocities alternate
with periods of very large velocity excursions. In the former, the acceleration is small
and strongly correlated to the velocity, while in the latter the acceleration fluctuates
strongly. This temporal intermittent behavior reflects spatial correlations along the
front as well as strong temporal correlations in the direction of front advancement,
related to the heterogeneities of the medium [16]. Finally, we study the statistics of
avalanches of the crackling signal V�(t) [18, 70, 77, 80]. The chapter concludes in
Sect. 12.5 with a recollection of the results presented and their interpretation. We
discuss also new promising research directions, particularly the study of avalanche
shapes.

12.2 Flows in Disordered Media: Basic Concepts

Flow in porous and fractured media occurs in geological, agricultural and industrial
processes of capital importance, including secondary oil recovery and underground
water flow. Fluid flow through disordered media is thus a central problem in the fields
of petrology, hydrology, and chemical engineering [21, 27, 84]. The complexity of
flows in disordered media arises from the heterogeneous structure of the media.
Relevant features encompass a very wide range of spatial scales, from pore-size
scales–1–50 nm–to field scales–which may extend over kilometers.

Darcy’s Law

Flow at pore scales is described by the classical hydrodynamic equations of motion,
supplemented with appropriate boundary conditions to take into account wetting
effects and capillary forces that are essential at this scale of description. A continuum
description on a coarse-grained (or Darcy) scale, above the scale of the disorder, is
obtained by proper averaging over a representative volume element of the pore space–
the minimal volume for which the properties of the porous medium and of the fluid
flow within it remain statistically similar everywhere [84]. Single-phase fluid flow
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at this scale is described by Darcy’s law, a phenomenological relation which can be
derived from Stokes equation by dimensional arguments and which plays a central
role in the equations of continuum mechanics of porous media. Darcy’s law states that
in every point of the flow the fluid velocity is proportional to the pressure gradient,
i.e. 〈q〉 = −(κ/μ) (∇p − ρg), where 〈q〉 is the average volume of fluid transported
per unit time per unit cross-section of the porous medium, κ is the average hydraulic
permeability (or simply the permeability) of the medium, μ is the dynamic viscosity
of the fluid, ρ its density, and g is Earth’s gravitational acceleration. In order to
describe the flow at the field scale, finally, large-scale heterogeneities in the physical
properties of the medium must be taken into account for a proper up-scaling.

Two-phase Flows

Many porous-media flows of interest involve the presence of an interface separating
two different phases. Important examples include the displacement of oil with water
in enhanced oil recovery, soil irrigation and ground-water contamination, printing
and coating, and filtering of chemicals and contaminants. In two-phase flows a fluid
originally residing in the disordered medium is displaced by a second, invading fluid.
If the fluids are immiscible, and precursor films of the wetting phase can be ignored,
there is a well defined (though eventually highly distorted) interface separating the
two fluids.

The dynamics of the invasion process depends essentially on two conditions. The
first one is the relative ability of the two fluids (displacing and displaced) to wet
the walls of the disordered medium (Fig. 12.1, left panel). If the invading fluid wets
preferentially the medium the displacement is favored by capillary forces, and is
called imbibition. Conversely, when the preferentially wetting fluid is the displaced
one capillary forces oppose the displacement of the menisci inside the pores. The
corresponding process–which plays a central role in hydrology–is called drainage.

Fig. 12.1 The left panel shows how wetting properties influence liquid-air displacements in cap-
illaries, by either favouring the invasion of the more wetting fluid (water), in imbibition, or hin-
dering the invasion of the less wetting fluid (mercury), in drainage. The right panel shows the
Saffman-Taylor instability that takes place when a less viscous fluid displaces a more viscous fluid
in a Hele-Shaw cell. The initially flat interface develops viscous fingers. These fingers undergo a
dynamic competition, leading finally to a wide, stationary single finger
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Table 12.1 Classification of two-phase displacements resulting from the relative wetting properties
and relative dynamic viscosities of the fluids involved

Invading fluid (μ) ⇒ Defending fluid (μ0) μ < μ0 μ > μ0

Less wetting ⇒ More wetting Unstable drainage Stable drainage

More wetting ⇒ Less wetting Unstable imbibition Stable imbibition

The second important condition is the stability of the interface separating the two
fluids. The displacement may be either stable or unstable, depending on the relative
viscosities of the fluids involved. The displacement is stable when the invading fluid
is more viscous than the defending fluid. Because of capillary pressure fluctuations
at the pore scale, the front at large scales is slightly irregular, but front disturbances
cannot grow because the viscous pressure gradient on the side of the invading fluid
is larger than on the side of the defending fluid. When the invading fluid is less
viscous than the defending fluid (e.g. when water displaces oil, as in Fig. 12.1, right
panel) the situation is just the opposite. Front disturbances of small amplitude become
amplified, and growing fingers of the invading fluid rapidly penetrate the defending
fluid, limiting the effectiveness of the displacement process [38, 83]. Table 12.1
summarizes the four types of two-phase displacements that emerge from this picture.

In the absence of gravitational forces (e.g. for horizontal displacements) the sta-
bility of the interface is controlled by the viscosity ratio μ/μ0 and by the capillary
number Ca–given by Ca = μv/σ when μ � μ0. The capillary number is a dimen-
sionless ratio of viscous to surface tension forces. Here μ is the dynamic viscosity
of the invading fluid, v is the average velocity of the invading front, and σ is the
interfacial tension between the two fluids.

Observations of two-phase fluid displacements in micromodels of porous media
confirm that Ca and μ/μ0 are the relevant controlling parameters [51, 52, 94]. In very
slow drainage, either stable or unstable, the less wetting fluid invades the available
channels in the sequential order dictated by the values of the capillary pressure jump
across the meniscus in each channel. This sequential invasion is well described by
the model of Invasion Percolation, and the resulting pattern is a self-similar fractal
[97, 98]. Unstable drainage at larger Ca results in a highly ramified pattern of invaded
pores, also a self-similar fractal but of smaller fractal dimension. Its morphology and
growth dynamics correspond to a process of Diffusion Limited Aggregation, which
describes the pattern formed by a growing unstable interface in an external field
that obeys Laplace’s equation [57, 64, 99]. Stable drainage displacements at larger
Ca, in contrast, produces compact patterns. Concerning imbibition displacements,
in which the invading fluid wets preferentially the medium, the invasion process is
complicated by the presence of precursor wetting films of the invading fluid. Fast
imbibition displacements lead to similar morphologies than fast drainage, because
the dynamic contact angle increases with Ca and makes the injected fluid to invade
the central part of the channels, as in drainage. But the outcome of slow imbibition
displacements depends essentially on the pore-to-channel aspect ratio. In this case
the presence of prewetting layers may render an interfacial description meaningless,
since the essential dynamics are ruled by prewetting [1, 52].
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Stable Imbibition Displacements

In this chapter we focus our attention on stable imbibitiondisplacements in disordered
media. Capillary-driven, spontaneous liquid invasion of a cookie dunked into a glass
of milk or of a paper towel in contact with water, and the rise of sap in plants, belong
to this type of two-phase fluid displacements. Imbibition has been less studied than
drainage. Compared to its unstable counterpart, stable imbibition is a more simple
process since viscous fingering is absent. Complications due to precursor wetting
films can be avoided by considering displacements in fully prewetted media.

In a two-dimensional disordered medium, local capillary-pressure fluctuations
and permeability variations (which play the role of quenched disorder) give rise to
local fluctuations in the front height h(x, t)–the position of the interface between
displacing and displaced fluids at lateral distance x and time t . In stable imbibition
those fluctuations are damped not only by the surface tension of the interface, on short
length scales, but also by the difference in fluid viscosity across the interface on larger
length scales through the Saffman-Taylor mechanism. This situation presents many
analogies with the generic problem of the motion of a slowly-driven elastic interface
in a random potential [30, 49]. For this reason stable imbibition displacements have
attracted a lot of interest also in nonequilibrium statistical physics. The question
is whether the morphology and dynamics of stable imbibition fronts in disordered
media can be described statistically in terms similar to other interfacial problems such
as fire fronts or rupture lines. In those systems the competition between stabilizing
and destabilizing (random) forces on different time and length scales leads to the
unbounded growth of correlations and to the emergence of scale–invariant asymptotic
properties [5, 30, 44]. The hope finally is that a universal description can be built in
terms of a few basic features.

Kinetic Roughening

In the presence of competing interactions at different length scales, an initially smooth
front undergoes a kinetic roughening process in which fluctuations grow in time due
to the progressive correlation of adjacent points [5]. In the 90’s, stable imbibition
displacements attracted a great deal of attention as a model system of kinetic rough-
ening. Results of experiments carried out in models of porous media consisting on
glass-bead packings or in paper showed that flat fronts evolved indeed into morpho-
logically rough, self-affine fractal objects [13, 36, 39, 40, 81]. The values of the
scaling exponents, however, appeared to differ from one system to another, making
difficult to classify stable imbibition displacements in porous media in a particular
universality class of interfacial growth. It was soon recognized that the origin of this
difficulty could be the essentially non-local character of the dynamics, which arises
from mass continuity [24–26, 32, 33, 36, 37, 43, 67].

The properties of the disorder were found also to have a clear impact on the kinetic
roughening of stable imbibition fronts. In glass-bead packings the transient regime
preceding the statistically-stationary state of saturated roughness was generally too
short to measure the exponent β that characterizes the temporal growth of interfacial
fluctuations. In order to make this regime longer, and specially to have better control
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of the disorder properties, we developed a new model of disordered medium that
mimicked an open fracture [90]. Details of the model will be given in Sect. 12.3.
Modifying the disorder properties of this model systematically in a controlled way
(in particular its persistency in the direction of the displacement) we showed that the
kinetic roughening of the front can exhibit ‘anomalous’ scaling, with local and global
scales following a different dynamics [91, 92]. This kind of ‘anomalous’ scaling
appears in interfacial problems in which the mean local slope of the front diverges
in time, introducing a new correlation length in the growth direction [55, 78]. More
recently it has been shown that in a nanoporous glass (Vycor), with highly elongated
pores, the motions of different menisci in the imbibition front are uncorrelated. This
leads to distinct scaling properties of the front roughness, because the stabilizing role
of surface tension is absent in this type of displacements [34, 82].

We refer the reader to the extensive review by Alava, Dubé and Rost for further
details on kinetic roughening in imbibition [1].

Driving Modes and Characteristic Length Scales

Stable imbibition displacements have been classified into spontaneous and forced.
Spontaneous imbibition occurs under the sole influence of capillary forces. Forced
imbibition, in contrast, involves capillary forces together with an externally imposed
flow rate or pressure difference. However, it is more relevant for our purposes to clas-
sify stable imbibition displacements in terms of the mode used to drive the invading
fluid into the medium–as defined by the boundary condition prescribed at the inlet.
Indeed, different boundary conditions lead to different dynamics.

In the first mode of driving the displacement is driven by a constant pressure dif-
ference between inlet and outlet. This is usually implemented by applying a constant
additional pressure at the inlet, e.g. by means of an auxiliary reservoir. Spontaneous
imbibition is a particular case that corresponds to zero pressure difference. In the
absence of gravity (for horizontal displacements) Darcy’s law implies that the average
position of the interface follows Washburn’s law, 〈h〉 ∼ √

t , so that Ca ∼ 1/
√
t and

the front slows down in time but never arrests (Fig. 12.2). This is only true however
when the fluid displaced can easily leave the disordered medium. Similarly inertial
effects, fluid evaporation, swelling of fibers in fibrous media, and several other com-
plications, can make actual displacements depart from simple Washburn behaviour.
A more complete discussion can be found in [1].

In the second driving mode the prescribed magnitude is the average velocity v of
the fluid at the inlet, e.g. by means of an external pump. The usual prescription is a
constant flow rate. The average position of the interface then is simply a (prescribed)
linear function of time, 〈h〉 ∼ t , and Ca is well defined and does not depend on
time. Experimental limitations associated with the smooth operation of fluid pumps
prevent approaching the interesting limit Ca → 0. It is important to mention that
this driving mode imposes a global constraint of mass conservation of the invading
fluid per unit time. This constraint introduces large scale correlations between local
velocities at distant points, which become increasingly important as the invading
front is progressively more distant from the inlet [1].



268 J. Ortín and S. Santucci

Fig. 12.2 Imbibition displacements driven by a constant pressure difference in a horizontal dis-
ordered Hele-Shaw cell. The left panel shows a series of fronts, h(x, t), recorded at equal time
intervals. The right panel shows the average front position, squared, versus time, for displace-
ments corresponding to different applied pressures. The displacements follow Washburn’s law,
〈h〉 = At1/2, quite accurately. The inset shows the dependence of Washburn’s law prefactor A
(squared) on applied pressure difference (in units of oil column height). Both panels are reproduced
from [92]

In either mode of driving, local fluid conservation (∇ · v = 0) and Darcy’s law (v ∼
∇ p) imply that the pressure field in the bulk of both the displacing and the displaced
fluid obeys Laplace’s equation, ∇2 p = 0. This is true for the undisturbed pressure
field in a homogeneous medium and for the average pressure field in a disordered
medium [67]. Motions of different parts of the imbibition front are thus coupled
through the pressure field in the bulk of the fluids, and the interfacial dynamics is
therefore intrinsically non-local–as mentioned earlier.

Indeed, several authors [1, 46, 67] have shown that fluid conservation introduces
a characteristic length scale in the problem, �c ∼ Ca−1/2, which defines the max-
imum lateral extent of correlated interfacial fluctuations. To understand the phys-
ical origin of this length scale, consider the displacement of air by a viscous oil
in a two-dimensional medium and suppose–as shown in Fig. 12.3–that a region of
the front of lateral extent � experiences a perturbation δh(x) = A cos(kx), where
k = 2π/�. In a quasistatic approximation the concomitant pressure jump across
the interface is linked to the local curvature through the Young–Laplace relation,
Δp 
 σ(∂2δh(x)/∂x2) 
 σ A/�2, where σ is the oil–air surface tension. This pres-
sure change makes that advanced segments of the front slow down. According to
Darcy’s law, on the other hand, the viscous pressure drop across the same distance
in the flow direction is Δp = (μ/κ)vA, where μ is the dynamic viscosity of the oil
and κ is the permeability of the medium. Comparing these two damping mechanisms
yields a lateral length scale for interfacial fluctuations:

�c =
√

κ

Ca
, (12.1)

where Ca = μv/σ is the capillary number.
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Fig. 12.3 Snapshot of a stable imbibition front (silicone oil displacing air) in a horizontal disordered
Hele-Shaw cell. See the text for details. The figure is reproduced from [15]

Starting from an initially smooth interface, lateral correlations between front
displacements grow in time up to the value �c; the interface reaches then a statistically-
stationary state of saturated roughness [1, 24, 85]. Notice that in imbibition displace-
ments driven at constant flow rate, �c can be tuned by changing either the imposed
flow rate or the fluid properties (viscosity or surface tension). Notice also that �c
diverges when Ca → 0, highlighting the importance of low capillary number exper-
iments. The consequences on the scaling properties of front roughness have been
extensively studied, both theoretically [1, 67] and experimentally [69, 90]. In this
chapter we review the consequences on the spatiotemporal dynamics of the imbibi-
tion fronts [17, 85]. The prediction is that correlations extend over larger distances as
Ca → 0, and diverge at Ca = 0 where collective fluid motion is expected to occur in
the form of critical avalanches spanning the whole system size. The precise condition
Ca = 0 defines thus a critical pinning-depinning transition, characterized by lateral
correlations of infinite extent and an infinite susceptibility of the system to front dis-
tortions in the thermodynamic limit. Even though this condition cannot be reached
experimentally, at least by simply tuning the injection rate to 0, we will show that the
presence of the critical point is already noticeable on the wide probability distribu-
tions of avalanche lateral extents, sizes and durations, and on the strong divergence of
their cutoffs as Ca → 0. The possibility of tuning the distance to criticality through
the capillary number makes stable imbibition displacements particularly interesting
in order to study complex spatiotemporal avalanche dynamics.

Front distortions are triggered by the heterogeneous, quenched structure of the
disordered medium. At low capillary numbers the dominant role is played by the
capillary pressure fluctuations across the interface. The interface moves slowly in
average, with localized bursts of activity which are directly coupled to the quenched
disorder. However, the fluid behind the interface feels also local fluctuations in the
hydraulic permeability of the medium. Fluctuations in the permeability are translated
into fluctuations of the advancing front by the pressure field in the fluid. We will show
in Sect. 12.4.1 that a second crossover length scale, given now by �× = √

κ/Ca,
separates front fluctuations induced by capillary disorder from those induced by per-
meability disorder. For slowly advancing fronts �× � �c, so that capillarity-induced
fluctuations prevail, and permeability noise and its possible correlations with capil-
lary disorder can be ignored [67].
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The effect of thermal fluctuations is considered negligible in front of the other
forces involved–except maybe right at the critical pinning point Ca = 0, a situation
that remains largely unexplored.

Anomalous Dynamics of Capillary Rise in Porous Media

The simplest realization of spontaneous imbibition is the capillary invasion of a
porous medium by a wetting fluid brought in contact with the medium outer surface.
To focus on the basic physics of the invasion process we consider a simple model
system where the displaced fluid has negligible viscosity (e.g. air) and the medium
is essentially homogeneous beyond the Darcy scale.

As discussed earlier, in the absence of gravity (for horizontal displacements) the
average position of the front as a function of time is well described by Washburn’s
law, 〈h〉 ∼ √

t . When gravity opposes capillary invasion (for inclined or vertical dis-
placements) a simple theory based also on Darcy’s law predicts a crossover between
Washburn behavior at early times and an exponential slowing down at late times that
would finally take the front to rest–in infinite time. The average position reached
asymptotically by the front is known as Jurin’s height. It is given by Δpc/(ρg sin ψ),
where Δpc is the average capillary-pressure jump at the liquid-air interface, ρ is the
liquid density and g sin ψ is the effective gravity. Traditionally this approach has been
considered an appropriate description of capillary rise in disordered media, since it
predicts the fast stages of invasion and the dramatic slowing down associated with
approaching Jurin’s height observed experimentally (see [53] for a recent overview).

Some years ago capillary rise in porous media was investigated for very long times
in vertical cylindrical columns packed with glass spheres [20, 45]. Washburn behavior
was indeed observed in the initial stages of invasion, followed by the predicted
exponential slowing down for a few minutes. When the front had practically come
to rest, however, the dynamics switched over unexpectedly into a motion in small-
amplitude jumps on the pore scale that went on for hours. The average position
followed a power law in time, rather than the predicted exponential dynamics, and
was not found to approach an equilibrium height asymptotically. These unexpected
observations did not find an explanation until Shikhmurzaev and Sprittles, in 2012,
proposed a different approach to capillary rise in disordered media [89]. Their theory
considers different modes of motion that menisci go through on the pore scale, in the
framework of a hydrodynamic description at Darcy’s scale. Three main modes are
considered: a wetting mode, which describes the motion of the contact line on the
pore scale driven by capillary forces, essentially in the Washburn regime, with a shape
practically unchanged but with a velocity-dependent contact angle. A thresholdmode,
which describes the local pinning of the contact line upon reaching a pore, followed
by the deformation of the meniscus until the contact angle reaches a critical value
at which the contact line can resume its motion. The third mode, called subcritical
depinning, introduces a new mechanism of motion. On the pore scale there are
pressure fluctuations, due to the mutual influence of menisci that are in different
modes of motion at one given moment. These fluctuations are unimportant when the
local pressure is capable of pushing the meniscus through the threshold mode. But
when this is not the case the front remains locally pinned, so that the effectiveness of
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the fluctuations grows in time until, finally, the interface may depin subcritically due
to random fluctuations. This mode of motion, responsible for the long-time behavior
of capillary invasion, is associated with avalanches of the invading menisci that had
been indeed observed experimentally in the long-time regime of capillary rise. The
two first modes alone reproduce the essential features of the short-time dynamics.
Jurin’s height, however, is attained in finite time and depends only on the threshold
value of the contact angle. Remarkably the third mode of motion is able to reproduce
very accurately the power-law long-time dynamics, and also to capture the observed
behavior for disordered media of different porosities. The theory predicts also that
capillary rise eventually comes to a halt at very long times–but these fall beyond the
range of available measurements.

12.3 Experimental Setting: A Model Open Fracture

Laboratory models designed to study imbibition displacements from a statistical
physics perspective are idealizations of actual disordered (porous and fractured)
media. They try to capture the relevant effects of the heterogeneous structure of the
medium in some form of quenched disorder [3, 23]. Often they adopt a quasi-two-
dimensional geometry in the form of Hele-Shaw cells, formed by two parallel glass
plates with a very narrow gap in between. Hele-Shaw cells have the advantage of
providing visual access to the local front dynamics while granting also–because of
the small gap thickness–that fluid flow in the bulk is governed by Darcy’s law. Exper-
iments have addressed the imbibition of a fluid by a Hele-Shaw cell with wettability
defects [28, 65, 66], random packings of glass-beads [22, 87], or randomly-varying
gap thickness [70, 85].

The experiments that will be discussed in the remainder of this chapter belong
to the last case. They emulate the stable invasion of an open fracture by a wet-
ting, viscous fluid. The model open fracture is a horizontal Hele-Shaw (HS) cell
with a two-valued gap thickness that fluctuates randomly in the plane of the cell. A
sketch is shown in Fig. 12.4. The model consists of two parallel, large glass plates
(190 × 500 mm2), separated by a much smaller distance. Dichotomic variations in
gap spacing, between b = 0.46 mm and b − Δb = 0.40 mm, are provided by a fiber-
glass plate with controlled topography placed on top of the bottom glass plate. The
topography consists of copper patches of size 0.4 × 0.4 mm2 and height Δb = 0.06
mm. These patches are randomly distributed in a square grid, occupying 35 % of
the surface. Adjacent patches form islands of disorder. The lateral sizes of disorder
islands are exponentially distributed, with a characteristic length �d = 0.6 mm. The
invading liquid (silicone oil) is injected through the medium either at constant flow
rate, by means of a syringe pump connected to the inlet, or at constant pressure, by
means of an external reservoir, as shown in Fig. 12.5. The oil injected at one end
(inlet) displaces the air initially present and forces it to leave the cell at the opposite
end (outlet) which is open to the atmosphere. The lateral edges of the cell are sealed,
so that the oil flows in the y direction only.
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Fig. 12.4 Sketch of our model open fracture. It consists of two horizontal, parallel glass plates (G)
and a disorder fiber-glass plate (FG). Squared copper patches (Cu) of lateral sizes 0.4 × 0.4 mm2

which occupy 35 % of the surface of the FG plate are randomly distributed on a square grid. The
region of interest (ROI) defines the lateral system size L = 136 mm. The figure is reproduced from
[15].

The medium mimics an open fracture that features a two-dimensional non-zero
aperture field, distributed along a plane. The randomness along the fracture plane
makes it more complex than the simple parallel plate model of an open fracture.
Although the two-level geometry is different from the geometry measured on nat-
ural fractures, which combines a continuously varying aperture field and statistically
well-defined random in-plane and out-of-plane spatial correlations, the simplicity of
the two-level geometry facilitates theoretical analysis. Indeed, a precise analytical
description of the stochastic contributions to the linearized interfacial growth equa-
tion that arise in our specific setup from gap randomness along the fracture plane
was recently reported [67]. It will be briefly reviewed in Sect. 12.4.

Flow in a horizontal and smooth Hele-Shaw cell is described by a gap-averaged,
two-dimensional velocity field v(x, y) which locally obeys Darcy’s law, i.e. v(x, y) =
−(κ/μ)∇p, where the hydraulic permeability in the absence of disorder is given by
κ = b2/12 andμ is the dynamic viscosity of the fluid. A locally variable gap thickness
modifies the hydraulic permeability of the cell. For the two-valued gap thickness of
our cell the permeability follows the empirical relation [90]:

κ = b2

12

(
1 − 0.55

Δb

b

)2

, (12.2)

and we get for the present setup κ 
 0.015 mm2.
Silicone oils have the advantage of being available in a wide range of viscosities,

with nearly identical oil-air surface tension. We have used silicone oils of dynamic
viscosities μ = 10, 50, 100, 169 and 350 cP at room temperature, density ρ 
 1000
kg/m3, and surface tension σ 
 21 mN/m. Silicone oils fully wet–with zero static
contact angle–all surfaces present in the model: glass, copper and fiberglass. To over-
come the formation of precursor wetting films in the course of the displacements we
prewet the cell with a thin oil layer on each plate before carrying out the experiments.
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Fig. 12.5 Experimental setups for the two possible driving modes. The setup in the top panel
is used in constant-pressure-driven displacements, while the setup in the bottom panel is used in
displacements at constant flow rate. The figure is reproduced from [15]

All the results discussed in the next section correspond to unidirectional displace-
ments in the y direction at constant flow rate. The invading fluid flows in the free gap
between the two plates of the cell. The volume of fluid injected per unit time is con-
stant, but the average velocity of the invading front (over the cell width, L) fluctuates
in time because the gap thickness of the cell is not spatially uniform. Mean front
velocities fall in the range 0.04 < v < 0.6 mm/s, so that we explore a wide range of
capillary numbers, 6 × 10−5 < Ca < 2 × 10−3, which correspond to nominal lateral
correlation lengths 2.6 < �c < 15.3 mm. Experimental limitations prevent carrying
out displacements at arbitrarily small flow rates. Combining the smallest accessible
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v and μ we are able to reach a largest �c of about 12 % of the lateral system size
[17]. In order to have accurate enough statistics, each experiment is repeated 15 to
20 times with several disorder realizations.

The advancement of the oil-air front is recorded from above using a high-speed
and high-resolution camera. In each experiment an initially flat front propagates
for about 150 mm in the y-direction of the cell, to make sure that it has reached a
statistically-stationary state of saturated roughness. Next, image recording starts and
imbibition fronts are monitored within a measurement window (ROI) centered with
the cell. The ROI has lateral size L = 136 mm to avoid boundary effects produced
by the side walls, and it extends typically 25 to 45 mm in the propagation direction
y. The spatial resolution is r = 0.106 mm/pixel, so that each square patch of the
disorder is covered by more than 4 pixels in either x or y directions. Once the spatial
resolution is chosen, the image acquisition rate (up to 200 frames/s) is adjusted to
make sure that the front locally advances one pixel at most between consecutive
images. Numerical data corresponding to consecutive positions of the front, h(x, t),

Fig. 12.6 Spatio-temporal maps v(x, t) of the local velocities of imbibition fronts, for three different
experiments with various imposed flow rates v and dynamic viscosities of the silicone oils μ, and
thus different capillary numbers Ca of the flow. The vertical (solid) and horizontal (dashed) lines
represent the extent of the spatial and temporal correlations respectively
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are obtained by applying an edge-tracking algorithm on the recorded frames. An
example has been shown in Fig. 12.3.

Our study is based on the analysis of the local waiting times of the front. This
method of analysis was originally developed to study the dynamics of interfacial
cracks [58]. It consists on counting, for all pixels (x, y) within the ROI (recorded
image), the number of consecutive images in which the front is found in that pixel,
and derive from this number the amount of time, wt (x, y = h(x, t)), spent by the
front in that position. From this matrix, a map of local velocities can be computed
as v(x, y) = r/wt (x, y), where r (spatial resolution) is the linear size of one pixel.
Each local velocity determined in this way is the mean value of the local front
velocity at the pixel resolution. Combining the information contained in the map of
local velocities with the front profiles y = h(x, t) provides a map of spatio-temporal
activity, v(x, h(x, t)). Examples of the latter will be shown in Fig. 12.6.

12.4 Dynamics of Slow Imbibition Displacements
in Our Model Open Fracture

12.4.1 Theoretical Framework

The fact that we are dealing with stable two-phase displacements makes that local
deviations of the invading front from its mean position can be considered small
compared to their lateral extent. In this approximation, an interfacial equation for
the dynamics of the front height, h(x, t), can be derived along the lines of the linear
stability analysis of Saffman and Taylor for the viscous fingering problem [83],
assuming that the displacing fluid (oil) is much more viscous than the displaced fluid
(air), i.e. μ � μ0. The temporal growth of h̃(k)–the Fourier mode of the front height
of wavenumber k–is given by:

1

v

∂ h̃(k)

∂t
= δ(k) − |k|h̃(k) − κ

σ

μv
|k|k2h̃(k) + quenched-noise terms. (12.3)

Kronecker’s delta, present only in constant flow-rate displacements, accounts for the
condition of global mass conservation per unit time. The deterministic part of the
equation (the two explicit terms in the right-hand-side, both of them negative) account
for viscous damping and surface-tension damping, respectively. Viscous damping
(proportional to |k|) is dominant at small k (perturbations of long wavelength), while
surface-tension damping (proportional to |k|k2) is dominant at large k (perturbations
of short wavelength). These two forces cross over at kc = [(μv/σ)/κ]1/2, which cor-
responds to the lateral length scale �c = (κ/Ca)1/2 introduced earlier. The presence
of absolute values of k indicates that the front dynamics is non-local, a consequence
of the laplacian character of the unperturbed pressure field in the bulk of the invading
fluid, as discussed earlier. Instead of a differential equation, non-locality leads to an
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integro-differential equation for the deterministic dynamics of h(x, t) in real space.
This makes the theoretical description of the dynamics of stable imbibition fronts
substantially more complex than most other problems of slowly-driven interfaces
[24, 32, 37, 67].

The destabilization of the front is due to forces resulting from the internal struc-
ture of the disordered medium. These are included generically in the third term
of the right-hand-side of the equation, in the form of quenched-noise terms. Ther-
mal fluctuations are considered comparatively negligible, so that time-dependence
is expected to enter only through the interface position h(x, t). In 2003 Pauné and
Casademunt derived the precise form of these quenched-noise terms for the specific
case of stable imbibition displacements in a horizontal Hele-Shaw cell with fluctu-
ating gap thickness–a setup inspired by our model open fracture [67]. In their work
however the variable gap thickness is assumed to vary smoothly in space, |∇b| � 1.
It takes the form b2(x, y) = b2

0[1 + ζ(x, y)], where ζ(x, y) is a random variable of
zero mean and b0 is the mean gap thickness. The authors note that fluctuations in
gap thickness–a single source of randomness–give rise simultaneously to the three
basic physical effects of a porous matrix on the interface motion: local variations of
capillary pressure, of permeability, and of available volume. Hence, different (but not
independent) quenched-noise terms in (12.3) are generated by those distinct physical
mechanisms. First a non–local, conserved (area-preserving) noise term of the form:

− b0

12

σ

μv
|k|ζ̃ (k), (12.4)

where ζ̃ (k) is the Fourier transform of ζ(x, h(x)). This noise term, known as capillary
disorder, results from capillary-pressure fluctuations. Gap thickness fluctuations give
rise also to local permeability variations. Combined with fluid volume conservation,
permeability variations produce a second noise term, local and nonconserved, of the
form:

− 1

2
ζ̃ (k). (12.5)

This second noise term is called permeability disorder. Equating these two quenched-
noise terms leads to a second crossover length (between conserved and nonconserved
noise) in imbibition displacements, that we introduced earlier: �× = b0/(6 Ca). It
gives an estimation of the lateral length scale above which fluctuations in the medium
permeability contribute also–together with capillary pressure fluctuations–to the
destabilization of the invading front. In very slow displacements, such as the ones
considered in the remaining of this chapter, �× � L > �c and permeability disorder
can be disregarded in front of capillary disorder. This defines the so-called capillary
regime. The importance of permeability disorder, however, has been observed exper-
imentally in pressure-driven imbibition displacements [69]. Finally, fluctuations in
available volume give rise to a long-ranged correlated disorder, Ω̃LR(k, t). In con-
trast to our earlier expectations, this noise term enters effectively as an annealed
(explicitly time-dependent) noise, with:
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〈Ω̃LR(k, t)Ω̃LR(k ′, t ′)〉 = Δ

2π
|k|δ(k + k ′)e−|k|v|t−t ′|, (12.6)

where Δ is given by 〈ζ(x, y)ζ(x ′, y′)〉 = Δδ(x − x ′)δ(y − y′), since ζ is effectively
white above the microscopic correlation length of the quenched disorder. Hence
Ω̃LR scales as |k|1/2 and introduces long-range memory. Numerical computations,
however, show that this nonlocal part of the bulk noise can also be neglected in the
capillary regime [67].

The relative importance of the destabilizing forces, therefore, is controlled by the
capillary number of the displacement, Ca ∼ μv. We have �c ∼ 1/

√
Ca and �× ∼

1/Ca. In our setup, the capillary regime (�× � L > �c) corresponds to capillary
numbers in the range from 6 × 10−5 (the lowest Ca accessible) to about 6 × 10−4. In
this range 15 < �c < 5 mm, and 1325 < �× < 125 mm, respectively. Above Ca =
6 × 10−4 the dynamics is in a mixed regime in which both capillary and permeability
disorder are relevant [72].

12.4.2 Localized Burst Dynamics

Spatio-temporal Correlated Activity Maps

The spatio-temporal field of local velocities v(x, t) computed from v(x, h(x, t)) con-
stitutes a convenient representation of the local activity in the course of the imbibition
process. Examples of such local activity maps for experiments performed at differ-
ent imposed flow rates v and dynamic viscosities of the invading fluid μ–and thus
different capillary numbers within the capillary regime of the flow–are shown in
Fig. 12.6. The figure reveals clearly that the invasion process of our disordered cell is
highly fluctuating both spatially and temporally. In all cases regions of low velocities
alternate with regions of high velocities (above v), spanning a wide range of tempo-
ral and length scales. We observe that the amplitude of the velocity fluctuations are
larger at lower viscosities (bottom and middle maps correspond to experiments at
similar flow rates v, but viscosities μ = 10 cP and μ = 50 cP respectively) and also
at smaller flow rates (top and middle maps correspond to experiments with the same
invading fluid of viscosity μ = 50 cP but forced to invade the cell at v = 36µm/s
and v = 227µm/s, respectively).

We performed a detailed quantitative analysis of the spatio-temporal correla-
tions of the local velocities v(x, t). First of all, we could show that local veloci-
ties are indeed correlated along the fronts–in the x direction–up to the scale �c at
which viscous forces overcome surface tension in damping the interfacial fluctuations
[17, 85]. Moreover, we could also show that the amplitude of the local velocity fluc-
tuations is controlled as well by the capillary number, since experiments performed
in very different conditions–with very different (μ, v)–but similar Ca present the
same statistical distribution of local velocities P(v/〈v〉) [17]. However, analyzing
the autocorrelation of the signal v(x, t) in time, Cv(Δt), we could show that the
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Fig. 12.7 Maximum anticorrelation time Δt∗, extracted from the autocorrelation of the signal
v(x, t) in time, as a function of the capillary number Ca. Dashed and dotted lines are guides to
the eye proportional to v−1.4 and μ−0.4, respectively. Open symbols correspond to experiments
performed at v = 0.13 mm/s. Reproduced from [17]

temporal correlations of the imbibition fronts during the cell invasion are not simply
controlled by the capillary number [17, 85]. Indeed, we could observe thatCv decays
as the time lag Δt increases, until it reaches a minimum value below zero (maximum
anticorrelation) at Δt∗, before becoming uncorrelated (Cv → 0) at larger time lags.
Figure 12.7 displays the evolution of Δt∗ for all experimental conditions explored as
a function of the capillary number Ca ∼ μv. It makes clear that velocity and viscosity
do not play the same role in controlling Δt∗. The temporal correlations of the local
front velocities depend more strongly on v than on μ. The dashed line goes through
experiments performed at different v but same μ and is proportional to a power law
v−1.4. Experiments at the same v but different μ correspond to the dotted line, that
goes as μ−0.4. This difference can actually be noticed directly on the activity maps
shown in Fig. 12.6, by comparing the top and bottom panels for instance. The capil-
lary numbers of those two experiments are rather close, around 10−4, leading indeed
to spatial correlations of similar length, around 12 mm. The correlated clusters of
fast motion, however, last much longer for the experiment performed at lower flow
rate, shown in the top panel (Δt∗ 
 35 s). Therefore, by changing μ and v indepen-
dently we showed that the imbibition front dynamics is not simply controlled by the
capillary number Ca ∼ μv.

High Velocity Clusters

Spatio-temporal correlations lead to a burst dynamics, clearly apparent on the spatio-
temporal maps shown in Fig. 12.6. In order to study the statistical properties of
correlated clusters of fast motion, we turn our attention to the spatial map of local
velocities v(x, y). We define local avalanches as spatially-connected clusters of
local velocities v(x, y) higher than an arbitrary threshold vc. For example, in the
bottom panel of Fig. 12.8 we show the spatial distribution of clusters obtained from
a thresholded map v(x, y) > c〈v〉, with c = 1.5.

First of all, it is important to notice that avalanches do not arise trivially from
the medium heterogeneities. While, as discussed in Sect. 12.3, the lateral sizes
of the disorder patches are exponentially distributed with a characteristic extent
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Fig. 12.8 Top Map of waiting time fluctuations obtained by the superposition of 10,000 inter-
faces for an experiment driven at v = 0.134 mm/s with μ = 50 cP. Bottom Corresponding spatial
distribution of velocity clusters for velocities v(x, y) > c〈v〉, with c = 1.5. Reproduced from [85]

�d 
 0.6 mm, high velocity clusters are power-law distributed–in size A, lateral
extensions Lx , Ly , and duration D–with exponentially decaying cut-offs. The mea-
sured power-law exponents appear robust, since they do not evolve within a wide
range of velocity thresholds, imposed flow rates, and viscosities of the invading
fluid, and therefore are independent of the capillary number Ca. The values of the
exponents are αA = 1.09 ± 0.08 for cluster sizes and αD = 1.03 ± 0.10 for cluster
durations.

We could verify moreover that the various statistical distributions follow scaling
relations expected close to a depinning transition: local avalanches have a self-affine
anisotropic shape, Ly ∼ LH

x , with a local roughness exponent H 
 0.8; and their
lateral extent and size scale with their duration as Lx ∼ D1/zav , with a dynamic
exponent zav = 1.1 ± 0.1, and A ∼ Dγav , where γav = (1 + H)/zav = 1.8 ± 0.1.

On the other hand, the exponential cut-offs of the various power-law distribu-
tions that characterize avalanche properties diverge as the imposed flow rate and the
viscosity are reduced, and thus as Ca → 0. We could actually show that the maxi-
mum extent of the local avalanches along x scales as ξLx ∼ �c ∼ 1/

√
Ca. Thus, we

could also verify that their maximum size follows ξA ∼ ξLx ξLy ∼ ξ 1+H
Lx

∼ Ca(1+H)/2.
Finally their maximum duration behaves as ξD ∼ ξLy/v ∼ �H

c /v ∼ μ−H/2v−(1+H/2).
These scaling relations correspond to the spatio-temporal correlations observed and
measured on the activity maps of the displacements–as shown in Fig. 12.7 for the
temporal correlations.

It is important to mention that the scale-invariant properties of the localized high-
velocity bursts, which seem to belong to the realm of a critical depinning transition at
Ca = 0, differ significantly from those obtained in phase-field simulations [56, 75].
Such discrepancy may be due to the fact that we could not reach experimentally the
critical point at Ca = 0, where a different set of values of the scaling exponents can
be expected. Nevertheless, it should be remarked also that the quenched disorder field
introduced in phase-field simulations of imbibition displacements, to model capillary
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pressure fluctuations, has been so far considered to follow a Gaussian distribution
with a correlation length limited to the underlying lattice spacing. This is in contrast
with our experiments, where single disorder patches alone have a linear extension of
0.4 mm and disorder islands formed by several patches have a characteristic extension
of several pixels, �d 
 0.6 mm, introducing thus a microscopic correlation length of
the quenched disorder.

12.4.3 Dynamics of Global Avalanches

In the previous subsection we discussed the avalanche dynamics of imbibition fronts
based on measurements of the interfacial velocity at the local scale of our spa-
tial resolution. It is important to underline that often this local information is not
accessible in crackling-noise systems, where a global–spatially averaged–quantity
is analyzed instead. Trying to find coarse-grained equivalent descriptions of highly
heterogeneous phenomena is widespread in various contexts in physics. In particular,
a common theoretical approach to study porous media flows consists in developing
volume-averaging or homogenization procedures, aimed at obtaining effective flow
behavior at large scale from the up-scaling of phenomena at microscopic scales [96].
Consequently it seems worthwhile to study how the various observables character-
izing stable imbibition dynamics evolve with the scale of observation.

We have analyzed the influence of the two controlling parameters of our
experiments–the dynamic viscosity of the invading fluid, μ, and the mean veloc-
ity associated to the imposed flow rate, v–on the statistical properties of the global
velocity at scale �. This global velocity, V�, is the spatial average of v(x, t) (the
spatio-temporal map of local front velocities) over a window of lateral size �:
V�(t) = (1/�)

∫
�
v(x, t)dx . The length scale � could be varied in a wide range, from

the spatial resolution of the images up to the width L of the measurement region.
Due to the large fluctuations of the local front velocity, and its spatial and temporal

correlations, the global velocity signals V�(t) present very strong fluctuations, which
evolve systematically with the parameters μ, v and �, even though the imposed flow
rate is constant in our experiments. Indeed, Fig. 12.9 shows typical examples of
these time series measured at the largest scale of observation � = L , corresponding
to the three experiments of Fig. 12.6. In all three cases V�(t) is a jerky signal that
strongly fluctuates around its mean value. The amplitude of the fluctuations is larger
for lower capillary numbers (i.e. lower μ or v). Obviously this is also the case when
the measuring window size � is reduced. In the following we analyze the statistical
properties of these fluctuating time series.

Statistical Distributions of Global Velocities V�(t)

As described earlier the local velocities v(x, t) are spatially correlated along the imbi-
bition front, up to the characteristic scale �c = √

κ/Ca. Therefore V�(t)–the average
of this spatially-correlated signal–is expected to display non-Gaussian fluctuations.
A large number of studies in various contexts not related to imbibition have shown
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Fig. 12.9 Examples of the temporal evolution of the global velocities of the front, V�(t), spatially-
averaged over the lateral size of the region of interest � = L , for the same three experiments shown
in Fig. 12.6. The horizontal dotted lines show the imposed mean velocity at the inlet, v

that the fluctuations of global quantities in correlated systems–such as the power
consumption in a turbulent flow [73], the magnetization of an XY Ising model [11]
or the director orientation of a liquid crystal close to the critical Fréedericksz tran-
sition [42]–may be well described by generalized Gumbel (GG) distributions when
the correlation length is comparable to the size of the measuring region. The GG
distributions display an asymmetric non-Gaussian shape with a large exponential
tail:

Pa(Y ) = aaba
Γ (a)

exp
{−a

[
ba(Y + sa) + e−ba(Y+sa)

]}
, (12.7)

with ba = √
ψ1(a)/σY and sa = 〈Y 〉 + (

ln a − ψ0(a)
)
/ba , where Γ (a) is the

gamma function and ψm(a) = dm+1 ln Γ (a)/dam+1 is the polygamma function of
order m. Considering a normalized variable Y (so that the first two moments of the
distribution are 〈Y 〉 = 0 and σY = 1), the only free parameter left to fix the shape of
the GG distribution is a, related to its skewness by Sk = 〈Y 3〉 ∼ 1/

√
a.
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Fig. 12.10 Distributions of
the normalized fluctuations
of the global velocity,
Y = (V� − 〈V�〉) /σV�

, for
various values of �/�c. Top
panels show P(Y ) for all the
experiments with different
(μ, v) compatible with
�/�c = 10, 2, 1, and 0.5.
Distributions for each
experiment separately, and
for data sets containing data
from all experiments, are
shown. Solid lines
correspond to generalized
Gumbel distributions with
the value of the skewness Sk
of the experimental
distributions. The bottom
panel displays P(Y ) for data
sets containing data from all
experiments compatible with
�/�c from 0.5 to 20.
Dashed-dotted lines in all
plots represent a normal
distribution. Reproduced
from [15]

We could indeed confirm these observations in our imbibition experiments [18,
70]. Figure 12.10 displays the statistical distributions of the normalized global veloc-
ity fluctuationsY = (V� − 〈V�〉)/σV�

, where 〈V�〉 is the temporal average of the signal
over the duration of the experiment and σV�

its standard deviation. The different pan-
els show the probability distributions obtained from various experiments performed
with very different values of (μ, v), grouped by a common value of �/�c. All dis-
tributions remarkably collapse, and compare very well with GG distributions of the
same skewness. Moreover, the skewness Sk (and thus the non-Gaussian statistics
of the global velocity fluctuations V�(t)) increases systematically as the measuring
length scale � decreases towards the correlation length �c–determined by the cap-
illary number of the displacement and the permeability of the medium. Hence the
ratio �/�c seems to control the amplitude of the temporal fluctuations of the global
front velocity V�(t). Physically it can be interpreted as the number of statistically-
independent domains of the interface, Neff = �/�c. The theoretical reasons for the
ubiquitous occurrence of GG fluctuations in correlated systems, however, are still
being investigated [8, 12].
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A Turbulent-like Dynamics

In the studies briefly reviewed above we just considered the statistical properties
of the amplitude of V�(t)–the global (spatially averaged) velocity of the front–at
different length scales [70, 71]. More recently we have conducted also a multi-scale
analysis of the temporal correlations of this temporal signal [16]. The study is based
on the multi-fractal formalism proposed by Parisi and Frisch [31] to characterize the
intermittent behavior of velocity signals measured in hydrodynamic turbulence. It
consists in analyzing the statistical properties of the velocity increments ΔV�(τ ) =
V�(t + τ) − V�(t) at different time scales τ .

Figure 12.11 shows the distributions of the normalized velocity increments Y =
(ΔV� − 〈ΔV�〉) /σ for increasing time lags τ . 〈ΔV�〉 stands for the ensemble average
of ΔV� and σ for its standard deviation. These results were obtained for a given set of
experimental conditions, v = 0.053 mm/s and μ = 50 cP, with a measuring window
� = L/8 = 17 mm (
 1.6 �c). They constitute a typical example of the temporal
evolution of the distributions of velocity increments. We observe that the shape of
these distributions progressively evolves through the temporal scales τ , from being
heavy-tailed at short τ towards being nearly Gaussian at longer time lags. Such
behavior unveils that the dynamics of the invading front is highly intermittent, with
complex temporal correlations on short time intervals.

Analyzing the evolution of the structure functions that characterize the distribu-
tions of velocity increments for different viscosities of the invading fluid, different
velocities at the inlet, and different length scales �, we were able to identify the
parameters controlling the observed intermittent dynamics [16]. Indeed, Fig. 12.12
shows the normalized statistical distributions of spatially-averaged velocity incre-
ments ΔV�(τ ) obtained under various experimental conditions (μ, v), but measured
at length scales � and time lags τ such that the ratios �/�c and τ/τc are both fixed. The
data collapse shows that the distributions of velocity increments depend specifically
on those two parameters only. The characteristic time τc sets the temporal range over
which intermittency is observed, while the ratio �/�c controls its intensity. The char-
acteristic time follows accurately the relation τc = �d/v, and thus can be identified

Fig. 12.11 Semi-log plot of
P(Y ) versus
Y = (ΔV� − 〈ΔV�〉)/σ for
increasing time lags τ ,
shifted vertically for visual
clarity. The dashed curve
represents a Gaussian
distribution. The experiments
were carried out at v = 0.053
mm/s and μ = 50 cP, and
analyzed at � = L/8 = 17
mm. The figure is
reproduced from [16]
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Fig. 12.12 Distributions of ΔV�(τ ) for very different experimental conditions, with v between
0.036 and 0.55 mm/s and μ between 10 and 350 cP, collapsed for fixed (�/�c, τ/τc). Different
distributions are shifted arbitrarily for visual clarity. The figure is reproduced from [16]

with the average time spent by the fluid front to advance over the typical extent �d
of a disorder island in the cell.

In summary, we could demonstrate that slow imbibition displacements in our
model disordered medium exhibit all the characteristic features of an intermittent
dynamics. Such intermittent–turbulent-like–dynamics results from the local clusters
of fast cooperative motion, triggered at the smallest length scales of the medium
heterogeneities and distributed up to the correlation length �c. More work is still
required, however, to understand the origin of the positive asymmetry of the dis-
tributions of velocity increments observed in our experiments, and also to verify
the specific role of the medium heterogeneities of the medium by changing their
properties systematically.

Global Avalanches

The large positive fluctuations of the global velocity V�(t) studied previously cor-
respond actually to global avalanches. Those excursions of V�(t) above an arbitrary
threshold Vc (usually chosen equal to the imposed mean velocity at the inlet v) have
a size S and duration T defined by the area enclosed and the time elapsed between
two consecutive threshold-crossings of the signal V�(t), as defined in Fig. 12.13.

We characterized the scaling behavior of these global avalanches in [18, 70]. We
could show that their size and duration both follow power-law distributions, with
power-law exponents α and τ respectively, and exponentially decaying cut-offs.
Figure 12.14 displays the statistical distributions of sizes and durations in terms of
the reduced variables S′ = S/〈S〉1/(2−α) and T ′ = T/〈T 〉1/(2−τ), respectively. The
distributions were obtained from many experiments performed in various different
conditions, with the only constraint that the scale � at which the global velocity V�

was measured was larger than �c. The data collapse allows to measure accurate values
of the power-law exponents, as explained in [71, 76]. We obtained α = 0.96 ± 0.05
for avalanche sizes and τ = 1.15 ± 0.15 for their duration. Using the values of these
two exponents, moreover, we could properly characterize the scaling behavior of the
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Fig. 12.13 The main panel shows an example of the global velocity signal for � = L , clipped by
its average value. The inset is a single avalanche, of size S and duration T

Fig. 12.14 Data collapse of the probability distributions of sizes (top) and durations (bottom) of the
global avalanches, for experiments analyzed at � > �c. Thirty-four different data sets with various
(μ, v, �) are considered. Different symbols correspond to different viscosities. The best fits to a
power law with an exponential cutoff are achieved with α = 0.96 and τ = 1.15 (solid lines). Insets:
evolution of the cutoff values of P(S) with �/�c (top) and the cutoff values of P(T ) with the
imposed inlet velocity v (bottom). In the latter case the global avalanches were analyzed from time
series V�(t) measured at a scale � = 2 �c. Solid lines are guides to the eye. Reproduced from [15]
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Fig. 12.15 Isolines of the joint distributions P(S′, T ′), where S′ = S/〈S〉1/(2−α) and T ′ =
T/〈T 〉1/(2−τ), showing that S′ ∝ T ′γ , for experiments performed at various imposed flow rates
but similar viscosities μ = 50 cP and analyzed at the largest length scale � = L . A fit gives the
value γ = 1.33 ± 0.12. Reproduced from [71]

joint distribution of sizes and durations, as shown in Fig. 12.15. The maximum of the
distribution followed S′ ∝ T ′γ , with γ = 1.33 ± 0.12 for experiments performed at
various inlet velocities, with an oil of viscosity μ = 50 cP, analyzed at the largest
length scale � = L .

Interestingly, in contrast with the scaling behavior of the localized high velocity
clusters discussed in Sect. 12.4.2, the values of the scaling exponents of the global
avalanches reported here are in good agreement with the ones obtained from phase–
field simulations [74, 80]. This result underlines the fact that the avalanche dynam-
ics of stable imbibition fronts is different at small and large scales. This is clearly
demonstrated by the different values of γ and γav, the exponents characterizing the
scaling behavior of the joint distributions of sizes and durations of global and local
avalanches respectively. The difference is also evident in the way that the cutoffs of
P(S) and P(T ) (size and duration distributions of the global avalanches) depend
on the controlling parameters of the displacements, which is not the same than for
the local velocity clusters. As observed in the insets of Fig. 12.14, the cutoff of the
distributions of global avalanche sizes, ξS , depends on �/�c ∼ �

√
μv, and the cutoff

of global avalanche durations depends only on the mean velocity of the interface as
ξT ∼ 1/v. The latter could correspond to the characteristic time τc introduced in the
previous section, which measured the average time spent by the fluid front to advance
over the typical extent �d of the disorder islands. However more experimental work
is needed, again, to change the properties of the disorder in our model fracture in
order to confirm the previous results.

Finally, we could show that the scaling exponent γ slightly evolves also with �/�c
[18]. This result makes us suspect that the scaling exponents and the scaling range
of the size and duration distributions of global avalanches might depend slightly on
the size of the measuring window, �.
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12.5 Conclusions and Perspectives

We have considered a very simple realization of a two-phase fluid displacement in
a disordered medium: the slow and stable imbibition of a viscous wetting fluid in
a model open fracture. Already in such a simple situation, the interplay between
stabilizing and destabilizing forces at different length and time scales leads to very
rich and complex dynamics, which exhibits spatial and temporal scale-invariance,
anomalous fluctuations, and intermittency.

With the setup presented here, the motion of the invading fronts can be mon-
itored with very high spatial and temporal resolution. Our studies show that the
displacements take place with strongly correlated local velocities, both in the
lateral direction along the advancing front and in the direction of propagation.
Spatio-temporal correlations lead to localized velocity bursts, or avalanches, whose
scale-invariant properties–with sizes and durations power-law distributed over wide
ranges of values–arise from the proximity to a critical depinning transition at Ca = 0.

Avalanche properties (sizes and durations) can be defined and measured for local
bursts of activity (local avalanches), and also for the jerky signal V�(t) which is
obtained from the local activity by taking its spatial average in a window of lateral
size �. This temporal signal plays the role of a crackling noise in our system. The
jerky advancement of the average position of the front is obviously a consequence
of the local burst dynamics, with several clusters of large velocities–correlated or
not–occurring at the same time but at different positions along the front. In contrast
with the case of fracture fronts [47], however, a theoretical framework linking these
different scales of description is still lacking in imbibition.

Part of the difficulty in establishing this link for displacements driven at constant
flow rate might lie in the presence of large-scale velocity correlations, induced by
the condition of global mass conservation (per unit time) of the fluid that is being
forced to invade the cell. This condition, which is not present in other problems of
slowly-driven interfaces, introduces correlations over scales much larger than �c, and
it is expected to become increasingly important as the distance of the front to the
inlet (where the displacing fluid is injected) increases [1].

A new set of experiments recently performed with fluids of different viscosities
has led us to disclose the distinct effect of the imposed flow rate and the dynamic
viscosity of the invading fluid on the dynamics of the imbibition process [17, 18].
Spatial properties in the lateral direction (x) are seen to depend only on the capillary
number Ca. Indeed, lateral correlations of local velocities are controlled by the char-
acteristic length that arises from local mass conservation, �c ∼ Ca−1/2 ∼ (μv)−1/2.
Also the amplitude of the fluctuations of the global velocity on scale �, V�(t), and
their strongly non-gaussian distribution, are both controlled by Ca through the ratio
�/�c, which accounts for the effective number of degrees of freedom of the invading
front. In contrast, temporal properties of the avalanche dynamics, measured either
at local or at global scale, do not depend simply on the capillary number. On one
hand we measured strong temporal correlations of the local front velocities up to
a characteristic time Δt∗ ∼ μ−0.4v−1.4, which corresponds to the scaling behavior
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of the maximum duration of the local bursts, ξD ∼ �H
c /v ∼ μ−H/2v−(1+H/2). On the

other hand we showed that the global invasion process exhibits a strongly intermittent
dynamics, with temporal correlations and a maximum duration of global avalanches
both set by a characteristic time scale that depends only on v, in the form τc ∼ 1/v.
The proportionality coefficient is compatible with �d , the characteristic extent of the
disorder in the invasion direction, but this parameter has not been changed system-
atically in our experiments so far.

In order to verify carefully the possible dependence on the size of the measuring
window � of the scaling exponents and the scaling range of sizes and durations of the
global avalanches, and to get a better understanding of this evolution, we are currently
analyzing the scaling behavior of the average shape of the global avalanches–as
recently done in the context of interfacial crack fronts [48]. Such analysis will allow
us to go beyond the simple measurement of power-law exponents, subjected to large
dispersions and error bars [63].

In future experiments we plan to modify systematically different properties of the
disorder, such as the extension, height and shape of the defects, the cell coverage
and their spatial distribution, in order to study their impact on the morphology and
dynamics of stable imbibition fronts at different scales. For instance, the fact that
local velocity bursts in our setup propagate nearly balistically, i.e. Lx ∼ D1/zav with
zav = 1.10 ± 0.12 [17], while a value zav close to 1.6 was found in phase-field
simulations of the same kind of displacements [75], might come from the non-
negligible microscopic correlation length of the disorder in the experiments.

It seems interesting also to perform in detail a comparative study of the dynamics
in model open fractures and in porous media models such as Hele-Shaw cells with
glass-bead packings. In this latter type of setting, Dougherty and Carle found that the
sizes of local avalanches followed an exponential distribution, with a characteristic
size corresponding to the typical pore size [22]. Their results are in strong contrast
with our observations in open fractures, and also with the results expected for slowly-
driven elastic interfaces in disordered media close to a critical depinning transition.
The question is whether spatial correlations between local front velocities cannot
grow beyond the size of the pores in a disordered porous medium.

Because of their relevance for specific applications, further advances in the study
of imbibition displacements are taking place in more complicated settings. Examples
include imbibition in nanoporous matrices with specific correlations of pore structure
[34, 82], in arrays of micropillars [9] and in carbon nanotubes [93], miscible displace-
ments in aqueous foams [59], and imbibition displacements of chemically-reacting
fronts [2].
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