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Preface

This book is designed to provide beginning graduate stu-
dents and advanced undergraduates with a rigorous and accessible foundation
in the principles of probability and mathematical statistics underlying statis-
tical inference in the fields of business and economics. The book assumes no
prior knowledge of probability or statistics and effectively builds the subject
“from the ground up.” Students who complete their studies of the topics in
this text will have acquired the necessary background to achieve a mature and
enduring understanding of statistical and econometric methods of inference
‘and will be well equipped to read and comprehend graduate-level economet-
rics texts. Additionally, this text serves as an effective bridge to more advanced
study of both mathematical statistics and econometric theory and methods.
The book will also be of interest to researchers who desire a decidedly business
and economics-oriented treatment of the subject in terms of its topics, depth,
breadth, examples, and problems.

Without the unifying foundations that come with training in probability
and mathematical statistics, students in statistics and econometrics classes too
often perceive the subject matter as a potpourri of formulae and techniques
applied to a collection of special cases. The details of the cases and their solu-
tions quickly fade for those who do not understand the reasons for using the
procedures they attempt to apply. Many institutions now recognize the need for
a more rigorous study of probability and the mathematical statistics principles
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in order to prepare students for a higher level and a longer lasting understanding
of the statistical techniques employed in the fields of business and economics.
Furthermore, quantitative analysis in these fields has progressed to the point
where a deeper understanding of the principles of probability and statistics is
now virtually necessary for one to read and contribute successfully to quanti-
tative research in economics and business. Contemporary students themselves
know this and need little convincing from advisors that substantial statistical
training must be acquired in order to compete successfully with their peers and
to become effective researchers. Despite these observations, there are very few
rigorous books on probability and mathematical statistics foundations that are
also written with the needs of business and economics student in mind.

This book is the culmination of 15 years of teaching graduate level statis-
tics and econometrics classes for students who are beginning graduate programs
in business (primarily finance, marketing, accounting, and decision sciences),
economics, and agricultural economics. When I originally took on the teach-
ing assignment in this area, I cycled through a number of very good texts in
mathematical statistics searching for an appropriate exposition for beginning
graduate students. With the help of my students, I ultimately realized that the
available textbook presentations were optimizing the wrong objective func-
tions for our purposes! Some books were too elementary, other presentations
did not cover multivariate topics in sufficient detail, and proofs of important
results were omitted occasionally because they were “obvious” or “clear” or
“beyond the scope of the text.” In most cases they were neither obvious nor
clear to students, and in many cases, useful and accessible proofs of the most
important results can and should be provided at this level of instruction. Suf-
ficient asymptotic theory was often lacking and/or tersely developed. At the
extreme, material was presented in a sterile mathematical context at a level
that was inaccessible to most beginning graduate students while nonetheless
leaving notable gaps in topic coverage of particular interest to business and eco-
nomics students. I then began to teach the course from lecture notes that I had
created and iteratively refined them as I interacted with scores of students who
provided me with feedback regarding what was working—and what wasn’t—
with regard to topics, proofs, problems, and exposition. I am deeply indebted
to the hundreds of students who persevered through, and contributed to, the
many revisions and continual sophistication of my notes. Their influence has
had a substantial impact on the text: It is a time-tested and class-tested prod-
uct. Other students at a similar stage of development should find it honest,
accessible, and informative.

Instructors attempting to teach a rigorous course in mathematical statistics
soon learn that the typical new graduate student in economics and business is
thoroughly intelligent, but often lacks the sophisticated mathematical training
that facilitates understanding and assimilation of the mathematical concepts
involved in mathematical statistics. My experience has been that these stu-
dents can understand and become functional with sophisticated concepts in
mathematical statistics if their backgrounds are respected and the material
is presented carefully and thoroughly, using a realistic level of mathematics.
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Furthermore, it has been my experience that most students are actually eager
to see proofs of propositions, as opposed to merely accepting statements on
faith, so long as the proofs do not insult the integrity of the nonmathemati-
cian. Additionally, students almost always remark that the understanding and
the long-term memory of a stated result is enhanced by first having worked
through a formal proof of a proposition, and then working through examples
and problems that require the result to be applied.

With the preceding observations in mind, the prerequisites for the book
include only the usual introductory college-level courses in basic calculus (in-
cluding univariate integration and differentiation, partial differentiation, and
multivariate integration of the iterated integral type) and basic matrix algebra.
The text is largely self-contained for students with this preparation. A signifi-
cant effort has been made to present proofs in ways that are accessible. Care has
been taken to choose methods and types of proofs that exercise and extend the
learning process regarding statistical results and concepts learned prior to the
introduction of the proof. A generous number of examples are presented with
a substantial amount of detail to illustrate the application of major theories,
concepts, and methods. The problems at the end of the chapters are chosen
to provide an additional perspective to the learning process. The majority of
the problems are word problems designed to challenge the reader to become
adept at what is generally the most difficult hurdle—translating descriptions
of statistical problems arising in business and economic settings into a form
that lends itself to solutions based on mathematical statistics principles. I have
also warned students through the use of asterisks (*) when a proof, concept, ex-
ample, or problem may be stretching the bounds of the prerequisites so as not
to frustrate the otherwise diligent reader, and to indicate when the help of the
instructor or additional readings may be useful.

The book is designed to be versatile. The course that inspired this book is
a 4-credit, semester-long, intensive mathematical statistics foundation course.
I do not lecture on all of the topics contained in the book in the 50 contact
hours available in the semester. The topics that I do not cover are taught in the
first half of a subsequent semester-long 3-credit course in statistics and econo-
metric methods. I have tended to treat chapters 1 through 4 in detail, and I
recommend that this material be thoroughly understood before venturing into
the statistical inference portion of the book. Thereafter, the choice of topics
is flexible. For example, the instructor can control the depth at which asymp-
totic theory is taught by her choice of whether the starred topics in chapter 5
are discussed. While random sampling, empirical distribution functions, and
sample moments should be covered in chapter 6, the instructor has leeway in
the degree of emphasis that she places on other topics in the chapter. Point
estimation and hypothesis testing topics can then be mixed and matched with
a minimal amount of back-referencing between the respective chapters.

Distinguishing features of this book include the care with which topics
are introduced, motivated, and built upon one another; use of the appropriate
level of mathematics; the generous level of detail provided in the proofs; and a
familiar business and economics context for examples and problems. This text
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1.1

Introduction

Elements of Probability
Theory

Introduction

Experiment, Sample Space, Outcome, and Event
Nonaxiomatic Probability Definitions
Axiomatic Definition of Probability

Some Probability Theorems

A Digression on Events

Conditional Probability

Independence

Bayes’s Rule
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The objective of this chapter is to define a quantitative
measure of either the level of certainty (or uncertainty) associated with observ-
ing various outcomes of a chance situation, or the degree of belief in a stated
proposition. The quantitative measure, called probability, is relevant for quan-
tifying such things as how likely it is that a shipment of transistors contains
less than 5 percent defectives, that a gambler will win a crap game, that next

‘year’s corn yields will exceed 80 bushels per acre, or that electricity demand

in Los Angeles will exceed generating capacity on a given day. The probability
concept will also be relevant for quantifying an individual’s degree of belief in
such propositions as it will rain tomorrow, Congress will raise taxes next year,
and the United States will suffer another oil embargo in the coming year.

The value of such a quantitative measure of uncertainty or degree of belief
for decision making in business, economics, government, and everyday life is
substantial. In the absence of such a measure, all one can effectively say when
faced with a chance situation whose outcome is unknown or with a proposition
whose validity is unknown is, “I don’t know what will happen” or “I don’t know
whether the proposition is true or false.” A rational decision maker will most
definitely prefer to narrow the uncertainty of a chance situation’s outcome or a
proposition’s validity in any decision making context in which profits, utility,
and/or welfare are affected. Indeed, the problem of increasing profit, utility,
or welfare through appropriate choices of production and inventory levels and
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scheduling, product pricing, advertising effort, trade policy, tax strategy, input
or commodity purchases, technology adoption, and/or capital investment is
substantially more difficult when the results of one’s choice are affected by
factors that are simply unknown.

Probability is a tool for distinguishing likely from unlikely outcomes or
states of affairs and provides business managers, economists, legislators, and
consumers with information that can be used to rank the potential results of
their decisions in terms of likelihood of occurrence. It then becomes possible
to make choices that maximize the likelihood of a desired outcome, provide a
high likelihood of avoiding disastrous outcomes, or achieve a desirable expected
result (where “expected” will be rigorously defined in Chapter 2).

Four basic definitions have been involved in the development of proba-
bility theory: classical probability, relative frequency probability, subjective
probability, and the axiomatic approach to the definition of probability. We
briefly discuss the first three approaches and then concentrate on the modern
axiomatic approach. We will see that in the modern mathematical theory, prob-
abilities are values of set functions which have special properties that satisfy
the requirements of certain probability axioms.

Prior to our excursion into the realm of probability theory, it is helpful to ex-
amine how the terms “experiment,” “sample space,” “outcome,” and “event”
will be used in our discussion. The next section provides the necessary infor-
mation.

1.2 Experiment, Sample Space, Outcome, and Event

Definition 1.1
Sample space

The term experiment is used very generally in the field of statistics to refer to
any activity for which the outcome or final state of affairs cannot be specified
in advance, but for which a set containing all potential outcomes or final states
of affairs can be identified. Thus, determining the yield per acre of a new type
of wheat, observing the quantity of a commodity sold during a promotional
campaign, identifying the fat percentage of a hundredweight of raw farm milk,
observing tomorrow’s closing price of gold on the London exchange, or analyz-
ing the underlying income elasticity affecting the demand for gasoline are all
examples of experiments according to our usage of the term.

The final result, observation, or measurement from the experiment is re-
ferred to as the outcome of the experiment. Thus, referring to the above ex-
amples of experiments, 80 bushels per acre, 2,500 units sold during a week of
promotions, 3.7 percent fat per hundredweight, $440 per ounce, and .25 are,
respectively, possible outcomes.

Prior to analyzing probabilities of outcomes of an experiment, it is neces-
sary to identify what outcomes are possible. This leads to the definition of the
sample space of an experiment.

A set that contains all possible outcomes of a given experiment.
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Note that our definition of sample space does not necessarily identify a
unique set since we require only that the sample space contain all possible
outcomes of an experiment. In many cases, the set of all possible outcomes
will be readily identifiable and not subject to controversy, and in these cases it
will be natural to refer to this set as the sample space. For example, the exper-
iment of rolling a die and observing the number of dots facing up has a sample
space that can be rather uncontroversially specified as {1, 2, 3, 4, 5, 6}. However,
defining the collection of possible outcomes of an experiment may also require
some careful deliberation. For instance, in our example of measuring the fat
percentage of a given hundredweight of raw farm milk, it is clear that the out-
comes must reside in the set A = {x : 0 < x < 100}. However, the accuracy of
our measuring device might only allow us to observe differences in fat percent-
ages up to hundredths of a percent, and thus a smaller set containing all possi-
ble measurable fat percentages might be specified as B = {x : x = (.Ol)n,n =
0,1,2,...,10,000}, where B c A.It might be argued further that fat percentages
of greater than 20 percent and less than 1 percent will not occur in raw farm
milk, and thus the smallerset C = {x : x = (.01)n,n = 100, 101, 102, ..., 2, 000},
where C C B C A could represent the sample space of the fat-measuring ex-
periment. Fortunately, as the reader will come to recognize, the only concern
of practical importance is that the sample space be specified large enough to
contain the set of all possible outcomes of the experiment as a subset. The
sample space need not be identically equal to the set of all possible outcomes.
The reader may wish to suggest appropriate sample spaces for the remaining
four example experiments described above.

We will use the capital letter S to refer to sample space in the remainder of
our study. Consistent with set theory terminology, each outcome in a sample
space is called an element (or member) of the sample space. Elements of sample
spaces are also sometimes called sample points. The sample space, as all sets,
can be classified according to whether the number of elements in the set is
finite, countably infinite, or uncountably infinite. It is customary to refer to
a sample space that is finite or countably infinite as a discrete sample space.
An uncountably infinite sample space that consists of a continuum of points,
such as all of the points on an interval of the real line or all of the points in a
rectangle, is often referred to as a continuous sample space.

The fundamental entities to which probabilities will be assigned are subsets
of the sample space called events.

Definition 1.2

Event An event is a subset of the sample space.

Thus, events are collections of outcomes of an experiment.! In the special case
where the event consists of a single element or outcome, we will use the special

IFor now, we will act as if every subset of a sample space is an event. A technical problem arises when we deal with uncountably
infinite sample spaces, such that certain complicated sets will not be considered events because it will be impossible to assign
probability to them in a consistent manner. We will investigate this technical problem in Section 1.6. As a practical matter, all sets
to which the reader would be interested in assigning probability will be events.
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Example 1.1

Example 1.2

term elementary event to refer to the event. We say that the event A has oc-
curred if the experiment results in an outcome that is an element of the set
A. The real-world meaning of the statement “the occurrence of event A” will
be provided by the real-world definition of the set A. That is, verbal or mathe-
matical statements that are utilized in the verbal or mathematical method of
defining set A, or the collection of elements or description of elements placed in
brackets in the exhaustive listing method of defining set A, provide the mean-
ing of “the occurrence of event A.” The following examples will illustrate the
meaning of both “event” and the “occurrence of an event.”

An experiment consists of rolling a die and observing the number of dots facing
up. The sample space is defined to be S = {1, 2, 3, 4, 5, 6}. Examine two subsets
of S: Ay ={1,2,3}, Ay = {2, 4, 6).

Event A; has occurred if the outcome, x, of the experiment (the number
of dots facing up) is such that x € A;. Then A, is an event whose occurrence
means that after a roll the number of dots facing up on the die is three or less.

Event A, has occurred if the outcome, x, is such that x € A;. Then Aj isan
event whose occurrence means that the number of dots facing up on the die is
an even number. O

An experiment consists of observing the percentage of a large group of con-
sumers, representing a consumer taste panel, that prefer Schpitz beer to its
closest competitor, Nickelob beer. The sample space for the experiment is spec-
ified as S = {x : 0 < x < 100}. Examine two subsets of S : A; = {x : x < 50},
Ay ={x:x> 75}

Event A, has occurred if the outcome, x, of the experiment (the actual
percentage of the consumer panel preferring Schpitz beer) is such that x €
A;. Then A is an event whose occurrence means that less than 50 percent of
the consumers preferred Schpitz to Nickelob or, in other words, the group of
consumers preferring Schpitz were in the minority. Event A, has occurred if
the outcome x € A,. Then A, is an event whose occurrence means that greater
than 75 percent of the consumers preferred Schpitz to Nickelob. O

Examples 1.1 and 1.2 can be used to illustrate the concept of mutually
exclusive or disjoint events. The concept is identical to the concept of mutually
exclusive or disjoint sets. In Ex. 1.1, it is recognized that events A, and A, are
not mutually exclusive events, since A} N Ay = {2} # @. Events that are not
mutually exclusive can occur simultaneously. Events A, and A, will occur
simultaneously (which cannot be the case for mutually exclusive events) only
ifx e AjNAy = (2}. In Ex. 1.2, events A; and A, are mutually exclusive events
since A; N A, = . Events A and A, cannot occur simultaneously since if the
outcome is such that x € A, then it follows that x ¢ A,, or if x € A,, then it
follows that x ¢ A;.

We should emphasize that in applications it is the researcher who specifies
which events are of interest; i.e., the researcher defines the subsets of the sam-
ple space whose occurrence or lack thereof provides useful information from
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the researcher’s viewpoint. Thus, referring to Ex. 1.2, if the researcher were em-
ployed by Schpitz Brewery, the identification of which beer was preferred by a
majority of the participants in a taste comparison would appear to be of signif-
icant interest in a report to the management of the brewery, and thus event A,
would be of great importance. Event A, in that example might be considered
important if the advertising department of Schpitz Brewery wished to utilize
an advertising slogan such as “Schpitz beer is preferred to Nickelob by more
than 3 to 1.”

1.3 Nonaxiomatic Probability Definitions

Definition 1.3
Classical probability

Example 1.3

There are three major nonaxiomatic definitions of probability that have been
suggested in the course of the development of probability theory. The defini-
tions seek to identify a quantitative measure of the likelihood of occurrence,
or degrees of belief in, the various events associated with an experiment. We
briefly discuss each of these alternative probability definitions. In the definition
below, N|-] is the size-of-set function (see Def. A.21).

Let S be the finite sample space for an experiment having N(S) equally likely
outcomes, and let A C S be an event containing N|A) elements. Then the
probability of the event A, denoted by P(A), is given by P(A) = N{A)/N(S).

In the classical definition, probabilities are images of sets generated by a
set function, P, having as its domain the collection of all subsets of a finite
(and thus discrete) sample space and having a range that is contained in the real
interval [0,1]. The following example illustrates the application of the classical
probability concept.

Reexamine the die-rolling experiment of Ex. 1.1. We assume that the die is
fair so that the outcomes in the sample space S = {1,2,3,4,5, 6} are equally
likely. The number of elements in the sample space is given by N(S) = 6. Let
E;,i=1,...,6, represent the elementary events in the set S. Then according to
the classical probability definition, P(E;) = N(E;}/N(S) = 1/6 foralli=1,...,6,
so that the probability of each elementary event is 1/6. Referring to events A;
and A, of Ex. 1.1, note that

N4, 3 1 N(4;) 3 1

N~z ond Pl=gEr=g=3

Therefore, the probability of rolling a three or less and the probability of rolling
an even number are both 1/2. Note finally that P(S) = N[S)/N(S) = 6/6 = 1,
which states that the probability of the event that the outcome of the experi-
ment is an element of the sample space is 1, as it intuitively should be if the
number 1 is to be associated with an event that will occur with certainty. O

P(A,) =



6 Chapter 1 Elements of Probability Theory

The classical definition has two major limitations that preclude its use
as the foundation on which to build a general theory of probability. First, the
sample space must be finite or else N{S) = oo and possibly N{A} = co. Thus
probability in the classical sense is not useful for defining the probabilities of
events contained in a countably infinite or uncountably infinite sample space.
Another limitation of the classical definition is that outcomes of an experiment
must be equally likely. Thus, for example, if we are engaged in a coin-tossing
experiment and it cannot be assumed that the coin is fair, then the classical
probability definition provides us with no information as to how probabilities
should be defined. In order to relax these restrictions, we examine the relative
frequency approach.

Definiti . . . .
R elati:eltr’:'lea“::::; 4 Let n be the number of times that an experiment is repeatedly performed
pr ol?abilgf under identical conditions. Let A be an event in the sample space S, and

define ny to be the number of times in n repetitions of the experiment that
the event A occurs. Then the probability of the event A is given by the limit
of the relative frequency nu/n, as

Pl4) = lim 24,

It is recognized that in the relative frequency definition, the probability of
an event A is the image of A generated by a set function P, where the image is
defined as the limiting fraction of the total number of outcomes of the sequence
of experiments that are observed to be members of the set A (for a rigorous
definition of limits, see Section 5.2). It is clear that the range of the set function
must be contained in [0, 1] since 0 < ng < n. The following example illustrates
the application of the relative frequency concept of probability.

Example 1.4 Consider the following collection of coin-tossing experiments, where a coin
was tossed various numbers of times and, following the prescription in the
relative frequency definition of probability, the fraction of the tosses resulting
in heads was recorded for each collection of experiments.?

No.of Tosses  No. of Heads  Relative Frequency

100 48 .4800
500 259 .5180
1,000 489 .4890
5,000 2,509 .5018
75,000 37,447 4993

2These experiments were actually performed by the author, except the author did not actually flip coins to obtain the results listed
here. Rather, the coin flips were simulated by the computer. In the coming chapters, the reader will come to understand exactly
how the computer might be used to simulate the coin-flipping experiment, and how to simulate other experiments as well.
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Definition 1.5
Subjective probability

It would appear that as n — oo, the observed relative frequency of heads is
approaching 0.5. O

The relative frequency definition enjoys some advantages over the classical
definition. For one, the sample space can be an infinite set, since the ability to
form the relative frequency ns/n does not depend on the underlying sample
space’s being finite. Also, there is no need to assume that outcomes are equally
likely, since the concept of lim,_, na/n representing the limiting fraction of
outcomes of the experiments that are members of set A does not depend on the
outcomes’ being equally likely.

Unfortunately, there are problems with the relative frequency definition
that reduce its appeal as a foundation for the development of a general theory
of probability. First of all, while it is an empirical fact that for many types
of experiments, such as the coin-tossing experiment in Ex. 1.4, the relative
frequencies tend to stabilize as n increases, how do we know that na/n will
actually converge to a limit in all cases? Indeed, how could we ever observe
the limiting value if an infinite number of repetitions of the experiment are
required? Furthermore, even if there is convergence to a limiting value in one
sequence of experiments, how do we know that convergence to the same value
will occur in another sequence of the experiments? Lacking a definitive an-
swer to these conceptual queries, we refrain from using the relative frequency
definition as the foundation for the probability concept.

A third approach to defining probability involves personal opinion, judg-
ments, or educated guesses and is called subjective probability.

The subjective probability of an event A is a real number, P(A}, in the in-
terval [0, 1], chosen to express the degree of personal belief in the likelihood
of occurrence or validity of event A, the number 1 being associated with
certainty.

Like the preceding definitions of probability, subjective probabilities can be
viewed as images of set functions. Note that the subjective probability assigned
to an event can obviously vary depending on who is assigning the probabilities
and depending on the personal beliefs of the individual assigning the probabili-
ties. Even supposing that two individuals possess exactly the same information
regarding the characteristics of an experiment, the way in which each individ-
ual interprets the information may result in differing probability assignments
to an event A.

Unlike the relative frequency approach, subjective probabilities can be de-
fined for experiments that cannot be repeated. For example, one might be as-
signing probability to the proposition that a war in the Middle East will break
out during the year 2000. Defining the probability of the event “war in the
year 2000” does not conveniently fit into the relative frequency definition of
probability since one can only observe the outcome of war or peace in the year
2000 once. In addition, the classical definition would not apply unless war and
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peace were equally likely a priori. Similarly, assigning probability to the event
that one or the other team will win in a Superbowl game is commonly done
in various ways by many individuals, and a considerable amount of betting
is based on those probability assignments. However, the particular Superbowl
“experiment” cannot be repeated, nor is there usually any a priori reason to
suspect that the outcomes are equally likely so that neither relative frequency
nor classical definitions apply.

In certain problem contexts the assignment of probabilities solely on the
basis of personal beliefs may be considered undesirable. For example, if an indi-
vidual is betting on some game of chance, that individual would prefer to know
the “true” likelihood of the game’s various outcomes and not rely merely on his
or her personal perceptions. For example, after inspecting a penny, suppose you
consider the coin to be fair and (subjectively) assign a probability of 1/2 to each
of the outcomes “heads” and “tails.” However, should the penny have been
supplied by a ruthless gambler who has altered the penny in such a way that an
outcome of heads is twice as likely to occur as tails, the gambler could induce
you to bet in such a way that you would lose money in the long run if you ad-
hered to your initial subjective probability assignments—the game would not
be “fair.” (Explain how you could be induced into betting in a way that makes
you a loser in the long run.)

Given that “objective” (classical, relative frequency approaches) and sub-
jective probability concepts might both be useful, depending on the problem
situation, we seek a probability theory that is general enough to accommodate
all of the concepts of probability discussed heretofore. Such an accommodation
can be achieved by defining probability in axiomatic terms.

1.4 Axiomatic Definition of Probability

Our objective is to devise a quantitative measure of the likelihood of occur-
rence of, or the degree of belief in, various events contained in a sample space.
How should one go about defining such a measure? A useful approach is to de-
fine the measure by stating mathematical properties that we feel our measure
should possess. If the properties imposed on the measure are straightforwardly
acceptable or appear clearly useful in devising our means of measurement, and
if the assumptions are not contradictory, we could collect these properties into
a set of axioms (see the definition in Section A.2) on which to build the theory
of probability.

Note, as an aside, that the approach of using a set of axioms as the foun-
dation for a body of theory should be familiar to students of business and
economics. For example, the theory of the consumer is founded on a set of
behavioral assumptions, i.e., a set of axioms. The reader might recall that the
axioms of comparability, transitivity, and continuity of preferences are suffi-
cient for the existence of a utility function, the maximization of which, subject
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to an income constraint, depicts consumption behavior in the neoclassical the-
ory.3

What mathematical properties should our measure possess? First of all, it
seems useful for our measure to be in the form of a real-valued set function,
since this would allow probabilities of events to be stated in terms of real
numbers. Thus, we begin with a set function, say P, which has as its domain
all of the events in a sample space, S, and has as its range a set of real numbers,
i.e.,, wehave P: ¥ — R, where T is the set of all events in S. The set T is called
the event space.

Definition 1.6

Event space The set of all events in the sample space S is called the event space.

We have in mind that the images of events under P will be probabilities of the
events, i.e, P|A) will be the probability of the event A € Y. Now, what type of
properties seem appropriate to impose on the real-valued set function P?
Reviewing the three definitions of probability presented in Section 1.3, it
is recognized that in each case, probability was defined to be a nonnegative
number. Since at this point we are completely free to choose the properties we
desire of our measure, and since each of the previous nonaxiomatic definitions
of probability possesses some intuitive appeal as measures of the likelihood
of occurrence or degree of belief in an event (despite our recognition of some
conceptual difficulties), let us agree that our measure should be nonnegative
valued. By doing so, we will have defined the first axiom to which our measure
must adhere while remaining consistent with all of our previous probability
definitions. Since we decided that our measure would be generated by a set
function, P, our assumption requires that our set function be such that the
image of any event A, P(A}, be a nonnegative number. Our first axiom is thus

Axiom 1.1 For any event A C S, P[A) > 0.

Now that we have committed ourselves to a measure that is nonnegative,
what nonnegative number should our measure associate with the certain event,
52 Again we are free to choose the property we desire of our measure. However,
there are some advantages to choosing the number 1 to denote the likelihood
of, or the degree of belief in, the certain event. First, it is consistent with all of
our nonaxiomatic definitions of probability discussed earlier. Second, it allows

3See G. Debreu [1959), “Theory of Value: An Axiomatic Analysis of Economic Equilibrium.” Cowles Monograph 17. New York:
John Wiley, pp. 60-63. Note that additional axioms are generally included that are not needed for the existence of a utility function
per se but that lead to a simplification of the consumer maximization problem. See L. Phlips (1983), Applied Consumption Analysis.
New York: North-Holland, pp. 8-11.

4By definition, since S contains all possible outcomes of the experiment, the event S is then certain to occur.



10

Chapter 1

Elements of Probability Theory

Axiom 1.2

the probability of any event A C § to be directly interpreted as indicating a
proportion of certainty. That is, if we assume that our set function is such that
P(S) = 1, and if P{A) = k, say, then the measure of event A relative to the
measure of the certain event S is P{A)/P(S) = k/1 = k, so that P(A) = kP(S), and
thus the event A is assigned a proportion, X, of certainty. Our second axiom is
then

P(S)=1.

Dwelling on the value of k in the preceding discussion for a moment, it
is clear that what we intuitively had in mind for the value of k was a number
k € [0, 1]. Our intuitive reasoning would be that if S is the certain event, then
the occurrence of A C S surely cannot be “more than certain.” That is, unless
A = §, there are sample points in S that are not in A (i.e., S — A # #). Thus,
while the event S will always occur, A may or may not, and thus surely A is
no more certain to occur than S. This line of reasoning then suggests that our
measure must be such that P{[A) < 1. However, we can proceed further and
extend this argument. If A and B are any two events such that A c B, then we
would require that P{A) < P(B), since every element of A is also in B, but B
may contain sample points that are not in A, and thus A can surely be no more
likely to occur than B.

We would all agree that if our measure is to quantify meaningfully the
degree of belief in, or the likelihood of, an event, it must possess the property
suggested in the argument above. We are thus tempted to add to our collection
another axiom that states “if A c B, then P(A} < P(B).” Before doing this,
however, let us investigate the argument still further. If indeed A c B, and thus
P(B) > P(A), then to what should we ascribe the remaining portion, P[B) — P(A),
of the probability of event B? An intuitively obvious answer comes to mind.
The set B — A represents the collection of elements remaining in the set B
after we remove the elements in B that are contained in the set A. Since A and
B — A are mutually exclusive, and since B = A U (B — A), the event B is thus
partitioned® into two subsets. Represented this way, B can occur iff either A
or (B — A) occurs. If P(B) > P(A), the added probability, P(B) — P(A), of event B
occurring compared to event A must be due to the probability of the occurrence
of event B — A. Thus, it is logical to attribute the increment in the probability
measure, P(B) — P|A), to the event B — A.

Then our measure should have the property that for events A and B for
which A c B, P(B) = P[A)+ P[B— A). Note that since P([B—A) > 0 by Axiom 1.1,
this implies our previous requirement that if A ¢ B, P(B) > P(A). However, we
have discovered much more than just another way of stating a potential third
axiom. We have actually found that for any two mutually exclusive events A,
and A,, our measure should have the property that P[A; U Ay) = P(A;) + P(A,).

5 A partition of a set B is a collection of disjoint subsets of B, say {B;, i € I}, such that B = Uj¢B;.
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Lemma 1.1
Mathematical
Induction Principle

To see this, define the set B = A; U Ay, where AN A, = 0. Then B—-A; =
([AjUAy) — A; = Aj because A; and A, are mutually exclusive. Since we have
argued that P(B) = P(A,} + P{B — A,), substituting A, for (B — A;) then yields
P(A1UA,) = P(A,)+ P{A,). Thus, we have demonstrated that probability should
be additive across any two disjoint events.

The preceding additivity argument can be easily extended to three or more
disjoint events. To motivate the extension, first examine the case of three dis-
joint events, Ay, Ay, and A3. Note that the two events A;UA, and A3 are disjoint
events, since

([AJjUA)N A3 =[A1NA3JU(A2NA3) =000 =0

because A;NA; = @ fori # jby the disjointness of A;, Ay, and Az. Then, applying
our probability additivity result for the case of two disjoint events results in

P(A} UAy UA3) = Pl[A1 U Ay} + P(A3).

But since A; and A, are disjoint, P{A, U A3) = P[A;} + P(A;), so that by substi-
tution for P(A, U A,y),

P(Ay UAy UA3) = P(A1) + PlA2) + P(A3),

and we have the implication that probability is additive across any three dis-
joint events. Recognizing the sequential logic of the extension of probability
additivity from two to three disjoint events, the reader can no doubt visual-
ize the repetition of the argument ad infinitum to establish that probability
should be additive across an arbitrary number of disjoint events. A concise,
formal way of establishing the extension is through the use of mathematical
induction, which we will now review.

The process of mathematical induction is a method for proving the valid-
ity of each proposition in a sequence of propositions. Implementation of the
method begins with establishing the validity of the first proposition, P;, in
the sequence. Then an argument is constructed to demonstrate that if the kth
proposition in the sequence were true, where the symbol k represents an un-
specified, arbitrary positive integer, then the [k + 1)th proposition is necessarily
true, i.e., Py is a sufficient condition for P,,,. It is recognized that the latter
argument establishes a chain of sequential truths, where the truth of every
proposition Py, i = 1,2,... follows from the truth of P;. Since in the method
the truth of P; is established, the truth of P;, j = 2,3, ... is thus demonstrated.

Let P, Py, P3, ... be a sequence of propositions. Each of the propositions in
the sequence is true provided

a. P; is true, and

b. for an arbitrary positive integer k, if P, were true, it would necessarily
follow that Py, is true.
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Returning to our probability additivity argument, the first proposition in
the sequence of propositions we are interested in is “P[A; UA,) = Y ;_, P{A;) for
disjoint events A;, i = 1,2.” We have already defended the validity of this propo-
sition. Now examine the proposition that for some k, “P(UX | A,) = Sk PlA)
for disjoint events A;, i = 1,2,...,k.” Using the method of mathematical in-
duction, we tentatively act as if this proposition were true, and we attempt
to demonstrate that the truth of the next proposition in the sequence follows
from the truth of the previous proposition, i.e., is “P(UX*! 4;) = k+l pA;) for
disjointevents A;,i = 1,2, ..., k+1” then true? Note that the two events UX_| A;
and Ay, are disjoint, since

k k Kk
(UA1) ﬂAk.H = U(A, nAk+1) = U@ =0,

i=1 i=1 i=1

where A; N Ay = @V i # k+ 1 by the disjointness of the k + 1 events
A, ..., Ay . But then by additivity for the two-event case,

k+1

k k
P <<UAi> UAkH) =P (UA,) +PlAkn) = ) PlAy),
i=1 i=1 i=1

where the last equality follows from the assumed validity of probability addi-
tivity in the k-disjoint event case. Then by mathematical induction, we have
demonstrated that -

P (CJ A,) = 3" Pla)
i=1 i=1

for disjoint events Ay, ..., Am, V positive integer m, i.e., probability is additive
across an arbitrary number of disjoint events.

We finally state our probability additivity requirement as a third probabil-
ity axiom, where we generalize the representation of the collection of disjoint
events by utilizing an index set of subscripts.®

$Technically, our mathematical induction approach demonstrates probability additivity for any number of disjoint sets, which is
referred to as finite additivity. However, oo is not a number per se. We appeal to intuition in extending probability additivity from
an arbitrary number of disjoint sets to a countably infinite collection of disjoint sets. Such an extension is needed to answer certain
probability questions concerning limit operations when dealing with countably infinite and uncountably infinite sample spaces.
To illustrate “countably infinite additivity,” let the set of positive integers code calendar years starting from 1997, i.e., 1 denotes
1997, 2 denotes 1998, 3 denotes 1999, and so on. Suppose you were interested in the probability that human life on Earth ceases to
exist in an odd year. This draconian event would be represented by the countably infinite set A = {x : x is an odd positive integer},
and the probability we seek is P(A). Note that the event can be conceptualized as the union of countably infinite elementary events,
Ujeali}, the elementary events being disjoint by definition. It is natural {and intuitively reasonable given our additivity discussion)
to represent this probability as P{A} = )", P{i}) i.e., the probability of event A is the sum of the probabilities of each of the
countably infinite elementary events comprising event A. This property is referred to as countable additivity in the probability
literature. It should be noted that a minority of statisticians argue that the theory of probability should be founded on the notion of
finite additivity, and not countable additivity. For example, see B. deFinetti (1974), Theory of Probability, Vol. 1. Chicester: Wiley,
pp. 116-119.
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Axiom 1.3 . . o e
Let I be a finite or countably infinite index set of positive integers, and let

{A; : 1 € I} be a collection of disjoint events contained in S. Then, P(Uje14;) =
Ziel P (Ai )

The Russian mathematician A. N. Kolmogorov suggested that Axioms 1.1
to 1.3 provide an axiomatic foundation for probability theory.” As it turns out,
sufficient information concerning the behavior of probability is contained in
the three axioms to be able to derive from them the modern theory of probabil-
ity. We begin deriving some important probability results in the next section.

In summary, we have defined the concept of probability by defining a num-
ber of properties that probability should possess. Specifically, probability will
be generated by a set function that has the collection of events of a sample
space, i.e., the event space, as its domain; its range will be contained in the
interval [0,1]; the image of the certain event S will be 1; and the probability
of a countable union of disjoint events of S will be equal to the sum of the
probabilities of the individual events comprising the union. Any set function,
P|.), that satisfies the three Axioms 1.1, 1.2, and 1.3 will be called a probability
measure or probability set function. The image of an event A generated by the
probability set function P is called the probability of event A.

The following examples provide illustrations of probability set functions
for finite, countably infinite, and uncountably infinite sample spaces.

Example 1.5 LetS = {1,2,3, 4,5, 6} be the sample space for rolling a fair die and observing the
number of dots facing up. Then P[A) = N[A)/6, for A C S, defines a probability
set function on the events in S. We can verify that P(-} is a probability measure by
noting that P{A) > Oforall A c S, P(S) = N(S)/6 = 6/6 = 1 and P([A; U---UA,) =
P{A)) + --- + P(A,) for any collection {A;,..., Ay} of disjoint subsets of S. For
example, if A; = (1,2} and A, = {4, 5, 6}, then

N4y 2
P(Al)— 6 —_6-1
_ N(Ay) 3
P(Az)—- 6 '61
N{AjUA 5
P(AIUA2)=_(.__1_6__2).=-(-)-I

and thus P(A} U A,) = P(A,) + P|A,). More generally, if A,,..., A, are disjoint
events, then

i=1 i=1

7See A. N. Kolmogorov (1956}, Foundations of the Theory of Probability, 2nd ed. New York: Chelsea.
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Example 1.6

Lemma 1.2

Example 1.7

and thus
P (U A,-) = Y N6 =Y PlAy) 0
i=1 i=1 i=1

Let S = {x : x is a positive integer}, and examine the set function defined by
P(A) = ¥, 4l1/2) for A C S. The set function, so defined, is a probability set
function since, first of all, P[A) > O because P(A) is defined as the sum of a
collection of nonnegative numbers. To verify that P(S) = 1, recall the following
results from real analysis:

T __rn+1
Zar’ ————)
-r
Forr| < 1,
SN . alr— 1t ar
Zar = lim = .
‘3 nso0 1 -—r 1-r

In the case at hand, a = 1 and r = 1/2, so that

x=1

Finally, by definition of the summation operation, if A;, i € I, are disjoint
subsets of S, then

P (UA,-) D2 =" (172 =) PlAy). O

iel xe(UA,) i€l xe€A; iel

Let S = {x : 0 < x < oo} be the sample space corresponding to the experiment
of observing the operating life, in hours, of computer memory chips produced
by a chip manufacturer. Let the probability set function be given by P(A) =
Jvea y€~¥* dx, with the event space, T (the domain of P), being the collection of
all interval subsets of S together with any sets that can be formed by a countable
number of union, intersection, and/or complement operations applied to the
interval subsets.®

We can verify that P[A) >0V A € Y, since P[A) = [, _, 2e"‘/’- dx has a non-
negative integrand and the integral of a nonnegative integrand is nonnegative

8Unlike the previous example, which used a countable sample space, when the sample space is uncountable, not all subsets of S
can technically be considered events, i.e., there may be subsets of S to which probability cannot be assigned (recall Footnote 1).
The collection of subsets defined here are the Borel sets contained in S, all of which can be considered events in S. We discuss this
technical question further in Section 1.6.
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valued.® It is also true that P(S) = 1, since P(S) = [;° te X2 dx = —e~*? |®= 1.
Finally, if A = UL A;, with the sets A, Ay, ..., Ap being disjoint, it follows
from the additivity property of the Riemann integral that

n 1 n 1 n
P Al = f ——6—x/2dx= / -—e""/de= PA;),
(g 1) XEUZ__IA,' 2 L:ZI X€EA; 2 IZI: ( 1)

and so countable additivity holds. O

All problems involving the assignment of probabilities to the various events
in a sample space will formally share a common mathematical structure given
by a 3-tuple of objects, collectively referred to as the probability space of an
experiment.

Definition 1.7

Probability space A probability space is the 3-tuple {S, Y, P}, where S is the sample space of an

experiment, Y is the event space, and P is a probability set function having
domain Y.

In any probabilistic analysis of an experiment, we will seek to establish

1. auniversal set, S, that contains all of the potential outcomes or elementary
events of an experiment; »

2. a set of sets, Y, representing the collection of events or subsets of S on
which probability will be defined; and

3. a probability set function, P, that can be used to assign the appropriate
probabilities to the events in S.

Once the probability space is defined, all of the information is established that
is needed to assign probabilities to the various events of interest related to
an experiment. As one might suspect, it is the discovery of the appropriate
probability set function that represents a major challenge in the application of
probability and statistics, and we examine the discovery problem in the latter
half of the text when we discuss topics in inferential statistics. Our immediate
goal in the remaining sections of this chapter is to establish a number of useful
results in probability theory that are implied by the probability axioms.

1.5 Some Probability Theorems

The three axioms governing the behavior of a probability set function, together
with results (lemmas) from set theory, can be utilized to prove a number of the-
orems that will provide insights into the behavior of probability. In proving the

9We will tacitly assume, unless explicitly stated otherwise, that the orientation of integral ranges is from lowest to highest values
in defining the integral over the set A.
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Theorem 1.1

Proof

Theorem 1.2

Proof

Theorem 1.3

Proof

Theorem 1.4

Proof

Theorem 1.5

Proof

Corollary 1.1

Theorem 1.6

theorems, we begin our development of some fundamental tools of probability
theory.

Let A be an event in the sample space S. Then P(A) = 1 — P{A).

By the definition of the complement of A, AU A = S. Thus, by substitution,
and by Axiom 1.2, P(S) = 1 = P{A U A). However, since AN A = @, Axiom 1.3
allows us to state that 1 = P(A)+ P(A). Subtracting P(A) from both sides obtains
the result. |

P(@) =

Let A = @ in Theorem 1.1. Then, since A = S, we have immediately that
P@)=1-P(S)=1-1=0, since P(S) = 1 by Axiom 1.2. ]

Let A and B be two events in a sample space such that A C B. Then P|A) < P(B)
and P(B — A) = P(B) - P(A).

Since A ¢ B, B= AU (B — A). The sets A and B — A are disjoint, and thus by
Axiom 1.3, P(B) = P(A) + P[B — A). Since P(B — A) > 0 by Axiom 1.1, drop-
ping P(B - A) from the probability equation implies P(B) > P{A). Subtracting
P(A) from both sides of the probability equation yields the second result of the
theorem. ]

Let A and B be two events in a sample space S. Then P(A) = P([ANB)+ P{ANB).

A=ANS=AN(BUB)=(ANB)U(AN B|since the intersection operation is
distributive and S = BU B. The events A N B and A N B are mutually exclusive
since (ANB)JN(ANB) = @, and thus by Axiom 1.3, P(A) = P[ANB}+P(ANB). =

Let A and B be two events in a sample space S. Then P(A U B) = P(A) + P(B) —
P(AN B).

AUB=(AUB)NS=(AUB)N(BU B) = BU(A N B) since the union operation
is distributive and $ = BU B. Events B and (A N B) are disjoint since (A N BJN
B=AnN{BNB)=AN® = @, where we have used associativity and the fact
that BN B = @. Then by Axiom 1.3, P(A U B) = P(B) + P(A n B). However,
Theorem 1.4 implies that P|[A N B) = P|A) — P{A N B), and thus by substitution,
P(AU B) = P|A) + P(B) — P(AN B). n

(Boole’s Inequality)!® P(A U B) < P(A)+ P(B). (This follows directly from The-
orem 1.5 since PJAN B) > 0.)

Let A be an event in a sample space S. Then P(A) € [0,1].

10Named after the English mathematician and logician George Boole.
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Proof @ c A implies P(@) < P(A) by Theorem 1.3, and A C S, implies P(A) < P(S) by
Theorem 1.3. Since P(S) = 1 by Axiom 1.2, and P(#) = 0 by Theorem 1.2, we
have 0 < P[A) < 1. ]

Theorem 1.7  (Bonferroni’s Inequality (2-event case))!! Let A and B be two events in a
sample space S. Then PJAN B) > 1 — P{A) — P|B).

Proof By Theorem 1.1, P[ANB) = 1—-P(A N B). DeMorgan’s law indicates that AN B =
AUB, and thus P[ANB) = 1-P[AUB| by substitution. Theorem 1.5 indicates that
PIAUB) = P|A)+PB)~ P[ANB), and thus PIANB) = 1— [P|A)+P(B|— PIANB)| =
1 — P(A) — P(B) + P|A N B), again by substitution. Finally, since P{A N B) > 0 by

Axiom 1.1, we have (AN B) > 1 — P{A) — P(B). ]
Theorem 1.8  (Bonferroni’s Inequality (General)) Let A,,...,A, be events in a sample space
S. Then

P (ﬁA,-) >1- iP(Aj).
i=1 i=1

Proof We have already proven the validity of the proposition when n = 2 by Theo-
rem 1.7. Suppose for purposes of invoking the induction principle {recall Lemma
1.1) that

P (ﬁA,) >1- Zk:P(AI)
i=1 i=1

is true. Using Theorem 1.7, we know that

k+1 k
P (ﬂA,-) =P <(ﬂA,-> nAk+1) >1- (' A )) (Ak+1)
i=1 i=1
Theorem 1.1 allows us to rewrite the inequality as
k+1
({0 () )

By the assumption that the Bonferroni inequality is valid for k events, we con-
clude that

k k
1-) PA)<P (ﬂA,-) :
i=1 i=1

and thus we may write

k+1
(mA) >1 —ZPA)"P(AkH,:

11Named for the Italian mathematician C. E. Bonferroni.
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which implies that Bonferroni’s inequality is valid for k + 1 events. The propo-
sition in Theorem 1.8 is thus proved by induction. n

(Classical Probability) Let S be the finite sample space for an experiment hav-
ing N(S) equally likely outcomes, and let A C S be an event containing N{A)
elements. Then the probability of the event A is given by N{A}/N(S).

Let E;,..., E, represent the n = N{(S) outcomes (or elementary events) in the
sample space S. Since all outcomes are equally likely, P(E,) = ... = P(E,) =k,
and since the outcomes are mutually exclusive and S = (UL, E;), we have by
Axioms 1.2 and 1.3 that P(S) = "I, PE;) = Y1, k = nk = 1. It follows that
PlEjy=k=1/n,fori=1,...,n.LetI C {1,2,...,n)} be the index set identifying
the N(A) number of outcomes (or elementary events) that define the event A,
i.e.,, A = U;;E;. Then by Axiom 1.3,

1 N|A) N|A
P(A):%P(Eﬂ:é;:—i—]—):Tv(Ts—)). N

By proving Theorem 1.9, we have shown that the classical probability defi-
nition is implied by the axiomatic definition of probability. Thus, whenever the
conditions of the classical probability definition apply, we are free to follow the
classical prescription for assigning probabilities to events. It can also be shown
that the relative frequency definition of probability is implied by the axiomatic
definition. Among other things, this implies that the axiomatic foundation for
probability theory provides the rationale for the existence of the limit of rela-
tive frequencies referred to in the relative frequency definition of probability.
We will need to develop results relating to asymptotic theory (Chapter 5) be-
fore a proof of this proposition is attempted. Finally, the subjective probability
definition is implied by the axiomatic definition in the sense that the indi-
vidual assigning subjective probabilities to events will be required to adhere
to the axioms in making those assignments. The requirement is interpreted
by subjective probabilists as a consistency condition for subjective probability
assignments.

The next example illustrates the use of the preceding probability theorems
(for an example of Theorem 1.9, recall Ex. 1.3).

An envelope manufacturing firm has three envelope machines. The probability
that one or more of the machines must be shut down for repairs on any given
day is characterized by the following probability set function defined for A C
S= x?:l{ol 1}/

PlA)= > flxi,xz,x3)
{x1,%2,X3}€A

= Y [1O[9)(05)(.95) 2 (2)(.8) %,

(x1,%2,x3)€A
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where x; = 0 denotes that the ith machine does not have a breakdown during
the day and x; = 1 denotes a breakdown of the ith machine. The sample space
for this problem is given by S = {(x1,x3,x3) : x; =0o0r1,i=1,2,3}.

The elementary events collectively represent all of the possible shutdown
possibilities for the three machines on a given day. Examine the following four
events:

A; ={(0,0,0),(1,0,0),(0,1,0),(0,0, 1)},
Az ={(0,0,1),(1,0,1),(0,1,1),(1,1,1)},
As={(1,1,1)},

As=S—{1,1,1)} = A;.

A is the event that at most one machine breaks down on a given day; A, is
the event that machine 3 breaks down on a given day; A3 is the event that all
three machines suffer breakdowns on a given day; and A, is the event that at
least one machine does not suffer a breakdown on a given day. Note (please
verify using the definition of P) that P(A,) = .967, P[A,) = .2, P|A3) = .001, and
P|A4) = .999.

Theorem 1.1 The probability that more than one machine breaks down on a
given day is P(A;) = 1 — P[A;) = .033. Note also that P(A3) = 1 — P[A4) = .001,
which is as it should be, since A3 = A,.

Theorem 1.2 Examine the event A; N A3 = @ [i.e., the event that all three
machines break down and less than two machines break down on a given day).
Then P{A, N A3) = P(@) = 0, since 3, ., .1ep fiX1, X2, X3) = O by definition.

Theorem 1.3 Note that A3 C Aj. Theorem 1.3 then applies to these two
events, where P{A3}] = .001 < .200 = P{A,;). Now note that (A, — A3) =
{(0,0,1),{1,0,1),(0, 1, 1)}, so that P{Ay — A) = .199 = .2 — .001 = P(A,) — P(A3).

Theorem 1.4 Note that (A} N Ay) = {(0,0, 1)} and (A; N A,) = {(0,0,0),(1,0,0),
(0,1,0)}, and thus P(A;) = .967 = .171 +.796 = P{A; N Ay) + P(A; N A,).

Theorem 1.5 and Corollary Note that (A} UA;) =S —{(1,1,0)} and thus P(A, U
Aj) =.996 = .967+.200—.171 = P|A;)+P|A3)—P[A1NA,). Also, [A,UA3) = A,,
and Boole’s inequality holds for these two events as P{A;UA3) = .2 < .2+.001 <
P(Ay) + P(A3).

Theorem 1.6 Note that P(A;) € [0, 1] for any subset contained in S, given the
definition of the set function P.

Theorem 1.7 Note that P[AjNA,) = .171 > .167 = 1—-.033-.800 = 1—P(A,) -
P|Aj).
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Theorem 1.8 Note that A; N4y N A3z = {(0,0,0),(1,0,0),(0, 1,0}, so that P[4; N
AyNAz)=.796> .766 = 1 — 033 — .2 —.001 = 1 — P[A;) — P{A,)— P(A3). O

1.6 A Digression on Events

When we first began our discussion of the axiomatic approach to the definition
of probability, we stated that probability is generated by a set function whose
domain consists of all of the events in a sample space. This collection of “all of
the events in a sample space” was termed the event space. However, up to now
we have not discussed which subsets of a sample space are events and which,
if any, are not events. That is, we have said that events are subsets of a sample
space, but we did not say that all subsets of a sample space are events. The
issue here is whether a set function can have a domain (i.e, the event space)
consisting of all of the subsets of a sample space and still adhere to the three
axioms of probability.

In the case of a countable sample space, the event space can consist of all
of the subsets of the sample space and still have the set function exhibit the
properties required by the probability axioms. Henceforth, whenever we are
dealing with a countable sample space, the event space will always be defined
as the collection of all of the subsets of the sample space, unless explicitly
stated otherwise.

The situation is more complicated in the case of an uncountably infinite
sample space. In this case, the collection of all subsets of S is, in a sense, so
large that a set function cannot have this collection of sets for its domain and
still have the probability axioms hold true for all possible applications. The
problem is addressed in a field of mathematics called “measure theory” and is
beyond the scope of our study. As a practical matter, essentially any subset of S
that will be of interest in real-world applications will be an event and thus will
be in the domain of the probability set function. Put another way, the subsets
of S that are not in the event space are by definition so complicated that they
will not be of interest in any real-world application.

While it takes a great deal of ingenuity to define a subset of an uncountably
infinite sample space that is not an event, the reader may still desire a more
precise definition of event space in the case of an uncountably infinite sample
space so that one is certain to be referring to a collection of subsets of S for which
each subset can be assigned a probability. This can be done relatively straight-
forwardly so long as we restrict our attention to real-valued sample spaces (i.e.,
sample spaces whose sample points are all real numbers). Since we can always
“code” the elements of a sample space with real numbers (this relates to the
notion of random variables, which we address in the next chapter), restricting
attention to real-valued sample spaces does not involve any loss of generality,
and so we proceed on the assumption that S ¢ R". Our characterization de-
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pends on the notion of Borel sets,!? which we define next. The definition uses
the concept of rectangles in R?, which are generalizations of intervals.

Definition 1.8

Rectangles in R" Rectangles in R” are sets of points in R” defined as'®

a. closed rectangle: {[x1,...,%Xn) :a; <X < b;;i=1,...,n}
b. open rectangle: {|xi,...,%n) @i <x; < b;,i=1,...,n}
c. half-open/half-closed rectangle:
{x1,...,%0):a;<x;<b;,i=1,...,n}
{x1,...,xn):a; <xi<b;,i=1,...,n0}

where the a;’s and b;’s are real numbers, with —oo or co being admissible
for strong inequalities. Clearly, rectangles are intervals when n = 1.

The collection of Borel sets contained in a sample space S will include all
of the rectangle subsets of S as well as an infinite number of other sets that can
be formed from them via set operations as defined below.

Definition 1.9

Borel sets in S Let S ¢ R™. The collection of Borel sets in S consists of all closed, open,

and half-open/half-closed rectangles contained in S, as well as any other set
that can be defined by applying a countable number of union, intersection,
and/or complement operations to these rectangles.!*

The collection of Borel sets is extremely large and will contain any subset of
the real-valued sample space that will be of interest in real-world applications.
In particular, all open and all closed (rectangular or nonrectangular) sets are
contained in the collection of Borel sets. Most importantly, probabilities can
always be assigned to Borel sets. Consequently, we will use the collection of
Borel sets identified in Definition 1.9 as our event space when dealing with
real-valued sample spaces. The reader should attempt to convince herself that
in the case of a discrete, real-valued sample space, the collection of Borel sets
is equivalently the collection of all subsets of the sample space.

12Named after the French mathematician Emile Borel.

130ne can also define rectangles that are represented as Cartesian products of any collection of closed, open, and/or half-open/half-
closed intervals, rather than as Cartesian products of only closed intervals, or open intervals, or half-open/half-closed intervals as
in the definition. These might also be referred to as nonopen/nonclosed rectangles.

4 The collection of Borel sets in S is an example of what is known in the literature as a sigma-field (o-field), or a sigma-algebra
(o-algebra). A o-field is a nonempty set of sets that is closed under countable union, intersection, and complement operations. The
use of the word “closed” here means that if 4;, i € I, all belong to the o-field, any set formed by applying a countable number of
unions, intersections, and/or complement operations to the A;’s is also a set that belongs to the o-field, where I is any countable
index set.
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The following example illustrates the concept of Borel sets in R!.

The following sets are examples of Borel sets in R : A; = [0, .5], Ay = [.75, 00),
43 = {6_}, AjUAy, AgUA3, AfUAUA;, B0 =A1NAy=AsNA3=A1NANA;,
Ay, Ay, Az, Ay U Ag, Ay UA3z, Ay UAyU Az, S. The reader can define other Borel
sets in R at her leisure, ad infinitum. In words, the collection of Borel sets in R
is the collection of all intervals in R as well as any set that can be formed from
the intervals by a countable number of union, intersection, and/or complement
operations. O

To summarize our disposition concerning the meaning of event space, our
general definition is still “the collection of events in a sample space.” More
specifically, however, it is the collection of all subsets of a sample space when
the sample space is discrete, but it is “only” the collection of Borel sets in the
case where the sample space is uncountably infinite and real valued.

1.7 Conditional Probability

When an experiment is conducted, the one event that is absolutely certain to
occur is the event S, since the outcome of an experiment must be an element of
the sample space. We now study the effect that additional information concern-
ing the outcome of an experiment has on the probability of events. In particular,
if it is known that the outcome of the experiment is an element of some sub-
set, B, of the sample space, what is the effect of this additional information on
the probabilities of events in §? As an example of such a situation, it appears
intuitively plausible that the probability of a company earning $10 million in
annual profits would be higher if the company were randomly chosen from the
list of Fortune 500 companies than if the company were chosen from among
all companies in the United States. For another example, examine the experi-
ment of tossing two fair coins in succession, and let the sample space for the
experiment be defined by S = {(H, H), (H, T), (T, H), (T, T)}, where H =heads and
T =tails. The probability (unconditional) of observing two tails is 1/4 since
P((T, T)) = N|A)/N|[S) = 1/4, where A = {(T, T)}. However, the probability of
observing two tails must be zero if it is known that the outcome of the first
coin toss was heads. We develop the notion of conditional probability ahead.

Suppose that we are analyzing an experiment with an associated probabil-
ity space {S, Y, P} and it is given that the outcome of the experiment is some
element of a subset, B, of the sample space. How should the probability of an
event, A, be defined given the additional information that event B has occurred?
By making a number of observations concerning properties that conditional
probabilities should possess, we will be led to a definition of the conditional
probability of event A given event B.

First of all, since it is given that B occurs, it is certain that B will not occur.
In effect, the sample space has been reduced to the subset B, i.e., the outcomes
in S ~ B are no longer relevant, and B can be interpreted as the conditional
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Definition 1.10
Conditional probability

Figure 1-1
Conditional
sample space B.

sample space. Letting the symbol P(A | B) represent the conditional probability
of event A, given event B, it follows that since the new sample space B is an
event that is now certain to occur, the conditional probability assigned to event
B should be 1, so that P(B | B) = 1. Note further that since B will occur, it is
clear that an event A can also occur iff A occurs concurrently with B, that is,
iff A N B occurs [see Figure 1.1). This suggests that conditional probability
should be defined so that P(A | B) = P{A N B | B) for any event A.

Now note that Theorem 1.4 implies the probability equation P{B) = P(A N
B)+ P(ANB), since B can be partitioned into the two disjoint subsets A N B and
AN B because B = (AN B)U (A N B). Thus, the probability of event B can be
decomposed into the probabilities of the events {A N B) and (A N B). Dividing
both sides of the probability equation by P(B) (assuming P(B) # 0) obtains a
proportional decomposition of the probability of event B as

|- P(ANB) PAnB)
~ P(B) p(B) '

where the proportion k = P[A n B)/P|B) € [0, 1] of event B’s probability is at-
tributable to event A N B with the remaining proportion, 1 — k, attributable to
event A N B. Restricting the sample space to the set B or, equivalently, condi-
tioning on event B does not eliminate any of the outcomes in the collection
comprising either of the events A N B or A N B, nor does it change the fact
that B = (AN B)U{A N B). Then, since event A N B accounts for a proportion,
k, of the probability that event B will occur, and since B is now certain to
occur and so is assigned |(conditional) probability P(B | B) = 1, then the pro-
portion, k, of this unit probability should be attributable to event A N B. We
thus assign P[A N B | B) = k = P[A N B)/P(B), and since we also require that
P|A | B) = P|A N B| B) we are led to the following definition of conditional
probability.

Let A and B be any two events in a sample space S. If P(B) # 0, then the
conditional probability of event A, given event B, is given by P(A | B) =
P|A N B)/P|B).

/B
A/ v j)

pY}
D
53]
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Our intuition concerning the meaning of conditional probability can be
enhanced by examining the definition in light of the classical and relative fre-
quency definitions of probability. In an experiment for which classical proba-
bility is applicable, the probability space consists of

1. a finite sample space,

2. an event space that consists of all subsets of the sample space, and

3. a probability set function that assigns probability to an event A C S as
P|A) = N|A)/NIS).

Conditioning on an event B C S, the probability of an event A, by the definition
of conditional probability, is given by

P[ANB) _NIANBJ/N(S) _ N|AN B
P[B) ~ N[BJ/N[S) = N[B)

Since all outcomes are equally likely in this case, and since we are effectively
restricting the sample space to the set B by conditioning on event B, it stands to
reason that the probability of observing A is given by the number of outcomes
in B that result in A’s occurring relative to the total number of outcomes in B.
This is, of course, consistent with the classical probability definition applied
to the event A in the context of the new sample space, B.

Regarding the relative frequency definition and conditional probability, re-
call that the probability set function assigns probabilities to events via P(A) =
lim,, (n4/n). Conditioning on event B C S, the probability of event A, by the
definition of conditional probability, is given by

PlA|B) =

PIANB) _ lim [nanz/n)

AR = "RBr = Timfma/al

= l}i_{glo(HAnB/HB)-

Note the last equality follows from the fact that the limit of a ratio (here, the
ratio is (nang/n)/(ng/n) = nanp/ng) equals the ratio of the limits if all limits
exist and if the limit in the denominator of the ratio of limits is not zero.!
Restricting the sample space to the set B by conditioning on event B, P(A | B)
is seen to equal the limiting fraction of the number of occurrences of event B
that also result in the occurrence of A. Consistent with the logic of the relative
frequency definition of probability, P(A | B) could then be interpreted as the
limit of the frequency of observing event A relative to the total number of
outcomes generated from the conditional sample space B.

It is clear that conditional probabilities are values of a set function, since
unique real numbers are being assigned to subsets of S. That these are values
of a probability set function is established in the following theorem.

15gee R. C. Buck, {1978), Advanced Calculus, 3rd ed., New York: McGraw-Hill, p. 44. We will discuss the concept of limits in more
detail in Chapter 5. For now, a more intuitive understanding of limits is sufficient.
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Theorem 1.10  Given a probability space (S, Y,P} and an event B for which P(B) # 0, P(A | B) =
P(A N B)/P(B) defines a probability set function with domain Y.

Proof To prove the theorem, we need to establish that the set function defined by
P(A | B) = P[ANB)/P(B) adheres to the three axioms of probability on the domain
Y. First, for any event A, it is clear that P(A | B) > 0, since P[A N B) > 0 and
P(B) > 0. Second, P(S | B) = 1, since P(S | B) = P(S N B)/P(B) = P|B)/P(B) = 1.
Finally, if {A; : 1 € I} is a finite or countably infinite collection of disjoint
events contained in S, then

P (gA,- | B) =P <(XLJA1-> N B) /P(B)

=P (U(A,- N B}) /P{B) (since N is distributive)
iel
= Y P{A;NB)/P(B) (since (A;NB)N(A;NB)=0fori#j)
iel
= Z P(A;| B) (by definition of conditional probability),
iel

and thus the third axiom of probability holds for the set function. | |

The conditional probability set function P{- | B) can be used to define two
new probability spaces, {S, Y, P(- | B)}and {B, s, P{- | B}}, where Y is the collec-
tion of all events contained in the set B. The validity of the first new probability
space follows directly from Theorem 1.10. With minor changes, the reader can
apply the proof of Theorem 1.10 to justify the second probability space. It fol-
lows that conditional probabilities can be legitimately assigned by P[- | B) to
all of the events in the original sample space S as well as to all of the events in
the conditional sample space B.

Since P(A | B) adheres to the probability axioms, all of the theorems that
were proved for unconditional probabilities apply equally well to conditional
probabilities.!¢ This follows because the theorems are valid when applied to
any set function that adheres to the probability axioms regardless of whether
the set function is representing unconditional or conditional probabilities. Put
another way, the proofs of all of the theorems would apply analogously to con-
ditional probabilities by simply changing P(-) to P(- | D), say, in the proofs and
recognizing that the probability axioms apply to the set function P(- | D), as
demonstrated in the proof of Theorem 1.10. Note that we use the letter D here
to allow for the possibility that the event being conditioned on is different than
the events, A and B, that are referred to in some of the previous probability the-
orems. For convenience, we list the probability theorems below as they apply

16Note that, in a sense, all probabilities could be viewed as conditional, where P(A | S) could be used to denote probabilities in
p p

previous sections. We will continue to use “unconditional” to refer to the case where the original sample space, S, has been left

“unconditioned.”
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Theorem 1.4¢
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Theorem 1.7¢

Theorem 1.8¢

Example 1.10

Example 1.11

to conditional probabilities. It is assumed that the conditional probability is
defined, i.e., P(D) # 0, and that A and/or B are events in either the conditional
sample space D or the original sample space S.

PlA|D)=1-P(A|D)

P@ | D) =0.

IfACB,then P|A| D) <P|\B|D)and P{B— A | D)= P(B| D) - P|A | D).
P(A|D)=P(ANB|D)+P{AnB|D).
PAUB|D)=P|A|D)+P(B|D)~PANB|D|.
P[AUB|D)<P|A|D)+ P(B|D).

PlA| D) e[0,1].

PIANB|D)>1-P(A|D)~-P(B|D)

PN, A;|D)>1-Y0, PlA;| D).

The following examples illustrate the application of conditional probability.

Consider the experiments of tossing two coins in succession, and let § =
{{H,H),|H, T),(T, H),(T, T)}, where H =heads and T =tails. Assume that all
outcomes are equally likely.

a. What is the probability of obtaining two heads, given that the first coin toss
came up heads?
Answer: B = {|H, H),(H, T)} is the event that the first coin toss results in
heads, which is our conditional sample space. A = {(H, H)} is the event of
obtaining two heads. Then P(A | B) = P{A N B)/P|B) = (1/4)/(1/2) = 1/2.

b. What is the probability of obtaining two heads, given that at least one of
the coins comes up heads?
Answer: C = {(H, H),(H, T), (T, H)} is the event that at least one of the coins
came up heads, which is our conditional sample space. Then P{A | C) =
P|AN C)/P[C) = (1/4)/(3/4) = 1/3.

¢. What is the probability of obtaining one heads and one tails given that the
first coin is tails?
Answer: D = {{T,H),(T, T)} is the event that the first coin was tails. E =
{{T, H), (H, T)} is the event of obtaining one heads and one tails. Then P(E |
D)= PEN D)/P|D) = (1/4)/(1/2) = 1/2. 0O

A perplexed investor must choose an investment instrument from among 15
different stocks, 10 different bonds, and 5 different mutual funds. Allowing
each instrument an equal probability of being chosen, the investor randomly
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Example 1.13

chooses an instrument. Given that the chosen instrument was not a bond, what
is the probability that a stock was chosen?

Answer: We are conditioning on the event, B, that the instrument is either a
stock or mutual fund (i.e., not a bond}, and P(B) = 2/3. Let A represent the
event that the outcome is a stock, so that P/A N B) = 1/2. Then P(A | B) =
P(A n B)/P(B) = (1/2)/(2/3) = 3/4 is the probability we seek. Note this makes
sense from the standpoint that the conditional sample space is 20 investment
instruments, of which 15 are stocks and 5 are mutual funds. The classical proba-
bility definition suggests that the probability of observing a stock in this sample
space of 20 instruments is 15/20 = 3/4. a

The definition of conditional probability can be transformed to obtain a
result known as the multiplication rule. The multiplication rule allows one to
calculate the probability of event A N B from the knowledge of the conditional
probability of event A, given event B, and the unconditional probability of B.

(Multiplication Rule) Let A and B be any two events in the sample space for
which P(B) # 0. Then P|A N B) = P|A | B)P|B).

Multiply both sides of P(A | B) = P{A N B)/P(B) in Definition 1.10by P(B). W

The multiplication rule is especially useful in cases where an experiment can
be interpreted as being conducted in two stages.

What is the probability of drawing two aces in succession from a well-shuffled
deck of poker cards? Assume cards drawn are not replaced in the deck.

Answer: Let B be the event that the first card drawn is an ace. Since there are
4 aces in a poker deck, with a total of 52 cards in the deck, P(B} = 4/52 = 1/13.
Now let A be the event that the second card drawn is an ace. Given that the
first card drawn is an ace (i.e., given event B), there are 3 aces remaining to be
chosen from the remaining 51 cards, and thus the probability that the second
draw is an ace, given that the first card drawn is an ace, i.e., P[A | B), equals
3/51 = 1/17. Then, by the multiplication rule, the probability that both draws
result in aces is given by P(A N B} = P(A | B)P(B) = (1/17)(1/13) = 1/221. ]

As part of its quality-control program, an apparel manufacturer has inspectors
examine every garment the company produces. A garment is shipped to a retail
outlet only if it passes inspection. The probability that a garment is defective
is .02. The probability that an inspector assigns a “pass” to a defective garment
is .05. What is the probability that a garment is defective and shipped to a retail
outlet?

Answer: Let D be the event that a garment is defective. Let B be the event
that the inspector assigns a “pass” to a garment. We know that P(D) = .02 and
P(B | D) = .05. BN D is the event that a garment is defective and is passed by
the inspector. Then P(BN D) = P(B | D)P(D) = (.05){.02) = .001. O
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The multiplication rule can be extended to three or more events, in which case
the probability of the intersection of all of the events can be represented as
follows.

(Extended Multiplication Rule} Let A;,A,,...,An, n > 2, beevents in the sam-
ple space. Then if all of the conditional probabilities exist,

P (ﬁA,-) = P(Al)ﬁP <A,~ 1 ﬁA,-) .
i=1 i=2 j=1

We know from Theorem 1.11 that the result holds for n = 2 (note that N|_, 4; =
A, by definition). In an attempt to invoke the induction principle, assume that
the result is true for n = k, where k is some arbitrary positive integer > 3. We
will show that the result is then also true forn = k + 1. Let B =% A;. Then

k+1
P (ﬂ Ai) = P|Ag41 N B) = P|Ag4y | BIP(B) (Theorem 1.11)
i=1

k i1
= PlA) H p (Ai | ﬂA,-) P(Ay4y | B) assuming result holds for n = k
i=2 j=1

~ )

P(B)
k+1 i-1 k
= PlA,) H P (A,- ! ﬂA,-) (substitution for B = ﬂA,-)
i=2 j=1 i=1
Thus, by mathematical induction, the theorem holds. (See Def. 1.12.) [ |

Similar to the case of the multiplication rule for two events, the extended
multiplication rule is especially useful in cases where an experiment can be
interpreted as being conducted in n stages.

What is the probability of drawing four aces in succession from a well-shuffled
deck of poker cards? Assume cards drawn are not replaced in the deck.
Answer: Let A; be the event that the ith card drawn is an ace, 1 = 1,2,3, 4.
Then, using Theorem 1.12,

4
p (ﬂAi> = P(A1)P{Ay | A\P(A3 | Ay NAP(As | Al N Ay N A3)
i=1

- (5)(3)(3) (3)- 200 :

Recall the garment inspection problem of Ex. 1.13. Suppose the retailers who
market the garments of the apparel manufacturer also inspect each garment
they purchase and place on sale only those for which they perceive no defecs.
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1.8 Independence

Definition 1.11
Independence of
events (2-event case)

The probability that a retailer places a defective garment on sale is .10. What
is the probability that a garment is defective, shipped to the retail outlet, and
placed on sale by retailers?

Answer: Let A be the event that the retailer places a garment on sale. ANBND
is the event of interest, and by Theorem 1.12,

PlANBN D)= P\D)P(B | D)P|A | BN D) = (.02)(.05)(.10) = .0001. O

In everyday language, when one says that two events are independent, it is gen-
erally meant that the occurrence of one event does not affect the likelihood of
an occurrence of the other event, and vice versa. There is a related notion of in-
dependence in the theory of probability. We begin with the technical definition
of independent events.

Let A and B be two events in a sample space S. Then A and B are independent
iff P(A N B) = P{A)P(B). 1f A and B are not independent, A and B are said to
be dependent events.

An intuitively appealing interpretation of the independence condition in
Definition 1.11, which is closely allied to our layman’s interpretation of in-
dependence, is available when P{A} > 0 and P{B) > 0. In this case, P[A N B) =
P|A)P(B) implies

P(A | B) = P|AN B)/P(B) = P(A)P(B)/P(B) = P(A),
P(B | A) = PBN A)/P(A) = P(B)P|A)/P(A) = P(B).

Thus the probability of event A occurring is unaffected by the occurrence of
event B, and the probability of event B occurring is unaffected by the occurrence
of event A.

If event A and/or event B has probability zero, then by definition, events
A and B are independent. This follows immediately from the fact that if either
P|A) = 0 or P[B) = 0, then PIAN B) = 0 = P(A)P(B) (since (AN B) c A and
(AN B) c Bimply both PJAN B) < P{A) and P(AN B) < P(B) by Theorem 1.3, and
P([ANB) > 0by Axiom 1.1, so that together the inequalities imply P{ANB) = 0),
and thus the independence condition is fulfilled. However, in this case one or
both conditional probabilities P(A | B) and P(B | A) are undefined, and the basis
no longer exists for stating that “the independence of events A and B implies
the probability of either event is unaffected by the occurrence of the other.”

If A and B are independent, then A and B, A and B, and A and B are also in-
dependent. This result can be demonstrated by showing that the independence
definition is satisfied for each of the preceding pairs of events if independence
is satisfied for A and B. We state the result as a theorem.
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If events A and B are independent, then events A and B, A and B, and A and

B are also independent.

P(ANB)=P|A)-P(ANB) (Theorem 1.4)
= P|A) ~ P|A)P(B) (independence of A and B)
= P{A)[1 — P(B)] (algebra)
= P{A)P(B) (Theorem 1.1}
P[ANB)=P(B) - P[ANB) (Theorem 1.4
= P(B) - P(A)P(B) (independence of A and B)
= P(B)[1 — P(A)] (algebra)
= P(A)P(B) (Theorem 1.1}
P(ANB)=P{AUB) (DeMorgan’s laws)
=1~ P{AUB) (Theorem 1.1)
=1~ (P(A)+ P(B) - PIANB))} (Theorem 1.5)
=1~ P{A) - P(B) + P(A)P(B} (independence of A and B)
= P(A) — P(B)[1 — P(A)] (Theorem 1.1 and algebra)
= P(A)[1 - P(B)] (Theorem 1.1 and algebra)
= P[A)P(B) (Theorem 1.1}

The following example illustrates the concept of independence of events.

The work force of the Excelsior Corporation has the following distribution

among type and gender of workers:

Type of Worker
Sex Sales Clerical Production Total
Male 825 675 750 2,250
Female 1,675 825 250 2,750
Total 2,500 1,500 1,000 5,000

In order to promote loyalty to the company, the company randomly chooses
a worker to receive an all-expenses-paid vacation each month. Is the event of

choosing a female independent of the event of choosing a clerical worker?

Answer: Let F =event of choosing a female and C =event of choosing a clerical
worker. From the data in the table, we know that P(F) = .55 and P(C) = .30.
Also, P[FNC) = .165. Then P[FNC) = P|F)P(C), and the events are independent.

Is the event of choosing a female independent of the event of choosing a

production worker?



1.8

Independence 31

Theorem 1.14

Proof

Answer: Let A =event of choosing a production worker. Then P(A) = .20 and
P[ANF) = .05, and thus PIAN F) = .05 # .11 = P(A)P(F), so the events are
dependent. O

The property that A and B are independent events is sometimes confused
with the property that sets A and B are mutually exclusive or disjoint. It should
be noted that the two properties are distinct, but related concepts. The mutually
exclusive property is a property of sets, while the independence property is a
property of the probability set function defined on a collection of sets. The
following table presents the relationship between the two properties.

Disjointness versus Independence

ANB=0 ANB#D
P(A) > 0 .
Independent if
and Dependent ~
PB) >0 P(AN B) = P(AP(B)
P(A) and/or
P(B) = 0 Independent Independent

Next we verify the three cases in which an immediate conclusion can be
reached regarding the independence of events A and B. We introduce the nota-
tion “=" which is to be read implies that.

(Independence and Disjointness)

1. P(A)>0, P(B)>0, ANB =0 = A and B are dependent.
2. P|A) and/or P|B) =0, AN B =0 = A and B are independent.
3. P(A) and/or P(B) = 0, AN B # @ = A and B are independent.

1. P[A N B) = P(@) = 0 by Theorem 1.2. Since P{A N B) = 0 < P{A)P(B) because
P{A) and P{B) are both positive, A and B cannot be independent events, and
so they are dependent.

2. PI/A N B) = P{@) = 0 by Theorem 1.2. Since P(A) and/or P(B) = 0, then
P(A)P(B) = 0, and thus P[A N B) = 0 = P|A)P|(B). Therefore, A and B are
independent.

3. PlJAN B) < P|A) and P[A N B) < P(B) by Theorem 1.3, since (AN B) C A and
(AN B) c B.If PlA) and/or P(B) = 0, then PJAN B) < 0. Pl{AN B) > O by
Axiom 1.1. Then P(A N B) = 0 = P(A)P(B), and A and B are independent
events. |

The concept of independent events can be generalized to more than two
events. The generalized statement utilizes product notation, which we review
here.
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Definition 1.12
Product notation

Definition 1.13
Independence of
events (n-event case)

n
na,- =daydy---ap
i=1

n a; = product of all a; terms for whichj e ].
iel

Let A}, A,, ..., Ap be events in the sample space S. The events Ay, Ay, ..., A,
are independent iff

p (ﬂ Ai) =[P4
i€l il

for all subsets ] c {1,2,...,n} for which N{J} > 2. If the events Ay, As, ..., An
are not independent, they are said to be dependent events.

Note that some authors refer to the independence concept defined in Def.
1.13 as the joint or mutual or complete independence of the events A}, A, ...,
An, when n > 3, to emphasize that additional conditions are required be-
yond the condition given in Def. 1.11 applicable to pairs of events. We will
refrain from using these additional adjectives and simply refer to the inde-
pendence of events, regardless of n. Furthermore, note that if the condition
P(A;NA;) = P(A;)P(A;) of Def. 1.11 applies to all pairs of eventsin A}, A, ..., Ap,
the events are referred to as being pairwise independent whether or not they
are independent in the sense of Def. 1.13.

In the case of three events, independence requires that P{A) N A,) =
P{A)|P{Ay), P{A1NA3) = P(A,)P(A3), P{AsNA3) = P{A2)P{A3), and P(A1NAyNA3) =
P|A,)P[A;,)P{A3). Note that if all three events have nonzero probability, then the
reader can straightforwardly verify from the definition of conditional probabil-
ity that independence implies P(A; | A;) = P(A;) Vi # ], P(A; | AjNAy) = PlA;) VY
i#j#k, and PlA;NA;| Ax) = PA;NA;)Vi#j+# k. Itisnot as straightforward
to demonstrate that independence implies P(A; | A; U Ax) = P(A;)fori # j # &,
and so we prove it here.

P(A;N[A;UA -
PlA; 1 AjUAL) = ( P(A;( U’Ak) i) (by definition)
_ P((AjnA,')U(AjﬂAk)) . .
= PIA, U Ar) (distributive law)
_ PlA;NAj)+ P(A;NAg) — PlA;NA; N Ag)
= PIA U A7) (Theorem 1.5)
— P(AI)P(AI) + P(AI)P(AI() - P(AI)P(AI)P(Ak) (independence)

P{A; U Ay
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Figure 1-2
Probability
assignments in S.

_ PlAI)[P(A)) + P(Ax) — PAj)P(Ak]]
PlA; U Ag)

_ P(A;)P{A; U Ay

T PlAjUAL)

= PA;) ]

{algebra)

(Theorem 1.5 and independence)

It is thus recognized that if events A, Ay, and Aj; are independent in the
sense of Def. 1.13, and if each of the events occurs with nonzero probability,
then the probability of any one of the events is unaffected by the occurrence
of any of the remaining events and is also unaffected by the occurrence of the
union or intersection of the remaining events. This interpretation extends in
a straightforward way to cases involving four or more independent events, and
the reader should attempt some of the possible extensions.

The reader may wonder whether the numerous conditions (for n events, the
number of conditions will be 27 — n — 1) cited in Def. 1.13 for independence of

events are all necessary, i.e., wouldn’t the one condition P (ﬂ;‘zlA,) = [Ti., PlA;)

suffice and imply all of the others? Unfortunately, the answer is no—all of the
conditions are required. The following example illustrates the point.

The Venn diagram in Figure 1.2 summarizes the probabilities assigned to some
of the events in the sample space S. Note that PANBNC) = .15 ={.5)(.6)(.5) =
P(A)P(B)P|C). However,

P[ANB) = .25 # .3 = P|A|P(B),
P[ANC) = .20 # 25 = P{A)P(C),
P(BNC) = .40 # .3 = P(B)P(C),

and thus (AN BN C) = P(A)P(B)P(C) does not imply the pairwise independence
conditions. O

The reader should construct an example illustrating that pairwise indepen-
dence among A, B, and C does not imply P(A N BN C) = P(A)P(B)P(C).

S

.05 .25

.10
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1.9 Bayes’s Rule

Theorem 1.15

Proof

Corollary 1.2

Proof

Corollary 1.3

Proof

Bayes'’s rule, discovered by the 17th-century English clergyman and mathe-
matician Thomas Bayes, provides an alternative representation of conditional
probabilities. At first glance, the representation may appear somewhat convo-
luted in comparison to the representation of conditional probability given in
Def. 1.10. However, the rule is well suited for providing conditional probabil-
ities in certain experimental situations, which we will identify following the
formal derivation of the rule.

Bayes’s rule is actually a simple consequence of a result known as the the-
orem of total probability, which we state and prove next.

(Theorem of Total Probability) Let the events B;, i € I, be a finite or countably
infinite partition of the sample space, S, so that B;j N\ By = @ for j # k, and
UieIBi = S. Let P(B,) >0V i Then P(A) = Ziel P(A | B,)P(B,)

Since UjerB; = §, it follows that A = AN (Ujg[Bj) = Uiel(A N B;), where we
have used the fact that the intersection operation is distributive over the union
operation. Now note that {A N B;) N (A N By) = @ for j # k since the B,’s are
disjoint. But then by Axiom 1.3, P(A] = P(Ujef{fANBy)) = ¥, PIA N B;). The
result of the theorem follows applying the multiplication rule to each term,
P{A N B;), in the sum. | |

Regarding the title of Theorem 1.15, note that the “total probability” of
event A is represented as the sum of the portions of A’s probability distributed
over the events in the partition of A represented by the events ANB;, i € I. We
state Bayes’s rule as a corollary to Theorem 1.15.

(Bayes’s Rule) Lettheevents B;, i € I, be a finite or countably infinite partition

of the sample space, S, so that B;N\ By = @ for j # k and U;1B; = S. Let P(B;) > 0

Vie I. Then, provided P{A) # 0,
P{A | B;)P(B;)

Ziel P(A | BJ')P(BI'),

P(Bj | A) = Viel

This follows directly the definition of the conditional probability P(B; | A} =
P{A N B;)/P(A), after substituting for the denominator using Theorem 1.15 and
rewriting the numerator using the multiplication rule. ]

(Bayes’s Rule (2-event case))

PIB | A) = P(A | B)P(B)
" P|A | B)P\B) + P|A | B)P|B)

This is a direct consequence of Corollary 1.2 when I = (1, 2}. |

In the next two examples we provide illustrations of the types of experi-
mental situations for which Bayes'’s rule has useful applications.
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Explorations, Inc., is in the oil well-drilling business. Let B be the event that a
well being drilled will produce oil, and let A be an event representing geological
well-site characteristics that are conducive to discovering oil at a site. Suppose
further that, from past experience, it is known that the (unconditional) proba-
bility of a successful strike when drilling for oil is .06. Also suppose it is known
that when oil is discovered, the probability is .85 that the geological character-
istics are given by event A, whereas the probability is only .4 that geological
characteristics represented by A are present when no oil is discovered. If event
A occurs at a site, what is the probability of discovering oil at the site, i.e., what
is P(B| A)?

Answer: It is known that P(B) = .06, P(B) = .94, P[A | B) = .85, and P(A | B) =
.40. Bayes’s rule applies here, so that

P|A | B)P|B) (.85)(.06)

= FATBIP(B) + PIA | BIFB] (85106 + 4094 ">

P(B| A)

Note that the occurrence of event A increases considerably the probability of
discovering oil at a particular site. O

A blood test developed by a pharmaceutical company for detecting a certain
disease is 98 percent effective in detecting the disease given that the disease is,
in fact, present in the individual being tested. The test yields a “false positive”
result (meaning a person without the disease is incorrectly indicated as having
the disease) for only one percent of the disease-free persons tested.

If an individual is randomly chosen from the population and tested for the
disease, and given that .1 percent of the population actually has the disease,
what is the probability that the person tested actually has the disease if the test
result is positive [i.e., the disease is indicated as being present by the test)?
Answer: In this case, let A be the event that the test result is positive, and
let B be the event that the individual actually has the disease. Then, from the
preceding discussion concerning the characteristics of the test, it is known that
P|A | B) = .98, P(B} = .001, and P(A | B) = .01. Then, an application of Bayes’
rule yields

_ P(A | B)P(B) _ (.98)(.001)
" P(A | B)P(B)+ P(A | B)P(B) ~ (.98)(.001) + (.01)(.999)

Thus, one has very little confidence that a positive test result implies that the
disease is present. O

= .089.

P(B| A)

A common thread in the two examples, consistent with the statement of
Bayes’s rule itself, is that the sample space is partitioned into a collection of
(disjoint) events (B;, 1 € I) that are of interest and whose nonzero probabilities
are known. Furthermore, an event occurs whose various conditional probabil-
ities formed by conditioning on each of the events in the partition are known.
Given this background information, Bayes’s rule provides the means for reeval-
uating the probabilities of the various events in the partition of S, given the
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information that event A occurs. The probabilities of the events in the parti-
tion are, in effect, “updated” in light of the new information provided by the
occurrence of A. This interpretation of Bayes’s rule has led to the use of the
terms prior probabilities and posterior probabilities to refer to the P(B;)’s and
P(B; | A)'s, respectively. That is, P(B;) is the probability of event B; in the parti-
tion of S prior to the occurrence of event A, whereas P(B; | A} is the probability
of B; posterior to, or after, event A occurs.

Returning to the oil well-drilling example, note that each elementary event
in the (implied) sample space is given by a pair of observations, one being
whether or not the geological characteristics of the well site favor the discov-
ery of oil, and the other being whether or not oil is actually discovered at the
well site. The partition of the sample space that is of interest to the oil well-
drilling company is the event “oil is discovered” versus the (complementary)
event that “oil is not discovered” at the well site. The additional informa-
tion used to update the (prior) probabilities concerning oil discovery is whether
the geological characteristics of the site favor the discovery of oil. Bayes’s rule
can be applied to generate posterior probabilities of oil discovery because the
conditional probabilities of favorable well-site characteristics being observed,
with and without the condition of oil being discovered, are known. The reader
should provide a characterization of the sample space, partition of interest, and
additional information used to update probabilities in the case of the drug test
example.
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Problems

1. Define an appropriate sample space for each of the
experiments described below:

a. At the close of business each day, the Acme De-
partment Store’s accountant counts the number of
customer transactions that were made in cash. On
a particular day, there were 100 customer transac-
tions at the department store. The outcome of in-
terest is the number of cash transactions made.

b. AnItalian restaurant in the city of Spokane runs an
ad in the city newspaper, The Spokesman Review,
that contains a coupon that allows a customer to
purchase two meals for the price of one for each
newspaper coupon the customer has. The coupon
is valid for 30 days after the ad is run. The outcome
of interest is how many free meals the restaurant
serves at the end of the 30-day period.

c. On alocal 11 o’clock news broadcast for the town
of College Station, the weather report includes the
high and low temperatures, in Fahrenheit, for the
preceding 24 hours. The outcome of interest is the
pair of high and low temperatures on any given day.

d. A local gasoline jobber supplies a number of the
area’s independent gas stations with unleaded gaso-
line. The outcome of interest is the quantity of
gasoline demanded from the jobber in any given
week.

e. The mutual funds management company of Dewey,
Cheatum, and Howe posts the daily closing net as-
set value of shares in its mutual fund on a reader-
board outside of its headquarters. The outcome of
interest is the posted net asset value of the shares
at the end of a given day.

f. The office manager of a business specializing in
copying services is counting the number of copies
that a given copying machine produces before suf-
fering a paper jam. The outcome of interest is the
number of copies made before the machine suffers
a paper jam.

2. For each of the sample spaces you have defined
above, indicate whether the sample space is finite,
countably infinite, or uncountably infinite. Justify your
answers.

3. The sales team of a large car dealership in Seattle
consists of the following individuals:

Sales
Name  Experience Age Education Married
Tom 4 years 34  High school Yes
Karen 12 years 31 < High school No
Frank 21 years 56  College graduate Yes
Eric 9 years 42 High school Yes
Wendy 3 years 24  College graduate No
Brenda 7 years 29  High school No
Scott 15 years 44  College graduate Yes
Richard 2 years 25 < High school No

A customer visiting the dealership randomly chooses
one of the salespersons to discuss the purchase of a new
vehicle. Define the set and assign the probability asso-
ciated with each of the following events:

a. A woman is chosen.
b. A man less than 40 years of age is chosen.

c. An individual with at least 10 years of sales experi-
ence is chosen.

d. A married college graduate is chosen.

e. A married female with a high school education and
at least five years of sales experience is chosen.

f. An individual with at least 2 years’ experience and
at least 21 years of age is chosen.

4. Assign probabilities to events a to f in the preced-
ing question, but include the condition “given that the
individual chosen > 30 years old.”

5. The manager of the cost accounting department of
a large computer manufacturing firm always tells three
jokes during her monthly report to the board of directors
in an attempt to inject a bit of levity into an otherwise
sobering presentation. She has an inventory of a dozen
different jokes from which she chooses three to present
for any given monthly report.

a. If she chooses the 3 jokes randomly from the inven-
tory of 12 each month, what is the probability that,
in any given month, at least 2 of the 3 jokes will be
different from the jokes she told the month before?

b. If she chooses the 3 jokes randomly from the inven-
tory of 12 each month, what is the probability that,
in any given month, all 3 jokes will be different
from the 3 she told the month before?

6. Schneider's Plumbing and Heating, located in
Fargo, North Dakota, has 300 accounts receivable dis-
tributed as follows:
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1-30days 31-60days 61-90days Sent for
Current  past due past due pastdue  collection
140 80 40 25 15

An auditor is coming to inspect Schneider’s financial
records. Included in the auditor’s analysis is a randomly
chosen sample of four accounts from the company’s col-
lection of accounts receivable.

a. What is the probability that all of the accounts cho-
sen by the auditor will be current accounts?

b. What is the probability that all of the accounts cho-
sen by the auditor will be less than or equal to 60
days past due?

¢. What is the probability that all of the accounts cho-
sen by the auditor will be more than 60 days past
due?

d. What is the probability that 2 of the accounts will
be current, and 2 will be 1 to 30 days past due?

7. A computer manufacturing firm produces three
product lines: (1) desktop computer systems, (2} note-
book computers, and (3) subnotebook computers. The
sales department has convened its monthly meeting in
which the four staff members of the department pro-
vide the department manager with their indications of
whether sales will increase for each of the product lines
in the coming month. Let A; represent the event that
sales for product line i (= 1, 2, or 3) will increase in
the coming month. The manager will consider the in-
formation of a given staff member to be usable if that
information is internally consistent, where internally
consistent in this context means consistent with the
axioms and theorems of probability. Which of the staff
members have provided the manager with usable infor-
mation? Be sure to provide a convincing reason if you
decide that a staff member’s information needs to be
discarded.

Staff
Member Tom Dick Harry Sally
P(Aq) 5 3 3 .2
P(A) 3 .2 .6 3
P(A3) 7 8 -4 .5
P(A N Ap) 9 4 4 2
P(A1 N A3) 6 15 2 3
P(A; N A3) 15 N 1 4
PATNA;NA3) 1.5 .05 A

8. A large electronics firm is attempting to hire six
new electrical engineers. It has been the firm’s experi-
ence that 35 percent of the college graduates who are
offered positions with the firm have turned down the
offer of employment. After interviewing candidates for
the positions, the firm offers employment contracts to
seven college graduates. What is the probability that the
firm will receive acceptances of employment from one
too many engineers? You may assume that the decisions
of the college graduates are independent.

9. A computer manufacturing firm accepts a ship-
ment of CPU chips from its suppliers only if an inspec-
tion of 5 percent of the chips, randomly chosen from
the shipment, does not contain any defective chips. If
a shipment contains five defective chips and there are
1,000 chips in the shipment, what is the probability that
the shipment will be accepted?

10. The probability that a stereo shop sells at least one
amplifier on a given day is .75; the probability of selling
at least one CD player is .6; and the probability of selling
at least one amplifier and one CD player is .5.

a. What is the probability that the stereo shop will sell
at least one of the two products on a given day?

b. Whatis the probability that the stereo shop will sell
at least one CD player, given that the shop sells at
least one amplifier?

c. Whatis the probability that the stereo shop will sell
at least one amplifier, given that the shop sells at
least one CD player?

d. What is the probability that the shop sells neither
of the products on a given day?

11. Prove that the set function defined by
PANB)
P(B)
is a valid probability set function in the probability

space {B, Y3, P(- | B)}, where Y is the event space for
the sample space B.

P(A|B)= for P(B} #0

12. A large midwestern bank has devised a math apti-
tude test that it claims provides valuable input into the
hiring decision for bank tellers. The bank’s research in-
dicates that 60 percent of all tellers hired by midwestern
banks are classified as performing satisfactorily in the
position at their initial six-month performance review,
while the rest are rated as unsatisfactory. Of the tellers
whose performance is rated as satisfactory, 90 percent
had passed the math aptitude test. Of the tellers who
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were rated as unsatisfactory, only 20 percent had passed
the math aptitude test.

a. What is the probability that a teller would be rated
as satisfactory at her six-month performance re-
view given that she passed the math aptitude test?

b. What is the probability that a teller would be rated
as satisfactory at her six-month performance re-
view given that she did not pass the math aptitude
test?

c. Does the test seem to be an effective screening de-
vice to use in hiring tellers for the bank? Why or
why not?

13. A large-scale firm specializing in providing tempo-
rary secretarial services to corporate clients has com-
pleted a study of the main reason why secretaries be-
come dissatisfied with their work assignments and how
likely it is that a dissatisfied secretary will quit her job.
It was found that 20 percent of all secretaries were dis-
satisfied with some aspect of their job assignment. Of
all dissatisfied secretaries, it was found that 55 percent
were dissatisfied mainly because they disliked their su-
pervisor; 30 percent were dissatisfied mainly because
they felt they were not paid enough; 10 percent were dis-
satisfied mainly because they disliked the type of work;
and 5 percent were dissatisfied mainly because they had
conflicts with other employees. The probabilities that
the dissatisfied secretaries would quit their jobs were
respectively .20, .30, .90, and .05.

a. Given that a dissatisfied secretary quits her job,
what is the most probable main reason why she
was dissatisfied with her job assignment?

b. If a secretary were chosen at random, what is the
probability that she would be dissatisfied, the main
reason being her level of pay?

¢. Given that a secretary is dissatisfied with her job
assignment, what is the probability that she will
quit?

14. A clerk is maintaining three different files contain-
ing job applications submitted for three different posi-
tions currently open in the firm at which the clerk isem-
ployed. One file contains two completed applications,
one file contains one complete and one incomplete ap-
plication, and the third file contains two incomplete
applications. The clerk wishes to examine the files and
chooses one of the files at random. She then chooses at
random one of the applications contained in the chosen
file. If the application chosen is complete, what is the

probability that the remaining application in the file is
also complete?

15. A company manages three different mutual funds.
Let A, be the event that the ith mutual fund increases
in value on a given day. Probabilities of various events
relating to the mutual funds are given as follows:

P{A;) = .55, P|A;)=.60, P|A3)= 45,
P(AyUA,) = .82, PlA;UA;3)=.7525,
P(A, UA;) =.78, PlA; NA;z | A]) =.20.

a. Are events A;, Ay, and A; pairwise independent?
b. Are events A, A,, and A; independent?

c. What is the probability that funds 1 and 2 both in-
crease in value, given that fund 3 increases in value?
Is this different from the unconditional probability
that funds 1 and 2 both increase in value?

d. What is the probability that at least one mutual
fund will increase in value on a given day?

16. Answer the following questions regarding the va-
lidity of probability assignments. If you answer false,
explain why the statement is false.

a. If (A} = .2, P(B) = .3,and ANB = ¢, then P[AUB) =
.06. True or false?

b. If AN B = ¢ and P(B) = .2, then P{A | B) = 0. True
or false?

c. If P(B) = .05, P{A | B) = .80, and P{A | B} = .5, then
P(B | A} = .0777 (to four digits of accuracy). True or
false?

d. If P[A) = .8 and P(B) = .7, then P[A N B) > .5. True
or false?

e. Itispossible that P{A) = .7, P[B) = .4,and ANB = @.
True or false?

17. The ZAP Electric Co. manufactures electric circuit
breakers. The circuit breakers are produced on two dif-
ferent assembly lines in the company’s Spokane plant.
Assembly line I is highly automated and produces 85
percent of the plant’s output. Assembly line IT uses older
technology that is more labor intensive, producing 15
percent of the plant’s output. The probability that a cir-
cuit breaker manufactured on assembly line I is defec-
tive is .04, while the corresponding probability for as-
sembly line II is .01.

As part of its quality-control program, ZAP uses a
testing device for determining whether a circuit breaker



40 Chapter 1

Elements of Probability Theory

is faulty. Some important characteristics of the testing
device are as follows:

P(A| B)=P|A | B) = .985,

where A is the event that the testing device indicates
that a circuit breaker is faulty and B is the event that
the circuit breaker really is faulty.

a. If a circuit breaker is randomly chosen from a
bin containing a day’s production and the circuit
breaker is actually defective, what is the probabil-
ity that it was produced on assembly line II?

b. What is the probability that the testing device indi-
cates that a circuit breaker is not faulty, given that
the circuit breaker really is faulty?

c. If the testing device is applied to circuit breakers
produced on assembly line I, what is the probability
that a circuit breaker really is faulty, given that the
testing device indicates that the circuit breaker is
faulty? Would you say that this is a good testing
device?

18. The ACME Computer Co. operates three plants
that manufacture notebook computers. The plants are
located in Seattle, Singapore, and New York. The plants
produce 20, 30, and 50 percent of the company’s out-
put, respectively. ACME attaches the labels “Seattle”,
“SING”, or “NY” to the underside of the computer in
order to identify the plant in which a notebook com-
puter was manufactured. The computers carry a two-
year warranty, and if a customer requires repairs during
the warranty period, he or she must send the computer
back to the plant in which the computer was manufac-
tured. There is also a stamp on the motherboard inside
the computer which technicians at a plant can use as
an additional way of identifying which plant manufac-
tured the computer. The consumer is unable to examine
this inside stamp, because if the consumer opens up the
computer housing to look inside, a seal is broken, which
voids the warranty.

Regarding quality control at the plants, the war-
ranty-period failure rates of computers manufactured in
the three plants are known to be .01, .05, and .02 for the
Seattle, Singapore, and New York plants, respectively.
You have bought an ACME computer, and it has failed
during the warranty period. You need to send the com-
puter back to the plant for repairs, but the label on the
underside of the computer has been lost and so youdon't
know which plant manufactured your computer.

a. Which plant is the most probable plant to have
manufactured your computer?

b. Which plant is the least probable plant to have man-
ufactured your computer?

c. What is the probability that an ACME notebook
computer will fail during the warranty period?

d. Given that an ACME computer does not fail during
the warranty period, what is the probability that the
computer was manufactured in New York?

19. The following diagram indicates how probabilities
have been assigned to various subsets of the sample
space S:

A

a. Are the three events A, B, and C pairwise-
independent events?

b. Are the three events A, B, and C independent
events?

c. What is the value of P{A N B)? What is the value of
P{{ANB)| C)

d. Suppose event D is such that P[D) = .05 and DN
[AUBUC) = 0. Are events D and A independent?
Are events D and (A U BU C) independent?

e. What is the probability of event C, given (A N B)?

20. A large sack contains 1,000 flower seeds consisting
of 300 carnations and 700 impatiens. Of the 300 carna-
tion seeds, 200 will produce red flowers and 100 will
produce white flowers. Of the 700 impatiens seeds, 400
will produce red flowers and 300 will produce white
flowers.

a. If you randomly choose five seeds in succession
(without replacing any seeds that have been cho-
sen), what is the probability that these seeds will
produce two impatiens with red flowers, two car-
nations with red flowers, and one carnation with
white flowers?
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b. If you randomly choose four seeds in succession
(without replacing any seeds that have been cho-
sen), what is the probability that these seeds will
produce red- and white-flowered impatiens and red-
and white-flowered carnations?

c. Given that four randomly chosen seeds all produce
carnations, what is the probability that three are
red flowered and one is white flowered?

d. Is the event of randomly choosing a carnation seed
on the first draw independent of choosing an impa-
tiens seed on the second draw?

21. For each case below, determine whether or not the
real-valued set function P(A) is in fact a probability set
function:
a. sample space § = {1,2,3,4,5,6,7,8)},
eventspace T = {A: A C S},
set function P(A) = Y, 4[x/36) forA e Y.
b. sample space S = [0, 00),
event space T = {A : A is an interval subset of
S, or any set formed by unions, intersections, or
complements of these interval subsets},
set function P[A) = [ _,e*dxforAe Y.
c. sample space S = {x : x is a positive integer},
eventspace T = {A: A C S},
set function P(A) = ¥, 4(x*/10%) for A € Y.
d. sample space S = (0, 1),
event space T = {A : A is an interval subset of
S, or any set formed by unions, intersections, or
complements of these interval subsets},
set function P(4) = [ _, 12x(1 — x)*dx forA e Y.

xeA

22. The Smith Floor Wax Company manufactures and
sells industrial-strength floor wax in the wholesale mar-
ket for home care products. The factory produces 10,000
gallons of floor wax daily and currently has an inventory
of 5,000 gallons of floor wax in its warehouse. If sales
of floor wax exceed production, the company meets the
excess demand by using inventory; if sales are less than
production, the company adds this excess production to
inventory. The company economist provides you with
the following information concerning probabilities of
daily sales events, where events are measured in gallons
of wax sold.

A =0, 5,000}, P(A) = .25

B = (5,000, 10,000}, P(B) = .65
C = [2,500, 7,500}, P(C) = .35

D = (5,000, 7,500, P(D) = .20

a. What is the probability that inventory will have to
be used to satisfy sales on a given day?

b. What is the probability that fewer than 2,500 gal-
lons of wax will be sold on a given day?

¢. What is the probability of the event E = [0, 2, 500)u
(7,500, 10, 000)?

23. A box contains four different computer disks, la-
beled 1, 2, 3, and 4. Two disks are selected at random
from the box “with replacement,” meaning that after
the first selection is made, the selected disk is returned
to the box before the second selection is made. “At ran-
dom” means that all disks in the box have an equal
chance of being selected.

a. Define the sample space for this experiment.

b. Is the event of choosing disk 1 or 3 on the first se-
lection independent of choosing disk 1 or 2 on the
second selection? Why or why not?

c. Is the event of choosing disk 1 on the first selec-
tion independent of choosing disk 1 on the second
selection? Why or why not?

d. Is the event of choosing disk 1 on both the first and
second selections independent of the event that nei-
ther disk 3 nor 4 is chosen in the selection process?

24. The AJAX Microchip Company produces memory
chips for personal computers. The company’s entire pro-
duction is generated from two assembly lines, labeled
“1" and “IL.” Assembly line I uses more rapid assembly
techniques and produces 80 percent of the company’s
output, while assembly line II produces 20 percent of
the output. The probability that a memory chip pro-
duced on assembly line I is defective is .05, while the
corresponding probability for assembly line I is .01.

A memory chip is chosen at random from a bin con-
taining a day’s production. Given that the chip is found
to be defective, what is the probability that the chip
was made on assembly line I1? (Hint: Can you put this
problem in a form for which Bayes’s rule would be ap-
plicable?)

25. The management of the AJAX Microchip Company
{mentioned in Problem 24) is interested in increasing
quality control at the plant and is considering the pur-
chase of a testing device that can determine when a
memory chip is faulty. In particular, the specifications
on the device are as follows:

P(A | B)=P|A | B) = .98,
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where A is the event that the testing device indicates
that a memory chip is faulty, and B is the event that the
memory chip really is faulty.

a. What is the probability that the testing device in-
dicates that a memory chip is not faulty, given that
the memory chip really is faulty?

b. If the testing device is applied to the memory
chips produced by AJAX’s assembly line I, what is
P(B| A), i.e., the probability that a chip really is
faulty, given that the testing device indicates the
chip is faulty?

c. Suppose AJAX management wants P{B | A} to be
.95. What is the value of r = P(A | B) = P|4 | B)
that will ensure this testing accuracy if the test is
applied to the chips produced on assembly line I2

26. Let S = [0, 5] be a sample space containing all pos-
sible values of the daily quantity demanded of elec-
tric power for a large midwestern city in the sum-
mer months. The units of measurement are millions
of megawatts, and the capacity of the power grid is 5
million megawatts.

Answer the following questions concerning proba-
bility assignments to events in the sample space, S, re-
lating to the daily demand for electric power. Treat the
information provided in the questions as cumulative.
Justify your answers.

a. Given that A = [0,4], B = [3,5], P[A) = .512
and P(B) = .784, what is the probability that the
power demand will be no greater than 4 million
megawatts and no less than 3 million megawatts,
i.e., what is the probability of A N B?

b. What is the probability of event C = [0, 3}
c. Can P(D) = .6, given that D = [0, 2.5]?

d. Given that P([0,2]) = .064, what is the probability
of event E = (2,4)2

27. SUPERCOMP,; a retail computer store, sells per-
sonal computers and printers. The number of comput-
ers and printers sold on any given day varies, with the
probabilities of the various possible sales outcomes be-
ing given by the following table:

Number of Computers Sold
0 1 2 3 4

003 03 02 02 01y, .
Number 1.02 .05 06 .02 .01
of printers 2] .01 .02 .10 .05 .05 o'
sold  3].01 .01 .05 .0 .o/ Sementary
4101 01 01 .05 .5)cEvens

a. Define an appropriate sample space for the experi-
ment of observing how many computers and print-
ers are sold on any given day.

b. Canthe information provided in the table be used to
define a probability set function for assigning prob-
abilities to all events in the sample space? Explain
(briefly, but clearly).

c. What is the probability that more than two com-
puters will be sold on any given day? What is the
probability that more than two printers will be sold
on any given day? In each case, define the set of out-
comes in S that corresponds to the stated events.

d. What is the probability of selling more than two
printers, given that more than two computers are
sold? Show your calculation.

e. What is the probability of selling more than two
printers and more than two computers? Show your
calculation.

f. What is the probability that SUPERCOMP has no
sales on a given day? Given that SUPERCOMP sells
no computers, what is the probability that it sells
no printers on a given day?
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The outcomes of many types of experiments are inher-
ently in the form of real numbers. For example, measuring the height and weight
of individuals, observing the market price and quantity demanded of a com-
modity, measuring the yield of a new type of wheat, or measuring the miles
per gallon achievable by a new compact automobile all result in real-valued
outcomes. The sample spaces associated with these types of experiments are
subsets of the real line or, at least, subsets of n-dimensional real space, R".

There are also experiments whose outcomes are not inherently numbers
and whose sample space is not inherently a subset of a real space. For example,
observing whether a tossed coin results in heads or tails, observing whether
an item selected from an assembly line is defective or nondefective, observ-
ing the type of weeds growing in a field of wheat, and observing which engine
components caused an engine failure in an automobile are not experiments
characterized by real-valued outcomes. It will prove to be both convenient and
useful to convert these sample spaces into real-valued sample spaces by asso-
ciating a real number to each outcome in the original sample space. Such a
procedure might be looked upon as coding the outcomes of an experiment with
real numbers.
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Furthermore, the outcomes of an experiment may not be of direct interest
in a given problem setting; instead, images of a real-valued function of the
outcomes may be of prime importance. For example, in a game of craps, it
is not the outcome of each die that is of primary importance, but rather the
sum of the dots facing up determines whether a player has won or lost. As
another example, if a firm is interested in calculating the profit associated with
a given operation, it is the price of the product multiplied by the quantity sold,
which gives the total revenue, that will be of primary importance in the profit
calculation, and not price and quantity, per se.

All of the previous situations involve the concept of a random variable,
which can be used to characterize the outcomes of an experiment as a set of
real numbers. We now develop the concept of a random variable.

2.2 Univariate Random Variables and Density Functions

Definition 2.1
Univariate
random variable

Figure 2-1
Random variable X.

We begin with a definition of the term random variable appropriate for the
univariate, or one-variable, case.

Let {S, T, P} be a probability space. If X : S — R (or simply, X} is a real-valued
function having as its domain the elements of S, then X : § — R (or X} is
called a random variable.

A pictorial illustration of the random variable concept is given in Figure 2.1.
The reader might at least find it curious, and perhaps even consider it a
misnomer, for the expression “random variable” to be used as a label for the
concept just given. The expression random-valued function would seem more
appropriate since it is, after all, a real-valued function that is at the heart of the

Sample Space X:S—> R Real Line

Tz/‘"\
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concept presented in the definition. Nonetheless, usage of “random variable”
has become standard terminology, and we will use it also.

Henceforth, the symbol X{w} will be used to represent the image of w € §
generated by the random variable X : § — R. We will use the lowercase x to
indicate a value of the function X, and x can also be interpreted as a short-
hand notation for an image value x = X(w)]. As indicated in the definition,
X will be used as an abbreviated notation for representing a random variable
whenever it is both convenient and appropriate. The letter X that we use here
is arbitrary, and any other symbol could be used to denote a random variable.
For the most part, we will use letters in the latter part of the alphabet for
representing random variables.! Letters at the beginning of the alphabet will be
used to denote constants, and so the expression x = a will mean that the value,
x, of the random variable, X, equals the constant a. Similarly, x ¢ A will mean
that the value of X is an element of the set A.2

If the outcomes of an experiment are real numbers to begin with, they are
directly interpretable as values of a random variable since we can always rep-
resent the real-valued outcomes w € S as images of an identity function, e.g.,
X(w) = w. If the outcomes of an experiment are not initially in the form of
real numbers, a random variable can be defined that associates a real number
with each outcome, as X{w)} = x, i.e., the random variable effectively codes
the outcomes of a sample space with real numbers. Thus, through the use of
the random-variable concept, all experiments with univariate outcomes can be
interpreted as having sample spaces consisting of real-valued elements. In par-
ticular, the range of the random variable, R(X), represents a real-valued sample
space for the experiment. In terms of set notation, the range of the random
variable, X, can be defined as R(X) = {x: x = X{w), w € S}. When we refer to
the outcome of the random variable, we mean the particular image element in
R(X) that occurs as a result of observing the outcome of a given experiment,
i.e., if the outcome of an experiment is w € §, then the outcome of the random
variable is x = X(w).

Probability Space Induced by a Random Variable

Now that we have defined a real-valued sample space for a given experiment
using the random-variable concept, we seek to embed the sample space within
a probability space that can be used for assigning probabilities to events involv-
ing random-variable outcomes. To accomplish this, we must establish how
probabilities are to be assigned to subsets of the real-valued sample space R(X],
i.e., we must define an appropriate probability set function. We also need to

1Teaching suggestion: When lecturing in statistics and econometrics classes, I have found it useful to underscore with a tilde, ~,
the capital letter used to represent a random variable. This provides an unmistakable distinction between the function and a value
of the function when writing expressions on the blackboard. Thus, X and X will mean precisely the same thing, with the tilde being
used for emphasis to avoid misinterpreting handwritten capital letters as lowercase letters, and vice versa.

ZNote that X = a and X € A is alternative shorthand notation that is often used to represent that the value of X is equal to a or is
in the set A. Our notation establishes a distinction between the function, X, and a value of the function, x.
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Figure 2-2

Subset of range elements,
A, and associated domain
elements, B, of X.

identify the collection of subsets of R(X) that will be assigned probability, i.e.,
define the event space or domain of the probability set function.

We begin with knowledge of the probability space, {S, T, P}, so we are
equipped to assign probabilities to events in S. What is the probability that
an outcome of X resides in the set A c R(X)? It stands to reason that if an
event in S can be found, say B, that occurs iff the event A c R(X) occurs, then
the two events must have the same probability of occurring, and we can state
that Px(A) = P(B), where Px|(-) denotes the probability set function for assign-
ing probability to events for outcomes of X. Two events that are associated
with different probability spaces but that occur only simultaneously are called
equivalent events. Such an event B can be definedas B= {w: X{w) e A, w € §},
which is the set of inverse images of the elements in A based on the function
X. By definition, w € B < x € A, and thus A and B are equivalent events (see
Figure 2.2). We then have the following representation of probability assign-
ments to events involving random-variable outcomes:

Px(A)=P(B) forB={w: X(w)e A, w € S}.

Thus, probabilities assigned to events in S are transferred to events in R(X)
through the functional relationship x = X(w), which relates outcomes w in S
and outcomes x in R(X).

What should the domain of Px(-) be, i.e., what is the event space for random-
variable outcomes? It is clear from the foregoing discussion that to be able to
assign probabilities to a set A C R(X) it must be the case that its associated set
of inverseimagesin S, B = {w: X(w) € A,w € S},isaneventin §, i.e., it must be
the case that B € Y. If not, a problem exists in that there is no basis for assigning
probability to either set B or A from knowledge of the probability space {S, Y, P}
since B would not be in the domain of P[-). No difficulty will arise if S is a finite
or countably infinite sample space, since then the event space Y equals the
collection of all subsets of S, and whatever subset B C S is associated with
the subset A ¢ R(X), B will be an event in S. Thus, any real-valued function
defined on a discrete sample space will generate a real-valued sample space for
which all subsets can be assigned probability. Henceforth, the event space, Yy,
for outcomes of random variables defined on finite or countably infinite sample
spaces is defined to be the set of all subsets of R(X).

In order to avoid the problem that occurs when § is uncountably infinite,
one simply restricts the types of real-valued functions that are used to define
random variables to those for which the problem will not occur. To this effect,

R(X) B={w:X(We A, we S} Sample Space

N = s
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a proviso is generally added, either explicitly or implicitly, to the definition
of a random variable X requiring the real-valued function defined on S to be
such that for every Borel set, A, contained in R(X) (recall Def. 1.9), the set
B ={w: X{w) € A,w € S} is an event in S, i.e.,, B € Y. Then, since every
Borel set A C R{X) would be associated with an event B C S, every Borel set
could be assigned a probability as Px(A) = P(B). Since the collection of Borel
sets includes all intervals in R(X) (and thus all points in R(X]), as well as all
other sets that can be formed from the intervals by a countable number of
union, intersection, and/or complement operations, the collection of Borel sets
defines an event space sufficiently large for all practical purposes. Furthermore,
we know from the discussion in Section 1.6 that an event space consisting of
the Borel sets does not cause inherent conflicts with the probability axioms,
and we will also see that such an event space facilitates the use of integrals for
defining probabilities of events when R(X) is uncountable.

In practice, it requires a great deal of ingenuity to define a random variable
for which probability cannot be associated with each of the Borel sets in R{X),
and the types of functions that naturally arise when defining random variables
in applications will generally satisfy the aforementioned proviso. Henceforth,
we will assume that the event space, T, for random-variable outcomes consists
of all Borel sets in R{X) if R{X} is uncountable. We add that for all practical
purposes, the reader need not unduly worry about the latter restriction to Borel
sets, since any subset of an uncountable R(X) that is of practical interest will
be a Borel set. ’

In summary, a random variable induces an alternative probability space for
the experiment. The induced probability space takes the form {R(X), Tx, Px},
where the range of the random variable R{X) is the real-valued sample space,
Y is the event space for random-variable outcomes, and Py is a probability set
function defined on the events in Yy.

Random Variable

Probability Space X:5->R Induced Probability Space

Example 2.1

RX)={x: x=XWw),weS)
{S, 7, P(-)} x = X(w) Tx = {A: Ais an event in R(X)}
Px(A)=P(B),B={w: X(w) e A,w e S§},VAe Ty

Let S={1,2,3,..., 10} represent the potential numbers of cars that a car sales-
person sells in a given week, let the event space T be the set of all subsets
of S, and let the probability set function be defined as P(B) = {1/55)Y .z W
for B € Y. Suppose the salesperson’s weekly pay consists of a base salary of
$100/week plus a $100 commission for each car sold. We can represent the
salesperson’s weekly pay by the random variable X{w) = 100+ 100w, for w € S.
The induced probability space {R(X), Tx, Px} is then characterized by R(X) =
{200, 300,400, ...,1,100}, Tx = {A: A C R(X)}, and Px(A) = (1/55)% s W
for B = {w: (100 + 100w) € A,w € S} and A € Yx. Then, for example, the
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event that the salesperson makes < $300/week, A = {200, 300}, has probability
Px(A) = (1/55) 31,0y W = (3/55). O

A major advantage in dealing with only real-valued sample spaces is that all
of the mathematical tools developed for the real number system are available
when analyzing the sample spaces. In practice, once the induced probability
space has been identified; the underlying probability space {S, Y, P} is generally
ignored for purposes of defining random-variable events and their probabili-
ties. In fact, we will most often choose to deal with the induced probability
space {R|(X), Tx, Px} directly at the outset of an experiment, paying little atten-
tion to the underlying definition of the function having the range R(X) or to
the original probability space {S, Y, P}. However, we will sometimes return to
the relationship between {S, Y, P} and {R(X), Tx, Px} to facilitate the proofs of
certain propositions relating to random-variable properties.

Note for future reference that a real-valued function of a random variable is,
itself, arandom variable. This follows by definition, since a real-valued function
of a random variable, say Y defined by y = Y(X(w}) for w € S, is a function of
a function (i.e., a composition of functions) of the elements in a sample space
S, which is then indirectly also a real-valued function of the elements in the
sample space S {recall Def. 2.1). One might refer to such a random variable as a
composite random variable.

Discrete Random Variables and Probability Density Functions

In practice, it is useful to have a representation of the probability set func-
tion, Py, that is in the form of a well-defined algebraic formula and that does
not require constant reference either to events in S or to the probability set
function defined on the events in S. A conceptually straightforward way of rep-
resenting Px is available when the real-valued sample space R(X) contains, at
most, a countable number of elements. In this case, any subset of R(X) can be
represented as the union of the specific elements comprising the subset, i.e.,
if A c R(X), then A = | J,4{x]. Since the elementary events in A are clearly
disjoint, we know from Axiom 1.3 that Px{A) = 3", .4 Px{{x}). It follows that
once we know the probability of every elementary event in R(X), we can assign
probability to any other event in R(X) by summing the probabilities of the el-
ementary events contained in the event. This suggests that we define a point
function f : R(X) — R as f{x) = probability of x = Px{{x}) ¥V x € R(X). Once f
is defined, then Py can be defined for all events as Px(A) = }_, .4 f{x). Further-
more, knowledge of f{x) eliminates the need for any further reference to the
probability space {S, Y, P} for assigning probabilities to events in R(X).

In the following example we illustrate the specification of the point func-
tion, f.

Examine the experiment of rolling a pair of dice and observing the number of
dots facing up on each die. Assume the dice are fair. Letting i and j represent
the number of dots facing up on each die, respectively, the sample space for
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the experiment is § = {{1,j): i and j € {1,2,3,4,5,6}}. Now define the random
variable x = X{(i, j)) = i +7, for (i, j) € S. Then the following correspondence can
be set up between outcomes of X, events in S, and the probability of outcomes
of X and events in S, where w = {i, j):

Xw) = x B, ={w: X(w)=x,weS} f(x) = P(By)
(2 {(1, 1)} 1/36
3 {(1,2),(2,1)} 2/36
4 {1, 3), (2,2) 3, 1)} 3/36
5 {(1,4),(2,3),(3,2),(4,1)} 4/36
6 {(1,5),(2,4),(3,3),4,2),(5, 1)} 5/36
R(X) 7 {(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)} 6/36
8 {(2,6),(3,5),(4,4),(5,3),(6,2)} 5/36
9 {(3,6),(4,5),(5,4),(6,3)} 4/36
10 {(4,6),(5,5),(6,4)} 3/36
1 {(5,6),(6,5)} 2/36
12 {(6, 6)} 1/36

The range of the random variable is R(X) = {2, 3, ..., 12}, which represents
the collection of images of the points (i,j) € S generated by the function x =
Xi{4, i)} = i + j. Probabilities of the various outcomes of X are given by fix) =
P(By), where By is the collection of inverse images of x.

If we desired the probability of the event that x € A = {7, 11}, then Px(A) =
Y veafix) = fi7) + fi11) = 8/36 (which, incidentally, is the probability of win-
ning a game of craps on the first roll of the dice). If A = {2}, the singleton set
representing “snake eyes,” we find that Px(A)=Y", 4 f(x)=f(2)=1/36. 0O

In examining the outcomes of X and their respective probabilities in Ex. 2.2,
it is recognized that a compact algebraic specification can be suggested for f{x),
namely3

- |x =7
fix = =
It is generally desirable to express the relationship between domain and image
elements of a function in a compact algebraic formula whenever possible, as
opposed to expressing the relationship in tabular form as in Ex. 2.2. This is es-
pecially true if the number of elements in R{X) is large. Of course, if the number
of elements in the domain is infinite, the relationship cannot be represented in
tabular form and must be expressed algebraically. The reader is asked to define
an appropriate point function f for representing probabilities of the elementary
events in the sample space R(X) of Ex. 2.1.

I3, 12)(x).

3Notice that the algebraic specification faithfully represents the positive values of f{x) in the preceding table of values and defines
fix)toequal 0V x ¢ {2,3,...,12}. Thus, the domain of f is the entire real line. The reason for extending the domain of f from R(X)
to R will be discussed shortly. Note that assignments of probabilities to events as Px{A) = Y, .4 flx) are unaffected by this domain
extension.
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Definition 2.2
Discrete
random variable

Definition 2.3
Discrete probability
density function

We emphasize that if the outcomes of the random variable X are the out-
comes of interest in a given experimental situation, then given that a probabil-
ity set function, Px{A) = Y, .4 fix), has been defined on the events in R{X), the
original probability space {S, T, P} is no longer needed for defining probabilities
of events in R(X). Note that in Ex. 2.2, given f(x), the probability set function
Px(A) = Y, fix) can be used to define probabilities for all events A C R(X)
without reference to S or P(B,), By C S.

The next example illustrates a case where an experiment is analyzed exclu-
sively in terms of the probability space relating to random-variable outcomes.

The Bippo Lighter Co. manufactures a budget-priced cigarette lighter that has
a .90 probability of lighting on any given attempt to use the lighter. The proba-
bility that it lights on a given trial is independent of what occurs on any other
trial. Define the probability space for the experiment of observing the number
of trials required to obtain the first light. What is the probability that the lighter
lights in 3 or fewer trials?

Answer: The range of the random variable, or equivalently the real-valued sam-
ple space, can be specified as R(X) = {1,2,3,...}. Since R(X) is countable, the
event space Yx will be defined as the set of all subsets of R(X). The probability
that the lighter lights on the first attempt is clearly .90, and so f{1) = .90. Using
independence of events, the probability it lights for the first time on the sec-
ond trial is {.10){.90) = .09, on the third trial is {.10)%(.90) = .009, on the fourth
trial is (.10)3(.90) = .0009, and so on. In general, the probability that it takes
x trials to obtain the first light is flx) = (.10)*"}{.90)I) 2.,..;(x). Then the prob-
ability set function is given by Px(A) = Y, 4(.10*"1(.90)I{1,2,3,..;(x). The event
that the lighter lights in three trials or less is represented by A = {1, 2, 3}). Then
Px(A) = Y3 _,(.10)*1(.90) = .999. O

The preceding examples illustrate the concept of a discrete random variable
and a discrete probability density function, which we formalize in the following
definitions.

A random variable is called discrete if its range consists of a countable num-
ber of elements.

The discrete probability density function, f, for a discrete random variable
X is defined as f{x) = probability of x, V x € R(X), and f{x) = 0, V x ¢ R(X).

It should be noted that even though there is only a countable number of
elements in the range of the discrete random variable X, the probability density
function (PDF) defined here has the entire {uncountable) real line for its domain.
The value of f at a point x in the range of the random variable is the probability of
x, while the value of f is zero at all other points on the real line. This definition is
adopted for the sake of convenience—it standardizes the domain of all discrete
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density functions to be the real line while it has no effect on the assignment of
probabilities to events via the set function Px(A) = }_, 4 fix). This convention
also provides a considerable simplification in the definition of marginal and
conditional density functions, which we shall examine shortly.

In our previous examples, the probability space for the experiment was
a priori deducible under the stated assumptions of the problems. It is most
often the case in practice that the probability space is not a priori deducible,
and an important problem in statistical inference is the identification of the
appropriate density function, f{x), to use in defining the probability set function
component of the probability space.

Continuous Random Variables and Probability Density Functions

So far, our discussion concerning the representation of Px in terms of the point
function, f{x), is applicable only to those random variables that have a count-
able number of possible outcomes. Can Px be similarly represented when the
range of X is uncountably infinite? Given that we can have an event A defined
as an uncountable subset of R(X), it is clear that the summation operation
over the elements of the set (i.e., ), 4] is not generally defined. Thus, defin-
ing a probability set function on the events in R(X) as P(A) = Y, .4 fix) will
not be possible. However, integration over uncountable sets is possible, sug-
gesting that the probability set function might be defined as P(A) = [, _, flx)dx
when R(X) is uncountably infinite. In this case the point function fix) would
be defined so that [, _, flx)dx defines the probability of event A. The following
example illustrates the specification of such a point function f{x) when R(X) is
uncountably infinite.

Suppose a trucking company has observed that accidents are equally likely to
occur on a certain 10-mile stretch of highway, beginning at point 0 and ending
at point 10. Let R{X) = [0, 10] define the real-valued sample space of potential
accident points.

T ‘ I 1

0 a b 10

Itis clear that given that all points are equally likely, the probability set function
should assign probabilities to intervals of the highway, say 4, in such a way that
the probability of an accident is equal to the proportion of the total highway

length represented by the stretch of highway, A, as
lengthof A b—a

Pyx(A) = 0 o for A = {a, b].
If we wish to assign these probabilities using Px(A) = [ _, flx)dx, we require
that

b b-a
/ f(x)dxsTO- forall0<a<b < 10.
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density functions

The following lemma will be useful in deriving the explicit functional form of

fix).

Let f{x) be a continuous function at b and g, respectively.® Then

3 [ fix)dx 3 J? flx)dx
da

3% =flb) and

Applying the lemma to the preceding integral identity yields

b-a
o fxdx . (%) 1
T—f(b)=T-T6' Vbe[OIIO]I
which implies that the function defined by f{x) = .11} 10){x) can be used to define
the probability set function Px(4) = [, .1dx, for A € Yx.

For an example of the use of this representation, the probability that an

accident occurs in the first half of the stretch of highway, i.e., the probability
of event A = [0, 5], is given by Px(A) = fos 1dx = .5. O

The preceding example illustrates the concept of a continuous random vari-
able and a continuous probability density function, which we formalize in the
next definition.

A random variable is called continuous if its range is uncountably infinite,
and if there exists a nonnegative-valued function f{x}, defined for all x €
(—o0, 0), such that for any event A C R(X], Px(A) = [, ,fix)dx, and fix} =

0V x ¢ R(X). The function f{x) is called a continuous probability density
function.

Clarification of a number of important characteristics of continuous ran-
dom variables is warranted. First of all, note that probability in the case of a
continuous random variable is represented by the area under the graph of the
density function f and above the points in the set A, as illustrated in Figure 2.3.

Of course, the event in question need not be an interval, but given our con-
vention regarding the event space Yx, the event will be a Borel set for which
an integral can be defined. A justification for the existence of the integral for

4Gee F.S. Woods (1954) Advanced Calculus. Boston: Ginn and Co., p. 141. Regarding continuity of f{x), note that f{x} is continuous
at a point d € D(f} if, ¥ € > 0, 3 a number §(e) > 0 such that if |x — d| < §(e), then f(x) — fld) < e. The function f is continuous if it is
continuous at every point in its domain. Heuristically, a function will be continuous if there are no breaks in the graph of y = f{x).
Put another way, if the graph of y = f{x) can be completely drawn without ever lifting a pencil from the graph paper, then f is a

continuous function.
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y
y=flx)
Px(A) = [5fx)dx
Figure 2-3
Probability a b x
represented as area. A={x:asxsb}

Borel sets is beyond the scope of this text, but implementation of the inte-
gration process in these cases is both natural and straightforward.> The next
example illustrates the procedure of determining probabilities for events more
complicated than a single interval.

Example 2.5 Reexamine the highway accident example (Ex. 2.4), where R(X] = [0, 10] and
flx) = .1Ijg 10)(x).

a. What is the probability of A = [1,2] U (7, 9]? The probability of A is given
by the area above the points in A and below the graph of f, i.e.,

pX(A)=/X€Af(x)dx=/12 (%)dx+f79 (%)dx=.1+.2=.3.

b. Given A defined above, what is the probability of A = [0, 1)U(2, 7)U(9, 10]?
The area representing the probability in question is calculated as

o= () 2+ [ (1) e+ [ (55)

=.1+.5+.1=.7 o

Px(A)

I

A consequence of the definition of the probability set function Py in Def. 2.4
is that, for a continuous random variable, the probability of any elementary
event is zero, i.e., if A = {a}, then Px(A) = [ fix)dx = 0. Note that this cer-
tainly does not imply that every outcome of X in R(X) is impossible, since some
elementary event in R(X) will occur as a result of a given experiment. Instead,
Px({x}} = 0 ¥ x € R(X) suggests that zero probability is not synonymous with
impossibility. In cases where an event, say A, can occur, but the probability set

51t can be shown that Borel sets are representable as the union of a collection of disjoint intervals, some of which may be single
points. The collective area in question can then be defined as the sum of the areas lying above the various intervals and below the
graph of f.
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function assigns the event the value zero, we say event A occurs with prob-
ability zero. The reader might intuitively interpret this to mean that event
A is relatively impossible, i.e., relative to the other outcomes that can occur
(R{X)—A), the likelihood that A would occur is nil. We add that the notion of an
event occurring with zero probability is not restricted to continuous random
variables—it arises in discrete cases as well. In Section 2.9, we present exam-
ples where R(X] is countably infinite and where R(X]) is finite, and we show that
in both cases one can define events in R(X) that occur with probability zero.
Note that the above argument together with Theorem 1.1 then suggest that if
Px(A) = 1, it does not follow that event A is certain to occur. In the spirit of
our preceding discussion, if event A is assigned a probability of 1, we say event
A occurs with probability 1, and if, in addition, A # R{X), we might also state
that event A is relatively certain.

Note that an important implication of the preceding property for contin-
uous random variables, which has already been utilized in Ex. 2.5b, is that
the sets [g, b), (g, b), [q, b), and (q, b} are all assigned the same probability value
[, fix)dx, since adding or removing a finite number of elementary events to an-
other event means adding or removing a collection of outcomes that occur with
probability zero. That is, since [a, b] = (a, b]U{a} = [a, b)U{b) = (a, b)u{a}U (b},
and since Px({a}) = Px({b}) = 0, Axiom 1.3 implies that Px{[a, b]) = Pxl{(a, b]) =
Px([a, b)) = Px((a, b)), so that the integral [ ab fix)dx suffices to assign the appro-
priate probability to all four interval events.

There is a fundamental difference in the interpretation of the image value
fix) depending on whether f is a discrete or continuous probability density func-
tion. In particular, while f{x) is the probability of the outcome x in the discrete
case, f{x) is not the probability of x in the continuous case. To motivate this
latter point, recognize that if flx) were the probability of outcome x in the
continuous case, then by our argument above, f{x) = 0 V x € R(X) since the
probability of elementary events are zero. But this would imply that for every
event A, including the certain event R(X), Px(A) = [ ., flx)dx = [,_,0dx =0,
since having an integrand of O ensures that the integral has a zero value. The
preceding property would contradict the interpretation of Px as a probability
set function, and so f{x) is clearly not interpretable as a probability. It is inter-
pretable as a density function value, but nothing more—the continuous PDF
must be integrated to define probabilities.

As in the discrete case, a continuous PDF has the entire real line for its
domain. Again, this convention is adopted for the sake of convenience, as it
standardizes the domain of all continuous density functions while leaving prob-
abilities of events unaffected. It also simplifies the definition of marginal and
conditional probability density functions, which we will examine shortly. The
convention is generally straightforward to accommodate through the use of in-
dicator functions. For example, in Ex. 2.5, the extension of the domain of f{x) to
the entire real line is accomplished simply by utilizing the indicator function
in defining f{x) as fix) = (1/10)Ijg,10){x).

We now provide another example of a continuous random variable together
with its density function, where the latter, we will assume, has been discovered
by your personnel department.
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Definition 2.5

The classes of discrete
and continuous
probability density
functions—univariate
case

Examine the experiment of observing the amount of time that passes between
work-related injuries to employees working at a metal fabricating plant. Let
R(X) = {x: x> 0} represent the potential outcomes of the experiment measured
in hours, and let the density of the continuous random variable be given by

1
i) = 7556 Plo o)

a. What is the probability of the event that 100 or more hours pass between
work-related injuries? Letting A = {x: x > 100} represent the event in
question,

® 1
PlA] = L pmx100 35 . _p=X/100 [ _ _,=00/100 4 o=l _ o=l _ 37
(A) ./100 100° X e li00=—¢ +
b. What is the probability that an injury occurs within 50 hours of the previous
injury? Letting B = {x: 0 < x < 50} represent the event in question,

50 1
P(B) = /0 Iﬁﬁe_x/wo dx = —e~/100 |30— _¢=50/100 4 40 _ ] _ 61 = .39, |

Classes of Discrete and Continuous PDFs

In our later study of statistical inference, we will generally identify an appro-
priate range for a random variable based on the characteristics of a particular
experiment being analyzed and have as an objective the identification of an
appropriate f{x) with which to complete the specification of the probability
space. The fact that for all events A C R(X) the values generated by )", _, f{x) or
fiea fIx)dx must adhere to the probability axioms places some general restric-
tions on the types of functions that can be used as density functions, regardless
of the specific characteristics of a given experiment. These general restrictions
on the admissible choices of f{x) are identified in the following definition.

a. Class of discrete density functions. The function f : R — R is a member
of the class of discrete density functions iff (1) the set C = {x: flx| >
0,x € R} (i.e., the subset of points in R having a positive image under f)
is countable; (2) flx) =0 forx € C; and (3) 3_, - flx) = 1.

b. Class of continuous density functions. The function f : R - Ris a
member of the class of continuous density functions iff (1} fix) > O for
x € (—o0,00); and (2) [ fix)dx = 1.

Some clarifying remarks concerning Def. 2.5 are warranted. First, it should
be noted that the definition simply identifies the respective classes of function
specifications that are to be considered as candidates for use as probability
density functions. The specific functional form of the density function chosen
to define the probability set function for a real-world experimental situation
depends on the particular characteristics of the process generating the outcomes
of the experiment.
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A second observation concerns the fact that the definitions focus exclu-
sively on real-valued functions having the entire real line for their domains. As
we discussed earlier, this is a convention adopted as a matter of convenience.
To ensure that subsets of points outside of the range of X are properly assigned
zero probability, all one needs to do is extend the domain of f to the remain-
ing points R — R(X) on the real line by assigning to each point a zero density
weighting, i.e., flx) = 0 if x € R(X).

A final remark concerns the rationale in support of the properties that are
required for a function f to be considered a probability density function. The
properties are imposedon f : R — R to ensure that the set functions constructed
fromf, i.e.,

Px(A) = Z flx) (discrete case)
xeA
or

Px(A) = f N fix)dx (continuous case),
X€

are in fact probability set functions, which of course requires that the proba-
bility assignments adhere to the axioms of probability. To motivate the suffi-
ciency of the conditions for Py to satisfy the probability axioms, first examine
the discrete case. Since f{x) > 0V x, Px{A) = }_, .4 f(x) = O for any event A,
and Axiom 1.1 is satisfied. Letting R(X) equal the set C defined in Def. 2.5.a, it
follows that Px(R(X)) = 3_, .pix fix) = 1, satisfying Axiom 1.2. Finally, if | J;; A;
is the union of a collection of disjoint events indexed by the index set I, then
summing over all of the elementary events in A = | J,_; A; obtains

Py (UA,) ST =Y (z f(x}> = Y Pl

iel x€A iel \xeA; iel

iel

Thus, the three probability axioms are satisfied, and Py is a probability set
function.

To motivate sufficiency in the continuous case, first note that Axiom 1.1 is
satisfied since if flx) > 0V x, then Px(A) = [ _, flx)dx > 0, because integrating a
nonnegative integrand over any interval (or Borel) set, A, results in a nonnega-
tive number. Furthermore, since [ f{x)dx = 1, there exists at least one event
A C [~o0,00) such that [, _, fix)dx =1 (the event can be (—o0, c0) itself, or else
there may be some other partition of (—oo, oo} into AUB such that [, _, fix)dx =1
and [ _, flx)dx = 0). Letting R(X) = A, we have that Px(R(X)) = Seern fixldx =1
and Axiom 1.2 is satisfied. Finally, if D = [ J;.; A; is the union of a collection
of disjoint events indexed by the index set I, then by the additive property of
integrals

PD)= [ fixldx =Y ( f(x)dx) = " Pylay).

xeD iel \JxeAi el
Thus, the three probability axioms are satisfied, and Px is a probability set
function.
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Example 2.7

It can also be shown that the function properties presented in Def. 2.5 are
actually necessary for the discrete case and practically necessary in the con-
tinuous case. For the discrete case, first recall that f{x) is directly interpretable
as the probability of the outcome x, and this requires that flx) > 0V x € R
(or else we would be assigning negative probabilities to some x’s). Second, the
number of outcomes that can receive positive probability must be countable
in the discrete case since R{X) is countable, leading to the requirement that
C = {x: flx) > 0,x € R} is countable. Finally, >, .- fix) = 1 is required if the
probability assigned to the certain event is to equal 1.

In the continuous case, it is necessary that [* flx)dx = 1. To see this,
first note that R(X) is the certain event, 1rnply11_1_g__(R(X )} = 1. Now since R(X)
and R(X) are disjoint, we have that PX(R(X) U R(X)) = Px(R(X)) + Px(R(X)) =
1 + Px{R(X)), which implies Px|R[X)) = O since probabilities cannot exceed 1.
But, since R(X) U R(X) = R by definition, then P(R(X)U R(X)) = [ fix)dx = 1.
Regarding the requirement that f{x) > 0 for x € (—o0, 00), note that the condition
is technically not necessary. It is known from the properties of integrals that the
value of [ ab flx)dx is invariant to changes in the value of f{x) at a finite number of
points, and thus f{x) could technically be negative for a finite number of x values
without affecting the values of the probability set function. As others do, we
will ignore this technical anomaly since its practical significance in defining
probability density functions is nil. We thus insist, as a practical matter, on the
nonnegativity of f{x). It also follows from the preceding invariance property of
the integral that density functions are not unique for representing probability
set functions in the continuous case.

For each case, determine whether the stated function can serve as a probability
density function.

a. fix) = (1/2)Ijp9(x).
Answer: The function can serve as a continuous probability density func-
tion since f{x) > 0V x € (—o0, 00} (note f{x) = 1/2 > 0 Vx €[0,2] and f(x)
for x ¢ [0,2]), and % flx)dx = [ (1/2)oy(x)dx = [2(1/2)dx = % |3=1

b. flx) = (.3)*(.7)* >0, 1)(X)
Answer: The function can serve as a discrete ;;robability density function
since flx) > 0 on the countable set {0,1}, }_,_,fix) = 1, and flx) =
x ¢ {0, 1}.

c. flx)= (XZ + )y, ylx).
Answer: The function cannot serve as a probability density function. While

filx) > 0V x € (o0, o), the function does not integrate to 1:

f fixkdx = [ (% + i

1

= / (x? + 1)dx
-1

x3 18
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Example 2.8

d. flx) = [3/8)lx? + 1)y fx).
Answer: The reader should demonstrate that this function can serve as a
continuous probability density function. Note its relationship to the func-
tion in part c. a

*Mixed Discrete-Continuous Random Variables

The categories of discrete and continuous random variables do not exhaust the
possible types of random variables. There is a category of random variable called
mixed discrete-continuous which exhibits the characteristics of a discrete ran-
dom variable for some events and the characteristics of a continuous random
variable for other events. In particular, a mixed discrete-continuous random
variable is such that a countable subset of the elementary events is assigned
positive probability, as in the case of a discrete random variable, except the
sum of the probabilities over the countable set does not equal 1. The remaining
probability is attributable to an uncountable collection of elementary events,
each elementary event being assigned zero probability, as in the case of a con-
tinuous random variable. The following example illustrates the concept of a
mixed discrete-continuous random variable.

Let X be a random variable representing the length of time, measured in thou-
sands of hours, that an active matrix color screen for a notebook computer
operates properly. Assume the probability set function associated with the ran-
dom variable is Px{A) = .25I4(0) + .75 [, . A-(0) e *Ijp «)(x)dx for every event A
(i.e., Borel set) contained in R{X) = [0, o0).

a. What is the probability that the color screen is defective, i.e., it does not
function properly at the outset?
Answer: The event in question is A = {0}. Using Px, we calculate the prob-
ability to be Px({0}) = .25I(0)(0) + .75 f, ., e *dx = .25. (Note: By definition,
Jeeg fix)dx =0.)

b. What is the probability that the color screen operates satisfactorily for less
than 1,000 hours?
Answer: Here, A = [0, 1). Using Py, we calculate Px([0, 1)} = .25I}0,1)(0) +
75 fy e7*dx = 25 + .474 = .724.

c. What is the probability that the color screen operates satisfactorily for at
least 500 hours?
Answer: The event in question is A = [.5, 00). The probability assigned to
this event is given by Px|([.5, 00)) = .25](5,,0)(0) +.75 [2" e™*dx = 0+ .6065 =
.6065. O

We formalize the concept of a mixed discrete-continuous random variable
in the following definition.
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Definition 2.6 . . . . . .
ehnt I?\'ll‘ixe d A random variable is called mixed discrete-continuous iff

discrete-continuous a. its range is uncountably infinite;

d iabl
random variables b. there exists a countable set, C, of outcomes of X such that Px{{x}) =

falx) > 0Vx e C, fylx) =0V x ¢ C, and ) falx] < 1, where the
function fy is referred to as the discrete density function component of
the probability set function of X;

c. there exists a nonnegative-valued function, f., defined for all x €
(—o00, 00) such that for every event B C R(X) — C, Px(B) = [ _,fclx)dx,
fix) =0V x e R—R(X), and [%_fc(x)dx = 1~ cfalx), where the func-
tion f; is referred to as the continuous density function component of
the probability set function of X; and

d. the probability set function for X is given by combining or mixing the
discrete and continuous density function components in parts (b) and (c)
above, as Px(A) = Y, canc falX) + [, ca_c felx)dx for every event A.

To see how the definition applies to a specific experimental situation, recall
Ex. 2.8. If we substitute f4(x) = .25I(g){x), C = {0}, and fc[x) = .75e7*]|g o)(x) into
the definition of Py given in Def. 2.6.d, we obtain

Px(A) = Z (.251[0}{X)) + .75/ B_XIloloo)[X)dX
xeAN|0) xeA-{0)
= .2514(0)+ .75 6_XI(0,00)(X)dX

xeA—{0}

which is identical to the probability set function defined in Ex. 2.8.

As the reader may have concluded from examining the definition, the con-
cept of a mixed discrete-continuous random variable is more complicated than
either the discrete or continuous random-variable case, since there is no single
PDF that can be either summed or integrated to define probabilities of events.
On the other hand, once the discrete and continuous random-variable concepts
are understood, the notion of a mixed discrete-continuous random variable is
a rather straightforward conceptual extension. Note that the definition of the
probability set function in Def. 2.6.d essentially implies that to calculate the
probability of an event A, one adds together the probabilities of the mutually
exclusive events ANC and A—C. Assigning probability to the event ANC is done
in a way that emulates the discrete random-variable case—a real-valued func-
tion (the discrete density component) is summed over the points in the event
AN C. The probability of the event A — C is calculated in a way that emulates

6We are somewhat hampered here by the scope of our study, where we are restricted to Riemann-type integrals. In a more advanced
treatment of the subject, we could resort to the use of Stieltjes integrals, in which case a single integral could once again be used to
define Px. On Stieltjes integration, see R. G. Bartle (1976), The Elemeuts of Real Analysis, 2nd ed. New York: John Wiley.
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the continuous random-variable case—a real-valued function (the continuous
density component} is integrated over the points in the event A — C. Adding to-
gether the results obtained for the “discrete” event AN C and the “continuous”
event A — C defines the probability of the “mixed” event A.

Having introduced the concept of a mixed discrete-continuous random vari-
able, we now note that there is an alternative definition for Py that can simplify
the integral involving the continuous density component. The alternative def-
inition can be used if the countable set C is such that no more than a finite
number of its elements is contained in any interval of finite length {which will
be true in virtually all applications). In this case, [,_, . felxldx = [, 4 fe(x)dx,
since the integral over the countable points in A N C will be zero, and we
can define Px in the mixed discrete-continuous case alternatively as Px{A) =
Y veanc falx) + Yy felx)dx. We will incorporate this alternative definition in
our discussion of cumulative distribution functions, which occurs in the next
section.’

2.3 Univariate Cumulative Distribution Functions

Situations arise in practice that require finding the probability of the event that
the outcome of a random variable is less than or equal to some real number,
i.e., the event in question is {x: x < b, x € R(X)} for some real number b. These
types of probabilities are given directly by the cumulative distribution function
(CDF), which we introduce in this section.

Henceforth, we will eliminate the random variable subscript used hereto-
fore in our probability set function notation; we will now write P(A) rather than
Px(A) wherever the context makes it clear to which probability space the event
A refers. Thus, the notation P(A) may be used to represent the probability of
either an event A C S or an event A C R(X). To economize on notation further,
we introduce an abbreviated set definition for representing events.

Definition 2.7 . . ..
Abbreviated set Let an event be represented in the form {x: set defining conditions, {x €

R{X)} and the probability of the event be represented by P[{x: set defining
conditions, x € R(X)}) (alternatively, S can be used in place of R(X)). The
abbreviated set definition for the event, and the probability of the event
expressed in terms of the abbreviated set definition, are respectively {set-
defining conditions} and P(set-defining conditions), the condition x € R(X)
always being tacitly assumed.

definition for events

For an example of an abbreviated set definition that is particularly relevant to
our current discussion of CDFs, note that {x < b} will be used to represent

"There are still other types of random variables besides those we have examined, but they are rarely utilized in applied work. See
T. S. Chow and H. Teicher (1978), Probability Theory, New York: Springer-Verlag, pp. 247-248.
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{x: x < b,x € R(X)}, and P[x < b) will be used to represent P({x: x < b,x €
R(X))).8
The formal definition of the cumulative distribution function, and its par-
ticular algebraic representations in the discrete, continuous, and mixed dis-
crete-continuous cases, are given next.
Definition 2.8

Univariate cumulative
distribution function

Example 2.9

The cumulative distribution function of a random variable X is defined by
Fb) = Plx < b) ¥V b € {—o00,00). The functional representation of F(b) in
particular cases is as follows:

a. Discrete X:
F(b) = Z filx), forb e (—o0,0);

x<b
fix}>0

b. Continuous X:

b
bl = [ fieldx, forb e (~oo, ool

*c. Mixed discrete-continuous X:

Abl= X fub+ [ " fix)dx, for b e (o0, 0.
x<b —00
falx)>0

Examples of cumulative distribution functions now follow.

Reexamine Ex. 2.6, where the amount of time that passes between work-related
injuries is observed. We can define the cumulative distribution function for X
as

b
Ab) = [ 5o Toearldx

b1 —x/100 ~b/100
fo 5510k | T ) = [ 1~ &% g b).

If one were interested in the event that an injury occurs within 50 hours of the
previous injury, the probability would be given by

F(50) = [1 — =510 1(50) = 1 — .61 = .39.

A graph of the cumulative distribution function is given in Figure 2.4. 0O

8 Alternative shorthand notation that is often used in the literature is respectively {X < b} and P{X < b). Our notation establishes a
distinction between the function X and a value of the function x.
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A CDF for a continuous X.

Example 2.10

*Example 2.11

Examine the experiment of rolling a fair die and observing the number of dots
facing up. Let the random variable X represent the possible outcomes of the

;;;;;

mulative distribution function for X can be defined as

F(b) = Z tLn3456)(x) =L trunc(b)ljo6(b) + Iis,w)(b),
f?x?fo

where trunc(b} is the truncation function defined by assigning to any domain
element b the number resulting after truncating the decimal part of b. For
example, trunc(5.97) = 5, or trunc(—2.12) = 2. If we were interested in the
probability of tossing a 3 or less, the probability would be given by

F(3) = %trunc(3)l§0,6](3) + I[6,oo)(3) = % +0= %

A graph of the cumulative distribution function is given in Figure 2.5. a

Recall Ex. 2.8, where color screen lifetimes were represented by a mixed dis-
crete-continuous random variable. The cumulative distribution for X is given
by

b
Flb) = 25Ig.0y(b) + .75 f e I ooylx)dx

= 25I0,0)(b) + .75[1 — € )Ij0,00)(b).
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F(x)
1 - *————>
- @O
4/6 o——O
- o——0
2/6 — *—0
4 e—0o
Figure 2-5 = %
A CDF for a discrete X. 1 2 3 4 5 6 X

If one were interested in the probability that the color screen functioned for
1,000 hours or less, the probability would be given by

F(1) = .25Ijg,00){1) +.75[1 — 7' [Ijg,00)(1)

= .25+ .474 = .724.
A graph of the cumulative distribution function is given in Figure 2.6. a
CDF Properties
The graphs in the preceding examples actually illustrate some general proper-
ties of CDFs (the reader is asked to provide the appropriate justification for the

properties that follow). First, CDFs have the entire real line for their domain,
while their range is contained in the interval {0, 1]. Second, lim,_,_, F(b} =

Fix)

0.8
0.6

0.4

0.2

Figure 2-6
A CDF for a mixed
discrete-continuous X.

=
x
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Figure 2-7
Discontinuity in a CDF.

limp_, o P|x < b) = P|@) = 0, and lim}_, o, F|b) = lim}_,o P{x < b) = P[R(X)) =
1.° It is also true that if a < b, then necessarily Fla) = P(x < a) < P(x < b) = F|(b),
which is the defining property of what is called a nondecreasing function.

The CDFs of discrete, continuous, and mixed discrete-continuous random
variables can be distinguished by their continuity properties and by the behavior
of F(b) on sets of domain elements for which F is continuous. The CDF of
a continuous random variable must be a continuous function on the entire
real line, as illustrated in Figure 2.4, for suppose there existed a discontinuous
“jumping up” point at a point d. Then P(x = d} = limp_4-P(b < x < d) =
Fld)—limy_, 4- F(b) > 0 because of the discontinuity (see Figure 2.7}, contradict-
ing that P(x = d) = 0V d if X is continuous.!0

The CDFs for both discrete and mixed discrete-continuous random vari-
ables exhibit a countable number of discontinuities at “jumping up” points
representing the assignments of positive probabilities to a countable number
of elementary events [recall Figures 2.5 and 2.6). The discrete case is distin-
guished from the mixed case by the property that the CDF in the former case
is a constant function on all intervals for which F is continuous. The mixed
case will have a CDF that is an increasing function of x on one or more interval
subsets of the real line.!!

Ax)

Fd) pemesneeememmmmancnanaees -

Pix=d)

limF(b)
b-d”

9Far those readers whose recollection of the limit concept from calculus courses is not clear, it suffices here to appeal to intuition
and interpret the limit of F(b} as “the real number to which F{b} becomes and remains infinitesimally close as b increases without
bound (or as b decreases without bound).” We will examine the limit concept in more detail in Chapter 5.

0)im,_, 4~ indicates that we are examining the limit as b approaches d from below (also called a left-hand limit). limy,_, g+ would
indicate the limit as b approached d from above {also called a right-hand limit). For now, it will suffice for the reader to appeal to
intuition and interpret lim,,_, 4- F(b) as “the real number to which F{b) becomes and remains infinitesimally close as b increases
and becomes infinitesimally close to d.”

U1F is an increasing function on an interval of points {a, b] if ¥ x; and x; € [a, b] for which x; < x;, Fx;) < Fix;).
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Duality Between CDFs and PDFs

A CDF can be used to derive a probability density function as well as discrete
and continuous density components in the mixed discrete-continuous random-
variable case.

Theorem 2.1  (Discrete PDFs from CDFs) Let x; < X < X3 < - - - be the countable collection
of outcomes in the range of the discrete random variable X. Then the discrete
probability density function for X can be defined as

flx1) = F(xy),
flxi) = Flx;) - Flx;1), 1=2,3,...,
fix}=0 forx ¢ R(X).

Proof The proof follows directly from the definition of the CDF and is left to the
reader. ]

Theorem 2.2  (Continuous PDFs from CDFs) Let f(x) and F|x) represent the probability den-
sity function and CDF, respectively, for the continuous random variable X.
The density function for X can be defined as f(x) = dF(x)/dx wherever f(x) is
continuous, and f{x) = 0 (or any nonnegative number) elsewhere.

Proof By the fundamental theorem of calculus (recall Lemma 2.1), it follows that

drix) d[f* Aitldt
dx = dx - ™

wherever f{x} is continuous, and the first part of the theorem is demonstrated.
Now, since X is a continuous random variable, then P(x < b} = F(b) = ffw flx)dx
exists V b by definition. Changing the value of the nonnegative integrand at
points of discontinuity will have no effect on the value of F(b) = f_boo fix)dx, 12

so that f{x) can be defined arbitrarily at the points of discontinuity. |

*Theorem 2.3  (Density Components of a Mixed Discrete-Continuous Random Variable from
CDFs) Let X be a mixed discrete-continuous random variable with a CDF,
F. Let x) < X < X3 < -- - be the countable collection of outcomes of X for which
F(x)is discontinuous. Then the discrete density component of X can be defined
as falx;) = Flx;) — lim,,_, - F(b) fori= 1,2, 3, ...; and f4|x) = 0 elsewhere.
The continuous density component of X can be defined as f.(x) = dF(x)/dx
wherever f(x) is continuous, and f(x)=0 (or any arbitrary nonnegative
number) elsewhere.

12This can be rigorously justified by the fact that under the conditions stated: {1) the {improper) Riemann integral is equivalent to
a Lebesque integral; (2) the largest set of points for which f{x} can be discontinuous and still have the integral ff’oo fix)dx defined v
b has “measure zero”; and {3) the values of the integrals are unaffected by changing the values of the integrand on a set of points
having “measure zero.” This result applies to multivariate integrals as well. See C. W. Burill (1972), Measure, Integration, and
Probability. New York: McGraw-Hill, pp. 106-109, for further details.
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Proof

Example 2.12

Example 2.13

*Example 2.14

The proof is a combination of the arguments used in the proofs of the preceding
two theorems and is left to the reader. |

Given Theorems 2.1 to 2.3, it follows that there is a duality between CDFs
and probability density functions whereby either function can be derived from
the other. We illustrate Theorems 2.1 to 2.3 in the following examples.

Recall Ex. 2.10, where the outcome of rolling a fair die is observed. We can
define the discrete density function for X using the CDF for X as follows:

fil)=F(1)=¢,
- 1
Fx)—Fx~1)==—-——=- forx=2,34,5,6,
) = | Pl Fix=1)
0 elsewhere.
A more compact representation of f{x) can be given as

fix) = tIn23,456 (%),
which we know to be the appropriate discrete density function for the case at
hand. m]

Recall Ex. 2.9, where the time that passes between work-related injuries is
observed. We can define the continuous density function for X using the stated
CDF for X as follows:

dF(X) _ d(l — e"‘/wo)I(oloo,(x) _ _Le—XIIOO
fix)=1 dx dx ~ 100

0 forxe(—o0,0).

for x € {0, o0},

The derivative of F(x) does not exist at the point x = 0 (recall Figure 2.4}, a
reflection of the fact that f{x) is discontinuous at x = 0. We arbitrarily assign
fix) = 0 when x = 0 so that the density function of x is ultimately defined by
fix) = (1/100)e=*/1%, (x), which we know to be an appropriate continuous
density function for the case at hand. O

Recall Ex. 2.11, where the operating lives of notebook color screens are ob-
served. The CDF of the mixed discrete-continuous random variable X is dis-
continuous only at the point x = 0 (recall Figure 2.6). Then the discrete density
component of X is given by

fa(0) = F(O} — blir(r)l_ Flb)=.25-0= .25

and

falx)=0,  x#0,
or alternatively,
falx) = 25Iig)(x),

which we know to be the appropriate discrete density function component in
this case.
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The continuous density function component can be defined as
dF{x)
fo= dx

0 forx e(—o00,0),

=.75¢7* forx € (0, ),

but the derivative of F(x) does not exist at the point x = 0 {recall Figure 2.6). We
arbitrarily assign f;(x) = O when x = 0 so that the continuous density function
component of X is finally representable as fc[x) = .75 *I|g o)|x), which we know
to be an appropriate continuous density function component in this case. 0O

2.4 Multivariate Random Variables, PDFs, and CDFs

Definition 2.9
Real-valued
vector function

Definition 2.10
Multivariate (n-variate)
random variable

In the preceding sections of this chapter, we have examined the concept of a
univariate random variable, where only one real-valued function was defined on
the elements of a sample space. The concept of a multivariate random variable
is an extension of the univariate case, where two or more real-valued functions
are concurrently defined on the elements of a given sample space. Underlying
the concept of a multivariate random variable is the notion of a real-valued
vector function, which we’ll now define.

Letfi: A—> R, i=1,...,n, be a collection of n real-valued functions, each
function being defined on the domain A. Then the function f: A — R*"
defined by

)4 filx)
y=|:|= : =f{x]), forxeA,
Yn falx)

is called an (n-dimensional) real-valued vector function. The real-valued
functions fi, ..., fy are called coordinate functions of the vector function f.

Note that the real-valued vector function f: A — R?" is distinguished
from the scalar function f: A — R by the fact that its range elements are
n-dimensional vectors of real numbers as opposed to scalar real numbers. The
range of the real-valued vector function is given by R(f) = {(y1,...,Va): ¥i =
filx),i=1,...,n;x € A}.

We now provide a formal definition of the notion of a multivariate random
variable.

Let {S, T, P} be a probability space. If X : S — R™ (or simply X} is a real-valued
vector function having as its domain the elements of S, then X: S — R”" [or
X) is called a multivariate (n-variate) random variable.
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Since the multivariate random variable is defined by

X) X1(w)
x Xs(w)
X = ,2 = 2, =X{w) forweS,
[nx1) . : (nx1)
X5 Xn(w)

it is admissible to interpret X as a collection of n univariate random variables,
each defined on the same probability space {S, Y, P}. The range of the n-variate
random variable is given by R(X) = {(x1, ..., xn): xi = Xi(w),i=1,...,m;w € §}.

The multivariate random-variable concept applies quite naturally and gen-
erally to any real-world experiment in which more than one characteristic is
observed for each outcome of the experiment. For example, upon making an
observation concerning a futures trade on the Chicago Mercantile Exchange,
one could record the price, quantity, delivery date, and commodity grade asso-
ciated with the trade. Upon conducting a poll of registered voters, one could
record various political preferences and a myriad of sociodemographic data as-
sociated with each randomly chosen interviewee. Upon making a sale, a car
dealership will record the price, model, year, color, and the selections from the
options list that were made by the buyer. Applications abound in business and
economic settings, and the reader is asked to provide additional examples of
the multivariate random-variable concept.

Definitions for the concept of discrete and continuous multivariate random
variables and their associated density functions are as follows:

Definition 2.11

Discrete multivariate
random variables and
discrete joint probability
density functions

A multivariate random variable is called discrete if its range consists of a
countable number of elements. The discrete joint probability density func-
tion, f, for a discrete multivariate random variable X = (X;, ..., X,,)is defined
as flxi, ..., Xn) = probability of (x), ..., x,) if (x1,...,x,) € R(X), and O other-
wise.

Definition 2.12
Continuous multivariate
random variables
and continuous

joint probability
density functions PA) = / " / fixy, ..., Xa)dxy - - dx,

(X1,..-)Xn)EA

A multivariate random variable is called continuous if its range is uncount-
ably infinite and if there exists a nonnegative-valued function f{xy, ..., xa),
defined for all (x), ..., x,) € R?, such that for any event A C R(X),

and
f(xll"'lxﬂ) =0 V(X],...,Xn) ¢ R(X)

The function f{x),...,x,) is called a continuous joint probability density
function.
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Definition 2.13

The classes of discrete
and continuous

joint probability
density functions

Multivariate Random Variable Properties and Classes of PDFs

A number of properties of discrete and continuous multivariate random vari-
ables, and their joint probability densities, can be identified through analogy
with the univariate case. In particular, the multivariate random variable in-
duces a new probability space, {R(X), Tx, Px}, for the experiment, where the
event space Yy consists of all subsets of R(X) in the discrete case and all
Borel subsets of R(X) in the continuous case. The rationale underlying the
transition from the probability space {S, T, P} to the induced probability space
{R(X), Tx, Px} is precisely the same as in the univariate case except for the in-
creased dimensionality of the elements in R{X) in the multivariate case. The
probability set function defined on the events in the event space is represented
in terms of multiple summation of a PDF in the discrete case and multiple
integration of a PDF in the continuous case. In the discrete case, fix), ..., x,} is
directly interpretable as the probability of the outcome (x;, ..., x,); in the con-
tinuous case, the probability of each elementary event is zero and fixy, ..., xz)
is not interpretable as a probability. As a matter of convenience, both density
functions are defined to have the entire n-dimensional real space for their do-
main, so that f{ix;,...,x,) =0V x ¢ R(X).

Regarding the classes of functions that can be used as discrete or continuous
joint density functions, we provide the following generalization of Def. 2.5:

a. Class of discrete joint density functions. A function f: R” — R is a
member of the class of discrete joint density functions iff:

1. theset C = {{x1,...,xa): flx1,...,%a) > 0,{x1, ..., x4) € R"} is count-
able,

2. fixi,...,xy,) =0forx € C, and

3. Z e Z(X],...,XH)EC f(X], .o .,Xn) = 1.

b. Class of continuous joint density functions. A function f: R? — Risa
member of the class of continuous joint density functions iff:

1. fixy,...,xq) >0V (x1,...,X,) € R* and
2 [ [ fx, ., Xp)dxy - dxy = 1

The reader can generalize the arguments used in the univariate case to demon-
strate that the properties stated in Def. 2.13 are sufficient, as well as necessary
in the discrete case and “almost necessary” in the continuous case, for set
functions defined as

o> fix, ., xa) (discrete case),

(X1, Xn)€A
PlA) =
// fix1,..., xp)dx) ---dx, (continuous case)

(X],‘..,Xn)EA
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Example 2.15

to satisfy the probability axioms V A € Yx.
The following is an example of the specification of the probability space for
a bivariate discrete random variable.

For the experiment of rolling a pair of dice in Ex. 2.2, distinguish the two die by
letting the first die be “red” and second “green.” Thus an outcome (i, j) refers
to 1 dots on the red die and j dots on the green die. Define the following two
random variables:

x1=X){w)=1i and xy=Xh(w)=1i+].

The range of the bivariate random variable (X;,X5) is given by R(X) =
{{x1,%2): xy =1,xy =i+j,iandje {],...,6)}}. Theeventspaceis Yx ={A: AC
R(X)}.

The correspondence between elementary events in R(X) and elementary
events in S is displayed as follows:

Xy

1 2 3 4 5 6

2 | a,n ) @ ) ) )

3| (1,2 @ @ ) @ )

4| 1,3y @2 G ) ) )

s | 1,49 @3 G2 @41 ) @

6 | (1,5) 2,49 3,3 42 6,1 )

X 71 a,6) 25 G,49 43 52 (61 EL‘;’:\‘;”::’;’

8 ) 2,6) (3,5 (4,4 (5,3 (6,2
9 @ @ 3,6) (4,5 (5,4 (6,3
10 @ ) ) 4,6) (55  (6,4)
11 @ @ @ ) (5,6) (6,5
12 2 @ ) ) @ 6, 6)

It follows immediately from the correspondence with the probability space
{S, Y, P} that the discrete density function for the bivariate random variable
(X1, X5) can be represented as

fix1, x2) = 5In,..e(x1)g,...60x2 — x1),

and the probability set function defined on the events in R{X) is then

P|A) = ZZf(xl,xz) for A € Yx.

{x1,x2)€A

Let A = {{x1,x): 1 <x <2,2 <x3 <5,{x1,x2) € R(X)}, which is the event of
rolling 2 or less on the red die and a total of 5 or less on the pair of dice. Then
the probability of this event is given by

2 5
PA =T Y fanl=Y) 3 fin,ml= o o

(xl/XZ)EA X1=IX2=X|+1
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Example 2.16

The preceding example illustrates two general characteristics of the multi-
variate random-variable concept that should be noted. First of all, even though
a multivariate random variable can be viewed as a collection of univariate ran-
dom variables, it is not necessarily the case that the range of the multivariate
random variable X equals the Cartesian product of the ranges of the univari-
ate random variable defining X. Depending on the definition of the X;’s, either
R(X) # x2, R{X;) and R{X) C x, R(X;), or R(X) = xI, R(X;) is possible. Ex-
ample 2.15 is an example of the former case, where a number of scalar out-
comes that are individually possible for the univariate random variables X,
and X, are not simultaneously possible as outcomes for the bivariate random
variable (X, X3). Second, note that our convention of defining f{x;,x;) = 0V
(x1,x2) ¢ R(X) allows an alternative summation expression for defining the
probability of event A in Ex. 2.15:

2 5 7
PlA)= )" > flx;,x) = 3%

X|=1 X1=2

We have included the point (2, 2) in the summation above, which is an impos-
sible event—we cannot roll a 2 on the red die and a total of 2 on the pair of dice,
so that (2,2) ¢ R(X). Nonetheless, the probability assigned to A is correct since
fi2,2) = 0, by definition. In general, when defining the probability of an event
A for an n-dimensional discrete random variable X, f{xy, ..., x,,) can be summed
over the points identified in the set-defining conditions for A without regard
for the condition that x € R(X), since any x ¢ R(X) will be such that f{x) = 0,
and the value of the summation will be left unaltered. This approach can be
especially convenient if set A is defined by individual, independent set-defining
conditions applied to each X; in an n-dimensional random variable (X, ..., X4),
as in the preceding example. An analogous argument applies to the continuous
case, with integration replacing summation.

We now present an example of the specification of the probability space for
a bivariate continuous random variable.

Your company manufactures big-screen television sets. The screens are 3 feet
high by 4 feet wide rectangles that must be coated with a metallic reflective
coating {see Figure 2.8). The machine that is coating the screens begins to
randomly produce a coating flaw at a point on the screen surface, where all
points on the screen are equally likely to be the point of the flaw. Letting {0, 0)
be the center of the screen, we represent the collection of potential flaw points
as

R(X) = {{x1,x2): x; € [-2,2], x2 € [-1.5, 1.5]}.

Clearly, the total area of the screen is 3 - 4 = 12 square feet, and any closed
rectangle on the screen having width W and height H contains the proportion
WH/12 of the total area of the screen. Since all of the points are equally likely,
the probability set function defined on the events in R(X) should assign to each
closed rectangle of points a probability equal to WH/12 where W and H are,
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A
3 feet xq
Y
Figure 2-8 - >
Television screen. 4 feet

respectively, the width and height of the rectangular event. We thus seek a
function f{x;, x5} such that

d pb ) )
/; ,/a f(xl,Xz)Xm dx, = !b__%i)

Va,b,c anddsuchthat -2 <a < b <2and-1.5 < ¢ <d < 1.5. Differentiating
the iterated integral above, first with respect to d and then with respect to b,
yieldsflb,d) = 1/12¥b € [-2,2]and Vd € [-1.5, 1.5].13 The form of the continu-
ous joint density function is then given by f(x), x1} = T1§I[-2,21(X1 M(-15,15)(x2). The
probability set function is thus defined as P(A) = [ flx. xaleA %dxl dx,. Then, for
example, the probability that the flaw occurs in the upper left quarter of the
screen is given by

L5 00 ] L5 ]
P[-2 <x, <0,0<x; <1.5) =/ f —dx; dxy = f —dxy = .25. O
0 -2 12 0 6

Multivariate CDFs and Duality with PDFs

The CDF concept can be generalized to the multivariate case as follows:

13The differentiation is accomplished by applying Lemma 2.1 twice: once to the integral fcd [ /, ab f(xl,ledxl]dxz, differentiating

with respect to d to yield [ ab fixy, d)dx,, and then differentiating the latter integral with respect to b to obtain f{b, d}. In summary,
(82/0b3d) [ J7 fix1, xa)dx) dxa = fib, d).
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Definition 2.14
Joint cumulative
distribution function

Theorem 2.4

The joint cumulative distribution function of an n-dimensional random vari-
able X is defined by F(by,...,b,) =Plx; < b;,i=1,...,n}V¥ {by,...,by) € R",

The algebraic representation of F(b,, ..., b,) in the discrete and continuous
cases can be given as follows:

a. Discrete X:
F(bl,...,bn)= Z Z f(X[,...,Xn) for(bl,...,b,,)eR“.

x1<by Xp<bn
fixy,...xn}>0

b. Continuous X:
by by
F(bl,...,bn):/ N fixy, . xp)dxy - dx, for(by,..., by) € R

o

Some general properties of the joint cumulative distribution function in-
clude the following three:

1. limy_, o F{by,...,by)=P@)=0,i=1,...,n;
2. limp,,o0vi Fby, ..., by) = P(R(X)) = 1;
3. F(a) < F(b) for a < b where

a by

dn b,
and the vector inequality is taken in the usual sense to mean a; < b; V
i, and a; < b; for at least one i. The reader should convince herself that
these properties follow directly from the definition of the joint cumulative

distribution function.

Similar to the univariate case, the joint CDF can be used to derive joint
discrete and continuous probability densities. For the discrete case, we state the
result for bivariate random variables only. For multivariate random variables of
three dimensions or higher, the large number of terms required in the density-
defining procedure makes its use somewhat cumbersome.

{(Discrete Bivariate PDFs from Joint CDFs) Let {X,Y) be a discrete bivariate
random variable with joint cumulative distribution function F(x,y), and let
X] <Xy <X3<---andy; < yy < y3 < --- represent the possible outcomes of X
and Y. Then

fixt, y1) = Flx1, y1),

fix1,yj) = Flx1,y;) = Flx1,yj-1), 722,

fixi, 1) = Fixi, y1) = Flxi-, ;m), 122,

fixi, yj) = Flxi, yi) — Flxi, yj-1) = Fxi-1, ;) + F{xi-1, -1},  iandj=2.
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Proof

Theorem 2.5

Proof

Example 2.17

The proof is left to the reader. n

{Continuous Joint PDFs from Joint CDFs) Let F{xy,...,xs) and f(x, ..., x,) rep-
resent the joint CDF and PDF for the continuous multivariate random variable
X =(Xy,...,Xa). The joint PDF of X can be defined as
0"Flxy, ..., %n) . .
———— " where f|-) is continuous
fix, ..., Xg) = 0xy -+ - 0Xp ft
0 (or any nonnegative numbers) elsewhere.

The first part of the definition follows directly from an n-fold application of
Lemma 2.1 for differentiating the iterated integral defining the joint CDF. In
particular,

3"F(x1, .. -/Xn) a" ff;o o 'ff:,of(tlr o ‘/tﬂ)dtl te

_ dt, ( )
o1 0%y ax; - 9%y =fxy. %

wherever f{-) is continuous.

Regarding the second part of the definition, as long as the integral exists,
arbitrarily changing the values of the nonnegative integrand at the points of
discontinuity will not affect the value of

bn by
F(bl,...,b,,)=/ / Aty e Xl - -+ %y
(recall Footnote 12). |

Examine the experiment of tossing two fair coins independently and observing
whether heads (H) or tails (T) occurs on each toss, so that S = {{H, H), (H, T),
(T, H), (T, T)} with all elementary events in S being equally likely. Define a bi-
variate random variable on the elements of S by letting x represent the total
number of heads and y represent the total number of tails resulting from the
two tosses. The joint density function for the bivariate random variable (X, Y)
is then defined by

fix, y) = Hyo2y,0.05(% ¥) + $Iiu1(x, ¥).
It follows from Def. 2.14 that the joint CDF for (X, Y) can be represented as
F{b1, ba) = 313,00/ (b1)]|=c0,1)(b2) + 2] 1—c0,1)(D1)]2,00)(2)

+ 311,2)(b1 ) 1,2)(b2) + 211g,00) (b1 )1,2)(b2)

+ 2111,2){b1)[2,00)(b2) + I12,00)(D1 M[2,00) (b2)-

The CDF no doubt appears to be somewhat “cobbled” together, making the
definition of F a rather complicated expression. Unfortunately, such function
definitions often arise when specifying joint CDFs in the discrete case, even for
seemingly simple experiments such as the one at hand. To understand more
clearly the underlying rationale for the preceding definition of F, it is useful to
partition R? into subsets that correspond to the events in S. In particular, we are
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interested in defining the collection of elements w € S for which X{w) < b; and
Y(w) < by is true for the various values of (b}, by) € R%. Examine the following
table:

by b, A={w: XW < by, YW) < b;,we S} P(A)
b <1 b, <1 ] 0
1<b <2 b; <1 ] 0
b <1 1<by<2 ] 0
b >2 b, <1 {(H, H)} 1/4
b <1 b; >2 {(T, D} 1/4
1<b <2 1<b<2 {(H, D, (T, )} 1/2
by =2 1<by<2 {(H, DT, H), (H, H)} 3/4
1<b <2 by > 2 {(H, D, (T, ), (T, T)} 3/4
by >2 by > 2 S 1
The reader should convince herself using a graphical representation of R*
that the conditions defined on (b;, by) can be used to define nine disjoint subsets
of R? that exhaustively partition R? (i.e., the union of the disjoint sets = R2). The
reader will notice that the indicator functions used in the definition of F were
based on the latter six sets of conditions on (b}, by} exhibited in the preceding
table. If one were interested in the probability P(x < 1,y < 1) = F|1,1), for
example, the joint CDF indicates that 1/2 is the number we seek. |
Example 2.18  Reexamine the projection television screen example Ex. 2.16. The joint CDF for

the bivariate random variable (X;, X,), whose outcome represents the location
of the flaw point, is given by

by pb 1
Abu bl = [ [ Glaalaliasasialdnds,

_ (b1 +2)(by + 1.5)
- 12

4{by + 1.5)
+ 12
3(by +2)

—+ —TI[_Z'Z](bI )I(ls,oo)(bl)

+ I2,00) (D1 )]1.5,00) [ D2)-

It is seen that “cobbled-together” definitions of joint CDFs occur in the
continuous case as well. To understand the rationale for the piecewise defini-
tion, first note that if b; < —2 and/or b, < —1.5, then we are integrating over
a set of (x;, x») points {(x1,X3): X1 < by, x5 < by} for which the integrand has a
zero value, resulting in a zero value for the definite integral. Thus, F{by, by} =0
if by < =2 andfor by < —1.5.1If by € [-2,2] and by € [~1.5,1.5], then taking
the effect of the indicator functions into account, the integral defining F can be

Ti—2,2)(b1)Tj-1.5,1.5)(b2)

I12,00)(b1)][1.5,1.5)(D2)



76

Chapter 2

Random Variables, Densities, and Cumulative Distribution Functions

represented as

boorbry (by +2)(by +1.5)
HMMM[wfﬂ?kdp- o ,

which is represented by the first term in the preceding definition of F.If by > 2,
but by € [-1.5, 1.5], then since the integrand is zero for all values of x; > 2, we
can represent the integral defining F as

4(b 1.5
E(by, by) = / / ——dxld Xy = __(_Ei';___)'

which is represented by the second term in our definition of F. If by > 1.5 but
b, € [-2,2], then since the integrand is zero for all values of x5 > 1.5, we have

bl 3(b1 +2
Abuba= [ [ i dn = 2022,

which is represented by the third term in our definition of F. Finally, if both
b, > 2 and by > 1.5, then since the integrand is zero for all values of x; > 2
and/or x, > 1.5, the integral defining F can be written as

F{by, by) = f /2 Sdxidn =1,

which justifies the final term in our definition of F. The reader should con-
vince himself that the preceding conditions on (b;, b;) collectively exhaust the
possible values of (b, by) € R2.

If one were interested in the probability P(x; < 1,x; < 1), the “relevant
piece” in the definition of F would be the first term, and thus F(1,1) = 8123
.625. Alternatively, the probability P(x; < 1, x5 < 10) would be assigned using
the third term in the definition of F, yielding F(1, 10) = .75. O

Multivariate Mixed Discrete-Continuous and Composite Random Variables

A discussion of multivariate random variables in the mixed discrete-continuous
case could be presented here. However, we choose not to do so. In fact, we will
not examine the mixed case any further in this text. We are content with having
introduced the mixed case in the univariate context. The problem is that in the
multivariate case, representations of the relevant probability set functions—
especially when dealing with the concepts of marginal and conditional den-
sities, which will be discussed subsequently—become extremely tedious and
cumbersome unless one allows a more general notion of integration than that
of Riemann, which would then require us to venture beyond the intended scope
of this text. We thus leave further study of mixed discrete-continuous random
variables to a more advanced course. Note, however, that since elements of
both the discrete and continuous random-variable concepts are involved in the
mixed case, our continued study of the discrete and continuous cases will pro-
vide the necessary foundation on which to base further study of the mixed
case.
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As a final remark concerning our general discussion of multivariate ran-
dom variables, note that a function (or vector function) of a multivariate ran-
dom variable is also a random variable {or multivariate random variable). This
follows from the same composition of functions argument that was noted in
the univariate case. That is,

y=Y(X(w)), or y=Y(Xi(w),..., Xalw]), or
Vi Yi(Xi(w), ..., Xalw))

: = = Y(X(w))
Vm Yo (X1(W), ..., Xalw)) mx

are all in the context of “functions of functions,” so that ultimately Y is a
function of the elements w € S and is therefore a random variable.!* One might
refer to such as a composite random variable.

y

mx1

2.5 Marginal Probability Density Functions and CDFs

Suppose that we have knowledge of the probability space corresponding to an
experiment involving outcomes of the n-dimensional random variable X,y =
(X1,...,Xm, Xm+1, - .., Xn) but our real interest lies in assigning probabilities to
events involving only the m-dimensional random variable X, = (X1, ..., Xm),
m < n. In practical terms, this relates to an experiment in which n different
characteristics were recorded for each outcome but we are specifically inter-
ested in analyzing only a subset of the characteristics. We will now examine
the concept of a marginal probability density function (MPDF) for X, which
will be derived from knowledge of the joint density function for X,. Once de-
fined, the MPDF can be used to identify the appropriate probability space only
for the portion of the experiment characterized by the outcomes of (X, ..., Xm),
and we will be able to use the MPDF in the usual way {summation in the dis-
crete case, integration in the continuous case) to assign probabilities to events
concerning (Xi, ..., Xm).

The key to understanding the definition of a marginal probability density
is to establish the equivalence between events of the form (x;,...,x,) € B in
the probability space for (X, ..., X;;) and events of the form (x;,...,x,) € A in
the probability space for (X, ..., X,) since it is the latter events to which we
can assign probabilities knowing flx;, ..., xp).

Bivariate Case

Let flx1, x2) be the joint density function and R(X) be the range of the bivariate
random variable (X, X5 ). Suppose we want to assign a probability to the event

14The reader is reminded that we are suppressing the technical requirement that for every Borel set of y values, the associated
collection of w values in § must constitute an event in S for the function Y to be called a random variable. As we have remarked
previously, this technical difficulty does not cause a problem in applied work.
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Example 2.19

x1 € B. Which event for the bivariate random variable is equivalent to event
B occurring for the univariate random variable X, ? By definition, this event is
given by A = {[x1,x2): x1 € B, (x],x3) € R(X)}, i.e., the event B occurs for x; iff
the outcome of (X1, X,)isin A so that x, € B. Then since B and A are equivalent
events, the probability that we will observe x; € B is identically equal to the
probability that we will observe (x;, x3) € A (recall the discussion of equivalent
events in Section 2.2).

For the discrete case, the foregoing probability correspondence implies that

Px,(B) = Plxi € B) = Pl4) = ) | ) fixy, xa).

(x1,x%2)eA

Our convention of defining f{x),x3) = 0V (%, x3) ¢ R{X) allows the following
alternative representation of Py, (B):

Pr(Bl= Y Y fixi,x)

x1€B XzER(Xz,

The equivalence of the two representations of Py, (B) follows from the fact
that the set of elementary events being summed over in the latter case, C =
{[x1,x2): x1 € B,x3 € R{X3)}, is such that A c C, and fix),x2) = OV {x1, %) €-
C — A. The latter representation of Px,(B) leads to the following definition of
the marginal probability density of X;:

Ala)= Y fixy,x).

XzER(Xz,

This function, when summed over the points comprising the event x; € B,
yields the probability that x, € B, i.e.,

Px,(B)=) hix)=)Y > fixi,xl.

x1€B x1€B x,€R{X))

Heuristically, one can think of the marginal density of X; as having been de-
fined by “summing out” the values of x, in the bivariate PDF for (X1, X3 ). Having
defined f,(x; ), the probability space for the portion of the experiment involving
only X; can then be defined as {R({X1), Tx,, Px,} where Px,(B) = }_, .pfi(x1) for
B e Tyx,. Note that the order in which the random variables are originally listed
is immaterial to the approach taken above, and the marginal density function
and probability space for X, could be defined in an analogous manner by simply
reversing the roles of X; and X, in the preceding arguments. The MPDF for X,
would be defined as

flx)= > flxi,x),

x.eR(Xl)

with the probability space for X, defined accordingly.

Reexamine Ex. 1.16, in which an individual was to be drawn randomly from the
work force of the Excelsior Corporation to receive a monthly “loyalty award.”
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Define the bivariate random variable (X}, X5) as
X = [ 0 } if { male } is drawn,

1 female
0 sales

X=1{1 if clerical worker is drawn,
2 production

so that the bivariate random variable is measuring two characteristics of the
outcome of the experiment: gender and type of worker. The joint density of
the bivariate random variable is represented in tabular form below, where the
nonzero values of f{x;, x,} are given in the cells formed by intersecting an x;-row
with a x3-column.

R(X7)
0 1 2 | hlxy)

0 1651 .135 | .150 | .450
1 .335[.165 | .050 } .550
f(xz) | .500 { .300 | .200

R(X:)

The nonzero values of the marginal density of X, are given in the bottom margin
of the table, the definition of the marginal density being

1
falxa) = Z flx1, x2) = Zﬂxl,xz)=-51(0}(X2)+-3-7[1)(X2)+.21(2;(X2)-
x1€R(X) x=0

The probability space for X5 is thus {R{X3), Tx,, Px,}, with Tx, = {A: A C R(X3)}
and Px,(A] = 3, cafalxa). If one were interested in the probability that the
individual chosen was a sales or clerical worker, i.e., the event A = {0, 1}, then
Px,(A) = Yy ofulx)=.5+.3=.8.

The nonzero values of the marginal density for X; are given in the right-
hand margin of the table, the definition of the density being

2
A= Y fix,x)= Y flxi,xa) = 45Ig(x1) + .55I(x)).
X2€R[X3) Xx2=0

The probability space for X is thus {R(X1), Tx,, Px,}, with Tx, = {A: A c R(X}}
and Px,(A) = Y, c4 filx1). If one were interested in the probability that the in-

dividual chosen was male, i.e., the event A = {0}, then Py, (A) = 2,:0 fx,|x1) =
45, ]

The preceding example provides a heuristic justification for the term mar-
ginal in the bivariate case and reflects the historical basis for the name marginal
density function. In particular, by summing across the rows or columns of a
tabular representation of the joint PDF f{xi, x»}, one can calculate the marginal
densities of X; and X, in the margins of the table.
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Example 2.20

We now examine the marginal density function concept for continuous
random variables. Recall that the probability of event B occurring for the uni-
variate random variable X, is identically the probability that the event A =
{{x1,x2): x1 € B,|x1,x%2) € R(X)} occurs for the bivariate random variable X =
(Xl, Xz). Then

P (B)=Pxi e B)=PlA) = [[ fixi,xaldx dzo
(x1,x2)eA

Our convention of defining f{x;, x5) = 0 V (x1, X2) ¢ R(X) allows an alternative
representation of Py, (B) to be given by

Px.(33=/ B‘/;m fix1, xa)dx, dx;.

The equivalence of the two representations follows from the fact that the set
of elementary events being integrated over in the latter case, C = {(x1,x2): x; €
B, x; € (—00,00)}, is such that A ¢ C, and f{x1,x3) = 0V (x1,x3) € C — A. The
latter representation of Py, (B) leads to the definition of the marginal density of
X, as

filx1) = /_oo fix1, x2)dx).

This function, when integrated over the elementary events comprising the
event x; € B, yields the probability that x; € B, i.e.,

o0
Px,(B) = filxy)dx =f f fix1, x2)dx, dx;.
x1€B x1€B J—-o0
Heuristically, one might think of the marginal density of X, as having been
defined by “integrating out” the values of X, in the bivariate density function
for (X;, X,). Having defined f;(x;), the probability space for the portion of the
experiment involving only X; can then be defined as {R(X,), Yx,, Px,}, where
Py (A) = fx. cafilx1)dx; for A € Tx,. Since the order in which the random
variables were originally listed is immaterial, the marginal density function
and probability space for X can be defined in an analogous manner by simply
reversing the roles of X; and X in the preceding arguments. The MPDF for X,
would be defined as

falxa) = f flxy, xa2)dx1,
with the probability space for X, defined accordingly.

The Seafresh Fish Processing Company operates two fish processing plants. The
proportion of processing capacity at which each of the plants operates on any
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given day is the outcome of a bivariate random variable having joint density
function fix1, x2) = (x1 + x2)I[0,1){x1)]j0,1){x2). The marginal density function for
the proportion of processing capacity at which plant 1 operates can be defined
by integrating out x, from f{x;, x5) as

filx) = /_oo flx1, x2)dxy = /:oo(Xl + xa)Ijo,1)(x1 0, 1§ %2 )dx

1

1 2
= /0 (x1 + x2)Ijp 1)(x1)dx2 = <X1X2 + f) I, 1)(x1)
0

= (x1 + 3o 1ylx1).

The probability space for plant 1 outcomes is given by {R(X;), Yx,, Px,}, where
R(X;)=1[0,1], Tx, = {A: A is a Borel set C R(X;)}, and Px,(A) = fx,eA filx1)dx,,
V A € Yy, . If one were interested in the probability that plant 1 will operate at
less than half of capacity on a given day, i.e., the event A = [0, .5), then

X1 5

5 1 x7
le(Xl <.5)= f (Xl + i) I[O,l]{Xl)dXI = 5 +
0

Regarding other properties of marginal density functions, note that the sig-
nificance of the term marginal is only to indicate the context in which the
density was derived, i.e., the marginal density of X, is deduced from the joint
density for (X, X;). Otherwise, the MPDF has no special properties that differ
from the basic properties of any other probability density function.

N-Variate Case

The concept of a discrete MPDF can be straightforwardly generalized to the
n-variate case, in which case the marginal densities may themselves be joint
density functions. For example, if we have the density function f{x;, x5, x3) for
the trivariate random variable (X;, X, X3), then we may conceive of six marginal
density functions: fi(x1), fa(x2), f3(x3), fi2(x1, X2), f13lx1, X3, and fas(x2, x3). In gen-
eral, for an n-variate random variable, there are (27 — 2) possible MPDFs that
can be defined from knowledge of fixi, ..., x,). We present the n-variate gen-
eralization in the following definition. We use the notation f;, ;. (x;,, ..., Xj,)
to represent the MPDF of the m-variate random variable (X;,, ..., X;,) with
the j;’s being the indices that identify the particular random vector of inter-
est. The motivation for the definition is analogous to the argument in the
bivariate case upon identifying the equivalent events (x;,,...,x; ) € B and
A={x: (xj,,...,%;,) € B,x € R(X)} and is left to the reader as an exercise.
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Definition 2.15
Discrete marginal
probability
density functions

Definition 2.16
Continuous
marginal probability
density functions

Let f{xy, ..., Xy} be the joint discrete probability density function for the n-
dimensional random variable (X, ..., X,). Let ] = {j1,j2,...,im}, 1 < m < n,
be a set of indices selected from the index set I = {1,2,...,n}. Then the
marginal density function for the m-dimensional discrete random variable
(Xj,,...,X;,) is given by

fil---im(xill .. 'lxim) = Z : Z f(xl/ .- -/Xn)-

{x;eR(X;),iel-])

In other words, to define a MPDF in the general discrete case, we simply “sum
out” the variables that are not of interest in the joint density function. We are
left with the marginal density function for the random variable in which we are
interested. For example, if n = 3, so thatI = {1,2,3}, and if ] = {j;, j2} = {1, 3} so
that I — ] = {2}, then Def. 2.15 indicates that the MPDF of the random variable
(X, X3) is given by

falxy, xa) =Y flx1, %2, xs).

XzER[Xz’

Similarly, the marginal density for x; would be defined by

filx) = Z Z fix1, x2, x3).

x2€R(X2) x3€R(X3)

The concept of a continuous MPDF can be generalized to the n-variate case as
follows:

Let f{xy, ..., xn) be the joint continuous probability density function for the
n-variate random variable (X, ..., X,). Let ] = {j1,72,...,/m}, 1 <m<n,bea
set of indices selected from the index set I = {1, 2, ..., n}. Then the marginal
density function for the m-variate continuous random variable (X;j,, ..., Xj, |
is given by

ff,,,,,'m(x,',,...,x,'m)=[:---'/_:f(xl,...,xn) [ ax:.

iel-]

In other words, to define a MPDF function in the general continuous case,
we simply “integrate out” the variables in the joint density function that are
not of interest. We are left with the marginal density function for the random
variables in which we are interested. An example of marginal densities in the
context of a trivariate random variable will be presented in Section 2.8.
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Marginal Cumulative Distribution Functions (MCDFs)

Marginal CDFs are simply CDFs that have been derived for a subset of the
random variables in X = (X, ..., Xn) from initial knowledge of the joint PDF
or joint CDF of X. For example, ordering the elements of a continuous random
variable (X}, ..., Xy) so that the first m < n random variables are of primary
interest, the MCDF of (X, ..., X} can be defined as

Fl.‘.m(bl, ey bm) = PX....Xm(Xi < b,’,i =1,.. .,m) (Def of CDF)

=Plxj<b,i=1,...,.mx;<o00,i=m+1,...,n] (equivalent events)

=Flby,...,bm, 0,...,00] (Def. in terms of joint CDF)

b bm poo o0
=f f / / fixi,..., Xg)dxy---dx; (Def. in terms of joint PDF)
- -0 J—00 —-00
b

00
bl m
= / e fi.m(x1, ..., Xm)dxm ...dx; (Def. in terms of marginal PDF).
~00 —-o0
In the case of an arbitrary subset (X, ..., X;, ), m < n, of the random variables

(X1, ...,Xn), the MCDF in terms of the joint CDF or marginal PDF can be rep-
resented as
bi, brm
Fil--.im(bfu"'lbim)zF(b)'_—/ f,-l.__,'m(Xj,,...,Xim)dX,'m'--dX;“,
—-00 -0
where b, is the j;th entry in b and b; = oo if i ¢ {j1, ..., jm}.
Examples of marginal CDFs in the trivariate case are presented in Sec-
tion 2.8. The discrete case is analogous, with summation replacing integration.

2.6 Conditional Density Functions

Suppose that we have knowledge of the probability space corresponding to an
experiment involving outcomes of the n-dimensional random variable X, =
(X1,..., Xm, Xm+1,-..,Xa) and we are interested in assigning probabilities to
the event (xy, ..., xn) € C given that (Xm41, ..., Xp) € D. In practical terms, this
relates to an experiment in which n different characteristics were recorded for
each outcome and we are specifically interested in analyzing a subset of these
characteristics given that a fixed set of possibilities will occur with certainty
for the remaining characteristics. Note that this is different from asking for the
probability of observing the event (xy,...,X%n) € C and (xm41, ..., Xn) € D, for
we are saying that (X;,41, . .., Xn) € D will happen with certainty. In other words,
we are asking for the probability that (xy, ..., %) € C, conditional on the event
that (x;n41,...,Xn) € D. How do we assign the appropriate probability in this
case? Questions of this type can be addressed through the use of conditional
probability density functions, which can be derived from knowledge of the joint
density function f{xy, ..., xn).
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The key to the definition of a conditional probability density function is to
establish the equivalence between events for the m-dimensional random vari-
able (Xy,..., Xp,) and (n — m)-dimensional random variable (X;,,1, ..., X} with
events for the n-dimensional random variable (X;, ..., X,). Then conditional
probabilities in the probability space for (X;,...,X,) can be used to define a
conditional probability density function.

Bivariate Case

Let fix;, x5) be the joint density function and R(X) be the range of the bivariate
random variable (X, X5). The event for the bivariate random variable that is
equivalent to the event C occurring for the random variable X, is given by

A = {[x1,x3): x; € C,[x1, x2) € R(X])}.

Similarly, the event for the bivariate random variable that is equivalent to the
event D occurring for the random variable X, is given by

B= {(XIIXZ): Xy € D/ (X],XZ) € R(X)}

Then the probability that x; € C given that x, € D can be defined by the
conditional probability

P(A N B)

lelxz(C|D)=P(X1GC‘X2ED)=P(A|B)= P(B)

for P(B) # 0,

where
ANB={x;,x): x; € C, x5 € D, x1, %) € RIX]}}.

In the case of a discrete random variable, the foregoing conditional proba-
bility is represented by

2 Yixxleans flx1, x2)
2 Yixmles X1, x2)

Given our convention that f{x;, x;) = 0 whenever (x, x2) ¢ R{X), we can ignore
the set-defining condition (x;,x3) € R(X) in both the sets A N B and B and
represent the conditional probability as

leeC szeDf(XllXZ) [szeDf(xl;XZ)]

S erixy Lmen X1, %) A=t | T ephlxa)

where we have used the fact that fa(x;) = 3, rix,fIX1, X2). The expression in
brackets is the conditional density function we seek, since it is the function
that would be summed over the elements in C to assign probability to the event
x1 € C, given x5 € D, for any event C. We will denote the conditional density
of X;, given x, € D, by the notation f{x; | x, € D). If D is a singleton set {d}, we
will also represent the conditional density function as f{x; | x5 = d).

Px,x,(C | D)= P{A | B} =

Px,x,C | D)=
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Example 2.21

In the case of a continuous bivariate random variable, the probability that
x) € C given that x, € D would be given by (assuming Py, (D) = P(B) # 0)

ff(Xx,xz)eAnB flxy, xo)dxy dx,
ff(xl,XﬂEB f(XI, X2 )Xm dX2

Using our convention that f{x;, xo) = 0 V (x], X2} ¢ R{X), we can also represent
the conditional probability as

fx,sC xzeDﬂXl/XZ)dXZdXI _f fx;eDf(X'XZ)dXZ dx
ffzofxzeDf(leXZ)dXdel xe | Juep f2lX2)dxa b

where we have used the fact that fy(xy) = [ flx1, x2)dx;. The expression in
brackets is the conditional density function we seek, since it is the function
that would be integrated over the elements in C to assign probability to the
event x; € C, given xp € D, for any event C. As in the discrete case, we will
use the notation f(x; | xo € D) or flx; | x, = d) to represent the conditional
density function. In both the discrete and continuous cases, we will eliminate
the random variable subscripts on Py, x,(-) when the random variable context
of the probability set function is clear.

Once derived, a conditional probability density function exhibits all of the
standard properties of a PDF. The significance of the term conditional PDF is
to indicate that the density of X; was derived from the joint density for (X, X,)
conditional on a specific event for X,. Otherwise, there are no special general
properties of a conditional PDF that distinguishes it from any other PDF.

We provide examples of the derivation and use of discrete and continuous
conditional PDFs in the following examples.

Px,x,I[C|D)=Plx e C|xy € D)=P(A|B) =

PX||X2(C l D) =

.....

fix1,5) _ 3131[1,...,6}(?(1)1(1 ..... als—x1) 1
f2(5) 6_'!356-7”[2,.”112)(5) ....

The probability of rolling a 3 or less on the red die, given that the total of the
two dice will be 5, is then

flxy | x3 =5) =

3

3

Plx; <3 |x=5)= E f(X1IX2=5)=Z-
x1=1

Note that the unconditional probability that x| < 3 is equal to 1/2.
The conditional density function for X;, given that x, € D = {7,11}, is
given by
Yo flxux)  ln el [ln..al7 —x)+ 1o, 611 - x)]
> _x,ep f2(x2) &

= ¢In,..a(x1) + s 6/(x1).

fix1 | % € D)=
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The probability of rolling a 3 or less on the red die, given that the total of the
two dice will be either a 7 or 11, is then

. a

ool W

3
Pxy<3|xeD)=) flxi|xse D)=

Xp=1

Recall Ex. 2.20 regarding the proportion of daily capacity at which two fish pro-
cessing plants operate. The conditional density function of plant 1’s capacity,
given that plant 2 operates at less than half of capacity, is given by
[ fxuxaldxs [ + 2o ylx ) dx

f;sco falx2)dx, fo's (x2 + +)dx,

_.5x +.125
- 375

The probability that x; < .5, given that x, < .5, is given by

flxi | xo < .5)

4 1
Ipylx1) = (§X1 + §) Ijo,y)(x1).

S /4 1 1
p 5 5) = z 2 =2
(%1 <.5|x <.5) fo (3X1+3)dx1 3

Recall that the unconditional probability that x; < .5 was .375. 0

Conditioning on Elementary Events in Continuous Cases A problem arises in the
continuous case when defining a conditional PDF for X;, conditional on an
elementary event occurring for X,. Namely, since all elementary events are
assigned probability zero in the continuous case, and since, more generally, the
integral over a singleton set is zero, our definition of the conditional density,
as presented earlier, yields

2 fix, x2)dxs
fbb falxa)dx,

which is an indeterminate form. Thus f{x; | xo = b} is undefined, so that P(x; €
A | x, = b) is undefined as well. This is different than the discrete case, where

flx1, b)
fa(b)
is well-defined, provided f,(b} # 0.

The problem is circumvented by redefining the conditional probability,
P(x) € A | xy = b), in the continuous case in terms of a limit, as

fix1 1= b) = -2

flx) | X, =b) =

Plx; e A|xy =b)= 61_i>r(1;1+P(x1EAIXp,e[b—e,b+e])

— lim [fx,e,q J2EE fixn, x0)dxy dxl}

b
€0t s falxa)dxo
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where lim,.,¢g+ means we are examining a limit for a sequence of € values that
approach zero from positive values (i.e., € > 0). The idea is to examine the limit-
ing value of a sequence of probabilities that are conditioned on a corresponding
sequence of events, [b — €, b + €] for € — 0%, that converge to the elementary
event {b}. The following lemma will facilitate the identification of the limit.

Lemma 2.2 ] ) o
Mean Value Theorem If g(x) is continuous V x € [cy, c2}, then 3 xp € [¢;, c3] such that fq glx)dx =

for Integrals | glxo)(c2 — c1).1°

To use the mean value theorem, and to ensure that the limit of the condi-
tional probabilities exists, we assume that there exists a choice of € > 0 such
that fo(x5) and f{x;, x,) are continuous in x;, V x5 € [b—¢, b+¢€], and that f,(b) > 0.
Then, by the mean value theorem,

2e fx.eA f(Xl, Xg)dxl
2¢fa(x3) '

PxyeA|xo=0b)= hI‘(l;l

e—>0+
where both xJ and x3 € [b— €, b + €], and xJ will generally depend on the value
of x,.16 The 2¢’s in the numerator and denominator cancel each other, and as
€ — 0%, the interval [b — ¢, b + €] reduces to [b, b] = b, so that in the limit, both
xJ and x3 = b. The limiting value of the conditional probability is then

P(XIGA|X2=b)=/ A%{;_)

Since the choice of event A is arbitrary, it follows that the appropriate condi-
tional probability density in this case is

flx1, b)
falb)
which is precisely of the same form as the discrete case. Thus, the definition of

conditional density functions, when conditioning on elementary events, will
be identical for continuous and discrete random variables.

dX].

fixy | x=b)=

Example 2.23  Recall Ex. 2.22. The conditional PDF for plant 1’s proportion of capacity X;,
given that plant 2’s capacity proportion is x; = .75, can be defined as

f(Xl/ 75) _ (Xl + -75)1[0]1](}(1) _ (4

3
f2.75) 1.25 X1+ = | foylx1)-

fix1 | X2 =.75) = z z

15R. Courant and F. John (1965), Introduction to Calculus and Analysis, New York: John Wiley-Interscience, p. 143.

161n applying the mean value theorem to the numerator, we treat f{x;, x2) as a function of the single variable x,, fixing the value of
x) for each application.
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Definition 2.17
Conditional probability
density functions

The probability that x; < .5, given that x, = .75, is then given by

sS4 3
P(x, 5.5|X2=.75)=/ §X1+§ dx) = 4. O
0

N-Variate Case

The preceding concepts of discrete and continuous conditional probability den-
sity functions in the bivariate case can be generalized to the n-variate case, as
indicated in the following definition.

Let flx), ..., X,) be the joint density function for the n-dimensional random
variable (X1, ..., Xn). LetJ1 = {j1,...,im} and J2 = {im+1, . ., in} be two mutu-
ally exclusive index sets whose union is equal to the index set {1,2,...,n}.
Then the conditional density function for the m-dimensional random vari-
able (Xj,,...,X;,), given that (X; Xj,) € D and Py, .x,(D]>0,isas
follows:

m+ir

Discrete Case:
PIEEE Z(x,m+l,...,x,-n)eD fixi, ..., Xn)

X Ly, yortinleD Fimstocin Ximars ++ 1 Xin)

f(lel "'IXim le,11+ll"'Ian) € D) =

Continuous Case:
fixi, oo X | (Xjpers - - -1 Xj,) € D)
f cee f(Xi,,,_,_ln":xin)ED f(Xl, . ,xn)dx;m+l NN den

f T f(x,-mﬂ,...,x,-n)eD ffm+| woln (Xfm+l/ crc Xin ,dxfmﬂ e dX’n

If D is equal to the elementary event (dp,41,...,dy), then the definition of
the conditional density in both the discrete and continuous cases can be
represented as

_ fnml
fim+l---in(dm+ll ey dﬂ)

where x;, = d; if j; € J, when the marginal density in the denominator is
positive valued.!”

f(le,...,X,'m |Xi,- =di,j=m+l,...,n)

7In the continuous case, it is also presumed that f and f; | +1.in ar€ continuous in (x;..,,...,X;,) within some neighborhood of
points around the point where the conditional density is evaluated in order to justify the conditional density definition via a
limiting argument analogous to the bivariate case. Motivation for the conditional density expression when conditioning on an
elementary event in the continuous case can then be provided by extending the mean value theorem argument used in the bivariate
case. See R. G. Bartle, Real Analysis, p. 429, for a statement of the general mean value theorem for integrals.
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For example, if n = 3, J; = {1, 3}, and ], = {2}, then the conditional density
function of (X;, X3), given that x, € D, would be defined as

> x,ep 1X1, X2, X3)

> xpep falxa)

in the discrete case, with integration replacing summation in the continuous
case. If D = d,, then for both the discrete and continuous cases,

f(xl/ d2/ X3)
falda)

Similarly, if J; = {1} and ], = {2, 3}, then the conditional density for X;, given
(x2,x3) € D, would be defined as

Z ZfXZ,X.;)GD ﬂxll X, X3)
Z Z(X?_,Xa)ED fB(X2/ X3)

in the discrete case, with integration replacing summation in the continuous
case. If D = {{ds, d3)}, then for both the discrete and continuous cases,

fix1, da, d3)
faslda, d3)

An example of conditional PDFs in the trivariate case will be presented in
Section 2.8.

In summary, if we begin with the joint density function appropriate for
assigning probabilities to events involving the n-dimensional random variable
(X, ...,Xn,), we can derive a conditional probability density function that is
the PDF appropriate for assigning probabilities to events for an m-dimensional
subset of the random variables in (X}, ..., X;), given {or conditional) on an event
for the remaining n — m random variables. The construction of the conditional
density involves both the joint density of (X3, ..., X} and the marginal density
of the (n—m)-dimensional random variable on which we are conditioning. In the
special case where we are conditioning on an elementary event, the conditional
density function simply becomes the ratio of the joint density function to the
marginal density function, replacing the arguments of these functions with
their conditioned values for those arguments corresponding to random variables
on which we are conditioning {which represents all of the arguments of the
marginal density, and a subset of the arguments of the joint density).

fixi,x3 | xo € D) =

fixi,x31x0=da) =

fix1 1 (x2,x3) € D) =

fixi | %y =da, x3 =d3) =

Conditional CDFs

We can define the concept of a conditional CDF by simply using a conditional
density function in the definition of the CDF. For example, for the bivariate
random variable (X, X;), we can define

b
Flb, | %, € D)= P{x; < b; ixzeD)zf Aix1 | xo € D)dx;

—00
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as one such conditional CDF, representing the CDF of X;, conditional on x5 € D.
Once defined, the conditional CDF possesses no special properties that distin-
guish it in concept from any other CDF. The reader is asked to contemplate the
various conditional CDFs that can be defined for the n-dimensional random
variable (X, ..., X4,).

Independence of Random Variables

From our previous discussion of independence of events, we know that A and
B are independent iff P{A N B) = P(A)P(B). This concept can be applied di-
rectly to determine whether two events for the n-dimensional random variable
(X3, ...,X,) are independent. The general definition of independence of events
(Def. 1.13) can be used directly to examine the independence of k events for the
random variable (X, ..., X,). The concept of independence of events will now
be extended further to the idea of independence of random variables, which is
related to the question of whether the n events (recall the abbreviated set defi-
nition notation of Def. 2.7} {x; € A;} = {{x1,...,Xn): x; € A, (x1, ..., xn) € R{X]},
i=1,..., n, are independent for all possible choices of the events Ay, ..., 4A,.
If so, the n random variables are said to be independent. In effect, the con-
cept is one of global independence of events for random variables—we define
an event A; for each of the n random variables in (X, ..., X,) and, no matter
how we define the events (which is the meaning of the term “global” here),
the events {x; € A;}, i = 1, ..., n, are independent. Among other things, this
implies that the probability assigned to any event A; for any random variable
X;in (X),...,X,) would be unaffected by conditioning on any event B for the
remaining random variables (assuming P(B) > 0 for the existence of the condi-
tional probability).

Bivariate Case

We seek to establish a condition that will ensure that the events {x; € A;} and
{xy € Ay} are independent for all possible choices of the events Ay and Aj;. This
can be accomplished by applying independence conditions to events in the
probability space, {R(X), T, P} for the bivariate random variable X = {X;, X3).
The events x; € A) and x, € A, are equivalent, respectively, to the following
events for the bivariate random variable:

By = {(x1,x2): x1 € Ay, (x1,%2) € R(X])},
By = {{x1,x3): X3 € Ay, (x1,X%2) € R[X])}.
The two events B; and B, are independent iff P(By N By} = P(B;)P|(B,), which can
also be represented as P(x; € A, x5 € Ay} = P{x; € A }P(xy € Ay). Requiring the

independence condition to hold for all choices of the events A; and A, leads to
the definition of the independence condition for random variables.
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Definition 2.18
Independence of
random variables

The random variables X; and X, are said to be independent iff P(x; € Ay, x, €
As) = P(x) € A1)P(x, € A,) for all events Ay, A,.

There is an equivalent characterization of independence of random vari-
ables in terms of PDFs that can be useful in practice and that also further facil-
itates the investigation of the implications of random-variable independence.

Theorem 2.6  {Joint Density Factorization for Independence of Random Variables) The ran-
dom variables X, and X, with joint probability density function f(x,,x;) and
marginal probability density functions fi(x;), i = 1,2, are independent iff the
joint density factors into the product of the marginal densities as flx1,x;) =
filx1)falxs) ¥ (x1,%2) except, possibly, at points of discontinuity for the joint
density function of a continuous random variable.

Proof (Discrete case} Let A; and A, be any two events for X; and X, respectively.
Then if the joint density function f{x;, x;) factors,

PlxicApxae o)=Y Y flxi,x)= ) filx1) Y falxs) = Plxi € A1)Plxz € A5),

X1€A X2€A) x1€A, X3€An

and so X; and X, are independent. Thus, factorization is sufficient for indepen-
dence. Now assume {X;, X,) are independent random variables. Let A, = {a;}
and A, = {a,} for any choice of elementary events, a; € R(X;), corresponding to
the random variable X;, i = 1, 2, respectively. Then, by independence,

P(x1 = ay, x2 = a3} = flay, a2} = P(xy = a1)P(x3 = a3) = filar}falaa).

If a; ¢ R(X;), then fi{a;) = 0 and fla), ay) = 0 for i = 1,2, and thus factorization
will automatically hold. Thus, factorization is necessary for independence.

(Continuous case) Let A; and A, be any two events for X; and X,, respec-
tively. Then if the joint density function f{x), x;) factors,!8

P(X1 € Al,X2 € Az) = / / f(Xl,Xg)dxl pr_
XzEAz X|EA|

= LleAlfl(Xl)dXI/ falxa)dxy

X2€A2
= P(X] € AI)P(XZ € AZ)/

so that X; and X, are independent. Thus, factorization is sufficient for inde-
pendence. Now assume (X;, X;) are independent random variables. Let A; =

18 Any points of discontinuity can be ignored in the definitions of the probability integrals without affecting the probability assign-
ments. Recall Footnote 12.
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Example 2.24

{x;: x; < a;} for arbitrary choice of a;, i = 1, 2. Then by independence,

a

a
Plx; <a1,x < ap)= f / flxy, x2)dx; dxy
-00 J -0

=Plx; <a1)P(xz < @) = /_al filx1)dx, /_az falx2)dx,.

Differentiating the integrals with respect to a; and a, yields fla;, a;)=f1(a1)f2{a,)
wherever the joint density function is continuous. Thus, the factorization con-
dition stated in the theorem is necessary for independence. |

In other words, two random variables are independent iff their joint PDF can
be expressed equivalently as the product of their respective marginal PDFs (the
condition not being required to hold at points of discontinuity in the continuous
case). An important implication of the pairwise independence of X; and X, is
that the conditional and marginal PDFs of the respective random variables are
identical.!® For example, assuming independence,

fia,b) _ fulsifalb) _
Aier = pp

fix1 | %2 =Db) =

and
Joep X1, X2)dxs filx1) [, g olx2)dxa
Joeshlxaldx [ g halxa)dx,

(in the discrete case, replace integration by summation). The fact that condi-
tional and marginal PDFs are identical implies that the probability of x; € A,
for any event A, is unaffected by the occurrence or nonoccurrence of event B
(or b) for X,, e.g., in the continuous case,

= filx1)

flx1 | x2 € B =

P(X1€A|X2€B)=/

X1 €A

fixy | x5 € Bjdx = f Alaldx, = Plx < 4)

(replace integration by summation in the discrete case). The result holds for
events involving X, for which the conditional density function is defined. The
roles of X; and X, can be reversed in the preceding discussion.

Recall Ex. 2.16 concerning coating flaws in the manufacture of television
screens. The horizontal and vertical coordinates of the coating flaw was the
outcome of a bivariate random variable with joint density function

fixi, x2) = L5 1i—29)(x1)]-1.5,1.5)%2).

Are the random variables independent?

19We will henceforth suppress constant reference to the fact that factorization might not hold for some points of discontinuity in
the continuous case—it will be tacitly understood that results we derive based on the factorization of f{x;, x5} may be violated at
some isolated points. For example, for the case at hand, marginal and conditional densities may not be equal at some isolated points.
Assignments of probability will be unaffected by this technical anomaly.
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Answer: The marginal densities of X; and X, are given by

1.5 1
fibxi) = Tiaafx) [ 5 = 250aax),

21 1
falxa) = I[—l.S,l.S](XZ)[Z del = 51[_1.5,1.5}(152)-
It follows that fix),x2) = fi(x1)f2[x2) V¥ (x1,x3), and the random variables are
independent. Therefore, knowledge that an event for X, has occurred has no
effect on the probability assigned to events for X, and vice versa. O

Example 2.25  Recall the dice example, Ex. 2.15. Are X; and X, independent random variables?
Answer: Examine the validity of the independence condition:

fix1, x2) = filx falxa) ¥ (x1, %2),

or, specifically,

1 : 1 6—|xy—7
—Iua,..elx1)1,...6(x2 — x1) & 3141,2,...,6)(?(1] (——Z———I) I, anlx2) ¥ (x1,x2).

36 36
The random variables X; and X, are not independent, since, for example, letting
x; = 2 and x, = 4 results in 1/36 # 1/72. Therefore, knowledge that an event
for X, has occurred can affect the probability assigned to events for X, and vice
versa. 0

N-Variate

The independence concept can be extended beyond the bivariate case to the
case of independence of random variables X, ..., X,,. The formal definition of
independence in the n-variate case is as follows:

Definition 2.19
Independence of
random variables

(n-variate)

The random variables X, X, ..., X, are said to be independent iff P(x; €
A;i=1,...,n)=[]L, Plx; € A;) for all choices of the events A,, ..., Ap.

The motivation for the definition is similar to the argument used in the
bivariate case. For B; = {{x1, ..., xa): xi € A}, [x1,...,xp) e R{X])},i=1,...,n, to
be independent events, we require (recall Def. 1.13)

P(ﬂBi) =[]PB)vY] c{1,2...,n, with N{Jj>2.
i€/ jel

If we further require this condition to hold for all possible choices of the events
(By, ..., By), then the totality of the conditions can be represented as

n n n
Plx;e A;,i=1,...,n) =P(ﬂ3,-> =[]PB:) = [ Px: € Ai)
i=1 i=1 i=1
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for all choices of the events A, ..., A, (or, equivalently, for corresponding
choices of By, ..., B,). Any of the other conditions required for independence
of events, i.e.,

P (ﬂB") = I—IP(Bj) with/ c {1,2,...,n} and N(]) < n,
je] i€l
are implied by the preceding condition upon letting A; = R(X;) (or, equivalently,
B =R(X)) forje].

The generalization of the joint density factorization theorem is given as
Theorem 2.7. The proof is a direct extension of the arguments used in proving
Theorem 2.6 and is left to the reader.

Theorem 2.7  (Joint Density Factorization for Independence of Random Variables (n-variate
case))] The random variables X,, Xs, ..., X, with joint probability density
function f(x,,...,xn) and marginal probability density functions fi{x;), i = 1,
..., n, are independent iff the joint density can be factored into the product of
the marginal densities as

oy, o) =] Al ¥ (s, ., )
i=1

except, possibly, at points of discontinuity for the joint density function of a
continuous random variable.

An example of the application of Theorem 2.7 is given in Section 2.8.

If (X,,...,X,) are independent random variables, then knowing the mar-
ginal densities fi(x;), i = 1, ..., n, is equivalent to knowing the joint density
function for (X), ..., Xpn), since then flxy,...,xn) = []L, filxi). However, if the
random variables in the collection (X}, ..., X,) are not independent, then know-
ing each of the marginal densities of the X;’s is not sufficient to determine the
joint density function for (X}, ..., X,). In fact, it can be shown that an uncount-
ably infinite family of different joint density functions can give rise to the same
collection of marginal density functions.?’ We provide the following counterex-
ample in the bivariate case to the proposition that knowledge of the marginal
PDFs is sufficient for determining the joint PDF.

Example 2.26  Examine the function
falx1, x2) = [1 4+ (2x) — 1)(2x2 — 1)}jo,1)(x1 {0, 1)(x2).

The reader should verify that f,(x;, X2) is a probability density function V ¢ €
[~1, 1]. For any choice of @ € [—1, 1], the marginal density function for X; is
given by

filx1) = ./ioo falx1, X2)dxs = Ijg1j(x1).

20E. 1. Gumbel {1958}, Distributions  plusieurs variables dont les marges sont données, C.R. Acad. Sci., Paris, 246, pp. 2717-2720.
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Similarly, the marginal density of X;, for any choice of & € {—1, 1], is given by
oQ
o) = [ fulxt, xaldxi = ool
—00

Since the same marginal density functions are associated with each of an un-
countably infinite collection of joint density functions, it is clear that knowl-
edge of fi{x1) and f5(x2) is insufficient to determine which is the appropriate
joint density function for (X, X,). If we knew the marginal densities of X; and
X,, as stated, and if X, and X, are independent random variables, then we would
know that f{x, x5) = Ijg,1)(x1)Ijo,1}(x2). O

Independence Between Random Vectors and Between Functions of Random
Vectors

The independence concepts can be extended so that they apply to independence
among two or more random vectors. Essentially, all that is required is to inter-
pret the X;’s as multivariate random variables in the appropriate definitions and
theorems presented heretofore, and the statements are valid. Motivation for the
validity of the extensions can be provided using arguments that are analogous
to those used previously. For example, to extend the previous bivariate result
to two random vectors, let X1 = (X131, ..., X1m) be an m-dimensional random
variable and X5 = (X5, ..., X2,) be an n-dimensional random variable. Then X,
and X, are independent iff

P(x) € A1, X3 € Ay) = P[x11, ..., X1m) € Ay, (Xa1, ..., Xan) € Ay)
= P((Xu, . .,le) € Al)P“th e ,X2n) € Az) = P(X] € A])P(Xz (] Az),

for all event pairs A, A;. Furthermore, in terms of joint density factorization,
X, and X, are independent iff

flxy, x2) = fixuy, ..., Xim, X21, . .., Xon) = f1(%11, .o, XamfalX21, - - o, Xon) = filx1 )falxe) VY (x1, X2)

holds except, perhaps, at points of discontinuity for f{x, x,) for continuous ran-
dom variables. The reader can contemplate the myriad of other independence
conditions that can be constructed for discrete and continuous random vectors.

Implications of the extended independence definitions and theorems are
qualitatively similar to the implications identified previously for the case where
the X;'s were interpreted as scalars. For example, if X; = (X;y,...,X1m) and
X = (X2, ..., Xa,) are independent random variables, then

P((xy1, ..., Xim) € A1 | (X21, ..., X0 € Ag)) = P[x11, ..., X1m) € A1),

i.e., conditional and unconditional probability of events for the random variable
X, are identical (and similarly for X, ) for all choices of A; and A, for which the
conditional probability is defined.

It is also useful to note some results concerning the independence of ran-
dom variables which are defined as functions of other independent random
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Theorem 2.8

Proof

Example 2.27

Theorem 2.9

variables. We begin with the simplest case of two independent random variables
X and X;.

If X and X, are independent random variables, and if the random variables
Y, and Y, are defined by y, = Yi(x,) and yo = Y,(x3), then Y, and Y, are
independent random variables.

The event involving outcomes of X; that is equivalent to the event y; € A; is
given by B; = {x;: Yi(x;) € A;, x; € R{X;)} fori = 1,2. Then

Ply) € A1, y2 € Ay) = P(x) € By, X3 € By)
= P(x; € B1)P|x5 € By} (by independence of x;, x3)
= Ply1 € A1)P(yy € Ay),

and since this holds for every event pair A, A,, the random variables Y, and Y,
are independent. |

A large service station sells unleaded and premium-grade gasoline. The quanti-
ties sold of each type of fuel on a given day is the outcome of a bivariate random
variable with density function?!

flx1, x3) = pse xS, (%) 10 o) (X2),

where the x;’s are measured in thousands of gallons. The marginal densities are
given by (reader, please verify)

filx1) = fge~ M Igeox1) and falxa) = 171 g o)(xa),

and so the random variables are independent. The prices of unleaded and pre-
mium gasoline are $1.25 and $1.45 per gallon, respectively. The wholesale cost
of gasoline plus federal state and local taxes amounts to $1.00 and $1.10 per gal-
lon, respectively. Other daily variable costs in selling the two products amount
to Cix;) = 20x?, i = 1,2. Are daily profits above variable costs for the two
products independent random variables?

Answer: Yes. Note that the profit levels in the two cases are 1} = 250x; —20x?
and I, = 350x, — 20x2, respectively. Since I1; is only a function of x;, IT5 is
only a function of x,, and X, and X, are independent, then IT; and I1, are
independent by Theorem 2.8. a

A more general theorem explicitly involving random vectors is stated as
follows:

Let Xy, ..., X, be a collection of n independent random vectors, and let the
random vectors Yy, ..., Y, be defined by y; = Y;(x;),i = 1, ..., n. Then the
random vectors Yy, ..., Y, are independent.

21This must be an approximation—why?
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Proof The eventinvolving outcomes of the random vector X; that is equivalent to the
event A; for the random vector Y; is given by B; = {x;: Yi(x;) € A;, x; € R(X})},
i=1,...,n Then

P(inA,‘,i= 1,...,H)=P(X1€Bi,i= 1,...,11)

n
= l_-[P(x,~ € B;) (by independence of random vectors)
=1

[

n
= []Plyi € A)),
I=1
and since this holds for every collection of events Aj, ..., A,, the random
vectors Yj, ..., Y, are independent by a vector interpretation of the random
variables in Def. 2.19. |

Example 2.28 Examine the experiment of independently tossing two fair coins and rolling
three fair dice. Let X; and X, represent whether heads (x; = 1) or tails (x; =
0) appears on the first and second coins, respectively, and let X3, X4, and X5
represent the number of dots facing up on each of the three dice, respectively.
Since the random variables are independent, the joint density of X3, ..., X5 can
be written as

2 5
1 1
fixi, ..., xs5) = | l EI(O,I}(Xi)l I 81(1,.‘.,6}()(1‘)-
i=1 i=3

Define two new random vectors Y; and Y, using the vector functions

yu X +X2:| Y
= = = Y (x1,x2)
(2}111) [le:‘ [ X)X wap

Yai X3 + Xa +xs]
2 = = = Ys (x3, X4, Xs).
(2};1) [Yﬂ] [ X3Xa/Xs ax1) ¢

Then since the vector y; is a function of (x), x2), y2 is a function of (x3, x4, Xs),
and since the random vectors {X;, X;) and (X3, X4, X5) are independent (why?),
Theorem 2.9 indicates that the random vectors Y, and Y, are independent. This
is clearly consistent with intuition, since outcomes of the vector Y, obviously
have nothing to do with outcomes of the vector Y;. The reader should note that
within vectors, the random variables are not independent, i.e., Yq; and Y, are
not independent, and neither are Y,; and Y. O

2.8 Extended Example of Multivariate Concepts in the Continuous Case

We now further illustrate some of the concepts of this chapter with an extended
example involving a trivariate continuous random variable. Let (X, X5, X3) be
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a continuous trivariate random variable with joint density function

flx1, X2, x3) = S x1x3 €7 Ijg9)(%1 Tj0,2(%2 (0,00 (X3)-

a.

€.

What is the marginal density of X;? of X5? of X352
Answer:

o0 o
fulx1) = / / i, %2, xa)dx dxs
—00 J—00
o0 o0
= &x11jpalx1) / x31j0,9)(x2)dx2 f e Ip,00)(X3)dx3
—00 —00

= &xiIox1)(8)(1) = 2x1Ij05(x1 ).

Similarly,

oo o0 3
f2(X2)=f / fix1, X2, x3)dx) dX3=—8-X%I[o,z](Xz)

fsth)=f f fixa, x0, %3)dx1 dxy = €7 Jjg oy {%3).

. What is the probability that x; > 1?

Answer:

0o 21 X2 2
Pazl)= [ o= [ gudn =1 | =75
1 1 1

. Are the three random variables independent?

Answer: Yes. Since we have derived the marginal densities of X, X», and
X3, it is clear that

fix1, X2, x3) = filx1)fa(x2)falx3) VY (x1, %9, X3).

. What is the marginal cumulative distribution function for x,? for x3?

Answer: By definition,

b b 1
mb)=[ flxa)dx, = f L Tyl )dx,

2
1 XZ b b2
=53 . Ijo,2)(b) + Ijp,00)(b) = 74—1{0,2](5) + Ij3,00)(D),
. b b
F3(bj = f falxs)dxs = f e Ij0,00)(X3)dX3

= —e™ |} Tjpb) = (1 = e7®)Ijg,e0)(D)-

What is the probability that x; < 1? that x5 > 1?
Answer: P(x; < 1) = Fl(l) = .25. P(x3 > 1)=1- F3(1) =e! = .3679.

f. What is the joint cumulative distribution function for X, X,, X3?
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Answer: By definition,

by by bs
F(bl,bz,b3)=/ / A1, %2, xa)dxs dxa dxy

g
h.

b 1 by 3 ) bs
= / EXII[O,Z)(Xl)dXI / '8‘X21[0,2](X2)dx2 f e Ijo,00)(X3)dX3

b? 3b3
= [Tlrlo,znbl) + Ipoolb) )] [T;I[o,z.(bz) + I(z,oo)(bz)] [(1 = e )o.o(B)]

What is the probability that x; <1, x, <1, x3 < 10?

Answer: F(1,1,10) = (1/4)(3/24)(1 — e~10) = .031.

What is the conditional PDF of X, given that x, = 1 and x3 = 0?
Answer: By definition,

ﬂxllllo)
X | Xy =13 =0)=—rtL
f( l| 2 3 ) f23(110)
Also,
o 3 2 —X;
fzs(Xz,X3)=/ flxy, x9, X3)dx) = §X21[0,2](X2)@ 30,00/ (X3).
—00

Thus,

3
-—-—le , (Xl) 1
fixilx=1,x3=0)= 16"'—(5'2”]— = §X11[0,2](X1)

8

. What is the probability that x; € [0, 1/2], given that x, = 1 and x3 = 0?

Answer:

12
Plx; €[0,3] 1% =1,x3 =0) = flx1 | xo = 1,x3 = 0)dx)
0

172 1
=/O -2-X11[o,2}(X1)dX1
’i), 1/2=i
0 16

X
4

. Let the two random variables Y) and Y be defined by y; = Yi(x1, x2) = x}x>

and y, = Ys(x3) = x3/2. Are the random variables Y, and Y, independent?
Answer: Yes, they are independent. The bivariate random variable (X, X»)
is independent of the random variable X3 since f{x), X2, x3) = fi2(x1, X2)f3(x3),
i.e., the joint density function factors into the product of the marginal den-
sity of (X;, X,) and the marginal density of X3. Then, since y, is a function
of only (x),x9) and y; is a function of only x3, Y; and Y, are independent
random variables, by Theorem 2.9.
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2.9 Events Occurring with Probability Zero

Example 2.29

Example 2.30

We present examples of events that occur with probability zero in discrete
sample spaces. The examples illustrate that the concept of an event occurring
with probability zero is not isolated to the case of uncountably infinite sample
spaces, but is also applicable to countable and even finite sample spaces.

The annual break-even level of electricity sales for a midwestern electric utility
is calculated by the accountants of the utility to be one billion kilowatt hours.
Assume the annual level of electricity sales is the outcome of some continuous
random variable with density function f{x). Define the random variable Y such
that

-1 < 1 billion
y=1 0 if x { = 1 billion } kilowatt hours.
1 > 1 billion

Then R(Y) is finite, with the outcome y = 0 occurring with probability
ZEero. .3

Let the discrete random variable X have a countably infinite range, R(X) =
{x1, X2, X3, ...}, and density function f{x}. Suppose there exists an elementary
event in R(X] that is less likely to occur than any other elementary event. Let
this elementary event be x;. Then

Plx))=flx)) < flxi) = Plx;) Vi>1,
and it follows that

Yt <Y M) vas1,
i=1 i=1

or
fa) <2y fix) Vas 1.
i=1

Since Y"i_, flxi) < 1V n, it follows that the only value for f{x;) that can satisfy
the above strict inequality V n is fix;) = 0. Thus, the event x; occurs with
probability zero.

Define another random variable using an indicator function as

¥ = Iirix)-x, %)

so that y = 1 when x; does not occur and y = 0 when x; does occur. The range of
Y is finite, equal to R(Y) = {0, 1}, and letting h be the discrete probability density
function for Y, we have h(y) = Ij1;(y), so that y = 0 occurs with probability zero,
while y = 1 occurs with probability one. a
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Key Words, Phrases, and Symbols

random variable, X

X:S—-R

X{w)

R(X)

outcome of the random variable, x

induced probability space,
{R(X)I TX! PX}

equivalent events

composite random variable

discrete random variable

discrete probability density function

PDF

continuous random variable

continuous probability density
function

event A occurs with probability
Z€ro

event A is relatively impossible

event A occurs with probability one

event A is relatively certain

Problems

1. Which of the following are valid probability density

functions? Justify your answer.
- Aix) = (2F(.6) 1 jo,(x)
- fix) = (3.7 Iip,1,2,... (%}

[

o

classes of discrete and continuous
density functions

mixed discrete-continuous random
variables

discrete density component

continuous density component

abbreviated set notation

P(x <b)

cumulative distribution function

CDF

truncation function

F|b)

nondecreasing function

increasing function

duality between CDFs and PDFs

real-valued vector function

multivariate random variable

discrete joint probability density
function

continuous joint probability density
function

fixy, ..., xn)

joint cumulative distribution
function

marginal probability density
function

MPDF

fr.mlx, - o) Xm)
marginal cumulative distribution

function
MCDEF
conditional density function
f(xl:-"lxm | (Xm+11 . 'IXH) € B)
conditional cumulative distribution
function
marginal cumulative distribution
function

independence of random variables
joint density factorization for
independence

c. Define a probability density function for the ran-

dom variable. Use it to assign probability to the
event that a bottle is “considered full.”

d. The PDF f{x} is only an approximation. Why?

c. fix) = .67 o0)(x)
d. fix) = x"j,¢(x)

2. Graph each of the density functions in Problem 1.

3. Sparkle Cola, Inc., manufactures a cola drink. The
cola is sold in 12 oz. bottles. The probability distribu-
tion associated with the random variable whose out-
come represents the actual quantity of soda placed in a
bottle of Sparkle Cola by the soda bottling line is spec-
ified to be

fix) = 50[6_100“2_"’[(—0@12](’() + 6_100(""12]1(12,00)‘?{”-
In order to be considered full, a bottle must contain
within .25 oz. of 12 oz. of soda.

a. Define a random variable whose outcome indicates
whether or not a bottle is considered full.

b. What is the range of this random variable?

4. A health maintenance organization (HMO) is cur-
rently treating 10 patients with a deadly bacterial infec-
tion. The best-known antibiotic treatment is being used
in these cases, and this treatment is effective 95 percent
of the time. If the treatment is not effective, the patient

expires.

a. Define a random variable whose outcome repre-
sents the number of patients being treated by the
HMO that survive the deadly bacterial infection.
What is the range of this random variable? What is
the event space for outcomes of this random vari-
able?

b. Define the appropriate probability density function
for the random variable you defined in (a). Define
the probability set function appropriate for assign-
ing probabilities to events regarding the outcome of
the random variable.
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c. Using the probability space you defined in (a} and
(b}, what is the probability that all 10 of the patients
survive the infection?

d. What is the probability that no more than two pa-
tients expire?

e. If 50 percent of the patients were to expire, the
government would require that the HMO suspend
operations, and an investigation into the medical
practices of the HMO would be conducted. Provide
an argument in defense of the government’s actions
in this case.

5. Star Enterprisesisasmall firm that produces a prod-
uct that is simple to manufacture, involving only one
variable input. The relationship between input and out-
put levels is given by g = x®, where q is the quantity of
product produced and x is the quantity of variable input
used. For any given output and input prices, Star Enter-
prises operates at a level of production that maximizes
its profit over variable cost. The possible prices facing
the firm on a given day is represented by a random vari-
able V with R{V) = {10, 20, 30} and probability density
function

f(V) = .21(10](V} + .51(20)(V) + .31[30)‘V).

Input prices vary independently of output prices, and
input price on a given day is the outcome of W with
R{W} = {1, 2, 3} and probability density function

glw) = .4I“|(W) + .31(2)(W] + .31(3,(W}.

a. Define a random variable whose outcome repre-
sents Star’s profit over variable cost on a given day.
What is the range of the random variable? What is
the event space?

b. Define the appropriate probability density function
for profit over variable cost. Define a probability
set function appropriate for assigning probability to
events relating to profit over variable cost.

c. What is the probability that the firm makes at least
$100 profit over variable cost?

d. What is the probability that the firm makes a posi-
tive profit on a given day? Is making a positive profit
a certain event? Why or why not?

e. Given that the firm makes at least $100 profit over

variable cost, what is the probability that it makes
at least $200 profit over variable cost?

6. The ACME Freight Co. has containerized a large
quantity of 4-megabyte memory chips that are to be

shipped to a personal computer manufacturer in Cal-
ifornia. The shipment contains 1,000 boxes of mem-
ory chips, with each box containing a dozen chips. The
chip manufacturer calls and says that due to an error
in manufacturing, each box contains exactly one defec-
tive chip. The defect can be detected through an easily
administered, nondestructive continuity test using an
ohmmeter. The chip maker requests that ACME break
open the container, find the defective chip in each box,
discard them, and then reassemble the container for
shipment. The testing of each chip requires one minute
to accomplish. ' '

a. Define a random variable representing the amount
of testing time required to find the defective chip
in a box of chips. What is the range of the random
variable? What is the event space?

b. Define a probability density function for the ran-
dom variable you have defined in {a). Define a prob-
ability set function appropriate for assigning prob-
abilities to events relating to testing time required
to find the defective chip in a box of chips.

c. What is the probability that it will take longer than
five minutes to find the defective chip in a box of
chips?

d. If ACME uses two eight-hour-shift workers for one
shift each to perform the testing, what is the proba-
bility that testing of all of the boxes in the container
will be completed?

7. Intelligent Electronics, Inc., manufactures mono-
chrome liquid crystal display {LCD) notebook computer
screens. The number of hours an LCD screen functions
until failure is represented by the outcome of a random
variable X having range R{X) = [0, oo} and probability
density function

X

fix) = .Olexp (—E—d) Jjo,00)(X).

The value of x is measured in thousands of hours. The
company has a one-year warranty on its LCD screen,
during which time the LCD screen will be replaced free
of charge if it fails to function.

a. Assuming that the LCD screen is used for 10,000
hours per year, what is the probability that the firm
will have to perform warranty service on an LCD
screen?

b. What is the probability that the screen functions
for at least 50,000 hours? Given that the screen has
already functioned for 50,000 hours, what is the
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probability that it will function for at least another
50,000 hours?

8. People Power, Inc., is a firm that specializes in pro-
viding temporary help to various businesses. Job appli-
cants are administered an aptitude test that evaluates
mathematics, writing, and manual dexterity skills. Af-
ter the firm analyzed thousands of job applicants who
took the test, it found that the scores on the three tests
could be viewed as outcomes of random variables with
the following joint density function {the tests are graded
on a0-1 scale, with 0 the lowest score and 1 the highest):

3
fix1, %2, x3) = .80(2x; + 3xa)x3 | | fio 1j{xi)-
i=1
a. A job opening has occurred for an office manager.
People Power, Inc., requires scores of > .75 on both
the mathematics and writing tests for a job appli-
cant to be offered the position. Define the mar-
ginal density function for the mathematics and
writing scores. Use it to define a probability space
in which probability questions concerning events
for the mathematics and writing scores can be an-
swered. What is the probability that a job applicant
who has just entered the office to take the test will
qualify for the office manager position?

b. Ajob opening has occurred for a warehouse worker.
People Power, Inc., requires a score of > .80 on
the manual dexterity test for a job applicant to be
offered the position. Define the marginal density
function for the dexterity score. Use it to define
a probability space in which probability questions
concerning events for the dexterity score can be an-
swered. What is the probability that a job applicant
who has just entered the office to take the test will
qualify for the warehouse worker position?

c. Find the conditional density of the writing test
score, given that the job applicant achieves a score
of > .75 on the mathematics test. Given that the
job applicant scores > .75 on the mathematics test,
what is the probability that she scores > .75 on the
writing test? Are the two test scores independent
random variables?

d. Is the manual dexterity score independent of the
writing and mathematics scores? Why or why not?

9. The weekly average price (in dollars/foot) and total
quantity sold (measured in thousands of feet) of cop-
per wire manufactured by the Colton Cable Co. can be
viewed as the outcome of the bivariate random variable

(P, Q) having the joint density function

fip, @) = 5pe P11, 3)(P)0,00)q)-

a. What is the probability that total dollar sales in a
week will be less than $2,000?

b. Find the marginal density of price. What is the prob-
ability that price will exceed $.25/foot?

c. Find the conditional density of quantity, given
price = .20. What is the probability that > 5,000
feet of cable will be sold in a given week?

d. Find the conditional density of quantity, given
price = .10. What is the probability that > 5,000
feet of cable will be sold in a given week? Compare
this result to your answer in {c]. Does this make
economic sense? Explain.

10. A personal computer manufacturer produces both
desktop computers and notebook computers. The
monthly proportions of customer orders received for
desktop and notebook computers that are shipped
within one week’s time can be viewed as the outcome of
a bivariate random variable (X, Y} with joint probability
density

fix,y) =2 — x — yMoylx M0, (¥)

a. In a given month, what is the probability that more
than 75 percent of notebook computers and 75 per-
cent of desktop computers are shipped within one
week of ordering?

b. Assuming that an equal number of desktop and
notebook computers are ordered in a given month,
what is the probability that more than 75 percent
of all orders received will be shipped within one
week?

c. Are the random variables independent?

d. Define the conditional probability that less than 50
percent of the notebook orders are shipped within
one week, given that x proportion of the desktop
orders are shipped within one week (the probability
will be a function of the proportion x). How does
this probability change as x increases?

11. A small nursery has seven employees, three of
whom are salespersons, and four of whom are garden-
ers who tend to the growing and caring of the nursery
stock. With such a small staff, employee absenteeism
can be critical. The number of salespersons and garden-
ers absent on any given day is the cutcome of a bivariate
random variable (X, Y). The nonzero values of the joint
density function are given in tabular form as
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Y
0 1 2 3 4

75 .025 .01 .01 .03

.06 .03 .01 .01 .003
.01 .005 .005 .002
.005 .004 .003 .002 .001

w N - O
o
N
(%]

a. What is the probability that more than two employ-
ees will be absent on any given day?

b. Find the marginal density function of the number
of gardeners that are absent. What is the probability
that more than two gardeners will be absent on any
given day?

c. Are the number of gardener absences and the num-
ber of salesperson absences independent random
variables?

d. Find the conditional density function for the num-
ber of salespersons who are absent, given that there
are no gardeners absent. What is the probability that
there are no salespersons absent, given that there
are no gardeners absent? Is the conditional proba-
bility higher or lower given that there is at least one
gardener absent?

12. The joint density of the bivariate random variable
{X,Y) is given by
fix, ¥} = xyLo{x)joaly).

a. Find the joint cumulative distribution function of
(X, Y). Use it to find the probability that x < .5 and
y<l

b. Find the marginal cumulative distribution function
of X. What is the probability that x < .52

c. Find the marginal density of X from the marginal
cumulative distribution of X.

13. The joint cumulative distribution function for
(X,7) is given by
Flx,y) = (1 — ™10 — g7 4 e+ ) (x)]i0,001(¥)-

a. Find the joint density function of (X, Y).

b. Find the marginal density function of X.

c. Find the marginal cumulative distribution function
of X.

14. The cumulative distribution of the random variable
X is given by

Flx) = (1 - p"*')Ip10,.(x),

for some choice of p € (0, 1}.

a. Find the density function of the random variable X.
b. What is the probability that x < 8 if p =.75?
c. What is the probability that x < 1 given thatx < 8?

15. The federal mint uses a stamping machine to make
coins. Each stamping produces 10 coins. The number of
the stamping at which the machine breaks down and
begins to produce defective coins can be viewed as the
outcome of a random variable, X, having a probability
density function with general functional form

fix) = a1 - BT 2a,.(x),  where B €(0,1).

a. Are there any constraints on the choice of « for f{x}
to be a probability density function? If so, precisely
what are they?

b. Is the random variable X a discrete or a continuous
random variable? Why?

c. It is known that the probability the machine will
break down on the first stamping is equal to .05.
What is the specific functional form of the proba-
bility density function f{x)? What is the probabil-
ity that the machine will break down on the tenth
stamping?

d. Derive a functional representation for the cumu-
lative distribution function corresponding to the
random variable X. Use it to assign the appropri-
ate probability to the event that the machine does
not break down for at least 10 stampings.

e. What is the probability that the machine does not
break down for at least 20 stampings, given that
the machine does not break down for at least 10
stampings?

16. The daily quantity demanded of unleaded gasoline
in a regional market can be represented as
Q=100-10p+E, wherepe€l0,38],

and E is a random variable having a probability density
given by

f(e) = .0251 0,20 (e)

Quantity demanded, Q, is measured in thousands of gal-
lons, and price, p, is measured in dollars.

a. What is the probability of the quantity demanded
being greater than 70,000 gallons if price is equal to
$42 if price is equal to $3?

b. If the average variable cost of supplying Q amount
of unleaded gasoline is given by C{Q} = Q%/2, de-
fine a random variable that can be used to represent
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the daily profit above variable cost from the sale of
unleaded gasoline.

c. If priceisset equal to $4, what is the probability that
there will be a positive profit above variable cost on
a given day? What if price is set to $3? to $5?

d. If price is set to $6, what is the probability that
quantity demanded will equal 40,000 gallons?

17. For each of the cumulative distribution functions
listed below, find the associated probability density
functions. For each CDF, calculate P(x < 6).

a. Flb) = (1— e %6)I,g (D)
b. F(b) = (5/3)(:6 — .6y (b)

18. An economics class has a total of 20 students with
the following age distribution:

# of students  age

1 19
20
21
24

29

— = &b O

Two students are to be selected randomly, without re-
placement, from the class to give a team report on the
state of the economy. Define a random variable whose
outcome represents the average age of the two stu-
dents selected. Also, define a discrete probability den-
sity function for the random variable. Finally, what is
the probability space for this experiment?

19. Let X be a random variable representing the mini-
mum of the two numbers of dots that are facing up after
a pair of fair dice is rolled. Define the appropriate prob-
ability density for X. What is the probability space for
the experiment of rolling the fair dice and observing the
minimum of the two numbers of dots?

20. A package of a half-dozen light bulbs contains two
defective bulbs. Two bulbs are randomly selected from
the package and are to be used in the same light fix-
ture. Let the random variable X represent the number of
light bulbs selected that function properly {i.e., that are
not defective). Define the appropriate probability den-
sity function for X. What is the probability space for
the experiment?

21. A committee of three students will be randomly
selected from a senior-level political science class to

present an assessment of the impacts of an antitax ini-
tiative to some visiting state legislators. The class con-
sists of five economists, eight political science majors,
four business majors, and three art majors. Referring
to the experiment of drawing three students randomly
from the class, let the bivariate random variable (X, Y)
be defined by x = number of economists on the com-
mittee, and y = number of business majors on the com-
mittee.

a. What is the range of the bivariate random variable
(X, Y)? What is the probability density function,
flx, y), for this bivariate random variable? What is
the probability space?

b. What is the probability that the committee will
contain at least one economist and at least one busi-
ness major?

c. What is the probability that the committee will
consist of only political science and art majors?

d. On the basis of the probability space you defined
in {a), is it possible for you to assign probability to
the event that the committee consists entirely of
art majors? Why or why not? If you answer yes,
calculate this probability using f{x, y) from (a).

e. Calculate the marginal density function for the ran-
dom variable X. What is the probability that the
committee contains three economists?

f. Define the conditional density function for the
number of business majors on the committee, given
that the committee contains two economists. What
is the probability that the committee contains less
than one business major, given that the committee
contains two economists?

g. Define the conditional density function for the
number of business majors on the committee,
given that the committee contains at least two
economists. What is the probability that the com-
mittee contains less than one business major,
given that the committee contains at least two
economists?

h. Aretherandom variables X and Y independent? Jus-
tify your answer.

22. The Imperial Electric Co. makes high-quality
portable compact disc players for sale in international
and domestic markets. The company operates two
plants in the United States, where one plant is lo-
cated in the Pacific Northwest and one is located in
the South. At either plant, once a disc player is assem-
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bled, it is subjected to a stringent quality-control inspec-
tion, at which time the disc player is either approved for
shipment or else sent back for adjustment before it is
shipped. On any given day, the proportion of the units
produced at each plant that require adjustment before
shipping, and the total production of disc players at the
company’s two plants, are outcomes of a trivariate ran-
dom variable, with the following joint probability den-
sity function:

f(x,y,2) =%(x+ y)e ™I g, w)(x)(0,1y(¥)(0,1)(2)s

where

x = total production of disc players at the two plants,
measured in thousands of units,

y = proportion of the units produced at the Pacific
Northwest plant that are shipped without
adjustment, and

z = proportion of the units produced in the southern
plant that are shipped without adjustment.

a. In this application, the use of a continuous trivari-
ate random variable to represent proportions and
total production values must be viewed as only an
approximation to the underlying real-world situa-
tion. Why? In the remaining parts, assume the ap-
proximation is acceptably accurate, and use the ap-
proximation to answer questions where appropri-
ate.

b. What is the probability that less than 50 percent
of the disc players produced in each plant will be
shipped without adjustment and that production
will be less than 1,000 units on a given day?

c. Derive the marginal probability density function
for the total production of disc players at the two
plants. What is the probability that less than 1,000
units will be produced on a given day?

d. Derive the marginal probability density function
for the bivariate random variable (Y, Z). What is the
probability that more than 75 percent of the disc
players will be shipped without adjustment from
each plant?

e. Derive the conditional density function for X, given
that 50 percent of the disc players are shipped from
the Pacific Northwest plant without adjustment.
What is the probability that 1,500 disc players will
be produced by the Imperial Electric Co. on a day
for which 50 percent of the disc players are shipped

from the Pacific Northwest plant without adjust-
ment?

f. Answer (e} for the case where 90 percent of the
disc players are shipped from the Pacific Northwest
plant without adjustment.

g. Are the random variables (X, Y, Z) independent ran-
dom variables?

h. Are the random variables (Y, Z} independent ran-
dom variables?

23. ACE Rentals, a car-rental company, rents three
types of cars: compacts, mid-size sedans, and large lux-
ury cars. Let {xj, x,, x3) represent the number of com-
pacts, mid-size sedans, and luxury cars, respectively,
that ACE rents per day. Let the sample space for the
possible outcomes of (X, X, X3) be given by

S= {(X[, X3, X3): X1, X3, and X3 € {OI 112‘;3”

{ACE has an inventory of nine cars, evenly distributed
among the three types of cars).

The discrete probability density function associ-
ated with (X, X,, X3} is given by

.004(3 + 2x, +x2)] 3
X1, X2, X3} = Io,1,2.3){%:).
fix, x2, x3) [ 5 x) Il;[ 10.1,2,3){X:)

The compact car rents for $20/day, the mid-size sedan
rents for $30/day, and the luxury car rents for $60/day.

a. Derive the marginal density function for X;. What
is the probability that all three luxury cars are
rented on a given day?

b. Derive the marginal density function for (X;, X,).
What is the probability of more than one compact
and more than one mid-size sedan being rented on
a given day?

c. Derive the conditional density function for X,
given x; > 2. What is the probability of renting no
more than one compact car, given that two or more
mid-size sedans are rented?

d. Are Xi, X5, and X; jointly independent random vari-
ables? Why or why not? Is {X;, X,) independent of
X3?

e. Derive the conditional density function for (X, X5),
given that x3 = 0. What is the probability of renting
more than one compact and more than one mid-size
sedan given that no luxury cars are rented?

f. If it costs $150/day to operate ACE Rentals, define
a random variable that represents the daily profit
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made by the company. Define an appropriate den-
sity function for this random variable. What is the
probability that ACE Rentals makes a positive daily
profit on a given day?

24. If (X,, X,) and (X3, X,) are independent bivariate ran-
dom variables, are X, and X; independent random vari-
ables? Why or why not?

25. The joint density function of the discrete trivariate
random variable (X, X,, X3) is given by

fix1, xa, x3) = 20110 1) (x1 M10,1) (X2 ) 1x, —xy 11 (X3)

+ 051101y {x1 10,1y (%2 {1 - pxy -1 (X3 ).

a. Are (X;,Xs), (X1, X3), and (X,, X3) each pairwise in-
dependent random variables?

b. Are X;, X5, X3 jointly independent random vari-
ables?

26. SUPERCOMP, a retail computer store, sells per-
sonal computers and printers. The number of comput-
ers and printers sold on any given day varies, with the
probabilities of the various possible sales outcomes be-
ing given by the following table:

Number of Computers Sold
0 1 2 3 4

0[03 03 02 02 01y,
Number 1|.02 05 .06 .02 .01
of 2|.01 02 .10 .05 .05 °|
printers 3 | .01 .01 .05 .10 .10 :;':é”tary
400 o1 01 05 a5

a. If SUPERCOMP has a profit margin {product sales
price — product unit cost) of $100 per computer sold
and $50 per printer sold, define a random variable
representing aggregate profit margin from the sale
of computers and printers on a given day. What is
the range of this random variable?

b. Define a discrete density function appropriate for
use in calculating probabilities of all events con-
cerning aggregate profit margin outcomes on a
given day.

c. What is the probability that the aggregate profit
margin > $300 on a given day?

d. The daily variable cost of running the store is
$200/day. What is the probability that SUPER-
COMP's aggregate profit margin on computer and
printer sales will equal or exceed variable costs on
a given day?

e. Assuming that events involving the number of
computers and printers sold are independent from
day to day, what is the probability that for any
given six-day business week, aggregate profit mar-
gins equal or exceed variable cost all six days?
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Expectation of a Random Variable

Example 3.1

The definition of the expectation of a random variable can
be motivated both by the concept of a weighted average and through the use of
the physics concept of the center of gravity, or the balancing point of a distri-
bution of weights. We first examine the case of a discrete random variable and
look at a problem involving the balancing-point concept.!

Suppose that a weightless rod is placed on a fulcrum, a weight of 10 Ibs. is
placed on the rod exactly four feet to the right of the fulcrum, and a weight of
5 1bs. is placed on the rod exactly eight feet to the left of the fulcrum, as shown
in Figure 3.1.

Assume that § = 0 is the point at which the fulcrum is placed, so that the
10 Ib. weight is at the point x; = 4, and the 5 lb. weight is at the point x3 = —8.
Let mass|x} denote the mass placed at point x. The moment of any mass placed
at a point x is defined to be the product of the mass times its signed distance
from the fulcrum, [mass(x))(x — 8), where 8 is the point at which the fulcrum

1Readers who recollect earlier days spent on a seesaw should possess ample intuition regarding the placement of weights appropriate
distances from a fulcrum so as to achieve a “balanced seesaw.”
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Figure 3-1 | | |
H T ] 1
Weights on a M 8 ft. 5

weightless rod.

Figure 3-2
Density function “weights”
on a weightless rod.

4 ft. X1

is placed. Thus, the moment of the 10 lb. weight is 10{4 — 0) = 40, while the
moment of the 5 1b. weight is 5(—8-0) = —40. A system of weights with fulcrum
placed at § will balance if the sum of the moments )", ,[mass(x;)](x; — §), called

the total moment of the system, is equal to zero. Our system balances, since
40 + (—40) = 0. 0

The moments concept illustrated in Ex. 3.1 can be used to identify the
point at which a probability density “balances.” Recall the dice example of
Ex. 2.2. We place the probability “weights” on a weightless rod at the points
corresponding to the outcomes with which the probabilities are associated, as
shown in Figure 3.2.

At what point should the fulcrum be placed so that the distribution of
weights balances? We require that the total moment of the system be zero.

6/36
5/36 5/36
4/36 4/36
3/36 3/36
2/36 2/36
1/36 1/36
3 4 5 6 7 8 9 10 11 12
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Thus, we require that
11

11
> Imassixllix; — 8) = 3 flxilix; — 8) = 0,
i=1

i=1

which implies that

11 11
D flxilxi =8 [Zf(Xi):l =,
i=1 i=1

where the sum in brackets equals 1 because the density function f{x) is being
summed over the entire range of the random variable X. Substituting the ap-
propriate values of x; and f{x;) in the expression obtains the result § = 7. Thus,
if the fulcrum were placed at the point 7, the system of weights would balance.
The quantity § is precisely what we mean by the expected value of the discrete
random variable X with density function f{x). Thus, the expected value of a
discrete random variable is a measure of the center of gravity of its density
function.

Definition 3.1 ) . , .
Expectation of a random The expected value of a discrete random variable exists, and is defined by

variable; discrete case EX = 2 xerix) Xfix), if 3 xerpx 1XIAx) < co.

The significance of the existence condition stated in the definition is to
ensure that the sum defining the expectation is absolutely convergent.? If all
outcomes of X are finite and R(X) is finite, then the existence condition is met,
and the expectation of X will necessarily exist, since f{x) € [0, 1] V x, so that
> verix) 1X|fix) is a finite sum of finite numbers.

There is no guarantee that ), . xf(x) converges to any finite number
when R(X) is countably infinite, even if all of the outcomes of X are finite.
Furthermore, even if the infinite sum converges to some real number for a
given ordering of the terms in the sum, it is an unfortunate fact of infinite sums
involving both positive and negative terms that, unless the sum is absolutely
convergent, an appropriate reordering of terms will result in the infinite sum
converging to other real numbers.? This is hardly consistent with the notion of
a balancing point of the density f{x). Moreover, the nonuniqueness of values to
which the infinite sum can converge makes any particular convergence point
arbitrary and meaningless as the expectation of X. Thus, to ensure the finiteness
and uniqueness of the converged value in the countably infinite case, EX is
said to exist iff 3", pix 1xIflx) < 0o, which is to say, iff 3, erpx) Xflx) is absolutely
convergent. For virtually any problem of practical interest, if the sum used

2The sum Y, 4 glx)is absolutely convergent iff 3", . 4 Ig(x]| < co. In our case, let g{x) = xf(x), and since flx) > 0, |g{x)| = |xflx)| = |x|fix).
{See R. G. Bartle {1976}, The Elements of Real Analysis, 2nd ed. New York: John Wiley, p. 289. Some authors define EX = oo if
L xerix) Xflx) = 00 and 3~ yegix) Xflx) > —00, and EX = —oo if the first and second sums < co and = —oo respectively.

x>0 x<0

3Bartle, Real Analysis, p. 292.
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in the definition of the expectation is finite, the expectation can be said to
exist. It should also be noted that in many applications, random variables are
nonnegative valued, in which case if the sum is convergent, it is necessarily
absolutely convergent.

Since fix] > 0V x € R(X), and 3, px flx) = 1, the expected value of a
discrete random variable can also be straightforwardly interpreted as a weighted
average of the possible outcomes (or range elements) of the random variable. In
this context the weight assigned to a particular outcome of the random variable
is equal to the probability that the outcome occurs (as given by f{x)).

Example 3.2 A life insurance company offers a 50-year-old male a $1,000 face value, one-
year term life insurance policy for a premium of $14. Standard mortality tables
indicate that the probability a male in this age category will die within the
year is .006. What is the insurance company’s expected gain from issuing this
policy?

Answer: Define a random variable X having range R(X) = {14, =986}, the out-
comes corresponding, respectively, to the premium of $14 collected by the
company if the person lives, or the net payment of $986 {$1,000 minus the
premium collected) to the person’s estate if he dies. The probabilities of the
two elementary events are .994 and .006, respectively. Then, EX = (14)(.994) —
(986){.006) = 8. 0O

Note that the expected value of X need not be a value in the range of X as
the previous and following examples illustrate.

Example 3.3 Examine the experiment of rolling a die, and recall that the density function
associated with the dots facing up on the die is fix) = (1/6)I}1,...¢;(x). In this case
R(X) = {1,2,3,4,5,6)}. The expected value of X equals EX = 2 xerix) Xflx) =
Y S _1(x/6)1,1,.6(x) = 3.5, and thus EX ¢ R(X]. i

In the continuous case, the physics problem of balancing mass on a weight-
less rod can no longer be conceptualized as having weights applied to specific
points on the rod. Instead, the mass is interpreted as being continuously spread
out along the rod, exerting downward force along a continuum of points on
the rod. The mass function, mass(x), is now a density of the mass at point x,
J%2 mass{x)dx equals the total mass placed on the rod, and /. ab mass(x)dx equals
the mass lying between the points a and b* (see Figure 3.3). The mass is bal-
anced on the rod when the fulcrum is placed at the point § such that the total
moment of the mass, [ mass(x)(x — §)dx, equals zero.

Viewing our density function as a (probability) mass, the continuous density
“balances” with a fulcrum placed at the point § if

fwﬂﬂm—sux=o

“The reader might notice that the mass function would exhibit properties similar to a probability density function, except the
integral over the real line would not necessarily = 1, but rather would equal the number reflecting the total mass placed on the rod.
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Igmass(x)dx
Figure 3-3
Continuous mass on
a weightless rod. a b X

Definition 3.2
Expected value of a
random variable;
continuous case

which implies that

o] oo
/ xfix)dx = f fix)dx = 6.
~-=00 -0
[ ——
1
Again, it is this balancing point or center of gravity, §, of the density that rep-
resents the expectation of the continuous random variable X having density

fix).

The expected value of the continuous random variable X exists, and is de-
fined by EX = [ xf|x)dx, iff [ |x|fix)dx < oo.

The significance of the existence condition is to ensure that the limit oper-
ations inherent in the definition of the improper Riemann integral [ xf(x)dx
exhibit absolute convergence, which is in fact required for the existence of the
improper Riemann integral.> Henceforth, it will be sufficient to state that the
expectation exists if the integral exists.

The expected value of X in the continuous case can also be viewed, in a
limit sense, as a weighted average of the possible outcomes (or range elements)
of the random variable. This interpretation follows fundamentally from the
definition of the definite integral as the limit of a Riemann sum.® For the sake
of exposition, we assume that the positive values of f{x) all occur for x within
the interval x € [q, b} for finite a and b, although a similar argument holds when
a and/or b are infinite.

Letxp =a, X, = b, Xg < X] < X3 < -+ < X, AX; = x; — x4_1, and examine
the Riemann sum Y 1, X°f{X?)Ax;, where X? is a value chosen such that X? ¢
[xi-1, x1].

This situation can be represented by the diagram in Figure 3.4. Thus,
each X? is weighted by the value f{X?)Ax;, an area indicated in the diagram
by a shaded rectangle, and a summation is taken over all the chosen values
of the X?. We have effectively divided the interval [a, b] into a collection of

5See J. E. Marsden (1974}, Elementary Classical Analysis, San Francisco: W. H. Freeman and Co., pp. 267-271. Some authors define
EX = oo if f§° xflx)dx = oo and f?m xf{x) > —00, and EX = —~c0 if the first and second integrals are < 0o and = —o0, respectively.

6Bartle, Real Analysis, pp. 213-214.
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subintervals of various widths Ax;, i = 1,..., n. The subinterval of maximum
width is referred to as the mesh {or sometimes, the norm) of the collection of
subintervals, i.e., mesh = max(Ax,, ..., Ax,). If f(x) is continuous,’ then as we
increase without bound the number of subintervals, and in so doing decrease
the mesh to zero, we have

n b o0
Jim ZX?f (x9) Ax; = / xflx)dx = / xflx)dx

mesh—0 i=1 -

and

lim 37 (X9) A = f ? ixddx = / " fxldx = 1

mesh—0 i=1

(presuming the first limit, and hence first integral, exists—the second limit,
and integral, necessarily exists since f{x) is a density function). Therefore, under
the assumptions of our argument, the expected value of X can be viewed, in a
limiting sense, as a weighted average of an infinite number of possible outcomes
of the random variable.

Example 3.4 A large domestic automobile manufacturer mails out quarterly customer sat-
isfaction surveys to owners who have purchased new automobiles within the
last three years. The proportion of surveys returned in any given quarter is the
outcome of a random variable X having density function flx) = 3x2Ijg ){x). What
is the expected proportion of surveys returned in any given quarter?

7The argument can still be applied to cases where there is a finite number of discontinuities.
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Theorem 3.1

Proof

Figure 3-5
f(x) = 3x%o,1)(x).

Answer: By definition,

o0 o0
EX = / Xf(X)dX = / X (3X2'I[011](X)) dx
~00 —00
1 41
= 3x3dx = 3x7 =.75.
0 4 o
This is represented diagrammatically in Figure 3.5. a

In applications, the following result can often be a useful sufficient condi-
tion for the existence of the expected value in either the discrete or continuous
case.

(Existence of EX for Bounded R(X)) If |x| < ¢ ¥ x € R(X), for some choice of
¢ € {0,00), then EX exists.

By the assumption of the theorem, f(x) = 0 V x such that |x| > c.
Discrete:

Y xifixi< Y cfixl=c 3 fix)=c<oo,

xeR(X) xeR(X) xeR(X)

so that EX exists.
Continuous:

/ ” Ix\flx)dx < / - cfix)dx =c¢ /_ : flx)dx = ¢ < o0,

-0 —00

so that EX exists. |

f(x)
3




116

Chapter 3

Mathematical Expectation and Moments

The theorem indicates that expectations exist for any random variable whose
outcomes are bounded in absolute value.

In order to economize on notation, we henceforth assume that whenever
a discrete density function is involved in a summation expression, it is tacitly
understood that summation is only over points for which f(x) > 0. Thus, we
will generally abbreviate expressions such as Y yea flx) to simply Y, , flx),
the condition f{x) > O always being understood. /%>

3.2 Expectation of a Function of Random Variables

Many cases arise in practice where we are interested in the expectation of a
function of a random variable rather than the expectation of a random variable
itself. For example, the profit on a stock investment will be a function of the
difference between the per share buying and selling prices of the stock, and
the net return on an advertising campaign is a function of consumer buying
response to the campaign—both the stock selling price and consumer buying
response can be viewed as random variables. How might EY be determined
when y = g(x), x € R(X), and X has density function f{x)? By definition, if we
know the density of Y, h(y), then

(discrete) EY = Z yh(y),
yeR{Y)

(continuous) EY = / yh(y)dy.

To use the expectation definition directly, we would need to establish the den-
sity of Y. This can be done in principle by exploiting the functional relationship
between y and x, given knowledge of the density f{x), but often, finding h(y) can
be quite difficult (we will examine methods for deriving such densities in Chap-
ter ). Fortunately, we need not derive the density function of y to obtain EY.

Since Y is defined via a composition of the functions g and X, and since
the domain of X is conceptually the sample space S, then Y is defined on the
elements of S via the composition, i.e., an outcome of y can be viewed as being
given by y = g(X(w])) for w € S, so that y : $ - R. This implies that the range
of Y and probabilities of events for Y can be represented alternatively as

RY)={y:y=glx),x e RIX)} = {y : y = glX(w)), w € S}
and
Py(A) = Px({x : gx) € A, x € R(X}}) = P({w : g(X[w]) € A, w € S}).

Therefore, we can concentrate our attention on the g function component of
the composition, which has a real-valued domain R(X), and conceptualize the
outcomes of Y as being generated by y = g{x) for x € R(X), where y : R(X) - R.
In so doing, we lose no information concerning the possible outcomes of Y or
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the probabilities of events for Y,® and we gain the convenience of being able
to ignore the original probability space {S, Y, P} and deal exclusively with a
real-valued domain for the function Y. We will generally focus on this latter in-
terpretation of the function Y in our subsequent study, unless we make explicit
reference to the domain of Y as being S.

We now present a theorem identifying a straightforward approach for ob-
taining the expectation of Y = g{X) by using density weightings applied to the
outcomes of X.

Theorem 3.2  Let X be a random variable having density function f(x). Then the expectation
of Y = g(X) is given by®

(discrete) EglX) = Z glx)fix),
x€R[X)

{continuous) Eg(X) = / ~ glxfix)dx.

Proof (Discrete case) Let Y = g({X). The density function for the random variable Y
can be represented by

h(y) = Pyly) = Px({x : glx) =y, x e R(X}}) = ) Afix].
(gl

That is, the probability of the outcome y is equal to the probability of the
equivalent event {x : g(x) = y}, which is the inverse image of y. Then

EgX)=EY= ) yhly)= ). v > Ax

yeR(Y) yeR(Y) (x:glx}=y)
=3 3 axfix= Y elxfix),
yeR(Y) (x:g{x}=y} xeR(X)

where the next to last expression is true, since g(x) = y forallx € {x : g[x) = y},
and the last expression is true since Y, p(y) 2 xgixi=y) &(X)f1X) is equivalent to
summing over all x € R(X) because the collection of all y € R(Y) (the outer sum)
is the set R{Y) = {y : y = g[x), x € R(X]}.

(Continuous case) To prove the theorem for the continuous case, we first
need to establish the following lemma.

Lemma 3.1 ] . . iy .
For any continuous random variable Y, the expectation of Y, if it exists, can

be written as

EY =/ Ply > z)dz —/ Ply < —z)dz.
0 0

8This presumes that the probability space {R(X), Tx, Px} is known.

91t is tacitly assumed that the sum and integral are absolutely convergent for the expectation to exist.
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Proof of Lemma

Example 3.5

Let h(y) be the density function of Y. Then Ply > z) = [;° h(y)dy, so that

/ " Ply > z)dz = / - " hiy)dydz = [ - [ / ’ dz] Hiyldy = | " yhlyldy,

where the second equality was simply the result of changing the order of inte-

gration (note that the inner range of integration is a function of the outer range

of integration, and the same set of (y, z) points are being integrated over).
Similarly, Ply < ~z) = f:ozo h(y)dy, so that

[ p < etz [ [y~ [ [ [7 ae| ity = [ sty

Therefore,
00 0 [<3) 0
f Ply > z)dz — f Ply < —z)dz = f yvh(yldy + / yh(y)dy = EY. |
0 0 0 -0

Note that the lemma (integrals and all) also applies to discrete random
variables. !0
Using the lemma, we have

E(glX)) = /0 ” Plglx) > 2)dz — /0 " Plelx) < —z)dz

- [ " [ sz - | i [ fixidxdz
0 {x:g|x)>z) 0 {x:glx)<~-2)

8lx) —~glx]
N [x:g(xbO) I;/O‘ dz] f(X)dX B -/(‘x:g(x)sm [.L dz] f(X)dX

=/ glx)fix)dx + / glx)fix)dx.
{x:8(x)>0} {x:g(x)<0}

- f ~ glxfixdx. n

o <]

Let the daily profit function of a firm be given by I1(X) = pq(X) — rX, where X is
arandom variable whose outcome represents the daily quantity of a highly per-
ishable agricultural commodity delivered to the firm for processing, measured
in hundredweights (100 1b. units), p = 5 is the price of the processed product
per pound, r = 2 is the cost of the raw agricultural commodity per pound, and
q(x) = x? is the production function indicating the relationship between raw
and finished product measured in hundredweights. Let the density function of

X be flx) = L2 15 1g)(x). What is the expected value of daily profit?

10See P. Billingsley (1986}, Probability and Measure, 2nd ed. New York: John Wiley, pp. 73-74, for the method of proof in the discrete

case.
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Example 3.6

Theorem 3.3

Answer: A direct application of Theorem 3.2 yields

1+2x
110

<] 10
ETI(X) = / [1{x)f{x)dx = / (5x9 — 2x)( )dx _13.77.
—-00 0
Since quantities are measured in hundredweights, this means that the expected
profit is $1,377 per day. O

Your company manufactures a special 1/4-inch hexagonal bolt for the Defense
Department. For the bolt to be usable in its intended application, the bolt must
be manufactured within a 1 percent tolerance of the 1/4-inch specification.
As part of your quality assurance program, each bolt is inspected by a laser
measuring device that is 100 percent effective in detecting bolts that are not
within the 1 percent tolerance. Bolts not meeting the tolerance are discarded.
The actual size of a bolt manufactured on your assembly line is represented
by a random variable, X, having a probability density fix) = (.006)~']; 347, 253)(%),
where x is measured in inches. If your profit per bolt sold is $.01, and if a
discarded bolt costs your company $.03, what is your expected profit per bolt
manufactured?

Answer: We define a discrete random variable whose outcome represents
whether a bolt provides the company with a $.01 profit or a $.03 loss. Specifi-
cally,

Y = g(X) = .01{I[ 2475,2525)(X)} — .03(1 — I} 2475, 2525)(X))

is the function of X that we seek, where y = .01 if x € [.2475,.2525] (i.e., the
bolt is within tolerance) and y = —.03 otherwise. Then

253
EY = Eg(X) fw glx)fix)dx

01P(.2475 < x < .2525) — .03[1 — P{.2475 < x < .2525]]

.01(.833) — .03(.166) = .0033. o

The reader should note that in the preceding example, while X was a contin-
uous random variable, Y = g{X) is a discrete random variable. Whether Y=g(X)
is discrete or continuous depends on the nature of the function g and whether
X is discrete or continuous. The reader should convince herself that if X is dis-
crete, then Y must be discrete, but if X is continuous, then Y can be continuous
or discrete (or mixed discrete-continuous).

Upon close examination of Ex. 3.6, the reader may have noticed that the
expectation of an indicator function equals the probability of the set being
indicated. It follows that probabilities can be represented as expectations.

Let X be a random variable with density function f(x), and suppose A is an
event for X. Then E(I4(X])) = Px(A).
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Proof [Discrete) By definition,

ElLalX)) = ) Ialxlfix) = ) fix) = Px(A).

xeR(X) xeA

(Continuous) By definition,

EIA(X) = / " Lalx)fix)dx = / ixldx = PxlA). n

—00

It should be noted that the existence of EX does not imply that Eg{X) exists,
as the following example illustrates.

Example 3.7 Let X be a random variable with density function flx) = (1/2)[jg1)(x). Then
EX =0-1/2+1.1/2 = 1/2. Define a new random variable Y = g{X) = X1
Since |1/0}{1/2) + 11/1]{1/2) £ oo, Eg(X) does not exist. O

The preceding example also illustrates that, in general, Eg(X) # g(EX). Re-
ferring to Ex. 3.7, note that since EX = 1/2, g(EX) = (EX)~! = 2, which does not
equal Eg{X) because Eg{X) does not exist! In the special case where the function
g is either concave or convex,!! there is a definite relationship between Eg{X)
and g(EX), as indicated by the following theorem.

Theorem 3.4 (Jensen’s Inequality) Let X be a random variable with expectation EX, and
let g be a continuous function on an open interval I containing R(X). Then

a. Eg{X) > g(EX) if g is convex on I, and Eg(X) > g|EX) if g is strictly convex
on I and X is not degenerate;'?

y=8W

y=a+ bx

Figure 3-6
Convex function g. EX

1A continuous function, g, defined on a set D is called concave if V x € D, 3 a line going through the point (x, g{x)} that lies on or
above the graph of g. The function is convex if ¥ x, 3 a line going through the point {x, g(x}} that lies on or below the graph of g (see
Figure 3.6). The function is strictly convex or concave if the aforementioned line has only the point {x, g{x)) in common with the
graph of g.

12A degenerate random variable is a random variable that has one outcome that is assigned a probability of 1. More will be said
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b. Eg(X) < g(EX) if g is concave on I, and Eg|X) < g{EX) if g is strictly concave
on I and X is not degenerate.

Proof We prove the result for the convex case. The proof of the concave case is anal-
ogous.
If g is a convex function for x € I, then there exists a line going through
the point EX, say £(x) = a + bx, such that g[x) > £(x) = a+ bxVx € I and
glEX) = a + bEX (see Figure 3.6). Now note that

(discrete)  Eg(X)= ) glx)fix)> ) (a+ bxfix) = a + bEX = g[EX),
xeR(X) Xx€R|X)

o] oo

{continuous) Eg(X) = / glx)fix)dx > / {a + bx)flx)dx = a + bEX = g{EX),
Eade ] —oQ

since g{x) > a + bx V x € I,!3 so that Eg(X) > g(EX).

If g is strictly convex, then there exists a line going through the point EX,
say £{x) = a + bx, such that g{x) > £(x) = a + bx ¥ x e I for which x # EX, and
8(EX) = a+bEX. Then, assuming that no element in R{X) is assigned probability
one (i.e., X is not degenerate), the previous inequality results become strict,
implying Eg{X]} > g(EX] in either the discrete or continuous case. |

Example 3.8  Suppose that the yield per acre of a given agricultural crop under standard cul-
tivation practices is represented by Y = 5X — .1X2, where outcomes of Y are
measured in bushels, and X represents the total rainfall during the growing
season, measured in inches. If EX = 20, can you place an upper bound on the
expected yield per acre for this crop?

Answer: Yes. Note that Y = 5X — .1X2 is a concave function, so that Jensen’s
inequality applies. Then EY = Eg(X) < g(EX) = 5EX — .1{EX)* = 60 is an upper
bound to the expected yield. In fact, the function is strictly concave, and so the
inequality can be made strict (it is reasonable to assume that rainfall is not a
degenerate random variable). O

Expectation Properties

There are a number of properties of the expectation operation that follow di-
rectly from its definition. We prove the validity of the propositions using the
case of a continuous random variable. The reader is asked to provide analogous
demonstrations in the discrete cases.

Theorem 3.5 If c is a constant, then E|c) = c.

about degenerate random variables in Section 3.6.

13Recall the integral inequality that if h(x} > t{x) ¥V x € (a, b}, then [ ab hix)dx > [ ab t(x)dx. Strict inequality holds if h{x) > t[x} V
x € (g, b). The result also holds for a = ~oc0 and/or b = co.
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Proof

Theorem 3.6

Proof

Theorem 3.7

Proof

Corollary 3.1

Proof

Let g(X) = c. Then, by Theorem 3.2,

E(c) = f " fixldx = c f_ ” fxldx = c. .
[ —

1

In words, “the expected value of a constant is the constant itself.”
If ¢ is a constant, then E{cX) = cEX.
Let g(X) = cX. Then, by Theorem 3.2,

ElcX) = /- > cxflx)dx =c¢ /_ ” xflx)dx = cEX. |
P P —

EX

In words, “the expected value of a constant times a random variable is the
constant times the expected value of the random variable.”

EY L, &ilX) = XX EgilX).

Let g[X) = Zf;l gi(X). Then, by Theorem 3.2,

k o [ _k k o0 k
£ ei= 7| Sai | pas =3 [ phitekds = Y rsix.  m
i=1 —00 1 i=] Y~ i=1

i=

In words, “the expectation of a sum is the sum of the expectations” regarding k
functions of the random variable X. A useful corollary to Theorem 3.7 concerns
the expectation of a linear function of X.

LetY = a+DbX forreal constants a and b, and let EX exist. Then EY = a+bEX.

This follows directly from Theorem 3.7 by defining g,(X) = a, £2(X) = bX, and
then applying Theorems 3.5 and 3.6. ]

Multivariate Extensions

The concept of an expectation of a function of arandom variable is generalizable
to a function of a multivariate random variable as indicated in the following
theorem. The proof is based on an extension of the proof of Theorem 3.2 and is
omitted.!

14See Steven F. Arnold {1990), Mathematical Statistics. Englewood Cliffs, NJ: Prentice Hall, pp. 92, 98.
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Theorem 3.8  (Expectation of a Function of a Multivariate Random Variable) Let(X,...,X,)
be a multivariate random variable with joint density function f(xy,...,xu).
Then the expectation of Y = g(X, ..., X,) is given by'5

(discrete) EY = Z e Z glxy, ..., xalflx, ..., xn),

{x1,--Xn)eR(X)

(continuous) EY:/ / glxy, ..., xa)fix1, ..., xa)dxy -+ - dxp.

We remind the reader that since f{x;, ..., x,) =0V [xy, ..., x,) ¢ R{X), one could
also sum over the points (x,...,x,) € xR(X;) to define EY in the discrete
case.

Example 3.9  Let the bivariate random variable (X}, X;) représent the proportions of operating
capacity at which two electricity generating plants operate on a given spring
day in an East Coast power grid. Assume the joint density of (X, X,) is given
by

fix1, x2) = 6x1x21j0,1)(%1)]jo,1)(%2).

What is the expected average proportion of operating capacity at which the two
plants operate?

Answer: Define the average proportion of operating capacity via the function
g(X1,X5) = .5(X; + X3). By Theorem 3.8,

1,1 1,1
Eg(X1, Xa) = f f 3x2xadx)dx, + f / 3x1x3dx) dx,
o Jo o Jo

1 3 17
—§+§='2—2—.7083. O

The expectation property in Theorem 3.7 concerning the sum of functions
of a random variable X can also be extended to the sum of functions of a mul-
tivariate random variable, as the following theorem indicates.

Theorem 3.9 EZﬁ;l gilXy, ..., Xa) = Zf:] Egi(X1,...,Xna).

Proof (Continuous) Let g(Xi,...,X,) = Zf=1gi(X1, ..., Xn). Then by Theorem 3.8,
Eg(X,,...,X,) is given by

k 0o oo [ k
EZg,-(X;,...,Xn)= / / (Zg,-(xl,...,xn))f(xl,...,xn)dxl...dx,,
i=1 —00 —0 \ij=1

_ Zf / gilx1, ... xalfixs, - .., Xn)dx . .. dx

i=1

151t is tacitly assumed that the sum and integral are absolutely convergent for the expectation to exist.
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Corollary 3.2

Proof

Theorem 3.10

Proof

Definition 3.3
Expectation of a matrix
of random variables

k
Z gI(Xl/ ] )

The proof in the discrete case is left to the reader. |

A useful corollary to Theorem 3.9 involving the sum of random variables
themselves is given as follows:

E Z?:l Xi = Zf:l EXi'
This is an application of Theorem 3.9 with g;(Xy,..., X,)=X;,i=1,...,n. N

In words, “the expectation of a sum is equal to the sum of the expectations”
regarding the n random variables X, ..., X,.

In the case where the random variables (X, ..., X,) are independent, we can
prove that “the expectation of a product is the product of the expectations.”

Let (X, ...,X,) be independent random variables. Then
n n
E][Xi=]]ExX.
i=1 i=1
(Continuous case) Letting g(X1, ..., Xn) = [1i., Xi in Theorem 3.8, we have

n 00 oo 1
Ean=f f HXjf(Xl,...,Xn)dxl...an
i=1 -0 J-00]

= f / nxin filx;)dx, ... dxp {by independence)
- —00 j=1 j=1

n [0} n
= I_I/ xifilx;)dx; = n EX;.
j=1Y - i=1
The discrete case is analogous and is left to the reader. ]

Later in our study we will find it necessary to take expectations of a vector or
matrix of random variables. The following definition describes what is involved
in such an operation.

Let W be an n x k matrix of random variables whose (i, j)th element is W;;.
Then EW, the expectation of the matrix W, is the matrix of expectations of
the elements of W, where the (i, j)th element of EW is equal to EWj;.
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If we let k = 1 in the above definition, we have that the expectation of a
vector is the vector of expectations, i.e.,

Wi EW;
W, EW,
EW=E| | |= .
Wh EW,
In general,
EWnp - EWpg
EW = : . : ,
(nxk) : : .
EWn - EWpy

i.e., “the expectation of a matrix is the matrix of expectations.”

Having introduced the concept of the expectation of a vector, we note that a
multivariate Jensen’s inequality (Theorem 3.4) holds true for multivariate ran-
dom variables. In fact, the appropriate extension is made by letting X denote an
n x 1 random vector and I represent an open rectangle in the statement of The-
orem 3.4. The reader is asked to prove the multivariate version of Theorem 3.4
(replace the line £(x) = a + bx with the hyperplane £(x) = a + Y 1, bix; in the
proof).

3.3 Conditional Expectation

Up to this point, expectations of random variables and functions of random
variables have been taken in the unconditional sense, i.e., we have not assumed
that information was available relating to the occurrence of an event for a subset
of the random variables (X, ..., X,). When information is given concerning
the occurrence of events for a subset of the random variables (X, ..., X,), the
conditional expectation of a random variable becomes a relevant concept.

There is a myriad of situations that arise in business and economic settings
in which the concept of conditional expectation is relevant. For example, the
expected number of housing starts calculated for planning purposes by building
supply manufacturers would depend on the given level of mortgage interest
assumed, or the expected sales tax revenue accruing to state government would
be a function of whatever reduced level of employment was assumed due to
the downsizing of a major industry in the state. More generally, we will see
that conditional expectation is at the heart of regression analysis, whereby one
attempts to explain the expected value of one random variable as a function of
the values of other related random variables, e.g., the expected yield/acre of an
agricultural crop is conditional on the level of rainfall, temperature, sunshine,
and degree of weed and pest infestation.

The difference between unconditional and conditional expectation is that
the unconditional density function is used to weight outcomes in the former
case, while the conditional density function supplies the weights in the latter
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case. The conditional expectation of a function of a random variable is defined
in the bivariate case as follows.

Definition 3.4
Conditional
expectation; bivariate.

Let X and Y be random variables with joint density function f{x, y|. Let the
conditional density of Y, given x € B, be fly | x € B). Let g[Y) be a real-
valued function of Y. Then the conditional expectation of g[Y), given x € B,
is defined as

(discrete)  Elg(Y)|x € Bl= ) glylfly | x € B),
yeR(Y)

{continuous) E{glY) | x € B) = /oo glylfly | x € B)dy.

—00

Note in the special case where g(Y) = Y, we have by Definition 3.4 that
ElY |x e B)=ff°°o vfly | x € Bldy in the continuous case, and E[Y | x € B) =
> yerm YAy | x € B in the discrete case.

Example 3.10  Let the bivariate random variable (X, Y) represent the per dollar return on two
investment projects. Let the joint density of (X, Y) be
fix, y) = gelx* + 2xy + 2y%)]j0,4/x)0,21(y).

What is the conditional expectation of the per dollar return on the second
project, given that the per dollar return on the first project is x = 12

Answer: To answer the question, we first need to establish the conditional
density fly | x = 1). This in turn requires knowledge of the marginal density of
X, which we find as

00 2
fulsl = [ sy = ge [ + 2y + 257 g fxidy

= (gg%* + 23X + 15) Toax).
Then

fily)  gsll+2y +2y%)log)ly)

Al Z -

fiylx=1)= [.088235 +.176471(y + y*|] Ijo2(y)-

Finally, by Definition 3.4,

00 2
E(le:l):/ yf(ylx:l)dy:/ (088235 +.176471(y* + y?|) dy
- 0

3]
2

= 1.3529. 0
0

3

4
y y
+.176471 [—3— + 7 ]

_.088235y*
- 2

It is important to note that all of the properties of expectations derived
in the previous two sections apply equally well to conditional expectations.
This follows from the fact that the operations of taking an expectation and a
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Theorem 3.11

Proof

Example 3.11

Theorem 3.12

Proof

conditional expectation are precisely the same once a PDF has been derived,
and the genesis of the PDF is irrelevant to the expectation properties derived
heretofore {note that the origin of a PDF in Sections 3.1 and 3.2 was never an
issue).

Rather than specifying a particular elementary event for the outcome of X
when defining a conditional expectation of g(Y), we might conceptualize leaving
the elementary event for X unspecified, and express the conditional expectation
of g(Y) as a function of x. Let n(x) = E(g(Y) | x) denote the function of x whose
value when x = b is E(g(Y) | x = b). Then, by definition, we can interpret
n(X) = ElglY) | X) as a random variable. If we take En(X) = E(E[g(Y) | X}), we
obtain the unconditional expectation of g(Y).

(Double Expectation Theorem) E{E(g(Y)| X)) = Eg(Y).

(Continuous case) Let fx(x) be the marginal density of X and f{x, y) be the joint
density of X and Y. Then

©  flx,y)
nlx) = Elg(Y) | x) = f sy 2y
and
Blnx)) = ElEigl¥) 1 ) = [ [ [ g(y)%%)dy] Felx)dx
- [ " [ " glylfix, yidydx = Eg(Y).
The proof in the discrete case is left to the reader. |

Suppose that the expectation of market supply for some commodity, given price
p,isrepresented by E(Q | p) = 3p+7 and EP = 2. Then by the double expectation
theorem, the unconditional expectation of market supply is given by

E(EQ | P)) = E(3P + 7) = 3EP + E7 = 13. O

In cases where one is conditioning on an elementary event x = b, there are
useful generalizations of Definition 3.4 and Theorem 3.11, which are referred to
as the substitution theorem and the generalized double expectation theorem,
respectively.

(Substitution Theorem) E(g(X,Y)|x = b) = E(g(b,Y) | x = b).

(Discrete case) Let z = g[x, y), and note that the PDF of Z, conditional on x = b,
can be defined as

hiz | x =b)=Plglx,y) =z | x = b) = Plg|x,y) = z,x = b)/P(x = D)
= ) fibylfxlbl= Y Afiyix=b)

{y:glbyl=z) {y:8lb,y)=2)
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Theorem 3.13

Proof

Example 3.12

It is evident that the set of z values for which h{z | x = b} > 0 is given by
B ={z:z=glb,y), yissuchthatfly | x = b) > 0}. Then

E(gX,Y)|x=b)=E(z|x=Db)= Zzh(zlx:b)

zelB

Yz ¥ fyvix=b)

zeZ  [(y:glb,y)=z}

> &b, y)fly | x = b) = Elglb, Y) | x = b).

yeR(Y)

(Continuous case) See A. F. Karr (1993), Probability. New York: Springer-Verlag,
p. 230. | |

The substitution theorem indicates that when taking the expectation of
glX, Y) conditional on x = b, one can substitute the constant b for X as g(b, Y)
and then take the conditional expectation with respect to the random variable
Y. The random variable X essentially acts as a constant in g(X, Y) under the
condition x = b.

(Generalized Double Expectation Theorem) EE|(g{X,Y)| X) = Eg(X,Y).

Using the substitution theorem but leaving the elementary event for X un-
specified in order to express the conditional expectation as a function of the
elementary event x obtains (continuous case and discrete case are analogous)

nix) = Elg(X, Y) | x) = E(g{x, Y) | x)

- [ ” glx, yifly | x)dy.
Then
En(X)) = EE(glX, Y] | X]

- [ : [ [ x5ty x)dy] Felxidx

(o]

-/ " / " glx, lfix, y)dy dx = Eg{X, Y). »

Thus, taking the expectation of the conditional expectation of g(X, Y) given
x yields the unconditional expectation of g(X, Y).

Let (X, Y) represent the per dollar return on the two investment projects of
Ex. 3.10. Assume $1,000 is invested in each project. What is the expected return
on the portfolio, given that the per dollar return on the first project is x = 1?

Answer: The return on the portfolio can be represented as z = g(x, y} = 1,000x+
1,000y. The substitution theorem allows the conditional expectation to be de-
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Example 3.13

Example 3.14

fined as
E[Z | x = 1) = E(1000X + 1000 | x = 1) = E(1000 + 1000Y | x = 1)

= /2(1000 + 1000y)fly | x = 1)dy
0

2
— 1000 + 1000 / Ay | x = 1)dy = 2352.9, 0
0

Given the representation of expected market supply in Ex. 3.11, we know by
the substitution theorem that the expected dollar sales of the commodity, ex-
pressed as a function of price, is E(pQ | p) = 3p? + 7p. Suppose EP? = 8. Then,
using Theorem 3.13, the (unconditional) expectation of dollar sales is given by
EE(PQ | P) = E(3P% + 7P) = 3EP? + 7EP = 38. a

Regression Function

In the special case where g[Y) = Y, the conditional expectation of Y expressed
as a function of x, i.e., E(Y | x), is called the regression function of Y on X. The
regression function depicts the functional relationship between the conditional
expectation of Y and the potential values of X on which the expectation might
be conditioned. In the continuous case, the graph of the function is generally a
curve in the plane, in which case E{Y | x) is often referred to as the regression
curve of Y on X.

Refer to the investment return example, Ex. 3.10, and rather than calculate
E[Y | x = 1), we calculate E(Y | x), the regression function of Y on X. Letting
fiy | x) denote the conditional density function of y expressed as a function of
x, we have fly | x) = flx, y)/fx(x). Then

®  flx,y) 2 ylx? + 2xy + 2y%)]j0,41(x)
1 .L» Y Y /0 (sz +4x + 13_6) Ijp,4)(x)

2x2+13—6x+8
S 2x244x+ 18

and the regression function is undefined for x ¢ [0, 4]. The regression function
represents the expected per dollar return on project 2 as a function of the various
potential conditioning values for the per dollar return on project 1. Note that
the regression function is a nonlinear function of x. The reader can verify that
at the point x = 1, E(Y | x) = 1.3529 is the value of the regression function, as
it should be given the answer to Ex. 3.10. The reader is encouraged to sketch
the graph of the regression function over its domain of definition. O

} forx € [0, 4],

The regression function has an important interpretation in terms of approx-
imating one random variable by a function of other random variables. Examine
the problem of choosing a function of X, say h(X), whose outcomes are the
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minimum expected squared distance'® from the outcome of Y. Assuming that
(X, Y) is a continuous bivariate random variable (the discrete case is analogous),
we thus seek an h{X) that minimizes

By - HX)P = [ " [ " |y - hix)Pfix, y)dxdy

[e¢] o]
= [C[[ - timiptiy 1 x| pixia.
—00 -0 )

If h(x) could be chosen so as to minimize the bracketed integral for each possible
x, then it would follow that the double integral, and thus the expected squared
distance between outcomes of Y and h(X), would be minimized.

The optimal choice of approximating function is given by h(x) = E(Y | x).
To see why, note that the substitution theorem allows the preceding bracketed
expression to be written as

E([Y — h{xJ] | x) = E([Y — E[Y | x) + E(Y | x) —~ h{x)]* | x)
— E([Y — E(Y | xJ]* | x) + [E(Y | x) — h(x)]%,

where the cross-product term is zero and has been eliminated because

E([Y — E(Y | x)I[E[Y | x) - h(x]] | x)

= [E(Y | x) — h(x)JE{Y — E(Y | x) | x) (by the substitution theorem)
= [E(Y | x) - h{x)][E(Y | x) - E(Y | x]] = O.

It follows that the choice of h(x) that minimizes E([Y — h(x)]? | x) is given by
h(x) = E(Y | x), since any other choice results in [E(Y | x) — h(x)]* > 0.

The preceding result suggests that if one is attempting to explain or pre-
dict the outcome of one random variable from knowledge of the outcome of
another random variable, and if expected squared distance (also called mean
square error—to be discussed in Chapter 7) is used as the measure of closeness
between actual and predicted outcomes, then the best (closest) prediction is
given by values of the regression function, or equivalently by the conditional
expectation of the random variable of interest. For example, in Ex. 3.14, if one
were attempting to predict the expected dollar return on project 2 in terms of
the dollar return on project 1, the regression function E(Y | x) presented in the
example provides the predictions that minimize expected squared distance be-
tween outcomes of Y and outcomes of h(X). If x = 1, then the best prediction
of Y’s outcome would be 1.3529.

Conditional Expectation and Regression in the Multivariate Case

The definition of conditional expectation (Definition 3.4) and the theorems
involving conditional expectation extend to the case where Y and/or X is mul-

16Recall that the distance between the points a and b is defined by d{a, b) = |b — a|, and thus the squared distance would be given
by d%(a, b) = (b — a)*.
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tivariate, in which case the reader can interpret Y and X as referring to random
vectors and introduce multiple summation or integration notation appropri-
ately when reading the definition and the theorems. Also, the notion of the
regression function of Y on X extends straightforwardly to the case where X is
multivariate, in which case E(Y | x) is interpreted as a function of the vector x
and would be defined by E{Y | x) = [ yfly | x1,...,Xa)dy in the continuous
case, with summation replacing integration in the discrete case. An argument
analogous to the bivariate case can be used to prove that h(X) = E{Y | X) is the
function of the multivariate X that is the minimum expected squared distance
from Y. Thus, the best approximation or prediction of Y outcomes via a func-
tion of the outcome of the multivariate X is provided by values of the regression
function.

For convenience, we list below a number of general expectation results
applied specifically to conditional expectations involving multivariate random

variables.
Definition 3.5
ecl:r', J:')t?oi al Let (Xy,...,Xn) and |Y),..., Y] be random vectors having a joint density
expectation (general) function fixy,..., X0, Y1, .., Ym)- Let g{Yy, ..., Y,) be a real-valued function
P & of {Yy, ..., Ym). Then the conditional expectation of g{Yy,..., Y}, given (xi,

..., Xp) € B, is defined as

(discrete) ElglYy,..., Ym) 1 (x1,...,x5) € B)
= Y gl v Vi | (31, Xa) € B,V
(YU, esymleR(Y)
{continuous) ElglY1,..., Ym) | (x1,...,%n) € B)

=/ f gy, .., ymflyr, ..., ym 1 (X1,...,%,) € B)dyy -+ - dym.

Theorem 3.14  (Substitution Theorem: Multivariate)

E(g(Xli"'leYh---er)|x=b)=E(g(b1/~-~lme11---lYm)lx=b)

Theorem 3.15  (Double Expectation Theorems: Multivariate)
E(E(g(Yll LRy Ym) | Xlr .. 'IXH)) = Eg(Yll ey Ym)
E(E{g(Xy,..., Xn, Y1, ..., Yu) | X1, ..., X)) = Eg(Xy, ..., X0, Y1, ..., Y)

Theorem 3.16  Elc|(xi,...,xn) € B)=c.

Theorem 3.17  E|cY | {%1,...Xxs) € B)=CcE(Y | [xy,...,%a) € B)

70One can equivalently sum over the points {yy, ..., ym) € xM R(Y;} in defining the expectation in the discrete case.



132 Chapter 3

Mathematical Expectation and Moments

Theorem 3.18

K k
E (Zgi(Yll---,Ym) H(x1,..., %) € B) =Y ElglYy, ..., Ym) | (x1,..., %) € B).
i=1 i=1

3.4 Moments of a Random Variable

Definition 3.6
rth moment
about the origin

Definition 3.7

Mean of a random
variable (or mean

of a density function)

Definition 3.8

rth central moment
(or rth moment
about the mean)

The expectations of certain power functions of a random variable have uses as
measures of central tendency, spread or dispersion, and skewness of the den-
sity function of the random variable, and also are important components of
statistical inference procedures that we will study in later chapters. These spe-
cial expectations are called moments of the random variable (or of the density
function). There are two types of moments that we will be concerned with—
moments about the origin and moments about the mean.

Let X be a random variable with density function f(x). Then the rth moment
of X about the origin, denoted by ], is defined for integers r > 0 as

(discrete) w, = E(X") = Z x"flx),
x€R(X)

(continuous) u, =E(X") = f > x"flx)dx.

—00

Note that s = 1 for any discrete or continuous random variable, since puy =
E(X9) = E(1) = 1. The first moment about the origin is simply the expectation
of the random variable X, i.e., u) = E(X') = EX, a quantity that we examined at
the beginning of our discussion of mathematical expectation. This balancing
point of a density function, or the weighted average of the elements in the range
of the random variable, will now be given a special name and symbol.

The first moment about the origin of a random variable, X, is called the mean
of the random variable X {or mean of the density function of X) and will be
denoted by the symbol u.

Thus, the first moment about the origin characterizes the central tendency
of a density function. Measures of spread and skewness of a density function
are given by certain moments about the mean.

Let X be a random variable with density function f[x). Then the rth central
moment of X (or the rth moment of X about the mean), denoted by ., is
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defined for integers r > 0 as
(discrete) — p, =E(X —pf = Y (x - u)flx),
x€eR(X)
[o.e]
(continuous) wr =EX —uf = / (x ~ ufflxldx.
-0
Note that g = 1 for any discrete or continuous random variable, since
o = E(X — u)° = E(1) = 1. Furthermore, 1, = O for any discrete or continuous
random variable for which EX exists, since st} = E(X—u)'! = EX—-Epu = pu—u =
0. The second central moment is given a special name and symbol.
Definition 3.9

Variance of a random
variable (or variance
of a density function)

Definition 3.10
Standard deviation

of a random variable
(or standard deviation
of a density function)

Theorem 3.19

The second central moment, E(X — i)?, of a random variable, X, is called the
variance of the random variable X (or the variance of the density function of
X) and will be denoted by the symbol o2, or by var{X).

We will also have use for the following function of the variance of a random
variable.

The nonnegative square root of the variance of a random variable, X, (i.e.,
~/02), is called the standard deviation of the random variable X (or standard
deviation of the density function of X} and will be denoted by the symbol o,

or by std(X).

The variance (and thus also the standard deviation) of X is a measure of
dispersion or spread of the density function f{x) around its balancing point (the
mean of X). The larger the variance, the greater the spread or dispersion of
the density about its mean. In the extreme case where the entire density is
concentrated at the mean of X and thus has no spread or dispersion, i.e., fix) =
Ijyx), then E(X — u)? = O and the variance (and standard deviation) is zero.

In order to examine the relationship between the spread of a density and the
magnitude of the variance in more detail, we first present Markov’s inequal-
ity {named after the Russian mathematician A. Markov), whence we introduce
Chebyshev’s inequality (named after the Russian mathematician P. L. Cheby-
shev) as a corollary.

(Markov’s Inequality) Let X be a random variable with density function f(x),
and let g be a nonnegative-valued function of X. Then P(g|x) > a) < Eg|(X)/a for
any value a > 0.
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Proof

Corollary 3.3

Proof

Corollary 3.4

Proof

(Continuous case and discrete case are analogous. The discrete case is left to
reader.)

Bglx) = [ ™ glxlfixdx

~00

- f glx)fix)dx
{x:g(x)>a}

d
+f s x

-

> 0

2 [ glxifixidx
{x:g(x)=a}

v

/ af|x)dx [since g(x) > a for all x € {x : g[x) > a}
{x:g(x)=a}

> a j( = aPlelx) = a)

and thus, E—# > Plg{x) > a). [ ]
(Chebyshev’s Inequality) P(|x — u| > ko) < 1/k? for k > 0.

This follows by letting g(X) = (X — u)? and a = k*0? in Markov’s inequality and
realizing that (x — u)? > k%0? is equivalent to (x — u) < —ko or (x — u) > ko,
which is in turn equivalent to |x — u| > ko. n

In words, Markov’s inequality states that we can always place an upper
bound on the probability that g{x) > a so long as g(x) is nonnegative valued and
Eg(X) exists. Chebyshev’s inequality implies that if 4 and o are, respectively,
the mean and standard deviation of the density function of X, then for any
positive constant k, the probability that X will have an outcome that is k or
more standard deviations from its mean, i.e., outside the interval (u—ko, u+ko),
is less than or equal to 1/k%. Note that we are able to make these probability
statements without knowledge of the algebraic form of the density function.

Chebyshev’s inequality is sometimes stated in terms of an event that is the
complement of the event in Corollary 3.3.

(Chebyshev’s Inequality) P(|x — u| < ko) > 1 —1/k? for k > 0.

This follows directly from Corollary 3.3, noting that P(|x — | > ko) = 1 - P{|x —
w) < ko) < 1/k2. |

Markov’s inequality and Chebyshev’s inequalities are interesting in their
own right, but at this point we will use the concepts only to further clarify



3.4

Moments of a Random Variable 135

Figure 3-7
Density functions
and variances.

our interpretation of the variance as a measure of the spread or dispersion of a
density function. In Corollary 3.4, let ko = c, where c is any arbitrarily small
positive number. Then

2
o
Pllx —pl<c)z1~-—,
where we have substituted for k the value c/o. Then note that as 02 — 0, the
probability inequality approaches

Plu—c<x<pu+c)=1,

which implies that as 02 — 0, the density concentrates in the interval (u—c, u+
c) for any arbitrarily small positive ¢. Diagrammatically, this can be illustrated
as, say, Figure 3.7.

As a concrete example, let i = 0, and examine the event B = {x : {x| < 10},
where we are letting ¢ = 10 in the preceding argument. Then using P(|x — u| <
ko) > 1 — 1/k? with ko = ¢ = 10, we have

o=5 1-1/22=.75
iflo=21, thenP(B)=| 1-1/52=.96 |,
o=1 1-1/10*=.99

and thus the smaller is o (and thus the smaller the variance), the larger is the
lower bound on the probability that the outcome of X occurs in the interval
(~10, 10).

For an alternative argument in support of interpreting the variance as a
measure of the spread of a density function, note that the variance of X can be
interpreted as the expected squared distance of the random variable X from its
mean. To see this, first recall that the distance between two points, x and y, on
the real line is defined as d(x, y) = |x — y|. Then d?(x, y) = (x — y)?, and letting
y = u, we have Ed*(X, u) = E{X — u)? = o2. Therefore, the smaller is o2, the
smaller is the expected squared distance of X from its mean.

o< ot <ol

|

LW

VAR
1 SN

p-c M

"

+
(9]



136 Chapter 3

Mathematical Expectation and Moments

Figure 3-8
Density symmetric about .

p=-3 p p+d x

The third central moment is sometimes referred to as a measure of skew-
ness of the density of X. A density is said to be symmetric about © when
flw +8) = flu — 8) v 8 > 0 {see Figure 3.8).

If the density is not symmetric, then it is said to be a skewed density.
A necessary condition for a density to be symmetric about w is that uz; =
E(X — u)® = 0. To see this, examine the continuous case, and note that

pa= [ x— uPfxldx = [l - uPiide+ [ b - uPfixids
~00 Hu —o0

By making the substitution z = x — w in the first integral and z = —x + @ in
the second integral, we obtain

pa= [ 2k 2ldz f: (2P fiu—aldz = [+ aidz = [ 2 ldz =0

Example 3.15

since flu + z) = flu — z) V z by the symmetry of f about u. The reader can
provide an analogous demonstration in the discrete case. Thus, if us # 0, then
the density function in question is skewed. The reader should note, however,
that u3 = 0 is not sufficient for symmetry, i.e., a density can be skewed and
still have u3 = 0, as the following example illustrates.

Let the random variable X have the density function f(x) = .22I1)(x)+.77 I (x)+
.O11j4)(x) (see Figure 3.9). Note that ;& = 1.8, and it is clear that flx) is not
symmetric about u. Nonetheless, us = E(X — u)> = 0. O

The sign of w3 is sometimes interpreted as indicating the direction of
the skew in the density function. In particular, density functions having long
“tails” to the right are called skewed to the right, and these densities tend
to have u3z > 0, whereas density functions with long left-hand tails are called
skewed to the left, and these densities tend to have u3 < O (see Figure 3.10).
Unfortunately, there are exceptions to these “tendencies,” and the nature of
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fix)
1.04
!
54
Figure 3-9 I
. ®

A nonsymmetric
density function.

Lemma 3.2
Binomial Theorem

Theorem 3.20

Proof

Figure 3-10
Skewed density functions.

1 A 2 4

the skewness is best determined by examining the graph of the density itself if
the functional form of the density is known.

Relationship Between Moments About the Origin and Mean

Integral moments about the origin and about the mean are functionally related.
Central moments can be expressed solely in terms of moments about the origin,
while moments about the origin can be expressed in terms of the mean and
moments about the mean. The functional relationship is the direct result of
the binomial theorem, which we review for the reader in the following lemma.

Let a and b be real numbers. Then (a + b)*=3"1_ (7)a’b""!

(Central moments as functions of moments about the origin) If u, exists and
r is a positive integer, then

r e ) )
e =y (-1 (j)u,-,-u’.
j=0

By definition, u, = E(X — u). Substituting (—u) for a, X for b, and r for n
in the binomial theorem (Lemma 3.2) and taking an expectation yield u, =

" i
ps > 0, skewed to the right w3 < 0, skewed to the left
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Theorem 3.21

Proof

Example 3.16

Theorem 3.22

Proof

EY o (;)'(——,u}fX’ -i .'An application of Theorems 3.6 and 3.7 results in u, =
S o1V () wEX. n

(Moments about the origin as functions of central moments) If u; exists and
1 is a positive integer, then py, = 3 i_o (Y tr—itt/.

By definition, ) = EX* = E(X — u + ). Substituting u for a, (X — u) for b, and
r for n in the binomial theorem (Lemma 3.2) and taking an expectation yield
Ky =EY o ()u/[X — pf~'. An application of Theorems 3.6 and 3.7 results in

Hy = Yo CYWEX — p)-i. n

A special case of Theorem 3.20, which we will use repeatedly in later chap-
ters, is the case where r = 2, which provides a representation of the variance
of a random variable in terms of moments about the origin. In particular, from
Theorem 3.20,

var(X) = py = uh — u? = EX? — (EX).

Let the random variable X have density function fix} = Ijg,1jx). Since EX = 1/2,
and since EX? = [% x2[jg)(x)dx = % |(1)= 1/3, then var(X) = EX? — (EX)* =
1/3 = (1/2 = 1/12. o

Existence of Moments

Regarding the existence of moments, the following theorem is often quite use-
ful.

If EX* exists for a given integral r > 0, then EX* exists for all integral s € [0, 1].
(Continuous) Define A = {x : |x|° < 1} and A, = {x : |x|* > 1}. Note that

f_ " xI*fix)dx = f | xtfixdx + f Ix*flx)dx.

0o x€As

Since flx) > |x|*f|x) ¥V x € Ay,
P <l)= [ fixidxz [ xifixidx.
X€A x€Aq
Now let r > s, and note that |x|® < |x|" V x € A}, whence it follows that

/x . il 2 / Ix[*/lx)dx.

X€Asx;

Finally, since Ix" flx)dx > O,

x€Ay

[e2]

/_ " xFfixldx < P(xF < 1)+ / x| fix)dx < oo,

-0
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Example 3.17

Theorem 3.23

Proof

Theorem 3.24

Proof

Definition 3.11
Median of X

where the rightmost inequality is due to the fact that P(|x|* < 1) € [0, 1] and EX"
exists, implying the absolute convergence of the improper integral defining the
expectation. It follows from [ |x|5f{x)dx < co that EX® exists.

(Discrete) The proof in the discrete case is analogous to the preceding proof
with summation replacing integration and is left to the reader. |

The theorem implies that if the existence of the rth-order moment about
the origin can be demonstrated, then lower-order moments about the origin are
known to exist. Theorem 3.22 can also be used to demonstrate the nonexistence
of moments, since if EX’ does not exist, then necessarily EX® cannot exist for
s > r or else Theorem 3.22 would be contradicted.

Let the random variable X have the density function f{x} = 2{x + 1)73Ijg o(x).
Examine EX% = [° x*2(x+1)-3dx. To simplify the integral, make the substitu-
tiony = x+1, so that x = y — 1 and dy = dx, to yield EX* = 2 [°(y — 1)*y~3dy.
Note that if @ = 2, then EX? = 2 [P(y~! = 2y~2 + y~3)dy = lim, o 2(lny +
2y~! —(1/2)y~?), and since the limit diverges, EX? does not exist (i.e., note that
Iny — o0 as y — oo). This implies by Theorem 3.22 that moments of order 2
or greater do not exist for X. The reader can verify that EX exists and is equal
to 1. O

Existence results analogous to Theorem 3.22 can be stated for moments
about the mean.

If E(Y — p)" exists for a given integral r >0, then E(Y — u)® exists for all
integral s € [0, 1].

This follows directly from Theorem 3.22 upon defining X = Y — u. | |

One can also infer the existence of moments about the mean from moments
about the origin, and vice versa.

If EXT (or E{(X — u)') exists for a given integral r > 0, then E(X — u)° (or EX®)
exists V integral s € [0, 1].

This follows directly from Theorems 3.20 to 3.23. Details are left to the
reader. u

Nonmoment Measures of Probability Density Characteristics

Note that whether or not moments exist for X, there are other measures of
probability distribution characteristics that are also of interest in applications.
An alternative measure of the central tendency of a density is the median,
defined as follows.

Any number, b, satisfying P(x < b) > 1/2 and P{x > b) = 1/2 is called a
median of X and is denoted by med(X).
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Example 3.18

Example 3.19

Definition 3.12
Quantile of X

The median is a measure of central tendency in the sense that > 1/2 of the
probability mass of a density is both to the right and to the left of the median. In
the continuous case, the probability inequalities in Definition 3.11 can be met
with strict equalities, so that the median is a point at which half the probability
mass is to the left and half is to the right, as /™™ flx|dx = [, flx)dx = 5.

Depending on how the density is defined, the median may not be unique
even in the continuous case. However, if b = med(X), and if in the neighborhood
of the point b the CDF of X is continuous and strictly increasing, then med(X)

is unique (why?).

Let the random variable X have density function f{x) = (1/6)I}1 5,...6)(x). Then the
median of X is not unique and can be any number in the interval [3,4], since
Plx<b)>1/2and Plx > b) > 1/2V b € [3, 4]. O

The central processing unit {CPU) used by a company that manufactures per-
sonal computers has an operating life until failure that is given by the outcome
of a random variable X having density function f{x) = (1/50)e=*/%0I g )(x), where
x is measured in thousands of hours. What is the median operating life of the
Cru?

Answer: We must solve the following equation for med(X):

med{X) 1
/ gae‘xlsol(gm,(x)dx =5 or 1—g medXf50_ 5
—00

so that med(X)=34.657. It is thus equally probable that the CPU will operate
more or less than 34,657 hours until failure. O

Another probability density characteristic, which subsumes the median as
a special case, is called a quantile.

Any number b satisfying Plx < b) > pand P(x > b)>1—pforp € (0,1} is
called a quantile of X of order p (or the (100p)th percentile of the distribution
of X).

Note the median is then simply the quantile of X of order .5, or the 50th
percentile of the distribution of X. As in the case of the median, the quantile
of order p may not be unique for a given random variable X. In Ex. 3.18, any
b € [4, 5] would be a quantile of X of order 2/3, while in Ex. 3.19, the quantile
of order 2/3 would be b = 54.931.

One additional characteristic of a probability distribution that will be espe-
cially useful when we study the maximum likelihood procedure of statistical
inference is a mode of the distribution of X.
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Definition 3.13
Mode of f(x)

Let X be a random variable with density function f{x). Then any point b
at which f{x) exhibits a maximum is called a mode of X, or a mode of the
distribution of X, and is denoted by mode(X).

Some density functions may not have a unique mode. Those that do are
called unimodal. Note that the density function in Ex. 3.18 exhibits six modes
corresponding to the points x = 1,2, 3,4, 5, 6. The density function in Ex. 3.17
has one mode, at the point x = 0. The density in Ex. 3.19 has no mode (why
not? How might the problem be altered so that mode(X) exists?).

3.5 Moment- and Cumulant-Generating Functions

Definition 3.14
Moment generating
function (MGF)

Theorem 3.25

Proof

The expectation of e*X results in a function of t that, when differentiated with
respect to the argument t and then evaluated at t = 0, generates moments of X
about the origin. The function is aptly called the moment-generating function
of X.

The expected value of e'¥ is defined to be the moment-generating function of
X if the expected value exists for every value of t in some interval t € {—h, h),
h > 0. The moment-generating function of X will be denoted by Mx(t). Thus,

(discrete)  Myx(t) = EeX = Z e fix),

xeR(x)

(continuous)  Mx(t) = EeX = f e* flx)dx.

—00

The reader should note that Mx(0) = Ee® = El1 = 1 is always defined,
and from this property it is clear that a function of t cannot be a MGF unless
the value of the function at t = 0 is 1. The condition that My(t} be defined ¥
t € (—h, h) is a technical condition ensuring that Mx(t) is differentiable at the
point zero, a property whose importance will become evident shortly.

We now indicate how the MGF can be used to generate moments about the
origin. In the following theorem, we use the notation d’g(a)/dx" to indicate the
rth derivative of g(x) with respect to x evaluated at x = a.

Let X be a random variable for which the MGF, Mx(t), exists. Then

_ dMxl0)

Ky = EX Tt

The proof is facilitated by the following lemma from advanced calculus.
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Lemma 3.3

Example 3.20

Theorem 3.26

If the function gt) defined by g(t) = 3, xx €*flx) or [52, e*flx)dx converges
for t € (—h,h), h > 0, then d'g|t)/dt’ exists ¥t € (—h, h) and for all posi-
tive integers r, and the derivative can be found by differentiating under the
summation sign or differentiating under the integral sign, respectively, as

d'glt) _ 3 d;etz:x fx] or /:°° dretx fxldx

dtr xeR|(x) dtr

(see D. V. Widder (1961), Advancéd Calculus, 2nd ed. Englewood Cliffs, NJ:

Prentice-Hall, pp. 442-447).

If the moment generating function
Mx(t) = EeXt = Z e™flx) or / e flx)dx
xeR(X) —oo
exists (converges) for t € (—h, h), h > 0, then from Lemma 3.3,
r r ,tX oo I HtX
d'Mx(t) _ Z d'e fx) or / fi—‘i—f(x)dx

T r r
dt xR dt o dt

(o]

= Z x'e™flx) or / x"e™ fx)dx.

X€R(X) —o0
Evaluating the rth derivative at t = 0 yields

d'Mx(0) i o
o _x:%_lzx)xf(x) or /_ xfixldx = X', n

The random variable X has the density function f{x) = e *Ijg(x). Find the
MGEFE and use it to define the mean and variance of X.
Answer:

xR oo
Mx(t) = / e e I g oo)(x)dx = / el dx =
- 0

o0

ex(t—l) oo

=0- E—i—l =(1—-1t)"! (providedt<1)
The mean is defined as i = dMx(0)/dt = (1 — 0)~2 = 1. For the variance, recall
from Theorem 3.20 that 62 = uj —u?. Then, uj = d*My(0)/dt? = 2(1-0)"% =2,
and thus, 02 = 1. O

There are a number of elementary results relating to moment-generating
functions that can be quite useful in applications. We present these results in
the next theorem, leaving the proof as an exercise for the reader.

(Properties of MGFs) Let(Xj,...,Xy) be independent random variables having
respective MGFs My,(t),i=1,...,n.
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Example 3.21

18Recall that expla) = e®.

a. If Y, = aX; + b, then My‘.(t) = eb‘MX,.(at).
b. If Y = Y"1, X;, then My(t) = [1i-; Mx,(t).
c. If Y =31, aX;+b, then My(t) = e® [T, Mx,(a;t).

It is useful to note that since X could be defined as a random variable that
is itself a function of other random variables, a more general conceptualization
of the MGF is Myx)(t) = Eexp(g(X)t), where g is a function of X.!® The MGF
Mx)(t) could then be used to define moments about the origin for the random
variable defined by g(X). Note that moments about the origin for g[X) =X — u
coincide with moments about the mean for X, and thus the generalized MGF
can be defined appropriately to generate moments about the mean directly.

Let flx) = e7*Ijg,»)x), as in Ex. 3.20. Recall that 1 = 1 in this case. We find the

moment-generating function of the random variable Y = g(X) = X — 1, and use

it to define the variance of X. First of all, note that Theorem 3.26. a is applicable

witha = 1 and b = —1. Since My(t) = (1 —t)~! for t < 1 from Ex. 3.20, it follows

that

M(X—-l)(t) = 6.4(]. - t)—‘l fort<1.

To find var{X), we need to evaluate {d>Mx_)(0))/dt> = E(X — 1)%:

dMix_y(t)
da

and

d*Mix_y(t)
dez2

so that

d*Mx_y)(0)
dt?

e7Hl—t)2—-(1-¢t)te!

2e7Hl —t) 3 —e 1 —t) 2+ (1 —t)le~t — el - )2,

=1 = var(X). 0

Uniqueness and Inversion of MGFs

Apart from generating moments, the MGF can be useful for identifying the den-
sity function of a given random variable. This is due to a uniqueness property
possessed by MGFs that essentially establishes a one-to-one correspondence
between density functions and MGFs. A formal statement of the uniqueness
property is given in the following theorem. The proof of the theorem relies on
the fact that the MGEF is a bilateral Laplace transform of the function f{x), and
there is a unique association between a Laplace transform and the function
being transformed. These concepts are beyond the scope of our study, and the
proof will be omitted. The interested reader can refer to Widder, Advanced Cal-
culus, p. 459-460 and D. A. S. Fraser (1976), Probability and Statistics. North
Scituate, Duxbury Press, p. 544-546, for details.
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Theorem 3.27

Example 3.22

(MGF Uniqueness Theorem) If a moment-generating function exists for a
random variable X having density function f(x), then the moment generating
function is unique. Conversely, the moment generating function determines
the density function of X uniquely, at least up to a set of points having prob-
ability zero.

In other words, a density function has one and only one MGF associated
with it, if an MGF exists at all. Furthermore, if more than one density function
is associated with a given MGF, the density functions differ only on a set of
points that are immaterial for the purposes of assigning probabilities to events
for X, i.e., they differ on a set of points having probability zero. Thus, for all
practical purposes, if one knows the MGF for a given random variable X, and
if one also knows of a density function that produces this MGF in the manner
prescribed by Def. 3.14, then the density function can be treated as the density
function of the random variable X. The following example illustrates the logic
followed in applying the uniqueness theorem.

Examine the density function f{x) = (b — a)~!1|, (x), for a < b. The MGF asso-
ciated with this density can be identified as follows:

00 b xt |b
My(t) = BeXt = / e¥(b — a I}, yx)dx = (b — af”" / edx=(b—alZ
ebt — eat
Y ey 2l fort #0,
1 fort=0.

Now suppose a random variable Z has an MGF defined by Mz(t) = (ebt—e?t)/t{b—
a) for t # 0. Then by the uniqueness theorem, since f{x) above is associated
with this same MGE the density function of Z can be specified as f{z) = {b —
a)‘ll[a,b](z). O

When it exists, an MGF can be thought of as a “fingerprint” of a given den-
sity function. In Chapter 4, we will examine a collection of density functions
that have been found to be useful in applications, and we will assemble a file
of their MGFs. Later on we will examine a number of important functions of
random variables that will be used for statistical inference purposes, and in a
notable number of cases, we will be able to identify the probability densities
of these functions by matching their MGFs to the appropriate MGFs in the file
we will have assembled.

The “recognition” of an MGF as a known fingerprint of some probability
density function is not the only way an MGF can be used to identify the proba-
bility distribution of a random variable. There is an inversion relationship that
allows one to integrate a function involving the MGF to identify the CDF of
a random variable, from which the density function can be deduced. Unfor-
tunately, the technique involves transform theory and generally complicated
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integration of expressions involving complex numbers and is beyond the scope
of our study. Nonetheless, without providing the formal details, we will provide
the reader with the general idea of what is involved. In particular, if we replace
the argument t in an MGF by (it), 1 being the imaginary number i = /=1, then
the CDF associated with the MGF can be found as

00 ,—ita —itb
F(b) = lim — f—-——-.-i—e——Mx(it)dt

a>—-00 21 J_ 1

V b at which F is continuous. Then the density function can be determined
from the CDF using the methods described in Chapter 2. Alternatively, if it can
be shown that [ | M(it) | dt < oo, then the density function for a continuous
random variable can be derived directly as

flx) = f ” E%e‘“"Mx(it)dt.

-00

For further information concerning this inversion property, the reader can con-
sult M. Kendall and A. Stuart (1977), The Advanced Theory of Statistics, Vol. 1
New York: Macmillan, Chapter 4.

In cases where the MGF does not exist, there is an alternative function that
always exists, called the characteristic function, which serves the same purpose
as the MGF. In particular, there is a unique relationship between characteristic
functions and density functions, analogous to the result stated in Theorem 3.27.
The characteristic function can be inverted to obtain the density function, and
the characteristic function can be used to generate any moments that exist for
a random variable by differentiating the characteristic function an appropriate
number of times, evaluating the derivative at the point zero, and then dividing
the result by (i}%, k being the order of the moment sought (equivalently, k is the
order of the derivative). The characteristic function is defined as ¢x(t) = Ee'*X,
and so complex numbers are involved in the definition of the characteristic
function. When the MGF exists, the characteristic function is ¢x(t) = Mx|it),
i.e., the characteristic function is identically the MGF evaluated at (it) rather
than at t. For example, in Ex. 3.22, the characteristic function of X would be
(ebit — e®t)/it(b — a) for t # 0. Despite the advantage that ¢x(t) always exists,
we will not pursue the study of characteristic functions any further, in order
to avoid the use of complex numbers. Interested readers can examine Kendall
and Stuart, Advanced Statistics, Chapter 4, for further details.

Cumulant-Generating Function

The natural logarithm of the moment-generating function defines a function
called the cumulant-generating function, which, when differentiated r times
with respect to t and then evaluated at t = 0, defines the rth cumulant of a
random variable.
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Definition 3.15
Cumulant-generating
function and cumulants

Example 3.23

Definition 3.16
MGF and cumulant
generating function;
multivariate

The cumulant-generating function of X is defined as ¥/(t}) = In{Mx(t)). The
rth cumulant of X is given by «; = (d*(0))/dt*. The first four cumulants are
related to moments as follows: k; = ); k2 = 02; k3 = u3; and kg = 4 —30*.

The cumulant-generating function can be used directly to generate the
mean, variance, and third moment about the mean via differentiation of the
function to the first, second, or third order, respectively. If X, ..., X, are inde-
pendent random variables, it follows from Def. 3.15 and Theorem 3.26.b that the
cumulant-generating function of Y = Y, X; equals the sum of the cumulant-
generating functions of the X;’s. It then also follows that the cumulant of the
sum is the sum of the cumulants, which is the genesis of the name “cumu-
lant.” Often, the derivatives of the cumulant-generating function are easier to
calculate than the derivatives of the MGE.

Recall Ex. 3.20 and 3.21, where My(t) = (1 — t)~! for t < 1. The cumulant-
generating function of X is given by ¥x(t) = InMx(t) = —In(l — t} for t < 1.
Then

n= dl/fX(O)/dt =(1- t)_l |t=0= 1,
0% = d*Yx(0)/d® = (1 1] | =1,

pa = d>yx(0)/de® = 21 — t)2 | _,=2. i

Multivariate Extensions

The MGF and cumulant-generating function can be extended to the case of a
multivariate random variable X = (X, ..., X,).

The expected value of exp(3_1_, t;X;} is defined to be the MGF of the n-variate
random variable X = (X),...,X,) if the expected value exists for all ¢; €
(—h, h), for some h > 0, i = 1,...,n. The MGF will be denoted by Mx(t),
where t = {ty, ..., ty). Thus,

(discrete) Mx(t) = Z .. Z exp (i t;x;) fix1, ..., xn),
j=1

{x1,---Xn)€R[X)

~—

(continuous) Mx(t) = / / exp <Z t,x,) fixy, ..., xa)dx, ...dx,.
-0 -0 i=1

The cumulant generating function of X is defined as

Vx(t) = In Mx(t).
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Theorem 3.28

Proof

Example 3.24

Letting u,(X;) denote the rth moment of X; about the origin, it can be shown
that

i) = Exy = 200,
i

Thus, the rth order partial derivative of Mx(t) with respect to t;, evaluated at
t = [0] (i.e., the vector t equal to the zero vector), equals the rth order moment
about zero for X;. Similarly, the rth partial derivative of Y¥x(t) with respect to
t;, evaluated at t = [0], equals the rth cumulant of the random variable X;,
which then allows means, variances, and third moments about the origin to be
calculated directly for each of the X;’s.

An analog of the MFG uniqueness theorem applies to the multivariate MGFE.
In fact, interpreting X as a vector in the statement of Theorem 3.27 produces
the appropriate multivariate MGF uniqueness theorem.

If the MGF for an n-variate random variable (X, ..., X,) is known, the mar-
ginal MGF for a subset of m < n of the random variables is easily found by
setting the t;’s associated with the remaining n — m random variables to zero.

(Marginal MGFs from Multivariate MGFs} Let X = (Xi,...,X,) have MGF
Mx(t), and let Xim) = (X;,j € ]} be any m-element subset of the random variables
in X, where ] C {1,2,...,n}, N(]) = m < n. Define t,) = (t;,j € J). Then the
MGF of X, referred to as the marginal MGF of X, can be represented as
Mx,,(tim)) = Mx(t*), where the elements in t* are defined by t} = t;I;(j).

Mx(t*)=E (exp (f: t;‘Xf)) =E (exp (Z t,-X,')) (since t; =0ifj¢])
=1

i€l

= My, (t(m)) (by definition). |

A marginal cumulant-generating function can be defined as the natural loga-
rithm of a marginal MGFE.

If X has MGF Mx(t), it can be shown that X,,..., X, are independent iff
Mx(t) = [1iL, Mx,(ti), or equivalently, iff ¥x(t) = Y1, ¥x,(t) (see S. F. Arnold
(1990), Mathematical Statistics. Englewood Cliffs, NJ: Prentice-Hall, pp. 118-
119).

Suppose the joint MGF of the bivariate random variable (X;, X;) is given by
Mx(t) = exp{Y%, pit; +(1/2) Y0, 3% oytit;) (we will see in Chapter 4 that
this is the MGF associated with a bivariate “normal” density function). Then
the marginal MGF of X; can be defined by setting t, = 0 in Mx(t) to obtain
My, (t1) = explu1t1 + (1/2)o11t3) (which is the MGF associated with a univari-
ate “normal” density function). The marginal cumulant-generating function is
given by ¥, (t) = In Mx,(t) = p1t1 + (1/2)o11t2. The two random variables will
be independent if 013 = 09 = 0. ]
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If we take cross partial derivatives of the joint MGF of X, and evaluate the
derivative at t = [0], we obtain

0+ Mx([0])
—_ - —EX'XS.
at;at; 1
This expectation is an example of a joint moment. The cross partial derivative of
the cumulant generating function given by (82yx([0]))/(0¢t;0t;) = E(X; — EX;)(X; —
EX;) is the covariance between X; and X;. These concepts are discussed further
in the next section.

3.6 Joint Moments, Covariance, and Correlation

Definition 3.17
Joint moment
about the origin

Definition 3.18

Joint moments

about the mean (or
central joint moment)

In the case of multivariate random variables, the concept of joint moments
becomes relevant. The formal definitions of joint moments about the origin
and about the mean are as follows:

Let X and Y be two random variables having joint density function f{x, y).
Then the [z, s)th joint moment of (X, Y) (or of f(x, y)) about the origin is defined

by
> Y Xy,

x€R|X)yeR(Y)

o] o0
{continuous) Mps = / / x'y*f|x, y)dxdy.
-0 v —00

(discrete)  p

Let X and Y be two random variables having joint density function f{x, y).
Then the (z, s)th joint moment of (X, Y) (or of f|x, y)) about the mean is defined
by

(discrete) w5 = Z Z (x — EX)'y — EYF'flx, y),
x€R(X) yeR{Y)

{continuous) Mr,s = /_ ” /_ ” (x — EX)(y — EY)'flx, y)dxdy.

Covariance and Correlation

Our immediate interest will focus on a particular joint moment about the mean,
11,1, and the relationship between this moment and moments about the origin.
The central moment u,; is given a special name and symbol, and we will see
that 11,1 is useful as a measure of “linear association” between X and Y.
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Definition 3.19
Covariance

Theorem 3.29

Proof

Example 3.25

Corollary 3.5

Proof

Theorem 3.30

Proof

The central joint moment @) = E(X — EX){Y — EY) is called the covariance
between X and Y and is denoted by the symbol oxy, or by cov(X, Y).

Note that there is a simple relationship between oyy and moments about
the origin that can be used for the calculation of the covariance.

oxy = EXY — EXEY.

This result follows directly from the properties of the expectation operation. In
particular, by definition,

oxy = E(X — EX)(Y — BY) = E[XY — (EX)Y — XEY + EXEY] = EXY - EXEY. W

Let the bivariate random variable (X, Y) have a joint density function f{x,y) =
(x 4+ ¥)o11(x)j0,1)(y). Find cov(X, 7).
Answer: Note that

1,1 1,1
EXY = / / xy(x + yldxdy = / f [x2%y + xy?*|dxdy = l,
o Jo 0o Jo 3

1 1 1 1
EX = f / x{x + y)dxdy = / / (x? + xy)dxdy = -,
0o Jo o Jo ' 12

1 1 1,1
EY = f / y(x + y)dxdy = / f (yx 4+ y*)dxdy = .
o Jo o Jo 12

Then, by Theorem 3.29, cov(X, Y) = 1/3 — (7/12)(7/12) = —1/144. |

A useful corollary to Theorem 3.29 is that the expectation of a product is
the product of the expectations iff oxy = 0, formally stated as follows.

EXY = EXEY iff oxy = 0.

This follows directly from Theorem 3.29 upon setting oxy to zero (sufficiency)
or setting EXY equal to EXEY (necessity). n

What does oxy measure? The covariance is a measure of the linear associ-
ation between two random variables, the precise meaning of linear association
to be made clear shortly. Our discussion will be facilitated by observing that
the value of oxy exhibits a definite upper bound in absolute value which is ex-
pressible as a function of the variances of the two random variables involved.
The bound on oxy follows from the following inequality.

(Cauchy-Schwarz Inequality) (EWZ)* < EW2EZ2.

The quantity E(A, W + A,Z)> must be greater than or equal to 0 V (A}, A5} since
(MW + A,Z)? is a random variable having only non-negative outcomes. Thus

MEW? 4 AIEZ2 + 20 MEWZ > 0V (A, Aa),
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which in matrix terms can be represented as

EW? EWZ][ )\
patal] gz o8 |32 ] 20 Vi)

The last inequality is precisely the defining property of positive semidefinite-
ness for the (2 x 2) matrix in brackets,!® and the matrix in brackets will be
positive semidefinite iff EW2EZ? — (EWZ)? > O (see Section 3.8). | ]

The covariance bound we seek is stated in the following theorem.
Theorem 3.31 (Covariance Bound) |oxy |<ox0y.

Proof Let W = (X —EX)and Z = (Y — EY) in the Cauchy-Schwarz inequality. Then
(E(X — EX)[Y — EY))* < E(X — EX]?E(Y — EY)? or 02, < 0%02, which holds iff
| oxy |< ox0Oy. u

Thus, the covariance between X and Y is upper-bounded in absolute value
by the product of the standard deviations of X and Y. Using this bound, we can
define a useful scaled version of the covariance, called the correlation between
X and Y, as follows.

Definition 3.20

Correlation The correlation between two random variables X and Y is defined by

oxy
Ox0y

corr(X, Y} = pxy =

Example 3.26  Refer to Ex. 3.25. Note that

1 pl
EX? = / / x*(x + y)dxdy = S

1 1
EY? = / / yi(x + y)dxdy = i,

so that 62 = EX? — (EXJ2 = 5/12 — (7/12)* = 11/144, and 63 = EY? - (EY]? =
5/12 — (7/12)> = 11/144. Then the correlation between X and Y is given by

_ Oxy _ —-1/144 -1
= oxoy  (L/14a) (111442 = 11

Oxy O

Bounds on the correlation between X and Y follow directly from the bounds
on the covariance between X and Y.

Theorem 3.32 (Correlation Bound) -1 < pxy < 1.

19Recall that a matrix A is positive semidefinite iff t’At > 0 ¥ ¢, and A is positive definite iff /At > 0V t # [0].
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Proof

Theorem 3.33

Proof

Example 3.27

Figure 3-11
y € [0, x*] for x € [-1,1].

This follows directly from Theorem 3.31 via division by oxoy. |

The covariance equals the upper bound of oxoy iff the correlation equals
its upper bound of 1, while the covariance equals its lower bound of —oxoy iff
the correlation equals its lower bound of —1.

Assuming that the covariance exists, a necessary condition for the inde-
pendence of X and Y is that oxy = O (or equivalently, that pxy = 0 if oxoy # 0).

If X and Y are independent, then oxy = 0 (assuming the covariance exists).

If X and Y are independent, then f{x, y) = fx(x|fy(y). It follows that
(discrete) oxy = ) > (x—EX)ly — EY)fx(xlfy(y)

xeR(X)yeR(Y)

= Y (x—EX)fx(x) > [y —EY)fv(y)

xeR(X) yeR(Y)
=(EX —EX)[EY —EY}=0-0=0.

(Continuous) Replace summation with integration above. |

The converse of Theorem 3.33 is not true—there can be dependence be-
tween X and Y, even functional dependence, and the covariance between X
and Y could nonetheless be zero, as the following example illustrates.

Let X and Y be two random variables having a joint density function given
by fix,y) = 1.5I_1 1j(x)jo,x2|(y). Note this density implies that (x, y) points are
equally likely to occur on and below the parabola represented by the graph of
y = x? (see Figure 3.11). There is a direct functional dependence between X
and the range of Y, so that fly | x) will change as x changes, and thus X and Y
must be dependent random variables. Nonetheless, oxy = 0. To see this, note
that

1 px? 1 6 (1
EXY:l.S// xydydx:l.sf(lmxsdx=.75x—6— =0,
~1Jo -1 -1
y
y=x2
1 p
X
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Theorem 3.34

Proof

Theorem 3.35

Proof

1 px? 1 x4 |!
EX = 1.5/ f xdydx = 1.5[ x3dx =15=| =0,
-1J0 -1 4 -1
1 x? 1 X5 1
EY = 1.5[ / ydydx = 1.5] (1/2)x%dx = .75= | =.3.
-1Jo -1 S o
Therefore, oxy = EXY — EXEY =0-0(.3) =0. O

Correlation, Linear Association, and Degeneracy

We will now demonstrate that when the covariance takes its maximum abso-
lute value, and thus pxy = +1 or —1, then there is a perfect positive (oxy = +1)
or negative (pxy = —1) linear relationship between X and Y that holds with
probability one (i.e., Py = a+ bx} = 1 or Ply = a — bx) = 1). The demonstration
is facilitated by the following useful result.

Let Z be a random variable for which 0% = 0. Then Pz = EZ) = 1.

Let g(Z) = (Z — EZJ?. Then
PlEZ-a<z<EZ+a)=P(z-—EZP <a?)=1-P(z—EZP > a?)
> 1 -0}/,
where the inequality is established using Markov’s inequality. If 62 = 0, then
PEZ-a<z<EZ+a)=1 Va>0,
and since only z = EZ satisfies the inequality V a > 0, P(z = EZ) = 1 when

2 _
oz =0. ]

The result on the linear relationship between X and Y when pxy = +1 or
—1, or equivalently, when oxy achieves its upper or lower bound, is as follows.

(Correlation Bounds and Linearity) If pxy = +1or -1, thenPly = a;+bx) =1
or Ply = a, — bx) = 1, respectively, where a; = EY — (oy/ox)EX, a; = EY +
(oy/ox)EX, and b = (oy/[ox).

Define Z = A {X —EX)+X2(Y—EY), and note that EZ = 0. It follows immediately
that 02 = EZ2 = E[M(X — EX) + A(Y — EY)]> = A2E(X — EX)> + A2E(Y — EYP +
2A1X20xy > 0V Ay, Ay, which can be represented in matrix terms as

o o A
0% =\ Azl[a}fy (;(%Y][A;] >0 VA, A2

If pxy = +1 or —1, then oxy achieves either its (nominal) upper or lower bound,
respectively, or equivalently, 02, = o202. It follows that the above 2 x 2 matrix
is singular, since its determinant would be zero. Then the columns of the matrix
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Figure 3-12
pxy = +1, discrete case.

are linearly dependent, so that there exist nonzero values of A, and A, such that

0’)2( oxy )\.1 — 0
oxy (712/ )\.2 oy

and for these A values, the quadratic form above, and thus 62, achieves the value
0. A solution for A, and A is given by A; = oxy/o} and A, = —1 (which can
be validated by substituting these values for A; and A, in the linear equations,
and noting that 02 = 02, /0% under the prevailing assumptions). Since 62 = 0
at these values of A; and A,, it follows from Theorem 3.34 that Pz = 0) = 1
(recall that EZ = 0).

Given the definition of Z, substituting the above solution values for A;
and A, obtains an equivalent probability statement, Ply = (EY — (oxy/o%)EX) +
(oxy/ok)x) = 1. If pxy = +1, then oxy = ox0y, yielding Ply = a) + bx) = 1 in
the statement of the theorem, while if pxy = ~1, then oxy = —ox0oy, yielding
Ply = ay — bx) = 1 in the statement of the theorem. [ |

The theorem implies that when pyy = +1 (or —1), the event that the out-
come of (X, Y} is on a straight line with positive {or negative) slope occurs with
probability 1. As a diagrammatic illustration, if (X, Y} is a discrete bivariate
random variable, then the situation where pxy = +1 would be exemplified by
Figure 3.12.

Note in Figure 3.12 that f{x, y) assumes positive values only for points along
the line y = a + bx, reflecting the fact that Ply = a + bx) = 1. This situation
illustrates what is known as a degenerate random variable and a degenerate
density function. The defining characteristic of a degenerate random variable
is that it is an n-variate random variable (X}, ..., X,,) whose components satisfy
one or more linear functional relationships with probability one, i.e., if P{a; +
Yiibixi=0)=1,fori=1,...,m, then (Xj,..., X;) is a degenerate random

fix,y)

y=a+bx
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Figure 3-13
pxy = +1, continuous case.

variable.20 A characteristic of the accompanying degenerate density function
for (X, ..., Xn)is that the entire mass of probability (a mass of 1} is concentrated
on a collection of points that lie on a hyperplane of dimension less than n, the
hyperplane being defined by the collection of linear functional relationships.
Degeneracy causes no particular difficulty in the discrete case—probabil-
ities of events for the degenerate random variable (X, ..., X;) can be calculated
in the usual way by summing the degenerate density function over the out-
comes in the event of interest. However, degeneracy in the continuous case
results in flx), ..., x,) not being a density function according to our original def-
inition of the concept. For a heuristic description of the problem, examine the
diagrammatic illustration in Figure 3.13 for a degenerate bivariate random vari-
able in the continuous case. Intuitively, since there is no volume under the
graph of fix, ), f:l 2 y) > flx,y)dy dx =0V x; < xp andV y, <y, and f(x, y) cannot
be used in the usual way to assign probabilities to events for (X, Y). However,
there is area below the graph of flx, y) and above the line y = a+ bx representing
the probability mass of 1 distributed over a segment (or perhaps, all) of the line.
Since only subsets of the set {(x, y) : ¥ = a+ bx, x € R(x)}?! are assigned nonzero
probability, the degenerate density function can be used to assign probabilities
to events by use of line integrals,?? which essentially integrates f(x, y) over sub-
sets of points along the line y = a + bx. The general concept of line integrals
is beyond the scope of our study, but in essence, the relevant integral in the

ix,y)

20The concept of degeneracy can be extended by calling (X, ..., X,} degenerate if the components satisfy one or more functional
relationships (not necessarily linear) with probability 1. We will not examine this generalization here.

21Equivalently, {(x,y): x = b~!(y — a),y € R(Y}}.

22For an introduction to the concept of line integrals, see E. Kreyzig, {1979), Advanced Engineering Mathematics, 4th ed. New York:

Wiley, Chapter 9.
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Theorem 3.36

Proof

current context is of the form [, _, fix, a + bx)dx. Note the linear relationship
linking y and x is explicitly accounted for by substituting a + bx for y in f{x, y),
which converts f{x, y) into a function of the single variable x. Then the function
of x is integrated over the points in the event A for x, which determines the
probability of the event B = {[x,y) : y = a + bx, x € A} for the bivariate random
variable (X, Y).

Having introduced the concept of degeneracy, we can alternatively charac-
terize pxy = +1 or —1 as a case where the bivariate random variable (X, Y), and
its accompanyingjoint density function are degenerate, with X and Y satisfying,
respectively, a positively sloped or negatively sloped linear functional relation-
ship, with probability one. What can be said about the relationship between X
and Y when | pxy |< 1? The closer | pxy | is to one, the closer the relationship
between X and Y is to being linear, where “closeness” can be interpreted as
follows. Define the random variable Y = a + bX to represent predictions of Y
outcomes based on a linear function of X. We will choose the coefficients a
and b so that Y is the best linear prediction of Y, where best is taken to mean

“minimum expected squared distance between outcomes of Y and outcomes
of ¥.”

(Best Linear Prediction of Y Outcomes) Let (X,Y) have moments of at least
the second order, and let Y = a+bX. Then the choices of a and b that minimize
Ed2(Y,Y) = E(Y — (a+bX))* are given by a = EY —(oxy /0% )EX and b = (oxy/02).

Left to the reader. |

Now define V = Y — ¥ to represent the deviations between outcomes of
Y and outcomes of the best linear prediction of Y outcomes, Y as defined in
Theorem 3.36. Since EY = EY, EV = 0. It follows that

02 =E(Y-EYP=E(Y-EY + VP = 0% + 0y + 0y,

where
o% = EV? = EdYY, ¥) = BdXY, a + bX) = 0% — 0%y/0% = 63 [1 - py],
o} =E(Y —EY)* = 0} 03y,

oyy = E[[Y — EY)V) = (oxy/o})E((X — EX)V) =

Thus, the variance of Y is decomposed into a proportion p%, due to ¥ and a
proportion {1 — p2,) due to V, i.e.,

2_ 2, 2 _ 22 2 2
oy = 0y + 0y = 0yPxy + 0y (1 = Pxy) .

We can now interpret values of pxy € (—1, 1). Specifically, p%, is the pro-
portion of the variance in Y that is explained by the best linear prediction of the
form ¥ = a + bX, and the proportion of the variance unexplained is (1 — Py).
Relatedly, 0%(1 — p%y) is precisely the expected squared distance between out-
comes of Y and outcomes of the best linear prediction ¥ = a + bX. Thus, the
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closer | pxy | is to 1, the more the variance in Y is explained by the linear
function a + bX, and the closer is the expected squared distance between Y and
Y = a + bX. It is in this sense that the higher the value of | pxy |, the closer is
the linear association between Y and X. If pxy = 0, the random variables are
said to be uncorrelated. In this case, Theorem 3.36 indicates that the best linear
predictor is EY—there is effectively no linear association with X whatsoever.
The reader should note that Y and X can be interchanged in the preceding argu-
ment, leading to an analogous interpretation of the degree of linear association
between X and X = a+bY (for appropriate changes in the definitions of a and b).

3.7 Means and Variances of Linear Combinations of Random Variables

Theorem 3.37

Proof

Theorem 3.38

It is useful in practice to be able to determine the mean and variance of a ran-
dom variable that is defined as a linear combination of other random variables.
While this determination can be accomplished from first principles by apply-
ing the basic definitions of the mean and variance to the linear function of
the random variables, there are certain general results that facilitate and ex-
pedite the process. In particular, we will see that the mean and variance of a
linear combination of random variables can be expressed as simple functions of
the means, variances, and covariances of the random variables involved in the
linear combination. Our first result concerns the determination of the mean.

Let Y = Y i, a;X;, where the a;’s are real constants. Then EY = Y I, a,EX;.

n n
EY = EZ a;X; = Z Ea;X; (Theorem 3.9),
i=1 =1

n
= ZaiEX,-. {Theorem 3.6) n
i=1
Letting
ay X1
a=|: and X=1| : [,
an X,

the matrix representation of Theorem 3.37 is
If Y =a'X, thenEY = Ea’X = a'EX.

Regarding the variance of the linear combination of random variables, we have
the following result.

LetY = Y I, a;X; where the a,’s are real constants. Then

n

2 2.2

O'Y=E a,.ax‘,+22 E a;a;0x.x,.
i=1

i<f
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Proof

Definition 3.21
Covariance matrix

n 2
0% =E(Y-EY?=E (Z a;i|X; - EX,-))

i=1

=E l: a%(X,- - EX;)* + ZZZaiai(Xi - EX;)(X; - EX;‘)]
j=1 i<j

1
n
2.2
= Y_alok, +2) > aiaioxx,
i=1 i<j

where the last equality follows from Theorem 3.9 and Theorem 3.6. n

We can represent the result of Theorem 3.38 very compactly in matrix
notation once we define the notion of a covariance matrix.

The covariance matrix of an n-variate random variable X = [X), ..., X,] is
the n x n symmetric matrix Cov{X) = E(X — EX)(X — EX]J.

In order to appreciate the full informational content of the covariance ma-
trix, note that, by definition,

-X1 - EX[
((IEOI:;(X):E X —EX))- - (Xn — EXp)]
x
| X, - EX,
[ (X -EXxy) (X1 —EX))(X2 — EXy) -+ (X1 — EX1)(Xa — EX,)
_ | X2 —EXo)(X) — EXy) (X3 — EX,)? .

| (Xn — EX,)(X: — EX)) (Xn — EXp)?

0)2(1 Ox,X, ' OXiX,

UXZXI 0)2("2

O'anl e PR 0')2("

Thus, the covariance matrix associated with an n-variate random variable has
the variance of the ith random variable displayed in the (i, i)th {diagonal entry)
position in the matrix, while the covariance between the ith and jth random
variables is displayed in the (i, jjth position (off-diagonal entry) in the matrix.
Since ox,x, = E[X; — EX;)(X; — EX;) = E(X; — EX;)(X; — EX;) = ox,x,, the covariance
matrix is symmetric, i.e., the (i, j)th entry is exactly equal to the (j, ijth entry V

1#7.
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Theorem 3.39

Proof

Corollary 3.6

Proof

Corollary 3.7

Let the n x 1 vectors a and X be as defined preceding Theorem 3.38. The
matrix representation of Theorem 3.38 is then given as follows:

If Y = a'’X, then 0% = a’ Cov(X|a.

Note that it is necessarily the case that the covariance matrix is a positive
semidefinite matrix because 0 = a’ Cov(X)a > O for any a, which necessarily
follows from the fact that variances cannot be negative. (Recall that-a matrix
Z is positive semidefinite iff a’Za > O for all choices of the vector a).

The preceding results can be extended to the case where Y is a vector defined
by linear combinations of the n-variate random variable X. We first extend the
results corresponding to the mean of Y.

Let Y = AX, where A is a k x n matrix of real constants, and X isann x 1
vector of random variables. Then EY = EAX = AEX.

The matrix A can be represented as a collection of k {1 x n) row vectors

ay.
A =| : | where a; =(an,ap,..., an)
{kxn) {1xn)
ay.
Then
al.X a) EX
EAX=E| : |=| : |=AEX
ap.X ar EX
by Theorem 3.37. ]

A useful corollary to Theorem 3.39 concerns the generalization where X is
an n x £ matrix of random variables.

Let Y = AX, where A is a k x n matrix of real constants and X is ann x £
matrix of random variables. Then EY = AEX.

This follows directly from Theorem 3.39 applied columnwise to the matrix
AX. |

If we postmultiply rather than premultiply a random matrix X by a con-
formable matrix of constants, we obtain a result on expectation qualitatively
similar to the preceding result.

Let Y = XB, where X is an n x £ matrix of random variables and B isan £ x m
matrix of real constants. Then EY = (EX|B.
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Proof

Corollary 3.8

Proof

Theorem 3.40

Proof

Example 3.28

EY = EXB
= E(B'X'Y (property of matrix transpose)
= (EB'X') (E is an elementwise operation)
= (B'EX') (Corollary 3.6)
= (EX)B (property of matrix transpose)

If a random matrix X is both premultiplied and postmultiplied by conformable
matrices of real constants, then the previous two corollaries can be combined
into the following result. | |

Let A be a k x n matrix of real constants, let X be an n x £ matrix of random
variables, and let B be an £ x m matrix of real constants. Then EAXB = A(EX)B.

Let Z = XB. Then by Corollary 3.6, EAXB = EAZ = AEZ = AEXB, which
equals A{EX|B by Corollary 3.7. |

When Y = AX is a vector of two or more random variables, we can define
a variance for each Yj, as well as a covariance for each pair (Y}, Yj), i # j. We
are led to a generalization of Theorem 3.38 that involves the definition of the
covariance matrix of the k x 1 random vector Y = AX.

Let Y = AX, where A is a k x n matrix of real constants and X is an n x I vector
of random variables. Then Cov{Y) = Cov(AX)= A Cov(X)A".
By definition,
Cov(Y) = E(Y — EY)(Y — EYJ'
= EA[X - EX){X — EXJA’ [substitution and Theorem 3.39)
= A[E(X — EX)(X — EX/]A’ (Corollary 3.8)
= A Cov(X)A’ (by definition). |

We illustrate the use of some of the above theorems in the following exam-
ple, where we also introduce the notion of a correlation matrix (see part (g)).

Your company sells two brands of video cassettes: high quality {HQ) and stan-
dard (S). The price of the HQ cassette is $4, while the standard cassette sells for
$3. The quantities of the cassettes sold on any given day are represented by the
bivariate random variable Q = (Quq, Qs), where

EQ=[;8] and Cov(Q)=[_'f"3 —53]

a. Whatis the expected value of the revenue obtained from the sale of cassettes
on any given day?
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