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Preface 

This book is designed to provide beginning graduate stu­
dents and advanced undergraduates with a rigorous and accessible foundation 
in the principles of probability and mathematical statistics underlying statis­
tical inference in the fields of business and economics. The book assumes no 
prior knowledge of probability or statistics and effectively builds the subject 
"from the ground up." Students who complete their studies of the topics in 
this text will have acquired the necessary background to achieve a mature and 
enduring understanding of statistical and econometric methods of inference 
and will be well equipped to read and comprehend graduate-level economet­
rics texts. Additionally, this text serves as an effective bridge to more advanced 
study of both mathematical statistics and econometric theory and methods. 
The book will also be of interest to researchers who desire a decidedly business 
and economics-oriented treatment of the subject in terms of its topics, depth, 
breadth, examples, and problems. 

Without the unifying foundations that come with training in probability 
and mathematical statistics, students in statistics and econometrics classes too 
often perceive the subject matter as a potpourri of formulae and techniques 
applied to a collection of special cases. The details of the cases and their solu­
tions quickly fade for those who do not understand the reasons for using the 
procedures they attempt to apply. Many institutions now recognize the need for 
a more rigorous study of probability and the mathematical statistics principles 
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in order to prepare students for a higher level and a longer lasting understanding 
of the statistical techniques employed in the fields of business and economics. 
Furthermore, quantitative analysis in these fields has progressed to the point 
where a deeper understanding of the principles of probability and statistics is 
now virtually necessary for one to read and contribute successfully to quanti­
tative research in economics and business. Contemporary students themselves 
know this and need little convincing from advisors that substantial statistical 
training must be acquired in order to compete successfully with their peers and 
to become effective researchers. Despite these observations, there are very few 
rigorous books on probability and mathematical statistics foundations that are 
also written with the needs of business and economics student in mind. 

This book is the culmination of 15 years of teaching graduate level statis­
tics and econometrics classes for students who are beginning graduate programs 
in business Iprimarily finance, marketing, accounting, and decision sciences), 
economics, and agricultural economics. When I originally took on the teach­
ing assignment in this area, I cycled through a number of very good texts in 
mathematical statistics searching for an appropriate exposition for beginning 
graduate students. With the help of my students, I ultimately realized that the 
available textbook presentations were optimizing the wrong objective func­
tions for our purposes! Some books were too elementary, other presentations 
did not cover multivariate topics in sufficient detail, and proofs of important 
results were omitted occasionally because they were "obvious" or "clear" or 
"beyond the scope of the text." In most cases they were neither obvious nor 
clear to students, and in many cases, useful and accessible proofs of the most 
important results can and should be provided at this level of instruction. Suf­
ficient asymptotic theory was often lacking and/or tersely developed. At the 
extreme, material was presented in a sterile mathematical context at a level 
that was inaccessible to most beginning graduate students while nonetheless 
leaving notable gaps in topic coverage of particular interest to business and eco­
nomics students. I then began to teach the course from lecture notes that I had 
created and iteratively refined them as I interacted with scores of students who 
provided me with feedback regarding what was working-and what wasn't­
with regard to topics, proofs, problems, and exposition. I am deeply indebted 
to the hundreds of students who persevered through, and contributed to, the 
many revisions and continual sophistication of my notes. Their influence has 
had a substantial impact on the text: It is a time-tested and class-tested prod­
uct. Other students at a similar stage of development should find it honest, 
accessible, and informative. 

Instructors attempting to teach a rigorous course in mathematical statistics 
soon learn that the typical new graduate student in economics and business is 
thoroughly intelligent, but often lacks the sophisticated mathematical training 
that facilitates understanding and assimilation of the mathematical concepts 
involved in mathematical statistics. My experience has been that these stu­
dents can understand and become functional with sophisticated concepts in 
mathematical statistics if their backgrounds are respected and the material 
is presented carefully and thoroughly, using a realistic level of mathematics. 
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Furthermore, it has been my experience that most students are actually eager 
to see proofs of propositions, as opposed to merely accepting statements on 
faith, so long as the proofs do not insult the integrity of the nonmathemati­
ciano Additionally, students almost always remark that the understanding and 
the long-term memory of a stated result is enhanced by first having worked 
through a formal proof of a proposition, and then working through examples 
and problems that require the result to be applied. 

With the preceding observations in mind, the prerequisites for the book 
include only the usual introductory college-level courses in basic calculus (in­
cluding univariate integration and differentiation, partial differentiation, and 
multivariate integration of the iterated integral type) and basic matrix algebra. 
The text is largely self-contained for students with this preparation. A signifi­
cant effort has been made to present proofs in ways that are accessible. Care has 
been taken to choose methods and types of proofs that exercise and extend the 
learning process regarding statistical results and concepts learned prior to the 
introduction of the proof. A generous number of examples are presented with 
a substantial amount of detail to illustrate the application of major theories, 
concepts, and methods. The problems at the end of the chapters are chosen 
to provide an additional perspective to the learning process. The majority of 
the problems are word problems designed to challenge the reader to become 
adept at what is generally the most difficult hurdle-translating descriptions 
of statistical problems arising in business and economic settings into a form 
that lends itself to solutions based on mathematical statistics principles. I have 
also warned students through the use of asterisks (*) when a proof, concept, ex­
ample, or problem may be stretching the bounds of the prerequisites so as not 
to frustrate the otherwise diligent reader, and to indicate when the help of the 
instructor or additional readings may be useful. 

The book is designed to be versatile. The course that inspired this book is 
a 4-credit, semester-long, intensive mathematical statistics foundation course. 
I do not lecture on all of the topics contained in the book in the 50 contact 
hours available in the semester. The topics that I do not cover are taught in the 
first half of a subsequent semester-long 3-credit course in statistics and econo­
metric methods. I have tended to treat chapters 1 through 4 in detail, and I 
recommend that this material be thoroughly understood before venturing into 
the statistical inference portion of the book. Thereafter, the choice of topics 
is flexible. For example, the instructor can control the depth at which asymp­
totic theory is taught by her choice of whether the starred topics in chapter 5 
are discussed. While random sampling, empirical distribution functions, and 
sample moments should be covered in chapter 6, the instructor has leeway in 
the degree of emphasis that she places on other topics in the chapter. Point 
estimation and hypothesis testing topics can then be mixed and matched with 
a minimal amount of back-referencing between the respective chapters. 

Distinguishing features of this book include the care with which topics 
are introduced, motivated, and built upon one another; use of the appropriate 
level of mathematics; the generous level of detail provided in the proofs; and a 
familiar business and economics context for examples and problems. This text 
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1.1 Introduction 

Elements of Probabi I ity 
Theory 

1.1 Introduction 
1.2 Experiment, Sample Space, Outcome, and Event 
1.3 Nonaxiomatic Probability Definitions 
1.4 Axiomatic Definition of Probability 
1.5 Some Probability Theorems 
1.6 A Digression on Events 
1.7 Conditional Probability 
1.8 Independence 
1.9 Bayes's Rule 

The objective of this chapter is to define a quantitative 
measure of either the level of certainty (or uncertainty) associated with observ­
ing various outcomes of a chance situation, or the degree of belief in a stated 
proposition. The quantitative measure, called probability, is relevant for quan­
tifying such things as how likely it is that a shipment of transistors contains 
less than 5 percent defectives, that a gambler will win a crap game, that next 
year's corn yields will exceed 80 bushels per acre, or that electricity demand 
in Los Angeles will exceed generating capacity on a given day. The probability 
concept will also be relevant for quantifying an individual's degree of beliefin 
such propositions as it will rain tomorrow, Congress will raise taxes next year, 
and the United States will suffer another oil embargo in the coming year. 

The value of such a quantitative measure of uncertainty or degree of belief 
for decision making in business, economics, government, and everyday life is 
substantial. In the absence of such a measure, all one can effectively say when 
faced with a chance situation whose outcome is unknown or with a proposition 
whose validity is unknown is, "I don't know what will happen" or "I don't know 
whether the proposition is true or false." A rational decision maker will most 
definitely prefer to narrow the uncertainty of a chance situation's outcome or a 
proposition's validity in any decision making context in which profits, utility, 
and/or welfare are affected. Indeed, the problem of increasing profit, utility, 
or welfare through appropriate choices of production and inventory levels and 
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scheduling, product pricing, advertising effort, trade policy, tax strategy, input 
or commodity purchases, technology adoption, and/or capital investment is 
substantially more difficult when the results of one's choice are affected by 
factors that are simply unknown. 

Probability is a tool for distinguishing likely from unlikely outcomes or 
states of affairs and provides business managers, economists, legislators, and 
consumers with information that can be used to rank the potential results of 
their decisions in terms of likelihood of occurrence. It then becomes possible 
to make choices that maximize the likelihood of a desired outcome, provide a 
high likelihood of avoiding disastrous outcomes, or achieve a desirable expected 
result (where "expected" will be rigorously defined in Chapter 2). 

Four basic definitions have been involved in the development of proba­
bility theory: classical probability, relative frequency probability, subjective 
probability, and the axiomatic approach to the definition of probability. We 
briefly discuss the first three approaches and then concentrate on the modern 
axiomatic approach. We will see that in the modern mathematical theory, prob­
abilities are values of set functions which have special properties that satisfy 
the requirements of certain probability axioms. 

Prior to our excursion into the realm of probability theory, it is helpful to ex­
amine how the terms "experiment," "sample space," "outcome," and "event" 
will be used in our discussion. The next section provides the necessary infor­
mation. 

1.2 Experiment, Sample Space, Outcome, and Event 

Definition 1.1 
Sample space 

The term experiment is used very generally in the field of statistics to refer to 
any activity for which the outcome or final state of affairs cannot be specified 
in advance, but for which a set containing all potential outcomes or final states 
of affairs can be identified. Thus, determining the yield per acre of a new type 
of wheat, observing the quantity of a commodity sold during a promotional 
campaign, identifying the fat percentage of a hundredweight of raw farm milk, 
observing tomorrow's closing price of gold on the London exchange, or analyz­
ing the underlying income elasticity affecting the demand for gasoline are all 
examples of experiments according to our usage of the term. 

The final result, observation, or measurement from the experiment is re­
ferred to as the outcome of the experiment. Thus, referring to the above ex­
amples of experiments, 80 bushels per acre, 2,500 units sold during a week of 
promotions, 3.7 percent fat per hundredweight, $440 per ounce, and .25 are, 
respectively, possible outcomes. 

Prior to analyzing probabilities of outcomes of an experiment, it is neces­
sary to identify what outcomes are possible. This leads to the definition of the 
sample space of an experiment. 

A set that contains all possible outcomes of a given experiment. 
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Definition 1.2 
Event 

Note that our definition of sample space does not necessarily identify a 
unique set since we require only that the sample space contain all possible 
outcomes of an experiment. In many cases, the set of all possible outcomes 
will be readily identifiable and not subject to controversy, and in these cases it 
will be natural to refer to this set as the sample space. For example, the exper­
iment of rolling a die and observing the number of dots facing up has a sample 
space that can be rather uncontroversially specified as {I, 2,3,4, 5, 6}. However, 
defining the collection of possible outcomes of an experiment may also require 
some careful deliberation. For instance, in our example of measuring the fat 
percentage of a given hundredweight of raw farm milk, it is clear that the out­
comes must reside in the set A = {x: a ::: x ::: lOa}. However, the accuracy of 
our measuring device might only allow us to observe differences in fat percent­
ages up to hundredths of a percent, and thus a smaller set containing all possi­
ble measurable fat percentages might be specified as B = {x : x = (.OlJn,n = 
a, 1,2, ... , 10, OOO}, where B cA. It might be argued further that fat percentages 
of greater than 20 percent and less than 1 percent will not occur in raw farm 
milk, and thus the smaller set C = {x : x = (.OlJn, n = 100,101,102, ... ,2, OOO}, 
where C c B c A could represent the sample space of the fat-measuring ex­
periment. Fortunately, as the reader will come to recognize, the only concern 
of practical importance is that the sample space be specified large enough to 
contain the set of all possible outcomes of the experiment as a subset. The 
sample space need not be identically equal to the set of all possible outcomes. 
The reader may wish to suggest appropriate sample spaces for the remaining 
four example experiments described above. 

We will use the capital letter S to refer to sample space in the remainder of 
our study. Consistent with set theory terminology, each outcome in a sample 
space is called an element (or member) of the sample space. Elements of sample 
spaces are also sometimes called sample points. The sample space, as all sets, 
can be classified according to whether the number of elements in the set is 
finite, countably infinite, or uncountably infinite. It is customary to refer to 
a sample space that is finite or countably infinite as a discrete sample space. 
An uncountably infinite sample space that consists of a continuum of points, 
such as all of the points on an interval of the real line or all of the points in a 
rectangle, is often referred to as a continuous sample space. 

The fundamental entities to which probabilities will be assigned are subsets 
of the sample space called events. 

I An event is a subset of the sample space. 

Thus, events are collections of outcomes of an experiment. 1 In the special case 
where the event consists of a single element or outcome, we will use the special 

I For now, we will act as if every subset of a sample space is an event. A technical problem arises when we deal with uncountably 
infinite sample spaces, such that certain complicated sets will not be considered events because it will be impossible to assign 
probability to them in a consistent manner. We will investigate this technical problem in Section 1.6. As a practical matter, all sets 
to which the reader would be interested in assigning probability will be events. 
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term elementary event to refer to the event. We say that the event A has oc­
curred if the experiment results in an outcome that is an element of the set 
A. The real-world meaning of the statement lithe occurrence of event A" will 
be provided by the real-world definition of the set A. That is, verbal or mathe­
matical statements that are utilized in the verbal or mathematical method of 
defining set A, or the collection of elements or description of elements placed in 
brackets in the exhaustive listing method of defining set A, provide the mean­
ing of lithe occurrence of event A." The following examples will illustrate the 
meaning of both "event" and the "occurrence of an event." 

Example 1.1 An experiment consists of rolling a die and observing the number of dots facing 
up. The sample space is defined to be S = {1,2,3, 4, 5, 6}. Examine two subsets 
of S: AI = {1,2,3}, A2 = {2,4,6}. 

Event AI has occurred if the outcome, x, of the experiment (the number 
of dots facing up) is such that x E AI. Then AI is an event whose occurrence 
means that after a roll the number of dots facing up on the die is three or less. 

Event A2 has occurred if the outcome, x, is such that x E A2. Then A2 is an 
event whose occurrence means that the number of dots facing up on the die is 
an even number. 0 

Example 1.2 An experiment consists of observing the percentage of a large group of con­
sumers, representing a consumer taste panel, that prefer Schpitz beer to its 
closest competitor, Nickelob beer. The sample space for the experiment is spec­
ified as S = {x : 0 ~ x ~ 100}. Examine two subsets of S : Al = {x : x < 50}, 
A2 = {x: x > 75}. 

Event AI has occurred if the outcome, x, of the experiment (the actual 
percentage of the consumer panel preferring Schpitz beer) is such that x E 

AI. Then Al is an event whose occurrence means that less than 50 percent of 
the consumers preferred Schpitz to Nickelob or, in other words, the group of 
consumers preferring Schpitz were in the minority. Event A2 has occurred if 
the outcome x E A2. Then A2 is an event whose occurrence means that greater 
than 75 percent of the consumers preferred Schpitz to Nickelob. 0 

Examples 1.1 and 1.2 can be used to illustrate the concept of mutually 
exclusive or disjoint events. The concept is identical to the concept of mutually 
exclusive or disjoint sets. In Ex. 1.1, it is recognized that events Al and A2 are 
not mutually exclusive events, since Al n A2 = {2} =f: 0. Events that are not 
mutually exclusive can occur simultaneously. Events Al and A2 will occur 
simultaneously (which cannot be the case for mutually exclusive events) only 
if x E Al nA2 = {2}. In Ex. 1.2, events Al and A2 are mutually exclusive events 
since Al n A2 = 0. Events Al and A2 cannot occur simultaneously since if the 
outcome is such that x E AI, then it follows that x ¢ A2, or if x E A 2, then it 
follows that x ¢ AI. 

We should emphasize that in applications it is the researcher who specifies 
which events are of interestj i.e., the researcher defines the subsets of the sam­
ple space whose occurrence or lack thereof provides useful information from 
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the researcher's viewpoint. Thus, referring to Ex. 1.2, if the researcher were em­
ployed by Schpitz Brewery, the identification of which beer was preferred by a 
majority of the participants in a taste comparison would appear to be of signif­
icant interest in a report to the management of the brewery, and thus event Al 
would be of great importance. Event A2 in that example might be considered 
important if the advertising department of Schpitz Brewery wished to utilize 
an advertising slogan such as "Schpitz beer is preferred to Nickelob by more 
than 3 to 1. II 

1.3 Nonaxiomatic Probability Definitions 

Definition 1.3 
Classical probability 

There are three major nonaxiomatic definitions of probability that have been 
suggested in the course of the development of probability theory. The defini­
tions seek to identify a quantitative measure of the likelihood of occurrence, 
or degrees of belief in, the various events associated with an experiment. We 
briefly discuss each of these alternative probability definitions. In the definition 
below, N(·) is the size-of-set function (see Def. A.21). 

Let S be the finite sample space for an experiment having N(S) equally likely 
outcomes, and let A c S be an event containing N(A) elements. Then the 
probability of the event A, denoted by PIA), is given by PIA) = N(A)/N(S). 

In the classical definition, probabilities are images of sets generated by a 
set function, P, having as its domain the collection of all subsets of a finite 
(and thus discrete) sample space and having a range that is contained in the real 
interval [0,1]. The following example illustrates the application of the classical 
probability concept. 

Example 1.3 Reexamine the die-rolling experiment of Ex. 1.1. We assume that the die is 
fair so that the outcomes in the sample space S = {I, 2, 3, 4,5, 6} are equally 
likely. The number of elements in the sample space is given by N(S) = 6. Let 
Ei, i = I, ... ,6, represent the elementary events in the set S. Then according to 
the classical probability definition, P(Ei ) = N(Ei)/N(S) = 1/6 for all i = 1, ... ,6, 
so that the probability of each elementary event is 1/6. Referring to events Al 
and A2 of Ex. 1.1, note that 

N(A I ) 3 1 N(A2) 3 1 
P(AIl = N(S) = (5 = 2 and P(A2 ) = N(S) = (5 = 2' 

Therefore, the probability of rolling a three or less and the probability of rolling 
an even number are both 1/2. Note finally that PIS) = N(SI/N(S) = 6/6 = I, 
which states that the probability of the event that the outcome of the experi­
ment is an element of the sample space is I, as it intuitively should be if the 
number 1 is to be associated with an event that will occur with certainty. 0 
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Definition 1.4 
Relative frequency 

probability 

Elements of Probability Theory 

The classical definition has two major limitations that preclude its use 
as the foundation on which to build a general theory of probability. First, the 
sample space must be finite or else N(S) = 00 and possibly N(A) = 00. Thus 
probability in the classical sense is not useful for defining the probabilities of 
events contained in a countably infinite or uncountably infinite sample space. 
Another limitation of the classical definition is that outcomes of an experiment 
must be equally likely. Thus, for example, if we are engaged in a coin-tossing 
experiment and it cannot be assumed that the coin is fair, then the classical 
probability definition provides us with no information as to how probabilities 
should be defined. In order to relax these restrictions, we examine the relative 
frequency approach. 

Let n be the number of times that an experiment is repeatedly performed 
under identical conditions. Let A be an event in the sample space S, and 
define nA to be the number of times in n repetitions of the experiment that 
the event A occurs. Then the probability of the event A is given by the limit 
of the relative frequency nA/n, as 

PIA) = lim nA. 
n .... oo n 

It is recognized that in the relative frequency definition, the probability of 
an event A is the image of A generated by a set function P, where the image is 
defined as the limiting fraction of the total number of outcomes of the sequence 
of experiments that are observed to be members of the set A (for a rigorous 
definition of limits, see Section 5.2). It is clear that the range of the set function 
must be contained in [0, 1] since 0::: nA ::: n. The following example illustrates 
the application of the relative frequency concept of probability. 

Example 1.4 Consider the following collection of coin-tossing experiments, where a coin 
was tossed various numbers of times and, following the prescription in the 
relative frequency definition of probability, the fraction of the tosses resulting 
in heads was recorded for each collection of experiments.2 

No. of Tosses No. of Heads Relative Frequency 

100 48 .4800 
500 259 .5180 

1,000 489 .4890 
5,000 2,509 .5018 

75,000 37,447 .4993 

2These experiments were actually performed by the author, except the author did not actually flip coins to obtain the results listed 
here. Rather, the coin flips were simulated by the computer. In the coming chapters, the reader will come to understand exactly 
how the computer might be used to simulate the coin-flipping experiment, and how to simulate other experiments as well. 
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Definition 1.5 
Subjective probability 

It would appear that as n ~ 00, the observed relative frequency of heads is 
approaching 0.5. 0 

The relative frequency definition enjoys some advantages over the classical 
definition. For one, the sample space can be an infinite set, since the ability to 
form the relative frequency nA/n does not depend on the underlying sample 
space's being finite. Also, there is no need to assume that outcomes are equally 
likely, since the concept of limn - Hx, nA/n representing the limiting fraction of 
outcomes of the experiments that are members of set A does not depend on the 
outcomes' being equally likely. 

Unfortunately, there are problems with the relative frequency definition 
that reduce its appeal as a foundation for the development of a general theory 
of probability. First of all, while it is an empirical fact that for many types 
of experiments, such as the coin-tossing experiment in Ex. 1.4, the relative 
frequencies tend to stabilize as n increases, how do we know that nA/n will 
actually converge to a limit in all cases? Indeed, how could we ever observe 
the limiting value if an infinite number of repetitions of the experiment are 
required? Furthermore, even if there is convergence to a limiting value in one 
sequence of experiments, how do we know that convergence to the same value 
will occur in another sequence of the experiments? Lacking a definitive an­
swer to these conceptual queri"es, we refrain from using the relative frequency 
definition as the foundation for the probability concept. 

A third approach to defining probability involves personal opinion, judg­
ments, or educated guesses and is called subjective probability. 

The subjective probability of an event A is a real number, PIA), in the in­
terval [0,11, chosen to express the degree of personal belief in the likelihood 
of occurrence or validity of event A, the number 1 being associated with 
certainty. 

Like the preceding definitions of probability, subjective probabilities can be 
viewed as images of set functions. Note that the subjective probability assigned 
to an event can obviously vary depending on who is assigning the probabilities 
and depending on the personal beliefs of the individual assigning the probabili­
ties. Even supposing that two individuals possess exactly the same information 
regarding the characteristics of an experiment, the way in which each individ­
ual interprets the information may result in differing probability assignments 
to an event A. 

Unlike the relative frequency approach, subjective probabilities can be de­
fined for experiments that cannot be repeated. For example, one might be as­
signing probability to the proposition that a war in the Middle East will break 
out during the year 2000. Defining the probability of the event "war in the 
year 2000" does not conveniently fit into the relative frequency definition of 
probability since one can only observe the outcome of war or peace in the year 
2000 once. In addition, the classical definition would not apply unless war and 
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peace were equally likely a priori. Similarly, assigning probability to the event 
that one or the other team will win in a Superbowl game is commonly done 
in various ways by many individuals, and a considerable amount of betting 
is based on those probability assignments. However, the particular Superbowl 
"experiment" cannot be repeated, nor is there usually any a priori reason to 
suspect that the outcomes are equally likely so that neither relative frequency 
nor classical definitions apply. 

In certain problem contexts the assignment of probabilities solely on the 
basis of personal beliefs may be considered undesirable. For example, if an indi­
vidual is betting on some game of chance, that individual would prefer to know 
the" true" likelihood of the game's various outcomes and not rely merely on his 
or her personal perceptions. For example, after inspecting a penny, suppose you 
consider the coin to be fair and (subjectively) assign a probability of 1/2 to each 
of the outcomes "heads" and "tails." However, should the penny have been 
supplied by a ruthless gambler who has altered the penny in such a way that an 
outcome of heads is twice as likely to occur as tails, the gambler could induce 
you to bet in such a way that you would lose money in the long run if you ad­
hered to your initial subjective probability assignments-the game would not 
be "fair." (Explain how you could be induced into betting in a way that makes 
you a loser in the long run.) 

Given that "objective" (classical, relative frequency approaches) and sub­
jective probability concepts might both be useful, depending on the problem 
situation, we seek a probability theory that is general enough to accommodate 
all of the concepts of probability discussed heretofore. Such an accommodation 
can be achieved by defining probability in axiomatic terms. 

1.4 Axiomatic Definition of Probability 

Our objective is to devise a quantitative measure of the likelihood of occur­
rence of, or the degree of belief in, various events contained in a sample space. 
How should one go about defining such a measure? A useful approach is to de­
fine the measure by stating mathematical properties that we feel our measure 
should possess. If the properties imposed on the measure are straightforwardly 
acceptable or appear clearly useful in devising our means of measurement, and 
if the assumptions are not contradictory, we could collect these properties into 
a set of axioms (see the definition in Section A.2) on which to build the theory 
of probability. 

Note, as an aside, that the approach of using a set of axioms as the foun­
dation for a body of theory should be familiar to students of business and 
economics. For example, the theory of the consumer is founded on a set of 
behavioral assumptions, i.e., a set of axioms. The reader might recall that the 
axioms of comparability, transitivity, and continuity of preferences are suffi­
cient for the existence of a utility function, the maximization of which, subject 
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Definition 1.6 
Event space 

Axiom 1.1 

to an income constraint, depicts consumption behavior in the neoclassical the­
ory.3 

What mathematical properties should our measure possess? First of all, it 
seems useful for our measure to be in the form of a real-valued set function, 
since this would allow probabilities of events to be stated in terms of real 
numbers. Thus, we begin with a set function, say P, which has as its domain 
all of the events in a sample space, S, and has as its range a set of real numbers, 
i.e., we have P : Y -+ R, where Y is the set of all events in S. The set Y is called 
the event space. 

The set of all events in the sample space S is called the event space. 

We have in mind that the images of events under P will be probabilities of the 
events, i.e, PIA) will be the probability of the event A E 1. Now, what type of 
properties seem appropriate to impose on the real-valued set function P? 

Reviewing the three definitions of probability presented in Section 1.3, it 
is recognized that in each case, probability was defined to be a nonnegative 
number. Since at this point we are completely free to choose the properties we 
desire of our measure, and since each of the previous nonaxiomatic definitions 
of probability possesses some intuitive appeal as measures of the likelihood 
of occurrence or degree of belief in an event (despite our recognition of some 
conceptual difficulties), let us agree that our measure should be nonnegative 
valued. By doing so, we will have defined the first axiom to which our measure 
must adhere while remaining consistent with all of our previous probability 
definitions. Since we decided that our measure would be generated by a set 
function, P, our assumption requires that our set function be such that the 
image of any event A, P(A), be a nonnegative number. Our first axiom is thus 

For any event A c S, PIA) 2: O. 

Now that we have committed ourselves to a measure that is nonnegative, 
what nonnegative number should our measure associate with the certain event, 
S?4 Again we are free to choose the property we desire of our measure. However, 
there are some advantages to choosing the number 1 to denote the likelihood 
of, or the degree of belief in, the certain event. First, it is consistent with all of 
our nonaxiomatic definitions of probability discussed earlier. Second, it allows 

3See G. Debreu (1959), "Theory of Value: An Axiomatic Analysis of Economic Equilibrium." Cowles Monograph 17. New York: 
John Wiley, pp. 60-63. Note that additional axioms are generally included that are not needed for the existence of a utility function 
per se but that lead to a simplification of the consumer maximization problem. See L. Phlips (1983), Applied Consumption Analysis. 
New York: North-Holland, pp. 8-11. 

4By definition, since S contains all possible outcomes of the experiment, the event S is then certain to occur. 
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Axiom 1.2 

Elements of Probability Theory 

the probability of any event A c S to be directly interpreted as indicating a 
proportion of certainty. That is, if we assume that our set function is such that 
PIS) = I, and if PIA) = k, say, then the measure of event A relative to the 
measure of the certain event S is PIAl/PIS) = k/l = k, so that PIA) = kP(S), and 
thus the event A is assigned a proportion, k, of certainty. Our second axiom is 
then 

PIS) = 1. 

Dwelling on the value of k in the preceding discussion for a moment, it 
is clear that what we intuitively had in mind for the value of k was a number 
k E [0, 1]. Our intuitive reasoning would be that if S is the certain event, then 
the occurrence of A c S surely cannot be /lmore than certain." That is, unless 
A = S, there are sample points in S that are not in A (Le., S - A =1= 0). Thus, 
while the event S will always occur, A mayor may not, and thus surely A is 
no more certain to occur than S. This line of reasoning then suggests that our 
measure must be such that PIA) :::: 1. However, we can proceed further and 
extend this argument. If A and B are any two events such that A c B, then we 
would require that PIA) :::: P(B), since every element of A is also in B, but B 
may contain sample points that are not in A, and thus A can surely be no more 
likely to occur than B. 

We would all agree that if our measure is to quantify meaningfully the 
degree of belief in, or the likelihood of, an event, it must possess the property 
suggested in the argument above. We are thus tempted to add to our collection 
another axiom that states /lif A c B, then PIA) :::: PIB)." Before doing this, 
however, let us investigate the argument still further. If indeed A c B, and thus 
P(B) :::: PIA), then to what should we ascribe the remaining portion, P(B)- PIA), 
of the probability of event B? An intuitively obvious answer comes to mind. 
The set B - A represents the collection of elements remaining in the set B 
after we remove the elements in B that are contained in the set A. Since A and 
B - A are mutually exclusive, and since B = A u IB - A), the event B is thus 
partitionedS into two subsets. Represented this way, B can occur iff either A 
or IB - A) occurs. If PIB) > PIA), the added probability, PIB) - PIA), of event B 
occurring compared to event A must be due to the probability of the occurrence 
of event B - A. Thus, it is logical to attribute the increment in the probability 
measure, PIB) - PIA), to the event B - A. 

Then our measure should have the property that for events A and B for 
which A c B, PIB) = PIA)+PIB-A). NotethatsincePIB-A):::: Oby Axiom 1.1, 
this implies our previous requirement that if A c B, PIB):::: PIA). However, we 
have discovered much more than just another way of stating a potential third 
axiom. We have actually found that for any two mutually exclusive events Al 
and A2, our measure should have the property that P(AI u A2) = P(AI) + P(A2). 

5 A partition of a set B is a collection of disjoint subsets of B, say {Bi, i E I}, such that B = UieIBi. 



1.4 Axiomatic Definition of Probability 11 

lemma 1.1 
Mathematical 

Induction Principle 

To see this, define the set B = Al U A2, where Al n A2 = 0. Then B - Al = 
(AI U A 2) - Al = A2 because Al and A2 are mutually exclusive. Since we have 
argued that P(B) = P(A I ) + P(B - Al I, substituting A2 for (B - AI) then yields 
P(AI UA2) = P(AI I + P(A21. Thus, we have demonstrated that probability should 
be additive across any two disjoint events. 

The preceding additivity argument can be easily extended to three or more 
disjoint events. To motivate the extension, first examine the case of three dis­
joint events, AI, A2, andA3. Note that the two events Al UA2 andA3 are disjoint 
events, since 

becauseAinAi = 0 for i i= ;by the disjointness of AI, A 2, andA3. Then, applying 
our probability additivity result for the case of two disjoint events results in 

But since Al and A2 are disjoint, P(AI U A2) = P(Ail + P(A2I, so that by substi­
tution for P(AI U A2), 

and we have the implication that probability is additive across any three dis­
joint events. Recognizing the sequential logic of the extension of probability 
additivity from two to three disjoint events, the reader can no doubt visual­
ize the repetition of the argument ad infinitum to establish that probability 
should be additive across an arbitrary number of disjoint events. A concise, 
formal way of establishing the extension is through the use of mathematical 
induction, which we will now review. 

The process of mathematical induction is a method for proving the valid­
ity of each proposition in a sequence of propositions. Implementation of the 
method begins with establishing the validity of the first proposition, PI, in 
the sequence. Then an argument is constructed to demonstrate that if the kth 
proposition in the sequence were true, where the symbol k represents an un­
specified, arbitrary positive integer, then the (k + 11th proposition is necessarily 
true, i.e., Pk is a sufficient condition for PMI. It is recognized that the latter 
argument establishes a chain of sequential truths, where the truth of every 
proposition Pk +i , i = 1,2, ... follows from the truth of Pk . Since in the method 
the truth of PI is established, the truth of Pi' ; = 2,3, ... is thus demonstrated. 

Let PI, P2, P3, ... be a sequence of propositions. Each of the propositions in 
the sequence is true provided 

a. PI is true, and 

h. for an arbitrary positive integer k, if Pk were true, it would necessarily 
follow that PMI is true. 
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Returning to our prob~bility additivity argument, the first proyosition in 
the sequence of propositions we are interested in is /I PIAl UA2l = Li=1 P(Ail for 
disjoint events Ai, i = 1,2." We have already defended the validity of this propo­
sition. Now examine the proposition that for some k, /I P(Uf=IAi ) = 2:L P(Ai) 
for disjoint events Ai, i = 1,2, ... , k." Using the method of mathematical in­
duction, we tentatively act as if this proposition were true, and we attempt 
to demonstrate that the truth of the next proposition in the sequence follows 
from the truth of the previous proposition, i.e., is /I P(U~~·} Ai) = Lf:11 P(Ai 1 for 
disjoint events Ai, i = 1,2, ... , k+ 1" then true? Note that the two events Uf=IAi 

and Ak+l are disjoint, since 

(~Ai) nAk+1 = ~(Ai nAk+d = ~0 = 0, 

where Ai n Ak+1 = 0 Vi#- k + 1 by the disjointness of the k + 1 events 
AI, ... ,Ak+l • But then by additivity for the two-event case, 

where the last equality follows from the assumed validity of probability addi­
tivity in the k-disjoint event case. Then by mathematical induction, we have 
demonstrated that 

for disjoint events AI, ... , Am, V positive integer m, i.e., probability is additive 
across an arbitrary number of disjoint events. 

We finally state our probability additivity requirement as a third probabil­
ity axiom, where we generalize the representation of the collection of disjoint 
events by utilizing an index set of subscripts.6 

6Technically, our mathematical induction approach demonstrates probability additivity for any number of disjoint sets, which is 
referred to as finite additivity. However, 00 is not a number per se. We appeal to intuition in extending probability additivity from 
an arbitrary number of disjoint sets to a countably infinite collection of disjoint sets. Such an extension is needed to answer certain 
probability questions concerning limit operations when dealing with countably infinite and uncountably infinite sample spaces. 
To illustrate "countably infinite additivity," let the set of positive integers code calendar years starting from 1997, i.e., 1 denotes 
1997,2 denotes 1998,3 denotes 1999, and so on. Suppose you were interested in the probability that human life on Earth ceases to 
exist in an odd year. This draconian event would be represented by the countably infinite set A = {x : x is an odd positive integer}, 
and the probability we seek is PIA). Note that the event can be conceptualized as the union of countably infinite elementary events, 
UieA Ii), the elementary events being disjoint by definition. It is natural (and intuitively reasonable given our additivity discussion) 
to represent this probability as PIA) = LieA P({i}) i.e., the probability of event A is the sum of the probabilities of each of the 
countably infinite elementary events comprising event A. This property is referred to as countable additivity in the probability 
literature. It should be noted that a minority of statisticians argue that the theory of probability should be founded on the notion of 
finite additivity, and not countable additivity. For example, see B. deFinetti (1974), Theory of Probability, Vol. I. Chicester: Wiley, 
pp. 116-119. 
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Axiom 1.3 
Let I be a finite or countably infinite index set of positive integers, and let 
{Ai: i E I} be a collection of disjoint events contained in S. Then, P(UiEIAi ) = 
LiEf PIAi). 

The Russian mathematician A. N. Kolmogorov suggested that Axioms 1.1 
to 1.3 provide an axiomatic foundation for probability theory.? As it turns out, 
sufficient information concerning the behavior of probability is contained in 
the three axioms to be able to derive from them the modern theory of probabil­
ity. We begin deriving some important probability results in the next section. 

In summary, we have defined the concept of probability by defining a num­
ber of properties that probability should possess. Specifically, probability will 
be generated by a set function that has the collection of events of a sample 
space, i.e., the event space, as its domain; its range will be contained in the 
interval [O,l]; the image of the certain event S will be 1; and the probability 
of a countable union of disjoint events of S will be equal to the sum of the 
probabilities of the individual events comprising the union. Any set function, 
PH that satisfies the three Axioms 1.1, 1.2, and 1.3 will be called a probability 
measure or probability set function. The image of an event A generated by the 
probability set function P is called the probability of event A. 

The following examples provide illustrations of probability set functions 
for finite, countably infinite, and uncountably infinite sample spaces. 

Example 1.5 Let S = {I, 2, 3, 4,5, 6} be the sample space for rolling a fair die and observing the 
number of dots facing up. Then PIA) = N(A)/6, for A c S, defines a probability 
set function on the events in S. We can verify that PI·) is a probability measure by 
noting that PIA) ::: 0 for all A c S, PIS) = N(Sl/6 = 6/6 = 1 and P(AI u·· .UAn) = 
P(Ail + ... + PIAn) for any collection {AI,"" An} of disjoint subsets of S. For 
example, if Al = {I, 2} and A2 = {4, 5, 6}, then 

PIA II = NIAd 2 
6 =6' 

P(A2l = NIA2) 3 
6 =6' 

PtA A l _ NIAI U A 2) _ ~ 
\ I U 2 - 6 - 6' 

and thus PIAl U A 2) = PIAl) + PIA2). More generally, if A. I , ... , An are disjoint 
events, then 

7See A. N. Kolmogorov (1956), Foundations of the Theory of Probability, 2nd .ed. New York: Chelsea. 
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Example 1.6 

lemma 1.2 

Elements of Probability Theory 

and thus 

o 

Let S = {x : x is a positive integer}, and examine the set function defined by 
PIA) = LxeA(I/2)X for A c S. The set function, so defined, is a probability set 
function since, first of all, P(A) ~ 0 because P(A) is defined as the sum of a 
collection of nonnegative numbers. To verify that PIS) = I, recall the following 
results from real analysis: 

n . a (I _ In+l) 
LaI' = . 
;=1 1 - I 

For III < I, 

00. a(r_In+l) al 
~aI' = lim = --. 
~ n ...... oo 1 - r 1 - I 
1=1 

In the case at hand, a = 1 and I = 1/2, so that 

P(S) = f:(~)X = ~ = l. 
x=1 2 1 - 2: 

Finally, by definition of the summation operation, if Ai, i E I, are disjoint 
subsets of S, then 

P (UAi) = L (1/2)X = L L(I/2)X = LP(A i ). 0 
iei xelUAl1 iei xeA j iei 

ieI 

Example 1.7 Let S = Ix : 0 :s x < oo} be the sample space corresponding to the experiment 
of observing the operating life, in hours, of computer memory chips produced 
by a chip manufacturer. Let the probability set function be given by PIA) = 
JxeA !e-x/2 dx, with the event space, I (the domain of P), being the collection of 
all interval subsets of S together with any sets that can be formed by a countable 
number of union, intersection, and/or complement operations applied to the 
interval subsets.8 

We can verify that PIA) ~ 0 V A E I, since PIA) = JXEA !e-x/2 dx has a non­
negative integrand and the integral of a nonnegative integrand is nonnegative 

8Unlike the previous example, which used a countable sample space, when the sample space is uncountable, not all subsets of S 
can technically be considered events, i.e., there may be subsets of S to which probability cannot be assigned (recall Footnote 1). 
The collection of subsets defined here are the Borel sets contained in S, all of which can be considered events in S. We discuss this 
technical question further in Section 1.6. 
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Definition 1.7 
Probability space 

valued.9 It is also true that PIS) = I, since PIS) = f: !e-x/2 dx = _e-x/2 10'= 1. 
Finally, if A = UY=IAj, with the sets A I ,A2, ... ,An being disjoint, it follows 
from the additivity property of the Riemann integral that 

P (QAi) = lEui~'Ai ~e-x/2dx = ~ lEAi ~e-x/2dx = ~PIAi)' 
and so countable additivity holds. o 

All problems involving the assignment of probabilities to the various events 
in a sample space will formally share a common mathematical structure given 
by a 3-tuple of objects, collectively referred to as the probability space of an 
experiment. 

A probability space is the 3-tuple {S, I, P}, where S is the sample space of an 
experiment, 1 is the event space, and P is a probability set function having 
domain 1. 

In any probabilistic analysis of an experiment, we will seek to establish 

1. a universal set, S, that contains all of the potential outcomes or elementary 
events of an experiment; 

2. a set of sets, I, representing the collection of events or subsets of S on 
which probability will be defined; and 

3. a probability set function, P, that can be used to assign the appropriate 
probabilities to the events in S. 

Once the probability space is defined, all of the information is established that 
is needed to assign probabilities to the various events of interest related to 
an experiment. As one might suspect, it is the discovery of the appropriate 
probability set function that represents a major challenge in the application of 
probability and statistics, and we examine the discovery problem in the latter 
half of the text when we discuss topics in inferential statistics. Our immediate 
goal in the remaining sections of this chapter is to establish a number of useful 
results in probability theory that are implied by the probability axioms. 

1.5 Some Probability Theorems 

The three axioms governing the behavior of a probability set function, together 
with results llemmas) from set theory, can be utilized to prove a number of the­
orems that will provide insights into the behavior of probability. In proving the 

9We will tacitly assume, unless explicitly stated otherwise, that the orientation of integral ranges is from lowest to highest values 
in defining the integral over the set A. 
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theorems, we begin our development of some fundamental tools of probability 
theory. 

Theorem 1.1 Let A be an event in the sample space S. Then PIA) = 1 - PIA). 

Proof By the definition of the complement of A, A u A = S. Thus, by substitution, 
and by Axiom 1.2, PIS) = 1 = PIA U A). However, since A n A = 0, Axiom 1.3 
allows us to state that 1 = PIA) + PIA). Subtracting PIA) from both sides obtains 
the result. • 

Theorem 1.2 P(0) = O. 

Proof Let A = 0 in Theorem 1.1. Then, since A = S, we have immediately that 
P(0) = 1 - PIS) = 1 - 1 = 0, since PIS) = 1 by Axiom 1.2. • 

Theorem 1.3 Let A and B be two events in a sample space such that A c B. Then PIA) S P(B) 
and P(B - A) = P(B) - PIA). 

Proof Since A C B, B = A U (B - A). The sets A and B - A are disjoint, and thus by 
Axiom 1.3, P(B) = PIA) + P(B - A). Since P(B - A) ~ 0 by Axiom 1.1, drop­
ping P(B - A) from the probability equation implies P(B) ~ PIA). Subtracting 
PIA) from both sides of the probability equation yields the second result of the 
theorem. • 

Theorem 1.4 LetA and B be two events in a sample space S. Then PIA) = p{AnB)+p{AnB). 

Proof A = A n S = A n (B U B) = (A n B) U (A n B) since the intersection operation is 
distributive and S = BUB. The events A n B and An B are mutually exclusive 
since (AnB)n(AnB) = 0, and thus by Axiom 1.3, PIA) = p(AnB)+p(AnB). • 

Theorem 1.5 Let A and B be two events in a sample space S. Then PIA U B) = PIA) + P(B) -
p(AnB). 

Proof Au B = (A U B) n S = (A U B) n (B U B) = B U (A n B) since the union operation 
is distributive and S = BUB. Events B and (A n B) are disjoint since (A n B) n 
B = An (B n B) = An 0 = 0, where we have used associativity and the fact 
that B n B = 0. Then by Axiom 1.3, PIA U B) = P(B) + PIA n B). However, 
Theorem 1.4 implies that PIA n B) = PIA) - PIA n B), and thus by substitution, 
PIA U B) = PIA) + P(B) - PIA n B). • 

Corollary 1.1 (Boole's InequalityJio PIA U B) S PIA) + P(B). (This follows directly from The­
orem 1.5 since PIA n B) ~ 0.) 

Theorem 1.6 Let A be an event in a sample space S. Then PIA) E [0,11. 

lONamed after the English mathematician and logician George Boole. 
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Proof 0 c A implies P(0) :::: PIA) by Theorem 1.3, and A c S, implies PIA) :::: PIS) by 
Theorem 1.3. Since PIS) = 1 by Axiom 1.2, and P(0) = 0 by Theorem 1.2, we 
have 0:::: PIA) :::: 1. • 

Theorem 1.7 (Bonferroni's Inequality (2-event case))ll Let A and B be two events in a 
sample space S. Then PIA n B) ~ 1 - PIA) - P(B). 

Proof By Theorem 1.1, p(AnB) = I-P(A n B). DeMorgan's law indicates that A n B = 
AUB, and thus p(AnB) = I-P(AUB) by substitution. Theorem 1.5 indicates that 
P(AUB) = P(A)+P(B)-p(AnB), and thusp(AnB) = I-[P(A)+P(B)-p(AnB)] = 
1 - PIA) - P(B) + PIA n B), again by substitution. Finally, since PIA n B) ~ 0 by 
Axiom 1.1, we have PIA n B) ~ 1 - PIA) - P(B). • 

Theorem 1.8 (Bonferroni's Inequality (General)) Let AI, ... ,An be events in a sample space 
S. Then 

P (0 Ai) ~ 1 - 1; P(A.;). 

Proof We have already proven the validity of the proposition when n = 2 by Theo­
rem 1.7. Suppose for purposes of invoking the induction principle (recall Lemma 
1.1) that 

P (OAi) ~ 1- tp(Ai) 

is true. Using Theorem 1.7, we know that 

Theorem 1.1 allows us to rewrite the inequality as 

By the assumption that the Bonferroni inequality is valid for k events, we con­
clude that 

1 - tp(Ai) :::: P (OAi) , 
and thus we may write 

11 Named for the Italian mathematician C. E. Bonferroni. 
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which implies that Bonferroni's inequality is valid for k + I events. The propo­
sition in Theorem 1.8 is thus proved by induction. • 

Theorem 1.9 (Classical Probability) Let S be the finite sample space for an experiment hav­
ing N(S) equally likely outcomes, and let A c S be an event containing N(A) 
elements. Then the probability of the event A is given by N(A)IN(S). 

Proof Let El, ... , En represent the n = N(S) outcomes lor elementary events) in the 
sample space S. Since all outcomes are equally likely, P(El ) = ... = P(En) = k, 
and since the outcomes are mutually exclusive and S = (U7=l Ei ), we have by 
Axioms 1.2 and 1.3 that PIS) = :L7=l P(Ei ) = :L7=l k = nk = 1. It follows that 
P(Ei) = k = lIn, for i = 1, ... , n. Let I c {I, 2, ... , n} be the index set identifying 
the N(A) number of outcomes (or elementary events) that define the event A, 
i.e., A = UieIEi. Then by Axiom 1.3, 

PIA) = LP(Ei ) = L.!. = N(A) = N(A). 
ieI ieI n n N(S) • 

By proving Theorem 1.9, we have shown that the classical probability defi­
nition is implied by the axiomatic definition of probability. Thus, whenever the 
conditions of the classical probability definition apply, we are free to follow the 
classical prescription for assigning probabilities to events. It can also be shown 
that the relative frequency definition of probability is implied by the axiomatic 
definition. Among other things, this implies that the axiomatic foundation for 
probability theory provides the rationale for the existence of the limit of rela­
tive frequencies referred to in the relative frequency definition of probability. 
We will need to develop results relating to asymptotic theory (Chapter 5) be­
fore a proof of this proposition is attempted. Finally, the subjective probability 
definition is implied by the axiomatic definition in the sense that the indi­
vidual assigning subjective probabilities to events will be required to adhere 
to the axioms in making those assignments. The requirement is interpreted 
by subjective probabilists as a consistency condition for subjective probability 
assignments. 

The next example illustrates the use of the preceding probability theorems 
(for an example of Theorem 1.9, recall Ex. 1.3). 

Example 1.8 An envelope manufacturing firm has three envelope machines. The probability 
that one or more of the machines must be shut down for repairs on any given 
day is characterized by the following probability set function defined for A c 
S = x7=l {O, Il, 

P(A) = 

= L (.l)XI (.9jI-xI (.05)X2(.95jI-X2(.2)X3(.8)l-X3, 
(XI,X2,X3IeA 
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where Xi = 0 denotes that the ith machine does not have a breakdown during 
the day and Xi = 1 denotes a breakdown of the ith machine. The sample space 
for this problem is given by S = IIxI, X2,Xa) : Xj = 0 or I, i = 1,2,3}. 

The elementary events collectively represent all of the possible shutdown 
possibilities for the three machines on a given day. Examine the following four 
events: 

Al = 110,0, D), (1,0,01, (0, 1,01, (0, 0, 1 J), 

A2 = HO, 0, II, (I, 0, II, (0, I, II, (I, I, In, 

Aa = {(I, I, IJ), 

A4 = S - HI, I, In = Aa. 

Al is the event that at most one machine breaks down on a given daYi A2 is 
the event that machine 3 breaks down on a given daYi Aa is the event that all 
three machines suffer breakdowns on a given day; and A4 is the event that at 
least one machine does not suffer a breakdown on a given day. Note (please 
verify using the definition of PI that P(AI I = .967, P(A21 = .2, P(Aa) = .001, and 
P(A4) = .999. 

Theorem 1.1 The probability that more than one machine breaks down on a 
given day is P(Ail = 1 - P(Ail = .033. Note also that P(Aa) = 1 - P(A4 ) = .001, 
which is as it should be, since A3 = A 4 . 

Theorem 1.2 Examine the event Al n Aa = 0 (Le., the event that all three 
machines break down and less than two machines break down on a given day). 
Then P(AI nAa) = P(0) = 0, since Llx l,xv3)E0 f(XI,X2,Xa) = 0 by definition. 

Theorem 1.3 Note that Aa C A 2 • Theorem 1.3 then applies to these two 
events, where P(Aa) = .001 ::: .200 = P(A2)' Now note that IA2 - A3) = 
{(O,O, 1), 11,0, I), (0, I, In, so that P(A2 - A3) = .199 = .2 - .001 = P(A2) - P(Aa). 

Theorem 1.4 Note that IAI n A2) = {(O,O, 1 n and (AI n A2) = {(O, 0, D), (1,0, D), 
(O, I, On, and thus P(Ad = .967 = .171 + .796 = P{AI nA2) + P(AI nA2). 

Theorem 1.5 and Corollary Note that (AI U A2) = S - {(I, I, OJ) and thus PIAl U 
A2) = .996 = .967+.200-.171 = P(AIl+P(A2)-p{A l nA2). Also, (A2UAa) = A2, 
and Boole's inequality holds for these two events as P{A2UA3) = .2 ::: .2+.001 ::: 
P(A2) + P(AaJ. 

Theorem 1.6 Note that PIAj ) E [0,1] for any subset contained in S, given the 
definition of the set function P. 

Theorem 1.7 Note that P(A I nA2) = .1712: .167 = 1-.033-.800 = 1-P(Ad­
P(A2). 
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Theorem 1.8 Note that Al n.ih nA3 = {(O, 0, OJ, (I, 0, OJ, (0, I, OJL so that PIAl n 
A2 n A3J = .796 ~ .766 = 1 - .033 - .2 - .001 = 1 - P(AI! - P(A2J - P(A3J. 0 

1 .6 A Digression on Events 

When we first began our discussion of the axiomatic approach to the definition 
of probability, we stated that probability is generated by a set function whose 
domain consists of all of the events in a sample space. This collection of "all of 
the events in a sample space" was termed the event space. However, up to now 
we have not discussed which subsets of a sample space are events and which, 
if any, are not events. That is, we have said that events are subsets of a sample 
space, but we did not say that all subsets of a sample space are events. The 
issue here is whether a set function can have a domain (Le, the event space) 
consisting of all of the subsets of a sample space and still adhere to the three 
axioms of probability. 

In the case of a countable sample space, the event space can consist of all 
of the subsets of the sample space and still have the set function exhibit the 
properties required by the probability axioms. Henceforth, whenever we are 
dealing with a countable sample space, the event space will always be defined 
as the collection of all of the subsets of the sample space, unless explicitly 
stated otherwise. 

The situation is more complicated in the case of an uncountably infinite 
sample space. In this case, the collection of all subsets of S is, in a sense, so 
large that a set function cannot have this collection of sets for its domain and 
still have the probability axioms hold true for all possible applications. The 
problem is addressed in a field of mathematics called "measure theory" and is 
beyond the scope of our study. As a practical matter, essentially any subset of S 
that will be of interest in real-world applications will be an event and thus will 
be in the domain of the probability set function. Put another way, the subsets 
of S that are not in the event space are by definition so complicated that they 
will not be of interest in any real-world application. 

While it takes a great deal of ingenuity to define a subset of an uncountably 
infinite sample space that is not an event, the reader may still desire a more 
precise definition of event space in the case of an uncountably infinite sample 
space so that one is certain to be referring to a collection of subsets of S for which 
each subset can be assigned a probability. This can be done relatively straight­
forwardly so long as we restrict our attention to real-valued sample spaces (i.e., 
sample spaces whose sample points are all real numbersJ. Since we can always 
"code" the elements of a sample space with real numbers (this relates to the 
notion of random variables, which we address in the next chapter), restricting 
attention to real-valued sample spaces does not involve any loss of generality, 
and so we proceed on the assumption that S c Rn. Our characterization de-
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Definition 1.8 
Rectangles in Rn 

Definition 1.9 
Borel sets in 5 

pends on the notion of Borel sets, 12 which we define next. The definition uses 
the concept of rectangles in Rn, which are generalizations of intervals. 

Rectangles in Rn are sets of points in Rn defined as l3 

a. closed rectangle: {(XI, ... , xnJ : ai ~ Xi ~ bi, i = 1, ... , n} 

h. open rectangle: {(XI, ... , xnJ : ai < Xi < bi, i = 1, ... , n} 

c. half-openlhalf-closed rectangle: 

{(XI, ... ,xnJ: aj < Xi:::: bj,i = 1, .. . ,n} 

{(XI, ... ,xnJ: aj:::: Xi < bj,i = 1, .. . ,n} 

where the a/s and b/s are real numbers, with -00 or 00 being admissible 
for strong inequalities. Clearly, rectangles are intervals when n = 1. 

The collection of Borel sets contained in a sample space S will include all 
of the rectangle subsets of S as well as an infinite number of other sets that can 
be formed from them via set operations as defined below. 

Let S c Rn. The collection of Borel sets in S consists of all closed, open, 
and half-open/half-closed rectangles contained in S, as well as any other set 
that can be defined by applying a countable number of union, intersection, 
and/or complement operations to these rectangles. 14 

The collection of Borel sets is extremely large and will contain any subset of 
the real-valued sample space that will be of interest in real-world applications. 
In particular, all open and all closed (rectangular or nonrectangular) sets are 
contained in the collection of Borel sets. Most importantly, probabilities can 
always be assigned to Borel sets. Consequently, we will use the collection of 
Borel sets identified in Definition 1.9 as our event space when dealing with 
real-valued sample spaces. The reader should attempt to convince herself that 
in the case of a discrete, real-valued sample space, the collection of Borel sets 
is equivalently the collection of all subsets of the sample space. 

12Named after the French mathematician Emile Borel. 

130ne can also define rectangles that are represented as Cartesian products of any collection of closed, open, and/or half-open/half­
closed intervals, rather than as Cartesian products of only closed intervals, or open intervals, or half-open/half-closed intervals as 
in the definition. These might also be referred to as nonopen/nonclosed rectangles. 

14The collection of Borel sets in S is an example of what is known in the literature as a sigma-field (a-field), or a sigma-algebra 
(a-algebra). A a-field is a nonempty set of sets that is closed under countable union, intersection, and complement operations. The 
use of the word "closed" here means that if Ai, i E I, all belong to the a-field, any set formed by applying a countable number of 
unions, intersections, and/or complement operations to the A;'s is also a set that belongs to the a-field, where I is any countable 
index set. 
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The following example illustrates the concept of Borel sets in R 1. 

Example 1.9 The following sets are examples of Borel sets in R : Al = [a, .51, A2 = [.75,00), 
Aa = {.6}, Al UA2, A2 UA3, Al UA2 uA3, 0 = Al nA2 = A2 nA3 = Al nA2 nA3, 
AI, A2, A3, Al U A2, A2 U A3, Al U A2 U A3, S. The reader can define other Borel 
sets in R at her leisure, ad infinitum. In words, the collection of Borel sets in R 
is the collection of all intervals in R as well as any set that can be formed from 
the intervals by a countable number of union, intersection, and/or complement 
operations. 0 

To summarize our disposition concerning the meaning of event space, our 
general definition is still "the collection of events in a sample space." More 
specifically, however, it is the collection of all subsets of a sample space when 
the sample space is discrete, but it is "only" the collection of Borel sets in the 
case where the sample space is uncountably infinite and real valued. 

1.7 Conditional Probability 

When an experiment is conducted, the one event that is absolutely certain to 
occur is the event S, since the outcome of an experiment must be an element of 
the sample space. We now study the effect that additional information concern­
ing the outcome of an experiment has on the probability of events. In particular, 
if it is known that the outcome of the experiment is an element of some sub­
set, B, of the sample space, what is the effect of this additional information on 
the probabilities of events in S? As an example of such a situation, it appears 
intuitively plausible that the probability of a company earning $10 million in 
annual profits would be higher if the company were randomly chosen from the 
list of Fortune 500 companies than if the company were chosen from among 
all companies in the United States. For another example, examine the experi­
ment of tossing two fair coins in succession, and let the sample space for the 
experiment be defined by S = {(H, H), (H, T), (T, H), (T, Tn, where H =heads and 
T =tails. The probability (unconditional) of observing two tails is 1/4 since 
P((T, TJ) = N(A)/N(S) = 1/4, where A = {(T, Tn. However, the probability of 
observing two tails must be zero if it is known that the outcome of the first 
coin toss was heads. We develop the notion of conditional probability ahead. 

Suppose that we are analyzing an experiment with an associated probabil­
ity space {S, 1, P} and it is given that the outcome of the experiment is some 
element of a subset, B, of the sample space. How should the probability of an 
event, A, be defined given the additional information that event B has occurred? 
By making a number of observations concerning properties that conditional 
probabilities should possess, we will be led to a definition of the conditional 
probability of event A given event B. 

First of all, since it is given that B occurs, it is certain that B will not occur. 
In effect, the sample space has been reduced to the subset B, i.e., the outcomes 
in S - B are no longer relevant, and B can be interpreted as the conditional 
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Definition 1 .1 0 
Conditional probability 

Figure 1-1 
Conditional 

sample space B. 

sample space. Letting the symbol PIA I B) represent the conditional probability 
of event A, given event B, it follows that since the new sample space B is an 
event that is now certain to occur, the conditional probability assigned to event 
B should be I, so that P(B I B) = 1. Note further that since B will occur, it is 
clear that an event A can also occur iff A occurs concurrently with B, that is, 
iff A n B occurs (see Figure 1.1). This suggests that conditional probability 
should be defined so that PIA I B) = PIA n B I B) for any event A. 

Now note that Theorem 1.4 implies the probability equation P(B) = PIA n 
B) + PIA n B), since B can be partitioned into the two disjoint subsets A n Band 
A n B because B = (A n B) u (A n B). Thus, the probability of event B can be 
decomposed into the probabilities of the events (A n B) and (A n B). Dividing 
both sides of the probability equation by P(B) (assuming P(B) =I 0) obtains a 
proportional decomposition of the probability of event B as 

1 _ PIA nB) PIAn BI 
- P(B) + P(B) , 

where the proportion k = PIA n BIIP(B) E [0,1] of event B's probability is at­
tributable to event A n B with the remaining proportion, 1 - k, attributable to 
event A n B. Restricting the sample space to the set B or, equivalently, condi­
tioning on event B does not eliminate any of the outcomes in the collection 
comprising either of the events A n B or A n B, nor does it change the fact 
that B = (A n B) u (A n B). Then, since event An B accounts for a proportion, 
k, of the probability that event B will occur, and since B is now certain to 
occur and so is assigned (conditional) probability P(B I B) = I, then the pro­
portion, k, of this unit probability should be attributable to event A n B. We 
thus assign PIA n B I B) = k = PIA n B)IP(B), and since we also require that 
PIA I B) = PIA n B I B) we are led to the following definition of conditional 
probability. 

Let A and B be any two events in a sample space S. If P(B) =I 0, then the 
conditional probability of event A, given event B, is given by PIA I B) = 
PIA n B)I P(B). 

5 
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Our intuition concerning the meaning of conditional probability can be 
enhanced by examining the definition in light of the classical and relative fre­
quency definitions of probability. In an experiment for which classical proba­
bility is applicable, the probability space consists of 

1. a finite sample space, 
2. an event space that consists of all subsets of the sample space, and 
3. a probability set function that assigns probability to an event A c S as 

PIA) = N(A)/N(S). 

Conditioning on an event Be S, the probability of an event A, by the definition 
of conditional probability, is given by 

PIA B) = PIA n B) = N(A n B)/N(S) = N(A n B) 
I P(B) N(B)/N(S) N(B)' 

Since all outcomes are equally likely in this case, and since we are effectively 
restricting the sample space to the set B by conditioning on event B, it stands to 
reason that the probability of observing A is given by the number of outcomes 
in B that result in A's occurring relative to the total number of outcomes in B. 
This is, of course, consistent with the classical probability definition applied 
to the event A in the context of the new sample space, B. 

Regarding the relative frequency definition and conditional probability, re­
call that the probability set function assigns probabilities to events via PIA) = 
limn-+oo(nA/n). Conditioning on event B c S, the probability of event A, by the 
definition of conditional probability, is given by 

PIA n B) !~(nAnB/n) . 
PIA I B) = () = l' ( /) = hm(nAnB/nB). P B 1m nB n n->oo 

n-+oo 

Note the last equality follows from the fact that the limit of a ratio (here, the 
ratio is (nAnB/n)/(nB/n) = nAnB/nB) equals the ratio of the limits if all limits 
exist and if the limit in the den'ominator of the ratio of limits is not zero. IS 

Restricting the sample space to the set B by conditioning on event B, PIA I B) 
is seen to equal the limiting fraction of the number of occurrences of event B 
that also result in the occurrence of A. Consistent with the logic of the relative 
frequency definition of probability, PIA I B) could then be interpreted as the 
limit of the frequency of observing event A relative to the total number of 
outcomes generated from the conditional sample space B. 

It is clear that conditional probabilities are values of a set function, since 
unique real numbers are being assigned to subsets of S. That these are values 
of a probability set function is established in the following theorem. 

ISSee R. C. Buck, (1978), Advanced Calculus, 3rd ed., New York: McGraw-Hill, p. 44. We will discuss the concept of limits in more 
detail in Chapter S. For now, a more intuitive understanding of limits is sufficient. 
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Theorem 1.10 Given a probability space {S,I,P} and an event B for which P(B) =I- 0, PIA I B) = 
PIA n B)IP(B) defines a probability set function with domain I. 

Proof To prove the theorem, we need to establish that the set function defined by 
PIA I B) = P(AnB)/p(B) adheres to the three axioms of probability on the domain 
I. First, for any event A, it is clear that PIA I B) 2: 0, since PIA n B) 2: 0 and 
P(B) > O. Second, PIS I B) = I, since PIS I B) = PIS n B)IP(B) = P(B)IP(B) = 1. 
Finally, if {Ai : i E J} is a finite or countably infinite collection of disjoint 
events contained in 5, then 

P (~Ai I B) = P ((~Ai) n B) IP(B) 

= P (U(Ai n B)) IP(B) (since n is distributive) 
lEI 

= L P(Ai n B)IP(B) (since (Ai n B) n (Ai n B) = 0 for i =I- j) 
iEI 

= L P(Ai I B) (by definition of conditional probability), 
iEI 

and thus the third axiom of probability holds for the set function. • 
The conditional probability set function PI· I B) can be used to define two 

new probability spaces, {S, I, PI· I Bn and (B, 18, PI· I Bn, where 18 is the collec­
tion of all events contained in the set B. The validity of the first new probability 
space follows directly from Theorem 1.10. With minor changes, the reader can 
apply the proof of Theorem 1.10 to justify the second probability space. It fol­
lows that conditional probabilities can be legitimately assigned by PI· I B) to 
all of the events in the original sample space 5 as well as to all of the events in 
the conditional sample space B. 

Since PIA I B) adheres to the probability axioms, all of the theorems that 
were proved for unconditional probabilities apply equally well to conditional 
probabilities. 16 This follows because the theorems are valid when applied to 
any set function that adheres to the probability axioms regardless of whether 
the set function is representing unconditional or conditional probabilities. Put 
another way, the proofs of all of the theorems would apply analogously to con­
ditional probabilities by simply changing P(·) to PI· I D), say, in the proofs and 
recognizing that the probability axioms apply to the set function PI· I D), as 
demonstrated in the proof of Theorem 1.10. Note that we use the letter D here 
to allow for the possibility that the event being conditioned on is different than 
the events, A and B, that are referred to in some of the previous probability the­
orems. For convenience, we list the probability theorems below as they apply 

16Note that, in a sense, all probabilities could be viewed as conditional, where P(A I SI could be used to denote probabilities in 
previous t'ections. We will continue to use "unconditional" to refer to the case where the original sample space, S, has been left 
"unconditi.oned." 
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to conditional probabilities. It is assumed that the conditional probability is 
defined, i.e., P(D) i= 0, and that A and/or B are events in either the conditional 
sample space D or the original sample space S. 

Theorem 1.lC PIA I D) = 1 - PIA I D). 

Theorem 1.2C P(0 I D) = o. 

Theorem 1.3C If A c B, then PIA I D) :::: P(B I D) and P(B - A I D) = P(B I D) - PIA I D). 

Theorem l.4C PIA I D) = PIA n B I D) + PIA n B I D). 

Theorem 1.SC PIA UBI D) = PIA I D) + P(B I D) - PIA n B I D). 

Corollary 1.lC PIA UBI D):::: PIA I D) + P(B I D). 

Theorem 1.6c PIA I D) E [0,1]. 

Theorem 1.7C PIA n B I D) ~ 1 - PIA I D) - P(B I D). 

The following examples illustrate the application of conditional probability. 

Example 1.10 Consider the experiments of tossing two coins in succession, and let S = 
{(H, H), (H, T), (T, H), (T, Tn, where H = heads and T = tails. Assume that all 
outcomes are equally likely. 

a. What is the probability of obtaining two heads, given that the first coin toss 
came up heads? 
Answer: B = {(H, H), (H, Tn is the event that the first coin toss results in 
heads, which is our conditional sample space. A = {(H, Hn is the event of 
obtaining two heads. Then PIA I B) = PIA n B)/P(B) = (1/4)/(1/2) = 1/2. 

h. What is the probability of obtaining two heads, given that at least one of 
the coins comes up heads? 
Answer: C = {(H, H),(H, T),(T, H)} is the event that at least one of the coins 
came up heads, which is our conditional sample space. Then PIA I C) = 
PIA n C)/P(C) = (1/4)/(3/4) = 1/3. 

c. What is the probability of obtaining one heads and one tails given that the 
first coin is tails? 
Answer: D = {IT, HI, (T, Tn is the event that the first coin was tails. E = 
{(T, H), (H, Tn is the event of obtaining one heads and one tails. Then PIE I 
D) = PIE n D)/P(D) = (1/4)/(1/2) = 1/2. 0 

Example 1.11 A perplexed investor must choose an investment instrument from among 15 
different stocks, 10 different bonds, and 5 different mutual funds. Allowing 
each instrument an equal probability of being chosen, the investor randomly 
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chooses an instrument. Given that the chosen instrument was not a bond, what 
is the probability that a stock was chosen? 
Answer: We are conditioning on the event, B, that the instrument is either a 
stock or mutual fund (Le., not a bond), and P(B) = 2/3. Let A represent the 
event that the outcome is a stock, so that PIA n B) = 1/2. Then PIA I B) = 
PIA n B)/P(B) = (1/2)/(2/3) = 3/4 is the probability we seek. Note this makes 
sense from the standpoint that the conditional sample space is 20 investment 
instruments, of which 15 are stocks and 5 are mutual funds. The classical proba­
bility definition suggests that the probability of observing a stock in this sample 
space of 20 instruments is 15/20 = 3/4. 0 

The definition of conditional probability can be transformed to obtain a 
result known as the multiplication rule. The multiplication rule allows one to 
calculate the probability of event A n B from the knowledge of the conditional 
probability of event A, given event B, and the unconditional probability of B. 

Theorem 1.11 (Multiplication Rule) Let A and B be any two events in the sample space for 
which P(B) i- O. Then PIA n B) = PIA I B)P(B). 

Proof Multiply both sides of PIA I B) = PIA n BI/P(B) in Definition 1.10 by P(B). • 

The multiplication rule is especially useful in cases where an experiment can 
be interpreted as being conducted in two stages. 

Example 1.12. What is the probability of drawing two aces in succession from a well-shuffled 
deck of poker cards? Assume cards drawn are not replaced in the deck. 
Answer: Let B be the event that the first card drawn is an ace. Since there are 
4 aces in a poker deck, with a total of 52 cards in the deck, P(BI = 4/52 = 1/13. 
Now let A be the event that the second card drawn is an ace. Given that the 
first card drawn is an ace (Le., given event BI, there are 3 aces remaining to be 
chosen from the remaining 51 cards, and thus the probability that the second 
draw is an ace, given that the first card drawn is an ace, Le., PIA I BI, equals 
3/51 = 1/17. Then, by the multiplication rule, the probability that both draws 
result in aces is given by PIA n B) = PIA I B)P(B) = (1/17)(1/13) = 1/221. 0 

Example 1.13 As part of its quality-control program, an apparel manufacturer has inspectors 
examine every garment the company produces. A garment is shipped to a retail 
outlet only if it passes inspection. The probability that a garment is defective 
is .02. The probability that an inspector assigns a "pass" to a defective garment 
is .05. What is the probability that a garment is defective and shipped to a retail 
outlet? 
Answer: Let D be the event that a garment is defective. Let B be the event 
that the inspector assigns a "pass" to a garment. We know that P(D) = .02 and 
P(B I D) = .05. B n D is the event that a garment is defective and is passed by 
the inspector. Then P(B n D) = P(B I DIP(D) = (.05)(.021 = .001. 0 
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The multiplication rule can be extended to three or more events, in which case 
the probability of the intersection of all of the events can be represented as 
follows. 

Theorem 1.12 (Extended Multiplication Rule) Let AI,A2, ... ,An, n 2: 2, be events in the sam­
ple space. Then if all of the conditional probabilities exist, 

P (nAi) = P(AdIl P (Ai I nAi)' 
1=1 1=2 1=1 

Proof We know from Theorem 1.11 that the result holds for n = 2 (note that n}=1 Aj = 
Al by definition). In an attempt to invoke the induction principle, assume that 
the result is true for n = k, where k is some arbitrary positive integer 2: 3. We 
will show that the result is then also true for n = k + 1. Let B = nf=IAi. Then 

P (0 Ai) = P(Ak+l n B) = P(Ak+1 I B)P(B) (Theorem 1.11) 

= P(AII D P (Aj lOA) P(Ak+I I B) assuming result holds for n = k 

y 

P(B) 

( substitution for B = n Ai) 
1=1 

Thus, by mathematical induction, the theorem holds. (See Def. 1.12.) • 

Similar to the case of the multiplication rule for two events, the extended 
multiplication rule is especially useful in cases where an experiment can be 
interpreted as being conducted in n stages. 

Example 1.14 What is the probability of drawing four aces in succession from a well-shuffled 
deck of poker cards? Assume cards drawn are not replaced in the deck. 
Answer: Let Ai be the event that the ith card drawn is an ace, i = 1,2,3,4. 
Then, using Theorem 1.12, 

P (OA) = P(AIlP(A2 I AdP(A3 I Al nA2)P(A4 1 Al nA2 nA3) 

= (5:) (:1) (520) (4~) = .3694 X 10-5• o 

Example 1.15 Recall the garment inspection problem of Ex. 1.13. Suppose the retailers who 
market the garments of the apparel manufacturer also inspect each garment 
they purchase and place on sale only those for which they perceive no defects. 
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1.8 Independence 

Definition 1.11 
Independence of 

events (2-event case) 

The probability that a retailer places a defective garment on sale is .10. What 
is the probability that a garment is defective, shipped to the retail outlet, and 
placed on sale by retailers? 
Answer: Let A be the event that the retailer places a garment on sale. An B n D 
is the event of interest, and by Theorem 1.12, 

PIA n B n D) = P(D)P(B I D)P(A IBn D) = (.02)(.05)(.10) = .0001. o 

In everyday language, when one says that two events are independent, it is gen­
erally meant that the occurrence of one event does not affect the likelihood of 
an occurrence of the other event, and vice versa. There is a related notion of in­
dependence in the theory of probability. We begin with the technical definition 
of independent events. 

Let A and B be two events in a sample space S. Then A and B are independent 
iff PIA n B) = P(A)P(B). If A and B are not independent, A and B are said to 
be dependent events. 

An intuitively appealing interpretation of the independence condition in 
Definition 1.11, which is closely allied to our layman's interpretation of in­
dependence, is available when PIA) > a and P(B) > O. In this case, PIA n B) = 
P(A)P(B) implies 

PIA I B) = PIA n B)/P(B) = P(A)P(B)/P(B) = PIA), 

P(B I A) = P(B n A)/P(A) = P(B)P(A)/P(A) = P(B). 

Thus the probability of event A occurring is unaffected by the occurrence of 
event B, and the probability of event B occurring is unaffected by the occurrence 
of event A. 

If event A and/or event B has probability zero, then by definition, events 
A and B are independent. This follows immediately from the fact that if either 
PIA) = a or P(B) = a, then PIA n B) = a = P(A)P(B) (since (A n B) c A and 
(A n B) c B imply both PIA n B) :5 PIA) and PIA n B) :5 P(B) by Theorem 1.3, and 
p(AnB) ~ a by Axiom 1.1, so that together the inequalities imply p(AnB) = a), 
and thus the independence condition is fulfilled. However, in this case one or 
both conditional probabilities PIA I B) and PIB I A) are undefined, and the basis 
no longer exists for stating that "the independence of events A and B implies 
the probability of either event is unaffected by the occurrence of the other." 

If A and B are independent, then A and B, A and B, and A and B are also in­
dependent. This result can be demonstrated by showing that the independence 
definition is satisfied for each of the preceding pairs of events if independence 
is satisfied for A and B. We state the result as a theorem. 
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Theorem 1.13 If events A and B are independent, then events A and B, A and B, and A and 
B are also independent. 

Proof PIA n B) = PIA) - PIA n B) (Theorem 1.4) 

= PIA) - P(A)P(B) (independence of A and B) 

= P(A)[l - P(B)] (algebra) 

= P(A)P(B) (Theorem 1.1) 

PIA n B) = P(B) - PIA n B) (Theorem 1.4) 

= P(B) - P(A)P(B) (independence of A and B) 

= P(B)[l - PIA)] (algebra) 

= P(A)P(B) (Theorem 1.1) 

PIA n B) = PIA U B) (DeMorgan's laws) 

= 1 - PIA U B) (Theorem 1.1) 

= 1 - (P(A) + P(B) - PIA n B)) (Theorem 1.5) 

= 1 - PIA) - PIB) + P(A)P(B) (independence of A and B) 

= PIA) - P(BH1 - PIA)] ITheorem 1.1 and algebra) 

= PIA)[l - PIB)] ITheorem 1.1 and algebra) 

= P(A)PIB) (Theorem 1.1) • 
The following example illustrates the concept of independence of events. 

Example 1.16 The work force of the Excelsior Corporation has the following distribution 
among type and gender of workers: 

Type of Worker 

Sex Sales Clerical Production Total 

Male 825 675 750 2,250 
Female 1,675 825 250 2,750 

Total 2,500 1,500 1,000 5,000 

In order to promote loyalty to the company, the company randomly chooses 
a worker to receive an all-expenses-paid vacation each month. Is the event of 
choosing a female independent of the event of choosing a clerical worker? 
Answer: Let F =event of choosing a female and C =event of choosing a clerical 
worker. From the data in the table, we know that P(F) = .55 and PIC) = .30. 
Also, p(FnC) = .165. Then p(FnC) = P(F)P(C), and the events are independent. 

Is the event of choosing a female independent of the event of choosing a 
production worker? 
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Answer: Let A =event of choosing a production worker. Then PIA) = .20 and 
PIA n P) = .05, and thus PIA n P) = .05 -:j:. .11 = P(A)P(P), so the events are 
dependent. 0 

The property that A and B are independent events is sometimes confused 
with the property that sets A and B are mutually exclusive or disjoint. It should 
be noted that the two properties are distinct, but related concepts. The mutually 
exclusive property is a property of sets, while the independence property is a 
property of the probability set function defined on a collection of sets. The 
following table presents the relationship between the two properties. 

Disjointness versus Independence 

P(A»O 
and 
P(B»O 

P(A) and/or 
P(B)=O 

AnB=0 AnB#0 

Dependent 

Independent 

Independent if 
P(A n B) = P(A)P(B) 

Independent 

Next we verify the three cases in which an immediate conclusion can be 
reached regarding the independence of events A and B. We introduce the nota­
tion /1=*/1 which is to be read implies that. 

Theorem 1.14 (Independence and Disjointness) 

1. PIA) > 0, P(B) > 0, An B = 13 =* A and B are dependent. 
2. PIA) and/or P(B) = 0, A n B = 13 =* A and B are independent. 
3. PIA) and/or P(B) = 0, An B -:j:. 13 =* A and B are independent. 

Proof 1. PIA n B) = P(f3) = 0 by Theorem l.2. Since PIA n B) = 0 < P(A)P(B) because 
PIA) and P(B) are both positive, A and B cannot be independent events, and 
so they are dependent. 

2. PIA n B) = P(f3) = 0 by Theorem l.2. Since PIA) and/or P(B) = 0, then 
P(A)P(B) = 0, and thus PIA n B) = 0 = P(A)P(B). Therefore, A and Bare 
independent. 

3. PIA n B) S PIA) and PIA n B) S P(B) by Theorem l.3, since (A n B) c A and 
(A n B) c B. If PIA) and/or P(B) = 0, then PIA n B) S O. PIA n B) ::: 0 by 
Axiom l.l. Then PIA n B) = 0 = P(A)P(B), and A and B are independent 
events. • 

The concept of independent events can be generalized to more than two 
events. The generalized statement utilizes product notation, which we review 
here. 
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Definition 1 .12 
Product notation 

Definition 1.13 
Independence of 

events (n-event case) 

n n aj = ala2' ··an 
i=l 

n aj = product of all aj terms for which j E ,. 

;e! 

Let AI, A2, ... , An be events in the sample space S. The events AI, A2, ... , An 
are independent iff 

p(nA;) = np(Aj ), 
;e! ;e! 

for all subsets, c {I, 2, ... , n} for which N(T) 2: 2. If the events AI, A2, ., ., An 
are not independent, they are said to be dependent events. 

Note that some authors refer to the independence concept defined in Def. 
1.13 as the joint or mutual or complete independence of the events AI, A2, ... , 
An, when n 2: 3, to emphasize that additional conditions are required be­
yond the condition given in Def. 1.11 applicable to pairs of events. We will 
refrain from using these additional adjectives and simply refer to the inde­
pendence of events, regardless of n. Furthermore, note that if the condition 
p(AjnA;) = P(Aj)P(A;) ofDef. 1.11 applies to all pairs of events in AI, A2, ... , An, 
the events are referred to as being pairwise independent whether or not they 
are independent in the sense of Def. 1.13. 

In the case of three events, independence requires that PIAl n A2) = 
P(AdP(A2),P(AlnA3) = P(AI!P(A3),P(A2nA3) = P(A2)P(A3),andP(AlnA2nA3) = 
PIAl )P(A2)P(A3). Note that if all three events have nonzero probability, then the 
reader can straightforwardly verify from the definition of conditional probabil­
ity that independence implies P(Ai I A;l = P(Ail Vi =P j, P(Ai I A; nAk) = P(Ai) V 
i =P j =P k, and P(Aj nAj I Ak) = P(Aj nAil Vi =P j =P k. It is not as straightforward 
to demonstrate that independence implies P(Aj I A; U Ak) = P(Ai ) for i =P j =P k, 
and so we prove it here. 

( ) P (Aj n (A; U Ak)) (b d fi .. ) 
P A j I Aj UAk = PIA; UAk) Y e mtlOn 

- p((AjnA;)u(AjnAk)) (d' 'b . 1 ) 
- PIA; U A k) Istn utlve aw 

P(Aj nAil + P(Aj nAk) - P(Aj nAj nAk) 
= P(A;UAk) 

(Theorem 1.5) 

P(Aj)P(A j ) + P(Ai)P(Ak) - P(Aj)P(A;)P(Ak) 
= 

P(A;uAk! 
(independence) 
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- P(Aj)[P(A;)+P(Ak)-P(A;)P(Ak )] (1 b ) 
- PIA; UAk) age ra 

P(Aj)P(A; UAk) = (Theorem 1.5 and independence) 
P(A;UAk) 

= P(Aj) • 

It is thus recognized that if events AI, A2, and Aa are independent in the 
sense of Def. 1.13, and if each of the events occurs with nonzero probability, 
then the probability of anyone of the events is unaffected by the occurrence 
of any of the remaining events and is also unaffected by the occurrence of the 
union or intersection of the remaining events. This interpretation extends in 
a straightforward way to cases involving four or more independent events, and 
the reader should attempt some of the possible extensions. 

The reader may wonder whether the numerous conditions (for n events, the 
number of conditions will be 2n - n - 1) cited in Def. 1.13 for independence of 

events are all necessary, i.e., wouldn't the one condition P ( nj=l A;) = n7=1 P(A;) 

suffice and imply all of the others? Unfortunately, the answer is no-all of the 
conditions are required. The following example illustrates the point. 

Example 1.17 The Venn diagram in Figure 1.2 summarizes the probabilities assigned to some 
of the events in the sample space S. Note that PIA n B n C) = .15 = (.5)(.6)(.5) = 
P(A)P(B)P(C). However, 

Figure 1-2 
Probability 

assignments in S. 

PIA n B) = .25 =I .3 = P(A)P(B), 

PIA n C) = .20 =1.25 = P(A)P(C), 

P(B n e) = AD =I .3 = P(B)P( e), 
and thus PIA n B n C) = P(A)P(B)P(C) does not imply the pairwise independence 
conditions. 0 

The reader should construct an example illustrating that pairwise indepen­
dence among A, B, and e does not imply PIA n B n e) = P(A)P(B)P(C). 

5 

.10 
c 
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1.9 Bayes's Rule 

Bayes's rule, discovered by the 17th-century English clergyman and mathe­
matician Thomas Bayes, provides an alternative representation of conditional 
probabilities. At first glance, the representation may appear somewhat convo­
luted in comparison to the representation of conditional probability given in 
Def. 1.10. However, the rule is well suited for providing conditional probabil­
ities in certain experimental situations, which we will identify following the 
formal derivation of the rule. 

Bayes's rule is actually a simple consequence of a result known as the the­
orem of total probability, which we state and prove next. 

Theorem 1.15 (Theorem of Total Probability) Let the events Bi , i E I, be a finite or countably 
infinite partition of the sample space, S, so that B; n Bk = 0 for j i- k, and 
UieIBi = S. Let P(Bi ) > 0 V i. Then PIA) = LieI PIA I BdP(Bi). 

Proof Since UieIBi = S, it follows that A = An (UieIBi ) = Uief(A n Bi ), where we 
have used the fact that the intersection operation is distributive over the union 
operation. Now note that (A n B;) n (A n Bk) = 0 for j i- k since the B/s are 
disjoint. But then by Axiom 1.3, PIA) = P(Uief(A n Bi)) = Lief PIA n BJ The 
result of the theorem follows applying the multiplication rule to each term, 
PIA n Bi ), in the sum. • 

Regarding the title of Theorem 1.15, note that the "total probability" of 
event A is represented as the sum of the portions of A's probability distributed 
over the events in the partition of A represented by the events A n Bi, i E I. We 
state Bayes's rule as a corollary to Theorem 1.15. 

Corollary 1.2 (Bayes's Rule) Let the events Bi, i E I, be a finite or countably infinite partition 
of the sample space, S, so that B; n Bk = 0 for j i- k and UjeIB j = S. Let P(Bi ) > 0 
ViE I. Then, provided PIA) i- 0, 

P(B; I A) = PIA I B;)P(B;) , V j E I. 
Lief PIA I Bi)P(Bi) 

Proof This follows directly the definition of the conditional probability P(B; I A) = 
PIA n Bd/P(A), after substituting for the denominator using Theorem 1.15 and 
rewriting the numerator using the multiplication rule. • 

Corollary 1.3 (Bayes's Rule (2-event case)) 

P(B I A) _ PIA I B)P(B) 
- PIA I B)P(B) + PIA I B)P(B) 

Proof This is a direct consequence of Corollary 1.2 when 1= {1,2}. • 
In the next two examples we provide illustrations of the types of experi­

mental situations for which Bayes's rule has useful applications. 
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Example 1.18 Explorations, Inc., is in the oil well-drilling business. Let B be the event that a 
well being drilled will produce oil, and let A be an event representing geological 
well-site characteristics that are conducive to discovering oil at a site. Suppose 
further that, from past experience, it is known that the (unconditional) proba­
bility of a successful strike when drilling for oil is .06. Also suppose it is known 
that when oil is discovered, the probability is .85 that the geological character­
istics are given by event A, whereas the probability is only .4 that geological 
characteristics represented by A are present when no oil is discovered. If event 
A occurs at a site, what is the probability of discovering oil at the site, i.e., what 
is P(B I A)? 
Answer: It is known that P(B) = .06, P(B) = .94, PIA I B) = .85, and PIA I B) = 
.40. Bayes's rule applies here, so that 

P(B A) = PIA I B)P(B) _ _ = (.85)(.06) - 12 
I PIA I B)P(B) + PIA I B)P(B) (.85)(.06) + (.40)(.94) -. . 

Note that the occurrence of event A increases considerably the probability of 
discovering oil at a particular site. 0 

Example 1.19 A blood test developed. by a pharmaceutical company for detecting a certain 
disease is 98 percent effective in detecting the disease given that the disease is, 
in fact, present in the individual being tested. The test yields a "false positive" 
result (meaning a person without the disease is incorrectly indicated as having 
the disease) for only one percent of the disease-free persons tested. 

If an individual is randomly chosen from the population and tested for the 
disease, and given that .1 percent of the population actually has the disease, 
what is the probability that the person tested actually has the disease if the test 
result is positive (i.e., the disease is indicated as being present by the test)? 
Answer: In this case, let A be the event that the test result is positive, and 
let B be the event that the individual actually has the disease. Then, from the 
preceding discussion concerning the characteristics of the test, it is known that 
PIA I B) = .98, P(B) = .001, and PIA I B) = .Ol. Then, an application of Bayes' 
rule yields 

P B A = PIA I B)P/B) _ _ = (.981/.001) 
/ I ) PIA I B)P{B) + PIA I B)PIB) (.98)(.001) + /.01)(.999) = .089. 

Thus, one has very little confidence that a positive test result implies that the 
disease is present. 0 

A common thread in the two examples, consistent with the statement of 
Bayes's rule itself, is that the sample space is partitioned into a collection of 
(disjoint) events /B i , i E I) that are of interest and whose nonzero probabilities 
are known. Furthermore, an event occurs whose various conditional probabil­
ities formed by conditioning on each of the events in the partition are known. 
Given this background information, Bayes's rule provides the means for reeval­
uating the probabilities of the various events in the partition of S, given the 
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information that event A occurs. The probabilities of the events in the parti­
tion are, in effect, "updated" in light of the new information provided by the 
occurrence of A. This interpretation of Bayes's rule has led to the use of the 
terms prior probabilities and posterior probabilities to refer to the P(Bjl's and 
P(Bj I A)'s, respectively. That is, P(Bi) is the probability of event Bj in the parti­
tion of S prior to the occurrence of event A, whereas P(Bj I A) is the probability 
of Bi posterior to, or after, event A occurs. 

Returning to the oil well-drilling example, note that each elementary event 
in the (implied) sample space is given by a pair of observations, one being 
whether or not the geological characteristics of the well site favor the discov­
ery of oil, and the other being whether or not oil is actually discovered at the 
well site. The partition of the sample space that is of interest to the oil well­
drilling company is the event "oil is discovered" versus the (complementary) 
event that "oil is not discovered" at the well site. The additional informa­
tion used to update the (prior) probabilities concerning oil discovery is whether 
the geological characteristics of the site favor the discovery of oil. Bayes's rule 
can be applied to generate posterior probabilities of oil discovery because the 
conditional probabilities of favorable well-site characteristics being observed, 
with and without the condition of oil being discovered, are known. The reader 
should provide a characterization of the sample space, partition of interest, and 
additional information used to update probabilities in the case of the drug test 
example. 
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1. Define an appropriate sample space for each of the 
experiments described below: 

a. At the close of business each day, the Acme De­
partment Store's accountant counts the number of 
customer transactions that were made in cash. On 
a particular day, there were 100 customer transac­
tions at the department store. The outcome of in­
terest is the number of cash transactions made. 

b. An Italian restaurant in the city of Spokane runs an 
ad in the city newspaper, The Spokesman Review, 
that contains a coupon that allows a customer to 
purchase two meals for the price of one for each 
newspaper coupon the customer has. The coupon 
is valid for 30 days after the ad is run. The outcome 
of interest is how many free meals the restaurant 
serves at the end of the 3D-day period. 

c. On a local 11 o'clock news broadcast for the town 
of College Station, the weather report includes the 
high and low temperatures, in Fahrenheit, for the 
preceding 24 hours. The outcome of interest is the 
pair of high and low temperatures on any given day. 

d. A local gasoline jobber supplies a number of the 
area's independent gas stations with unleaded gaso­
line. The outcome of interest is the quantity of 
gasoline demanded from the jobber in any given 
week. 

e. The mutual funds management company of Dewey, 
Cheatum, and Howe posts the daily closing net as­
set value of shares in its mutual fund on a reader­
board outside of its headquarters. The outcome of 
interest is the posted net asset value of the shares 
at the end of a given day. 

£. The office manager of a business specializing in 
copying services is counting the number of copies 
that a given copying machine produces before suf­
fering a paper jam. The outcome of interest is the 
number of copies made before the machine suffers 
a paper jam. 

2. For each of the sample spaces you have defined 
above, indicate whether the sample space is finite, 
countably infinite, or uncountably infinite. Justify your 
answers. 

3. The sales team of a large car dealership in Seattle 
consists of the following individuals: 
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Sales 
Name Experience Age Education Married 

Tom 4 years 34 High school Yes 
Karen 12 years 31 < High school No 
Frank 21 years 56 College graduate Yes 
Eric 9 years 42 High school Yes 
Wendy 3 years 24 College graduate No 
Brenda 7 years 29 High school No 
Scott 15 years 44 College graduate Yes 
Richard 2 years 25 < High school No 

A customer visiting the dealership randomly chooses 
one of the salespersons to discuss the purchase of a new 
vehicle. Define the set and assign the probability asso-
ciated with each of the following events: 

a. A woman is chosen. 
b. A man less than 40 years of age is chosen. 
c. An individual with at least 10 years of sales experi­

ence is chosen. 
d. A married college graduate is chosen. 
e. A married female with a high school education and 

at least five years of sales experience is chosen. 
f. An individual with at least 2 years' experience and 

at least 21 years of age is chosen. 

4. Assign probabilities to events a to f in the preced­
ing question, but include the condition "given that the 
individual chosen ~ 30 years old." 

5. The manager of the cost accounting department of 
a large computer manufacturing firm always tells three 
jokes during her monthly report to the board of directors 
in an attempt to inject a bit of levity into an otherwise 
sobering presentation. She has an inventory of a dozen 
different jokes from which she chooses three to present 
for any given monthly report. 

a. If she chooses the 3 jokes randomly from the inven­
tory of 12 each month, what is the probability that, 
in any given month, at least 2 of the 3 jokes will be 
different from the jokes she told the month before? 

b. If she chooses the 3 jokes randomly from the inven­
tory of 12 each month, what is the probability that, 
in any given month, all 3 jokes will be different 
from the 3 she told the month before? 

6. Schneider's Plumbing and Heating, located in 
Fargo, North Dakota, has 300 accounts receivable dis­
tributed as follows: 
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1-30 days 
Current past due 

140 80 

31-60 days 
past due 

40 

61-90 days 
past due 

25 

Sent for 
collection 

15 

An auditor is coming to inspect Schneider's financial 
records. Included in the auditor's analysis is a randomly 
chosen sample of four accounts from the company's col­
lection of accounts receivable. 

a. What is the probability that all of the accounts cho­
sen by the auditor will be current accounts? 

b. What is the probability that all of the accounts cho­
sen by the auditor will be less than or equal to 60 
days past due? 

c. What is the probability that all of the accounts cho­
sen by the auditor will be more than 60 days past 
due? 

d. What is the probability that 2 of the accounts will 
be current, and 2 will be 1 to 30 days past due? 

7. A computer manufacturing firm produces three 
product lines: (1) desktop computer systems, (2) note­
book computers, and (3) subnotebook computers. The 
sales department has convened its monthly meeting in 
which the four staff members of the department pro­
vide the department manager with their indications of 
whether sales will increase for each of the product lines 
in the coming month. Let A j represent the event that 
sales for product line i (= 1, 2, or 3) will increase in 
the coming month. The manager will consider the in­
formation of a given staff member to be usable if that 
information is internally consistent, where internally 
consistent in this context means consistent with the 
axioms and theorems of probability. Which of the staff 
members have provided the manager with usable infor­
mation? Be sure to provide a convincing reason if you 
decide that a staff member's information needs to be 
discarded. 

Staff 
Member Tom Dick Harry Sally 

P(Al) .5 .3 .3 .2 
P(Al) .3 .2 .6 .3 
P(A3l .7 .8 -.4 .5 
P(Al nAl) .9 .4 .4 .2 
P(Al nA3) .6 .15 .2 .3 
P(A2 nA3) .15 .1 .1 .4 
P(Al n A2 n A3) .1 1.5 .05 .1 

8. A large electronics firm is attempting to hire six 
new electrical engineers. It has been the firm's experi­
ence that 35 percent of the college graduates who are 
offered positions with the firm have turned down the 
offer of employment. After interviewing candidates for 
the positions, the firm offers employment contracts to 
seven college graduates. What is the probability that the 
firm will receive acceptances of employment from one 
too many engineers? You may assume that the decisions 
of the college graduates are independent. 

9. A computer manufacturing firm accepts a ship­
ment of CPU chips from its suppliers only if an inspec­
tion of 5 percent of the chips, randomly chosen from 
the shipment, does not contain any defective chips. If 
a shipment contains five defective chips and there are 
1,000 chips in the shipment, what is the probability that 
the shipment will be accepted? 

10. The probability that a stereo shop sells at least one 
amplifier on a given day is .75; the probability of selling 
at least one CD player is .6; and the probability of selling 
at least one amplifier and one CD player is .5. 

a. What is the probability that the stereo shop will sell 
at least one of the two products on a given day? 

b. What is the probability that the stereo shop will sell 
at least one CD player, given that the shop sells at 
least one amplifier? 

c. What is the probability that the stereo shop will sell 
at least one amplifier, given that the shop sells at 
least one CD player? 

d. What is the probability that the shop sells neither 
of the products on a given day? 

11. Prove that the set function defined by 

p(AnB) 
P(A I B) = P(B) for P(B) =I 0 

is a valid probability set function in the probability 
space {B, 18, Pl· I Bll, where 18 is the event space for 
the sample space B. 

12. A large midwestern bank has devised a math apti­
tude test that it claims provides valuable input into the 
hiring decision for bank tellers. The bank's research in­
dicates that 60 percent of all tellers hired by midwestern 
banks are classified as performing satisfactorily in the 
position at their initial six-month performance review, 
while the rest are rated as unsatisfactory. of the tellers 
whose performance is rated as satisfactory, 90 percent 
had passed the math aptitude test. Of the tellers who 
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were rated as unsatisfactory, only 20 percent had passed 
the math aptitude test. 

a. What is the probability that a teller would be rated 
as satisfactory at her six-month performance re­
view given that she passed the math aptitude test? 

b. What is the probability that a teller would be rated 
as satisfactory at her six-month performance re­
view given that she did not pass the math aptitude 
test? 

c. Does the test seem to be an effective screening de­
vice to use in hiring tellers for the bank? Why or 
why not? 

13. A large-scale firm specializing in providing tempo­
rary secretarial services to corporate clients has com­
pleted a study of the main reason why secretaries be­
come dissatisfied with their work assignments and how 
likely it is that a dissatisfied secretary will quit her job. 
It was found that 20 percent of all secretaries were dis­
satisfied with some aspect of their job assignment. Of 
all dissatisfied secretaries, it was found that 55 percent 
were dissatisfied mainly because they disliked their su­
pervisor; 30 percent were dissatisfied mainly because 
they felt they were not paid enough; 10 percent were dis­
satisfied mainly because they disliked the type of work; 
and 5 percent were dissatisfied mainly because they had 
conflicts with other employees. The probabilities that 
the dissatisfied secretaries would quit their jobs were 
respectively .20, .30, .90, and .05. 

a. Given that a dissatisfied secretary quits her job, 
what is the most probable main reason why she 
was dissatisfied with her job assignment? 

b. If a secretary were chosen at random, what is the 
probability that she would be dissatisfied, the main 
reason being her level of pay? 

c. Given that a secretary is dissatisfied with her job 
assignment, what is the probability that she will 
quit? 

14. A clerk is maintaining three different files contain­
ing job applications submitted for three different posi­
tions currently open in the firm at which the clerk is em­
ployed. One file contains two completed applications, 
one file contains one complete and one incomplete ap­
plication, and the third file contains two incomplete 
applications. The clerk wishes to examine the files and 
chooses one of the files at random. She then chooses at 
random one of the applications contained in the cho!'en 
file. If the application chosen is complete, what is the 
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probability that the remaining application in the file is 
also complete? 

15. A company manages three different mutual funds. 
Let A j be the event that the ith mutual fund increases 
in value on a given day. Probabilities of various events 
relating to the mutual funds are given as follows: 

P(Ad = .55, P(A2 ) = .60, P(A3) = .45, 

P(A I UA2 ) = .82, P(A I UA3) = .7525, 

P(A2 UA3) = .78, P(A2 nA3 I Ad = .20. 

a. Are events A I, A 2 , and A3 pairwise independent? 

b. Are events AI, A 2 , and A3 independent? 

c. What is the probability that funds 1 and 2 both in­
crease in value, given thatfund3 increases in value? 
Is this different from the unconditional probability 
that funds 1 and 2 both increase in value? 

d. What is the probability that at least one mutual 
fund will increase in value on a given day? 

16. Answer the following questions regarding the va­
lidity of probability assignments. If you answer false, 
explain why the statement is false. 

a. If P(A) = .2, P(B) = .3, and AnB = ¢, then P(AUB) = 
.06. True or false? 

b. If A n B = ¢ and P(B) = .2, then P(A I B) = O. True 
or false? 

c. If P(B) = .05, P(A I B) = .80, and P(A I il) = .5, then 
P(B I A) = .0777 (to four digits of accuracy). True or 
false? 

d. If P(A) = .8 and P(B) = .7, then P(A n B) ~ .5. True 
or false? 

e. It is possible thatP(A) = .7, P(B) = .4, andAnB = 0. 
True or false? 

17. The ZAP Electric Co. manufactures electric circuit 
breakers. The circuit breakers are produced on two dif­
ferent assembly lines in the company's Spokane plant. 
Assembly line I is highly automated and produces 85 
percent of the plant's output. Assembly line II uses older 
technology that is more labor intensive, producing 15 
percent of the plant's output. The probability that a cir­
cuit breaker manufactured on assembly line I is defec­
tive is .04, while the corresponding probability for as­
sembly line IT is .01. 

As part of its quality-control program, ZAP uses a 
testing device for determining whether a circuit breaker 
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is faulty. Some important characteristics of the testing 
device are as follows: 

PIA I B) = PIA I B) = .985, 

where A is the event that the testing device indicates 
that a circuit breaker is faulty and B is the event that 
the circuit breaker really is faulty. 

a. If a circuit breaker is randomly chosen from a 
bin containing a day's production and the circuit 
breaker is actually defective, what is the probabil­
ity that it was produced on assembly line II? 

b. What is the probability that the testing device indi­
cates that a circuit breaker is not faulty, given that 
the circuit breaker really is faulty? 

c. If the testing device is applied to circuit breakers 
produced on assembly line I, what is the probability 
that a circuit breaker really is faulty, given that the 
testing device indicates that the circuit breaker is 
faulty? Would you say that this is a good testing 
device? 

18. The ACME Computer Co. operates three plants 
that manufacture notebook computers. The plants are 
located in Seattle, Singapore, and New York. The plants 
produce 20, 30, and SO percent of the company's out­
put, respectively. ACME attaches the labels "Seattle", 
"SING", or "NY" to the underside of the computer in 
order to identify the plant in which a notebook com­
puter was manufactured. The computers carry a two­
year warranty, and if a customer requires repairs during 
the warranty period, he or she must send the computer 
back to the plant in which the computer was manufac­
tured. There is also a stamp on the motherboard inside 
the computer which technicians at a plant can use as 
an additional way of identifying which plant manufac­
tured the computer. The consumer is unable to examine 
this inside stamp, because if the consumer opens up the 
computer housing to look inside, a seal is broken, which 
voids the warranty. 

Regarding quality control at the plants, the war­
ranty-period failure rates of computers manufactured in 
the three plants are known to be .01, .05, and .02 for the 
Seattle, Singapore, and New York plants, respectively. 
You have bought an ACME computer, and it has failed 
during the warranty period. You need to send the com­
puter back to the plant for repairs, but the label on the 
underside of the computer has been lost and so you don't 
know which plant manufactured your computer. 

a. Which plant is the most probable plant to have 
manufactured your computer? 

b. Which plant is the least probable plant to have man­
ufactured your computer? 

c. What is the probability that an ACME notebook 
computer will fail during the warranty period? 

d. Given that an ACME computer does not fail during 
the warranty period, what is the probability that the 
computer was manufactured in New York? 

19. The following diagram indicates how probabilities 
have been assigned to various subsets of the sample 
spac<! s: 

a. Are the three events A, B, and C pairwise­
independent events? 

b. Are the three events A, B, and C independent 
events? 

c. What is the value of PIA n B)? What is the value of 
pl!AnB) I C)? 

d. Suppose event D is such that P(D) = .05 and D n 
(A U B U C) = 0. Are events D and A independent? 
Are events D and (A U B U C) independent? 

e. What is the probability of event C, given (A n B)? 

20. A large sack contains 1,000 flower seeds consisting 
of 300 carnations and 700 impatiens. Of the 300 carna­
tion seeds, 200 will produce red flowers and 100 will 
produce white flowers. Of the 700 impatiens seeds, 400 
will produce red flowers and 300 will produce white 
flowers. 

a. If you randomly choose five seeds in succession 
(without replacing any seeds that have been cho­
sen), what is the probability that these seeds will 
produce two impatiens with red flowers, two car­
nations with red flowers, and one carnation with 
white flowers? 
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b. If you randomly choose four seeds in succession 
(without replacing any seeds that have been cho­
senJ, what is the probability that these seeds will 
produce red- and white-flowered impatiens and red­
and white-flowered carnations? 

c. Given that four randomly chosen seeds all produce 
carnations, what is the probability that three are 
red flowered and one is white flowered? 

d. Is the event of randomly choosing a carnation seed 
on the first draw independent of choosing an impa­
tiens seed on the second draw? 

21. For each case below, determine whether or not the 
real-valued set function P(AJ is in fact a probability set 
function: 

a. sample space S = {1,2,3,4,5,6, 7,8L 
event space Y = (A : A c Sl, 
set function P{AJ = LxeA(x/36J for A E Y. 

b. sample space S = [O,ooJ, 
event space Y = {A : A is an interval subset of 
S, or any set formed by unions, intersections, or 
complements of these interval subsetsL 
set function PIA) = JxeA e-Xdx for A E Y. 

c. sample space S = (x : x is a positive integerL 
event space Y = {A : A c SL 
set function P{AJ = LxeA(x2/lOsJ for A E 1. 

d. sample space S = (0, 1 J, 
event space Y = {A : A is an interval subset of 
S, or any set formed by unions, intersections, or 
complements of these interval subsets L 
set function P(AJ = JXEA 12x(1 - xJ2dx for A E Y. 

22. The Smith Floor Wax Company manufactures and 
sells industrial-strength floor wax in the wholesale mar­
ket for home care products. The factory produces 10,000 
gallons of floor wax daily and currently has an inventory 
of 5,000 gallons of floor wax in its warehouse. If sales 
of floor wax exceed production, the company meets the 
excess demand by using inventory; if sales are less than 
production, the company adds this excess production to 
inventory. The company economist provides you with 
the following information concerning probabilities of 
daily sales events, where events are measured in gallons 
of wax sold. 

A = [0, 5,0001, P(AJ = .25 

B = (5, ODD, 10,0001, P(BJ = .65 

C = [2,500, 7,5001, P(CJ = .35 

D = (5,000, 7,5001, P(DJ = .20 
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a. What is the probability that inventory will have to 
be used to satisfy sales on a given day? 

b. What is the probability that fewer than 2,500 gal­
lons of wax will be sold on a given day? 

c. What is the probability of the event E = [0, 2,500Ju 
(7, SOD, 1O,0001? 

23. A box contains four different computer disks, la­
beled I, 2, 3, and 4. Two disks are selected at random 
from the box "with replacement," meaning that after 
the first selection is made, the selected disk is returned 
to the box before the second selection is made. /I At ran­
dom" means that all disks in the box have an equal 
chance of being selected. 

a. Define the sample space for this experiment. 

b. Is the event of choosing disk 1 or 3 on the first se­
lection independent of choosing disk 1 or 2 on the 
second selection? Why or why not? 

c. Is the event of choosing disk 1 on the first selec­
tion independent of choosing disk 1 on the second 
selection? Why or why not? 

d. Is the event of choosing disk 1 on both the first and 
second selections independent of the event that nei­
ther disk 3 nor 4 is chosen in the selection process? 

24. The AJAX Microchip Company produces memory 
chips for personal computers. The company's entire pro­
duction is generated from two assembly lines, labeled 
"I" and "II." Assembly line I uses more rapid assembly 
techniques and produces 80 percent of the company's 
output, while assembly line II produces 20 percent of 
the output. The probability that a memory chip pro­
duced on assembly line I is defective is .05, while the 
corresponding probability for assembly line II is .01. 

A memory chip is chosen at random from a bin con­
taining a day's production. Given that the chip is found 
to be defective, what is the probability that the chip 
was made on assembly line II? (Hint: Can you put this 
problem in a form for which Bayes's rule would be ap­
plicable?J 

25. The management of the AJAX Microchip Company 
(mentioned in Problem 24J is interested in increasing 
quality control at the plant and is considering the pur­
chase of a testing device that can determine when a 
memory chip is faulty. In particular, the specifications 
on the device are as follows: 

PIA I BJ = PIA I BJ = .98, 
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where A is the event that the testing device indicates 
that a memory chip is faulty, and B is the event that the 
memory chip really is faulty. 

a. What is the probability that the testing device in­
dicates that a memory chip is not faulty, given that 
the memory chip really is faulty? 

b. If the testing device is applied to the memory 
chips produced by AJAX's assembly line I, what is 
P(B I A), i.e., the probability that a chip really is 
faulty, given that the testing device indicates the 
chip is faulty? 

c. Suppose AJAX management wants P(B I A) to be 
.95. What is the value of r = PIA I B) = PIA I B) 
that will ensure this testing accuracy if the test is 
applied to the chips produced on assembly line H 

26. Let S = [0,5) be a sample space containing all pos­
sible values of the daily quantity demanded of elec­
tric power for a large midwestern city in the sum­
mer months. The units of measurement are millions 
of megawatts, and the capacity of the power grid is 5 
million megawatts. 

Answer the following questions concerning proba­
bility assignments to events in the sample space, S, re­
lating to the daily demand for electric power. Treat the 
information provided in the questions as cumulative. 
Justify your answers. 

a. Given that A = [0,4), B = [3,5), PIA) = .512 
and P(B) = .784, what is the probability that the 
power demand will be no greater than 4 million 
megawatts and no less than 3 million megawatts, 
i.e., what is the probability of An B? 

b. What is the probability of event C = [O,3)? 

c. Can P(D) = .6, given that D = [0,2.5)? 

d. Given that P([O, 2)) = .064, what is the probability 
of event E = (2, 4)? 

27. SUPERCOMPj a retail computer store, sells per­
sonal computers and printers. The number of comput­
ers and printers sold on any given day varies, with the 
probabilities of the various possible sales outcomes be­
ing given by the following table: 

Number of Computers Sold 
0 1 2 3 4 

0 .03 .03 .02 .02 
.01 r b bT' Number 1 .0,2 .05 .0& .02 .01 ro a I Itles 

of printers 2 .01 .02 .10 .05 .05 of 
sold 3 .01 .01 .05 .10 .10 elementary 

4 .01 .01 .01 .05 .15 events 

a. Define an appropriate sample space for the experi­
ment of observing how many computers and print­
ers are sold on any given day. 

b. Can the information provided in the table be used to 
define a probability set function for assigning prob­
abilities to all events in the sample space? Explain 
(briefly, but clearly). 

c. What is the probability that more than two com­
puters will be sold on any given day? What is the 
probability that more than two printers will be sold 
on any given day? In each case, define the set of out­
comes in S that corresponds to the stated events. 

d. What is the probability of selling more than two 
printers, given that more than two computers are 
sold? Show your calculation. 

e. What is the probability of selling more than two 
printers and more than two computers? Show your 
calculation. 

f. What is the probability that SUPERCOMP has no 
sales on a given day? Given that SUPERCOMP sells 
no computers, what is the probability that it sells 
no printers on a given day? 
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The outcomes of many types of experiments are inher­
ently in the form of real numbers. For example, measuring the height and weight 
of individuals, observing the market price and quantity demanded of a com­
modity, measuring the yield of a new type of wheat, or measuring the miles 
per gallon achievable by a new compact automobile all result in real-valued 
outcomes. The sample spaces associated with these types of experiments are 
subsets of the real line or, at least, subsets of n-dimensional real space, RD. 

There are also experiments whose outcomes are not inherently numbers 
and whose sample space is not inherently a subset of a real space. For example, 
observing whether a tossed coin results in heads or tails, observing whether 
an item selected from an assembly line is defective or nondefective, observ­
ing the type of weeds growing in a field of wheat, and observing which engine 
components caused an engine failure in an automobile are not experiments 
characterized by real-valued outcomes. It will prove to be both convenient and 
useful to convert these sample spaces into real-valued sample spaces by asso­
ciating a real number to each outcome in the original sample space. Such a 
procedure might be looked upon as coding the outcomes of an experiment with 
real numbers. 
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Furthermore, the outcomes of an experiment may not be of direct interest 
in a given problem setting; instead, images of a real-valued function of the 
outcomes may be of prime importance. For example, in a game of craps, it 
is not the outcome of each die that is of primary importance, but rather the 
sum of the dots facing up determines whether a player has won or lost. As 
another example, if a firm is interested in calculating the profit associated with 
a given operation, it is the price of the product multiplied by the quantity sold, 
which gives the total revenue, that will be of primary importance in the profit 
calculation, and not price and quantity, per se. 

All of the previous situations involve the concept of a random variable, 
which can be used to characterize the outcomes of an experiment as a set of 
real numbers. We now develop the concept of a random variable. 

2.2 Univariate Random Variables and Density Functions 

Definition 2.1 
Univariate 

random variable 

Figure 2-1 
Random variable X. 

We begin with a definition of the term random variable appropriate for the 
univariate, or one-variable, case. 

Let {S, I, P} be a probability space. If X: S -+ R (or simply, X) is a real-valued 
function having as its domain the elements of S, then X : S -+ R (or X) is 
called a random variable. 

A pictorial illustration of the random variable concept is given in Figure 2.1. 
The reader might at least find it curious, and perhaps even consider it a 

misnomer, for the expression "random variable" to be used as a label for the 
concept just given. The expression random-valued function would seem more 
appropriate since it is, after all, a real-valued function that is at the heart of the 

Sample Space X:S-+ R Real Line 

s 
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concept presented in the definition. Nonetheless, usage of "random variable" 
has become standard terminology, and we will use it also. 

Henceforth, the symbol X(w) will be used to represent the image of WE S 
generated by the random variable X : S -+ R. We will use the lowercase x to 
indicate a value of the function X, and x can also be interpreted as a short­
hand notation for an image value x = X(w). As indicated in the definition, 
X will be used as an abbreviated notation for representing a random variable 
whenever it is both convenient and appropriate. The letter X that we use here 
is arbitrary, and any other symbol could be used to denote a random variable. 
For the most part, we will use letters in the latter part of the alphabet for 
representing random variables. l Letters at the beginning of the alphabet will be 
used to denote constants, and so the expression x = a will mean that the value, 
x, of the random variable, X, equals the constant a. Similarly, x E A will mean 
that the value of X is an element of the set A.2 

If the outcomes of an experiment are real numbers to begin with, they are 
directly interpretable as values of a random variable since we can always rep­
resent the real-valued outcomes W E S as images of an identity function, e.g., 
X(w) = w. If the outcomes of an experiment are not initially in the form of 
real numbers, a random variable can be defined that associates a real number 
with each outcome, as X(w) = x, i.e., the random variable effectively codes 
the outcomes of a sample space with real numbers. Thus, through the use of 
the random-variable concept, all experiments with univariate outcomes can be 
interpreted as having sample spaces consisting of real-valued elements. In par­
ticular, the range of the random variable, R(X), represents a real-valued sample 
space for the experiment. In terms of set notation, the range of the random 
variable, X, can be defined as R(X) = (x: x = X(w), w E S}. When we refer to 
the outcome of the random variable, we mean the particular image element in 
R(X) that occurs as a result of observing the outcome of a given experiment, 
i.e., if the outcome of an experiment is w E S, then the outcome of the random 
variable is x = X(w). 

Probability Space Induced by a Random Variable 

Now that we have defined a real-valued sample space for a given experiment 
using the random-variable concept, we seek to embed the sample space within 
a probability space that can be used for assigning probabilities to events involv­
ing random-variable outcomes. To accomplish this, we must establish how 
probabilities are to be assigned to subsets of the real-valued sample space R(X), 
i.e., we must define an appropriate probability set function. We also need to 

1 Teaching suggestion: When lecturing in statistics and econometrics classes, I have found it useful to underscore with a tilde, -, 
the capital letter used to represent a random variable. This provides an unmistakable distinction between the function and a value 
of the function when writing expressions on the blackboard. Thus, X and K will mean precisely the same thing, with the tilde being 
used for emphasis to avoid misinterpreting handwritten capital letters as lowercase letters, and vice versa. 

2Note that X = a and X E A is alternative shorthand notation that is often used to represent that the value of X is equal to a or is 
in the set A. Our notation establishes a distinction between the function, X, and a value of the function, x. 
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Figure 2-2 
Subset of range elements, 
A, and associated domain 

elements, 8, of X. 

identify the collection of subsets of R!X) that will be assigned probability, i.e., 
define the event space or domain of the probability set function. 

We begin with knowledge of the probability space, {S, I, P}, so we are 
equipped to assign probabilities to events in S. What is the probability that 
an outcome of X resides in the set A c R!X)? It stands to reason that if an 
event in S can be found, say B, that occurs iff the event A C R(X) occurs, then 
the two events must have the same probability of occurring, and we can state 
that Px!A) == P(B), where Px!') denotes the probability set function for assign­
ing probability to events for outcomes of X. Two events that are associated 
with different probability spaces but that occur only simultaneously are called 
equivalent events. Such an event B can be defined as B = {w: X!w) E A, w E S}, 
which is the set of inverse images of the elements in A based on the function 
X. By definition, WEB "* X E A, and thus A and B are equivalent events (see 
Figure 2.2). We then have the following representation of probability assign­
ments to events involving random-variable outcomes: 

Px!A) = P(B) for B = {w: X(w) E A, W E S}. 

Thus, probabilities assigned to events in S are transferred to events in R!X) 
through the functional relationship x = X(wJ, which relates outcomes w in S 
and outcomes x in R!X). 

What should the domain of Px!') be, i.e., what is the event space for random­
variable outcomes? It is clear from the foregoing discussion that to be able to 
assign probabilities to a set A c R!X) it must be the case that its associated set 
of inverse images in S, B = {w: X(w) E A, w E S}, is an event in S, i.e., it must be 
the case that BEl. If not, a problem exists in that there is no basis for assigning 
probability to either set B or A from knowledge of the probability space {S, I, P} 
since B would not be in the domain of P!·). No difficulty will arise if S is a finite 
or countably infinite sample space, since then the event space I equals the 
collection of all subsets of S, and whatever subset B c S is associated with 
the subset A c R!X), B will be an event in S. Thus, any real-valued function 
defined on a discrete sample space will generate a real-valued sample space for 
which all subsets can be assigned probability. Henceforth, the event space, Y x, 
for outcomes of random variables defined on finite or countably infinite sample 
spaces is defined to be the set of all subsets of R!X). 

In order to avoid the problem that occurs when S is uncountably infinite, 
one simply restricts the types of real-valued functions that are used to define 
random variables to those for which the problem will not occur. To this effect, 

A 
--+[--}---

B={ w:X{ w)e A, we S} Sample Space 

s 
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a proviso is generally added, either explicitly or implicitly, to the definition 
of a random variable X requiring the real-valued function defined on S to be 
such that for every Borel set, A, contained in R(X) (recall Def. 1.9), the set 
B = {w: X(w) E A, W E S} is an event in S, Le., BEY. Then, since every 
Borel set A c R(X) would be associated with an event B c S, every Borel set 
could be assigned a probability as Px(A) = P(B). Since the collection of Borel 
sets includes all intervals in R(X) (and thus all points in R(X)), as well as all 
other sets that can be formed from the intervals by a countable number of 
union, intersection, and/or complement operations, the collection of Borel sets 
defines an event space sufficiently large for all practical purposes. Furthermore, 
we know from the discussion in Section 1.6 that an event space consisting of 
the Borel sets does not cause inherent conflicts with the probability axioms, 
and we will also see that such an event space facilitates the use of integrals for 
defining probabilities of events when R(X) is uncountable. 

In practice, it requires a great deal of ingenuity to define a random variable 
for which probability cannot be associated with each of the Borel sets in R(X), 
and the types of functions that naturally arise when defining random variables 
in applications will generally satisfy the aforementioned proviso. Henceforth, 
we will assume that the event space, Y x, for random-variable outcomes consists 
of all Borel sets in R(X) if R(X) is uncountable. We add that for all practical 
purposes, the reader need not unduly worry about the latter restriction to Borel 
sets, since any subset of an uncountable R(X) that is of practical interest will 
be a Borel set. 

In summary, a random variable induces an alternative probability space for 
the experiment. The induced probability space takes the form {R(X), Yx,Px}' 
where the range of the random variable R(X) is the real-valued sample space, 
Yx is the event space for random-variable outcomes, and Px is a probability set 
function defined on the events in Y x. 

Probability Space 

{S,I, PO} 

Random Variable 
X:S-+R 

x = X(w) 

Induced Probability Space 

I R(X) = (x: x = X(w), W E S} I 
IX = (A: A is an event in R(X)} 

Px(A) = P(B), B = (w: X(w) E A, W E S}, VA E IX 

Example 2.1 Let S = {I, 2, 3, ... , 1O} represent the potential numbers of cars that a car sales­
person sells in a given week, let the event space Y be the set of all subsets 
of S, and let the probability set function be defined as P(B) = (1/55) LWEB W 

for BEY. Suppose the salesperson's weekly pay consists of a base salary of 
$100/week plus a $100 commission for each car sold. We can represent the 
salesperson's weekly pay by the random variable X(w) = 100 + 100w, for W E S. 
The induced probability space {R(X), Y x , Px } is then characterized by R(X) = 
{200,300,400, ... ,I,100}, Y x = {A: A c R(Xll, andPx(A) = (1/55)LwEBw 
for B = {w: (100 + 100w) E A, W E S} and A E Yx . Then, for example, the 
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event that the salesperson makes:::: $300/week, A = {200,300}, has probability 
Px(A) = (1/55) LWe{l,2) w = (3/55). 0 

A major advantage in dealing with only real-valued sample spaces is that all 
of the mathematical tools developed for the real number system are available 
when analyzing the sample spaces. In practice, once the induced probability 
space has been identified; the underlying probability space {S, I, P} is generally 
ignored for purposes of defining random-variable events and their probabili­
ties. In fact, we will most often choose to deal with the induced probability 
space {R(X), lx, Px} directly at the outset of an experiment, paying little atten­
tion to the underlying definition of the function having the range R(X) or to 
the original probability space {S, I, Pl. However, we will sometimes return to 
the relationship between {S, I, P} and (R(X), lx, Px } to facilitate the proofs of 
certain propositions relating to random-variable properties. 

Note for future reference that a real-valued function of a random variable is, 
itself, a random variable. This follows by definition, since a real-valued function 
of a random variable, say Y defined by y = Y(X(w)) for w E S, is a function of 
a function (Le., a composition of functions) of the elements in a sample space 
S, which is then indirectly also a real-valued function of the elements in the 
sample space S (recall Def. 2.1). One might refer to such a random variable as a 
composite random variable. 

Discrete Random Variables and Probability Density Functions 

In practice, it is useful to have a representation of the probability set func­
tion, Px , that is in the form of a well-defined algebraic formula and that does 
not require constant reference either to events in S or to the probability set 
function defined on the events in S. A conceptually straightforward way of rep­
resenting Px is available when the real-valued sample space R(X) contains, at 
most, a countable number of elements. In this case, any subset of R(X) can be 
represented as the union of the specific elements comprising the subset, Le., 
if A c R(X), then A = UxeA{x}. Since the elementary events in A are clearly 
disjoint, we know from Axiom 1.3 that Px(A) = LxeA Px({x}). It follows that 
once we know the probability of every elementary event in R(X), we can assign 
probability to any other event in R(X) by summing the probabilities of the el­
ementary events contained in the event. This suggests that we define a point 
function f: R(X) ~ R as fIx) = probability of x = Px({x}) V x E R(X). Once f 
is defined, then Px can be defined for all events as Px(A) = LxeA fIx). Further­
more, knowledge of fIx) eliminates the need for any further reference to the 
probability space {S, I, P} for assigning probabilities to events in R(X). 

In the following example we illustrate the specification of the point func­
tion, f. 

Example 2.2 Examine the experiment of rolling a pair of dice and observing the number of 
dots facing up on each die. Assume the dice are fair. Letting i and j represent 
the number of dots facing up on each die, respectively, the sample space for 
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the experiment is S = {(i, j): i and j E {I, 2,3,4, 5, 6)}. Now define the random 
variable x = X((i, j)) = i + j, for (i, j) E S. Then the following correspondence can 
be set up between outcomes of X, events in S, and the probability of outcomes 
of X and events in S, where w = (i, j): 

X(w) = x Bx = Iw: X(w) = x, w E 5} ((x) = P(Bx) 

2 l(l,l}} 1/36 
3 1(1,2), (2, 1)} 2/36 
4 1(1,3), (2, 2), (3, 1)} 3/36 
5 1(1,4), (2, 3), (3, 2), (4, 1)} 4/36 
6 {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)} 5/36 

R(X) 7 {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} 6/36 
8 1(2,6), (3, 5), (4, 4), (5, 3), (6, 2)} 5/36 
9 1(3,6), (4, 5), (5, 4), (6, 3)} 4/36 

10 {(4, 6), (5, 5), (6, 4)} 3/36 
11 1(5,6),(6,5)} 2/36 
12 {(6,6)} 1/36 

The range of the random variable is R(X) = {2,3, ... , 12}, which represents 
the collection of images of the points (i, j) E S generated by the function x = 
X(Ii, j)) = i + j. Probabilities of the various outcomes of X are given by fIx) = 
P(Bx), where Bx is the collection of inverse images of x. 

If we desired the probability of the event that x E A = {7, II}, then Px(A) = 
LXEA fIx) = f(7) + fIll) = 8/36 (which, incidentally, is the probability of win­
ning a game of craps on the first roll of the dice). If A = {2}, the singleton set 
representing "snake eyes," we find that Px(A) = I:xEA f(x) = f(2) = 1/36. 0 

In examining the outcomes of X and their respective probabilities in Ex. 2.2, 
it is recognized that a compact algebraic specification can be suggested for fIx), 
namely3 

6 -Ix -71 
fIx) = 36 I(2,3, ... ,12}/X). 

It is generally desirable to express the relationship between domain and image 
elements of a function in a compact algebraic formula whenever possible, as 
opposed to expressing the relationship in tabular form as in Ex. 2.2. This is es­
pecially true if the number of elements in R(X) is large. Of course, if the number 
of elements in the domain is infinite, the relationship cannot be represented in 
tabular form and must be expressed algebraically. The reader is asked to define 
an appropriate point function f for representing probabilities of the elementary 
events in the sample space R(X) of Ex. 2.1. 

3Notice that the algebraic specification faithfully represents the positive values of fIx) in the preceding table of values and defines 
fIx) to equal 0 V x ¢ (2,3, ... , 121. Thus, the domain of f is the entire real line. The reason for extending the domain of f from R(X) 
to R will be discussed shortly. Note that assignments of probabilities to events as Px(A) = LxeA fIx) are unaffected by this domain 
extension. 
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We emphasize that if the outcomes of the random variable X are the out­
comes of interest in a given experimental situation, then given that a probabil­
ity set function, Px(A) = LxeA I(x), has been defined on the events in R(X), the 
original probability space [S, I, P} is no longer needed for defining probabilities 
of events in R(X). Note that in Ex. 2.2, given I(x), the probability set function 
Px(A) = LxeA I(x) can be used to define probabilities for all events A c R(X) 
without reference to S or P(Bx), Bx c S. 

The next example illustrates a case where an experiment is analyzed exclu­
sively in terms of the probability space relating to random-variable outcomes. 

Example 2.3 The Bippo Lighter Co. manufactures a budget-priced cigarette lighter that has 
a .90 probability of lighting on any given attempt to use the lighter. The proba­
bility that it lights on a given trial is independent of what occurs on any other 
trial. Define the probability space for the experiment of observing the number 
of trials required to obtain the first light. What is the probability that the lighter 
lights in 3 or fewer trials? 

Definition 2.2 
Discrete 

random variable 

Definition 2.3 
Discrete probability 

density function 

Answer:' The range of the random variable, or equivalently the real-valued sam­
ple space, can be specified as R(X) = [1,2,3, ... }. Since R(X) is countable, the 
event space Ix will be defined as the set of all subsets of R(X). The probability 
that the lighter lights on the first attempt is clearly .90, and so I( 1) = .90. Using 
independence of events, the probability it lights for the first time on the sec­
ond trial is (.10)(.90) = .09, on the third trial is (.10)2(.90) = .009, on the fourth 
trial is (.10)3(.90) = .0009, and so on. In general, the probability that it takes 
x trials to obtain the first light is I(x) = (.1O)x-l(.90)I{l,2,3,,,,}(X). Then the prob­
ability set function is given by Px(A) = LxeA(.1O)X-l(.90)I{l,2,3,,,,dx). The event 
that the lighter lights in three trials or less is represented by A = {I, 2, 3}. Then 
Px(A) = L~=d.1O)X-l(.90) = .999. 0 

The preceding examples illustrate the concept of a discrete random variable 
and a discrete probability density function, which we formalize in the following 
definitions. 

A random variable is called discrete if its range consists of a countable num­
ber of elements. 

The discrete probability density function, I, for a discrete random variable 
X is defined as I(x) = probability of x, V x E R(X), and I(x) = 0, V x ¢ R(X). 

It should be noted that even though there is only a countable number of 
elements in the range of the discrete random variable X, the probability density 
function (PDF) defined here has the entire (uncountable) real line for its domain. 
The value of I at a pain t x in the range of the random variable is the probability of 
x, while the value of I is zero at all other points on the real line. This definition is 
adopted for the sake of convenience-it standardizes the domain of all discrete 
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density functions to be the real line while it has no effect on the assignment of 
probabilities to events via the set function Px(AJ = LXEA f(xJ. This convention 
also provides a considerable simplification in the definition of marginal and 
conditional density functions, which we shall examine shortly. 

In our previous examples, the probability space for the experiment was 
a priori deducible under the stated assumptions of the problems. It is most 
often the case in practice that the probability space is not a priori deducible, 
and an important problem in statistical inference is the identification of the 
appropriate density function, f(xl, to use in defining the probability set function 
component of the probability space. 

Continuous Random Variables and Probability Density Functions 

So far, our discussion concerning the representation of Px in terms of the point 
function, f(xl, is applicable only to those random variables that have a count­
able number of possible outcomes. Can Px be similarly represented when the 
range of X is uncountably infinite? Given that we can have an event A defined 
as an uncountable subset of R(XJ, it is clear that the summation operation 
over the elements of the set (Le., LxEAJ is not generally defined. Thus, defin­
ing a probability set function on the events in R(XJ as P(AJ = LXEA f(xJ will 
not be possible. However, integration over uncountable sets is possible, sug­
gesting that the probability set function might be defined as P(AJ = JXEA f(x)dx 
when R(X) is uncountably infinite. In this case the point function f(x) would 
be defined so that JXEA f(x)dx defines the probability of event A. The following 
example illustrates the specification of such a point function f(x) when R(X) is 
uncountably infinite. 

Example 2.4 Suppose a trucking company has observed that accidents are equally likely to 
occur on a certain lO-mile stretch of highway, beginning at point 0 and ending 
at point 10. Let R(X) = [0, 10] define the real-valued sample space of potential 
accident points. 

A 

o a b 10 

It is clear that given that all points are equally likely, the probability set function 
should assign probabilities to intervals of the highway, say A, in such a way that 
the probability of an accident is equal to the proportion of the total highway 
length represented by the stretch of highway, A, as 

P (A) = length of A = b - a for A = [a, bl. 
x 10 10 ' 

If we wish to assign these probabilities using Px(A) = JXEA f(x)dx, we require 
that 

l b b-a 
f(x)dx == -- for all 0 S a S b s 10. 

a 10 
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lemma 2.1 
Fundamental 

Theorem of Calculus 

Definition 2.4 
Continuous random 

variables and 
continuous probability 

density functions 

The following lemma will be useful in deriving the explicit functional form of 
fIx). 

Let fIx) be a continuous function at b and a, respectively.4 Then 

8 t f(x)dx = fIb) and 
8b 

a Jab f(x)dx = -f(a). 
8a 

Applying the lemma to the preceding integral identity yields 

8 J:b f( Jd 8 (b-a) 
a X X = fIb) == 10 = ~ vb E [0, 101, 

8b 8b 10' 

which implies that the function defined by fIx) = .1IIO, lOl(x) can be used to define 
the probability set function Px(A) = JXEA .ldx, for A E Ix. 

For an example of the use of this representation, the probability that an 
accident occurs in the first half of the stretch of highway, i.e., the probability 
of event A = [0,51, is given by Px(A) = J~ .ldx = .5. 0 

The preceding example illustrates the concept of a continuous random vari­
able and a continuous probability density function, which we formalize in the 
next definition. 

A random variable is called continuous if its range is uncountably infinite, 
and if there exists a nonnegative-valued function fIx), defined for all X E 

(-00,00), such that for any event A c R(X), Px(A) = JXEA f(x)dx, and fIx) = 
a V x ¢ R(X). The function fIx) is called a continuous probability density 
function. 

Clarification of a number of important characteristics of continuous ran­
dom variables is warranted. First of all, note that probability in the case of a 
continuous random variable is represented by the area under the graph of the 
density function f and above the points in the set A, as illustrated in Figure 2.3. 

Of course, the event in question need not be an interval, but given our con­
vention regarding the event space lx, the event will be a Borel set for which 
an integral can be defined. A justification for the existence of the integral for 

4See F.S. Woods (1954) Advanced Calculus. Boston: Ginn and Co., p. 141. Regarding continuity of f(x), note that fIx) is continuous 
at a point d E D(1l if, V € > 0, 3 a number S(E) > 0 such that if Ix - dl < Ski, then fIx) - f(d) < E. The function f is continuous if it is 
continuous at every point in its domain. Heuristically, a function will be continuous if there are no breaks in the graph of y = fIx). 
Put another way, if the graph of y = fIx) can be completely drawn without ever lifting a pencil from the graph paper, then f is a 
continuous function. 
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Figure 2-3 
Probability 

represented as area. 

y 

y= f(x) 

PX<A) = f~f(x)dx 

J 
a x 

A = {x : a ::;; x::;; b} 

Borel sets is beyond the scope of this text, but implementation of the inte­
gration process in these cases is both natural and straightforward.s The next 
example illustrates the procedure of determining probabilities for events more 
complicated than a single interval. 

Example 2.5 Reexamine the highway accident example (Ex. 2.4), where R(X) = [0, 10] and 
fIx) = . l1[O,lOdx). 

a. What is the probability of A = [1,2] u [7, 9]? The probability of A is given 
by the area above the points in A and below the graph of f, i.e., 

Px(A) = lEA f(x)dx = /2 C~) dx + 19 C~) dx = .1 +.2 = .3. 

h. Given A defined above, what is the probability of A = [0, 1) u (2, 7) U (9, 1O]? 
The area representing the probability in question is calculated as 

Px(A) = lEA f(xJdx = fal C10) dx + 17 (/0) dx + 110 C~) dx 

=.1+.5+.1=.7. o 

A consequence of the definition of the probability set function Px in Def. 2.4 
is that, for a continuous random variable, the probability of any elementary 
event is zero, i.e., if A = {a}, then Px(AJ = J: f(x)dx = O. Note that this cer­
tainly does not imply that every outcome of X in R(X) is impossible, since some 
elementary event in R(XJ will occur as a result of a given experiment. Instead, 
Px( {x} J = 0 V x E R(X) suggests that zero probability is not synonymous with 
impossibility. In cases where an event, say A, can occur, but the probability set 

Sit can be shown that Borel sets are representable as the union of a collection of disjoint intervals, some of which may be single 
points. The collective area in question can then be defined as the sum of the areas lying above the various intervals and below the 
graph of f. 
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function assigns the event the value zero, we say event A occurs with prob. 
ability zero. The reader might intuitively interpret this to mean that event 
A is relatively impossible, i.e., relative to the other outcomes that can occur 
(R(X)-A), the likelihood that A would occur is nil. We add that the notion of an 
event occurring with zero probability is not restricted to continuous random 
variables-it. arises in discrete cases as well. In Section 2.9, we present exam­
ples where R(X) is countably infinite and where R(X) is finite, and we show that 
in both cases one can define events in R(X) that occur with probability zero. 
Note that the above argument together with Theorem 1.1 then suggest that if 
Px(A) = I, it does not follow that event A is certain to occur. In the spirit of 
our preceding discussion, if event A is assigned a probability of I, we say event 
A occurs with probability I, and if, in addition, A i= R(X), we might also state 
that event A is relatively certain. 

Note that an important implication of the preceding property for contin­
uous random variables, which has already been utilized in Ex. 2.5b, is that 
the sets [a, b], (a, b], [a, b), and (a, b) are all assigned the same probability value J: f(x)dx, since adding or removing a finite number of elementary events to an­
other event means adding or removing a collection of outcomes that occur with 
probability zero. That is, since [a, b] = (a, blu{a} = [a, b)u{b} = (a, b)U{a}U{b}, 
and since Px({a}) = Px({b}) = 0, Axiom 1.3 implies that Px([a, b]) = Px((a, bl) = 
Px([a, b)) = Px((a, b)), so that the integral J: f(x)dx suffices to assign the appro­
priate probability to all four interval events. 

There is a fundamental difference in the interpretation of the image value 
fIx) depending on whether f is a discrete or continuous probability density func­
tion. In particular, while fIx) is the probability of the outcome x in the discrete 
case, fIx) is not the probability of x in the continuous case. To motivate this 
latter point, recognize that if fIx) were the probability of outcome x in the 
continuous case, then by our argument above, fIx) = 0 V x E R(X) since the 
probability of elementary events are zero. But this would imply that for every 
event A, including the certain event R(X), Px(A) = JXEA f(x)dx = JXEA 0 dx = 0, 
since having an integrand of 0 ensures that the integral has a zero value. The 
preceding property would contradict the interpretation of Px as a probability 
set function, and so fIx) is clearly not interpretable as a probability. It is inter­
pretable as a density function value, but nothing more-the continuous PDF 
must be integrated to define probabilities. 

As in the discrete case, a continuous PDF has the entire real line for its 
domain. Again, this convention is adopted for the sake of convenience, as it 
standardizes the domain of all continuous density functions while leavingprob­
abilities of events unaffected. It also simplifies the definition of marginal and 
conditional probability density functions, which we will examine shortly. The 
convention is generally straightforward to accommodate through the use of in­
dicator functions. For example, in Ex. 2.5, the extension of the domain of fIx) to 
the entire real line is accomplished simply by utilizing the indicator function 
in defining fIx) as fIx) = (l/lO)I[o,lOj(X). 

We now provide another example of a continuous random variable together 
with its density function, where the latter, we will assume, has been discovered 
by your personnel department. 
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Example 2.6 Examine the experiment of observing the amount of time that passes between 
work-related injuries to employees working at a metal fabricating plant. Let 
R(X) = {x: x::: a} represent the potential outcomes of the experiment measured 
in hours, and let the density of the continuous random variable be given by 

Definition 2.5 
The classes of discrete 

and continuous 
probability density 

funciions--univariate 
case 

iii) I -x/lOol () 
IIX = 100e (0,00) x. 

a. What is the probability of the event that 100 or more hours pass between 
work-related injuries? Letting A = {x: x ::: lOa} represent the event in 
question, 

PIA) = roo _l_e-x/ IOOdx = _e-x/ IOO I~o= _e-oo/ IOO + e- l = e- l = .37. 
llOo 100 

h. What is the probability that an injury occurs within 50 hours of the previous 
injury? Letting B = {x: a ::: x ::: 50} represent the event in question, 

P(B) = rSo _l_e-x/ lOo dx = _e-x/ IOO I~o= _e-sO/ IOO + e-o = 1 - .61 = .39. 0 
lo 100 

Classes of Discrete and Continuous PDFs 

In our later study of statistical inference, we will generally identify an appro­
priate range for a random variable based on the characteristics of a particular 
experiment being analyzed and have as an objective the identification of an 
appropriate fIx) with which to complete the specification of the probability 
space. The fact that for all events A c R(X) the values generated by LXEA fIx) or 
JXEA f(x)dx must adhere to the probability axioms places some general restric­
tions on the types of functions that can be used as density functions, regardless 
of the specific characteristics of a given experiment. These general restrictions 
on the admissible choices of fIx) are identified in the following definition. 

a. Class of discrete density functions. The function f : R ~ R is a member 
of the class of discrete density functions iff (I) the set C = {x: fIx) > 
a, x E R} (i.e., the subset of points in R having a positive image under II 
is countablej (2) fIx) = a for x E Cj and (3) LxEcf(x) = 1. 

h. Class of continuous density functions. The function f : R -+ R is a 
member of the class of continuous density functions iff (1) fIx) ::: a for 
x E (-00,00); and (2) J~oof(x)dx = 1. 

Some clarifying remarks concerning Def. 2.5 are warranted. First, it should 
be noted that the definition simply identifies the respective classes of function 
specifications that are to be considered as candidates for use as probability 
density functions. The specific functional form of the density function chosen 
to define the probability set function for a real-world experimental situation 
depends on the particular characteristics of the process generating the outcomes 
of the experiment. 
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A second observation concerns the fact that the definitions focus exclu­
sively on real-valued functions having the entire real line for their domains. As 
we discussed earlier, this is a convention adopted as a matter of convenience. 
To ensure that subsets of points outside of the range of X are properly assigned 
zero probability, all one needs to do is extend the domain of f to the remain­
ing points R - RIX) on the real line by assigning to each point a zero density 
weighting, i.e., fIx) = 0 if x E RIX). 

A final remark concerns the rationale in support of the properties that are 
required for a function f to be considered a probability density function. The 
properties are imposed on f : R -+ R to ensure that the set functions constructed 
from f, i.e., 

PxIA ) = I:flx) Idiscrete case) 
xeA 

or 

PxIA) = ( flx)dx Icontinuous case), 
lxeA 

are in fact probability set functions, which of course requires that the proba­
bility assignments adhere to the axioms of probability. To motivate the suffi­
ciency of the conditions for Px to satisfy the probability axioms, first examine 
the discrete case. Since fIx) ~ 0 Y x, PxIA) = LxeA fIx) ~ 0 for any event A, 
and Axiom l.1 is satisfied. Letting RIX) equal the set C defined in Def. 2.S.a, it 
follows that PxIRIX)) = LxeRlx) fix) = I, satisfying Axiom 1.2. Finally, if UiEI Ai 
is the union of a collection of disjoint events indexed by the index set I, then 
summing over all of the elementary events in A = UieI Ai obtains 

Px (~Aj) = ?;f(x) = ~ (];/(X)) = ~ PX(Ai). 

Thus, the three probability axioms are satisfied, and Px is a probability set 
function. 

To motivate sufficiency in the continuous case, first note that Axiom l.1 is 
satisfied since if fIx) ~ 0 Y x, then Px(A) = JxeA f(x)dx ~ 0, because integrating a 
nonnegative integrand over any interval (or Borel) set, A, results in a nonnega­
tive number. Furthermore, since J':'oo f(x)dx = I, there exists at least one event 
A C (-00,00) such that JxeA f(x)dx = 1 (the event can be (-00,00) itself, or else 
there may be some other partition of (-00,00) intoAUB such that JxeA f(x)dx = 1 
and JxeB f(x)dx = 0). Letting RIX) = A, we have that Px(R(X)) = JxeRlx) flx)dx = 1 
and Axiom 1.2 is satisfied. Finally, if D = UiEI Ai is the union of a collection 
of disjoint events indexed by the index set I, then by the additive property of 
integrals 

Px(D) = ( f(x)dx = L ( ( f(X)dx) = L PXIAi). 
lXED ieI lxeAi ieI 

Thus, the three probability axioms are satisfied, and Px is a probability set 
function. 
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It can also be shown that the function properties presented in Def. 2.5 are 
actually necessary for the discrete case and practically necessary in the con­
tinuous case. For the discrete case, first recall that fix) is directly interpretable 
as the probability of the outcome x, and this requires that fix) ~ 0 V X E R 
(or else we would be assigning negative probabilities to some x's). Second, the 
number of outcomes that can receive positive probability must be countable 
in the discrete case since R(X) is countable, leading to the requirement that 
C = (x: fix) > O,X E R} is countable. Finally, Lxecf(x) = 1 is required if the 
probability assigned to the certain event is to equal 1. 

In the continuous case, it is necessary that f~cxJ(x)dx = 1. To see this, 
first note that R(X) is the certain event, implyi~R(X)) = 1. Now since R(X) 
and R(X) are disjoint, we have that Px(R(X) U R(X)) = Px(R(X)) + Px(R(X)) = 
1 + PxIRIX)), which implies Px(RIX)) = 0 since probabilities cannot exceed 1. 
But, since R(X) U RIX) = R by definition, then PIRIX) U RIX)) = f:O flx)dx = 1. 
Regarding the requirement that fix) ~ 0 for x E 1-00,00), note that the condition 
is technically not necessary. It is known from the properties of integrals that the 
value of f: flx)dx is invariant to changes in the value of fix) at a finite number of 
points, and thus fix) could technically be negative for a finite number of x values 
without affecting the values of the probability set function. As others do, we 
will ignore this technical anomaly since its practical significance in defining 
probability density functions is nil. We thus insist, as a practical matter, on the 
nonnegativity of fix). It also follows from the preceding invariance property of 
the integral that density functions are not unique for representing probability 
set functions in the continuous case. 

Example 2.7 For each case, determine whether the stated function can serve as a probability 
density function. 

a. fix) = II/2)I[o,2Jlx). 
Answer: The function can serve as a continuous probability density func­
tion since fix) ~ 0 V X E 1-00,00) (note fix) = 1/2> 0 V X E [0,21 and fix) = 0 
for x ¢ [0,21), and f~oo flx)dx = f~ooII/2)I[o,2Jlx)dx = fiII/2)dx = ~ I~= 1. 

h. fix) = (.3)XpP-xI(o,1}Ix). 
Answer: The function can serve as a discrete Rrobability density function, 
since fix) > 0 on the countable set to, I}, Lx=oflx) = 1, and fix) = 0 V 
x¢{O,l}. 

c. fix) = Ix2 + I)I[_l,ljlx). 
Answer: The function cannot serve as a probability density function. While 
fix) ~ 0 V X E (-00,00), the function does not integrate to 1: 

i:flx)dx = i:(x2 + I)I[_l,Jj(x)dx 

= jllx2 + l)dx 
-1 

x3 11 8 =-+x =-=/=1. 
3 -1 3 
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d. fIx) = (3/8)(x2 + 1)11-1,1J!X). 
Answer: The reader should demonstrate that this function can serve as a 
continuous probability density function. Note its relationship to the func­
tion in part c. 0 

*Mixed Discrete-Continuous Random Variables 

The categories of discrete and continuous random variables do not exhaust the 
possible types of random variables. There is a category of random variable called 
mixed discrete-continuous which exhibits the characteristics of a discrete ran­
dom variable for some events and the characteristics of a continuous random 
variable for other events. In particular, a mixed discrete-continuous random 
variable is such that a countable subset of the elementary events is assigned 
positive probability, as in the case of a discrete random variable, except the 
sum of the probabilities over the countable set does not equal 1. The remaining 
probability is attributable to an uncountable collection of elementary events, 
each elementary event being assigned zero probability, as in the case of a con­
tinuous random variable. The following example illustrates the concept of a 
mixed discrete-continuous random variable. 

Example 2.8 Let X be a random variable representing the length of time, measured in thou­
sands of hours, that an active matrix color screen for a notebook computer 
operates properly. Assume the probability set function associated with the ran­
dom variable is Px(A) = .251A(0) + .75 JXEA-IOl e-X 1(0,00) (x)dx for every event A 
(i.e., Borel set) contained in R(X) = [0,00). 

a. What is the probability that the color screen is defective, i.e., it does not 
function properly at the outset? 
Answer: The event in question is A = {OJ. Using Px, we calculate the prob­
ability to be Px({O}) = .25110dO) + .75 JXE0 e-xdx = .25. (Note: By definition, 
JxE0 f(x)dx = 0.) 

h. What is the probability that the color screen operates satisfactorily for less 
than 1,000 hours? 
Answer: Here, A = [0,1). Using Px , we calculate Px([O, 1)) = .251[0,1)(0) + 
.75 J~ e-xdx = .25 + .474 = .724. 

c. What is the probability that the color screen operates satisfactorily for at 
least 500 hours? 
Answer: The event in question is A = [.5,00). The probability assigned to 
this event is given by Px([.5, 00)) = .251[.5,00)(0) + .75 J';' e-xdx = 0+ .6065 = 
.6065. 0 

We formalize the concept of a mixed discrete-continuous random variable 
in the following definition. 
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Definition 2.6 
Mixed 

discrete-continuous 
random variables 

A random variable is called mixed discrete-continuous iff 

a. its range is uncountably infinite; 

h. there exists a countable set, C, of outcomes of X such that Px({x}) = 
fd(X) > 0 V X E c, fd(X) = 0 V x ¢ C, and LXEC fd(X) < I, where the 
function fd is referred to as the discrete density function component of 
the probability set function of X; 

c. there exists a nonnegative-valued function, fe, defined for all x E 

(-00,00) such that for every event B c R(X) - c, Px(B) = fXEBfe(x)dx, 
fIx) = 0 V X E R - R(X), and f~oo fe(x)dx = 1 - LXEC fd(X), where the func­
tion fe is referred to as the continuous density function component of 
the probability set function of X; and 

d. the probability set function for X is given by combining or mixing the 
discrete and continuous density function components in parts (b) and (c) 
above, as Px(Aj = LXEAnc fd(X) + fXEA-C fe(x)dx for every event A. 

To see how the definition applies to a specific experimental situation, recall 
Ex. 2.8. If we substitute fd(X) = .25I{o}(x), C = {O}, and fe(x) = . 75e-X IIO,oo)(x) into 
the definition of Px given in De£. 2.6.d, we obtain 

Px(A) = L (.25I{odx )) + .75 r e-Xllo,oo)!x)dx 
xEAn{O] }XEA-{O] 

= .25IA(O) + .75 r e-xIIO,oo)(x)dx 
}XEA-{O] 

which is identical to the probability set function defined in Ex. 2.8. 
As the reader may have concluded from examining the definition, the con­

cept of a mixed discrete-continuous random variable is more complicated than 
either the discrete or continuous random-variable case, since there is no single 
PDF that can be either summed or integrated to define probabilities of events.6 

On the other hand, once the discrete and continuous random-variable concepts 
are understood, the notion of a mixed discrete-continuous random variable is 
a rather straightforward conceptual extension. Note that the definition of the 
probability set function in Def. 2.6.d essentially implies that to calculate the 
probability of an event A, one adds together the probabilities of the mutually 
exclusive eventsAnC andA-C. Assigning probability to the eventAnC is done 
in a way that emulates the discrete random-variable case-a real-valued func­
tion (the discrete density component) is summed over the points in the event 
An C. The probability of the event A - C is calculated in a way that emulates 

6We are somewhat hampered here by the scope of our study, where we are restricted to Riemann-type integrals. In a more advanced 
treatment of the subject, we could resort to the use of Stieitjes integrals, in which case a single integral could once again be used to 
define Px. On Stieltjes integration, see R. G. Bartle (1976), The Elements of Real AnalYSiS, 2nd ed. New York: John Wiley. 
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the continuous random-variable case-a real-valued function (the continuous 
density component) is integrated over the points in the event A-C. Adding to­
gether the results obtained for the /I discrete" event A n C and the" continuous" 
event A - C defines the probability of the "mixed" event A. 

Having introduced the concept of a mixed discrete-continuous random vari­
able, we now note that there is an alternative definition for Px that can simplify 
the integral involving the continuous density component. The alternative def­
inition can be used if the countable set C is such that no more than a finite 
number of its elements is contained in any interval of finite length (which will 
be true in virtually all applications). In this case, JxeA-C fc(x)dx = JxeA fc(x)dx, 
since the integral over the countable points in A n C will be zero, and we 
can define Px in the mixed discrete-continuous case alternatively as Px(A) = 
LxeAnc fd(X) + LxeA fc(x)dx. We will incorporate this alternative definition in 
our discussion of cumulative distribution functions, which occurs in the next 
section.7 

2.3 Univariate Cumulative Distribution Functions 

Definition 2.7 
Abbreviated set 

definition for events 

Situations arise in practice that require finding the probability of the event that 
the outcome of a random variable is less than or equal to some real number, 
i.e., the event in question is (x: x ~ b, x E R(Xll for some real number b. These 
types of probabilities are given directly by the cumulative distribution function 
(CDF), which we introduce in this section. 

Henceforth, we will eliminate the random variable subscript used hereto­
fore in our probability set function notation; we will now write PIA) rather than 
Px(A) wherever the context makes it clear to which probability space the event 
A refers. Thus, the notation PIA) may be used to represent the probability of 
either an event A c S or an event A c R(X). To economize on notation further, 
we introduce an abbreviated set definition for representing events. 

Let an event be represented in the form {x: set defining conditions, {x E 

R(Xll and the probability of the event be represented by P( {x: set defining 
conditions, x E R(X)}) (alternatively, S can be used in place of R(X)). The 
abbreviated set definition for the event, and the probability of the event 
expressed in terms of the abbreviated set definition, are respectively {set­
defining conditions} and P(set-defining conditions), the condition x E R(X) 
always being tacitly assumed. 

For an example of an abbreviated set definition that is particularly relevant to 
our current discussion of CDFs, note that {x ~ b} will be used to represent 

7There are still other types of random variables besides those we have examined, but they are rarely utilized in applied work. See 
T. S. Chow and H. Teicher (1978), Probability Theory, New York: Springer-Verlag, pp. 247-248. 
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Definition 2.8 
Univariate cumulative 

distribution function 

(x: x ::: b, x E R(X)}, and PIx ::: b) will be used to represent P({x: x ::: b, x E 

R(X)}).8 
The formal definition of the cumulative distribution function, and its par­

ticular algebraic representations in the discrete, continuous, and mixed dis­
crete-continuous cases, are given next. 

The cumulative distribution function of a random variable X is defined by 
F(b) = PIx ::: b) V b E (-00,00). The functional representation of F(b) in 
particular cases is as follows: 

a. Discrete X: 

F(b) = L fIx), for bE (-00,00); 
x<b 

flxl>o 

h. Continuous X: 

F(b) = i: f(x)dx, for bE (-00,00); 

*c. Mixed discrete-continuous X: 

F(b) = ~ fd(X) + i: fc(x)dx, for b E (-00,00). 

fdlx»o 

Examples of cumulative distribution functions now follow. 

Example 2.9 Reexamine Ex. 2.6, where the amount of time that passes between work-related 
injuries is observed. We can define the cumulative distribution function for X 
as 

F(b) = i: I~Oe-X/IOOIIO,oo)(x)dx 
= [fob I~Oe-X/lOOdX] IIO,oo)(b) = [1 - e-b11OO] IIO,oo)(b). 

If one were interested in the event that an injury occurs within 50 hours of the 
previous injury, the probability would be given by 

F(50) = [1 - e-50/100jIIO,oo)(50) = 1 - .61 = .39. 

A graph of the cumulative distribution function is given in Figure 2.4. D 

8 Alternative shorthand notation that is often used in the literature is respectively IX :::: b) and PIX :::: bl. Our notation establishes a 
distinction between the function X and a value of the function x. 
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F(x) 

1 
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0.2 

Figure 2-4 
A CDF for a continuous X. 
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Example 2.10 Examine the experiment of rolling a fair die and observing the number of dots 
facing up. Let the random variable X represent the possible outcomes of the 
experiment, so that R(X) = {l,2,3,4,5,6} and fIx) = (1/6)IIl,2.3,4,s,6dx). The cu­
mulative distribution function for X can be defined as 

F(b) = L iI{l,2,3,4,S,6}(x) = i trunc(b)I[o,6] (b) + 1[6,00] (b), 
x!5;b 

f(x»O 

where trunc(b) is the truncation function defined by assigning to any domain 
element b the number resulting after truncating the decimal part of b. For 
example, trunc(S.97) = 5, or truncl-2.12) = -2. If we were interested in the 
probability of tossing a 3 or less, the probability would be given by 

F(3) = ~ trunc(3)Ilo,6J(3) + II6,00}(3) = 1 + 0 = 1· 
A graph of the cumulative distribution function is given in Figure 2.S. 0 

*Example 2.11 Recall Ex. 2.8, where color screen lifetimes were represented by a mixed dis­
crete-continuous random variable. The cumulative distribution for X is given 
by 

F(b) = .2SIlO,00}(b) + .7S i: e-xIIO,oo}(x)dx 

= .25IIO,00}(b) + .75[1 - e-b]IIO,oo}(b). 
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Figure 2-5 
A CDF for a discrete X. 

Figure 2-6 
A CDF for a mixed 

discrete-continuous X. 
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If one were interested in the probability that the color screen functioned for 
1,000 hours or less, the probability would be given by 

F11) = .2.51[0,(0)11) + .75[1 - e-1 j110,(0) I 1) 

= .2.5 + .474 = .72.4. 

A graph of the cumulative distribution function is given in Figure 2..6. 0 

CDF Properties 

The graphs in the preceding examples actually illustrate some general proper­
ties of CDFs Ithe reader is asked to provide the appropriate justification for the 
properties that follow). First, CDFs have the entire real line for their domain, 
while their range is contained in the interval [0, 1j. Second, limb~_ooFlb) = 

F(x) 

0.8 

0.6 

0.4 

0.2 

o 2 
x 

3 
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Figure 2-7 
Discontinuity in a CDF. 

Random Variables, Densities, and Cumulative Distribution Functions 

limb ..... _oo PIx ~ b) = P(0) = 0, and limb ..... oo F(b) = limb ..... oo PIx ~ b) = P(R(X)) = 
1.9 It is also true that if a < b, then necessarily F(a) = PIx ~ a) ~ PIx ~ b) = F(b), 
which is the defining property of what is called a nondecreasing function. 

The COFs of discrete, continuous, and mixed discrete-continuous random 
variables can be distinguished by their continuity properties and by the behavior 
of F(b) on sets of domain elements for which F is continuous. The COF of 
a continuous random variable must be a continuous function on the entire 
real line, as illustrated in Figure 2.4, for suppose there existed a discontinuous 
"jumping up" point at a point d. Then PIx = d) = limb ..... d- P(b < x ~ dJ = 
F(d) -limb ..... d- F(b) > 0 because of the discontinuity (see Figure 2.7), contradict­
ing that PIx = d) = 0 Y d if X is continuous. lO 

The COFs for both discrete and mixed discrete-continuous random vari­
ables exhibit a countable number of discontinuities at "jumping up" points 
representing the assignments of positive probabilities to a countable number 
of elementary events (recall Figures 2.5 and 2.6). The discrete case is distin­
guished from the mixed case by the property that the COF in the former case 
is a constant function on all intervals for which F is continuous. The mixed 
case will have a COF that is an increasing function of x on one or more interval 
subsets of the real line. 1 1 

F{x) 

F{d) .•.............•••.•.... ~ 
P(x=d) 

L------------------r----------------x d 

9For those readers whose recollection of the limit concept from calculus courses is not clear, it suffices here to appeal to intuition 
and interpret the limit of F(b) as "the real number to which F(b) becomes and remains infinitesimally close as b increases without 
bound (or as b decreases without bound)." We will examine the limit concept in more detail in Chapter 5. 

JOlimb .... a- indicates that we are examining the limit as b approaches d from below (also called a left-hand limit). limb .... a+ would 
indicate the limit as b approached d from above (also called a right-hand limit). For now, it will suffice for the reader to appeal to 
intuition and interpret limb .... a- F(b) as "the real number to which F(b) becomes and remains infinitesimally close as b increases 
and becomes infinitesimally close to d." 

11 F is an increasing function on an interval of points [a, bl if V Xj and Xi E [a, bl for which Xj < Xi, F(xj) < F(xil. 
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Duality Between CDFs and PDFs 

A CDF can be used to derive a probability density function as well as discrete 
and continuous density components in the mixed discrete-continuous random­
variable case. 

Theorem 2.1 (Discrete PDFs from CDFs) Let XI < X2 < X3 < ... be the countable collection 
of outcomes in the range of the discrete random variable X. Then the discrete 
probability density function for X can be defined as 

f(xI) = F(xI ), 

f(xi) = F(Xi) - F(Xi-d, i = 2,3, ... , 

f(x) = 0 for X ¢ R(X). 

Proof The proof follows directly from the definition of the CDF and is left to the 
reader. • 

Theorem 2.2 (Continuous PDFs from CDFs) Let fIx) and F(x) represent the probability den­
sity function and CDF, respectively, for the continuous random variable X. 
The density function for X can be defined as fix) = dF(x)/dx wherever fIx) is 
continuous, and fIx) = 0 (or any nonnegative number) elsewhere. 

Proof By the fundamental theorem of calculus (recall Lemma 2.1), it follows that 

dF(x) = d J~oo f( t )dt = f(x) 
dx dx 

wherever fIx) is continuous, and the first part of the theorem is demonstrated. 
Now, sinceX is a continuous random variable, then P(x :::: b) = F(b) = J~oo f(x)dx 
exists V b by definition. Changing the value of the nonnegative integrand at 
points of discontinuity will have no effect on the value of F(b) = f~oo f(x)dx, 12 

so that f(x) can be defined arbitrarily at the points of discontinuity. • 

*Theorem 2.3 (Density Components of a Mixed Discrete-Continuous Random Variable from 
CDFs) Let X be a mixed discrete-continuous random variable with a CDF, 
F. Let XI < X2 < X3 < ... be the countable collection of outcomes of X for which 
F(x) is discontinuous. Then the discrete density component of X can be defined 
as fd(Xi) = F(Xi) -limb-+x~ F(b) for i = 1,2,3, ... i and fd(x) = 0 elsewhere. 

The continuous density component of X can be defined as fe(x) = dF(x)/dx 
wherever f(x) is continuous, and fc(x) = 0 (or any arbitrary nonnegative 
number) elsewhere. 

12This can be rigorously justified by the fact that under the conditions stated: (1) the (improper) Riemann integral is equivalent to 
a Lebesque integral; (2) the largest set of points for which f(x) can be discontinuous and still have the integral J~oo f(x)dx defined V 
b has "measure zero"; and (3) the values of the integrals are unaffected by changing the values of the integrand on a set of points 
having "measure zero." This result applies to multivariate integrals as well. See C. W. Burill (1972), Measure, Integration, and 
Probability. New York: McGraw·Hill, pp. 106-109, for further details. 
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Proof The proof is a combination of the arguments used in the proofs of the preceding 
two theorems and is left to the reader. • 

Given Theorems 2.1 to 2.3, it follows that there is a duality between CDFs 
and probability density functions whereby either function can be derived from 
the other. We illustrate Theorems 2.1 to 2.3 in the following examples. 

Example 2.12 Recall Ex. 2.10, where the outcome of rolling a fair die is observed. We can 
define the discrete density function for X using the CDF for X as follows: 

f(l) = F(l) = ~, 

fIx) = F(x) - F(x - 1) = '6 - -6- = '6 for x = 2,3,4,5,6, I x x-I 1 

o elsewhere. 
A more compact representation of fIx) can be given as 

fIx) = iI [l,2,3,4,5,6J!X), 

which we know to be the appropriate discrete density function for the case at 
hand. 0 

Example 2.13 Recall Ex. 2.9, where the time that passes between work-related injuries is 
observed. We can define the continuous density function for X using the stated 
CDF for X as follows: 

fIx) = dx - dx - 100 e or x E , 00 , I dF(x) - d(l - e-x/IOO)I(o,oo)(x) - _1_ -x/IOO f (0) 

o for x E (-00,0). 

The derivative of F(x) does not exist at the point x = 0 (recall Figure 2.4), a 
reflection of the fact that fIx) is discontinuous at x = O. We arbitrarily assign 
fIx) = 0 when x = 0 so that the density function of x is ultimately defined by 
fIx) = (1/100)e-x/lOOI(o,oo)(x), which we know to be an appropriate continuous 
density function for the case at hand. 0 

*Example 2.14 Recall Ex. 2.11, where the operating lives of notebook color screens are ob­
served. The CDF of the mixed discrete-continuous random variable X is dis­
continuous only at the point x = 0 (recall Figure 2.6). Then the discrete density 
component of X is given by 

fd(O) = F(O) - lim F(b) = .25 - 0 = .25 
b ..... O-

and 

x =1= 0, 

or alternatively, 

fd(x) = .25I(oJ!x), 

which we know to be the appropriate discrete density function component in 
this case. 
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The continuous density function component can be defined as 

I dF(x) -x 
fe = ----cJ}( = .7Se for x E (0,00), 

o for x E (-00,0), 

but the derivative of F(x) does not exist at the point x = 0 (recall Figure 2.6). We 
arbitrarily assign fe(x) = 0 when x = 0 so that the continuous density function 
component of X is finally representable as fe(x) = . 7Se-x IIO,ool(x), which we know 
to be an appropriate continuous density function component in this case. 0 

2.4 Multivariate Random Variables, PDFs, and CDFs 

Definition 2.9 
Real-valued 

vector function 

Definition 2.10 
Multivariate (n-variate) 

random variable 

In the preceding sections of this chapter, we have examined the concept of a 
univariate random variable, where only one real-valued function was defined on 
the elements of a sample space. The concept of a multivariate random variable 
is an extension of the univariate case, where two or more real-valued functions 
are concurrently defined on the elements of a given sample space. Underlying 
the concept of a multivariate random variable is the notion of a real-valued 
vector function, which we'll now define. 

Let h: A ~ R, i = 1, ... , n, be a collection of n real-valued functions, each 
function being defined on the domain A. Then the function f: A ~ Rn 

defined by 

Y = [~l] = [h~X)] = f(x), for x E A, 
Yn fn(x) 

is called an (n-dimensional) real-valued vector function. The real-valued 
functions h, ... , fn are called coordinate functions of the vector function f. 

Note that the real-valued vector function f: A ~ Rn is distinguished 
from the scalar function f: A ~ R by the fact that its range elements are 
n-dimensional vectors of real numbers as opposed to scalar real numbers. The 
range of the real-valued vector function is given by R(f) = {(YI,"" Yn): Yi = 
h(x),i = 1,,, .,n; x E A}. 

We now provide a formal definition of the notion of a multivariate random 
variable. 

Let {S, I, P} be a probability space. If X : S -+ Rn (or simply X) is a real-valued 
vector function having as its domain the elements of S, then X: S ~ Rn (or 
X) is called a multivariate (n-variate) random variable. 
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Definition 2.11 
Discrete multivariate 
random variables and 

discrete joint probability 
density functions 

Definition 2.12 
Continuous multivariate 

random variables 
and continuous 

joint probability 
density functions 

Since the multivariate random variable is defined by 

x = [;~] = [i~l:l] = X(w) 
Inxll: : Inxll 

Xn Xn(w) 

for WE S, 

it is admissible to interpret X as a collection of n univariate random variables, 
each defined on the same probability space {S, I, Pl. The range of the n-variate 
random variable is given by R(X) = {(Xl, ... , Xn): Xi = XiI W), i = 1, ... , n; W E S}. 

The multivariate random-variable concept applies quite naturally and gen­
erally to any real-world experiment in which more than one characteristic is 
observed for each outcome of the experiment. For example, upon making an 
observation concerning a futures trade on the Chicago Mercantile Exchange, 
one could record the price, quantity, delivery date, and commodity grade asso­
ciated with the trade. Upon conducting a poll of registered voters, one could 
record various political preferences and a myriad of sociodemographic data as­
sociated with each randomly chosen interviewee. Upon making a sale, a car 
dealership will record the price, model, year, color, and the selections from the 
options list that were made by the buyer. Applications abound in business and 
economic settings, and the reader is asked to provide additional examples of 
the multivariate random-variable concept. 

Definitions for the concept of discrete and continuous multivariate random 
variables and their associated density functions are as follows: 

A multivariate random variable is called discrete if its range consists of a 
countable number of elements. The discrete joint probability density func­
tion, f, for a discrete multivariate random variable X = (Xl, .. . ,Xn) is defined 
as f(xI, ... ,xn) = probability of (Xl, .. . ,xnl if (Xl, .. . ,xnl E R(XI, and 0 other­
wise. 

A multivariate random variable is called continuous if its range is un count­
ably infinite and if there exists a nonnegative-valued function f(xI, ... ,Xn I, 
defined for all (Xl, .. . ,xnl ERn, such thatfor any event A c R(XJ, 

P(AI = ! ... ! f(xI, ... , xnldxl ... dXn 

IXI, .. ·,xnleA 

and 

The function f(xI, ... , xnl is called a continuous joint probability density 
function. 
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Definition 2.13 
The classes of discrete 

and continuous 
joint probability 

density functions 

Multivariate Random Variable Properties and Classes of PDFs 

A number of properties of discrete and continuous multivariate random vari­
ables, and their joint probability densities, can be identified through analogy 
with the univariate case. In particular, the multivariate random variable in­
duces a new probability space, (RIX), lx, Px }' for the experiment, where the 
event space Ix consists of all subsets of RIX) in the discrete case and all 
Borel subsets of RIX) in the continuous case. The rationale underlying the 
transition from the probability space {S, I, P} to the induced probability space 
(RIX), lx,Px } is precisely the same as in the univariate case except for the in­
creased dimensionality of the elements in RIX) in the multivariate case. The 
probability set function defined on the events in the event space is represented 
in terms of multiple summation of a PDF in the discrete case and multiple 
integration of a PDF in the continuous case. In the discrete case, f(xI, ... , xn ) is 
directly interpretable as the probability of the outcome IXI, .. . ,xn ); in the con­
tinuous case, the probability of each elementary event is zero and flxl, ... , xn) 
is not interpretable as a probability. As a matter of convenience, both density 
functions are defined to have the entire n-dimensional real space for their do­
main, so that f(xI, ... , xn) = 0 Y x ¢ RIX). 

Regarding the classes of functions that can be used as discrete or continuous 
joint density functions, we provide the following generalization of Def. 2.5: 

a. Class of discrete joint density functions. A function f: Rn -+ R is a 
member of the class of discrete joint density functions iff: 

1. the set C = (lxl, ... , xn): flxl,"" xn) > 0, lXI, ... , xn) ERn} is count­
able, 

2. flxl, .. . ,Xn) = 0 for x E (;, and 

3. L'" L!xl, ... ,xn)ECflxl, ... ,xn) = 1. 

h. Class of continuous joint density functions. A function f: Rn -+ R is a 
member of the class of continuous joint density functions iff: 

1. flxl, ... , xn) ::: 0 Y (XI, ... , xn) E Rn and 

2. 1:::'00···1:::'00 flxl, ... , Xn )dXl ... dXn = 1. 

The reader can generalize the arguments used in the univariate case to demon­
strate that the properties stated in Def. 2.13 are sufficient, as well as necessary 
in the discrete case and "almost necessary" in the continuous case, for set 
functions defined as 

I L'" Lflxl, .. . ,xn ) 
!XI, ... ,xnIEA 

P(A)= f f 
... f(xI, ... , Xn)dXl '" dXn Icontinuous case) 

!XI,· .. ,Xn)EA 

Idiscrete case), 
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to satisfy the probability axioms Y A E Ix. 
The following is an example of the specification of the probability space for 

a bivariate discrete random variable. 

Example 2.15 For the experiment of rolling a pair of dice in Ex. 2.2, distinguish the two die by 
letting the first die be "red" and second "green." Thus an outcome Ii, j) refers 
to i dots on the red die and i dots on the green die. Define the following two 
random variables: 

Xl =Xdw) = i and X2 = X21w) = i +;. 

The range of the bivariate random variable IXI,X2) is given by R(X) = 
{(XI,X2): Xl = i,X2 = i+i,i and i E {l, ... ,6}}. The event space is Ix = {A: A c 
RIX)}. 

The correspondence between elementary events in R(X) and elementary 
events in 5 is displayed as follows: 

Xl 

2 3 4 5 6 

2 (1, 1) 0 0 0 0 0 
3 (1,2) (2,1) 0 0 0 0 
4 (1,3) (2,2) (3,1) 0 0 0 
5 (1,4) (2,3) (3,2) (4,1) 0 0 
6 (1,5) (2,4) (3,3) (4,2) (5,1) 0 Elementary 

X2 7 (1,6) (2,5) (3,4) (4,3) (5,2) (6,1) 
8 0 (2,6) (3,5) (4,4) (5,3) (6,2) Events in 5 

9 0 0 (3,6) (4,5) (5,4) (6,3) 
10 0 0 0 (4,6) (5,5) (6,4) 
11 0 0 0 0 (5,6) (6,5) 
12 0 0 0 0 0 (6,6) 

It follows immediately from the correspondence with the probability space 
{5, I, P} that the discrete density function for the bivariate random variable 
IXI/X2) can be represented as 

flxl, X2) = 3~I(l, ... ,6dxdI(l, ... ,6)lx2 - xd, 
and the probability set function defined on the events in R(X) is then 

PIA) = LLflxl,x2) for A E Ix. 
(XI,X2JEA 

Let A = (lXI,X2): 1 ~ Xl ~ 2,2 ~ X2 ~ S,(XI,X2) E RIX)}, which is the event of 
rolling 2 or less on the red die and a total of S or less on the pair of dice. Then 
the probability of this event is given by 

25 7 
P(A) = LLf(XI,X2) = L L f(XI,X2) = 36' 

iXI,X2JEA xl=lx2=xl+I 

o 
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The preceding example illustrates two general characteristics of the multi­
variate random-variable concept that should be noted. First of all, even though 
a multivariate random variable can be viewed as a collection of univariate ran­
dom variables, it is not necessarily the case that the range of the multivariate 
random variable X equals the Cartesian product of the ranges of the univari­
ate random variable defining X. Depending on the definition of the X/s, either 
R(X) =f. x1=1 R(Xi ) and R(X) C xI=1 R(Xi), or R(X) = x1=1 R(Xi ) is possible. Ex­
ample 2.15 is an example of the former case, where a number of scalar out­
comes that are individually possible for the univariate random variables Xl 
and X2 are not simultaneously possible as outcomes for the bivariate random 
variable (XI,X2). Second, note that our convention of defining f(xI,x2) = 0 V 
(Xl, X2) ¢ R(X) allows an alternative summation expression for defining the 
probability of event A in Ex. 2.15: 

25 7 
PIA) = L L f(xI, X2) = 36· 

xl=lx2=2 

We have included the point (2,2) in the summation above, which is an impos­
sible event-we cannot roll a 2 on the red die and a total of 2 on the pair of dice, 
so that (2,2) ¢ R(X). Nonetheless, the probability assigned to A is correct since 
f(2, 2) = 0, by definition. In general, when defining the probability of an event 
A for an n-dimensional discrete random variable X, f(xI, ... , xn) can be summed 
over the points identified in the set-defining conditions for A without regard 
for the condition that X E R(X), since any X ¢ R(X) will be such that fix) = 0, 
and the value of the summation will be left unaltered. This approach can be 
especially convenient if set A is defined by individual, independent set-defining 
conditions applied to each Xi in an n-dimensional random variable (Xl, .. . ,Xn ), 
as in the preceding example. An analogous argument applies to the continuous 
case, with integration replacing summation. 

We now present an example of the specification of the probability space for 
a bivariate continuous random variable. 

Example 2.16 Your company manufactures big-screen television sets. The screens are 3 feet 
high by 4 feet wide rectangles that must be coated with a metallic reflective 
coating (see Figure 2.8). The machine that is coating the screens begins to 
randomly produce a coating flaw at a point on the screen surface, where all 
points on the screen are equally likely to be the point of the flaw. Letting (0,0) 
be the center of the screen, we represent the collection of potential flaw points 
as 

R(X) = (lXI,X2): Xl E [-2,21,x2 E [-1.5,1.5]}. 

Clearly, the total area of the screen is 3·4 = 12 square feet, and any closed 
rectangle on the screen having width Wand height H contains the proportion 
WH/12 of the total area of the screen. Since all of the points are equally likely, 
the probability set function defined on the events in R(X) should assign to each 
closed rectangle of points a probability equal to WH/12 where Wand Hare, 
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Figure 2·8 
Television screen. 

3 feet Xl 

III 
4 feet 

respectively, the width and height of the rectangular event. We thus seek a 
function f(xI, X2) such that 

l d {b (b - aHd - c) 
c la f(XI,X2)dxI dX2 == 12 

Va, b, c, and d such that -2 ::; a ::; b ::; 2 and -1.5 ::; c ::; d ::; 1.5. Differentiating 
the iterated integral above, first with respect to d and then with respect to b, 
yields fIb, d) = 1/12 V b E [-2,2] and 'lid E [-1.5, 1.5].13 The form ofthe continu­
ous joint density function is then given by f(xI, X2) = 112 11-2,2j(XI)II-1.5,1.5j(X2). The 
probability set function is thus defined as PIA) = J ~xl,x2IEA I~ dXI dX2. Then, for 
example, the probability that the flaw occurs in the upper left quarter of the 
screen is given by 

P(-2 ::; XI ::; 0,0::; X2 ::; 1.5) = 11.5 i: 112 dXI dX2 = 101.5 ~dX2 = .25. 0 

Multivariate CDFs and Duality with PDFs 

The CDP concept can be generalized to the multivariate case as follows: 

)3The differentiation is accomplished by applying Lemma 2.1 twice: once to the integral f: [J: !(x) , x2ldx) ]dx2 , differentiating 

with respect to d to yield f: fix), dldx) , and then differentiating the latter integral with respect to b to obtain !Ib, dl. In summary, 

(a2 /abadl fed f: !(X) , x2ldx) dX2 = f(b, dl· 
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Definition 2.14 
Joint cumulative 

distribution function 

The joint cumulative distribution function of an n-dimensional random vari­
able X is defined by F(b l , ... , bn) = P(Xj ::: b j , i = 1, ... , n) V (b l , ... , bn) E Rn. 
The algebraic representation of F(h, ... , bn ) in the discrete and continuous 
cases can be given as follows: 

a. Discrete X: 

F(bl, ... ,bn)= L .. , L f(xl, ... ,xn) for(h, ... ,bnJERn. 
XI :obi xn:obn 

f(XI, ... ,Xn!>O 

b. Continuous X: 

lbn lbl 
F(b1, ... ,bn)= -00'" _oof(xI, ... ,xn)dxI···dxn 

Some general properties of the joint cumulative distribution function in­
clude the following three: 

1. limb; ...... -oo F(b l, ... , bn ) = P(0) = 0, i = 1, ... , n; 
2. limb; ...... oo,vjF(bl, ... , bn ) = P(R(X)) = 1; 
3. F(a) ~ F(b) for a < b where 

and the vector inequality is taken in the usual sense to mean aj ~ b i V 
i, and aj < bi for at least one i. The reader should convince herself that 
these properties follow directly from the definition of the joint cumulative 
distribution function. 

Similar to the univariate case, the joint CDF can be used to derive joint 
discrete and continuous probability densities. For the discrete case, we state the 
result for bivariate random variables only. For multivariate random variables of 
three dimensions or higher, the large number of terms required in the density­
defining procedure makes its use somewhat cumbersome. 

Theorem 2.4 (Discrete Bivariate PDFs from Joint CDFsJ Let (X, YJ be a discrete bivariate 
random variable with joint cumulative distribution function F(x,y), and let 
Xl < X2 < X3 < ... and Yl < Y2 < Y3 < ... represent the possible outcomes of X 
and Y. Then 

f(xl,YI) = F(XI,YIJ, 

f(xI, yil = F(XI, yil - F(XI' Yi-d, 

f(xj, Yl J = F(xj, Yl J - F(Xj-I, Yl), 

j ~ 2, 

i ~ 2, 

i and j ~ 2. 
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Proof The proof is left to the reader. • 
Theorem 2.5 (Continuous Joint PDFs from Joint CDFs) Let P(XI," .,xn) and [(Xl, .. ',Xn) rep­

resent the joint CDP and PDP for the continuous multivariate random variable 
X = (Xl, .. . ,Xn). The joint PDP of X can be defined as 

I anp(XI'" "xn) b f( ) . . 
flxl, ... , xn) = aXI ... aXn w: ere . IS contmuous 

o (or any nonnegative numbers) elsewhere. 

Proof The first part of the definition follows directly from an n-fold application of 
Lemma 2.1 for differentiating the iterated integral defining the joint CDF. In 
particular, 

anpIXI, ... ,Xn) _ an r':x,···f~~fltl, ... ,tn)dtl···dtn -II ) 
a a - ~ ~ - XI,···,Xn 

Xl . .. Xn UXI ... UXn 

wherever f(·) is continuous. 
Regarding the second part of the definition, as long as the integral exists, 

arbitrarily changing the values of the nonnegative integrand at the points of 
discontinuity will not affect the value of 

I bn lb' 
Plb l , ... , bn) = -00'" -00 flxl,"" Xn)dXI '" dXn 

Irecall Footnote 12). • 
Example 2.17 Examine the experiment of tossing two fair coins independently and observing 

whether heads IH) or tails IT) occurs on each toss, so that S = {(H, H), IH, T), 
(T, H), IT, TH with all elementary events in S being equally likely. Define a bi­
variate random variable on the elements of S by letting X represent the total 
number of heads and y represent the total number of tails resulting from the 
two tosses. The joint density function for the bivariate random variable (X, Y) 
is then defined by 

fix, y) = ~I((o,2)'12,olllx, y) + kI((I,llllx, y). 

It follows from Def. 2.14 that the joint CDF for (X, Y) can be represented as 

Plh, b2) = ~I[2,00)lbl )II-00,lJlb2) + ~II-oo,I)lbl )I[2,00)lb2) 

+ iI [I,2)l b d I [I,2)lb2) + iI [2,00)(bdI [I,2J1b2) 

+ i I[I,2)lb l )I[2,00)(b2) + I[2,00)(b l )I[2,00)lb2). 

The CDF no doubt appears to be somewhat 1/ cobbled" together, making the 
definition of P a rather complicated expression. Unfortunately, such function 
definitions often arise when specifying joint CDFs in the discrete case, even for 
seemingly simple experiments such as the one at hand. To understand more 
clearly the underlying rationale for the preceding definition of P, it is useful to 
partition R2 into subsets that correspond to the events in S. In particular, we are 
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interested in defining the collection of elements W E S for which X(w) :::: b l and 
Y(w) :::: b2 is true for the various values of (h, b2) E R2. Examine the following 
table: 

bl ~ A = {w: X(w) :s bl , Y(w) :s b2 , w E S} P(A) 

bl < 1 b2 < 1 0 0 
1:sbl <2 b2 < 1 0 0 

bl < 1 1:sb2 <2 0 0 
hI 2: 2 b2 < 1 {(H,Hl) 1/4 
bl < 1 b2 2: 2 {(T, 7)} 1/4 

1:sbl <2 1:sh2<2 {(H, 7),(T, Hl) 1/2 
hI 2: 2 1:sh2<2 {(H, 7), (T, Hl, (H, Hl) 3/4 

1:shl<2 b2 2: 2 {(H, 7), (T, Hl, (T, 1)} 3/4 
hI 2: 2 b2 2: 2 S 

The reader should convince herself using a graphical representation of R2 
that the conditions defined on (b l , b2 ) can be used to define nine disjoint subsets 
of R2 that exhaustively partition R2 (i.e., the union of the disjoint sets = R2). The 
reader will notice that the indicator functions used in the definition of F were 
based on the latter six sets of conditions on (b l , b2 ) exhibited in the preceding 
table. If one were interested in the probability Pix :::: l,y :::: 1) = F(l, I), for 
example, the joint CDF indicates that 1/2 is the number we seek. D 

Example 2.18 Reexamine the projection television screen example Ex. 2.16. The joint CDF for 
the bivariate random variable (XI,X2 ), whose outcome represents the location 
of the flaw point, is given by 

F(b l , b2) = L: L: 112II-2,2j(XI!II-1.5,1.5j(X2)dxldx2 

(b l + 2)(b2 + 1.5) 
= 12 II-2,2j(bl )II-1.5,1.5j(b2) 

4(b2 + 1.5) 
+ 12 112,ooj(b l )I[-1.5,1.5j(b2) 

3(bl + 2) 
+ 12 I[-2,2)(bI!II1.5,oo)(b2) 

+ 112,oo)(b l jII1.5,oo)(b2). 

It is seen that "cobbled-together" definitions of joint CDFs occur in the 
continuous case as well. To understand the rationale for the piecewise defini­
tion, first note that if b l < -2 and/or b2 < -1.5, then we are integrating over 
a set of (XI, X2) points {(XI, X2): XI < b l , X2 < b2} for which the integrand has a 
zero value, resulting in a zero value for the definite integral. Thus, F(b l, b2) = 0 
if bl < -2 and/or b2 < -1.5. If bl E [-2,21 and b2 E [-1.5,1.51, then taking 
the effect of the indicator functions into account, the integral defining F can be 
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represented as 

F(b b) = l b2 1b1 ~dx d = (b l + 2j(b2 + 1.5) I, 2 12 I X2 12 ' 
-1.5 -2 

which is represented by the first term in the preceding definition of F. If b l > 2, 
but b2 E [-1.5, LSI, then since the integrand is zero for all values of Xl > 2, we 
can represent the integral defining F as 

l b2 12 1 4(b2 + 1.5) 
F(b l , b2 ) = 12 dxI dX2 = 12 ' 

-1.5 -2 

which is represented by the second term in our definition of F. If b2 > 1.5 but 
b l E [-2,21, then since the integrand is zero for all values of X2 > 1.5, we have 

11.51b1 1 3(b l + 2) 
F(b l , b2 ) = 12 dxI dX2 = 12 ' 

-1.5 -2 

which is represented by the third term in our definition of F. Finally, if both 
b l > 2 and b2 > loS, then since the integrand is zero for all values of XI > 2 
and/or X2 > 1.5, the integral defining F can be written as 

F(b l , b2 ) = 11.5 12 112dxI dX2 = I, 
-1.5 -2 

which justifies the final term in our definition of F. The reader should con­
vince himself that the preceding conditions on (b l , b2 ) collectively exhaust the 
possible values of (b l , b2 ) E R2. 

If one were interested in the probability P(XI ~ I, X2 ~ I), the "relevant 
piece" in the definition of F would be the first term, and thus F( I, 1) = !3Ji~5J = 
.625. Alternatively, the probability Pixi ~ I, X2 ~ 10) would be assigned using 
the third term in the definition of F, yielding F(l, 10) = .75. 0 

Multivariate Mixed Discrete-Continuous and Composite Random Variables 

A discussion of multivariate random variables in the mixed discrete-continuous 
case could be presented here. However, we choose not to do so. In fact, we will 
not examine the mixed case any further in this text. We are content with having 
introduced the mixed case in the univariate context. The problem is that in the 
multivariate case, representations of the relevant probability set functions­
especially when dealing with the concepts of marginal and conditional den­
sities, which will be discussed subsequently-become extremely tedious and 
cumbersome unless one allows a more general notion of integration than that 
of Riemann, which would then require us to venture beyond the intended scope 
of this text. We thus leave further study of mixed discrete-continuous random 
variables to a more advanced course. Note, however, that since elements of 
both the discrete and continuous random-variable concepts are involved in the 
mixed case, our continued study of the discrete and continuous cases will pro­
vide the necessary foundation on which to base further study of the mixed 
case. 
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As a final remark concerning our general discussion of multivariate ran­
dom variables, note that a function (or vector functionJ of a multivariate ran­
dom variable is also a random variable (or multivariate random variableJ. This 
follows from the same composition of functions argument that was noted in 
the univariate case. That is, 

Y = Y(X(wJJ, or y = Y(XdwJ, ... , Xn(wJ), or 

[ 
YI] [YI(XdWJ, ... ,Xn(WJ)] 

y = : = : = Y(X(wJ) 
mxl' . mxl 

Ym Ym(XdwJ, ... ,Xn(wJ) 

are all in the context of "functions of functions," so that ultimately Y is a 
function of the elements w E S and is therefore a random variable. 14 One might 
refer to such as a composite random variable. 

2.5 Marginal Probability Density Functions and CDFs 

Suppose that we have knowledge of the probability space corresponding to an 
experiment involving outcomes of the n-dimensional random variable X{n) = 
(Xl, ... , X m , Xm+l, ... , XnJ but our real interest lies in assigning probabilities to 
events involving only the m-dimensional random variable X{m) = (XI, ... , XmJ, 
m < n. In practical terms, this relates to an experiment in which n different 
characteristics were recorded for each outcome but we are specifically inter­
ested in analyzing only a subset of the characteristics. We will now examine 
the concept of a marginal probability density function (MPDF) for X{m), which 
will be derived from knowledge of the joint density function for X{n)' Once de­
fined, the MPDF can be used to identify the appropriate probability space only 
for the portion of the experiment characterized by the outcomes of (X I, ... , Xm J, 
and we will be able to use the MPDF in the usual way (summation in the dis­
crete case, integration in the continuous case) to assign probabilities to events 
concerning (Xl, ... ,XmJ. 

The key to understanding the definition of a marginal probability density 
is to establish the equivalence between events of the form (Xl, ... , xmJ E B in 
the probability space for (Xl,. ",XmJ and events of the form (Xl,,, .,XnJ E A in 
the probability space for (Xl, ... , XnJ since it is the latter events to which we 
can assign probabilities knowing f(xl, ... , xnJ. 

Bivariate Case 

Let f(xl, X2J be the joint density function and R(XJ be the range of the bivariate 
random variable (XI,X21. Suppose we want to assign a probability to the event 

14The reader is reminded that we are suppressing the technical requirement that for every Borel set of y values, the associated 
collection of w values in S must constitute an event in S for the function Y to be called a random variable. As we have remarked 
previously, this technical difficulty does not cause a problem in applied work. 
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Xl E B. Which event for the bivariate random variable is equivalent to event 
B occurring for the univariate random variable Xl ? By definition, this event is 
given by A = {(Xl, X2): Xl E B, (Xl, X2) E R(X)}, i.e., the event B occurs for Xl iff 
the outcome of (Xl, X2) is in A so that Xl E B. Then since B and A are equivalent 
events, the probability that we will observe Xl E B is identically equal to the 
probability that we will observe (XI,X2) E A (recall the discussion of equivalent 
events in Section 2.2). 

For the discrete case, the foregoing probability correspondence implies that 

Px,(B) = P(XI E B) = PIA) = LL!(XI,X2). 
\x"x2IeA 

Our convention of defining !(XI, X2) = 0 Y (Xl, X2) ¢ R(X) allows the following 
alternative representation of Px , (B): 

Px , (B) = L L !(XI, X2). 
x, eB X2eR\X2) 

The equivalence of the two representations of Px, (B) follows from the fact 
that the set of elementary events being summed over in the latter case, C = 
{(Xl, X2): Xl E B, X2 E R(X2)}, is such that A c C, and !(XI, X2) = 0 Y (Xl, X2) E' 

C - A. The latter representation of Px , (B) leads to the following definition of 
the marginal probability density of Xl: 

h(XI) = L !(XI,X2). 
X2 eR\X2) 

This function, when summed over the points comprising the event Xl E B, 
yields the probability that Xl E B, i.e., 

Px,(B) = L!dxd = L L !(XI,X2). 
x, eB x, eB X2 eR\X2) 

Heuristically, one can think of the marginal density of X I as having been de­
fined by "summing out" the values ofx2 in the bivariate PDF for (XI,X2). Having 
defined h(Xl), the probability space for the portion of the experiment involving 
only Xl can then be defined as {R(Xd, lX"Px,} where Px,(B) = LX,EB!dxd for 
BEl x,. Note that the order in which the random variables are originally listed 
is immaterial to the approach taken above, and the marginal density function 
and probability space for X2 could be defined in an analogous manner by simply 
reversing the roles of Xl and X2 in the preceding arguments. The MPDF for X2 
would be defined as 

!2(X2) = L !(Xl, X2), 
x,ER\X,) 

with the probability space for X2 defined accordingly. 

Example 2.19 Reexamine Ex. 1.16, in which an individual was to be drawn randomly from the 
work force of the Excelsior Corporation to receive a monthly "loyalty award." 
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Define the bivariate random variable (XI,X2) as 

XI = {~} ·f { male } . d 
1 female IS rawn, 

x,~ HI I sales 1 
if cleric~l worker is drawn, 

productIOn 

so that the bivariate random variable is measuring two characteristics of the 
outcome of the experiment: gender and type of worker. The joint density of 
the bivariate random variable is represented in tabular form below, where the 
nonzero values off(XI, X2) are given in the cells formed by intersecting anXI-row 
with a x2-column. 

0 1 2 f,(Xl) 

0 .165 .135 .150 .450 

1 .335 .165 .050 .550 

f2(X2) .500 .300 .200 

The nonzero values of the marginal density of X2 are given in the bottom margin 
of the table, the definition of the marginal density being 

I 

!2(X2) = L !(XI,X2) = L f/XI,X2) = .SI{odx2) + .3I{ldx2) + .2I(2)/X2). 
xlERIXI! XI=O 

The probability space for X2 is thus {R(X2), 1 X2' PX2}, with 1 X2 = {A: A c R(X2)) 
and PX2(A) = LX2EA h(X2). If one were interested in the probability that the 
individual chosen was a sales or clerical worker, i.e., the event A = {O, I}, then 
PX2(A) = L~2=ofx2(X2) =.5 +.3 = .s. 

The nonzero values of the marginal density for Xl are given in the right­
hand margin of the table, the definition of the density being 

2 

fdxIJ = L f(XI,X2) = L f(XI,X2) = .4SI{odx d + .SSI{l}/xd. 
X2ERlX21 X2=O 

The probability space for Xl is thus {R(Xd, 1 XII PXI }, with Y XI = {A: A c R(XI )} 
and Pxl(A) = LXIEA It(XI). If one were interested in the probability that the in-
dividual chosen was male, i.e., the event A = {OJ, then PXI (A) = L~I=O fXI (Xl) = 
.45. 0 

The preceding example provides a heuristic justification for the term mar­
ginal in the bivariate case and reflects the historical basis for the name marginal 
density function. In particular, by summing across the rows or columns of a 
tabular representation of the joint PDF !(XI,X2), one can calculate the marginal 
densities of Xl and X2 in the margins of the table. 
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We now examine the marginal density function concept for continuous 
random variables. Recall that the probability of event B occurring for the uni­
variate random variable Xl is identically the probability that the event A = 
{(Xl, X2): Xl E B, (Xl, X2) E R(X)} occurs for the bivariate random variable X = 
(XI ,X2). Then 

Px,(B) = P(XI E B) = PIA) = f f f(XI,X2)dx l dX2. 

(X"X2!EA 

Our convention of defining f(XI, X2) = 0 V (Xl, X2) ¢ R(X) allows an alternative 
representation of Px, (B) to be given by 

Px,(B) = Ix 100 
f(XI,X2)dx2dxI. 

x,EB -00 

The equivalence of the two representations follows from the fact that the set 
of elementary events being integrated over in the latter case, C = {(Xl, X2): Xl E 

B,X2 E (-oo,oo)}, is such that A c C, and f(XI,X2) = 0 V (XI,X2) E C - A. The 
latter representation of Px, IB) leads to the definition of the marginal density of 
Xl as 

fdxd = i:f(XI,X2)dx2. 

This function, when integrated over the elementary events comprising the 
event Xl E B, yields the probability that Xl E B, i.e., 

Px,(B) = Ix h(XI)dxI = Ix 100 
f(XI,X2)dx2dxI. 

x, EB x, EB -00 

Heuristically, one might think of the marginal density of Xl as having been 
defined by "integrating out" the values of X2 in the bivariate density function 
for (Xl, X2). Having defined fdxd, the probability space for the portion of the 
experiment involving only Xl can then be defined as {R(Xd, I XII Px,}, where 
Px,(A) = fX'EAfdxddxI for A E Ix,. Since the order in which the random 
variables were originally listed is immaterial, the marginal density function 
and probability space for X2 can be defined in an analogous manner by simply 
reversing the roles of Xl and X2 in the preceding arguments. The MPDF for X2 
would be defined as 

l2(x2) = i: f(XI,X2)dx I, 

with the probability space for X2 defined accordingly. 

Example 2.20 The Seafresh Fish Processing Company operates two fish processing plants. The 
proportion of processing capacity at which each of the plants operates on any 
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given day is the outcome of a bivariate random variable having joint density 
function f(XI,X21 = (XI + x2II[o,!](xJ/I[o,!](x21. The marginal density function for 
the proportion of processing capacity at which plant 1 operates can be defined 
by integrating out X2 from f(XI,X21 as 

The probability space for plant 1 outcomes is given by {R(XII, lXI' PXI L where 
R(XJ/ = [0, n IXI = {A: A is a Borel set C R(XJ/L andPxl(AI = fXIEAfdxddxI, 
V A E I XI' If one were interested in the probability that plant 1 will operate at 
less than half of capacity on a given day, i.e., the event A = [0, .51, then 

o 

Regarding other properties of marginal density functions, note that the sig­
nificance of the term marginal is only to indicate the context in which the 
density was derived, i.e., the marginal density of XI is deduced from the joint 
density for (XI, X21. Otherwise, the MPDF has no special properties that differ 
from the basic properties of any other probability density function. 

N-Variate Case 

The concept of a discrete MPDF can be straightforwardly generalized to the 
n-variate case, in which case the marginal densities may themselves be joint 
density functions. For example, if we have the density function f(Xl, X2, x31 for 
the trivariate random variable (X I, X2, X31, then we may conceive of six marginal 
density functions: f!lxI L h(X21, fa(x31, fdxI, x21, f!3lxI, x31, and f23(X2, x31. In gen­
eral, for an n-variate random variable, there are (2n - 21 possible MPDFs that 
can be defined from knowledge of f(XI,"" xnl. We present the n-variate gen­
eralization in the following definition. We use the notation h .. .im(xi,," .,xim) 
to represent the MPDF of the m-variate random variable (Xii"'" Xim I with 
the j/s being the indices that identify the particular random vector of inter­
est. The motivation for the definition is analogous to the argument in the 
bivariate case upon identifying the equivalent events (Xii,"" xim I E Band 
A = {x: (xiJ"'" xim I E B, X E R(Xj) and is left to the reader as an exercise. 
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Definition 2.15 
Discrete marginal 

probability 
density functions 

Definition 2.16 
Continuous 

marginal probability 
density functions 

Let f(xl, ... , xn) be the joint discrete probability density function for the n-
dimensional random variable (Xl, ... , Xn). Let J = {il, h, ... , iml, 1 ::: m < n, 
be a set of indices selected from the index set I = {I, 2, ... , n}. Then the 
marginal density function for the m-dimensional discrete random variable 
(Xii, ... ,Xi",) is given by 

fil ... im(Xill·· ',Xim) = L'" L f(xl," .,xn). 
IXiERIXjl,iEI-1l 

In other words, to define a MPDF in the general discrete case, we simply "sum 
out" the variables that are not of interest in the joint density function. We are 
left with the marginal density function for the random variable in which we are 
interested. For example, if n = 3, so that I = {I, 2,3l, and if J = {il, i2} = {1,3} so 
that I - J = {2l, then Def. 2.15 indicates that the MPDF of the random variable 
(Xl, X3) is given by 

h3(XI,X3) = L f(XI,X2,X3). 
x2ERlx 21 

Similarly, the marginal density for Xl would be defined by 

fdxd = L L f(XI,X2,X3). 
x2ERlx21 x.lERlx.ll 

The concept of a continuous MPDF can be generalized to the n-variate case as 
follows: 

Let f(xl,"" xn) be the joint continuous probability density function for the 
n-variate random variable (Xl, .. . ,Xn ). Let J = {h, h, ... , ;m}, 1 :::: m < n, be a 
set of indices selected from the index set I = {I, 2, ... , n}. Then the marginal 
density function for the m-variate continuous random variable (XiI, ... , Xim) 
is given by 

In other words, to define a MPDF function in the general continuous case, 
we simply "integrate out" the variables in the joint density function that are 
not of interest. We are left with the marginal density function for the random 
variables in which we are interested. An example of marginal densities in the 
context of a trivariate random variable will be presented in Section 2.8. 



2.6 Conditional Density Functions 83 

Marginal Cumulative Distribution Functions (MCDFs) 

Marginal CDFs are simply CDFs that have been derived for a subset of the 
random variables in X = (Xl, ... , Xn) from initial knowledge of the joint PDF 
or joint CDF of X. For example, ordering the elements of a continuous random 
variable (Xl, ... , Xn) so that the first m < n random variables are of primary 
interest, the MCDF of (Xl, .. . ,Xm ) can be defined as 

h .. m(b l , ... , bm) = PXI .. .xm(Xi ::::; bi, i = 1, ... , m) (Def. of CDF) 

= P(Xi ::::; bi , i = I, ... , m; Xi < 00, i = m + I, ... , n) (equivalent events) 

= F(h, ... , bm , 00, ... ,00) (Def. in terms of joint CDF) 

l bl Ibm 100 100 = . . . . . . f(xI, ... , Xn )dxn ... dXI (De£. in terms of joint PDF) 
-00 -00 -00 -00 

l h Ibm 
= ... h .. m(XI, ... ,Xm)dxm ... dx] 

-00 -00 

(Def. in terms of marginal PDF). 

In the case of an arbitrary subset (Xii, ... , Xim I, m < n, of the random variables 
(Xl, .. . ,Xn ), the MCDF in terms of the joint CDF or marginal PDF can be rep­
resented as 

where bi; is the iith entry in band h = 00 if i ¢ {it, ... , im}. 
Examples of marginal CDFs in the trivariate case are presented in Sec­

tion 2.8. The discrete case is analogous, with summation replacing integration. 

2.6 Conditional Density Functions 

Suppose that we have knowledge of the probability space corresponding to an 
experiment involving outcomes of the n-dimensional random variable Xln) = 
(Xl, .. . ,Xm,Xm+], ... ,Xn) and we are interested in assigning probabilities to 
the event (Xl, .. . ,Xm ) E C given that (Xm+l," .,xn ) E D. In practical terms, this 
relates to an experiment in which n different characteristics were recorded for 
each outcome and we are specifically interested in analyzing a subset of these 
characteristics given that a fixed set of possibilities will occur with certainty 
for the remaining characteristics. Note that this is different from asking for the 
probability of observing the event (Xl, ... ,Xm) E C and (Xm+l,"" xn) E D, for 
we are saying that (Xm+l, ... , xn) E D will happen with certainty. In other words, 
we are asking for the probability that (Xl, ... , xm) E C, conditional on the event 
that (Xm+l' ... , xn) E D. How do we assign the appropriate probability in this 
case? Questions of this type can be addressed through the use of conditional 
probability density functions, which can be derived from knowledge of the joint 
density function f(xI,"" xn). 
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The key to the definition of a conditional probability density function is to 
establish the equivalence between events for the m-dimensional random vari­
able IXI, .. . ,Xm ) and In - m)-dimensional random variable IXm+I, .. . ,Xn ) with 
events for the n-dimensional random variable IXI, .. . ,Xn ). Then conditional 
probabilities in the probability space for lXI, ... , Xn) can be used to define a 
conditional probability density function. 

Bivariate Case 

Let flxl, X2) be the joint density function and RIX) be the range of the bivariate 
random variable IXl,X2). The event for the bivariate random variable that is 
equivalent to the event C occurring for the random variable Xl is given by 

A = {(Xl, X2): Xl E C, (Xl, X2) E RIXll. 

Similarly, the event for the bivariate random variable that is equivalent to the 
event D occurring for the random variable X2 is given by 

B = {(Xl, X2): X2 ED, lXI, X2) E RIXll. 

Then the probability that Xl E C given that X2 E D can be defined by the 
conditional probability 

p(AnB) 
PXdX2(C I D) = P(XI E C I X2 ED) = PIA I B) = P(B) for P(B) =I- 0, 

where 

An B = {(Xl, X2): Xl E C, X2 E D, (Xl, X2) E R(X)}. 

In the case of a discrete random variable, the foregoing conditional proba­
bility is represented by 

PXdX2(C I D) = PIA I B) = LL(xl,x21EAnBf(xl,x2). 
L L(XI,X21EB f(xl, X2) 

Given our convention that f(xl, X2) = 0 whenever (Xl, X2) ¢ R(X), we can ignore 
the set-defining condition (Xl, X2) E RIX) in both the sets An Band Band 
represent the conditional probability as 

PXdX2(C I D) = LXIEC L x2ED f(xl,x2) = L [Lx2EDfIXI'X2)] , 
LXIER(Xd L x2ED f(xI,x2) XIEC LX2ED!2lx2) 

where we have used the fact that !2(X2) = LXIER(Xd f(xI,x2). The expression in 
brackets is the conditional density function we seek, since it is the function 
that would be summed over the elements in C to assign probability to the event 
Xl E C, given X2 E D, for any event C. We will denote the conditional density 
of Xl, given X2 E D, by the notation flxl I X2 E D). If D is a singleton set {d}, we 
will also represent the conditional density function as f(xi I X2 = d). 
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In the case of a continuous bivariate random variable, the probability that 
XI E C given that X2 ED would be given by (assuming Px2 (D) = P(B) =1= 0) 

ff1xl,x2)EAnB f(xI, x2)dxI dX2 
PXilX2(C I D) = PIx E C I X2 ED) = PIA I B) = ff f( )d d 

IXI,X2)EB XI, X2 XI X2 

Using our convention that f(xI, X2) = 0 V (XI, X2) ¢ R(X), we can also represent 
the conditional probability as 

fXI EC fX2ED f(xI, X2)dx2 dXI 1 [fX2ED fIx, X2)dx2 ] 
PXdX2(C I D) = 00 = f dXI, Loo fX2ED f(xI, X2)dx2 dXI XIEC X2ED h(x2)dx2 

where we have used the fact that h(x2) = f~oof(xI,x2)dxI. The expression in 
brackets is the conditional density function we seek, since it is the function 
that would be integrated over the elements in C to assign probability to the 
event XI E C, given X2 E D, for any event C. As in the discrete case, we will 
use the notation f(xI I X2 E D) or f(xI I X2 = d) to represent the conditional 
density function. In both the discrete and continuous cases, we will eliminate 
the random variable subscripts on PXilxJ) when the random variable context 
of the probability set function is clear. 

Once derived, a conditional probability density function exhibits all of the 
standard properties of a PDF. The significance of the term conditional PDF is 
to indicate that the density of XI was derived from the joint density for (XI ,X2) 
conditional on a specific event for X2. Otherwise, there are no special general 
properties of a conditional PDF that distinguishes it from any other PDF. 

We provide examples of the derivation and use of discrete and continuous 
conditional PDFs in the following examples. 

Example 2.21 Recall the dice example, Ex. 2.15, where f(xI, X2) = (1/36)I(1, ... ,6dxI )I(I, ... ,6dx2 -XI). 

The conditional density function for XI, given that X2 = 5, is given by 

fI x I X = 5) = f(xI, 5) = ~I(1, ... ,6dxtlI(1, ... ,6d5 - xtl = ~1 (x ) 
I 2 h(5) 6-15-71 I (5) 4 (l, ... ,4) l· 

36 (2, ... ,l2) 

The probability of rolling a 3 or less on the red die, given that the total of the 
two dice will be 5, is then 

3 3 
P(Xl ~ 3 I X2 = 5) = L f(xI I X2 = 5) = 4:' 

xl=1 

Note that the unconditional probability that XI ~ 3 is equal 'to 1/2. 
The conditional density function for XI, given that X2 E D = {7, II}, is 

given by 

"I I D) LX2ED f(xI, X2) 3l6I (1, ... ,6dx I) [I(1, ... ,6d7 - XI) + I(1, ... ,6}( 11 - XI)] 
"XI X2E = = ~--------------~----------------

LX2ED f2(x2) 386 

= k1(l, ... ,4}(xd + iI(s,6}(xd. 
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The probability of rolling a 3 or less on the red die, given that the total of the 
two dice will be either a 7 or 11, is then 

3 3 
P(XI ::: 3 I X2 ED) = L f(xi I X2 E D) = S· 

xl=1 

o 

Example 2.22 Recall Ex. 2.20 regarding the proportion of daily capacity at which two fish pro­
cessing plants operate. The conditional density function of plant l's capacity, 
given that plant 2 operates at less than half of capacity, is given by 

f( ) f!oo f(xl, x2)dx2 fC}(XI + x2)Iro,lj(xl )dX2 
Xl I X2 :::.5 = s = "--"---;:s,---:...,:-.:'----too h(X2)dx2 fa (X2 + ! )dX2 

.5Xl+.125 (4 1) = .375 Ilo,ll(xI! = 3"Xl + 3" I(o,lj(xI!. 

The probability that Xl ::: .5, given that X2 ::: .5, is given by 

P(XI ::: .5 I X2 ::: .5) = {S (i Xl + ~ ) dXl = ~. 
Recall that the unconditional probability that Xl ::: .5 was .375. o 

Conditioning on Elementary Events in Continuous Cases A problem arises in the 
continuous case when defining a conditional PDF for Xl, conditional on an 
elementary event occurring for X2. Namely, since all elementary events are 
assigned probability zero in the continuous case, and since, more generally, the 
integral over a singleton set is zero, our definition of the conditional density, 
as presented earlier, yields 

f(xl I X2 = b) = f: f(xl,x2)dx2 = ~, 
f: h(X2Jdx2 0 

which is an indeterminate form. Thus f(xl I X2 = b) is undefined, so that P(XI E 

A I X2 = b) is undefined as well. This is different than the discrete case, where 

f(xl,b) 
f(xl I X2 = bJ = fz(bJ 

is well-defined, provided h(b) "# O. 
The problem is circumvented by redefining the conditional probability, 

P(XI E A I X2 = bJ, in the continuous case in terms of a limit, as 

P(XI E A I X2 = b) = lim P(XI E A I X2 E [b - E, b + EI) 
E .... O+ 
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lemma 2.2 
Mean Value Theorem 

for Integrals 

where lim€ .... o+ means we are examining a limit for a sequence of E values that 
approach zero from positive values (Le., E > 0). The idea is to examine the limit­
ing value of a sequence of probabilities that are conditioned on a corresponding 
sequence of events, [b - E, b + EJ for E ~ 0+, that converge to the elementary 
event {b}. The following lemma will facilitate the identification of the limit. 

If g(x) is continuous V x E [CI, C2J, then 3 Xo E [CI, C2J such that 12 g(x)dx = 
g(XO)(c2 - CI). IS 

To use the mean value theorem, and to ensure that the limit of the condi­
tional probabilities exists, we assume that there exists a choice of E > 0 such 
thathlx2) andf(xI, X2J are continuous inx2, V X2 E [b-E, b+EJ, and thath(bJ > O. 
Then, by the mean value theorem, 

P( A I = bJ = l' [2E fXIEA f(xI, X~JdXI] 
Xl E X2 1m 2 f (J ' 

E .... O+ E 2 x2: 

where both x~ and xi E [b - E, b + EJ, and x~ will generally depend on the value 
of XI. 16 The 2E'S in the numerator and denominator cancel each other, and as 
E ~ 0+, the interval [b - E, b + EJ reduces to [b, bJ = b, so that in the limit, both 
x~ and xi = b. The limiting value of the conditional probability is then 

1 f(xI, b) 
P(XI E A I X2 = bJ = xlEA hlb) dXI. 

Since the choice of event A is arbitrary, it follows that the appropriate condi­
tional probability density in this case is 

flxl, bJ 
flxl I X2 = bJ = hlb) , 

which is precisely of the same form as the discrete case. Thus, the definition of 
conditional density functions, when conditioning on elementary events, will 
be identical for continuous and discrete random variables. 

Example 2.23 Recall Ex. 2.22. The conditional PDF for plant l's proportion of capacity Xl, 
given that plant 2's capacity proportion is X2 = .75, can be defined as 

II - 75) - f(xI, .75) _ IXI + .75)I[0,ljlxtl - (~ ~) I I ) 
Xl I X2 - . - 12(.75) - 1.25 - SXI + 5 [O,IJ XI . 

lSR. Courant and F. John (1965], Introduction to Calculus and Analysis, New York: John Wiley·lnterscience, p. 143. 

l6In applying the mean value theorem to the numerator, we treat flxl, X2) as a function of the single variable X2, fixing the value of 
Xl for each application. 
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Definition 2.17 
Conditional probability 

density functions 

Random Variables, Densities, and Cumulative Distribution Functions 

The probability that Xl ~ .5, given that X2 = .75, is then given by 

['5 (4 3) 
P(XI ~ .5 I X2 = .75) = 10 SXI + S dXI = .4. o 

N-Variate Case 

The preceding concepts of discrete and continuous conditional probability den­
sity functions in the bivariate case can be generalized to the n-variate case, as 
indicated in the following definition. 

Let I(XI, ... , xn) be the joint density function for the n-dimensional random 
variable (Xl, ... , Xn). Let h = {il, ... , im} and 12 = Um+l, ... , in} be two mutu­
ally exclusive index sets whose union is equal to the index set {l, 2, ... , n}. 
Then the conditional density function for the m-dimensional random vari­
able (X;II" "X;m)' given that (X;m+II'" ,X;n) E D and PXimw"Xin(D) > 0, is as 
follows: 

Discrete Case: 

L'" Llx X· leD/(XI, ... ,xn) "I I ) D) Im+l"'" In I'XiI," "X;m X;",+I'" "X;n E = ~ ~ I ( ) 
L.., ... L..,lxim+1 •...• xin leD ;m+I ... ;n X;m+I' ... , X;n 

Continuous Case: 

l(x;II"" X;m I (X;m+II"" x;,,) ED) 

f· .. fix, X· leD I(XI, ... , Xn )dx; +1 ... dx; 
'm+1 "." In m n = ~--~--~~--~--~~------~~------~ 

f· .. fix, x leD l;m+I ... in (X;m+I' .•. , Xin )dXim+1 ... dX;n 
'm+I"'" In 

If D is equal to the elementary event (dm +l , ... , dn), then the definition of 
the conditional density in both the discrete and continuous cases can be 
represented as 

fl d . ) f(xI, ... ,xn ) 
X;II"" Xim I Xii = i,l = m + 1, ... , n = f. . (d d ) 

Im+I ... ln m+l,···, n 

where Xif = d i if ii E 12, when the marginal density in the denominator is 
positive valuedY 

17In the continuous case, it is also presumed that f and I;m+I ... in are continuous in !xim+I"",Xinl within some neighborhood of 
points around the point where the conditional density is evaluated in order to justify the conditional density definition via a 
limiting argument analogous to the bivariate case. Motivation for the conditional density expression when conditioning on an 
elementary event in the continuous case can then be provided by extending the mean value theorem argument used in the bivariate 
case. See R. G. Bartle, Real Analysis, p. 429, for a statement of the general mean value theorem for integrals. 
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For example, if n = 3, h = {l,3}, and h = {2}, then the conditional density 
function of (X I, X3 ), given that X2 E D, would be defined as 

"( I D) _ L x2eD f(XI,X2,X3) 
j'XI,X3 X2 E - " f ( ) 

~x2eD 2 X2 

in the discrete case, with integration replacing summation in the continuous 
case. If D = d2, then for both the discrete and continuous cases, 

f(XI,d2,X3) 
f(XI, X3 I X2 = d2) = h(d2) . 

Similarly, if h = {I} and h = {2,3}, then the conditional density for XI, given 
(X2,X3) E D, would be defined as 

"( I ( ) D) L L(X2,X,lieD f(XI,X2,X3) 
J I XI X2, X3 E = -=:-:=::::--="-.c:.:..::._-:;--;--_-;-

L L(x2,x3ieD f23 (X2, X3) 

in the discrete case, with integration replacing summation in the continuous 
case. If D = {(d2, d3 )}, then for both the discrete and continuous cases, 

f(xI, d2, d3) 
f(xi I X2 = d2,X3 = d3) = f23(d2, d3) . 

An example of conditional PDFs in the trivariate case will be presented in 
Section 2.8. 

In summary, if we begin with the joint density function appropriate for 
assigning probabilities to events involving the n-dimensional random variable 
(XI, .. . ,Xn), we can derive a conditional probability density function that is 
the PDF appropriate for assigning probabilities to events for an m-dimensional 
subset of the random variables in (XI, ... , Xn), given (or conditional) on an event 
for the remaining n - m random variables. The construction of the conditional 
density involves both the joint density of (XI, .. . ,Xn) and the marginal density 
of the (n - m I-dimensional random variable on which we are conditioning. In the 
special case where we are conditioning on an elementary event, the conditional 
density function simply becomes the ratio of the joint density function to the 
marginal density function, replacing the arguments of these functions with 
their conditioned values for those arguments corresponding to random variables 
on which we are conditioning (which represents all of the arguments of the 
marginal density, and a subset of the arguments of the joint density). 

Conditional CDFs 

We can define the concept of a conditional CDF by simply using a conditional 
density function in the definition of the CDF. For example, for the bivariate 
random variable (XI ,X2), we can define 
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as one such conditional CDF, representing the CDF of XI, conditional onX2 ED. 
Once defined, the conditional CDF possesses no special properties that distin­
guish it in concept from any other CDF. The reader is asked to contemplate the 
various conditional CDFs that can be defined for the n-dimensional random 
variable (XI"'" Xn). 

2.7 Independence of Random Variables 

From our previous discussion of independence of events, we know that A and 
B are independent iff PIA n B) = P(A)P(B). This concept can be applied di­
rectly to determine whether two events for the n-dimensional random variable 
(XI, .. . ,Xn ) are independent. The general definition of independence of events 
(De£. 1.13) can be used directly to examine the independence of k events for the 
random variable IX I, ... ,Xn ). The concept of independence of events will now 
be extended further to the idea of independence of random variables, which is 
related to the question of whether the n events (recall the abbreviated set defi­
nition notation of Def. 2.7) {Xi E Ad = {(XI, ... , Xn): Xi E Ai, (XI, ... , Xn) E R(X)}, 
i = I, ... , n, are independent for all possible choices of the events AI, ... , An. 
If so, the n random variables are said to be independent. In effect, the con­
cept is one of global independence of events for random variables-we define 
an event Ai for each of the n random variables in (XI, . .. ,Xn ) and, no matter 
how we define the events (which is the meaning of the term "global" here), 
the events {Xi E Ad, i = I, ... , n, are independent. Among other things, this 
implies that the probability assigned to any event Ai for any random variable 
Xi in (XI"'" Xn) would be unaffected by conditioning on any event B for the 
remaining random variables (assuming P(B) > 0 for the existence of the condi­
tional probability). 

Bivariate Case 

We seek to establish a condition that will ensure that the events {XI E AI} and 
{X2 E A2} are independent for all possible choices of the events Al and A2. This 
can be accomplished by applying independence conditions to events in the 
probability space, {R(X), I, P} for the bivariate random variable X = (XI,X2). 
The events XI E Al and X2 E A2 are equivalent, respectively, to the following 
events for the bivariate random variable: 

BI = {(XI, X2J: XI E AI, (Xl, X2J E R(X)}, 

B2 == {(Xl, X2J: X2 E A 2, (Xl, X2J E R(X)}. 

The two events BI and B2 are independent iff P(BI nB2) = P(BIlP(B2), which can 
also be represented as P(XI E AI, X2 E A 2) = P(XI E AilP(X2 E A2J. Requiring the 
independence condition to hold for all choices of the events Al and A21eads to 
the definition of the independence condition for random variables. 
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Definition 2.18 
Independence of 
random variables 

The random variables Xl and X2 are said to be independent iff P(XI E AI, X2 E 
A2) = P(XI E Al )P(X2 E A2) for all events AI, A2. 

There is an equivalent characterization of independence of random vari­
ables in terms of PDFs that can be useful in practice and that also further facil· 
itates the investigation of the implications of random-variable independence. 

Theorem 2.6 (Joint Density Factorization for Independence of Random Variables) The ran­
dom variables Xl and X2 with joint probability density function f(xI,x2) and 
marginal probability density functions !i(Xi), i = 1,2, are independent iff the 
joint density factors into the product of the marginal densities as f(xI,x2) = 
fdxI/h(x21 V (XI,X2) except, possibly, at points of discontinuity for the joint 
density function of a continuous random variable. 

Proof (Discrete case) Let Al and A2 be any two events for XI and X2, respectively. 
Then if the joint density function f(xl, x21 factors, 

P(XI E A I,X2 E A2) = L L f(xI,x2) = L fdxI/ L h(X2) = P(XI E AI/P(X2 E A2), 

and so Xl and X2 are independent. Thus, factorization is sufficient for indepen­
dence. Now assume (XI,X2) are independent random variables. Let Al = {ad 
and A2 = {a2} for any choice of elementary events, ai E R(Xi ), corresponding to 
the random variable Xi, i = 1,2, respectively. Then, by independence, 

P(XI = al,X2 = a2) = f(al, a2) = P(XI = al)P(x2 = a2) = fI(al )h(a2). 

If ai ¢ R(Xi ), then fi(aiJ = 0 and [(ai, a2) = 0 for i = 1,2, and thus factorization 
will automatically hold. Thus, factorization is necessary for independence. 

(Continuous case) Let Al and A2 be any two events for XI and X2, respec­
tively. Then if the joint density function f(xI, X2) factors, 18 

so that XI and X2 are independent. Thus, factorization is sufficient for inde­
pendence. Now assume (XI,X2) are independent random variables. Let Ai = 

18 Any points of discontinuity can be ignored in the definitions of the probability integrals without affecting the probability assign· 
ments. Recall Footnote 12. 
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{Xi: Xi :::: ad for arbitrary choice of ai, i = 1,2. Then by independence, 

P(XI :::: al,X2 :::: a2J = i: i:f(XI,X2JdxI dX2 

= P(XI :::: adP(x2:::: a2J = i:fdxddxI i:h(X2JdX2' 

Differentiating the integrals with respect to al and a2 yieldsf(al, a2J=fdadh(a2J 
wherever the joint density function is continuous. Thus, the factorization con­
dition stated in the theorem is necessary for independence. • 

In other words, two random variables are independent iff their joint PDF can 
be expressed equivalently as the product of their respective marginal PDFs (the 
condition not being required to hold at points of discontinuity in the continuous 
case). An important implication of the pairwise independence of Xl and X2 is 
that the conditional and marginal PDFs of the respective random variables are 
identical. l9 For example, assuming independence, 

I( I = b) = f(xI, b) = fdxdh(b) = f ( J 
Xl X2 h(b) h(b) I XI 

and 

fl I B) !X2EBf(XI,X2)dx2 !J (XI) !X2EBh(X2)dx2 f ( ) 
XI X2 E = = = I XI 

!X2EB h(X2)dx2 !X2EB f2(X2)dx2 

(in the discrete case, replace integration by summation). The fact that condi­
tional and marginal PDFs are identical implies that the probability of XI E A, 
for any event A, is unaffected by the occurrence or nonoccurrence of event B 
(or h) for X2, e.g., in the continuous case, 

P(XI E A I X2 E B) = { f(xi I X2 E B)dxI = ( II(XI)dxI = P(XI E A) 
iX'EA iX,EA 

(replace integration by summation in the discrete case). The result holds for 
events involving X2 for which the conditional density function is defined. The 
roles of Xl and X2 can be reversed in the preceding discussion. 

Example 2.24 Recall Ex. 2.16 concerning coating flaws in the manufacture of television 
screens. The horizontal and vertical coordinates of the coating flaw was the 
outcome of a bivariate random variable with joint density function 

f(XI,X2) = AII-2,2j(xdI I-I.S,l.sJ!x2). 

Are the random variables independent? 

19We will henceforth suppress constant reference to the fact that factorization might not hold for some points of discontinuity in 
the continuous case-it will be tacitly understood that results we derive based on the factorization of [(XI, X2) may be violated at 
some isolated points. For example, for the case at hand, marginal and conditional densities may not be equal at some isolated points. 
Assignments of probability will be unaffected by this technical anomaly. 
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Answer: The marginal densities of Xl and X2 are given by 

11.5 1 
fdxd = I[-2,2!(xt! -1.5 12 dX2 = .25I[-2,2!(xd, 

12 1 1 
f2(X2) = I[-1.S,l.S!(X2) -2 12 dXI = 3I[-1.5,1.5!(x2). 

It follows that f(XI, X2) = fdxd!2(X2) V (Xl, X2), and the random variables are 
independent. Therefore, knowledge that an event for X2 has occurred has no 
effect on the probability assigned to events for XI, and vice versa. 0 

Example 2.25 Recall the dice example, Ex. 2.15. Are XI andX2 independent random variables? 

Definition 2.19 
Independence of 
random variables 

(n-variate) 

Answer: Examine the validity of the independence condition: 

f(XI, X2) ~ fdxd!2lx2) V (XI, X2), 

or, specifically, 

1 I ()I ( )? II ()(6- IX2-7 1 )I () 36 (1,2, ... ,6) XI (l,2, ... ,6) X2 - XI = (5 (l,2, ... ,6) XI 36 (2, ... ,12) X2 

The random variables X I and X2 are not in depend en t, since, for example, letting 
Xl = 2 and X2 = 4 results in 1/36 i= 1/72. Therefore, knowledge that an event 
for X2 has occurred can affect the probability assigned to events for XI, and vice 
versa. 0 

N-Variate 

The independence concept can be extended beyond the bivariate case to the 
case of independence of random variables XI, .. . ,Xn . The formal definition of 
independence in the n-variate case is as follows: 

The random variables XI, X 2, ••• , Xn are said to be independent iff P(Xi E 

AiJ i = 1, ... , n) = n7=1 P(Xi E Ai) for all choices of the events AI, ... , An. 

The motivation for the definition is similar to the argument used in the 
bivariate case. For Bi = {(XI, ... , Xn): Xi E Ai, (XI, ... , Xn) E R(X)L i = I, ... , n, to 
be independent events, we require (recall Def. 1.13) 

p (nB;) = n P(B;) V I c {1,2, .. . ,nL with NUl ~ 2. 
iel iEl 

If we further require this condition to hold for all possible choices of the events 
(Bl' ... , Bn ), then the totality of the conditions can be represented as 
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for all choices of the events AI, ... , An (or, equivalently, for corresponding 
choices of BI, ... , Bn). Any of the other conditions required for independence 
of events, i.e., 

P (n Bi) = Il P(Bil with J c {I, 2, ... , n} and N(J) < n, 
ie! ie! 

are implied by the preceding condition upon letting Ai = R(Xi) (or, equivalently, 
Bi = R(X)) for j E 1. 

The generalization of the joint density factorization theorem is given as 
Theorem 2.7. The proof is a direct extension of the arguments used in proving 
Theorem 2.6 and is left to the reader. 

Theorem 2.7 (Joint Density Factorization for Independence of Random Variables in-variate 
casej) The random variables Xl, X2, ... , Xn with joint probability density 
function f(xI, ... ,xn) and marginal probability density functions fi(xi), i = I, 
... , n, are independent iff the joint density can be factored into'the product of 
the marginal densities as 

n 

f(xI," .,xn) = Ilh(xi) V (XI, .. . ,xn) 
i=1 

except, possibly, at points of discontinuity for the joint density function of a 
continuous random variable. 

An example of the application of Theorem 2.7 is given in Section 2.8. 
If (Xl, ... , Xn) are independent random variables, then knowing the mar­

ginal densities h(Xi), i = I, ... , n, is equivalent to knowing the joint density 
function for (X I, ... , Xn), since then f(xI, ... , xn) = n7= I h(Xi). However, if the 
random variables in the collection (XI, .. . ,Xn) are not independent, then know­
ing each of the marginal densities of the X/s is not sufficient to determine the 
joint density function for (Xl, .. . ,Xn ). In fact, it can be shown that an uncount­
ably infinite family of different joint density functions can give rise to the same 
collection of marginal density functions. 2o We provide the following counterex­
ample in the bivariate case to the proposition that knowledge of the marginal 
PDFs is sufficient for determining the joint PDF. 

Example 2.26 Examine the function 

fcr(xI,x2) = [1 +a(2xI -1)(2x2 -lllI!o,l)(xt!I[o,Ij(x2). 

The reader should verify that fcr(xI' X2) is a probability density function V a E 

[-1,1]. For any choice of a E [-I, I], the marginal density function for Xl is 
given by 

fdxt! = i: fcr(xI, x2)dx2 = I!O,IJ(Xt!. 

20E. J. Gumbel (1958), Distributions a plusieurs variables dont les marges sont donnees, C.R. Acad. Sci., Paris, 246, pp. 2717-2720. 
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Similarly, the marginal density of X 2, for any choice of ex E [-I, 1L is given by 

h!X2) = i:fct!xI,x2)dxI = I[O,IJ!X2)' 

Since the same marginal density functions are associated with each of an un­
countably infinite collection of joint density functions, it is clear that knowl­
edge of II (XI) and h(X2) is insufficient to determine which is the appropriate 
joint density function for (XI,X2). If we knew the marginal densities of XI and 
X2, as stated, and if XI and X2 are independent random variables, then we would 
know that f(XI, X2) = I[o,1](xdI[o,lj(x2). 0 

Independence Between Random Vectors and Between Functions of Random 
Vectors 

The independence concepts can be extended so that they apply to independence 
among two or more random vectors. Essentially, all that is required is to inter­
pret the X/s as multivariate random variables in the appropriate definitions and 
theorems presented heretofore, and the statements are valid. Motivation for the 
validity of the extensions can be provided using arguments that are analogous 
to those used previously. For example, to extend the previous bivariate result 
to two random vectors, let XI = !Xll , ... , Xlm) be an m-dimensional random 
variable and X2 = (X2I , .. "X2n) be an n-dimensional random variable. Then XI 
and X2 are independent iff 

P(XI E A I ,X2 E A2) = P((Xll,"" Xlm) E AI, (X2I,"" X2n) E A 2) 

= P((Xll," .,Xlm) E AdP!lX2I, ... ,X2n) E A2) = P(XI E AdP!x2 E A2), 

for all event pairs AI, A2. Furthermore, in terms of joint density factorization, 
XI and X2 are independent iff 

f(XI,X2) = {(Xll," .,Xlm,X2I, ... ,X2n) = fdxll," .,xlm)h!X2I," .,X2n) = fdxdh!X2) V!XI,X2) 

holds except, perhaps, at points of discontinuity for f(XI, X2) for continuous ran­
dom variables. The reader can contemplate the myriad of other independence 
conditions that can be constructed for discrete and continuous random vectors. 

Implications of the extended independence definitions and theorems are 
qualitatively similar to the implications identified previously for the case where 
the X/s were interpreted as scalars. For example, if XI = !Xll, ... ,Xlm) and 
X2 = (X2I, .. . ,X2n) are independent random variables, then 

P((Xll," "Xlm) E Al I!X21/" .,X2n E A2)) = P((Xll," "Xlm) E Ad, 

i.e., conditional and unconditional probability of events for the random variable 
XI are identical (and similarly for X2) for all choices of Al and A2 for which the 
conditional probability is defined. 

It is also useful to note some results concerning the independence of ran­
dom variables which are defined as functions of other independent random 
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variables. We begin with the simplest case of two independent random variables 
Xl andX2. 

Theorem 2.8 If Xl and X2 are independent random variables, and if the random variables 
YI and Y2 are defined by YI = Ydxd and Y2 = Y2(X2), then YI and Y2 are 
independent random variables. 

Proof The event involving outcomes of Xi that is equivalent to the event Yi E Ai is 
given by Bi = {Xi: Yi(Xi) E Ai, Xi E R(Xil} for i = 1,2. Then 

P(n E AI, Y2 E A2) = P(XI E BI, X2 E B2) 

= P(XI E BJ )P(X2 E B2) (by independence of Xl, X2) 

= P(YI E AI)P(Y2 E A2), 

and since this holds for every event pair AI, A 2, the random variables YI and Y2 
are independent. • 

Example 2.27 A large service station sells unleaded and premium-grade gasoline. The quanti­
ties sold of each type of fuel on a given day is the outcome of a bivariate random 
variable with density function21 

f(xI, X2) = {o e-{·lxl +.5x2) I(O,oo)(XI )I{o,oo)(x2), 

where the x/s are measured in thousands of gallons. The marginal densities are 
given by (reader, please verify) 

fdxd = Iloe-·lx1I{o,oo)(xd and !2(X2) = !e-·5x2 I{o,oo)(X2), 

and so the random variables are independent. The prices of unleaded and pre­
mium gasoline are $1.25 and $1.45 per gallon, respectively. The wholesale cost 
of gasoline plus federal state and local taxes amounts to $1.00 and $1.10 per gal­
lon, respectively. Other daily variable costs in selling the two products amount 
to Ci(Xi) = 2 Ox; , i = 1,2. Are daily profits above variable costs for the two 
products independent random variables? 
Answer: Yes. Note that the profit levels in the two cases are n I = 250XI - 20xf 
and n2 = 350X2 - 20xi, respectively. Since n l is only a function of Xl, n 2 is 
only a function of X2, and Xl and X2 are independent, then nl and n2 are 
independent by Theorem 2.8. 0 

A more general theorem explicitly involving random vectors is stated as 
follows: 

Theorem 2.9 Let Xl, ... , Xn be a collection of n independent random vectors, and let the 
random vectors YI, ... , Yn be defined by Yi = Yi(Xi), i = I, ... , n. Then the 
random vectors YI, ... , Yn are independent. 

21This must be an approximation-why! 
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Proof The event involving outcomes of the random vector Xi that is equivalent to the 
event A j for the random vector Yj is given by Bj = {Xj: Yj(Xj) E A j, Xj E R(Xj )}, 
i = 1, ... , n. Then 

P(Yj E Aj,i = 1, .. . ,n) = P(Xi E Bj,i = 1, .. . ,n) 

n 
= n P(Xj E Bj ) (by independence of random vectors) 

i=l 

n 

= n P(Yi E Ai), 
i=l 

and since this holds for every collection of events AI, ... , An, the random 
vectors YI, ... , Yn are independent by a vector interpretation of the random 
variables in Def. 2.19. • 

Example 2.28 Examine the experiment of independently tossing two fair coins and rolling 
three fair dice. Let XI and X2 represent whether heads (Xj = 1) or tails (Xj = 
0) appears on the first and second coins, respectively, and let X3, X 4, and Xs 
represent the number of dots facing up on each of the three dice, respectively. 
Since the random variables are independent, the joint density of XI, ... , Xs can 
be written as 

Define two new random vectors YI and Y2 using the vector functions 

YI = [Yll] = [XI +X2] = YI (XI,X2), 
(2xl) Yl2 XIX2 (2xl) . 

Y2 = [Y2IJ=[X3+ X4/+ XSJ= Y2 (X3,X4,XS). 
(2xl) Y22 X3 X4 Xs (2xl) 

Then since the vector YI is a function of (Xl, X2), Y2 is a function of (X3, X4, xs), 
and since the random vectors (Xl,X2) and (X3,X4,XS) are independent (why?), 
Theorem 2.9 indicates that the random vectors Y I and Y 2 are independent. This 
is clearly consistent with intuition, since outcomes of the vector Y I obviously 
have nothing to do with outcomes of the vector Y2. The reader should note that 
within vectors, the random variables are not independent, i.e., Yll and YI2 are 
not independent, and neither are Y21 and Y22. 0 

2.8 Extended Example of Multivariate Concepts in the Continuous Case 

We now further illustrate some of the concepts of this chapter with an extended 
example involving a trivariate continuous random variable. Let (XI, X2, X3) be 
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a continuous trivariate random variable with joint density function 

f(XI, X2, X3) = t6 xlxi e-Xa I[0,2J (xI)I[0,2J (x2)I[0,001 (X3). 

a. What is the marginal density of Xl ? of X2? of X3? 
Answer: 

It (Xl) = i: i: f(XI, X2, X3)dx2 dX3 

= ~xlI[0,2](xd i: X~I[0,2]lx2)dx2 i: e-x.1I[0,001(X3)dx3 

= l36XII[0,2](xd(~)(I) = 1xlllo,21IxIJ. 

Similarly, 

1
00 100 3 

f2(X2) = -00 -00 f(Xl, X2, X3)dx l dX3 = SxiI[0,2](x2) 

h(X3) = i: i: f(Xl, X2, X3)dxI dX2 = e-x.1I[0,001(X3). 

h. What is the probability that Xl ~ I? 
Answer: 

P(XI ~ 1) = 1 00 fdxIJdxI = 12 ~XI dXI = xli: = .75. 

c. Are the three random variables independent? 
Answer: Yes. Since we have derived the marginal densities of Xl, X2, and 
X 3 , it is clear that 

f(XI,X2,X3) = fdxIJh(X2)f3(X3) V (Xl,X2,X3). 

d. What is the marginal cumulative distribution function for Xl? for X3? 
Answer: By definition, 

FIIbJ = i:fdXIJdXI = i: ~XlI[0'2](xddxl 
1 x21b b2 

= 2-t ° Ilo,21(b) + I(2,001Ib) = 4 I[0,2](b) + I(2,00)(b), 

F3(bj = i:hIX3)dX3 = i: e-x3 I[0,001Ix3)dx3 

= - e-X3 I~ I[o,oollb) = II - e-b)I[o,ood b ). 

e. What is the probability that Xl ~ I? that X3 > I? 
Answer: PIXI ~ 1) = Fdl) = .25. PIX3 > 1) = 1 - F3(1) = e- l = .3679. 

f. What is the joint cumulative distribution function for Xl, X2, X3? 
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Answer: By definition, 

g. What is the probability that Xl ~ I, X2 ~ I, X3 ~ 1m 
Answer: F(l, I, 10) = (1/4)(3/24)(1 - e- lO ) = .031. 

h. What is the conditional PDF of Xl, given that X2 = 1 and X3 = m 
Answer: By definition, 

f( ) f(xI, 1,0) 
Xl I X2 = l,x3 = 0 = f23(I,O) . 

Also, 

f231x 2, X3) = i: f(xI, X2, X3)dxI = ~X~I[O,21(x2Ie-X3 I\0,oo,(x3). 

Thus, 

t6XI1[O 2j(XI) 1 
f(xi I X2 = I, X3 = 0) = ~' = 2XI1[0,2j(xd 

B 

i. What is the probability that Xl E [0, 1/21, given that X2 = 1 and X3 = m 
Answer: 

tl2 
P(XI E [0, !11 X2 = l,X3 = 0) = 1o f(xi I X2 = l,x3 = O)dXI 

(1/2 1 
= 10 2XIII0,21(XI )dXI 

Xf \1/2 1 
=40="16 
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j. Let the two random variables YI and Y2 be defined by YI = Yt!XI, X2) = XfX2 
and Y2 = Y2(X3) = X3/2. Are the random variables Yl and Y2 independent? 
Answer: Yes, they are independent. The bivariate random variable (Xl, X2) 
is independent of the random variable X3 since f(xI, X2, X3) = fdxI, x2)h (X3), 
i.e., the joint density function factors into the product of the marginal den­
sity of (XI,X2) and the marginal density of X3. Then, since Yl is a function 
of only (Xl, X2) and Y2 is a function of only X3, YI and Y2 are independent 
random variables, by Theorem 2.9. 
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2.9 Events Occurring with Probability Zero 

We present examples of events that occur with probability zero in discrete 
sample spaces. The examples illustrate that the concept of an event occurring 
with probability zero is not isolated to the case of uncountably infinite sample 
spaces, but is also applicable to countable and even finite sample spaces. 

Example 2.29 The annual break-even level of electricity sales for a midwestern electric utility 
is calculated by the accountants of the utility to be one billion kilowatt hours. 
Assume the annual level of electricity sales is the outcome of some continuous 
random variable with density function fIx). Define the random variable Y such 
that 

! < 1 billion } 
if x = 1 billion kilowatt hours. 

> 1 billion 

Then RIY) is finite, with the outcome y = 0 
zero. 

occurring with probability 
.0 

Example 2.30 Let the discrete random variable X have a countably infinite range, RIX) = 
{Xl, X2, X3, ., .}, and density function fIx). Suppose there exists an elementary 
event in RIX) that is less likely to occur than any other elementary event. Let 
this elementary event be Xl. Then 

PlxIJ = flxIJ < flxi) = Plxd Vi> I, 

and it follows that 
n n 

Lf(xIJ < Lflxi) V n > I, 
i=l i=l 

or 

Since L7=1 flxd :::: 1 V n, it follows that the only value for flxl) that can satisfy 
the above strict inequality V n is flxl) = O. Thus, the event Xl occurs with 
probability zero. 

Define another random variable using an indicator function as 

y = I{R(XI-xllI(x) 

so that y = 1 when Xl does not occur and y = 0 when Xl does occur. The range of 
Y is finite, equal to RIY) = {O, I}, and letting h be the discrete probability density 
function for Y, we have h/y) = I{ll/Y), so that y = 0 occurs with probability zero, 
while y = 1 occurs with probability one. 0 
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Key Words, Phrases, and Symbols 

random variable, X 
X: S~R 

classes of discrete and continuous 
density functions 

continuous joint probability density 
function 

X(w) mixed discrete-continuous random f(XI, ... ,Xn ) 

R(X) variables 
outcome of the random variable, x 
induced probability space, 

{R(X),lx,Px } 
equivalent events 
composite random variable 
discrete random variable 

discrete density component 
continuous density component 
abbreviated set notation 

joint cumulative distribution 
function 

marginal probability density 
function 

MPDF P(x ~ b) 
cumulative distribution function 
CDF 

h. .. m(Xl, ... ,Xm ) 

marginal cumulative distribution 
discrete probability density function 
PDF 

truncation function 
F(b) 

function 
MCDF 

continuous random variable 
continuous probability density 

nondecreasing function 
increasing function 

conditional density function 
f(Xl, •.. , Xm I (xm+lt •.. , xn) E B) 
conditional cumulative distribution function 

event A occurs with probability 
zero 

event A is relatively impossible 
event A occurs with probability one 
event A is relatively certain 

duality between CDFs and PDFs 
real-valued vector function 
multivariate random variable 
discrete joint probability density 

function 
marginal cumulative distribution 

function 
function 

Problems 

1. Which of the following are valid probability density 
functions? Justify your answer. 

a. f(x) = (.2)X(.6p-x l,o,l)(x) 

b. fIx) = (.3)(. 7)x 1,0,1,2, ... ) Ix} 

c. f(x) = .6e-x/41IO,oo)(X) 

d. fIx) = x- l l[1,ej(x) 

2. Graph each of the density functions in Problem l. 

3. Sparkle Cola, Inc., manufactures a cola drink. The 
cola is sold in 12 oz. bottles. The probability distribu­
tion associated with the random variable whose out­
come represents the actual quantity of soda placed in a 
bottle of Sparkle Cola by the soda bottling line is spec­
ified to be 

f(x) = 50[e-lOO(12-xIII_oo,12j(X) + e-H)()lx-121I{l2,oodx)l. 

In order to be considered full, a bottle must contain 
within .25 oz. of 12 oz. of soda. 

a. Define a random variable whose outcome indicates 
whether or not a bottle is considered full. 

b. What is the range of this random variable? 

independence of random variables 
joint density factorization for 

independence 

c. Define a probability density function for the ran­
dom variable. Use it to assign probability to the 
event that a bottle is "considered full." 

d. The PDF fIx) is only an approximation. Why? 

4. A health maintenance organization (HMO) is cur­
rently treating 10 patients with a deadly bacterial infec­
tion. The best-known antibiotic treatment is being used 
in these cases, and this treatment is effective 95 percent 
of the time. If the treatment is not effective, the patient 
expires. 

a. Define a random variable whose outcome repre­
sents the number of patients being treated by the 
HMO that survive the deadly bacterial infection. 
What is the range of this random variable? What is 
the event space for outcomes of this random vari­
able? 

b. Define the appropriate probability density function 
for the random variable you defined in (a). Define 
the probability set function appropriate for assign­
ing probabilities to events regarding the outcome of 
the random variable. 
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c. Using the probability space you defined in (a) and 
(b), what is the probability that all 10 of the patients 
survive the infection? 

d. What is the probability that no more than two pa­
tients expire? 

e. If 50 percent of the patients were to expire, the 
government would require that the HMO suspend 
operations, and an investigation into the medical 
practices of the HMO would be conducted. Provide 
an argument in defense of the government's actions 
in this case. 

5. Star Enterprises is a small firm that produces a prod­
uct that is simple to manufacture, involving only one 
variable input. The relationship between input and out­
put levels is given by q = x·5, where q is the quantity of 
product produced and x is the quantity of variable input 
used. For any given output and input prices, Star Enter­
prises operates at a level of production that maximizes 
its profit over variable cost. The possible prices facing 
the firm on a given day is represented by a random vari­
able V with R(V) = {lO, 20,30} and probability density 
function 

f(v) = .2I(1OJ!V) + .5I(2odv) + .3I(3odv). 

Input prices vary independently of output prices, and 
input price on a given day is the outcome of W with 
R(W) = {I, 2, 3} and probability density function 

g(w) = .4I(lJ!w) + .3I(2dw) + .3I(3J!w). 

a. Define a random variable whose outcome repre­
sents Star's profit over variable cost on a given day. 
What is the range of the random variable? What is 
the event space? 

b. Define the appropriate probability denSity function 
for profit over variable cost. Define a probability 
set function appropriate for assigning probability to 
events relating to profit over variable cost. 

c. What is the probability that the firm makes at least 
$100 profit over variable cost? 

d. What is the probability that the firm makes a posi­
tive profit on a given day? Is making a positive profit 
a certain event? Why or why not? 

e. Given that the firm makes at least $100 profit over 
variable cost, what is the probability that it makes 
at least $200 profit over variable cost? 

6. The ACME Freight Co. has containerized a large 
quantity of 4-megabyte memory chips that are to be 

shipped to a personal computer manufacturer in Cal­
ifornia. The shipment contains 1,000 boxes of mem­
ory chips, with each box containing a dozen chips. The 
chip manufacturer calls and says that due to an error 
in manufacturing, each box contains exactly one defec­
tive chip. The defect can be detected through an easily 
administered, nondestructive continuity test using an 
ohmmeter. The chip maker requests that ACME break 
open the container, find the defective chip in each box, 
discard them, and then reassemble the container for 
shipment. The testing of each chip requires one minute 
to accomplish. . 

a. Define a random variable representing the amount 
of testing time required to find the defective chip 
in a box of chips. What is the range of the random 
variable? What is the event space? 

b. Define a probability density function for the ran­
dom variable you have defined in (a). Define a prob­
ability set function appropriate for assigning prob­
abilities to events relating to testing time required 
to find the defective chip in a box of chips. 

c. What is the probability that it will take longer than 
five minutes to find the defective chip in a box of 
chips? 

d. If ACME uses two eight-hour-shift workers for one 
shift each to perform the testing, what is the proba­
bility that testing of all of the boxes in the container 
will be completed? 

7. Intelligent Electronics, Inc., manufactures mono­
chrome liquid crystal display (LCD) notebook computer 
screens. The number of hours an LCD screen functions 
until failure is represented by the outcome of a random 
variable X having range R(X) = [0,00) and probability 
density function 

f(x) = .01 exp ( -1~0) I(o,oo)(x). 

The value of x is measured in thousands of hours. The 
company has a one-year warranty on its LCD screen, 
during which time the LCD screen will be replaced free 
of charge if it fails to function. 

a. Assuming that the LCD screen is used for 10,000 
hours per year, what is the probability that the firm 
will have to perform warranty service on an LCD 
screen? 

b. What is the probability that the screen functions 
for at least 50,000 hours? Given that the screen has 
already functioned for 50,000 hours, what is the 
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probability that it will function for at least another 
50,000 hours? 

8. People Power, Inc., is a firm that specializes in pro­
viding temporary help to various businesses. Job appli­
cants are administered an aptitude test that evaluates 
mathematics, writing, and manual dexterity skills. Af­
ter the firm analyzed thousands of job applicants who 
took the test, it found that the scores on the three tests 
could be viewed as outcomes of random variables with 
the following joint density function (the tests are graded 
on a 0-1 scale, with 0 the lowest score and 1 the highest): 

3 

f(xI, X2, X3) = .80(2xI + 3X2)X3 n IIO,lj(X;). 
;=1 

a. A job opening has occurred for an office manager. 
People Power, Inc., requires scores of > .75 on both 
the mathematics and writing tests for a job appli­
cant to be offered the position. Define the mar­
ginal density function for the mathematics and 
writing scores. Use it to define a probability space 
in which probability questions concerning events 
for the mathematics and writing scores can be an­
swered. What is the probability that a job applicant 
who has just entered the office to take the test will 
qualify for the office manager position? 

b. A job opening has occurred for a warehouse worker. 
People Power, Inc., requires a score of > .80 on 
the manual dexterity test for a job applicant to be 
offered the position. Define the marginal density 
function for the dexterity score. Use it to define 
a probability space in which probability questions 
concerning events for the dexterity score can be an­
swered. What is the probability that a job applicant 
who has just entered the office to take the test will 
qualify for the warehouse worker position? 

c. Find the conditional density of the writing test 
score, given that the job applicant achieves a score 
of > .75 on the mathematics test. Given that the 
job applicant scores> .75 on the mathematics test, 
what is the probability that she scores> .75 on the 
writing test? Are the two test scores independent 
random variables? 

d. Is the manual dexterity score independent of the 
writing and mathematics scores? Why or why not? 

9. The weekly average price (in dollars/foot) and total 
quantity sold (measured in thousands of feet) of cop­
per wire manufactured by the Colton Cable Co. can be 
viewed as the outcome of the bivariate random variable 

(P, Q) having the joint density function 

f(p, q) = 5pe-pQ Ip,31(P)Ijo,ooJ!q). 
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a. What is the probability that total dollar sales in a 
week will be less than $2,OOO? 

b. Find the marginal density of price. What is the prob­
ability that price will exceed $.25/foot? 

c. Find the conditional density of quantity, given 
price = .20. What is the probability that> 5,000 
feet of cable will be sold in a given week? 

d. Find the conditional density of quantity, given 
price = .lD. What is the probability that> 5,000 
feet of cable will be sold in a given week? Compare 
this result to your answer in (c). Does this make 
economic sense? Explain. 

10. A personal computer manufacturer produces both 
desktop computers and notebook computers. The 
monthly proportions of customer orders received for 
desktop and notebook computers that are shipped 
within one week's time can be viewed as the outcome of 
a bivariate random variable (X, Y) with joint probability 
density 

fIx, y) = (2 - x - y)Ilo,lj(x)Ilo,lilY) 

a. In a given month, what is the probability that more 
than 75 percent of notebook computers and 75 per­
cent of desktop computers are shipped within one 
week of ordering? 

b. Assuming that an equal number of desktop and 
notebook computers are ordered in a given month, 
what is the probability that more than 75 percent 
of all orders received will be shipped within one 
week? 

c. Are the random variables independent? 
d. Define the conditional probability that less than 50 

percent of the notebook orders are shipped within 
one week, given that x proportion of the desktop 
orders are shipped within one week (the probability 
will be a function of the proportion x). How does 
this probability change as x increases? 

11. A small nursery has seven employees, three of 
whom are salespersons, and four of whom are garden­
ers who tend to the growing and caring of the nursery 
stock. With such a small staff, employee absenteeism 
can be critical. The number of salespersons and garden­
ers absent on any given day is the outcome of a bivariate 
random variable (X, Y). The nonzero values of the joint 
density function are given in tabular form as 
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X 

y 
0 2 3 4 

0 .75 .025 .01 .01 .03 
1 .06 .03 .01 .01 .003 
2 .025 .01 .005 .005 .002 
3 .005 .004 .003 .002 .001 

a. What is the probability that more than two employ­
ees will be absent on any given day? 

b. Find the marginal density function of the number 
of gardeners that are absent. What is the probability 
that more than two gardeners will be absent on any 
given day? 

c. Are the number of gardener absences and the num­
ber of salesperson absences independent random 
variables? 

d. Find the conditional density function for the num­
ber of salespersons who are absent, given that there 
are no gardeners absent. What is the probability that 
there are no salespersons absent, given that there 
are no gardeners absent? Is the conditional proba­
bility higher or lower given that there is at least one 
gardener absent? 

12. The joint density of the bivariate random variable 
(X, Y) is given by 

f(x, y) = xyllo,lj(x)Ilo,21(Y)' 

a. Find the joint cumulative distribution function of 
(X, Y). Use it to find the probability that x ::::: .5 and 
y::::: 1. 

b. Find the marginal cumulative distribution function 
of X. What is the probability that x::::: .S? 

c. Find the marginal density of X from the marginal 
cumulative distribution of X. 

13. The joint cumulative distribution function for 
(X, Y) is given by 

F(x, y) = (1 - e-x/ IO - e-y/2 + e-lx+5YJ/IO)IIO,ooJ(x)IIO,ooJ(y). 

a. Find the joint density function of (X, Y). 

b. Find the marginal density function of X. 

c. Find the marginal cumulative distribution function 
ofX. 

14. The cumulative distribution of the random variable 
X is given by 

F(x) = (1 - px+1 )I{0,1,2, ... dx), 

for some choice of p E (0, 1). 

a. Find the density function of the random variable X. 

b. What is the probability that x::::: 8 if p = .7s? 

c. What is the probability that x ::::: 1 given that x ::::: 8? 

15. The federal mint uses a stamping machine to make 
coins. Each stamping produces 10 coins. The number of 
the stamping at which the machine breaks down and 
begins to produce defective coins can be viewed as the 
outcome of a random variable, X, having a probability 
density function with general functional form 

f(x) = 0:(1- tW- I I{I,2,3, .. J(x), where,B E (0, 1). 

a. Are there any constraints on the choice of 0: for f(x) 
to be a probability density function? If so, precisely 
what are they? 

b. Is the random variable X a discrete or a continuous 
random variable? Why? 

c. It is known that the probability the machine will 
break down on the first stamping is equal to .05. 
What is the specific functional form of the proba­
bility density function f(x)? What is the probabil­
ity that the machine will break down on the tenth 
stamping? 

d. Derive a functional representation for the cumu­
lative distribution function corresponding to the 
random variable X. Use it to assign the appropri­
ate probability to the event that the machine does 
not break down for at least 10 stampings. 

e. What is the probability that the machine does not 
break down for at least 20 stampings, given that 
the machine does not break down for at least 10 
stampings? 

16. The daily quantity demanded of unleaded gasoline 
in a regional market can be represented as 

Q = 100 - lOp + E, where p E [0,8], 

and E is a random variable having a probability density 
given by 

f(e) = .02511-20,20] (e) 

Quantity demanded, Q, is measured in thousands of gal­
lons, and price, p, is measured in dollars. 

a. What is the probability of the quantity demanded 
being greater than 70,000 gallons if price is equal to 
$4? if price is equal to $3? 

b. If the average variable cost of supplying Q amount 
of unleaded gasoline is given by C( Q) = 0'5/2, de­
fine a random variable that can be used to represent 
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the daily profit above variable cost from the sale of 
unleaded gasoline. 

c. If price is set equal to $4, what is the probability that 
there will be a positive profit above variable cost on 
a given day? What if price is set to $3? to $5? 

d. If price is set to $6, what is the probability that 
quantity demanded will equal 40,000 gallons? 

17. For each of the cumulative distribution functions 
listed below, find the associated probability density 
functions. For each CDF, calculate PIx :s 6). 

a. F(b) = (1 - e-b/6 )IIO,ooJ(b) 

b. F(b) = (5/3)(.6 - .6trunc(b)+I)I(o,oo)(b) 

18. An economics class has a total of 20 students with 
the following age distribution: 

# of students age 

10 19 
4 20 
4 21 
1 24 

29 

Two students are to be selected randomly, without re­
placement, from the class to give a team report on the 
state of the economy. Define a random variable whose 
outcome represents the average age of the two stu­
dents selected. Also, define a discrete probability den­
sity function for the random variable. Finally, what is 
the probability space for this experiment? 

19. Let X be a random variable representing the mini­
mum of the two numbers of dots that are facing up after 
a pair of fair dice is rolled. Define the appropriate prob­
ability density for X. What is the probability space for 
the experiment of rolling the fair dice and observing the 
minimum of the two numbers of dots? 

20. A package of a half-dozen light bulbs contains two 
defective bulbs. Two bulbs are randomly selected from 
the package and are to be used in the same light fix­
ture. Let the random variable X represent the number of 
light bulbs selected that function properly (i.e., that are 
not defective). Define the appropriate probability den­
sity function for X. What is the probability space for 
the experiment? 

21. A committee of three students will be randomly 
selected from a senior-level political science class to 
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present an assessment of the impacts of an antitax ini­
tiative to some visiting state legislators. The class con­
sists of five economists, eight political science majors, 
four business majors, and three art majors. Referring 
to the experiment of drawing three students randomly 
from the class, let the bivariate random variable (X, Y) 
be defined by x = number of economists on the com­
mittee, and y = number of business majors on the com­
mittee. 

a. What is the range of the bivariate random variable 
(X, Y)? What is the probability density function, 
fIx, y), for this bivariate random variable? What is 
the probability space? 

b. What is the probability that the committee will 
contain at least one economist and at least one busi­
ness major? 

c. What is the probability that the committee will 
consist of only political science and art majors? 

d. On the basis of the probability space you defined 
in (a), is it possible for you to assign probability to 
the event that the committee consists entirely of 
art majors? Why or why not? If you answer yes, 
calculate this probability using fIx, y) from (a). 

e. Calculate the marginal density function for the ran­
dom variable X. What is the probability that the 
committee contains three economists? 

f. Define the conditional density function for the 
number of business majors on the committee, given 
that the committee contains two economists. What 
is the probability that the committee contains less 
than one business major, given that the committee 
contains two economists? 

g. Define the conditional density function for the 
number of business majors on the committee, 
given that the committee contains at least two 
economists. What is the probability that the com­
mittee contains less than one business major, 
given that the committee contains at least two 
economists? 

h. Are the random variables X and Y independent? Jus-
tify your answer. 

22. The Imperial Electric Co. makes high-quality 
portable compact disc players for sale in international 
and domestic markets. The company operates two 
plants in the United States, where one plant is lo­
cated in the Pacific Northwest and one is located in 
the South. At either plant, once a disc player is assem-
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bled, it is subjected to a stringent quality-control inspec­
tion, at which time the disc player is either approved for 
shipment or else sent back for adjustment before it is 
shipped. On any given day, the proportion of the units 
produced at each plant that require adjustment before 
shipping, and the total production of disc players at the 
company's two plants, are outcomes of a trivariate ran­
dom variable, with the following joint probability den­
sity function: 

f(x, y, z) = S (x + y)e-X 1(0, (0) (x)/(o, 1)(y)/(o, 1)(Z), 

where 

x = total production of disc players at the two plants, 
measured in thousands of units, 

y = proportion of the units produced at the Pacific 
Northwest plant that are shipped without 
adjustment, and 

z = proportion of the units produced in the southern 
plant that are shipped without adjustment. 

a. In this application, the use of a continuous trivari­
ate random variable to represent proportions and 
total production values must be viewed as only an 
approximation to the underlying real-world situa­
tion. Why? In the remaining parts, assume the ap­
proximation is acceptably accurate, and use the ap­
proximation to answer questions where appropri­
ate. 

b. What is the probability that less than 50 percent 
of the disc players produced in each plant will be 
shipped without adjustment and that production 
will be less than 1,000 units on a given day? 

c. Derive the marginal probability density function 
for the total production of disc players at the two 
plants. What is the probability that less than 1,000 
units will be produced on a given day? 

d. Derive the marginal probability density function 
for the bivariate random variable (Y, Z). What is the 
probability that more than 75 percent of the disc 
players will be shipped without adjustment from 
each plant? 

e. Derive the conditional density function for X, given 
that 50 percent of the disc players are shipped from 
the Pacific Northwest plant without adjustment. 
What is the probability that 1,500 disc players will 
be produced by the Imperial Electric Co. on a day 
for which 50 percent of the disc players are shipped 

from the Pacific Northwest plant without adjust­
ment? 

f. Answer (e) for the case where 90 percent of the 
disc players are shipped from the Pacific Northwest 
plant without adjustment. 

g. Are the random variables (X, Y, Z) independent ran-
dom variables? . 

h. Are the random variables (Y, Z) independent ran-
dom variables? 

23. ACE Rentals, a car-rental company, rents three 
types of cars: compacts, mid-size sedans, and large lux­
ury cars. Let (Xl, X2, X3) represent the number of com­
pacts, mid-size sedans, and luxury cars, respectively, 
that ACE rents per day. Let the sample space for the 
possible outcomes of (Xl,X2,X3) be given by 

S = {(Xl,X2,X3): Xl,X2, andx3 E {O,I,2,311 

(ACE has an inventory of nine cars, evenly distributed 
among the three types of cars). 

The discrete probability density function associ­
ated with (Xl,X2,X3) is given by 

f( [ .004(3 + 2Xl + X2)] n3 
Xl,X2,X3) = (1 +X3) i=IIIO,I,2,3dxJ 

The compact car rents for $20/day, the mid-size sedan 
rents for $30/day, and the luxury car rents for $60/day, 

a. Derive the marginal density function for X3 • What 
is the probability that all three luxury cars are 
rented on a given day? 

b. Derive the marginal density function for (Xl, X2 ), 

What is the probability of more than one compact 
and more than one mid-size sedan being rented on 
a given day? 

c. Derive the conditional density function for Xl, 
given X2 ::: 2. What is the probability of renting no 
more than one compact car, given that two or more 
mid-size sedans are rented? 

d. AreXl, X2 , andX3 jointly independent random vari­
ables? Why or why not? Is (X I ,X2) independent of 
X3? 

e, Derive the conditional density function for (Xl, X 2 ), 

given that X3 = O. What is the probability of renting 
more than one compact and more than one mid-size 
sedan given that no luxury cars are rented? 

f. If it costs $150/day to operate ACE Rentals, define 
a random variable that represents the daily profit 
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made by the company. Define an appropriate den­
sity function for this random variable. What is the 
probability that ACE Rentals makes a positive daily 
profit on a given day? 

24. If (XI, X2 ) and (X3, X4 ) are independent bivariate ran­
dom variables, are X2 and X3 independent random vari­
ables? Why or why not? 

25. The joint density function of the discrete trivariate 
random variable (XI,X2,X3) is given by 

f(xI, X2, X3) = .20IIo,dx] )IIO,I}(x2)IilX,-X211(X3) 

+ .05IIO,II(xl )I\O,lj(X2)I\l-IX I-x21l(X3). 

a. Are (XI ,X2 ), (Xl ,X3 ), and (X2,X3 ) each pairwise in­
dependent random variables? 

b. Are Xl, X2 , X3 jointly independent random vari­
ables? 

26. SUPERCOMP, a retail computer store, sells per­
sonal computers and printers. The number of comput­
ers and printers sold on any given day varies, with the 
probabilities of the various possible sales outcomes be­
ing given by the following table: 
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Number of Computers Sold 
0 1 2 3 4 

0 .03 .03 .02 .02 °T bbT 
Number .02 .05 .06 .02 .01 ro a I Itles 

of 2 .01 .02 .10 .05 .05 of 

printers 3 .01 .01 .05 .10 .10 elementary 

4 .01 .01 .01 .05 .15 events 

a, If SUPERCOMP has a profit margilf\product sales 
price - product unit cost) of $100 per computer sold 
and $50 per printer sold, define a random variable 
representing aggregate profit margin from the sale 
of computers and printers on a given day. What is 
the range of this random variable? 

b. Define a discrete density function appropriate for 
use in calculating probabilities of all events con­
cerning aggregate profit margin outcomes on a 
given day. 

c. What is the probability that the aggregate profit 
margin::: $300 on a given day? 

d. The daily variable cost of running the store is 
$200/day. What is the probability that SUPER­
COMP's aggregate profit margin on computer and 
printer sales will equal or exceed variable costs on 
a given day? 

e. Assuming that events involving the number of 
computers and printers sold are independent from 
day to day, what is the probability that for any 
given six-day business week, aggregate profit mar­
gins equal or exceed variable cost all six days? 
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The definition of the expectation of a random variable can 
be motivated both by the concept of a weighted average and through the use of 
the physics concept of the center of gravity, or the balancing point of a distri­
bution of weights. We first examine the case of a discrete random variable and 
look at a problem involving the balancing-point concept. l 

Example 3.1 Suppose that a weightless rod is placed on a fulcrum, a weight of 10 lbs. is 
placed on the rod exactly four feet to the right of the fulcrum, and a weight of 
5 lbs. is placed on the rod exactly eight feet to the left of the fulcrum, as shown 
in Figure 3.1. 

Assume that 0 = 0 is the point at which the fulcrum is placed, so that the 
10 lb. weight is at the point Xl = 4, and the 5 lb. weight is at the point X2 = -8. 
Let masslx} denote the mass placed at point x. The moment of any mass placed 
at a point X is defined to be the product of the mass times its signed distance 
from the fulcrum, [masslx)JIx - oj, where 0 is the point at which the fulcrum 

1 Readers who recollect earlier days spent on a seesaw should possess ample intuition regarding the placement of weights appropriate 
distances from a fulcrum so as to achieve a "balanced seesaw." 
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Figure 3·1 
Weights on a 

weightless rod. 

Figure 3·2 
Density function "weights" 

on a weightless rod. 

Mathematical Expectation and Moments 

<0 <d 
Z\ 

I 
8 ft. 4 ft. X2 0 Xl 

is placed. Thus, the moment of the 10 lb. weight is 10(4 - 0) = 40, while the 
momentofthe5lb. weight is 5(-8-0) = -40. A system of weights with fulcrum 
placed at 8 will balance if the sum of the moments I:7=I[mass(xj)](Xj - 8), called 
the total moment of the system, is equal to zero. Our system balances, since 
40+(-40)=0. D 

The moments concept illustrated in Ex. 3.1 can be used to identify the 
point at which a probability density "balances./I Recall the dice example of 
Ex. 2.2. We place the probability "weights" on a weightless rod at the points 
corresponding to the outcomes with which the probabilities are associated, as 
shown in Figure 3.2. 

At what point should the fulcrum be placed so that the distribution of 
weights balances? We require that the total moment of the system be zero. 

6/36 

5/36 5/36 

4/36 4/36 

3/36 3/36 

2/36 2/36 

1/36 1/36 

2 3 4 5 6 7 8 9 10 11 12 
Xs Xs Xg 



3.1 

Definition 3.1 
Expectation of a random 

variable; discrete case 

Expectation of a Random Variable 111 

Thus, we require that 

11 11 

L)mass(Xi)](Xi - 0) = Lf(Xi)(Xi - 0) = 0, 
~l ~l 

which implies that 

~f(Xi)Xi = 0 [tf(Xi)] = 0, 

where the sum in brackets equals 1 because the density function f(x) is being 
summed over the entire range of the random variable X. Substituting the ap­
propriate values of Xi and f(Xi) in the expression obtains the result 0 = 7. Thus, 
if the fulcrum were placed at the point 7, the system of weights would balance. 
The quantity 0 is precisely what we mean by the expected value of the discrete 
random variable X with density function fIx). Thus, the expected value of a 
discrete random variable is a measure of the center of gravity of its density 
function. 

The expected value of a discrete random variable exists, and is defined by 
EX = LXER(X) xf(x), iff LXERIX) Ixlf(x) < 00. 

The significance of the existence condition stated in the definition is to 
ensure that the sum defining the expectation is absolutely convergent.2 If all 
outcomes of X are finite and RIX) is finite, then the existence condition is met, 
and the expectation of X will necessarily exist, since f(x) E 10,1] 'If X, so that 
LXERIX) Ixlf(x) is a finite sum of finite numbers. 

There is no guarantee that LXERIX) xflx) converges to any finite number 
when RIX) is countably infinite, even if all of the outcomes of X are finite. 
Furthermore, even if the infinite sum converges to some real number for a 
given ordering of the terms in the sum, it is an unfortunate fact of infinite sums 
involving both positive and negative terms that, unless the sum is absolutely 
convergent, an appropriate reordering of terms will result in the infinite sum 
converging to other real numbers.3 This is hardly consistent with the notion of 
a balancing point of the density f(x). Moreover, the nonuniqueness of values to 
which the infinite sum can converge makes any particular convergence point 
arbitrary and meaningless as the expectation of X. Thus, to ensure the finiteness 
and uniqueness of the converged value in the countably infinite case, EX is 
said to exist iff LXERIX) Ixlflx) < 00, which is to say, iff LXERIX) xlIx) is absolutely 
convergent. For virtually any problem of practical interest, if the sum used 

2Thesum LxeAg(x) is absolutely convergent iff LXEA Ig(xli < 00. In our case, letg(x) = xf(x), andsincef(x)::: 0, Ig(xli = Ixf(xli = Ixlf(x). 
(See R. G. Bartle (1976), The Elements of Real Analysis, 2nd ed. New York: John Wiley, p. 289. Some authors define EX = 00 if 
L XERIXI xf(xl = 00 and L XERIXI xf(x) > -00, and EX = -00 if the first and second sums < 00 and = -00 respectively. 

x:>O x<o 

3Bartle, Real Analysis, p. 292. 
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in the definition of the expectation is finite, the expectation can be said to 
exist. It should also be noted that in many applications, random variables are 
nonnegative valued, in which case if the sum is convergent, it is necessarily 
absolutely convergent. 

Since fix) ~ 0 V X E R(X), and LxeRIX) fix) = I, the expected value of a 
discrete random variable can also be straightforwardly interpreted as a weighted 
average of the possible outcomes (or range elements) of the random variable. In 
this context the weight assigned to a particular outcome of the random variable 
is equal to the probability that the outcome occurs (as given by fix)). 

Example 3.2 A life insurance company offers a 50-year-old male a $1,000 face value, one­
year term life insurance policy for a premium of $14. Standard mortality tables 
indicate that the probability a male in this age category will die within the 
year is .006. What is the insurance company's expected gain from issuing this 
policy? 
Answer: Define a random variable X having range R(X) = {14, -986}, the out­
comes corresponding, respectively, to the premium of $14 collected by the 
company if the person lives, or the net payment of $986 ($1,000 minus the 
premium collected) to the person's estate if he dies. The probabilities of the 
two elementary events are .994 and .006, respectively. Then, EX = (14)(.994)­
(986)(.006) = 8. 0 

Note that the expected value of X need not be a value in the range of X as 
the previous and following examples illustrate. 

Example 3.3 Examine the experiment of rolling a die, and recall that the density function 
associated with the dots facing up on the die is fix) = (1/6)I{l, ... ,6)(X). In this case 
R(X) = {I,2,3,4,S,6}. The expected value of X equals EX = LxeRIXjxf(x) = 
Le=1Ix/6)I{l, ... ,6J1x) = 3.5, and thus EX ¢ R(X). 0 

In the continuous case, the physics problem of balancing mass on a weight­
less rod can no longer be conceptualized as having weights applied to specific 
points on the rod. Instead, the mass is interpreted as being continuously spread 
out along the rod, exerting downward force along a continuum of points on 
the rod. The mass function, mass(x), is now a density of the mass at point x, 
J~oo mass(x)dx equals the total mass placed on the rod, and J: mass(x)dx equals 
the mass lying between the points a and b4 (see Figure 3.3). The mass is bal­
anced on the rod when the fulcrum is placed at the point a such that the total 
moment of the mass, J~oo mass(x)(x - a)dx, equals zero. 

Viewing our density function as a (probability) mass, the continuous density 
"balances" with a fulcrum placed at the point a if i: f(x)(x - a)dx = 0 

4The reader might notice that the mass function would exhibit properties similar to a probability density function, except the 
integral over the real line would not necessarily = 1, but rather would equal the number reflecting the total mass placed on the rod. 
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J~mass(x)dx 

I 
a b x 

which implies that i: xf(x)dx = 8 i: f(x)dx = 8. 
'-v---' 

1 

Again, it is this balancing point or center of gravity, 8, of the density that rep­
resents the expectation of the continuous random variable X having density 
fIx). 

The expected value of the continuous random variable X exists, and is de­
fined by EX = f~oo xf(x)dx, iff f~oo IXlf(x)dx < 00. 

The significance of the existence condition is to ensure that the limit oper­
ations inherent in the definition of the improper Riemann integral f~oo xflx)dx 
exhibit absolute convergence, which is in fact required for the existence of the 
improper Riemann integral.s Henceforth, it will be sufficient to state that the 
expectation exists if the integral exists. 

The expected value of X in the continuous case can also be viewed, in a 
limit sense, as a weighted average of the possible outcomes (or range elements) 
of the random variable. This interpretation follows fundamentally from the 
definition of the definite integral as the limit of a Riemann sum.6 For the sake 
of exposition, we assume that the positive values of fIx) all occur for x within 
the interval x E [a, bl for finite a and b, although a similar argument holds when 
a and/or b are infinite. 

Let Xo = a, Xn = b, Xo < XI < X2 < '" < xn, D.xi = Xi - Xi-I, and examine 
the Riemann sum I:7=1 X?i(X?)D.Xi, where X? is a value chosen such that X? E 

[Xi-I, Xi]. 

This situation can be represented by the diagram in Figure 3.4. Thus, 
each X? is weighted by the value f(X?)D.Xi, an area indicated in the diagram 
by a shaded rectangle, and a summation is taken over all the chosen values 
of the Xf. We have effectively divided the interval (a, b] into a collection of 

5See J. E. Marsden (1974), Elementary Classical Analysis, San Francisco: W. H. Freeman and Co., pp. 267-271. Some authors define 
EX = 00 if 1000 xf(x)dx = 00 and I~oo xlix) > -00, and EX = -00 if the first and second integrals are < 00 and = -00, respectively. 

6Bartie, Real Analysis, pp. 213-214. 
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Figure 3-4 
Approximation of 

area under {(xl. 

a XC; ~ ~ ~ b 

xo Xl X2 X3 x4 

I I I I I 
ax, ax2 ax3 ax4 

subintervals of various widths /).Xj, i = 1, ... , n. The subinterval of maximum 
width is referred to as the mesh (or sometimes, the norm) of the collection of 
subintervals, i.e., mesh = max(/).xI, ... , /).xn). If f(x) is continuous/ then as we 
increase without bound the number of subintervals, and in so doing decrease 
the mesh to zero, we have 

n rb foo 
J!'~ LX?f (X?) /).Xj = in xf(x)dx = xf(x)dx 

mesh ..... O i= I a -00 

and 

n rb fOO 
lk~D t;f (X?) /).Xj = ia flx)dx = -00 flx)dx = 1 

Ipresuming the first limit, and hence first integral, exists-the second limit, 
and integral, necessarily exists since fIx) is a density function). Therefore, under 
the assumptions of our argument, the expected value of X can be viewed, in a 
limiting sense, as a weighted average of an infinite number of possible outcomes 
of the random variable. 

Example 3.4 A large domestic automobile manufacturer mails out quarterly customer sat­
isfaction surveys to owners who have purchased new automobiles within the 
last three years. The proportion of surveys returned in any given quarter is the 
outcome of a random variable X having density function fIx) = 3x2 IID.Illx). What 
is the expected proportion of surveys returned in any given quarter? 

7The argument can still be applied to cases where there is a finite number of discontinuities. 
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Answer: By definition, 

EX = i: xf(x)dx = i: x (3x2I[0, 1 I (xl) dx 

= t 3x3dx = 3X4 \1 = .75. 
10 4 0 

This is represented diagrammatically in Figure 3.5. o 

In applications, the following result can often be a useful sufficient condi­
tion for the existence of the expected value in either the discrete or continuous 
case. 

Theorem 3.1 (Existence of EX for Bounded R(X)) If Ixl < C V X E R(X), for some choice of 
c E (0,00), then EX exists. 

Proof By the assumption of the theorem, fIx) = 0 V x such that Ixl ::: c. 

Figure 3-5 
((x) = 3X2 /IO,lJ(X), 

Discrete: 

L Ixlf(x) < L cf(x) = c L fIx) = c < 00, 
XERIX) XERIX) XERIX) 

so that EX exists. 
Continuous: i: Ixlf(x)dx < i: cf(xJdx = c i: f(xJdx = c < 00, 

so that EX exists. 

(x) 

3 

2 

1 

a 0.2 0.5 EX 

x 

1 

• 
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The theorem indicates that expectations exist for any random variable whose 
outcomes are bounded in absolute value. 

In order to economize on notation, we henceforth assume that whenever 
a discrete density function is involved in a summation expression, it is tacitly 
understood that summation is only over points for which fIx) > O. Thus, we 
will generally abbreviate expressions such as L XEA fIx) to simply LXEA f(x), 
the condition fIx) > 0 always being understood. flxl>D 

3.2 Expectation of a Function of Random Variables 

Many cases arise in practice where we are interested in the expectation of a 
function of a random variable rather than the expectation of a random variable 
itself. For example, the profit on a stock investment will be a function of the 
difference between the per share buying and selling prices of the stock, and 
the net return on an advertising campaign is a function of consumer buying 
response to the campaign-both the stock selling price and consumer buying 
response can be viewed as random variables. How might EY be determined 
when y = g(x), X E R(X), and X has density function fIx)? By definition, if we 
know the density of Y, b(y), then 

(discrete) EY= L yb(y), 
YERIYI 

(continuous) EY = i:yb(y)dy. 

To use the expectation definition directly, we would need to establish the den­
sity of Y. This can be done in principle by exploiting the functional relationship 
between y and x, given knowledge of the density fIx), but often, finding b(y) can 
be quite difficult (we will examine methods for deriving such densities in Chap­
ter 6). Fortunately, we need not derive the density function of y to obtain EY. 

Since Y is defined via a composition of the functions g and X, and since 
the domain of X is conceptually the sample space S, then Y is defined on the 
elements of S via the composition, i.e., an outcome of y can be viewed as being 
given by y = g(X(w)) for w E S, so that y : S -+ R. This implies that the range 
of Y and probabilities of events for Y can be represented alternatively as 

R(Y) = {y : y = g(x), X E R(Xll = {y : y = g(X(w)), W E S} 

and 

PylA) = Px({x: g(x) E A,x E R(Xll) = P({w: g(X(w)) E A, WE S}). 

Therefore, we can concentrate our attention on the g function component of 
the composition, which has a real-valued domain R(X), and conceptualize the 
outcomes of Y as being generated by y = g(x) for x E R(X), where y : R(X) -+ R. 
In so doing, we lose no information concerning the possible outcomes of Y or 
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the probabilities of events for Y, 8 and we gain the convenience of being able 
to ignore the original probability space {S, I, P} and deal exclusively with a 
real-valued domain for the function Y. We will generally focus on this latter in­
terpretation of the function Y in our subsequent study, unless we make explicit 
reference to the domain of Y as being S. 

We now present a theorem identifying a straightforward approach for ob­
taining the expectation of Y = g(X) by using density weightings applied to the 
outcomes of X. 

Theorem 3.2 Let X be a random variable having density function fIx). Then the expectation 
of Y = g(X) is given by 9 

(discrete) Eg(X) = L g(x)f(x), 
XER(XI 

(continuous) Eg(X) = i: g(x)f(x)dx. 

Proof (Discrete case) Let Y = g(X). The density function for the random variable Y 
can be represented by 

Lemma 3.1 

h(y) = Py(y) = Px/{x : g(x) = y, X E R(X))) = L fIx). 
{x:g(xI=y} 

That is, the probability of the outcome y is equal to the probability of the 
equivalent event {x : g(x) = y}, which is the inverse image of y. Then 

Eg(X) = EY = L yh(y) = L y L fIx) 
YER(YI yER(Y} {x:g(x)=y} 

= L L g(x)f(x) = L g(x)f(x), 
YERIY) {x:glx)=y} XERIX) 

where the next to last expression is true, since g(x) = y for all x E {x : g(x) = y}, 
and the last expression is true since LYERlY) L(x:glx)=Y.} g(x)f(x) is equivalent to 
summing over aUx E R(X) because the collection of all y E R(Y) (the outer sum) 
is the set R(Y) = {y : y = g(x), x E R(X)). 

(Continuous case) 1'0 prove the theorem for the continuous case, we first 
need to establish the following lemma. 

For any continuous random variable Y, the expectation of Y, if it exists, can 
be written as 

EY = 1000 PlY > z)dz - 1000 PlY ~ -z)dz. 

8This presumes that the probability space {R(Xj, lx, Px} is known. 

9It is tacitly assumed that the sum and integral are absolutely convergent for the expectation to exist. 
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Proof of lemma Let h(y) be the density function of Y. Then Ply > z) = J: h(y)dy, so that 

fooo PlY > z)dz = fooo 100 h(y)dydz = fooo [foY dzJ h(y)dy = fooo yh(y)dy, 

where the second equality was simply the result of changing the order of inte­
gration (note that the inner range of integration is a function of the outer range 
of integration, and the same set of (y, z) points are being integrated over). 

Similarly, PlY ~ -z) = J~:a h(y)dy, so that 

roo PlY ~ -z)dz = roo 1-z h(y)dydz = 10 [r-Y dZ] h(y)dy = -10 yh(y)dy. 
Jo Jo -00 -00 Jo -00 

Therefore, 

roo PlY > z)dz _ roo PlY ~ -z)dz = roo yh(y)dy + 10 yh(y)dy = EY. • 
Jo Jo Jo -00 

Note that the lemma (integrals and all) also applies to discrete random 
variables. to 

Using the lemma, we have 

E(g(X)) = 1000 P{g(x) > z}dz - fooo P{g(x) ~ -z}dz 

10001 1001 = f(x)dxdz - f(x)dxdz 
o (x:g(xl>z) 0 (x:g(xl:s-z) 

1 [lg(XI ] 1 [l- g(X) ] = dz f(x)dx - dz f(x)dx 
(x:g(xl>O) 0 (x:g(xl:sO) 0 

= I g(x)f(x)dx + I g(x)f(x)dx. 
(x:g(xl>O) (x:g(xl:sO) 

= i: g(x)f(x)dx. • 
Example 3.5 Let the daily profit function of a firm be given by n(X) = pq(X) - rX, where X is 

a random variable whose outcome represents the daily quantity of a highly per­
ishable agricultural commodity delivered to the firm for processing, measured 
in hundredweights (100 lb. units), p = 5 is the price of the processed product 
per pound, r = 2 is the cost of the raw agricultural commodity per pound, and 
q(x) = x·9 is the production function indicating the relationship between raw 
and finished product measured in hundredweights. Let the density function of 
X be fIx) = 1~7;' I[o,tOl(x). What is the expected value of daily profit? 

!OSee P. Billingsley (19861, Probability and Measure, 2nd ed. New York: John Wiley, pp. 73-74, for the method of proof in the discrete 
case. 
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Answer: A direct application of Theorem 3.2 yields 

100 rIO (1 + 2X) 
EOlX) = -00 Dlx)flx)dx = 10 15x·9 - 2x) lTD dx = 13.77. 

Since quantities are measured in hundredweights, this means that the expected 
profit is $1,377 per day. 0 

Example 3.6 Your company manufactures a special1/4-inch hexagonal bolt for the Defense 
Department. For the bolt to be usable in its intended application, the bolt must 
be manufactured within a 1 percent tolerance of the 1/4-inch specification. 
As part of your quality assurance program, each bolt is inspected by a laser 
measuring device that is 100 percent effective in detecting bolts that are not 
within the 1 percent tolerance. Bolts not meeting the tolerance are discarded. 
The actual size of a bolt manufactured on your assembly line is represented 
by a random variable, X, having a probability density fIx) = 1.006)-II/.247,.253)lx), 
where x is measured in inches. If your profit per bolt sold is $.01, and if a 
discarded bolt costs your company $.03, what is your expected profit per bolt 
manufactured? 
Answer: We define a discrete random variable whose outcome represents 
whether a bolt provides the company with a $.01 profit or a $.03 loss. Specifi­
cally, 

Y = glX) = .011I[.2475,.2525)IX)) - .03ll - I[.2475,.2525JlX)) 

is the function of X that we seek, where y = .01 if x E [.2475, .252511i.e., the 
bolt is within tolerance) and y = -.03 otherwise. Then 

/
.253 

E Y = EglX) = g(x)flx)dx 
.247 

= .01P!.2475 :s x :s .2525) - .03[1 - P!.2475 :s x :s .2525)] 

= .01!.83Q)- .031.162.1 = .0033. o 

The reader should note that in the preceding example, while X was a contin­
uous random variable, Y = glX) is a discrete random variable. Whether Y =gIX) 
is discrete or continuous depends on the nature of the function g and whether 
X is discrete or continuous. The reader should convince herself that if X is dis­
crete, then Y must be discrete, but if X is continuous, then Y can be continuous 
or discrete lor mixed discrete-continuous). 

Upon close examination of Ex. 3.6, the reader may have noticed that the 
expectation of an indicator function equals the probability of the set being 
indicated. It follows that probabilities can be represented as expectations. 

Theorem 3.3 Let X be a random variable with density function flx), and suppose A is an 
event for X. Then Elh(Xll = PxlA). 
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Proof IDiscrete) By definition, 

E/IAIX)) = L IAlx)flx) = Lflx ) = PxIA ). 
xeRIX) xeA 

IContinuous) By definition, 

EIAIX) = 100 IAlx)flx)dx = ( flx)dx = PxIA). 
-00 JxeA • 

It should be noted that the existence of EX does not imply that Eg(X) exists, 
as the following example illustrates. 

Example 3.7 Let X be a random variable with density function fIx) = (1/2)I(o,l)(x). Then 
EX = o· 1/2 + 1 . 1/2 = 1/2. Define a new random variable Y = g(X) = X-I. 
Since 11/0111/2) + 11/11(1/2) <joo, Eg(X) does not exist. 0 

The preceding example also illustrates that, in general, Eg(X) =1= g(EX). Re­
ferring to Ex. 3.7, note that since EX = 1/2, g(EX) = (EX)-1 = 2, which does not 
equal Eg(X) because Eg(X) does not exist! In the special case where the function 
g is either concave or convex, 11 there is a definite relationship between Eg(X) 
and g(EX), as indicated by the following theorem. 

Theorem 3.4 (Jensen's Inequality) Let X be a random variable with expectation EX, and 
let g be a continuous function on an open interval I containing R(X). Then 

Figure 3-6 
Convex function g. 

Y 

a. Eg(X) ~ g(EX) if g is convex on I, and Eg(X) > g(EX) if g is strictly convex 
on I and X is not degenerate; 12 

Y= a + bx 

~----------------------~------------- x 
EX 

11 A continuous function, g, defined on a set D is called concave if V xED, 3 a line going through the point (x, g(x)) that lies on or 
above the graph of g. The function is convex if V x, 3 a line going through the point (x, g(x)) that lies on or below the graph of g (see 
Figure 3.6). The function is strictly convex or concave if the aforementioned line has only the point (x,g(x)) in common with the 
graph of g. 

12 A degenerate random variable is a random variable that has one outcome that is assigned a probability of 1. More will be said 
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b. Eg(X) :::: g(EX) if g is concave on I, and Eg(X) < g(EX) if g is strictly concave 
on I and X is not degenerate. 

Proof We prove the result for the convex case. The proof of the concave case is anal­
ogous. 

If g is a convex function for x E I, then there exists a line going through 
the point EX, say f(x) = a + bx, such that g(x) ~ f(x) = a + bx V X E I and 
g(EX) = a + bEX (see Figure 3.6). Now note that 

(discrete) Eg(X) = L g(x)f(x)::: L (a + bxlf(xl = a + bEX = g(EXI, 
XERIX) XERIX) 

(continuous) Eg(XI = £: g(xlf(x)dx ::: £: (a + bx)f(x)dx = a + bEX = g(EX), 

since g(x) ::: a + bx V X E 1,13 so that Eg(X) ~ g(EX). 
If g is strictly convex, then there exists a line going through the point EX, 

say f(x) = a + bx, such that g(x) > f(x) = a + bx V X E I for which x =1= EX, and 
g(EX) = a+bEX. Then, assuming that no element in R(X) is assigned probability 
one (Le., X is not degenerate), the previous inequality results become strict, 
implying Eg(X) > g(EX) in either the discrete or continuous case. • 

Example 3.8 Suppose that the yield per acre of a given agricultural crop under standard cul­
tivation practices is represented by Y = SX - .lX2, where outcomes of Yare 
measured in bushels, and X represents the total rainfall during the growing 
season, measured in inches. If EX = 20, can you place an upper bound on the 
expected yield per acre for this crop? 
Answer: Yes. Note that Y = SX - .lX2 is a concave function, so that Jensen's 
inequality applies. Then EY = Eg(X) :::: g(EX) = SEX - .1(EX)2 = 60 is an upper 
bound to the expected yield. In fact, the function is strictly concave, and so the 
inequality can be made strict (it is reasonable to assume that rainfall is not a 
degenerate random variable). 0 

Expectation Properties 

There are a number of properties of the expectation operation that follow di­
rectly from its definition. We prove the validity of the propositions using the 
case of a continuous random variable. The reader is asked to provide analogous 
demonstrations in the discrete cases. 

Theorem 3.5 If c is a constant, then E(c) = c. 

about degenerate random variables in Section 3.6. 

13Recall the integral inequality that if h(x) 2: t(x) V X E (a, b), then J: h(x)dx 2: J: t{x)dx. Strict inequality holds if h{x) > t{x) V 
X E (a, b). The result also holds for a = -00 and/or b = 00. 
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Proof Let g(X) = c. Then, by Theorem 3.2, 

E(c) = r: cf(x)dx = c r: f(x)dx = c. 
'--v-" 

1 

In words, "the expected value of a constant is the constant itself." 

Theorem 3.6 If c is a constant, then E(cX) = cEX. 

Proof Let g(X) = cX. Then, by Theorem 3.2, 

E(cX) = i: cxf(x)dx = c i: xf(x)dx = cEX. 
'---,.----' 

EX 

• 

• 

In words, "the expected value of a constant times a random variable is the 
constant times the expected value of the random variable." 

Proof Let g(X) = E:=1 gj(X). Then, by Theorem 3.2, 

E tgj(X) = r: [tgj(X)] f(x)dx = t r: gj(x)f(x)dx = tEgj(X). • 

In words, "the expectation of a sum is the sum of the expectations" regarding k 
functions of the random variable X. A useful corollary to Theorem 3.7 concerns 
the expectation of a linear function of X. 

Corollary 3.1 Let Y = a + bX for real constants a and b, and let EX exist. Then E Y = a + bEX. 

Proof This follows directly from Theorem 3.7 by defining g1(X) = a, g2(X) = bX, and 
then applying Theorems 3.5 and 3.6. • 

Multivariate Extensions 

The concept of an expectation of a function of a random variable is generalizable 
to a function of a multivariate random variable as indicated in the following 
theorem. The proof is based on an extension of the proof of Theorem 3.2 and is 
omitted. 14 

14See Steven F. Arnold (1990), Mathematical Statistics. Englewood Cliffs, NJ: Prentice Hall, pp. 92, 98. 
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Theorem 3.8 (Expectation of a Function of a Multivariate Random Variable) Let (Xl, .. . ,Xn) 
be a multivariate random variable with joint density function f(XI, ... ,xn). 
Then the expectation of Y = g(Xl , .. . ,Xn) is given byJS 

(discrete) EY = L··· L g(XI, ... ,Xn)f(XI, ... ,xn), 
(XI , ... ,Xn IER(XI 

(continuous) EY = i:··· i: g(XI, ... ,Xn)f(XI, ... ,Xn)dxl·· ·dxn. 

We remind the reader that since f(XI, ... , xn) = o 'v' (Xl, ... , Xn) ¢ R(XI, one could 
also sum over the points (Xl, .. . ,xnl E xY=IR(Xjl to define EY in the discrete 
case. 

Example 3.9 Let the bivariate random variable (Xl, X21 represent the proportions of operating 
capacity at which two electricity generating plants operate on a given spring 
day in an East Coast power grid. Assume the joint density of (XI,X21 is given 
by 

f(Xl, x21 = 6XIXi1Io,11(Xllllo,11(X2). 

What is the expected average proportion of operating capacity at which the two 
plants operate? 
Answer: Define the average proportion of operating capacity via the function 
g(Xl,X21 = .S(XI + X21. By Theorem 3.8, 

Eg(Xl,X2) = fal 101 
3Xfxidxldx2 + 10 1 fal 3XIX~dxldx2 

1 3 17 
= :3 + 8 = 24 =.7083. o 

The expectation property in Theorem 3.7 concerning the sum of functions 
of a random variable X can also be extended to the sum of functions of a mul­
tivariate random variable, as the following theorem indicates. 

Proof (Continuous) Let g(Xl, ... ,Xn) = L~=lgj(Xl, ... ,Xn). Then by Theorem 3.8, 
Eg(Xl, .. . ,Xn) is given by 

E tgj(Xl, .. . ,XnJ = 100 
•.. 100 (tgj(Xl, . .. ,xn)) f(Xl, .. . ,Xn)dXl . .. dxn 

i=l -00 -00 j=! 

ISIt is tacitly assumed that the sum and integral are absolutely convergent for the expectation to exist. 
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k 

= LEgi(Xl, ... ,Xn ). 
i=l 

The proof in the discrete case is left to the reader. • 
A useful corollary to Theorem 3.9 involving the sum of random variables 

themselves is given as follows: 

Corollary 3.2 EEL Xi = EL EXj • 

Proof This is an application of Theorem 3.9 withgi(XI, ... ,Xn ) = Xi, i = 1, ... , n. • 

In words, "the expectation of a sum is equal to the sum of the expectations" 
regarding the n random variables Xl, ... , Xn . 

In the case where the random variables (Xl, ... ,Xn ) are independent, we can 
prove that "the expectation of a product is the product of the expectations." 

Theorem 3.10 Let (Xl, ... ,Xn ) be independent random variables. Then 
n n 

EnXi = nEXi. 
i=l i=l 

Proof (Continuous case) Letting g(XI , ..• ,Xn ) = nf=l Xi in Theorem 3.8, we have 

n fOO foo n ED Xi = -00' •• -00 D xi/(XI, ... , Xn)dXI ... dXn 

(by independence) 

The discrete case is analogous and is left to the reader. • 
Later in our study we will find it necessary to take expectations of a vector or 

matrix of random variables. The following definition describes what is involved 
in such an operation. 

Definition 3.3 
Expectation of a matrix 

of random variables 

Let W be an n x k matrix of random variables whose (i, j)th element is Wii . 
Then EW, the expectation of the matrix W, is the matrix of expectations of 
the elements of W, where the (i, j)th element of EW is equal to EWii' 
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If we let k = 1 in the above definition, we have that the expectation of a 
vector is the vector of expectations, i.e., 

EW=E[~:] = [~~:]. 
Wn EWn 

In general, 

EW= : [
EWll 

(nxk) . 
EWnl 

i.e., "the expectation of a matrix is the matrix of expectations." 
Having introduced the concept of the expectation of a vector, we note that a 

multivariate Jensen's inequality (Theorem 3.4) holds true for multivariate ran­
dom variables. In fact, the appropriate extension is made by letting X denote an 
n x 1 random vector and I represent an open rectangle in the statement of The­
orem 3.4. The reader is asked to prove the multivariate version of Theorem 3.4 
(replace the line .e(x) = a + bx with the hyperplane l(x) = a + 2:::7=1 bjxj in the 
proof). 

3.3 Conditional Expectation 

Up to this point, expectations of random variables and functions of random 
variables have been taken in the unconditional sense, i.e., we have not assumed 
that information was available relating to the occurrence of an event for a subset 
of the random variables (Xl, .. . ,Xn ). When information is given concerning 
the occurrence of events for a subset of the random variables (Xl, ... , X n ), the 
conditional expectation of a random variable becomes a relevant concept. 

There is a myriad of situations that arise in business and economic settings 
in which the concept of conditional expectation is relevant. For example, the 
expected number of housing starts calculated for planning purposes by building 
supply manufacturers would depend on the given level of mortgage interest 
assumed, or the expected sales tax revenue accruing to state government would 
be a function of whatever reduced level of employment was assumed due to 
the downsizing of a major industry in the state. More generally, we will see 
that conditional expectation is at the heart of regression analysis, whereby one 
attempts to explain the expected value of one random variable as a function of 
the values of other related random variables, e.g., the expected yield/acre of an 
agricultural crop is conditional on the level of rainfall, temperature, sunshine, 
and degree of weed and pest infestation. 

The difference between unconditional and conditional expectation is that 
the unconditional density function is used to weight outcomes in the former 
case, while the conditional density function supplies the weights in the latter 
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case. The conditional expectation of a function of a random variable is defined 
in the bivariate case as follows. 

Definition 3.4 
Conditional 

expectation; bivariate. 

Let X and Y be random variables with joint density function fIx, y). Let the 
conditional density of Y, given x E B, be fly I x E B). Let g(Y) be a real­
valued function of Y. Then the conditional expectation of g(Y), given x E B, 
is defined as 

(discrete) E(g(Y) I x E B) = L g(y)f(y I x E B), 
yeRIYI 

(continuous) E(g(Y) I x E B) = L: g(y)f(y I x E B)dy. 

Note in the special case where g(Y) = Y, we have by Definition 3.4 that 
E(Y I x E B) = J~oo yf(y I x E B)dy in the continuous case, and E(Y I x E B) = 
LyeRlY! yf(y I x E B) in the discrete case. 

Example 3.10 Let the bivariate random variable (X, Y) represent the per dollar return on two 
investment projects. Let the joint density of (X, Y) be 

fIx, y) = i6 (x2 + 2xy + 2y2)IloAI(x)Ilo.21(y)· 

What is the conditional expectation of the per dollar return on the second 
project, given that the per dollar return on the first project is x = I? 
Answer: To answer the question, we first need to establish the conditional 
density flY I x = 1). This in turn requires knowledge of the marginal density of 
X, which we find as 

fx(x) = L:f(x,y)dy = 916102
(X2 + 2xy + 2y2)Ilo.4](x)dy 

= (4~X2 + 2~x + fa) IloAI(x). 

Then 

fly I x = 1) = Pf!I,(;,) = ~(1 + 2y :::y2)IIO.2](Y) = [.088235 + .176471(y + y2)]1Io.2](Y)' 
x 144 

Finally, by Definition 3.4, 

E(Y I x = 1) = i: yf(y I x = 1 )dy = 102 (.088235y + . 176471(y2 + y3)) dy 

= .088~35y2 +.176471[~3 +:4] 1:=1.3529. o 

It is important to note that all of the properties of expectations derived 
in the previous two sections apply equally well to conditional expectations. 
This follows from the fact that the operations of taking an expectation and a 
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conditional expectation are precisely the same once a PDF has been derived, 
and the genesis of the PDF is irrelevant to the expectation properties derived 
heretofore (note that the origin of a PDF in Sections 3.1 and 3.2 was never an 
issue). 

Rather than specifying a particular elementary event for the outcome of X 
when defining a conditional expectation of g(Y), we might conceptualize leaving 
the elementary event for X unspecified, and express the conditional expectation 
of g(Y) as a function of x. Let 1](x) = E(g(Y) I x) denote the function of x whose 
value when x = b is E(g(Y) I x = b). Then, by definition, we can interpret 
1](X) = E(g(Y) I X) as a random variable. If we take E1](X) = E(E(g(Y) I X)), we 
obtain the unconditional expectation of g(Y). 

Theorem 3.11 (Double Expectation Theorem) E(E(g(Y) I X)) = Eg(Y). 

Proof (Continuous case) Let fx(x) be the marginal density of X and fIx, y) be the joint 
density of X and Y. Then 

1](x) = E(g(Y) I x) = 1: g(Y)~;i~) dy 

and 

E(1](X)) = E(E(g(Y) I X)) = 1: [1: g(Y)~;i~) dyJ fx(xJdx 

= 1:1: g(yJf(x,y)dydx = Eg(Y). 

The proof in the discrete case is left to the reader. • 
Example 3.11 Suppose that the expectation of market supply for some commodity, given price 

p, is represented by E( Q I p) = 3p+ 7 and EP = 2. Then by the double expectation 
theorem, the unconditional expectation of market supply is given by 

E(EQ I P)) = E(3P + 7) = 3EP + E7 = 13. o 

In cases where one is conditioning on an elementary event x = b, there are 
useful generalizations of Definition 3.4 and Theorem 3.11, which are referred to 
as the substitution theorem and the generalized double expectation theorem, 
respectively. 

Theorem 3.12 (Substitution Theorem) E(g(X,Y) I x = b) = E(g(b,YJ I x = b). 

Proof (Discrete case) Let z = g(x, y), and note that the PDF of 2, conditional on x = b, 
can be defined as 

h(z I x = b) = P(g(x,y) = z I x = b) = P(g(x,y) = z,x = b)/P(x = b) 

= L f(b,y)lfx(b) = L fly I x = b). 
(y:g(b,yl=zl (y:g( b,yl=z I 
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It is evident that the set of z values for which h(z I x = b) > 0 is given by 
8 = {z : z = g(b, y), y is such that fly I x = b) > O}. Then 

E(g(X, Y) I x = b) = E(z I x = b) = Lzh(z I x = b) 
ze3 

= LZ L fly I x = b) 
ze3 {y:glb,yl=z} 

= L g(b, y)f(y I x = b) = E(g(b, Y) I x = b). 
yeRIY) 

(Continuous case) See A. F. Karr (1993), Probability. New York: Springer-Verlag, 
p.230. • 

The substitution theorem indicates that when taking the expectation of 
g(X, Y) conditional on x = b, one can substitute the constant b for X as g(b, Y) 
and then take the conditional expectation with respect to the random variable 
Y. The random variable X essentially acts as a constant in g(X, Y) under the 
condition x = b. 

Theorem 3.13 (Generalized Double Expectation Theorem) EE(g(X, Y) I X) = Eg(X, Y). 

Proof Using the substitution theorem but leaving the elementary event for X un­
specified in order to express the conditional expectation as a function of the 
elementary event x obtains (continuous case and discrete case are analogousJ 

7J(xJ = E(g(X, YJ I x) = E(g(x, YJ I x) 

= i: g(x, y)f(y I xJdy. 

Then 

E(7J(XJJ = EE(g(X, YJ I X) 

= i: [I: g(x, y)f(y I XJdyJ fx(xJdx 

= i: f: g(x, yJf(x, y)dy dx = Eg(X, YJ. • 
Thus, taking the expectation of the conditional expectation of g(X, YJ given 

x yields the unconditional expectation of g(X, YJ. 

Example 3.12 Let (X, Y) represent the per dollar return on the two investment projects of 
Ex. 3.10. Assume $1,000 is invested in each project. What is the expected return 
on the portfolio, given that the per dollar return on the first project is x = I? 
Answer: The return on the portfolio can be represented as z = g(x, y) = l,OOOx+ 
l,OOOy. The substitution theorem allows the conditional expectation to be de-
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fined as 

E(Z I x = 1) = E(1000X + 1000Y I x = 1) = E(1000 + 1000Y I x = 1) 

= 102(1000 + 1000y)f(y I x = l)dy 

= 1000 + 1000 102 yf(y I x = l)dy = 2352.9. o 

Example 3.13 Given the representation of expected market supply in Ex. 3.11, we know by 
the substitution theorem that the expected dollar sales of the commodity, ex­
pressed as a function of price, is E(pQ I p) = 3p2 + 7p. Suppose EP2 = 8. Then, 
using Theorem 3.13, the (unconditional) expectation of dollar sales is given by 
EE(PQ I P) = E(3P2 + 7P) = 3Ep2 + TEP = 38. 0 

Regression Function 

In the special case where g(Y) = Y, the conditional expectation of Yexpressed 
as a function of x, i.e., E(Y I xl, is called the regression function of Y on X. The 
regression function depicts the functional relationship between the conditional 
expectation of Y and the potential values of X on which the expectation might 
be conditioned. In the continuous case, the graph of the function is generally a 
curve in the plane, in which case E(Y I xl is often referred to as the regression 
curve of Y on X. 

Example 3.14 Refer to the investment return example, Ex. 3.10, and rather than calculate 
E(Y I x = I), we calculate E(Y I x), the regression function of Y on X. Letting 
f(y I x) denote the conditional density function of y expressed as a function of 
x, we have f(y I x) = f(x, y)lfx(x). Then 

E(Y I x) = 100 yf(x, y) dy = [2 y(x2 + 2xy + 2y2)Ilo,41(x) dy 
-00 fx(x) 10 (2x2 + 4x + 1;) Ilo,41(X) 

__ [2X2 + ~x + 8] 
2x2+4x+ ~ 

for x E [0,4], 

and the regression function is undefined for x i [0,4]. The regression function 
represents the expected per dollar return on project 2 as a function of the various 
potential conditioning values for the per dollar return on project 1. Note that 
the regression function is a nonlinear function of x. The reader can verify that 
at the point x = I, E(Y I x) = 1.3529 is the value of the regression function, as 
it should be given the answer to Ex. 3.10. The reader is encouraged to sketch 
the graph of the regression function over its domain of definition. 0 

The regression function has an important interpretation in terms of approx­
imating one random variable by a function of other random variables. Examine 
the problem of choosing a function of X, say h(X), whose outcomes are the 
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minimum expected squared distance 16 from the outcome of Y. Assuming that 
(X, Y) is a continuous bivariate random variable (the discrete case is analogous), 
we thus seek an h(X) that minimizes 

E(Y - h(X))2 = i:i:(y - h(xWf(x,y)dxdy 

= i: [i:(y - h(x))2f(y I x)dyJ fx(x)dx. 

If h(x) could be chosen so as to minimize the bracketed integral for each possible 
x, then it would follow that the double integral, and thus the expected squared 
distance between outcomes of Y and h(X), would be minimized. 

The optimal choice of approximating function is given by h(x) = E(Y I x). 
To see why, note that the substitution theorem allows the preceding bracketed 
expression to be written as 

E([Y - h(xlJ2 I x) = E([Y - E(Y I x) + E(Y I x) - h(xW I x) 

= E([Y - E(Y I xW I x) + [E(Y I x) - h(xW, 

where the cross-product term is zero and has been eliminated because 

E([Y - E(Y I x)][E(Y I x) - h(xlJ I x) 

= [E(Y I x) - h(xllE(Y - E(Y I xl I x) (by the substitution theorem) 

= [E(Y I x) - h(x)][E(Y I x) - E(Y I x)1 = o. 
It follows that the choice of h(x) that minimizes E([Y - h(x)j2 I x) is given by 
h(x) = E(Y I x), since any other choice results in [E(Y I x) - h(x)j2 > O. 

The preceding result suggests that if one is attempting to explain or pre­
dict the outcome of one random variable from knowledge of the outcome of 
another random variable, and if expected squared distance (also called mean 
square error-to be discussed in Chapter 7) is used as the measure of closeness 
between actual and predicted outcomes, then the best (closest) prediction is 
given by values of the regression function, or equivalently by the conditional 
expectation of the random variable of interest. For example, in Ex. 3.14, if one 
were attempting to predict the expected dollar return on project 2 in terms of 
the dollar return on project I, the regression function E(Y I x) presented in the 
example provides the predictions that minimize expected squared distance be­
tween outcomes of Y and outcomes of h(X). If x = I, then the best prediction 
of Y's outcome would be 1.3529. 

Conditional Expectation and Regression in the Multivariate Case 

The definition of conditional expectation (Definition 3.4) and the theorems 
involving conditional expectation extend to the case where Y and/or X is mul-

16Recall that the distance between the points a and b is defined by d(a, bl = Ib - ai, and thus the squared distance would be given 
by d2 (a, bl = (b - a12• 
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Definition 3.5 
Conditional 

expectation (general) 

tivariate, in which case the reader can interpret Y and X as referring to random 
vectors and introduce multiple summation or integration notation appropri­
ately when reading the definition and the theorems. Also, the notion of the 
regression function of Y on X extends straightforwardly to the case where X is 
multivariate, in which case E(Y I xJ is interpreted as a function of the vector x 
and would be defined by E(Y I xJ = f~ooyf{y I Xl, ... ,xnJdy in the continuous 
case, with summation replacing integration in the discrete case. An argument 
analogous to the bivariate case can be used to prove that h(XJ = E(Y I X) is the 
function of the multivariate X that is the minimum expected squared distance 
from Y. Thus, the best approximation or prediction of Y outcomes via a func­
tion of the outcome of the multivariate X is provided by values of the regression 
function. 

For convenience, we list below a number of general expectation results 
applied specifically to conditional expectations involving multivariate random 
variables. 

Let (Xl,. oo,Xn ) and (YI,' 00, Ym) be random vectors having a joint density 
function f(xl,"" Xn, Yl, .. ·, YmJ. Let g(Yl, ... , Y mJ be a real-valued function 
of (Yl, ... , YmJ. Then the conditional expectation of g(Yl, ... , Ym ), given (Xl, 
... , Xn) E B, is defined as 

(discrete) E(g(YI, ... , YmJ I (XI, ... ,XnJ E B) 

= L 00' L g(YI,. oo,Ym)f(YI,. oo,Ym I (Xl,. oo,Xn) E BI,I? 
(YI, .. ·,Ym)eR(Y) 

(continuousJ E(g(Yl, ... , YmJ I (Xl, .. . ,Xn ) E B) 

= i:··· i: g(Yl, ... , YmJf(Yl,"" Ym I (Xl,"" XnJ E B)dYI ... dYm. 

Theorem 3.14 (Substitution Theorem: Multivariate) 

E(g(XI,. oo,Xn, Yl,. 00, YmJ I x = h) = E(g(b l,. 00, bn, Yl,. 00, Ym) I x = hJ 

Theorem 3.15 (Double Expectation Theorems: Multivariate) 

E(E(g(YI, ... , Ym ) I Xl, ... , Xn)) = Eg(Y1, ••• , Y mJ 

E(E(g(XI, .. . ,Xn , YI,oo., Ymll Xl,.· .,Xnll = Eg(Xl, .. . ,Xn , YI, ... , Yml 

Theorem 3.16 E(c I (Xl, ... ,xnl E BJ = c. 

Theorem 3.17 E(cY I (Xl,. ooXnJ E B) = cE(Y I (Xl,. oo,xnJ E BJ 

170ne can equivalently sum over the points (YI, ... , Ym) E x~1 R(Yi) in defining the expectation in the discrete case. 



132 Chapter 3 Mathematical Expectation and Moments 

Theorem 3.18 

3.4 Moments of a Random Variable 

Definition 3.6 
rth moment 

about the origin 

Definition 3.7 
Mean of a random 
variable (or mean 

of a density function) 

Definition 3.8 
rth central moment 

(or rth moment 
about the mean) 

The expectations of certain power functions of a random variable have uses as 
measures of central tendency, spread or dispersion, and skewness of the den­
sity function of the random variable, and also are important components of 
statistical inference procedures that we will study in later chapters. These spe­
cial expectations are called moments of the random variable (or of the density 
function). There are two types of moments that we will be concerned with­
moments about the origin and moments about the mean. 

Let X be a random variable with density function f(x). Then the rth moment 
of X about the origin, denoted by 11;, is defined for integers r ~ 0 as 

(discrete) f.L~ = E(xr) = L xrf(x), 
xeRIXI 

(continuous) f.L~ = E(Xr) = i: xrf(x)dx. 

Note that f.L~ = 1 for any discrete or continuous random variable, since JL~ = 
E(XO) = E(l) = l. The first moment about the origin is simply the expectation 
of the random variable X, i.e., JL'l = E(Xl) = EX, a quantity that we examined at 
the beginning of our discussion of mathematical expectation. This balancing 
point of a density function, or the weighted average of the elements in the range 
of the random variable, will now be given a special name and symbol. 

The first moment about the origin of a random variable, X, is called the mean 
of the random variable X (or mean of the density function of X) and will be 
denoted by the symbol JL. 

Thus, the first moment about the origin characterizes the central tendency 
of a density function. Measures of spread and skewness of a density function 
are given by certain moments about the mean. 

Let X be a random variable with density function f(x). Then the rth central 
moment of X (or the rth moment of X about the mean), denoted by f.Lr, is 
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Definition 3.9 
Variance of a random 
variable (or variance 

of a density function) 

Definition 3.10 
Standard deviation 

of a random variable 
(or standard deviation 
of a density function) 

defined for integers r ~ 0 as 

(discrete) /-Lr = E(X - /-LV = L (x - /-L)rf(x), 
xeRIXI 

(continuous) /-Lr = E(X - /-LV = i:(x - /-LVf(x)dx. 

Note that /-La = 1 for any discrete or continuous random variable, since 
/-La = E(X - /-L)O = E(l) = 1. Furthermore, /-LI = 0 for any discrete or continuous 
random variable for which EX exists, since /-L I = E(X - /-L) 1 = EX - E/-L = /-L - /-L = 
O. The second central moment is given a special name and symbol. 

The second central moment, E(X - /-L)2, of a random variable, X, is called the 
variance of the random variable X (or the variance of the density function of 
X) and will be denoted by the symbol a 2, or by varIX). 

We will also have use for the following function of the variance of a random 
variable. 

The nonnegative square root of the variance of a random variable, X, (i.e., 
.JaI), is called the standard deviation of the random variable X (or standard 
deviation of the density function of X) and will be denoted by the symbol a, 
or by std(X). 

The variance (and thus also the standard deviation) of X is a measure of 
dispersion or spread of the density function fIx) around its balancing point (the 
mean of X). The larger the variance, the greater the spread or dispersion of 
the density about its mean. In the extreme case where the entire density is 
concentrated at the mean of X and thus has no spread or dispersion, Le., fIx) = 
III.tJlx), then E(X - /-L)2 = 0 and the variance (and standard deviation) is zero. 

In order to examine the relationship between the spread of a density and the 
magnitude of the variance in more detail, we first present Markov's inequal­
ity (named after the Russian mathematician A. Markov), whence we introduce 
Chebyshev's inequality (named after the Russian mathematician P. L. Cheby­
shev) as a corollary. 

Theorem 3.19 (Markov'S Inequality) Let X be a random variable with density function fIx), 
and let g be a nonnegative-valued function of X. Then P(g(x) 2: a) ~ Eg(X)/a for 
any value a > O. 
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Proof (Continuous case and discrete case are analogous. The discrete case is left to 
reader.) 

Eg(X) = i: g(x)f(x)dx 

= f g(x)f(x)dx 
(x:g(x)~al 

+ f g(x)f(x)dx 
, (x:glx)<a) , 

T 

:::0 

::: f g(x)f(x)dx 
(x:glx)~al 

::: f af(x)dx (since g(x) ::: a for all x E {x : g(x) ::: a} 
(x:glx)~al 

::: a f f(x)dx = aP(g(x) ::: a), 
(x:glx)~a) 

and thus, Eg~X) ::: P(g(x) ::: a). 

Corollary 3.3 (Chebyshev's Inequality) P(lx - JLI ::: ka) ::: 1/k2 for k > O. 

• 

Proof This follows by letting g(X) = (X - JL)2 and a = k 2a2 in Markov's inequality and 
realizing that (x - JL)2 ::: k 2a2 is equivalent to (x - JL) ::: -ka or (x - JL) ::: ka, 
which is in turn equivalent to Ix - JLI ::: ka. • 

In words, Markov's inequality states that we can always place an upper 
bound on the probability that g(x) ::: a so long as g(x) is nonnegative valued and 
Eg(X) exists. Chebyshev's inequality implies that if JL and a are, respectively, 
the mean and standard deviation of the density function of X, then for any 
positive constant k, the probability that X will have an outcome that is k or 
more standard deviations from its mean, i.e., outside the interval (JL-ka, JL+ka), 
is less than or equal to 1/k2. Note that we are able to make these probability 
statements without knowledge of the algebraic form of the density function. 

Chebyshev's inequality is sometimes stated in terms of an event that is the 
complement of the event in Corollary 3.3. 

Corollary 3.4 (Chebyshev's Inequality) PUx - JLI < ka) ~ 1 - 1/k2 for k > O. 

Proof This follows directly from Corollary 3.3, noting that P( Ix - JL I ::: ka) = 1 - P( Ix-
JLI < ka) ::: 1/k2. • 

Markov's inequality and Chebyshev's inequalities are interesting in their 
own right, but at this point we will use the concepts only to further clarify 
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Figure 3-7 
Density functions 

and variances. 

our interpretation of the variance as a measure of the spread or dispersion of a 
density function. In Corollary 3.4, let ka = c, where c is any arbitrarily small 
positive number. Then 

0'2 
P(lx - ILl < c) 2: 1 - 2' 

c 

where we have substituted for k the value c/O'. Then note that as a2 ~ 0, the 
probability inequality approaches 

P(IL-C<X<IL+C)2: I, 

which implies that as 0'2 ~ 0, the density concentrates in the interval (IL-c, IL+ 
c) for any arbitrarily small positive c. Diagrammatically, this can be illustrated 
as, say, Figure 3.7. 

As a concrete example, let IL = 0, and examine the event B = {x : Ixl < 1O1, 
where we are letting c = 10 in the preceding argument. Then using P(lx - ILl < 

ka) 2: 1 - l/k2 with ka = c = 10, we have 

[
0'=5] if 0'=2 , 
0'=1 

[ 
1 - 1/22 = .75 ] 

then P(B) ~ 1 - 1/52 = .96 , 
1 - 1/102 = .99 

and thus the smaller is a (and thus the smaller the variance), the larger is the 
lower bound on the probability that the outcome of X occurs in the interval 
(-10,10). 

For an alternative argument in support of interpreting the variance as a 
measure of the spread of a density function, note that the variance of X can be 
interpreted as the expected squared distance of the random variable X from its 
mean. To see this, first recall that the distance between two points, x and y, on 
the real line is defined as d(x, y) = Ix - yl. Then d2(x, y) = (x - y)2, and letting 
y = IL, we have Ed2(X, ILl = E(X - IL)2 = 0'2. Therefore, the smaller is 0'2, the 
smaller is the expected squared distance of X from its mean. 

)l.-c )l.+c 
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Figure 3-8 
Density symmetric about /-t. 

The third central moment is sometimes referred to as a measure of skew­
ness of the density of X. A density is said to be symmetric about /L when 
f(/L + 8) = f(/L - 8) V 8> 0 (see Figure 3.8). 

If the density is not symmetric, then it is said to be a skewed density. 
A necessary condition for a density to be symmetric about /L is that /L3 = 
E(X - /L)3 = O. To see this, examine the continuous case, and note that 

/L3 = i:(x - /L)3f(x)dx = loo(X - /L)3f(x)dx + i:(x - /L)3f(x)dx. 

By making the substitution z = x - /L in the first integral and z = -x + /L in 
the second integral, we obtain 

/L3 = laoo z3f(/L + z)dz - f~(-z)3f(/L - z)dz = laoo z3f(/L + z)dz - laoo z3f(/L - z)dz = 0, 

since f(/L + z) = f(/L - z) V z by the symmetry of f about /L. The reader can 
provide an analogous demonstration in the discrete case. Thus, if /L3 i= 0, then 
the density function in question is skewed. The reader should note, however, 
that /L3 = 0 is not sufficient for symmetry, i.e., a density can be skewed and 
still have /L3 = 0, as the following example illustrates. 

Example 3.15 Let the random variable X have the density function fIx) = .22I(lt/x)+. 77I{2}(x)+ 
.01I{4t/x) (see Figure 3.9). Note that /L = 1.8, and it is clear that fIx) is not 
symmetric about /L. Nonetheless, /L3 = E(X - /L)3 = O. 0 

The sign of /L3 is sometimes interpreted as indicating the direction of 
the skew in the density function. In particular, density functions having long 
"tails" to the right are called skewed to the right, and these densities tend 
to have /L3 > 0, whereas density functions with long left-hand tails are called 
skewed to the left, and these densities tend to have /L3 < 0 (see Figure 3.10). 
Unfortunately, there are exceptions to these "tendencies," and the nature of 
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Figure 3-9 
A nonsymmetric 
density function. 

lemma 3.2 
Binomial Theorem 

Theorem 3.20 

/(x) 

1.0 

.5 

~------~~-----4~--------~~------X 
4 

the skewness is best determined by examining the graph of the density itself if 
the functional form of the density is known. 

Relationship Between Moments About the Origin and Mean 

Integral moments about the origin and about the mean are functionally related. 
Central moments can be expressed solely in terms of moments about the origin, 
while moments about the origin can be expressed in terms of the mean and 
moments about the mean. The functional relationship is the direct result of 
the binomial theorem, which we review for the reader in the following lemma. 

Let a and b be real numbers. Then (a + bIn = 2.:1=0 G)aibn-! 

(Central moments as functions of moments about the origin) If I1-r exists and 
r is a positive integer, then 

r () 
_ ; r , ; 

I1-r - I)-I) . I1-r-jl1-· 
;=0 7 

Proof By definition, I1-r = E(X - I1-V. Substituting (-11-) for a, X for b, and r for n 
in the binomial theorem (Lemma 3.2) and taking an expectation yield I1-r 

Figure 3-10 
Skewed density functions. 

!A. 

J.l3 > 0, skewed to the right 

J.l 

J.l3 < 0, skewed to the left 
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E I:;=o e)!-ILJixr-i. An application of Theorems 3.6 and 3.7 results in ILr = 
I:;=o! -l)i (DlLiEXr-i. • 

Theorem 3.21 (Moments about the origin as functions of central moments) If J..L~ exists and 
r is a positive integer, then J..L~ = I:~=o (~)lLr-iJ..Li. 

Proof By definition, IL~ = Exr = E!X -IL + ILl'. Substituting IL for a, !X -IL) for b, and 
r for n in the binomial theorem (Lemma 3.2) and taking an expectation yield 
J..L~ = E I:~=o (DJ..Li(X - J..L)r-i. An application of Theorems 3.6 and 3.7 results in 

J..L~ = L~=(, (DJ..LiE(X -1L)r-i· • 

A special case of Theorem 3.20, which we will use repeatedly in later chap­
ters, is the case where r = 2, which provides a representation of the variance 
of a random variable in terms of moments about the origin. In particular, from 
Theorem 3.20, 

varIX) = J..L2 = J..L2 - J..L2 = EX2 - (EX)2. 

Example 3.16 Let the random variable X have density function fIx) = I[O,II!x). Since EX = 1/2, 

and since EX2 = J.~oox2I[o,11(x)dx = %- I~= 1/3, then varIX) = EX2 - (EXj2 = 
1/3 - (1/2)2 = 1/12. 0 

Existence of Moments 

Regarding the existence of moments, the following theorem is often quite use­
ful. 

Theorem 3.22 If EXt exists for a given integral r > 0, then EXS exists for all integral s E [0, rl. 

Proof (Continuous) Define Ad = {x: Ixls < I} and A~l = {x : Ixls ~ I}. Note that i: IXISf(x)dx = lEA<1 IxISf(x)dx + lEA~1 IXISf(x)dx. 

Since fIx) ~ IxISf(x) Y x E Ad, 

P(lxi S < 1) = 1 f(x)dx ~ 1 IXISf(x)dx. 
XEA<I XEA<I 

Now let r > s, and note that Ixls :s Ixl r Y x E A~l' whence it follows that 

lEA~1 IXITf(x)dx ~ lEA~1 IXISf(x)dx. 

Finally, since iXEA<I IxITf!x)dx ~ 0, i: IXISf(x)dx:s P!lxls < 1) + f: IxITf(x)dx < 00, 
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where the rightmost inequality is due to the fact that P(jxls < 1) E [0, 1] and EXT 
exists, implying the absolute convergence of the improper integral defining the 
expectation. It follows from f~oo IxISf(x)dx < 00 that EXS exists. 

(Discrete) The proof in the discrete case is analogous to the preceding proof 
with summation replacing integration and is left to the reader. • 

The theorem implies that if the existence of the rth-order moment about 
the origin can be demonstrated, then lower-order moments about the origin are 
known to exist. Theorem 3.22 can also be used to demonstrate the nonexistence 
of moments, since if EXT does not exist, then necessarily EXs cannot exist for 
s > r or else Theorem 3.22 would be contradicted. 

Example 3.17 Let the random variable X have the density function f(xl = 2(x + IJ-3I[0,00)(xJ. 
Examine EXa = fooo xa2(x+ 1 J-3dx. To simplify the integral, make the substitu­
tion y = x + I, so that x = y - 1 and dy = dx, to yield EXa = 2 f100(y - 1 Ja y -3dy. 
Note that if a = 2, then EX2 = 2floo (y-l - 2y-2 + y-3)dy = limy->002(lny + 
2y-l - (1/2Jy-2J, and since the limit diverges, EX2 does not exist (i.e., note that 
In y ~ 00 as y ~ ooJ. This implies by Theorem 3.22 that moments of order 2 
or greater do not exist for X. The reader can verify that EX exists and is equal 
to 1. 0 

Existence results analogous to Theorem 3.22 can be stated for moments 
about the mean. 

Theorem 3.23 If E(Y - flf exists for a given integral r> 0, then E(Y - fl)S exists for all 
integral s E [0, r]. 

Proof This follows directly from Theorem 3.22 upon defining X = Y - JL. • 

One can also infer the existence of moments about the mean from moments 
about the origin, and vice versa. 

Theorem 3.24 If EXT (or E(X - JLn exists for a given integral r > 0, then E(X - JLJs (or ExsJ 
exists V integral s E [O,r]. 

Proof This follows directly from Theorems 3.20 to 3.23. Details are left to the 

Definition 3.11 
Median of X 

reader. • 

Nonmoment Measures of Probability Density Characteristics 

Note that whether or not moments exist for X, there are other measures of 
probability distribution characteristics that are also of interest in applications. 
An alternative measure of the central tendency of a density is the median, 
defined as follows. 

Any number, b, satisfying P(x ::s bJ ::: 1/2 and P(x ::: b) ::: 1/2 is called a 
median of X and is denoted by med(XJ. 
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The median is a measure of central tendency in the sense that::: 1/2 of the 
probability mass of a density is both to the right and to the left of the median. In 
the continuous case, the probability inequalities in Definition 3.11 can be met 
with strict equalities, so that the median is a point at which half the probability 
mass is to the left and half is to the right, as f~~dIX) f(x)dx = f:dIX) f(x)dx = .5. 

Depending on how the density is defined, the median may not be unique 
even in the continuous case. However, if b = med(X), and if in the neighborhood 
of the point b the CDP of X is continuous and strictly increasing, then med(X) 
is unique (why?). 

Example 3.18 Let the random variable X have density function fIx) = (1/6)I(l,2, ... ,6)(x). Then the 
median of X is not unique and can be any number in the interval [3,4], since 
PIx ~ b) ::: 1/2 and PIx ::: b) ::: 1/2'11 b E [3,4]. 0 

Example 3.19 The central processing unit (CPU) used by a company that manufactures per­
sonal computers has an operating life until failure that is given by the outcome 
of a random variable X having density function fIx) = (1/50)e-x/so 110,00) (x), where 
x is measured in thousands of hours. What is the median operating life of the 
CPU? 

Definition 3.12 
Quantile of X 

Answer: We must solve the following equation for med(X): 

j medlX) 1 
-e-x/soIIO,oo)(x)dx =.5 or 1 - e-medIX)/So = .5, 

-00 50 

so that med(X)=34.657. It is thus equally probable that the CPU will operate 
more or less than 34,657 hours until failure. 0 

Another probability density characteristic, which subsumes the median as 
a special case, is called a quantile. 

Any number b satisfying PIx ~ b) ::: p and PIx ::: b) ::: 1 - p for p E (0,1) is 
called a quantile of X of order p (or the (lOOp)th percentile of the distribution 
of X). 

Note the median is then simply the quantile of X of order .5, or the 50th 
percentile of the distribution of X. As in the case of the median, the quantile 
of order p may not be unique for a given random variable X. In Ex. 3.18, any 
bE [4,5] would be a quantile of X of order 2/3, while in Ex. 3.19, the quantile 
of order 2/3 would be b = 54.931. 

One additional characteristic of a probability distribution that will be espe­
cially useful when we study the maximum likelihood procedure of statistical 
inference is a mode of the distribution of X. 
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Definition 3.13 
Modeoff(x) Let X be a random variable with density function fIx). Then any point b 

at which fIx) exhibits a maximum is called a mode of X, or a mode of the 
distribution of X, and is denoted by mode(X). 

Some density functions may not have a unique mode. Those that do are 
called unimodal. Note that the density function in Ex. 3.18 exhibits six modes 
corresponding to the points x = 1,2,3,4,5,6. The density function in Ex. 3.17 
has one mode, at the point x = O. The density in Ex. 3.19 has no mode (why 
not? How might the problem be altered so that mode(X) exists?). 

3.5 Moment- and Cumulant-Generating Functions 

Definition 3.14 
Moment generating 

function (MGF) 

The expectation of etX results in a function of t that, when differentiated with 
respect to the argument t and then evaluated at t = 0, generates moments of X 
about the origin. The function is aptly called the moment-generating function 
ofX. 

The expected value of etX is defined to be the moment-generating function of 
X if the expected value exists for every value of t in some interval t E (-h, h), 
h > O. The moment-generating function of X will be denoted by Mx(t). Thus, 

(discrete) 

(continuous) 

Mx(t) = EetX = L e!Xf(x), 
xeRlx) 

The reader should note that Mx(O) = EeD = El = 1 is always defined, 
and from this property it is clear that a function of t cannot be a MGF unless 
the value of the function at t = 0 is 1. The condition that Mx(t) be defined V 
t E (-h, h) is a technical condition ensuring that Mx(t) is differentiable at the 
point zero, a property whose importance will become evident shortly. 

We now indicate how the MGF can be used to generate moments about the 
origin. In the following theorem, we use the notation drg(a)jdxr to indicate the 
rth derivative of g(x) with respect to x evaluated at x = a. 

Theorem 3.25 Let X be a random variable for which the MGF, Mx(t), exists. Then 

, _ EXr _ d r Mx(O) 
ILr - - dtr • 

Proof The proof is facilitated by the following lemma from advanced calculus. 
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Lemma 3.3 
If the function g(tJ defined by g(tJ = LxeR(X) etxf(xJ or f:::' etxf(xJdx converges 
for t E (-h, hJ, h > 0, then drg(tJ/dtr exists V t E (-h, hJ and for all posi­
tive integers r, and the derivative can be found by differentiating under the 
summation sign or differentiating under the integral sign, respectively, as 

drg(tJ dretx 100 dretx 
-d r = L -d r f(xJ or -d r f(xJdx 

t xeR(x) t -00 t 

(see D. V. Widder (1961), Advanced Calculus, 2nd ed. Englewood Cliffs, NJ: 
Prentice-Hall, pp. 442-447). 

If the moment generating function 

Mx(t) = EeXt = L etxf(x) or r: etxf(x)dx 
xeR(X) 

exists (converges) for t E (-h, hJ, h > 0, then from Lemma 3.3, 
drMx(t) dretx ('XJ dretx 

dt! = L --cw-f(x) or i- dtr f(x)dx 
xeR(X) 00 

= L xr etx f(x) or r: xr etx f(x)dx. 
xeR(X) 

Evaluating the rth derivative at t = 0 yields 

drMx(O) 100 

d r = L xr f(xJ or xr f(x)dx = EXr. 
t xeR(X) -00 

• 
Example 3.20 The random variable X has the density function f(x) = e-X I(o,oo)(xJ. Find the 

MGF, and use it to define the mean and variance of X. 
Answer: 

Mx(t) = [00 etxe-xI(o,oo)(x)dx = [00 ex(t-l)dx = eX~-II) 1
00 

i-oo io t ° 
= 0 - _1_ = (1 - ttl (provided t < 1) 

t-l 
The mean is defined as JL = dMx(O)ldt = (1 - 0)-2 = 1. For the variance, recall 
from Theorem 3.20 thata2 = JL~ -JL2 • Then, JL~ = d2Mx(OJ/dt2 = 2(1-0)-3 = 2, 
and thus, a2 = 1. 0 

There are a number of elementary results relating to moment-generating 
functions that can be quite useful in applications. We present these results in 
the next theorem, leaving the proof as an exercise for the reader. 

Theorem 3.26 (Properties of MGFsJ Let (Xl, ... ,XnJ be independent random variables having 
respective MGFs Mxj(t), i = I, .. . ,n. 
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a. If Yi = aXi + b, then Myi(t) = ebtMxi(at). 
h. If Y = L:~l Xi, then My(t) = n~l MXi(t). 
c. If Y = L:7=l aiXi + b, then My(t) = ebt n7=l MXi(ait). 
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It is useful to note that since X could be defined as a random variable that 
is itself a function of other random variables, a more general conceptualization 
of the MGF is Mglxl(t) = E exp(g(X)t), where g is a function of X.lS The MGF 
Mg(XI(t) could then be used to define moments about the origin for the random 
variable defined by g(X). Note that moments about the origin for g(X) = X - t-t 
coincide with moments about the mean for X, and thus the generalized MGF 
can be defined appropriately to generate moments about the mean directly. 

Example 3.21 Let fIx) = e-X I(o,ool(x), as in Ex. 3.20. Recall that t-t = 1 in this case. We find the 
moment-generating function of the random variable Y = g(X) = X-I, and use 
it to define the variance of X. First of all, note that Theorem 3.26. a is applicable 
with a = 1 and b = -1. Since Mx(t) = (1 - ttl for t < 1 from Ex. 3.20, it follows 
that 

18Recall that exp(a) == ea. 

Mlx-ll(t) = e-t(1 - t)-l for t < 1. 

To find varIX), we need to evaluate (d2Mlx_ll(0))/dt2 = E(X - 1)2: 

dMIX-ll(t) = e-t(1 _ tt2 _ (1 _ t)-le- t 
dt 

and 
d2M (t) 

~~~1l = 2e-t(1 _ t)-3 _ e-t(l- t)-2 + (1 _ t)-le-t _ e-t(l _ t)-2, 

so that 

d2M(x_lj\0) _ 1 - (X) 
dt2 - - var . o 

Uniqueness and Inversion of MGFs 

Apart from generating moments, the MGF can be useful for identifying the den­
sity function of a given random variable. This is due to a uniqueness property 
possessed by MGFs that essentially establishes a one-to-one correspondence 
between density functions and MGFs. A formal statement of the uniqueness 
property is given in the following theorem. The proof of the theorem relies on 
the fact that the MGF is a bilateral Laplace transform of the function fix), and 
there is a unique association between a Laplace transform and the function 
being transformed. These concepts are beyond the scope of our study, and the 
proof will be omitted. The interested reader can refer to Widder, Advanced Cal­
culus, p. 459-460 and D. A. S. Fraser (1976), Probability and Statistics. North 
Scituate, Duxbury Press, p .. 544-546, for details. 
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Theorem 3.27 IMGF Uniqueness Theorem) If a moment-generating function exists for a 
random variable X having density function fix), then the moment generating 
function is unique. Conversely, the moment generating function determines 
the density function of X uniquely, at least up to a set of points having prob­
ability zero. 

In other words, a density function has one and only one MGF associated 
with it, if an MGF exists at alL Furthermore, if more than one density function 
is associated with a given MGF, the density functions differ only on a set of 
points that are immaterial for the purposes of assigning probabilities to events 
for X, i.e., they differ on a set of points having probability zero. Thus, for all 
practical purposes, if one knows the MGF for a given random variable X, and 
if one also knows of a density function that produces this MGF in the manner 
prescribed by Def. 3.14, then the density function can be treated as the density 
function of the random variable X. The following example illustrates the logic 
followed in applying the uniqueness theorem. 

Example 3.22 Examine the density function fix) = Ib - a)-IIla,bllx), for a < b. The MGF asso­
ciated with this density can be identified as follows: 

I ebt - eat 
= tlb _ a) for t # 0, 

1 for t = O. 

Now suppose a random variable Z has an MGF defined by Mz It) = lebt - eat )/tl b­
a) for t # O. Then by the uniqueness theorem, since fix) above is associated 
with this same MGF, the density function of Z can be specified as flz) = Ib -
a)-IIla,bllz). 0 

When it exists, an MGF can be thought of as a "fingerprint" of a given den­
sity function. In Chapter 4, we will examine a collection of density functions 
that have been found to be useful in applications, and we will assemble a file 
of their MGFs. Later on we will examine a number of important functions of 
random variables that will be used for statistical inference purposes, and in a 
notable number of cases, we will be able to identify the probability densities 
of these functions by matching their MGFs to the appropriate MGFs in the file 
we will have assembled. 

The "recognition" of an MGF as a known fingerprint of some probability 
density function is not the only wayan MGF can be used to identify the proba­
bility distribution of a random variable. There is an inversion relationship that 
allows one to integrate a function involving the MGF to identify the CDF of 
a random variable, from which the density function can be deduced. Unfor­
tunately, the technique involves transform theory and generally complicated 
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integration of expressions involving complex numbers and is beyond the scope 
of our study. Nonetheless, without providing the formal details, we will provide 
the reader with the general idea of what is involved. In particular, if we replace 
the argument t in an MGF by (it), i being the imaginary number i = .J=T, then 
the CDF associated with the MGF can be found as 

1 100 e-ita _ e-itb 
F(b) = lim -2 . Mx(it)dt 

a-+-oo rr -00 It 

v b at which F is continuous. Then the density function can be determined 
from the CDF using the methods described in Chapter 2. Alternatively, if it can 
be shown that J~oo I Mx(it) I dt < 00, then the density function for a continuous 
random variable can be derived directly as 

100 1 
fIx) = -2 e-itx Mx(it)dt. 

-00 rr 

For further information concerning this inversion property, the reader can con­
sult M. Kendall and A. Stuart (1977), The Advanced Theory of Statistics, Vol. 1 
New York: Macmillan, Chapter 4. 

In cases where the MGF does not exist, there is an alternative function that 
always exists, called the characteristic function, which serves the same purpose 
as the MGF. In particular, there is a unique relationship between characteristic 
functions and density functions, analogous to the result stated in Theorem 3.27. 
The characteristic function can be inverted to obtain the density function, and 
the characteristic function can be used to generate any moments that exist for 
a random variable by differentiating the characteristic function an appropriate 
number of times, evaluating the derivative at the point zero, and then dividing 
the result by (i)k, k being the order of the moment sought (equivalently, k is the 
order of the derivative). The characteristic function is defined as <Px(t) = EeitX , 

and so complex numbers are involved in the definition of the characteristic 
function. When the MGF exists, the characteristic function is <Px(t) == Mx!itJ, 
i.e., the characteristic function is identically the MGF evaluated at (it) rather 
than at t. For example, in Ex. 3.22, the characteristic function of X would be 
(ebit - eait)/it(b - a) for t :j:. O. Despite the advantage that <Px(t) always exists, 
we will not pursue the study of characteristic functions any further, in order 
to avoid the use of complex numbers. Interested readers can examine Kendall 
and Stuart, Advanced Statistics, Chapter 4, for further details. 

CumuJant-Generating Function 

The natural logarithm of the moment-generating function defines a function 
called the cumulant-generating function, which, when differentiated r times 
with respect to t and then evaluated at t = 0, defines the rth cumulant of a 
random variable. 
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Definition 3.15 
Cumulant-generating 

function and cumulants 

The cumulant-generating function of X is defined as 1/I(t) = In(Mx(tll. The 
rth cumulant of X is given by KI = (dI 1/l(0))/dtl • The first four cumulants are 
related to moments as follows: KI = IL'I; K2 = (j2; K3 = IL3; and K4 = IL4 - 3(j4. 

The cumulant-generating function can be used directly to generate the 
mean, variance, and third moment about the mean via differentiation of the 
function to the first, second, or third order, respectively. If Xl, ... , Xn are inde­
pendent random variables, it follows from Def. 3.15 and Theorem 3 .26.b that the 
cumulant-generating function of Y = L7=1 Xj equals the sum of the cumulant­
generating functions of the X/so It then also follows that the cumulant of the 
sum is the sum of the cumulants, which is the genesis of the name "cumu­
lant." Often, the derivatives of the cumulant-generating function are easier to 
calculate than the derivatives of the MGF. 

Example 3.23 Recall Ex. 3.20 and 3.21, where Mx(t) = (1 - WI for t < 1. The cumulant­
generating function of X is given by 1/Ix(t) = InMx(t) = -In(l - t) for t < 1. 
Then 

Definition 3.16 
MGF and cumulant 

generating function; 
multivariate 

IL = d1/lx(0)/dt = (1 - t)-l It=o= I, 

(j2 = d21/1x(0)/dt2 = (1 - t)-2It=0= I, 

IL3 = d31/1x(0)/dt3 = 2(1- tt3 It=0= 2. 

Multivariate Extensions 

o 

The MGF and cumulant-generating function can be extended to the case of a 
multivariate random variable X = (Xl"'" Xn). 

The expected value of exp(L/=1 tiXi) is defined to be the MGF of the n-variate 
random variable X = (X I, ... ,Xn ) if the expected value exists for all tj E 

(-h, h), for some h > 0, i = l,,,.,n. TheJv1GF will be denoted by Mx(t), 
where t = (tI,.'" tn ). Thus, 

(discrete) Mx(t)= :L ... :Lexp(ttiXi)f(XI, ... ,Xn), 
/xl, ... ,xn)eR/X) I-I 

(continuous) Mx(t) = roo ... roo exp (t tiXi) f(xI,"" Xn)dXI ... dxn. 
Loo Loo i=I 

The cumulant generating function of X is defined as 

1/Ix(t) = InMx(t). 
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Letting /-t~(Xi J denote the rth moment of Xi about the origin, it can be shown 
that 

'(KJ = EX~ = (fMx([O)J 
/-tr I I otr ' 

I 

Thus, the rth order partial derivative of Mx(t) with respect to ti, evaluated at 
t = [OJ (i.e., the vector t equal to the zero vector), equals the rth order moment 
about zero for Xi. Similarly, the rth partial derivative of Vtx(tJ with respect to 
ti, evaluated at t = [OJ, equals the rth cumulant of the random variable Xi, 
which then allows means, variances, and third moments about the origin to be 
calculated directly for each of the X/so 

An analog of the MFG uniqueness theorem applies to the multivariate MGF. 
In fact, interpreting X as a vector in the statement of Theorem 3.27 produces 
the appropriate multivariate MGF uniqueness theorem. 

If the MGF for an n-variate random variable (Xl, ... , XnJ is known, the mar­
ginal MGF for a subset of m < n of the random variables is easily found by 
setting the t/s associated with the remaining n - m random variables to zero. 

Theorem 3.28 (Marginal MGFs from Multivariate MGFsJ Let X = (Xl, ... ,Xn) have MGF 
Mx(t), and let X{ml = (Xi,; E TJ be any m-element subset of the random variables 
in X, where J C {1,2, .. . ,n}, N(JJ = m < n. Define t{ml = (ti'; E J). Then the 
MGF of X{ml, referred to as the marginal MGF of X{ml, can be represented as 
MX1m}(t{mil = Mx(t*), where the elements in t* are defined by t; = ti1rliJ. 

Proof 

Example 3.24 

Mx!t*J = E (exp (t t;xi) ) = E (exp (~tiXi) ) (since ti = 0 if ; ¢ JJ 

(by definition). • 
A marginal cumulant-generating function can be defined as the natural loga­
rithm of a marginal MGF. 

If X has MGF Mx(tJ, it can be shown that Xl, .. . ,Xn are independent iff 
Mx(t) = 07=1 MXj(ti), or equivalently, iff Vtx(tJ = 2.:7=1 VtXj{t) (see S. F. Arnold 
(1990J, Mathematical Statistics. Englewood Cliffs, NJ: Prentice-Hall, pp. 118-
119J. 

Suppose the joint MGF of the bivariate random variable (Xl,X2) is given by 
Mx{tJ = exp(2::7=1 jJ,iti + (1/2) 2.:7=l 2::7=1 O'iititi) {we will see in Chapter 4 that 
this is the MGF associated with a bivariate "normal" density functionJ. Then 
the marginal MGF of Xl can be defined by setting t2 = 0 in Mx(tJ to obtain 
Mx, (ttl = exp(/-tl t1 + (1/2JO'lltrJ (which is the MGF associated with a univari­
ate "normal" density functionJ. The marginal cumulant-generating function is 
given by Vtx,(t) = InMx,{t) = /-tlt1 + {1/2)0'1ltr. The two random variables will 
be independent if 0'12 = 0'21 = O. 0 



148 Chapter 3 Mathematical Expectation and Moments 

If we take cross partial derivatives of the joint MGF of X, and evaluate the 
derivative at t = [a], we obtain 

ar+sMx([a]) = EX~X~ 
8f8t~ 1 /. 

1 / 

This expectation is an example of a joint moment. The cross partial derivative of 
the cumulant generating function given by (821/1x([a]))/(8ti8t;l = E(Xi - EXiJ(Xi -
EXi ) is the covariance between Xi and Xi' These concepts are discussed further 
in the next section. 

3.6 Joint Moments, Covariance, and Correlation 

Definition 3.17 
Joint moment 

about the origin 

Definition 3.18 
Joint moments 

about the mean (or 
central joint moment) 

In the case of multivariate random variables, the concept of joint moments 
becomes relevant. The formal definitions of joint moments about the origin 
and about the mean are as follows: 

Let X and Y be two random variables having joint density function fIx, y). 
Then the (r, s)th joint moment of (X, Y) (or of fIx, y)) about the origin is defined 
by 

(discrete) IL~,s = L L xr yS fIx, y), 
xeRIX) yeRIY) 

(continuous) IL~,s = i: i: xr yS fIx, y)dxdy. 

Let X and Y be two random variables having joint density function fIx, y). 
Then the (r, s)th joint moment of (X, Y) (or of fIx, y)) about the mean is defined 
by 

(discrete) ILr,s = L L (x - EX)r(y - EY)Sf(x, y), 
xeRIX) yeRIY) 

(continuous) 

Covariance and Correlation 

Our immediate interest will focus on a particular joint moment about the mean, 
ILI,I, and the relationship between this moment and moments about the origin. 
The central moment ILI,I is given a special name and symbol, and we will see 
that ILI,I is useful as a measure of "linear association" between X and Y. 
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Definition 3.19 
Covariance The central joint moment fJ,1,1 = E(X - EX)(Y - EY) is called the covariance 

between X and Y and is denoted by the symbol CIXY, or by cov(X, Y). 

Note that there is a simple relationship between CIXY and moments about 
the origin that can be used for the calculation of the covariance. 

Theorem 3.29 CIXY = EXY - EXEY. 

Proof This result follows directly from the properties of the expectation operation. In 
particular, by definition, 

CIXY = E(X - EX)(Y - EY) = E[XY - (EX)Y - XEY + EXEY] = EXY - EXEY. • 

Example 3.25 Let the bivariate random variable (X, Y) have a joint density function fIx, y) = 
(x + yjI{o,ll(xjI[o,I1(Y). Find cov(X, Yj. 
Answer: Note that 

EXY = 10 I 10 I xy(x + y)dxdy = 10 1 10 I [x2y + xy2 ]dxdy = ~, 

10 1 10 1 10 1 10 1 
7 EX = xIx + yjdxdy = (x2 + xyjdxdy = -, 

o 0 0 ° 12 

101101 lallol 
7 EY = y(x + y)dxdy = (yx + y2)dxdy = -. 

o 0 0 ° 12 
Then, by Theorem 3.29, cov(X, Yj = 1/3 - (7/12)(7/12) = -1/144. o 

A useful corollary to Theorem 3.29 is that the expectation of a product is 
the product of the expectations iff CIXY = 0, formally stated as follows. 

Corollary 3.5 EXY = EXEY iff CIXY = o. 

Proof This follows directly from Theorem 3.29 upon setting CIXY to zero (sufficiency) 
or setting EXY equal to EXEY (necessityj. • 

What does CIXY measure? The covariance is a measure of the linear associ­
ation between two random variables, the precise meaning of linear association 
to be made clear shortly. Our discussion will be facilitated by observing that 
the value OfaXY exhibits a definite upper bound in absolute value which is ex­
pressible as a function of the variances of the two random variables involved. 
The bound on CIXY follows from the following inequality. 

Theorem 3.30 (Cauchy-Schwarz Inequality) (EWZ)2 ~ EW2EZ2. 

Proof The quantity E/)Iol W + A2Z)2 must be greater than or equal to 0 V (AI, .1..2) since 
(AI W + A2Z)2 is a random variable having only non-negative outcomes. Thus 

ATEW2 + A~EZ2 + 2AIA2EWZ ~ 0 V (AI, .1..2), 
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which in matrix terms can be represented as 

The last inequality is precisely the defining property of positive semidefinite­
ness for the (2 x 2) matrix in brackets,19 and the matrix in brackets will be 
positive semidefinite iff EW2EZ2 _(EWZ)2 ::: 0 (see Section 3.8). • 

The covariance bound we seek is stated in the following theorem. 

Theorem 3.31 (Covariance Bound) I aXY I~ aXay. 

Proof Let W = (X - EX) and Z = (Y - EY) in the Cauchy-Schwarz inequality. Then 
(E(X - EXJ(Y - EY)J2 ~ E(X - EX)2E(Y - Ey)2 or a}y ~ a}a~, which holds iff 
I aXY I~ aXay. • 

Definition 3.20 
Correlation 

Thus, the covariance between X and Y is upper-bounded in absolute value 
by the product of the standard deviations of X and Y. Using this bound, we can 
define a useful scaled version of the covariance, called the correlation between 
X and Y, as follows. 

The correlation between two random variables X and Y is defined by 

aXY 
corr(X, Y) = PXY = --. 

aXay 

Example 3.26 Refer to Ex. 3.25. Note that 

t t 5 
EX2 = Jo Jo x 2(x + y)dxdy = 12 

r1 t 5 
Ey2 = 10 10 y2(X + y)dxdy = 12' 

so that a} = EX2 - (EX)2 = 5/12 - (7/12)2 = 11/144, and a~ = Ey2 - (Ey)2 = 
5/12 - (7/12)2 = 11/144. Then the correlation between X and Y is given by 

aXY -1/144 -1 
PXy = aXay = (11/144)1/2(11/144)1/2 = U' o 

Bounds on the correlation between X and Y follow directly from the bounds 
on the covariance between X and Y. 

Theorem 3.32 (Correlation Bound) -1 ~ PXy ~ 1. 

19Recall that a matrix A is positive semidefinite iff t' At ~ 0 'I t, and A is positive definite iff t' At > 0 'I t # [OJ. 
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Proof This follows directly from Theorem 3.31 via division by UXUy. • 
The covariance equals the upper bound of UXUy iff the correlation equals 

its upper bound of I, while the covariance equals its lower bound of -UXUy iff 
the correlation equals its lower bound of -1. 

Assuming that the covariance exists, a necessary condition for the inde­
pendence of X and Y is that UXY = 0 lor equivalently, that PXy = 0 if UXUy t= 0). 

Theorem 3.33 If X and Yare independent, then UXy = 0 /assuming the covariance exists). 

Proof If X and Yare independent, then fix, y) = fx/x)fy/y). It follows that 

/discrete) Uxy = L L /x - EXJ!y - EY)fx/x)fy/y) 
xeR(X) yeR(Y) 

= L Ix - EX)fxlx) L /y - EY)fy/y) 
xeR(X) yeR(Y) 

= /EX - EXJ!EY - EY) = 0·0 = o. 
/Continuous) Replace summation with integration above. • 

The converse of Theorem 3.33 is not true-there can be dependence be­
tween X and Y, even functional dependence, and the covariance between X 
and Y could nonetheless be zero, as the following example illustrates. 

Example 3.27 Let X and Y be two random variables having a joint density function given 
by fix, y) = l.SI[_I,I]/x)I[o,x2]/Y). Note this density implies that lx, y) points are 
equally likely to occur on and below the parabola represented by the graph of 
y = x 2 /see Figure 3.11). There is a direct functional dependence between X 
and the range of Y, so that fly I x) will change as x changes, and thus X and Y 
must be dependent random variables. Nonetheless, UXY = O. To see this, note 
that 

Figure 3-11 
Y E [O/X2] for x E [-1,1). 

EXY = 1.sjl [X2 xydydx = 1.Sjll l/2)x5dx = .7S X
6

6 jl = 0, 
-I Jo -I -I 

Y 

y=x2 
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fl IaX2 fl X4\1 EX = 1.5 xdydx = 1.5 x 3dx = 1.54 = 0, 
-I 0 -I -I 

fl IaX2 fl XS\I EY = 1.5 ydydx = 1.5 (1/2)x4dx = .755 = .3. 
-I 0 -I -I 

Therefore, aXY = EXY - EXEY = 0 - 0(.3) = O. o 

Correlation, linear Association, and Degeneracy 

We will now demonstrate that when the covariance takes its maximum abso­
lute value, and thus PXy = +1 or -1, then there is a perfect positive (PXy = +1) 
or negative (PXy = -1) linear relationship between X and Y that holds with 
probability one (Le., PlY = a + bx) = 1 or PlY = a - bx) = 1). The demonstration 
is facilitated by the following useful result. 

Theorem 3.34 Let Z be a random variable for which a~ = O. Then P(z = EZ) = 1. 

Proof Let g(Z) = (Z - EZ)2. Then 

P(EZ - a < z < EZ + a) = P ((z - EZ)2 < a2) = 1 - P ((z - EZ)2 ::: a2) 

::: 1 - a~/a2, 

where the inequality is established using Markov's inequality. If a~ = 0, then 

P(EZ - a < z < EZ + a) = 1 'II a > 0, 

and since only z = EZ satisfies the inequality'll a > 0, P(z = EZ) = 1 when 
a~ = O. • 

The result on the linear relationship between X and Y when PXy = +1 or 
-1, or equivalently, when aXY achieves its upper or lower bound, is as follows. 

Theorem 3.35 (Correlation Bounds and Linearity) If PXy = + 1 or -1, then PlY = al + bx) = 1 
or PlY = a2 - bx) = 1, respectively, where al = EY - (ay/ax)EX, a2 = EY + 
(ay/ax)EX, and b = (ay/ax). 

Proof Define Z = AI!X -EX)+A2(Y -EY), and note that EZ = O. Itfollows immediately 
that ai = EZ2 = E[AI!X - EX) + A2(Y - EY)j2 = AIE(X - EX)2 + A~E(Y - Ey)2 + 
2AIA2aXY ::: 0'11 AI, A2, which can be represented in matrix terms as 

a2 = [A A I[ ai aXY][AI] > 0 (A A) z I 2 IT a2 , - 'II I, 2· vXy Y ""2 

If PXy = + 1 or -1, then aXY achieves either its (nominal) upper or lower bound, 
respectively, or equivalently, aiy = aia~. It follows that the above 2 x 2 matrix 
is singular, since its determinant would be zero. Then the columns of the matrix 
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Figure 3-12 
PXY = + 1, discrete case. 

are linearly dependent, so that there exist nonzero values of Al and 1..2 such that 

[:;y :7 ][~~] = [g], 
and for these A values, the quadratic form above, and thus O'~, achieves the value 
O. A solution for Al and 1..2 is given by Al = O'xy/O'l and 1..2 = -1 (which can 
be validated by substituting these values for Al and 1..2 in the linear equations, 
and noting that O'~ = O'ly/O'l under the prevailing assumptions). Since O'~ = 0 
at these values of Al and 1..2, it follows from Theorem 3.34 that P(z = 0) = 1 
(recall that EZ = 0). 

Given the definition of Z, substituting the above solution values for Al 
and 1..2 obtains an equivalent probability statement, PlY = (EY - (O'xy/O'I)EX) + 
(O'xy/O'l)x) = 1. If PXy = +1, then O'XY = O'xO'y, yielding PlY = al + bx) = 1 in 
the statement of the theorem, while if PXy = -I, then O'XY = -O'xO'y, yielding 
Ply = a2 - bx) = 1 in the statement of the theorem. _ 

The theorem implies that when PXy = +1 (or -I), the event that the out­
come of (X, Y) is on a straight line with positive (or negative) slope occurs with 
probability 1. As a diagrammatic illustration, if (X, Y) is a discrete bivariate 
random variable, then the situation where PXy = + 1 would be exemplified by 
Figure 3.12. 

Note in Figure 3.12 that fIx, y) assumes positive values only for points along 
the line y = a + bx, reflecting the fact that PlY = a + bx) = 1. This situation 
illustrates what is known as a degenerate random variable and a degenerate 
density function. The defining characteristic of a degenerate random variable 
is that it is an n-variate random variable (XI, ... , Xn) whose components satisfy 
one or more linear functional relationships with probability one, i.e., if P(ai + 
I:f=1 bi;x; = 0) = I, for i = 1, ... , m, then (XI, ... , Xn) is a degenerate random 

i{x,y) 

y= a + bx 
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Figure 3-13 
PXY = + 1, continuous case. 

variable.2o A characteristic of the accompanying degenerate density function 
for (XI, .. . ,Xn ) is that the entire mass of probability (a mass of 1) is concentrated 
on a collection of points that lie on a hyperplane of dimension less than n, the 
hyperplane being defined by the collection of linear functional relationships. 

Degeneracy causes no particular difficulty in the discrete case-probabil­
ities of events for the degenerate random variable (XI, .. . ,Xn ) can be calculated 
in the usual way by summing the degenerate density function over the out­
comes in the event of interest. However, degeneracy in the continuous case 
resul ts in f(xI, ... , xn) not being a densi ty function according to our original def­
inition of the concept. For a heuristic description of the problem, examine the 
diagrammatic illustration in Figure 3.13 for a degenerate bivariate tandom vari­
able in the continuous case. Intuitively, since there is no volume under the 
graph of f{x, y), f~2 f,~2 fix, y)dy dx = 0 V XI :::; X2 and V Yl :::; Y2, and fix, y) cannot 
be used in the usual way to assign probabilities to events for (X, Y). However, 
there is area below the graph of fix, y) and above the line y = a + bx representing 
the probability mass of 1 distributed over a segment (or perhaps, all) of the line. 
Since only subsets of the set {(x, y) : y = a + bx, x E R(x)}21 are assigned nonzero 
probability, the degenerate density function can be used to assign probabilities 
to events by use of line integrals,22 which essentially integrates fix, y) over sub­
sets of points along the line y = a + bx. The general concept of line integrals 
is beyond the scope of our study, but in essence, the relevant integral in the 

itx,y) 

y= a + bx 

20The concept of degeneracy can be extended by calling (XI, ... ,Xnl degenerate if the components satisfy one or more functional 
relationships (not necessarily linear) with probability 1. We will not examine this generalization here. 

21 Equivalently, ((x, y) : x = b- I (y - a), y E R(Y)J. 

22For an introduction to the concept of line integrals, see E. Kreyzig, (1979), Advanced Engineering Mathematics, 4th ed. New York: 
Wiley, Chapter 9. 
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current context is of the form JxEAf(x, a + bx)dx. Note the linear relationship 
linking y and x is explicitly accounted for by substituting a + bx for yin fIx, y), 
which converts fIx, y) into a function of the single variable x. Then the function 
of x is integrated over the points in the event A for x, which determines the 
probability of the event B = {(x, y) : y = a + bx, x E A} for the bivariate random 
variable (X, Y). 

Having introduced the concept of degeneracy, we can alternatively charac­
terize PXy = + 1 or -1 as a case where the bivariate random variable (X, Y), and 
its accompanying joint density function are degenerate, withX and Y satisfying, 
respectively, a positively sloped or negatively sloped linear functional relation­
ship, with probability one. What can be said about the relationship between X 
and Y when 1 PXY 1< I? The closer 1 PXy 1 is to one, the closer the relationship 
between X and Y is to being linear, where "closeness" can be interpreted as 
follows. Define the random variable Y = a + bX to represent predictions of Y 
outcomes based on a linear function of X. We will choose the coefficients a 
and b so that Y is the best linear prediction of Y, where best is taken to mean 
"minimum expected squared distance between outcomes of Y and outcomes 
of Y." 

Theorem 3.36 (Best Linear Prediction of Y Outcomes) Let (X, Y) have moments of at least 
the second order, and let Y = a+ bX. Then the choices of a and b that minimize 
Ed2(y,y) = E(Y -(a+bX))2 are given bya = EY -(axy/al)EX and b = (axy/alJ. 

Proof Left to the reader. • 
Now define V = Y - Y to represent the deviations between outcomes of 

Y and outcomes of the best linear prediction of Y outcomes, Y as defined in 
Theorem 3.36. Since EY = EY, EV = O. It follows that 

2 2 ~ ~ 222 ay = E(Y - EY) = E(Y - EY + V) = ay + av + ayV' 

where 

a~ = EV2 = Ed2(y, Y) = Ed2(y, a + bX) = a~ - aly/al = a~ [1 - ply], 
2 ~ ~ 2 2 2 

a y = E(Y - EY) = ayPXY' 
~ ~ 2 

ayV = E((Y - EY)V) = (axy/ax)E(!X - EX)V) = O. 

Thus, the variance of Y is decomposed into a proportion p'fcy due to Y and a 
proportion (1 - p'fcy) due to V, Le., 

2 2 2 2 2 2 (1 2) ay = a y + av = ayPXY + a y - PXy . 

We can now interpret values of PXy E (-1,1). Specifically, p'fcy is the pro­
portion of the variance in Y that is explained by the best linear prediction of the 
form Y = a + bX, and the proportion of the variance unexplained is (1 - ph). 
Relatedly, a~11 - ph) is precisely the expected squared ftistance between out­
comes of Y and outcomes of the best linear prediction Y = a + bX. Thus, the 
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closer I PXy I is to I, the more the variance in Y is explained by the linear 
function a + bX, and the closer is the expected squared distance between Y and 
Y = a + bX. It is in this sense that the higher the value of I PXY I, the closer is 
the linear association between Y and X. If PXy = 0, the random variables are 
said to be uncorrelated. In this case, Theorem 3.36 indicates that the best linear 
predictor is EY-there is effectively no linear association with X whatsoever. 
The reader should note that Y and X can be interchanged in the preceding argu­
ment, leading to an analogous interpretation of the degree of linear association 
between X and X = a+bY (for appropriate changes in the definitions of a and b). 

3.7 Means and Variances of Linear Combinations of Random Variables 

It is useful in practice to be able to determine the mean and variance of a ran­
dom variable that is defined as a linear combination of other random variables. 
While this determination can be accomplished from first principles by apply­
ing the basic definitions of the mean and variance to the linear function of 
the random variables, there are certain general results that facilitate and ex­
pedite the process. In particular, we will see that the mean and variance of a 
linear combination of random variables can be expressed as simple functions of 
the means, variances, and covariances of the random variables involved in the 
linear combination. Our first result concerns the determination of the mean. 

Theorem 3.37 Let Y = I:7=1 ajXj, where the a/s are real constants. Then EY = I:7=1 ajEXj. 

Proof 
n n 

EY = E LaiXi = LEaiXj (Theorem 3.9), 
i=l i=l 

n 

= LaiEXi. 
i=l 

(Theorem 3.6) 

Letting 

the matrix representation of Theorem 3.37 is 

If Y = a'X, then EY = Ea'X = a'EX. 

• 

Regarding the variance of the linear combination of random variables, we have 
the following result. 

Theorem 3.38 Let Y = I:7=1 aiXi where the a/s are real constants. Then 
n 

O"~ = L aJO";j + 2 L L aia;O"XjX;. 
i=l i<; 
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Proof 

Definition 3.21 
Covariance matrix 

O'~ = E(Y - Ey)2 = E (tai(Xi _ EXi))2 
1=1 

= E [t aT(Xi - EXi)2 + 2 ~ ~ aia;(Xi - EXi )(X; - EX; I] 
1=1 1q 

n 

= L aTO'l; + 2 L L aja;O'x;xi , 

i=l i<; 

where the last equality follows from Theorem 3.9 and Theorem 3.6. • 

We can represent the result of Theorem 3.38 very compactly in matrix 
notation once we define the notion of a covariance matrix. 

The covariance matrix of an n-variate random variable X = [Xl, ... , Xnl' is 
the n x n symmetric matrix Cov(X) = E(X - EX)(X - EX)'. 

In order to appreciate the full informational content of the covariance ma­
trix, note that, by definition, 

Cov(X) = E[X1 -: EXI] [(Xl _ EXd ... (Xn - EXn)1 
Inxn) . 

Xn - EXn 

[

(Xl - EXd2 (Xl - EXd(X2 - EX2) 

= E (X2 - EX2);(X1 - EXd (X2 ~.~X2)2 

(Xn - EXn)(Xl - EXd 

[ 
0'11 

= O'X;XI 

O'XnXI 

::: T"l 
Xn 

(X, -EXd(X" -EX"I] 

(Xn - EXn)2 

Thus, the covariance matrix associated with an n-variate random variable has 
the variance of the ith random variable displayed in the (i, i)th (diagonal entry) 
position in the matrix, while the covariance between the ith and ;th random 
variables is displayed in the (i, ilth position (off-diagonal entry) in the matrix. 
Since O'x;x; = E(Xj - EXi )(X; - EX;) = E(X; - EX; IIXi - EXi ) = O'x;x;, the covariance 
matrix is symmetric, i.e., the (i, j)th entry is exactly equal to the (;, i)th entry 'v' 
i:l= ;. 
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Let the n x 1 vectors a and X be as defined preceding Theorem 3.38. The 
matrix representation of Theorem 3.38 is then given as follows: 

If Y = a'X, then ai = a' Cov(X)a. 

Note that it is necessarily the case that the covariance matrix is a positive 
semidefinite matrix because a2 = a' Cov(X)a ::: 0 for any a, which necessarily 
follows from the fact that variances cannot be negative. (Recall that a matrix 
Z is positive semidefinite iff a'Za ::: 0 for all choices of the vector aJ. 

The preceding results can be extended to the case where Y is a vector defined 
by linear combinations of the n-variate random variable X. We first extend the 
results corresponding to the mean of Y. 

Theorem 3.39 Let Y = AX, where A is a k x n matrix of real constants, and X is an n x 1 
vector of random variables. Then EY = EAX = AEX. 

Proof The matrix A can be represented as a collection of k (1 x n) row vectors 

[ a
l
'] A = : 

(kxn) • 
ak, 

Then 

where ai. = (aill ai2"", ainJ. 
(lxn) 

EAX = E[a1;X] = [al.~X] = AEX 

ak.X ak. EX 
by Theorem 3.37. • 

A useful corollary to Theorem 3.39 concerns the generalization where X is 
an n x f. matrix of random variables. 

Corollary 3.6 Let Y = AX, where A is a k x n matrix of real constants and X is an n x l 
matrix of random variables. Then EY = AEX. 

Proof This follows directly from Theorem 3.39 applied columnwise to the matrix 
AX. • 

If we postmultiply rather than premultiply a random matrix X by a con­
formable matrix of constants, we obtain a result on expectation qualitatively 
similar to the preceding result. 

Corollary 3.7 Let Y = XB, where X is an n x f. matrix of random variables and B is an f. x m 
matrix of real constants. Then EY = (EXJB. 
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Proof 

EY = EXB 

= E(B'X,!, (property of matrix transpose) 

= (EB'X')' (E is an elementwise operation) 

= (B'EX')' (Corollary 3.6) 

= (EX)B (property of matrix transpose) 

If a random matrix X is both premultiplied and postmultiplied by conformable 
matrices of real constants, then the previous two corollaries can be combined 
into the following result. • 

Corollary 3.8 Let A be a k x n matrix of real constants, let X be an n x .e matrix of random 
variables, and let B be an .e x m matrix of real constants. Then EAXB = A(EX)B. 

Proof Let Z = XB. Then by Corollary 3.6, EAXB = EAZ = AEZ = AEXB, which 
equals A(EX)B by Corollary 3.7. • 

When Y = AX is a vector of two or more random variables, we can define 
a variance for each Yi , as well as a covariance for each pair (Yi , Yi), i '1= ;. We 
are led to a generalization of Theorem 3.38 that involves the definition of the 
covariance matrix of the k x 1 random vector Y = AX. 

Theorem 3.40 Let Y = AX, where A is a k x n matrix of real constants and X is an n x I vector 
of random variables. Then Cov (Y) = Cov (AX) = A Cov (X)A'. 

Proof By definition, 

Cov(Y) = E(Y - EYJ(Y - EY)' 

= EA(X - EXJ(X - EX)' A' 

= A[E(X - EXJ(X - EX)']A' 

(substitution and Theorem 3.39) 

(Corollary 3.8) 

= ACov(X)A' (by definition). • 
We illustrate the use of some of the above theorems in the following exam­

ple, where we also introduce the notion of a correlation matrix (see part (g)). 

Example 3.28 Your company sells two brands of video cassettes: high quality (HO) and stan­
dard (S). The price of the HO cassette is $4, while the standard cassette sells for 
$3. The quantities of the cassettes sold on any given day are represented by the 
bivariate random variable Q = (QHQ, Qs!', where 

EQ = ugJ and Cov(Q) = [:3 53]. 
a. What is the expected value of the revenue obtained from the sale of cassettes 

on any given day? 
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Answer: Revenue (in dollars) is defined as 

R = 4QHQ + 3Qs = [4 3{ ~sQ l 
and Theorem 3.37 applies. Therefore, 

ER = [4 3 I[ ~g ] = 130. 

h. What is the variance associated with daily revenue? 
Answer: Theorem 3.38 applies here. We have 

a~ = [4 3{:3 -S3 ] [:] = 5. 

c. Production costs per cassette are $2.50 and $2 for the high-quality and stan­
dard cassette, respectively. Define the expected value of the vector [~], 
where C = 2.50QHQ +2Qs represents the total cost of cassettes sold on any 
given day. 
Answer: Theorem 3.39 can be used here (we could also apply 3.37 to obtain 
EC, since we already know ER from above). 

E[ R ] = [4 3] [ 10 ] = [ 130 ] C 2.5 2 30 85 

d. What is the covariance matrix of [~]? 
Answer: Using Theorem 3.40, 

e. What is the expected level of profit on any given day? 
Answer: Profit is defined as n = R - C, and Theorem 3.37 implies that 

En = [1 -1 1( 18350 ] = 45. 

f. What is the variance of daily profit? 
Answer: Applying Theorem 3.38 results in 

aA=[l -lJ[3~5 ~:~J[!lJ=·5. 
g. A matrix of correlations (or, correlation matrix) for X = (Xl, .. . ,Xn )' can 

be defined by pre- and post-multiplication of the covariance matrix by the 
inverse of the diagonal matrix of standard deviations, i.e., (reader please 
verify): 

[
ax) 

Corr/X) = ]
-1 [ ax) 

Cov/X) 

aXn 
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The (i, ilth entry of the correlation matrix is the correlation between Xi and 
Xi. Define the correlation matrix for Q. 
Answer: 

Corr(QJ = [..fi 0 J- l 
[ 2 o -15 -3 

-3J[..fi 0 J- l 

5 0-15 

= [-.~49 -·i49 J 
Note that PQHQ,QS = -.949, which is given by the off-diagonal elements in 
this (2 x 2J case, while the diagonal elements are ones because these values 
represent the correlation of a random variable with itself. 0 

3.8 Necessary and Sufficient Conditions for Positive Semidefiniteness 

Proof that the symmetric matrix A = [all a12 ] (recall that symmetry implies 
a21 a22 

al2 = a21 J is positive semidefinite iff all:::: 0, a22 :::: 0, and all a22 - al2a21 :::: o. 

Proof The matrix A will be positive semidefinite iff the characteristic roots of A are 
nonnegative (e.g., F. A. Graybill (1983 J, Matrices with Applications in Statistics. 
Belmont, CA: Wadsworth, p. 397J. The characteristic roots of A are found by 
solving the determinantal equation 

I all - A al2 I = 0 
a21 a22 - A 

for A, which can be represented as (all - A)(a22 - AJ - al2a21 = 0 or A 2 - (all + 
a22JA + (alla22 - a12a2d = o. 

Solutions to this equation can be found by employing the quadratic for­
mula23 to obtain 

A = (all + a22J ± J(all + a22J2 - 4(alla22 - al2a2l J 
2 . 

For A to be nonnegative, it must be the case that the numerator term:::: O. 
Note the term under the square root sign must be nonnegative, since it can 
be rewritten as (all - a22J2 + 4al2a21, and because al2 = a21 (by symmetry of 
AJ, two nonnegative numbers are being added together. If (all + a22) > 0, then 
A :::: 0 only if alla22 - al2a21 :::: 0, since otherwise the square root term would 
be larger than (all + ad, and when subtracted from (all + a22), would result 

2a 
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in a negative ).... Also, the term (all + a22) cannot be negative or else at least 
one of the solutions for)... would necessarily be negative. Furthermore, both all 
and a22 must be nonnegative, for if one were negative then there is no value 
for the other that would result in both solutions for)... being positive. Thus, 
necessity is proved. Sufficiency follows immediately, since all 2: 0, a22 2: 0, 
and alla22 - a12a2l 2: 0 imply both solutions of)... 2: O. • 

Key Words, Phrases, and Symbols 

expectation of a random variable, 
EX 

expectation of a function of a 
random variable, Eg(X) 

Jensen's inequality 
expectation of a function of a 

multivariate random variable, 
Eg(X1, • •• ,Xn ) 

expectation of a matrix of random 
variables 

multivariate Jensen's inequality 
conditional expectation E(Y I x E E), 

E(g(Y) I x E E), E(Y I x = b), 
E(g(Y) I x = b) 

double expectation theorem 
regression function of Y on X 
regression curve of Y on X 
moments of a random variable 
fL~, the rth moment about the origin 
fL, the mean of a random variable 
fLo the rth moment about the mean 

or rth central moment 

Problems 

variance of a random variable u2, or 
varIX) 

standard deviation of a random 
variable u, or std(X) 

Markov's inequality 
Chebyshev's inequality 
symmetric density function 
skewed density function 
skewed to the left 
skewed to the right 
median, med(X) 
quantile of X 
mode, mode(X) 
unimodal 
moment-generating function, MGF, 

Mx(t) 
MGF uniqueness theorem 
characteristic function 
cumulant-generating function 1/tx(t) 
marginal MGF, marginal 

cumulant-generating function 
cumulants, Kr 

fL~,$' the (r,8)th joint moment about 
the origin 

fLr,$, the (r, 8)th joint moment about 
the mean 

covariance between two random 
variables UXY or cov(X, Y) 

covariance bound 
correlation between two random 

variables PXy 

correlation bound 
degenerate random variable 
degenerate density function 
un correlated 
means and variances of linear 

combinations of random 
variables EY = Ea'X = alEX 

covariance matrix 
CoylY) 
Cov(AY) = A Cov(Y)AI 
EAX= AEX 
EXB = (EX)B 
EAXB = A(EX)B 
correlation matrix 
Corr(X) 

1. A small domestic manufacturer of television sets 
places a three-year warranty on its picture tubes. Dur­
ing the warranty period, the manufacturer will replace 
the television set with a new one if the picture tube 
fails. The time in years until picture tube failure can be 
represented as the outcome of a random variable X with 
probability density function 

sells 100 television sets in a given period. 

a. What is the expected number of television sets that 
will be replaced due to picture tube failure? 

b. What is the expected operating life of a picture 
tube? 

2. A small rural bank has two branches located in 
neighboring towns in eastern Washington. The num­
bers of certificates of deposit that are sold at the branch 
in Tekoa and the branch in Oakesdale in any given week 
can be viewed as the outcome of the bivariate random 

fIx) = .005e-·OO5x 110,00) (x). 

The times that picture tubes operate until failure can be 
viewed as independent random variables. The company 



Problems 

variable (X, Y) having joint probability density function 

fIx, y) = [(3~rs)2 ] I{O,I,2, ... ,IO)(x)I{o,I,2, ... ,IO'(Y)' 

a. Are the random variables independent? 
b. What is the expected number of certificate sales by 

the Oakesdale branch? 
c. What is the expected number of combined certifi­

cate sales for both branches? 
d. What is the answer to b. given that Tekoa branch 

sells 4 certificates? Potentially helpful result: 

n n2(n + 1)2 
I::X3 = 4 . 
x=l 

3. The weekly number of luxury and compact cars 
sold by "Honest" Abe Smith at the Auto Mart, a lo­
cal car dealership, can be represented as the outcome 
of a bivariate random variable (X, Y) with the nonzero 
values of its joint probability density function given by 

y 
0 2 3 4 

0 .20 .15 .075 .05 .03 

X 
.10 .075 .04 .03 .02 

2 .05 .03 .02 .01 .01 
3 .04 .03 .02 .01 .01 

Al receives a base salary of $100/week from the dealer­
ship, and also receives a commission of $100 for every 
compact car sold and $200 for every luxury car sold. 

a. What is the expected value of the weekly commis­
sion that Al obtains from selling cars? What is the 
expected value of his total pay received for selling 
cars? 

b. What is the expected value of his commission from 
selling compact cars? What is the expected value of 
his commission from selling luxury cars? 

c. Given that Al sells four compact cars, what is the 
expected value of his commission from selling lux­
ury cars? 

d. If 38 percent of Ai's total pay goes to federal and 
state taxes, what is the expected value of his pay 
after taxes? 

4. The yield, in bushels per acre, of a certain type of 
feed grain in the midwest can be represented as the out­
come of the random variable Y defined by 

Y = 3X/oxk4SeU, 
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where Xl and Xk are the per acre units of labor and capital 
utilized in production, and U is a random variable with 
probability density function given by 

flu} = 2e-2u I{o,oo)(u}. 

The price received for the feed grain is $4/bushel, labor 
price per unit is $10, and capital price per unit is $15. 

a. What is the expected yield per acre? 
b. What is the expected level of profit per acre if labor 

and capital are each applied at the rate of 10 units 
per acre? 

c. Define the levels of input usage that maximize ex­
pected profit. What is the maximum expected level 
of profit? 

d. The acreage can be irrigated at a cost of $125 per 
acre, in which case the yield per acre is defined by 

Y = 5xrxj,4S eU. 

If the producer wishes to maximize expected profit, 
should she irrigate? 

5. The daily price per gallon and quantity sold (mea­
sured in millions of gallons) of unleaded gasoline on the 
wholesale spot market of a major commodity exchange 
is the outcome of a bivariate random variable (P, Q) hav­
ing the joint probability density function 

f(p, q} = 2pe-PQ Ij.s,I!(p)IIO,oo)(q). 

a. Define the regression curve of q on p. 

b. Graph the regression curve that you have defined 
in (a). 

c. What is the expected value of the quantity of gaso­
line sold, given that price is equal to $.75 per gallon? 

d. What is the expected value of total dollar sales of 
gasoline on a given day? 

6. The short-run production function for a particular 
agricultural crop is critically dependent on the level of 
rainfall during the growing season, the relationship be­
ing Y = 30 + 3X - .075X2, where y is yield per acre in 
bushels, and X is inches of rainfall during the growing 
season. 

a. If the expected value of rainfall is 20 inches, can 
the expected value of yield per acre be as high as 70 
bushels per acre? Why or why not? 

b. Suppose the variance of rainfall is 40 square inches. 
What is the expected value of yield per acre? How 
does this compare to the bound placed on EY by 
Jensen's inequality? 
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7. For each of the densities below, indicate whether 
the mean and variance of the associated random vari­
able exist. In addition, find the median and mode, and 
indicate whether or not each density is symmetric. 

a. fIx) = 3x21]o,II(X) 
b. f(x) = 2x-31]I,oo)(X) 
c. f(x) = [n( 1 + X 2)]-1 11-oo,oo)(x) 

d. f(x) = C)(·2jX(.S)4-X 110,I,2,3.4I(X) 

8. The daily price of a certain penny stock is a random 
variable with an expected value of $2. Then the proba­
bility ~ .20 that the stock price will be greater than or 
equal to $10. True or false? 

9. The miles per gallon attained by purchasers of a line 
of pickup trucks manufactured in Detroit are outcomes 
of a random variable with a mean of 17 miles per gallon 
and a standard deviation of .25 miles per gallon. How 
probable is the event that a purchaser attains between 
16 and IS miles per gallon with this line of truck? 

10. The daily quantity of water demanded by the pop­
ulation of a large northeastern city in the summer 
months is the outcome of a random variable, X, mea­
sured in millions of gallons and having an MGF of 
Mx(t) = (1 - .5t)-10 for t < 2. 

a. Find the mean and variance of the daily quantity of 
water demanded. 

b. Is the density function of water quantity demanded 
symmetric? 

11. The annual return per dollar for two different in­
vestment instruments is the outcome of a bivariate 
random variable (Xl ,X2 ) with joint moment-generating 
function Mx(t) = exp(u't + .5t'<l>t), where 

t = [~~l u = [:~il and 

<l> = [.225 X 10-3 -.3 X 10-3 ] 
-.3 X 10-3 .625 X 10-3 • 

a. Find the mean annual return per dollar for each of 
the projects. 

b. Find the covariance matrix of (Xl ,X2 ). 

c. Find the correlation matrix of (Xl, X2 ). Do the out­
comes of Xl and X2 satisfy a linear relationship 
Xl = £rl + £r2x2? 

d. If an investor wishes to invest $1,000 in a way that 
maximizes her expected dollar return on the invest­
ment, how should she distribute her investment 

dollars between the two projects? What is the vari­
ance of dollar return on this investment portfolio? 

e. Suppose the investor wants to minimize the vari­
ance of her dollar return. How should she distribute 
the $I,OOO? What is the expected dollar return on 
this investment portfolio? 

f. Suppose the investor's utility function with respect 
to her investment portfolio is U(M) = 5Mb, where 
M is the dollar return on her investment of $1,000. 
The investor's objective is to maximize the ex­
pected value of her utility. If b = I, define the opti­
mal investment portfolio. 

g. Repeat (f), but let b = 2. 

h. Interpret the investment behavior differences in (f) 
and (g) in terms of investor attitude toward risk. 

12. Stanley Statistics, an infamous statistician, wants 
you to enter a friendly wager with him. For $1,000, he 
will let you play the following game. He will continue 
to toss a fair coin until the first heads appears. Letting 
X represent the number of times the coin was tossed to 
get the first heads, Stanley will then pay you $2x. 

a. Define a probability space for the experiment of ob­
serving how many times a coin must be tossed in 
order to observe the first heads. 

b. What is the expected payment that you will receive 
if you play the game? 

c. Do you want to play the game? Why or why not? 

13. The city of Megalopolis operates three sewage treat­
ment plants in three different locations throughout the 
city. The daily proportion of operating capacity exhib­
ited by the three plants can be represented as the out­
come of a trivariate random variable with the following 
probability density function: 

1 3 
f(Xl,X2,X3) = 3(xl + 2x2 + 3X3) n 110,1) (x;), 

i=l 
where Xi is the proportion of operating capacity exhib­
ited by plant i, i = 1,2,3. 

a. What are the expected values of the capacity pro­

portions for the three plants, i.e., what is E [ ~~ J? 
X,l 

b. What is the expected value of the average propor­
tion of operating capacity across all three plants, 

i.e., what is E (1 Lf=l Xi)? 
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c. Given that plant 3 operates at 90 percent of capac­
ity, what are the expected values of the proportions 
of capacity for plants 1 and 2? 

d. If the daily capacities of plants 1 and 2 are 100,000 
gallons of sewage each, and if the capacity of plant 3 
is 250,000 gallons, then what is the expected daily 
number of gallons of sewage treated by the city of 
Megalopolis? 

14. The average price and total quantity sold of an econ­
omy brand of ballpoint pen in a large western retail mar­
ket during a given sales period is represented by the out­
come of a bivariate random variable having a probability 
density function 

f(p, s) = lOpe-Ps I[.1o,.2oj(p)Ilo,ooj(s), 

where p is the average price, in dollars, of a single pen 
and S is the total quantity sold, measured in lO,OOO-pen 
units. 

a. Define the regression curve of S on P. 

b. What is the expected quantity of pens sold, given 
that price is equal to $0.12? (You may use the re­
gression curve if you wish.) 

c. What is the expected value of total revenue from 
the sale of ball point pens during the given sales 
period, i.e., what is E(PS)? 

15. A game of chance is considered to be "equitable" 
or "fair" if a player's expected payoff is equal to zero. 
Examine the following games: 

a. The player rolls a pair of fair dice. Let 2 represent 
the amount of money that the player bets on the 
game outcome. If the player rolls a 7 or II, the 
player payoff is 22 (i.e., he gets to keep his bet of $2, 
plus he receives an additional $22). If the player 
does not roll a 7 or II, he loses the $2 that he bet 
on the game. Is the game fair? 

b. The player spins a spinner contained within a disk, 

0, that is segmented into five pieces as 

where PIA) = 1/3, P(B) = 1/6, PIC) == 1/6, P(D) = 
1/12, PIE) = 1/4. 
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Each spin costs $1. The payoffs corresponding to 
when the spinner lands in one of the five segments 
are given by: 

Segment Payoff 

A $0.60 
B $1.20 
C $1.20 
D $2.40 
E $0.80 

Is the game fair? 

c. A fair coin will be tossed repeatedly until heads oc­
curs. If the heads occurs on the ith toss of the coin, 
the player will receive $2;. How much should the 
player be charged to play the game if the game is 
to be fair? (Note: This is a trick question and rep­
resents the famous "St. Petersburg paradox" in the 
statistical literature.) 

16. The manager of a bakery is considering how many 
chocolate cakes to bake on any given day. The manager 
knows that the number of chocolate cakes that will be 
demanded by customers on any given day is a random 
variable whose probability density is given by 

x+l 7-x 
fIx) = 15I(O,\,2,3'(x) + 15114,SI(X). 

The bakery makes a profit of $1.50 on each cake that 
is sold. If a cake is not sold on a given day, the cake is 
thrown away (because of lack of freshness), and the bak­
ery loses $1. If the manager wants to maximize expected 
daily profit from the sale of chocolate cakes, how many 
cakes should be baked? 

17. The daily price and quantity sold of wheat in a 
Northwestern market during the first month of the mar­
keting year is the outcome of a bivariate random vari­
able (p, Q) having the probability density function 

f(p, q) = .5pe-pQ I[3,sj(p)IIO,oo)(q), 

where p is measured in $/bushel, and q is measured in 
units of 100,000 bushels. 

a. Define the conditional expectation of quantity sold 
as a function of price, Le., define E(Q I p) (theregres­
sion curve of Q on Pl. 

h. Graph the regression curve you derived in (a). Cal­
culate the values of E( Q I p = 3.50) and E( Q I p = 
4.50). 
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18. In each case, calculate the expected value of the 
random variable Y: 

a. ElY I x) = 2X2 + 3, fxlx) = e-X Ilo,oodx). 

b. ElY I x) = 3XIX2, EXI = 5, EX2 = 7, XI and X2 are 
independent. 

19. The total daily dollar sales in the ACME supermar­
ket is represented by the outcome of the random vari­
able S having a mean of 20, where s is measured in thou­
sands of dollars. 

a. The store manager tells you the probability that 
sales will exceed $30,000 on any given day is .75. 
Do you believe her? 

b. You are now given the information that the vari­
ance of the random variable S is equal to 1.96. How 
probable is the sales event that s E 110, 30)? 

20. The first three moments about the origin for the 
random variable Yare given as follows: J-L'I = .5, J-L2 = .5, 
J-L~ = .75. 

a. Define the first three moments about the mean for 
Y. 

b. Is the density of Y skewed? Why or why not? 

21. The random variable Y has the PDF fly) = 
y-2III,oolly). 

a. Find the mean of Y. 
b. Find the first 100 moments about the origin li.e., 

J-L'p J-L2' ... , J-L'lOO) for the random variable Y. 

22. The moment-generating function of the random 
variable Y is given by Mylt) = 11 - .25t)-3 for t < 4. 

a. Find the mean and variance of the random variable 
Y. 

b. Is the PDF of Y skewed? Why or why not? 

c. It is known that the moment generating function 
of the PDF 

1 a-I -xIP 
fIx) = ,Bana)x e 110,001 (x) 

is given by Mx(t) = 11 - ,Btta for t < ,B-1. The na) 
in the preceding expression for the pdf is known 
as the gamma function, which for integer values 
of a is such that rIa) = (a - I)!. Define the exact 
functional form of the probability density function 
for Y, if you can. 

23. A gas station sells regular and premium fuel. The 
two storage tanks holding the two types of gasoline are 
refilled every week. The proportions of the available 

supplies of regular and premium gasoline that are sold 
during a given week in the summer is an outcome of a 
bivariate random variable having the joint density func­
tion 

fIx, y) = ~13x + 2y)IIO,lj(x)IIO,ljly), 

where x = proportion of regular fuel sold and y = pro-
portion of premium fuel sold. . 

a. Find the marginal density function of X. What is 
the probability that greater than 75 percent of the 
available supply of regular fuel is sold in a given 
week? 

b. Define the regression curve of Y on X, i.e., define 
E(Y I x). What is the expected value of Y, given 
that x = .75? Are Y and X independent random 
variables? 

c. Regular gasoline sells for $1.25/gallon and pre­
mium gasoline sells for $1.40/gallon. Each storage 
tank holds 1,000 gallons of gasoline. What is the 
expected revenue generated by the sale of gasoline 
during a week in the summer, given that x = .75? 

24. Scott Willard, a famous weatherman on national 
TV, states that the temperature on a typical late fall 
day in the upper midwest, measured in terms of both 
the Celsius and Fahrenheit scales, can be represented 
as the outcome of the bivariate random variable Ie, F) 
such that 

E[~J=[:lJ and covle,F)=[;~ :n· 
a. What is the correlation between e and F? 

b. To what extent is there a linear relationship be­
tween e and F? Define the appropriate linear re­
lationship if it exists. 

c. Is (e, F) a degenerate bivariate random variable? Is 
this a realistic result? Why or why not? 

25. A fruit processing firm is introducing a new fruit 
drink, "Peach Passion," into the domestic market. The 
firm faces uncertain output prices in the initial mar­
keting period and intends to make a short-run decision 
by choosing the level of production that maximize the 
expected value of utility: 

El Ulrr)) = Err - a varlrr). 

Profit is defined by rr = Pq - Clq), P is the price received 
for a unit of Peach Passion, U is utility, the cost func­
tion is defined by c(q) = .5q2, a ::: 0 is a risk aversion 



Problems 

parameter, and the PDF of the uncertain output price is 
given by 

I(p) = .048(5p - p2)Ilo,sl(P). 

a. If the firm were risk neutral, Le., a = 0, find the 
level of production that maximizes expected util­
ity. 

b. Now consider the case where the firm is risk averse, 
i.e., C'i > O. Graph the relationship between the op­
timallevel of output and the level of risk aversion 
(Le., the level of a). How large does a have to be for 
optimal q = I? 

c. Assume that a = l. Suppose that the Dept. of Agri­
culture were to guarantee a price to the firm. What 
guaranteed price would induce the firm to produce 
the same level of output as in the case where price 
was uncertain? 

26. A Seattle newspaper intends to administer two dif­
ferent surveys relating to two different anti-tax initia­
tives on the ballot in November. The proportion of sur­
veys mailed that will actually be completed and re­
turned to the newspaper can be represented as the out­
come of a bivariate random variable (X, Y) having the 
density function 

2 
I(x,y) = a(x + 2y)I[o,lI(x)I[o,II(Y), 

where x is the proportion of surveys relating to initia­
tive I that are returned, and y refers to the proportion of 
surveys relating to initiative II that are returned. 

a. Are X and Y independent random variables? 

b. What is the conditional distribution of x, given 
y = .50? What is the probability that less than 
50 percent of the initiative I surveys are returned, 
given that 50 percent of the initiative II surveys are 
returned? 

c. Define the regression curve of X on Y. Graph the 
regression curve. What is the expected proportion of 
initiative I surveys returned, given that 50 percent 
of the initiative II surveys are returned? 

27. An automobile dealership sells two types of four­
door sedans, the "Land Yacht" and the "Mini-Rover." 
The number of Land Yachts and Mini-Rovers sold on 
any given day varies, with the probabilities of the vari­
ous possible sales outcomes given by the following ta­
ble: 
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Number of Land Yachts Sold 
0 1 2 3 

Number of 
0 .05 .05 .02 .02 

Mini-Rovers 
1 .03 .10 .08 .03 

Sold 
2 .02 .15 .15 .04 
3 .01 .10 .10 .05 

Land Yachts sell for $22,000 each, and Mini-Rovers for 
$7,500 each. These cars cost the dealership $20,000 and 
$6,500, respectively, which must be paid to the car man­
ufacturer. 

a. Define a random variable that represents daily 
profit above dealer car cost, i.e., total dollar sales 
- total car cost. (Let x = number of Land Yachts 
sold and y = number of Mini-Rovers sold). What is 
the expected value of daily profit above dealer car 
cost? 

b. The daily cost (other than the cost of cars) of run­
ning the dealership is equal to $4,000. What is the 
probability that total profit on a given day will be 
positive? 

c. What is the expected number of Mini-Rovers sold 
on a day when no Land Yachts will be sold? What 
is this expected number on a day when two Land 
Yachts are sold? Are X and Y independent random 
variables? Why or why not? 

28. The season average price per pound, p, and total 
season quantity sold, q, of sweet cherries in a regional 
market can be represented as the outcome of a bivariate 
random variable (P, Q) with the joint probability density 
function 

I(p, q) = .5qe-ql.S+plIIO,ool(q)IIO,ool(P), 

where p is measured in dollars, and q is measured in 
millions of pounds. 

a. Find the marginal density of Q. What is the ex­
pected value of quantity sold? 

b. Define the regression curve of P on Q. What is the 
expected value of P, given that q = 1/2? 

c. If the government receives 10 percent of the gross 
sales of sweet cherries every season, what is the 
expected value of the revenue collected by the gov­
ernment from the sale of sweet cherries given that 
q = 1/2? 

Hints f xeaXdx = (eax /a2)(ax - 1). 

29. The yield/acre of wheat on a given parcel of land 
can be represented as the outcome of a random variable 
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Y defined by 

Y = 10x l /3eE for x E [8,100), 

where 

y = wheat output in bushes/acre 

x = pounds/acre of fertilizer applied 

e = is a random variable having the 
probability density function, 

f(e) = 3e-3E 1lo.ool(e). 

a. If fertilizer is applied at the rate of 27 pounds per 
acre, what is the probability that greater than 50 
bushels/acre of wheat will be produced? 

b. You sign a forward contract to sell your wheat 
for $3.00/bushel at harvest time. Fertilizer costs 
$0.20/pound. If you apply fertilizer at a rate of 27 
pounds/acre, what is your expected return over fer­
tilizer cost, per acre? 

c. What is the variance of Y if fertilizer is applied at 
the rate of 27 pounds per acre? Does the variance of 
Y change if a different level of fertilizer is applied? 
Why or why not? 

30. Let X have the moment generating function Mx(t). 
Show that 

a. MIHal(t) = ea'Mx(t). 

b. MbX(t) = Mx(bt). 

c. MIX+a)/b(t) = ela/bl'Mx(t/b). 

31. The AJAX Disk Co. manufactures compact discs 
(CDs) for the music industry. As part of its quality­
control program, the diameter of each disc is measured 
using an electronic measuring device. Letting X I repre­
sent the actual diameter of the disc and X2 represent the 
measured diameter of the disc, 

E[XI J = [4.6775J, 
X 2 4.6775 

[ .00011 .00010 J 
Cov(X) = .00010 .00010 ' 

where XI and X2 are measured in inches. 

a. What is the correlation between the actual diame­
ter and the measured diameter of the CDs? 

b. Assume that P(XI E [4.655,4.700)) = 1. Use a graph 
to elucidate the degree of linear association be­
tween XI and X2 that is represented by the corre­
lation value you calculated in (a). 

c. Given the characteristics of (XI ,X2) indicated 
above, the manager of the quality control-depart­
ment states that the difference between measured 
and actual disk diameters is no more than .01 
inches with probability ~ .90. Do you agree? Why 
or why not? 

32. An investor wishes to invest $1,000 and is examin­
ing two investment prospects. The net dollar return per 
dollar invested in the two projects can be represented 
as the outcome of a bivariate random variable (XI, X2 ) 

where 

E[~~] = [:6~] and Cov(X) = [-·.~~1 ~cigg: l 
a. If the investor invests $500 in each project, what 

is his/her expected net dollar return? What is the 
variance associated with the net dollar return? 

b. Suppose the investor wishes to invest the $1,000 so 
that his/her expected utility is maximized, where 
E(U(R)) = ER - .01 var(R), R = alXI + a2X2 repre­
sents the total return on the investment, al + a2 = 
1,000, and aj ~ 0 for i = 1,2. How much money 
should he/she invest in each of the projects? 

33. The length of time in minutes for an individual to 
be served at a local restaurant is the outcome of a ran­
dom variable, T, having a mean of 6 and a variance of 
1.5. How probable is the event that an individual will 
be served within 3 to 9 minutes? 

34. 
a. Find the moment-generating function of a random 

variable X having the density function 

f(x} = ~ G)1lo.I.2.3dx). 

(Hint: Use of the binomial theorem may be helpful 
in finding a compact representation of this func­
tion.) 
Use the MGF to calculate the first two moments of 
X about the origin. Calculate the variance of X. 

b. Repeat (a), using the density function 

f(x) = 110 e-x / IO / 10•001 (x). 



Parametric Families of Density 
Functions 

4.1 Parametric Families of Discrete Density Functions 
4.2 Parametric Families of Continuous Density Functions 
4.3 The Normal Family of Densities 
4.4 The Exponential Class of Densities 

Some specific functional forms of probability density 
functions that have been found to be useful in statistical applications are exam­
ined in this chapter. The selection includes a number of the more commonly 
used densities. l Our density function definitions will actually identify para­
metric families of density functions. That is, the algebraic expressions for the 
density functions will contain one or more unknowns, called parameters, which 
can be assigned values chosen from a set of admissible values called the param­
eter space. A specific member of a family of densities will be associated with 
each specific value of the parameters contained in the parameter space. The 
general notation I(x; e) will be used to distinguish elements in the domain of 
the density function from elements in the parameter space of the parametric 
family of functions. In particular, the argument preceding the semicolon (x in 
the present case) represents domain elements, while the argument following 
the semicolon (e in this case) represents elements of the parameter space. 

For each parametric family of densities examined, we will present a par­
ticular parameterization of the family that identifies the parameters used in 
the algebraic representation of the density functions as well as the collection 
of admissible values for the parameters (the latter collection being the afore-

1 Johnson and Kotz provide an extensive survey of density functions that have been used in statistical applications. Norman L. 
Johnson and Samuel Kotz (1969, 1970, 19721, Distribution in Statistics, Vol. I-IV. New York: John Wiley and Sons. 
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mentioned parameter space). We will use various English and Greek letters to 
represent parameters. The parameter space will be generically represented by 
the Greek capital omega, Q. Be aware that, in general, parameterizations are 
not unique. Generally, the collection of densities in a parametric family can be 
reparameterized, meaning that an alternative set of parameters and an associ­
ated parameter space can be defined that equivalently identifies each and every 
density in a family of density functions. Possibilities for reparameterizations 
will not concern us currently, although we will revisit this issue later when we 
examine methods of statistical inference. 

Each parametric family has its own distinguishing characteristics that 
make the PDFs appropriate candidates for specifying the probability space of 
some experiments and inappropriate for others. The characteristics include 
whether the PDFs are discrete or continuous, whether the use of the PDFs 
are restricted to nonnegative-valued and/or integer-valued random variables, 
whether the densities in the family are symmetric or skewed, and the degree of 
flexibility with which the density can distribute probability over events in the 
range of a random variable. Furthermore, the functional forms of some paramet­
ric families of densities follow deductively from the characteristics of certain 
types of experiments. We will point out major characteristics and application 
contexts for each of the parametric families presented. We will also introduce 
procedures for assessing the adequacy of the choice of a particular family for a 
given application later in Chapter 10. 

4.1 Parametric Families of Discrete Density Functions 

Family Name: Uniform 

Parameterization N E Q = {N : N is a positive integer} 

Density Definition fIx; N) = -bI{l.2 ..... NJ!X) 

Moments /1- = (N + 1)/2,0'2 = (N2 - 1)/12, /1-3 = 0 

MGF Mx(t) = :2:;:1 eit/N 

Background and Application The discrete uniform density function assigns 
equal probability to each of N possible outcomes of an experiment. The density 
is used to construct a probability space for any experiment having N possible 
outcomes that are all equally likely. The outcomes are coded I, 2, ... , N, and 
each outcome is assigned probability fIx; N) = l/N. 

Example 4.1 The office manager has a box of six printer cables with different pin config­
urations to accommodate computer hook-up of the various types of printers 
used by the company. A new employee needs a printer cable to hook up her 
printer. She randomly chooses printer cables from the box, one at a time with­
out replacement, in an attempt to hook up her printer. Letting the outcome of 
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Figure 4-1 
Uniform density, N = 6. 

X denote the number of cables tried before the correct one is found, what is the 
probability density of X? 
Answer: Let Ai be the event that the correct cable is chosen on the ith try. 
Then 

1 
f(I) = P(Ad = (; (classical probability) 

- - (1)(5) 1 f(2) = P(A2 I AdP(Ad = '5 (; = (; (multiplication rule), 

f(3) = P(A3 I Al n A2)P(A2 I AdP(Ad (extended multiplication rule), 

f(6) = (1) (~) (~) (~) (~) (~) = ~. 
Thus, X has the uniform distribution with N = 6 (see Figure 4.1). 

Family Name: Bernoulli 

Parameterization pEn = {p : 0 ::::: p ::::: I} 

Density Definition fIx; p) = pX(l - pj1-x I{o,l)(x) 

Moments fJ., = p, a2 = p(I - p), fJ.,3 = 2p3 - 3p2 + p 

MGF Mx(t) = pet + (1- p) 

f{x) 

1/6 

L..-_~_-+-_~_-'-_--!,-_-L-___ X 

2 3 4 5 6 

o 
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Background and Application The Bernoulli density, named after the Swiss 
mathematician Jacques Bernoulli (1654-1705), can be used to construct a prob­
ability space for an experiment that has two possible outcomes (e.g., cure versus 
no cure, defective versus nondefective, success versus failure) that mayor may 
not be equally likely to occur. The two outcomes of the experiment are coded 
o and I, where the event x = 0 is assigned probability flO; p) = 1 - p and the 
event x = 1 is assigned probability f(l; p) = p. 

Example 4.2 A shipment of video recorders to a local electronics retailer contains three de­
fective and seven nondefective recorders. The recorders are placed on the store's 
shelves, and a customer randomly chooses a recorder to purchase. Coding the 
choice of a defective recorder as x = 1 and the choice of a nondefective recorder 
as x = 0, the Bernoulli density can be used to construct the probability space 
of the experiment by letting p = .3 (see Figure 4.2). 0 

Family Name: Binomial 

Parameterization (n,p) E n = {(n,p) : n is a positive integer, 0:::: p :::: I} 

Density Definition 

I n! X(l - )n-x 
fIx; n,p) = x!(n - x)!p p 

o otherwise 

for x = 0,1,2, .. . ,n, 

Moments J.L = np, a 2 = np(l - p), J.L3 = np(l - p)(l - 2p) 

MGF Mx(t) = (1 - p + pet)n 

({x) 

.7-

.3 -

Figure 4-2 
Bernoulli density, P = .3 

~--__ ~ __________ ~_______________________ x 

o 
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Background and Application The binomial density function is used to construct 
a probability space for an experiment that consists of n independent repetitions 
(also called trials) of a given experiment of the Bernoulli type (Le., the experi­
ment has two possible outcomes), with the observation of interest being how 
many of the n Bernoulli trials result in one of the two types of outcomes, say, 
type A (e.g., how many successes, defectives, or cures occur in n repetitions of 
the Bernoulli-type experiment?). The value of x represents the total number of 
outcomes of type A that occur in the n Bernoulli trials. The parameters nand 
p refer respectively to the number of trials and the probability of observing the 
type A outcome in the underlying Bernoulli-type experiment. It is assumed that 
the repetitions are executed in such a way that the outcome observed on any 
trial does not affect the probability of occurrence of outcomes on any other trial 
(which is the meaning of the phrase independent repetitions or independent 
trials). 

The functional form of the density can be deduced directly from the charac­
teristics of the experiment described above. Let (X I, ... ,Xn ) be a collection of n 
independent random variables, where each Xi has a Bernoulli density with the 
same value of p, as f(xi; p) = pXI(I - pjI-xII{o,l}(xd. Let Xi = 1 indicate that out­
come A occurs on the ith Bernoulli trial. Then the random variable X = L:f=1 Xi 
represents the number of Bernoulli trials that result in outcome A. Since the 
Bernoulli random variables are independent, the probability of obtaining a par­
ticular sequence of x outcomes of type A in a sequence of n trials is pX( 1-pJn-x. 
The number of different sequences of n trials that result in x outcomes of type 
A is given by C) (which is the number of different ways of placing x outcomes 
of type A into the n positions of the sequence). Since the different sequences 
are mutually exclusive, it follows that the probability of observing x outcomes 
of type A is given by the sum of the probabilities of the (~) different sequences 
that result in the outcome x, which is represented by the binomial density 
function defined above. The binomial density assigns the probability fIx; n, p) 
to the outcome x E R(X) = {O, 1,2, ... , n} 

Example 4.3 Upon analyzing the cash register receipts of a large department store over an 
extended period of time, it is found that 30 percent of the customers pay for 
their purchases by credit card, 50 percent pay by cash, and 20 percent pay by 
check. Of the next five customers that make purchases at the store, what is the 
probability that three of them will pay by credit card? 
Answer: Assume that how a customer pays for her purchases is the outcome 
of a Bernoulli trial with Xi = 1 =} credit card, and Xi = 0 =} cash or check. 
Given that the respective probabilities of these outcomes are .30 and. 70, and 
assuming that customers' payment methods are independent of one another, it 
follows that X = L:~=I Xi represents the number of customers that pay by credit 
card, and X has a binomial density function with n = 5 and p = .3. The graph 
of the density is given in Figure 4.3, where the following values hold: 
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Figure 4-3 
Binomial density, 

n = 5, P = .3 

((x) 

.3 -

.2 -

.1-

, • L-__ J-____ L-__ ~ ____ ~ __ ~~ __ ~ _________ x 

0 2 3 4 5 

x ((x) x {(x) 

0 .1681 3 .1323 
1 .3602 4 .0284 
2 .3087 5 .0024 

Thus, PIx = 31 = .1323. o 

Family Name: Multinomial 

Parameterization (n,Pl, ... ,Pml E Q = {(n,Pl, ... ,Pml: n is a positive integer, 
o S. Pi S. I, Vi, I:::l Pi = I} 

Density Definition 

m 

for Xi = 0, 1,2, ... , n Vi, LXi = n, 
i=l 

Moments /-ti = npi, 0-; = npi( 1 - Pi I, /-t3/i = npi( 1 - Pi HI - 2Pi I, 
Cov(Xi,Xil = -npiPi 

Background and Application The multinomial density function is an extension 
of the binomial density function to the case where there is interest in more than 
two different types of outcomes for each trial of the underlying repeated exper­
iment. In particular, the multinomial density function is used to construct a 
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probability space for an experiment that consists of n independent repetitions 
of a given experiment characterized by m > 2 different types of outcomes. The 
observation of interest is how many of each of the m different types of outcomes 
of the experiment occur in n repetitions of the experiment. The value of Xi rep­
resents the total number of outcomes of type Ai that occur in the n repetitions. 
The parameters n and Pi refer, respectively, to the number of trials conducted 
and the probability of observing the type Ai outcome in one trial. It is assumed 
that the repetitions are conducted in such a way that the outcome observed on 
any trial does not affect the probability of occurrence of outcomes on any other 
trial. The motivation for the density function definition is a direct extension of 
the arguments used in the binomial case upon recognizing that the number of 
different sequences of n repetitions of the experiment that result in Xi type Ai 
outcomes, i = 1, .. . ,m, equals (X/.~m!)' The details are left to the reader. The 

multinomial density assigns the probability f(XI, ... ,xm;n,PI, ... ,Pm) to the 
outcome (Xl, ... , Xm) E R(X) = {(Xl, ... , Xm) : Xi E (0, 1, ... , n) Vi, L::I Xi = n}. 

It is useful to note that the marginal density of any of the Xi variables is 
binomial with parameters n and Pi. Furthermore, any subset of the random 
variables (Xl, .. . ,Xm ) has a multinomial density. 

Example 4.4 Recall Ex. 4.3. Of the next five customers entering the store, what is the prob­
ability that two will pay by credit card, two will pay by cash, and one will pay 
by check? 
Answer: For each of the five experiments of observing customers' payment 
methods, we have three different types of outcomes that are of interest. In the 
specification of the multinomial density, we let Xl, X2, and X3 refer, respectively, 
to the number of payments made by credit card, cash, and check. The proba­
bilities of observing a payment by credit card, cash, or check in any given trial 
is PI = .3, P2 = .5, and Pa = .2, respectively. Then the probability we seek is 
given by 

f(2, 2, 1; 5, .3, .5, .2) = [2!~:l!] (.3)2(.5)2(.2)1 = .135. 

Family Name: Negative Binomial and Geometric 

Parameterization (for the geometric density family, r = 1) 

(I, pI E n = {(r, p) : I is a positive integer, 0 < P < I} 

Density Definition 

I (x - I)! pf(1 - p)X-f 
fIx; I,p) = (r -1)!(x - I)! 

o otherwise 

for X = r, I + I, r + 2, ... , 

Moments p- = rjp, a2 = r(1 - p)jp2, P-3 = r((1 - p) + (1 _ p)2)j~ 

o 
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MGF Mxlt) = eItpl' I 1 -11- p)et)-I for t < -inli - p) 

Background and Application The negative binomial density function lalso 
sometimes referred to as the Pascal distribution) can be used to construct a 
probability space for an experiment that consists of independent repetitions 
of a given experiment of the Bernoulli type, just like the case of the binomial 
density, except the observation of interest is now how many Bernoulli trials 
are necessary to obtain r outcomes of a particular type, say type A le.g., how 
many Bernoulli trials are necessary to obtain r successes, defectives, or tails?). In 
comparing the binomial and negative binomial densities, notice that the roles 
of the number of Bernoulli trials and the number of successes are reversed with 
respect to what is the random variable and what is the parameter. For the neg­
ative binomial density, the value of x represents the number of Bernoulli trials 
necessary to obtain r outcomes of type A. 

In order to motivate the density function definition, let IXl, .. . ,Xn ) be a 
collection of n independent random variables, where each Xi has a Bernoulli 
density, precisely the same as in our discussion of the binomial density. Let 
the probability of obtaining an outcome of type A be p for each trial. Since 
the Bernoulli random variables are independent, the probability of obtaining a 
sequence of x trials that result in r outcomes of type A, with the last trial being 
the rth such outcome, is pIll - pIX-I. The number of different sequences of x 
trials that result in r outcomes of type A and end with the rth outcome being of 
type A, is given by Ix-I)!/llr-I)!lx-r)!) Iwhich is the number of different ways of 
placingr-I outcomes of type A in the firstx-I positions of the sequence). Since 
the different sequences are mutually exclusive, it follows that the probability 
of needing x Bernoulli trials to obtain r outcomes of type A is given by the sum 
of the probabilities of the Ix - I)!/lIr - I)!lx - I)!) different sequences that result 
in the outcome x, this sum being represented by the negative binomial density 
function defined above. The negative binomial density assigns the probability 
fIx; r,p) to the outcome x E RIX) = {r,I + I,r + 2, ... }. 

The geometric family of densities is a subset of the family of negative bino­
mial densities defined by setting r = 1. Thus, the geometric density is appropri­
ate for assigning probability to events relating to how many Bernoulli trials are 
necessary to get the filst outcome of type A. The geometric density function 
has a unique property in that it is the only discrete density for a nonnegative, 
integer-valued random variable for which P[x > i + i I x > il = P[x > il V i 
and j E {O, 1,2, ... }. This conditional probability property is referred to as the 
memoryless property, meaning that in any experiment characterized by the ge­
ometric density, if the experiment has already resulted in i trials without a type 
A outcome, the experiment has "no memory" of this fact, since the probability 
that more than i additional trials will be needed to obtain the first type A out­
come is precisely the same as if the first i trials had never occurred. The proof 
that the geometric density has this property is left to the reader. The reader may 
wish to consult V. K. Rohatgi, (1976), An Introduction to Probability Theory 
and Mathematical Statistics, New York: John Wiley, p. 191, for a proof that the 
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geometric density is the only density for nonnegative, integer-valued, random 
variables that has this property. 

Example 4.5 A salesperson has a quota of 10 sales per day that she is expected to meet for 
her performance to be considered satisfactory. If the probability is .25 that any 
given customer she contacts will make a purchase, and if purchase decisions 
are independent across consumers, what is the probability that the salesperson 
will meet her quota within 30 customer contacts? 
Answer: The negative binomial density function can be applied with p = .25 
and r = 10. The event of interest is x ::: 30, which has the probability 

( ) ~((X-l)!) lOr x-lO 
p x::: 30 = x~o 9!1x _ 1O)! (.25) .75) = .1966. o 

Example 4.6 A machine produces envelopes, and the probability that any given envelope will 
be defective is p = .001. The production of envelopes from the machine can 
be viewed as a collection of independent Bernoulli trials (Le., each envelope is 
either defective or nondefective, the probability of a defective envelope is .001, 
and the occurrence of a defective envelope does not affect the probability that 
other envelopes will be defective or nondefective). What is the probability that 
the first defective envelope will occur after 500 envelopes have been produced? 
Given that the machine has already produced 500 envelopes without a defective 
one, what is the probability that the first defective envelope will occur after 
another 500 envelopes have been produced? 
Answer: The geometric density can be applied with p = .001. The first event 
of interest is {x> SaO}. The probability of the event can be calculated by first 
noting that the cumulative distribution function for the geometric density is 
given by 

Fib) = [1 -(I - p)trunc(bljI[I,oo)(b). 

Then P(x > 500) = 1 - F(SOO) = 1 - [1 - (.999)5001 = .6064. The graph of fix) 
in this case has a set of spikes at x = 1, 2, 3, ... , which decline very slowly, 
beginning with til) = .001, and with the image of x = 250 still being equal to 
f(2S0) = .00078. As x ~ 00, fix) ~ o. 

The second probability we seek is of the form P(x > 1000 I x> 500). By the 
memory less property of the geometric density, we know that this probability 
is equal to P(x > 500) = .6064, as calculated above. 0 

Family Name: Poisson 

Parameterization A E Q = {A : A > a} 
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Lemma 4.1 

Density Definition 

f(x; A) = ~ for x = 0, 1,2, ... , 1 e-AAX 

o otherwise 

Moments f.1, = A, a2 = A, f.1,3 = A 

MCF Mx(t) = eA(e'-lj 

Background and Application When the number of independent and identical 
Bernoulli experiments is very large and p is small, the Poisson density, named 
after the French mathematician Simeon Poisson (1781-1840), provides an ap­
proximation to the probability that x = I:7=1 Xj = c and thus provides an ap­
proximation to probabilities generated by the binomial density. In fact, the 
limit of the binomial density as n ~ 00 and A = np, for A a fixed constant, 
is the Poisson density. We examine this situation in more detail to provide an 
example of how limiting densities arise.2 In the discussion, we will need the 
following result. 

The nonzero values of the binomial density can be expressed alternatively as 

nX_l(n - i + 1) f(x; n,p) = 1_ pX(1 _ pIn-x. 
x! 

Let np = A for some A > 0, so that p = Aln can be substituted in the binomial 
density expression to yield 

n:=dnx~ i + 1) (~r (1 - ~r-x, 

where we have suppressed the indicator function by assuming that x is a non­
negative integer::: n. Algebraically rearranging the above expression, and letting 
n ~ 00, yields 

lim n:=dn - i + 1) AX (1 _ ~)n (1 _ ~)-X 
n ..... oo nX x! n n 

=--
x! 

2Limiting densities will be discussed further in Chapter 5. 
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since "the limit of a product equals the product of the limits" when all of the 
limits exist, and since 

lim n - i = 1 Y i, lim (1 _ ~)-X = I, lim (1 _ ~)n = e->" (by Lemma 4.1), 
n .... oo n n .... oo n n .... oo n 

AX AX 
lim - =-. 
n .... oo xl xl 

Therefore, the binomial density converges to the Poisson density for np = A, 
A > 0, n ~ 00. The usefulness of this result is that for large n, and thus for 
small p = Aln, we can adopt the approximation 

(:)r(l _ p)n-x ~ (e-n;~p)X) , 

that is, we replace the parameter A in the Poisson density by the product of the 
binomial density parameters nand p. The approximation can be quite useful 
since the Poisson density is relatively easy to evaluate, whereas for large n, 
dealing with the factorial expressions in the binomial density can be cumber­
some. 

As a rule of thumb for indicating when the approximation is good, prob­
abilities assigned by the Poisson density will be close to the true binomial 
probabilities when n ::: 20 and p ::: .05. The approximation is excellent when 
n ::: 100 and A = np ::: 10. 

Example 4.7 A publishing company is typesetting a novel that is 300 pages long and averages 
1,500 typed letters per page. If typing errors are as likely to occur for one letter as 
another, if a typing error occurring in one place does not affect the probability of 
a typing error occurring in any other place, and if the probability of mistyping a 
letter is small, then the total number of typing errors in the book can be viewed 
as the outcome of a random variable having, approximately, a Poisson density. 
For example, if the probability of a typing error for any given letter is 10-5, then 
A = np = 4.5 in the Poisson density. The probability of observing 10 or fewer 
errors in the book would be approximated as 

10 

P(x::: 10) ~ I>-4.5(4.s)Xlxl = .9933. 
x=o 

A partial graph (truncated after x = 10) of the Poisson density in this case is 
given in Figure 4.4, where 

x ((xl x ((xl 

0 .0111 6 .1281 
.0500 7 .0824 

2 .1125 8 .0463 
3 .1687 9 .0232 
4 .1898 10 .0104 
5 .1708 0 
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Figure 4-4 
Partial Poisson 

density, A = 4.5 

Definition 4.1 
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Poisson Process Besides serving as an approximation to the binomial density 
for large n and small p, the Poisson density is important in its own right for 
constructing probability spaces for experiments whose outcomes are governed 
by the so-called Poisson process. The Poisson process refers to a particular type 
of experimental situation in which the number of occurrences of some specific 
type, say type A (e.g., a traffic accident, a telephone call, the arrival of a customer 
at a checkout stand, a flaw in a length of wire) in a time, space, volume, or 
length dimension, possesses the following general probabilistic characteristics 
(we state the conditions for a time dimensionj the conditions can be adapted to 
the other dimensions of measurement as well): 

Let an experiment consist of observing the number of type A outcomes that 
occur over a fixed interval of time, say [0, t]. The experiment is said to follow 
the Poisson process if: 

1. the probability that precisely one type A outcome will occur in a small 
time interval of length b..t is approximately proportional to the length of 
the interval, as y[b..t] + o(b..t), where y> 0 is the proportionality factor,3 

2. the probability of two or more type A outcomes occurring in a small 
time interval of length b..t is negligible relative to the probability that 
one type A outcome occurs, the negligible probability being of order of 
magnitude o(b..t), 

3 0 !t) is a generic notation applied to any function of b.t whose values approach zero at a rate faster than b.t, so that 
limLlt->o!o!b.tll/!b.t) = O. The "o!b.t)" stands for "of smaller order of magnitude than b.t." For example, h!b.t) = !b.t)2 is a function 
to which we could affix the label o!b.t), while h!b.t) = !b.t)1/2 is not. More will be said about orders of magnitude in Chapter 5. 
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3. the numbers of type A outcomes that occur in nonoverlapping time in­
tervals are independent events. 

To appreciate what is meant by the probability of two or more type A out­
comes occurring in a small interval of length !:l.t being negligible relative to the 
probability that just one type A outcome occurs, note that 

PI > 2 t A) I At) olM) 
1· - ype 1· 0 L.l. 1· 6t a 1m = 1m = 1m = . 
t.HO PII type A) t.HO y[!:l.t) + ol!:l.t) t.HO y[L\tl + olt.tl 

t.t t.t 

Thus, for small enough intervals !:l.t, PI::: 2 type A) is negligible relative to 
Pll type A). 

We now indicate why the Poisson process leads to the Poisson density. 

Theorem 4.1 (Poisson Process =} Poisson Density) Let X represent the number of times 
event A occurs in an interval of time [O,t]. If the experiment underlying X 
follows the Poisson process, then the density of X is the Poisson density. 

Proof Partition the interval [0, t] into n successive disjoint subintervals, each of length 
!:l.t = tIn, and denote these intervals by Ii, j = 1, ... , n. Let the random variable 
XlIi) denote the number of outcomes of type A that occur within subinterval 
Ii, so that 

n 

X = LX(I;). 
i=1 

Examine the event x = k, and note that PIx = k) = PIAn) + P(Bn), where An 
and Bn are the disjoint sets 

An= I~X(Ii)=k'X(I;)=O or 1, Vj), 

Bn = I ~X(Ii) = k, x(Iil ::: 2, for 1 or more j,s). 

Since Bn C {xlIi) ::: 2 for 1 or more j's} C Uf=1 {xlI;) ::: 2}, Boole's inequality 
implies 

P(Bnl ~ tp{X(Iil::: 2} = to (;) = t [0 ~~)], 
so that limn~oo P(Bn I = O. 

Now examine PlAn). For each subinterval, define a "success" as observ­
ing exactly one type A outcome, and a IIfailure" otherwise. Then by prop­
erty (1) of the Poisson process, P(success) = y[t/n) + o(t/n) and P(failure) = 
1 - y[t/n] - o(t/n). Since events in one subinterval are independent of events 
in other subintervals by property (3) of the Poisson process, we can view the 
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lemma 4.2 

observations on the n subintervals as a collection of independent Bernoulli tri­
als, each trial yielding a success or a failure. It follows that probability can be 
assigned to event An by the binomial density as 

P(Anl = (~) [Y~ + 0 (~) r [1 -Y~ -0 (~) r-k 

We need the following extension of Lemma 4.1: 

Then, following a similar approach to the one used to demonstrate the conver­
gence of the binomial to the Poisson density, it can be shown using Lemma 4.2 
that limn-+ oo P(Anl = (e-rt(yt)kl/k!, which is the value of the Poisson density, 
where A = yt. 

Finally, since PIx = k) = PlAn) + P(Bnl V n, we have 

. e-rt(ytlk 
PIx = k) = hm[P(Anl + P(Bn)J = k ' 

n-+oo ! 

and so the conditions of the Poisson process lead to assignments of probability 
via the Poisson density function. • 

Note that when use of the Poisson density is motivated from within the 
context of the Poisson process, y can be interpreted as the mean rate of occur­
rence of the type A outcome per unit of time. This follows from the fact that 
EX = A = yt if X has a Poisson density, and then y = EX/t. In applications, the 
Poisson density would be chosen for constructing the probability space of an 
experiment when either the conditions of the Poisson process hold, or when 
conditions exist for the Poisson density to be a reasonable approximation to the 
binomial density. The Poisson PDF has been used to represent the probability 
of such random variables as the number of machine breakdowns in a work shift, 
the number of customer arrivals at a checkout stand during a period of time, 
the number of telephone calls arriving at a switchboard during a time interval, 
and the number of flaws in panes of glass. 

Example 4.8 The milk bottling machine in a milk processing plant has a history of breaking 
down, on average, once every two weeks. The chief of the repair and mainte­
nance crew is scheduling vacations for the summer months and wants to know 
what the probability is that the bottling machine will break down more than 
three times during the next four weeks. What is the probability? 
Answer: When viewed in the context of ever shorter time intervals (hours, min­
utes, secondsl, breakdowns appear to be increasingly less likely, and it seems 
reasonable to assume that the probability of two breakdowns within a short­
enough time interval would be negligible. Assuming the repair crew returns the 
machine to full operating performance after each breakdown, it is reasonable 
to assume that the event of a breakdown in any short interval of time is inde-
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pendent of a breakdown occurring in other intervals of time.4 All told, it would 
appear that the conditions of the Poisson process are a reasonable approxima­
tion to this situation, and we endeavor to assign probability to the event x> 3 
using the Poisson density. Since the average number of breakdowns is 1 every 
2 weeks and since the chief is interested in a 4-week time interval, the Poisson 
density of relevance here is (e-22X )/x!I{o,1,2, ... dx), where).., = yt = 2 was chosen 
to represent a rate of 2 breakdowns every 4 weeks (y = .5 breakdowns per week 
times t = 4 weeks). The probability of more than 3 breakdowns in the 4-week 
period is then given by 

3 3 2i 
P(x> 3) = 1 - LP(x = i) = 1 - Le-2 -:r = .143. 

i=O i=O 1. 

o 

Family Name: Hypergeometric 

Parameterization (M, K, n) E n = (1M, K, n) : M = 1,2,3, ... ; K = 0, I, ... , M; 
n = 1,2, .. . ,M} 

Density Definition 

fIx; M, K, n) = x (~)x for integer values max!O, n - (M - K)} S x S min(n, K), I (K)(M-K) 

Moments 

nK 
J..L= M' 

o otherwise 

MCF Mx(t) = !((M - n)!(M - K)!)/M!]H(-n, -K, M - K - n + I, et ), where H(.) 
is the hypergeometric function 

H( {3 Z) -1 ex{3Z ex{3(a+lH{3+1)Z2 ... 
ex, ,I, - + I' + (1) 2' + I. I I+ . 

(Note: This MGF is not too useful in practice since moments are defined in 
terms of an infinite sum; to illustrate this fact, the reader should attempt to 
define J..L by differentiating Mx(t) once with respect to t and evaluating the 
derivative at zero.) 

Background and Application The hypergeometric density is used to construct 
a probability space for an experiment in which there are 

4Ultimately, this assumption could be tested using a nonparametric test of hypothesis. We will examine tests of independence in 
our discussion of hypothesis testing procedures later in the text. 
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1. M objects, of which K of them are of one type, say type Ai 
2. the remaining M - K objects are of a different type, say B; and 
3. n objects are randomly drawn without replacement from the original col­

lection of M objects and the number, x, of type A outcomes in the collection 
of n objects drawn is observed. 

By drawing randomly without replacement, we mean that, at each draw, all of 
the objects that are still left in the collection have an equal probability of being 
chosen. The hypergeometric density assigns probability to the number of type 
A objects drawn out of a total sample of n objects. 

To motivate the density function definition, note that the number of dif­
ferent ways of choosing the sample of n objects is given by (~), the number of 
different ways of choosing x type A items is (~), and the number of different 
ways to choose In - x) type B items is (~=:). Then, since all possible samples 
having x type A and n-x type B outcomes are equally likely, the classical proba­
bility definition states that the probability of obtaining x type A outcomes from 
a random samj,le Iwithout replacement) of n objects from the aforementioned 
collection is (x)(~=:) -7- (~). 

Note that the binomial and hypergeometric densities both assign probabil­
ities to outcomes of the type observe x type A outcomes from a total number 
of n observations. The important difference between experiments for which 
the binomial density or the hypergeometric density applies is that in the for­
mer case, the n trials are independent and identical and would correspond to 
randomly drawing objects with replacement Imeaning once an object is drawn, 
and the observation is made, the object is placed back in the total collection 
of objects so that, at each draw, all of the original objects in the collection are 
equally probable to be chosen), whereas randomly drawing objects without re­
placement characterizes the experiment to which the hypergeometric density 
is applied. 

Example 4.9 Suppose a shipment of 1,000 computer memory modules contains 50 defectives. 
What is the probability of obtaining no defective modules in a random drawing, 
without replacement, of 5 modules from the shipment? 
Answer: The appropriate hypergeometric density for this case has M = 1,000, 
K = 50, and n = 5. The probability assigned to the lelementary) event x = a is 

( 50! ) ( 950! ) 
"(a, 1 000 50 5) - 0TSiJf Si945T - 7734 0 
}I " , , - ( 1000! ) - . . 

5!995! 

Regarding the graph of the hypergeometric density, fIx; M, K, n) increases as 
x increases, until a maximum value is reached at the greatest integer value of x 
for which x ~ (In + 1 J(K + 1 ))/(M + 2) (this can be shown by examining the values 
of x for which the density is increasing, i.e., fIx; M, K,n)/flx - 1; M, K,n) ~ 1). 
The value of the PDF declines thereafter. Some random variables to which the 
hypergeometric density has been applied include observations on the number 
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of responses of a certain type in the context of auditing, quality control, and 
consumer or employee attitude surveys. 

Family Name: Multivariate Hypergeometric 

Parameterization 

(M, K1, ••• , Km, n) E n = (1M, Kl, ... , Km, n) : M = 1,2, ... ; 

Density Definition 

m 

Ki = 0,1, .. . ,M for i = 1, .. . ,m; LKi = M; n = 1,2, .. . ,M} 
i=1 

I [lm (Ki) m 
;=1 Xi • 

J;( 'MK K)- M fOrXiE{O,l,2, ... ,n}Yl,Lxi=n, 
I' Xl,,,·,Xm, , 1,·", m,n - (n) i=1 

o otherwise 

Moments 

a~ = (K) (M -Ki) (M -n) 
1 n M M M-l' 

. = (Ki) (MKi) (M - 2Ki) (M - n) (M - 2n) 
/L3,1 n M M M M - 1 M - 2 

MCF not useful 

Background and Application The multivariate hypergeometric density is a gen­
eralization of the hypergeometric density in the same sense as the multinomial 
density is a generalization of the binomial density. In particular, we now con­
sider the case where we are interested in more than two different types of 
outcomes for each object chosen from the original collection of objects. Let­
ting K, i = 1, ... , m, refer to the number of objects of type i that are in the 
collection, M = L~1 Ki represent the total number of objects in the collection, 
n represent the number of objects randomly drawn without replacement from 
the collection, and Xi be the number of outcome of type i, i = 1, ... , m, then 
an extension of the argument used to motivate the density definition in the 
hypergeometric case leads to the definition of the multivariate hypergeometric 
density function presented earlier. 

Note that the marginal density of each Xi is hypergeometric with param­
eters (M, Ki , n). Furthermore, any subset of the random variables (X I, ... , Xm) 
also has a multivariate hypergeometric density, as the reader can verify. 

Example 4.10 As part of its quality assurance program, a large northwestern bank regularly in­
terviews a randomly selected subset of the customers who transact business at 
one of its branches each week. Among other questions, the customers are asked 
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to rank the overall service they received as being" excellent," "good," "aver­
age," "below average," or "poor." In one of the smaller rural branches, there 
were 100 customers during a particular week. If the bank randomly chooses 5 
of the 100 customers to interview, and if the 100 customers were distributed 
across the rating categories as 50, 30, 10, 7,3, respectively, what is the probabil­
ity that the interviews will result in 2 "excellent," 2 "good," and 1 "average" 
ratings? 
Answer: Use the multivariate hypergeometric density with M = 100, Kl = 50, 
K2 = 30, K3 = 10, K4 = 7, Ks = 3, and n = 5. Then 

(s~) (3~) (\0) (6)@ 
P(Xl = 2,X2 = 2,X3 = l,x4 = Xs = OJ = 100 = .0708. 0 

( 5 ) 

4.2 Parametric Families of Continuous Density Functions 

Family Name: Uniform 

Parameterization (a, bJ E Q = Ha, bJ : -00 < a < b < oo}· 

Density Definition fIx; a, bJ = (l/(b - aJJI[a,bl(xJ 

Moments f..L = (a + bJ/2, a2 = (b - aj2/12, J-L3 = 0 

MGF 

Mx(tJ = (b _ aJt for t =f. 0, I ebt - eat 

1 for t = 0 

Background and Application The continuous uniform density is used to con­
struct probability spaces for experiments having an uncountable, infinite num­
ber of possible outcomes that are all equally likely in the interval [a, bl, for finite 
b - a. All interval subsets of [a, bJ of length k are assigned equal probability, 
k/(b - aJ. The continuous uniform density has important applications in the 
computer generation of random-variable outcomes for a wide array of probabil­
ity distributions. We will examine these types of applications in Chapter 6, a 
preview of which is provided in the next example. 

Example 4.11 An efficiency analyst wishes to simulate the daily demand for teller services in 
a moderately sized branch of a regional bank. The probability that a customer 
will require the services of a teller is known to be .30, whereas the customer will 
utilize the services of a cash machine, loan officer, or investment banker with 
probability.70. The type of service demanded is independent across customers. 
The efficiency analyst concludes that of n customers entering the branch on a 
given day, the number that utilize a teller's services is the outcome of a random 
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variable X having the binomial density fIx) = C)I.30)xI.70)n-x I{O,I, ... ,ndx). The 
analyst has a computer random-number generator that produces outcomes of 
a random variable Y having the uniform density h(y) = Ilo,II(Y). How can the 
analyst simulate daily outcomes of X? 
Answer: Let F(b) = Lx<bf(x) be the CDF of X, and define n + 1 intervals as 
10 = 10, F(O)) and Ii = [EU - 1), FU)), for i = 1, ... , n. Note that the lengths 
of the intervals represent the respective probabilities assigned to the outcomes 
x E {a, 1, ... , n} by the aforementioned binomial density; for example, PIx = j) = 
Fli) - FU - 1) = fU), for i E {I, 2, ... , n}. Then an outcome of X can be simulated 
by first generating an outcome of Y and then calculating x = LI=O ih,(y). That 
these outcomes follow the appropriate binomial density can be motivated by 
the fact that x = i iff y E I; and PxU) = PyII;) = IYEll Ilo,l)ly)dy = fU). 

For a specific illustration, letn = 5. Then 10 = [0, .1681), h = 1.1681, .5283), 
12 = 1.5283, .8370),13 = [.8370, .9693),14 = 1.9693, .9977), and Is = 1.9977,1). 
If the computer random-number generator were to generate an outcome y = 
.6311, then the analyst would simulate that 2 customers required teller's ser­
vices on a day when 5 customers entered the branch (since .6311 E h). 

The reader might contemplate an extension of this simulation exercise to 
the case where the number of customers entering the branch on a given day is 
the outcome of a random variable N. 0 

Family Name: Gamma 

Parameterization (a, (3) E Q = {(a, f3) : a > 0, {3 > a} 

Density Definition fIx; a, (3) = (1/({3"T(a)))xa-Ie-xlfllI0,001(x), 
where ['(a) = 1000 ya-l e-Y dy is called the gamma function, having the property 
that if a is a positive integer, ['(a) has values rIa) = (a - 1 )l, and if a = 1/2, 
then ['( 1/2) = JrI/2. Also, for any real a > 0, ['(a + 1) = a['(a). 

MGF Mx(t) = (I - {3t)-a for t < {3-1 

Background and Applications The gamma family of density functions is a ver­
satile collection of density functions that can be used to model a wide range 
of experiments whose outcomes are coded as nonnegative real numbers and 
whose respective probabilities are to be assigned via a density function that 
is skewed to the right. An extensive variety of density shapes are possible by 
altering the parameters ex and {3, a few of which are illustrated in Figures 4.5 
and 4.6. It can be shown that the gamma density is strictly decreasing when 
a :::: 1. The density increases to a maximum of I (a - 1 )e-l)a-l /({3r(a)), at x = 
la - 1){3, for a> 1. 
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Figure 4·5 
Gamma densities, 

case I, f3 = 1 

Figure 4·6 
Gamma densities, 

case ", a = 3 

f(xl 

1.2 

0.8 

0.6 

0.4 

0.2 

o 2 3 4 5 6 7 8 

While its wide variety of shapes makes the gamma family a candidate for 
constructing the probability space of many experiments with nonnegative out· 
comes, the gamma family has specific uses with regard to waiting times be· 
tween occurrences of events based on the Poisson process. In particular, let 
Y have a Poisson density with parameter A, and let y refer generically to the 
number of successes that occur in a period of time t, so that y = Alt is the 
rate of success of the Poisson process. If X measures the time that passes until 
the Poisson process produces the first success, then X has a gamma density 
with a = 1 and f3 = y-l. If instead X measures the time that passes until the 
Poisson process produces the rth success, then X has a gamma density with 

/{xl 
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a = rand fJ = y-l. Proofs of these propositions can be found in S. F. Arnold, 
Mathematical Statistics, p. 166. 

Example 4.12 Recall Ex. 4.8 regarding breakdowns of a milk bottling machine, which was 
assumed to be a Poisson process with rate y = Alt = 2/4 = .5. What is the 
probability that the machine will not breakdown in four weeks of use? 
Answer: The event of interest is {x > 4}, that is, the first breakdown occurs 
after 4 weeks of operation. From the preceding discussion, we know that x 
has a gamma density with a = 1 and fJ = y-l = 2. Therefore, PIx > 4) = 
J:(I/2)e-x/2dx = _e-x/2 1:= .1353. Note this is precisely the same probability 
as the outcome 0 receives in the Poisson density of Ex. 4.8, which is as it should 
be, given that no breakdowns occurring in 4 weeks (0 outcome for the Poisson 
random variable) coincides with the first breakdown occurring after 4 weeks 
(an outcome greater than 4 for the gamma random variable). 0 

The gamma family of densities has an important additivity property, which 
we state in the following theorem. 

Theorem 4.2 (Gamma Additivity) Let Xl, .. . ,Xn be independent random variables with 
respective gamma densities Gamma (ai,fJ), i = 1, ... ,n. Then Y = 2:7=1 Xi has 
the gamma density Gamma ( 2:7=1 ai,fJ). 

Proof Since Mx,(t) = (1 - fJt)-OI; for t < fJ- l , i = I, .. . ,n, and since the X/s are inde­
pendent, Theorem 3.26 implies 

n n 
My(t) = n Mx;(t) = n(l- fJt)-OI; = (1- fJttL:7=1 0I ; for t < fJ- l . 

i=l i=l 

Thus, by the MGF uniqueness theorem, 
Gamma(2:7=1 ai, fJ)· 

Y has the density 

• 
Therefore, the sum of independent gamma random variables has a gamma dis­
tribution as long as the underlying gamma densities share the same fJ parameter 
value. 

Scaling a gamma random variable by a positive constant results in a ran­
dom variable that also has a gamma distribution, as demonstrated in the next 
theorem. 

Theorem 4.3 (Scaling of Gamma Random Variables) Let X have a gamma density 
Gamma (a,fJ), and let c > O. Then Y = eX has a gamma density Gamma (a,fJc). 

Proof Since Mx(t) = (1 - fJt)-OI for t < fJ- l, Theorem 3.26 implies that 

My(t) = Mcx(t) = Mx(ct) = (1 - fJct)-OI for t < ({Jeri, 

which by the MGF uniqueness theorem indicates that Y has the gamma density 
Gamma(a, fJc). • 
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We will also have use for the following property of gamma PDFs. 

Theorem 4.4 (Gamma Inverse Additivity) Let Y = Xl +X2, where Y has the gamma density 
Gamma (0',13), Xl has the gamma density Gamma 10'1,13), a > aI, and Xl and X2 
are independent. Then X2 has the gamma density Gamma 10' - al,tJJ. 

Proof Since Mylt) = 11 - tJtJ-ct and Mx,lt) = (1 - tJt)-OI I for t < 13-1, Theorem 3.26 
implies that 

Mylt) = (1- tJt)-ct = (1- tJt)-ct I Mx2 (t) = Mx l (t)Mx2 (t), 

which in turn implies 

MX2It) = 11 - tJt)-OI /ll - tJttctl = 11 - tJtt1ct - OId for t < 13-1• 

By the MGF uniqueness theorem, X2 has the gamma density Gammala -
aI, tJ). • 

Its wide variety of density shapes has resulted in the gamma family's being 
applied to a myriad of nonnegative-valued random variables suspected of having 
a right-skewed PDF. Some specific applications include the waiting times be­
tween customer arrivals or machine breakdowns or telephone calls, the break­
ing strength of manufactured construction materials, the operating lives of elec­
tronic equipment and other objects, and the length of time required to service a 
customer at a store. We now examine two important subfamilies of the gamma 
family of densities that are defined by special choices of the parameters a and 13. 

Gamma Subfamily Name: Exponential 

Parameterization e E n = {e : e> O} 

Density Definition The gamma density, with a = 1 and 13 = e. 
1 

fIx; e) = ee-x/o IIO,oo)lx) 

MCF MxltJ = (1 - etj-l for t < e- l 

Background and Application The exponential density is used to construct a 
probability space for experiments that have a real-valued sample space given 
by the nonnegative subset of the real line, [0, ooj, and in which interval events 
of fixed length d > 0 of the form [t, t + d] are to be assigned probability that 
monotonically decreases as t increases. A specific application concerns the ex­
periment of observing the time that passes until a Poisson process with rate 
Y = A/t produces the /irst success, in which case the exponential density with 
e = y-I is appropriate (recall our previous discussion regarding the relationship 
between the gamma density and the Poisson process). 
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Theorem 4.5 

Proof 

A prominent application of the exponential density is in representing the 
operating lives until failure of various objects. In this regard, the following 
property of the exponential density is of notable importance. 

(Memoryless Property of Exponential Density) If X has an exponential den­
sity, then PIx > S + t I x> s) = PIx > t) V t and s > o. 

P( ) J.oo I -x/()d x > S + t sH (j e x 
P(x> s + t I x > s) = P( ) = 100 I / x>s -e-x()dx s () 

e-(sHI/() 
= = e- t/() = PIx > t) e-s/() • 

Interpreted in the context of operating life, the memoryless property implies 
that given that the object has already functioned for s units of time without 
failing (the meaning of the conditioning event x> s), the probability that it will 
function for at least an additional t units of time (the meaning of the event 
x> s + t) is the same as the unconditional probability that it would function 
for at least t units of time (the meaning of the event x > t). In effect, the object 
is "as good as new" after functioning s units of time, since the probability of 
functioning for at least another t units of time is the same as if it had not 
previously functioned at all (i.e., as if it were new).5 

While the memory less property certainly is not applicable to the lifetimes 
of all objects, the assumption is appropriate in the modeling of the lifetimes of 
certain electronic components, fuses, jeweled watch bearings, and other objects 
that are not subject to significant wear and are essentially "as good as new" 
if they are still functioning. Furthermore, the assumption is appropriate for 
objects, such as machinery, that receive periodic maintenance that reconditions 
the object to essentially new status. 

If the memoryless assumption is not appropriate, the more versatile gamma 
family of densities can be considered for constructing the probability space. It 
can be shown that members of the gamma family, other than the exponential 
family, exhibit "wear-out" effects in the sense that PIx > s+t I x> s) declines as 
s increases for t > a and ex > I, that is, the probability that the object functions 
for at least t units of time beyond the s units of time for which it has already 
functioned declines as the value of s increases. For ex < I, the conditional prob­
ability actually increases as s increases-this is referred to in the literature 
as the "work-hardening" effect. The graphs of some exponential densities are 
displayed in Figure 4.7. 

Example 4.13 The lifetime of a fuse your company manufactures is the outcome of a random 
variable with mean = 500 hours. The fuse is "as good as new" while function­
ing. What is the probability that the fuse functions for at least 1,000 hours? 

5The exponential density is the only density for continuous nonnegative-valued random variables that has the memory less property. 
See V. K. Rohatgi (1976) An Introduction to Probability Theory and Mathematical Statistics. New York: John Wiley, p. 209. 
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Figure 4-7 
Exponential densities 
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Answer: The exponential density is appropriate with (J = 500. Then, 

PIx ~ 1000) = i:o 5~Oe-X/SOOIIO,00,(x)dx = _e-x/soo I~oo= .1353. 0 

Gamma Subfamily Name: Chi-Square 

Parameterization v E Q = {v : v is a positive integer} 

Density Definition The gamma density, with ex = v/2 and f3 = 2. 

1 
fIx' v) = xlv/2)-l e-x/2 110 ,(x) 
'2 v/2 r(v/2) ,00 

Moments /-L = v, (]'2 = 2v, /-L3 = 8v 

MCF Mx(t) = (1 - 2t)-v/2 for t < t 
Background and Application The parameter v of the chi-square density is called 
the degrees of freedom. The reason for this label will be clarified later in the 
chapter when we show that the sum of the squares of v independent random 
variables, each having a density called the standard normal (to be discussed 
in Section 4.3), will have a chi-square density with v degrees of freedom. The 
chi-square density with v degrees of freedom is often indicated by the notation 
X~ or X2 (v). We will utilize the former. The relationship between the chi-square 
density and the normal density makes the chi-square density especially im­
portant in applications concerning hypothesis testing and confidence interval 
estimation, which is its primary application context, as will be seen in later 
chapters. Note that for v = 2, the X2 density is equivalent to the exponential 
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density with e = 2. Also, X~ is a valid PDF even for noninteger values of v > 0, 
in which case the PDF X~ is referred to as the nonintegral chi-square density. 
Our use of X~ will be restricted to integer-valued v. Some chi-square densities 
are graphed in Figure 4.8. 

There are two important properties of the X2 density that we note in the 
following two corollaries. 

Corollary 4.1 (Chi-Square Additivity) Let Xl, ... ,Xk be independent random variables hav-
ing chi-square densities with Vl, ... , Vk degrees of freedom, respectively. Then 
Y = Ef=l Xi has a chi-square density with degrees of freedom v = Ef=l Vi. 

Proof This follows from Theorem 4.2, with f3 = 2. • 
Thus the sum of independent chi-square random variables also has a chi-square 
distribution. 

Corollary 4.2 Let Xl and X2 be independent random variables, where Xl has a chi-square 
density with Vl degrees of freedom, and Y = Xl + X 2 has a chi-square density 
with V > Vl degrees of freedom. Then X2 has a chi-square density with v - Vl 

degrees of freedom. 

Proof This follows from Theorem 4.4 with f3 = 2, a = v12, and al = vd2. • 

Figure 4-8 
X2 densities. 

Later in our study of hypothesis testing it will be useful to know upper­
and lower-bound values hand.e for which PIx ~ h) = a and PIx s .e) = a are 
true, where X has a X2 density with v degrees of freedom and a E (0, 1). We 
are diagrammatically examining the upper and lower tails of the X~ density in 
Figure 4.9. Such events and their probabilities are identified in tables of the X2 

density available from many published sources, including this text's Appendix. 
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Figure 4·9 
Upper and lower a-level 

tails ofaX2 density 
x 

Typically, the events are identified for a = .01, .025, and .05. Of course, the 
appropriate values of hand e can be found by solving the following equations 
(by numerical methods, generally): 

roo 1 xlv/2)-le-x/2dx = a 
Jh 2v/ 2r (i) , 

rl 1 xlv/2)-le-x/2dx = a Jo 2v/2r (¥) , 

given any a-level of interest E (0, 1). A number of computer programs exist that 
can be used to identify the appropriate h or £, such as the IMSLIB package of 
mathematical subroutines, the SAS package, Shazam, or the GAUSS program­
ming language. 

Example 4.14 Let X have a X2 density with 10 degrees of freedom. Find the values of band e 
for which PIx 2: h) = PIx ::: e) = .05. 
Answer: In the chi-square table for the row corresponding to 10 degrees of 
freedom, the values of hand e associated with the upper and lower .05 tails of 
the X2 density are, respectively, 18.307 and 3.940. 0 

Family Name: Beta 

Parameterization la, fJJ E Q = ((a, fJ) : a > 0, fJ > O} 

Density Definition 
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where 

B!a,,8) = 10 1 xa- 1!1-x),B-ldx 

is called the beta function. Some useful properties of the beta function include 
the fact that 

f'la)r(PJ 
B(a,,8) = B(,8, a) and B(a, ,8) = f'la + ,8) 

so that the beta function can be evaluated in terms of the gamma function. 

Moments 

J-L = a/(a +,8L a2 = a,8f[(a +,8 + l)(a + ,8)21, 

J-L3 = 2(,8 - aHa,8)/[(a + ,8 + 2Ha + ,8 + 1 Ha + ,8)31 

MGF Mx(t) = :L:l (B(I + a, ,8)1 B(a, ,8)He II!) 

Background and Application The beta density is a very versatile density (i.e., 
it can assume a large variety of shapes) for constructing probability spaces for 
experiments having a continuous real-valued sample space equal to the set 
[0, 1 I. Table 4.1 provides a quick reference regarding the numerous shape char­
acteristics of the beta density. The versatility of this density family makes it 
useful for representing PDFs for random variables associated with virtually any 
experiment whose outcomes constitute a continuum between 0 and 1. The den­
sity has obvious applications in modeling experiments whose outcomes are in 
the form of proportions, such as the proportion of time a certain machine is in 
a state of being repaired, the proportion of chemical impurities in a liquid prod­
uct, or the proportion of respondents to a survey (a continuous approximation 
in the latter case). In Chapter 6 we will also see that the beta density has an 

Table 4.1 Summary of Beta Density Shapes 

Conditions on ex 
and 13 

a</3 
a>/3 
a=/3 
a> 1 and /3 > 1 

a < 1 
/3<1 
a < 1 and /3 < 1 

(a - 1)(/3 - 1) < 0 
a=/3=1 

skewed to the right, J-i3 > 0 
skewed to the left, J-i3 < 0 
symmetric about J-i = 1/2 

Behavior of (x) 

maximum value when x = (a - 1 )/(a + /3 - 2) and (x) ~ 0 if x ~ 1 or 
x~O 

(x) ~ 00 as x ~ 0 
(x) ~ 00 as x ~ 1 
(x) is U-shaped, having minimum value when x = (a - 1 )/(a + /3 - 2), 

and (x) ~ 00 when x ~ -00 or 00 

J-shaped 
uniform on (0,1) 
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Figure 4-10 

important application in assigning probabilities to events involving so-called 
order statistics. Figure 4.10 illustrates some of the beta density shapes that are 
possible. 

Integration of the density cannot be accomplished in closed form for non­
integral values of the parameters a and f3. Computer programs exist for inte­
grating the beta density, for example, the program MDBETA in the IMSLIB set 
of computer routines or the procedure CDFBETA in GAUSS. Integrals of the 
beta density have also been extensively tabled by Pearson.6 When a and f3 are 
integers, there is a relationship between integrals of the beta density and the 
binomial density that is sometimes useful: 

F(c) = r _l_xa-I(l - x),B-Idx = t (~)Ci(l - c)n-i, 
Jo B(a, f3) i=a 1 

where n = a + f3 - 1 and c E [a, 1]. In any case, when a and f3 are integers, inte­
gration of the beta density can be accomplished in closed form. The following 
example illustrates the point. 

f{x) 
2 

1.5 

0.5 

<X = 3, ~ = 3 

~--~-'---r--~~~x 

f{x) 
2 

1.5 

0.2 0.4 0.6 0.8 1 

<X = 1/2, ~ = 2 

f{x) 
2 

1.5 

0.5 

<X= 2, ~= 3 

~--~~~~---r~~x 

f{x) 
2 

1.5 

0.2 0.4 0.6 0.8 1 

(X = 1/2, J3 = 1/2 

0.5 0.5 

Beta densities 0 +----,~~---r--...-~r X 0 +---.---'--~---r--...,. X 
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1 

6K. Pearson, (1956), Tables of the Incomplete Beta Function. New York: Cambridge Univ. Press. 
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Example 4.15 A wholesale distributor of heating oil has a storage tank that holds the distrib­
utor's inventory of heating oil. The tank is filled every Monday morning. The 
wholesaler is interested in the proportion of the tank's capacity that remains in 
inventory after the weekly sales of heating oil. Having studied this proportion 
over many weeks, management decided to view the proportion as the outcome 
of a random variable having the beta density with a = 4 and f3 = 3. What is the 
probability that less than 20 percent of the storage capacity of the tank remains 
in inventory at the end of any work week? 
Answer: 

( ) ["2 1 3( )2d r(7) ["2( 3 4 S)d 
P x < .20 = 10 B(4,3)x 1 - x x = r(4)r(3) 10 x - 2x + x x 

6! [X4 2x S X 6 ] 1.2 

= 3!2! ""4 - 5 + 6 0 = .01696. o 

4.3 The Normal Family of Densities 

The normal family of densities is the most extensively used density in applied 
statistics. We will begin our discussion of the normal family by examining the 
univariate case, and then we will proceed to the multivariate normal density. 

Family Name: Univariate Normal 

Parameterization (a, b) En = (la, b) : a E (-00,00), b > O} 

Density Definition fIx; a, b) = (1/.J2rrb)exp[(-1/2)((x - a)/b)2]. 

Moments /-L = a, 0'2 = b2, /-L3 = 0 

MGF Mx(t) = exp[at + (1/2)b2 t 2] 

Background and Application The univariate normal family of densities is in­
dexed by the two parameters a and b. Given the special relationship between 
these parameters and the mean and variance of the density, the normal density 
function is usually represented alternatively as 

1 [1 (X - /-L)2] fIx; /-L, a) = .J2rro' exp - 2 -0'- , 

and the moment-generating function of the normal density is given by 

Mx(t) = exp [/-L t + ~O'2t2] . 
The abbreviation N(z; /-L, 0'2) is often used to signify that the random variable 

Z has a normal distribution with mean /-L and variance 0'2. When the random 
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Figure 4-11 
Normal densities for 

fixed a, 11-3 > 11-2 > 11-1' 
----------~------------~----------~-----------x 

J.L3 

variable being referred to is not ambiguous, the abbreviation is often shortened 
to N(fL, 0'21. Once the mean and the variance of a normal distribution are nu­
merically specified, then a unique member of the family of density functions 
is identified. The specific member of the family for which fL = 0 and 0'2 = 1 is 
very important in applied statistics and is given the special name of the standard 
normal density or the standard normal distribution. 

The normal density is symmetric about its mean, fL, has points of inflection 
at fL - 0' and fL + 0', and has a characteristic bell shape. The bell becomes more 
spread out as the variance increases. We illustrate the general characteristics 
of a normal density in Figures 4.11 and 4.12. 

A very useful property of any normally distributed random variable is that 
it can be easily transformed into a random variable having the standard normal 
density. 

Theorem 4.6 Let X have the density N(x;fLp2 1. Then Z = (X - fLl/a has the density N(z;O,ll. 

Proof The MGF of Z is defined by 

Mz(tl = Eexp[tZ] = Eexp [t(X ~ fL)] = e-tlJ./GMx (~) (Theorem 3.26) 

Figure 4-12 
Normal densities for 

fixed 11-, a2 > al· 
----~~--~~----------~------------~----~---x 
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and since Mx!t.) = exp!JLt. + !l/2)a2t*), 

Mz!t) = expl-t*JL] exp [JLt* + !1/2)a2t;] = explt2 /2] (substituting t* = ~) . 
By the MGF uniqueness theorem, the MGF of Z is identified with a stan­
dard normal density, so that Z has an N(z; 0,1) density. (Note that explt2/2] = 
explJLt + (1/2)a2 t2 ], with JL = 0 and a 2 = 1). • 

In applications, Theorem 4.6 implies that the probability of an event A, 
Px(A), for a random variable X having a normal density N(x; JL, a) is equal to 
the probability Pz!B) of the equivalent event B = {z : z = !x - JL)/a, x E A}, 
for a standard normal random variable Z. This accounts for the prevalence of 
published tables of the standard normal CDP since, in principle, the standard 
normal distribution is sufficient to assign probabilities to all events involving 
normally distributed random variables. The operation of subtracting the mean 
from a random variable, and then dividing by its standard deviation, is referred 
to as standardizing a random variable. The outcome value of a standardized 
random variable can be interpreted as a measure of the distance of the outcome 
from its mean measured in standard deviation units, (e.g., z = 3 would mean 
the outcome of Z was 3 standard deviations from its mean). Thus, if a random 
variable having a normal density is standardized, the standardized random 
variable has a standard normal density. The random variable having the density 
N(O, 1) is often referred to as a standard normal random variable. 

Example 4.16 The miles per gallon (mpg) achieved by a new pickup truck produced by a 
Detroit manufacturer can be viewed as a random variable having a normal 
density with a mean of 17 mpg and a standard deviation of .5 mpg. What is the 
probability that a new pickup will achieve between 16 and 18 mpg? 
Answer: Let X have the density N(x; 17, .25). Then, 

P(16 < x < 18) = P (16 - 17 < x - 17 < 18 - 17) = P(-2 < z < 2) 
- - .S - .5 -.5 - -

= P(2) - P(-2) = .9772 - .0228 = .9544, 

where P(· J is the CDF of the standard normal random variable. • 
An important observation should be made concerning the application of 

the normal density function in Ex. 4.16. Note that miles per gallon cannot be 
negative, and yet the normal density assigns nonzero probability to the event 
that x < 0, that is, Pix < OJ = J~oo N(x; JL, a 2 Jdx > 0 V JL and a2 > O. This is, 
in fact, illustrative of a situation that arises frequently in practice where the 
normal distribution is used in the construction of a probability space for an 
experiment whose outcomes assume only nonnegative values. The empirical 
justification for this seeming misuse of the normal density is that Pix < OJ 
should be negligible in these cases, given the relevant values of JL and a2, in 
which case the anomaly of Pix < 0) > 0 can be ignored for all practical purposes. 
In Ex. 4.16, PIx < OJ < 1 X 10-10 • 
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There is a relationship between standard normal random variables and the 
X2 density that will prove to be very important for developing hypothesis­
testing procedures. We develop this relationship in the following two theorems. 

Theorem 4.7 If X has the density N(O,l), then Y = X2 has a X2 density with 1 degree of 
freedom. 

Proof The MGF of Y is defined as 

My(t) = Eexp[Yt) = Eexp(X2t) = i: exp[x2t)~ exp [ _~x2] dx 

= 100 _1_ exp [-~x2[1 - 2t)] dx 
-00 ..f2ii 2 

- 1_2t-1/2 ex -- dx 100 1 [ 1 ( X )2] 
- I ) -00 ..f2iil1 _ 2t)-1/2 p 2 (1 - 2t)-1/2 

100 1 
= 11 - 2t)-1/2 -00 NIx; 0, 11 - 2t)-1 )dx = 11 - 2t)-1/2 for t < 2' 

, ... . 
1 

Therefore, by the MGF uniqueness theorem, Y = X2 has a X2 density with 1 
degree of freedom. • 

Theorem 4.8 [Sums of Squares of Independent Standard Normal Random Variables) Let 
[Xl, .. . ,Xn ) be independent random variables, each having the density N(O)). 
Then Y = :2::7=1 Xl has a X2 density with n degrees of freedom. 

Proof The random variables Xl, i = I, ... , n, are independent by Theorem 2.9. Then, 
from Theorems 3.26 and 4.7, 

n n 1 
Mylt) = n MX1It) = nIl -2tt1/2 = [I - 2t)-n/2 for t < 2' 

i=l i=l 

which by the MGF uniqueness theorem implies that Y has a X2 density with n 
degrees of freedom. • 

In words, Theorem 4.8 is often stated as the sum of squares of n independent 
standard normal random variables has a X2 density with n degrees of freedom. 
We can now motivate why the parameter v in a X2 density is labeled degrees 
of freedom. In particular, v represents the number, or degree, of freely varying 
[i.e., independent) standard normal random variables whose sum of squares 
represents a X~-distributed random variable. 

It will be useful in our later study of hypothesis testing to know the values 
of hand e for which the following statements are true: 

PIx ~ h) = ex = 1 - Flh) and PIx ~ e) = ex = F[e), 
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where F(.) refers to the CDF of a random variable having an N(JL, a2 ) density 
and a E (a, 1). We diagrammatically examine the upper and lower tails of the 
normal family of densities in Figure 4.13. The probabilities of such events are 
extensively tabled for the case of the standard normal density, where typically 
the values of the cumulative standard normal density, F(c), are given for numer­
ous choices of c (see Appendix). The probabilities of these events for arbitrary 
normal distributions can be obtained from knowledge of the standard normal 
distribution via standardization. For the event x:::: f, 

PIx :::: f) = P (x: JL :::: f: JL) = P(z :::: f*), 

where f* = (f - JL)/a and z = (x - JL)/a can be interpreted as the outcome 
of a standard normal random variable using Theorem 4.6. Thus, the value 
of PIx :::: f) can be obtained from the standard normal table as equal to the 
probability that z :::: f* = (f - JL)/a. Similarly, 

PIx ::: h) = P (x: JL ::: h: JL) = P(z ::: h*), where h* = h: JL. 

Example 4.17 Find the probability that x ::: 5.29 where X is a random variable having a normal 
distribution with mean 2 and variance 4. 

Figure 4-13 
Upper and lower 

a-level tails of N(p" a 2 ) 

Answer: Note that 

( x-2 529-2) 
PIx ::: 5.29) = P -2-::: . 2 = P(z ::: 1.645) = .05, 

which was found from the table of the standard normal CDF. o 
A number of computer programs exist that will numerically integrate the 

standard normal density over the interval (-00, c I chosen by the user. The reader 
can utilize SAS, Shazam, or the GAUSS programming language, for example. 

The normal density is often used in modeling experiments for which a 
symmetric, bell-shaped probability density is suspected. The normal density 
has been found to be a useful representation of event probabilities for literally 

a= P(x"2 h) 

I 
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thousands of real-world experiments, which is attributable in large part to the 
fact that, under general conditions, certain useful functions of a collection of 
independent random variables, such as sums and averages, have approximately 
normal densities when the collection is large enough, even if the original ran­
dom variables in the collection do not have normal densities. In fact, the normal 
density was originally discovered by A. de Moivre (1667-1745) as an approxi­
mation to the binomial density (recall that the binomial density applies to the 
sum of independent Bernoulli random variables). These results are based on 
central limit theorems, which will be examined in Chapter 5. 

Examples of applications include fill weights of food and beverage contain­
ers, employee aptitude test scores, labor hours required to construct prefab­
ricated homes, numbers of insurance claims filed during a time period, and 
weight gains of meat animals in a feedlot. In Chapter 10 we will examine sta­
tistical tests that can be used to assess the validity of the normal PDF for char­
acterizing event probabilities in real-world experiments. 

Family Name: Multivariate Normal Density 

Parameterization 

a=(al, ... ,anJ' and B= [b;ll ::: b;n] 
bn1 •.• bnn 

(a,B) En = {(a,B): a E Rn,B is a symmetric, (n x nIl positive definite matrix}. 

Density Definition 

fix; a, B) = (27r)n/;IBI 1/ 2 exp [-~(x - a)'B-1(x - a)] 

Moments 

I' = a, 
(nxl) 

Cov(X) =B nxn 1'3 = [0] 
(nxI) 

MGF Mx(t) = exp[a't + (1/2)t'BtL where t = (tI, ... , tnI'. 

Background and Application Then-variate normal family of densities is indexed 
by n + n(n + 1 )/2 parameters consisting of n elements in the (n xl) vector a and 
n(n + 1 )/2 elements representing the distinct elements in the (n x n) symmetric 
matrix B (while there are n2 number of elements in the matrix B, only n(n + 1 )/2 
of these elements are distinct (or different) given the symmetry of B, i.e., bi; = b;i 
Vi ::j:. j). Given the special relationship between the mean vector, the covariance 
matrix, and the parameters a and B, the n-variate normal density is most often 
represented by 

N(x; I',:E) = (27r)n/;I:EI I/2 exp [-~(x - 1'J':E-1(x - 1')], 
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where :E is a popular notation for the covariance matrix of X (The lack of 
summation range indicators and the problem context will have to be relied 
upon to distinguish between when :E designates a covariance matrix and when 
L signifies summation.) When it is clear which random vector is being referred 
to, the notation N(x; J.L,:E) is often shortened to N(J.L, :E). The MGF of X is 
represented by 

Mx(t) = exp(J.L't + .5t':Et). 

In order to illustrate graphically some of the characteristics of the multi­
variate normal density, we will temporarily concentrate on the bivariate case. 
Thus, in the above formula, n = 2, J.L is a (2 xl) column vector, and :E is a (2 x 2) 
positive, definite covariance matrix. The graph of the bivariate normal density 
is a three-dimensional bell of sorts, such as the illustration in Figure 4.14.a. The 
mode of the normal density occurs at x = J.L, which in the bivariate case occurs 
at Xl = EXI and X2 = EX2. Iso-density contours (i.e., the collection of (Xl, X2) 

points resulting in a fixed value of the joint density function, fIx; J.L,:E) = c) 
are in the form of ellipses (ellipsoids in higher dimensions, e.g., a "football" in 
three dimensions) with center at J.L, so that in the bivariate case the center of 
the ellipse is at (EX" EX2). One can think of these ellipses as being formed by 
"slicing" through the density at a certain height, removing the top portion of 
the density, and then projecting the exposed elliptical top onto the (x" x2)-plane 
(see Figure 4.14.b). 

The shape and orientation of the ellipse (or ellipsoid) are determined by 
the elements of the covariance matrix, :E. The major (larger) axis of the ellipse 
as measured from the origin, J.L, is in the direction of the characteristic vector 
of :E-l associated with the smallest characteristic root of :E-' J The length of 
an axis is given by 2k/A, where k = .J21T1:EI·sc, c is the chosen value of the 
density, and Ai is either the smallest or largest characteristic root of :E-'.8 

In the bivariate case, the slope dxi/dx2, of the major axis of the ellipse is 
positive if 0'12 > 0 and negative if 0'12 < O. The slope increases in absolute value 
as the ratio ai/a2 increases, holding p (the correlation coefficient) constant. 
As 10"21 -')0 0',0'2, so that p -')0 ±l, the length of the minor axis of the ellipse 
-')0 0, and the ellipse concentrates on the major axis, which approaches the line 
x, = EX, ±(al/a2j(x2 -EX2)(compare to Theorem 3.35). If 0'1 = 0'2, the principal 
axis is given by the line x, = EX, ± (a,/a2j(x2 - EX2), for any magnitude of the 
correlation. 

An illustration of some of the myriad of possibilities for the graphs of the 
iso-density contours is given in Figure 4.15. 

7Recall that the characteristic roots and vectors of a square matrix A are the scalars, A, and associated vectors, p, that satisfy the 
equation [A - }.I]p = [0]. There will be as many roots and associated vectors as there are rows lor columns) in the square matrix A. 

8These arguments extend in a natural way to higher dimensions, in which case we are examining n axes of the ellipsoid. See B. 
Bolch, and C. Huang 11974), Multivariate Statistical Methods for Business and Economics. Englewood Cliffs, NJ: Prentice·Hall, 
p. 19-23, for the matrix theory underlying the derivation of the results on axis length and orientation discussed here. 
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Figure 4-14 
Bivariate normal densitYi 

(a) shows a view of normal 
density in three dimensions, 

and (b) illustrates an 
iso-density ellipse. 

(a) 

(b) 

The multivariate normal density is often used in modeling experiments 
characterized by a PDF that is symmetric about its mean vector, J1., is bell­
shaped (when viewed in three or fewer dimensions), and is such that the high­
est density weighting (mode) occurs at the mean vector with density values 
declining as x becomes more distant from EX in any direction. Also, under 
rather general conditions, certain important vector functions of a collection of 
independent multivariate random variables, such as sums and averages, have 
approximately a normal distribution when the collection is large enough, even 
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Figure 4-15 
Iso-density ellipses of 

bivariate normal density 
(all origins at (EXit EX2 ) 

Xl 

') 45° 

--~,L-+-r:"---x2 x2 

---~~~---~ ~ 

if the original multivariate random variables in the collection do not have nor· 
mal probability distributions. These results are known as multivariate central 
limit theorems, which we will study in Chapter 5 and which account for much 
of the motivation for the assumption of multivariate normality in empirical 
work. 

Marginal Densities A useful property of the multivariate normal family is that 
the marginal density of any subset of the random variables (XlI' .. , Xnl and the 
conditional density of any subset of the random variables (Xl, ... , Xnl, given an 
elementary event for the remaining random variables, are in the normal family 
and are easy to identify. We first present an important theorem concerning the 
PDF of a linear combination of normally distributed variables. The theorem 
will facilitate our examination of marginal and conditional densities and is 
also useful in its own right. 
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Theorem 4.9 (PDF of Linear Combinations of Normal Random Variables) Let X be an n­
variate random variable having the density function N(x;IL,:E). Let A be any 
(k x n) matrix of real constants with rank k, and let h be any (k x 1) vector of 
real constants. Then the (k xl) random vector Y = AX + h has the density 
N(y;Ap, -t h,A:EA'). 

Proof The MGF of Y is defined as 

My(t) = Eexp(t'Y) = Eexp(t'(AX + h)) 

= exp(t'h)E exp(t' AX) = exp(t'h) exp (t' AIL + !t' A:EA't) 

= exp (t'(AIL + h) + !t'A:EA't), 

where the next-to-last equality follows from the fact that X is normally dis­
tributed, and Eexp(t'AX) = Eexp(t:X) = Mx(t*) = exp[t:p, + (1/2)t::Et*l, with 
t: = t' A. Thus, My(t) identifies the multivariate normal density with mean 
Ap, + h and covariance matrix A:EA' as the density of Y = AX + h. • 

Example 4.18 A firm uses two variable inputs in the manufacture of an output and also uses 
"just-in-time" production methods so that inputs arrive precisely when they 
are needed to produce the output. The weekly average input and selling prices, 
rand p, during the spring quarter can be viewed as the outcomes of a trivariate 
normal density function f(rl, r2,p; IL,:E) = N(IL,:EJ, with 

[ 
.50 ] [.05 .02 .01] 

IL = 1.25 , and :E = .02 .10 .01 . 
5 .01 .01 .40 

What is the density function of the bivariate random variable (n, C), where n 
represents profit above variable cost and C represents variable cost in a week 
where 100 units of input 1 and 150 units of input 2 are utilized, and 100 units 
of output are produced and sold? 
Answer: The random variables nand C can be defined as 

Y = [ n] = [-100 -150 100] [~I ] = AX + h 
C 100 150 a p2 , 

where h = [01 and A is the bracketed (2 x 3) matrix following the second equality 
sign. Then, Theorem 4.9 implies that In, CI' is bivariate normally distributed 
as N(IL*, :E*), with IL* = AIL = [262.5 237.5 J' and 

, [6850 -3100] 
:E* = A~A = -3100 3350 . o 

A useful implication of Theorem 4.9 for generating or simulating outcomes 
of multivariate normally distributed random variables on the computer is that 
any such random variable can be represented in terms of linear combinations 
of independent random variables having the standard normal density. Specifi­
cally, if the n x 1 random variable Z has the PDF N([OI, I) so that 2 1, .•. , 2n are 
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Theorem 4.10 

independent N(O, 1) random variables, then the n x 1 random variable Y with 
PDF N(J.L,:E) can be represented in terms of Z as Y = J.L+AZ, where A is chosen 
so that AA' = :E.9 The utility of this representation stems from the fact that 
many modern statistical software packages are capable of generating indepen­
dent outcomes of a random variable having the N(O, 1) density; such programs 
are referred to as "standard normal random-number generators." We will fur­
ther pursue the notion of simulating random-variable outcomes in Chapter 6. 

We now state an important result concerning the marginal density of sub­
sets of the random variables (Xl, ... , Xn) when the n-variate random variable 
has an n-variate normal density. 

(Marginal Densities for N(I',:Ell Let Z have the density N(z;I',:E), where 

Z = [ I~~l)], /k = [ I~~li)], and 
Z(2) 1'(2) 

In-m)xl In-m)x! 

[
:Ell :E12] Imxm) Imxln-m)) 

:E= 
:E21 :E22 

Un-m)xm) Un-m)xln-m)) 

Then the marginal PDF of Z{I) is N(I'I,:E ll ), and the marginal PDF of Z12) is 
N(1'2,:E22 ). 

Proof Let 

A = [ I I [ 0 J] 
Imxm) mxln-m) 

and b = [OJ in Theorem 4.9, where Ilmxm) is the (m x m) identity matrix. It 
follows that ZII) = AZ has the normal density N(I'II), :Ell). The result for Z(2) 
is proven similarly by letting 

A = [[ 0 J I I ]. • 
In-m)xm In-m)xln-m) 

Example 4.19 Referring to Ex. 4.18, partition X, I' and:E as 

/k = [I'll)] = [~~] = [i~~s] 
1'12) /k3 5 

9The symmetric matrix square root :E1/2 of:E could be chosen for A. Alternatively, there exists a lower triangular matrix, called the 
Cholesky decomposition of :E, which satisfies AA' = :E. Either choice of A can be calculated straightforwardly on the computer, 
such as through the use of the GAUSS programming language. 
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It follows from Theorem 4.10 that the marginal densities of (Xl,X2) andX3 are 
given by 

fX1X2(Xl, X2) = N ([i~~sl [:~~ :~~ J) and fX3(X3) = N(S, .4). 0 

The reader may have noticed that there is an intuitive way of interpreting the 
implementation of Theorem 4.10. Specifically, by simply "crossing out" any 
entries in J-t and ~ that refer in any way to random variables that are not of 
interest, one is left with the mean vector and covariance matrix of the normal 
density for the random variables that are of interest. For example, in Ex. 4.19, 
if (Xl,X2) is the random vector of interest, then by "crossing out" JL(21 = JL3, 
~12' ~21' and ~22' one is left with the mean vector and covariance matrix of 
the normally distributed random vector (Xl,X2). 

The reader should note that the order of the random variables in the X 
vector is arbitrary. For example, we might have X = [Xl, X2, X3, X41' or, alterna­
tively, the same random variables might be listed as X = [X3,Xl,X4,X21'. The 
point is that Theorem 4.10 can be applied to obtain the marginal density func­
tion of any subset of the random variable (Xl, ... , Xn) by simply ordering them 
appropriately in the definition of Z in the theorem. Of course, the entries in J-t 
and ~ must be correspondingly ordered so that random variables are associated 
with their appropriate means, variances, and covariances. 

Example 4.20 The annual percentage return on three investment instruments is the outcome 
of a trivariate random variable [Xl,X2,X3]' having the density N(J-t, :E), where 

[4 1 0] 
and ~ = 1 1 1 . 

013 

To identify the marginal density of the returns on investments 1 and 3 
using Theorem 4.10, first reorder the random variables as X = [Xl,X3,X2]' so 
that the corresponding mean vector and covariance matrix of the trivariate 
normal density of X are now 

[4 0 1] 
and ~* = 0 3 1 . 

1 1 1 

Then, a straightforward application of Theorem 4.10 (with the appropriate in­
terpretation of the symbols Z(ll and ZI21 used in that theorem) implies that 
[XII X3J' has the density 

The reader should note that our intuitive "crossing out" procedure discussed 
above can be applied here, where one "crosses out" any entries in J.L and ~ 
referring to X2. 0 
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Conditional Densities The definition of conditional densities when dealing 
with n-variate normally distributed random variables is somewhat more in­
volved than the case of defining marginal densities. We present the case of 
conditioning on an elementary event for a subset of the random variables. 

Theorem 4.11 (Conditional Densities for N(J.L,:EJJ Let Z be as defined in Theorem 4.10, and 
let 

[ 0] zill 
Imxll 

zO - ---
Inxll zO 

121 
In-mlxl 

be a vector of constants. Then 

f(zlll I ZI21 = zf21 J = N(ILIII + :E 12:E2i (zf21 - ILI2d, :E\l - :E 12 E;-i :E2d, 

f(Z1211 Zill = zfl,J = N(IL121 + :E21:EIll(zflJ - J.LIIJl, :E22 - :E2IEll:E12J. 

Proof We prove the result for the case of ZIIJi the case for ZI21 can be proved analo­
gously. By definition, 

Lemma 4.3 
Partitioned Inversion 

and Partitioned 
Determinants 

o f(zllJ, zf21 J 
f(zlll I ZI21 = z121) = f (0 I 

Zt21 zI21 

1 ( 1 [Z(l)-#(l)]'~_l[Z(I)-#(l)]) 
n/2 1/2 exp - 2: 0 .... 0 _ (2,,) ILl Z(2) - #(2) Z(2) - #(2) 

- I ( 1 ( 0 ) '1:-1 ( 0 )) . 
(2n)(n m)/21L2211/2 exp - 2: Z(2) - #(2) 22 Z(2) - #(2) 

The following lemma on partitioned determinants and partitioned inversion 
will be useful. 

Partition the (n x n) matrix :E as 

[
:Ell :E12] Imxml mxln-ml 

~-L.J - • 

:E2l :E22 
In-mlxm In-mlxln-ml 

a. If:E" is nonsingular, then I:EI = 1:E,,1'1:E22 - :E2I E l l:E12 I. 

h. If :E22 is nonsingular, then I:EI = 1:E22 1· 1:E\l - :E12:E2i:E2Ii. 

c. If I:EI =1= 0, l:Enl =1= 0, and 1:E221 =1= 0, then 

-(:Ell - :E12:E2i :E2d-1 :E12:E2i] 

(:E22 - :E2l :Ell :E 12 )-1 
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d. The diagonal blocks in the partitioned matrix of part (c) can also be 
expressed as 

(~ll - ~12~2i~2Irl = ~ll + ~ll~12(~22 - ~21~111~12rl~21~111 
and 

(~22 - ~21 ~lll ~12rl = ~2i + ~2i ~21 (~ll - ~12~2i ~21rl ~12~2i 
(see F. A. Graybill (1983), Matrices with Applications in Statistics, 2nd 
ed., Belmont, CA: Wadsworth, pp. 183-186, for further discussion and 
proofs). 

Utilizing Lemma 4.3, note that 

1~2211/2 ~ ~ ~_I ~ -1/2 
1~11/2 = ILlll - ~12L122 ~211 

and 

[ I [Z(I) - #(1)]' -I [Z(I) - #(1)] I 0 , -I 0 ] 
exp - 2: ZO _ II L zO _ II + 2:(Z(2) - #(2)) L22 (Z(2) - #(2)) 

(2) r(2) (2) r(2) 

= exp[ -k(Z(1) - (#(1)+ L(12)Lii(Z?2) - #(2))))'<1>-1 (Z(1) - (#(1) + LI2Lii (Z?2) - #(2))))], 

where <I> = [~II - ~12~2i ~2l J. Then the expression for the conditional density 
function reduces to 

f(z(1) I Z(2) = Z?2)) = (2n) m/~I<I>II/2 exp [-! (z(l) - Y) '<1>-1 (z(1) - y)], 

where I = J1.11)+~12~2i (Z~2) - J-L12))' which is the normal density N(y, <1». • 

Example 4.21 Let X = (XI,X2,X3) be the trivariate random variable representing percentage 
returns on investments in Ex. 4.20. Suppose we wanted to define the conditional 
density of returns on investment instrument 1, given X2 = 1 and X3 = 2. By an 
appropriate interpretation of Theorem 4.11 (Le., let zlI) = Xl and Z12) = (X2, X3 )'1, 
we know that XI will have a normal density with mean 

[ 1 IJ-I[-6J E(xll x2=I,X3=2)=2+[1 OJ 1 3 1 =-7.5 

and variance 

[ 1 IJ-I[IJ (/2 - 4 - [1 0 J 2 5 IXilx2=I,X.l=2) - 1 3 0 = . , 

that is, the conditional density of XI is f(xi I X2 = I, X3 = 2) = N( -7.5,2.5). 
To find the conditional density of returns on investments 1 and 2 given 

X3 = 0, Theorem 4.11 (with z(l) = (XI,X2)' and Z12) = X3) implies that the mean 
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Figure 4·16 
Regression line of Xl on X2 • 

vector is equal to 

and the covariance matrix is 

CovIlX"X,) I X3 ~ 0) ~ [1 :] ~ [nW'[O I] ~ [: n o 

In the special case where Xl is a scalar and X2 is a (k x II vector, the con­
ditional expectation of Xl expressed as a function of X2 defines the regression 
function of Xl on X2, which in this case can also be referred to as the regression 
hyperplane of Xl on X2. If X2 is also a scalar, the regression hyperplane is a 
regression line. The regression hyperplane is thus given by 

E(XI I X2 1= J.LI + ~12~2i (X2 - J.L21 = a + BX2, 
IkxlJ 

where B = ~12~2i and a = J.LI - BJ.L2. The special case of the regression line 
can be written as 

E(XI I xlI = ILl + pal (X2 - IL21 = a + bX2, 
a2 

where p is the correlation coefficient, b = pat/a2, and a = ILl - bIL2. Figure 4.16 
illustrates the regression line of Xl on X 2 • 

The particular functional form of the normal density is the reason why the 
regression function becomes a regression hyperplane and the regression curve 
becomes a regression line. In fact, the normal density belongs to a collection 

(Xl \X2 = b) 

::-...------xl 

__ ~~ ________ ~ __ ;_~r_-----------------------x2=b 



212 Chapter 4 Parametric Families of Density Functions 

of families of distributions referred to as elliptically contoured distributions, 
all of which are associated with linear regression functions (S. Cambanis, et al. 
(1981), On the Theory of Elliptically Contoured Distributions J. Multivariate 
Analysis, 11, p. 368). 

While not true in general, in the case of a normal distribution, zero co­
variance implies independence of random variables, as stated in the following 
theorem. 

Theorem 4.12 (Cov(X) = [OJ => Independence When Xhas PDF N(IL,~)) Let X = [Xl,,, .,XnJ' 
have the density N(IL,~). Then (Xl, .. . ,Xn) are independent iff ~ is a diagonal 
matrix. 

Proof The only if part of the theorem follows immediately from the fact that indepen­
dence of random variables implies zero covariance. To see the if part, suppose 
~ is a diagonal matrix. Then the density of X can be written as 

N(x; IL,:E) = (2rr)nl;I~11/2 exp [ -~(x _IL)'~-l(x -IL)] 

n 1 [ 1 (Xi - ILi)2] n 2 = n (2 )1/2 . exp - -2 2 = n N(Xi; ILi, (Ji ), 
i=l rr (J1 (Ji i=l 

since 

n 

I~I = n (J;, 
i=l 

Because the joint density factors into the product of the n marginal densities, 
(Xl," .,Xn) are independent. • 

A variation on the preceding theme is the case where two vectors Xl and 
X2 are independent by virtue of the covariances between the elements in Xl 
and the elements in X2 being zero. 

Theorem 4.13 (Z{ll and ZI21 Independent ¢} ~12 = [OJ for N(IL,~)) Let 

[ 
ZIII ] Imxll 

Z - --
Inxll ZI21 

In-mlxl 

have the multivariate normal density identified in Theorem 4.10. Then the 
vectors ZIII and ZI21 are independent iff ~l2 = ~2l = [OJ. 

Proof The only if part of the theorem follows immediately from the fact that the 
independence of random variables implies zero covariance. To see the if part, 
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suppose ~!2 = ~~! = [0]. Then the PDP of Z can be written as 

N(z; IL,~) = (2Jr)n/;I~I!/2 exp [-~(z.- IL)'~-!(z - IL)] 

since 

[OJ 

= (2Jr)m/2~~1l1!/2 exp [-~(Zl!l- ILI!I)'~ll(zl!I - ILl!))] 

x (2Jr)ln-ml~21~221!/2 exp [ -~(ZI21 - ILI21)'~2i(zI21 - ILI2Jl] 

2 

= TI N (zlil; ILIiI' ~ii) 
i=! 

[OJ [OJ] . 
~-I 

22 

Given that the joint density of Z factors into the product of the marginal den­
sities, ZIII and Z(21 are independent random vectors. • 

4.4 The Exponential Class of Densities 

Definition 4.2 
Exponential 

class of densities 

The majority of the discrete and continuous density function families that 
we have examined so far are special cases of the exponential class of density 
functions. 1O We will see later that problems of statistical inference involving 
experiments having probability spaces that involve density families from the 
exponential class often lead to somewhat simplified procedures for statistical 
inference. 

The density function fIx; 8) is a member of the exponential class of density 
functions iff 

I exp (r-f=lCi(0)gi(X) + d(0) + z(x)) for x E A, 
fIx; 8) = 

o otherwise, 

where x = (XI, ... , xn)'j 8 = (8 1, ... , 8 k l'j ci(8), i = 1, ... , k, and d(8) are 
real-valued functions of 8 that do not depend on Xj gi(X), i = 1, ... , k, and 
z(x) are real-valued functions of x that do not depend on 8 j and A c Rn is a 

lOWe warn the reader that some authors refer to this collection of densities as the exponential family rather than the exponential 
class. The collection of densities referred to in this section is a broader concept than that of a parametric family, since densities 
are distinguished not only by parameter values but also by different choices of functional forms. We land others) use the term class 
to distinguish this broader density collection from that of a parametric family and to also avoid confusion with the exponential 
density family discussed in Section 4.2. 
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set of n-tuples contained in n-dimensional real space whose definition does 
not depend on the parameter vector e. 

In order to check whether a given density family belongs to the exponential 
class, one must determine whether there exists definitions of cite), dIe), gi(X), 
z(x), and A such that the density can be equivalently represented in the expo­
nential form presented in Definition 4.2. Of the densities we have studied, the 
Bernoulli, binomial and multinomial (for known values of n), negative binomial 
(for known values of r), Poisson, geometric, gamma (including exponential and 
chi-square), Beta, univariate normal, and multivariate normal density families 
all belong to the exponential class of densities. The discrete and continuous 
uniform, and the hypergeometric density families are not members of the ex­
ponential class (why?). We now present a number of examples that illustrate 
how membership in the exponential class of densities can be verified. In general, 
there is no standard method of verifying whether a density family belongs to 
the exponential class, and so the verification process must rely on the ingenuity 
of the analyst. 

Example 4.22 Normal Family C Exponential Class 

Univariate case: Let k = 2, let n = I, and define 

z(x) = 0, A = R. 

Substitution into Definition 4.2 yields 

fIx; e) = -- exp -- -- , 1 [1 (X-JL)2] 
~a 2 a 

which is the univariate normal density. 

Multivariate case (Suppose an n-variate case.) Let k = n + !n(n + 1 )/2), and note 
that the multivariate normal density can be written as 

N!x; IL, I:) = (21r)n/;1I:11/2 exp [ -~(x - 1LJ'I:-1(X - IL)] 

= (21r)n/;1I:1 1/2 exp [ -~(I:7=1x;I:(;i~ + 2 ~J~XiX;I:~;~ - 2IL'I:-1x + lL'I:-11L)] ' 
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where ~iiA refers to the (i, i)th entry in the ~-l matrix. Define 

(1.:.\)' ( '~-l I 1 ~-l ~-l ~-l 1 ~-l ~-l ~-l 1 ~-l ) 
CO =- -J-L4J 2 4J(1lI' (121'···' (lnl'2 (221,4J(231,···,4J(2nl'···'24J(nnl, 
(lxkl 

g(x)' = (x' I x?, XIX2, ..• , XIXn , xi, X2X3, ... , X2Xn, ... , x;) , 
(lxkl 

z(x)=O, 

It then follows that exp[cIS)'glx) + d(S) + z(x)] = N(x; J-L, ~). o 

Example 4.23 Bernoulli Family C Exponential Class 

Let k = I, let n = I, and define 

cd e) = In (1 ~ p)' gl(X) = x, die) = In(1 - p), z(X) =0, A = {O, I}. 

Substitution into Definition 4.2 yields fix; p) = pX11 - pJl-x llo,l}(x). o 

Example 4.24 Gamma Family C Exponential Class 

Let k = 2, let n = I, and define 

1 
cdS) = a - I, C2(S) = -fi' gdx) = lnx, g2lx) = x, 

diS) = -lnl,8ar(a)), zlx) = 0, A = (0,00). 

Substitution into Def. 4.2 yields 

1 
fix; a,,8) = ,8ar(a)xa-le-xlfJl(O,OOllx). o 

For now, we will be content simply to acknowledge the existence of the 
exponential class of densities, with the recognition that it encompasses many 
families of densities that are commonly used in applications. Later we will 
examine certain general properties of the class of densities that facilitate the 
construction and evaluation of parameter estimation procedures and statistical 
hypothesis tests. 

Key Words, Phrases, and Symbols 

parameters 
parameter space 
parametric families of densities 
reparameterized 
(discrete) uniform family 

Bernoulli family 
binomial family 
multinomial family 
negative binomial family 
Pascal distribution 

geometric family 
Poisson family 
Poisson process 
Poisson density approximation to 

binomial 
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mean rate of occurrence 
memory less property 
hypergeometric family 
drawing randomly without 

exponential subfamily univariate normal family 
standard normal density 
standardizing a random variable 
standard normal random variable 
multivariate normal family 
iso-density contours 

memoryless property (or lias good as 
new") 

replacement 
drawing objects with replacement 
(continuous) uniform family 
gamma family 
gamma function, rIa) 

wear-out effect 
work-hardening effect 
chi-square subfamily, x; 
degrees of freedom 
chi-square additivity 
beta family 

regression function (hyperplane) or 
curve (line) of Xl on X2 

exponential class of densities 
additivity property beta function, B(a, III 

Problems 

1. A shipment of 100 videocassettes contains k defec­
tive cassettes. You randomly sample 20 videocassettes, 
without replacement, from the shipment of 100 video­
cassettes. Letting p = k/100, the probability that you 
will obtain less than 3 defective cassettes in your sam­
ple of 20 cassettes is then given by 

PIx ::: 3) = t (~O)PX(1 - p)20-xI{o,I,2,,,.,20dx ). 

True or false? 

2. The daily price, p, and quantity demanded, q, of 
gasoline on a European spot market can be viewed (ap­
proximately) as the outcome of a bivariate normal ran­
dom variable, where the bivariate normal density has 
mean vector and covariance matrix as follows: 

[ 2.50J 
IL = 100 ' [ .09 -1 J 

~ = -1 100' 

The price is measured in U.S. dollars per gallon of gaso­
line, and the quantity demanded is measured in thou­
sands of gallons. 

a. What is the probability that greater than 110,000 
gallons of gasoline will be demanded on any given 
day? 

b. What is the probability that the price of gasoline 
will be between $2.00 and $3.00 on any given day? 

c. Define the regression function of Q on p. Graph 
the regression function. What is the expected daily 
quantity of gasoline demanded given that price is 
equal to $3.00? 

d. Given that the price equals $3.00, what is the prob­
ability that quantity demanded will exceed 110,000 
gallons? What is this probability on a day when 
price equals $2.00? 

3. Show that the following probability density func-
tions are members of the exponential class of densities: 

a. binomial family, for a fixed value of n 

b. Poisson family 

c. negative binomial family for a fixed value of r 
d. multinomial family, for a fixed value of n 

e. beta family 

4. For each PDF family below, show whether or not 
the family belongs to the exponential class of densities. 

a. fIx; 13) = f3x-{P+IIIIl,oodx), 13 E n = (0, (0). (This is a 
subfamily of the Pareto family of PDFs.) 

b. fIx; 8) = (1/28)exp(-lxl/8), 8 E n = (0,00). (This 
is a subfamily of the double exponential family of 
PDFs.) 

c. fIx; fJ-, a) = (l/x../2iia) exp (-(In(x) - fJ-)2/(2a2)) 
IIO,ool(x), (fJ-, a) E n = {(fJ-, a) : fJ- E (-00, (0), a> OJ. 
(This is the log-normal family of PDFs.) 
Hint: Expanding the square in the exponent of e 
may be helpful as an alternative representation of 
the exponent. 

d. fIx; r) = (( 1 - r)/r)rX 1(1,2,3,,,.1 (x), r E n = (0, 1). 

5. Prove that if X has the geometric density, then the 
"memoryless property" PIx > S + t I x > s) = PIx > t) 
holds for every choice of positive integers sand t. 

6. Prove that the CDF of the geometric family of den­
sities can be defined by 

F(b) = [1 - (1 - p)trunc1bIJI(l,oodb). 

7. The quantity of wheat demanded per day in a mid­
western market during a certain marketing period is rep-
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resented by 

Q = 100,000 - 12, 500p + V for p E [2,61, 

where 

Q is quantity demanded in bushels, 

p is price/bushel, 

V is approximately normally distributed. 

You know that the expected quantity demanded is given 
by 

EQ = 100,000 - 12,500p for p E [2,61, 

and thus is a function of p, and the variance of quantity 
demanded is var(Q) = 16 x 106 • 

a. What is the mean and variance of V? 

b. If p = 4, what is the probability that more than 
50,000 bushels of wheat will be demanded? 

c. If p = 4.50, what is the probability that more than 
50,000 bushels of wheat will be demanded? 

d. For quantity demanded to be greater than 50,000 
bushels with probability .95, what does p have to 
be? 

e. Is it possible that V could actually be normally dis­
tributed instead of only approximately normally 
distributed? Explain. 

8. An investor has $10,000, which she intends to in­
vest in a portfolio of three stocks that she feels are good 
investment prospects. During the investor's planning 
horizon, the weekly closing prices of the stocks can be 
viewed as the outcome of a trivariate normal random 
variable with 

EX ~ mJ and CovlXI ~ [~ J1 ~Il 
The current price of the stocks are $23, $11, and $19, 
respectively. 

a. If she invests her $10,000 equally among the three 
stocks, what is the expected value of her portfolio? 
What is the variance of the portfolio value? 

b. What is the probability density function of the port­
folio value? What is the probability that the closing 
value of her portfolio for a given week will exceed 
$ I1,OOO? 

c. What is the probability density function of the 
value of stock l? If she invests the $10,000 entirely 
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in stock I, what is the probability that the closing 
value of her portfolio will exceed $ll,OOO? 

d. What is the conditional density function of the 
value of stock 1 given that stock 3 has a value of 
$17? If she invests the $10,000 entirely in stock I, 
what is the conditional probability that the clos­
ing value of her portfolio will exceed $11,000, given 
that stock 3 has a value of $17? 

e. If she divides her $10,000 equally among stocks 1 
and 2, what is the conditional probability that 
this portfolio will have a closing value exceeding 
$11,000 given that stock 3 has a value of $17? 

9. Let Y have a chi-square distribution with 15 degrees 
of freedom, let X have a chi-square distribution with 5 
degrees of freedom, and let Y = X + Z, where X and Z 
are independent random variables. 

a. Calculate PlY > 27.488). 

b. Calculate P(6.262 < y < 27.488). 

c. Find c such that Ply > c) = .05. 

d. Find c such that P(z > c) = .05. 

10. Let Y have the density N(5,36), X have the density 
N(4, 25), let Y and X be independent random variables, 
and define W = X - Y. 

a. Calculate PlY > 10). 

b. Calculate P(-lO < y < 10). 

c. Calculate P(w > D). 

d. Find c such that P(w > c) = .95. 

11. Let X be a bivariate random variable having the 
probability density N(/-L, :E), with 

a. Define the regression curve of Xl on X2 • What is 
E(XI I X2 = 9)? 

b. What is the conditional variance of Xl given that 
X2 = 9? 

c. What is the probability that Xl > 5? What is the 
probability that Xl > 5, given that X2 = 9? 

In problems 12-20 below, identify the most appropri­
ate parametric family of density functions from those 
presented in this chapter on which to base the proba­
bility space for the experiment described, and answer 
the questions using the probability space you define: 
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12. WAYSAFE, a large retail supermarket, has a stan­
dard inspection policy that determines whether a ship­
ment of produce will be accepted or rejected. Specifi­
cally, the employees examine 5 percent of the objects 
in any shipment received, and if no defective produce 
is found in any of the items examined, the shipment is 
accepted. Otherwise, it is rejected. The items chosen for 
inspection are drawn randomly, one at a time, without 
replacement, from the objects in the shipment. 

A shipment of 1,000 5-lb. bags of potatoes are re­
ceived at the loading dock. Suppose that in reality, 2 
percent of the 5-lb. bags have defective potatoes in them. 
The "objects" that are being inspected are bags of pota­
toes, with a bag of potatoes being defective if any of the 
potatoes in the bag are defective. 

a. Define an appropriate probability space for the in­
spection experiment. 

b. What is the probability that WAYSAFE will accept 
the shipment of potatoes? 

c. What is the expected number of defective bags of 
potatoes when choosing 5 percent of the bags for 
inspection in the manner described above? 

d. If the inspection policy is changed so that 10 per­
cent of the objects will be inspected, and the ship­
ment will be accepted only if no defectives are 
found, what is the probability that the shipment 
will be accepted? 

13. The FLAMES-ARE-US Co. manufactures butane 
cigarette lighters. Your top-of-the-line lighter, which 
has the brand name "SURE-FLAME," costs $29.95. As a 
promotional strategy, the SURE-FLAME lighter carries 
a guarantee that if it takes more than five attempts be­
fore the lighter actually lights, then the customer will 
be given $1,000,000. The terms of the guarantee require 
that the demonstration of failure of a SURE-FLAME 
lighter to light within five attempts must be witnessed 
by an official of the company, and each original buyer of 
a new SURE-FLAME lighter is allowed only one attempt 
at being awarded the $1,000,000. The lighter is such 
that each attempt at lighting the lighter has a probabil­
ity of success (it lights) equal to .95, and the outcomes 
of attempts to light the lighter are independent of one 
another. 

a. Define the appropriate probability space for the 
experiment of observing the number of attempts 
necessary to obtain the first light with the SURE­
FLAME lighter. 

b. What is the probability that a buyer who attempts 
to demonstrate the failure of the SURE-FLAME 
to light in five attempts will actually be awarded 
$1,000,0001 

c. What is the expected number of attempts required 
to obtain a light with the SURE- FLAME lighter? 

d. What is the expected value of the award paid to any 
consumer who attempts to claim the $1,000,0001 

14. An instructor in an introductory economics class 
has constructed a multiple-choice test for the midterm 
examination. The test consists of 20 questions worth 5 
points each. For each question, the instructor lists four 
possible answers, of which only one is correct. John Par­
tytime, a student in the class, has not attended class 
regularly and admits (to himself) that he is really not 
prepared to take the exam. Nonetheless, he has decided 
to take the exam, and his strategy is to randomly choose 
one of the four answers for each question. He feels very 
confident that this course of action will result in an 
exam score considerably higher than zero. 

a. Define a probability space that can be used to as­
sign probability to events involving the number of 
questions that John answers correctly. 

b. What is the probability that John receives a zero on 
the exam? 

c. What is the probability that John receives at least 
25 points on the exam? 

d. What is John's expected score on the exam? 

15. The liquid crystal display in the new Extime brand 
of digital watches is such that the probability it contin­
ues to function for at least x hours before failure is con­
stant (for any given choice of x), regardless of how long 
the display has already been functioning. The expected 
value of the number of hours the display functions be­
fore failure is known to be 30,000. 

a. Define the appropriate probability space for the ex­
periment of observing the number of hours a display 
of the type described above functions before failure. 

b. What is the probability that the display functions 
for at least 20,000 hours? 

c. If the display has already functioned for 10,000 
hours, what is the probability that it will continue 
to function for at least another 20,000 hours? 

d. The display has a rather unique guarantee in the 
sense that any purchaser of an Extime watch, 
whether the watch is new or used, has a warranty 
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on the display for two years from the date of pur­
chase, during which time if the display fails, it will 
be replaced free of charge. Assuming that the num­
ber of hours the watch operates in a given period of 
time is essentially the same for all buyers of the Ex­
time watch, is it more likely that a buyer of a used 
watch will be obtaining a free display replacement 
than a buyer of a new watch, given an equal period 
of watch ownership? Explain. 

16. The Department of Transportation in a foreign 
county establishes gas-mileage standards that automo­
biles sold must meet or else a "gas guzzler II tax is im­
posed on the sale of the offending types of automobile. 
For the "compact, 4-door" class of automobiles, the tar­
get average gas mileage is 25 miles per gallon. 

Achievement of the standard is tested by randomly 
choosing 20 cars from a manufacturer's assembly line 
and then examining the distance between the vector of 
20 observed measurements of gas mileage/gallon and a 
(20 x 11 vector of targeted gas mileages for these cars. 
Letting X represent the 20 x 1 vector of observed gas 
mileages, and letting t represent the 20 x 1 vector of 
targeted gas mileages (i.e., t = [25,25, ... , 25J'l, the dis­
tance measure is 

D(x, tl = [(x - t)'(x - t)F/2. 

If D(x, tl ::: 6, then the type of automobile being tested 
is judged to be consistent with the standard; otherwise, 
the type of automobile will be taxed. 

Specific Motors Company is introdUCing a new 
four-door compact into the market and has requested 
that this type of automobile be tested for adherence to 
the gas-mileage standard. The engineers at Specific Mo­
tors know that the miles per gallon achieved by their 
compact four-door automobile can be represented by a 
normal distribution with mean 25 and variance 1.267, 
so that the target gas mileage is achieved on average. 

a. What is the probability that a car randomly chosen 
from Specific Motor's assembly line will be within 
one mile per gallon of the gas-mileage standard? 

b. What is the probability that Specific Motor's com­
pact four-door will be judged as being consistent 
with the gas-mileage standard? 

c. A neighboring country uses a simpler test for deter­
mining whether the gas-mileage standard is met. 
It also has a target of 25 miles per gallon, but its 
test involves forming the simple average of the 20 
randomly observed miles per gallon and then sim­
ply testing whether the calculated average is within 
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1 mile per gallon of 25 miles per gallon. That is, the 
gas-mileage standard will be judged to have been 
met if . 

1 20 

20 LXi E [24,261. 
1=1 

What is the probability that Specific Motors will 
pass this alternative test? 

17. An appliance manufacturer is conducting a survey 
of consumer satisfaction with appliance purchases. All 
customers who have purchased one of the company's 
appliances within the last year will be mailed a cus­
tomer satisfaction survey. The company is contemplat­
ing the proportion of surveys that customers will ac­
tually return. It is known from considerable past ex­
perience with these types of surveys that the expected 
proportion of returned surveys is equal to .40, with a 
variance of .04. 

a. What is the probability that more than 50 percent 
of the surveys wiil be returned? 

b. What is the probability that less than 25 percent of 
the surveys will be returned? 

c. What is the median level of response to this type of 
survey? What is the mode? 

18. Customers arrive at the rate of four per minute at a 
large bank branch in downtown Seattle. In its advertis­
ing, the bank stresses that customers will receive ser­
vice promptly with little or no waiting. 

a. What is the probability that there will be more than 
25 customers entering the bank in a 5-minute pe­
riod? 

b. What is the expected number of customers who will 
enter the bank during a five-minute period? 

c. If the bank staff can service 20 customers in a 5-
minute interval, what is the probability that the 
customer load will exceed capacity in as-minute 
interval, so that some customers will experience 
delays in obtaining service? 

19. The accounts of the Excelsior company are being 
audited by an independent accounting firm. The com­
pany has 200 active accounts, of which 140 are current 
accounts, 45 are past due 60 or more days, and 15 ac­
counts are delinquent. The accounting firm will ran­
domly choose five different accounts in its auditing pro­
cedure. 

a. What is the probability that none of the accounts 
chosen will be delinquent? 
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b. What is the probability that at most one of the ac­
counts chosen will be delinquent? 

c. What is the probability that there will be three cur­
rent, one past due, and one delinquent accounts 
chosen? 

d. What are the expected numbers of the various types 
of accounts that will be chosen? 

20. The Stonebridge Tire Co. manufactures passenger­
car tires. The manufacturing process results in either 
first-quality tires, blemished tires, or defective tires. 
The proportions of the tires manufactured that fall in 
the three categories are .88, .09, and .03, respectively. 
The manufacturing process is such that the classifica-

tion of a given tire is unaffected by the classifications of 
any other tires produced. 

a. A lot of 12 tires is taken from the assembly line and 
inspected for shipment to a tire retailer that sells 
only first-quality tires. What is the probability that 
all of the tires will be first-quality tires? 

b. For the lot of tires in part (a), what is the probability 
that there will be no defective tires among the 12 
tires? 

c. What are the expected number of first-quality tires, 
blemished tires, and defective tires in the lot of 12 
tires from part (a)? 

d. What is the probability that the 12 tires will con­
tain 8 first-quality tires, 3 blemished tires, and 1 
defective tire? 
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Asymptotically Normally Distributed Random Variables 

In this chapter we establish results relating to the prob­
ability characteristics of functions of n-variate random variables when n is 
large. In particular, certain types of functions of an n-variate random variable 
X(n) = jXI, ... ,Xnl, say Yn = gjX1, ••• ,Xnl, may converge in various ways to a 
constant, or the distribution of gjX(n)I may approach a "limiting" distribution 
asn ~ 00. 

There are at least three interrelated reasons why the study of the" asymp­
totic behavior II of gjX(nJl is an important endeavor. In practice, functions such 
as gjX(n)1 will be used to represent point estimation, hypothesis testing, or 
confidence-set estimation procedures jChapters 7-101, and n will refer to the 
number of data observations relating to the experiment being analyzed. In order 
to be able to evaluate and/or compare the merits of these statistical procedures, 
and indeed to be able to define the latter two types of procedures at all, it is 
necessary to establish the probability characteristics of gjX(n)l. Unfortunately, 
it is often the case in statistical and econometric practice that the actual prob­
ability density or distribution of gjX(n)I is too difficult to derive, or intractable 
to work with analytically, when n is finite. Asymptotic theory identifies meth­
ods that provide tractable approximations to the probability distribution of 
gjX(n)) when n is sufficiently large, and thereby it also provides a means of eval­
uating, comparing, and/or defining various statistical inference procedures. 
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Asymptotic theory also provides the principal rationale lor the prevalent use 
01 the normal probability distribution in statistical analyses. 

The material in this chapter is generally of an advanced and technical na­
ture, and the proofs of some of the theorems will be deferred to a more advanced 
course of study. Some readers, upon first reading, may wish to skim the chap­
ter for main results, while others may wish to move on to Chapter 6 and refer 
back to the results in this chapter as needed. Readers intending to emphasize 
econometrics in their graduate work are well advised to study this chapter in 
detail. 

5.2 Elements of Real Analysis 

Definition 5.1 
Sequence 

Example 5.1 

In this section, we present a number of results from real analysis that facilitate 
the development and understanding of various types of asymptotic probabil­
ity behavior. In particular, the concepts of sequences, limits, continuity of a 
function, and orders of magnitude of a sequence will be examined. 

We begin with the notion of a sequence. In the definition, we refer to the set 
of natural numbers, which is simply the set of positive integers in their natural 
order, 1,2,3, .... 

Let A be any set. A sequence in A is a function having the natural numbers, 
N, for its domain, and its range contained in A, i.e., I: N --+ A, is a sequence 
inA. 

When utilizing the concept of a sequence, we (and others) will often sup­
press the function aspect of its definition and concentrate on the collection of 
image elements of the function. Thus, given a sequence defined by {(n, y): Y = 
I(n), n E N}, we will equivalently refer to the collection of image elements 
{YI, Y2, Y3, ... } as the sequence, where Yn = I(n). The subscripts on the elements 
of the set {YI, Y2, Y3, ... } serve to define the order of the elements in the se­
quence. Furthermore, we will utilize the notation {Yn} as an abbreviation for 
the sequence {YI, Y2, Y3, ... }.I In the following numerous examples of sequences, 
we continue to use N to denote the set of natural numbers. 

The following are sequences in R: 

a. {2, 4, 8, ... J, which is defined by the function Y = 2n, n E N. 
b. {I, 1/3, 1/9, 1/27, ... J, which is defined by the function Y = (l/3)n-l, n EN. 
c. {-3, -I, 1,3, ... }, which is defined by the function Y = 2n - 5, n EN. 0 

1 Another common abbreviated notation that is sometimes used to denote a sequence is given by (Yn). The notation we have adopted 
is more prevalent in the statistics literature. While there will be no confusion in this text, in general, the reader will have to rely 
on the context of a discussion to determine whether {Yn} refers to a sequence or to a set containing the single element Yn' 
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Example 5.2 Sequence of Matrices 

Let Xn be an (n x 2) matrix whose ith row is defined by the (1 x 2) vector [1, iI, 
so that 

Then 

is a sequence of matrices {YI, Y2, Y3, ... } defined by the function 

nEN, 

where the nth element of the sequence is defined as 

(n+ 1) ] 

In + II~n + II . o 

Later in this chapter we will frequently encounter sequences of random 
variables. In this case, the set A in Def. 5.1 is a collection of random variables, 
and the function f: N --+ A defining the sequence places the random variables in 
A in a specific order. That is, the sequence of random variables {YI , Y2, Y3, ... } 
is simply an ordered collection of random variables. In our study of asymp­
totics, the elements in the sequence of random variables will often be defined 
as functions of other random variables, such as Yn = gn(Xl, ... , Xn), and we 
will be interested in studying the characteristics of the sequence of probability 
distributions associated with the Yn's as n --+ 00. 

The following examples are of sequences of random variables. We introduce 
the notation Y "" fly) to indicate that Y has probability density f(y), or that Y 
is distributed as fly). The acronym iid stands for independent and identically 
distributed, meaning that the random variables in a collection are independent 
and each of the random variables has the same PDF or probability distribution. 

Example 5.3 Let XI, .. . ,Xn be iid random variables, each with PDF N(f.L, (T2), where Xj repre­
sents the miles per gallon obtained from the ith automobile of a certain type 
tested for fuel efficiency. Examine the sequence of random variables 

n 
where Yn = n- I LXi, n E N. 

i=1 
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Note that the nth element of the sequence represents the average miles per 
gallon obtained from n of the automobiles tested, and 

Yn "J N (/-L' C;:) , 

so that we can define a sequence of probability density functions associated 
with the sequence of random variables as 

o 

Example 5.4 LetX1, •• • ,Xn be iid Bernoulli-type random variables each with density function 
if( 1-pjI-z I{o, I} (z), where Xi indicates whether theith customer entering a store 
makes a purchase (Xi = 1) or not (Xi = 0). Examine the sequence of random 
variables 

Definition 5.2 
Limit of a real 

number sequence 

n 

where Yn = LXi, n E N. 
i=l 

Note that the nth element of the sequence represents how many of the first n 
customers make a purchase, and 

Yn"J (;:)pyn(1 - p)n-YnI(O,1,2 ... ,ndYn), 

that is, Yn has a binomial distribution with parameters nand p, say Bin(n,p). 
We can define a sequence of density functions associated with the sequence of 
random variables as 

o 

Limit of a Sequence 

We now examine the concept of the limit of a real number sequence. We begin 
with a sequence whose elements are scalars and then extend the result to a 
sequence whose elements are vectors of real numbers. 

Let {Yn} be a sequence whose elements are (scalar) real numbers. Suppose 
there exists a real number, y, such that for every real s > 0 there exists an 
integer N(s) for which n 2: N(s) =} IYn - yl < s. Then Y is the limit of the 
sequence {Yn}, and the sequence {Ynl is said to converge to Y as n ~ 00. The 
existence of the limit is denoted by Yn ~ Y or limn-+oo Yn = y. If the limit 
does not exist, the sequence is said to be divergent. 

The definition of the limit implies that for a sufficiently large choice of n, 
Yn (and Yn+l, Yn+2, Yn+3, ... ) becomes arbitrarily close to the number y. This is 
so since, by the definition, we can choose s > 0 to be arbitrarily small and yet 
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Figure 5-1 
Illustration of the 
sequence {Yn} for 

which limn .... "" Yn = y. 

Definition 5.3 
Bounded sequence 

of real numbers 

·Ys 
y+e 

• • • 
Yi • • 

• • 
Y 

y-e • 
• Y6 

·Y4 

·Y2 ·Y3 

·Yl 
I I I I I I 

2 345 6 N(e) i> N(e) 
n 

there exists an n large enough (namely n ::: N(s)) such that Y - s < Yn < Y + s. 
Figure 5.1 provides a graphical illustration of the limit concept. 

In the figure, it is seen that for all elements Yi E {Yn} for which i is large 
enough, i.e., for i > N(s), the value of Yi is contained in the interval (y - s, Y + s). 
In other words, Yi is within s-distance of Y for i > N(s). Furthermore, for every 
choice of s > 0, no matter how small, there exists an N(s) for which a figure 
such as Figure 5.1 could be drawn. 

It can be shown that for the limit of a sequence of real numbers to exist, 
it is necessary (but not sufficient) that the sequence is bounded (Bartle, Real 
Analysis, p. 93), as defined next. 

The sequence of real numbers {Yn} is bounded iff there exists a finite number 
m > 0 such that IYnl ~ m V n E N; otherwise the sequence is said to be 
unbounded. 

Thus, for a sequence of real numbers to be bounded, there must exist a 
positive number that is larger than the absolute value of each and every number 
in the sequence. For a sequence that has no limit and is also unbounded, if 
V m > 0 there exists a positive integer N(m) such that Yn > m (or Yn < -m) 
V n > N(m), we write Yn -+ 00 (or Yn -+ -00) to denote that the sequence 
diverges to infinity (or to negative infinity). 

Example 5.5 Boundedness and Existence of a Limit for Sequences {Yn} of Real Numbers 

a. Yn = 3 + n-2, n E N. This sequence is bounded, since IYnl ~ 4 V n E N. 
Also, the sequence has a limit, where Yn -+ 3. This follows since, V s > 0, 
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Definition 5.4 
Limit of a real-valued 

matrix sequence 

IYn - 31 < 8 V n > 8-1/2, and there always exists an integer N(8) 2: 81/2 (e.g., 
trunc(8- 1/2 ) + 1). 

h. Yn = sin(n), n EN (let n represent degrees). The sequence is bounded, since 
1 sin(xJl ~ 1 V x. The sequence does not have a limit, since sin(x) cycles 
between the values of -1 and 1. 

c. Yn = n2 - 3n + I, n E N. The sequence is not bounded, since there does not 
exist a finite number m > 0 for which n 2 - 3n + 1 ~ m V n EN. Since the 
sequence is unbounded, the sequence does not have a limit. Since, V m > 0, 
n2 - 3n + 1 > m when n > N(m) = trunc![3 + ./5 + 4ml/2) + 1 (use the 
quadratic formula), Yn -+ 00, that is, the sequence diverges to infinity. 0 

The preceding example illustrates that boundedness of a sequence is not 
sufficient for the existence of a limit for the sequence. We add that it is proper 
to speak of the limit of a sequence since the limit will be unique if it exists at 
all (Bartle, Real Analysis, p. 93). 

The limit concept can be extended to the sequence whose elements are real­
valued vectors or matrices. We introduce the notation Yn[i, il to indicate the 
(i, i)th element of the (m x k) matrix Yn in a sequence of matrices, and similarly 
Yn[il denotes the ith element of the (m x 1) vector Yn in a sequence of vectors. 
The extension of the limit concept amounts to viewing the matrix sequence as 
encompassing mk sequences, {Yn[i, ill, one for each matrix element, with each 
to be examined for convergence (by Def. 5.2). Limits of vector sequences follow 
by letting k = 1. 

Let {Yn } be a sequence whose elements are (q x k) real-valued matrices. 
Suppose there exists an (q x k) matrix of real numbers Y such that Yn[i, il-+ 
Y[i, il for i = 1, .. . ,q and i = 1, .. . ,k. Then the matrix Y is the limit of the 
matrix sequence {Yn l, and the sequence {Yn } is said to converge to Y as n -+ 
00. The existence of the limit is denoted by Yn -+ Y, or by limn-.oo Yn = Y. 
If the limit does not exist, the sequence is said to be divergent. 

The definition of the limit implies that for a sufficiently large choice of n, 
the matrix Yn (and Yn+1, Yn+2, Yn+3, ... ) becomes arbitrarily close to the matrix 
Y element by element. The definition also implies that for the real-valued ma­
trix to have a limit, the sequence of matrices must be bounded elementwise, 
i.e., IYn[i, ill ~ m V n E N and V i, i (or else Yn[i, il -1+ Y[i, il for some i and 
i, and then Yn -1+ Y). Regarding divergence to infinity (or negative infinity), 
since there are essentially qk convergence conditions involved when examin­
ing sequences of (q x k) matrices, patterns of divergence and convergence of the 
various elements of the matrices can be quite diverse. 

Example 5.6 Boundedness and Limits of Matrices 

a. Recall the sequence of matrices in Ex. 5.2. In this case, only the sequence 
{Yn [l, III is bounded. All other sequences of matrix elements are unbounded 
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Definition 5.5 
Adding, subtracting, and 

multiplying sequences 

Lemma 5.1 
Combinations 
of sequences 

and, in fact, diverge to infinity, i.e., Yn[i, i] -+ 00 for (i, il =f. (1, 1). Since all of 
the sequences of matrix elements must be bounded for the matrix sequence 
to converge, the matrix sequence does not have a limit. 

h. Let {Yn } be a sequence of matrices such that 

[ 3n- 1 

Y n = 3 
-I ] 

1 ~ n- l , 
n EN. 

All four sequences of matrix elements are bounded, since 13n-11 ::: 3, 
In-II::: 1,131::: 3, and 11 +n-ll ::: 2 V n EN. Furthermore, limits exist 
for all four sequences of matrix elements, since 3n-1 -+ 0, n- 1 -+ 0,3-+ 3, 
and 1 +n- 1 -+ 1. Thus, Y n -+ Y = [~ n 0 

One might be interested in a sequence {Yn} that is defined via a function 
of the elements of other sequences. For example, we may be interested in the 
sequence {y n} that is defined by adding corresponding elements in the sequences 
{xn} and {zn}, as Yn = Xn + Zn. Of course, we can analyze the properties of the 
sequence {Yn} directly to establish whether the sequence converges, but if the 
convergence properties of {xnl and {zn} are known, the following lemma can 
expedite the analysis if the functions are defined via addition, subtraction, or 
multiplication. We precede the statement of the lemma with definitions for 
adding, subtracting, and multiplying sequences. Note that X[., i] refers to the 
ith column of the matrix X. 

Let {Xnl and {Zn} be sequences of conformable, real-valued matrices. 

a. Summation: The summation of Xn and Zn, Xn + Zn, is a sequence Y n 
defined by Yn = Xn + Zn, V n. 

h. Difference: The difference between {Xn} and {Zn}, {Xn} - {Zn}, is a se­
quence {Yn} defined by Yn = Xn - Zn V n. 

c. Product: The product of {Xn} and {Zn}, {Xnl{Zn}, is a sequence {Yn} de­
fined by Yn = XnZn, V n. 

Let {Xn} and {Zn} be convergent sequences of conformable, real-valued ma­
trices such that Xn -+ X and Zn -+ Z. Then 

a. Xn + Zn -+ X + Z, 

h. Xn - Zn -+ X - Z, 

c. XnZn -+ XZ, 

d. if {an} is a sequence in R that converges to a, then anXn -+ aX, 

e. if {bnl is a sequence of nonzero numbers in R that converges to b =f. 0, 
then b;;IXn -+ b-1X, 

f. I::=l Xn!., i]-+ I::=l X!., i], 
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g. if {Znl is a sequence of nonsingular matrices that converges to the non­
singular matrix Z, then Z;;-I --+ Z-I and Z;;-I Xn --+ Z-I X. 

Proof: Bartle, Real Analysis, pp. 100-101, and Defs. 5.4 and 5.5. 

The reader should note that since the sequences {Xnl and {Znl can themselves 
be defined in terms of combinations of other sequences, the lemma actually 
implies convergence results involving more than just two sequences. For ex­
ample, letting Xn = An + Bn --+ A + B, then An + Bn + Zn --+ A + B + Z and 
(An + Bn)Zn --+ (A + B)Z. 

Example 5.7 Convergence Properties of Sequences 

a. Let {xnl and {zn} be defined as Xn = 3 + n- I/2 and Zn = 2exp(-2/n) for 
n E N, respectively. Note that Xn --+ 3 and Zn --+ 2. Then, using Lemma 5.1, 
xn+zn --+ 5, Xn -Zn --+ I, andxnzn --+ 6. Let {an} be defined by an = 5(n+ 1)/n 
for n EN, and note that an --+ S. Also, define the vector sequence {Yn) by 

(rnl l = [;:] 

so that Yn --+ m· Then, from Lemma 5.1, anYn --+ G~] and a;;-IYn --+ [~m 
h. Let {Wn) be a matrix sequence defined by 

wn~[2+3n-l InJl l ] forneN, 

and let {xn} be a vector sequence defined by 

( 1 +n- I ) 
Xn = 2 exp(n- I) for n EN. 

Note that Wn --+ [~~] and Xn --+ [i). Using Lemma 5.1, it follows that 

-I 2 a .5 a [ J-I [ J 
W n --+ 3 1 = -1.5 1 ' and W-I [.5J n Xn --+ .5 . 

Notefurther that Wnl., I] + Wnl., 2] + Xn --+ [~]. o 

Continuous Functions 

Continuous functions will play a prominent role in a number of important 
asymptotic results. We define the concept of a continuous function below using 
two alternative but completely equivalent characterizations. We remind the 
reader that d(x, wJ = Ux - wJ'(x - wJ]1/2 is the distance between the points x 
andw. 
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Definition 5.6 
Continuous functiorr 

The function g: A ~ R, for A c Rm, is continuous at the point x E A iff 
either 

a. Ve > 0,3 8(e) > a such that W E A and d(x, w) < 8(e) implies Ig(w)-g(xJl < e, 
or 

h. V sequence {xn } in A for which Xn ~ x, it is also true that g(xn ) ~ g(x). 

The vector function g: A ~ Rk is continuous at the point x E A iff each 
coordinate function gj(x) is continuous at the point x, j = 1, ... ,k. 

The function g is said to be continuous on Ithe set) Be A if the function is 
continuous at every point in B. 

Intuitively, a function is continuous at a point x if, when the function is 
evaluated at domain elements that are closer and closer to x, the value of the 
function is closer and closer to the value of the function at x (in an elementwise 
vector comparison sense if k :::: 2). In the simple case where m = k = 1, the 
graph of a function that is continuous on an interval set B = (a, b) can be drawn 
V x E B "without lifting the pencil from the paper," i.e., the graph is an unbroken 
curve. 

Example 5.8 Continuity Properties of Functions 

a. Let I: (0, 00) ~ R be defined by y = x-I. Intuitively we expect I to be 
continuous on (0, 00), since its graph is an unbroken curve. To demonstrate 
formally that I is continuous on (0,00), let Xo E (0,00), and note that 

I/(x) - I(xoli = Ix- l _ xall = Ixo - xl = Ixo - XI, 
Ixxol xXo 

where we have eliminated the absolute value operator in the denominator 
because in the domain of I, x > O. It follows that if Ix - xol < 8, then 
I/(x) - Ilxa)1 < 8/xxo. 

Now choose any e > O. For I to be continuous at Xa, it must be the case 
that 8 can be chosen such that Ix - xal < 8 ::::} I/(x) - I(xali < e. Such choices 
of 8 exist, one being 8 = x5e/(1 + xae). Since the argument can be applied 
V Xa E (0,00) and V e > 0, I is continuous on (0,00). 

h. Let I: R2 ~ R2 be defined by the coordinate functions 

fl )- [it(X)] _ [X[1J2+2X[21] 
x - h(x) - x[II . 

Let x. E R2, and let {xn} be any sequence in R2 for which Xn ~ X*. To demon­
strate continuity of I at X*, we will show that Xn ~ x", ::::} f(xn) ~ f(x.). 

2This definition can be altered to provide definitions for continuity from the right and continuity from the left. For continuity from 
the right, the condition w 2: x is added in part (al. The condition Xn 2: x V n is added to part (bl. For continuity from the left, the 
conditions become w :5 x and Xn :5 x, respectively, V n. 
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Definition 5.7 
Convergence of a 

function sequence 

Examine !I(x) first. Note that !I (xn) = xn[l]2 +2xn[2] = (xn[l]. xn[l]) +2xn[2] 
can be interpreted as the summation of the sequence {xn[l]Hxn[l]} and the 
sequence 2{xn[2]}. Since xn[l] --+ x.[l] and xn[2] --+ x.[2] by assumption, it 
follows from Lemma 5.1 that {xn[l]}{xn[lj} --+ x.[1]2,2{xn[2]} --+ 2x.[2], and 
thus Idxn) --+ X.[1]2 + 2x.[2] = Idx.). Verifying convergence of the second 
coordinate function is straightforward, since !2(xn) = xn[l]--+ x.[l] = !2lx.). 
Thus, I is continuous at x., and since the above argument holds for any 
X* E R2, I is continuous on R2. 

c. Let I: R --+ R be defined by I(x) = Ilo,col(x). Intuitively, since the graph 
of the function has a break at x = 0, we expect that the function is not 
continuous on R. To demonstrate formally that I is discontinuous at x = 0, 
it will be shown that there does not exist a ole) > 0 for every e > 0 such 
that Ix - 01 < 8(s) => I/(x)- 1(011 < s. Choose any s E (0, I), and note that 
1(0) = O. Given any choice of o(e) > 0, let x = 8(s)/2, so that Ix - 01 < o(e). 
Then I/(x) - 1(011 = 1 -I e. Therefore, I is not continuous on R. (Note: I is 
continuous on (0,00) and on (-00,0), as the reader might wish to verify as 
an exercise.) 0 

Convergence of Function Sequence 

When we speak of convergence of a sequence of functions, we are referring to 
a case where the function definitions themselves can change as n changes, so 
that we can conceptualize a sequence of image values II (x), h(x), falx), ... for 
each value of x in the common domain of the sequence of functions. Interest 
centers on whether there exists a "limit" function definition, I(x), such that 
In(x)--+ I(x) for all x in some subset of the common domain of the sequence of 
functions. The subset of x values on which UnIx)} converges to I(x) could be the 
entire domain, or some smaller subset of points, or the null set (Le., UnIx)} does 
not converge for any x). 

We formalize the concept of convergence of a sequence of functions in 
the next definition. In the definition, the notation {In} refers to the sequence 
of function definitions, while UnIx)} refers to the sequence of image values 
generated by the sequence of function definitions when evaluated at the pointx. 

Let {In} be a sequence of functions, In: D --+ Re, having common domain 
D c Rm. Let I: Do --+ Re be a function with domain Do C D. The function 
sequence {In} is said to converge on Do to I if Inlx) --+ I(x) V X E Do. If {In} 
converges to Ion Do, I is called the limiting function of {In} on Do, and {In} 
is said to be convergent on Do. 

Intuitively, if I is the limit function of {In} on Do, then for large enough n, 
In (x) ~ I(x) for x E Do since In (x) converges to I(x) on Do. Then I(x) can be viewed 
as an approximation to Inlx) on Do when n is large. 
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Example 5.9 Convergence of Function Sequences 

Definition 5.8 
Order of magnitude 

of a sequence 

a. Let the function sequence {In} be defined by In(x) = n- l + 2X2 for x E R. 
Define the function I: R -+ R by I(x) = 2x2. Then I is the limiting function 
of Un} on R. To see this, note that In(x) -+ 2x2 = I(x) Y X E R. For large n, 
In(x) ~ I(x) Y X E R. 

h. Let the vector function sequence {In} be defined by 

[ 
(2xt + 3nxIX2) ] 

fn(x) = [hn(X)] n for (XI,X2) E R2. 
hn(x) 2 2 

Xl +x2 

Define the function I: R2 -+ R2 by 

f() [ h(X)] [3XIX2 ] f ( ) 2 
X = h(x) = xt+xi or XI,X2 ER. 

Then I is the limiting function of Un} on R2. To see this, note that hn(x) = 
2xt/n + 3XIX2 -+ 0 + 3XIX2 = Idx), and hn(x) = xt + xi = h(x) Y x E R2, so 
that In(x) -+ I(x) Y X E R2. 

c. Let the function sequence {In} be defined by In (x) = x - 2 exp( -nx) for x E R. 
Let I: R -+ R be defined by I(x) = x - 2I{odx) for x E Do = [0,001. Then I 
is the limiting function of {In} on the set [0, (0). The sequence Un} does not 
converge for x < O. To justify these conclusions, note that, by Lemma 5.1, 
limn ..... ooln(x) = limn ..... 00 x -limn ..... 00 2exp(-nx) = x - 2I{odx) Y x ~ O. When 
x < 0, 2 exp(-nx) -+ 00, and thus In (x) does not converge. 0 

Order of Magnitude of a Sequence 

In analyses involving sequences, it is sometimes useful to be able to character­
ize or compare sequences and/or terms in a sequence relative to their order of 
magnitude in addition to, or in lieu of, any examination of convergence proper­
ties of the sequences involved. In particular, when the definition of a sequence 
contains a number of terms, the orders of magnitude of the terms will dis­
tinguish which terms make dominant contributions to the magnitude of the 
sequence as n increases. This concept is defined below. 

Let {xn} be a real number sequence, and let {Wn} be a real-valued matrix 
sequence. 

a. O(nk): The sequence {xn} is said to be at most of order nk, denoted by 
OInk), if there exists a finite real number c such that In-kxnl ::: c Y n EN. 

h. oInk): The sequence {xn} is said to be of order smaller than nk, denoted 
by oInk), if n-kxn -+ O. 

c. If (Wn[i, ill is OInk) (or oInk)) Y i and i, then the matrix sequence {Wn} is 
said to be OInk) (or oInk)). 
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Intuitively, a sequence {xn} is OInk) if the corresponding sequence {n-kxn} is 
such that all elements of n-kxn are bounded in absolute value by the positive 
number c. A sequence {xn} is oInk) if the product sequence {n-kxn} converges 
to zero. Note that if {xn} is OInk), then {xn} is o(nk+e) V c > 0, and if {xnl is 
oInk), then it is also OInk). Notationally, the case O(nO) or o(nO) is most often 
represented as O( 1) or o( 1). 

Example 5.10 Order of Magnitude of a Sequence 

lemma 5.2 

lemma 5.3 

a. Let {xn 1 be defined by Xn = 3n3 - n2 + 2, for n EN. Then {xn} is 0(n3 ), since 
n-3x n = 3 - n-1 + 2n-3 is bounded. Also, {xn} is 0(n3+e) for any c > 0 since 
n-3- Exn = 3n-E - n-1- E + 2n-3- E ~ O. 

h. Let {xn 1 be defined by Xn = 3 + n- 1, for n EN. Then {xn 1 is O( 1), since Xn = 
3 +n-1 is bounded, and {xn} is o(nE) V e > 0, since n-Exn = 3n-e +n- 1- e ~ O. 

c. Let the vector sequence {xn} be defined by 

[~:f~lJ = [3:_~1 J. 
Then the vector (or (2 x 1) matrix) sequence {xnl is 0(1) and 0(1), since 
Xn ~ [g]. 0 

Some useful results regarding the order of magnitude of sums and products 
of sequences are given in the following lemma. 

Let {xn} and {znl be real number sequences. The following relationships be­
tween orders of magnitude hold: 

IF THEN 

{xn} {Zn} {Xn + Zn} {XnZn} 

O(nk) O(nm) O(nmax(k,ml) O(nk+m) 

o(nk) o(nm) o(nmax(k.ml) o(nk+m) 

O(nk) o(nm) O(nmax(k.ml) o(nk+n1) 

Proof: H. White (1984), Asymptotic Theory for Econometricians. Orlando, 
Academic Press, p. 15. 

Given that the sequences referred to in Lemma 5.2 can be functions of other 
sequences, the results can be extended in a myriad of ways to an arbitrary finite 
number of sequences. In the following lemma we state some useful extensions. 

Let {Xn} and {Wn} be (m x i) and (r x m) matrix sequences, respectively. 

a. If {Xn} is such that {Xn[.,ij} is O(nki) (or o(nki )) for i = 1,,, .,i, then 
{.Ef=l Xn[.,ij} is O(nkmax) (or o(nkmaxll, where kmax = max(k1, .. . ,ke). 
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d. (Special case of (c)): If {Xnl is OInk) (or oInk)), then {X~Xnl is 0(n2k) (or 
0(n2k)) and {n-VX~Xnl is 0(n2k- v ) (or 0(n2k- v )). 

Proof: This follows from Lemma 5.2 and mathematical induction. 

We illustrate the application of some of the preceding results in the following 
example. 

Example 5.11 Orders of Magnitude for Combinations of Sequences 

a. Let {xnl be defined by Xn = 2n-1 + 5n, and let {znl be defined by Zn 
n2 + 2n. Note that {xnl is O(nl) and {znl is 0(n2). It follows immediately, 
from Lemma 5.2, that {xn + znl = {n2 + 7n + 2n-1 I is 0(n2) (and o(n2H ) for 
c > 0) and {xnznl = {5n3 + lOn2 + 2n + 41 is 0(n3) (and o(n3H ) for c > 0). 

h. Let {xnl and {Wnl be respectively defined by 

_ [7+n-l] d W _ [n2+2n+ 1 3n2+7] 
Xn - -I an n - 2 2 n n n +n 

so that Xn is 0(1) and Wn is 0(n2 ). From Lemma 5.3, it follows immediately 
that 

{W x 1 = {[ 7n2 + l8n + 9 + 8n- I ]} 
n n 7n2 + 2n + 1 

is 0(n2) and o(n2H ) for c > 0, and {x~xnl = {49 + 14n-1 + 2n-21 is 0(1) and 
o(nc ) for c > O. It also follows, for example, that {nx~xnl and {n-1Wnxn} are 
both O(n') and o(nIH) for c > O. 0 

5.3 Types of Random-Variable Convergence 

The convergence concepts examined in the preceding section relate to nonran­
dom sequences of real numbers, vectors, or matrices. We now extend these con­
vergence concepts to sequences of random variables, such as {Xn} = 
{XI, X 2, X3 , ... }. 

A fundamental difference between a non-random sequence {xn} and a ran­
dom sequence {Xn} is that the elements of a random sequence are random vari­
ables as opposed to fixed numbers and thus are capable of assuming any real 
numbers within the ranges of the respective random variables in the sequence. 
Thus, while {xnl refers to only one sequence of real numbers, {Xn} refers to 
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Definition 5.9 
Convergence in 

distribution (CDFs) 

a collection of random variables capable of defining many different real num­
ber sequences, depending on the outcomes of the random variables Xl, X2, X3, 

.... Since any particular real number sequence associated with {Xn } can be 
thought of as an outcome of the random variables involved in the sequence, it 
is then meaningful to define probabilities of various types of events involving 
outcomes of the random variables in the sequence. For example, one might be 
interested in the probability that the outcomes of a sequence of scalar random 
variables {Xn} are bounded by a particular value m > 0, i.e., P(lxnl ~ m,'V n EN), 
or in the probability that the outcomes of the sequence converge to a limit c, 
Le., P(limn->00 Xn = c). Since the sequence is random, convergence and bound­
edness questions cannot be verified as being unequivocally true or false on the 
basis of a given sequence of real numbers, but they can be assigned a probability 
of occurrence in the context of the probability space for the outcomes of the 
random variables involved. 

We will examine four basic types of random-variable convergence: 

1. convergence in distribution; 
2. convergence in probability; 
3. convergence in mean square (or convergence in quadratic mean); and 
4. almost-sure convergence (convergence with probability 1). 

Convergence in Distribution 

The concept of convergence in distribution involves the question of whether 
the sequence of cumulative distribution functions associated with the random 
variables in the sequence {Yn } converges to a limiting cumulative distribution 
function (recall De£. 5.7). In many cases of practical interest, convergence in dis­
tribution can also be characterized in terms of the convergence of a sequence of 
density functions to a limiting density function. The usefulness of the concept 
lies in establishing an approximation to the true CDF or PDF for Yn when n 
is large enough (where "large enough" means that the CDF or PDF of Yn is 
close to its limiting CDF or PDF). Such approximating CDFs or PDFs can be 
extremely useful when the true CDF or PDF for Yn is very difficult (or impos­
sible) to define or is intractable to work with, but the limiting CDF or PDF is 
easier to define and analyze. 

We first characterize convergence in distribution in terms of a sequence of 
CDFs. We alert the reader to the fact that all results presented henceforth can 
be interpreted in terms of multivariate random variables, unless the context 
is explicitly defined in terms of scalar random variables. 

Let {Yn} be a sequence of random variables, and let {Fn} be the associated 
sequence of cumulative distribution functions corresponding to the ran­
dom variables. If there exists a cumulative distribution function F such that 
Fn(Y) -+ F(y) 'V Y at which F is continuous, then F is called the limiting CDP 
of {Yn }. Letting Y have the distribution F, Le., Y '" F, we then say that Yn 
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converges in distribution (or converges in law) to the random variable Y, 
and we denote this convergence by Yn -4 Y (or Yn 4 Y). We also write 
Yn -4 F as a short hand notation for Yn -4 Y ,.... F, which is read "Yn 
converges in distribution to F./I 

If Yn -4 Y, then as n becomes large, the CDP of Yn is approximated ever 
more closely by its limiting CDP, the CDP of Y (see Figure 5.2). Note that 
it is admissible in the definition that Y = c, i.e., the random variable can be 
degenerate so that PlY = c) = l. When the limiting CDP is associated with 
a degenerate random variable, we say that the sequence of random variables 
converges in distribution to a constant, and we denote this by Yn -4 c. 

In the case of either nonnegative, integer-valued, discrete random variables 
or continuous random variables, convergence of a sequence of PDPs is sufficient 
for establishing convergence in distribution. 

Theorem 5.1 (Convergence in Distribution (Densities)) Let {Yn} be a sequence of either con­
tinuous or nonnegative, integer-valued, discrete random variables, and let {fn} 
be the associated sequence of probability density functions corresponding to 
the random variables. Let there exist a density function f such that fn(Y) -+ fly) 
V y, except perhaps on a set of points A such that PylA) = 0 in the continuous 
case, where y,.... f. It follows that Yn -4 Y (or Yn 4 Y). 

Proof The discrete case is left to the reader. Por the continuous case, see H. Schef£e 
(1947), "A useful convergence theorem for probability distributions./I Ann. 
Math. Stat., 18, pp. 434-438. • 

Figure 5-2 
Convergence in 

distribution (CDF). o y 
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If the PDFs of the elements of {Yn } converge to the PDF I as indicated in 
Theorem 5.1, then I is referred to as the limiting density of {Yn }. The notation 
Yn -4 I is sometimes used as short hand for Yn -+ Y '" I, where it is understood 
that the limiting CDF of {Yn } in this case coincides with the CDF associated 
with the PDF I. The term limiting distribution is often used generically to refer 
to either the limiting CDF or the limiting density. If Yn -4 Y and if the PDFs 
{In} converge to a limiting density, then as n becomes large, the PDF of Yn is 
approximated ever more closely by its limiting density, the density of Y (for 
example, see Figure 5.3). 

The following example illustrates the concept of convergence in distribu­
tion characterized through convergence of CDFs. It is also designed to provide 
some insight into the qualifier "such that F is continuous at y" used in Def. 5.9. 

Example 5.12 Convergence of CDFs 

Figure 5-3 

Let {Yn } be such that the cumulative distribution function for Yn is defined by 

Fn(Y) = ¥(Y - 'l" + n-1 )I['C-n-I,r+n-II(Y) + I(r+n-l,ool(Y)' 

and let Y have the cumulative distribution function 

F(y) = I[r,ool(Y)' 

Then Yn -4 Y. To see this, note that 

lim Fn(Y) = -2
1 I(rdY) + I('Cool(Y) 

n~oo ' 

(see Figure 5.4) which agrees with F(y) for all points at which F is continuous, 
which is all points except 'l". Thus, by definition, the limiting distribution of Yn 

is F(y). 0 

Note that F(y) in Ex. 5.12 makes intuitive sense as a limiting distribution for 
Yn when interpreted in the context of its original purpose-that of providing an 

f 

Convergence in L-________________ y 
distribution (densities). 0 
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Figure 5-4 
Graph of limn-+oo Fn(y). 
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approximation to Fn(Y) for large n. Viewed in this way, the fact that limn ..... oo Fn(Y) 
does not agree with F(y) at r is immaterial, since it is not limn ..... oo Fn(Y) that we 
wish to approximate in any case.3 The reader will note that as n increases, Fn(Y) 
is ever more closely approximated by F(y). In particular, from the definition 
of Fn(Y), it follows that P(Yn > r + n- 1 ) = P(Yn < r - n- l ) = 0 Y n, implying 
P(r - n- l ::: Yn ::: r + n-1 ) = 1 Y n. We would like to add that when n -+ 

00, P(Yn = r) -+ I, i.e., the sequence of random variables with distribution 
functions {Fn} converges in distribution to a degenerate random variable at r. 
Note that F(y) implies this degeneracy. 

The fact that the limiting distribution is degenerate in Ex. 5.12 when all of 
the distributions Fn(Y) are nondegenerate results in the limiting distribution's 
being inadequate for approximating certain characteristics of the distribution 
of Yn "" Fn(Y). For example, F(y) clearly provides no information regarding the 
degree of spread in the outcomes of Yn . We will return to this question shortly, 
where the notion of an asymptotic distribution will be introduced as an alter­
native to using a degenerate limiting distribution for approximating the distri­
bution of random variables Yn in a sequence {Yn }. 

In the next example, we illustrate the concept of convergence in distribu­
tion characterized through convergence of density functions. 

Example 5.13 Convergence of Densities 

Let {Xn} be a sequence of normal random variables such that Xn '" N(O, 1) Y n. 
Let {Zn} be a sequence defined by Zn = (3 + n- l )Xn + (2n/(n - 1 )), which then 
has an associated sequence of density functions {In} defined by In = N(2n/(n -
I), (3 + n-1 )2). Since In -+ N(2, 9) = I (note that In(z) -+ f(z) Y z E R), then N(2, 9) 
is the limiting density of {Zn}, i.e., Zn -4 N(2, 9). 0 

We now formally extend the uniqueness theorem of moment-generating 
functions (recall Theorem 3.27) in a way that allows one to identify limiting 

3Note that limn-+oo Fn(Y) is not a cumulative distribution function. 
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distributions of sequences of random variables through an examination of lim­
iting moment-generating functions. This result is quite useful when, as is often 
the case, the limit of a sequence of moment-generating functions is more easily 
defined than the limit of a sequence of CDFs or density functions. 

Theorem 5.2 (Convergence in Distribution (MGFsJJ Let {Ynl be a sequence of random vari­
ables having an associated sequence of moment generating functions {Myn(tJl. 
Let Y have the moment-generating function My(tJ. Then Yn -4 Y iff MYn(tJ ~ 
My(tJ V t E ( - h,hJ, for some h > O. 

Proof See E. Lukacs (1970J, Characteristic Functions. London: Griffin, pp. 49-50, for 
a proof of this theorem for the more general case characterized by convergence 
of characteristic functions (which subsumes Theorem 5.2 as a special caseJ. In 
the multivariate case, t will be a vector, and convergence of the MGF must hold 
V tj E (-h, hJ, and Vi.. 

The theorem implies that if we can discover that limn-+oo M Yn (t J exists and is 
equal to the moment-generating function My(tJ V t in an open interval contain­
ing zero, then the distribution associated with My(tJ is the limiting distribution 
of the sequence {Ynl. We illustrate the use of Theorem 5.2 in the following ex­
ample. 

Example 5.14 Zn = (Xn - n)/./fii -4 N(O, 1) if Xn '" X~ 

Let {Xnl be a sequence of random variables, where Xn '" X~ V n. The sequence 
{Xnl then has an associated sequence of MGFs given by {Mxn(tJl, where MXn(tJ = 
(1 - 2tJ-n/2 V n. Let the random sequence {Znl be defined by Zn = (Xn - n)j.J2ii, 
which has an associated sequence of MGFs given by {MzJtJl, where MZn(tJ = 
(1 - J2/n tJ-n/2 exp(-Jn/2 tJ. Note that the elements in the sequence {Znl are 
standardized X2 random variables (recall EXn = nand var(XnJ = 2nJ. We now 
show that In MZn(tJ ~ t2/2. To see this, first note that 

In MZn(tJ = -~ In (1 - fit) -lit. 
Expressing the first term on the right-hand side of the equality in terms of a 
Taylor series expansion around t = 0 obtains 

In MZn(tJ = [Ii t + t + O(IJ] - lit = t + o(IJ ~ t· 
It follows that 

lim MZn(tJ = lim exp(lnMzn(tJJ = exp (lim InMz.(tJ) = exp (t) 
n-+ 00 n-+- 00 \.[; -+ 00 

since exp(.J is a continuous function (recall Def. 5.6, especially part (bJ. Since 
exp(t2/2J is the MGF of a standard normal distribution, we know by Theorem 
5.2 that the sequence {Znl of standardized X~ random variables has an N(O, IJ 
limiting distribution, i.e., Zn -4 N(O, IJ. 0 
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Definition 5.10 
Asymptotic distribution 

for g(Xnl en) 
whenXn ~ X 

Asymptotic Distributions We now introduce the concept of an asymptotic distri­
bution for the elements in a random sequence. In the most general sense of the 
term, an asymptotic distribution for Zn in the sequence {Zn} is any distribution 
that provides an approximation to the true distribution of Zn for large n. In this 
general sense, if {Zn} has a limiting distribution, then since the limiting distri­
bution can be interpreted as an approximation to the distribution of Zn for large 
n, the limiting distribution might be considered an asymptotic distribution for 
Zn. The purpose of introducing the additional concept of asymptotic distribu­
tions is to generalize the concept of approximating distributions for large n to 
include cases where either the sequence {Zn} has no limiting distribution, or 
the limiting distribution is degenerate (and hence not particularly useful as an 
approximation to the distribution of a nondegenerate Znl. 

We will focus on asymptotic distributions that apply to random variables 
defined by g(Xn, enl, where Xn --4 X for nondegenerate X. This context covers 
most cases of practical interest. 

Let the sequence of random variables {Zn} be defined by Zn = g(Xn, enl, 
whereXn --4 X for nondegenerateX, and {en} is a sequence of real numbers, 
matrices, and/or parameters. Then an asymptotic distribution for Zn is given 
by the distribution of g(X, en), denoted by Zn ~ g(X, enl and meaning "Zn is 
asymptotically distributed as g(X, en}. 

Before proceeding to examples, we provide some general intuition under­
lying Def. S.lD. Operationally, Def. S.lD implies that if Zn can be defined as 
a function, g(Xn, en I, of some random variable Xn for which Xn --4 X and X 
is nondegenerate, then an asymptotic distribution for Zn is given by the prob­
ability distribution associated with the same function applied to X, g(X, en}. 
The problem of identifying asymptotic distributions is then equivalent to the 
problem of identifying distributions of functions of X since Zn = g(Xn, enl and 
Xn --4 X => Zn ~ g(X, en}. 

In order to motivate why this approach to approximating the distribution 
of Zn for large n makes sense, first note that a correspondence between events 
for Zn and events for Xn can be established as 

Zn E A{:=::} Xn E Bn = {xn: Zn = g(xn, en}, Zn E A}. 

Note further that since Xn --4 X, we can approximate the probability of the 
event Bn for Xn using the non degenerate limiting distribution of {Xn} as PXn (xn E 

Bn) ~ Px(x E Bn), for large n. It follows from the equivalence of the events A 
and Bn that, for large n, 

PZn(zn E A} = Pxn(xn E Bn) ~ Px(x E Bnl = Px(g(x, en} E AI· 

Thus, an approximation to pzJzn E Al can be calculated using the probability 
distribution of g(X, en I in the same sense, and with the same degree of accuracy, 
that Pxn(xn E Bnl can be approximated using the probability distribution of X. 
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We emphasize that a limiting distribution for {Zn} = {g(Xn, en)} need not exist 
for the preceding approximation arguments to hold. 

Example 5.15 Asymptotic Distribution for n-1 Xn, where Xn '" Bin(n,A.!n) 

Let {Xn} be such that Xn has a binomial distribution with parameters nand 
p = A/n for some fixed value of A> 0, i.e., Xn '" Bin(n, A/nJ. Note that MXn(tJ = 
(1 +p(et -1 JJn = (1 + (A(e t - 1 J/nJJn -+ eA(e'-ll (recall thatlimn->oo( 1 + (a/nJJn = eaJ, 
which by Theorem 5.2 implies thatXn -4 X '" (e-nP(npJx /X!jI(O,1,2, ... }(xj(Poisson 
distribution with parameter A = npJ. Note that this result is in agreement with 
the relationship established between the Binomial and Poisson distributions in 
Chapter 4. Define the sequence {Zn} by Zn = g(Xn, nJ = n-1Xn, and note that 
since Mz.!tJ = (1 + (A/nHet/n -lJJn -+ I, then by Theorem 5.2 the limiting distri­
bution of {Zn} exists and is degenerate at 0 (i.e., an MGF equal to the constant 
function 1 is associated with the density for which P(z = OJ = 1 J. On the other 
hand, the asymptotic distribution of Zn as defined in Def. 5.10 is given by the 
distribution of g(X, nJ = n-1 X, so that Zn ~ (e-np(npJnx /(nxJ !jI(o, 1/n,2/n, ... } (xJ. 0 

Example 5.16 Yn ~ N(n, 2 n) if Yn '" X~ 

In Ex. 5.14, it was demonstrated that Wn -4 W '" N(O, 1J, where Wn = 
(Yn - nJ/..f2n and Yn '" .x~. It follows from Def. 5.10, using results on linear 
combinations of normally distributed random variables, that 

Yn = g!Wn,nJ = .../2iiwn + n ~.../2iiw + n '" N(n,2nJ. 

Thus, for large n, a .x2-distributed random variable is approximately normally 
distributed with mean n and variance 2n. Note that {Yn} does not have a lim­
iting distribution. As an illustration of the use of the approximation, note that 
if n = 100, then referring to the .x2-distribution with 100 degrees of freedom, 
P(XlOO :s 124.34J = .95. Using the asymptotic distribution N!100,200J, the ap­
proximation to this probability is given by P(XlOO :s 124.34J ~ .9573. 0 

Convergence in Distribution for Continuous Functions The final result involving 
the concept of convergence in distribution that we will present here facilitates 
identification of the limiting distribution of a continuous function, g(XnJ, when 
{Xn} is such that Xn -4 X. 

Theorem 5.3 Let Xn -4 X, and let the random variable g(XJ be defined by a function g(xJ 
that is continuous, except perhaps on a set of points assigned probability zero 
by the probability distribution of X. Then g(Xn J -4 g(XJ. 

Proof See the proof of Theorem 5.17 and R. Serfling (1980J, Approximation Theorems 
of Mathematical Statistics. New York: Wiley, pp. 24-25. • 

Thus, if Xn -4 X, the limiting distribution of g(Xn J is given by the distribu­
tion of g(XJ if g is continuous with probability 1 (with respect to the distribution 
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Example 5.17 

Example 5.18 

Definition 5.11 
Convergence 
in probability 

of X). Note that this result applies to a function of Xn that does not depend on 
any arguments other than Xn itself. In particular, the function g cannot depend 
on n or on any other sequence of real numbers or matrices whose elements 
change with n, so, for example, g(xn) = 3 + Xn would be admissible, while 
g(xn, n) = n1/2xn + 2n would not. 

Let {Zn} be such that Zn -4 Z ~ N(O, 1). It follows immediately, both from 
Theorem 5.3 and from results on linear combinations of normally distributed 
random variables, that g(Zn) = 2Zn + 5 -4 2Z + 5 '" N(5,4). One could also 
demonstrate via Theorem 5.3 that g(Zn) = Z~ -4 Z2 '" xi (since the square of 
a standard normal random is a X2 random variable). 0 

Let {Zn} be a sequence of bivariate random variables such that Zn -4 N(J.L, ~), 
where J.L = [2 3]' and ~ = [~ g]. Then it follows, both from Theorem 5.3 and from 
and results on linear combinations of normally distributed random variables, 
that g(Zn) = AZn -4 AZ ~ N(AJ.L, A~A'). For example, if 

A= [i ~ll thenAZn -4 ([ ~ll[ ~~ ~~D· 
One could also demonstrate via Theorem 5.3 that g(Zn) = (Zn - J.L)'~-I(Zn -
J.L) -4 (Z - J.L)'~-I(Z - J.L) ~ X~, based on the fact that the two independent, 
standard normal random variables, represented by the (2 x 1) vector ~-1/2(Z_ J.L), 
are squared and summed. 0 

Convergence in Probability 

Referring to a random sequence of scalars, {Yn }, the concept of convergence in 
probability involves the question of whether outcomes of the random variable 
Yn are close to the outcomes of some random variable Y with high probability 
when n is large enough. If so, the outcomes of Y can serve as an approximation 
to the outcomes of Yn for large enough n. Stated more rigorously, the issue is 
whether the sequence of probabilities associated with the sequence of events 
{(Yn, y): IYn - yl < s} converges to 1 for every choice of s > O. When Yn and Y 
are (m x k) matrices, convergence in probability of Yn to Y requires that each 
element of Yn converge in probability to the corresponding element of Y. The 
vector case is subsumed by letting k = 1. 

The sequence of random variables {Yn } converges in probability to the ran­
dom variable Y iff 

a. Scalar case: limn->"" P(IYn - yl < s) = 1 V s > 0, 

b. Matrix case: limn->oo P(IYn[i, i]- y[i, ili < s) = 1 V s > 0, V i and i. 

Convergence in probability will be denoted by Yn ~ Y, or plim Yn = Y, the 
latter notation meaning the probability limit of Yn is Y. 
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Convergence in probability imposes a restriction on the joint probability 
distribution of (Yn, Y) as n ~ 00. In particular, as n ~ 00, the joint distribution 
of (Yn, Y) approaches a degenerate distribution defined by linear restrictions as 
P(Yn = y) = 1. To motivate this interpretation, note that Def. 5.ll implies that 
for any arbitrarily small e > 0, 

P (Yn[i, i] E (Y[i, j] - e, y[i, i] + e)) ~ I, V i and i. 

It then follows from Bonferroni's probability inequality that 

P(Yn[i, i] E Iy[i, j] - s, y[i, i] + e), V i and j) ~ 1. 

Thus, outcomes of Yn are arbitrarily close to outcomes of Y with probability 
approaching 1 as n ~ 00. Therefore, for large enough n, observing outcomes of 
Y is essentially equivalent to observing outcomes of Yn ,4 which motivates the 
idea that the random variable Y can serve as an approximation to the random 
variable Yn' 

Note that the random variable Y in Def. 5.11 could be degenerate, Le., Y 
could be a number or matrix of numbers. Using the notation introduced in 
Def. 5.ll, we denote this situation by Yn ~ c, where c is a scalar, or matrix 
of constants. This situation is referred to as "Yn converges in probability to a 
constant." 

Example 5.19 Let {Yn} have an associated sequence of density functions, {in}' defined by in(Y) = 
n-1I(o'(y) + (1 - n- 1 )I(l)(Y), Note that 

lim P(IYn - 11 = 0) = lim(1- n-1) = I, 
n-+oo n-+oo 

so that limn ..... oo P(IYn - 11 < e) = 1 Ve > 0, and plim Yn = 1. Thus, Yn converges 
in probability to 1. 0 

Example 5.20 Let Y "-' N(O, I), and let {Zn} have an associated sequence of density functions, 
{in}' with EZn = 0 and var(Zn) = n-l. Define the random sequence {Yn} by 
Yn = Y + Zn, and assume Y and Zn are independent, so that EYn = 0 and 
var(Yn) = 1 + n-l. Then Yn ~ Y (or plim Yn = Y) since, Ve > 0, 

lim P(IYn - yl < e) = lim P(lznl < e) = I, 
n~oo n~oo 

which follows by an application of Markov's inequality. o 

4The reader may be wondering why we don't simply replace the uncountably infinite collection of probability statements 

P(IYn - yl < e), Ve > 0, 

in the definition of convergence in probability with the definition 

lim P(Yn = y) = 1. 
n-+oo 

The problem is that such a convergence definition would not be useful in the examination of any sequence of nondegenerate, 
continuous random variables, since P(Yn = y) = a V n => limn-+ oo P(Yn = y) = 0, no matter how close the outcomes of Yn become to 
outcomes of Y as n -+ 00. 
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Example 5.21 Let {Yn} be such that EYn = m and Cov(Yn) = n-1[i!]. Note by Markov's 
inequality that, V 8 > 0, 

Definition 5.12 
Probability limits 
of matrices (and 

vectors for k = 1) 

lim P(\Yn\I]- 21 < 8) ~ lim (1 _ 2/~) = I, 
n-+oo n-+oo 8 

lim P (IYn[2]- 31 < 8) ~ lim (1 - n-2
1

) = I, 
n-+oo n-+oo 8 

so that Yn[I]--4 2 and Yn[2]--4 3. From Def. 5.11, it follows that Yn --4 Y = m. 0 

Since Def. 5.11 states that plim Yn = Y iff plim Yn[i, j] = Y[i, j] V i, ;, 
Imxk) Imxk) 

it follows that "the probability limit of a matrix is the matrix of probability 
limits." Thus, just as for the expectation operator, the plim is an element wise 
operator. 

Let {Yn} be a sequence of (m x kJ random matrices. Then 

. [Yn[~' 1] Yn[~,kl ] [Plim ~n[I, 1] plim ~n[I'kl] 
phm: : =: :. 

Yn[m, 1] Yn[m,k] plimYn[m,l] plimYn[m,kl 

At this point we emphasize a fundamental difference in concept between 
convergence in distribution and convergence in probability (which will also 
apply when comparing convergence in distribution to other types of conver-
gence we will study). For the convergence in distribution concept Yn ~ Y, it 
is immaterial whether outcomes of the random variables in the sequence {Yn } 

are related in any way to outcomes of Y. In particular, it makes no difference 
whether Yn and Yare even referring to the same type of experiment. The con-
vergence Yn ~ Y states only that the random variables in the sequence {Yn } 
have a limiting distribution that is equal to the probability distribution of Y. 
There is no implication that the outcomes of Yn necessarily emulate the out­
comes of Y in any way as n ~ 00 (although they might). This is simply a result 
of the fact that random variables with the same probability distributions are 
not necessarily the same random variable. For example, X ~ fix) = (I/2)I(o,l}(x) 
could refer to tossing a fair coin where x = 1 is a head and x = 0 is a tail, while 
Y ~ h(y) = (1/2)I(o,l}(Y) could be referring to the rolling of a fair die, where Y = 0 
stands for a roll of 3 or less and y = 1 stands for a roll of 4 or more. Clearly, 
the PDFs of X and Yare equal, i.e., fit) = hit) V t. Just as clearly, outcomes of X 
and Yare not related in any sense, since whether x = 1 (or 0) has no bearing on 
whether y = I (or 0). Indeed, X and Y refer to two different experiments. 

The situation is quite different for convergence in probability, where the 
convergence referred to involves the outcomes of the respective random vari­
ables Yn and Y themselves, and not merely convergence of their probability 
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distributions. That is, convergence in probability implies that, for large n, out­
comes of the random variable Yn in the sequence {Yn } are close to the outcomes 
of Y with high probability, and for large enough n, observing an outcome of Y 
is a very good approximation to observing the corresponding outcome of Yn• 
Thus, for large enough n, outcomes of the experiment represented by Yn can be 
treated essentially as outcomes of the experiment represented by Y. 

It is useful to note that if a real-valued sequence of numbers, or matrices, 
{an} converges lin the sense of real analysis) to a given number, or matrix, i.e., 
an -+ a, then it can also be stated that plim an = a, since {an} can be interpreted 
as a sequence of degenerate random variables. 

Theorem 5.4 Let {an} be such that an -+ a . Then pliman = a. 
(mxk) (mxk) 

Proof See the proof of Theorem 5.16. • 
As an illustration of Theorem 5.4, note that in Ex. 5.5.a, we could write 

plimYn = 3, or in Ex. 5.6.b, we could write plim Yn = [~~]. 

Convergence in Probability for Continuous Functions When a sequence of random 
variables is defined via a continuous function, g!Xn), of the random variables in 
another sequence {Xn }, the plim operator acts analogously to the lim operator 
of real analysis !note the analogy to Theorem 5.3). 

Theorem 5.5 Let Xn -4 X, and let the random variable g!X) be defined by a function g!x) 
that is continuous, except perhaps on a set of points assigned probability zero 
by the probability distribution of X. Then g!Xn) -4 g!X), or equivalently, 
plimg!Xn) = g!plimXn). 

Proof See the proof of Theorem 5.17 and R. Serfiing, Approximation Theorems, p. 24-

Example 5.22 

25. • 

Theorem 5.5 says that for functions that are continuous with probability 1 
!with respect to the distribution of X), the probability limit of the function is the 
function of the probability limit. The theorem can greatly simplify finding the 
probability limits of complicated functions of X n , especially when convergence 
is to a constant. 

a. Let {Xn} be a positive-valued random variable such thatXn -43. Then Yn = 
g!Xn) = In!Xn) + !XnJl/2 is such that plim Yn = plimg!Xn) = g!plimXn) = 
In!plim!Xn)) + !plimXnJl/2 = In(3) + 3 1/2 = 2.8307. 

h. Let {Xn} be such that Xn -4 X '" NIl0j, I), and let Yn = g!Xn ) = X~Xn. 
(kxl) (kxl) 

Then Yn -4 g!X) = X'X '" X~. 0 
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Through examining a number of special cases of Theorem 5.5, we can es­
tablish a catalogue of some useful properties of the plim operator. 

Theorem 5.6 (plim properties) For conformable Xn, Yn, and constant matrix A. 

a. plim AXn = A( plim Xn)i 
h. plim L~l Xn[i] = L~l plimXn[i] (the plim of a sum = the sum of the 

plims)i 
c. plim n~l Xn[i] = n~l plimXn[i] (the plim of a product = the product of 

the plims); 
d. plimXn Yn = (plimXnH plim Yn); 
e. plim X;;-l Y n = ( plim Xn r 1 plim Y n (plim X n being nonsingular). 

Proof All of the results follow from Theorem 5.5 and from the fact that the functions 
being analyzed are continuous functions. Note in particular that the matrix 
inverse function is continuous at all points for which the matrix is nonsingu­
~ . 

Example 5.23 Let A = [i~]' and let {Xnl be such that plim Xn = [~]. Then, plim AXn = 
AplimXn = [~], plim(Xn[l] + Xn[2]) = plimXn[l] + plim Xn [2] = 2 + 5 = 7, and 
plim(Xn[l]. Xn[2]) = plimXn[l]. plimXn[2] = 2·5 = 10. 0 

Example 5.24 Let {Ynl be such that plim Yn = n iJ and {Xnl be such that plimXn = [~ :]. Then 

Example 5.25 

plim Xn Y n = (plim Xn Hplim Y n) = [~ ~ ] [ ~ i ] = [~ ~ l 
plim X;; I Yn = (plimXn)-1 plim Yn = [!2 31 ] [~ iJ = [-} !ll 0 

Let {Xn) be such that plimXn = [~~] and {Yn) be such that Yn --4 Y "-
(2xl) (2xl) 

N([O], I). Then 

Xn Yn --4 (plimXn)Y ""' N ([0], [~! ~6])' 

X-Iy P (1· X )-Iy N ([0] [.3125 -.2188 J) n n --'-+ P 1m n "- '-.2188 .2031 . o 

Relationships Between Convergence in Probability and in Distribution There are a 
number of useful results on convergence in distribution that also incorporate 
the convergence in probability concept. One such result has use in situations 
where it is relatively easy to show (or it is known) that Xn -4 X and (Xn -
Yn ) --4 [0] but where it is more difficult to demonstrate directly that Yn -4 X. 

Theorem 5.7 Let {(Xn,Yn)) be a sequence of pairs of (m x k) random matrices for which 
Xn -4 X and (Xn - Y n) --4 [0]. Then Yn -4 X. 
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Proof Y. S. Chow and H. Teicher (1978), Probability Theory, New York: Springer-
Verlag, New York, p. 249. • 

Example 5.26 Let (Xn) be such that Xn '" N(O, (n - 1)/n), so that Xn -4 X '" N(O, 1). Let 
{Zn} be such that Zn '" X;, with Xn and Zn independent, and define {Yn} by 
Yn = (1 + n-I)Xn + n-1Zn - 1. Then, by Theorem 5.6, Yn -4 X '" N(O, 1). 
To see this, first note that Xn - Yn = 1 - n-1(Xn + Zn), so that plim(Xn -
Yn ) = 1 - plim(Xn/n) - plim(Zn/n) (since the plim of a sum is the sum of the 
plims). Now, note that E(Xn/n) = 0 V nand var(Xn/n) = n-3 (n - 1) ---+ 0 implies 
plimXn/n = 0 by Chebyshev's inequality. Similarly, since E(Zn/n) = 1 V n 
and var(Zn/n) = (2/n) ---+ 0, plim(Zn/n) = 1 by Chebyshev's inequality. Then 
plim(Xn - Yn ) = 0, and since Xn -4 X '" N(O, I), Yn -4 X '" N(O, I), by 
Theorem 5.7, with m = k = 1. 0 

The following corollary to Theorem 5.7 indicates that convergence in prob­
ability of a sequence of random variables implies convergence in distribution 
of the sequence. 

Corollary 5.1 Yn -4 Y => Yn -4 Y. 

Proof This follows immediately from Theorem 5.7 upon defining Xn = X Y 
"In. • 

Therefore, one way of discovering the limiting distribution of a sequence of 
scalar or multivariate random variables is to discover the probability limit of the 
sequence, in which case the limiting distribution is identical to the distribution 
of the random variable representing the probability limit. 

Example 5.27 Let {Yn } be defined by Yn = (2+n-1)X +3, where X '" N(I,2). Using properties of 
the plim operator, it follows that plim Yn = plim(2+n-1)X +plim(3) = 2X +3 '" 
N(S, 8). Then, Corollary 5.1 implies that Yn -4 N(S, 8). 0 

The converse of Corollary 5.1 is generally not true, as indicated in the 
discussion immediately following Def. 5.12. However, in the special case where 
a sequence of random variables converges in distribution to a constant, the 
converse of Corollary 5.1 does hold. 

Theorem 5.8 Yn -4 c => Yn -4 c. 

Proof Let {Yn } be a sequence of scalar random variables and suppose Yn -4 c, so that 
Fn(Y) ---+ F(y) = IA(y), where A = {y: Y 2: c}. Then as n ---+ 00, PIYn - cl < e-) 2: 
Fn(c + r) - Fn(c - r) ---+ I, for r E (0, e-) and "Ie-> 0, which implies that Yn -4 c. 
The multivariate case can be proven similarly using marginal CDFs and the 
elementwise nature of the plim operator. • 
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Thus, in the case of convergence to a constant, the notions of convergence 
in probability and convergence in distribution are equivalent. Otherwise, con­
vergence in probability is the more stringent type of convergence. 

The concepts of convergence in distribution and convergence in probability 
can be combined to produce a very versatile extension of Theorem 5.3 that is 
useful for deriving the limiting distribution of a much wider variety of func­
tions of X n. In particular, with reference to a random sequence {Xn} for which 
Xn --4 X, the extension facilitates the discovery of the limiting distribution 
for a function of Xn that is continuous with probability 1 (with respect to the 
distribution of X) when the function also depends on a convergent sequence of 
numbers or matrices {an}, and/or on a sequence of other random variables {Yn} 
that converges in probability to a constant matrix y. 

Theorem 5.9 Let {Xn}, {Yn}, and {an} be such that Xn --4 X, Yn -4 y, and 
Ikxm) Ibm) I£xq) (fxq) 

an -+ a. Let the set B be such that the probability distribution of X as-
lixp) I;xp) 

signs Pix E B) = I, and let the random variable g(Xn,Yn,an) be defined by a 
(possibly vector) function g that is continuous at every point in B x y x a. Then 
g(Xn,Yn,an) --4 g(X,y,a). 

Proof This follows from the proof in V. Fabian and J. Hannan (1985), Introduction 
to Probability and Mathematical Statistics. New York: John Wiley, p. 159, and 
from Theorem 5.4. • 

Example 5.28 

Theorem 5.9 reduces the problem of identifying the limiting distribution of 
g(Xn, Yn, an) to the problem of identifying the distribution of g(X, y, a). Note that 
either of the arguments Yn or an could be a ghost in the function g(Xn, Yn, an), 
meaning that the value of the function g is not affected by Y 11 or an (in which 
case Yn or an could be completely ignored in Theorem 5.9). 

Let {Zn} be a sequence of bivariate random variables such that Zn --4 Z ~ 
N(/L, :E), where /.L = [23]' and :E = [~g]. Let {/Ln} be any sequence of (2 x 1) 
vectors such that /.Ln -+ /L (e.g., /Ln = [2 + n- I 13/(1 + exp(-n)lJ' and let :En be 
any sequence of nonsingular (2 x 2) matrices such that :En -4 :E, (for example, 

-I ] 
9 ~ n-I . 

Then it follows from Theorem 5.9 that g(Zn, :En, /Ln) = (Zn - /Ln)':E;;I(Zn -
/Ln) --4 (Z - /L)':E-1(Z - /.L) = g(Z,:E, /.L) ~ X~ (based on the fact that two 
independent, standard, normal random variables, represented by the (2 xl) 
vector :E-1/2(Z - /.L), are squared and summed). Compare the generality of this 
result to the result found in Ex. 5.18. 0 
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Example 5.29 LetXn -4 X '" 0-1 exp(-x/O)I(o,ooJ(X) (i.e., exponential with parameter 0), Yn --4 
4, and an -+ 2. Then Zn = g(Xn, Yn, an) = (YnJ2Xn/an -4 42X/2 = SX = 
g(X,4,2J '" Gamma (l,SOJ. 0 

A number of special cases of Theorem 5.9 provide a number of useful re­
sults that are collectively referred to as Slutsky's theorems. The results refer to 
convergence in distribution of sums and products of random matrices. 

Theorem 5.10 (Slutsky's Theorems) Let Xn -4 X and Yn --4 c. Then, for conformable Xn 
and Yn , 

a. Xn + Yn -4 X + c, 
h. YnXn -4 cX, 
c. y;;IXn -4 c- l x (if c- l existsJ. 

Proof Each function on the left-hand side of (aJ, (b), and (cJ is of the form g(Xn, Yn , an) 
and satisfies the conditions of Theorem 5.9, with an being a ghost in the defi­
nition of the function g. • 

Definition 5.13 
Order of magnitude 

in probability 

Order of Magnitude in Probability It is sometimes useful to be able to character­
ize or compare random sequences and/or terms in a random sequence relative 
to their order of magnitude in addition to, or in lieu of, any examination of 
convergence in probability of the sequences involved. The order-of-magnitude 
concept is especially useful in sorting out which random terms in the defini­
tion of a random sequence make dominant contributions to the magnitude of 
the sequence outcome and which terms are irrelevant as n increases. The order 
of magnitude of a random sequence, in terms of probability, is described in the 
following definition. The concept can be thought of as a random or probabilistic 
counterpart to the order-of-magnitude concept in real analysis (recall Def. 5.8J. 

Let {Xn} be a sequence of random scalars, and let {Wn} be a real-valued, 
random matrix sequence. 

a. Op(nkJ: The sequence {Xn} is said to be at most of order nk in probability, 
denoted by Op(nk J, iff for every e > 0 there exists a corresponding positive 
constant c(e) < 00 such that P(n-k IXn I :::: c(e)) ~ 1 - e,V n. 

b. op(nk): The sequence {Xn} is said to be of order smaller than nk in prob. 
ability, denoted by op(nk), iff n-kXn --4 O. 

c. If {Wn[i, ill is Op(nk) (or op(nk)) V i and i, then the random matrix sequence 
{Wn} is said to be Op(nk) (or op(nkJ). 

Given Def. 5.13, a random sequence of scalars, {Xn}, is Op(nk) iff one can 
always find a finite interval within which the outcomes of n-kXn will occur 
with probability arbitrarily close to (but not necessarily equal to) 1 for each 
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term in the sequence. The random sequence {Xn} is op(nk ) iff n-k Xn converges in 
probability to zero. If a random sequence is Op( 1) == Op(nO), the random sequence 
is said to be bounded in probability. Note that the ranges of the random variables 
in a sequence need not be finite for the sequence to be Op(nk), or even Opll), as 
the next example illustrates. 

Example 5.30 Let {Xn} be such that Xi '" N(O, I), V i, with all terms in the sequence being 
independent random variables. Define {Zn} as Zn = L:7=1 Xi. Then {Xn} itself is 
Op(l) and {Zn} is Op(n l /2 ). To see this, first note that since Xi '" N(O, 1), there 
always exists a constant c(c) > 0 large enough such that f~~~~1 N(x; 0, 1 )dx ::: 1-c 
for any choice of c > 0, so that {Xn} is Op(l) (Le., {Xn) is bounded in probability). 
Now, note that n- I /2Zn = n- I /2 L:7=1 Xi '" N(O, I), whence it follows from the 
preceding argument that {Zn} is Op(nl/2). It also follows that {Xn} is op(nO) and 
{Zn} is op(nl/2+8) V 0> O. Finally, in the sequence defined by Yn = n- I/2(Xn +Zn), 
note that n- I/2Xn is op(l), while n- I /2Zn is Opll), implying that as n ~ 00, 

n- I /2Zn is the dominant random term in the definition of Yn while n- I / 2X n is 
stochastically irrelevant as n ~ 00. 0 

Rules for determining the order of magnitude of the sum or product of 
sequences of random variables are analogous to the rules introduced for the 
case of sequences of real numbers or matrices and will not be repeated here. 
In particular, Lemmas 5.2 and 5.3 apply with 0 and a changed to Op and op, 
respectively. The reader should also note the following relationship between 0 
(or 0) and Op (or op) for sequences of real numbers or matrices. 

Theorem 5.11 Let {an} be a sequence of real numbers or matrices. Then if {an} is O(nk) (or 
o{nk)) then {an} is Op(nk ) (or op(nk )). 

Proof This follows directly from definitions upon interpreting the sequence of real 
numbers or matrices as a sequence of degenerate random variables or random 
matrices. Details are left to the reader. • 

Example 5.31 Let {xn} be O(n l ), {Yn} be Op(n2), and {Zn} be Op(nl). Then {xn Yn} is Op(n3 ), 

{xn + Yn +Zn} is Op(n2), {n-Ixn} is Op(I), {n-2xn(Yn +Znll is Op(nl), {xnYnZn} is 
Op(n4), and {n-5xnYnZ n} is op(l). 0 

Convergence in Mean Square (or Convergence in Quadratic Mean) 

Referring to a random sequence of scalars {Yn} the concept of convergence in 
mean square involves the question of whether, for some random variable Y, 
the sequence of expectations {E(Yn - y)2} converges to zero as n ~ 00. Since 
E(Yn - y)2 can be interpreted as the expected squared distance between outcomes 
of Yn and outcomes of Y, convergence in mean square implies that outcomes 
of Yn and Yare "close" to one another for large enough n, and arbitrarily close 
when n ~ 00. When Yn and Yare m x k matrices, the question of convergence 
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in mean square concerns whether the preceding convergence of expectations 
to zero occurs elementwise between corresponding entries in Yn and Y. 

Definition 5.14 
Convergence in mean 

square (or convergence 
in quadratic mean) 

The sequence of random variables {Yn } converges in mean square to the 
random variable, Y, iff 

a. Scalar case: limn ..... oo E(Yn - y)2 = 0, 

h. Matrix case: limn ..... oo E(Yn[i, il- Y[i, iJ)2 = 0, V i and i. 

Convergence in mean square will be denoted by Yn ~ Y. 

As in the case of convergence in probability, convergence in mean square 
imposes restrictions on the characteristics of the joint probability distribution 
of (Yn , Y) as n ~ 00. In particular, first- and second-order moments of cor­
responding entries in Yn and Y converge to one another as indicated in the 
necessary and sufficient conditions for mean square convergence presented in 
the following theorem. 

Theorem 5.12 Yn ~ Y iff V i and i: 

a. EYn[i,i1 ~ EY[i,il, 
h. var (Yn[i,iJ) ~ var (Y[i,i]), 
c. cov (Yn[i,il, Y[i,il) ~ var (Y[i,iIl. 

Proof We provide a proof for the scalar case, which suffices to prove the matrix case 
given the elementwise definition of mean-square convergence (Def. S.14.b). 
Necessity: 

a. EYn ~ EY follows from the fact that 

IEYn - EYI = IE(Yn - YJI :::: EIYn - YI :::: [EIYn - YI2j1/2 ~ O. 

To see this, note that the first inequality follows from the fact that (Yn -
y) :::: IYn - YI. Regarding the second inequality, note that g(z) = Z2 is a 
convex function on R, and letting Z = IYn - YI, Jensen's inequality implies 
(EIYn - YI)2 :::: EIYn - YI2 (recall g(EZ) :::: Eg(Z)). Convergence to zero occurs 
because EIYn - YI 2 = E(Yn - y)2 ~ 0 by convergence in mean square. 

h. EY; = E(Yn - y)2 + Ey2 + 2E[Y(Yn - Y)], and since by the Cauchy-Schwartz 
inequality, IE[Y(Yn - Y)jl :::: [Ey2E(Yn - y)2]l/2, it follows that 

E(Yn - y)2 + Ey2 - 2 [Ey2E(Yn - y)2]1/2 :::: EY; :::: E(Yn - y)2 + Ey2 + 2 [Ey2E(Yn - Yff/2. 

Then, since E(Yn - y)2 ~ 0 by mean-square convergence, EY; ~ Ey2. It 
follows that var(Yn) ~ var(¥), since var(Yn) = EY; - (Eyn )2 ~ Ey2 - (Ey)2 = 
var(Y). 
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c. First note that 

E(Yn - y)2 = EY~ - 2EYnY + Ey2 

= var(Yn) + (Eyn)2 - 2 [cov(Yn, Y) + EYnEY] + var(Y) + (Ey)2. 

If E(Yn - y)2 ~ 0, then by (a) and (b), the preceding equality implies 
cov(Yn, Y) ~ var(Y). 

Sufficiency: 
From the expression defining E(Yn - y)2 in the preceding proof of the ne­

cessity of (c), it follows directly that (a), (b), and (c) => E(Yn - y)2 ~ 0, which 
implies Yn -E4 Y. • 

The conditions in Theorem 5.12 simplify when Y is a degenerate random 
variable equal to the constant matrix, c. 

Corollary 5.2 Yn -E4 c iff EYn[U] ~ c[i,i] and var (Yn[i,iJ) ~ 0 V i and i. 

Proof This follows directly from Theorem 5.12 upon letting Y = c, and noting that 
var(c[i, ill = [0] and cov(Yn[i, ;], c[i, ill = [0]. • 

Example 5.32 Let EYn = [21:a:_~I) and Cov(Yn) = n-2[i :]. Since EYn ~ [iJ and Diag(Cov(YnJ) = 

[i~~~] ~ [g), it follows by Corollary 5.2 that Yn -E4 [iJ, which in turn implies 

by Theorem 5.12 that Yn -4 [iJ and Yn --4 [iJ. 0 

In addition to the convergence of second-order moments, convergence in 
mean square implies that the correlation between corresponding entries in Yn 
and Y converge to 1 if the entries in Y have nonzero variances. 

Corollary 5.3 Yn -E4 Y => corr (Yn[i,il, Y[i,i]) ~ 1 when var (Y[i,il) > 0, V i,i. 

Proof This follows directly from Theorem 5.12 since in the scalar case, 

cov(Yn, Y) var(Y) 
corr(Yn , Y) = [var(Yn)var(Y)Jl/2 ~ var(Y) = 1. 

The matrix case follows by applying the preceding result elementwise. • 

The corollary indicates that if Yn -E4 Y, and if none of the entries in Y is de­
generate, then corresponding entries in Yn and Y tend to be perfectly positively 
correlated as n ~ 00. It follows that as n ~ 00, the outcomes of Yn[i, il and Y[i, ;1 
tend to exhibit properties that characterize a situation in which two random 
variables have perfect positive correlation and equal variances, including the 
fact that P(IYn[i, i]- y[i, i]1 < e) ~ 1 Ve > 0 (recall the discussion of correlation 
in Chapter 3). If Y[i, i] were degenerate, then although the correlation is unde­
fined, the preceding probability convergence result still holds since, in this case, 
Yn[i, il tends toward a degenerate random variable (var(Yn[i, ill ~ 0) having an 
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outcome equal to the appropriate scalar value of y[i, jJ. Thus, if Yn -2!4 Y, then 
outcomes of Yn emulate outcomes of Y ever more closely as n -+ 00, closeness 
being measured in terms of probability as well as expected squared distance. 

From the preceding discussion, the reader will have anticipated the next 
result. 

Theorem 5.13 Yn -2!4 Y =} Yn -4 Y =} Yn -!4 Y. 

Proof (scalar case-matrix case by elementwise extension) Note that (Yn - y)2 is 
a nonnegative-valued random variable, and letting a = e2 > 0, we have by 
Markov's inequality that 

P((Yn - y)2 ~ e2) ::: E(Yn - y)2/e2. 

Thus, PIIYn - yl ::: e) ::: E(Yn - y)2/e2, or P(IYn - yl < e) ::: 1 - E(Yn - y)2/e2. 
By mean square convergence, E(Yn - y)2 -+ 0, so that 

limP(IYn-YI<e)=1 Ye>O. 
n-+oo 

Thus, plim Yn 
lary 5.1. 

= Y. Convergence in distribution follows from Corol­

• 
Theorem 5.13 indicates that convergence in mean square is a sufficient con­

dition for both convergence in probability and convergence in distribution. The 
result of the theorem can be quite useful as a tool for establishing the latter two 
types of convergence in cases where convergence in mean square is relatively 
easy to demonstrate. Furthermore, the theorem allows convergence in probabil­
ity or in distribution to be demonstrated, even in cases where the distributions 
of Yn and/or Yare not fully known, so long as the appropriate convergence 
properties of the relevant sequences of expectations can be established. 

Example 5.33 Let Y '" N(O, I), EYn = 0 Y n, var(Yn) -+ I, and cov(Yn, Y) -+ 1. Then, since 
(recall the proof of The orem5.12.c) E(Yn - y)2 = var(Yn)+var(Y)-2cov(Yn , Y)+ 
(EYn - Ey)2 -+ 0, it follows that Yn -2!4 Y, which implies that Yn -4 Y, and 
Yn -!4 N(O, 1). Note that while we did not know the forms of the probability 
distributions associated with the random variables in the sequence {Yn }, we 
can nonetheless establish convergence in probability and in distribution via 
convergence in mean square. 0 

The following example demonstrates that convergence in mean square is 
not a necessary condition for convergence in probability (or in distribution), so 
that convergence in probability (or in distribution) does not imply convergence 
in mean square. 

Example 5.34 Yn -4 Y and/or Yn -4 Y =/} Yn ~ Y 

Let {Yn} be such that P(Yn = 0) = 1 - n-2 and P(Yn = n) = n-2 • Then 

lim P(Yn = 0) = I, n->DO 
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so that plim Yn = 0 and Yn ~ O. However, E(Yn -0)2 = 0(I-n-2 )+n2(n-2 ) = 1 
m 

V n, so that YnfrO. 0 

As a further illustration of differences between convergence in mean square 
and convergence in probability or in distribution, we now provide an example 
showing that convergence in probability and convergence in distribution do not 
imply convergence of the first- and second-order moments of Yn and Y. 

Example 5.35 Yn -4 Y and/or Yn ---4 Y:fo E Y~ -+ E Y' 

Definition 5.15 
Almost sure 

convergence (or 
convergence with 

probability 1 

Let {Yn} be such that Yn '"V fn(Y) = (l-n- 1 )I{ody)+n-1 I{n}(Y), and note that fn(Y) -+ 

fly) = I{odY) V y, and thus Yn ~ Y '"V fly). Furthermore, since limn-H,o P(!Yn -01 < 

8) = 1 V 8 > 0, then Yn -4 O. Now, note that EYn = 1 V n and EY~ = n V n, 
but EY = 0 and Ey2 = 0 when Y '"V f(Y). Thus, neither Yn -4 Y nor Yn ~ Y 
implies that EYn -+ EY or EY; -+ Ey2. 0 

In summary, convergence in mean square is a more stringent type of conver­
gence than either convergence in probability or convergence in distribution. In 
addition to implying the latter two types of convergence, convergence in mean 
square also implies convergence of first- and second-order moments about the 
origin and mean and convergence to 1 of the correlation between corresponding 
entries in Yn and Y (when var(Y) > 0). 

* Almost-Sure Convergence (or Convergence with Probability 1) 

Referring to a sequence of random variables {Yn } which could be scalars or 
matrices, the concept of almost-sure convergence involves the question of 
whether, for some random variable Y, the outcome of the random sequence 
converges to the outcome of Y with probability 1. That is, does P(Yn -+ y) = 
P(limn--+ oo Yn = y) = I? 

The sequence of random variables {Yn } converges almost surely to the ran­
dom variable Y iff 

a. Scalar case: P(Yn -+ y) = P(limn--+oo Yn = y) = I, 
h. Matrix case: P(Yn[i, jJ -+ y[i, ill = P(limn--+ oo Yn[i, jJ = y[i, ill = I, V i and j. 

Almost-sure convergence will be denoted by Yn 24 Y, or by aslim Yn = Y, 
the latter notation meaning the almost-sure limit of Yn is Y. 

Almost-sure convergence is the stochastic counterpart to the real-analysis 
concept of the limit of a sequence. Almost-sure convergence accommodates 
the fact that when dealing with sequences of nondegenerate random variables, 
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more than one sequence outcome (perhaps an infinite number) is under consid­
eration for convergence. If Yn ..!4 Y, then a real-analysis-type limit is (essen­
tially) certain to be achieved by outcomes of the sequence {Yn}, the limit being 
represented by the outcome of Y. If Y is degenerate and equal to the constant 
c, then Yn ..!4 c implies that the outcomes of {Yn} are (essentially) certain to 
converge to the value c. 

Note that almost-sure convergence is defined in terms of an event involving 
an infinite collection of random variables contained in the sequence {Yn} and 
in Y, the event being that the sequence of outcomes Yl, Y2, Y3, ... has a limit 
that equals the outcome y. This is notably different than in the case of either 
convergence in probability or convergence in mean square, which both relate 
to sequences of marginal probability distributions and outcomes of bivariate 
random variables (Yo, Y) for n = 1,2,3, .... Through counterexamples, we will 
see that neither of the latter two types of convergence implies that limo->oo Yn = 
Y occurs with probability 1. 

In order to clarify the additional restrictions imposed on the sequence {Yn} 
by almost-sure convergence relative to convergence in probability, we provide 
an intuitive description of why Yn -4 c does not imply that limn->oo Yn exists 
with probability 1. Note that for a sequence of outcomes of {Yo} to have a 
limit, c, it must be the case that, V e > 0, there exists an integer N(s) such 
that for V n ~ N(e), IYn - cl < e (recall De£. 5.2). The definition of almost-sure 
convergence ensures that the outcomes {Yo} are generated in such a way that 
the limit is achieved with probability 1, and so the preceding restriction on 
the outcomes of {Yo} will be met with probability 1 if Yo ....!!4 c. However, if 
Yn -4 c, so that P(IYo - cl < e) -+ I, Ve > 0, then all that can be said is that, for 
any fixed large value of n, the probability that Yn is close to c is high, but not 
necessarily equal to 1. Since Yn -4 c does not even imply that P(IYn -cl < e) = 1 
for any fixed value of n, it certainly does not imply that there exists an N(e) for 
which P(IYo - cl < e, V n ~ N(e)) = 1. Thus, the existence of a limit for {Yn} with 
probability 1 is not implied by Yn -4 c. 

An alternative and equivalent characterization of almost-sure convergence 
that follows directly from the fundamental definition of a limit (De£. 5.2) is 
presented in the next theorem. The alternative characterization facilitates both 
comparisons with convergence in probability and proofs of other results involv­
ing the concept of almost-sure convergence. 

Theorem 5.14 (Alternative Characterization of Almost-Sure Convergence (Scalar Case)) 
P( limo->oo Yn = y) = 1 '¢> limo->oo P(IYi - yl < e,i ~ n) = I,Ve> O. 

Proof Necessity: limo->oo Yo = Y implies that, for every e > 0, there exists an integer 
N(e) such that IYi-YI < e V i ~ N(e) (recall De£. 5.2). It follows that P(limn--> 00 Yn = 
y) :s P(IYi - yl < e, i ~ N(e)) V e > O. If Yn ..!4 Y, then the left-hand side of the 
preceding inequality is I, which implies that the right-hand side is also 1. It 
follows that, for V e > 0, limn->oo P(JYi - yl < e, i 2: n) = 1 since the values of 
P(JYi - ylJ < e, i 2: n) must all be ones for n large enough if limn->oo Yn = y. 

Sufficiency: R. Serfling, Approximation Theorems, pp. 6-7. • 
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The alternative characterization is extended to cases where Yn and Yare 
matrices, by applying the characterization elementwise to the respective en­
tries in Y n and Y. Theorem 5.14 leads to a relatively straightforward demon­
stration that almost-sure convergence implies convergence in probability. 

Theorem 5.15 Yn 24 Y:::} Yn -4 Y. 

Proof Suppose Yn 24 Y. Then V e > 0, limn400 PUYi - yl < e, i 2: n) = 1 by Theorem 
5.14. Since IYi - yl < e,i 2: n:::} IYn - yl < e, it follows that 

P(IYi - yl < e, i 2: n) ::::: P(IYn - yl < ell. 

Then since the left-hand side has a limiting value of I, Ve > 0, by almost-sure 
convergence, it follows that the right-hand side has a limiting value of I, Ve > 0, 
implying convergence in probability. • 

The converse of Theorem 5.15 is not true, that is, convergence in proba­
bility does not imply almost-sure convergence. Furthermore, convergence in 
mean square and convergence in distribution also do not imply almost-sure 
convergence. These facts are demonstrated by the following counterexample. 

Example 5.36 Yn ~ Y and/or Yn ~ Y and/or Yn -4 Y::fo Yn ~ Y 

Let {Yn } be a sequence of independent random variables such that Yn ""' In(Y) = 
(1 - n-1 )I(o)(Y) + n- 1 I(l'(y). Since In(Y) ~ I(Y) = I(o'(y), {Yn } converges in distri­
bution to the constant 0, and thus it is also true that Yn -4 o. Furthermore, 
since EYn = n- 1 -4 0 and var(Yn ) = n- 1 - n-2 -4 0, it follows that Yn .....!!4- O. 
However, it does not follow that Yn 24 O. To see this, note that VeE (0, 1) and 
V integer s > n, 

Therefore, 

n-l n n+l 
= -n- . n + 1 . n + 2 . 

n-l 
= -- ~ 0 as s -4 00. 

S 

lim POYil < e, i 2: n) = 0 
n->oo 

s-1 
s 

since the probability value equals 0 V n 2: I, and so the limit of the sequence of 
as 

probability values equals 0 and not 1. Thus, YnfrO. 0 

It is also true that almost-sure convergence does not imply convergence in 
mean square, as the following counterexample demonstrates. 
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Example 5.37 Yn 24- Y =fo Yn -.!!4. Y 

Let {Yn} be a sequence of independent random variables such that Yn '" fnlY) = 
11 - n-2 )I(o}ly) + n-2I(nJly). Note that V 8 E 10, n) and V integer s > n, 

ssp -1 
PI!Yil < 8,n::: i::: s) = n (1 - r2) = n -'2-

. . 1 
l=n l=n 

(n - l)(s + 1) 
= 

so that 
n-l 

PIIYil < 8,i 2: n) = --. 
n 

Then, V 8> 0, 

lim PI!Yil < 8, i ::: n) = I, n-+oo 

ns 

so that Yn 24 O. Now, note that EYn = n-1 --+ 0, but varlYn) = 1 - n-2 fr O. 
m 

Therefore, Ynfr0 by Corollary 5.2. 0 

Similar to the case of convergence in probability (Theorem 5.4), it is useful 
to note that if a real-valued sequence of numbers, or matrices, converges (in the 
sense of real analysis) to a given number, or matrix, i.e., an --+ a, then it can 
also be stated that an 24 a. 

Theorem 5.16 Let {an} be such that an --+ a. Then an 24 a. 

Proof The proof is immediate from the definition of almost sure convergence, since 
if anti, il --+ ali, iI V i and i, then P(limn-+oo an = a) = I, which implies that 
an ...!4 a. • 

Similar to the cases of convergence in probability and convergence in distri­
bution, a useful result for establishing almost-sure convergence of continuous 
functions of Xn, when Xn ...!4 X, can be stated as follows (recall Theorems 5.3 
and 5.5). 

Theorem 5.17 Let Xn ...!4 X, and let the random variable g(X) be defined by a function glx) 
that is continuous, except perhaps on a set of points assigned probability zero 
by the probability distribution of X. Then g(Xn) ...!4 g(X) or, equivalently, 
aslimg(Xn) = g( aslimXn). 

Proof Assume that Xn ...!4 X. For outcomes of {Xn} for which Xn --+ x and g is contin­
uous at x, it must be the case that g(xn) --+ g(x) (recall Def. 5.6). Then defining 
the sets 

A = (((xn}, x): Xn --+ x} and B = {!{xn}, x): g is continuous at x}, 
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Example 5.38 

Example 5.39 

it follows that 

Plglxn ) ~ glx)) 2: PIA n B) 2: 1 - PIA) - PIB) = 1 

since PIA) = 0 by almost-sure convergence of {Xn} to X, and PIB) = 0 since g is 
continuous with probability 1. Thus glXn) 24 g(X). • 

Note that all of the properties of the plim operator listed in Theorem 5.6 apply 
equally well to the aslim operator since they can all be justified as special cases 
of Theorem 5.17. 

Let Xn 24 [7]. Then gdXn) = Xn[2l!Xn[1] 24 1/2, g2lXn) = Xn[2]- Xn[l] 24 
-1, andg3 lXn) =g2(Xn)gdXn ) 24 -1/2. 0 

Let Xn 24 X, where X[l] = 3 and X[2] '" N(l, 2). Then g(Xn) = Xn[1](l + 
(2xll (2xll 

Xn[2]J 24 3(1 + X[2]J '" N(6, 18). 0 

The final result we present in this subsection provides a necessary and 
sufficient condition for almost-sure convergence to occur. The criterion will be 
useful in proving strong laws of large numbers, which we will examine shortly. 

Theorem 5.18 (Cauchy's Criterion for Almost-Sure Convergence) A sequence of random 
variables {Yn } converges almost surely to some (possibly degenerate) random 
variable iff 

lim Plmax IYm - Ynl < e) = 1, Ve > 0.5 
n-+oo nl>n 

Proof Y. S. Chow and H. Teicher (1978), Probability Theory. New York: Springer-
Verlag,p.68. • 

The Cauchy criterion states that for almost-sure convergence to occur, it is 
necessary and sufficient that the distance between the outcomes of the nth term 
in the random sequence and all subsequent terms beyond the nth be arbitrarily 
small with probability approaching 1 as n ~ 00. This makes intuitive sense, 
since for {Yn} to converge to some value, eventually Ii.e., for all values of n 
large enough) all the values in the sequence must be arbitrarily close to the 
limit value and, thus, arbitrarily close to each other. 

In summary, almost-sure convergence is a more stringent type of conver­
gence than either convergence in probability or convergence in distribution. In 
addition to implying the latter two types of convergence, almost-sure conver­
gence also implies that the sequence of outcomes of {Yn } converges to a limit 
represented by an outcome of Y with probability 1. 

SIn the event that max does not exist, max is replaced by sup (supremum, i.e., the smallest upper bound) in the statement of the 
theorem. 
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Figure 5-5 
Convergence mode 

relationships. 

IYn LY I ~ lyniLy I 
11' 

(Y= c) 

Relationships Between Convergence Modes 

Gathering the results presented for the four types of random-variable conver­
gence discussed in this section, we can summarize the relationships between 
the various types of convergence in Figure 5.5. 

5.4 laws of large Numbers 

In this section we examine results concerning the convergence behavior of the 
specific sequence of scalar random variables {Xn} whose nth term is defined by 

where Xi is the ith term in another random sequence {Xn}. Thus, {Xn} is a se­
quence whose nth term is given by the simple average of the first n terms in the 
sequence {Xn }. In the context of a sample of observations from an experiment, 
Xn will be referred to as the sample mean-a context that will be examined in 
Chapter 6. A convergence result for {Xn } that uses the concept of convergence 
in probability is referred to as a weak law of large numbers (WLLN), whereas a 
convergence result using almost-sure convergence is referred to as a strong law 
of large numbers (SLLN). 

The types of convergence we will be examining can take either of two 
forms. When all of the means of the random variables in {Xn} are equal to 
the same number, /L, we examine conditions for which Xn ...!4 /L (a SLLN) or 
Xn ~ /L (a WLLN). When the means of the random variables in {Xn} are not 
necessarily equal, we examine conditions for which Xn - iln ...!4 0 (a SLLN) or 
Xn - iln ~ 0 (a WLLN), where iln = n- 1 L:7=1 /Li and /Li = EXi is the ith term 
in the real number sequence {/Ln}. Thus, in the case of equal means, we are 
examining convergence of {Xn} to the common (constant) mean of the random 
variables in {Xn}, whereas in the case of unequal means, we are examining 
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whether the difference between the outcomes of Xn and the average mean, {.tnt 
converges to zero in probability or almost surely as n ---+ 00.6 

The reader may wonder why the convergence behavior of such a specific 
sequence of random variables as {Xn} deserves explicit attention. The answer 
lies in the fact that a large number of important parameter-estimation and 
hypothesis-testing procedures in econometrics, and statistics in general, can 
be defined in terms of averages of random variables. The laws of large numbers 
are then useful for analyzing the asymptotic behavior of these procedures when 
the samples of data being analyzed are relatively large. 

Weak laws of large Numbers (WllN) 

There is a variety of conditions that can be placed on the random variables in the 
sequence {Xn} that ensure either Xn -4 f.1, or Xn - {.tn -4 o. These conditions 
relate to the independence, homogeneity of distribution, and variances and 
covariances of the random variables in the sequence {Xn }. 

The basic idea underlying weak laws of large numbers is to have the distri­
bution of the random variable Y n = n-1 I:7=1 (Xi - f.1,d collapse and become de­
generate on zero asn ---+ 00. For this to happen, the random variable I:7=1 (Xi -f.1,i) 
must be of smaller order of magnitude (in probability) than n. The intuition un­
derlying the degeneracy of Y n in the limit is perhaps clearest in the case where 
the X/s are iid and var(Xi ) = (52 exists. Then the distribution of I:7=1 (Xi - f.1,i) 
has a variance, or spread, given by n(52, which is expanding by a factor of n. The 
expanding spread of the distribution is counteracted via scaling the random 
variable by the factor n- 1 (actually, any n-o with 8 > 1/2 will do), leading to a 
distribution (of Yn ) having variance (52/n ---+ 0 and implying the degeneracy of 
Y n at zero as n ---+ 00. As will be seen ahead, neither the existence of (52 nor the 
iid condition is necessary for Y n to be degenerate at zero in the limit. 

110 Case The only WLLN we will examine that does not require the existence 
of the variances of the random variables in the sequence {Xn} is Khinchin's 
WLLN, as follows. 

Theorem 5.19 (Khinchin's WLLN) Let {Xn } be a sequence of iid random variables, and sup­
pose EXi = f.1, < 00, V i. Then Xn -4 f.1,. 

Proof A general proof involving characteristic functions can be found in D. S. G. Pol­
lock (1979), The Algebra of Econometrics. New York: John Wiley, p. 332. An 
alternative proof based entirely on probability inequalities is given by C. R. Rao, 
Statistical Inference, pp. 112-113. Our proof requires the additional assumption 
that Mx;(t) exists, but a general proof is analogous with the characteristic func­
tion replacing the MGF. 

6The concepts of SLLNs and WLLNs can be generalized to the case where {ltn} is a sequence of constants that are not necessarily 
the means of the X/so See Y. S. Chow and H. Teicher, Probability Theory, p. 121. 
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Lemma 5.4 

Example 5.40 

Example 5.41 

Example 5.42 

The moment-generating function of Xn is given by 

Mx)t) = Eexp (~tXi) = DEexp (Xi~) = D MXi (~) = [MXI (~) r 
since the X/s are independent and identically distributed. It follows that 

lim Mx (t) = lim [1 + nMxl(tln) - n]n = exp (lim n [Mxl (~) - 1]) 
n--+oo n n--+oo n n .... oo n 

by Lemma 5.4. 

By L'Hospital's rule, 

1. MXI (tin) - 1 l' ( 2)dMxl (tin) (-t) 1m = 1m -n - = tfJ-, n .... oo n- l n--+oo d(tln) n2 

since the first derivative of MXI (t.) -+ fJ- as t. = tin -+ O. Then limn--+ oo MXI (t) = 
etJ.l., which is the MGF of a random variable that is degenerate at fJ-. Therefore, 
by Theorems 5.2 and 5.8, Xn 4 fJ-. • 

Let {Xn} be a sequence of iid random variables, with Xi '" Gamma(a, ,8). It 
follows from Khinchin's WLLN that Xn 4 a,8. If a = 2 and,8 = 4, it follows 
thatXn 4 8. 0 

Let {Xn} be a sequence of iid random variables, with Xi '" pX(l - pP-xI(o l}(x). 
It follows from Khinchin's WLLN that Xn 4 p. If p = .6, it follows'that 
- p Xn ~ .6. 0 

Let fIx) = 2x-3 Ill,oollx), and suppose that the random variables in the sequence 
{Xn} are iid, each with density function fIx). Note that if x'" fIx), then 

EX = i oo x(2x-3 )dx = 2, 

but 

EX2 = i oo x 2(2x-3 )dx = i oo 2x- l dx = 2lnx li-+ 00, 

so that the varIX) = EX2 - IEXj2 does not exist. Nonetheless, by Khinchin's 
theorem we know thatXn 4 2. 0 

Khinchin's WLLN can be used to provide support for the relative-frequency 
definition of probability, as follows: 

Theorem 5.20 IConvergence in Probability of Relative Frequency) Let {S/l,P} be the prob­
ability space of an experiment, and let A be any event contained in S. Let 
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an outcome of NA be the number of times that event A occurs in n indepen­
dent and identical repetitions of the experiment. Then the relative frequency 
of event A occurring is such that INA/n) -4 PIA). 

Proof Without loss of generality, we assume that S is a real-valued sample space. Let 
the n iid random variables Zl, .. . ,Zn represent the n independent and identical 
repetitions of the experiment, and define Xi = IA(Zi), for i = 1, .. . ,n, so that 
Xl, ... ,Xn are n iid (Bernoulli) random variables for which Xi = 1 indicates 
the occurrence and Xi = 0 indicates the nonoccurrence of event A on the ith 
repetition. Since EXi = PIA), V i, it follows from Khinchin's WLLN that Xn -4 
PIA). Then, since NA == I:7=1 Xi and (NA/n) == Xn, we can also conclude that 
(NA/n) -4 PIA). • 

Theorem 5.20 implies that as the number of independent, identical repe­
titions of an experiment -+ 00, the probability that the relative frequency of 
event A is arbitrarily close to the true probability of event A approaches l. 
Thus, the WLLN provides support for the notion that the relative frequency 
of the occurrence of an event can be used as the measure of the probabil­
ity of the event as n -+ 00. Note, however, that we did not conclude that 
P(limn ..... oo(nA/n) = PIA)) = I, that is, we cannot conclude that the limit of the 
relative frequency exists and is equal to PIA) with probability 1. The latter 
result involves the notion of almost-sure convergence and will be dealt with in 
our subsequent discussion of SLLNs. 

Non-liD Case WLLNs that relax the iid assumption of Khinchin's WLLN can be 
defined by imposing various other conditions on the variances and covariances 
of the random variables in the sequence {Xn }. The WLLN that we will present 
follows from the necessary and sufficient conditions governing the existence 
of a WLLN for a sequence of random variables stated in the next theorem. 

Theorem 5.21 (Necessary and Sufficient Conditions for WLLN) Let {Xn} be a sequence of 
random variables with finite variances (not necessarily independent), and let 
{ltn} be the corresponding sequence of their expectations. Then 

lim P !lxn - ilnl < e) = I, 
n ..... oo 

Ve>O iffE[ (Xn_-iln)22]-+0' 
1 + (Xn - iln) 

Proof Sufficiency; For any choice of b > 0 and a ?: b, alta + 1) ?: b/(b + 1). It follows 
that, "18> 0, 

P (Ix _ - )2 > e2 ) < P Xn - Itn > _8_ < E n - Itn / _8_ ( 1- -)2 2) [IX -)2] [ 2 ] 
n Itn - - 1 + (Xn - iln)2 - 1 + 82 - 1 + (Xn - ilnJ2 1 + 82 ' 

where the first inequality follows because the event on the left-hand side im­
plies the event on the right, and the second inequality is an application of 
Markov's inequality. If the expectation of the bracketed term -+ 0 as n -+ 00, 
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then, V 8> 0, 

P (IXn - ilnf < 82) = Pllxn - ilnl < 81 ~ 1 

so that IXn - ilnl -4 o. 
Necessity: See B. V. Gnedenko 119681, The Theory of Probability. New York: 

Chelsea Publishing Co., p. 246-248. • 

Any condition placed on the random variables in the sequence {Xn} that 
result in the convergence of the expectation of (Xn - iln12 /[1 + (Xn - iLnl2 ] to 
zero results in (Xn - ilnl -4 0 (or Xn -4 Jk in the equal-means easel, by 
Theorem 5.2l. We present one such condition now. 

Theorem 5.22 (WLLN for Non-IID Case) Let {Xn} be a sequence of random variables with 
respective means given by {Jkn}. If var (Xnl ~ 0, then (Xn - iln) -4 o. 

Proof The result follows directly from Theorem 5.21 upon recognizing that 

• 
Example 5.43 Let {Xn} be a sequence of Gamma-distributed random variables for which EXi = 

2-i, var(XiI = 4, and O'ii = 0, Vi =1= ;. Then, since var(Xn) = 4/n ~ 0, it follows 
by Theorem 5.22 that Xn - (1 - .5nl/n -4 0, where iln = (1 - .5nl/n. 0 

Example 5.44 Let {Xnl be a sequence of independent, Beta-distributed, random variables for 
which EXi = .4 V i. Note that the variance of a Beta distribution exhibits a 
finite upper bound, say 0'; ~ !, since Pix E (0, III = l. Then, for any variances 
~f the random variables, var(Xn) = n-2 .E?=I 0'; ~ n-I-r ~ O. By Theorem 5.22, 
Xn -4 .4. (Note: Khinchin's theorem cannot be used here since it is not known 
whether the X/s have identical distributions.) 0 

Example 5.45 Let the sequence of random variables (Xnl be such that Xi'" N(l, 1 + i-II with 
O'ii = plHl, P E 10, I) and i =1=;. Since 0'; ~ 2 Vi, .E7=I 0'; ~ 2n, and thus .E?=I 0'; 
is 0(n2 ). Also, given i, .E7>i O'ii = .E7>i p1i-il ~ pl( 1 - p), so that .E7>i O'ii is oln I ). 

Then, since iln = 1 V n, and varlXn) = n-2 [.E7=I 0'; + 2 .E7=I .E7>iO'ii] = 011) so 
that var(Xn) ~ 0, it follows from Theorem 5.22 that Xn -4 l. 0 

With reference to Ex. 5.43, it would seem reasonable to characterize the 
convergence in probability as Xn -4 0, since iln = 11 - .5n)/n ~ O. More 
generally, if Xn - iln -4 0 and iln ~ c, we can alternatively state that Xn -4 c, 
as indicated below. 

- - p - - p Theorem 5.23 Xn - Jkn ~ 0 and Jkn ~ c =} Xn ~ c. 
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Proof With reference to Theorems 5.4 and 5.5, we know that since iln -4 cor, 
equivalently, (iln - c) -4 0, and since 

g(Xn - iln' iln - c) = (Xn - iln) + (iln - c) = Xn - c 

is a continuous function of (Xn - iln) and (iln - c), then 

plim(Xn - c) = plim(Xn - iln) + plim(iln - c) = 0, 

so that by Def. 5.11, Xn -4 c. 

*Strong Laws of Large Numbers (SLlN) 

• 

As in the case of the WLLN, there is a variety of conditions that can be placed 
on the random variables in the sequence {Xn} that ensure either Xn 24 /.L(EXi = 
/.L,V i) or Xn - iln 24 0 (EXi = /.Li, V i). The conditions relate to the independence, 
homogeneity of distribution, and variances and covariances of the random vari­
ables in the sequence. 

The basic idea underlying strong laws of large numbers is to have the, joint 
distribution of Yn = n- l :L7=dXi-/.Ld, n = 1,2, ... , be such that the eventYn -+ a 
is assigned probability 1. For this to happen, it is known from Theorem 5.14, as 
well as from the basic concept of a limit itself, that the event {lYil < e,V i :::: n} 
must have a probability approaching 1 as n -+ 00 V c > O. Thus the marginal 
distribution of the (infinite) set of random variables {Yn , Yn+l , Yn+2, ... } must be 
approaching degeneracy on a zero vector as n -+ 00. Through various constraints 
on the spread (variance) and/or degree of dependence of the underlying random 
variables in the sequence {Xd, this degenerate behavior can be attained. 

* liD Case We begin by presenting a result known as Kolmogorov's inequality, 
which can be interpreted as a generalization of Markov's inequality. 

Theorem 5.24 (Kolmogorov's Inequality) Let Xl, ... ,Xn be independent random variables for 
which EXi = 0 and a} < 00 V i. Then, V e > 0, 

* Proof Let Wi = :L~=l Xi, and define the events 

Ai = {(Xl, ... ,Xn ): IWi!:::: c, IWil < c for i < j}, j = 1, ... ,n, 

and 

m 

A = {(Xl, .. . ,Xn ): max I LXii:::: e}. 
l:om:on i=l 
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The events AI, .. . ,An are disjoint, and A = U?=lAi, i.e., the A/s are a partition 
of A. Furthermore, 

(I) EW; = E [~X; + ~r!:PXiX;] = ~o}::: EW;IA(X) = ~EW;IAj(X), 
where x = (Xl, .. . ,xn), and the last equality holds because IA(X) = L7=1 IA;(X), 
Also note that V; < n, Wn - W; = L7=;+lXi = f(X;+l,' .. ,Xn) is independent 
of W; = g(XI,,,.,X;) and of W;IA;(X) = h(XI' ".,X;) by the independence of 
(Xl, .. . ,X;) and (X;+l, .. . ,Xn) (note that X;+l," .,Xn are ghosts in the function 
IA;(X) given the definition of A;). Therefore, 

since EWi = 0, V i. It follows that 

EW;IA;(X) = E [W; - 2(Wn - W;)W;] IA;(X) = E [Wl + (Wn - W;)2] IA;(X) 

::: EW1IA;(X) ::: e2P(A;), 

where the last inequality follows from the fact that wl ::: e2 when X E A;. Using 
this result in (I), and recalling that the A/s are a partition of A, 

n n 

La; ::: e2 LP(Ai) = e2P(A) Ve > O. • 
i=l i=l 

Note that with n = 1 and Xl defined to be a nonnegative-valued random vari­
able with zero mean, Theorem 5.24 is a statement of Markov's inequality. Kol­
mogorov's inequality leads to Kolmogorov's SLLN for iid random variables. 

Theorem 5.25 (Kolmogorov's SLLN: Variances Exist) Let {Xn} be a sequence of iid random 
variables such that EXi = J.L and var (Xi) = a2 < 00, V i. Then Xn -..!4 J.L. 

• Proof Let Yi = (Xi - J.L)/i, and note that EYi = 0 and var(Yi ) = a2/P. Define Wk = 
L:=l Yi , and examine the sums 

n+m m 

Wn+m - Wn = L Yi = LYn+i , for m = 1,2, .. . ,k. 
i=n+l i=l 

By Kolmogorov's inequality (replace Xi by Yn+i in the statement of the inequal­
ity), it follows that, Ve > 0, 

P (max IWn+m - wnl ::: e) = P ( max IWm - wnl ::: e) ~ I: [( .~22)J. 
l:;:m:;:k n+l:;:m:;:n+k i=n+l 1 e 
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Lemma 5.5 
Kronecker's Lemma 

Letting k -+ 00, we have that? 

and since limn->oo :L~n+i i-2 = 0,8 it follows from the Cauchy criterion for 
almost-sure convergence (Theorem 5.18) that {Wn} converges almost surely to 
some random variable, say W. Now examine the Kronecker lemma from real 
analysis. 

Let {an} be a sequence of nondecreasing positive numbers, and let {zn} be a 
sequence of real numbers for which :L~i Zi/ai converges. Then 

n 

lim a;;-i " Zi = o. 
n-+-oo ~ 

i=i 

(See E. Lukacs (1968), Stochastic Convergence. Andover, MA: D. C. Heath 
and Co., p. 96). 

Let Zi = Xi - f.L and ai = i, so that Yi = zi/ai and Wn = :L?=i zi/ai. Since 
Wn -+ W with probability I, and since by Kronecker's lemma Wn -+ W => 
n- i :L?=l Zi -+ 0, then 

n 

n- 1 LZi = xn - f.L -+ 0 
i=l 

with probability 1. • 
Example 5.46 Let {Xn} be a sequence of iid exponentially distributed random variables, i.e., 

Xi ,...., e- i exp(-xi/e)I(o,ool(Xi) V i, where e :s c < 00. Note that EXj = f.L = e and 
var(Xi) = 0'2 = e2 :s c2 < 00, V i. Theorem 5.25 applies, so that Xn 24 e. 0 

The existence of variances is not necessary for a SLLN to hold in the iid 
case. The following theorem provides necessary and sufficient conditions for a 
SLLN to hold. 

Theorem 5.26 (Kolmogorov's SLLN (IID case)) Let {Xn} be a sequence of iid random vari­
ables. Then the condition EXj = f.L < 00 is necessary and sufficient for X n 24 f.L. 

Proof The proof of the theorem is somewhat difficult and can be found in C. Rao, 
Statistical Inference, pp. 115-116. • 

7If max does not exist, max is replaced by sup. 

8L i'=J i-P is the so-called p series that converges for p > 1 and diverges for p E (0, I}. Since the series converges for p = 2, it must be 
the case that L~n+l i-2 -+ 0 as n -+ 00. See Bartle, Real Analysis, pp. 290-291. 
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Example 5.47 Recall Ex. 5.42, where {Xn} was a sequence of iid random variables for which 
EXi = 2 and for which the variance of the X/s did not exist. Nonetheless, by 
Kolmogorov's SLLN, we know that Xn 24 2. 0 

Theorem 5.26 provides stronger support for the relative-frequency defini­
tion of probability than the WLLNs (recall Theorem 5.20), as the following 
theorem indicates. 

Theorem 5.27 (Almost-Sure Convergence Of Relative Frequency) Let {S,l,P} be the proba­
bility space of an experiment, and let A be any event contained in S. Let an 
outcome of NA be the number of times that event A occurs in n independent 
and identical repetitions of the experiment. Then the relative frequency of 
event A occurring is such that (NAln) 24 PtA). 

Proof Without loss of generality, we assume that S is a real-valued sample space. Let 
the n iid random variables Zl, .. . ,Zn represent the n independent and identical 
repetitions of the experiment, and define Xi = IA(Zi), for i = 1, .. . ,n, so that 
Xl, .. . ,Xn are n iid (Bernoulli) random variables for which Xi = 1 indicates 
the occurrence and Xi = 0 indicates the nonoccurrence of event A on the ith 
repetition of the experiment. Note that EXi = PtA) < 00 V i, so that Theorem 
5.26 is applicable. Then Xn ..!!4 P(A), and since NA == L::7=1 Xi .and NAln == X n, 
we can also conclude that (NAln) 24 PtA). • 

Theorem 5.27 implies that the relative frequency of the occurrence of event 
A achieves a limit with probability 1 as n --+ 00. Furthermore, the value of the 
limit achieved equals the probability of the event A. Thus, the SLLN provides 
strong support for the notion that the relative frequency of the occurrence of an 
event can be used as the measure of the probability of the event as n --+ 00, since 
we are essentially certain that the relative frequency of an event will converge 
to the probability of the event. 

* Non-liD Case There are many other ways in which to place restrictions on 
{Xn} so that Xn - iln 24 0 or Xn 24 J-L. We will present a SLLN for the 
nonidentically distributed case which can be applied whether or not the ran­
dom variables in {Xn} are independent. The theorem utilizes the concept of an 
asymptotic, nonpositively correlated sequence, defined below. 

Definition 5.16 
Asymptotic, 

nonpositiveiy 
correlated sequence9 

The sequence of random scalars {XnL where var(Xi) = aJ < 00 V i, is said to be 
asymptotic nonpositively correlated if there exists a sequence of constants 
{an} such that ai E [0, I} V i, L::~o ai < 00, and coV(Xi,XiH) ~ atapiH V t > O. 

9Some authors use the terminology "asymptotically uncorrelated" for this concept (e.g., H. White, Asymptotic Theory, p. 491. 
However, the concept does not rule out negative correlation. 
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Note that for I:~o ai to be finite when ai E [0,11 V i, it must be the case 
that an -+ 0 as n -+ 00. Since the at's represent upper bounds to the correlations 
between Xi and XiH, the definition implies that Xi and XiH cannot be positively 
correlated when t -+ 00. 

Example 5.48 An Asymptotic, Nonpositively Correlated Sequence 

Let the sequence of random variables {Xn} adhere to the (first-orderJ autocorre­
lation process: 10 

(IJ Xi = pXi-1 + ei, 

where the e/S are iid with Eei = 0 and vadeil = (J2 E (0, ooJ, cOV(Xi_I , eiJ = 0 V i, 
Xo = 0, and Ipl < 1. It follows that EXj = 0 V i, and var(Xil = a 2 I:;=l p2li-I I for 
i 2: 1. Note further that (IJ implies 

t-I 

XiH = pt Xi + L pi e t+i-i for t 2: 1. 
i=O 

To define the value of corr(Xi+t,Xil, let aI = var(XjJ, and note that 

corr(Xi+t,XiJ = E[(Xi+t - EXi+tJ(Xi - EXiJ1/(ai+taiJ 

= E [ (pt(Xi - EXil + ~ pieHi_i) (Xi - EXiJ] l(aiHail 

{ 
0 if pt :s 0, 

= pta;jai+t :s 
pt if pt > 0, 

where the last inequality follows from the fact that 

i iH 
aJ/aI+t = LP21i-11/Lp21i-11:s 1 V t 2: 1. 

i=1 i=1 

To demonstrate that {Xn} is an asymptotic nonpositively correlated sequence, 
define at = pt if pt > 0, and at = 0 if pt :s 0, so that corr(Xi+t, Xd :s at V t, and 
at E [0, 1], V t. Then, since 

00 00 

Lat:S LIPlt = Ipl/(I-lpl) < 00, 

t=1 t=1 

the sequence {Xn } is asymptotic nonpositively correlated. o 

IOThis is an example of a stochastic process, which we will revisit in our discussion of the general linear model in Chapter 8. 
"Stochastic process" means any collection of random variables {Xt; t E T}, where T is some index set that serves to order the 
random variables in the collection. Special cases of stochastic processes include a scalar random variable when T = {I}, an n·variate 
random vector when T = {I, 2, ... , n}, and a random sequence when T = {I, 2, 3, ... }. 
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Theorem 5.28 (SLLN: Non-identically Distributed Case) Let {Xn} be a sequence of random 
variables such that EXi = ~i, var (Xi) :::: b < 00 V i, and {Xn} is asymptotic 
nonpositively correlated. Then X'n - iln 24 O. 

Proof This follows directly from Theorem 3.7.2 in W. F. Stout (1974), Almost Sure 

Example 5.49 

Convergence. New York: Academic Press, p. 202. • 

The theorem indicates that a sequence of random variables will adhere to a 
SLLN if the variances of the random variables are bounded and if any positive 
correlation between random variables in the sequence eventually dissipates 
when the random variables are far enough apart in the sequence. 

Recall Ex. 5.48, where it is known that {Xn} is asymptotic, nonpositively cor­
related. Note further that since p E [0, I), a; = a2 L:1=1 p2li-l l < 00 V i, where 
in fact L:~ p2li-l l = 1 + p2 + p4 + ... = 1/(1 - p2), so that a; :::: 1/11 - p2) Vi. 
Since the a}'s are upper-bounded, the conditions of Theorem 5.28 are met, and 
it follows that Xn 24 0, since EXi = ~ = 0 V i. 0 

Our final result on SLLNs concerns whether Xn - iln 24 0 and iln ~ c 
together imply that X'n 24 c. The answer is yes, as stated in the next theorem. 

Theorem 5.29 Xn - iln 24 0 and iln ~ c =} Xn 24 c. 

Proof The proof is based on Theorems 5.16 and 5.17 and follows the approach of 
Theorem 5.23. Details are left to the reader. • 

5.5 Central limit Theorems 

Central limit theorems (CLTs) are concerned with the conditions under which 
sequences of random variables converge in distribution to known families of 
distributions. We will focus primarily on results concerning convergence in 
distribution of sequences of random variables {Yn } of the following form: II 

Yn = b;;I(Sn - an) ~ N(O, L), 

where {Sn} is a sequence of scalar or vector random variables whose nth term 
is defined by Sn = L:7=1 Xi, {Xn} is a sequence of scalar or vector random vari­
ables, and {an} and {bn} are suitably chosen sequences of real numbers, vectors, 
or matrices. A statement of conditions on {Xn}, {an}, and {bn} for which the con­
vergence in distribution result holds true constitutes a central limit theorem. 

liThe reader who wishes to read about central limit theory in its most general form can examine Chapter 5 of R. G. Laha, and 
V. K. Rohatgi (1979), Probability Theory. New York: John Wiley. 



5.5 Central Limit Theorems 269 

As we had remarked in the introduction to the preceding section dealing 
with laws of large numbers, the reader may wonder why the particular prob­
lem concerning convergence in distribution defined above deserves such ex­
plicit attention. The answer lies in the fact that a large number of important 
parameter-estimation and hypothesis-testing procedures in econometrics and 
statistics are defined as functions of sums of random variables (note the Sn 
term in the convergence problem abovel. Central limit theorems are then often 
useful for establishing asymptotic distributions for these procedures, as will be 
seen in specific examples in subsequent chapters. 

In order to illustrate the general way in which the use of a CLT might arise 
in practice, suppose a CLT is applicable to a scalar random variable, say, as 
Yn = b;;l(Sn -anl-4 Y '" N(D, 1). Then, since Sn = g(Yn, an, bnl = bnYn+an, we 
can define an asymptotic distribution for Sn using Def. 5.10 as Sn ~ bn Y + an, or 
Sn~N(an, b;l. Thus, for largen, Sn = I:7=1 Xi has an asymptotic distribution that 
is normal, with mean an and variance b;. Now suppose a particular statistical 
procedure is based on the random variable Wn = h(Sn, cnl = h(g(Yn, an, bnl, cnl. 
Then Wn ~ h(g(Y, an, bnl, cnl, so that for large n, an asymptotic distribution for 
Wn is given by the distribution associated with the composite function hog 
of the standard normal random variable Y or, equivalently, by the distribution 
associated with the function h of the random variable Sn under the assumption 
that Sn '" N(an, b;). For example, if Wn ~ h(g(Y, an, bn), Cn) = Cn y2, then Wn ~ 
Gamma(1/2,2cn ) (since y2 '" XI, and then Cn y2 has a Gamma distribution with 
ex = 1/2 and fJ = 2cn ). 

Defining asymptotic distributions for random variables of interest is most 
useful, and sometimes indispensable, when the exact distributions of the ran­
dom variables are very difficult or impossible to derive. Furthermore, even if 
the exact distributions of random variables of interest can be defined, they may 
be very difficult to work with, whereas the asymptotic distribution may be 
relatively easy to analyze. For both of these reasons, central limit theorems 
figure prominently in the development of econometric and statistical theory 
and application. 

We divide our presentation of CLTs into three subsections. The first sub­
section deals with the case of independent scalar random variables. The second 
subsection provides an introduction to the case where the scalar random vari­
ables in {Xn} are not independent. In the final subsection, we present some CLT 
results relating to multivariate random variables. 

Independent Scalar Random Variables 

We will examine three CLTs for independent random variables beginning with 
the simplest, but least general, iid case and ending with a CLT that presents 
necessary and sufficient conditions for b;;l(Sn - an) -4 N(D, 1) when the X/s 
are independent but not necessarily identically distributed. 
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Identically Distributed Case We begin our examination of central limit theorems 
by presenting the simplest of all CLTs, the Lindberg-Levy CLT. 

Theorem 5.30 \Lindberg-Levy CLT) Let {Xn} be a sequence of iid random variables with 
EXj = f-L and var\Xj) = 0'2 E \0,(0) V i. Then, 

\nI/2ati (tXj - nf-L) = n I/2 (X; - f-L) -4 N\O, 1). 

Proof We prove the theorem for the case where the moment-genei"ating function of Xi 
exists. The proof can be made general by substituting characteristic functions 
in place of MGFs, and a general proof utilizing characteristic functions can be 
found in C. Rao, Statistical Inference, p. 127. 

Let Zi = \Xi - f-L)/a, so that EZi = ° and var\Zi) = I, and define Yn = 
\n I/2a)-I (:L7=I Xi - nf-L) = n- I/2 :L7=I Zj. Then 

n n 

MYn\t) = n Mdt/n I/2 ) = [Mz,lt/nI/2)] 
i=I 

since the Z/s are independent and identically distributed. Taking logarithms, 

lim InMyn\t) = lim [nlnMz,lt/nI/2)] = lim [lnMz,(t/nI/2)/n-I,] 
n-+oo n~oo n-+oo 

which has the indeterminate form 0/0, so we can apply L'Hospital's rule. Letting 
t. = t/n I/2 and 1](t.) = InMz, (t.), 

lim InMy (t) = lim [(d1](t.)) ( __ t_) 1(-n-2)] = lim [~ [t d1](t.) In-1/2]] , 
n-+oo n n-+oo dt. 2n3/2 n-+oo 2 dt. 

which is still an indeterminate form since d1](t.)/dt. ~ d1](O)/dt. = EZI = ° 
when n ~ 00. A second application of L'Hospital's rule yields 

lim InMy (t) = (1/2) lim [t2d2
d1](:·)] = t2/2 

n-+oo n n-+oo t. 

since 

1· d21](t.) = d21](0) = d2Mz ,(0) _ [dMz ,(0)]2 = EZ2 _ (EZ )2 = (Z ) = 1 
1m d 2 d 2 d 2 d I I var I . 

n-+oo t. t. t. t. 

Thus, 

lim MYn(t) = exp (lim InMYnlt)) = et2/2 , 
n-+oo ~-+oo 

which implies that Yn -4 N(O, 1), by Theorem 5.2. • 
In order to enhance one's intuitive understanding of why the Lindberg-Levy 

CLT (LLCLT) holds, we now provide some additional rationale for the result, 
albeit at the expense of some degree of imprecision in the mathematical details. 
First note that under the conditions of the LLCLT, :L7=I Xi is a random variable 
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that has a mean of nil- and a variance of na2. Since both Inll-I and na2 diverge 
to 00 (assuming Il- =1= 0) as n increases, it is clear that some form of centering 
and scaling of 2:7=1 Xj will be necessary for there to be any hope of convergence 
to some limiting distribution. By subtracting nil- and then dividing by n 1/2a, 
one defines random variables Yn = (n 1/2a)-1 (2:7=1 Xj - nil-) = (n 1/2a)-1 2:7=1 Zj 
which have a mean zero and variance of 1 regardless of n. The random variables 
Zj = Xi -Il-,i = I, .. . ,n, are iid random variables with zero means and variances 
all equal to a 2 . 

Now a key observation concerning an additional effect of the aforemen­
tioned centering and scaling: when n -+ 00, any effect of third- and higher-order 
moments of Zj on the moments of Yn are "centered and scaled away" so that all 
probability distributions for Zi that have the same mean and variance will lead 
to precisely the same moments for Yn as n -+ 00 (we assume that all moments 
of the Z/s exist). To see this, first consider the third moment of Yn : 

3 n n n 

E Y~ = (n 1/2a) - L L L E(ZiZiZk). 
j=1 i=1 k=1 

Since the Z/s are independent with zero means, it is only when i = ; = k 
that the expectation term is nonzero and equal to JL~, the third moment of the 
distribution of the Z/s. But there are only n of these terms, and thus EY~ = 
a-3n-3/2(nJL~) -+ 0 as n -+ 00, and the third moment of Yn converges to zero 
regardless of JL~. Following analogous logic applied to EY~, which is defined 
in terms of a quadruple sum of (ZjZiZkZe) terms premultiplied by (nl/2a)-4, it 
can be shown that EY~ = a-4n-2[nJL~ + 3n(n - l)a4] -+ 3 regardless of JL~, the 
fourth moment of Zj. This type of argument can be continued ad infinitum to 
show that all higher-order moments of Yn converge to known constants and 
that higher order moments of the Z/s play no role in determining any of the 
moments of Yn when n -+ 00. 

Now observe that the first four moments of Yn, as defined in the previous 
paragraph, converge to the first four moments of the standard normal distribu­
tion,O, 1,0, and 3, respectively. Furthermore, all higher-order moments of Yll 

also converge to those of the standard normal distribution, which can in prin­
ciple be verified one by one following the approach defined above, and in any 
case is implied by the proof of Theorem 5.30. While not true for all densities, 
members of the normal family of PDFs are uniquely identified by their moment 
sequences,12 so that the moments of Yn are uniquely consistent with that of a 
standard normal density as n -+ 00 for all underlying probability distribution 
of the X/s having mean JL and variance a 2. Thus, the centering and scaling of 
the X/s inherent in the definition of Yn remove any tendencies for higher-order 
moments of the X/s to cause the moments of Yn to deviate from those of a 
standard normal distribution as n -+ 00, leading to convergence of Yn to the 
N(O, 1) limiting distribution. 

12M. Kendall, and A. Stuart /19771, The Advanced Theory of Statistics, Volume I. New York: Macmillan, p. llS. Note that any 
random variable for which an MGF exists is such that its moment sequence uniquely identifies its probability distribution. 
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The establishment of the LLCLT provides an opportunity to revisit the re­
lationship between limiting distributions and asymptotic distributions. Under 
the conditions of the LLCLT, Yn = (n1/2a)-1(L~1 Xi - nJ-L) -4 N(O, 1). Then, 
following Def. 5.10, an asymptotic distribution for Sn = Lf=1 Xi can be defined 
as Sn = (n1/2a)Yn+nw~(n1/2a)Y +nJ-L, where Y "" N(O, I), so that Sn~N(nJ-L,na2). 
Thus, the normal distribution with mean nJ-L and variance na2 provides an ap­
proximation to the distribution of Sn when n is large. Regarding X n, note that 
the conditions of the Lindberg-Levy CLT imply Xn -4 J-L by Khinchin's WLLN, 
so that Xn -4 J-L. Because the limiting distribution of Xn is degenerate, it is 
clear that the distribution provides no information about the variability of Xn 
for finite n. The asymptotic distribution for Xn is more useful in this regard. 
Noting that 

- 1~ Xn = g(Yn, n) = (a/n )Yn + J-L, 

it follows from Def. 5.10 that Xn ~ g(Y,n) = (a/n1/2)y + J-L for Y "" N(O, I), or 
Xn ~ N(J-L,a2/n). Thus, for large n, Xn is approximately normally distributed 
with mean J-L and variance a 2/n. 

The following examples illustrate the application of the Lindberg-Levy 
CLT. 

Example 5.50 Approximating Binomial Probabilities via the Normal Distribution 

Let (X/l) be a sequence of iid Bernoulli-type random variables, i.e., X j "" pX/(I -
pjI-X;]tO,I)(Xj) V i with p =1= 0 or 1. Then, by the Lindberg-Levy CLT, 

I:7-1 Xi - np d ( d 
n 1/2[;(1 _ P )]1/2 ---"+ NO, 1) an 

n L Xi ~ N(np, np( 1 - p)). 
i=1 

Since Lf=1 Xi has a binomial distribution under the stated conditions, we have 
discovered an alternative to the Poisson density for approximating the binomial 
distribution for large n. Note that we are approximating the discrete binomial 
density with the aforementioned continuous normal density. It has been found 
in practice that such approximations are improved, especially when n is not 
very large, by making a continuity correction, whereby each outcome, x, in 
the range of the discrete random variable is associated with the interval event 
(x - (1/2), x + (1/2)] for the purpose of assigning probability via the asymptotic 
normal density. For example, if n = 40, p = 1/2, and x = 20, then since J-L = 
np = 20 and a 2 = np(I- p) = 10, we have, using the normal asymptotic density 
N(20,lO), . 

120.5 

PIx = 20) ~ N(z; 20, lO)dz 
19.5 

j .S/./TIi 
~ N(z; 0, I)dz = .1272 (from std. normal table). 

-.5/./TIi 
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The actual probability assigned to the event P(x = 20) by the binomial density 
is 

( 40) (1 )40 P(x = 20) = 20 2 = .1254. o 

Example 5.51 Approximating x2 Probabilities via the Normal Distribution 

Let {Xn} be a sequence of iid chi-square random variables with 1 degree of 
freedom, i.e., Xi '" xi V i. By the additivity property of chi-square random 

variables, L:7=1 Xi '" x~. Also, EXi = 1 and var(Xi) = 2 V i under the prevailing 
assumptions. Then, by the Lindberg-Levy CLT, 

L:7=1 Xj - n d ( ) d ~ a ( ) Yn = (2n)l/2 ~ NO, 1 an {;;{Xi '" N n, 2n . 

We have thus discovered an approximation to the X2 density function for large 
degrees of freedom. As an example of its use, note that (from tables of the X2 

distribution) 

P(X~o ::: 43.8) = .95. 

We obtained our approximation of this probability by utilizing 230 ~ N(30, 60), 
and thus 

( Z30 - 30 43.8 - 30) 
P(Z30 ::: 43.8) = P (60)1/2 ::: (60)1/2 = P(z::: 1.783) (where 2 '" N(O, 1)) 

=.9627. 0 

The Lindberg-Levy CLT implies that any real-world experiment whose final 
outcome can be conceptualized as the result of a summation or average of the 
outcomes of a large number of iid random variables having a finite mean and 
variance can be treated as having approximately a normal distribution. Thus, 
for example, the total number of defective objects produced on an assembly 
line or the average miles per gallon achieved by a sample of Ford pickup trucks 
might be considered as approximately normally distributed to the extent that 
the independence and identical distribution assumptions hold true. 

A natural question to ask in using asymptotic distributions is how large 
does n have to be for the approximation to be good? Unfortunately, the an­
swer depends on the characteristics of the true distribution underlying the se­
quence of random variables, and no general answer can be given. However, 
a number of inequalities have been developed that can be useful in answer­
ing the question if something is known about the moments of the underlying 
densities. Specifically, under the conditions of the Lindberg-Levy CLT, Van 
Beeck13 has shown that the maximum absolute difference between P(Yn ::: c) 

13p. Van Beeck (19721, An application of Fourier methods to the problem of sharpening the Berry-Esseen inequality. Z. Wahrschein­
lichkeits Theorie und Verw. Gebiete 23, pp. 187-196. 
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for the actual density of Yn = nl/2(Xn - J.L)/a and for that of the standard 
normal density is .7975(~3Ia3)n-I/2, where ~3 = E[IX - EX13 ] and a refer to 
the common density of the X/so As examples of the bound, if the X/s are iid 
Bernoulli or exponential random variables, then the bounds are respectively 
.7975n- I/2[1-2p(1-p)][P(1-p)]-1/2 and .1653n-I/2. Then, for example, ifp =.5 
and n = 1000, the upper bounds on the errors when approximating P(Yn :s c) 
via the standard normal limiting distribution are .025 and .005, respectively. It 
should be emphasized that Van Beeck's result provides omnibus bounds that 
apply to all random variables having the prescribed moments, and as such the 
bound tends to be quite conservative, that is, the actual approximation errors 
are generally much smaller than the bound. 

Nonidentically Distributed Case Although the Lindberg-Levy CLT is applicable 
in many experimental situations, it has the disadvantage of requiring that all 
of the random variables have the same mean, the same variance, and moreover, 
the same probability distribution. Various other central limit theorems can 
be constructed that utilize alternative conditions on the distributions of the 
random variables in the sequence {Xnl (e.g., see Y. S. Chow and H. Teicher, 
Probability Theory, Chapter 9, and R. G. Laha and V. K. Rohatgi, Probability 
Theory, Chapter 5). The most general CLT for the case of independent random 
variables, which subsumes the LLCLT as a special case, is the Lindberg CLT. 

*Theorem 5.31 (Lindberg's CLT) Let {Xnl be a sequence of independent random variables 
with EXi = J.Li and var (Xi) = aJ < 00 V i. Define b~ = L:7=1 aI, a~ = n- I L:7=1 aI, 
iln = n-I L:7=1 J.Li, and let fi be the PDF of Xi. lfV e > 0, 

(continuous case:) 

(discrete case:) 

then 

J!"~ ~2 t I:' (Xi - J.Li)2fi(Xi) = 0, 
n i=1 (Xj-/l;J2:;:tb; 

{;(x;»O 

"n X. _ "n . n l /2 (X _ - ) 
L..i=1 1 L..i=l J.Ll = n J.Ln -.<4 N(O, 1). 

("n 2)1/2 a L..i=1 a i n 

Proof See Rohatgi, Mathematical Statistics, pp. 282-288 or Chow and Teicher, Prob-
ability Theory, pp. 291-293. • 

It can be shown that the limit conditions in the Lindberg CLT, known 
as the Lindberg conditions, imply that limn~oo aJ I L:7=1 al = 0 V j. That is, 
the contribution that each Xi makes to the variance of L:7=1 Xi is negligible 
as n ~ 00. The Lindberg conditions can be difficult to verify in practice, and 
so we will present two useful special cases of the Lindberg CLT that rely on 
more easily verifiable conditions. The first special case essentially implies that 
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if the random variables in the sequence {Xn} are independent and bounded with 
probability I, then Yn = nl/2(Xn - {Ln)/an -4 N(O, 1). It will be seen that the 
boundedness condition and L:f=l a} ~ 00 imply the Lindberg condition. 

Theorem 5.32 (CLT for Bounded Random Variables) Let {Xn} be a sequence of independent 
random variables such that P(IXil ~ m) = 1 V i for some mE (0,00), and suppose 
EXi = JLi and var (Xi) = a} < 00 V i. If L:f=l var /Xi) = L:7=1 o'I ~ 00 as n ~ 00, 

then nl/2(Xn - {Ln)/an -4 N(O,I). 

Proof This follows from the LindbergCLTby first noting that since Pllxi-JLil ~ 2m) = 
1 by the boundedness assumption, then V C > 0 (for the continuous case-the 
discrete case is similar), 

! (Xi - JLi )21i(Xi )dxi ~ 4m2! Ii/Xi )dXi 
lXi-J.li12~eb~ lXi-J.l;)2~cb~ 

~ 4m2p ((Xi - JLi)2 2: cb;) 

4m2a 2 < ___ , 
cb~ 

where the last inequality results from Markov's inequality, Then 

1 n! 2 1 n 4m2a} 
b2 L (Xi - JLi) fi(xi)dXi ~ b2 L -b2 

n i=l lXi-J.li)2~sbA n i=l c n 

4m2 
<--
- (cb~) 

since b~ = L:7=1 a}, so that if b~ ~ 00 when n ~ 00, the right-hand side above 
has a zero limit V c > 0, and the Lindberg condition is satisfied. • 

The following example illustrates the discovery of an asymptotic distribu­
tion for a simple form of the least-squares estimator, which we will examine 
in detail in Chapter 8. 

Example 5.52 Let the sequence {Yn } be defined by Yi = zdJ + Ci, where 

a. f3 is a real number, 
h. Zi is the ith element in the sequence of real numbers {zn} for which 

n-1 L:f=l z; > a > 0 V nand Izil < d < 00 V i, and 
c. Ci is the ith element in a sequence of iid random variables {cn} for which 

ESi = 0, var(ci) = a 2 E (0, (0), and Pllcil ~ m) = 1 V i, where mE (0, (0). 

Find an asymptotic distribution for the least-squares estimator of f3 defined by 
n n 

Pn = LZiYi/ LZ;' 
i=l i=l 



276 Chapter 5 Basic Asymptotics 

Answer: We transform the problem into a form that allows both an application 
of a CLT and an application of Def. 5.10 to define an asymptotic distribution 
for ~n' Note that 

n n n n 

(~n - fJ) = I>i(Yi - ZifJ)/ LZT = LZiCil LZT, 
i=1 i=1 

so that 

where Wi = ZiCi. The CLT of Theorem 5.32 is applicable to this function of ~n' 
To see this, observe that EWi = 0 and var(Wd = a2zJ :::: a2d2 < 00 V i. Also, 
P(IZiCd :::: dm) = P(IWil :::: dm) = 1 V i, and L7=1 var(Wd = a 2 L7=1 zJ -+ 00, 

since n- I L7=1 zJ > a > 0 V n. Then, by Theorem 5.32, 

and by Def. 5.10, 

o 

The Liapounov CLT, given next, relaxes the boundedness assumption of the 
previous CLT. In this case, a condition on the moments of the random variables 
in the sequence {Xn } is used to imply the Lindberg conditions. 

Theorem 5.33 (Liapounov's CLT) Let {Xn} be a sequence of independent random variables 
such that EXi = /-Li and var (Xi) = aJ < 00 V i. If, for some 8 > 0, 

then 

~--n X. _ ",n . 1/2(X _ - ) 
L...i=1 I L...i=1 /-LI = n n /-Ln ~ N(O, 1). 

(",n a2) 1/2 an 
L...I=I I 
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* Proof This follows from the Lindberg CLT by first noting that, for 8 > 0 (for the 
continuous case-the discrete case is similar), 

r (Xi - J.Li)2 fi(Xi)dxi = r IXi - J.Lil8lxi - J.Lil-8 (Xi - J.Ld2 fi(Xi)dxi 
JIXi-J.L;)2~Eb~ JIXi-J.L;)2~Eb~ 

~ (cb;r8/2 r IXi - J.LiI 2+.sfi(Xi)dxi 
JIXi-J.Li)2?:.Eb~ 

~ (cb;r.s/2 EIXi - J.LiI 2+.s, 

where the first inequality follows from the fact that over the range of inte­
gration, (Xi - J.LiJ2 ~ cb; implies that IXi - J.Lil-.s ~ (cb;)-OI2, and the second 
inequality results from adding the nonnegative term 

(cb;r.s/2 r IXi - J.LiI2+.s!i(xi)dxi. 
JIXi-J.L;)2<Eb~ 

to the right-hand side of the first inequality. Then 

1" 1 ~1 ( )2f()d 1" 1 ~(b2)-.s/2 2+.1 n~~ b2 ~ Xi - J.Li i Xi Xi ~ n~~ b2 ~ c n EIXi - J.Lil 
n i=1 IXi-I{;)2~eb~ n i=1 

< -.1/2 1. ~ [EIXi - J.LiI 2+.s] 
- c n~~ fr (b;)l+.s/2 . 

The assumptions of the Liapounov CLT state that, for some 8 > 0, 

n EIXi - J.LiI2+o L 2 1+.1/2 ~ 0 as n ~ 00, 
i=1 (bn ) 

so that, V c > 0 the Lindberg condition is met and the Liapounov CLT holds. • 

An important implication of Liapounov's CLT is that L:f=1 Xi need not be a 
sum of identically distributed nor bounded random variables to have an asymp­
totic normal density. Under the conditions of the theorem, it follows that 

d X- a N (- -I -2) an n '" J.LDI n 0" n . 

Example 5.53 Let {Xn} be a sequence of independent, uniformly distributed random variables 
such that 

1 . 
Xi ,...., -2 I[-c- c-I(xi! V 1, Ci 1, 1 

where Ci E [r, ml, and 0 < r < m < 00. Then for 8 > 0, EIXi - J.LiI 2+8 ~ m2+.s Vi, 
and var(Xi ) = cT/3 ~ r 2/3 > 0 V i. Letting 8 = 1 in Liapounov's CLT, 

lim L:f=l EIXi - J.Li13 < lim (J3m)3 n- 1/2 = 0, 
n .... oo ["n 0"2]3/2 - n .... oo r 

L...l=l 1 



278 Chapter 5 Basic Asymptotics 

so that (note /Li = 0 V i) 

Yn= 2:7=1 Xi ~N(O 1) and Xn~N(o,n-2"'1.=nl (c3T)). 0 
[2:7=1 (cT/3)] 1/2 , ~ 

As an illustration of how either the CLT for bounded random variables or 
the Liapounov CLT might be applied in practice, consider a short-run produc­
tion function of a firm and focus on the effect of labor input on production. 
There may exist a systematic engineering relationship between the quantity 
of labor applied to the complement of plant equipment and the expected out­
put of the plant, say as Y = f(L), for any given time period of plant operation. 
However, it would undoubtedly be rare that the exact quantity of production 
expected in an engineering sense will actually be realized. Variations from the 
expected quantity could occur due to variations in the health, alertness, and 
general performance level of each of the various employees, the extent of ma­
chine failures in any given time period and their general performance level, 
the varying ability of management to schedule production efficiently on any 
given day, weather conditions if the production process is affected thereby, and 
so on. Viewing the overall deviation of total production from the engineering 
relationship as caused by the summation of a large number of random devia­
tions with finite absolute upper bounds caused by various uncontrolled factors 
results in a production relationship of the form Y = flL) + £, where £, and thus 
Y, has an asymptotic normal density (assuming the summation of the random 
deviations can be viewed as a sum of independent, although not necessarily 
identically distributed, random variables). 

As in the case of the Lindberg-Levy CLT, bounds have been established 
on the maximum absolute deviation between the actual value of PIYn ::::: c) 
for Yn = nl/2lXn - iln)/an, and the approximated value based on the standard 
normal distribution. Specifically, Zolotarev l4 has shown such an upper bound 
to be 

( 
n ) ( n )-3/2 

.9051 L~3; La;; , 
/=1 /=1 

where ~3j = EIIX; - EX;13) and a;j refer to the ;th random variable X;. Thus, if 
one knew the appropriate moments of the random variables XI, ... ,Xn , a bound 
on the approximation error could be ascertained. If such information were not 
available, the researcher knows only that as n increases, the accuracy of the ap­
proximation improves. As we had remarked in our discussion of similar bounds 
for the LLCLT, these bounds tend to be conservative and the actual approxima­
tion errors tend to be significantly less than the value of the bound. 

14M. Zolotarev (1967), itA sharpening of the inequality of Berry-Esseen. 1t Z. Wahrscheinlichkeits Theorie und Verw. Gebiete, 8 
pp. 332-342. 
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Definition 5.17 
Triangular array of 
random variables 

* Triangular Arrays In analyzing the asymptotic properties of some types of 
econometric or statistical procedures, it is useful to be able to apply central 
limit theory to what is known as a double array of random variables. For our 
purposes, it will be sufficient to examine a special case of such a double array, 
called a triangular array of random variables. is 

The ordered collection of random variables {Xu, X21 , X22, X31, X32, X33, ... , 
Xnn , ... }, or 

Xu; 
X21 X22; 
X31 X32 X33; 

Xn1 X n2 Xn3 X n4 Xnn; 

is called a triangular array of random variables and will be denoted by {Xnn }. 

Central limit theorems applied to triangular arrays of random variables will 
be concerned with the limiting distributions of appropriately defined functions 
of the row averages X(n) = n- I I:7=1 X ni . Note that all of the CLTs examined so 
far have dealt with functions of averages of the type k n = n- I I:7=1 Xi, the X/s 
being elements of the sequence {Xn}. It is possible that kIn) = Xn V n, which 
would occur if Xii = Xi V i, I, that is, all of the elements in any given column of the 
triangular array are identica1. Thus, the CLT results obtained heretofore apply 
to this special case of a triangular array. However, the triangular array {Xnn} 
is more general than a sequence {Xn} in the sense that the random variables 
in a row of the array need not be the same as any random variables in any 
other row. Furthermore, Xn always involves all of the random variables in the 
sequence {Xn} up to the nth element, while X(n) only involves the random 
variables residing in the nth row of the triangular array. The importance of 
this flexibility will become apparent when we analyze the asymptotic behavior 
of certain statistical procedures for which central limit theory can only be 
effectively applied in the context of triangular arrays of random variables. 

All of the CLTs presented heretofore can be extended to the case of triangu­
lar arrays. We present here the extension of the Liapounov CLT. For additional 
details on such extensions, the reader can refer to the book by K. 1. Chung cited 
in the proof of the theorem. Henceforth, we will let {L(n) = n- I I::l /.Lni and 
-2() -1 ",n 2 
a n = n L..i=l ani. 

15 A double array is one where the second subscript of the random variables in the ith row of the array ends with the value k j , rather 
than with the value i as in the case of the triangular array, and k n -+ 00 as n -+ 00. See Serfling, Approximation Theorems, p. 31. 
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Theorem 5.34 (Liapounov's CLT: Triangular Arrays) Let {Xnn} be a triangular array of ran­
dom variables with independent random variables within rows. Let EXi; = JLi; 
and var (Xi;) = a0 < 00 V i,i. If, for some 0 > 0, 

11'm I:7=1 EIXni - JLnil 2+o 
==-=----:--::-:-::-- = 0, n->oo ("n 2.)1+<1/2 

L-l=1 am 

then 

I:7=1 Xni - I:7=1 JLni = n 1/2 (X(n)- j1,(nl) /a(n) -4 N(O, 1). 
("n 2.)1/2 
L-l=1 am 

Proof See K. L. Chung (1974), A Course in Probability Theory, 2nd ed. New York: 
Academic Press, Section 7.2. • 

Note that the random variables within a row of the triangular array are 
assumed to be independent in the Liapounov CLT, but no such assumption is 
required for random variables in different rows. In fact, the random variables 
within a given row can be arbitrarily dependent on random variables in other 
rows. 

The following example applies the Liapounov CLT for triangular arrays to 
establish the asymptotic normality of the least-squares estimator under more 
general conditions than those utilized in Ex. 5.52. 

Example 5.54 Let the sequence {Yn } be defined by Yi = zd3 + £i, and assume the conditions 
of Ex. 5.52, except replace the boundedness assumption P(I£il ~ m) = 1 V i 
with the assumpti0!l that EI£d2+e ~ m < 00 V i for some 8> O. Then the least­
squares estimator fin = I:7=1 Zi Yd I:7=1 z; remains asymptotically normally 
distributed. To see this, note that 

where the random variables Wni are elements of a triangular array16 for which 
EWni = 0 and a;i = var(Wni) = zfj I:7=1 z;' Because I:7=1 a;i = I, the limit 
condition of the Liapounov CLT for triangular arrays is met since, for 8 > 0, 

n n ( n ) He/2 
lim "" EIWnd2+o = lim "" Izil2+oEI£iI2+0j a 2 "" Z2 ~ lim [md2+/)j(a2a)1+c5/2] n-e/2 = O. 
n~oo ~ n-+oo ~ ~ 1 n--+-oo 

i=l i=1 i=1 

Therefore, I:7=1 Wni -4 N(O, I), which then implies that 

o 

16Note the Wni, i = 1, .. . ,n, are independent because the c;'s are independent. 
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Definition 5.18 
M -Dependence 

* Dependent Random Variables 

In this subsection we provide an introduction to the notion of defining CLTs 
when the random variables in the sequence {Xn I exhibit some degree of de­
pendence. Many different CLTs can be defined by allowing different types of 
dependencies among the random variables in {Xnl. CLTs for dependent random 
variables are generally much more complicated to state and prove than CLTs 
for independent random variables, and the level of mathematics involved is 
beyond the scope of our study. We will explicitly examine one useful CLT for 
a particular type of dependence called m-dependence. The reader can find ad­
ditional reading on CLTs for the dependent random variable case in H. White, 
Asymptotic Theory, Chapters 3 and 5, and in R. J. Serfling (1968), "Contribu­
tions to central limit theory for dependent variables." Ann. of Math. Stat. 39 
pp. 1158-1175. 

The sequence {Xnl is said to exhibit m-dependence (or is said to be m­
dependent) if, for a I < a2 < ... < ak < h < b2 < ... < bTl (Xall X lI1 , ••• ,Xak ) is 
independent of (Xb l ,Xb2 , ••• ,Xb,) whenever b l - ak > m. 

The definition states that {Xnl is m-dependent if any two groups of random 
variables separated by more than m positions in the sequence are independent 
of one another. Combining m-dependence with boundedness of the random 
variables in the sequence {Xnl leads to the following CLT. 

Theorem 5.35 (CLT for Bounded M-Dependent Sequences) Let {Xnl be an m-dependent se­
quence of random scalars for which EXj = J.Lj and P( IXj I :5 c) = 1 for some c < 00 

V i. Let a;n = var ( L:7=, Xj). If n-2/3a;n -+ 00, then 

Proof See R. G. Laha and V. K. Rohatgi, Probability Theory, p. 355, Section 5.5.31. • 

Regarding the variance condition stated in the theorem, note that if the X/s 
are independent and aT :::: b > 0 V i, then a;n :::: bn -+ 00 at a rate of n, so that 
n-2/3a;n :::: bn1/3 -+ 00 at a rate of n l /3 . If we let the X/s be dependent, then as 
long as the covariance terms in the definition of var(L:7=} Xd do not collectively 
decrease the rate at which a;n increases by a factor of n l 3 or more, the variance 
condition of the CLT will hold. Thus, through restricting covariance terms, 
the variance condition of Theorem 5.35 places restrictions on the extent of 
the dependence that can exist between the X/so Note that the restriction is 
effectively on negative covariances, since posi tive covariances actually increase 
the variance of L:%:l Xj. 

Example 5.55 Let the sequence {Ynl be defined by Yj = zd3 + Cj, and assume the conditions of 
Ex. 5.52, except replace the assumption var(Cj) = a2 E (0,00) with var(Cj) = aT :::: 
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r > 0 V i, replace the assumption that the c/s are iid with the assumption of 
m-dependence, and in addition assume that Zi > 0 V i and COV(ci' c;) ?: 0 Vi =1= j. 
From Theorem 5.35, it follows that 

To see this, note that 

(~zt) (~n -~) = ~ZiCi = ~Wi' 
where EWi = 0 and P(lzicil ::: db) = P(IWil ::: c) = 1 for c = db < 00 V i. Also, 

a:n = var (t Wi) = t alzt + L L ZiZ; COV(Ci' c;) 
i=1 i=1 li-il:::m,i#; 

since, by m-dependence, COV(Ci' c;) = 0 when li-il > m. Because, ZiZ; COV(Ci,c;) ?: 
o V i and i, a;n ?: 2:7=1 alzt ?: nar, so that n-2/3a;n ~ n l /3ar -+ 00. Thus, by 
Theorem 5.35, 

o 

Multivariate Central limit Results 

The central limit theorems presented so far are applicable to sequences of ran­
dom scalars. Central limit theorems can be defined for sequences of random 
vectors, in which case conditions are established to ensure that an appropriate 
(vector) function of the random sequence converges in distribution to a mul­
tivariate normal distribution. Due to a result discovered by H. Cramer and H. 
Wold,I7 and termed the Cramer-Wold device, questions of convergence in dis­
tribution for a multivariate random sequence can all be reduced to the question 
of convergence in distribution of sequences of random scalars, at least in prin­
ciple. Thus, all of the central limit theorems discussed to this point remain 
highly relevant to the multivariate case. 

Theorem 5.36 (Cramer-Wold's Device) The sequence of (k x 1) random vectors {Xn} con­
verges in distribution to the random (k x 1) vector X iff f'Xn ~ f'X V f E Rk. 

Proof Sufficiency will be motivated assuming the existence of MGFs. The general 
proof replaces MGFs with characteristic functions. From Theorem 5.2, 

17H. Cramer and H. Wold (1936), "Some theorems on distribution functions. II J. London Math. Soc., II, pp. 290-295. 
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£'Xn ~ £'X =} Ml'Xn(t) -+ Ml'X(t) for t E (-h,h), h > 0, and V £ E Rk. This 
implies 

Eetl'Xn = Eet : Xn -+ Ee t : x = Eetl'x 

V t* = t£, since £ can be chosen arbitrarily. But this is equivalent to Mxnlt*) -+ 

Mx(t*), V t*, which implies Xn ~ X by the multivariate interpretation of The­
orem 5.2. Necessity follows from Theorem 5.3 since £'x is a continuous func­
tion of x. The general proof based on characteristic functions can be found in 
V. Fabian and J. Hannan (1985), Introduction to Probability and Mathematical 
Statistics. New York: John Wiley, p. 144. • 

Note that in applying Theorem 5.36, £'Xn ~ £'X is always trivially true 
when £ = [0], and so the condition £'Xn ~ £IX need only be checked for £ # [0]. 
We will be most concerned with convergence in distribution to members of the 
normal family of distributions. In this context, Theorem 5.36 implies that to 
establish convergence in distribution of the sequence of random (k xl) vectors 
{Xn} to the random (k x 1) vector X ~ N(J1., :E), it suffices to demonstrate that 
.e'Xn ~ N(£' J1., £':E£) V £ E Rk. We formalize this observation as a corollary to 
Theorem 5.36. 

Corollary 5.4 (Cramer-Wold Device for Normal Limiting Distributions) Xn ~ N(J1.,:E) iff 
£'Xn ~ N(£' J1.,£':E£) V £ E Rk. 

The Cramer-Wold device can be used to define multivariate central limit 
theorems. The following is a multivariate extension of the Lindberg-Levy CLT. 

Theorem 5.37 (Multivariate Lindberg-Levy CLT) Let {Xn} be a sequence of iid (k xl) random 
vectors with EXi = J1. and COV(Xi) = :E V i, where :E is a (k x k) positive definite 
matrix. Then 

n1/2 (n- 1 tXi -J1.) ~ N![O], :E). 

Proof Examine Zi = £'Xi, where £ # [0]. Note that J1.z = EZi = El'Xi = £' J1. and 
a; = var(Zi! = var(£'Xi) = £':E£ V i. Now, since {Xn} is a sequence of iid random 
vectors, then {Zn} = {£'Xn} is a sequence of iid random scalars, and applying 
the Lindberg-Levy CLT for random scalars to the iid sequence {Zn} results in 

2:f=1 Zi - nfLz = 2:f=1 £'Xi - n£' J1. = £' [2:%:1 Xi - nJ1.] = .e'nl/2 [n- I 2:%:1 Xi - J1.] ~ NIO, 1). 
n1/2az nl/2(£':E£)l/2 n1/2 (£':E£)1/2 !£,:E£) 1/2 

Then, by Slutsky'S theorem 

£'nl/2 [ n- I t Xi - J1. ] ~ N(O, £':E£), 



284 Chapter 5 Basic Asymptotics 

which holds for any choice of the vector f. =I- [0]. By the Cramer-Wold device, 
we can conclude that 

nl /2 [n- l t Xi - /.L] -4 N([OL ~). • 
It follows from the multivariate Lindberg-Levy CLT that Xn ~ N(/.L, n- I ~). 

Example 5.56 Shipments of CPU chips from two different suppliers are to be inspected before 
being accepted. Chips are randomly drawn, with replacement, from each ship­
ment and are nondestructively tested in pairs, with (Xli,X2i) representing the 
outcome of the tests for pair i. An outcome of Xei = 1 indicates a faulty chip, 
Xfi = 0 indicates a nonde£ective chip, and the joint density of (Xli, X 2i ) is given 
by 

X [Xli] Xli(I )1-xl·] ( ) Xli(I )I-xl.] ( ) i = X2i ....., PI - PI ' (O,I) Xli P2- - P2 -, (O,I) X2i , 

where Pi E (0, 1) for i = 1,2. Note that 

EX; = fP21] = P and Cov(X i ) = ~ = [Pd IO- PI) 0 ] Lv P2(I - P2) . 

With 

X- -I Xli n [ ] n =n , 
12xII t; X2i 

it follows from the multivariate Lindberg-Levy CLT that 

ZII = n l /2 [Xll - p] -4 z....., N([OL~) 
and also that 
- a 1 X ll ....., N (p, n- ~). 

If one were interested in establishing an asymptotic distribution for the 
difference in the number of defectives observed in n random pairs of CPUs 
from shipments 1 and 2, the random variable of interest would be c'(nXJl ) = 
2::~1 Xli - 2::7=1 X2i, where c' = [1 - 1]. Then 

c'(nXn) = g(ZJl' n) = c'[n l /2Zn + npL 

so that, by Def. 5.10, 

c'(nXn) ~ c' [nl/2Z + np] ....., N(nc'p, nc'~c). 

Thus, the asymptotic distribution for the difference in the number of defectives 
is 

o 
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Another useful multivariate CLT concerns the case where the elements in 
the sequence {Xn} are independent but not necessarily identically distributed 
(k xI) random vectors that exhibit uniform (i.e., across all n) absolute upper 
bounds with probability l. 

Theorem 5.38 (Multivariate CLT: Independent Bounded Random Vectors) Let {Xn} be a se­
quence of independent (k x 1) random vectors such that P(IXlil :s m, IX2il :s 
m, ... ,IXkil :s m) = 1 V i, where m E (0,00). Let EXi = /-ti, Cov (Xi) = 'ljJi, and 
suppose that limn ...... 00 n-1 I:7=1 'ljJi = 'ljJ, a finite, positive definite (k x k) matrix. 
Then 

n 
n-1j2 L (Xi - /-ti) -4 N([O], 'ljJ). 

j=1 

proof Examine Zj = £'Xj, where £ i= [OJ. Note that EZ i = E£'Xj = £' /-tj and var(Zd = 
var(£'Xi! = £''ljJj£. Since {Xn} is a sequence of independent random vectors, 
{Zn} = {£'Xn} is a sequence of independent random scalars. Furthermore, since 
outcomes of the vector Xn are contained within the closed and bounded rect­
angle x1=d-m, mJ in Rk with probability I, then for any given nonzero vector 
of real numbers £, outcomes of Zn = £'Xn exhibit an upper bound in absolute 
value with probability 1 uniformly V n. Thus, there exists a finite real num­
ber 8 > 0 such that P(Jzjl :s 8) = 1 V i. In addition, since n- I I:7=1 var(Zj) = 
n- I I:;~l f''ljJj£ ~ £''ljJ£ > 0, I:7=1 var(Zi) ~ 00. It follows from the CLT of 
Theorem 5.32 that 

I:7=1 Zi - I:7=1 £' /-ti 

(I:7=1 var(Zi)) 1/2 
£' (I:7=1 X j - I:7=1 /-ti) 

(I:7=1 £''ljJi£) 1/2 

£' -1/2 (",n X. _ ""n .) 
= n L...i=1 1 L...i=l/-tl -4 N(O, 1). 

(""n £, (1", .. ) £)1/2 
L .. d=1 n 'PI 

Premultiplying by the denominator term, and noting that 

Slutsky'S theorem (Theorem 5.10) then results in 

£'n- I/2 (tXi -tJ.Li) -4 N(O,£''ljJ£j, 

which holds for any choice of the real vector £ i= [OJ. It follows by the Cramer­
Wold device that 

• 
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Various other multivariate CLTs can be constructed using the Cramer-Wold 
device and CLTs for random scalars. In practice, one often relies on the Cramer­
Wold device directly for establishing limiting distributions relating to statis­
tical procedures of interest, and so we will not attempt to compile a list of 
additional multivariate CLTs here. 

5.6 Asymptotic Distributions of Differentiable Functions of Asymptotically Normally 
Distributed Random Variables 

Lemma 5.6 
First-Order Taylor 
Series Expansion 

and Remainder 
(Young's Form) 

In this section we examine results concerning the asymptotic distributions 
of differentiable functions of asymptotically normally distributed random vari­
ables. General conditions will be identified for which differentiable functions of 
asymptotically normally distributed random variables are themselves asymp­
totically normally distributed. The utility of these results in practice is that 
once the asymptotic distribution of Xn is known, the asymptotic distributions 
of interesting functions of Xn need not be derived anew. Instead, these asymp­
totic distributions can generally be defined by specifying the mean and the co­
variance matrix of a normal distribution according to well-defined and straight­
forwardly implemented formulas. 

All of the results that we will examine in this section are based on first-order 
Taylor series expansions of the function g(x) around a point fL. We review the 
Taylor series expansion concept here, paying particular attention to the nature 
of the remainder term. Recall that d(x, fL) = [(x - fL)'(x - fLJP /2 represents the 
distance between the points x and fL. 

Let g: D ~ R be a function having partial derivatives in a neighborhood of 
the point J-L E D that are continuous at J-L. Let G = [og(J-L)/OX1, ... , og(J-L)/oxkl 
be the gradient vector of g(x) evaluated at the point x = J-L. For xED, define 
the remainder term R(x) via 

g(x) = g(J-L) + G!x - J-L) + d(x, J-L)R(x), 

with R(J-L) = O. Then R(x) is continuous at x = J-L and limHIL R(x) = R(J-L) = O. 

Proof Young's form of Taylor's theorem is not prevalent in calculus texts. 
G. H. Hardy (1952), A Course of Pure Mathematics, 10th ed. Cambridge, 
New York, The University Press, p. 278, proves the case where x is a scalar. 
For a brief sketch of the proof in the multivariate case, first note that R(x) = 
(g(x) - g(J-L) - G(x - J-L))/d(x, J-L). Under the stated conditions of the theorem 
(partial derivatives exist in a neighborhood of J-L and are continuous at J-L), 
the function g(x) is differentiable at J-L, and the defining property of differ­
entiability at fL is that limHIL R(x) = 0 (T. M. Apostol (1957), Mathematical 
Analysis. Cambridge, MA: Addison-Wesley, pp. 110 and 118). Thus, R(x) is 
continuous at x = J-L. 
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Our first result on asymptotic distributions of gjX) concerns the case where 
g(x) is a scalar-valued function. As will be common to all of the results we will 
examine, the principal requirement on the function g(x) is that partial deriva­
tives exist in a neighborhood of the point J-L and that they are continuous at J-L 
so that Lemma 5.6 can be utilized. In addition, we will also make assumptions 
relating to the nature of the asymptotic distribution of X. 

Theorem 5.39 (Asymptotic Distribution of g(XnJ-Scalar Function CaseJ Let {Xn} be a se­
quence of (k x IJ random vectors such that nl/2(Xn - J-LJ --4 Z "-' N/[OJ,:EJ. Let 
g(xJ have first-order partial derivatives in a neighborhood of the point x = J-L 
that are continuous at J-L, and suppose the gradient vector of g(x) evaluated at 
x = p., Gil xk) = [3g(p.)/3x I •.. 3g(p.)/3xd , is not the zero vector. Then 

nl/2(g(XnJ - g(J-LJJ --4 NjO, G:EG'J and gjXnJ ~ N(g(J-LJ, n- I G:EG'J. 

Proof Representing g(XnJ in terms of a first-order Taylor series expansion around the 
point J-L and the remainder term, as in Lemma 5.6, yields 

g(XnJ = g(J-LJ + G(Xn - p.J + d(Xn , p.JR(XnJ. 

Multiplying by n l/2 and rearranging terms obtain 

n l/2 (g(XnJ - g(J-LJJ = G [nl/2(Xn - p.J] + n l/2d(Xn, p.JR(Xn ). 

The last term converges to zero in probability. To see this, first note by Slutsky's 
theorem that Xn - J-L --4 plim(n- I/2 )Z = O· Z = [01, so that plimXn = p. and 
then plim R(Xn) = R(J-L) = 0 by the continuity of R(x) at the point x = J-L. Also, 
by Theorem 5.3, 

( 
, ) 1/2 

n l/2d(Xn, J-L) = [nl/2(Xn - J-L)] [nl/2(Xn - J-L)] ~ (Z'Z)I/2, 

so that by Slutsky's theorem 

n l/2djXn, J-L)R(XnJ --4 (Z'ZJI/2 . plim RjXnJ = (Z'ZP/2 . 0 = 0 

~O. 

By continued applications of Slutsky's theorem, it follows that the limiting 
distribution of nl/2(gjXnJ - g(p.)J is the same as that of 

G[nl/2(Xn - J-LJJ --4 GZ '" N([OJ, G:EG'J. 

The asymptotic distribution of g(XnJ is then as stated in the theorem. _ 

Example 5.57 Note from Ex. 5.50 that if {Xn} is a sequence of iid Bernoulli-type random vari­

ables, then for p#-O or 1, nl/2(Xn - p) --4 NjO,p(1 - pI). Consider using an 
outcome of g(XI = X(1 - Xl as an estimate of the variance p(l- pI of the 
Bernoulli PDF, and define an asymptotic distribution for g(Xnl. 
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Answer: Theorem 5.39 applies with J1, = p and ~ = 0-2 = p(I - pl. Note that 
dg(p)/dX = 1 - 2p, which is continuous in p and is nonzero as long as p -=I- .5. 
Also, 0-2 -=I- 0 if p -=I- 0 or 1. Then, for p -=I- 0, .5, or I, Theorem 5.39 implies that 

Xn(1 - Xn) ~ N(p(l- p),n-1(I - 2p)2p(1 - p)). 

An asymptotic density for Xn(l-Xn) under the assumptionp = 1/2 can be 
established using other methods (see Bickel and Doksum (1977), Mathematical 
Statistics. San Francisco: Holden-Day, p. 53); however, convergence is not to a 
normal distribution. Specifically, it can be shown that n[Xnl1-Xn) - (1/4)] ~ 
2, where 2 has the density of a X I random variable that has been multiplied by 
(-1/4). If p = 0 or p = I, the X/s are all degenerate random variables equal to 0 
or I, respectively, and the limiting density of Xn is then degenerate at 0 or 1 as 
w~. 0 

By reinterpreting g(x) as a vector function and G as a Jacobian matrix, the 
conclusion of Theorem 5.39 regarding the asymptotic distribution of the vector 
function remains valid. The extension allows one to define the joint asymptotic 
distribution of the random vector g(Xn). 

Theorem 5.40 (Asymptotic Distribution of g(Xn)-Vector Function Case) Let {Xn} be a se­
quence of (k x 1) random vectors such that n l /2 (Xn - /-L) ~ z ~ N([O],:E). Let 
g(x) = (gl(X), ... ,gm(x)), be an (m xl) vector function (m ~ k) having first-order 
partial derivatives in a neighborhood of the point x = /-L that are continuous 
at /-L. Let the Jacobian matrix of g(x) evaluated at x = J-L, 

agI!J-L) agI!J-L) 

[ ag,(JLI/ax' ] aXl aXk 
G - . -

1l1X/( - agll1(~)/ax' - agm(J-L) agm(J-L) 
aXl aXk 

have full row rank. 
Then 

nl/2(g(Xll) - g(J-L)) ~ N(!O], G:EG') and g(Xn) ~ N(g(J-L), n- 1 G:EG'). 

Proof Following the proof of Theorem 5.39, a first-order Taylor series expansion ap­
plied to each coordinate function in g(Xn) results in 

nl/2(g(Xn) - g(J-L)) = G[nl/2(Xn - J-L)] + nl/2d(Xn, J-L)R(Xn), 

where R(Xn) = (Rl(Xn), ... , Rm(Xn))' is now an (m x 1) vector of remainder terms. 
The approach used in the proof of Theorem 5.39 can be applied elementwise 
to conclude that plim[nl/2d(Xn, J-L)R(Xn)] = [0]. Then, by Slutsky'S theorem, the 
limiting distribution of nl/2(g(Xn)- g(J-L)) is the same as the limiting distribution 
of G[n l/2(Xn - J-L)], and 

G[nl/2(Xn - /-L)] ~ GZ ~ N([Ol, G:EG'). 
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The asymptotic distribution of g(Xn) follows directly. • 
Let {,Bn} be a sequence of (2 x 1) random vectors such that n 1/2(,Bn - f3) --4 
N([Oj, ~), where f3 = [2 I]' and ~ = [i ~]. Find an asymptotic distribution for 

the vector function g(,B) = (3,8[lj,8[2J I ,8[2]/,8[1])'. 
Answer: All of the conditions of Theorem 5.40 are met, including the fact that 

3{31 ] [3 6 ] 
1/{3) -1/4 1/2 

has full row rank (note that the partial derivatives exist in an open rectangle 
containingf3, and they are continuous at the point(3). Then, sinceg(f3) = [6 1/2J' 
and G~G' = [192 11·~5], it follows from Theorem 5.40 that 

(,B ) = [3Jn[1]~n[2]] ~N ([ 6 ] n-I[ 90 1.5 J). 
g n {3n[2l/{3n[1] 1/2 ' 1.5 .125 

A specific distribution is obtained once n is specified. For example, if n = 20, 
then 

o 

The final result that we will examine concerning the asymptotic distribu­
tion of g(Xn) generalizes the previous two theorems to cases for which V~ 1/2(Xn_ 

p,) --4 N([Oj, I), where {Vn } is a sequence of (m x m) positive definite matrices of 
real numbers such that Vn --+ [0].18 Note this case subsumes the previous cases 
upon defining Vn = n-l~, in which case V~I/2(XIl - fl) = ~-1/2nl/2(XII - p,) --4. 
N([O], I) by Slutsky'S theorem. The generalization allows additional flexibility 
in the means by which the asymptotic distribution of Xil is initially established 
and is especially useful in the context of the least squares estimator to be dis­
cussed in Chapter 8. 

*Theorem 5.41 (Asymptotic Distribution of g(Xn)-Generalized) Let {Xn} be a sequence of 
(k x 1) random vectors such that V;;I/2(Xn - p,) -4 N([O],I), where {Vn} is a 
sequence of (m x m) positive definite matrices for which Vn --+ [OJ. Let glx) be 
an (m xI) vector function satisfying the conditions of Theorem 5.40. If there 
exists a seffuence of positive real numbers {an} such that {[anGVnGTl/2} is 
Oil) and a; 2(Xn - p,) is Op(l), then 

(GVn G,)-1/2[g(Xn) - g(J-L)j-4 N([Oj, I) 

and 

g(Xn) ~ N(g(p,), GVnG'). 

18Recall that V~/2 is the symmetric square root matrix of Vn , and v;; 1/2 is the inverse of vIP. The defining property of vI/2 is that 
V~/2V~/2 = Vn, while V;;I/2V;;I/2 = V;;-l. 
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Sketch of the Proof Represent g(Xn) in terms of a first-order Taylor series expansion plus remainder, 
as in the proof of Theorem 5.40, to obtain 

[GVnG't1/2[g(Xn) - g(J.t)j = [GVnG't1/2[G(Xn - J.t) + d(Xn, J.t)R(Xn)]. 

The first term to the right of the equality is such that 

(GVnG't1/2G(Xn - J.L) = (GVnG'tl/2GV~/2V;I/2(Xn - J.t) -4 N([Oj, I), 

which follows from H. White, Asymptotic Theory, Lemma 4.23, p. 66, upon 
recognizing that {An} = {(GVnG')-1/2GV~/2 is an 0(1) sequence of matrices 
(note that AnA~ = I 'V n) and V;;I/2(Xn - J.L) -4 N(!Oj, I). 

The second term converges in ~robability to the zero matrix since 
[GVnG'j-l/2d(Xn, J.L) = [anGVnG'j-l/2[ap(Xn - J.t)'(Xn - J.L)a~/2p/2 is Op(l) and 
R(Xn) -4 [OJ. Then the convergence in distribution result of the theorem fol­
lows from Slutsky's theorem, and the asymptotic distribution of g(Xn) follows 
subsequently. • 
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Problems 

1. Given current technology, the production of ac­
tive matrix color screens for notebook computers is 
a difficult process that results in a significant propor­
tion of defective screens being produced. At one com­
pany the daily proportion of defective 9.5" and 10.4" 
screens is the outcome of a bivariate random variable, 
X, with joint density function f(xl, X2; a) := (axl + (2 -
a)x2)Ijo,lj(xl JIjO.lI(X2J, where a E (0,2). The daily propor­
tions of defectives are independent from day to day. A 
collection of n iid outcomes of X will be used to generate 
an estimate of the (2 xl) vector of mean daily propor­
tions of defectives, f.L, for the two types of screens being 
produced, as Xn := 2:::1 X;/n, where X j := [;Ii). 

12xl) 2, 

-as -p -d 
a. Does Xn -4 pl Does Xn -4 pl Does Xn ---t pl 

b. Define an asymptotic distribution for the bivariate 
random variable Xn • If a := 1 and n = 200, what is 
the approximate probability that Xn [l] > .70, given 
that Xn [2] := .60? 

c. Consider using an outcome of the function g(Xn) := 
Xn [1 l!Xn [2] to generate an estimate of the rela­
tive expected proportions of defective 9.5" and 
10.4" screens, f.Ldf.L2. Does g(XnJ 24 f.LIif.L2l Does 
g(Xn) --4 f.Ldf.L2l Doesg(XnJ ---4 f.LIif.L2l 

d. Define an asymptotic distribution for g(Xn). If a := 1 
and n = 200, what is the approximate probability 
that the outcome of g(Xn) will exceed l? 

2_ Central limit theorems have important applica­
tions in the area of quality control. One such applica­
tion concerns so-called control charts, and in particu­
lar, X charts, which are used to monitor whether the 
variation in the calculated mean levels of some charac­
teristics of a production process are within acceptable 
limits. The actual chart consists of plotting calculated 
mean levels (vertical axis) over time (horizontal axisJ 
on a graph that includes horizontal lines for the actual 
mean characteristic level of the process, f.L, and for up­
per and lower control limits that are usually determined 
by adding and subtracting two or more standard devia­
tions, ax, to the actual mean level. If, at a certain time 
period, the outcome of the calculated mean lies outside 
the control limits, the production process is considered 
to be no longer behaving properly, and the process is 
stopped for appropriate adjustments. For example, if a 
production process is designed to fill cans of soda pop 
to a mean level of 12 oz., if the standard deviation of 
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the fill levels is .I, and if 100 cans of soda are randomly 
drawn from the packaging line to record fill levels and 
calculate a mean fill level x, then the control limits on 
the daily calculated means of the filling process might 
be given by 12 'f 3 std(x) := 12'f .03. 

a. Provide a justification for the X chart procedure de­
scribed above based on asymptotic theory. Be sure 
to clearly define the conditions under which your 
justification applies. 

b. Suppose that control limits are defined by adding 
and subtracting three standard deviations of X to 
the mean level f.L. In light of your justification of 
the control chart procedure in (a), what is the prob­
ability that the production process will be inadver­
tently stopped at a given time period, even though 
the mean of the process remains equal to f.Ll 

c. In the soda-can filling example described above, if 
the process were to change in a given period so that 
the mean fill level of soda cans became 12.05 oz. 
what is the probability that the control chart pro­
cedure would signal a shutdown in the production 
process in that periodl 

3. The lifetime of a certain computer chip that your 
company manufactures is characterized by the popula­
tion distribution 

II . B) _ 1 -z/B () "z, - (je 110,00) z , 

where z is measured in thousands of hours. Let 
(X I, ... , Xn) represent iid random variables with the den­
sity f(z; B). An outcome of the random variable Yn := 
(1 + 2::7=1 Xd/n will be used to provide an estimate of e. 

a. Is it true that Yn ..E4 ()? Is it true that Yll --4 ()? 

b. Define an asymptotic distribution for Yll • 

c. Suppose n = 100 and B := 10. Use the asymptotic 
distribution you defined in (b) to approximate the 
probability that Yll ~ 15. 

4. In each case below, the outcome of some function, 
T(X1n)), of n iid random variables X1n) = (XI, ... , Xn) is be­
ing considered for providing an estimate of some func­
tion of parameters, q(B). Determine whether ET(Xlnd = 
q(BJ, limn ... "" ET(Xln)) := q(B), and plim T(Xln)) := q(B). 

a. X;'s ~ iid Gamma(a, tJ) and TlX1n)) := Xn is being 
used to estimate q(a, III = all. 

b. X;'s ~ iid Gamma(a,tJ) and T(X1n)) = 2::7=I(Xj -

Xn)2/(n - 1) is being used to estimate q(a, tJ):= a1l1 . 
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c. X/s ~ iid Bernoulli(p) and llX1nl ) = Xn(I - Xn) is 
being used to estimate q(p) = pi I - pl. 

d. X/s ~ iid N(J.L, a2 ) and llX1nl ) = (2:7=1 Xj -n l /2 )/(n+ 1) 
is used to estimate J.L. 

5. The daily number of customers entering a large gro­
cery store who purchase one or more dairy products is 
given by the outcome of a binomial random variable 
Xl with parameters p and n l for day t. The number of 
customers who enter the grocery store on any given 
day, n l , is itself an outcome of a random variable Nt 
that has a discrete uniform distribution on the range 
{200, 201, .. " 300}. The XI'S and the Nt's are all inde­
pendent. The local dairy products commission wants an 
estimate of the daily proportion of customers entering 
the store who purchase dairy products and wants you 
to use as an estimate an outcome of Xd = 
(ljd) 2::=1 (Xt/Nt ) where d is the number of days. 

a. Does Xci ~ p? Does X" _l'~ p? Does Xci ~ p? 

b. Define an asymptotic distribution for Xd . If P = .8, 
d = 300, and 2:~~ n, = 75, ODD, what is the approx­
imate probability that Xd E (.78, .82)1 

6. Let (XI,' ",XII) be iid random variables with a2 < 

00. We know from Khinchin's WLLN that 
Il 

X- -I "X P =n L i~U. 

j=1 
a. Find a functional relationship between n, a, and c 

such that 

PIx E (J.L - c, J.L + e)) ~ .99. 

b. For what values of n and a will an outcome of X be 
within =f. 1 of J.L with probability ~ .991 Graph this 
relationship between the values of nand a. 

c. If a = I, what value of n will ensure that the out­
come of X will be within +.1 of J.L with probability 
~ .99? 

d. If a = 1 and the X,'s are normally distributed, what 
value of n will ensure that the outcome of X will 
be within =f.l of J.L with probability = .991 

7. Let the random variables in the sequence {Xu} be 
iid with a gamma density having parameters a = 2 and 
f3 = 3. 

a. What is the probability density for XIl ? 

b. What is an asymptotic density for XIl ? 

c. Plot the actual versus asymptotic density for Xn 
when n = 10. 

d. Repeat Ic) for n = 40. Interpret the graphs in (c) and 
(d) in terms of asymptotic theory. 

8. A pharmaceutical company claims that it has a drug 
that is 75 percent effective in generating hair growth on 
the scalps of balding men. In order to generate evidence 
regarding the claim, a consumer research agency con­
ducts an experiment whereby a total of 1,000 men are 
randomly chosen and treated with the drug. Of the men 
treated with the drug, 621 experienced hair growth. Do 
the results support or contradict the company's claim? 

9. A political candidate has hired a polling firm to as­
sess her chances of winning a senatorial election in a 
large eastern state. She wants an estimate of the pro­
portion of registered voters that would vote for her lIif 
the election were held today. II Registered voters are to 
be randomly chosen and interviewed, and their prefer­
ences recorded. The polling firm will use the outcome 
of X as an estimate of the proportion of voters in favor 
of the candidate. It is known that currently between 40 
percent and 60 percent of the registered voters favor her 
in the election. She wants to have an estimate that is 
within 2 percentage points of the true proportion with 
probability = .99. How many registered voters must be 
interviewed, based on the asymptotic distribution of X? 

10. Let observations on the quantity supplied of a cer­
tain commodity be generated by Yj = Xif3 + VII where 
Ixd E [a, b] V i are scalar observations on fixed prices, 
f3 is an unknown slope coefficient, and the VI's are iid 
random variables having a mean of zero, a variance of 
a2 E (0, (0), and P(iVil ~ m) = 1 V i (a, b, and m are finite 
positive constants). Two functions of the xl's and Y/s 
are being considered for generating an estimate of the 
unknown value of f3: 

/3 = (X'X)-Ix'y and /3r = (x'x + k)-Ix'y, 

where k > 0, x is an (n xl) vector of observations on the 
xl's and Y is an (n xl) vector of the corresponding iid 
Y/s. 

a. Define the means and variances of the two estima­
tors of f3. 

b. Is it true that limn ... "" E/3 == f3 and/or limn_+"" E/3r = 
f3? 

c. Define the expected squared distances of the two 
estimators from f3. 

d. Which, if either, of the estimators converges in 
mean square to f3? 
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e. Which, if either, of the estimators converges in 
probability to f3? 

f. Define asymptotic distributions for each of the es­
timators. 

g. Under what circumstances would you prefer one 
estimator to the other for generating an estimate of 
the unknown value of fJ? 

11. Let XI, .. . ,Xn be iid random variables having con­
tinuous uniform distributions of the form f(z) = Ilo,1)(z). 

a. Define an asymptotic distribution for Xn = 
n- I L:7~1 Xi. 

b. Using your result from (aI, argue that (L::~I X;)-6 ;::::: 
Z ~ N(O,l). 
(This approximation is very accurate and is some­

times used for simulating N(O, 1) outcomes using a uni­
form random-number generator.) 
12. A company produces a popular beverage product 
that is distributed nationwide. The aggregate demand 
for the product during a given time period can be repre­
sented by 

11 n 

Q = L Qi = L(cxi - fJiP + V;), 
i~1 i~1 

where Qi is quantity purchased by the ith consumer, 
CXi > 0, fJi > 0, EVi = 0, Var(Vi) ::: c > 0, P(IVil ~ ml = 1 
'V i, and c and m are positive constants. It can be assumed 
that the quantities purchased by the various consumers 
are independent. 

a. Define an asymptotic distribution for the aggregate 
quantity demanded, Q. 

b. If P = 2, then EQ = 80, and if P = 5, then EQ = 50. 
If it costs the company $2/unit to manufacture and 
distribute the product, and if P = $2.50, what is 
the asymptotic distribution of aggregate company 
profit during the time period? 

c. Define an interval around the mean of aggregate 
company profit that will contain the actual out­
come of aggregate profit with (approximate) prob­
ability .95 when P = $2.50. 

13. The daily tonnage of garbage handled by the Enviro­
Safe Landfill Co. is represented as the outcome of a ran­
dom variable having some triangular distribution, as 

X ~ fIx; a) = [(.5 - .25a) + .25xl1Ia-2,al(x) 

+ [(.5 + .25a) - .25xl1Ia,a+21(xl 
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The distribution is represented graphically as fol­
lows: 

f(x;a) 

~--------~~--~----~~----------x a 

Enviro-Safe is in the process of analyzing whether or not 
it needs to expand its facilities. It wants an estimate of 
the expected daily tonnage of garbage that it handles. It 
has collected 4 years of daily observations on tonnage 
handled (n = 1,460 observations) and provides you with 
the following summary statistic: 

11 

LXi = 29,200. 
i~1 

You may treat the observations as outcomes of iid ran­
dom variables. 

a. Use x = n- I L:7~1 Xi to provide an estimate of a, the 
expected tonnage of garbage handled. 

b. Based on the LLCLT, define an asymptotic distri­
bution for x. You should be able to identify a nu­
merical value for the variance of the asymptotic 
distribution. 

c. Using the asymptotic distribution, how probable is 
it that the outcome of x will be within .05 tons of 
the actual expected value of daily garbage tonnage 
handled? 

d. Use Van Beeck's inequality to provide an upper 
bound to the approximation error in the probability 
value that you assigned in part (c). Are you reason­
ably confident that you provided Enviro-Safe with 
an accurate "guess" of the expected daily tonnage? 
(Enviro-Safe management said that it would be sat­
isfied if it could get an estimate that was "within 
±1 ton of the actual expected daily tonnage."1 Ex­
plain. 

e. Using your estimate a = x to estimate the den­
sity function, as fIx; a), what is your estimate of 
the probability that tonnage handled by Enviro-Safe 
will exceed 21 tons on any given day? 
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14. A statistician wants to use iid outcomes from some 
exponential distribution 

fIx; 8) = ~e-X/8II0,ool(X) 
to generate an estimate of the variance of the exponen­
tial density, 82. She wants to use the outcome of X~, 
where Xn = n-I L:7=1 Xi to generate an estimate of 82. 

a. Does EX~ = 82? Does limn ... oo EX~ = 82? 

b. Does pliinX~ = 82? 

c. Define an asymptotic distribution for X~. 

15. We have shown that if {Y"I is a sequence of X2 ran­
dom variables, where Y" ~ X~, then (Y" - n)/ffn ~ 
N(O, 1). Since Y" ~ X~, we know that P(Y2S ::: 34.3816) = 
P(yso ::: 63.1671) = P(YIOO ::: 118.498) = .90. Assign 
(approximate) probabilities to the three events using 
asymptotic distributions. How good are the approxima­
tions? Does plim(Y,,/n) = 11 Why or why not? 

16. Let {X"I be a sequence of random variables having 
binomial densities, where Xn has a binomial density 
with parameters nand p, i.e., 

x ~ (n) X(1 _ )11-XI (x) " x p P 10,1,2, ... ,"1' 

a. Show that (X" - np)/(v'n(p(1 - p))I/2) ~ N(O, 1). 
b. Define an asymptotic distribution for Xn' Use Van 

Beeck's inequality to provide a bound on the error 
in approximating the probability P(xn ~ c) using 
the asymptotic distribution for Xn' Calculate the 
numerical value of this bound when p = .3. 

c. Using the binomial density for X" and lettingp = .3, 
it follows that 

n k p(xn :::; k) 

15 6 .8689 
25 9 .8106 

100 34 .8371 

Assign (approximate) probabilities to the three events 
using asymptotic distributions based on your answer 
for (b). How good are the approximations? 

d. In using the CLT to approximate probabilities of 
events for discrete random variables whose range 
consists of equally spaced points, it has been found 
that a continuity correction improves the accuracy 
of the approximation. In particular, letting 

R(X) = {XI, X2, X3,"'}' where Xi+1 - Xi = 2h > 0 Vi, 

the continuity correction involves treating each el­
ementary event Xi for the discrete random variable 
X as the interval event (Xi - h, Xi + h 1 for the nor­
mal asymptotic distribution of the random vari­
able X. For example, if R(X) = (O, 1,2,3'00 .1, then 
PIx E [1,2]) = L:;=I fIx) ~ PIx E (.5,2.5]), where 
the latter (approximate) probability is assigned us­
ing the appropriate asymptotic normal distribution 
for X. Use the continuity correction to approximate 
the probabilities of the three events in (c). 

17. The Nevada Gaming Commission has been di­
rected to check the fairness of a roulette wheel used 
by the WINBIG Casino. In particular, a complaint was 
lodged stating that a "red" slot occurs more frequently 
than a "black" slot for the roulette wheel used by WIN­
BIG, whereas red and black should occur with proba­
bility. 5 if the wheel is fair. The wheel is spun 100,000 
times, and the number of red and black outcomes was 
recorded. The outcomes can be viewed as iid from some 
Bernoulli population distribution: 

X ~ pX( 1 - p)I-X Ilo,n(x) 

for p E (0, 1). 
It was found that L::~I Xi = 49,873, where Xi = 1 indi­
cates that the ith spin resulted in a red outcome. 

a. Use X" to provide an estimate of p, the probability 
of observing a red outcome. 

b. Define an asymptotic distribution for Xn' 
c. Using the outcome of Xn as an estimate of p in the 

asymptotic distribution for Xn , how probable is it 
that an outcome of Xn is within ±.005 of the true 
probability? Use Chebyshev'S inequality to argue 
that the estimate X" for p should be very accurate 
in the sense that outcomes of Xn are very close to 
p with high probability. 

d. Use Van Beeck's inequality to provide an upper 
bound to the approximation error that can occur in 
assigning probability to events like P(Xn ::: c) using 
the asymptotic distribution for X n' Your bound will 
unfortunately depend on the unknown value of p. 
Estimate a value for the bound using your outcome 
of Xn as an estimate of p. 

e. Define an asymptotic distribution for g(Xn ) = 
Xn(l- Xn). 

f. Compare the asymptotic distribution of the estima­
tor in part (e) to the asymptotic distribution of the 
estimator S2 = L:7=dXi - XnJ2/(n - 1). If the sample 
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size were large, would you prefer one of the estima­
tors of p( 1 - p) over the other? Explain. 

18. The Elephant Memory Chip Co. (EMC for short) 
instructs its resident statistician to investigate the 
operating-life characteristics of its new 4 megabyte 
memory chip in order to provide product information 
to potential buyers. The population distribution of op­
erating lives can be specified as some exponential family 
distribution. The statistician intends to draw a random 
sample of 10,000 chips from EMC's production and ap­
ply a nondestructive test that will determine each chip's 
operating life. He then intends to use the outcome of the 
random sample to provide estimates of both the mean 
and the variance of the chip's operating life. He needs 
your help in answering a few statistical questions. 

a. Letting () represent the unknown parameter in the 
exponential population distribution, what is the 
distribution of the sample mean, Xn? What is the 
mean and the variance of this distribution? Does 
plimXn = ()? 

b. The outcome of the random sample resulted in the 
following two outcomes. 

X" = 10.03702, 

" n- l LX; = 199.09634. 
j=l 

Operating life is measured in 1,000-hour units. 
(Side note: These are actual outcomes based on a sim­
ulation of the random sample outcome using a specific 
value of ().) 
The statistician uses Xn to estimate the mean life, 
(), of the chips. He is considering using either X~ or 
S~ = 2:7=dXj - Xn)2/(n - 1) to estimate the variance, 
()2, of operating lives. He asks the following questions 
regarding the characteristics of X,~ and S~: (show your 
work): 

l. Does EX~ = ()2? Does ES~ = ()2? 
2. Does limn ... "" EX~ = ()2? Does limn ... "" ES~ 

()2? 
3. Does plimX~ = ()2? Does plim S~ = ()2? 
4. Define asymptotic distributions for X~ and S~. 

Based on their asymptotic distributions, would 
you recommend the use of one random variable 
over the other for generating an estimate of ()2? 
Why or why not? 

5. Calculate the outcomes of both X~ and S;. 
(Note: The actual value of () = 10, and thus the actual 
value of ()2 = 100.) 
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6. The statistician has an idea he wants you to 
react to. He doesn't like the fact that EX~ '# () 
(that is what you found-isn't it?). He wants 
to define a new random variable, Yn = anX~, 
for an appropriate sequence of numbers {an}, so 
that EYn = ()2,'" n. Can he do it? How? If he (and 
you) can, then use the appropriate outcome of 
Yn to provide another estimate of ()2. Is it true 
that plim Y" = ()2? 

19. Let (Xl, ... ,X,,) be a random sample from a Pois­
son population distribution. Derive the limiting distri­
bution of 

(X" - tt) 
T = (S~/n)l/2' 

where S;, = n- 1 2::dX, - Xn)2. 

20. Liquid crystal displays (LCDs) that your wholesal­
ing company is marketing for a large Japanese electron­
ics firm are known to have a distribution of lifetimes of 
the following Gamma-distribution form: 

. _ 1 0'-\ -z/2 
(Iz, a) - 2<tr(a)z e 110,001Iz), 

where z is measured in thousands of hours. 
A set of n iid outcomes of Z will be used in an attempt 
to obtain information about the expected value of the 
lifetime of the LCD's. 

a. Define the functional form of the joint density of 
the iid random variables, say IXI""'X,,), of LCD 
lifetimes. 

b. What is the density function of the random variable 
Y" = 2:7=IXj, 

c. Supposing that n were large, identify an asymp­
totic distribution for the random variable Yn.INote: 
since you don't know a at this point, your asymp­
totic distribution will depend on the unknown 
value of a.) 

d. If a were equal to 1/2, and the sample size was 
n = 20, what is the probability that Yn :::: 3l.4104? 
Compare your answer to the approximate probabil­
ity obtained using the asymptotic distribution you 
defined in Ic). 

e. If a were equal to 1/2, and the sample size was 
n = 50, what is the probability that Yn :::: 67.50481 
Compare your answer to the approximate probabil­
ity obtained using the asymptotic distribution you 
defined in (c). 
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Beginning with this chapter, we turn our attention toward 
concepts and procedures that are explicitly related to the problem of statistical 
inference. Prior to this point, our study of probability theory and its implica­
tions has essentially addressed questions of deduction: "Given a probability 
space, what can we deduce about the characteristics of outcomes of an experi­
ment?" Our study of statistical inference will turn this question around: "Given 
the characteristics of outcomes of an experiment, what can we infer about the 
probability space?" 

The term statistical inference refers to the inductive process of generat­
ing information about characteristics of a real-world population or process by 
analyzing a sample of objects or outcomes from the population or process. For 
example, a marketer may be interested in determining whether consumers with 
a certain sociodemographic profile (the population) would purchase a new prod­
uct (the characteristic); an auditor would be interested in assessing the accu­
racy (the characteristic) of a firm's accounts (the population); and a quality-
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Figure 6·1 
Overview of the statistical 

inference process. 

control engineer would have interest in determining whether commodities are 
being manufactured (the process) to within factory specifications (the charac­
teristic). The statistical inference problems would involve analyses of samples 
of observations from the real-world population or process ultimately leading 
to inferences regarding the characteristics of interest. Figure 6.1 provides a 
schematic overview of the process of statistical inference. 

It is apparent that for an analysis of a sample of objects or outcomes to lead 
to meaningful inferences about the characteristics of a real-world population or 
process, the sample of characteristics must be in some sense representative of 
the population or process characteristics. The linkage between the incidence of 
characteristics in the sample and in the real-world population or process is es­
tablished by analyzing random samples. The objects or outcomes in a random 
sample are obtained using a selection procedure that establishes a connection 
between the incidence of characteristics in the population or process and the 
probability of observing the characteristics' outcomes in the sample. Then, 
based on random samples and the implications of probability theory, meth­
ods of statistical inference can be devised that generate inferences about the 
characteristics of a population or process with a degree of accuracy or represen­
tativeness that can be measured probabilistically. 

In this chapter we examine the concept of random sampling and begin iden­
tifying methods of generating information on population or process characteris­
tics from random sample observations. As organized in Figure 6.1, our coverage 
starts with the topic Population or Process and moves clockwise, ending with 
Sample of Characteristic Outcomes. Our discussion will also implicitly relate 

Inferences about 
Population or Process 

Characteristics 

SAMPLING 

Estimator and/or 
Test Statistics 

Measure 
Characteristics 
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to the remaining topics in the figure, but a detailed and focused analysis of 
estimation and hypothesis-testing concepts will not commence until the next 
chapter. 

6.2 Random Sampling 

The objective of statistical inference is to generate information about relevant 
characteristics of either the objects in some set of objects or the outcomes of 
some stochastic process. The term population will refer to any set of objects 
having associated characteristics that a researcher wishes to identify, enumer­
ate, or generally obtain information about. The term stochastic process will 
refer to any collection of experiments or measurement activities whose out­
come can be interpreted as the outcome of a collection of random variables' 
and whose characteristics are of interest to the researcher. (Henceforth, we will 
shorten stochastic process to simply process whenever the context is clear.; 
The purpose of random sampling is to obtain information about the charac­
teristics of a population or process without having to examine each and every 
object or outcome relating to the population or process. 

If a population has a finite number of objects, then an examination of each 
element of the population is conceivable, but there are reasons why the re­
searcher might not wish to do so. An obvious reason would be if the measure­
ment process were destructive, in which case measuring the characteristics of 
all of the population elements would lead to the population's destruction. This 
wo:uld be clearly undesirable if, for example, the objects in a population were 
manufactured by a firm that intended to offer them for sale (the tensile strength 
of steel beams is an example of a destructive measurement process, in which 
the beam is stressed to the breaking point). Another reason would be that the 
cost involved in evaluating each and every member of a population may be 
prohibitive. A related reason could be that the time available in which to per­
form the analysis is insufficient for a complete enumeration of the population. 
Finally, the researcher may have no choice but to analyze a sample, instead of 
the whole, as would be the case for an ongoing manufacturing (or other) process 
having no stipulated or identifiable end. 

If we were to attempt to obtain information about relevant characteristics 
of a population or process from the characteristics observed in a sample from 
that population or process, an obvious difficulty comes to mind. Namely, de­
pending on which sample we choose, the incidence of the characteristics in the 
sample can differ from sample to sample, even though there exists only one 
fixed distribution of the characteristics in the population or process. It follows 
that we must expect, in general, that the existence or level of a characteristic in 
a given sample will not necessarily coincide with the existence or level of the 

1 More formally, the term stochastic process refers to any collection of random variables indexed by some index set T, i.e., {XI, t E T} 
is a stochastic process. Recall Ex. 5.48 and the associated footnote. 
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characteristic in the population or process. The discrepancy between sample 
and population or process information is generically referred to as the sampling 
error. 

As a concrete example of sampling error, suppose a shipment contained 
100 objects, of which 30 were defective. Not knowing the number of defectives 
in the shipment, suppose an individual attempted to infer the proportion of 
the population of objects that were non defective by observing the number of 
nondefectives in a sample of 10 objects from the shipment. It is unfortunately 
possible, depending on the particular set of 10 objects chosen, for the observed 
proportion of nondefectives in the sample to range between 0 and 1. Thus, the 
actual sampling error in inferring the proportion of nondefectives in the popu­
lation would range between a and.7 in absolute value, although the researcher 
would clearly be unaware of this range, since she is unaware that the actual 
proportion of nondefectives is .7. Without any further information about how 
the sample of observations from the population was generated, nothing can be 
said about the reliability of the inference. Note that sample information in this 
context is essentially useless-the observed proportion of nondefectives will be 
between 0 and 1, and without any other information regarding the reliability 
of the inference, we know nothing more about the population than when we 
started the analysis. 

In order for the researcher to be able to assess the reliability with which 
population or process characteristics are represented by sample information, 
it is necessary for the sample observations to have been generated in such a 
way that the researcher is able to establish some quantitative measures of con­
fidence that the characteristics identified or enumerated in the sample accu­
rately portray their incidence in the population or process. In particular, sample 
observations generated by a random sample will be useful for such inference. In 
essence, a random sample will refer to a sample whose observations can be in­
terpreted as outcomes of a random vector having a probability distribution that 
has been determined by the interaction between the distribution of character­
istics inherent in the population or process and the specific method governing 
the generation of sample observations. The linkage between the distribution of 
characteristics in the population or process and its influence on determining 
the form of the joint density function of random sample observations will be 
exploited to generate inference reliability measures. 

We will examine three general methods for generating sample observations: 

1. random sampling from a population distribution (which includes random 
sampling with replacement); 

2. random sampling without replacement; 
3. random sampling via a composite experiment. 

Random Sampling from a Population Distribution 

In this case, the sample observations are defined by a collection of independent 
and identical experiments, and thus the sample observations can be conceptu-
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Definition 6.1 
Random sampling 
with replacement 

alized as the outcome of a collection of iid random variables. There are basically 
two generic types of random sampling from a population distribution. One type 
involves sampling from an existent, finite collection of objects, such as a ship­
ment of personal computers or the citizens of a particular region of the country. 
The other type involves sampling from some ongoing stochastic process, such 
as a manufacturing process !e.g., measuring the net weight of potato chips in 
a bag of potato chips) or a market process !e.g., measuring stock market prices 
over time). In the former type of sampling, the ultimate objective is to obtain 
information about the finite collection of objects under study, while in the 
latter type the objective is to obtain information about the characteristics of 
the stochastic process under study (e.g., the expected weight of potato chips 
in a bagj the probability of producing a bag containing less than the advertised 
quantity of chipsj the variance of stock prices). 

When an existent, finite population is being sampled, random sampling 
from a population distribution is alternatively referred to as random sampling 
with replacement. In this case, there exists a finite set of N objects having 
certain characteristics of interest to the researcher. The formal description of 
the sampling method is as follows. 

1. An object is selected from the population in a way that gives all objects 
in the population an equal chance of being selected. 

2. The characteristics level of the object selected is observed, and the object 
is returned to the population prior to any subsequent selection. 

3. For a sample of size n, steps (1) and (2) are performed n times. 

Since all members of the population are equally likely to occur at each se­
lection, the classical probability definition is appropriate for determining the 
probability of observing any level of the characteristics on a given selection, as 

[ number of population Objects] 
having characteristics level z 

m(zl= N ' 

where z will henceforth represent a scalar or vector, depending on the number of 
characteristics being measured for each selection, and N represents the number 
of objects in the population. The density function, m(z), is often referred to as 
the population distribution of the characteristics. 

Since all of the selection experiments are independent, the probability of 
observing a sample of size n exhibiting the collection of characteristic levels 
(Xl,X2, .. "xn) is given by 

n 

f!Xl,X2, ... ,xn ) = n m(xi), 
i=! 

which defines the joint density function for !Xl , ... , Xnl, where Xi is the char­
acteristic(s) level associated with the ith observation. 
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Example 6.1 Sampling for Defectives 

Let a shipment of N keyboards contain T defective keyboards. (Note that in 
practice, N will generally be known, while T will be unknown, and information 
concerning T would be the objective of statistical inference.) Let z = I denote a 
defective keyboard and z = 0 denote a non defective keyboard. Then, if n objects 
are sampled with replacement, and lettingp = TIN, the population distribution 
of defectivelnondefective keyboards is 

m(z; p) = pZ(I - p)l-Z /lo,I)(Z), 

where p represents the proportion of defective keyboards in the population. The 
joint density governing the probabilities of observing outcomes Xl, ... , Xn in 
the sample is given by 

n n 

f(xl,"" Xn; p) = flpXi(I - p)I-Xi/IO,l)(xd = p1:%.1 xiII - p)n-1:7=, Xi fl /IO,l}(XiJ. 
i=l i=l 

Note that the incidence of nondefectives in the population (the value of p) 
has a direct influence on the probabilities of events for the random sample 
outcomes. Thus, a probabilistic linkage is established between the incidence 
of characteristics in the population and in the sample. 0 

The outcome of random sampling with replacement can be interpreted as 
the outcome of an n-variate random variable (Xl"'" Xn) having the joint den­
sity function f(xl, ... , xn), which will be referred to as the joint density of the 
random sample. The collection of random variables (XI, ... , Xn) is referred to 
as the random sample, whereas the outcome observed, (Xl, ... , x n ), is referred 
to as the outcome of the random sample. 

When the population from which we are sampling is not finite, random sam­
pling from a population distribution will refer to an ongoing stochastic process 
in which all of the random variables whose outcomes are being measured are 
independent and identically distributed. In practice, this means that whatever 
underlying random mechanism determines the sample observations, it is un­
changing from observation to observation, and observing a particular outcome 
for a given sample observation has no effect on the probability of outcomes of 
any other sample observations. Then each sample observation is the outcome 
of a random variable Z ,...., m(zl, where m(z) is the common PDF of character­
istics' outcomes (also called the population distribution) associated with the 
stochastic process. Since all of the observation experiments are identical and 
independent, the PDF for the n random variables (Xl, ... , Xnl characterizing the 
outcomes of the n observation experiments is given by 

n 

f(xl," .,xn) = fl m(xd· 
i=l 

As before, (Xl, .. . ,Xn ) is called the random sample, andf(xl, .. . ,xn ) is the joint 
density function of the random sample. 
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Example 6.2 Sampling the Reliability of a Manufactured Product 

Definition 6.2 
Random sampling 

without replacement 

The distribution of the operating lives until failure of halogen lamps produced 
by a domestic manufacturer, that is, the population distribution, is a given by 
a member of the gamma family of densities, as 

1 a-I -zlf3 m(z; a, j3) = j3af'(a)z e / 10,00) (z). 

The lamps are all produced using an identical manufacturing process, and n 
lamps are arbitrarily selected from the production line for reliability testing. 
The n measurements on operating life can be interpreted as the outcome of a 
random sample with joint density function 

n 

t(XI, ... , Xn; a, m = n m(xi; a, m 
i=1 

I nn - n a-I - L:~I xdfJ fl (.) 
- ,8na(f'(a))n i=! Xi e i=! 110,00) XJ • 

Note that the functional form of the population distribution, and in particular 
the actual values of the parameters a and ,8, will have a direct influence on 
the probabilities of events for random sample outcomes. Thus, a probabilistic 
linkage is established between the incidence of characteristics in the process 
and in the sample. 0 

Random Sampling Without Replacement 

Random sampling without replacement is relevant for a finite, existent popu­
lation of objects, but it differs from random sampling with replacement in that 
once the characteristics of an object are observed, the object is removed from 
the population before another object is selected for observation. The sampling 
procedure is described as follows. 

1. The first object is selected from the population in a way that gives all 
objects in the population an equal chance of being selected. 

2. The characteristics level of the object is observed, but the object is not 
returned to the population. 

3. An object is selected from the remaining objects in the population in a 
way that gives all remaining objects an equal chance of being selected, 
and step (2) is repeated. For a sample of size n, step (3) is performed (n - 1) 
times. 

In this case, the sampling process can be characterized as a collection of n 
experiments that are neither identical nor independent. In particular, the prob­
ability of observing characteristics level Xi on the ith selection depends on what 
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objects were observed and removed from the population in the preceding Ii - 1) 
selections. For the first selection, the probability of observing characteristics 
level Xl is given by 

[ number of population objects] 
having characteristics level Xl 

mlxlJ= N ' 

since all objects are equally likely to be selected. The density mlxl) can be 
thought of as the initial population distribution. On the ith selection, i > I, 
the probability of observing characteristics level Xi is conditioned on what was 
observed and removed from the population previously, so that 

[
number of objects remaining in the ] 

population having characteristics level 

fl . . ) - Xi after the Ii - 1) selections Xl, ... , Xi-I· 
x1Ixl, ... ,X1-1 - IN-i+l) , 

for N - i + 1 > O. The joint density defining the probability of observing a 
sample of size n that exhibits the collection of characteristics levels lXI, ... , xn) 
can then be defined by2 

flxl,"" xnJ = mlxl Jflx2 ! Xl )f1X3 ! XI, X2J··· flxn ! XI, X2,···, Xn-l J 
11 

=mlxtlTIflxi !XI, ... ,Xi-tl· 
i=2 

Example 6.3 Sampling for Defectives 

A shipment of N LCD screens contains T defectives. Suppose a random sample 
without replacement of size n is drawn from the shipment. Let X = 1 denote 
that a screen is defective and X = 0 denote a nondefective. Then, assuming 
N ::: n and [In - IJ -IN - TJJ :s L:7:/ Xi :s T,3 

( T )XI (IN _ Tl)l-XI 
mlxtJ = N ~ I{o,l)lxtl, 

[ T - Xl J X
2 [N - T -11 - XtlJI-X2 n2 

f(X2 ! xtJ = N _ 1 N - 1 j=II{O,l}(Xj), 

and in general, for the nth selection, 

2This follows straightforwardly from the definitions of marginal and conditional density functions, as the reader should verify. 

3These conditions, coupled with the condition that x E (O, 1), ensure that the denominators in the density expressions are positive 
and that the numerators are nonnegative. 
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The joint PDF for (Xl, .. . ,Xn ) is then given by 
n 

f(xl, ... , Xn) = m(xl)f(x2 I Xl) n f(xi I Xl, ... , Xi-I). 
i=3 

Note that the incidence of nondefectives in the population (the value of n 
has a direct influence on the probabilities of events for the random sample 
outcomes. Thus, a probabilistic linkage is established between the incidence 
of characteristics in the population and in the sample. Compare this result to 
that from Ex. 6.1. 0 

As before, the outcome of the sampling process can be interpreted as the 
outcome of the n-variate random variable (Xl, ... , Xn) having the joint PDF 
f(xl,.'" x n), which will be called the joint density of the random sample. The 
collection (Xl,.'" Xn) is referred to as the random sample while the outcome 
lXI, ... , xn) is referred to as the outcome of the random sample. 

Sample Generated by a Composite Experiment 

In this sampling method, observations on population or stochastic process char­
acteristics are generated by the performance of n experiments that are not in­
dependent and/or are not performed under identical conditions. In this case, 
the collection of experiments is called a composite experiment, with each of 
the n experiments that lead to observations on each of the X/s being referred to 
as component experiments. The joint density for the sample outcomes is some 
density flxl, ... , xn) that is inherent to the collection of component experiments 
and their interrelationships. If the component experiments in the composite ex­
periment happen to be independent, then the joint density of sample outcomes 
is given by f(xI,"" xn) = f17=I!ilxd, where filxd is the probability density asso­
ciated with the outcomes of the ith experiment. 

Example 6.4 Ouantity Demanded Across Consumers 

Let the quantity demanded of a commodity by a consumer in a given market 
be represented by 

Qi = g(Pi' Yi, Zi) + Vi, 

where Qi is the quantity demanded by consumer i, Pi is the price of the com­
modity for consumer i, Yi is the disposable income of consumer i, Zi is a vector 
of substitute/complement prices and sociodemographic characteristics for con­
sumer i, and the V/s are independent but not necessarily identically distributed 
random variables whose outcomes represent deviations of Qi from g(Pi' Yi, zil 
caused by errors in utility optimization, lack of information, and/or inherent 
random human behavior. For the sake of exposition, assume that Vi "-' N(D, 0-;). 
Then (01,"" Qn) is a random sample from a composite experiment relating to 
n observations on a demand process. The ith component experiment consists 
of observing the demand by consumer i for which Qi "-' N(qi; g(Pi' Yi, zd, o}"l, and 
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the joint density of the random sample is given by a product of nonidentical 
marginal densities as 

n 

f(ql, q2"", qn; (Pi, Yi, Zi, o"lJ, i = 1"", n) = n N(qi; g(Pi' Yj, Zi), ai), 
i=l 

Note that the characteristics of the demand process directly influence the prob­
abilities of events for random sample outcomes by their influence on the func­
tional form of the joint density of the random sample, 0 

As before, the sample observations can be interpreted as an outcome 
(Xl"", xnl of the random sample (Xl, "" Xn), with the joint density of the ran­
dom sample beingf(xI,, ",Xn ), 

Commonalities in Probabilistic Structure of Random Samples 

The underlying rationale leading to the joint density function of a random sam­
ple is essentially identical in the cases of random sampling from a population 
distribution whether random sampling is from an existent finite population 
of objects or from an ongoing stochastic process, In both cases, an experiment 
whose probabilistic structure is characterized by the PDF, m(z), is indepen­
dently repeated n times to obtain a random sample having a joint PDF defined 
by f(XI, "" xn) = 117=1 m(xj), In other words, in either case, the random sample 
can be thought of as a collection of iid random variables each having the PDF 
m(z), In subsequent sections of this chapter, we will examine certain functions 
of random samples that have a number of properties that will be useful in sta­
tistical inference applications and that are derived from the fact that XI, "" 
Xn are iid random variables, Since the iid property is shared by both types of 
random samples from a population distribution, any property of the function 
g(XI"", Xn) deduced from the fact that XI, "" Xn are iid will apply regardless 
of whether random sampling is from a population that exists and is finite or is 
from an ongoing stochastic process, 

There is also a commonality between how a random sample is generated 
via a composite experiment and how a random sample is generated by random 
sampling without replacement, In the latter case, observations are generated 
by a sequence of experiments that are neither independent nor performed un­
der identical conditions, and this characterization of the experiments is sub­
sumed under the general description of how a composite experiment can be 
performed, Note, however, that the composite experiment case is the broader 
concept, encompassing literally a myriad of different ways a series of compo­
nent experiments can be interrelated, leading to a myriad of definitions for the 
joint density of the random sample, On the other hand, in random sampling 
without replacement, there is more structure to the definition of the joint den­
sity of the random sample, where the sampling procedure leads to a joint den­
sity definition based on the product of a collection of well-defined conditional 
density functions, In either case, it becomes somewhat difficult to establish 
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Definition 6.3 
Statistic 

general properties of functions of random samples, g(X 1, ... ,Xn ), that are use­
ful for purposes of statistical inference. In the case of random sampling without 
replacement, the mathematics involved in deriving properties of g(X1, ... , Xn) 
is generally more complex than in the case of random sampling from a popu­
lation distribution-the iid assumption involved in the latter case introduces 
considerable simplifications. The sheer breadth of variations in the composite 
experiment case virtually relegates analyses of the properties of g(Xl, ... , Xn) to 
analyses of special cases, and few generalizations to the entire class of compos­
ite experiments can be made. 

In the remainder of our study, we will focus primarily on problems of sta­
tistical inference based on random sampling from a population distribution and 
on a specific composite experiment arising in the context of what is known as 
the general linear model. We will examine a few problems of interest involving 
random sampling without replacement from a finite population, but our 
analyses of these problems will be quite limited. For further reading on 
sampling without replacement that parallels some of the topics discussed in 
the remainder of this chapter related to sampling from a population dis­
tribution, and for a discussion of additional refinements to random sampling 
techniques, see M. Kendall and A. Stuart (1977), The Advanced Theory of 
Statistics, Vol. 1, 4th ed., New York: MacMillan, pp. 319-324, and W. G. 
Cochrane (1977), Sampling Techniques, 3rd ed., New York: Wiley. 

Statistics 

In statistical inference, functions of the random sample will be used to map 
sample information into inferences regarding the relevant characteristics of 
a population or process. These functions, such as T = t(X 1, ... , X lJ ), will be 
random variables whose probability densities depend on the joint density of the 
random sample. More specifically, inferential procedures will involve special 
functions known as statistics, defined as follows. 

A real-valued function of observable random variables that is itself an ob­
servable random variable not depending on any unknown parameters. 

By observable random variable, we simply mean a random variable whose 
numerical outcomes can actually be observed in the real world. Note the fol­
lowing example: 

Example 6.5 Let the outcome of a Beta-distributed random variable X represent the propor­
tion of a given day's telephone orders, received by the catalogue department of 
a large retail store, that are shipped the same day the order is received. Define 
the two random variables 

Y = lOO(X - .5) and W = a(X - b). 
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The random variable Y is a statistic representing the number of percentage 
points above 50 percent that are shipped the same day. The random variable W 
is not a statistic. It depends on the unknown values of a and b, and until these 
values are specified, the random variable is unobservable. 0 

The reason for restricting our attention to statistics when attempting sta­
tistical inference is obvious. We cannot utilize a function of the random sample 
whose range elements are unobservable to make inferences about characteris­
tics of the population or process from which we have sampled. In subsequent 
sections, we will examine a number of statistics that will be useful in statistical 
inference. 

6.3 Empirical or Sample Distribution Function 

Definition 6.4 
Empirical distribution 

function, scalar case 

There is a rather simple function of a random sample from a population distribu­
tion that can be used to provide an empirical characterization of the underlying 
population distribution from which a random sample is drawn. The function 
is called the empirical distribution function (EDF) (sometimes also referred to 
as the sample distribution function), and we will examine its definition and 
some of its properties in this section. After we have discussed the common 
measures used to judge the goodness of estimators in the next chapter, we will 
see that the EDF represents a useful estimator of the underlying population's 
cumulative distribution function. Furthermore, the EDF can be used to test 
hypotheses about the appropriate parametric family of distributions to which 
the population distribution belongs, as we will later examine in our discussion 
of hypothesis testing. 

EDF: Scalar Case 

The EDF in the scalar case is defined as follows. 

Let the scalar random variables Xl, ... , Xn denote a random sample from 
some population distribution. Then the empirical distribution function is 
defined, for t E (-00,00), by 

n 

Pn(t) = n- l L ll-oo,tj(Xi ), 
i=l 

an outcome of which is defined by 

n 

Pn(t) = n-l Lll-oo,tj(xi). 
i=l 
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An outcome of the EDF can be defined alternatively using the size-of-set func­
tion N(·) as 

F~ ( ) _ N ({x: x ::: t, x E (Xl, X2, .•• , xnll) 
n t - , 

n 

that is, Fn(t) equals the number of x/s in the outcome of the random sample 
that have values::: t, divided by the sample size. 

Example 6.6 A random sample of size 10 from the population distribution of the yield per 
acre of a new wheat variety that a seed company has developed produced the 
following 10 outcomes of wheat yield, in bushels/acre: 

{60, 71, 55, 50,75,78,81,78,67, 90}. 

Then the EDF is defined by 

t Fn(t) 

(-00,50) 0 
150,55) .1 
155,60) .2 
160,67) .3 
167,71 ) .4 
[71,75) .5 
175,78) .6 
178,81) .8 
181,90) .9 
[90,(0) 1.0 

The graph of the EDF is given in Figure 6.2. o 

Given Def. 6.4, it is apparent that the EDF is a random variable for each 
value of t E R. In order to be able to assess the usefulness of the EDF in rep­
resenting characteristics of the underlying population distribution, it will be 
informative to examine a number of important properties of the random vari­
able Fn(t). We begin by noting an important relationship between the binomial 
PDF and the PDF of Fn(t). 

Theorem 6.1 Let Fn(t) be the EDF corresponding to a random sample of size n from a pop­
ulation distribution characterized by the CDF F(t). Then the PDF of Fn(t) is 
defined by 

P(Fn(t) =~) = ! (~)tF(t)Jill- F(t)]n-i for i E {O,I,2, .. . ,n}, 

o otherwise. 
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Figure 6-2 
EDF for wheat yields_ 
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Proof From the definition of Fn(t), it follows that 

Note that Yi = It-oo,t](Xi ) is a Bernoulli random variable with P(Yi = 1) = P(Xi :5 
t) = F(t) = p, and P(Yi = 0) = P(Xi > t) = 1 - F(t) = 1 - p, Vi = I, ... , n, and 
since (XI, ... , Xn) is a random sample from a population distribution, YI, ... , Yn 

are iid Bernoulli random variables. Then 2:7=1 Yi has a binomial density with 
parameters nand p = F(t), as 

for i = 0, I, 2, ... , n, with all other values of i assigned probability zero. • 

The implication of the preceding theorem is that for a given choice of t E 

(-00,00), Fn(t) has the same probability distribution as the random variable 
n- I Zn, where Zn has a binomial distribution with parameters nand p = F(t). 
Now that we have discovered this probability distribution for Fn(t), it is rather 
straightforward to derive the mean, variance, probability limit, and asymptotic 
distribution of Fn(t): 

Theorem 6.2 Let Fn(t) be the EDF defined in Theorem 6.1. Then, V t E ( - 00,00), 

a. EFnlt) = F(t), 
h. var(Fn(tll = n-1[F(t)(1 - F(t)ll, 
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c. plimFn(t) = F(t), 
d. Fn(t)~NIFlt),n-l[F(t)(1 - F(t))]). 

Proof Since Fnlt) can be represented as n-1Zn, where Zn has a binomial density with 
EZn = nFlt) and var(Zn) = nF(t)(1 - F(t)), properties la) and (b) follow immedi­
ately. Property (c) follows from the fact that Fn(t)~F(t), since EFn(t) = F(t) V n 
and var(Fnlt)) -+ 0 as n -+ 00, which in turn implies Fn(t)~F(t). Property Id) 
follows from the fact that Fnlt) = n-1 Zn is the average of n iid Bernoulli ran­
dom variables, and it is known from the Lindberg-Levy CLT that this average 
has an asymptotic normal distribution with mean FIt) and variance n-1[F(t)( 1 -
Flt))I· • 

It will be seen from our discussion of estimator properties in Chapter 7 that 
the properties possessed by Fnlt) will make it a good statistic to use in providing 
information about FIt). In particular, the distribution of Fnlt) is centered on FIt); 
the variance, and thus, the "spread," of the distribution of Fnlt) decreases as the 
sample size increases; and the probability that outcomes of Fnlt) differ from FIt) 
by any nonzero amount converges to zero as the sample size increases without 
bound. 

The EDF can be used in a way analogou~ to the CDF to e;enerat~ information 
on the probability that x E (a, b], namely, Pn(x E (a, bl) = Fnlb) - Fnla) provides 
an empirical estimate of the appropriate probability. Properties of the random 
variable Pnlx E la, bll = Fnlb) - Fn(a) generating these empirical estimates are 
established in the following theorem. 

Theorem 6.3 Let Fnlt) be the EDF defined in Theorem 6.1. Then V tEl - 00,00), and for a < b, 

a. E[Fn(b) - FnlaJl = F(b) - FlaL 
h. var/Fnlb) - Fnla)) = n-1[F(b) - Fla)1 [1 - FIb) + F(a)l, 
c. plim [Fn(b) - FnlaJl = F(b) - F(a), 
d. Fn(b) - Fn(a)~N(Flb) - F(a), n-1[F(b) - F(a)J(1 - F(b) + F(a)). 

Proof Property (a) follows directly from applying the expectation operation to the 
linear combination of the two random variables and using Theorem 6.2, part la). 
Property (c) follows from Theorem 6.2, part (c), and the fact that the probability 
limit of a sum is the sum of the probability limits. 

To prove part (b), first note that our previous results concerning variances 
of linear combinations of random variables ISection 3.7) imply that 

var(Fn(b) - Fn(a)) = var(Fn(b)) + var(Fn(a)) - 2 cov(Fn(b), Fn(a)). 

Values of the variance terms are known from Theorem 6.2, part (b). To find the 
value of the covariance term, first note that by definition, 
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n n 

= n-2 L L cov(II-oo,bJ(Xj), ll-oo,aj(X;)) 
j=1 ;=1 

= n- 1 cov(II-oo,bj(Xd11-oo,aj(Xd). 

The last equality follows from the fact that, for i =f. 7, ll-oo,bj(Xj) and ll-oo,aj(X;) 
are independent random variables since Xj and X; are independent, which im­
plies that the associated covariance terms are zero, and the n remaining co­
variance terms are all identical and represented by the covariance term in the 
last equality involving the functions of XI (since Xl, ... , Xn are iid). Then since 
cov(Y, Z) = EYZ - EYEZ, by letting Y = ll-oo,bj(Xt! and Z = ll-oo,aj(Xt!, we have 
that 

cov(Fn(b), Fn(a)) = n-I[Ell_oo,bj(Xt!II_oo,aj(Xt!- F(b)F(a)] 

= n-I[F(a) - F(b)F(a)] 

= n- l F(a)[l - F(b)], 

where the next-to-Iast equality follows from the fact that ll-oo,bj(Xl )II-oo,aj(Xj) = 
ll-oo,lIdxl) V Xl, since a < b. 

Having found the value of the covariance term, we finally have that 

var(FII(b) - Fu(a)) = n- j F(b)[ 1 - F(b)] + n- I F(a)[ 1 - F(a)] - 2n-1 F(a)[ 1 - F(b)] 

= n-I[F(b) - F(a)][l - F(b) + F(a)]. 

To prove part (d), first note that Fn(b) and Fn(a) have an asymptotic bivariate 
normal distribution with mean vector [F(b) I F(a)]' and covariance matrix 

n-I:.E = n- I [F(b)[l - F(b)] F(a)[l - F(b)]], 

F(a)[1 - F(b)] F(a)[1 - F(a)] 

which follows from applying the multivariate Lindberg-Levy CLT to the sample 
means of the iid Bernoulli random variables that define the random variables 
FII(b) and Fu(a). Now define the function g(Fn(b), Fn(a)) = Fu(b) - Fn(a), g being 
a function of the two asymptotically normal random variables, and note that 
Theorem 5.40 is applicable. In particular, 

8g 8g 
8FII(b) = 1 and 8Fn(a) = -1, 

so that G = [1 -I] and thus n-1G:.EG' = n-I[F(b) - F(a)][1 - F(b) + F(a)]. 
Furthermore, it is clear that g(F(b), F(a)) = F(b) - F(a). Then, Theorem 5.39 
implies part (d) of the theorem. _ 

The following example illustrates the use of the EDF to provide empirical 
estimates of probabilities. 

Example 6.7 Referring to the EDF in the wheat yield example (Ex. 6.6), provide an empirical 
calculation of the probability that (a) the wheat yield:::: 76 bushels, and (b) the 
wheat yield> 62 bushels and:::: 80 bushels. . 
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Answer: 

a. fIx :s 76) = Fn(761 = .6. A 

h. P(62 < x :s 80) = Pn(80) - Pn(62) = .8 - .3 = .5. o 

It can be shown that the convergence of Pn(t) to PIt) in probability as n --+ 00 
can be strengthened to almost-sure convergence, i.e., limn -+ oo Pn(t) = P(t) occurs 
with probability 1. Furthermore, it can be shown thatlimn -+ oo Pn(t) = P(t) occurs 
simultaneously V t E (-00, (0) with probability 1. These results are given by 
the celebrated Glivenko-Cantelli theorem, which involves convergence to zero 
of the supremum (maximum if it exists) over all t E (-00, (0) of the absolute 
difference between Pn(t) and PIt). 

Theorem 6.4 (Glivenko-Cantelli's Theorem) Let Dn = sup/ IPn(t) - P(t)!. Then P( lim Dn = 
n->oo 

0) = 1. 

Proof See V. Fabian and J. Hannan (1985), Introduction to Probability and Mathemat-

Definition 6.5 
Empirical 

distribution function, 
multivariate case 

ical Statistics. New York: Wiley, pp. 80-82. • 

Note that the Glivenko-Cantelli theorem provides important additional 
information on the use of outcomes of Pn(t) as a means of providing empirical 
representations of P(t). In particular, the theorem implies that the sequence of 
functions {Pn} converges as n --+ 00 to the function P with probability lj this 
interpretation is supported by the fact that Fn(t) --+ P(t) V t with probability 1. 
Thus, for large enough n, the EDF represents a useful approximation to the 
CDF, F, over its entire domain, and it is the Glivenko-Cantelli theorem that 
provides rigorous justification for inferring the shape and functional form of F 
from the shape and functional form of Pn . 

EDF: Multivariate Case 

The empirical distribution function can be extended to the case where the 
random sample from the population distribution consists of a collection of 
multivariate random variables, as follows. 

Let the (k xl) random vectors Xl, ... , Xn denote a random sample from some 
population distribution. Then the empirical distribution function is defined 
for t = [tl,"" tkl' E Rk and A(t) = xf=t!-oo, til as 

n 

Fn(t) = n- l LIAlt)(Xi), 
i=l 

an outcome of which is defined by 
n 

Fn(t) = n- l L IA1t)(xi). 
i=l 
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An outcome of the EDF can be defined alternatively using the size-of-set 
function N(·) as 

PA ( ) _ N({x: x ~ t,x E {Xl, ... ,xnH) 
n t - , 

n 
i.e., Fn(t) equals the number of Xi vectors in the outcome of the random sample 
that have values::: the vector t, divided by the sample size. 

The properties of the EDF in the multivariate case parallel those of the EDF 
in the scalar case. In particular, the previous theorems apply to the multivariate 
case by simply reinterpreting t, a, and b as (k xl) vectors instead of scalars in 
the statement of the theorems, and changing the condition V t E (-00,00) to 
V t E Rk. The proofs of Theorems 6.1,6.2, and 6.3 in the multivariate case are 
analogous to the scalar case and are left to the reader. 

6.4 Sample Moments and Sample Correlation 

Definition 6.6 
Empirical 

substitution principle 

Based on a random sample from a population distribution, which we assume is 
the case throughout this section, statistics called sample moments can be de­
fined that represent sample counterparts to the moments of the population dis­
tribution (henceforth called population momentsJ. The sample moments have 
properties that make them useful for estimating the values of corresponding 
population moments. Sample moments also form the basis for the method­
of-moments estimation procedure, which can be used to provide information 
on other characteristics of the population distribution besides moments. The 
method-of-moments procedure will be examined in Chapter 8. 

The definitions of the various sample moments can all be unified through 
the use of the empirical distribution function concept. Specifically, the empiri­
cal substitution principle leads to the appropriate sample moment definitions. 

Let Xl, ... , Xn be a random sample from a population distribution having 
CDF P. Let q == q(P) be any function of P. Then the empirical sub~titution 
principle representation of q == q(P) is given by q == q(FnJ, where Fn is the 
EDF outcome associated with the random sample. 

Scalar Case 

In order to use the empirical substitution principle to define sample moments 
when (XI, ... , Xn) is a collection of scalar random variables, first note that mo­
ments of the population distribution about the origin or mean can be expressed 
as functions of the CDF P. Specifically, letting Ep denote an expectation taken 
with respect to the probability distribution implied by P, we have J-L~ == Ep(xr) 
and J-Lr == Ep(X - Ep(X!y, which are functions of P. Substituting the EDF out­
come, Fn, for F when taking the expectations leads to the definition of sample 
moments about the origin and mean via the empirical substitution principle. 
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Definition 6.7 
Sample moments about 

the origin and mean 

Let the scalar random variables XI, ... , Xn be a random sample with EOF 
outcome Fn. Then outcomes of the rth order sample moments about the 
origin and mean are defined as: 

Sample moments about the origin: m~ = EpJXr ), 

Sample moments about the mean: mr = EpJX - EpJXnc. 

In effect, when defining sample moments, one proceeds as if X had the COF 
Fn, and then one calculates population moments associated with the population 
distribution defined by Fn. Then the computational difference between popula­
tion moments as defined in Section 3.4 and the sample moments defined here 
relates to which probability distribution is used in taking the expectations-the 
one implied by F or by Fn. 

As it turns out, expectations taken with respect to the probability distri­
bution represented by the EOF outcome Fn have a common mathematical def­
inition, regardless of the form of the underlying CDF, F. To see this, first recall 
that in either the discrete or continuous case, Fn is a step function whose in­
cremental value at each step equals the observed sample relative frequency 
of the random-variable outcome corresponding to the step (recall Figure 6.2). 
Since by its definition Fn can always be interpreted as a COF for some dis­
crete random-variable, the value of an incremental step can be interpreted as 
the probability assigned to the corresponding random-variable outcome by Fn. 
In the case where an outcome value, say x, is observed only once in the out­
come of a random sample of size n, it follows that the probability is assigned as 
pIx) = lin. In general, the probability assigned by Fn to an outcome x is given 
by 

n 

pIx) = n- I LI[xJ!xi), 
i=1 

which is the relative frequency of the occurrence of outcome x in the random 
sample outcome (XI, ... , xn). 

Now let R(X) = {x : pIx) > 0) be the set of X values assigned a positive 
density weighting by pIx), i.e., R(X) is the collection of unique values in the 
sample outcome (XI, ... , xn). It follows that the expectation of g(X) with respect 
to pIx), or equivalently with respect to the probability distribution implied by 
Fn , is 

n 

Epng(X) = :EXER(X)g(x)p(x) = L g(x)n- I LI[x!lxi) 
xERIX) i=1 

n n 

= n- I :EXER(X) Lg(xi)I[xJ!x;) = n- I Lg(Xi), 
i=1 i=1 

where the third equality follows because only terms for which Xi = x affect 
the value of the inner summation term. Then, by defining g(X) = xr or g(X) = 
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(X - EpN (X))! and taking expectations with respect to Pn, we obtain the following 
alternative definition of sample moment outcomes. 

Definition 6.8 
Sample moments about 

the origin and mean 

Assume the conditions of Def. 6.7. Then sample moment outcomes can be 
defined as 

n 

Sample moments about the origin: m~ = n- I Lxf, 
i=1 
n 

Sample moments about the mean: mr = n- I L(Xi - xn)r, 
i=1 

h - , -I "n were Xn = m l = n L...i=1 Xi. 

We emphasize that regardless of which representation, Def. 6.7 or Def. 6.8, 
is used in defining sample moment outcomes, all of the properties of population 
moments JL~ and JLr presented in Chapter 3 apply equally well to the outcomes 
of sample moments m~ and m"~ This is so because sample moment outcomes 
can be interpreted ultimately as (population) moments of a population distri-
bution defined by the discrete CDF PlI • 

We now present a number of important properties of sample moments about 
the origin that are suggestive of the usefulness of sample moment outcomes 
for estimating the values of corresponding population moments. 

Theorem 6.S (Properties of M;) Let M; = n- I L7=1 Xf be the rth sample moment about the 
origin for a random sample (XI, ... ,Xli) from a population distribution. Then, 
assuming the appropriate population moments exist, 

Proof 

a. EM; = J.L~, 
b. var(M;J = n-I[J.L~r - (J.L;J2J, 
c. plim M; = J.L~, 

d. (M; -J.L;)/[var(M;)]1/2~N(O,n 
e. M;~N(J.L~, var(M;)). 

EM' E -I "n xr -I "n Exr -I "n , ,. EXr , a. r = n L...i=1 i = n L...i=1 i = n L...i=1 J.Lr = J.Lr, SInce i = J.Lr 
V i because (XI, ... , Xn) is a random sample with iid elements. 

b. var(M;) = var(n- I L~~I Xf) = n-2 var L7=1 XI, and note that the random 
variables Xl' ... , X~ in the sum are iid since Xf is the same real-valued 
function of Xi V i, the X/s are identically distributed, and Theorem 2.9 
applies. 

It follows from independence and the results on variances of linear com­
binations of random variables that 

n n 

var(M;) = n-2 Lvar(Xfj = n-2 L[J.L~ - (J.L~J2J = n-I[J.L~r - (J.L~fJ· 
i=1 i=1 
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c. Since EM; = f.L~ V n, and since var(M;J -+ 0 as n -+ 00, then Corollary 5.2 

with k = 1 implies that M;~f.L~ so that plimM; = f.L~.4 
d. and e. Since (Xf, .. . ,X~J are iid random variables with EXf = f.L~ and var(Xfj = 

f.L2r - (f.L~J2 V i, it follows upon substitution into the Lindberg-Levy central 
limit theorem that 

Definition 6.9 
Sample mean 

",n xr , 
Z L..i=1 i - nf.Lr d N(O IJ 

n = 1/2[ , _ ( 'J2]1/2 -+ ,. n f.L2r f.Lr 

Multiplying by 1 in the special form n- I /n- 1 yields 

M; - f.L~ d 
Zn = -1/2[ , _ ( 'J2]I/2 -+N(O, 1), 

n f.L2r f.Lr 

which in turn implies by De£. 5.10 that 

M;~N(f.L~, n- I [f.L2r - (f.L~J2]J. • 
All told, the properties of M; presented in Theorem 6.5 indicate that the 

expected value of a sample moment is equal to the value of the correspond­
ing population moment, the variance of the sample moment monotonically 
decreases and converges to zero as n -+ 00, the sample moment converges in 
probability to the value of the corresponding population moment, and the sam­
ple moment is approximately normally distributed for large n. In the context 
of utilizing outcomes of M; as estimates of f.L~, the properties indicate that the 
outcomes correctly estimate f.L~ on average, the spread of the estimates de­
creases and the outcomes of M; become arbitrarily close to f.L~ with probability 
approaching 1 as the sample size increases, and the outcomes of M; are approx­
imately normally distributed around f.L~ for large enough sample sizes. The fact 
that outcomes of M; are correct on average and become highly accurate indi­
vidually with high probability as n increases contributes to M;'s being a useful 
estimator of f.L~, as will be discussed further in Chapter 7. The fact that M; is 
approximately normally distributed for large enough n will facilitate testing 
hypotheses about the value of f.L~, to be discussed in Chapters 9 and 10. 

The first-order sample moment about the origin is of particular importance 
in a number of point estimation and hypothesis-testing situations, and it is 
given a specific name and symbol. 

Let (X I, ... , Xn J be a random sample. The sample mean is defined by 
n 

Xn =n- 1 LXi =M;. 
i=1 

4 An alternative proof, requiring only that moments up to the rth-order exist, can be based on Khinchin's WLLN. Although we will 
not use the property later, the reader can utilize Kolmogorov's SLLN to also demonstrate that M;~J-t; (see Chapter 5). 
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Based on sample moment properties, we know that Un = f.L, var(Xn) = 
n-l(f.L~ - f.L2) = a 2/n, plimXn = f.L, and Xn!.,N(f.L, a 2/n). As a preview to a par­
ticular problem of statistical inference, note that Xn has properties that might 
be considered useful for estimatin.g the population mean, f.L. In particular, the 
PDF of Xn is centered on f.L, and as the size of the random sample increases, the 
density of Xn concentrates within a small neighborhood of points around f.L so 
that it becomes ever more improbable that an outcome of Xn would occur far 
from f.L. Thus, outcomes of Xn might be useful as estimates of the unknown 
value of a population mean. 

The result on asymptotic normality extends to vectors of sample moments 
about the origin, in which case a multivariate, asymptotic, normal density is 
appropriate. 

Theorem 6.6 (Multivariate, Asymptotic Normality of Sample Moments About the Origin) 

[ M~ - f.L~] 
n 1/2 : .:tN ([0]' ~) 

IX I IXI M; - f.L~ 

and 

where the nonsingular covariance matrix ~ has a typical (i,k) entry ail< = 

f.L;+k - f.Lif.L;<· 

Proof The proof relies on the multivariate version of the Lindberg-Levy central limit 
theorem. Let Yj = (Xi, .. . ,XIl'. Since XI, ... , Xn is a random sample with iid 
elements, it follows from Theorem 2.9 that (YI, ... , Yn ) are independent (r xl) 
random vectors with EYj = f-L and Cov(Yj ) = ~, V i, where f-L = (f.L'I!"" f.L~)'. 
Then, given that ~ is nonsingular, the multivariate Lindberg-Levy CLT applies, 
establishing the convergence in distribution result, which in turn implies the 
asymptotic density result. 

The typical entry in ~ is given by 

ail< = cov (Xi, Xk) = E (Xi - f.Lj) (Xk - f.L~) 

= E (Xi+k - II~Xk - II' Xi + II~II') = II' - 11'11' t"'/ t"'k t"'/t"'k t"'/+k t"'/t"'k' • 
We will not study properties of sample moments about the mean in detail. 

Unlike the case of sample moments about the origin, the properties of higher­
order sample moments about the mean become progressively more difficult to 
analyze. We will concentrate on properties of the second-order sample moment 
about the mean, called the sample variance. The reader interested in the general 
properties of sample moments about the mean can refer to R. Serfling (1980) 
Approximation Theorems of Mathematical Statistics New York: John Wiley, 
1980, pp. 69-74. 
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Definition 6.10 
Sample variance Let Xl, ... , Xn be a random sample of size n. The sample variance is defined 

ass 

Some important properties of the sample variance are presented in the fol­
lowing theorem. 

Theorem 6.7 (Properties of S;J Let S; be the sample variance for a random sample 
(Xl, ... ,XnJ from a population distribution. Then, assuming the appropriate 
population moments exist, 

Proof 

a. ES; = (In - IJ/n)a2, 
h. var(S;J = n-l[((n - 1J/nJ2{t4 - (In - 1J(n - 3J/n2)a4 j, 
c. plim S; = a 2, 

d. nl/2(S; - a2J~N(O,{t4 - a 4 J, 
e. S;~N(a2,n-l(tL4 - a4)). 

a. ES; = E L~l (Xi - Xn)2 = E L7=1 (Xi - tL + tL - Xn)2 
n n 

=E[L7=I(Xi -tL)2] _E[n(tL- X n)2] =a2 _ a 2 = (n-1)a2. 
n n n n 

h. The proof follows from expressing var(S;J = E(S; - a2 )2 in terms of X/s 
and taking expectations. The proof is straightforward conceptually, but 
quite tedious algebraically. The details are left to the reader, or see R. G. 
Krutchkoff (1970J, Probability and Statistical Inference, New York: Gordon 
and Breach, pp. 154-157. 

c. Since ES; = (In - 1)/n)a2 -+ a2 as n -+ 00, and since limn-..+oo var(S;;) = 0, 
then Corollary 5.2 implies that S;;~a2, so that plim S;; = a2. 

d. and e. First note that 

n n 

= I: (Xi - tLJ2 + 2(tL -Xn) I: (Xi - tLJ +n (tL - X~), 
~l ~l 

5 Some authors define the sample variance as S~ = (n/(n - ll)M2' so that ES~ = a 2 , which identifies S~ as an unbiased estimator of 

a2 (see Section 7.2). However, this definition would be inconsistent with the aforementioned fact that M2, and not (n/(n - IJJM2' is 
the second moment about the mean, and thus the variance, of the sample (empiricall distribution function, En. 
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so that 

n 1/2 (S; - 0-2) = I:f=l (Xi -1~)2 - n0-2 + 2 (J.L - Xn) n-1/2 t (Xi - J.L) 
n i=l 

+nl/2(J.L-Xn)2. 

Of the three terms added together in the previous expression, the latter 
two converge in probability to zero. Regarding the third term, 
plim(nl/2) (J.L - Xn)2 = plim(nl/20p(n-I/2)) = O. In the second term, 

n- I /2 r:f=t!Xi - J.L) ~ N(O, 0-2) by the LLCLT, and plim(J.L -Xn) = plimJ.L­
plimXn = O. So by Slutsky's theorem, the second term converges in distri­
bution, and thus in probability, to the constant D. 

In the first term, let Yi = (Xi - J.L)2, and note that EYi = 0-2 and var(Yil = 
J.L4 - 0-4. Then since the Y/s are iid, the first term converges in distribution 
to N(D, J.L4 - 0-4) by the LLCLT and Slutsky's theorem. Thus, by Slutsky's 
theorem, 

n l /2 (S; - 0-2) ~ N(D, J.L4 - 0-4), so that S; ~ N (0-2,n- I (J.L4 - 0-4)). • 

As another preview to a particular problem of statistical inference, note 
that S; has characteristics that might be considered useful for estimating the 
population variance, 0-2 • Specifically, the distribution of S; becomes centered 
on 0-2 as n ~ 00, and as the size, n, of the random sample increases, the density 
of S; concentrates within a small neighborhood of points around 0-2 so that it 
becomes highly probable that an outcome of S; will occur close to 0-2. 

Example 6.8 Calculate outcomes of the sample mean and sample variance for the wheat 
yield data presented in Ex. 6.6. 
Answer: The outcomes are respectively 

10 X' 10 ( -)2 
X = L -...!... = 70.5 and S2 = L Xi - X = 140.65. 

i=l 10 i=l 10 
o 

Multivariate Case 

When the random sample consists of a collection of k-variate random vectors 
Xl, ... , Xn (i.e., where k characteristics are observed for each of the n sample 
observations), one can define sample means, sample variances, or any rth-order 
sample moment for each of the k entries in the Xj"vectors. Furthermore, the 
concept of joint sample moments between pairs of entries in the Xi vectors 
becomes relevant in the multivariate case, and in particular one can define the 
notion of sample covariance and sample correlation. 

The method of defining sample moments in the multivariate case is analo­
gous to the approach in the scalar case-use the empirical substitution princi­
ple. All of the aforementioned moments can be defined as expectations taken 
with respect to the probability distribution defined by the (joint) EDF outcome, 
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Definition 6.11 
Sample Moments, 
Multivariate Case 

Fn, just as population moments can be defined using the population distribu­
tion represented by the Ijoint) CDF, F. Using analogous reasoning to the scalar 
case, the PDF implied by Fn is given by 

n 

pIx) = n- I L I{x!lxi), 
i=1 

i.e., the probability assigned to the vector outcome x is the relative frequency 
of the occurrence of x in the random sample of vector outcomes (Xl, ... , xn). 
Then, following an argument analogous to the scalar case, expectations of g(X) 
with respect to the discrete CDF Fn can be defined as 

n 

Epllg(X) = L ... Lg(x)p(x) = n- 1 Lg(Xi). 
i=1 

By appropriate definitions of g(X), one can define rth sample moments about 
the origin and mean for each entry in the vector X, as well as covariances 
between entries in the vector X. In particular, these function definitions would 
be respectively g(X) = XliV, g(X) = (Xli]-x[i1V, andg(Xl = (X[i]-x[i]HX[i]-xlilJ, 
where xll] = EpIlXI€]' leading to the following definition of sample moments in 
the multivariate case. 

Let the (k xI) vector random variables X I, ... , Xn be a random sample from 
a population distribution. Then the following outcomes of sample moments 
can be defined for i and l E {I, 2, ... , k}: 

n 

Sample moments about the origin: m~li] = n- l LXiliY; 
i=l 

n 
Sample means: xli] = m'di] = n- l LXiii]; 

i=l 

n 

Sample moments about the mean: mrli] = n- l L(Xi[i]- xUW; 
i=1 

n 

Sample variances: s2U] = m2li] = n- I L(xili]- xlilJ2; . 
i=1 

n 
Sample covariance: SiC = n- 1 L(Xi[i1 - x[ilJ(xM]- X[lll· 

i=1 

The properties of each of the sample moments about the origin and each of 
the sample variances are precisely the same as in the scalar case. The proofs are 
the same as in the scalar case upon utilizing a marginal probability distribution 
for each Xli], i = I, ... , k. The sample covariance has no counterpart in the 
scalar case, and we examine its properties below. 
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Sample Covariance For clarity of exposition, we will examine the case where 
k = 2 and distinguish the two random variables involved by X and Y. A random 
sample of size n will then be given by the n two-tuples ((Xl, Yd, ... , (Xn , Yn )), 

which can be interpreted as representing observations on two characteristics, 
Xi and Yi, for each of n outcomes of an experiment. Applications to cases where 
k > 2 are straightforwardly accomplished by applying the subsequent results to 
any pair of random variables in the (k xl) vector X. 

Theorem 6.B (Properties of Sample Covariance) Let ((Xl, Yd, ... ,(Xn , Yn )) be a random sam­
ple from a population distribution, and let SXY be the sample covariance be­
tween X and Y. Then, assuming the appropriate population moments exist, 

a. ESxy = ((n - l)!n)O'xy, 
h. var (SXy) = n- l (J1.2,2 - (J1.I,d2 ) + o(n- l ), 
c. plim SXY = O'XY, 
d. SXY ~ N(O'Xy,n- I (J1.2,2 - (J1.I,d)). 

Proof a. Examine the ith term in the sum, and note that 

Since (Xl, Yd, ... , (Xn , Yn ) are iid, Xi is independent of Xj and Yi, for 
i i=- j, and Yj is independent of Xi and Yi for i i=- j. Furthermore, since the 
(Xi, Yi)'s have the same joint density function, and thus the same population 
moments 'V i, it follows that 

E(Xi - Xn)(Yi - Y n) = J1.'I,1 - ~ [J1.'I,1 + (n - 1 )J1.x J1.y ] + ~2 [nJ1.'I,1 + p(n - 1 )J1.x J1.y] 

(n -1) (n - 1) = -n- (J1.;,1 - J1.xJ1.Y) = -n- O'XY· 

Using this result, we find that 

1 ~ (n -1) (n -1) ESxy = - ~ -- O'XY = -- O'XY· 
n i=l n n 

h. The procedure used to derive the approximation is based on Taylor series 
expansions and can be found in M. Kendall, and A. Stuart, The Advanced 
Theory of Statistics, Vol. 1, 4th ed. pp. 246-250. An alternative motivation 
for the approximation is given below in the proof of part (d). 

c. Since ESxy = ((n -1 )/n)O'XY ~ O'XY and var!SXY) ~ 0 as n ~ 00, it follows by 
Corollary 5.2 that SXy~O'x)', which in turn implies that plimSXY = O'XY. 

d. First note that the sample covariance can alternatively be written as 



6.4 Sample Moments and Sample Correlation 323 

where Mi,l = (lin) I:7=1 Xj Yj.6 
Now examine the iid random vectors 

[ Xj~j] Xl , 
Yj 

i = 1, .. . ,n, 

and note that V i, 

, , ] /-tI,2 - /-ty/-tl,l 
aXY . 

a 2 y 

[

' (/)2' / 
f.i-2,2 - f.i-l,1 /-t2,l - ~X/-tl,l 

- ax 
- (Symmetric) 

Then, by the multivariate Lindberg-Levy central limit theorem, 

nl/2 [~: ~ :;,1] -4 NIlOj, ~). 
Y n - /-ty 

Now let g(Mi I'Xn , Yn) = Mi I - XnYn, and note by Theorem 5.39 that , , 

g(.) has an asymptotic normal distribution given by g(.) ~ N(f.i-'Il - /-tx/-ty, 
n-IG~G' = N(aXy,n-IG~G'), where G is the row vector of derivatives of 
g with respect to its three arguments, evaluated at the expected values of 
Mi 11 Xn , Y n, i.e., Glx3 = [1 - /-ty - /-tx], The variance of the asymptotic 
distribution of g(.) is then represented (after some algebraic simplification) 
as 

n-IG~G' = n- I (/-t2,2 - (/-t'l,l)2 + 6/-tx/-ty/-t'I,1 - 4/-t~/-t~ 

2 ' 2 ' 2,· 2'] - /-ty /-t2,1 - /-tx /-t1,2 + /-ty/-t2,O + /-tx /-tO,2 , 

and it can be shown by defining /-t2,2 and /-tI,1 in terms of moments about 
the origin that the preceding bracketed expression is identically equal to 
/-t2,2 - (/-tI,d2. Thus, g(.)~N(aXy,n-I(/-t2,2 - (/-tl.l)2J). • 

6This is an example of a joint sample moment about the origin, the general definition being given by 

/ 1 ~xr s Mr,s = - L.. i Yi . 
n i=1 

The definition for the case of a joint sample moment about the mean replaces Xi with Xi - Xi, Yi with Yi - 1'i, and M;,s with Mr,s' 
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Definition 6.12 
Sample correlation 

As we have similarly argued in the case of the sample mean and sample 
variance, the sample covariance has properties that might be considered useful 
for estimating its population counterpart, the covariance CTXY. In particular, the 
distribution of SXY becomes centered on CTXY as n ~ 00, and as the sample size 
n increases, the density of SXY concentrates within a small neighborhood of CTXY 

so that it becomes highly probable that an outcome of SXY will occur close to 
CTXY· 

Sample Correlation Having defined the notion of a sample variance and sample 
covariance, we can make a rather natural definition of the sample correlation 
between random variables X and Y as follows. 

Let ((Xl, YI ), ... , (Xn, Yn)) be a random sample from a population distribution. 
Then the sample correlation between X and Y is given by 

SXY 
Rxy = SxSy' 

where Sx = (S~j1/2 and Sy = (S})1/2 are the sample standard deviations of X 
and Y, respectively. 

Regarding properties of Rxy , outcomes of the sample correlation are lower 
bounded by -1 and upper bounded by + I, analogous to their population coun­
terparts. 

Theorem 6.9 The outcomes of Rxy are such that rXY E [ - 1,1). 

Proof This follows directly from Theorems 3.31 and 3.32 upon recognizing that SXy, 
sL and s} can be interpreted as a population covariance and population vari­
ances associated with a population distribution defined by Fn. • 

In an analogy to the population correlation, the numerical value of the 
sample correlation, rXY, can be interpreted as a measure of the degree of linear 
association between given sample outcomes (Xl, ... , xn) and In, ... , Yn). The 
motivation for this interpretation follows directly from Theorems 3.35 and 3.36 
upon recognizing that Fn can be thought of as defining a population distribution 
for X and Y to which the theorems can be subsequently applied. Expectations 
in the statements of the theorems are then interpreted as expectations based on 
Fn, and all references to moments are then interpreted in the context of sample 
moments. 

With the preceding interpretation of Theorem 3.35 in mind, and recalling 
Figure3.12/rxy = 1 impliesthatYi = al+bxi/fori = 1,,,.,n, whereal = y-bx 
and b = Isy/sx). Thus, the outcomes Yl, "'1 Yn and Xl, ... , Xn have a perfect 
positive linear relationship. If rXY = -I, then Yi = a2 - bXi, for i = 1, ... , n , 

where a2 = y+bx, so the y/s andx/s have a perfect negative linear relationship. 
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To interpret the meaning of rxy E (-I, I), examine Theorem 3.36 and its 
subsequent discussion applied to the discrete CDP Pn and the associated ran­
dom sample outcome (Xl, Yl), ... , (xn, Yn). The best predictor of the y/s in terms 
of a linear function of the associated x/s is thus given by Yi = a + bXi, where 
a = y - bx and b = sxy/s~. In the~ current context, best means the choice 
of a and b that minimizes EPnd2(Y, Y) = n- l L:7=dYi - (a + bxd)2, which has 
a strictly monotonically increasing functional relationship with the distance 

[L:7=dYi - Yi)2f/2 between the vector (Yl,"" Yn) and the vector (Yl'"'' Yn)' 
(This is analogous to the least-squares criterion that will be discussed in Sec­
tion 8.2.) Then, since 

2 ~ 2[ 2] EPlld (Y, Y) = Sy 1 - rXY 

(recall the discussion following Theorem 3.36), it follows that the closer IXY is to 
either -lor I, the smaller the distance is between the outcomes Yl, ... , Yn and 
the best linear prediction of these outcomes based on Xl, ... , X n . Therefore, rXY 

is a measure of the degree of linear association between sample outcomes Yl, 
... , Yn and Xl, ... , Xn in the sense that the larger Irxy I is, the smaller the distance 
is between (Yl,"" Yn) and (Yl,"·' Yn), with Yi = a + bXj. Also, recall from the 
discussion of Theorem 3.36 that rir has an interpretation as the proportion of 
the (sample) variance in the y/s that is explained by the Y/s. Thus, the closer 
IrXYI is to I, the more the sample variance in the y/s is explained by a + bXi, 
i = I, ... , n. The arguments are completely symmetric in the y/s and x/s, and 
a reversal of their roles leads to an interpretation of rXY (or ryx) as a measure 
of the distance between (Xl, ... ,xn) and (Xl, . .. ,xn ) with Xi = a + bYi (a and b 
suitably redefined). Also, r~y (or r~x) is the proportion of the sample variance 
in the x/s explained by a + bYi, i = I, ... , n. 

Besides its use as a measure of linear association between the sample out­
comes, one might also inquire as to the relationship between Rxy and its pop­
ulation counterpart, PXy. Like the case of the sample variance or the sample 
covariance, it is not true that the expectation of the sample correlation equals 
its population counterpart, i.e., in general, ERxy =1= PXy. Furthermore, general 
expressions for the mean and variance of Rxy are quite complicated to state 
and derive.? We will concentrate here on establishing the probability limit and 
asymptotic distribution of Rxy . 

Theorem 6.10 Let (Xi,Yd, i = I, ... , n, be a random sample from a population distribution, 
and let Rxy be the sample correlation between X and Y. Then 

a. plim Rxy = PXy, 
h. Rxy~N(pxy,n-LT'~T), 

with T and ~ defined ahead. 

7See Kendall and Stuart, Advanced Theory, Vol. I, pp. 246-251, for an approach based on Taylor series expansions that can be used 
to approximate moments of the sample correlation. 
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Proof a. Note that Rxy = Sxy/(SxSy) is a continuous function of SXY, Sx, and Sy 
for all Sx > 0 and Sy > 0 and, in particular, is continuous at the values 
aXY = plimSXY, ax = plimSx and ay = plimSy. It follows from Slutsky's 
theorem that 

1· R l' (SXY) plim SXY aXY plm Xy=plm -- = =--
SxSy (plimSx' plimSy) UXUy 

= PXY· 

h. The proof follows the approach used by Serfling, Approximation Theorems, 
pp. 125-126. Define the (5 x 1) vector W (X, 1', (lIn) I:~I Xl, 
(lIn) I:7=I YI, (lIn) I:7=I Xi Yi)', so that the sample correlation can be ex­
pressed as 

R - (W) _ Ws - WI W2 XY -g - . 
(W3 - Wr)I/2 (W4 - Wi)I/2 

Note that Zi = (Xi, Yi,X;, Y;,XiYi )', i = I, ... , n, are iid random vectors, 
so that an application of the multivariate Lindberg-Levy CLT to the Z/s 
implies that 

because n- I I::~\ Zj = Z = W, where :E is the covariance matrix of any Zj. 
A direct application of Theorem 5.39 to Rxy = g(W) yields the statement 

in the theorem, where 

_ ag(EW) _ (PXYIL'\,o) _ ( JL~,I ) 
II - - , 

aWl a1 aXUY 

I2 = ag(EW) = (PXYJL~'I) _ ( JL;,o ), 
aW2 a~ aXUY 

ag(EW) -PXY 
I3 = = --, 

aW3 (2u1) 
ag(EW) -pxy 

I4= =--, 
aW4 (2u~) 

ag(EW) -I 
IS = a = (aXUY) . 

Ws • 
As we have noted for the other statistics we have examined in this section, 

the sample correlation can be useful for estimating its population counterpart, 
Pxy, at least in large samples. In particular, as n ~ 00, the density of Rxy con­
centrates within a small neighborhood of PXy so that as n increases, it becomes 
highly probable that an outcome of Rxy will occur close to PXy. 
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Example 6.9 Sample Means, Variances, Covariance and Correlation Matrices 

A stock analyst has 15 observations on daily average prices of three common 
stocks: 

Stock 1 Stock 2 Stock 3 

1.38 1.66 4.85 
3.45 5.95 2.26 
4.80 3.02 4.41 
4.68 7.08 4.61 
9.91 7.55 9.62 
6.01 9.49 9.34 
8.13 9.43 8.35 
8.64 11.96 10.02 

12.54 11.32 13.97 
11.20 12.09 10.37 
15.20 11.85 13.75 
13.52 16.98 14.59 
15.77 16.81 16.80 
16.26 18.03 18.64 
18.21 17.07 16.95 

She wants to calculate summary statistics of the data consisting of sample 
means, sample variances, sample covariances, and sample correlations. Calcu­
late these statistics, providing the variances and covariances in the form of a 
sample covariance matrix, and the sample correlations in terms of a sample 
correlation matrix. To what extent are there linear relationships between pairs 
of stock prices? 
Answer: Letting x represent the (15 x 3) matrix of stock prices, the three sample 
means are given by 

1 15 [ 9.98 ] 
x = 15 Lx[i,.j' = 10.69 . 

(3xl) i=1 10.57 

The sample covariance matrix, containing the respective sample variances on 
the diagonal and the sample covariances between stock i and stock j prices in 
the (i, j)th entry, i =I j, is 

1 15 

6v(X) = -15 L(x[i,.j' - x)(x[i,.], - x)' 
(3x3) i=1 

[ 
25.402 22.584 23.686] 

= 24.378 22.351 . 
(symmetric) 24.360 
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The sample correlation matrix, containing the sample correlations between 
stock i and stock; prices in the (i, ;)th entry, i =1= ;, is 

.908 .952] 
1 .917. 

1 

The sample correlations indicate that sample observations have a pro­
nounced tendency to follow a positively sloped linear relationship between 
pairs of stock prices. The linear relationship between stock 1 and stock 3 prices 
is the most pronounced with (.952)2 x 100 = 90.631 percent of the variance 
in either of the stock prices explained by a linear function of the other stock 
price. 0 

6.S Properties of Xn and s~ When Random Sampling from a Normal Distribution 

Additional properties of Xn and S~ that are useful in applications are obtained 
when random sampling is from a normal population distribution. In particular, 
Xn and S~ are then independent random variables, Xn is normally distributed, 
nS~/(J2 has a X2 distribution with In - 1) degrees of freedom and, thus, S~ has 
a Gamma distribution. We examine these properties in subsequent theorems. 
It can also be shown that nl/2(Xll - p,)/all , where a; = In/(n - l))S~, has a "t_ 
distribution," but we defer our examination of this property until Section 6.7, 
where we will examine the t-distribution in detail. 

We begin by stating a theorem on the independence of linear and quadratic 
forms in normally distributed random variables that has applicability in a va­
riety of situations. 

Theorem 6.11 Let B be a Iq x n) matrix of real numbers, let A be an (n x n) symmetric matrix 
of real numbers having rank p, and let X be an (n xl) random vector such that 
X,..., N(J.Lxp2I). Then BX and X' AX are independent if BA = [OJ.8 

Proof Since A is symmetric, it can be diagonalized by pre- and postmultiplication 
using the matrix of characteristic vectors of A as 

P'AP = A = [_Al_---"-AP-+--[Ol], 
[OJ [OJ 

where P is the (n x n) matrix of characteristic vectors stored columnwise, and 
the A/s are the nonzero characteristic roots of A. It is assumed without loss of 

8The theorem can be extended to the case where X - N(/Lx,I:), in which case the condition for independence is that BI:A = [OJ. 
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generality that the columns of P have been ordered so that the first p columns 
correspond to characteristic vectors associated with the p nonzero character­
istic roots. Let BA = [OJ, so that BPP' AP = [OJ, since P is orthogonal (Le., 
PP' = P'P = I). Let C = BP, so that CA = BPP' AP = [OJ. Partitioning C and A 
appropriately, we have that 

[ I ] [ 
Rp P}I~!P)] 

CA = C I C2 = [OJ, 
Iqxp) qxln-p) [OJ [OJ Iqxn) 

In-p)xp In-p)xln-p) 

where D = [AI.. AJ is the diagonal matrix of nonzero characteristic 

roots of A. 
The above matrix equation implies that CID = [0], and since D is invertible, 

we have that C1 = [OJ. Thus 

C = [[OJ I C2 ]. 
Iqxp) qxln-p) 

Now define Zlnxl) = P'X ~ N(P' J..Lx, ()21) (recall that P'P = I), and note 
that (ZI, ... ,Zn) are independent random variables. Since X'AX = Z[i~IP]Z = 

Z' AZ = L:f=l AjZl = gt!ZI, ... , Zp) and BX = BPZ = CZ = C2 L = 

g2(Zp+I,"" Zn), and because (ZI, ... , Zp) and (Zp+I,"" Zn) are independent, 
then by Theorem 2.9, X' AX and BX are independent. • 

We use the preceding theorem to prove a theorem that establishes the dis­
tribution of the random variable nS~/()2, which we will later find to have im­
portant applications in testing hypotheses about the value of a 2 • 

Theorem 6.12 If Xn and S~ are the sample mean and sample variance, respectively, of a 
random sample of size n from a normal distribution with mean fL and variance 
(}2, then 

a. Xn and S~ are independent, 
h. (nS~/()2) '" X;_I' 

Proof a. In the context of Theorem 6.11, let B11xnl = [n-1 ... n-Il, so that BX = Xn . 
Also, let 

[BJ [-I -I] B n n 
H .. 

Inxnl = ~ = n~1 n~1 
[

XI -xn] 
so that (I - H)X = : _ ' 

Xn -Xn 
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implying nS;; = X'(I - HJ'(I - H)X = X'(I - H)X since 1- H is symmetric and 
(I - H)(I - H) = 1- H, Le., 1- H is idempotent. Then letting A = n-1 (I - H), 
we have that X' AX = S;;. 

It follows from Theorem 6.11 that Xn = BX and S;; = X'AX are inde­
pendent since BA = n- 1B(I - H) = n-1(B - B) = [0]. 

h. From the proof of part (a), it follows that 

nS;; = ~(X'(I _ H)'(I - H)X). 
a2 a2 

Let J.Lx = (JL JL ... JL)', and note that (I - H)J.Lx = J.Lx - J.Lx [0]. 
Therefore, 

nS;; = ~(X - J.Lx)'(1 - H)'(I - H)(X - J.Lx) = ~(X - J.Lx)'(1 - H)(X - J.Lx) 
a 2 a2 a 2 ' 

since 1-H is symmetric and idempotent. Note that tr[1 - H] = n - I, which 
implies that (n - 1) characteristic roots have value 1 because a symmetric 
idempotent matrix has rank equal to its trace, and its characteristic roots 
are a collection of l's and D's with the number of l's equal to the rank of the 
matrix. Diagonalizing (I - H) by its orthogonal characteristic vector matrix 
P then yields 

P'(I - H)P = [~] = A, [O]Jo 
where I is an (n - 1 )-dimensional identity matrix. Therefore, 1- H = PAP', 
and then (nS;;/a2 ) = (l/a2 )(X - J.Lx),PAP'(X - /Lx) = Z' AZ where Z = 
(I/a)P'(X - J.Lx) '" N([O], I) since P'P = I. Finally, (n5;;/a2 ) = '£7:/ ZT '" X;-l' 
given the definition of A, Le., we have the sum of squares of (n - 1) iid 
standard normal random variables. • 

It follows from part (b) of Theorem 6.12 that 5;; has a Gamma density, as 
stated and proved in the following theorem. 

Theorem 6.13 Under the assumptions of Theorem 6.12, 5;; '" Gamma with ex = (n - 1 )/2 and 
fJ = (2a2 /n). 

Proof Let Y = n5;;/a2. Then it is known from Theorem 6.12.b that My(t) = (1 -
2t)-ln-1 1/2. Note that 5;; = ((a2/n))Y. ThenMs~(t) = Eexp(5;;t) = Eexp((a2/n)Yt)= 
E exp(Yt*) where t* = (a2tJn). But since My(t.) = E exp(Yt.) = (1 - 2t.tln-11/2, it 
follows that Msdt) = (1 - 2(a2t/n))-ln-1 1/2, which is associated with the Gamma 
density having ~ = (n - 1)/2 and fJ = (2a2/n). • 

Since Xn = n-1 ,£7=1 Xj is a linear combination of iid N(JL, ( 2 ) random vari­
ables Xj '" N(JL, ( 2 ), Xn is also normally distributed, as indicated in the follow­
ing theorem. 

Theorem 6.14 Under the assumptions of Theorem 6.12, Xn '" N(JL,a2/n). 



Sampling Distributions 331 

Proof Let A(lxnl = (l/n ... l/n) and b 0 in Theorem 4.9. Then since X(nxll 

N(p,x,O'2 I), where X(nxll = (Xl, ... ,Xn)' and P,X(nxli = (f.L, ... ,f.L)', then X 
AX",-, N(Ap,x,AO'2IA') = N (p"O'2 /n). • 

Example 6.10 An inspector from the state's Department of Weights and Measures is investi­
gating a claim that an oil company is underfilling quarts of motor oil that are 
sold at retail. The filling process is such that the actual volumes of oil placed in 
quart cans can be interpreted as being normally distributed. According to state 
specifications, a can is considered legally full if it contains ~ 3l.75 ounces of 
oil. The company claims that its filling process has a mean of 32.25 and a stan­
dard deviation of .125, and that therefore the probability that a can is legally 
full exceeds .9999. 

The inspector randomly samples 200 quarts of oil produced by the oil com­
pany and finds that L7~? Xi = 6,462 and L7~? xl = 208,791. Calculate the sam­
ple mean and sample variance. Assuming the company's claims to be true, do 
the outcomes of X and 52 appear to be unusual in any way? Does the outcome 
support the claim against the company? 
Answer: x = L7~? xi/200 = 32.31 and S2 = L7~?(Xi - x)2/200 = (L7~? xl -
200x2 )/200 = .0189. Given the company's claim, Xn '"V N(32.25, .78125 x 10-4 ) 

and (200)52/(.015625) '"V Xr99' If the company's claim were true, then the event 
x E [f.L - 4O'x, f.L + 4O'x] = [32.2146,32.2854] would occur with probability> 
.9999. The particular outcome of X would seem to be unusually high compared 
to the claimed mean, suggesting that f.L might actually be higher than the com­
pany claims (if the claimed standard deviation is correct). Regarding the sample 
variance, and given the company's claim, ES2 = (199/200)0'2 = .015547 and the 
event S2 E [.01265, .01875] would occur with probability .95.9 Then S2 = .0189 
appears to be somewhat high compared to the claimed variance. 

Overall, there is strong evidence to suggest that the filling process does not 
have the characteristics claimed by the company, but the evidence given above 
does not support the claim that the cans are being underfilled. We will examine 
this issue further after we derive the t-distribution in Section 6.7. 0 

6.6 Sampling Distributions: Deriving Probability Densities of Functions of Random 
Variables 

The statistics we examined in the preceding sections are useful in a number 
of statistical inference problems, but one needs to be concerned with a much 
larger variety of functions of random samples to adequately deal with the vari­
ety of inference problems that arise in practice. Furthermore, in order to assess 

9This interval and associated probability was obtained by noting that if Y ~ Xi99' then 1'( 1 (, I.X,1 :.: y ::: 239,96) = .95, which was 
obtained via numerical integration of the XT99 density, leaving ,025 probability in both the right :lI1d left tails of the density. Using 
the relationship S2 ~ (.015625/200)Y then leads to the stated intervaL 
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the adequacy of statistical procedures, it will be necessary to identify probabil­
ity spaces for functions of random samples that are proposed as estimators or 
as hypothesis-testing statistics in order to evaluate their probability character­
istics. In particular, we will be interested in deriving the functional forms of 
the PDFs associated with functions of a random sample, where such PDFs will 
be referred to as sampling densities or sampling distributions. 

MGF Approach 

If Y = g(XI, .. . ,Xn) is a function of interest, then one can attempt to derive the 
moment-generating function of Y = g(XI, .. . ,Xn), i.e., Mg(.)(t) = Eexp(g(Xl"'" 
Xn )t), and identify the density function characterized by the moment-generating 
function. If X I, ... , Xn is a random sample, one would refer to the density of Y as 
the sampling distribution of Y. Of course, g can be a vector function, in which 
case we would employ the multivariate moment-generating function concept 
in the hope of identifying the joint density function of the multivariate random 
variable Y. 

Example 6.11 What is the sampling distribution of the sample mean X/l = n- I L~=I Xi when 
the random sample (XI, .. " Xn) is drawn from a population distribution repre­
sented by the exponential family of densities? 
Answer: Using the MGF approach, we attempt to find E exp(Xnt) = 
Eexp((L~=1 Xi)tln). We know that the population distribution is given by m(z) = 
(l/e(e- z/(l1(0,oodz), so that the joint density of the random sample is given by 

1 (- L:~I Xi) nn ( f(xI, ... , Xn) = en exp e i=1 1(0,00) Xi). 

Then 

Eexp ((tx) tin) = DEexp (~t) = 0 (1 -e;) -I = (1 _ e;) -n, 

for t < nle, which is recognized as the MGF of a Gamma density with ex = n 
and f3 = e/n. Thus, the sampling distribution of X is gamma with the afore­
mentioned parameters. 0 

CDF Approach 

One might also attempt to derive the sampling distribution of Y = g(XI, .. . ,Xn) 
by identifying the cumulative distribution function of Y and then using the cor­
respondence between cumulative distribution functions and density functions 
to derive the latter. The usefulness of this approach depends on how difficult 
it is to derive the cumulative distribution function for a particular problem. 
The advantages of this approach over the MGF approac.h are that it is appli­
cable even if the MGF does not exist, and it circumvents the problem of the 
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researcher's not knowing which density function corresponds to a particular 
MGF when the MGF does exist. lO 

Example 6.12 Refer to Ex. 6.11, and suppose we want the sampling distribution of Y = 
g(XI , .. . ,Xn ) = X~. Note that 

I i C"2 1 
pry < c] = P [X2 < c] = P [x E [_cl /2 CI/2 ]] = x a - Ie-x/ f3 dx for c > 0, 

F(c) = - n - n , 0 ,Bana) 

o otherwise, 

lemma 6.1 
Leibniz's rules 

since Xn is Gamma distributed. The following lemma regarding differentiating 
an integral with respect to its bounds will be useful here and in other applica­
tions of the CDF approach for defining the PDF of g(X). 

Let WI (c) and W2(C) be functions that are differentiable at c, and let h(x) be 
continuous at x = WI (c) and x = W2(C) and integrable. Then 

Special cases: 

a. Let WI (e) = k V c, where k is a constant. Then 

d It2lc ) h(x)dx = h( ()) dw2(e) 
dc W2 e dc' 

and the function h(x) need not be continuous at k. Note the result is still 
valid if k is replaced by -00. 

h. Let w2(e) = k V c, where k is a constant. Then 

dl!dc)h(xldx _ -hI ())dwdc) 
de - WI e dc' 

and the function need not be continuous at k. Note that the result is still 
valid if k is replaced by 00. 

(Adapted from D. V. Widder (1961), Advanced Calculus, 2nd ed., Englewood 
Cliffs, NJ: Prentice-Hall, pp. 350-353, and R. G. Bartle (1976), The Elements 
of Real Analysis, 2nd ed., New York: John Wiley, pp. 245-246.) 

10 Although, as we have mentioned previously, the density function can always be identified in principle by an integration problem 
involving the MGF in the integrand. 
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In the case at hand, W2(C) = C1/2, and wIlc) = 0, so that Lemma 6.1 implies 
that the sampling distribution of g(X1, •• . ,Xn ) = X; is given by 

dF(c) = f(c) = 
dc 

-,-_I..,...-,.cI1/2)1a-l) exp [ ___ C_1/_2 ] (~) C- 1/2 
,Bar(a) ,B 2 

= c1a/2)-1 exp --1 [_C1/2] 
2,Bar(a) ,B 

o otherwise. 

Equivalent Events Approach (Discrete Case) 

o 
for c > 0, 

In the case of discrete random variables, a third, conceptually straightforward, 
approach for deriving the density function of functions of random variables is 
available. In fact, without calling attention to it, we have already used the pro­
cedure, called the equivalent-events approach, in proving a theorem concerning 
the expectation of functions of random variables. Specifically, if y = g(x) is a 
real-valued function of x, then Py(y) = Px(Ay), Ay = (x : y = g(x),x E R(X)j, 
because the elementary event y for Y is equivalent to the event Ay for X in the 
sense that y occurs iff Ay occurs. It follows that the density function of Y can 
be obtained from the density function of X for scalar X and Y as 

h(y) = fIx). 
(x:glx)=y,XERlxll 

The extension to the case of multivariate random variables and vector functions 
is straightforward. In particular, interpreting y and/or x as vectors, we have that 

h(y) = L··· L fIx). 
(x:glx)=Y,xERIXll 

In either the scalar or multivariate case, if y = g(x) is invertible, so that 
x = g-l(y) V x E R(X), then h(y) = f(g-l(y)). 

Example 6.13 Your company ships videocassettes in lots of 100. As part of your quality-control 
program, you assure potential buyers that no more than 1 videocassette will be 
defective in each lot of 100. In reality, the probability that a cassette manu­
factured by your company is defective is .001, and whether a given cassette is 
defective is independent of whether or not any other cassette is defective. Then 
the PDF for the number of defectives in a lot of your cassettes is given by the 
binomial density function 

fIx) = I C~0}.00In.999)n-X for x E {O, 1, ... , 1O0}, 

o otherwise. 

Define a new random variable, 2, such that z = 1 represents the event that your 
quality-control claim is valid (i.e., x = 0 or 1) while z = 0 represents the event 
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that your claim is invalid (i.e., x = 2 or more) on a lot of your videocassettes. 
Define the density function of Z. 
Answer: The density function of Z is given by 

h(z) = f(xL 
(x:g(x)=z,xeR(X)) 

where g(x) = I(o,l}(x). Then, referring to the binomial density function defined 
above, 

I 100 

hP) = :Lf(x) = .995 and h(O) = :Lf(x) = .005 
x=2 

so that h(z) = .995I(ldz) + .OOSI/odz). o 

Change of Variables (Continuous Case) 

Another very useful procedure for deriving the PDF of functions of continu­
ous random variables is available if the functions involved are continuously 
differentiable and if Y = g(X) admits an inverse function X = g--I (Y). We first 
examine the case where both Y and X are scalar random variables. We intro­
duce the term support of the density, meaning the set of domain elements of a 
PDF that are assigned positive density values, i.e., (x : fIx) > OJ is the support 
of the density f(xL or simply, the support of Ax). 

Theorem 6.15 (Change-of-Variables Technique (Univariate and Invertiblel) Suppose the con­
timlOUS random variable X has PDF fIx). Let g(x) be continuously differentiable 
with dg/dx =f. 0 V x in some open interval, 6., containing the support of f(xL S. 
Also, let the inverse function x = g-I(y) be defined V y E \{I = {y:y = g(x),x E 
S}. Then the PDF of Y = g(X) is given by 

h(y) = f(g-l (y)) I dg~~(y) I for y E \{I, with h(y) = 0 elsewhere. 

Proof If dgjdx =f. 0 and is a continuous function, then g is either a monotonically in­
creasing or monotonically decreasing function, i.e., either dg/dx > 0 or dgjdx < 

0, respectively, V x E 6.. (Note that dgj dx cannot> 0 for some x and < 0 for other 
XIS, since continuity of dgJdx would then necessarily require that dg/dx = 0 at 
some point.) 

a. Case where dgJdx > 0: In this case, PlY :::: b) = P(g(x) :::: b) = PIx :::: g--I(b)), 
V b E \{I, since x = g-l(y) is monotonically increasing for y E \{I (see Fig­
ure 6.3). Thus the cumulative distribution function for Y can be defined 
for all b E \{I by 

g-I{b) 

H(b) = PlY :::: b) = PIx :::: g-ljb)) = lco f(x)dx. 
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Figure 6-3 
Monotonically 

increasing function. 

y 

y=g(x) 

b ----------------------

t 

....-~ ______________ ~ ________________________ x 

g-l(b) 

Then using Lemma 6.1, we can derive the density function for Y by differ­
entiation as 

I dfg-Ilblf( )d I 
dH(b) -00 x x = f( -I(b))dg- (b) 

h(b) = -- = db g db 
db 

o otherwise. I I 

for b E \{I, 

h. Case where dgjdx < 0: In this case, PlY ::: b) = P(g(x) ::: b) = PIx ~ g-I (b)), 
V b E \{I, since x = g-I (y) is monotonically decreasing for y E \{I (see Fig­
ure 6.4). Thus the cumulative distribution function for Y can be defined 
for all b E \{I by 

H(b) = PlY ::: b) = PIx ~ g-I(b)) = 100 f(x)dx. 
g-llbl 

Then, using Lemma 6.1, we can derive the density function for Y by 
differen tia tion as 

dH(b) I dfgrx:llb)f(x)dx -- -f( -'(b))dg-I(b) f b ,r, 
h(b) = -- = db g db or E 't', 

db 
o otherwise, 

II Here, and elsewhere, we are suppressing a technical requirement that f be continuous at the point g-I (bl, so that we can invoke 
Lemma 6.1 for differentiation of the cumulative distribution function. Even if f is discontinuous at g-I(bl, we can nonetheless 
define h(bl as indicated above, since a density function can be redefined arbitrarily at a finite number of points of discontinuity 
without affecting the assignment of probabilities to any events. 
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Monotonically 

decreasing function. 
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y 

-+-
~--------------~------------------------x 

g-l(b) 

Note that in this latter case, since (dg-1(b)/db) < 0, we can write h(b) alter­
natively as 

I f(g-l(b)) I dg-!(b) I 
h(b) = db 

o otherwise, 

for b E \Il, 

which is also an alternative representation of the previous case where 
dg/dx> O. • 

Example 6.14 The Cobb-Douglas production function for a certain commodity is given by 

k k 

Q =,80 n XfieW =,80 n xf'v, 
i=! i=! 

where W '" N(O, 0'2) and V = eW . What is the PDF of V? 
Answer: v = eW is a monotonically increasing function of w for which dv/ dw = 
eW > 0 V w. The inverse function is given by w = In(v) V v> 0, and dw/dv = v-I. 
Then Theorem 6.15 applies, and the distribution of V can be defined as 

I 1 exp (- [In( v)j2) for v > 0, 
h( v) = .ffii O'V 20'2 

o elsewhere 

The density function is called a log-normal distribution. o 
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The change-of-variables approach can be generalized to certain cases where 
the function defined by y = g(x) does not admit an inverse function. The pro­
cedure essentially applies to functions that are piecewise invertible, as defined 
below. 

Theorem 6.16 (Change-of-Variables Technique (Univariate and Piecewise Invertible)) Sup­
pose the continuous random variable X has PDP fIx). Let g(x) be continuously 
differentiable with dg(x)/dx =I- 0 for all but perhaps a finite number of x's in an 
open interval L:!.. containing the support of fIx), S. Let S be partitioned into a 
collection of disjoint intervals D I , ... , Dn for which g:Di ~ Ri has an inverse 
function gil :Ri ~ Di V i.12 Then the probability density of Y = g(X) is given 
by 

I L f (gil (y)) I dgil(y) I 
h(y) = iEIIyJ dy 

o elsewhere, 

for y E \II = (y : y = g(x), XES}, 

where /(y) = {i: 3x E Di such that y = g(x),i = 1, ... ,n} and (dgil(y)/dy) == 0 
whenever it would otherwise be undefined. 13 

Sketch of the Proof The COP of Y = g(X) can be represented as 
/I 

P(y.:s b) = LP(x: g(x).:s b,x E Dd. 
i=1 

Note the following possibilities for PIx : g(x) .:s b, x E Di): 

Case 

1. b < minveD; g(x) 

2. minxED; g(x) :5 b :5 maxxED; g(x) 

3. b> max.eD; g(x) 

p(x : g(x) ~ h, x E OJ) 
g monotonically g monotonically 
increasing on OJ decreasing on OJ 

o 
f,1I;-'lbJ 

miniD,1 ((x) dx 

P(Xj E D) 

o 
f~axiD;1 ((x)dx 

H, I{/)) 

P(Xj E D) 

where min(Di) and max(Di) refer to the minimum and maximum values in 
Di. 14 In either case 1 or 3, dP(x : g(x) .:s b, x E Di)/ db = 0, which corresponds 
to the case where ,ilx such that g(x) = b. In case 2, Leibniz's rule for differenti­
ating the integrals yields f(g-I(b))[dg-I(b)/db] and -f(g-I (b))[dg- I (bJldb] in the 
monotonically increasing and decreasing cases, respectively, both of which can 

12These properties define a function that is piecewise invertible on the domain U;~1 Dj. 

13Note that fly) is an index set containing the indices of all of the Dj sets that have an element whose image under the function g 
is the value y. 

141£ max and min do not exist, they are replaced with sup and inf. 
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be represented by f(g-l(b)Jldg-1(b)/dbl. Then the density of Y can be defined as 
h(b) = dP(y =::: b)/db for bE \11, with I(dgjl(y)/dYli arbitrarily set to zero in the fi­
nite number of instances where dg(b)/dx = 0, for bE D j implies (dgjl(g(b))/dy) 
does not exist, i = 1, ... , n. • 

The following example illustrates the use of this more general change-of­
variables technique. 

Example 6.15 The manufacturing process for a certain product is sensitive to deviations from 
an optimal ambient temperature of 72° F. In a poorly air-conditioned plant 
owned by the Excelsior Corporation, the average daily temperature is uniformly 
distributed in the range [70,74], and the deviations from 72° F are represented by 
the outcome of X ~ fIx) = .2511-2,2](x). The percentage of production lost on any 
given day due to temperature deviations can be represented by the outcome of 
Y = g(X) = X2. Derive the probability density for the percentage of production 
lost on any given day. 

Figure 6-5 
Function with no inverse. 

Answer: First note that Theorem 6.15 does not apply since y = x2 is such that 
dy / dx = ° at x = 0, which is in the support of fIx), and y = x2 does not admit 
an inverse function V y E \11 = [0, 4] (see Figure 6.5). 

However, we can utilize Theorem 6.16 to derive the density function of Y. 
The function g(x) = x2 is continuously differentiable V x, and dg(x)/dx = 2x =1= ° 
V x except x = 0. The sets Dl = [-2,0) and D2 = [0,2] are two disjoint intervals 
whose union equals the support of fIx). Also, g : Dl -+ (0,4] has inverse function 
gil: (0,4]-+ DI defined by gil(y) = _yl/2 for y E (0,4], whileg: D2 -+ [0,4] has 
inversefunctiong21 : [0,41-+ D2 defined by g21(y) = yl/2 fory E [0,41.15 Finally, 
note that dgil(y)/dy = -(1/2)y-I/2 and dg21(y)/dy = (1/2)y-l/2 are defined Vy E 

Y 
Y= xl 

4 

2 

--------------------~~~------------------x 
-2 o 2 

15We are continuing to use the convention that yl/2 refers to the positive square root of y, so that '_yl/2 refers to the negative square 
root. 
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(0,4]. Then, from Theorem 6.16, it follows that 

h/y) = 

1 (1/2 _ 5 1 (1/2 - 5 41[-2,2) -y Ii - .Sy . 1+ 41[-2,21 y Ii·Sy· I 

1 ( -5 1 ( -5 1 -5 / = 81[OAI y)y . + 81[OAI y)y . = 4Y . 1[0,41 y) for y E /0,4], 

o elsewhere. 

o 

The change-of-variables technique can be extended to the multivariate case. 
We examine the case where the inverse function exists. 

Theorem 6.17 (Change of Variables Technique (Multivariate and Invertible)) Suppose the 
continuous /n x 1) random vector X has joint PDF fIx). Let g(x) be a (n x 1) 
real-valued vector function that is continuously differentiable V x vector in 
some open rectangle of points, tl, containing the support of fIx), S. Assume 
the inverse vector function x = g-l(y) exists, V YEW = {y:y = g(x),x E S}. 
Furthermore, let 

J= 
ag;;l(y) ag;;l(y) 

aYl aYn 

called the Jacobian matrix, be such that det!J) ::f= 0 with all partial derivatives 
in J being continuous V YEW. Then the joint density of Y = g/X) is given by 

h(y) = 1 f (gil/y), ... , g;;l(y/) I det!J)1 for YEW, 

o otherwise, 

where I det!J)1 denotes the absolute value of the determinant of the Jacobian. 

Proof The proof is quite complex and is best left to a more advanced course of study. 
The proof is based on the change-of-variables approach in multivariate integra­
tion problems. See T. Apostol (1974/, Mathematical Analysis, 2nd ed., Reading, 
MA: Addison-Wesley, pp. 421. • 

We defer an illustration of the use of this theorem until the next section, 
where we will use the procedure to derive both the t-density and the F-density. 
The reader should note that in Theorem 6.17, there are as many coordinate 
functions in the vector function g as there are elements in the random variable 
vector X. In practice, if the researcher is interested in establishing the density 
of fewer than n random variables defined as real-valued functions of the /n x 
1) vector X, she is obliged to define II auxiliary" random variables to obtain 
an invertible vector function having n coordinate functions, and then later 
integrate out the auxiliary random variables from the derived n-dimensional 
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joint density to arrive at the marginal density of interest. This approach will be 
illustrated in the next section. 

A generalization of Theorem 6.17 to noninvertible functions along the lines 
of Theorem 6.16 is possible. See Mood, Graybill, and Boes (1974), Introduction 
to the Theory of Statistics. New York: McGraw-Hill, p. 209, for one such gen­
eralization. 

6.7 t-and F-Densities 

In this section we consider two important PDFs relating to ratios of functions 
involving normally distributed random variables. These ratios and PDFs will 
figure prominently in the construction of hypothesis-testing procedures when 
random sampling is from a normal probability distribution. 

t-Density 

Theorem 6.18 Let Z '" N(O,l), let Y '" X~, and let Z and Y be independent random variables. 
Then T = Z/(Y/v)I/2 has the t-density with v degrees of freedom, defined as 

r(v+l) ( t2)-(Vil) 
fIt; v} = r(v/2)Fv 1 + v 

Proof Define the (2 xl) vector function g as 

[ t ] = [gl(Z,y}] = [(Y/~P/2], 
w g2(Z,y) 

y 

where g2(Z, y) is an auxiliary function of (z, y) defined to allow the use of The­
orem 6.17. Note that g is continuously differentiable V Z and V y > 0, which 
represents an open rectangle of (z, y) points containing the support of the joint 
density of (Z, Y) (note that the joint density of (Z, Y) in this case is the product of 
a standard normal density and a X2 density, which has support (-00, oo)x (0,00)). 
The inverse vector function g-1 is defined by 

V (t, w) E \11 = {It, w} : t E (-00, oo), w > OJ. The Jacobian of the inverse function 
is thus 
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where the elements of the Jacobian are continuous functions of (t, w) and 
I detml = I(W/v)1/21 = (W/VP /2 =1= 0 Y (t, w) E W. Given the density assumptions 
concerning Z and Y, 

liz, y) = mz(z)myly) = (2:P/2 exp(-z2/2)2vI2;(V/2)yIVI21-1 exp(-y/2)II0,001(y)· 

Then, by Theorem 6.17, the joint density of (T, W) is given by 

_ 1 ( 2 (W)) 1 Iv/2J-I (W) (W)1/2 hit, w)- (21l'jl/2 exp -(l/2)t v 2v/2r(v/2) w exp -2 IIO,ooJ(w) v 

= r(V/2)(1l'V~1/22Iv+IJ/2 Wlv-II/2 exp ( - ~ (1 + ~)) Ilo,ool(w). 

Our interest centers on the density of T, and so we require the marginal density 
of T, IT(t; v) = 1000 hit, w)dw. Making the substitution p = (w/2)(1 + (t2/v)) in 
the integral, so that w = 2p/(1 + (t2/v)) and dw = 2/(1 + (t2/v))dp, yields 

. _ [00 1 [~](V-II/2 _p [_2 ] 
ITlt, v) - Jo r(v/2j(1l'vjl/22(v+11/2 1 + ~ e 1 + ~ dp 

1 [ (v-11/2 -Pd 1 (t2)-(V+11/2 00 
= r(v/2)(1l'vjl/2 + v Jo pep 

_ r (Vii) ( t2)-(V+II/2 
- 1+-r(v/2)(1l'vjl/2 V I 

where we have used the fact that the integral in the next-to-Iast expression is 
the definition of the Gamma function r((v + 1)/2). The density is known as 
the t-density with v degrees of freedom, the degrees of freedom referring to the 
denominator X~ random variable in the t-ratio. • 

The preceding theorem facilitates the derivation of the probability distri­
bution of T = nl/2(Xn - J..L)/an when random sampling is from a population 
distribution where an = (n/ln - IJP/2Sn • We will later find that the random 
variable T has important applications in testing hypotheses about the value of 
the population mean, J..L. 

Theorem 6.19 Under the assumptions of Theorem 6.12 and defining an = (n/(n - 1))1/2 Sn, 
nl/2lX _ J..L) r (v+I) [ t2]-(V+I J/2 

T = An '" 2 1 + -
an r(v/2)(1l'vjl/2 v 

where v = n - 1. 

Proof The proof is based on the fact that T is defined as a standard normal random 
variable divided by the square root ofax~ random variable that has been divided 
by its degrees of freedom v = n - 1 (in this case) and the two random variables 
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Example 6.16 

are independent, so Theorem 6.18 applies. Details are left to the reader. (Hint: 
Divide numerator and denominator by 0'.) • 

Recall Ex. 6.10, regarding the question of underfilling of cans. By Theorem 6.19, 
we know that T = nl/2(Xn - /-t)/an has a t-distribution with 199 degrees of 
freedom when n = 200. Assuming the company's claim of /-t = 32.25 to be 
true, the outcome of T in this case is 6.1559. The probability of obtaining an 
outcome 2: 6.1559 is PIt 2: 6.1559) = 2.022 x 10-9 (obtained by integrating 
the aforementioned t-distribution on a computer). The evidence suggests that 
the company's claim is suspect-its claimed value of /-t may in fact be too 
low, and there is no support for the claim that the company is under filling its 
packages. 0 

We present some properties of the t-distribution below. 

Family Name: t-Family 

Parameterization v E Q = {v : v is a positive integer} 

Density Definition See Theorem 6.18. 

Moments /-t = 0 for v > 1,0'2 = v/(v - 2) for v > 2, /-t3 = 0 for v > 3 

MGF Does not exist 
As Figure 6.6 shows, the graph of the t-density is symmetric about zero, 

and when compared to the standard normal density, the t-density has a smaller 

mode at zero and has fatter tails. However, as v -+ 00, Tv~N(O, 1). 

Theorem 6.20 Let Tv = Z/(Yv/V)1/2,Z '" N(O,I), Yv '" X~, and let Z and Yv be independent, 
so that Tv has the t-density with v degrees of freedom. Then, as v -+ 00, 

d 
Tv-+ N (O,I). 

Proof Since Yv - X~, then EYv = v and var(Yv ) = 2v, and thus E(Yv/v) = I, and 
0'2 = var(Yv/v) = 2v-1. It follows that (Yv/v)~ I, so that plim(Yv/v) = l. Also 

note that since Z - N(O, 1) V v, it follows trivially that Z~N(O, 1). Then, by 

Slutsky'S theorems, Tv = (Yv/v)-1/2Z~ 1· Z - N(O, 1). • 

The convergence of the t-density to the standard normal density is rapid, 
and for v > 30, the standard normal density provides an excellent approxima­
tion to the t-density. Tables of integrals of the t-density are widely available, 
generally giving the value of c for which 

P[tv 2: c] = 100 hIt; v)dt = a 
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for specific choices of a such as .01, .025, and .05, and for selected choices of v. 
The symmetry of the t-density implies that if c is such that Pltv :::: cJ = a, then 
-c is such that Pity ::: -c] = a Isee Figure 6.7). If more detail is required 
than what is available in the table of the t-density, computer programs exist for 
numerically integrating the t-density le.g., IMSLIB Iroutine MDTD), SAS, SSP, 
Shazam, and GAUSS). 

F-Density 

Theorem 6.21 Let Yl "-' X~I' let Y2 "-' X~2' and let Yl and Y2 be independent. Then F = 
IY1/Vl )/IY2/v2) has the F-density with VI numerator and V2 denominator de­
grees ollreedom, defined as 

r (VI +v,) (V) vd2 (V ) -(1/2J(vl +V2) 
mil; Vi, V2) = r (!f) ~ (y) V: l(vd2)-1 1 + v:1 I(o,oo)lfl. 

Proof Define the 12 x 1) vector function g as 

[ I ] = [gdYI' Y2) ] = [~:~::], 
w g2IYI,Y2) 

Y2 

where g21YI, Y2) is an auxiliary function defined to allow the use of Theo­
rem 6.17. Note that g is continuously differentiable V Yl > ° and V Y2 > 0, 
which represents an open rectangle of IYl, Y2) points containing the support of 
the joint density of IYl, Y2) Ithe support being xT=t!O, 00). The inverse function 
g-l is defined by 

[
VIiW] [YIJ = [g~~I/'W)J = v;:-

Y2 g2 II, w) 
W 

V II, w) E 'l1 = HI, w) : I> 0, W > O}. The elements of the Jacobian matrix are 
continuous functions of II, w), and the absolute value of the determinant of the 
Jacobian of the inverse function is such that \ detm\ = VI W/V2 =f:. ° V II, w) E 'l1. 
Then since Yl and Y2 have independent x2-densities with VI and V2 degrees of 
freedom, respectively, the joint density of IF, W) is given by Theorem 6.17 as 

( ) Vd2 
.!:'.!. l(v l /2)-i w llvl +V21/2)-1 I 
V2 ( W ( Vi)) hl/, w) = 2(VI+V21/2nvI!2)nV2/2) exp -"2 1 + v;:- .I(o,oo)lfl1Io,oo,lw). 

Substituting for w usingp = Iw/2111+lvIi/v2)), and then integratingoutp finally 
yields the marginal density of F, as stated in the theorem. _ 

We present some useful properties of the F-distribution below. 
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Figure 6-8 
F-density for VI > 2. 

Family Name: F-Family 

Parameterization (VI, V2) E Q = {(VI, V2) : VI and V2 are positive integers} 

Density Definition See Theorem 6.21. 

Moments 

v2 2 2vi(VI + V2 - 2) 
J1, = -- for V2 > 2, (j = for V2 > 4, 

V2 - 2 VI (V2 - 2)2(V2 - 4) 

( V2)3 SVdVI + V2 - 2)(2vI + V2 - 2) 0 f 6 
J1,3 = VI (V2 _ 2)3(V2 _ 4)(V2 _ 6) > or V2 > . 

MCF Does not exist 
The graph of the F-density is skewed to the right, and for VI > 2 it has the 

typical shape shown in Figure 6.S. 
The mode of the density occurs at F* = V2(VI - 2)/vdv2 + 2). 
If VI = 2, the density is monotonically decreasing and approaches an in­

tercept on the vertical axis equal to L = 2v2"1 r( 1 + V2/2)/r(V2/2) as F -+ 0 (see 
Figure 6.9). 

If VI = 1, then the density is monotonically decreasing and approaches 00 

as F -+ 0 (see Figure 6.10). 
Values of c for which P[F ::: cl = ex for selected values of VI, V2, and ex are 

available in tables of the F-distribution. However, choices of ex are very limited 
in these tables, generally being .05 and .01. Computer programs are available 
for integrating the F-density more generally (e.g., IMSLIB (routine MDFD), SAS, 
SSp, Shazam, or GAUSS). 

F* = V2(VI - 2) 

VI (V2 + 2) 
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Figure 6-9 
F-density for Vl = 2. 

Figure 6-10 
F-density for Vl = 1. 

~--------------------------------------f 

It is interesting to note that if T has a t-density with v degrees of freedom, 
then T2 has an F-density with 1 and v degrees of freedom. The reader should 
verify this result, which follows directly from definitions. The reader can also 

verify that by letting V2 -+ 00 while holding VI constant, viF-! X~I (a proof based 
on Slutsky's theorems, similar to the approach used in Theorem 6.20 can be 
constructed). Finally, note that if FVI ,V2 denotes a random variable that has the F­
distribution with VI (numerator) and V2 (denominator) degrees of freedom, then 
(Fvl ,v2)-1 (i.e., the reciprocal of FVI ,V2 has the F-distribution with V2 numerator 
and VI denominator degrees of freedom (note the reversal of degrees of freedom), 
which follows immediately by definition. Therefore, if the value of c is such 
that P[FV2 ,vl ::: c] = ti, then P[(Fv2,vl)-1 ~ c- I ] = P[FVI ,V2 ~ c- I ] = ti, which allows 

~------------------------------------f 
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one to construct lower-tail events having probability ct from upper-tail events 
having probability ct. 

Example 6.17 Suppose it is desired to find the value of b for which P(P2,4 ::: b) = .05 were true. 
From the tables of the P-density, one can obtain the result that P(P4,2 ::: 19.25) = 
.05 (notice the reversed order of the numerator and denominator degrees of free­
dom). It follows that P(P2,4 ::: .0519) = .05, where b = (19.25)-1 = .0519. 0 

6.8 Random Sample Simulation and the Probability Integral Transformation 

Definition 6.13 
Probability integral 

transformation 

Example 6.18 

There is a special real-valued function of a continuous random variable X, called 
the probability integral transformation, which is useful for simulating the out­
comes of a random sample of size n from a (continuous) probability distribution, 
fIx). In addition, the function is useful in a certain goodness-of-fit test that we 
will examine later. The function of interest is defined as follows. 

Let X be a continuous random variable having the cumulative distribution 
function P. Then Y = P(X) is called the probability integral transformation 
ofX. 

If X"" (1/0)e-x/8I\o,ool(X), then the CDF of X is given by P(x) = (1 - e-x/8)I\o,ool(x). 
The probability integral transformation of X is then Y = (1- e-x/8 )Ijo,ool(X), 0 

There is an important relationship between the probability integral trans­
formation and the continuous uniform PDF, which is identified in the following 
theorem. 

Theorem 6.22 Let Y = P(X) be the probability integral transformation of the continuous 
random variable X "" fIx). Then Y is uniformly distributed on the interval 
(0,1), i.e., Y ""' IIO,II(y). 

Proof a. Case where P is strictly increasing and continuously differentiable on an 
open interval containing the support of fIx). Since P is strictly increasing, 
dP/dx = fIx) > a v x in the support of fIx), and x = P-I(y) defines the 
inverse function "lYE (0,1). Then, by the change-of-variables technique 
(Theorem 6.15), the density function for Y is given by 

h(y) = 1 f(P- 1 (y)) I dP~;(Y) I = f(xl/f(x) = 1 Vy E (a, 1), 

a elsewhere 

since dP-l(yl/dy = [dP(x)/dxJ-l = (f(x)t 1 for y = P(x), so that Y is uniformly 
distributed on the interval (0,1). 
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Example 6.19 

b. Case where X has MGP Mx{t): 

My(t) = EeYt = EeF(Xlt = f: eFlxltf(x)dx. 

Make a change of variables using y = tP(x), so that dy/dx = tf(x) and 
dx/dy = [tf(X)J-l, yielding 

1t eY et - 1 
My(t) = -dy = -- for t =1= 0, 

ott 

which by the MGF uniqueness theorem identifies a uniform distribution 
on (0,1) (recall the MGF of the uniform density presented in Section 4.2). 
A general proof of the theorem can be constructed using the characteristic 
function in place of the MGF above. • 

Recall Ex. 6.18. The density of Y = g(X) = P(X) can be found using the change-of­
variables approach. In particular, ag/ax = (1/0)e- x/B > 0 V X E (0, (0), the inverse 
function x = -0 In( 1 - y) is defined and continuously differentiable V y E (0, 1), 
and Idg-1(y)/dYI = 0/(1 - y). Then, 

I ~ exp (Oln(l - y)) _0_ = 1 
h(y) = ° ° 1- y 

o elsewhere, 

for y E (0, I), 

so that Y '" Ilo,l)(y). o 

The preceding theorem indicates how a random variable having any con­
tinuous CDF, P, can be transformed into a random variable having a uniform 
probability distribution on the interval (0,1). We now examine the converse to 
the result of Theorem 6.22-a uniformly distributed random variable on the 
interval (0,1) can be transformed into a random variable having any continu­
ous CDF, P. In particular, if the continuous CDF P admits an inverse function, 
then it can be shown that X = p-l(y) has the CDF P if Y ~ I(o,l)(Y). Even if p-l 
does not exist, one can define a function of Y that involves P and that defines 
a random variable that has the CDF P. The details are provided in the next 
theorem. 

Theorem 6.23 Let Y '" I(o,l)(Y), and let P be a continuous CDP. Then X* = minx{x:P(x) ::: Y} 
has the CDP P. If P has an inverse on (0,1), then X* = p-l(y) has the CDP P. 

Proof a. Case where P has an inverse on (0,1). Since p- l exists, and since P is contin-
uous and strictly increasing, {x : P(x) :s y} = {x : x :s P-l(y)}. The CDF of X* 
can be represented as G(c) = P(x* :s c) = p(P-I(y) :s c) = PlY :s P(clJ = P(c), 
since Y is uniformly distributed on (0,1). Therefore, X* has the CDF P. 

b. General. Let x* = minx{x : P(x) ::: y}. Then P(x* :s c) = Ply :s P(c)) = P(c), 
since Y '" I(O,II(Y), and thus X* has the CDF P. • 
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Both of the preceding theorems have important applications. As a preview 
to how Theorem 6.22 might be useful in practice, suppose we are dealing with a 
random sample (Xl, ... , Xn) and we hypothesize that the population distribution 
from which the sample was drawn is characterized by the CDF F. Necessarily, 
then, by Theorem 6.22, if our hypothesized distribution were the correct one, 
Yi = F(Xi), i = I, ... , n, would constitute a random sample from a uniform pop­
ulation distribution on the interval (0, 1). Then if the outcomes of the random 
sample, i.e., Yi = F(Xi), i = I, ... , n, did not exhibit behavior that would be "ap­
propriate" for a random sample from the uniform probability distribution, our 
hypothesized CDF, F, would be suspect. We will examine how "appropriate" 
behavior is evaluated in this case when we examine the question of hypothesis 
testing. 

Theorem 6.23 suggests a procedure that can be used for simulating out­
comes of random samples of sizen from any continuous probability distribution 
function, F. Specifically, one begins with a source of outcomes of independent, 
uniformly distributed, random variables on the interval (0,1). Computer pro­
grams are readily available that generate independent outcomes of Y ,...., IIO,II(Y) 
using numerical techniques. These computer programs are commonly referred 
to as "uniform random-number generators" and are available in SAS, SSP, IM­
SLIB, Shazam, and GAUSS software, for example. Theorem 6.23 indicates that 
the outcome of a random sample of size n from the desired population CDF F 
can then be obtained by calculating 

x. j = min{x : F(x) ::= Yi}, i = I, ... , n, 
x 

where (YI, .. . ,Yn) are the independent outcomes of Y '" I(O,II(Y) generated via 
the computer. In many cases of interest, the function F has an inverse function 
F-I, so that the random sample can be represented simply as 

x.i=F-l(Yi), i=I, ... ,n. 

Example 6.20 Suppose we wish to simulate a random sample of size 5 from an exponential 
population distribution of computer memory chip lifetimes, where () = 100, so 
thatX", (1/100)e-x/lOoIIO,ool(x)andF(x) = (l-e-x/ IOO )Ilo,ool(x). We use theresuIt in 
Theorem 6.23, and note that for Y E (0, I), F has an inverse function defined by 
x = -100 In( 1 - y). Then, using five independent outcomes of Y '" Ilo,II(Y) gener­
ated by computer, as {.127, .871, .464, .922, .761}, we simulate a random sample 
outcome of 5 chip lifetimes as {13.582, 204.794, 62.362,255.105, 143.129}. 0 

The preceding approach has wide applicability in simulating random sam­
ples from continuous probability distributions, but sometimes the procedure 
can be numerically complex if the inverse function is impossible to solve for 
explicitly, or if the solution to minx {x : F(x) ::= y} is difficult to obtain. Other ap­
proaches exist for simulating outcomes of random samples, and the interested 
reader can consult the book by M. Johnson (1987), Multivariate Statistical Sim­
ulation. New York: John Wiley. 
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To this point we have not discussed a method for generating random sam­
ples from a population distribution when the distribution is discrete. In prin­
ciple, the procedure in this case is relatively straightforward and, as in the 
continuous case, utilizes outcomes of a random variable that is uniformly dis­
tributed on (0,1). Specifically, let the range of the discrete random variable X 
be given by R(X) = {XI,X2,X3,' .. }, where Xl < X2 < X3 < ... , and let the density 
function of X be fIx). Define the function g(y) as 

F(XI) < Y ::: F(X2) 
[ 

0 < y ::: F(xl) ] 

if F(x2) < ~ ::: F(x3) . 

By the duality between CDFs and PDFs, this definition of g(y) implies that 
P(g(y) = Xi) = f(xi) if Y '" I(O)I(Y) since PlY E (F(xi_tl, F(XilJ) = F(Xi)-F(Xi-d = {(Xi). 
Thus g(y), for Y '" IIO,II(Y), is a discrete random variable with PDF f. 

Example 6.21 In order to simulate a random sample of consumer buying behavior regarding a 
given product, assume that the appropriate probability distribution from which 
random sampling would occur in this case is given by the Bernoulli distribution 
with p = .5. Then define 

6.9 Order Statistics 

g(y) = -{ 
0 if 0 < y < .5, 

1 if.s < y ::: 1, 

where 1 denotes a purchase, 0 denotes no purchase. Utilizing the numbers 
{.217, .766, .822, .402, .674} generated via a computerized uniform random­
number generator for outcomes of Y, we then calculate a simulated random 
sample of consumer purchasing decisions to be {O, 1, 1,0, I}. 0 

Situations arise in practice where the relative magnitudes of observations are 
of primary interest. For example, the largest value in a sample of observations 
may be of particular interest, such as if a business is planning capacity in order 
to successfully service the demands of customers over a number of operating 
periods. The smallest observation may also be of interest, such as in the man­
ufacture of a consumer electronics product that will properly function only 
as long as the most short-lived critical electronics component in its circuitry. 
One might also be interested in the median value of sample observations as 
a measure of central tendency of the observations, or the sample range of ob­
servations as a measure of spread. All of these statistics are examples of order 
statistics or functions of order statistics, which also play an important role in 
nonparametric hypothesis testing, to be introduced in Chapter 10. 
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Definition 6.14 
Order statistics 

The order statistics corresponding to a random sample (Xl, .. . ,Xn) are sim­
ply the X/s arranged in order of increasing magnitude. The formal definition is 
as follows. 

Let y = SORT(Xl, ... , xn) be the n x 1 vector function whose value is the 
n x 1 vector [Xl, ... ,xnl' sorted from the lowest to the highest value. Then 
the order statistics Xo = [X[ll'" .,X[nll' corresponding to the random sample 
X = [Xl, ... , Xnl' are defined as Xo = SORT(X). The random variable X[kl is 
called the kth order statistic. 

Note that the order statistics are indeed statistics, since they are defined as 
(vector) functions of the random sample. It is apparent from the definition that 
outcomes of order statistics satisfy the inequalities X[ll :::: X[21 :::: ... :::: x[nl' 

We will examine the sampling distribution of order statistics under the 
assumption that we are random sampling from a population distribution, i.e., 
the Xi's are iid. In this case, the following result is available concerning the 
sampling distribution of the kth order statistic. 

Theorem 6.24 (Sampling distribution of X[kl) Let (Xl, .. . ,Xn) be a random sample from a 
population distribution with CDP P, and let X[kl be the kth order statistic 
corresponding to the random sample. Then the CDP of X[kl is given by 

Proof For a given value of b, define the random variable Yi = ll-oo,bl(Xi). Note that Yi 
has a Bernoulli distribution withp = P(Yi = 1) = P(Xi :::: b) = P(b). Since the Y/s 
are iid, it follows that L:7=1 Yi has the binomial distribution with parameters n 
andp. 

Now note the equivalence of the following events: 

{(Xl,. ",Xn) : X[kl :::: b} = ((Xl,,, .,Xn) : tll-OO,bl(XiJ ~ kj. 
1=1 

The event to the left of the equality corresponds to the situation where the 
kth largest outcome in (Xl, ... ,XnJ is less than or equal to b. This event can 
happen iff at least k outcomes in (Xl, ... , Xn J are less than or equal to b, which 
is the event to the right of the equality. Hence, the events are equivalent. It 
then follows from event equivalence and the binomial distribution of L:7=1 Yi 

that 
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• 
The CDF identified in Theorem 6.24 simplifies considerably in two cases of 

particular relevance in applications-the smallest and the largest order statistic. 

Corollary 6.1 (Sampling Distributions of X[I! and X[n!) Assume the conditions of Theorem 
6.24. Then FXPJ(b) = 1 - [1 - F(bJr and FXJnJ(b) = F(b)n. 

Proof From Theorem 6.24, we have 

FX)JJ(b) = t (~)F(bJi[l - F(b)jn- i = 1 - [1 - F(bW, 
i=1 1 

where the second equality follows from the fact that L:f=o (7)F(b)i[I-F(bW-i = 1 
because we are summing a binomial density over all the values in its support. 
Also, 

FXJnJ(b) = t (~)F(bJi(1 - F(bJjD-i = [F(blJn. 
l=n 7 • 

Example 6.22 The waiting time between customer arrivals at the pharmacy department in 
a variety store is given by the exponential PDF fix) = .2e-·2x 1(0,00) (x), where 
x is measured in minutes. In a random sample of 10 customers, what is the 
probability that the smallest waiting time will be greater than 2 minutes? What 
is the probability that the largest waiting time will be no greater than 5 minutes? 
Answer: The CDF of the exponential population distribution is given by F(b) = 
1 - e-·2b • Then 

P(x(l[ > 2) = 1 - P(xp! ~ 2) = 1 - FX)JJ(2) 

= [1 - (1 - e-·2(2)) ro = .0183, 

[ -.2(5)]10 P(X[n! ~ 5) = FXJnJ(5) = 1 - e = .0102. o 

The PDFs of the order statistics can be found using the duality between 
CDFs and PDFs. If the population distribution is discrete with support XI < 
X2 < ... < xn , say, then the PDF of the kth order statistic can be defined in the 
usual way as 

fXJkJ(xil = FxJkJ(xil- FXJkJ(Xi-d for i ?: 2, 

with fXJkJ{xd = FXlkdxd. In the continuous case, the PDF is found after differen­
tiation of the CDF, as well as some algebraic manipulation, to be 

f (I dFxk(xl nl "( ) (lk-l[ (lln-k 
Xlkl x = dx = {k _ 1)!{n _ kJ!'x F x 1 - F x . 
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In order to assign probabilities to events involving outcomes of the sample 
range, i.e., Xlnl - X[II' or to make a joint probability statement concerning the 
outcomes of the largest and smallest observations in a random sample, the joint 
sampling distribution of (X[II' X[nl) is needed. Furthermore, if the sample size n 
is an even number and one wis~ to assign probabilities to events involving 
the sample median, defined as med(X) = (Xlkl + XlhII) /2 for k = n/2, the joint 
sampling distribution of (X[kl' X[k+ll) is needed. (When n is odd, the sample me-
dian is defined as ~d(X) = X[kl' where k = (n + 1 )/2, and so Theorem 6.24 
covers this case.) The sampling distribution for any pair of order statistics is 
given as follows. 

Theorem 6.25 (Sampling Distribution of (X[kl,Xlil)) Let Xlk] and Xlel' k < f, be the kth and fth 
order statistics corresponding to the random sample X = (Xl, .. . ,Xn) from a 
population distribution with CDF F and PDF f. Then the joint CDF of (X[kl,X[l]) 
is given by 

I FXI11(be) for bk 2: be, 

F (b be) = n n-i 1 
Xlkl,Xlll k, L L '1'1 n.. . 1 F(bkli[F(be) - F(bkJ]i[l - F(be)]n-i-i for bk < be. 

" k " (OO "1 1 .1.(n -1 -I). 1= /=max ,L-I 

Proof Given k < f, it follows by definition of the order statistics that bk 2: be implies 
{x: Xiii::: bel c {x: X[kl ::: bkL so that 

FXlkl,XI11(bk, be) = P(X[kl ::: bk,xlel ::: be) = P(xlel ::: be) = FXI11(be), 

proving the first part of the definition of the CDF. 
When bk < be, note that the event {Xlkl ::: bk, X[il ::: bel corrc:;sponds to the 

event that at least k of the random sample outcomes Xl, ... , Xn are less than 
or equal to bk and at least e are less than or equal to be. Defining the index set 
I = Hi, j) : max{O, f - i} ::: j ::: n - i; k ::: i :::: n; i and j are integers}, we can then 
represent the event as 

{Xlkl ::: bk, X[il ::: be} = U {exactly i x;s ::: bk, exactly j xi's such that bk < Xi ::: bel. 
1i,i)Ei 

Now note that each of the disjoint events involved in the union operation can 
be assigned probability via the multinomial distribution, where the outcome 
of each Xi in the random sample is categorized into one of three types, Xi ::: bkl 
Xi E (bk, bel, and Xi> be which occur with probabilities F(bk), F(be) - F(bk), and 
1 - F(bcJ, respectively. Then directly applying the multinomial distribution 
(Section 4.1) and summing the probabilities of all of the disjoint events in the 
union operation yield the second part of the definition of the CDF. • 

As indicated following Theorem 6.24, the (joint) PDF of (Xlk], X[e]) can be 
obtained through the duality between CDFs and PDFs. In the discrete case, 
the PDF would be obtained by appropriate differencing of the CDF, while in the 
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continuous case, the CDF would be differentiated Irecall Theorems 2.4 and 2.5J. 
Details are left to the reader. 

The CDF simplifies considerably for the case of the joint distribution of the 
extreme valuesl6 IXI1J,X[nJJ. 

Corollary 6.2 ISampling Distribution of IX[lJ,X[nJJJ Let k = 1 and e = n in Theorem 6.25. 
Then by the binomial theorem, 

F b b _ {FlbnJn for b1 ~ bn, 
XIII,Xlnll I, nJ - FlbnJn _ [F(bnJ _ F(btlln for b l < bn. 

Example 6.23 Revisit Ex. 6.22 regarding waiting time between customer arrivals. In a sample 
of 10 customer arrivals, what is the probability that the minimum waiting 
time :s 4 minutes and the maximum waiting time :s 8 minutes? 
Answer: 

FXIII,Xlnl(4, 8J = FI8JlO - [FI8J - FI4JJlO 

= [1 - e-·2IS)fO - [e-·214) - e-·2(S)fO = .1049 o 

Sampling distributions for functions of order statistics, such as the sample 
range and the sample median when n is even, can be pursued using the change­
of-variables approach presented in Section 6.6. The multinomial logic of the 
proof of Theorem 6.25 can be extended to derive joint densities of three or 
more order statistics. For additional details on properties and functions of order 
statistics, see M. Kendall and A. Stuart, Advanced Theory, Vol. I, Chapter 14, 
and the references therein. 

Key Words, Phrases, and Symbols 

population 
stochastic process 
sampling error 
random sample 
random sampling with replacement 
population distribution 
joint density of the random sample 
outcome of the random sample 
random sampling without 

replacement 

random sampling from a population 
distribution 

composite experiment 
component experiments 
statistic 
empirical distribution function 

(EDF) 
Glivenko-Cantelli theorem 
population moment 
empirical substitution principle 

rth sample moment about the 
origin, M; 

rth sample moment about the 
mean, Mr 

sample mean, Xn 
sample variance, S~ 
sample covariance, SXY 

joint sample moment about the 
origin 

joint sample moment about the 
mean 

16The largest and smallest order statistics are sometimes alternatively referred to as extreme values. 
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sample correlation, Rxy 
sample standard deviation 
sample covariance matrix 
sample correlation matrix 
sampling density or sampling 

CDF approach 
Equivalent-events approach 
change-of-variables technique 
support of the density 
support of fIx) 

t-density 
P-density 
probability integral transformation 
simulation 
order statistics 

distribution of a function of a 
random sample 

log-normal distribution 
Jacobian matrix 

sample median 
extreme values 

MGF approach 

Problems 

1. Let X be a random sample of size n from an N(J.L, cr2) 
population distribution representing the weight, in 
ounces, of cereal placed in cereal boxes for a certain 
brand and type of breakfast cereal. Define a as in Theo­
rem 6.19. 

a. Show that the random variable T = nl/2(X - J.L)/a 
has the t-distribution with (n - 1) degrees of free­
dom. 

b. Let n = 25. What is the probability that the random 
interval (X -2.06a/nl/2,X +2.06a/n 1/2) will have an 
outcome that contains the value of J.L? (This random 
interval is an example of a confidence interval­
in this case for the population mean J.L. See Sec­
tion 10.6.) 

c. Suppose that x = 16.3 and S2 = .Ol. Define a 
confidence interval that is designed to have a .90 
probability of generating an outcome that contains 
the value of the population mean weight of cereal 
placed in the cereal boxes. Generate a confidence­
interval outcome for the mean weight. 

2. LetX and Y be two independent random samples of 
sizes nx and ny, respectively, from two normal popula­
tion distributions that do not necessarily have the same 
means or variances. The two distributions refer to the 
miles per gallon achieved by two half-ton pickup trucks 
produced by two rival Detroit manufacturers. Define a 
as in Theorem 6.19. 

a. Show that the random variable P = (a~/cr})/a~/cr~) 
has the P-distribution with (nx - 1) numerator and 
(ny - 1) denominator degrees of freedom. 

b. Let nx = 21 and ny = 31. What is the probability 
that the random interval (.49(a~/a~), 1.93(a~/a~)) 
will have an outcome that contains the value of the 
ratio of the variances cr~/cr}? (This random interval 
is another example of a confidence interval-in this 
case for the ratio of the population variances cr~/cr}.) 

c. Suppose that s; = .25 and s; = .04. Define a confi­
dence interval that is designed to have a .98 prob­
ability of generating an outcome that contains the 
value of the ratio of population variances associ­
ated with the miles per gallon achieved by the two 
pickup trucks. Generate a confidence-interval out­
come for the ratio of variances. 

3. Let X be a random sample of size n from an N(f.,L, cr2 ) 

population distribution representing the yield per acre, 
in pounds, of a new strain of hops used in the production 
of premium beer. 

a. Justify that the random interval (nS2 /x;, nS2 /xL~) 
will have an outcome that contains the value of the 
population variance cr2 with probability (1 - 2a), 
where X~ is a number for which PIx > X~) = 8 when 
X has a X2-distribution with (n - 1) degrees of free­
dom. 

b. Suppose that 52 = 9 and n = 20. Based on your 
answer to (a), define a confidence interval that is 
designed to have a .95 probability of generating an 
outcome that contains the value of the population 
variance of hop yields, cr2 • Generate a confidence­
interval outcome for the variance. 

4. The shipping and receiving department of a large 
toy manufacturer is contemplating two strategies for 
sampling incoming parts deliveries and estimating the 
proportion, p, of defective parts in a shipment. The two 
strategies are differentiated on the basis of whether ran­
dom sampling will be with or without replacement. In 
each case, a sample mean will be calculated and used as 
an estimate of the proportion of defective parts in the 
shipment. The department wants to use the strategy 
that will generate estimates that are smallest in terms 
of expected squared distance from p. 



Problems 

a. Compare the means and variances of the sample 
mean under both sampling strategies. Which strat­
egy should be used? 

b. Describe conditions under which there will be lit­
tle difference between the two methods in terms of 
expected squared distance from the true proportion 
of defectives. 

c. Do the sample means converge in probability to p 
in each case? Do they converge in mean square? 
Explain. 

d. If a shipment contains 250 parts, of which 10 per­
cent are defective, and if a random sample of SO will 
be taken from the shipment, calculate the percent­
age reduction in expected squared distance that can 
be obtained by using the better strategy. 

5. GenAg, Inc., a genetics engineering laboratory spe­
cializing in the production of better seed varieties for 
commercial agriculture, is analyzing the yield response 
to fertilizer application for a new variety of barley that 
it has developed. GenAg has planted 40 acres of the new 
barley variety and applied a different fixed level of fertil­
izer to each one-acre plot. In all other respects, the cul­
tivation of the crop was identical. The GenAg scientists 
maintain that the relationship between observed levels 
of yield, in bushels per acre, and the level of fertilizer 
applied, in pounds per acre, will be a quadratic relation­
ship as Yi = {30 + {3di + {32fl + Vi, where fi is the level 
of fertilizer applied to the ith one-acre plot, the (3's are 
fixed parameters, and the V;'s are iid random variables 
with some continuous probability density function for 
which E Vi = 0 and var(V;) = a 2 • 

a. Given GenAg's assumptions, is (Yl , ••• , Y4O ) a ran­
dom sample from a population distribution or from 
a composite experiment? Explain. 

b. Express the mean and variance of the sample mean 
Y 40 as a function of the parameters and fi vari­
ables. If the sample size could be increased without 
bound, would Y n converge in probability to some 
constant? Explain. 

c. Is it true that (Yn - ({30 + {3ln- 1 '£?=di + (32n-1 
'£?=l fl))~O? If so, interpret the meaning of this re­
sult. Based on your analysis to this point, does it 
appear that an outcome of Y 40 will produce a mean­
ingful estimate of any characteristic of the yield 
process? 

d. Suppose that the 40 one-acre plots were all contigu­
ous on a given 40-acre plot of land. Might there be 

357 

reasons for questioning the assumption that the V;'s 
are iid? What would the outcome of Vi represent in 
GenAg's representation of the yield process? Pre­
suming that the V;'s were not iid, would this change 
your answer to (a)? 

6. The Always Ready Battery Co. has developed a new 
"Failsafe" battery that incorporates a small secondary 
battery that becomes immediately functional upon fail­
ure of the main battery. The operating life of the main 
battery is a Gamma-distributed random variable as Xl ~ 
Gamma(3,1), where Xl is measured in years. The oper­
ating life of the secondary battery is also Gamma dis­
tributed as X2 ~ Gamma(2, 1). The operating lives of the 
main and secondary batteries are independent. 

a. Let Yl = XI + X2 represent the total operating life 
of the Failsafe battery, and let Y2 = XI!(XI + X2 ) 

represent the proportion of total operating life that 
is contributed by the main battery. Derive the joint 
probability distribution of (Yl , Y2 ). 

b. Are YI and Y2 independent random variables? 

c. Define the marginal densities of YI and Y2 • To 
which specific families of densities do these mar­
ginal densities belong? 

d. What is the expected proportion of total operating 
life contributed by the main battery? What is the 
probability that the secondary battery contributes 
more than SO percent of the total operating life of 
the Failsafe battery? 

e. What is the expected total operating life of the Fail­
safe battery? 

7. The seasonal catch of a commercial fishing vessel 
in a certain fishery in the southern hemisphere can be 
represented by Q = c(z)V, where z is a vector of charac­
teristics of the vessel relating to tonnage, length, num­
ber of crew members, holding tank size, etc., c(z) rep­
resents maximum fishing capacity of the boat; Q rep­
resents the tons of fish caught; and V ~ evli-IIIO,l)(v) 
represents the proportion of fishing capacity realized. 

a. Derive the density function of seasonal catch. 

b. If e = 10 and c(z) = 5,000, what is the expected 
value of seasonal catch? 

8. A company markets its line of products directly to 
consumers through telephone solicitation. Salespersons 
are given a base pay that depends on the number of doc­
umented phone calls made plus incentive pay for each 
phone call that results in a sale. It can be assumed that 
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the number of phone calls that result in sales is a bi­
nomial random variable with parameters p (probability 
of sale) and n (number of phone calls). The base pay is 
$0.50 per call, and the incentive pay is $5.00 per sale. 

a. Derive the probability distribution of pay received 
by a salesperson making n calls in a day. 

b. Given that 100 calls are made in a day and p = .05, 
what is the expected pay of the salesperson? What 
is the probability that the pay will be $50 or less? 

9. The daily quantity of a commodity that can be pro­
duced using a certain type of production technology is 
given by the outcome of the random variable Q, defined 
as 

Q = lOxi3s XiS V, 

where Q is measured in tons/day, XI represents units of 
labor per day, X2 represents units of capital per day, and 
V = eB, with e - N(O, a 2 ). 

a. Derive the probability density function of the ran­
dom variable V. (What you will have derived is a 
PDF that is a member of the "log-normal" fam­
ily of densities. In general, if X - N(/-L, a 2 ), Y = 
eX - log-normal, with mean = exp(/-L + a 2/2), 
variance = exp(2/-L + 2a2 ) - exp(2/-L + a 2 ), and /-L~ = 
exp[r/-L + 1/2r2a 2 ]). 

b. Derive the density of Q if XI = X2 = 2. 
c. Define the expected value of Q in terms of the levels 

of XI, X2, and a 2• What is the expected value of Q if 
XI = X2 = 2 and a2 = 1? 

d. The above production technology is used in 
1,600 plants in a country where the economy is 
centrally planned. All of the plants are required to 
use labor and capital at the levels XI = 7.24579 and 
X2 = 4. Assume that vade) = .25. 
An economist says that the aggregate daily produc­

tion function 
1600 1600 

Q* = L Q; = lOXi35Xi5 L V; 
;=1 ;=1 

is such that aggregate daily production, Q*, can be con­
sidered to be approximately normally distributed. Do 
you agree? Justify or refute the economist's proposition. 
You may assume that the V;'s, and hence the Q;'s, are 
independent random variables. 

e. Define the appropriate Berry-Esseen inequality 
bound on the approximation error when applying 
the LLCLT to part (d). 

10. The daily price, p, and quantity sold, q, of ground 
beef produced by the Red Meat Co. can be represented by 
outcomes of the bivariate random variable (P, Q) having 
bivariate density function 

I(p, q) = 2pe-pQ 11.5, l/(p)IIO,oo,(q), 

where p is measured in dollars and q is measured in 
thousands of pounds. 

a. Derive the probability density function for R = PQ, 
where outcomes of R represent daily revenue from 
ground beef sales. (Hint: define W = P as an "aux­
iliary" random variable, and use the change-of­
variables approach.) 

b. What is the expected value of daily revenue? 
What is the probability that daily revenue exceeds 
$1,OOO? 

11. LetX = (XI,' ",X26) and Y = (YI, ... , Y3d represent 
two independent random samples from two normal pop­
ulation distributions. Let S} and S~ represent the sam­
ple variances associated with the two random samples, 
and let X and Y represent the respective sample means. 
Define a- as in Theorem 6.19. 

a. What is the value of PlIlx-EX)/(a-;/26j1/21 :::: 1.316)? 
b. What is the value of P(26sl-fa; > 37.652)? 
c. What is the value of PIs} > 6.02432), assuming that 

a; = 4? 
d. What is the value of P(s~ > 1.92s}), assuming that 

a; = a}? 
e. Find the value of c for which the following proba­

bility statement is true: 

12. The daily price, p, and daily quantity sold, q, of pink 
salmon produced by the AJAX Fish Packing Co. can be 
represented by outcomes of the bivariate random vari­
able (P, Q) with density function 

I(p, q) = qe-qll+plIIO,oo)/p)IIO,ool(q), 

where p is measured in dollars, and q is measured in 
thousands of pounds. 

a. Derive the density function for R = PQ, where out­
comes of R represent daily revenue from fish sales. 
(Hint: Define W = Q as an auxiliary random vari­
able, and use the change-of-variables approach.) 

b. What is the expected value of daily revenue? What 
is the probability that daily revenue exceeds $300? 



Problems 

13. The probability that a customer entering an elec­
tronics store will make a purchase is equal to p = .15, 
and customers' decisions whether to purchase electron­
ics equipment are independent random variables. 

a. Simulate the buying behavior of ten customers en­
tering the store using the following ten outcomes 
from a Uniform(O,l) computer random-number 
generator: 

(.4194, .3454, .8133, .1770, .5761, .6869, .5394, 

.5098, .4966, .5264). 

b. Calculate the sample mean and sample variance, 
and compare them to the appropriate population 
mean and variance. 

14. Under the conditions of the previous problem: 
a. Of the first 10 customers who enter the store on 

10 consecutive days, simulate the daily number 
of customers that make a purchase. Use the fol­
lowing 10 outcomes from a Uniform(O,lJ computer 
random-number generator: 

(.0288, .7936, .8807, .4055, .6605, .3188, .6717, 

.2329, .1896, .8719). 

b. Calculate the sample mean and sample variance, 
and compare them to the appropriate population 
mean and variance. 

15. The number of times that a copy machine malfunc­
tions in a day is the outcome of a Poisson process with 
A =.1. 

a. Simulate the operating behavior of the copy ma­
chine regarding the daily number of malfunctions 
over a 10 day period using the following 10 out­
comes from a Uniform(O,I) computer random­
number generator: 

(.5263, .8270, .8509, .1044, .6216, .9214, .1665, 

.5079, .1715, .1726). 

b. Calculate the sample mean and sample variance, 
and compare them to the appropriate population 
mean and variance. 

16. The length of time that a 4 megabyte PC computer 
memory module operates until failure is the outcome of 
an exponential random variable with mean EX = 3.25, 
where x is measured in 100,000 hour units. 

a. Simulate the operating lives of 10 memory mod­
ules using the following 10 outcomes from a Un i-

form(O,l) computer random-number generator: 

(.2558, .5938, .1424, .9476, .5748, .8641, .0968, 

.5839, .3201, .1577). 
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b. Calculate the sample mean and sample variance, 
and compare them to the appropriate population 
mean and variance. 

17. The monthly proportion of purchases paid by check 
to a large grocery store that are returned because of 
insufficient funds can be viewed as the outcome of a 
Beta( 1,20) distribution. 

a. Simulate 12 monthly proportions of returned 
checks using the following 24 outcomes from a uni­
form(O, 1) computer random-number generator: 

(.6829, .4283, .0505, .7314, .8538, .6762, .6895, 

.9955, .2201, .9144, .3982, .9574, .0801, .6117, 

.3706, .2936, .2799, .3900, .7533, .0113, .5659, 

.9063, .5029, .6385). 

(Hint: In a previous problem you have proven that 
Y = XI!(XI + X2J has a Beta distribution with pa­
rameters (a, b) if (Xl, X2 ) are independent Gamma­
distributed random variables with parameters (a, f3) 
and (b, f3I, respectively.) 

b. Calculate the sample mean and sample variance, 
and compare them to the appropriate population 
mean and variance. 

18. The daily closing price for a certain stock issue on 
the NYSE can be represented as the outcome of Yt = 
Y t- l + Vt, where Yt is the value of the stock price on day 
t, and Vt - N(O,4). (This is an example of a stochastic 
process known as a random walk.) 

*a. Use the change-of-variables approach to verify that 
if (UI , U2) are independent and identically dis­
tributed Uniform(O,I) random variables, then 

and 

VI = [-21n(Udl5 cos(2nU2 ) 

V2 = [-21n(UdlS sin(2nU2 ) 

are independent and identically distributed N(O, 1) 
random variables. 

b. Simulate ten days worth of stock prices (YI, ... , YlO) 
using Yo = SO, the result in (a), and the follow­
ing 10 outcomes from a Uniform(O,l I computer 
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random-number generator: 

(.9913, .4661, .1018, .0988, .4081, .3422, .1585, 

.6351, .0634, .4931). 

c. Are you simulating a random sample from a popu­
lation distribution or a random sample from a com­
posite experiment? Calculate the sample mean and 
sample variance and compare them to whatever 
characteristics of the random-walk process that 
you feel is appropriate. 

19. A random sample of the gas mileage achieved by 
20 domestic compact automobiles resulted in the fol­
lowing outcome: 

(25.52,24.90,22.24,22.36,26.62,23.46,25.46,24.98, 

25.82,26.10,21.59,22.89,27.82,22.40,23.98,27.77, 

23.29,24.57,23.97,24.70). 

a. Define and graph the empirical distribution func­
tion. 

b. What is the estimated probability that gas mileage 
will exceed 26 miles per gallon? 

c. What is the estimated probability that gas mileage 
will be between 24 and 26 miles per gallon? 

d. Acting as if the EDF is the true CDF of gas mileages, 
calculate the expected value of gas mileage. Is the 
value you calculated equal to the sample mean? 
Why or why not? 

20. The time between work-related injuries at the Im­
perial Tool and Die Co. during a given span of time re­
sulted in the following 20 observations, where time was 
measured in weeks: 

(9.68,6.97,7.08, .50,6.71,1.13,2.20,9.98,4.63,7.59,_ 

3.99,3.26, .92,3.07,17.96,4.69,1.80,8.73,18.13,4.02). 

a. Define and graph the empirical distribution func­
tion. 

b. What is the estimated probability that there will be 
at least 8 weeks between work-related injuries? 

c. What is the estimated probability that there will 
be between 4 and 8 weeks between work-related 
injuries? 

d. Acting as if the EDF is the true CDF of time be­
tween work-related injuries, calculate the expected 
value of time between injuries. Is the value you cal­
culated equal to the sample mean? Why or why not? 

21. A realtor randomly samples homeowners who have 
purchased homes in the last two years and records their 
income, y, and home purchase price, p (the population is 
large enough that one can consider this a random sample 
with replacement): 

Income 

21,256 
97,530 
24,759 
18,369 
35,890 
38,749 
57,893 

Price 

49,412 
170,249 
56,856 
45,828 
73,703 
80,050 

110,658 

Income 

37,589 
137,557 

67,598 
83,198 
46,873 
24,897 
36,954 

Price 

74,574 
232,097 
124,309 
144,103 
92,600 
61,763 
77,971 

a. Calculate the sample covariance between income 
and home price. 

b. Calculate the sample correlation between income 
and home price. 

c. Calculate the linear function of income of the form 
p = a+by that is minimum distance from the home 
price observations. 

d. Discuss the extent to which there is a linear rela-
tionship between income and home price. 

22. The proportion of the work force of a large manu­
facturing firm that takes at least one day's sick leave 
in a given work week is assumed to be the outcome of 
a random variable whose PDF is well represented by a 
uniform distribution on the interval [0,.1OJ. 

a. In a random sample of 8 work weeks, what is the 
probability that the maximum proportion of work­
ers who take sick leave is less than or equal to .05? 

b. What is the probability that the sum of all 8 
sample observations will be between .25 and .75? 

23. A large aircraft manufacturer produces a passen­
ger jet having a navigation component consisting of 
three sequentially functioning redundant navigation 
systems that will allow the jet to be properly controlled 
so long as at least one of the systems remains opera­
tional. The operating life of each of the systems is the 
outcome of a random variable having the exponential 
PDF 

fIx) = .le-·1xIIO,oo)(X), 

where x is measured in thousands of hours, and the op­
erating lives are independent of one another. 



Problems 

a. What is the probability that the navigation com­
ponent will continue to function for at least 
20,000 hours? 

b. In an economizing mode, the management is con-
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sidering a redesign of the jet that will reduce the 
navigation component from three redundant sys­
tems to two. How does this affect the probability 
of the event in (a)? 
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7.5 Results on MVUE Estimation 

The problem of point estimation examined in this chap­
ter is concerned with the estimation of the values of unknown parameters, or 
functions of parameters, that represent characteristics of interest relating to 
the probability space of some collection of economic, sociological, biological, 
or physical experiments. The outcomes generated by the collection of experi­
ments are assumed to be outcomes of a random sample with some joint proba­
bilitydensity function IlXI' ... , Xn; a). The random sample need not be from a 
population distributiol1, that is, it is not necessarily the case that Xl, ... , Xn are 
iid. The objective of point estimation will be to utilize functions of the random 
sample outcome to generate good (in some sense) estimates of the unknown 
cha.racteristics of interest. 

The types of estimation problems that will be examined in this (and the 
next) chapter are also referred to as problems of parametric estimation, as op­
posed to nonparametric estimation problems. A problem of parametric estima­
tion is concerned with estimating the values of parameters or functions of pa­
rameters. In particular, the objective is to utilize a sample outcome IXII • "1 xnl' 
of X = [Xl, ... ,Xnl' to estimate the unknown value a .. or q(a*), where a .. 
denotes the value of the parameter vector associated with the joint PDF that 
actually determines the probabilities of events for the random sample outcome. 
That is, a. is the value of a such that X "'" Ilx; a.) is a true statement, and 
for this reason a .. is of tell referred to as the true value of a, and we can then 
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also speak of q(B*) as being the true value of q(B) and fIx; B*) as being the true 
PDF of X. Some examples of functions of B. that might be of interest when 
sampling from a population distribution f(z; B*) include 

1. qI!B*) = E(Z) = J~oo zf(z; B*)dz (mean), 

2. q2(B*) = E(Z - EZ)2 = J~oo(z - EZ)2f(z; B*)dz (variance), 

3. q3(B*) defined implicitly by J~:le.1 f(z; 8*)dz =.5 (median), 

4. q4(B*) = J: f(z; B*)dz (P(z E [a, bl)). 

The method used to solve a parametric estimation problem will generally 
depend on the degree of specificity with which one can define the family of 
candidates for the true PDF of the random sample, X. The situation for which 
the most statistical theory has been developed, both in terms of the actual 
procedures used to generate point estimates and in terms of the evaluation of 
the properties of the procedures, is the distribution-specific case. In this case, 
the candidates, f(xl, ... , Xn; B), are assumed at the outset to belong to a specific 
parametric family of PDFs (e.g., normal, Gamma, binomial). Application of the 
celebrated maximum likelihood estimation procedure (see Chapter 8) relies on 
the candidates for the distribution of X being members of a specific collection 
of density functions that are indexed, and fully algebraically specified, by the 
values of B. 

In the distribution-nonspecific, or distribution-free, case, a specific func­
tional definition of the potential PDFs for X is not assumed, although some 
assumptions about the lower-order moments of fIx; B) are generally made. In 
any case, it is often still possible to generate useful point estimates of various 
characteristics of the probability space of X that are conceptually functions of 
parameters, such as moments, quantiles, and probabilities, even if the specific 
parametric family of PDFs for X is not specified. For example, useful point esti­
mates (in a number of respects) of the parameters in the so-called general linear 
model representation of a random sample from a composite experiment can 
be generated with only a few general assumptions regarding the lower-order 
moments of f(xl,"" Xn; B) without any assumptions that the density is of a 
specific parametric form (see Section 8.2). 

Distribution-free methods of parametric estimation have an advantage of 
being applicable to a wide range of sampling distributions since they are de­
fined in a distribution-nonspecific context that inherently subsumes many dif­
ferent functional forms for fIx; B). However, it is usually the case that superior 
methods of estimating B. or q(8*) exist if a parametric family of PDFs for 
X can be specified. Put another way, the more information one has about the 
form of fIx; B) at the outset, the more precisely one can estimate 8* or q(8.) 
(in most cases). We will encounter examples of both distribution-specific and 
distribution-free parametric estimation in the remainder of our study. 

There is an alternative method of inference, called nonparametric estima­
tion, that is used when estimating characteristics of the probability space of X 
that are not directly concerned with parameters. For example, a researcher may 
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be interested in obtaining an estimate of the CDF associated with a population 
distribution under study. This type of estimation problem can be conceptual­
ized without reference to any parameters whatsoever. The researcher may wish 
to estimate F(z), where (Xl, " ., Xn) is an iid random sample from the population 
distribution F(z), and no mention is made, nor required, regarding parameters 
of the CDF. We have already examined a method for estimating the CDF in 
the case where the random sample is from a population distribution, namely, 
the empirical distribution function, Fn, provides an estimate of F. We leave 
the general study of nonparametric estimation to a more advanced course of 
study; interested readers should refer to M. Puri and P. Sen (1985), Nonpara­
metric Methods in General Linear Models. New York: John Wiley; F. Hampel, 
E. Ronchetti, P. Rousseeuw, and W. Stahel (1986), Robust Statistics. New York: 
John Wiley; and J. Pratt and J. Gibbons (1981), Concepts of Nonparametric The­
ory. New York: Springer-Verlag. I 

7.2 Statistical Models 

Definition 7.1 
Statistical model 

A problem of point estimation begins with either a fully or partially specified 
statistical model for the random sample X = IXI , ... ,Xnl' whose outcome x = 
lXI, ... ,Xn I' constitutes the observed data being analyzed in a real-world problem 
of statistical inference. 

A statistical model for a random sample X consists of a parametric functional 
form, fIx; e), for the sampling density of X together with a parameter space, 
Q, that defines the set of potential candidates for the true sampling density 
of X as (fIx; e), e E Q}. 

The statistical model defines the probabilistic and parametric context in which 
point estimation proceeds. Once the statistical model has been specified, inter­
est centers on estimating the true values of some (or all) of the parameters, or on 
estimating the true values of some functions of the parameters of the problem. 
The specific objectives of any point estimation problem depend on the needs 
of the researcher, who will identify which quantities are to be estimated. 

The case of distribution-specific parametric estimation of e. or q!e.) is as­
sociated with a fully specified statistical model in which a specific parametric 
family of PDFs is represented by {fIx; e), e E Q}. For example, a fully speci­
fied statistical model for a random sample of the miles per gallon achieved by 
25 randomly chosen trucks from the assembly line of a Detroit manufacturer 
might be defined as In;!l N!xj; JJ., a2 ), !JJ., a2 ) E Q}, where Q = (a, (0) x (a, (0). 

I There is not universal agreement on the meaning of the terms parametric, nonparametric, and distribution-free. Sometimes non­
parametric and distribution-free are used synonymously, although the case of distribution-free parametric estimation is pervasive 
in econometric work. See J. D. Gibbons (1982) Encyclopedia of Statistical SCiences, Vol. 4. New York: Wiley, pp. 400-401. 
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In the distribution-free case, a specific functional form for fIx; 9) is not de­
fined and Q mayor may not be fully specified. For example, in the preced­
ing truck mileage example, a partially specified statistical model would be 
{fIx; IL, a 2 ),(IL, a 2 ) E Q}, where Q = (0,00) x (0,00) and fIx; IL, a 2 ) is some con­
tinuous PDF. In this latter case, the statistical model allows for the possibility 
that fIx; IL, a2 ) is any continuous PDF having a mean of IL and variance of a2, 

with both IL and a2 positive, e.g., normal, Gamma, or uniform PDFs would be 
potential candidates. 

In specifying a statistical model, the researcher presumably identifies the 
parametric family based on a combination of experience, consideration of the 
real-world characteristics of the experiments involved, theoretical considera­
tions, past analyses of similar problems, an attempt at a reasonably robust ap­
proximation to the probability distribution, and/or pragmatism. The degree of 
detail with which the parametric family of densities is specified can vary from 
problem to problem. In certain situations there will be great confidence in a 
detailed choice of parametric family. For example, suppose we are interested 
in estimating the proportion, p, of defective manufactured items in a shipment 
of N items. If a random sample with replacement of size n is taken from the 
shipment (population) of manufactured items, then 

n 

IX X ) '" "Ix x . p) - pE7z1 Xii 1 - p)n-E7=1 Xi n I I IX') I I,··· ,n I' I,···, n. - I (0, II J 

i=1 
unequivocally represents the parametric family of densities characterizing the 
joint density of the random sample, and interest centers on estimating the 
unknown value of the parameter p. 

On the other hand, there will be situations in which the specification of the 
parametric family is quite tentative. For example, suppose one were interested 
in estimating the average operating life of a certain brand of hard-disk based 
on outcomes of a random sample of hard-disk lifetimes. In order to add some 
mathematical structure to the estimation problem, we might represent the' 
ith random variable in the random sample of lifetimes (XI, .. . ,Xn ) as Xi = 
IL + Vi, where IL represents the unknown mean of the population distribution 
of lifetimes, an outcome of Xi represents the actual lifetime observed for the 
ith hard disk sampled, and the corresponding outcome of Vi represents the 
deviation of Xi fromlL. Since (XI, .. . ,Xn ) is a random sample from the population 
distribution, it follows that EXi = IL and var(Xi) = a2Yi can be assumed, so that 
EVi = a and var(Vi) = a2Yi can also be assumed. Moreover, it is then legitimate 
to assume that (XI," .,Xn ) and (VI, ... , Vn ) are each a collection of iid random 
variables. To this point, we have already specified that the parametric family of 
distributions associated with X is of the form n7=1 m(xi; 9), where the density 
m(z; 9) has mean IL and variance a 2 (what is the corresponding specification 
for V?). 

Now, what parametric functional specification of m(xi; 9) can be assumed 
to contain the specific density that represents the actual probability distribu­
tion of Xi or Vi? (Note, of course, that specifying a parametric family for Vi would 
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imply a corresponding parametric family for Xi, and vice versa.} One general 
specification would be the collection of all continuous joint density functions 
flxl,"" Xn; 8) for which flxl,"" Xn; 8) = n7=1 mlxj; 8) with EXi = J-L and 
var(Xil = (J2, Vi. The advantage of such a general specification of density family 
is that we have great confidence that the actual density function of X is con­
tained within the implied set of potential PDFs, which we will come to see as 
an important component of the specification of any point estimation problem. 
In this particular case, the general specification of the statistical model actually 
provides sufficient structure to the point estimation problem for a useful esti­
mate of mean lifetime to be generated (for example, the least-squares estimator 
can be used to estimate J-L-see Chapter 8). We will see that one disadvantage 
of very general specifications of the statistical model is that the interpretation 
of the properties of point estimates generated in such a general context is also 
usually not as specific or as detailed as when the density family can be defined 
with greater specificity. 

Consider a more detailed specification of the statistical model of hard-disk 
operating lives. If we feel that lifetimes are symmetrically distributed around 
some point, J-L, with likelihoods of lifetimes declining the more distant the 
measurement is from J-L, we might consider the normal parametric family for 
the distribution of Vj. It would, of course, follow that Xi would then also be 
normally distributed, and thus the normal distribution could serve only as 
an approximation since negative lifetimes are impossible. Alternatively, if we 
felt that the distribution of lifetimes was skewed to the right, the Gamma 
parametric family provides a rich source of density shapes, and we might specify 
that the X/s have some Gamma density, and thus the V/s would have the 
density of a Gamma-type random variable that has been shifted to the left by J-L 
units. Hopefully, the engineering staff could provide some guidance regarding 
the most defensible parametric family specification to adopt. In cases where 
there is considerable doubt concerning the appropriate parametric family of 
densities, tests of hypotheses concerning the adequacy of a given parametric 
family speCification can be performed. Some such tests will be examined in 
Chapter 10. In some problem situations, it may not be possible to provide any 
more than a general specification of the density family, in which case the use 
of distribution-free methods of parametric estimation will be necessary. 

Given that a parametric functional form is specified to characterize the 
joint density of the random sample, a parameter space, Q, must also be iden­
tified to complete the statistical model. There are often natural choices for 
the parameter space. For example, if the Bernoulli family were specified, then 
Q = {p : p E [0, Ill, or if the normal family were specified, then Q = {(J-L, (J) : 

J-L E (-00,001, (J > OJ. However, if only a general definition of the parametric 
family of densities is specified at the outset of the point estimation problem, 
the specification of the parameter space for the parametric family will then also 
be general and often incomplete. For example, a parameter space specification 
for the aforementioned point estimation problem involving hard-disk lifetimes 
could be Q = HJ-L, (J2, 8 0 ) : J-L ::: 0, (J2 ::: OJ. In this case, since the specific alge­
braic form of f(xI, ... , Xn; 81 is not specified, we can only state that the mean 
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Defintion 7.2 
Parameter identifiability 

and variance of hard-disk lifetimes are nonnegative, and we leave any other 
unknown parameters of the density function, denoted by eo, unrestricted. 

Regardless of the level of detail with which n is specified, there are two 
important assumptions regarding the specification of n that are made in the 
context of a point estimation problem. First, it is assumed that n contains 
the true value of e, so the statistical model given by {f[x : e), e E n} can 
be assumed to contain the true sampling distribution for the random sample 
under study. Put another way, in the context of a point estimation problem, the 
set n is assumed to represent the entire collection of possible values for e •. 
The relevance of this assumption in the context of point estimation is perhaps 
obvious-if our objective in point estimation is to estimate the value of e. 
or q[e.), we do not want to preclude e. or q(e.) from the set of potential 
estimates. Note that, in practice, this may be a tentative assumption that is 
subjected to statistical test for verification or refutation (see Chapter 10). 

The second assumption on n concerns the notion of the identifiability 
of the parameter vector e. As we alluded to in our discussion of parametric 
families of densities in Chapter 4, parameterization of density families is not 
unique. Any invertible transformation of e, say A = hIe), defines an alterna­
tive parameter space A = (A : A = hIe), e E n} that can be used to specify 
an alternative statistical model for X that contains the same PDF candidates as 
the statistical model based on n, i.e., 

(fIx; h-I(A)), A E A} = {fIx; el, e En}. 

Defining mIx; A) == fIx; h-I(A)l, the alternative statistical model could be writ­
ten as (mIx; A), A E A}. The analyst is free to choose whatever parameterization 
appears to be most natural or useful in the specification of a statistical model, 
so long as the parameters in the chosen parameterization are identified. In stat­
ing the definition of parameter identifiability, we use the terminology distinct 
PDFs to refer to PDFs that assign different probabilities to at least one event 
for X. 

Let {fIx; e), e E n} be a statistical model for the random sample X. The 
parameter vector e is said to be identified or identifiable iff Vel and 8 2 E 
n,f(x; ed and fIx; 8 2 ) are distinct if 8 1 i= 8 2 • 

The importance of parameter identifiability is related to the ability of ran­
dom sample outcomes to provide discriminatory information regarding the 
choice of 8 E n to be used in estimating 8 •. If the parameter vector in a 
statistical model is not identified, then two or more different values of the 
parameter vector 8, say 8 1 and e 2, are associated with precisely the same 
sampling distribution for X. In this event, random-sample outcomes cannot 
possibly be used to discriminate between the values of eland 8 2 since the 
probabilistic behavior of X under either possibility is indistinguishable. We 
thus insist on parameter identifiability in a point estimation problem so that 
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Example 7.1 

different values of 8 are associated with different probabilistic behavior of the 
outcomes of the random sample. 

Parameter Identifiability 

The yield per acre of tomatoes on 20 geographically dispersed parcels of irrigated 
land is thought to be representable as the outcomes of 

Yj = fJo + fJITj + Vj, i = 1, ... ,20, 

where fJo and fJI > 0, and (Tj , Vd, i = 1, ... ,20, are iid outcomes of a bivari­
ate normal population distribution with mean vector [JLT, 01', for JLT > 0, and 
diagonal covariance matrix with diagonal entries a} and a~. The outcome Yj 
represents bushels/acre on parcel i, and tj is the season average temperature 
measured at the growing site. The statistical model for the random sample 
Y = [YI, ... , Y2ol' is subsequently specified as 

10 N (Yj; fJo + fJIJLT, fJra} + a~), (fJo, fJI' JLT, a}, a~) E Q I, 
where Q = xf=dO, 00). Is the parameter vector [fJo, fJI, JLT, a}, a~1' identified? 
Answer: No. Define JL = fJo + fJIJLT and a2 = fJra} + a~, and examine the 
statistical model for Y given by 

10 N(Yj; JL,a2 ), (JL,a2 ) E A I, 
where A = xLI (0,00). Note that any choice of positive values for Po, fJI, JLT, a}, 
and a~ that result in given positive values for JL and a 2 result in precisely the 
same sampling distribution for Y (there is an infinite set of such choices for 
each value of the vector [JL, a2 ]'). Thus, the original parameter vector is not 
identified. Note that the parameter vector [JL, a21' in the latter statistical model 
for Y is identified since the sampling distributions associated with two different 
positive values of the vector [JL, a2]' are distinct. 0 

Once the researcher has identified the characteristics of the sampling dis­
tribution that are to be estimated, the problem becomes one of devising a pro­
cedure to generate estimates of the relevant characteristics. We will presume 
that the only information the researcher has that relates to the characteris­
tics is represented by the information contained in the sample outcome. If 
additional prior information is available regarding the likely values of char­
acteristics, the Bayesian approach to inference, which combines both sample 
information and prior information into the estimation procedure, might be 
considered. We will not examine the Bayesian approach here. The interested 
reader can consult A. Zellner, (1971), An Introduction to Bayesian Inference in 
Econometrics. New York: John Wiley, and G. E. P. Box and G. C. Tiao (1973), 
Bayesian Inference in Statistical Analysis. Reading, MA: Addison-Wesley, for 
further information. 
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We pause here to introduce a convention regarding the interpretation of 
phrases such as estimating 8 or estimating q(8), or an estimate of 8 (or of 
q(8)). Since 8 is simply a parameter vector that indexes a family of density 
functions and that can assume a range of alternative values (those specified in 
Q), the reader might wonder what such phrases could possibly mean. That is, 
what are we estimating if we are estimating, say, 8? The phrases are used as a 
shorthand or abbreviated way of stating that one is estimating the true value of 
8, or estimating the true value of q(8), or that one has an estimate of the true 
value of 8 (or of q(8)). There is widespread use of such phrases in the statistics 
and econometrics literature, and we will make frequent use of such phrases in 
this book as welL In general, one must rely on the context of the discussion to 
be sure whether 8 or q(8) refers to the quantity being estimated or merely to 
the indexing parameter of a family of joint density functions. 

7.3 Estimators and Estimator Properties 

Definition 7.3 
Point estimator 

and estimand 

Estimators 

Point estimation is concerned with estimating 8 or q(8) from knowledge of 
the outcome x = [Xl, ... , xnl' of a random sample X. It follows from this basic 
description of point estimation that functions are at the heart of the estimation 
problem: The inputs or domain elements are sample outcomes, x, and the out­
puts or range elements are estimates of 8 or q(8). More formally, estimates 
will be generated via some function of the form t : R(X) ~ R(t), where R(t) is 
the range of t defined as R(t) = (t : t = t(x), x E R(X)}. Note that R(t) represents 
the set of all possible estimates of 8 or q(8) that can be generated as outcomes 
of t(X). We will always tacitly assume that t(X) is an observable random vari­
able, and hence a statistic, so that estimates are observable and empirically 
informative. 

Henceforth, when the function t : R(X) ~ R(t) represented by t = t/x) is 
being utilized to generate estimates of q( 8), we will refer to the random variable 
T = t(X) as an estimator for q/8), and q(8) will be referred to as the estimand. 
An outcome, t = t(x), of the estimator will be referred to as an estimate of q(8). 
We formalize these three terms in the following definitions: 

A statistic or vector of statistics, T = t(X), whose outcomes are used to 
estimate the value of a scalar or vector function, q(8), of the parameter 
vector, 8, is called a point estimator, with q(8) called the estimand.2 

2Note, as always, that the function q can be the identity function q(8) 55 8, in which case we could be referring to estimating 8 
itself. Henceforth, it will be understood that since q(8) 55 8 is a possible choice of q(8), all discussion of estimating q(8) could be 
referring to estimating 8 itself. 
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Definition 7.4 
Point Estimate 

Figure 7-1 
General point 

estimation procedure. 

An observed outcome of an estimator is called a point estimate. 

Figure 7.1 contains a schematic overview of the general context of the point 
estimation problem to this point. 

Estimator Properties 

Since there is literally an uncountably infinite set of possible functions of X 
that are potential estimators of q(9), a fundamental problem in point estima­
tion is the choice of a "good" estimator. In order to rank the efficacy of estima­
tors and/or to choose the optimal estimator of q(9), an objective function that 
establishes an appropriate measure of "goodness" must be defined. 

A natural measure to use in ranking estimators would seem to be the dis­
tance between outcomes of t(X) and q(9), which is a direct measure of how 
close estimates are to what is being estimated. In the current context, this 
distance measure would be defined by 

d(t(x), q(9)) = Ht(x) - q(9)]'[t(x) - q(9)])1/2, 

which specializes to It(x) - q(9)1 when k = l. However, upon closer exami­
nation, this closeness measure has an obvious practical flaw for comparing al­
ternative functions for estimating q(9)-the estimate that would be preferred 
depends on the true value of q(9), which is unknown lotherwise there would 
be no point estimation problem). This problem is clearly not the fault of the 
particular closeness measure chosen, since any reasonable measure of closeness 
between the two values tlx) and q(9) would depend on where q(9) actually is 
in Rk vis-a-vis where t(x) is located. Thus, comparing alternative functions for 
estimating q(9) on the basis of the closeness to q(9) of an actual estimate t(x) is 

Specify Statistical Model: (~Xl, ... ,Xn; e), 8 E nl 

Specify Characteristics of Interest: q(8) 

Define Estimator T = t(X) of q(8) 

Observe Outcome of Random Sample 
(X1, ... ,Xn) - ~Xl, ... ,Xn; 8) for some 8 E n 

Use t = t(x) to estimate q(8) 
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Figure 7-2 
Estimator PDFs for 

various values of 8. 

not tractable-we clearly need additional criteria with which to judge whether 
t(X) generates "good" estimates of q(8). 

Various criteria for judging the usefulness of a given estimator t(X) for esti­
mating q(8) have been presented in the literature.3 The measures evaluate and 
rank estimators in terms of closeness of estimates to q(8) in an expected or 
probabilistic sense. Note that since t(Xj is a function of X, and thus a random 
variable, a sampling distribution (Le., the probability distribution of t(X)) is de­
fined on R(T) that is derived from the probability distribution of the random 
sample, X = [X I, ... , Xn I'. Roughly speaking, the fact that the distribution of 
X depends on e will generally result in the sampling distribution of t(X) de­
pending on 8 as well, and this latter dependence in turn can lead to changes 
in location, spread, and/or shape of the distribution of t(X) as 8 changes. If the 
sampling distribution of t(X) changes with 8 in a way that keeps the spread 
of potential estimates generated by t(X) narrowly focused on q(8) so that out­
comes of t(X) occur near q(8) with high probability under all contingencies for 
8 E Q, (see Figure 7.2), then the function T would be useful for generating 
estimates of q(8). We turn our attention to specific estimator properties that 
have been used to measure whether these objectives have been achieved. 

Figure 7.3 presents an overview of the basic evaluation scheme most often 
adopted in econometric and statistical practice for ranking estimators of q(8). 
We will examine the components of this evaluation scheme in detail. (Dis­
cussion of additional ranking criteria can be found in Lehmann.4 ) The paths of 
evaluation are differentiated on the basis of whether one is evaluating properties 
of the exact sampling distribution of the estimator for finite sample sizes (the 
finite sample properties path on the left in Figure 7.3) or whether one is dealing 
with approximations to sampling distribution properties based on asymptotic 
distributions and convergence in probability considerations (the asymptotic 
properties path). It is generally preferable to rank estimators based on proper­
ties of their exact sampling distributions, but this is not always possible. In 
some cases, the finite sample properties are intractable to analyze, or else they 
do not exist at all because appropriate population moments do not exist. In 
these cases, which arise often in advanced statistical and econometric practice, 

~----~:~----~~----~----~~~----~----~q(e) 

3 A concise review and comparison of a number of alternative criteria is given by T. Amemiya (1994), Introduction to Statistics and 
Econometrics. Cambridge, MA: Harvard University Press, pp. 118-12l. 

4E. 1. Lehmann (1983), Theory of Point Estimation. New York: John Wiley. 
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Figure 7-3 
Evaluation scheme for 

estimators of q(0). 

Definition 7.5 
Mean square 

error (scalar case) 

{All Estimators of q(0)) = (All Real-Valued Functions of Xl 

Unbiasedness 

All Unbiased 

the analyst must rely on asymptotic properties to guide his or her estimator 
choice. We will examine each of the evaluation paths in turn. 

In discussing estimator properties, we will sometimes utilize a e-subscript 
such as Ee('),Pe(')' or vare(') to emphasize that expectations or probabilities 
are being calculated using a particular value of e for the parameter vector of 
the underlying probability distribution. In cases where the parametric context 
of expectations and probabilities is clear or does not need to be distinguished, 
the subscript e will not be explicitly displayed. 

Finite Sample Properties 

Mean Square Error and Relative Efficiency The term mean square error (MSE) 
is an alternative term for the expected squared distance between an estimator 
T = t(XL and the estimand q(e). When T and q(e) are scalars, the following 
definition applies. 

The mean square error of an estimator T of q(e) is defined as MSEe(T) = 
Eed2(T,q(e)) = Ee(T - q(e))2ve E n. 

The MSE criterion accounts for both the degree of spread in the sampling 
distribution of T as well as the degree to which the central tendency of T's 
distribution deviates from q( e). We will make this notion precise upon defining 
the concept of bias, as follows. 
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Definition 7.6 
Estimator bias 

Definition 7.7 
Mean square 
error matrix 

The bias of an estimator T of q(8) is defined as biase(T) = Ee(T - q(8)), 
'18 E n. The bias vector of an estimator T of q(8) is defined as Biase(T) = 
Ee(T - q(8)), '18 E n. 

The MSE of a scalar estimator T can be decomposed into the sum of the 
variance of T and the squared bias of T, as 

MSEe(T) = Ee (T - EeT + EeT - q(8)f= Ee(T - EeT)2 + [EeT - q(8)]2 

= vare(T) + [biase(T)]2. 

The MSE criterion thus penalizes an estimator for having a high variance, a high 
bias, or both. It also follows that the MSE criterion allows a tradeoff between 
variance and bias in the ranking of estimators. In the final analysis, it is the 
expected squared distance between T and q(8) implied by vare(T) and biase(n 
and not the variance and bias per se, that determines an estimator's relative 
ranking via MSE. 

In the multivariate case, the MSE criterion is generalized through the use 
of the mean square error matrix. 

The mean square error matrix of the estimator T of the (k x 1) vector q(8) 
is defined by MSEe(TI = Ee(T - q(8IHT - q(811'V8 E n. 

To appreciate the information content of MSEe(TJ, first note that the diagonal 
of the MSE matrix contains the MSE of the estimator Tj for qj(81, i = 1, ... , k, 
since the typical diagonal entry in MSEe(T) is Ee(Tj - qj(8))2. More generally, 
let c be any (k x 11 vector, and examine the MSE of cIT = Ef=l cjTj as an 
estimator of c'q(81 = Ef=l cjqj(81, 

MSEe(c'T) = Ee(c'T - c'q(8W = Eec'[T - q(8)][T - q(8)l'c = c'MSEe(Tlc. 

Thus, the MSEs of every possible linear combination of the T/s as estimators 
of the corresponding linear combination of the Qj(81's can be obtained from the 
MSE matrix. Note further that the trace of the MSE matrix defines the expected 
squared distance of the vector estimator T from the vector estimand q(8), as 

trMSEe(TI = trEe[T - q(8)][T - q(8)1' = E[T - q(81]'[T - q(8)] = Eed2(T, q(8)J. 

This is the direct vector analogue to the measure of the closeness of T to q(8) 
that is provided by the MSE criterion in the scalar case. 

The MSE matrix can be decomposed into variance and bias components, 
analogous to the scalar case. Specifically, MSE(TI is equal to the sum of the 
covariance matrix of T and the outer product of the bias vector of T as 

MSE(TI = E[T - ET + ET - q(8)][T - ET + ET - q(8)1' 

= Cov(T) + Bias(T)Bias(T)'. 
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Definition 7.8 
Relative efficiency 

(scalar case) 

Definition 7.9 
Estimator admissibility 

The outer product of the bias vector forms a (k x k) matrix that is called the 
bias matrix. 

In the case of a scalar q(8), estimators with smaller MSEs are preferred. 
Note, however, that since the true 8 is unknown (or else there is no point 
estimation problem to begin with), one must consider the performance of an 
estimator for all possible contingencies for the true value of 8, which is to say, 
for all 8 E Q. It is quite possible, and often the case, that an estimator will 
have lower MSEs than another estimator for some values of 8 E Q but not 
for others. These considerations lead to the concepts of relative efficiency and 
relatively more efficient. 

Let T and T* be two estimators of a scalar q(8). The relative efficiency of T 
with respect to T* is given by 

RE (T T*) = MSEe(T*) = Ee(T* - q(8))2 V 8 E Q. 
e, MSEe(T) Ee(T - q(8))2 ' 

T is relatively more efficient than T* if REe(T, T*) ::: IV8 E Q and> 1 for 
some 8 E Q. 

In comparing two estimators of q(8), if T is relatively more efficient than T*, 
then there is no value of 8 for which T* is preferred to T on the basis of MSE, 
and for one or more values of 8, T is preferred to T*. In this case, it is evident 
that T* can be discarded as an estimator of q( 8), and thus T* is considered an 
inadmissible estimator of q(8). 

Let T be an estimator of q(8). If there exists another estimator of q(8) that is 
relatively more efficient than T, then T is called inadmissible for estimating 
q(8). Otherwise, T is called admissible. 

It is evident that in the search for good estimators of q(8) in terms of MSE, the 
analyst need not consider any estimators that are inadmissible. 

Example 7.2 Suppose (Xl, ... , Xn) is a random sample from a Bernoulli population distribu­
tion, where Xi represents whether (Xi = 1) or not (Xi = 0) the ith customer 
contacted by telephone solicitation purchases a product. Consider two esti­
mators for the unknown proportion, p, of the consumer population who will 
purchase the product: 

and T* = (n+ 1)-1 tXi = (~I)X' 
i=l n + 

Which estimator, if either, is the preferred estimator of p on the basis of MSE 
given that n = 2S? Does either estimator render the other inadmissible? 
Answer: Note that bias(T) = EX -p = 0, bias(T*) = E((n/(n+l))X)-p = -p/(n+ 
1) = -p/26, var(T) = p(l - p)/n = p(1 - p)/2S, and var(T*) = np(1 - pI/In + 1)2 = 
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Definition 7.10 
Strong mean square 

error superiority 

p[1 - p)/27.04. Then the MSEs of the two estimators are given by 

MSE(T) = p(1 - p) 
25 

and 

* p[l-p) p2 
MSE[T ) = 27.04 + 676' 

Examine the MSE of T* relative to the MSE of T, as 

I * MSEp[T*) / 
REplT, T ) = MSEp(T) = .9246 + .0370p [1 - pl. 

Since the ratio depends on the value of p, which is unknown, we must consider 
all of the possible contingencies for p E [0,11. Note that the ratio is mono­
tonically increasing in p, taking its smallest value of .9246 when p = 0, and 
diverging to infinity as p ~ 1. The ratio of MSEs equals 1 when p = .6708. 
Thus, without constraints on the potential values of p, neither estimator is 
preferred to the other on the basis of MSE, and thus neither estimator is ren­
dered inadmissible by the other. 0 

In contrast to the scalar case, a myriad of different MSE comparisons is 
possible when q(8) is a (k x 1) vector. First of all, there are k individual MSE 
comparisons that can be made between corresponding entries in the two esti­
mators T* and T. One could also compare the expected squared distances of 
T* and T from q(8), which is equivalent to comparing the sums of the mean­
square errors of the entries in T* and T. Furthermore, one could contemplate 
estimating linear combinations of the entries in q(8) via corresponding linear 
combinations of the entries in T* and T, so that MSE comparisons between the 
estimators l'T* and l'T for l'q(8) are then of interest. All of the preceding MSE 
comparisons are accounted for simultaneously in the following strong mean 
square error (SMSE) criterion. 

Let T* and T be two estimators of the [k x 1) vector q(8). T* is strong mean 
square error superior to T iff MSEe[T*) - MSEe(T) is negative semidefinite 
V 8 E Q and unequal to the zero matrix for some 8 E Q. 

If T* is SMSE superior to T, it follows directly from Def. 7.10 that 
MSEe(TtJ ::: MSEe[Tj) Vi and v8 E Q since if MSEe(T*) - MSEe[T) is neg­
ative semidefinite, the matrix difference necessarily has nonpositive diagonal 
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Definition 7.11 
Relative efficiency 

and admissibility 
with respect to SMSE 
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entries.S It follows subsequently that 

k k 

Eed2(T*,q(8)) = LMSEe(Tn:s LMSEe(Til = Eed2(T,q(8)) V8 E Q. 
i=l 

Furthermore, in terms of estimating l'q(8), 

MSEe(l'T*) = l'MSEe(T*)l :s l'MSEe(T)l = MSEe(l'T) v8 E Q and V l. 

Thus in the sense of all of the MSE comparisons mentioned previously, T* is 
at least as good as T. 

The fact that MSEe(T*) - MSEe(T) is negative semidefinite and unequal to 
the zero matrix for some 8 E Q implies that some of the weak inequalities (:s) in 
the aforementioned MSE comparisons become strong inequalities «) for some 
8. To see this, note that a nonzero, negative semidefinite, symmetric matrix 
necessarily has one or more negative diagonal entries.6 Therefore, MSEe(Tj) < 
MSEe(Tj ) for some 8 and i, so that Eed2(T*, q(8)) < Eed2(T, q(8)) for some 8 
and MSEe(l'T*) < MSEe(l'T) for some 8 and l. Thus, T* is superior to T for 
at least some MSE comparisons in addition to being no worse for any of the 
MSE comparisons. We now have the following multivariate analogues to the 
notions of relative efficiency and admissibility. 

Let T* and T be estimators of the (k xl) vector q( 8). If T* is SMSE superior 
to T, then T* is said to be relatively more efficient than T. If there exists 
an estimator that is relatively more efficient than T, then T is said to be 
inadmissible. Otherwise, T is said to be admissible. 

As in the scalar case, the analyst need not consider any estimators of q(8) that 
are inadmissible when searching for good estimators of q(8) in terms of MSE.7 

In either the scalar or multivariate case, a natural question to ask is whether 
an optimal estimator exists that has the smallest MSE or MSE matrix among all 
estimators of q(8). We might call such an estimator most efficient, or simply 
efficient. In general, no such estimator exists.To clarify the problem involved, 
consider the scalar case, and note that the degenerate estimator T* = t*(X) = eo 
would certainly have minimum mean-square error for estimating e if mean­
square error were evaluated at the point e = eo, i.e., MSEe(T*) = Of ore = eo. 

SBy definition, A is negative semidefinite iff i' Ai ~ OV i. Then the ith diagonal entry of A must be ~ 0 since this entry can be 
defined by i' Ai with i being a zero vector except for a 1 in the ith position. 

6 A nonzero matrix has at least unit rank. The rank of a negative semidefinite symmetric matrix is equal to the number of negatively 
valued eigenvalues, and all eigenvalues of a negative semidefinite matrix ~ o. The trace of a negative semidefinite symmetric matrix 
is equal to the sum of its eigenvalues. Since all diagonal entries in a negative semidefinite matrix are ~ 0, it follows that a nonzero 
negative semidefinite symmetric matrix must have one or more negative diagonal entries. 

7Some analysts use a weak mean-square error (WMSEI criterion that relates only to expected squared distance considerations. T* 
is WMSE superior to T iff Eed2(T*, q(8)) ~ Eed2(T, q(8))V 8 E Q, and < for some 8 E Q. Relative efficiency and admissibility can 
be defined in the context of WMSE superiority and are left to the reader. 
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Definition 7.12 
Unbiased estimator 

Since a similar degenerate estimator could be defined for each 8 E Q, then for a 
given estimator to have minimum mean-square error for every potential value 
of e (i.e., uniformly in e), it would be necessary that MSEe(T) = 0 V 8 E Q, 
which would imply that vare(T) = 0 V 8 E Q, and thus that Pe(t(x) = 8) = 
1 V 8 E Q. In order to construct an estimator T that satisfied the condition 
Pe(t(x) = 8) = 1 V 8 E Q, it would be necessary to be able to identify the true 
value of e directly upon observing the sample outcome, x. This essentially 
requires that the range of the random sample be dependent on the value of 8, 
denoted as Re(X), in such a way that the sets Re(X), 8 E Q, are all mutually 
exclusive, i.e., Re'(X) n Re"(X) = 0 for 8' # e". Then, upon observing x, one 
would only need to identify the set Re(X) to which x belonged, and e would be 
immediately known. This is rarely, if ever, possible in practice, and so adopting 
a minimum mean-square error criterion for choosing an estimator of q(8) is 
not feasible. A similar argument leads to the conclusion that there is in general 
no estimator of a (k x 1) vector q(9) whose MSE matrix is smallest among the 
MSE matrices of all estimators of q(9).8 

While there generally does not exist an estimator that has a uniformly (Le., 
for all 9 E Q) minimum MSE or MSE matrix relative to all other estimators of 
q(9), it is often possible to find an optimal estimator if one restricts the type of 
estimators under consideration. Two such restrictions that have been widely 
used in practice are unbiasedness and linearity, which we examine in the next 
two subsections. 

Unbiasedness The property of unbiasedness refers to the balancing point or 
expectation of an estimator's probability distribution being equal to the esti­
mand. 

An estimator T is said to be an unbiased estimator of q(9) iff EeT = q(9) 
V 9 E Q. Otherwise, the estimation is said to be biased. 

As in the case of MSE criteria, it is important to appreciate the significance 
of the condition V 9 E Q in the above definition. In the context of the point 
estimation problem, we have assumed that the true value of 9, say 9., is 
some element of the specified parameter space, Q, but we do not know which 
one. Thus, the property of unbiasedness is stated for all possible contingencies 
regarding the potential values for the true value of 9. Due to the condition 
V 9 E Q, the requirement for unbiasedness essentially means that ET = q(9) 
regardless of which value of 9 E Q is the true value. Thus, for T to be unbiased, 
its density function must be balanced on the point q(9) no matter what the 
true value of 9 is. Evidently, the density function of T must be related to 9 in 
a special way for unbiasedness to be obtained. Whether or not T has the unbi­
asedness property depends on the functional definition of T and, in particular, 

8By "smallest MSE matrix," we mean that MSEe(T}-MSEe(T*} is a negative semidefinite matrix for all estimators T* of q(8} and 
for all 8. 
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on how the function translates the density function of X", f(xI, ... , Xn; 8) into 
the density function of T '" f(t; 8). 

An unbiased estimator has the intuitively appealing property of being equal 
to q( 8) on the average, the phrase having two useful interpretations. First, since 
the expectation operation is itself a weighted average of the outcomes of T, then 
the outcomes of T have a weighted average equal to q(8). Alternatively, if we 
were to repeatedly and independently observe outcomes of the random sample 
X, and thus repeatedly generate estimates of q(8) using corresponding out­
comes of the vector T, then the simple average of all of the observed estimates 
would converge in probability (and, in fact, converge almost surely) elemen­
twise to q(8) by Khinchin's WLLN (or by Kolmogorov's SLLN in the case of 
almost-sure convergence), provided only that q(8) is finite. 

We provide the following example of an unbiased estimator of a parameter. 

Example 7.3 Let the population distribution of hard-disk operating lives for a certain brand of 
hard disk be a member of the exponential family of densities f(z; 0) = 
(ljO)e-z/9I{o,oo)(z), 0 E Q = (0,00). Let T = n- I L~I Xj be an estimator of the ex­
pected operating life of the hard disk, 0, where (X I, ... ,Xn ) is a random sample 
from the exponential population distribution. Then T is an unbiased estimator 
of 0, since EXi = 0 V i, which implies that ET = En- I L~=I Xj = n- I L~=I EXi = 
o regardless of the value of 0 > o. Thus, for example, if the true value of 0 were 2, 
then ET = 2, or if the true value of 0 were lOa, then ET = 100. 0 

Figure 7·4 
The densities of two 

unbiased estimators of q(8} 

MVUE, BLUE, and Efficiency The unbiasedness criterion ensures only that an 
estimator will have a density that has a central tendency or balancing point of 
q(8). However, it is intuitively clear that we also desire that the density not 
be too spread out around this balancing point for fear that an estimate could 
be generated that was a significant distance from q(8) with high probability. 
Graphically, we would prefer the estimator T to the estimator T* in Figure 7.4, 
where both of these estimators are unbiased estimators of q(8). 

ET= q(8} = ET* 



380 Chapter 7 Elements of Point Estimation Theory 

Definition 7.13 
Minimum 

variance unbiased 
estimator (MVUE) 

The foregoing considerations motivate the objective that an estimator have 
minimum variance, or minimum covariance matrix if T is a vector, among all 
unbiased estimators of q(8). Since Biase(T) = [01 for all estimators in the un­
biased class of estimators, MSEe(T) = vare(T) or MSEe(T) = Cove(T), and 
we can thus view the objective of minimizing var(T) or Cov(T) equivalently 
as searching for the estimator with the smallest MSE or smallest MSE matrix 
within the class of unbiased estimators. In the following definition, we intro­
duce the notation A ::5 B to indicate that matrix A is smaller than matrix B by 
a negative semidefinite matrix, i.e., A - B = negative semidefinite matrix. 

An estimator T is said to be a minimum-variance unbiased estimator of q( 8) 
iff T is an unbiased estimator of q(8), and 

a. (scalar case) vare(T) :::: vare(T*) ve E nand VT* E uq{e); 

h. (vector case) Cove(T)::5 Cova(T*) v8 E nand VT* E uq{e); 

where Uq{e) is the set of all unbiased estimators of q(8).9 

Definition 7.13 implies that an estimator is a MVUE if the estimator is 
unbiased and if there is no other unbiased estimator that has a smaller vari­
ance or covariance matrix for any 8 E n. Drawing direct analogies to the 
discussion of MSE criteria, a MVUE, T, is such that MSEe(Tj ) = vare(Tj) :::: 
vara(TtJ = MSEe(Tt) V 8 E n and Vi, where T* is any estimator in the unbi­
ased class of estimators. Furthermore, Eed2(T, q(8)) :::: Eed2(T*, q(8)) V 8 E n 
and MSEe(£'T) = vare(£'T) :::: vare(£'T*) = MSEe(£'T*) V 8 E n and V £. Thus, 
within the class of unbiased estimators, a MVUE of q(8) is at least as good as 
any other estimator of q(8) in terms of all of the types of MSE comparisons 
that we have discussed previously. If T is a MVUE for q( 8), then T is said to be 
efficient. 

Unfortunately, without the aid of theorems that facilitate the discovery of 
MVUES, finding a MVUE of q(8) can be quite challenging even when the point 
estimation problem appears to be quite simple. Study the following example, 
which illustrates the general concepts involved. 

Example 7.4 Find a MVUE of the parameter p using a random sample of size 2 from the 
Bernoulli population distribution I(z; p) = pZ(l - pjI-zI{O,lJlZ). 
Answer: First, the range of the random sample is HO, 0), (0, 1), (1,0), (1, I)}, which 
represents the domain of the estimator function T = t(X). For t(X) to be in the 
unbiased class, we must have that 

Et(X) = t(O, OHI - p)2 + t(O, IHI - pIp + t(l, O)p(l - p) + t(I, l)p2 = P Vp E [0,11. 

9This is alternatively referred to in the literature by the term uniformly minimum variance unbiased estimator (UMVUEI, where 
the adverb "uniformly" is used to emphasize the condition "ve En." In our usage of the terms, MVUE and UMVUE will be 
interchangeable. 
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If p = I, then 

Et/X) = t/1, I)p2 = p iff t/1, 1) = 1. 

If p = 0, then 

Et/X) = t/O, O}/ 1 - pf = p iff t/O, 0) = o. 

If p E /0, I), and using t/l, 1) = 1 and t(O, 0) = 0, 

Et(X) = t(O, 1)(1 - p)p + t(I, O)p(l _ p) + p2 = p, 
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which implies that t(O, 1)(1- p) + t(I, O}/I - p) = 1 - p, so that t(O, 1) + t(I, 0) = 1. 
Now consider the variance of t(X), which by definition can be written as 

var(t(X)) = (t(O, 0) - p)2(1 - p)2 + (t(O, 1) - pf(I - pIp 

+ (t(I, 0) - p)2p(I - p) + (t(I, 1) _ p)2p2 

= 2p2(1 - pf + (t(O, 1) - p)2(1 - pIp + (t(I, 0) - pfp(I - p), 

where we have used Et(X) = p, t(O,O) = 0, and t(1, 1) = 1 since t(X) is to 
be unbiased. Also, because of the unbiasedness condition, we can substitute 
t(O, 1) = 1 - t(I, 0) into the variance expression to obtain 

var(t(X)) = 2p2(1 - p)2 + (I- P - t(I, OW(I - pIp + (t(I, 0) - p)2p(I - pl. 

The first-order condition for a minimum of the variance is given by 

dvart(X) 
dt(I,O) = -2(1 - p)2p + 2t(I, O)p(I - p) + 2t(I, O)p(I - p) - 2p2(I - p) = 0, 

which implies that 4p(I-p)t(I,O) = 2(I-p)2p+2p2(1-p), so that t(l,O) = (1/2), 
which then implies that t(O, 1) = (1/2). 

We have thus defined the function T = t(X) that represents a MVUE of p by 
associating an appropriate outcome of T with each random sample outcome. 
The preceding results can be represented collectively as t(Xl,X2) = (I/2}/Xl + 
X2) =X. 0 

A number of general theorems that can often be used to simplify the search for 
a MVUE will be presented in Section 7.5. 

For purposes of simplicity and tractability, as well as for cases where little 
can be assumed about the statistical model other than conditions on low-order 
moments, attention is sometimes restricted to estimators that are unbiased 
and that have minimum variance or covariance matrix among all unbiased 
estimators that are linear functions of the sample outcome. Such an estimator 
is called a BLUE or MVLUE, as indicated in the following definition. 
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Definition 7.14 
Best linear unbiased 
estimator (BLUE) or 
minimum-variance 

linear unbiased 
estimator (MVLUE) 

An estimator T is said to be a BLUE or MVLUE of q(E» iff 

1. T is a linear (vector) function, T = t(X) = AX + h, of the random sample 
X = [Xl, ... ,Xnl', 

2. EaT = q(E» "IE> E Q (T is unbiased), 

3. T has minimum variance or covariance matrix among all unbiased esti­
mators that are also linear functions of the random sample X VeE Q. 

A BLUE estimator of q(E» is also referred to as an efficient estimator within 
the class 01 linear unbiased estimators. The following is an example identifying 
the BLUE or MVLUE of the mean of any population distribution with a finite 
mean and variance. 

Example 7.S BLUE of Population Mean 

Let (Xl, .. . ,Xn) be a random sample from some population distribution I(z; 8) 
of consumer incomes having a finite mean IL = qd8) and variance 0'2 = q2(8). 
What is the BLUE of the mean of the population distribution of consumer in· 
comes? 
Answer: We are examining linear estimators, and thus t(X) = :L7=1 ajXj + b. 
For T to be unbiased, we require that :L7=1 aj = 1 and b = 0, since ET = 
El:L~1 ajXj + b] = [:L7=1 ajEXj] + b = IL[:L7=1 aj] + b = IL, which holds for all 
potential IL iff :L7=1 aj = 1 and b = O. The variance of T is simply 0'2 :L7=1 a; 
since (Xl, .. . ,Xn) is a random sample from I(z; 8). Thus, to find the BLUE, we 
must solve the following minimization problem: 

n 

min 0'2 I: a; 
al,···,Qn i=l 

n 

such that I: aj = 1. 
j=l 

The Lagrangian form of this minimization problem is given by 

L = 0'2 ~ a; - A [~aj - I] , 
and the first-order conditions are 

aL 2 -=2O'aj-A=O, i=I, ... ,n, 
aaj 

and 
aL n 
- = I - I::aj = o. 
aA j=l 

The first n conditions imply al = a2 = ... = an, since aj = A/2O'2 V i, and 
then :L7=1 aj = 1 requires that aj = lIn, i = 1, ... , n. Thus, t(X) = :L7=1 ajXj + 
b = n-l :L7=1 Xj = X, so that the sample mean is the BLUE (or MVLUE) of 
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the mean of a population distribution having a finite mean and variance. (The 
reader should check that the second-order conditions for a minimum are in 
fact met.) 0 

In addition to estimating the means of population distributions, a promi­
nent BLUE arises in the context of least-squares estimation of the parameters 
of a general linear model, which we will examine in Chapter 8. 

Asymptotic Properties 

When finite sample properties are intractable or else inapplicable due to the 
nonexistence of the appropriate expectations, the analyst may have to rely on 
asymptotic properties to rank the efficiency of estimators. In addition, asymp­
totic properties may be of more fundamental interest if the analyst is interested 
in assessing the effects on estimator properties of an ever-increasing number of 
sample observations. 

Asymptotic properties of estimators are essentially equivalent in concept to 
the finite sample properties presented heretofore, except that asymptotic prop­
erties are based on the asymptotic distributions of estimators rather than esti­
mators' exact finite sampling distributions. In particular, asymptotic analogues 
to MSE, relative efficiency, unbiasedness, and minimum-variance unbiasedness 
can be defined with reference to asymptotic distributions of estimators. How­
ever, a problem of nonuniqueness of asymptotic properties can arise because of 
the inherent nonuniqueness of asymptotic distributions. 

To clarify the difficulties that can arise when using asymptotic distributions 
as a basis for asymptotic properties,let Tn denote an estimator of the scalarq(E» 

based on n sample observations, and suppose b;;-I(Tn - q(8))-!N(O, 1). Then one 
might consider defining asymptotic properties of Tn in terms of the asymptotic 
distribution N(q(8), b;). However, by Slutsky'S theorem it follows that (n/(n-

kW/2b;;-I(Tn - q(8))-!N(O, 1) for a fixed value of k since (n/(n - klJl/2 -7 I, so 
that an alternative asymptotic distribution could be Tn~N(q(8I, (In - kl/n)b;l, 
which would lead to different asymptotic properties. The difficulty is that the 
centering and scaling required to achieve a limiting distribution is not unique, 
leading to both non unique asymptotic distributions and nonunique asymptotic 
properties derived from them. 

There are two basic ways of addressing the aforementioned nonunique­
ness problem when dealing with asymptotic properties. One approach, which 
we will mention only briefly, is to rank estimators on the basis of limits of 
asymptotic property comparisons so as to expunge any arbitrary scaling or cen­
tering from the comparison. For example, referring to the previous illustration 
of nonuniqueness, let the asymptotic distribution of Tn be N(q(8I, b;), and let 
T~ have the asymptotic distribution N(q(8), (In - k)/n)b;). Asymptotic MSEs 
based on these asymptotic distributions can be calculated as AMSEe(Tn) = 
Ee(Tn - q(E>))2 = b; and AMSEe(T~) = Ee(T~ - q(8))2 = lin - kl/n)b~. Then 
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Definition 7.15 
Consistent estimator 

the asymptotic relative efficiency (ARE) of Tn with respect to T~ could be rep­
resented as 

ARE (T T*) = AMSEe(T~) = n - k 
e n, n AMSEe(Tn) n· 

Using the ARE, one would be led to the conclusion that T~ is asymptotically 
relatively more efficient than Tn, which in the context of the previous illustra­
tion of nonuniqueness would be absurd since Tn and T~ are the same estimator. 
However, limn->oo ARE = I, which would lead to the conclusion that Tn and 
T~ are equally preferable on the basis of asymptotic MSE considerations, which 
of course is the correct conclusion in the current context. The limit operation 
removes the arbitrary scaling of the asymptotic variance. To operationalize this 
approach for general applications requires extensions of limit notions (limit su­
periors, or lim sups) which we will leave for future study (see 1. Schmetterer 
(1974), Introduction to Mathematical Statistics. New York: Springer-Verlag, 
pp. 335-342). 

An alternative approach for avoiding nonuniqueness of asymptotic proper­
ties is to restrict the use of asymptotic properties to classes of estimators for 
which the problem will not occur. For our purposes, it will suffice to exam­
ine the consistent asymptotically normal (CAN) class of estimators (for other 
possibilities, see E. Lehmann, Point Estimation, pp. 347-348). 

Prior to identifying the CAN class of estimators, we examine the property 
of consistency. 

Consistency 

Tn is said to be a consistent estimator of q(8) iff plimeTn = q(8) v8 E Q. 

A consistent estimator is an estimator that converges in probability (ele­
ment wise if Tn is a vector) to what is being estimated. Thus, for large enough n 
(Le., for large enough sample size), there is a high probability that the outcome 
of Tn will be in the interval (q(8) - e, q(8) + e) for arbitrarily small e > 0 
regardless of the value of 8. Relatedly, the sampling density of Tn concentrates 
on the true value of q(8) as the sample size -+ 00 if Tn is a consistent estimator 
of q(8). Consistency is clearly a desirable property of an estimator, since it 
ensures that increasing sample information will ultimately lead to an estimate 
that is essentially certain to be arbitrarily close to the estimand q(8). 

Since Tn~q(8) implies Tn~q(8), we can state sufficient conditions for 
consistency of Tn in terms of unbiasedness and in terms of variance conver­
gence to zero. Specifically, if Tn is unbiased, or if the bias vector converges to 
zeroasn -+ ooandifvar(Tn)-+ Oasn -+ oo(orCov(Tn)-+ [O)asn -+ ooifTnisa 
vector), then Tn is a consistent estimator of q(8) by mean-square convergence. 
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Example 7.6 Let (Xl, .. . ,Xn ) be a random sample from a population distribution, f(z; En of 
the incomes of buyers of new Cadillacs, where EZ = qd8) = J.L and var(Z) = 
q2(8) = cr2 < 00. The sample mean tn(X) = Xn is a consistent estimator of 
the mean income, J.L, of Cadillac buyers since Xn is unbiased, and its variance 
(a2/n)~Oasn~00. 0 

We note for future reference that a sequence of estimators can be consistent 
for q(8) without ETn ~ q(8) even if ETn exists "In. This at first seems counter 
intuitive, since if Tn is consistent, its density collapses on q(8) as n ~ 00. Note 
the following counterexample. 

Example 7.7 Let the density of Tn be defined as f(tn; e) = (l-n-l/2)I\edtn)+n-l/21\nJ!tn). Note 
that as n ~ 00, limn-+oo P[ltn - 81 < £] = I, for any £ > 0, and Tn is consistent 
for 8. However, since ETn = ell - n-1/2) + n(n- I /2) = 8(1 - n- I /2) + n 1/2, then 
asn ~ 00, ETn ~ 00. 0 

The divergence of the expectation in Ex. 7.7 is due to the fact that the 
density function of Tn, although collapsing to the point 8 as n ~ 00, was 
not collapsing at a fast enough rate for the expectation to converge to 8. In 
particular, the density weighting assigned to the outcome n in defining the 
expectation went to zero at a rate slower than n went to infinity as n ~ 00, 

causing the divergence. A sufficient condition f~r the statement Tn~q(8) => 
limn-+ oo ETn = q(8) to be true is that ET; exists and is bounded "In, i.e., ET; :::: 
m < 00 "In (Rao, Statistical Inference, p. 121). Note that this condition does not 
hold in Ex. 7.7. 

Class of Consistent Asymptotically Normal (CAN) Estimators and Asymptotic Prop­
erties The class of consistent asymptotically normal estimators of q(8) is 
defined in the statistical literature to be the collection of all estimators of q(8) 

for which n l/2(Tn - q(e)) ~ N([O], LT), where LT is a positive definite covariance 
matrix that may depend on the value of 8. We will allow this dependence to 
be implicit rather than utilize notation such as ~T(8). Note that consistency 
of Tn follows immediately, since by Slutsky's theorem n-1/2[n1/2 (Tn - q(8))] = 

Tn - q(8)-iO. Z = [0], where Z '" N([O], ~T)' which implies Tn - q(8)~[0] or 
Tn~q(8). The CAN class contains a large proportion of the estimators used in 
empirical work. 

Because all of the estimators in the CAN class utilize precisely the same se­
quence of centering (i.e., q(8) is subtracted from Tn) and scaling (i.e., Tn-q(8) is 
multiplied by n1/2 ), the problem of nonuniqueness of asymptotic distributions 
and properties does not arise. Asymptotic versions of MSEs, MSE matrices, 
bias vectors, variances, and covariance matrices can be defined via expecta­
tions taken with respect to the unique asymptotic distribution of estimators, 
where Tn~N(q(8), n- l ~T). In particular, letting the prefix A denote an asymp­
totic property, and letting EA denote an expectation taken with respect to an 
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admissibility 

asymptotic distribution, we have within the CAN class, V E> E Q, 

AMSE(Tn) = ACov(Tn) = EA(Tn - q(E»)(Tn - q(E»)' (multivariate), 

= Avar(Tn) = EA(Tn - q(E»j2 (scalar), 

and 

ABIAS(Tn) = EA(Tn - q(E») = [0]. 

The last property above indicates that a CAN estimator of q(E» is necessarily 
asymptotically unbiased. We pause to note that there is a lack of consensus in 
the literature regarding the definition of asymptotic unbiasedness, and Ex. 7.7 is 
useful for illustrating the issues involved. Some statisticians define asymptotic 
unbiasedness of an estimator sequence in terms of the limit of the expected 
values of the estimators in the sequence, where limn_ooETn = q(E» ve E Q 
characterizes an asymptotically unbiased estimator. Under this definition, the 
estimator in Ex. 7.7 would not be asymptotically unbiased, but rather would be 
asymptotically biased. It is clear that this definition of asymptotic unbiasedness 
requires that the expectations in the sequence exist, as they do in Ex. 7.7. Within 
the CAN class, the two definitions of asymptotic unbiasedness will coincide if 
the second-order moments of the estimators in the sequence {Tn} are bounded, 
since then limn_oo ETn = q(E» = EA(Tn) (recall our remark on convergence of 
expectations following Ex. 7.7). Otherwise, the definitions may refer to different 
concepts of unbiasedness, as Ex. 7.7 demonstrates. Having alerted the reader 
to the alternative definition, we will continue to define asymptotic properties 
exclusively in terms of asymptotic distributions. 

Given the preceding definition of asymptotic properties, we can now define 
the meaning of asymptotic relative efficiency and asymptotic admissibility 
uniquely within the context of CAN estimators. 

Let Tn and T~ be CAN estimators of q(E» such that n I/ 2(Tn - q(E»)~ 
N([O],ET) and nI/2(T~ - q(e))~N([O], E T.). 

a. If Tn and T; are scalars, then the asymptotic relative efficiency of Tn 
with respect to T; is given by 

* AMSEe(T;) bp 
AREe(Tn, Tn) = AMSEe(Tn) = Er Ve E Q. 

Tn is asymptotically relatively more efficient than T; if AREe(Tn, T;) ::: 
1 VeE Q and> 1 for some e E Q. 

b. Tn is asymptotically relatively more efficient than T~ iff ET - bT' is 
negative semidefinite V E> E Q and ET - E T• =f. [OJ for some e E Q. 

c. If there exists an estimator that is asymptotically relatively more effi­
cient than Tn, then Tn is asymptotically inadmissible. Otherwise Tn is 
asymptotically admissible. 
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A discussion of the meaning of ARE and asymptotic admissibility, as well 
as all of the other asymptotic properties presented to this point, would be com­
pletely analogous to the discussion presented in the finite sample case, except 
now all interpretations would be couched in terms of approximations based on 
asymptotic distributions. We leave it to the reader to draw the analogies. 

Example 7.8 Recall Ex. 7.3 regarding the estimation of the expected operating lives of hard 
disks, (), using a random sample from an exponential population distribution. 
As an alternative estimator of (), consider the following function of the random 
sample: 

T~ = t~(X) = [~(n-l txl) f/2 = (M~/2j1/2. 
Recall that in the case of the exponential probability distribution, /1-2 = EX; = 
2()2. Since M2 is the second-order sample moment based on a random sample 

from a probability distribution, we know that M~~2()2 and that 

n 1/2(M' - /1-' ) nl/2(M' - 2()2) d 

[/1-~ -(~2)2P~2 = [20;4]1/2 -*N(O, 1), 

where /1-~ = [ld4(1 - ()t)-l/dt4 lJt=o = 24()4. 
Now note that T~ is a continuous function of M 2, so that plim T~ = 

plim(M2/2j1/2 = (plim(M2)/2j1/2 = () by Theorem 5.5. Therefore, T~ is a consis­
tent estimator of (). Furthermore, n l/2(M2 - ()) has a normal limiting distribution 
and is thus a CAN estimator. To see this, recall Theorem 5.39 on the asymptotic 
distribution of functions of asymptotically normal random variables, where in 
this application, T~ is a function of the asymptotically normal random variable 
M2~N(2()2, 20()4/n). Since 

G = [dT~ ] = [.!.(M2/2)-l/2] = (4())-1, 
dM2 Mi=2B2 4 Mi=292 

which i- ° V() > ° and is thus of "full row rank," it follows that 

nl/2(T~ - ())~N(O, G[20()4/n jG') = N(O, 1.25()2). 

In comparing T~ with Xn as estimators of (), it is now clear that although both 
are consistent and asymptotically normal estimators of (), Xn is asymptotically 
more efficient than T~, since in comparing the asymptotic variances of the 
limiting distributions of nl/2(Xn - 0) and nl/2(T~ - ()), we have ()2 < 1.2S()2. 0 

Asymptotic Efficiency At this point it would seem logical to proceed to a defini­
tion of asymptotic efficiency in terms of a choice of estimator in the CAN class 
that has the smallest asymptotic variance or covariance matrix VeE n (com­
pare to Def. 7.13). Unfortunately, LeCam lO has shown that such an estimator 

IOL. LeCam, (19531, "On some asymptotic properties of maximum likelihood estimates and related Bayes estimates." University 
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does not exist without further restrictions on the class of estimators. In partic­
ular, LeCam effectively showed that, for any CAN estimator, one can always 
define an alternative estimator that has a smaller variance or covariance matrix 
for at least one E> E Q. The implication of this result is that one cannot define 
an achievable lower bound to the asymptotic variances or covariance matrices 
of CAN estimators and so no asymptotically optimal estimator exists. 

On the other hand, LeCam also showed that under mild regularity condi­
tions, there does exist a lower bound to the asymptotic variance or covariance 
matrix of a CAN estimator that holds for all E> E Q except on a set of E> val­
ues having Lebesque measure zero (this is called the Cramer-Rao lower bound, 
which will be discussed in Section 7.5). Note that the Lebesque measure of a set 
of E> values can be thought of as the volume of the set within the k-dimensional 
parameter space. A set having Lebesque measure zero is a set with zero volume 
in k-space, e.g., a collection of isolated points, or a set of points having di­
mension less than k (such as a square and its interior in a three-dimensional 
space, or a line in two-dimensional space). A set of Lebesque measure zero is a 
nonstochastic analogue to a set having probability zero, and such a set is thus 
practically irrelevant relative to its complement. It is thus meaningful to speak 
of a lower bound on the asymptotic variance or covariance matrix of a CAN 
estimator of q(E» that holds almost everywhere in the parameter space (i.e., 
except for a set of Lebesque measure zero), and then a search for an estimator 
that achieves this bound becomes meaningful as well. 

At this point we will state a general definition of asymptotic efficiency for 
CAN estimators. In Section 7.5, we will be much more precise about the func­
tional form of the asymptotic covariance matrix of an asymptotically efficient 
estimator. 

If Tn is a CAN estimator of q(E» having the smallest asymptotic covariance 
matrix among all CAN estimators vE> E Q, except on a set of Lebesque 
measure zero, Tn is said to be asymptotically efficient. 

As a final remark, it is possible to remove the qualifier "except on a set 
of Lebesque measure zero" if the CAN class of estimators is further restricted 
so that only estimators that converge uniformly to the normal distribution 
are considered. Roughly speaking, uniform convergence of a function sequence 
Fn(x) to F(x) requires that the rate at which convergence occurs is uniform across 
all x in the domain of F(x), unlike ordinary convergence (recall Def. 5.7), which 
allows the rate to be different for each x. The restricted class of estimators 
is called the consistent uniformly asymptotically normal (CUAN) class, and 
within the CUAN class it is meaningful to speak of an estimator that literally 
has the smallest asymptotic covariance matrix. The interested reader can con-

of California Publications in Statistics, 1:277-330. 
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suit C. R. Rao (1963), IICriteria of estimation in large samples." Sankhya, Series 
A, pp. 189-206, for further details. 

7.4 Sufficient Statistics 

Definition 7.18 
Sufficient statistics 

Sufficient statistics for a given estimation problem are a collection of statistics 
or, equivalently, a collection of functions of the random sample, that summa­
rize or represent all of the information in a random sample that is useful for 
estimating any q(E». Thus, in place of the original random sample outcome, 
it is sufficient to have observations on the sufficient statistics to estimate any 
q(E». Of course, the random sample itself must then be considered a collection 
of n sufficient statistics, but an objective in defining sufficient statistics is to 
reduce the number of functions of the random sample needed to represent all 
of the sample information relevant for estimating q(E». If a small collection of 
sufficient statistics can be found for a given statistical model, then for defining 
estimators of q(E» it is sufficient to consider only functions of the smaller set 
of sufficient statistic outcomes as opposed to functions of all n outcomes of 
the original random sample. In this way the sufficient statistics allow a data­
reduction step to occur in a point estimation problem. Relatedly, it will be 
shown that the search for estimators of q(E» having the MVUE property or 
small MSEs can always be restricted to functions of the smallest collection of 
sufficient statistics. Finally, if the sufficient statistics have a special property, 
referred to as completeness, then an explicit procedure utilizing the complete 
sufficient statistics is available that is often useful in defining MVUEs. We 
begin by presenting a more rigorous definition of sufficient statistics. Unless 
explicitly indicated otherwise, the scalar 8 can be replaced by the vector e 
throughout this section. 

Let (Xl, ... ,Xn) '" f(xl, ... ,Xn; 8) be a random sample, and let (Sl, ... , SrI = 
(Sl (X I, ... , Xn), ... , Sr(X I, ... , Xn)) be I statistics. The I statistics are said to be 
sufficient statistics for fIx; 8) iff 

f(xl, ... ,xn; 8\Sl, .. . ,sr) = h(Xl, ... ,xn), 

i.e., the conditional density of X, given s = [Sl, ... , sr]', does not depend on 
the parameter e .11 

11 Note that the conditional density function referred to in this definition is degenerate in the general sense alluded to in footnote 
20 of Chapter 3. That is, since (Xl, ... ,Xn ) satisfies the r restrictionssj(xl, ... ,xn ) = Sj, for i = i, ... ,r, by virtue of the event being 
conditioned upon, the arguments XI, ... , Xn of the conditional density are not all free to vary, but rather are functionally related. If 
one wished to utilize the conditional density for actually calculating conditional probabilities of events for (Xl, ... , Xn), and if the 
random variables were continuous, then line integrals would be required, as discussed previously in Chapter 3 concerning the use 
of degenerate densities. This technical problem is of no concern in our current discussion of sufficient statistics since we will have 
no need to actually calculate conditional probabilities from the conditional density. 
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An intuitive interpretation of Def. 7.18 is that once the outcomes of the 
I sufficient statistics are observed, there is no additional information on 8 in 
the sample outcome. The definition also implies that given the function values 
sIx) = s, no other function of X provides any additional information about 8 
other than that obtained from the outcomes s. To motivate these interpreta­
tions, first note that the conditional density function fIx; 81s) can be viewed 
as representing the probability distribution of all of the various ways in which 
random sample outcomes, x, occur so as to generate the conditional value of s. 
This is because the event being conditioned on requires that x satisfy sIx) = s. 
Definition 7.18 states that if S is a vector of sufficient statistics, then 8 is a 
ghost in fIx; 8Is). That is, the conditional density function really does not de­
pend on the value of 8 since f(x; Bls) = h(x). It follows that the probabilistic 
behavior of the various ways in which x results in sIx) = s has nothing to do 
with B-it is independent of 8. Thus, analyzing the various ways in which 
a given value of s can occur, or examining additional functions of X, cannot 
possibly provide any additional information about B since the behavior of the 
outcomes of X, conditioned on the fact that sIx) = s, is totally unrelated to 8. 

Example 7.9 Let (Xl, .. . ,Xn ) be a random sample from a Bernoulli population distribution 
representing whether phone call solicitations to potential customers result in 
a sale, so that 

n 

fIx; p) = pI:~1 Xi(1 - p)n-I:?=lxi n l(o,l} (Xi), 
i=l 

where p E Q = (a, 1), Xi = 1 denotes a sale on the ith call, and Xi = 0 denotes 
no sale on the ith call. In this case, I:f=IXi, representing the total number of 
sales in the sample, is a sufficient statistic for fIx; pl. To see that this is true, 
first note that the appropriate conditioning event in the context of Def. 7.18 
would be sIx) = I:f=l Xi = s, i.e., the total number of sales equals the value s. 
It follows from the definition of conditional probability that the conditional 
density function can be defined as l2 

f( . )_ P(Xl, ... ,Xn,s(x)=s) 
x, pis - P(s(x) = s) . 

The denominator probability is given directly by 

P(s(x) = s) = (~)pS(l - p)n-sl(O,I, ... ,nds) 

because sIX) = I:f=l Xi is the sum of iid Bernoulli random variables, which we 
know to have a binomial distribution. The numerator probability is defined by 

l2The reader may wonder why we define the conditional density "from the definition of conditional probability," instead of using 
the rather straightforward methods for defining conditional densities presented in Section 2.6. The problem is that here we are 
conditioning on an event that involves all of the random variables Xl, .. . ,Xn, whereas in Chapter 2 we were dealing with the 
usual case where the event being conditioned upon involves only a subset of the random variables Xl, .. . ,Xn having fewer than n 
elements. 
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an appropriate evaluation of the joint density of the random sample, as 

P(Xl, ... ,Xn , sIx) = S) = fIx; p)I{E7=, Xi=S}(X) 

= pE7=, Xi(l - p)n-E7=, Xi (fI I{O,l} (Xd) I{E7=, Xi=S}(X), 
1=1 

which is directly the probability of Xl, ... , Xn and sIx) = :L?=l Xi = s. Using 
the preceding functional representations of the numerator and denominator 
probabilities in the ratio defining the conditional density function, and using 
the fact that s = :L?=l Xi, we obtain (after appropriate algebraic cancellations) 

for any choice of s E {a, 1, ... , n}, which does not depend on the parameter p. 
Thus, S = :L?=l Xi is a sufficient statistic for p. 

Note that the conditional density states that, given :L?=l Xi = s, all out-
comes of (Xl, .. . ,Xn ) are equally likely with probability Gr l, and thus the 
probability of a particular pattern of sales and no sales occurring for (Xl, ... , xn ), 
given that :L?=l Xi = s, has nothing to do with the value of p. It follows that only 
the fact that :L?=l Xi = s provides any information about p-the particular pat­
tern of a's and l's in (Xl, ... , Xn) is irrelevant. This is consistent with intuition 
in that it is the total number of sales in n phone calls, and not the particular 
pattern of sales and no sales, that provides information in a relative-frequency 
sense about the probability, p, of obtaining a sale on a phone call solicitation. 
Furthermore, if Y = g(X) is any other function of the random sample, then it can 
provide no additional information about p other than that already provided by 
sIX). This follows from the fact that h(Yls(x) = s) will not depend on p, because 
the conditional density of Y will have been derived from a conditional density 
of X that is independent of p, i.e., 

h(Yls(x) = s) = P(Yls(x) = s) = L fIx; pis) = L h(x) 
(x:gixi=y) (x:gixi=y) 

since fix; pis) = h(x) if s is a sufficient statistic. o 

In any problem of estimating q(8), once the outcome of a set of sufficient 
statistics is observed, the random-sample outcome (Xl, ... , xn) can effectively be 
ignored for the remainder of the point estimation problem since sIx) captures 
all of the relevant information that the sample has to offer regarding q(8). 
Essentially, it is sufficient that the outcome of s be observed. For example, 
with reference to Ex. 7.9, if a colleague were to provide the information that 
123 sales were observed in a total of 250 phone calls, i.e., :Li~~ Xi = 123, we 
would have no need to examine any other characteristic of the random-sample 
outcome (Xl, ... ,X250) when estimatingp, or q(p). 
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A significant practical problem in the use of sufficient statistics is know­
ing how to identify them. A criterion that is sometimes useful for identifying 
sufficient statistics is given by the Neyman factorization theorem: 

Theorem 7.1 (Neyman's Factorization Theorem) Let f(x;8) be the density function of the 
random sample (Xl, .. . ,Xn). The statistics Sl, .. . ,Sr are sufficient statistics for 
fIx; 8) iff fIx; 8) can be factored as 

fIx; 8) = g(sdx), ... , sr(x); 8)h(x), 

where g is a function of only sdx), ... ,sAx) and 8, and h(x) does not depend 
on 8. 

Proof The proof of the theorem in the continuous case is quite difficult, and we leave 
it to a more advanced course of study (see E. Lehmann (1986), Testing Statisti­
cal Hypotheses. New York: John Wiley, pp. 54-55). We provide a proof for the 
discrete case. 

Sufficiency: Suppose the factorization criterion is met. Let B(a) = 
{(Xl, ... , xn) : Sj(x) = aj, i = 1, ... , r; x E R(X)} be such that P(B(a)) > 0, and 
note that 

P(B(a)) = I: ... L fIx; 8) = g(al, ... , ar ; 8) L'" L h(Xl,"" xn). 
(xl •...• xn)eB(a) (xl ..... xn)eB(a) 

Therefore, 

fIx; 8lsAx) = aj, i = I, ... , r) = 

1 
g(al, ... ,ar;8)h(Xl, ... ,Xn) -h*( ) - Xl, .. . ,Xn 

mal, ... , a,; El) L· ~ Ll ......... l .. l'l hjxl, .. . ,Xn ) 
when x is such that Sj(x) = aj Vi 

otherwise, 

which does not depend on 8, and hence S I, ... , Sr are sufficient statistics. 
Necessity: Suppose Sl, ... , Sr are sufficient statistics, and note by the defi­

nition of the conditional density that 

fIx; 8) = f(xlsj(x) = aj, i = I, ... , r)P(sj(X) = aj, i = I, ... , r), 
where the conditional density function does not depend on 8 by the sufficiency 
of S. Then we have factored/Ix; 8) into the product of a function of Sl (x), ... , sr(x) 
and 8 (Le., P(Sj(x) = aj,i = 1, .. . ,r) will depend on 8) and a function that does 
not depend on 8. • 

As we have alluded to previously, a practical advantage of sufficient statis­
tics is that they can often greatly reduce the number of random variables re­
quired to represent the sample information relevant for estimating q(8), as seen 
in Ex. 7.9 and in the following example of the use of the Neyman factorization 
theorem. 
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Example 7.10 Let (XI, ... , Xn) be a random sample from the exponential population distribu­
tion O-le-z/OI(o,oo)(z) representing waiting times between customer arrivals at a 
retail store. Note that the joint density of the random sample is given by 

n 
"Ix x . il) - il-ne- L~=I xi/O n I (x·) /' I,···, n, 17 - 17 (0,00) l' 

i=1 

The joint density can be factored into the form required by the Neyman 
factorization theorem by defining g(I:f=1 Xi; 0) = O-ne- L~=I xi/O and h(x) = 
nf=1 I(O,oo!lXi). Then, from the theorem, we can conclude that S = I:f=1 Xi is a 
sufficient statistic for fIx; 0). It follows that the value of the sum of the random­
sample outcomes contains all the information in the sample outcomes relevant 
for estimating q(O). 0 

Successful use of the Neyman factorization theorem for identifying suffi­
cient statistics requires that one be ingenious enough to define the appropriate 
g(s(x); e) and h(x) functions that achieve the required joint probability density 
factorization. Since the appropriate function definitions will not always be read­
ily apparent, an approach introduced by Lehmann and Scheffel3 can sometimes 
be quite useful for providing direction to the search for sufficient statistics. We 
will discuss this useful result in the context of minimal sufficient statistics, 
described next. 

Minimal Sufficient Statistics 

At the beginning of our discussion of sufficient statistics, we remarked that one 
objective of using sufficient statistics is to reduce the number of functions of 
the random sample required to represent all of the information in the random 
sample relevant for estimating q(8). A natural question to consider is what is 
the smallest number of functions of the random sample that can represent all 
of the relevant sample information in a given point estimation problem? This 
relates to the concept of a minimal sufficient statistic, which is essentially the 
sufficient statistic for a given fIx; 8) that is defined using the fewest number of 
(functionally independent) coordinate functions of the random sample. 

The statement of subsequent definitions and theorems will be facilitated 
by introducing the notion of the range of X over the parameter space 0, defined 
as 

Rn(X) = {x : fIx; 8) > 0 for some 8 E Q} 

The set Rn(X) represents all the values of x that are assigned a nonzero density 
weighting by fIx; 8) for at least one 8 E Q. In other words, Rn/X) is the union 
of the supports of the densities fIx; 8) for 8 E Q and thus corresponds to the set 
of relevant x outcomes for the statistical model {fIx; e), e E Q}. If the support 
of the density fIx; e) does not change with e (e.g., normal, Gamma, binomial 

13E. L. Lehmann, and H. Scheffe (19501, "Completeness, similar regions, and unbiased estimation. Sankhyii, 10, p. 305. 
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with n fixed) then Rn/X) = R(X) = (x : fIx; 8) > A}, where 8 E Q can be chosen 
arbitrarily, and we henceforth treat the range of X as being synonymous with 
the support of its density. 

A sufficient statistic S = sIX) for fIx; 8) is said to be a minimal sufficient 
statistic if, for every other sufficient statistic T = t(X), 3 a function hT(·) such 
that sIx) = hT(t(x)) Vx E RnIX). 

In order to motivate what is "minimal" about the sufficient statistic S in 
Def. 7.19, first note that S will have the fewest elements in its range compared to 
all sufficient statistics for f(x; 8). This follows from the fact that a function can 
never have more elements in its range than in its domain (recall the definition 
of a function, which requires that there is only one range point associated with 
each domain element, although there can be many domain elements associated 
with each range element). Thus, if S = hT(T) for any other sufficient statistic T, 
then the number of elements in R(S) must not exceed the number of elements 
in R(T), for any sufficient statistic T. So, in this sense, S utilizes the minimal 
set of points for representing the sample information relevant for estimating 
q(8). 

It can also be shown that a minimal sufficient statistic can be chosen to 
have the fewest number of coordinate functions relative to any other sufficient 
statistic, i.e., the number of coordinate functions defining the minimal suffi­
cient statistic is minimal. A rigorous proof of this fact is quite difficult and is 
deferred to a more advanced course of study. 14 In order to at least motivate the 
plausibility of this fact, first note that since a minimal sufficient statistic, say 
S, is a function of all other sufficient statistics, then if T is any other sufficient 
statistic, tlx) = tty) :::} sIx) = hTlt(x)) = hT(tly)) = sly). It follows that 

AT = {(x, y) : t(x) = tty)} c {(x, y) : sIx) = sly)} = B 

no matter which sufficient statistic, T, is being referred to. If B is to contain the 
set AT, then the constraints on (x, y) representing the set-defining conditions 
of B cannot be more constraining than the constraints defining AT. In particu­
lar, the number of nonredundant constraints 1 5 defining B cannot be more than 
the number defining AT. Thus the number of nonredundant coordinate func­
tions defining S must be no larger than the number of nonredundant coordinate 
functions defining any other sufficient statistic so that the number of coordi­
nate functions defining S is minimal. Identifying minimal sufficient statistics 
can often be facilitated by the following approach suggested by Lehmann and 
Scheffe. 

14See E. W. Barankin and M. Katz (1959), "Sufficient statistics of minimal dimension." Sankhyii, 21, pp. 217-246; R. Shimizu 
(1966), "Remarks on sufficient statistics." Ann. Inst. Statist. Math., 18, pp. 49-66; D. A. S. Fraser (1963), "On sufficiency and the 
exponential family." T. Roy. Statist. Soc., Series B, 25, p. 115-123. 

lSBy "nonredundant," we mean that none of the constraints is implied by the others. Redundant constraints are constraints that 
are ineffective or unnecessary in defining sets. 
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Theorem 7.2 ILehmann-Scheffe's Minimal Sufficiency Theorem) Let X '" flx;e). If the 
statistic S = siX) is such that Vx and y E RnIX) 

fix; e) = rlx, y)fly; e) iff lx, y) satisfies six) = sly), 

then S = siX) is a minimal sufficient statistic for flx;e). 

• Proof Define Als) = {x : six) = s}, and let Xs E Als) n RnIX), be chosen as a representa­
tive element of Als), Vs E RIS). Define 1]lx) = Xs V X E Als) and Vs E RIS). Thus, 
Als) is the set of x outcomes whose image six) is s, and 1]lx) is the representative 
element of the set Als) to which x belongs. 

Assume that (x, y) E {(x, y) : six) = sly)} => fix; e) = tix, y)f(y; e) v x and 
vERniX). Then for x E Als) n Rn(X), 

six) = slxs ) => fix; e) = tix, xs)flxs ; B) 

= rlx,1]lx))fl1]lx); e) Isubstitute 1]lx) = xs ) 

= hlx)glslx); e), 
where hlx) == rlx,1]lx)), gls(x); e) == f(1]lx); e), and the g function in the lat­
ter identity can be defined from the fact that 1](x) = Xs iff six) = s, so that 
1]lx) {.:> six). If x rt Rn(X), then fix; e) = hlx)g(s(x); e) by defining h(x) = O. Since 
Neyman factorization holds, sIX) is a sufficient statistic. 

Now assume fix; e) = rlx, y)f(y; e) => (x, y) E {(x, y) : six) = sly)} v x and 
y E Rn(X). Let s.(x) be any other sufficient statistic for fIx; e). Then, by Neyman 
factorization, for some g.I·) and h.I·) functions, 

fix; e) = g.ls.(x); e)h.lx). 

If s.lx) = s.ly), then since g.ls*lx); e) = g*ls*ly); e), it follows that 

fix; e) = [h*lx)/h*lyllfly; e) = rlx, y)fly; e) 

whenever h*ly) i: 0, so that s*lx) = s*(y) => six) = sly). Values of y for which 
h.ly) = 0 are such that fly; e) = 0 VeE n by Neyman factorization and are thus 
irrelevant to the minimal sufficiency of S Irecall Def. 7.19). Then s is a function 
of s., as six) = ,Is.(x)), Vx E RnIX), since for a representative Ys' E {x: s.lx) = 
s*}, s.(x) = s*lys') = s* => six) = slys') = s, and thus six) = s = ,Is*) = ,Is.(x)). 
Therefore, by Def. 7.19, siX) is a minimal sufficient statistic. • 

Before proceeding to applications of the theorem, we present two corollaries 
that are informative and useful in practice. 

Corollary 7.1 ILehmann-Scheffe Sufficiency) Let X", fix; e). If the statistic S = siX) is such 
that Vx and y E RnIX) 

(x, y) E {(x, y) : six) = sly)} => fix; e) = r(x, y)fly; e), 

then S = siX) is a sufficient statistic for f(x;e). 

Proof The proof of this corollary was given in the first part of the proof of Theorem 
7.2. • 
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The corollary indicates that the "only if" part of the condition in Theorem 
7.2 is not required for the sufficiency of sIX), but it is the addition of the "only 
if" part that results in the minimality of sIX). 

Corollary 7.2 (Minimal Sufficiency When R(X) Is Independent of 8) Let X '" f(x;En and 
suppose that R(X) does not depend on e. If the statistic S = sIX) is such that 
f/x;8)/fIy;8) does not depend on e iff (x,y) satisfies sIx) = sly), then S = sIX) 
is a minimal sufficient statistic. 

Proof This follows from Theorem 7.2 by dividing through by fly; 8) on the left-hand 
side of the iff condition, which is admissible for all x and y in the density 
support R(X) = {x : fIx; 8) > OJ. Values of x and y rt R(X) are irrelevant to 
minimal sufficiency (recall Def. 7.19). • 

Of course, using the preceding results for defining a minimal sufficient 
statistic still requires that one is observant enough to recognize an appropriate 
(vector) function S. However, in many cases, the Lehmann-Scheffe approach 
transforms the problem into one where a choice of S is readily apparent. The 
following examples illustrate the use of the procedure for discovering minimal 
sufficient statistics. 

Example 7.11 Let (X I, ... ,Xn ) be a random sample from a non degenerate Bernoulli population 
distribution representing whether or not a customer contact results in a sale, 
so that 

n 

fIx; p) = pI:7=1 Xi(l - p)n-I:7=1 Xi n Iro,lJ!xi) for p E (0, 1). 
i=1 

In an attempt to define a sufficient statistic for fIx; p), follow the Lehmann­
Scheffe procedure by examining 

fIx; p) pI:7=1 Xi(l - p)n-I:7=1 Xi n7-1 Iro,l}(xil 

f(y;p) = pI:7=IYi(1 - p)n-I:7=IYi n7=1 Iro,l}(Yi) 

for all values of x and y E R(X) = x7=1 {OJ I}. The ratio will be independent of p 
iff the constraint L:7=1 Xi = L:7=1 Yi is imposed. A minimal sufficient statistic 
for fIx; p) is thus sIX) = L:~I Xi, by Corollary 7.2. 0 

Example 7.12 Let (XI, ... , Xn) be a random sample from a Gamma population distribution rep­
resenting the operating life until failure of a certain brand and type of personal 
computer, so that 

( 
n )a-I n 

fIx' ex f3) = 1 n X· e- I:7=1 x;/{J n 1(0 I(x·), " f3na r n (ex). 1 . ,00 1 1=1 1=1 
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Using the Lehmann-Scheffe procedure for defining a sufficient statistic for 
fIx; a, f3), examine 

fIx; a, fi) (n?=1 Xit- I e- I:7=, x;//3 n?=1 IIO,oo)(xi) 
7.-~~= ~~~~~------~~~~~ 

f(y; a, f3) (n?=1 Yit- I e- I:7=, y;//3 n?=1 IIO,oo)(Yi) 

for all values of x and y E R(X) = x7=t!0, 00). (Note that the term (fino-in(a)) has 
been algebraically cancelled in the density ratio.) The ratio will be independent 
of both a and fi iff both the constraints n?=1 Xi = n?=1 Yi and I:?=I Xi = I:?=I Yi 
are imposed. A minimal sufficient statistic for fIx; a, fi) is then bivariate and is 
given by sdX) = n?=1 Xi and S2(X) = I:%.I Xi, by Corollary 7.2. 0 

Example 7.13 Let (XI, .. . ,Xn) be a random sample from a uniform population distribution 
representing the number of minutes that a shipment is delivered before (Xi < 0) 
or after (Xi> 0) its scheduled arrival time, so that 

n 
fIx; a, b) = (b - atn n I[a,bl(xJ 

i=1 

Unlike the previous examples, here the range of X depends on the parameters 
a and b. Referring to the Lehmann-Scheffe procedure for defining a minimal 
sufficient statistic for fIx; a, b) as given by Theorem 7.2, examine 

n n 

r(x, y, a, b) = fIx; a, b)lf(y; a, b) = n I[a,bl(xil/ n I[a,bl(Yi) 
i=1 i=l 

for all values of x ERn/X) = (x : fIx; a, b) > ° for some (a, b) satisfying 
-00 < a < b < oo}, 16 and for values of y for which the denominator is greater 
than 0. (Note we have algebraically cancelled the (b - a)-n term that appears 
in both the numerator and the denominator of the ratio.) The x and y vectors 
under consideration will be n-element vectors, with x being any point in Rn 
(why?) and y being any point in xf=l[a, b]. The ratio will be independent of a 
andbiffmin(xl, .. . ,xn) = min(Yl, ... ,Yn)andmax(xl, .. . ,xn) = max(Yl, . .. ,Yn), 
in which case the ratio will be equal to 1. The preceding conditions also ensure 
that fIx; a, b) = ° when fly; a, b) = 0, so that fIx; a, b) = !'(x, y)f(y; a, b) holds 
Vx and y ERn/X). A minimal sufficient statistic for fIx; a, b) is then bivari­
ate and is given by the order statistics SI (X) = min (X I, ... , Xn) and S2(X) = 
max{X 1, ... , Xn), by Theorem 7.2. 0 

Sufficient Statistics in the Exponential Class 

The exponential class of densities represents a collection of parametric fam­
ilies of density functions for which sufficient statistics are straightforwardly 

16It may be more appropriate to assume finite lower and upper bounds for a and b, respectively. Doing so will not change the final 
result of the example. 
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defined. Furthermore, the sufficient statistics are generally minimal sufficient 
statistics. 

Theorem 7.3 (Exponential Class and Sufficient Statistics) Let fIx; e) be a member of the 
exponential class of density functions 

fIx; e) = exp [t Cj(e)gj(x) + dIe) + Z(X)] fAlx). 

Then sIX) = (gdX), ... ,gdX)) is a k-variate sufficient statistic, and if Cj(e), i = 
I, ... ,k, are linearly independent, the sufficient statistic is a minimal sufficient 
statistic. 

Proof That sIX) is a sufficient statistic follows immediately from the Neyman factor­
ization theorem by defining g(gdx), ... , gk(X); e) = exp[L:f=l Cj(e)gj(x) + dIe)] 
and h(x) = exp[z(x)]fA(X) in the theorem. 

That sIX) is a minimal sufficient statistic follows from the fact that sIX) 
can be derived using the Lehmann-Scheffe approach of Corollary 7.2. To see 
this, note that 

fIx; e)lf(y; e) = exp [t Cj(e)[gj(x) - gj(Y)] + z(x) - Z(YI] ~::;: 
will be independent of e iff x and Y satisfy gj(x) = gj(Y), for i = I, ... , k, assuming 
Cj(e), i = 1, ... , k, are linearly independentY 0 

As an exercise, the reader should utilize Theorem 7.3 as an alternative approach 
for discovering minimal sufficient statistics in the problems of random sam­
pling examined in Ex. 7.11 and Ex. 7.12. 

Sufficiency and the MSE Criterion 

In addition to generating a condensed representation of the information in a 
sample relevant for estimating q(e), sufficient statistics can also facilitate the 
discovery of estimators of q(e) that are relatively efficient in terms of MSE. 
In particular, in the pursuit of estimators with low MSE, only functions of 
sufficient statistics need to be examined, which is the implication of the Rao­
Blackwell theorem. 

17If one (or morel ci(el were linearly dependent on the other ci(el's, then "only if" would not apply. To see this, suppose ck(el = 
Z:}::ll aiCi(e). Then the exp term could be rewritten as 

exp [~Ci(el [gi(xl- gi(y) + a;[gk(xl- gdYJIl] , 

and so gi(X) = g;(yl, i = 1, ... , k, is sufficient but not necessary for the term to be independent of e, and thus s(XI would not be 
minimal. 
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Theorem 7.4 (Rao-Blackwell's Theorem (scalar case)) Let S = [SI, ... ,sri' be an r-variate 
sufficient statistic for f(x;8), and let t*(X) be any estimator of the scalar q(8) 
having finite variance. Define t(X) = E(t*(XIISI, .. . ,Sr) = h(SI," .,Sr)' Then t(X) 
is an estimator of q(8) for which MSEe(t(X)) :::: MSEe(t*(X)) V 8 E Q, where 
the equality is attained only if Pe[t(x) = t*(x)] = l. 

Proof First note that since S = [SI,"" Sr l' is an r-variate sufficient statistic, f(xls) 
does not depend on 8, and thus neither does the function t(X) (since it is de­
fined as a conditional expectation using f(xls)), so t(X) is a statistic that can 
be used as an estimator of q(8). Now, by the double expectation theorem, 
Et(X) = EE(t*(X)ISI,"" SrI = Et*(X), so that t(X) and t*(X) have precisely the 
same expectation. 

Next, examine 

MSE(t*(X)) = E(t*(X) - q(8W = E(t*(X) - t(X) + t(X) - q(8W 

= E(t*(X) - t(XW + 2E(t*(X) - t(X))(t(X) - q(8)) + E(t(X) - q(8))2. 

The cross-product term is zero. To see this, first note that E[(t*(X) - t(X))(t(X) -
q(8))] = E[t(X)(t*(X) - t(Xll] since E(t*(X) - t(X))q(8) = 0 because Et*(X) = Et(X). 
Now note that by definition, t(X) is a function of only sufficient statistics, and 
so t(X) is a constant given Sl, ..• , Sr. Therefore, 

E[t(t*(X) - tllsl,.'" srI = [tE(t*(X) - tllsl,"" srll = 0 

since E(t*(X)lsI,"" srI = t by definition, so that E[t(X)(t*(X) - t(X))] = 0 by the 
double expectation theorem. 

Then, dropping the nonnegative term E(t*(X) - t(xj)2 on the right-hand side 
of the expression defining MSE(t*(X)) above yields MSEe(t*(X)) ::: Ee(t(X) -
q(8))2 = MSEe(t(X)) V 8 E Q. The equality is attained iff Ee(t*(X) - t(XW = 0, 
which requires that Pe[t*(x) = t(x)] = 1. • 

The point of the theorem is thatfor any estimator t*(X) of q(8), there always 
exists an alternative estimator that is at least as good as t*(X) in terms of MSE 
and that is a function of any set of sufficient statistics. Thus, the Rao-Blackwell 
theorem suggests that the search for estimators of q(8) with low MSEs can al­
ways be restricted to an examination of functions of sufficient statistics, where 
hopefully the number of sufficient statistics required to fully represent the in­
formation about q(8) is substantially less than the size of the random sample 
itself. IS Note that if attention is restricted to the unbiased class of estimators, 
so that t*(X) is an unbiased estimator in the statement of the theorem, then the 
Rao-Blackwell theorem implies that the search for a minimum-variance esti­
mator within the class of unbiased estimators can also be restricted to functions 
of sufficient statistics. As an illustration, in Ex. 7.10 we know that :L7=1 Xi is a 

l8The reader will recall that the random sample, (Xl, ... , X n ), is by definition a set of sufficient statistics for fIx; 8). However, it is 
clear that no improvement (decrease) in the MSE of an unbiased estimator will be achieved by conditioning on (Xl, ... , Xn ), i.e., the 
reader should verify that this is a case where E(t*(X) - t(x)J2 = 0 and MSE equality is achieved in the Rae-Blackwell theorem. 
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sufficient statistic for fix; 0). Thus, our search for estimators of 0 with low MSE 
can be confined to functions of the sufficient statistic, i.e., t(X) = h(L:f=l X;). 
For future reference, we note that h(L:f=1 Xi) = n-I(L:f=1 Xi) is the MVUE of O. 

The Rao-Blackwell theorem can be extended to the vector case as follows. 

Theorem 7.5 (Rao-Blackwell Theorem (vector case)) Let S = [SI," . ,srI' be an r-variate suf­
ficient statistic for fIx; 8), and let t*(X) be an estimator of the (k xl) vector func­
tion q(8) having a finite covariance matrix. Define t(X) = E(t*(X)lSI," .,Sr) = 
h(Sl," .,Sr)' Then t(X) is an estimator of q(8) for which MSEe(t(X)) :::s 
MSEe(t*(X)) V 8 E n, where the equality is attained only if Pe(t(x) = t*(x)) = 1. 

Proof The proof is analogous to the proof in the scalar case, except for MSE matrices 
replacing scalar MSEs in establishing that MSE(t(X)) is smaller than MSE(t*(X)). 
The details are left to the reader. • 

Definition 7.20 
Complete 

sufficient statistics 

The implications of Theorem 7.5 are analogous to those for the scalar case. 
Namely, one need only examine vector functions of sufficient statistics for 
estimating the vector q(8) if the objective is to obtain an estimator with a 
small MSE matrix. Furthermore, the search for an MVUE of q(8) can also be 
restricted to functions of sufficient statistics. As stated previously, this can 
decrease substantially the dimensionality of the data used in a point estimation 
problem if the minimal sufficient statistics for the problem are few in number. 
Revisiting Ex. 7.11, we note for future reference that 

T=h(tXi) = [ (2:7=I X i)/n 2 ] 

i=1 (n (2:7=1 Xi) - (2:7=1 Xi) ) /n(n - 1) 

is the MVUE for (p, p( 1 - p)), the mean and variance of the Bernoulli population 
distribution in the example. 

Complete Sufficient Statistics 

If a sufficient statistic, S, has the property of being complete, then any unbiased 
estimator of q(e) that is defined as a function of S is unique. We state the for­
mal definition of completeness, and then motivate the uniqueness of unbiased 
estimators based on complete sufficient statistics. 

Let S = [SI,"" Sr]' be a sufficient statistic for fIx; e). The sufficient statistic 
S is said to be complete iff the only real-valued function h defined on the 
range of S which satisfies Eeh(S) = 0 VeE n is the function defined as 
hIS) = 0 with probability 1 veE n. 

If a sufficient statistic, S, is complete, it follows that two different functions 
of S cannot have the same expected value. To see this, suppose that Et(S) = 
Et*(S) = q(e), and define r(S) = tIS) - t*(S). Then Er(S) = 0, and since rlS) 
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is a function of the complete sufficient statistic S, it must be the case that 
L(s) = tIs) - t*(s) = 0 occurs with probability 1 for all 8. Thus, tIs) and t*(s) are 
the same function with probability 1. An important implication of this result is 
that any unbiased estimator of q(8) that is a function of the complete sufficient 
statistic is unique-there cannot be more than one unbiased estimator of q(8) 
defined in terms of complete sufficient statistics. This uniqueness property 
leads to an important procedure for defining MVUEs that will be discussed in 
Section 7.5. 

The following example illustrates the process of verifying the completeness 
property of a sufficient statistic. Such verification often requires considerable 
ingenuity. 

Example 7.14 Let (Xl, ... , Xn) be a random sample from the Bernoulli population distribution 
pZ( I-pJl-z IIO, l} (z) representing whether or not the administration of a particular 
drug cures the disease of a patient, and suppose we wish to estimate q(p) = 
p( 1 - p) = a 2 • Note that the joint density of the random sample in this case is 
given by 

n 

f(xI, ... ,Xn; p) = pE7=1 Xi(1 - p)n-E7=1 Xi f1 I/o,l)(xi). 
i=l 

Using the Neyman factorization criterion, we know that S = L~=l X j is a suffi­
cient statistic for f(xI, ... , Xn; p), since the joint density can be factored into the 
product of 

n 

and h(XI, ... , xn) = f1 IIO,l} (xi/. 
i=l 

To determine whether S = L~=l Xi is a complete sufficient statistic, we need 
to determine whether the only real-valued function h defined on the range of 
S which satisfies Eh(S) = 0 V P E 10,1) is the function defined as hIS) = 0 with 
probability 1 V P E 10, 1). Note that since S has a binomial density, in this case 
we know that for a sample size of n, Eh(S) = 0 V P E 10, 1) implies 

Eh(SI = th(il(~)pi(I - p)n-i = 0 Vp E 10,1). 
i=O 1 

Let p E (0, I), and note, by dividing through by (1 - pIn, that the preceding 
summation condition can be rewritten as 

n (n). L(zl = £; h(i) i Zl = 0, 

which is a polynomial in z = p/(I - pl. Differentiating n times with respect to 
z yields 

dnr(z) _ !h( ) - 0 
d -no n - , zn 
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which implies that h(nJ = O. Differentiating r(zJ only (n - IJ times with respect 
to z, and using the fact that h(nJ = 0, yields 

an-1r(zJ 
-d-=-z-n---';-l:-'- = n!h(n - IJ = o. 

The process can be continued to lead ultimately to the conclusion that h(iJ = 0 
for i = 0, ... , n is required. Thus, necessarily h(SJ = 0 with probability 1 if 
Eh(SJ = 0, and thus S = L:f=l Xi is a complete sufficient statistic for {(Xl, ... , 
xn;pJ. D 

In general, the method used to verify completeness must be devised on a 
case-by-case basis. However, the following theorem identifies a large collection 
of parametric families for which complete sufficient statistics are relatively 
straightforward to identify. 

Theorem 7.6 (Completeness in the exponential classJ Let the joint density, f(x;8J, of the 
random sample (XI, ... ,XnJ be a member of a parametric family of densi­
ties belonging to the exponential class of densities. If the range of c(8J = 
[cdE>J, ... ,Ck(E>J]', E> E Q, contains an open k-dimensional rectangle, then 
g(XJ = [gdXJ, ... ,gk!XJJ' is a set of complete sufficient statistics for f(x;8J, 
E> E Q. 

Proof See E. Lehmann (1986J, Testing Statistical Hypotheses. New York: John Wiley, 
pp. 142-143 and P. Bickel and K. Doksum (1977J, Mathematical Statistics. San 
Francisco: Holden Day, p. 123. • 

Theorem 7.6 implies that if we are dealing with a parametric family of 
densities from the exponential class, once we verify that the range of c(E>J 
contains an open k-dimensional rectangle, we will have immediately identified 
a set of complete sufficient statistics given by g(XJ in the exponential class 
representation. Regarding the open rectangle condition, it will often be readily 
apparent from the definition of the range of e(E>J whether there exists an open 
k-dimensional rectangle contained in R(eJ. Alternatively, it can be shown that 
R(cJ will contain such an open rectangle if c(E>J is continuously differentiable 
vE> in some open k-dimensional rectangle, I, contained in the parameter space 
Q and ac/aE> has full rank for at least one E> E r (Bartle, Real Anaylsis, p. 381J. 

Example 7.15 Let (X I, ... , Xn J be a random sample from a normal population distribution with 
mean J-L and variance 0'2 representing the package weights of a certain type of 
cereal produced by a large company. The joint density function for the random 
sample is then given by 

1 ( n (Xi - J-L)2) f(xI, ... ,xn;J-L,O'J= (27fJn/2O'n exp -(1/2)B -0'- . 
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The density is a member of the exponential class of density functions 

exp (t CilIL, a)gilx) + dilL, 0") + ZIX)) lAlxl, ... , xn ), 

where cdIL,a) = IL/a2, gdx) = I:?=l Xi, c2lIL,a) = -11/20"2), g2lx) = I:~l xl, 
dilL, 0") = l-n/2HIIL2/a2) + lnI2Jra2)), zlx) = 0, and A = x7=ll-oo, 00). 

Now note that clIL, 0") = IcdIL, a), c21IL, 0"))' has the set 1-00, 00) x 1-00,0) for 
its range, i.e., graphically 

C,(/l,o) 

" ..... 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I r"':--------- cz(/l,o), 
I (0,0) 
I 
I 
I 
I 
I 
I , 

since by definition the range of clIL, 0") in this case is 

Ric) = ((cl,C2): Cl = IL/a2,c2 = -1/2a2,IL E 1-00,00),0" E 10,oo)}. 

The range of clIL, 0") clearly contains an open two-dimensional rectangle, i.e., 
there exists a set of points {(Xl, X2) : Qi < Xi < bi, i = 1,2} c Riel, and so we 
know from Theorem 7.6 that (I:?=l Xi, I:?=l Xll is a set of complete sufficient 
statistics for the multivariate normal family of densities in this example. 

As an alternative verification of the open rectangle condition, note that 
c(IL,o-) is continuously differentiable for all IL E 1-00,00) and 0" > 0. Further­
more, letting e = [IL, aI', 

[ 
aCl aa~] = [1/0"2 _ 2IL ] ac' = aIL \J 0"3 

ae aC2 aC2 ° 1 ' 
aIL aa 0"3 

so that det[ac/ae] = 1/0"5 > OVa > 0. Thus ac/ae has full rank VIL E 1-00,00) 
and Va E 10,00), and the open rectangle condition is verified. 0 

The reader might have noticed that in all of the preceding examples in 
which sampling was from a population distribution belonging to the exponen­
tial class, the joint density function for the random sample was also a member 
of the exponential class of densities. This was not just a coincidence, as the 
following theorem makes clear. 
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Theorem 7.7 (Joint Density of Random Sample from an Exponential Class Distribution) Let 
(X I, ... ,Xn) be a random sample from a population distribution that belongs to 
the exponential class of density functions. Then the joint density function of 
the random sample also belongs to the exponential class of density functions. 

Proof Suppose 

Xi'"" f(xi; 8) = exp [t cj(8)g;(x;) + d(8) + Z(Xi)] lA(xi) Vi· 

Then 

(XI, ... ,Xn )", Df(Xi; 8) = exp [t ci(8)t gi(Xi)+nd(8) + tZ(Xi)] D lA(Xi) 

= exp[t Cj(8)g;(Xl, .. . ,xn ) + d*(8) +Z*(Xl' .. . ,xn~ lA.(Xl, ... ,xn), 

where gj(Xl, ... , xn) = L:7=l gj(xi), d*(8) = nd(8), Z*(XI, ... , xn) = L:7=IZ(Xi), and 
A* = x:~lA. Thus, the joint density function of (Xl, .. . ,Xn ) belongs to the 
exponential class. • 

The point is that if random sampling is from an exponential class population 
distribution, then Theorem 7.6 could potentially be useful for finding complete 
sufficient statistics, since we know that the joint density of the random sample 
is in fact in the exponential class of probability distributions. 

If a sufficient statistic is complete, then it is also minimal, although the 
converse does not hold in general. 

Theorem 7.8 sIX) is complete::} sIX) is minimal. 

Proof E. L. Lehmann and H. Scheffe, 1950, Unbiased Estimation. • 
Thus, if one finds a set of complete sufficient statistics, one also knows 

there is no smaller set of sufficient statistics available for the statistical model 
being analyzed. Furthermore, one knows that the search for complete sufficient 
statistics can be limited to an examination of minimal sufficient statistics. 

Sufficiency, Minimality, and Completeness of Functions of Sufficient Statistics 

Sufficient statistics are not unique. In fact, any one-to-one (i.e., invertible) func­
tion of a sufficient statistic S, say T(S), is also a sufficient statistic, and if S is 
complete or minimal, then it is also true that T(S) is complete or minimal, 
respectively. We formalize this observation in the following theorem. 



7.5 Results on MVUE Estimation 405 

Theorem 7.9 (Sufficiency of Invertible Functions of Sufficient Statistics) Let S = s(X) be an 
(r xl) sufficient statistic for f(x; 8). If rlslX)) is an (r xl) invertible function of 
s(X), then 

a. r(s(X)) is an (r x 1) sufficient statistic for f(x;8)i 
h. if siX) is a minimal sufficient statistic, then r(s(X)) is a minimal sufficient 

statistic; 
c. if siX) is a complete sufficient statistic, then r(s(X)) is a complete sufficient 

statistic. 

Proof a. If siX) is sufficient, then by Neyman factorization f(x; E» = g(s(x); 8)h(x). 
Since r(s(X)) is invertible, it follows that six) = r-I(r(s(x))), so that 
g(s(x); 8) = g(r-I(r(s(x))); 8) = g*(r(s(x)); 8). By Neyman factorization, 
since fix; 8) = g*(r(s(x)); 8)hlx), r(sIX)) is a sufficient statistic for fix; 8). 

h. If it can be shown that r(s(X)) satisfies the conditions of the Lehmann­
Scheffe minimal sufficiency theorem, then we know that r is a minimal 
sufficient statistic. Note that rlslx)) = rls(y)) {:> six) = sly) by the invert­
ibility of r. It follows that {(x, y) : rlslx)) = rlsly))} = {(x, y) : six) = sly)} so 
that by Theorem 7.2, if 8 is a minimal sufficient statistic, then so is r(S). 

c. Suppose Eh*(rI8)) = 0 VeE Q. Since r(S) is invertible, it follows that 
Eh 0 r- l (r(8)) = 0 V E> E Q, where h is such that h* = h 0 r-1. But since 8 is 
complete, P(h(s) = 0) = P(h*(rls)) = 0) = 1 V 8 E Q, so that r(8) is complete 
by Def. 7.20. • 

The implication of Theorem 7.9 is that we can transform a set of sufficient 
statistics, via invertible functions, in any way that is useful or convenient. 
For example, the minimal sufficient statistic L7=1 Xi in Ex. 7.11 could alter­
natively be defined as Xni the minimal sufficient statistic IL7=1 Xi, n7=1 Xi) in 
Ex. 7.12 could alternatively be defined as (Xn, (n7=1 Xi)l/n); and the complete suf­
ficient statistic (L7=1 Xi, L7=1 XlJ in Ex. 7.15 could alternatively be represented 
as (Xn, S~). All of the alternative representations are justified by Theorem 7.9 
since each of the alternative representations can be defined via invertible func­
tions of the original sufficient statistics. 

7.5 Results on MVUE Estimation 

This section provides number of results that can aid in the search for an MVUE 
of g(e). However, it should be noted at the outset that MVUEs do not always 
exist. When they do exist, MVUEs may be difficult to determine even with 
the aid of the theorems presented in this section. In Chapter 8 we will present 
tractable analytical procedures for deriving estimators of g(e) that often lead to 
estimators with good properties and that can also lead to MVUEs. Thus, when 
the results in this section cannot be applied successfully in a given estimation 
problem, there are nevertheless useful alternative approaches that can be used 
to define an estimator of g(e) for a wide range of problems of practical interest. 
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We begin with a theorem that identifies necessary and sufficient condi­
tions for an unbiased estimator of a scalar q(E» to be a MVUE. Henceforth, we 
tacitly restrict the class of estimators under consideration to those with finite 
variances or finite covariance matrices, since estimators with infinite vari­
ances will clearly not minimize variance and in fact cannot even be compared 
on the basis of variance. 

Theorem 7.10 (Scalar MVUE: Necessary and Sufficient Conditions) A necessary and suffi­
cient condition that an estimator T = t(X), of the scalar q(E», be a MVUE is 
that cov(T,S) = ° V 8 E Q and V S = sIX) E va' where va is the set of functions 
of X whose expectations equal O. 

Proof a. Necessity: If T is unbiased for q(E», and ES = 0, then T + AS is unbi-
ased for q(E». Given E> and A, the variance of T + AS equals var(T + AS) = 
var(T) + [2A cov(T, S) + A 2 var(S)I. Suppose cov(T, S) < 0. Then the brack­
eted term can be made negative, and thus var(T + AS) < var(T), for A E 

(0, -2 cov(T, S)/ var(S)). Alternatively, suppose cov(T, S) > 0. Then the brack­
eted term can be made negative, and thus var(T + AS) < var(T), for A E 

(-2cov(T, S)/var(S), 0). Thus, t(X) cannot be a MVUE if cov(T, S) ¥= 0. 
h. Sufficiency: Let T* be any other unbiased estimator of q(E». Then (T - T*) E 

va' i.e., (T - T*) has an expectation equal to zero. Suppose that V E> E Q and 
T* E Vql% where VqlE» is the class of unbiased estimators of q(8), 

cov(T, (T - T*)) = E(T - q(8)J(T - T*) = ET1T - T*) = ET2 - EIT* = 0, 

which is implied in the statement of the theorem upon defining sIX) = 
t(X) - t*(X). It follows that ET2 = EIT*, and thus 

cov(T, T*) = EIT* - ETET* = ET2 - (q(8W = var(T) 

since both T and T* are unbiased for q(8). The preceding result can be 
algebraically manipulated to yield 

[var(T)j1/2 = [ cov(T, T*) ] (var(T*))1/2 = p(var(T*Jj1/2 ::: (var(T*JJl/2 
(var( TJ)l/2(var(T* ))1/2 

since the correlation coefficient p E [0, 11 in this case. Thus T has minimum 
variance. • 

The result in Theorem 7.10 facilitates the proof of the following proposi­
tion that establishes a very important relationship between scalar and vector 
MVUEs. 

Theorem 7.11 (Relationships Between Scalar and Vector MVUEs) Let T = t(X) be a (k x 1) 
vector estimator of the (k xI) vector function q( E». Then any of the following 
statements implies the others: 

1. T is a MVUE for q(8). 
2. Ti is a MVUE for qi(E», i = 1, .. . ,k. 
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3. l'T is a MVUE for l'q(E», Y l =1= [01. 

"Proof We prove the theorem by demonstrating that (1) ¢> (2) and (2) ¢> (3). 
Proof that (2) ¢> (3): 

Assume (2). By Theorem 7.10, for Z = I:f=I fiTi to be a MVUE of 
I:f=I fiqi(E», it is necessary and sufficient that cov(Z, S) = 0 Y S E Va and 
Y E> E Q. Note that Y S E Va 

cov(Z, S) = E [[tfiTi - tfiqi(E»] s] = tEfdTi - qi(E>)]S 

k 

= L fi COV(Ti' S) = 0, 
i=I 

where the last equality follows from the fact that Ti is a MVUE for qi(E», 
and thus by Theorem 7.10 COV(Ti' S) = O. From Theorem 7.10, it follows that 
I:f=I fiTi is a MVUE of I:f=I fiqi(E». 

Assume (3). Defining l so that l'T = Ti (l is a vector of zeros except for a 1 
in the ith position), Ti is a MVUE for qi(E», i = 1, .. . ,k. 
Proof that (1) ¢> (2): 

Assume (1). Note that Ti = l'T and var(Ti ) = l'Cov(T)l, where l is a zero 
vector except for a 1 in the ith position. Clearly, Ti is unbiased for qi( E». Suppose 
var(Ti) = l'Cov(T)l > var(Tn for some other unbiased estimator, Tt, of qi(E». 
But then T could not be a MVUE of q(E», since defining T* equal to T, except 
for Tt replacing Ti, we would have l'Cov(T)l > l'Cov(T*)l, contradicting the 
fact that Cov(T) - Cov(T*) would be negative semidefinite for all other unbiased 
estimators T* if T were a MVUE for q(E». Thus (1) =} (2). 

Assume (2). Suppose Ti is a MVUE for qi(E», i = 1, ... , k. Then clearly ET = 
q(E», so that the vector T is an unbiased estimator of q(E». Now suppose there 
exists another unbiased estimator, T*, of q(E» such that l'Cov(T*)l < l'Cov(T)l 
for some real vector l and for some E> E Q. Then l'T* would be an unbiased 
estimator of l'q(E» having a smaller variance than the unbiased estimator f'T. 
However, the latter estimator is a MVUE of l'q(E» by the earlier proof of (2) 
¢> (3). This is a contradiction, and so there is no E> for which 3f such that 
l'Cov(T*)l < l'Cov(T)f, i.e., f'Cov(T)l :::: l'Cov(T*)l Y land Y E> E Q. But this 
implies that Cov(T) :::: Cov(T*) Y E> E Q and for any unbiased estimator T*, so 
that T is the MVUE of q(E». • 

The primary practical implication of Theorem 7.11 is that it allows a vector 
MVUE of q(E» to be defined elementwise with the knowledge that once each 
MVUE, Ti , for qi(E» has been individually defined for i = 1, ... , k, then T = 
[TI, ... , Tkl' is a MVUE of q(E» in the vector sense. In addition, the theorem 
indicates that a MVUE for any linear combination of the entries in q( E» is then 
immediately known to be l'T. 
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Up to this point, we have been referring to "a" MVUE of q(E>J, rather than to 
"the" MVUE of q(E>J. The following theorem implies that if we have discovered 
a MVUE of q(E>J, it is unique with probability 1. We present the result for the 
scalar case and then use it to provide the extension to vector situations. 

Theorem 7.12 (Uniqueness of Scalar MVUEsJ If T and T* are both scalar MVUEs for q(E>J, 
then P[t = t*] = 1. 

Proof If T and T* are both MVUEs for q(E>J, then necessarily var(TJ = var(T*J V E> E 

n. From the sufficiency proof of Theorem 7.10, we know that (var(TjJl/2 = 
p(var(T*JJl/2, where p is the correlation between T and T*, It also follows 
from the sufficiency proof of Theorem 7.10 that since var(TJ = var(T*), p = 
var(Tj/var(T*) = 1. From Theorem 3.35, p = 1 implies that P[t = al + bt*] = I, 
with al = (JLTap - JLpaTJ/ap = 0 and b = aT/ap = I, since JLT = JLp = q(E>J 
and ap = aT, so that PIt = t*) = 1. • 

Theorem 7.13 (Uniqueness of Vector MVUEsJ If estimators T and T* are both MVUE's for 
the (k x IJ vector q(E», then P[t = t*) = 1. 

Proof Let Ai represent the event that Ti = Tt for i = 1, ... , k. Then since p(nf=lAi ) 2:: 
1 - L:=lP(it) by Bonferroni's inequality, 

k k 
P[ti = tj,i = 1, .. . ,k] = P[t = t*]2:: 1- LP[ti =1= til = 1 - LO = I, 

i=l i=l 

where the next-to-last equality follows from Theorem 7.12 and from the fact 
that both Ti and Tt are MVUEs for qi(E». • 

Given Theorems 7.12 and 7.13, we will henceforth refer to the MVUE of 
q(E>J, since a MVUE of q(E» is essentially unique. 19 

Cramer-Rao Lower Bound 

We now examine a lower bound to the covariance matrix of an unbiased esti­
mator of q(E>J. If an unbiased estimator of q(E>J can be found whose covariance 
matrix attains this lower bound, then the estimator is the MVUE of q(E>J. The 
bound is called the Cramer-Rao Lower Bound (CRLBJ, and its applicability 
relies on a number of so-called regularity conditions on the underlying joint 
density function, fIx; E>J, of the random sample under investigation. We state 
the regularity conditions below. The interpretation and application of the reg­
ularity conditions can be quite challenging, and the reader may wish to skim 
the discussion of these conditions on first reading. 

190f course, by "essentially" we mean that if two or more MVUEs do exist, their outcomes differ only on a set of probability zero 
and, as a practical matter, the difference can be ignored. 
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Definition 7.21 
CRLB regularity 

conditions 

*CRLB Regularity Conditions 

1. The parameter space, Q, of the family of densities to which fIx; 8) be-
longs is an open rectangle.2o 

2. The support of fIx; 8), A = {x : fIx; 8J > O} is the same V 8 E Q. 

3. alnf(x; 8J/a8i exists and is finite V i, V X E A, and V 8 E Q. 

4. V i and; and V unbiased estimator t(XJ of q(8J having a finite covariance 
matrix, one can differentiate under the integral or summation sign as 
follows. 

Continuous Case: 

a 100 100 100 100 af(x; 8 J (aJ as. ... fIx; 8Jdxl . .. dxn = ... as. dXl ... dXn 
1 -00 -00 -00 -00 1 

a 100 100 (bJ as. ... ti(xJf(x; 8Jdxl '" dXn 
1 -00 -00 

100 100 af(x; 8J 
= 00. ti(XJ as. dXl 00. dXn -00 -00 1 

Discrete Case: 

(aJ 
a af(x; 8J 

ae.I::·ooI::f(x;8J=I::oo.I:: as. 
1 xeA xeA 1 

In practice, conditions (1 J, (2J, and (3 J are generally not difficult to verify, but 
condition (4J can be problematic. To see what is involved in verifying regularity 
condition (4aJ for the continuous case, note that since J~oo ... J~oo fIx; 8Jdx = 1 
because fIx; 8J is a density function, then the left-hand side of the equality in 
(4aJ is equal to zero. Then a regularity condition equivalent to (4aJ is 

100 100 af(x; 8J ... as. dXl . .. dxn = 0, -00 -00 1 

V;. 

20Recall that by "open rectangle" we mean that the parameter space can be represented as n = 1IE», ... ,E>kl : aj < E>j < bj , 

i = 1, ... , k}, where any of the a;'s could be -00 and any of the b;'s could be 00. This condition can actually be weakened to requiring 
only that the parameter space be an open subset of Rk, and not necessarily an open rectangle, and the CRLB would still apply. Such 
added generality is unnecessary for most applications. 
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Since alnf(x; e)/aS; = [fIx; e)l-I(af(x; e)/aS;) V x E A, another regularity 
condition equivalent to (4a) is 

f ... f alnf(x; e)f( . e)d dx = E [alnf(X; e)] = 0 . as. x, XI . . . n as. V 7· 
1 1 

xeA 

Thus, condition (4a) can be verified by showing that certain functions of X have 
zero expectations. By replacing integration with summation, the preceding two 
equivalent conditions suffice to verify condition (4a) in the discrete case as well. 

Verification of regularity condition (4b) is complicated by the fact that it 
must hold true for all unbiased estimators of q(e) with finite covariance matri­
ces. In general, demonstrating (4b) can be a challenging exercise in real analysis. 
We present without proof a sufficient condition for the validity of (4b) which is 
based on results in advanced calculus relating to the validity of differentiating 
under the integral sign (e.g., T. M. Apostol (1974), Mathematical Analysis, 2nd 
ed. Reading, MA: Addison-Wesley, p. 167J. 

Theorem 7.14 Let CRLB regularity conditions (1)-(4aJ hold. Then regularity condition (4b) 
holds if 

V j, V ~ E r(e), and VeE n, where fie) is an open rectangle containing e. 

Note that since E(c)lnf(X; ~J/a~;) = 0 by condition (4aJ, Theorem 7.14 can 
be interpreted as a boundedness condition on the variance of the random vari­
able a Inf(X; ~J/a~i V j and VeE n. The following example illustrates the CRLB 
regularity verification process. 

Example 7.16 Let (X I, ... , Xn J be a random sample from an exponen tial population distribution 
representing the waiting time between customer arrivals at a retail store, so that 

n 

fIx; OJ = o-ne- E7.., x;/9 fl Ilo,oo,(xil-
i=l 

It is clear that the parameter space, n, is an open rectangle (interval in this 
caseJ, since 0 > 0 for the exponential density. The set, A, of x values that satisfy 
fIx; OJ> 0 is the same for all 0 E n, i.e., A = x7=~(O, (0), regardless of the value 
of 0 > O. Also, a In fIx; B)lao = (-niB) + (:2:7=1 xdB J exists V BEn and x E A and 
is finite V BEn. Thus, CRLB regularity conditions (lJ"':'(3) are met. Regarding 
condition (4J, first note that 
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since E(L?=l Xi! = nO, and thus (4a) is met. Regarding (4b), note that 

E [(" ln~; 8)),] ~ E [ H + L:fU; X;)'] ~ E (~~ _ 2n L:J=t X; + (L:f; X;)') 
n 2 2n20 2n02 + n(n - 1 )02 n 

= 02 - (j3 + 04 = 02' 

where the next-to-last equality follows from the fact that EXl = 282 V i and 
the fact that the X/s are iid. It follows that whatever the value of 0 E Q, there 
exists an open interval (Le., one-dimensional open rectangle) r(O) = (O-s, O+s) 
for some s > 0, and a positive number rIel = n/(O - S)2 such that 

[( alnf(X; ~))2] n 
E ao = ~2 < r(O) < 00 V ~ E r(e), 

so that CRLB condition (4b) is met. Thus, the CRLB regularity conditions are 
met for this problem. 0 

In practice, there are cases where it can be quite difficult to verify all of 
the CRLB regularity conditions. It is useful to note that there is a wide class 
of densities, the exponential class discussed in Chapter 4, that satisfies the 
conditions quite generally, as we state below without proof. 

Theorem 7.15 Let f(x;8) be a member of the exponential class of densities, as defined in 
Def. 4.2, and let c(8) and d(8) be continuously differentiable with ac(8)/a8 
having full rank for 8 E Q. Then fIx; 8) satisfies the CRLB regularity condi­
tions, provided Q is defined to be an open rectangle. 

Proof A proof of the theorem can be constructed using the result in E. Lehmann ( 1986), 
Testing Statistical Hypotheses. New York: John Wiley, pp. 59-60. • 

Example 7.17 Let (Xl, .. . ,Xn ) be a random sample from a geometric population distribution 
representing the number of customer contacts required for a salesperson to 
make her first sale, so that 

n 
f(x; p) = pn(l - p)L:'..1 Xj-n n I{l,2,3, ... dxi)' 

i=l 

The PDF of the random sample is a member of the exponential class of densities 
with c(p) = In(l - p), dIp) = In(p/(1 - p)Jn, g(x) = L?=l Xi, z(x) = 0, and A = 
x?=d l ,2,3, ".}. Note that ac(p)/ap = -1/(1 - p) ¥= 0 (and thus is a (1 x 1) 
matrix of full rank) and is continuous for all p E (0, I), ad(p)/ap = n/p(1 - p) is 
continuous for all p E (0, I), and Q = (0, 1) is an open interval (or rectangle). 
Then, by Theorem 7.15, fIx; p) satisfies the CRLB regularity conditions. 0 

The CRLB Using the CRLB regularity conditions, we now present the CRLB. 



412 Chapter 7 Elements of Point Estimation Theory 

Theorem 7.16 (Cramer-Rao Lower Bound) Let t(X) be an unbiased estimator of the (k x 1) 
vector function q(8) and let t(X) have a finite covariance matrix. Let the (k xm) 
Jacobian matrix aq(8)/a8 exist V 8 lmxl ) E Q. Assume the CRLB regularity 
conditions of Def. 7.21 hold, where fIx; 8) is the joint density function of the 
random sample X. Then 

C _ ( (X)) ::- [aq(8)]' [E alnf(X; 8) alnf(X; 81']-1 [aq(8)] 
oVe t - a8 e a8 a8 a8 V 8 E Q, 

provided the inverse matrix exists. 

Proof We prove the result for the continuous case. The discrete case is analogous and 
is left to the reader. 

First note that CRLB regularity condition (4a) implies that (the e subscripts 
are suppressed) E[alnf(X; 8)/ae j ] = 0, i = I, . .. ,m. Then defining the (m xI) 
random vector sIX) = [alnf(X; 8)/ae1,."", a Inf(X; 8)/aem )]', it follows that 
Es(X) = lot and 

Cov(s(X)) = Es(X)s(X)' = E [aln~(~; 8) aln~~; 81'] . 

Now, since t(X) is an unbiased estimator of q(8), 

qj(81 = i:··· i: tj(x)f(x; 8)dx l .. " dxn, 

so that by CRLB regularity condition (4b) 

aqj(8) = '100 ... 100 tj(xl af(x; 8) dXl ... dxn , 

ae; -00 -00 ae j 

100 100 alnf(x' 8) 
= . " . tj(X) • fIx; 8 )dxl ... dXn -00 -00 ae; 

[ ( lalnf(X; 81] [() ( )] f ., = E tj X ae i = E tj X Sj X or 1, I = 1-, " " ., m. 

Examine the covariance matrix of the (k +ml x 1 random vector Z = Gl~\]. 
Since EZ = [ql~)], it follows that 

[ 
Cov(t(Xl) Et(X)S(X),] 

Cov(Z) = 
Es(X)t(X)' Cov(s(Xll 

[
COV(t(X)) ~] 

aq(8) 
a8 Cov(s(Xll· 



7.5 Results on MVUE Estimation 413 

Premultiply Cov(ZJ by 

D = [ I 1- a~(:;J' [COV(S(X)Jl-I] 
Ikxk) u'V Ikxm) 

and then postmultiply by D' to obtain DCov(ZJD' = Cov(t(XJJ - [aq(B)/aBI' 
[Cov(s(X)]-I[aq(BJ/aBI ~ [01, where the relation ~ is due to the fact that Cov(ZJ 
is necessarily positive semidefinite, and then DCov(ZJD' is necessarily positive 
semidefinite for any conformable matrix D.2I Then, given the definition of 
Cov(s(XJJ above, the result of the theorem follows. • 

An alternative form of the CRLB that utilizes second order partial deriva­
tives of fIx; B J with respect to B is sometimes easier to use in practice when 
applicable. Specifically, it is often the case that 

E [alnf(X; BJ alnf(X; BJ'] = -E [a2Inf(X; BJ], 
aB aB aBaB' 

which, when substituted into the CRLB in Theorem 7.16, provides an alterna­
tive expression for the CRLB. To see what is required for the above equality 
to hold, note that under the assumption that the derivatives and expectations 
exist, 

E [a2Inf(X; BJ] E [ a [ 1 af(X; BJ]] 
aejae; = ae; FIX; BJ aej 

_ E [ 1 a2f(X; BJ _ 1 af(X; BJ af(X; BJ] 
- FIX; BJ aejae; (f(X; BJJ2 aej aej 

= E [ 1 a2f(x; BJ _ alnf(X; BJ alnf(X; BJ] 
FIX; BJ aejae; aej ae; 

Vi, j. Thus, if the first term in brackets in the last equality is such that22 

[ 1 a2f(X; BJ] foo foo a2f(x; BJ .. 
E FIX; BJ aejae; = -00'" -00 aejae; dxl ··· dXn = 0 VI, 7, 

then we can replace the matrix being inverted in Theorem 7.16 by the expec­
tation of the negative of the second-order partial derivative matrix of Inf(X; BJ 
with respect to B, i.e., we would have as the alternative form of the CRLB that 

Cov(t(XJJ ~ [aq(BJ]' [-E a2 Inf(X; BJ]-I [aq(BJ]. 
aB aB aB' aB 

To allow this substitution, note that if, V i and j, 

a fOO foo af(x; BJ foo foo a2f(x; BJ 
ae . ... ae. dXI' ··dxn = ... ae.ae. dXI .. . dxn, 

I -00 -00 1 -00 -00 1 I 

21 This can be easily seen, since l'OCov!Z)O'l = l:Cov!Z)l. ~ 0, where l* = O'l, V i. 

22We proceed for the continuous case-the discrete case is analogous, with integration replaced with summation. 
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then the integral on the right-hand side is zero as desired, since by the CRLB 
regularity conditions the left-hand side of the equality must be zero,. because 

100 100 aflx; 8) a 100 100 a ... dXl ... dXn = - ... fIx; 8)dxl'" dXn = -11) = 0 -00 -00 aej aej -00 -00 aej 

and then the derivative of the constant zero is also zero. Thus, the substitution 
follows if we may twice differentiate J~oo'" J~oof(x; 8)dxl ... dXn under the 
integral sign. 

We note that the alternative form of the CRLB is valid if fIx; 8) is a mem­
ber of the exponential class of densities satisfying Theorem 7.15 and if d(8) 
and c(8) are twice continuously differentiable with respect to 8 E Q (see the 
Lehmann reference cited in Theorem 7.15). If fIx; 8) is not in the exponential 
class, the admissibility of differentiating under the integral sign a second time 
would need to be established, or else it would need to be verified by direct 
evaluation that the integrals of the second-order derivatives of fIx; 8) are in­
deed zero. For the sake of illustration, we provide an example of how the direct 
evaluation process would proceed using a normal distribution with (J2 = 1 as 
the population distribution. The reader will note that since the normal distri­
bution is a member of the exponential class satisfying Theorem 7.15, and since 
a2c(e)/ae2 and a2d(e)/ae2 exist and are continuous, we already know that the 
outcome of our evaluation process will result in the alternative form of the 
CRLB being applicable. 

Example 7.18 Let (X I, ... , Xn) be a random sample from a normal population distribution with 
(J2 = I, so that 

fIx' I-t) = _1_e-(1/21L:7~I(xl-1l12 
'(2rr)n/2 . 

Note that 

af(x; I-t) _ Ii(. )~(. _ ) a - I'X, I-t ~ XI I-t 
I-t j=l 

and 

It follows that 

100 100 a2f 100 100 
. . . -2 dXl ... dXn = - n . . . fIx; l-t)dXl ... dXn -00 -00 al-t -00 -00 

+ i: .. , i: ~(Xj - I-tff(x,l-t)dxl ... dXn 

= -n+n=O 
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since a} = 1 V i, and so the alternative form of the CRLB is applicable. Thus, 
in this case (the reader is encouraged to evaluate the derivatives), 

E [ (aln~(:; tt)) 2] = -E [a21~~~; tt)] = E[nl = n. 

If interest centers on estimating tt (as opposed to estimating some function 
of tt), then q(tt) = tt in the statement of the CRLB in Theorem 7.16, so that 
aq(tt)/att = I, and the CRLB for the variance of any unbiased estimator of tt is 
equal to n-I. 0 

Note that when the equality 

E [(aln/(X; 8))2] = -E [o2 In /(X; 8)] 
aBi aBT 

is true, the latter expectation expression can be substituted into the previously 
mentioned sufficient conditions for checking the validity of CRLB regularity 
condition (4b) (Theorem 7.14). In particular, the substitution would imply that 
-E[a2In/(x; e)/aen < r(8) < 00 Vein an open rectangle 1(8) containing 8, 
V 8 E Q, is the condition that would need to be verified. 

Two special cases of the CRLB often arise in practice. The first case occurs 
when q(B) is a scalar function of a scalar parameter B. 

Corollary 7.3 (CRLB for Scalar Function Case) Let k = m = 1 in Theorem 7.16. Then the 
unbiased estimator T = t(X) 0/ the scalar /unction q(B) 0/ the scalar parameter 
e is such that 

vare(t(X)) ~ [d~~)r lEe [(dln~(~; B)Y] veE Q. 

The second special case is when q(8) = 8, i.e., the function defined by 
q(8) is the identity function. Since in this case, aq(8)/a8 = I, we have the 
following result. 

Corollary 7.4 Let q(8) = 8 in Theorem 7.16. Then the unbiased estimator T = t(X) 0/ the 
vector 8 is such that 

C ((X)) [E aln/(X; 8) aln/(X; 8)'J-1 
\.J 8 E r\. 

OVe t ~ e a8 a8 v .. ~ 

We now turn to examples of the use of the CRLB to discover MVUEs. 

Example 7.19 Let (Xl, .. . ,Xn) be a random sample from a Bernoulli population distribution 
representing whether or not a vaccine developed by a pharmaceutical company 
prevents the flu, so that 

n 
fix; p) = p2:7= IXi(1 - p)n-2:7=1 xinI{O,l}(xi). 

i=l 
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Find the MVUE of the probability that the vaccine prevents the flu. 
Answer: Note that the support of fIx; p) does not depend on p E (0, 1), and 
we concentrate attention on p E (0,1) to achieve the open rectangle regularity 
condition on the parameter space. Also, fIx; p) is continuous in p, and 

lnf(x;p) = ~Xilnp + (n - tXi)ln(I - p) + In [0 I 10 ,1,(X i)], 

so that 

(n - E?=IXi) 
(I-p) 

exists and is finite V p E (0, 1). Regarding CRLB regularity condition (4), we note 
that since df(x; p)/dp = fIx; pHd lnf(x; p)/dp) exists V p E (0, I), and since we are 
dealing with finite sums when defining expectations, condition (4) is met. Now 
note that 

d2Inf(x; p) - E?-1 Xi 
= ---==:~~ 

dp2 p2 
(n - E?=lXi) 

(1- p)2 

also exists. Furthermore, since E!I=o'" E!n=o df(x; p)/dp is a sum involving 
a finite number of terms, differentiation, under the summation sign a second 
time is permissible, so that the substitution of -E[d2Inf(X; 8)/dE>2J in the 
CRLB, as discussed earlier, is allowed. Note that 

E[d2In f (X;p)] = -np _ (n -np) = -n _ ~ = -n(I- p) -np = -n , 
dp2 p2 (I-p)2 P I-p p(l-p) p(I-p) 

and thus the CRLB for the variance of an unbiased estimator of q(p) = p is 
given by p(I-p)/n. Since var(Xn) = p(I-pJ/n, and since Un = p, we now know 
that Xn is the MVUE of the probability of flu prevention, p. (As an exercise, 
the reader should alternatively demonstrate CRLB regularity by showing that 
fIx; p) is a member of the exponential class, satisfying Theorem 7.15.) 0 

Example 7.20 Let (XI, ... , Xn) be a random sample from an exponential popula tion distribution 
representing the waiting time between customer arrivals at a retail store, where 

n 
fIx; OJ = O-ne- 1:7_1 xdO IT IIO,oo)(xiJ. 

i=1 

Find the MVUE of the mean waiting time between customers, O. 
Answer: Since fIx; OJ is a member of the exponential class, i.e., 

fIx; 0) = ec(O)g(x)+dIO)+z(x)IA(x), 

with c(O) = _0- 1, g(x) = E?=1 Xi, d(O) = In(O-n), z(x) = 0, A = x7=1 (0,00), and 
since d(O) and c(O) are twice continuously differentiable and dc(O)/de =1= 0 for 
0> 0, we know by Theorem 7.15 that the CRLB regularity conditions are met 
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and also that the alternative form of the CRLB applies. Note that 

n n 

lnf(x; 0) = -nInO - LxdO + Llnllo,ool(Xi), 
i=l i=l 

so that 

dlnf(x; 0) -n I:~l Xi 
dO = e + 02 

and thus 

and 

E [d2 In f(X; 0)] = ~ _ 2nO = -n 
d02 02 03 02 . 

d2 1nf!x; 0) n 2 I:7=1 Xi 

d02 = 02 - 03 
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The CRLB for the variance of an unbiased estimator of 0 is then 02/n. Since 
Un = () and var(Xn) = 02/n, it follows that Xn is the MVUE of the mean 
waiting time, O. 0 

CRLB Attainment The use of the CRLB for identifying the MVUE of q(e) will 
only be useful if there actually exists an unbiased estimator whose covariance 
matrix equals the CRLB. A natural question to ask is under what conditions 
will an unbiased estimator, T, of q(e) have a covariance matrix that actually 
achieves the CRLB? It turns out that the CRLB is achieved only when the def­
inition of the estimator T has the special form given in the following theorem. 

Theorem 7.17 (Attainment of the CRLB) Assume the CRLB regularity conditions hold, and 
let T = t(X) be an unbiased estimator of q(e). Then Cov(t(X)) equals the CRLB 
iff 

t(X) = (e) + aq(e)' [EalnflX; e) alnf(X; 8)'J-1 alnf(X; e) 
q ae ae ae ae 

with probability 1. 

Proof Recalling the proof of the CRLB, it is recognized that the covariance matrix 
of t(X) will equal the CRLB iff Cov(Y) = (0], where the random variable Y is 
defined as 

Y = [I I -aq(e)' [cov(S(X))tI] [t(X)] 
ae siX) 

d (X) - alnf(X; e) 
an s - ae . 

(Y is the random variable that has the covariance matrix DCov(Z)D' in the proof 
of Theorem 7.16, and the CRLB is attained when DCov(Z)D' = (0].) 

Since EY = Et!X) = q(8), because Es(X) = [0], then setting Cov!Y) = (0] 
for the attainment of the CRLB implies that Ply = q(8)] = 1, which in turn 
implies P[t(x)-(aq(8)la8)'[Cov(s(X))]-ls(x) = q(8)] = 1. Upon substitution for 
[Cov(S(X))]-1 and six), the result is proved. • 



418 Chapter 7 Elements of Point Estimation Theory 

The CRLB attainment theorem suggests an explicit procedure for deriving 
the MVUE of q(8) when it and the CRLB exist. Namely, given a statistical 
model {fIx; 8),8 E Q}, define 

_ _ 8q(8)' [ 8Inf(X; 8) 8Inf(X; 8)']-1 8Inf(X; 8) 
t(X) - q(8) + 88 E as a8 a8 

as a tentative estimator for q(8). If the right-hand side does not depend on 8, 
i.e., a statistic is defined, then t(X) is the MVUE for q(8) since then t(X) is 
an estimator that achieves the CRLB. (Note that, unbiasedness of t(X) follows 
immediately from the fact that E[81nf(X; 8)la8] = [0] by CRLB regularity 
condition (4a)). 

Example 7.21 Reexamine Ex. 7.20. Because we are estimating e, we know that dq(f))ldf) = l. 
We also know from the example that d Inf(X; e)lae = (-nle) + (L~=l xi/(2 ), and 
that 

E [dlnf(X; e) dlnf(X; e)'] = -E [d2 In f(X; e)] = E. 
de de de2 e2 ' 

Then, using Theorem 7.17, we define t(X) as 

t(X) = e + e2 [-n + L~=l Xi] = L~=1 Xi = X 
n e e2 n ' 

and since t(X) is a statistic, t(X) is the MVUE of e. o 

It turns out that we can be quite specific about the class of parametric 
families of density functions that will both satisfy the CRLB regularity condi­
tions and allow an unbiased estimator of q(8) actually to achieve the CRLB. 
Specifically, the exponential class of densities contains the parametric families 
of densities for which the CRLB is attained for an unbiased estimator of some 
q(8). 

Theorem 7.18 (Exponential Class and CRLB) Let f(x;8) satisfy the CRLB regularity condi­
tions, and suppose there exists an unbiased estimator of q(8) that achieves 
the CRLB. Then fIx; 8) belongs to the exponential class of density functions. 

Proof The proof for the scalar parameter case can be found in P. Bickel and K. Dok­
sum (1977), Mathematical Statistics. San Francisco: Holden-Day, pp. 130-131; 
a discussion of the multivariate case can be found in S. Zacks (1971), The The­
ory of Statistical Inference. New York: John Wiley, pp. 194-201, and in N. N. 
Cencov (1982), Statistical Decision Rules and Optimal Inference. Providence: 
American Mathematical Society, pp. 219-225. • 

Theorem 7.18 suggests that the procedure for defining the MVUE for q(8) 
implied by Theorem 7.17 has potential for success only for statistical models 
where the joint density of the random sample belongs to the exponential class. 
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Definition 7.22 
Asymptotic efficiency 
or best asymptotically 

normal (BAN) 

* Asymptotic Efficiency and the CRLB To this point, we have been using the CRLB 
concept in the context of examining finite sample properties of estimators. 
The CRLB plays a prominent role in defining the concept of an asymptotically 
efficient estimator of q(9), which relies on the properties of consistency and 
asymptotic normality as the following definition indicates. 

Tn = tn(X) is an asymptotically efficient estimator of q(9) iff tn(X) is a con­
sistent estimator of q(9) and 

~[aq(9)J'rE(alnf(X; 9) alnt(X; 9)')J-1 [aq(9)J)-1/2(T _ (9)) d N([O] I) 
~ a9 L a9 a9 a9 n q 40 " 

so that 

T !., N ( (9) [aq(9)J' [E (alnt(X; 9) alnt(X; 9)')J-1 [aq(9)J) 
n q, a9 a9 a9 a9' 

Thus, if Tn is asymptotically efficient, then it has an asymptotic normal 
distribution with mean q(9) and covariance matrix equal to the CRLB, and Tn is 
then approximately MVUE for q(9), based on the characteristics of its asymp­
totic (or approximate) probability distribution. Even more important than the 
preceding observation is the result by 1. LeCam23 stating that an asymptotically 
efficient estimator in the CAN class has an asymptotic covariance matrix that 
is smaller than the asymptotic covariance matrix of any other estimator of q(9) 
in the CAN class except, perhaps, on a set of 9 values having Lebesque measure 
zero. (Recall the previous discussion of asymptotic efficiency, Def. 7.17.) 

In order to illustrate the asymptotic efficiency concept, we demonstrate 
that in the case of sampling from an exponential density function (recall Ex. 
7.20), Xn satisfies the conditions of Def. 7.22 and is thus an asymptotically 
efficient estimator of e. 

Example 7.22 Recall Ex. 7.20. Since Un = (), so that Xn is unbiased, and since var(Xn) = 

(}2/n 40 0 as n 40 00, then Xn~(), which is sufficient for plimXn = () and so 
Xn is a consistent estimator of (). The CRLB for unbiasedly estimating () in this 
case is given by (}2/n (again, recall Ex. 7.20). By the Lindberg-Levy CLT, Zn = 
(Xn - e)/(n- 1/2e).1.N(O, 1) and thus Xn is in the CAN class of estimators. Then, 
by Def. 7.22, Xn is an asymptotically efficient estimator of e. The asymptotic 
distribution of Xn can be written as Xn !., N(e, e2 In). 0 

There is a generic way of defining asymptotic probability distributions 
for asymptotically efficient estimators which is inherent in the definition of 

23L. LeCam (1953), "On some asymptotic properties of maximum likelihood estimates and related Bayes estimates." Univ. of 
California Publications in Statistics, 1, pp. 277-330. 
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asymptotic efficiency. In particular, the asymptotic distribution of an asymptot­
ically efficient estimator can always be specified as normal, with a mean equal 
to whatever is being estimated and a covariance matrix equal to the CRLB. 

Complete Sufficient Statistics and MVUEs 

If complete sufficient statistics exist for the statistical model {fIx; 8),8 E Q}, 
then an alternative to the CRLB approach is available to aid in the search for the 
MVUE of q(8). The approach is based on the Lehmann-Scheffe completeness 
theorem. 

Theorem 7.19 (Lehmann-Scheffe's Completeness Theorem) Let SI, .. . ,Sr be a set of com­
plete sufficient statistics for f(x;8). Let T = t(SI, .. . ,Sr) be an unbiased esti­
mator for the (k x 1) vector function q(8). Then T = t(SI, .. . ,Sr) is the MVUE 
ofq(8). 

Proof Let S be an r-variate complete sufficient statistic, and let tdS) = E(tl *(X)j 
SI, ... , SrI and t2(S) = E(t2*(X)lSI, ... , SrI be two unbiased estimators of q(8) 
that have been defined by application of the Rao-Blackwell procedure to any 
two unbiased estimators of q(8), say, tl*(X) and t2*(X). Then, letting hIS) = 
l'[tl (S) - t2(S)] for any conformable i-vector, it follows from unbiasedness that 

Eh(S) = l'E[tdS) - t2(S)] = l'[EtdS) - Et2(S)] = 0 V 8 E Q. 

But since S is a set of complete sufficient statistics, necessarily hIS) = l'[tdS)­
t2(S)] = 0 with probability 1 since l'[tdS) - t2(S)] is a function of the set of 
complete sufficient statistics that has an expectation of zero V 8 E Q. Since l 
can be chosen to have all zero entries except for a 1 in any position, it follows 
that the (k xl) vectors tl (S) and t2(S) have the same k elements and thus are the 
same unbiased estimator, say t(S), of q(8) with probability I, regardless of the 
choice of unbiased estimators tl *(X) and t2*(X) used in the definitions of tdS) 
and t2(S), respectively. By the Rao-Blackwell theorem, tIS) = E(t*(X)jSI, ... , SrI 
must be the MVUE of q(8), regardless of the choice of unbiased estimator t*(X) 
since Cov(t(S)) ~ Cov(t*(X)) for any choice of unbiased estimator t*(X). 

We now show that regardless of the procedure used to define tIS), if Et(S) = 
q(8), then tIS) is the MVUE of q(8). Let tIS) be an unbiased estimator for q(8). 
Note that, by definition, E(t(S)jS) = tIS). Then, by the argument presented above, 
tIS) is the MVUE of q(8) (regardless of how we were led to the definition of 
tIS)). • 

The point of the Lehmann-Scheffe completeness theorem is that if a set of 
complete sufficient statistics exists for fIx; 8), then our search for the MVUE 
of q(8) is complete when we have found a function of the set of complete 
sufficient statistics whose expectation is q( 8). Viewed another way, Theorem 
7.19 implies that if S is complete, then for any function of S, say the function 
defined by r(S), we have that r(S) is the MVUE for its expectation, i.e., r(S) is 
the MVUE for Er(S). 
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The Lehmann-Scheffe completeness theorem then suggests two possible 
procedures for defining the MVUE of q(8) if a set of complete sufficient statis­
tics, S, exists, which we will refer to as the Lehmann-Scheffe MVUE approach: 

1. Find a statistic of the form tIS) such that Et(S) = q(8). Then tIS) is neces­
sarily the MVUE of q(8). 

2. Find any unbiased estimator of q(8), say t*(X). Then tIS) = E(t*(X)lS) is the 
MVUE of q(8). 

Recall Ex. 7.14 and Ex. 7.15. Since L7=1 Xi is a complete sufficient statistic for 
the statistical model of Ex. 7.14, and since T = t(L7=1 Xi) = n-1(L7=1 Xii = X 
is such that ET = p, we know by the Lehmann-Scheffe completeness theo­
rem that X is the MVUE for p. In Ex. 7.1S, Lz"l Xi and L7=1 Xl, or alterna­
tively by Theorem 7.9, X and nS2/(n - 1) are complete sufficient statistics for 
the statistical model. Since EX = J.L and EnS2(n - 1) = (52, it follows by the 
Lehmann-Sche££e completeness theorem that (X, nS2/(n - 1)) is the MVUE for 
(J.L, (52). 0 

Key Words, Phrases, and Symbols 

non parametric estimation 
true value of 8 
true value of q(e) 
true PDF of X 
parametric estimation 
distribution-specific case 
distribution-free case 
statistical model 
distinct PDFs 
parameter identifiability 
estimating 8 or q(e) 
an estimate of 8 or q(8) 
point estimator 
estimand 
point estimate 
unbiased estimator 
biased estimator 
Ti , Tin) 
mean square error, MSE 
bias 
bias vector 
mean square error matrix 

bias matrix 
relative efficiency, relatively more 

efficient 
estimator admissibility 
strong mean-square error (SMSE) 

criterion 
A ~ B, matrix A is smaller than 

matrix B 
Minimum Variance Unbiased 

Estimator, MVUE 
best linear unbiased estimator, 

BLUE 
minimum variance linear unbiased 

estimator, MVLUE 
efficient 
asymptotic MSE 
asymptotic relative efficiency 
asymptotically relatively more 

efficient 
consistent estimator 
consistency 

asymptotically unbiased 
asymptotic efficiency 
sufficient statistics 
Neyman factorization theorem 
minimal sufficient statistics 
range of X over the parameter space 

n,Rn(X) 
Lehmann-Scheffe minimal 

sufficiency theorem 
exponential class and sufficient 

statistics 
Rao-Blackwell theorem 
complete sufficient statistics 
completeness in the exponential 

class 
Cramer-Rao lower bound, CRLB 
CRLB regularity conditions 
alternative form of the CRLB 
Lehmann-Scheffe completeness 

theorem 
Lehmann-Scheffe MVUE approach 
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Problems 

1. The operating life of a certain brand of math co­
processor installed in a personal computer can be repre­
sented as the outcome of a random variable having an 
exponential density function, as 

Z ~ f(z; 0) = ~e-z/II llo,ool(z), 

where z = the number of hours the math coprocessor 
functions until failure, measured in thousands of hours. 

A random sample, (XI,.'" Xn), of the operating 
lives of 200 coprocessors is taken, where the objective is 
to estimate a number of characteristics of the operating­
life distribution of the coprocessors. The outcome of the 
sample mean was i = 28.7. 

a. Define a minimal sufficient statistic for fIx; 0), the 
joint density of the random sample. 

b. Define a complete sufficient statistic for fIx; 0). 

c. Define the MVUE for EZ = () if it exists. Estimate 
(). 

d. Define the MVUE for Var(Z) = ()2 if it exists. Esti­
mate (P. 

e. Define the MVUE for EZ2 = 2()2 if it exists. Esti­
mate 2()2. 

f. Define the MVUE for Q(())13xll = [ ; ] if it exists. 
2()2 

Estimate q(O). 

g. Is the second sample moment about the origin, i.e., 
M~ = 2::::'1 XNn, the MVUE for EZ2? 

h. Is the sample variance, S2, the MVUE for var(Z)? 

i. Suppose we want the MVUE for F(b) = P(z ~ b) = 
1 - e-b/IJ, where F(b) is the probability that the co­
processor fails before 1000 b hours of use. It can be 
shown that 

( b )n-I (n) 
t(X) = 1 - 1 - (2::~ .) Ilb,ool LXi 

,=1 X, ,=1 

is such that Et(X) = 1 - e-b/II . Is t(X) the MVUE for 
P(z ~ b)? Why or why not? Estimate P(z ~ 20). 

j. Is t.(X) = 1 - e-bj5( a MVUE for F(b)? Is t.(X) a con­
sistent estimator of F(b)? 

2. Use the Lehmann-Scheffe minimal sufficiency the­
orem, or some other argument, to find a set of minimal 
sufficient statistics for each case below. 

a. You are random sampling from a log-normal popu­
lation distribution given by 

f(z; Il, a 2) = (2]f)~/2az exp ( - 2~2 (lnz - 1l)2) 110,001(z), 

where Il E (-00,00) and a2 > O. 

b. You are random sampling from a "power function" 
population distribution given by 

f(z; ).) = ).zA-1IIO,II(Z), where). > O. 

c. You are random sampling from a Poisson popula­
tion distribution 

e-A).x 
fIx; ).) = -,-110,1,2, ... I(X). x. 

d. You are random sampling from a negative binomial 
density 

f( )- (x-I)! 10(1 )X-101 ( ) 
xiIO,P - (IO -1)!(x- Io)! P - P (10.10+1 .... ) X I 

where IO is a known positive integer. 

e. You are random sampling from an N(Il, a2 ) popula­
tion distribution. 

£. You are random sampling from a continuous uni­
form density 

1 
fIx; e) = elIO,BI(X). 

g. You are sampling from a Beta distribution 

1 
f(Xi 11., P) = B( IX, p) x·-1 (1 - x)P-l ~(O, 1) (x). 

3. Identify which of the minimal sufficient statistics 
in (2) are complete sufficient statistics. 

4. The operating life of a small electric motor manu­
factured by the AJAX Electric Co. can be represented as 
a random variable having a probability density given as 

Z ~ f(z; e) = 6~4z3e-Z/(-)110'001(Z)' 

where e E n = (0,00), EZ = 4e, var(Z) = 4e2, and 
z is measured in thousand of hours. A random sample 
(XI, ... , XlOO) ofthe operating lives of 100 electric motors 
has an outcome that is summarized as i = 7.65 and 
S2 = 2::::'dXi - if/lOO = 1.73. 
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a. Define a minimal, complete sufficient statistic for 
estimating the expected operating life of the elec­
tric motors produced by the AJAX CO. 

b. Define the MVUE for estimating EZ = 48. Justify 
the MVUE property of your estimator. Generate an 
estimate of EZ using the MVUE. 

c. Is the MVUE estimator a consistent estimator of 
EZ = 48? Why or why not? 

d. Does the variance of the estimator you defined in 
(b) attain the Cramer-Rao lower bound? (The CRLB 
regularity conditions hold for the joint density of 
the random sample. Furthermore, the alternative 
form of the CRLB, expressed in terms of second­
order derivatives, applies in this case if you want to 
use it.) 

5. The number of customers that enter the corner gro­
cery store during the noon hour has a Poisson distribu­
tion, i.e., 

e-). AZ 

I(z; A) = -,-I{O,I,l,3, ... )(z). z. 
Assume that (X1,Xl,oo.,Xn ) is a random sample from 
this Poisson population distribution. 

a. Show that the Cramer-Rao lower bound regularity 
conditions hold for the joint density of the random 
sample. 

b. Derive the CRLB for unbiased estimation of the pa­
rameter A. Is X the MVUE for estimating A? Why 
or why not? 

c. Use the CRLB attainment theorem to derive the 
MVUE for estimating A. Suppose n = 100 and 
'L:~ Xj = 283. Estimate A using the MVUE. 

d. Is X a member of the CAN class of estimators? Is X 
asymptotically efficient? 

e. Define the CRLB for estimating P(z = 0) = e-).. 
Does there exist an unbiased estimator of e-). that 
achieves the CRLB? Why or why not? 

6. Polly Pollster wants to estimate the proportion of 
voters in the state of Washington that are in favor of 
an antitax initiative. She will be using a random sam­
ple (with replacement) of 1,000 voters, and she will 
record their preference regarding the antitax initiative. 
She needs some statistical advice from you. 

a. Define a statistical model for the problem of esti­
mating the proportion of voters in favor of the ini· 
tiative. 
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b. Define the MVLUE for the proportion of voters in 
favor of the initiative. Justify that your estimator 
really is a MVLUE. 

c. Is the estimator that you defined in (b) a consistent 
estimator of the proportion of voters in favor of the 
initiative? Is it a CAN estimator? Is it asymptoti­
cally efficient? 

d. Assume there are two million voters in the state. 
What is the probability that the estimator you de­
fined in (b) generates an estimate that is within ±.03 
of the true proportion of voters favoring the initia­
tive? (Note: This may be a function of unknown 
parameters!) 

e. Polly summarized the outcome of the random sam­
ple as 'L:~~ Xi = 670, where Xj = 1 indicates that 
the ith sample voter was in favor of the initiative, 
and Xi = 0 otherwise. Estimate the proportion of 
voters in favor of the initiative. Given your result 
in (d), if the election were held today, would you 
predict that the initiative would pass? Why or why 
not? 

7. Two economics professors are arguing about the ap­
propriate estimator to use in estimating the mean of the 
population distribution of incoming freshmen's LQ.'s. 
The estimators will be based on a random sample from 
the population distribution. One professor suggests that 
they simply calculate the sample mean LQ., Xn , and use 
it as an estimate of the mean of the population distribu­
tion. The other prefers to use an estimator of the form 
t(X) = 'L7=1 Xd(n + k), where n is the random sample 
size and k is some positive integer, and she argues that 
her estimator has less variance than the sample mean 
and that for an appropriate choice of k, her estimator 
would be superior on the basis of MSE. 

a. We know that X is unbiased, asymptotically unbi­
ased, BLUE, and consistent for estimating the mean 
of the population distribution. Which of these prop­
erties apply to the alternative estimator? 

b. Define asymptotic distributions for both estima­
tors. On the basis of their asymptotic distributions, 
do you favor one estimator over the other? 

c. Define the MSEs of the estimators. Is there any 
validity to the statement that "for an appropriate 
choice of k" t(X) will be superior to X in terms of 
MSE? Explain. 

d. Can you foresee any practical problems in using t(X) 
to generate estimates of the population mean? 
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8. The diameters of blank compact disks manufac­
tured by the Dandy Disk Co. can be represented as out­
comes of a random variable 

1 
Z ~ I(z; 8) = 8114,4+Eldz), for some 8 > 0, 

where z is measured in inches. You will be using a ran­
dom sample (Xl ,X2, •• • ,Xn) from the population distri­
bution I(z; 8) to answer the questions below. 

a. Based on the random sample, define an unbiased 
estimator of the parameter 8. 

b. Is the estimator you defined in (a) a BLUE for 8? If 
not, find a BLUE for 8, if it exists. 

c. Is your estimator a consistent estimator for 8? Why 
or why not? 

d. Define an asymptotic distribution for your estima­
tor. 

e. A random sample of size n = 1000 from I(z; 8) re­
sults in L:~ Xi = 4,100. Use your estimatorto esti­
mate the value of 8. Usingyourestimateof8, what 
is the estimated probability that z E (4.05, 4.15)? 

9. Your company sells trigger mechanisms for air bags 
that are used in many modern domestic and foreign­
built passenger cars. The reliability of such trigger 
mechanisms is obviously critical in the event that an 
air bag-equipped vehicle is involved in an accident. 
One large Detroit automobile manufacturer said that it 
would be willing to purchase trigger mechanisms from 
your company if you could provide convincing support 
for the statement that, in repeated simulations of an im­
pact of 15 mph, the expected number of impacts needed 
to obtain the first failure of your trigger (i.e., the trigger 
does not signal an air bag deployment) was greater than 
or equal to 1,000. 

Management has randomly chosen 10,000 of the 
trigger mechanisms for a testing program in which the 
number of simulated impacts needed to obtain the first 
failure will be observed for each mechanism. You need 
to estimate the expected number of impacts needed to 
obtain the first failure of the trigger mechanisms you 
manufacture. You intend to use the outcome of the sam­
ple mean as your estimate of this expected number of 
impacts. 

a. Define an appropriate statistical model for the sam­
pling experiment, and justify your choice. 

b. Is the sample mean an unbiased estimator in this 
case? Why? 

c. Is the sample mean an asymptotically unbiased es­
timator? Why? 

d. Is the sample mean a consistent estimator? Why? 

e. Is the sample mean a BLUE (or equivalently, a 
MVLUE)? Why? 

f. Derive the Cramer-Rao lower bound for the vari­
ance of unbiased estimators of the expected num­
ber of impacts to obtain the first failure. (Hint: You 
may use the alternative (second-derivative) form of 
the bound-it might be a little easier to work with 
in this case.) 

g. Is the sample mean a MVUE? Why? 

h. Use Theorem 7.17 on the attainment of the 
Cramer-Rao lower bound to derive the MVUE of 
the expected number of impacts needed to obtain 
the first failure. 

i. Define an appropriate asymptotic distribution for 
the sample mean in this case. Is the sample mean 
asymptotically efficient? 

j. The 10,000 observations resulted in L:~'IOOO Xi = 
1.5 X 107 • What is your estimate of the expected 
number of impacts needed to obtain the first fail­
ure? 

k. Is (Xn)-l a consistent estimator of p, the probability 
that a trigger successfully signals deployment of the 
air bag on any given trial? 

1. Define an asymptotic distribution for the estima­
tor (Xn)-I of p. Is the estimator asymptotically effi­
cient? 

m. Use the estimator (Xn)-I to estimate p, and use this 
estimated value in the asymptotic distribution you 
defined for X n to estimate the probability that an es­
timate generated by Xn would be within ±50 units 
of the population mean. 

n. What, if anything, can you say to the Detroit manu­
facturer to convince the company to buy your trig­
ger mechanisms? 

10. Suppose random sampling is from an exponential 
population distribution representing the waiting time 
between customer arrivals at a bank, so that the statis­
tical model is given by 

n 

I(x; 0) = o-n e- Lf=1 x;/8 n 110,00) (Xi ) 

i=1 

for 0 > O. 



Problems 

Your objective is to use an outcome of a random 
sample of size n In fixed and known) to estimate q(O) = 
02 , the variance of waiting times. 

a. Define a complete sufficient statistic for fIx; 0). 

b. Define the CRLB for unbiasedly estimating 02• 

c. Does there exist an unbiased estimation of 02 whose 
variance is equal to the CRLB? 

d. Define the MVUE of 02 by finding an appropriate 
function of the complete sufficient statistic-if you 
can. 

e. Is the sample variance, S~, the MVUE for the popu­
lation variance 02? 

f. If LJ~ Xi = 257, generate a MVUE estimate of the 
variance of waiting times. 

11. One hundred one-acre test plots are being used to 
assess the yield potential of a new variety of wheat ge­
netically engineered by Washington State University. 
The actual yield-per-acre observations on the test plots 
can be viewed as iid observations from some log-normal 
population, so that the statistical model for the experi­
ment is given by 

fly; J..L, a 2 ) = 12 )n/2 : nn . 
T{ a i=1 y, 

[ In ] n 
X exp - 2a2 t;(lnYi - J..L)2 [VIO,ooIIYi) 

for J..L E 1-00,00) and a > O. 

a. Define minimal sufficient statistics for fly; J..L, a 2 ). 

b. Are the sufficient statistics you defined in (a) com­
plete sufficient statistics? 

c. Is tl(Y) = n- I L~=I In Yi the MVUE of the parameter 
J..L? Is it consistent? Why? 

d. Is t2(Y) = (n - 1)-1 L~=dln Yi - n-I L~=lln Yd2 the 
MVUE of the parameter a2 ? Is it consistent? 

e. Define a consistent estimator of qlJ..L, a) = e!1+u2/2, 
which is the mean of the log-normal population. 
Justify your answer. (The MVUE of the mean exists, 
but it is quite complicated to define and calculate. 
See D. J. Finney (1941), "On the distribution of a 
variate whose logarithm is normally distributed." 
Roy. Statistical Society, Series B, 7, pp. 155-161.) 

f. An overworked, underpaid, gaunt-looking research 
assistant hands you an envelope that contains only 
summary information on the results of the experi-

ment. In particular, the information is that 

100 

L:)n Yi = 375.00, 
i=1 

\00 

L:)ln Yj J2 = 1455.75. 
i=1 

425 

Generate an estimate of q(J..L,a2l!zxll = [~ ] using 

the MVUE of qlJ..L, a 2 ). Generate an estimate of the mean 
of the lognormal distribution using a consistent estima­
tor. 

12. In each case below, determine whether the estima­
tor under consideration is unbiased, asymptotically un­
biased, and/or consistent. 

a. The random sample (XI," "Xn) is generated from 
a Gamma population distribution. The estimator 
t(X) = L~=I Xdn will be used to estimate EXi = a{3. 

b. The random sample (XI, ... , Xn) is generated from 
an exponential population distribution. The esti­
mator t(XJ = (1/2) L~=I X'fIn will be used to esti­
mate var(Xi) = 02 • 

c. The random sample (XI, .. "XnJ is generated from 
a geometric population distribution. The estimator 
t(X) = (52 + X) will be used to estimate EX; = p-2. 

d. The random sample (XI,'" ,Xn) is generated from 
a Bernoulli population distribution. The estimator 
t(X) = X( 1 - XJ will be used to estimate var(Xi) = 
pl1 - pJ. (Hint: 2 L7=1 L7>i a = n(n - l)a). 

13. In problem 12(b), above, consider the alternative es­
timator t*(X) = 52 for estimating 02 • In a mean square 
error sense, which estimator would you prefer for es­
timating 02, t(X), or t*(XJ? Note that J..L~ = r!Or for an 
exponential PDF. 

14. An incoming shipment of 1000 toys from a toy 
manufacturer is received by a large department store 
for a pre-Christmas sale. The store randomly samples 
50 toys from the shipment, without replacement, and 
records whether or not the sample item is defective. 
The store wants to generate a MVUE estimate of the 
proportion of defectives in the shipment of toys. The 
statistical model it uses for the sampling experiment is 
given by the hypergeometric density with the following 
parameterization: 

COOOB) COOOII-HI) 
"(x' 8) - x 50-x I (x) /', - C~) 10,1,2, ... ,501, 
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where E> E n = {O, .001, .002, ... ,1) represents the pro­
portion of defectives in the shipment. 

·a. Show that X - fIx; 8) is a minimal, complete suf­
ficient statistic for fIx; 8). 

b. Define the MVUE for the proportion of defectives 
in the shipment. 

c. Suppose that the outcome of X was 3. Define a 
MVUE estimate of the proportion of defectives in 
the shipment. 

d. Define an MVUE for the number of defective toys 
in the shipment, and provide an MVUE estimate of 
this number. 

15. The rates of return per dollar invested in two com­
mon stocks over a given investment period can be 
viewed as the outcome of a bivariate normal distribu­
tion N(IL, E). The rates are independent between invest· 
ment periods. An investment firm intends to use a ran· 

dam sample from the N(IL, E) population distribution 
of rates of return to generate estimates of the expected 
rates of return, IL, as well as the variances in the rates 
of return, given by the diagonal of E. 

a. Find a minimal, complete (vector) sufficient statis-
tic for N(IL, E). 

b. Define the MVUE for IL. 

c. Define the MVUE for E and for diag(E). 

d. Define the MVUE for the vector [ILl, IL2, ar, ail'. 
e. A random sample of size 50 has an outcome that 

is summarized by x = [.048 .077]', si = .5 x 10-3, 

s~ = .3 X 10-4, and S12 = .2 X 10-4 • Calculate the 
MVUE outcome for [ILl, IL2, ar, ail'. 

f. Is the MVUE of [ILl, IL2, ar, ail' consistent? 
g. If an investor invests $500 in each of the two in­

vestments, what is the MVUE of her expected dol· 
lar return on the investment during the investment 
period under consideration? 
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Point Estimation Methods 

8.1 Introduction 
8.2 Least Squares and the General Linear Model 
8.3 The Method of Maximum Likelihood 
8.4 The Method of Moments 

In our discussion of point estimation, we have yet to pre­
sent any generally applicable procedures that lead to specific functional forms 
for estimators of qle) and that can be relied upon to define estimators that 
generally have good estimator properties. In fact, the only result in the pre­
vious chapter that could be used directly to define the functional form of an 
estimator is the theorem on the attainment of the CRLB, which is useful only 
if the statistical model {fix; e), e E Q} and the estimand qle) are such that the 
CRLB is actually attainable. Of course, we did examine a number of important 
results that could be used either to narrow the search for a good estimator of 
qle), to improve upon an unbiased estimator that we already discovered, or 
to recognize when an unbiased estimator was actually the best in the sense of 
minimizing variance lor in the sense of having the smallest covariance matrix). 
However, since the functionalform of an estimator of qle) having good estima­
tor properties is often not apparent even with the aid of the results assembled 
in Chapter 7, we now examine procedures that suggest functional forms of 
estimators. 

Currently, there is no single procedure for generating estimators of qle) 
that will always lead to the best estimator or even to an estimator that always 
has "good" properties. In this chapter, we will examine three specific estima­
tion procedures that, under appropriate circumstances, will often lead to good 
estimators of qle). 
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8.2 Least Squares and the General Linear Model 

The general linear model (GLM) is a specific form of model used to characterize 
how the outcomes of a random sample are generated. In particular, the GLM 
decomposes the ith random variable, Yj, in the random sample (Y\, ... , Yn ) into 
the sum of its expectation and the deviation from its expectation, as 

Yj = J-Lj + Sj, i = 1, ... , n, 

where EYj = J-Lj, so that ESj = O. At this level of generality, the decomposition 
is always valid as long as EYj exists. The GLM specializes this representation 
by further assuming that J-Lj is defined via a function of the m explanatory 
variables contained in the (m xl) vector Zj and that this function is known 
except for k unknown parameters that enter the function linearly, leading to 
the representation 

k 

J-Lj = L h;(zj ),8;, i = 1, ... , n. 
;=1 

We emphasize that linearity in the general linear model refers to the assump­
tion that the function of the explanatory variables defining J-Li is linear in pa­
rameters. The representation need not be linear in the explanatory variables. 
However, it is customary to define the variables Xi; = h;(Zi) for i = 1, ... , nand 
j = 1, ... , k, so that the representation of the mean J-Lj is then also linear in the 
Xi;'S, as 

k 

J-Lj = L Xi;,8;, i = 1, .. . ,n. 
;=1 

A compact matrix representation of the GLM in terms of the Xi; variables can 
then be defined as 

Y=x f3+e 
Inx 1) Inxk) Ikx 1) Inx 1) 

where 

[

Xll 

X2I 
x= . 

XnI 

... XIk] ... X2k 

. ., . . 

... Xnk X n2 

The GLM can be used to represent a random sample Y whether the random 
sample is from a population distribution or from a composite experiment. If 
the elements of Yare iid random variables from a population distribution, then 
x is a column vector of l's, ,8 is a scalar representing the common mean of the 
Y/s, and the s/s are iid with mean zero. More generally, if the elements of Yare 
generated by a composite experiment, so that the Y/s need not be identically 
distributed nor independent, then linear combinations of the elements in the 
rows of x are used to represent the various mean values of the Y/s, and the s/s 
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have a joint probability distribution with a zero mean vector and appropriate 
variances and covariances. 

In order to illustrate the generality of the GLM, note that 

Yi = f31 + f32ZJ2 + f3a sin(zia) + f34 (Zi4) + Si, i = 1, ... , n, 
ZiS 

is consistent with the GLM, and a representation that is linear in explanatory 
variables can be obtained upon defining Xii = I, Xj2 = zh, Xia = sin(zia), and 
Xi4 = (Zi4/ZiS). More generally, the GLM can serve as an approximation in sit­
uations where EYi = JL(Zil, ... , Zim) is a continuous function of (Zil, ... , Zim), 
at least in principle, since by Weierstrass's approximation theorem any con­
tinuous function can be approximated arbitrarily closely by a polynomial of 
sufficiently high degree (see Bartle, Real Analysis, pp. 185-186). That is, if 
JL(ZiI, ... , Zim) represents a continuous function, then 

JL(Zil, ... , Zim) ~ L· .. L Cil···irnZ~~ z~~ ... z~;;, 
Iii , ... ,irn leA 

where A = HiI, ... , jm): 0:::: iI + ... + jm :::: d, j/s are nonnegative integers}, and 
d represents the degree of the polyno.tp.ial. Letting the Cil ... irn 's be the entries in 
the {3 vector, and the product terms (zj~ zj~ ... zj;;) be the entries in the x matrix, 
it is clear that the polynomials in the Weierstrass approximation theorem can 
be incorporated into the GLM framework. I 

Finally, a relationship between Y, x, and e: that is initially nonlinear in the 
parameters might be transformable into the GLM form. For example, suppose 

Yi = f3 l kf2lf3 Si 

which might represent a Cobb-Douglas production function with Yi being out­
put, and k i and li being capital and labor inputs, respectively. Applying a loga­
rithmic transformation obtains 

or 

Y; = f3i + f32k; + f3al; + s;, 
which is in the GLM form, assuming Yt = In Yi, f3i = Inf3I' k; = lnki' If = 
lnli' and Es; = Elnsi = 0 Vi. 

The Classical GLM Assumptions 

In the GLM, Y is referred to as the dependent variable vector, x is called the 
matrix of independent or explanatory variables, and e: is called the disturbance, 

1 We note, however, that for highly nonlinear functions, the degree of polynomial required to provide an adequate approximation to 
P.(Zil, .•. , Zim) may be so high that there will not be enough sample observations to estimate the unknown fJi's. This is related to a 
requirement that x have full column rank, which will be discussed shortly. 



430 Chapter 8 Point Estimation Methods 

Definition 8.1 
Classical assumptions 

of the GLM 

Figure 8-1 
GlM representation of 

E Y; in bivariate case. 

error, or residual vector. The main objective in analyzing the GLM will be to 
estimate (and later, test hypotheses about) the entries and/or functions of the 
entries in the parameter vector f3. In particular, we will utilize an outcome, 
(Yl, ... , YnL of the random sample, (Yl, ... , Yn ), together with knowledge of the 
values of the explanatory variables, x, to estimate the unknown entries in f3. 
Note that the entries in g are unobservable random variables, since they rep­
resent deviations of (Yl," .,Yn) from the unknown mean vector xf3, and thus 
outcomes of g will not be useful in estimating f3, per se. 

At this point, we have not yet defined the characteristics of the GLM suffi­
ciently for point estimation purposes. The following set of assumptions, which 
will be referred to as the classical assumptions of the GLM, are made. 

1. EY = xf3 and Eg = [01. 

2. Cov(Y) = a2I = Cov(g) = Egg'. 

3. x is nonrandom with rank x = k (full column rank). 

The first assumption simply restates what we have already asserted con­
cerning the mean of Y, namely, xf3 is representing or explaining EY, which 
then necessarily implies that Eg = [01. In practice, EYi = Xi.f3 (recall that Xi. 
refers to the ith row of the x matrix) means that no matter what real-world 
experiment is under investigation, the expected value of the distribution asso­
ciated with outcomes of Yi is a linear function of Xi .. Graphically, for k = 2 with 
X.l = [1 1 .,. II', we have the representation in Figure 8.1. 

Note that under the classical assumptions, x is a fixed matrix of numbers. 
Regarding the experiments under consideration, this implies that an observa-

Yi 

~-------+--------------+---------------Xu 
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tion (Yi,Xil, ... ,xikl can be interpreted as having been generated from an out­
come of the vector (Yi, XiI, ... , Xik), where this latter vector can be considered a 
random vector, pairing the (generally) nondegenerate random variable Yi with 
the degenerate random vector (Xil, ... , Xik). When observing repeated outcomes 
of (Yi,XiI, ... ,xikl, it is implied that (XiI, .. . ,Xik) remains constant, while the 
outcome Yi that is paired with the vector (Xii' ... ' Xik) generally varies. The dis­
tribution of Yi outcomes for given (XiI, ... , Xik) values, when k = 2, is depicted 
in Figure 8.1 by a distribution centered at EYi. 

It is useful to distinguish two contexts in which the x matrix can be con­
sidered fixed. One context is the situation where elements of the x matrix are 
controlled or fixed by the individual performing the experiment. In this case, 
the x matrix is sometimes referred to as the design matrix, meaning that the 
researcher can essentially design the vectors (XiI, ... , XikJ, i = I, ... , n, in a 
way that is of particular interest to the investigation at hand, and then she can 
observe the Yi values associated with the chosen design matrix. As an exam­
ple of this type of interpretation for x, suppose various levels of inputs to a 
production process were chosen and an observation was made on the output 
corresponding to each fixed level of the inputs. We might expect that, lion the 
average," a certain level of output, say EYi, would be produced given the levels 
of inputs specified by Xi .. However, on any given observation with input level 
Xi., deviations from the average level of output might occur due to a myriad 
of noninput-type factors that are not controlled in the production process (e.g., 
machine function variation, labor efficiency, weather, temperature, etc.). Then 
our observations on output levels, given the chosen (or "designed") levels of 
inputs represented by the elements in x, can be conceptualized as observations 
on the vector (Yi, Xii, ... , xikl, as the GLM classical assumptions imply. In gen­
eral, the underlying rationale for interpreting the expectation of the random 
variable Yi as a function of the explanatory variables is based on the existence 
of some underlying systematic economic, sociological, biological, or physical 
linear relationship relating the mean of Yi to the value of Xi .. As we have al­
luded to previously, sometimes a relationship that is a polynomial function of 
explanation variables, and thus a linear function of parameters, is assumed as 
an approximation. 

Not all experimental situations allow the x matrix to be controlled or 
designed. For many experimental situations in economics, business, or the 
social sciences in general, the researcher is a passive observer of values of 
(Yh Xii, ... , Xik) that have been generated by consumers, entrepreneurs, the econ­
omy, markets, or the actions of society. In such cases, it is more natural to 
consider some or all of the elements in the x matrix as having been generated 
by an outcome of a random matrix X while the vector y is interpreted to be the 
outcome of the random vector Y. Then the assumption EY = x{3 of the GLM is 
interpreted in a conditional sense, i.e., the expected value of Y is conditional on 
the outcome x for X. A more revealing notation for this interpretation would 
be given by E(Ylx) = x{3. The reader will recall from Chapter 3 that this con­
ditional expectation is then simply referring to the regression function of Y 
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on x, and thus the GLM maintains that the regression function is actually a 
regression hyperplane.2 

Note that since Y = xj3 + e is assumed by the GLM, it follows that in the 
context of operating conditionally on an outcome of X, we must then be refer­
ring to a conditional distribution of the vector Y when we say that outcomes 
of Y can be decomposed into the mean vector, xj3, and deviations, e, from the 
mean vector. We might use the notation 

Ylx=xj3+elx 

to emphasize this fact, implying that Ele I x) = [0]. In this situation, the entire 
analysis is then cast in the framework of being conditional on the x-matrix 
observed. Once this interpretation is affixed to the GLM together with the 
implicit assumption that all expectations are conditional on x, the situation 
land method of analysis) is analogous to the previous, inherently fixed, x matrix 
case. We will generally suppress the conditional-on-x notation, leaving it to the 
reader to provide the proper context for interpreting the GLM in a given problem 
situation. 

The assumption CovlY) = a 21 = Covle) = Eee' implies that the covariance 
matrix of Y, and of e, is represented by 

CovlY) = Covle) = [q, ;, .. ! 1 
Isymmetric) a 2 

i.e., the covariance matrix is a diagonal matrix with a 2 's along the diagonal and 
zeroes on the off-diagonal. The fact that all of the variances of the elements in 
Y lor e) have the same value, a2, is referred to as the property of homoskedastic­
ity Ifrom homoskedastic, meaning "same scatter"). The fact that off-diagonal 
entries are zero implies that the covariance, or equivalently, the correlation be­
tween any two elements of Y lor e), is zero, which is called the property of zero 
auto covariance or zero autocorrelation. This assumption on the covariance ma­
trix of Y lor e) then implies that the random sample IYI, ... , Yn ) is a collection 
of uncorrelated random variables all having the same variance or measure of 
"spread." The reader is reminded that this assumption may be referring to the 
conditional distribution of Y (and e), if we are conditioning on an outcome of 
the random X-matrix. 

The assumption that rank x = k, ILe., the x matrix has full column rank) 
simply implies that there are no linear dependencies among the columns of the 
x matrix. That is, no column of the x matrix is representable as some linear 
combination of the remaining columns in the x matrix. This necessarily implies 

2Note that by tradition, the previous case where x is "designed" and not random is also loosely referred to as a regression of Y on 
x, even though a conditional expectation in the usual sense is not implied. 
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that n ?: k, i.e., we must have at least as many sample observations as there are 
unknown parameters in the {3-vector and columns in the x matrix. 

To this point we still have not fully specified the statistical model since we 
have not yet specified a parametric family of densities for the random vector 
Y (or e:). In fact, all we have essentially assumed, so far, is that (Y1, ••• , Yn ) is 
a random sample from some (generally) composite experiment such that the 
joint density of the random sample has a mean vector x{3, a covariance matrix 
0'21, with x having full column rank. Nevertheless, it is possible to suggest an 
estimator for the parameter vector {3 that has a number of useful properties. 
We will proceed to define such an estimator of {3 in the absence of a specific 
parametric family specification, reserving such a specification until we have 
exhausted the progress that can be made in its absence. We will also define a 
useful estimator of 0'2. 

Estimator for {3 Under Classical GlM Assumptions 

How should the estimator of {3 be defined? We will examine two approaches 
to the problem that lead to the same estimator for {3 but that offer different 
insights into the definition of the estimator of {3. 

Least-Squares Estimator of {3 One approach, called the method of least squares, 
defines the estimator of {3 by associating with each observation on (y, x) the 
(k x 1) vector b that solves the minimization problem 

min(y - xb)'(y - xb) = mine'e, 
b b 

where e = y-xb, i.e., b = argminb(y-xb)'(y-xb).3 Note that this is equivalent 
to finding the vector y = xb that is the minimum distance from y, since the 
minimum of the distance diy, y) = [ly - y)'(y - y)p/2 and the minimum of 
(y - y)'(y - y) occur at precisely the same value of b.4 From the point of view 
of attempting to explain y as best one can in terms of a linear function of the 
explanatory variable values, x, the least squares approach has intuitive appeal. 
To solve the minimization problem, note that (y - xb)'(y - xb) = y'y - 2b'x'y + 
b'x'xb, and the k first-order conditions for a minimum can be represented in 
matrix form as 

3(y'y - 2b'x'y + b'x'xb) 2' 2' b [0] 
-'-'---=----::-:-''-------'- = - X Y + x x = , 

8b (kxll 

where we have used a result contained in the following lemma concerning 
matrix calculus. 

3In general, argminwflw) denotes the argument of flw) that minimizes flw), where argument is taken to mean the value of w. 

4This follows because zl/2 is a monotonic transformation of z for z 2: 0, so that the minimum and maximum of zl/2 and z occur at 
the same values of z, zED, D being some set of nonnegative numbers. 
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Lemma 8.1 
Let z be a (k x 1) vector, let A be a (k x j) matrix, and let w be a (j x 1) vector. 
Then 

a. az'Aw/az = Aw, 

b. az'Aw/aw = A'z, 

c. az'Az/az = 2Az (k = i and A is symmetric), 

d. az'w/az = w (k = i), 
e. az'w/aw = z (k = i). 

Since x has full column rank, the (k x k) matrix (x'x) necessarily has full 
rank and is thus invertible.5 The first-order conditions can then be solved for b 
as 

2x'xb = 2x'y <=> b = (X'X)-lx'y, 

which defines the estimate for f3 implied by the least-squares method. The 
estimator of f3 is then defined by the (k xI) random vector6 

fJ = (x'x)-lx'Y. 

Note that the second-order conditions for the minimization problem are 
a2(e'e)jabOb' = 2x'x, and since x'x is positive definite, the second order con­
ditions are satisfied. Thus, b minimizes e'e. 

Coefficient of Determination, R2 A function of the minimized value of the dis­
tance between y and xb is often !lsed as a measure of how well the Y outcomes 
have been "explained" by the xf3 outcomes, In particular, letting t be an (n x 1) 
vector of l's and y = xb, the measure is given by 

R2 = 1 _ d2(y, y) = 1 _ (y - y)'(y - y) = 1 _ L:7=I(Yi - Pi!2 
d2(y, LY) (y - LY)'(Y - LY) L:7=1 (Yi - 9)2 

and is called the coefficient of determination or " R -squared." It is clear that the 
closer y is to y in terms of distance, the higher R2 is, and its maximum value 
of 1 is achieved iff y = y. 

If x contains a column of l's, so that Y = xf3 + e contains an intercept 
term, then R2 is lower bounded by zero, and in fact R2 is identically the square 
of the sample correlation between y and y = xb. To see this, first define e so 
that y = xb + e and note that y'y can be decomposed as 

y'y = b'x'xb + e'e 

5 A matrix x has full column rank iff x'x has full rank. See C. Rao, Statistical Inference, p. 30. 

6Henceforth, we will use fJ to denote an estimator and b to denote an outcome of fJ. 
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since 'Y'e = b'x'e = b'(x'y - x'xb) = 0 by the first-order conditions of the least­
squares minimization problem. Also note that L'e = L'y - L'Y = 0 since x'(y -
xb) = x'e = [OJ from the first-order conditions and since x' contains a row of 
l's. It follows that y = y. Subtracting ny2 from both sides of the preceding 
decomposition of y'y and then dividing by y'y - ny2, imply 

b'x'xb _ ny-2 "n (yA. _ y:::)2 
R2 = = L...1=1 I • 

(y - LY)'(y - LY) I:7=1 (Yi - y)2 

Finally, since I: 7:, I (Yi - y)2 = L7=1 (Yi - yHYi - Yl, 

[L7:,l (Yi - yHYi - y)]2 _ 2 
R2= _ r "n ( . _ -)2 "n ( A . _ A)2 - yy' 

L...i=l YI Y L...i=l YI Y 

i.e., R2 is the square of the sample correlation between Y and Y. 
It follows from our discussion of the sample correlation in Section 6.4 that 

R2 can be interpreted as the proportion of the sample variance in the y/s that 
is explained by the corresponding values of the Y/s. This follows from the fact 
that the vector of values a + byi, i = I, ... , n, has the smallest expected squared 
distance from Yl, ... , Yn when 

b=syy/s~=4/4=1 and a=y-bY=y-l.y=O. 

BLUE of {3 A second approach for defining an estimator of {3 begins with the 
objective of defining the B~UE of {3. In order to be in the linear class, the esti­
mator must be of the form {3 = AY +d for some nonrandom (k x n) matrix A and 
some n~mrandom (k xl) vector d. If the estimator is to be in the unbiased class, 
then E{3 = Ax{3 + d = {3, V {3, which requires that Ax = I and d = [OJ. For the es­
timator to be the best in the class of linear unbiased estimators, its covariance 
matrix must be as small or smaller than th~ covariance matrix of any other es­
timator in)he linear unbiased class. Since (3 = AY and Cov(Y) = a 2I, it follows 
that Cov({3) = a 2 AA' is the covariance matrix that must be minimized through 
choice of the matrix A subject to the unbiasedness constraint that Ax = I. 
Note that Cov(t3) will be minimized iff £' AA'£ is minimized for every choice of 
£ 1= [OJ. This follows from the fact that if 13* = DY, with Cov(t3*) = a 2DD', is any 
other linear unbiased estimator of (3, then a2AA' - q2DD' = Cov(t3) - Cov(t3*) 
will be a negative semidefinite matrix, and thus {3 would have the smaller 
covariance matrix, iff £'DD'£ 2: £' AA' £ V £ 1= [OJ. 

The problem at this point is then one of finding the solution, if it exists, to 
the following problem: 

min£'AA'£ such that Ax = I, V £ 1= [OJ. 
A 

The feasible choices of A can be represented as A = (x'x)-lx' + D, where Dis 
any matrix such that Dx = [OJ. To see this, first note that any matrix A can be 
equivalently represented as (X'X)-IX' + D by simply choosing D = A - (x'x)-lx'. 
Now for A to satisfy Ax = I, it must be the case that Ax = [(X'X)-IX' + Djx = 
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1+ Dx = I, so that Dx = [0] is implied. Substituting (X'x)-lx' + D for A in the 
previous minimization problem then results in the equivalent minimization 
problem 

mini'(x'x)-li + i'DD'i such that Dx = [0], vi =1= [0]. 
D 

The value D = [0] is the solution to the minimization problem, yielding 
i'(x'x)-li as the minimum value of the objective function V i =1= [0], since 
any other choice of D =1= [0] satisfying Dx = [0] will result in i'DD'i > 0 for 
some i =1= [0], which is a nonoptimal objective function value> i'(x'x)-li for 
some i =1= [0]. Then A = (x'xtlx' is the optimal choice of A in the original 
minimization problem. 

The preceding argument establishes that p = AY = (X'x)-lx'Y is the BLUE 
of {3, and the covariance matrix of (3 is Cov({3) = (J2 AA' = (J2(x'x)-I. We have 
thus proved the celebrated Gauss-Markov theorem. 

Theorem 8.1 (Gauss-Markov Theorem) Under the classical assumptions of the GLM, fJ = 
(x'xrIx'Y is the best linear unbiased estimator of {3. 

Proof This is proven by the derivation of the BLUE of {3 preceding the theorem. _ 

It is also true that i' fJ = i'(x'x)-I x'Y is the BLUE of i' {3 for any choice 
of i =1= O. Thus, once fJ is known, one can calculate BLUE estimates of any 
linear combination of the entries in I? by simply calculating the corresponding 
linear combination of the entries in fJ. We formalize this result in the following 
theorem. 

Theorem 8.2 (BLUE for i' (3) Under the classical assumptions of the GLM, i' fJ = 
i'(x'xr Ix'Y is the best linear unbiased estimator of i' (3 vi =1= [0]. 

proof Let T = t(Y) = c'Y + d be any linear estimator of the scalar i' {3, where c is an 
(n xl) vector and d is a scalar. For T to be unbiased, it is required that 

Lemma 8.2 

ET = E(c'Y + d) = c'x{3 + d = i'{3 V {3, 

which in turn requires that x'c = land d = O. Note the following lemma. 

Let x be an (n x k) matrix of rank k, and let i be any (k xI) vector. Then 
x'c = i iff 

c = x(x'xl-li + [I - x(x'x)-lx']h, 

where the (n x 1) vector h can be chosen arbitrarily. 

Proof: See F. A. Graybill (1983), Matrices with applications in statistics, 2nd 
ed. Belmont, CA: Wadsworth, p. 153. 
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Using the solution for e given by the lemma, note that 

vat/e'Y) = a 2[£'(x'xtl£ + h'[1 - x(x'x)-Ix']h]. 

The variance is. minimized by setting h = [0], and thus T 
£'(X'x)-lx'Y = £' {3 is the BLUE for £' {3. 
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e'Y = 

• 
The estimator {J = (x'x)-lx'Y is referred to in the literature as the least­

squares estimator of {3 due to its definition via the least-squares approach de­
scribed previously. Without additional assumptions on the statistic~l model, 
the BLUE property exhausts the properties that we can attribute to {3. In par­
ticular, we cannot demonstrate consistency of {J, nor can we make progress 
toward defining a MVUE of {3. 

Estimator for (j2 Under Classical GlM Assumptions 

The classical assumptions are sufficient to allow the definition of an unbiased 
estimator of the common variance, 0'2, of th~ Y/s (or equivalently, the common 
variance of the s/s). Since Y = x{3 + g and {3 = (X'X)-lx'y = {3 + (X'X)-IX'g, 

E(Y - x{J)'(y - x{J) = Eg'(1 - x(x'xtlx')(1 - x(X'x)-lx')g 

= tr(1 - x(x'x)-lx')Egg' (since (I - x(x'x)-I x') is symmetric and idempotent, 

tr ABC = tr BCA, and E tr(W) = tr(EW)) 

= a 2[trl - tr(x'xtlx'x] (since Egg' = 0'21) 

= a 2(n -k). 

lt follows that if we define 

52 = (Y - x{J)'(y - x{J)/(n - k), 

then E52 = 0'2, and so 52 is an unbiased estimator of 0'2 (we use the hat, ., to 
distinguish this unbiased estimator fr~m the sample variance, 52, introduced in 
Chapter 6). Furthermore, since Cov(f3) = a 2(x'x)-1 (recall the derivation of the 
BLUE of (3), it follows that 52(x'X)-1 is an unbiased estimator of Cov({J). Without 
additional assumptions on the statistical model, unbiasedness exhausts the 
properties that we can attribute to the estimator 52. 

The following is an example of the use of both the estimators {J and 52. 

Example 8.1 Let the production of a commodity in a given period of time be represented by 
the Cobb-Douglas production function 

Y - {3 X/32 X/3·1 eO t 
t - 1 tl t2 

where Yt = thousands of units produced in time period t, (Xtl, xa) = units of la­
bor and capital applied to the production process in year t, and St = disturbance 
term value in year t. Assume that ESt = 0 and var(st) = 0'2, V t, and let Cj and Cj 

be uncorrelated V i =1= ;. 
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Ten time periods' worth of observations on Yt, Xtl, and Xt2 were obtained, 
yielding 

47.183 7 2 
53.005 8 3 
43.996 6 2 
38.462 4 5 
54.035 5 6 

y= 59.132 
, Xl = 9 

, X2 = 4 
79.763 11 8 
67.252 9 5 
55.267 8 5 
38.972 4 4 

Calculate a BLUE estimate of In(,81 J, ,82, ,83, and of ,82 +,83. Calculate an unbiased 
estimate of 0'2. 

Answer: Before we can apply the least-squares estimator, we must transform 
the model to be in GLM form. By taking the natural logarithm of both sides of 
the production function relationship, we obtain 

or 

The reader can check to see that the transformed model satisfies the classical 
assumptions of the GLM. Defining y. = In(yJ and x. = [L Iln(xIJ Iln(x2)], 

(lOxt) IlOx3) 

where L is a (10 x 1 J vector with each element equal to I, we can represent the 
observations on the transformed production function relationship as outcomes 
of Y. = x.f3. +e, where f3: = (In(,8t J, ,82, ,83Y. The least-squares (BLUEJ estimate 
of f3. is then given by 

[
2.638] 

b = (x:x.J-tx:y. = .542 . 
. 206 

The BLUE estimate of,82 + ,83, which in this case is an estimate of the degree of 
homogeneity of the production function, is given by b2 + b3 = .748 by Theorem 
8.2 with £' = [0 1 11. An unbiased estimate of 0'2 is given bY,52 = (y. -x*b)'(y*­
x.bJ/'Z = .0043. The reader is encouraged to provide an unbiased estimate of 
Cov(f3J. 

We emphasize that in the process of transforming the production relation­
ship to GLM form, we also transformed the parameter ,81 to In(,81 J, which then 
resulted in a situation where the least-squares estimator was estimating not 
,81, but In(,8t J. The phenomenon of transforming parameters often occurs when 
a relationship must be transformed in order to convert it into GLM form. 0 
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Consistency of fJ 
If, in addition to the classical assumptions of the GLM, it can be assumed that 
(X'x)-l -+ [OJ as n -+ 00, then fJ is a consistent estimator of {3. 

Theorem 8.3 (Consistency of fJ = (x'xr1x'Y) Under the classical assumptions of the GLM, 
if (x'xr l -+ [OJ as n -+ 00, then fJ = (X'X)-lx'y -4 {3, so that fJ is a consistent 
estimator of {3. 

Proof Given the classical ass)lmptions of the Gl-M, we know that EfJ = {3, and the 
covariance matrix of (3 is given by Cov({3) = Cov((X'X)-lx'Y) = a 2(x'x)-I. It 
follows from Corollary 5.2 that if Cov(fJ) = a 2(x'x)-1 -+ [OJ, then fJ converges 
in mean square to {3, i.e., fJ ..E4- {3. But since convergence in mean square 
implies £onvergence in probability (Theorem 5.13), it follows that plim fJ = {3, 
so that {3 is a consistent estimator of {3. • 

Conditions for Which (x'x)-l -+ [OJ As a practical matter, what is required of 
the x matrix for limn-+oo(x'x)-l = [OJ? The convergence to the zero matrix will 
occur iff each diagonal entry of (X'X)-I converges to zero, the necessity of this 
condition being obvious. The sufficiency follows from the fact that (x'x)-I is 
positive definite since x'x is positive definite,7 and then the (i, j)th entry of 
(x'x)-l is upper bounded in absolute value by the product of the square roots of 
the (i, i)th and Ii, j)th (diagonal) entries of (x'x)-l. To see the boundedness of the 
(i, ilth entry of (x'x)-I, note that for any symmetric, positive definite matrix, all 
principal submatrices formed by deleting one or more diagonal entries together 
with the rows and columns in which they appear must also be positive definite.s 
In particular, retaining only the ith and jth diagonal entries results in a (2 x 2) 
principal submatrix of the form 

[ aii aii], 
aii aii 

where aii is used to denote the Ii, ilth entry in (x'x)-l. The conditions for the 
submatrix to be positive definite are the standard ones, i.e., aii > 0 and ajjaii > 
aiiaii, the latter condition implying ajjaii > (aj;)2 by the symmetry of (x'x)-l, 
and thus lajil < (aiiJl/2(aiiJl/2 , which is the boundedness result mentioned above. 
Therefore, if aii -+ 0 V i, then aii -+ 0 Vi =f. j. 

Regarding the convergence of the diagonal entries of (X'x)-l to zero, examine 
the (1,1) entry of (X'X)-I. We will again have use for the concept of partitioned 
inversion, which we restate here for convenience, as Lemma 8.3. 

7The inverse of a symmetric positive definite matrix is necessarily a symmetric positive definite matrix. This can be shown by 
noting that a symmetric matrix is positive definite iff all of its characteristic roots are positive, and the characteristic roots of A-I 
are the reciprocals of the characteristic roots of A. 

8 Suppose B is a Ik x k) symmetric, positive definite matrix. Let C be an Ir x k) matrix such that each row consists of all zeroes except 
for a 1 in one position, and let the r rows of C be linearly independent. Then CBC' defines an Ir x r) principal submatrix of B. Now 
note that l'CBC'l = l:Bl. > 0 V l"l [OJ since i. = C'l "I [OJ V l "I [01 by the definition of C, and B is positive definite. Therefore, 
the principal submatrix CBC' is positive definite. 
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Lemma 8.3 
Partitioned Inversion Let B be any (n x n) nonsingular matrix that is partitioned as B = [:~: 

where Bll and B22 are nonsingular matrices. Then 

B-1 _ [ (Bll - B12B2"i B2tl-1 -BiIIBdB22 - B21BillBI2tl ] 
- -B2"iB2dBll - B12B2"iB2tl-1 (B22 - B2I Bil BI2)-I 

Now partition the x matrix as x = [X.I x.], where X.I denotes the first 
column of x, and x. denotes the remaining (k - 1) columns of the x matrix. 
Then 

x'x = -}.I [
X' X 

X.X.I 

and using the partitioned inversion lemma, the (1,1) entry in (x'xJ- I is repre­
sented by 

( ,)-1 (' '(' )-1' )-1 X X 1,1 = X.lx.1 - X.IX. x.x. X .. X.I . 

Thus, for the (1,1) entry in (x'xJ- I to have a limit of zero as n -+ 00, it is clear 
that the expression in parentheses on the right-hand side of the above equality 
must -+ 00 as n -+ 00. Since (x:x.) is positive definite (recall footnote 8), this 
necessarily requires that X~lx.1 -+ 00 as n -+ 00 since a nonnegative quantity, 
X~lx .. (x:X.)-IX:X.I' is being subtracted from x~lx.I' 

Now note further that (X~IX.I - x~lx.(x:x.)-lx:x.d is in fact the sum of the 
squared deviations of X.I from a vector of predictions of X.I generated by a least­
squares-estimated linear explanation of X.I (the dependent variable X.I is being 
predicted by a linear function of x., which ~re the explanatory variables in this 
context). Tq see thi~, note that the vector x .. b is the least distance from X.I when 
we choose b to be b = (X:X .. )-IX:X.l, as we have argued previously with regard 
to Athe least-squares procedure. Then the deviations between entries in X.I and 
x.b are represented by the vector 

( ' )-1' el = X.I - x .. X .. X.. X .. X.I, 

and straightforward matrix multiplication then demonstrates that 

, , '(' )-1' elel = X.IX.I - X.IX. X .. X.. X .. X.I, 

which is the reciprocal of the (1,1) entry of (x'xJ- I. Thus, for the (1,1) entry 
of (X'x)-I to converge to zero, we require that e1 el -+ 00 as n -+ 00. We thus 
specifically rule out the possibility that e1 el < 8 < 00, i.e., that the sum of 
squared deviations is bounded as n -+ 00. As a practical matter, it is sufficient 
that the average squared error, n-Ie1 eI, in predicting entries in X.I via linear 
combinations of corresponding entries in the remaining columns of the x ma­
trix exhibits some positive lower bound and thus does not converge to zero as 
n -+ 00. Roughly speaking, it is sufficient to assume that a linear dependence 
between X.I and the column vectors in x .. never develops regardless of sample 
size. 
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Note that the column of x that we utilize in applying the partitioned in­
version result is arbitrary-we can always rearrange the columns of the x ma­
trix to place whichever explanatory variable we choose in the "first position." 
Thus, our above discussion applies to each diagonal entry in the (X'X)-l ma-
trix. Then in summary, our sufficient condition for the consistency of fj is that 
limn ..... oo(x'x)-l = [0),9 which holds if (x:iX.i) ~ 00 V i, and if 3 some positive 
number 8> 0 such that no column of x can be represented via a linear combi­
nation of the remaining columns of x with an average squared prediction error 
less than 8 as n ~ 00. 

Consistency of 52 
If, in addition to the classical assumptions of the GLM, it can be assumed that 
the e/S are iid, then 82 is a consistent estimator of 0'2. 

Theorem 8.4 (Consistency of 82-iid Residuals) Under the classical assumptions of the 
GLM, if the elements of the residual vector g are iid, then 82 --4 0'2, so that 
82 is a consistent estimator of 0'2. 

Proof Recall from our discussion of the unbiasedness of 82 that 82 = (Y - xfj)'(Y -
xfjll(n - k) = g'(l - x(x'x)-lx')g/(n - k). Examine 

1· S~2 l' (g'g) l' (g'X(X'X)-IX'g) plm =plm -- -plm , 
n-k n-k 

and focus on the last term first. Note that (n - k)-I(g'x(x'x)-lXg) is a nonnega­
tive-valued random variable since (x'x)-l is positive definite. Also note that 
under the classical assumptions, Egg' = 0'21, so that 

E(n - k)-lg'X(x'xt1Xg = (n - k)-l tr[x(x'xt1x'Egg') 

= a2 (n _ k)-l tr[(x'xtlx'x) = 0'2 (_k_) . 
n-k 

Then, by Markov's inequality, V c > 0, 

a 2(k/(n - k)) 
P[(n - k)-lg'X(X'X)-lXg :::: c) :::: , 

c 

and since limn ..... oo a2(k/(n-k)) = 0, itfollows thatplim(n-kt1g'x(x'x)-lXg = O. 
Given the preceding result, it is clear that for plim S2 = 0'2, it is nec­

essary and sufficient that plim g'g/(n - k) = 0'2. Recalling that plim(WZ) = 

9Consistency of /3 can be proven under alternative conditions on x. Judge, et a1. (1982), Introduction to the Theory and Practice of 
Econometrics. New York: John Wiley, pp. 268-269, prove the result using the stronger condition that limn .... oo n- 1 x'x = Q, where 
Q is a finite, positive definitive matrix. Halbert White (1984), Asymptotic Theory for Econometricians, Cambridge, MA: Academic 
Press, p. 20, assumes that n-1x'x is bounded and uniformly positive definite, which is also a stronger condition than the one we 
use here. 
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plim(W)plim(Z)) by Theorem 5.6, and since (n - k)ln -+ 1 as n -+ 00, an equiv­
alent necessary and sufficient condition is that plimn-lg'g = a 2 • If the 8/S 
are not only uncorrelated, but also iid, then Khinchin's WLLN (Theorem 5.19) 
allows us to conclude the preceding plim result, since E8T = a2 V i, the ET's 
are iid, and n-lg'g = n- i L~l 8T, which is precisely in the form of Khinchin's 
theorem applied to the sequence of iid random variables {ET, E~, E~, .. . }. Thus, 
plim 52 = a2, and 52 is a consistent estimator of a2 • • 

Consistency of 52 for estimating a2 can be demonstrated without requiring 
that the E/S be iid. In the following result, we replace the iid assumption with 
alternative assumptions that still result in 52 -4 a2 • 

*Theorem 8.5 (Consistency of 52-Non-iid Residuals) Assume the classical assumptions of 
the GLM. Then 52 is a consistent estimator of a2 if E8t ::: r < 00 V i and either 
of the following conditions holds: 

a. 'L'l=l COv(eT,e;) = o(nl) Vi; 
ioF i 

h. leu} is an m-dependent sequence. 

Proof a. Under the stated conditions, the sequence of squared residuals Ie;} = 
leT, e~, ... } satisfies the assumptions of the WLLN stated in Theorem 5.22. 
To see this, note that varleT) = Eet - (E8;)2 = EEt - a4 ::: r < 00 V i, so that 

var(n-Ig'g) = n-2 [~var(ET) + ~oFf= COV(eT, eTl] ::: [r + o(nl)] In -+ 0 as n -+ 00. 

It follows immediately that plim (n-Ig'g) = a 2 • Also, given the classical 
assumptions ofthe GLM, it can be shown thatplim [(n-k)-lg'x(x'x)-lXgj = 
o using Markov's inequality in exactly the same way as in the proof of 
Theorem 8.4. It follows that 

plimS2 = plim(n-lg'g) -plim[(n - k)-lg'x(x'x)-lX'gj = a2 • 
~' . ' 

a2 0 

h. The conditions in part (b) imply the conditions in part (a), since cov(ET, e;) = 

o when Ii - ;1 > m by m-dependence. Thus, 52 -4 a2 • • 

Regarding the conditions in Theorem 8.5, first note that the boundedness 
of the moments of the residuals, i.e., EEt ::: r < 00 for some r > 0, is a relatively 
weak assumption that can often be comfortably adopted in practice. Note, for 
example, that these moment-boundedness assumptions are satisfied for every 
parametric family of density functions that we examined in Chapter 4. The re­
maining conditions on the residuals relate to the degree of association between 
outcomes of ej and e; as i and; become further and further apart. Essentially, 
(a) implies that the average covariance between e; and all of the remaining 
squared residuals, E; for; t i, converges to zero V i; and (b) states that ej and 
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ei become independent of one another when Ii - iI exceeds a fixed finite value. 
If the random sample refers to a time series of observations, then Ii - il refers 
to separation of ei and ei in the time dimension. If the random sample refers 
to a cross section of observations, then one must search for an ordering of the 
elements in the random sample to which the conditions of Theorem 8.5 can be 
applied. 

Asymptotic Normality of /3 

We establish the asymptotic normality of /3 by initially stipulating that the e/s 
are iid, that IXiil < ~ < 00 Vi, i, i.e., the explanatory variable values are bounded 
in absolute value, and that P(leil < m) = 1 V i, for m < 00, i.e., the disturbance 
terms are bounded in absolute value with probability 1. As a practical matter, it 
is often reasonable to assume that real-world explanatory variables in a linear 
model do not have values that increase without bound; e.g., all published data 
on the economy, census data, samples of sociodemographic information, and 
the like contain finite numbers, no matter how vast the collection. Indeed, it 
is safe to say that all of the numerical data ever measured and recorded can be 
bounded in absolute value by some large enough finite number,~. The bound­
edness assumption on the explanatory variables thus has wide applicability.lO 
Similar reasoning suggests that, in practice, boundedness of the disturbance 
terms in a linear model is often a reasonable assumption. That is, if Yi is an 
observation on real-world economic or social data and thus bounded in magni­
tude, it follows that ej = Yi - EYj would also be bounded, so that P(leil < m) = l. 

We finally assume at the outset that limn->oo n-1x'x = Q, where Q is a 
finite, positive definite matrix. This of course implies that n-1x'x has full rank, 
not just for a finite number of observations, which would be ensured by rank 
x = k, but also in the limit as n -+ 00. It also requires that the entries in n-1x'x 
be bounded (or else the limit would not exist). Note that this assumption poses 
no conceptual difficulty if x is fixed and designed by the researcher (or someone 
else), since the x matrix can then always be designed to behave in the required 
manner. If x is not designed, it must be assumed that the Xii'S are generated in 
a way that allows the limit of n-lx'x to be finite and positive definite. 

Theorem 8.6 (Asymptotic Normality of /3-iid Residuals) Assume the classical assump­
tions of the GLM. In addition, assume that {en} is a collection of iid ran­
dom variables and that P(leil < m) = 1 for m < 00 and V i. Finally, assume 
that the explanatory variables are such that IXiil < ~ < 00 V i and i, and that 

lOWe should note, however, that in the specification of some linear models, certain proxy variables might be used to explain y that 
literally violate the boundedness assumption. For example, a linear "time trend" t = I, 2, 3, 4, ... is sometimes used to explain 
an apparent upward or downward trend in EYI , and the trend clearly violates the boundedness constraint. In such cases, one may 
wonder whether it is really to be believed that t -+ 00 is relevant in explaining y, or whether the time trend is just an artifice 
relevant for a certain range of observations, but for which extrapolation ad infinitum is inadvisable. 
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limn_oo n-lx'x = Q, where Q is a finite, positive definite matrix. Then 

nl/2(,8 - j3) -4 N([Ol, O'2Q-l) and ,8 ~ N(j3, n- lO'2Q-l). 

Proof Recall that the least-squares estimator can be expressed as,8 = j3 + (X'X)-IX'c. 
Then 

nl/2(,8 - j3) = n l/2(x'x)-lx'c = (n- lx'x)-ln- I/2x'c. 

Note that n- I/2x'c can be written as the sum of nk-vectors as 
n 

n- I/2x'c = n- I/2 LX;'Ci 
i=llkxl) 

(where Xi. is the (1 x k) vector representing the ith row of x) since 

x' C = [X'l'x;', . , . x~.l [!,~]. 
Ikxnllnxl) : 

cn 

The expectation ofthe (kx IJ random vectorx~,Si is given byEx~,ci = [Ohxl) since 
ECi = O. The covariance matrix of the random vector is given by Cov (x~,ciJlkxk) = 
E(xi,ciJ(xi,ciJ' = Ec;xi,Xi, = O'2xi,Xi,' 

The random vectors Xi,Ci, i = I, .. " n, are independent because the c/s are 
independent, and the entries in the random vector Xi,Ci are bounded in absolute 
value with probability I, V i, since P(lcil < mJ = 1 and IXijl < ~, so that P(lxijcil < 
m~J = 1 Vi, j. Given that ll 

n n 

lim n- l "Cov(x' ciJ = lim n- l "O'2x', Xi, = 0'2 lim n-l(x'xJ = O'2Q, 
n-+oo ~ 1. n-+oo ~ 1. n-+oo 

i=l i=l 

and since Q is a finite, positive definite matrix, it follows directly from Theorem 
5.38, concerning a multivariate CLT for independent bounded random vectors, 
that 

n- I/2 tXi,Si = n- I/2x's -4 N ([Ol,O'2Q). 
i=l lkxl) lkxk) 

Then, by Slutsky'S theorem, since limn-+oon-1x'x = plimn-1x'x = Q, and thus 
limn_oo(n-1x'xJ-1 = plim(n-lx'xJ-1 = (plimn-lx'x)-l = Q-l, we have that 

nl/2(,8 - j3) = n1/2(x'xJ- lx'c = (n- lx'xJ- ln- I/2x'c -4 N([Ol, O'2Q-l J, 

which proves the limiting distribution part of the theorem. 

X2, [
XI.] 

llNote that XiX = [xl, x;, ... x~l X~, so that L:?=l Xi,Xi, = XiX. 
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Corollary 8.1 

The asymptotic distribution then follows directly from De£. s.lD. • 

While the previous theorem ~stablishes the asymptotic normality of the 
least-squares or BLUE estimator f3, the asymptotic distribution is expressed in 
terms of the generally unobservable limit matrix Q. We now present a corollary 
to Theorem 8.6 that replaces n-1Q-I with the observable matrix (X'X)-I, leading 
to a covariance matrix for the asymytotic distribution that is identical to the 
finite sample covariance matrix of f3. 

(Alternative Normal Asymptotic Distribution for ,6-iid Residuals) Under 
the conditions of Theorem 8.6, 

(X'X)I/2(,6 - (3) -4 N([OJ, a 2J) and ,6 ~ N(f3, a 2(x'x)-I). 

Proof By Theorem 8.6 and Slutsky's theorem, it follows that 

QI/2n l /2(,6 - (3) -4 N([Ol, a 2J). 

Since (n- Ix'xp/2Q-I/2 -+ QI/2Q-I/2 = I because n-Ix'x -+ Q,I2 Slutsky's 
theorem also implies that 

(n-1x'x)I/2Q-I/2QI/2n l /2(,6 - (3) = (x'x)I/2(,6 - (3) -4 N([OJ, a 2I), 

so that ,6 ~ N(f3, a 2(x'x)-I). • 

The asymptotic normality of the least-squares estimator can be demon­
strated more generally without reliance on the boundedness of the disturbance 
terms, without the iid assumption on the error terms, and without assum­
ing the existence of a finite, positive definite limit of n-Ix'x as n -+ 00. The 
demonstration relies on somewhat more complicated central limit arguments. 
We state one such result next. 

Theorem 8.7 (Asymptotic Normality of ,6-Non-iid Residuals) Assume the classical as-
1/2 A d A a I sumptionsoftheGLM. Then (x'x) (f3-f3) --"+ N([Ol,a2I)andf3~N(f3,a2(x'xr ) 

if the elements of the sequence {sn} are independent random variables such 
that ESl ::s r < 00 V i, and the explanatory variables are such that IX;il < ~ < 00 Vi 
and j with det(n-Ix'x) > 1] > 0 and with {n-lx'x} being 0(1). 

*Proof The proof is based on the Liapounov CLT for triangular arrays (Theorem 5.34) 
and the Cramer-Wold device (Corollary 5.4). Define Vn = n-Ix'x, and note that 

n 

(X'X)1/2(f3A 
_ (3) - n- I/2V- l/2x'e - n- I/2 ~V-l/2X' S - n - L..., n t. t· 

t=l 

12Regarding the symmetric square root matrix A l /2, note that P'AP = A, where P1kxk) is the orthogonal matrix of characteristic 
vectors of the symmetric, positive semidefinite matrix A, and A(kxk) is the diagonal matrix of characteristic roots. Then A 1/2 = 
P A 1/2 P', where 11.112 is the diagonal matrix formed from A by taking the square root of each diagonal element. Note that since 
p'p = I, Al/2AI/2 = PA I/2p'PA I/2p' = PA1/2A1/2p' = PAP' = A. The matrix square root is a continuous function of the elements 
of A. Therefore, limn-+ oo(AnJl/2 = (limn-+oo An)1/2. 
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Examine 
n n 

.e'(X'X)I/2(,8 -,6) = n-1/2 L·e'V;;I/2X~.St = n-1/2 L wnt, 
t=l t=l 

where.e is any conformable vector such that .e'.e = 1. Note that EWnt = 0 and 
var(Wnt ) = a2.e'V;;I/2x~.Xt.V;;I/2.e < 00 V nand t, where the finiteness of var(Wnt ) 
follows from the boundedness of EW~tJ which is shown below. 

Since EWnt = 0, EIWnt - EWnt l4 = EW~tJ and then 

EW4 = (Es4)[.e'V-1/2X' x V-l/2.e]2 < r[.e'V- 1/2x' x V-1/2.e]2. nt tnt. t. n - n t. t. n 

Now note that .e'V;;I/2X~.Xt.V;;I/2.e < e < 00 V nand t. This follows from the fact 
that IVnl > 17 > 0 V n with {Vn} being 0(1) =} {V;;I/2} is 0(1) (H. White (1982), 
"Instrumental variables regression with independent observations." Economet­
rica, p. 484-485), and since x;.Xt is a positive semidefinite matrix whose ele­
ments are all bounded in absolute value by ~2, it follows that V;;I/2X;.Xt.V;;I/2 
is an 0(1) positive semidefinite matrix, so that .e:V;; 1/2X;.Xt.V;; 1/2£ is bounded as 
claimed. Then, EW~t < re2 = y < 00 V nand t. 

Given the preceding results, Theorem 5.34 is applicable. Note that the Wnt's 
can be represented in the form of a triangular array (Def. 5.17) with typical row 
(Wnl,"" W nn ), V n, and the Wnt's are independent within rows since the St'S are 
independent. The limit condition of Theorem 5.34 is met, since 

o < lim [ L~=l EW~t ] < y lim [~] = o. 
- n ..... oo [L~=l var(Wnt)f - n ..... oo n2a4 

Then, because n-1 L~=l var(Wnt ) = a2, it follows from Theorem 5.34 that 

.e'(x'X)I/2(,8 - ,6) = n 1/2 [n-1 ~ Wnt] ~ N(O, a 2 !, 

and by the Cramer-Wold device (x'xP/2(,8 - /3! ~ N([OJ, a 2I!, so that ,8 ~ 
N(/3, a 2(x'x!-I). • 

The difference it) assumptions between our previous result on the asymp­
totic normality of /3 and the result in Theorem 8.7 is that the existence of 
moments of the s/s of order four replaces the assumption that the errors are 
bounded with probability I, the s/s are no longer required to be identically 
distributed (although first- and second-order moments are assumed to be the 
same by the classical GLM assumptions!, and bounds on the determinant and 
elements of n-1x'x replace the assumption that limn ..... oo n-lx'x exists and is pos­
itive definite. The latter assumptions are less restrictive than the assumption 
that limn ..... oo n-lx'x exists and is a nonsingular positive definite matrix, espe­
cially in cases where there is no control over how the x matrix was generated 
and no knowledge that the process generating the x matrix would inherently 
lead to the existence of a limit for n-lx'x. 
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Regarding the moment condition on the s/s, note that our previous assump­
tion P(lsil < m) = 1 V i implies boundedness of the moments and thus implies 
the moment condition in Theorem 8.7. However, the moment conditions in 
Theorem 8.7 also allow situations in which there is no absolute upper bound to 
the value of the error term that holds with probability I, and thus, for example, 
allows the s/s to have a normal distribution or a mean-shifted (to zero) Gamma 
distribution, whereas the former assumption :vould not. 

In summary, the least-squares estimator f3 can be approximately normally 
distributed, even if e is not multivariate normally distributed, given certain 
conditions on the values of the explanatory variables and certain assumptions 
regarding distributional clpracteristics of the disturbance vector. Note that 
asymptotic normality of f3 can be demonstrated using still weaker assump­
tions-the interested reader is directed to Chapter 5 of H. White (1984), Asymp­
totic Theory for Econometricians, Cambridge, MA: Academic Press, for further 
details. 

Asymptotic Normality of 52 

If, in addition to the classical GLM assumptions, it is assumed that the s/s are 
iid and have bounded fourth-order moments about the origin, then S2 will be 
asymptotically normally distributed. 

Theorem 8.8 (Asymptotic Normality of S2-iid Residuals) Under the classical assump­
tions of the GLM, if the elements of the residual vector, e, are iid, and if 
Es1 S T < 00, then 

Based on Markov's inequality, 

P ((_n_l_/2_) e'xlx'xtlx'e ~ c) S _a,...2n_l/--:2k:-:-
n-k c(n -k) 

(recall the proof of Theorem 8.4), and since a2n l/2klc(n - k) -+ a as n -+ 00, 

plim(n '/2 /(n - k))e'x(x'x)-Ix'e = o. Then it follows from Slutsky'S theorem that 
the limiting densi ty of n 1/2( S2 - ( 2) will depend only on the bracketed term in its 
definition above. Also by Slutsky'S theorem, the limiting density is unaffected 
if we multiply the bracketed term by (n - k)/n, since (n - k)/n -+ 1 as n -+ 00, or 
if we then also add the term -ka21n 1/2 since -ka2/n 1/2 -+ a as n -+ 00. Thus, to 
establish the limiting density of n1/2(S2 _(2), it suffices to examine the limiting 
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density of 

e'e (n - k)a2 ka2 e'e - na2 
n l/2 n l/2 - n l/2 = n 1/2 

Since Es1 ~ r < 00 #- var( s7) ~ r - 0'4 < 00, a direct application of the Lindberg­
Levy CLT to the sequence of iid random variables {sr, s~, s~, ... } yields 

e'e -na2 d 
1/2(' 4 )1/2 --"+ N(O, l). n J.L4 - a 

Consequently, by Slutsky's theorem, 
, 2 

e e - nO' d ,4 
n 1/ 2 --"+ N(O, J.L4 - a ). 

Therefore, 

nl/2(o52 _ 0'2) -'4 N(O, J.L~ _ 0'4) and 052 ~ N (0'2, J.L~ : 0'4) . • 
The asymptotic normality of 052 can be established without assuming that 

the disturbance terms are iid. We present one such result in the following the­
orem. 

Theorem 8.9 (Asymptotic Normality of o52-Non-iid Residuals) Assume the classical as­
sumptions of the GLM. Also assume that the s/s are independent and EIs7 -
a212+~ ~ r < 00 V i for some 8 > O. Then, letting ~n = n-I .E7=1 var /sn ::: rJ > 0 

V n, n 1/2 /o52 - a2)j~~/2 -'4 N(O,l) and 052 ~ N(a2,n-l~n). 

"Proof Similar to the proof of Theorem 8.8, we can show that the limiting distributions 
of nl/2(o52 _a2)j~~/2 and of CE7=1 S7 -na2l/nl/2~~/2 coincide. To see this, note that 
by Markov's inequality, 

( 
nl/2 ) a2n l /2k 

p 1/2 e'x(x'x)-Ixe ::: c ~ 1/2' 
(n - k)~n c(n - k)~n 

and if ~n ::: rJ > 0, V n, then the RHS of the inequality -+ 0 as n -+ 00, so that 
plim(n1/2j(n - k)~~/2)e'x(x'x)-lx'e = O. The remaining steps for showing the 
equivalence of the limiting distributions are analogous to those in the proof of 
Theorem 8.8. 

Liapounov's CLT /Theorem 5.33) can now be applied to 

(t s7 - na2) / nl/2~~/2. 
Note that the s7's are independent, with ES7 = 0'2 and var(sT) = E(sT - 0'2)2 < 00 

V i (the existence of var/sTl follows from the existence of EIST - 0'212+& for 8> OJ 
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recall Theorem 3.22). Furthermore, the limit condition of the Liapounov CLT 
is met, since 

. Ln_ EI82 - a 212+8 . nr. _ 
hm 1-1 1 < hm = hm(r/7J1+8/2)n 8/2 = O. 
n ..... oo [L~=l var (8l)f+8/2 - n ..... oo (n7J)l+8/2 n-oo 

Therefore, by the Liapounov CLT, 

(t 87 - na2) / (n~n)1/2 ~ N(O, I), 

which in turn implies that 

1/2(52 2) 
n -a ~N(Ol) and 52~N(a2,n-lcn). 
~~/2' 5 

Summary of Estimator Properties 

• 

Table 8.1 summarizes assumptions and the resultant properties of /3 and 52 as 
estimators of {3 and a 2 in the GLM context. 

Example 8.2 GlM When Random Sampling from a Population Distribution 

Let (YI,"" Yn ) be a random sample from a population distribution having finite 
mean fJ and finite variance a 2 (both scalars). The GLM representation of the 
vector Y is given by 

where Eg = 10j, and since the 8/S are iid, Egg' = a 2I. Then note that /3 = 
(X'X)-lx'Y = n- 1 L~=l Yj = Y, so that the least-squares estimator of fJ is the 
sample mean. Furthermore, S2 = (Y -x/J)'(Y -x/J)/(n -k) = L~l (Yj - y)2/(n_ 
1) is used as an estimator of a2 • The reader can verify that cases 2 and 3 in 
Table 8.1 are met, and thus P is BLUE and consistent for fJ, while 52 is an 
unbiased and consistent estimator for a2 • Under additional assumptions such 
as cases 5-8 in Table 8.1, or recall those discussed in Chapter 6 concerning the 
asymptotic normality of the sample mean and sample variance, P and 52 are 
both asymptotically normally distributed. D 

Example 8.3 A realtor is analyzing the relationship between the number of new one-family 
houses sold in a given year in the United States and various explanatory vari­
ables that she feels had important impacts on housing sales during the 19808. 
She has collected the following information: 
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#New Homes Conventional Medium New Home CPI 
Sold Mortgage Family Purchase Price (1982-1984 

(1000s) Interest Rate Income (1000's) = 100) 

1980 545 13.95 21,023 83.2 82.4 
1981 436 16.52 22,388 90.3 90.9 
1982 412 15.79 23,433 94.1 96.5 
1983 623 13.43 24,580 93.9 99.6 
1984 639 13.80 26,433 96.8 103.9 
1985 688 12.28 27,735 105.0 107.6 
1986 750 10.07 29,458 119.8 109.6 
1987 671 10.17 30,970 137.2 113.6 
1988 676 10.30 32,191 150.5 118.3 
1989 650 10.21 34,213 160.1 124.0 

Z 609 12.65 27,242 113.1 104.6 

Source: Statistical Abstracts of the United States, 1991, U.5. Dept. of Commerce, Washington 
D.C., Tables 1272, 837, 730, 825, and 771, respectively. 

She specifies the dependent variable vector, Y, as the numbers of new homes 
sold, and the explanatory variable matrix, x, contains a column of l's (for the 
interceptJ, followed by the remaining four variables in the table above. That is, 

x[., I) = l's, 

x[.,2) = Conventional Mortgage Interest Rates, 

x[.,3) = Median Family Incomes, 

x[.,4) = New Home Purchase Prices, 

x[., 5) = CPIs, 

and the GLM is given by Y = :Lf=l ,l3iX[., i) + e. She calculates the following 
values on her personal computer: 

b = (x'xJ-1x'y = [~~j~!], 
-6.16 
-2.03 

S2 = (y - xbJ'(y - xbJ/5 = 905.32, R2 = .96. 

The linear model thus explains 96 percent of the observed sample variation 
in new homes sold in terms of the values of mortgage interest rates, median 
family incomes, home prices, and the general cost of living. An estimate of the 
covariance matrix of the entries in ~ is calculated as 

[

79586.35 -3389.91 
191.4445 

S2(X'xtl = 
(symmetric J 

-5.9323 
.4094 
.0013 

273.0789 
-14.5792 

-.0538 
3.3401 

896.8833] 
-81.6034 

-.2665 . 
9.5606 

60.3537 
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The entries in b divided by their respective estimated standard deviations are 
given as (3.80, -3.33, 1.05, -3.37, -.26). Thus, the parameters associated with 
the intercept, interest rates, and new home prices are each more than three 
standard deviations away from zero (further insight into the significance of 
this observation will be provided in Chapter 10). 

The realtor calculates estimates of elasticities of home sales with respect 
to each of the explanatory variables, other than the intercept, evaluated at the 
means of the observations, as 

X2 (12.65) 
esa\es,rate = b2 Y = -46.01 609 = -.96, 

Xa (27,242) 
esales,income = ba y = .0376 609 = 1.68, 

X4 (113.1) 
esaies,price = b4 Y = -6.16 609 = -1.14, 

Xs (104.6) 
esales,CPI = bs y = -2.03 609 = -.35. 

Based on the estimated elasticities, home sales appear to be quite responsive to 
changes in interest rates, income levels, and home prices. Response to changes 
in the general cost of living is notably inelastic. 0 

Violations of Classic GLM Assumptions 

The classical assumptions of the GLM given in Def. 8.1 form essentially the 
base-level set of assumptions on which useful properties of the least-squares 
estimator depend. It is instructive to examine the effect that a violation in each 
of the classical assumptions has on the basic estimator properties of unbiased­
ness, BLUE, and consistency. 

Assumption Violation: E~ #- [0) In this section we assume that E~ #- [0], but 
we retain the other classical GLM assumptions. Note that the covariance as­
sumption must then be restated to accommodate the nonzero mean of ~, as 
CoveY) = (121 = Cov(~) = E(~ - E~)(~ - E~)'. ~ ~ 

f3 Properties If E~ = cp #- [0), then since f3 = f3 + (X'XJ-IX'~, E(3 = f3 + 
/x'x)-lx'cp. Except for the special case where x'cp = [0), the estimator j3 is a 
biased.. estimator of f3 since (X'x)-l~ci> = [0) iff x'cp = (x'x)[O) = [0). If x'ci> #- [0], 
then (3 is clearly 1}ot BLUE since f3 is not even unbiased. In the special case 
where x'cp = [0], f3 retains the BLUE property, as can be verified by repeating 
the previous derivation of the BLUE for f3 using the conditions E~ = ci> and 
x'cp = [0]. 

Regarding consistency, it follows from j3 = f3 + (x'X)-lx'~, that plimj3 = 
f3 iff plim(x'x)-lx'~ = [0). If we assume as before that (X'X)-l ---+ [OJ when 
n ---+ 00 (Table 8.1, condition 2), then since E[(X'X)-IX'~ - (X'X)-lx'ci>] = [0] and 
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COV((X'X)-IX'e) = a 2(x'x)-1 ~ [OJ as n ~ 00, it follows from mean-square con­
vergence that plim((x'x)-lx'e - (X'x)-lx'4» = [OJ. Thus, if limn;;-"oo(x'x)-lx'4> = e =1= [OJ, or if (x'x)-lx'4> does not converge to a limit, then {3 would not be 
consistent for {3 since plim(x'x)-lx'e =1= [OJ and plim,8 =1= {3. 

52 Properties Since 52 = (n - k)-l tr[(1 - x(x'x)-lx')ee'j, Cov(e) = a 21, and 
Eee' = a 21 + 4>4>', the expectation of 52 is given by 

E52 = a2 + 4>'(1 - x(x'X)-IX')4>. 
n-k 

Unless 4>'(1 - x(X'X)-lx')4> = 0, the estimator 52 is a biased estimator of a 2 

and the bias is nonnegative, since the matrix I - x(x'xj-1x' is symmetric and 
idempotent, and hence positive semidefinite. 13 Note that if Ee = 4> =1= [OJ, 
it is impossible for both ,8 and 52 to remain unbiased. To see this, first note 
that if x'4> = [0), so that ,8 is unbiased, then the bias in ,$2 is (E52 - a2 ) = 
4>'4>J(n - k) > O. Alternatively, if 52 is unbiased, then it must be the case that 
4>'4> = 4>'x(X'X)-IX' 4> > 0, and since 4>'x(x'x)-lx'4> is a positive definite quadratic 
form in the vector x' 4> (Le., (x'xj- 1 is positive definite), it necessarily follows 
that x'4> =1= [0) if 4>'x(x'xj- 1x'4> is positive, and thus {3 is biased. Thus at least 
one, and generally both, of the estimators,8 and 52 will be biased if Ee =1= [0]. 

Regarding consistency, define V = e - 4>, and note that ,52 = (n - k)-l (4) + 
V)'(I - x(x'x)-lx')(4> + V), where EV = [0) and Cov(V) = a 21, Letting M = I -
x(X'x)-lx', it follows that 52 = (n - kj-I[4>'M4> - 24>'MV + V'MV), so that ,$2 
is consistent iff the expression on the right-hand side of the equality has a 
probability limit of a2 • To illustrate that this is generally not true, assume that 
the V/s are iid, which is tantamount to assuming that the e/s are independent 
and identically distributed once they are transformed to have mean zero, as ei-
4>i. Then plim(n - k)-IV'MV = a 2, which follows from an argument identical 
to that used in the proof of Theorem 8.4. It follows that ,$2 will be consistent 
for a2 iff (n - k)-I[4>'M4> - 24>'MV]-4 O. 

Now assume I¢il :5 C < 00, so that the means of the residuals are finite and 
4>'4> = O(nl), or at least assume that 4>'4> is 0(n2), implying that the sum of the 
squared means approaches infinity at a rate less than n2 • It follows that 4>'M4> 
is 0(n2), since 0 :5 4>'M4> = 4>'4> - 4>'x(x'X)-lx'4> :5 4>'4>. Then since E(2(n -
k)-I4>'MV) = 0 and var(2(n - k)-I4>'MV) = 4a24>'M4>J(n - k)2 :5 4a20(n2)J(n­
k)2 ~ 0 as n ~ 00, plim(2(n - k)-I4>'MV) = 0 follows from mean-square 
convergence. Thus, except for the special case limn-..oo(n - k)-I4>'M4> = 0, ,$2 
will not be consistent for a2 • 

Assumption Violation: Eee' =1= a 21 
,8 Properties If Eee' = q, =1= a 21, so that the error terms are heteroskedastic 

andJor auto correlated, then the estimator,8 is nonetheless still unbiased for {3. 

13Positive semidefiniteness can be deduced from the fact that the characteristic roots of a symmetric idempotent matrix are all 
nonnegative, being a collection of D's and 1 '5. 



454 Chapter 8 Point Estimation Methods 

Lemma 8.4 

Lemma 8.5 

This follows because the representation /3 = f3 + (X'X)-IX'g is unaffected, and 
taking expectations still yields E/3 = f3 + (x'xt1x'Eg = f3. 14 

To examine consistency, note that now Cov(/3) = (X'X)-IX'q,X(X'X)-I. If it 
were true that var(Pi) -+ 0 as n -+ 00 V i, then since E/3 = f3, we could conclude 
by convergence in mean square that plim /3 = f3. Under mild conditions on the 
q, matrix, and assuming as before that (X'x)-l -+ [0], convergence of var(/3i) to 
zero V i will be achieved. The argument is facilitated by the following matrix 
theory lemma. 

Let A and B be symmetric, positive semidefinite matrices of order (n x n). 
Then tr(AB) ~ AdA) tr B, where AL(A) represents the value of the largest 
characteristic root of the matrix A. 

Proof: Let P be the (n x n) characteristic vector matrix of the symmetric ma­
trix A, so that P' AP = A, where A is the diagonal matrix of characteristic 
roots of A. Since PP' = I by the orthogonality of P, it follows by a prop­
erty of the trace operator (tr(DFG) = tr(GDFl! that tr(AB) = tr(APP'BPP') = 
tr(P'APP'BP) = tr(AC), where C = P'BP. But then tr (AC) = L:~l AiCjj ~ 
AdA) L:7=1 C jj where Ai is the ith diagonal entry in the diagonal matrix of 
characteristic roots A, Cjj represents the (i, i)th entry in C and Ai 2: 0 and 
C jj 2: 0 V i by the positive semidefiniteness of A, B, and P'BP. But since 
L:7=1 Cjj = trC = trP'BP = trBPP' = trB, we have that tr(AB) ~ AdA)trB. 

Using the lemma and properties of the trace operator, note that 

tr(x'xt1x'q,x(x'x)-1 = tr q,x(x'xt2x' ~ Adq,) tr x(x'x)-2x' = Adq,) tr(x'xtl. 

Thus, if Adq,) < !' < 00, i.e., if the largest characteristic root of q, is bounded, 
then since tr(x'x)-l -+ 0 as n -+ 00, tr(x'x)-Ix'q,x(x'x)-l -+ 0 as n -+ 00. It 
follows that all of the diagonal entries in (x'xt1x'q,x(x'xt1 must converge to 
zero, since the (k x k) matrix is (at least) positive semidefinite and thus has 
nonnegative diagonal entries, and the sum of these k nonnegative numbers 
converging to zero requires that eacQ. diagonal entry converge to zero. Thus, by 
convergence in mean square, plim f3 = f3 even if Egg' = q, i= a 21, 

As a practical matter, the assumption that Adq,) is bounded is not very 
restrictive. The following matrix theory lemma will be useful for establishing 
sufficient conditions for the boundedness of Adcp). 

The absolute value of any characteristic root of a matrix, A, is less than or 
equal to the sum of the absolute values of the elements in the row of A for 
which the sum is largest. 

14We are making the tacit assumption that x contains no lagged values of the dependent variable, which is as it must be if it 
is presumed that x can be held fixed. In the event that x contains lagged values of the dependent variable and the error terms 
are autocorrelated, then in general EIX'XI-1 X'e t [OJ, and i3 is biased. Issues related to this case are discussed in a subsequent 
subsection. 
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Proof: See S. J. Hammarling (1970), Latent Roots and Latent Vectors, Univ. 
of Toronto Press, p. 9. 

Using Lemma 8.5, we now examine three different sufficient conditions on 
the covariance matrix cI> that ensure the boundedness of ).dcI» and thus the 
consistency of fJ. Assume that varied = ajj < ~ < 00 V i, so that the variances of 
the disturbance terms exhibit some (perhaps very large) upper bound. As a first 
sufficient condition, if the disturbance vector is heteroskedastic but there is 
zero autocorrelation, then it is immediate that ).dcI» < ~, since cI> is a diagonal 
matrix of variances, and the characteristic roots of a diagon~l matrix are directly 
the diagonal elements. Thus, ).dcI» is bounded and plim {3 = {3. 

If the disturbance vector is either heteroskedastic or homoskedastic and 
exhibits nonzero autocorrelation, then ).dcI» will be bounded if the covariance 
terms in cI> decline sufficiently fast as Ii - iI increases. The most straightforward 
sufficient condition to examine in this case is aij = 0 for Ii - il > m, where m 
is some (perhaps very large) positive integer m, which is true if (but not only 
if) the e/s are m-dependent (recall Def. 5.1S). Then let row i of cI> be the row 
for which the sum of the absolute values of the elements in the row is largest 
in comparison with the other rows of cI>. Because aii = 0 when Ii - il > m, the 
maximum number of nonzero entries in row i is 2m + 1. Also, by the bound 
on covariances, laiil ~ laiill/2Iaiill/2 V i, i. It follows that the sum of the absolute 
values of the entries in the ith row of the covariance matrix cI> is upper bounded 
by (2m + l)e, and thus by Lemma 8.5, ).dcI» < (2m + l)e. Then since ).dcI» is 
bounded, plim fJ = {3. 

Now suppose instead that aii =F 0 and there is no value of Ii - il beyond 
which the covariance is assumed to be zero. Then again using Lemma S.5, a 
third sufficient condition for ).dcI» < T < 00 is that L7=1 laiil < T < 00 V i and V n. 
Since we are assuming aii < e V i, the sufficient condition can alternatively be 
stated in terms of the boundedness of Lj;ti laiil V i. Thus, if covariances decline 

sufficiently fast so that Li'iM laiil < 1] < 00 V i, then plim fJ = {3. 

We should note that the consistency of fJ does not require that ).dcI» be 
bounded. It is sufficient that ).dcI» increase at a rate slower than the rate at 
which tr(x'xt1 -+ 0, for then it would still be true that ).dcI» tr(x'x)-l -+ O. For 
additional results on the consistency of {3, the reader is referred to the book by 
H. White, Asymptotic Theory. 

Having seen that fJ is unbiased and consis!ent for {3 under general condi­
tions on Eee' = cI>, one may wonder whether {3 retains the BLUE property. In 
the general (and usual) case where cI> is unknown, no linear estimator exists 
that has the BLUE property. To see this, note that if Eee' = cI>, then 

cI>-1/2y = cI>-1/2x{3 + cI>-1/2e or Y* = x*{3 + e* 

satisfies the classical assumptions of the GLM (assuming, of course, that all of 
the classical assumptions except Cov(Y) = Cov(e) = a 2I apply to Y = x{3 + e). 
In particular, note that Ee*e: = cI>-1/2Eee'cI>-1/2 = cI>-1/2cI>cI>-1/2 = I and Ee* = 
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E<P- l/2g = ~-1/2Eg = [0]. Then the Gauss-Markov theorem applied to the 
transformed linear model implies that 

(3 = (X:X*)-lX:y* = (x'~-lX)-lX'~-ly 

would be the BLUE for {3. However, the definition of the BLUE estimator de­
pends on the unknown value of ~, and since then there does not exist a fixed 
choice of A and b such that AY + d is BLUE for all potential values of <P, no 
BLUE estimator of {3 exists when ~ is unknown. 

In the very special case where ~ is known up to a scalar multiple, i.e., 
~ = a 20 with 0 known, then the linear estimator f/ = (X'<p-lX)-lx'~-ly = 
(x'Q-IX)-lx'Q-ly is the BLUE estimator. This special estimator is referred to 
in the literature as the generalized least-squares estimator of {3. 

52 Properties The estimator 52 under the condition Egg' = ~ i= a 21 is 
useful only if there exists a counterpart to the parameter a2 which can be es­
timated. Two such situations arise when ~ = a20, and either 0 is a known 
positive definite matrix, or else g is homoskedastic with common variance a2 • 

In either case, 

E52 = (n - k)-lEg'(1 - x(x'xtlx')g = (n - k)-l tr(1 - x(x'x)-lx')Egg' 

2 [0(1 - x(X'x)-lx')] 
= a tr (n -k) . 

Thus 52 is generally biased as an estimator of a 2, since the trace of the matrix 
divided by (n - k) in the preceding expression will generally not be equal to 1. 
Of course, in the very special case where 0 were known, 52 could be scaled by 
the known value of the trace to define an unbiased estimator of a2 • 

In certain cases, the bias in 52 converges to 0 as n ~ 00. Note that Lemma 
8.4 implies that 

2 (Ox(X'X)-lX') < 2, (n) (_k_) 
a tr (n _ k) - a II.L .\, (n _ k) , 

and if Ad~) is bounded or at leasto(n l ) as we have argued above, thena2AdO) = 
Ad<pj15 is bounded and a 2AdQ)(kj(n - k)) 4- 0 as n ~ 00. Then since 
tr(Ox(x'xj-lx') ~ 0,16 it must be the case that a2 tr Ox(x'x)-lx')/(n - k) 4- 0 
as n ~ 00. It follows that E52 4- a 2 as n ~ 00 iff tr OJ(n - k) 4- 1 as n 4- 00, 

which does occur if g is homoskedastic (g may still exhibit nonzero autocorre­
lation) with a2 representing the common variance of the B/S, for then trIO) = n, 
since the diagonal entries of 0 would all be equal to the number 1, and then 
nj(n - k) 4- 1 as n ~ 00. In the heteroskedastic case, there is no reason to 
expect that the preceding condition will hold. 

ISThe characteristic roots of 'l"A are equal to the characteristic roots of A times the scalar 'l". 

l6Note that tr flx{x'xl-lx' = td)I/2x{x'xl- lx'OI/2, and since {x'xl- l is positive definite, OI/2x{x'xl- lx'OI/2 is at least positive 
semidefinite, and its trace must be nonnegative. 
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Regarding consistency of S2 for a2, Markov's inequality can be used as in 
the proof of Theorem 8.4 to show that plim (n - k)-le'x(x'X)-IX'e = 0, as­
suming Ad~) is bounded. If e is homoskedastic with variance a2, and if the 
conditions of Theorem 8.5 other than Eee' = a 2I can be assumed to hold, 
then the weak law of large numbers given by Theorem 5.22 implies that plim 
(n - k)-Ie'e = plimn-Ie'e = a 2, and thus S2 would be consistent for a 2 (con­
sistency under alternative conditions on e can be demonstrated as well-recall 
Table 8.1). If e is heteroskedastic with COV(e) = a 2S1 while maintaining the 
remaining preceding assumptions, then by Theorem 5.22 plim (n - k)-I[e'e­
I:7=1 a2(.Viil = plimn-I[e'e - 0,:2 I:7=1 (.Viil = 0, and except for the very special 
case limn_oo n- I I:f=1 (.Vii = I, S2 will not be consistent for a2 • 

Assumption Violation: Rank x < k, or Ix'xl ~ 0 In this section we assume that 
either x is less than full column rank so that rank x < k, or else there is linearly" 
a linear dependency among the columns of x, so that Ix'xl ~ O. Note that this 
latter assumption is not a violation of the classical GLM assumption, but rather 
"nearly" a violation. We retain the other classical GLM assumptions. 

{3 Properties If the classical GLM assumption concerning rank x = k is 
violated, then the least-squares estimator /J = (x'X)-lx'y does not exist, since 
(x'x)-I does not exist. In this case, there is an infinite number of solutions to 
the problem of minimizing (y - xb)'(Y - xb) through choice of the vector b. To 
see this, recall that the first-order conditions for the minimization problem are 
given by (x'x)b = x'y, which is a system of k equations in the k unknowns 
represented by the vector b. If x is less than full column rank, so that (x'x) is 
less than full rank, then this system of linear equations effectively contains 
one or more redundant equations, so that there are essentially more unknowns 
than equations. Then there is an infinite number of solution values for b. In 
this case, the parameter vector {3 cannot be estimated uniquely. This problem 
is referred to in the literature as perfect multicollinearity. 

More prevalent in applications is the case where rank x = k but x'x is 
nearly singular, Le., its determinant is near zero. In such cases, (X'X)-I tenqs 
to have large diagonal entries, implying that the variances of elements of {3, 
given by the diagonal elements of a 2(x'x)-I, are very large. This follows from 
our previous application of Lemma 8.3 on partitioned inversion to the matrix 
(x'X)-I. In particular, the lemma implies that the variance of Pi (Le., the (i, i)th 
entry in a 2(x'x)-I) is given by 

2( , '(' )-1, )-1 2(, )-1 a x.ix.i - x.ix* x*x* x*X.i = a ejej , 

where ej represents a vector of deviations of X.i from a least-squares prediction 
of X.i based on a linear combination of the columns of x other than X.i (these 
remaining (k - 1) cglumns ale represented by x*). The more closely X.i can be 
approximated by x*b (where b = (x:x*)-lx:X.i), and thus the more closely that X.i 
is linearly related to the remaining column vectors in the x matrix, the smaller 
ej and e~ej are and thus the larger var(pjl = a2(e~ejl-1 is. Note that as long as 
rank x = k, and the other appropriate assumptions hold, /J remains BLUE and 
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consistent as an estimator of {3. However, the large variances associated with 
the iNs imply that in small samples, outcomes of fJ can be quite distant from 
{3 with high probability. 

52 Properties In the case of perfect multicollinearity, 52 can nonetheless be 
used to generate estimates of 0'2, and with minor modifications to the deriva­
tions used previously to establish properties of 52, it can be shown that 52 is 
unbiased and consistent for 0'2. Of course, the definition of 52 cannot be ex­
pressed in terms of (Y - xfJnY - xfJ)/(n - k), since fJ = (X'X)-lx'Y does not exist 
in this case. However, 82 = e'e/(n - k) can nevertheless be calculated, 'Yhere e'e 
is the minimum sum of squared errors calculated from any choice of {3. which 
solves the first-order conditions (x'x)fJ. = x'y. A rigorous demonstration of the 
properties of 52 under perfect multicollinearity relies on the notion of general­
ized inverses of matrices (e.g., see F. Graybill (1976), Theory and Application 
of the Linear Model. North Sciuate, MA: Duxbury Press, pp. 23-39), and given 
that perfect multicollinearity is by far the exception rather than the rule, we 
will not pursue the details here. 

In the case where rank x = k but (x'x) is nearly singular, the proofs of unbi­
asedness and consistency of 52 nonetheless apply exactly as stated previously, 
and thus these properties are attained by 52 under the assumptions introduced 
heretofore. It is also useful to note that unlike the variances of the ~/s, which 
can increase without bound as the multicollinearity becomes increasingly se­
vere, the variance of 52 exhibits a finite bound, which is unaffected by the 
degree of multicollinearity. To derive such a bound, assume the classical GLM 
assumptions hold, assume the s/s are iid, and let Es1 = J.L~ < 00 exist. Recall 
thatvar(52) = E54 _(E52)2 = E54-a4, where we have used the fact thatE52 = 0'2. 

Now note that 

52 = (n - k)-l(g'g - g'x(x'xrIX'g):=:: (n - k)-Ig'g, 

since x(X'X)-I X' is positive semidefinite, which implies 

E54 :=:: (n - kr 2E(g' g)2 :=:: (n - kr 2E [t s1 + 2 ~ L siS;] 
1=1 1</ 

:=:: (n _k)-2 [nJ.L~ +n(n -1)0'4] = T(n), 

where T(n) ~ 0'4, T(n) is monotonically decreasinginnV n > k, andlimn -+oo T(n) = 
0'4. 

Then the variance of 52 is bounded as 

var(52) :=:: T(n) - 0'4 

regardless of the severity of the multicollinearity, as long as rank x = k. Other 
bounds can be derived in cases where the s/s are not iid. 

Assumption Violation: Stochastic X with E(X'X)-l X' g =1= [OJ and plim(X'Xr1 X' g =1= 

[OJ In this section we focus explicitly on the case where the explanatory vari-
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able matrix X is a nondegenerate random matrix. Note the condition 

E(X'X)-lX'e: =1= [OJ 

459 

necessarily implies (by the double expectation theorem) that E(e: I x) =1= [0\ with 
positive probability, and so the conditional mean of e: is not independent of 
X. This in turn implies that E(Y I x) =1= x{3 with positive probability, and thus 
assumption I of the classical assumptions of the GLM, applied explicitly to the 
stochastic X case, is violated. Furthermore, the dependence between X and e: 
persists in the limit, as indicated by plim(X'X)-1 X'e: =1= [OJ. The interdependence 
of X and e: is typically caused by either measurement error in the x outcomes 
or by simultaneous determination of Y and X outcomes and is discussed in the 
econometric literature under the rubric of errors in variables and simultaneous 
equations, respectively. 

/3 Properties Since E/3 = {3 + E(X'X)-IX'e: =1= {3, because E(X'X)-lX'e: =1= 

[OJ, it follows that the estimator is a bia§ed estimator of {3, so that /3 is also 
not BLUE. Regarding consist~ncy, plim {3 = {3 + plim(X'X)-lX'e: =1= {3 because 
plim(X'X)-lX'e: =1= [OJ and so (3 is also not consistent. 

52 Properties Letting 8(x) = B(e: I x), the expectation of (n - k)52 can be 
written via the double expectation theorem as 

E(n - k)52 = Ee:'e: - E [E(e:'X(X'X)-IX'e: I Xl] 

= na2 - E [trX(X'X)-IX'E(e:e:' I Xl] 

= na2 - E [tr X(X'xt l X'(Cov(e: I X) + 8(X)8(X),)] 

= (n - k)a2 - E8(X)'X(X'xt l X' 8(X) 

assuming CoYle: I x) = a 2I, V xY Thus E52 < a2 in general, so that 52 is biased. 
Regarding the consistency of 52, first note that 52 = (n - k)-le:'Me: = 

n-Ie:'Me:+op(l) = n-Ie:'e:-n-1e:'X(X'Xj-1X'e:+op(I), and since (n- Ie:'e:-a2) -r.... 
0, 

(52 - a2 ) = -e:'X(X'X)-I(n-IX'Xllx'xtIX'e: + op(l). 

Ifn-lX'X -r.... Q, asymmetric, positive definite matrix, andifplim(X'X)-lX'e: = 
~ =1= [OJ, then (52 - a2 ) -r.... -e'Qe < 0, and 52 is not consistent. Even if neither 
n-IX'X nor (X'X)-IX'e: converges at all, so long as det(n-IX'X) > 1] > 0 V n, as 
in Table 8.1, and (X'X)-IX'e: -fJ4 [OJ, it follows that (52 - a 2 ) -fJ4 0 and 52 is not 
consistent. 

GLM Assumption Violations: Property Summary and Epilogue 

The basic properties of the DLS-based estimators of (3 and a 2 under the various 
violations of the classical GLM assumptions are summarized in Table 8.2. The 

J7Recall that Eee' = Covje) + EeEe'. 
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row of the table identified as "terminology II indicates the label under which 
the problem is generally discussed in the econometric literature. 

A major focus of research based on the GLM concerns the detection and 
remedies for violations of the assumptions needed to achieve the desirable 
properties of the estimators of {3 and a2 • Indeed, fields such as economet­
rics and sociometries were necessitated by the fact that, unlike disciplines 
in which the experiments under investigation can be designed and controlled 
to achieve the conditions needed for the least-squares estimator to have opti­
mal properties, experiments in economics, business, sociology, and other so­
cial sciences are often not under the control of the researcher. Variations on 
the least-squares estimator, such as restricted least squares, the feasible gen­
eralized least-squares estimator, instrumental variables estimators, two- and 
three-stage least-squares estimators, general method of moments estimators, 
and limited and full-information maximum likelihood estimators, represent 
procedures for remedying violations of the GLM classical assumptions that 
the reader will encounter in subsequent studies of statistics and economet­
rics, e.g., see the books by G. Judge, et aI., (1985J, The Theory and Practice of 
Econometrics, 2nd ed., New York: John Wiley, and T. Amemiya (1985J, Ad­
vanced Econometrics Cambridge, Harvard University Press. We will exam­
ine some hypothesis tests for detecting GLM assumption violations in Chap­
ter 10. 

Least Squares Under Normality 

Before examining the implications of making a specific parametric family as­
sumption for the PDF of Y, we emphasize that the type of random sample 
envisioned for (Y1, ••• , YnJ in the GLM context is generally of the composite 
experiment type, i.e., note that EYj does not necessarily equal EYj for i =1= i, nor 
is it necessarily assumed that (YI, ... , YnJ or (SI, ... , snJ are iid. We now examine 
the assumption of normality for (YI, ... , YnJ and, hence, for (SI, ... , snJ. 

In the GLM, under the classical GLM assumptions, let Y '" N(x{3, a 2IJ. 
Under the normality assumption, the classical GLM assumptions necessarily 
imply the s/s are iid normal, with mean zero and variance a2 • Furthermore, 
all of the assumptions in Table 8.1 corresponding to the disturbance vector 
hold, except for P(lsil < m) = 1 V i, which does not hold. Of course, our entire 
preceding discussion concerning the properties of /3 and $2 then applies equally 
well to the case where Y is multivariate normally distributed. The question 
this section addresses is what additional properties can be attributed to the 
estimators when Y is multivariate nqrmally distributed? 

One immediate property is that {3 is multivariate normally distributed for 
every n ~ k, and not just asymptotically normally distributed. This follows 
straightforwardly frolll the fact that {3 is a linear function of the entries in Y, so 
that (by Theorem 4.9) {3 is norm~lly distributed with mean E{3 = (X'X)-IX'(xtU = 
(3, and covariance matrix Cov({3) = (x'x)-l x'[a2I]x(x'x)-1 = a 2(x'x)-I, i.e., (3 '" 
N({3, a 2(x'xJ-I). 
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Another property is that (n - kJ52/a2 ""' X;-k' To see this, first note that 

(n - k)52 e'[I - x(x'x)-Ix'le -I' AP' -I 
'------:0-2-'-- = 2 = a e P ea, 

a a 
where I - x(x'x)-I x' = PAP', and A and P are, respectively, the diagonal matrix of 
characteristic roots and the matrix of characteristic vectors (stored columnwise) 
associated with the symmetric and idempotent matrix (I-x(x'x)-Ix') (recall the 
proof of Theorem 6.12.b). Examine the probability distribution of Z = P'ea- I. 
Since e '" N([01,a2I), then Z ""' N(a- IP'[0],a- IP'a2IPa- I) = N([O],I), because 
P'P = I by the orthogonality of P. Then 

( k)52 n-k 
n - = Z' AZ = "Z2 ""' 2 a2 L 1 Xn-k' 

i=I 

i.e., we have the sum of the squares of (n - k) iid standard normal random 
variables, which has a chi-square distribution with n - k degrees of freedom. 

Since by the preceding result 52 can be characterized as a X2 random vari­
able that has been multiplied by the constant a 2/(n - k), it follows that 52 '" 
Gamma((n - k)/2, 2a2/(n - k)), as can be shown by deriving the MGF of 52. 
Using properties of the Gamma density, this in turn implies that E52 = ((n -
k)/2)(2a2/(n - k)) = a2 and var(52) = ((n - k)/2)(2a2/(n - k))2 = 2a4/(n - k). 

Still another property is that /3 and 52 are independent random variables. 
This follows from an application of Theorem 6.11 along the lines of the proof 
of Theorem 6.12a and is left as an exercise for the reader. 

MVUE Property of /3 and 52 Perhaps the most important additional property 

that results when Y '" N(x{3, a 2I) is that [~] is then the MVUE for [~]. 

Theorem 8.10 (MVUE Property of (/3,52) Under Normality) Assume the classical assump­
tions of the GLM, and assume that Y '" N(x{3,a2I). Then (/3,52) is the MVUE 
for ({3,a2). 

Proof Note that the multivariate normal density belongs to the exponential class of 
densities 

where 

_ [:2{3] - -1 ' 

2a2 
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d(,B, (12) = -((,B'x'x,B)/2(12) -; In(2Jr(12)n/2, z(y) = 0, and A = xf=t!-oo,oo) = 
Rn. Then by Theorem 7.3, [~,~] is a vector of minimal sufficient statistics for 
estimating ,B and (12. These sufficient statistics are also complete sufficient 
statistics, since the range of the vector function represented by e(,B, (12) contains 
an open (k + I)-dimensional rectangle (recall Theorem 7.6). In particular, note 
that the range is given by R(e) = {(CI, ... , Ck+I): -00 < Cj < 00, i = 1, ... , k, Ck+1 < 
OJ since f3j E (-00,00) for i = I, ... , k, and (12 > 0, so that any open rectangle 
of the form A = {(cI, ... ,ck+Il: aj < Cj < bi,i = I, .. . ,k + I), for aj < bi, and 
bk+1 < 0 is a (k + 1 I-dimensional open rectangle subset of R(e).ls Then since 
fj = (X'X)-lx'Y and S2 = (n - k)-I(y - xfj),(Y - xfj) = (Y'Y - Y'x(x'x)-lx'Y)/(n­
k) are functions of the complete sufficient statistics [~,~], and since we have 
shown previously that fj and S2 are unbiased for ,B and (12 under the classical 
assumptions of the GLM, it follows from the Lehmann-Scheffe completeness 

theorem (Theorem 7.19) that [~] is the MVUE for L~)' • 

The reader should note that had he or she attempted to establish that [~] 
was MVUE by utilizing the Cramer-Rao lower bound approach, the CRLB 
would have been found to be 

[
(12(X'X)_1 

E [alnf(Y; 8) alnf(Y; 8)'J-I = 

a8 a8 [OJ 
[OJ] 2:4 , 

where 8 = (~). Then since Cov(fj) = (12(x'X)-l, fj achieves the CRLB for 

unbiased estimators of,B proving that fj is the MVUE for ,B. However, since 
var(S2) = 2(14/(n - k) > 2(14/n, S2 does not achieve the CRLB for unbiased esti­
mators of (12, and the CRLB approach would have left the question unanswered 
regarding whether S2 was the MVUE for (12. The approach using complete suffi­
cient statistics demonstrates that no unbiased estimator of (12 can achieve the 
CRLB in this case, for S2 is indeed the MVUE. 

On the Assumption of Normality The reader may wonder what considerations 
would lead to a specification of the normal family of densities for the probability 
distribution of Y. Of course, if there is an underlying theoretical or physical 
rationale for why Y is multivariate normally distributed, the assumption is 
obviously supported. However, the underlying rationale for normality is often 
not clear. In these cases, normality is sometimes rationalized by an appeal to a 
central limit theorem. In particular, it is often argued that the elements in the 
disturbance vector are themselves defined as the summation of a large number 

18Note that f3i E (-00,00), V i, and (12) 0 are the admissible parameter values for Y ~ N(x,6,(12I). It may be the case that only 
a subset of these values for the parameters are deemed to be relevant in a given estimation problem (e.g., a price effect may be 
restricted to be of one sign, or the realistic magnitude of the effect of an explanatory variable may be bounded). Restricting the 
parameter space comes under the realm of prior information models, which we do not pursue here. So long as the admissible values 
of f3 and (12 form an open rectangle themselves, the range of c(f3, (12) will contain an open rectangle. 
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of random variables, i.e., ci = 2::;:1 Vii for large m. The Vii's may represent a 
myriad of neglected explanatory factors that affect EYi, i = I, ... , n, which, 
because of the need for tractability, parsimony, or because of a lack of data, 
are not explicitly represented in the specification of EYi = xd3. Alternatively, 
the Vi;'S may be intrinsic to the error-term specification if the GLM is being 
used to represent a summation of individual microrelations. For example, an 
aggregate short-run supply function in an aggregate economic analysis might 
be represented as 

m m 

L Oii = L(fili + fi2iPi + Vii) =} OJ = fii + fiipi + ci, 
i=1 i=1 

where Oi = 2::}:1 Oi; is the ith observation on aggregate supply, fii = 2::}:1 fili 
is the intercept term of the aggregate supply relationship, fii = 2::;:1 fi2; is the 
aggregate price effect, Pi is the ith observation on supply price, and Ci = L}:I Vii 
is the disturbance term for the ith observation, defined as the sum of the indi­
vidual disturbance terms of the m micro supply functions. Our investigation 
of CLTs in Chapter 5 suggested that under a variety of conditions, sums of 
large numbers of random variables are asymptotically normally distributed, 
i.e., e = L}:I V.i ~ N(J.L, :E). 

A prudent approach to the assumption of normality is to view arguments 
such as those presented above as suggestive of a normal approximation to the 
true distribution of e, but the assumption should be tested for acceptability 
whenever possible. We will investigate testing the hypothesis of normality (and 
indeed, hypotheses of other parametric families as well) in Chapter 10. 

8.3 The Method of Maximum Likelihood 

The method of maximum likelihood (ML) can be used to estimate the unknown 
parameters, or functions of unknown parameters, corresponding to the joint 
density function of a random sample. The procedure leads to an estimate of 
8 or q(8) by maximizing the likelihood function of the parameters, given the 
observed outcome of the random sample. At the outset we will focus on the 
problem of estimating 8 itself. It will be seen later that maximum likelihood 
estimation of q(8) is easily implemented through an in variance principle once 
the problem of estimating 8 has been solved. 

The likelihood function is identical in functional form to the joint density 
function of the random sample. However, there is a subtle interpretational dif­
ference between the two functions. In particular, while the joint density func­
tion is interpreted as a function of random-variable outcomes (XI, ... , xn ), given 
values of the parameters (8 1, ••• , 8 k ), the likelihood function is interpreted as 
a function of the parameters (8 1, ..• , ed, given values of the random-variable 
outcomes (XI, .. . ,xn ). Thus, 

L(8; x) == I(x; 8) 
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defines the functional form of the likelihood function L(8; x), where 8 now 
precedes the semicolon and x follows the semicolon to denote that the likeli­
hood function is a function of 8, for given values of x. A maximum likelihood 
(ML) estimate of 8 is obtained as a solution, 8 E Q, to the maximization prob­
lem 

L(8; x) = maxL(8; x). 
8d2 

where Q is the appropriate par~met~r space. A maximum likelihood estimate 
can be defined equivalently as () = 8(x) = argmax8eQL(8; X).19 

Since, by definition it is also true that 8 = arg max8eQflx; 8) (assuming 
x is given), the maximum likelihood procedure can be interpreted as choos­
ing, from among all candidates, the value of the parameter vector 8 iden­
tifying the joint density function fIx; 8) that assigns the highest probability 
(discrete case) or highest density weighting (continuous case) to the random­
sample outcome, x, actually observed. Put another way, the maximum likeli­
hood procedure chooses a parameter vector value so as to identify a particular 
member of a parametric family of densities, fIx; 8), 8 E Q, that assigns the 
highest "likelihood" to generating the random-sample outcome actually ob­
served. Of course, whether the estimator of 8 implied by this procedure is 
llsefut depends on the properties of the maximum likelihood estimator (MLE) 
8 = 8(X) = argmax8enL(8; X). 

MlE Mechanics 

In order to implement the ML procedure, the functional form of fIx; 8) and 
hence L(8; x) must be fully specified along with the feasible choices of 8, 
represented by the parameter space, Q. Thus the researcher essentially must 
specify a parametric family of density functions in order to provide a complete 
representation of the statistical model for the random sample under investiga­
tion. Once the parametric family is identified, the estimation problem focuses 
on the maximization of the likelihood function. In many cases, the likelihood 
function will be differentiable with respect to the parameter vector and will 
possess a maximum that will be interior to the parameter space (as opposed 
to being on the boundary of the parameter space). In these cases, the classical 
calculus-based approach to maximization, in which first-order conditions are 
used to solve for the maximizing value of the 8 vector, can be used to solve 
the maximization problem. That is, the ML estimate, 8, can be found as the 

19In general, arg maxf(wl denotes the argument of f(wl that maximizes f(wl, where argument means the value of w. Also, arg max f(wl 
WEQ 

denotes the value of WEn that maximizes f(wl. 
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solution to the vector equation 

8L(8; x) 

8L(8; x) 

88(kxll 
= 

8L(8; x) 

a8k 

whose solution is a function of the random-sample outcome x, as 9 = e(x) = 
argeeQ [8L(8; x)/a8 = [011.20 

f'J"ote that it may not be possible to explicitly solve the first-order conditions 
for 0 in terms of a function of x. If not, numerical methods would be required 
to find the value of 9 that satisfied the first-order conditions. More generally, 
even if the classical maximization approach is not appropriate (e.g., there is no 
interior maximum, or L(8; x) is not differentiable with respect to 8), a value 
of 0 that solves maxeeQL(8; x) is a ML estimate of 8, no matter how it is 
derived. The estimator function 0 = e(x) will be either explicitly d~rivable, or 
else an implicit func~tion implied by the functional dependence of 0 on x, and 
in either case 8 = 8(X) is referred to as a maximum likelihood estimator of 
8.21 

The following examples illustrate the derivation of MLEs. Note that in 
some problem situations the calculations are considerably simplified by max­
imizing lnL(8; x) as opposed to L(8; x). Since the logarithmic transformation 
is strictly monotonically increasing, if 0 maximizes L(8; x), it also maximizes 
InL(8; x), and vice versa, i.e., 

L(O; xl = max6eQL(8; xl {:> lnL(O; xl = maxeeQ lnL(8; xl 

and 

0= argmax6eQL(8; xl = argmaxeeQ InL(8; xl. 

Thus the objective function of the ML estimation problem can be chosen to be 
L(8; xl or lnL(8; xl, whichever is more convenient.22 In applying the logarith-

20argeeQ[g(81 = cJ represents the value of 8 E Q that satisfies g(81 = c, i.e., the argument of g that solves g(81 = c. 

21We are suppressing the fact that a maximum of L(8; xl may not be attainable. For example, if the parameter space is an open 
interval and if the likelihood function is strictly monotonically increasing, then no maximum could be stated. If a maximum of 
L(8; xl for 8 E Q does not exist, then the MLE of 8 does not exist. 

22In the case where the classical first·order conditions are applicable, note that if L(8; xl> 0 (which will necessarily be true at the 
maximum value I, then 

alnL(8; xl 1 aL(8; xl 
a8 = L(8; xl---a8' 

and thus any 8 for which aL(8; xl/a8 = [OJ also satisfies a In L(8; xl/a8 = [OJ. Regarding second-order conditions, note that if 8 
satisfies the first-order conditions, then 

a21nL(8;xl 1 a2L(8;xl aL(8;xlaL(8;xl 1 a2L(8;xl 
a8a8' = L(8; xl a8a8' - ---a8 ----aEjf = L(8; xl a8a8' 
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mic transformation, we define In(O) == -00 to accommodate points where the 
likelihood function is zero valued. 

Example 8.4 MLE for Exponential Distribution 

Let (XI, ... ,Xn ) be a random sample from an exponential population distribution 
representing the operating time until a work stoppage occurs on an assembly 
line, so that Xi '" 0-1 exp(-xdO)Ilo,ool(Xi) Y i. Define the MLE for 0, the mean 
operating time until a work stoppage. 
Answer: The functional form of the joint density function for the random sam­
ple, and hence the functional form of the likelihood function, is given by 

L(O; XI,.· .,xn ) == f(xI, ... ,Xn ; 0) = o-n exp (- tXdO) 0 IIO,DOI(xiI, 

where 0 E Q = (0,00). Then, 

2::n n 
In L(O; Xl, ... , xn) = -n In 0 - i7/ Xi + In Tl Ilo,ool(Xi). 

i=l 

The first-order condition for maximizing In L(O; x) with respect to 0 is given by 

dlnL __ ~ 2::7=1 Xi _ a 
dO - 0 + 02 -. 

Thus the solution e = 8(x) = 2::7=1 xdn = x is the ML estimate of 0, and 
8 = 8(X) = 2::7=1 Xdn = Xn is the MLE of o. (Check that the second-order 
conditions for a maximum are met.) 0 

Example 8.5 MLE for Normal Distribution 

Let (Xl, ... , Xn) be a random sample from a normal population distribution rep­
resenting the actual fill volumes of I-liter bottles of liquid laundry detergent 
so that 

Xi '" (2Jl'~1/2a exp [ - 2~2 (Xi - /-L)2J ' Y i. 

Define the MLE for the mean and variance of fill volumes. 
Answer: The functional form of the joint density for the random sample, and 
hence the functional form of the likelihood function, is given by 

since aL(E>; xl/aE> = [OJ. Then since L(e; xl > 0 at the maximum, a2 1n L(E>; xl/aeae' is negative definite iff a2 L(e; xl/aeaE>' is 
negative definite. 
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where 11- 2: 0 and a 2 > O. Then 

1 ( 2) n n l 2 1 I:n 2 nL II a . x = --ln21f - - na - - (x- - II) 
fA'" 2 2 2a2 i=l I fA" 

The first-order conditions for the maximum of In L(I1-, (}"2; x) are 

alnL = a-2 I)Xi - 11-) = 0, 
al1- i=l 

alnL -n 1 ~ 2 -a 2 = 2 2 + 2 4 L.,(Xi - 11-) = O. 
a a a i=l 

The solution J1(x) = Ef=l xdn and a2(x) = Ef=I(Xi - x)2/n defines the ML 
estimate of 11- and a2, and the MLE is given by J1(X) and a2(X). (Check that the 
second-order conditions for a maximum are met.) 0 

Example 8.6 Maximum Likelihood Estimation in the GlM 

Let Y = X~+e with Y '" N(x~, a 2I) represent the relationship between a random 
sample of family expenditures on consumer durables, Y, and the respective 
levels of disposable income and other sociodemographic factors for the families, 
x. Define an MLE both for the marginal effects of sociodemographic variables 
on consumption, i.e., for aEYdax~. = f3, and for the variance of consumption, a 2 • 

Answer: The likelihood function in this case is 

L(f3, a2; y) = N(x~, a 2I) = (21f:2)n/2 exp [ - 2~2 (y - x~J'(y - xmJ, 

where ~ E Rk and a2 > 0.23 Then 

InL(~,a2; y) = -(n/2)ln21f - (n/2)lna2 - (1/2a2 J(y - xm'(Y - x(3). 

The first-order conditions for the maximum of In L(f3, a2; yJ are given by (recall 
Lemma 8.1) 

alnL(~,a2;y) = a[-2k(y'y-2~'x'y+~'x'xm] = __ 1_(_2' +2' (.1)=[0] 
a~ a~ 2a2 x y x xfJ , 

a InL(~, a 2 ; y) = _ ...!:.. _1_( _ (.1)'( _ (.I) = 0 
aa2 2a2 + 2a4 Y XfJ Y xfJ . 

The solution to the first-order conditions implies that the ML estimate is 

.B(y) = (X'xtlx'y and a 2(y) = (y - x.B~y - x.B), 

with the MLE given by .B(y) and a2(y). (Check that the second-order conditions 
for a maximum are met.) 0 

23Economic theory may suggest constraints on the signs of some of the entries in f3 (e.g., the effect of income on durables consump­
tion will be positive), in which case (3 E r2J3 C Rk may be more appropriate. 
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The following examples illustrate cases where the standard calculus ap­
proach cannot be utilized. 

Example 8.7 MLE for Uniform Distribution 

Let (Xl, ... , Xn) be a random sample from a uniform population distribution rep­
resenting measurements of the hardness of steel, based on the Rockwell scale, 
produced by a certain foreign manufacturer, so that Xi ~ (1/(b - a))IliI,b/lXi) Vi. 
Define an MLE for the lower and upper bounds to the hardness measurements, 
a and b, respectively. 
Answer: The likelihood function is given by 

n 

L(a, b; x) == fIx; a, b) = (b - a)-n n IliI,bl(Xi), 
i=1 

where a < b. It is clear that for L(a, b; x) to be maximized, a and b must be chosen 
to make (b - a) as small as possible while still maintaining 07=1 Ila,bl(Xi) = 1. 
Then the smallest choice for b is given by max(xI, ... , xn ), while the largest 
choice for a is given by min(xI," .,xn ), yielding the smallest (b - a) = 
max(xI, .. . ,xn ) - min(xI," .,xn ). Thus, the MLE estimates are given by out­
comes of the smallest and largest order statistics, or extreme values, as 

a(x) = min(xI,"" xn) and b(x) = max(xI, ... , xn), 

and the MLEs are then a(X) and b(X). o 

Example 8.8 MLE for Hypergeometric Distribution 

Let X ~ Hypergeometric (x; M, k, n) represent the number of defective parts 
found in a random sample without replacement of n parts taken from a ship­
ment of M parts, where M and n are known. Define an MLE of the number of 
defective parts, k, in the shipment of M parts. 
Answer: The likelihood function is given by 

L!k; x) == fIx; k) = (:)g~:) 

where k E {O, 1,2, ... , M}. Finding the solution for k that maximizes L(k; x) is 
essentially an integer programming problem. Specifically, note that 

L(k;x) 
k! IM-kl! 

xm<=Xif In-xI!IM-k-ln-xl1! kIM - k - (n - x) + 1) 
= 

L(k - 1; xJ Ik-II! IM-k+!I! 
x!lk-x-ll! In-xl!IM -k-ln-xl+!I! 

= (k - xJ(M - k + 1) . 

Then L(k; x)/L(k - 1; x) ?: 1 iff kIM - k -In -x) + 1) ?: (k - xJ(M - k + I), which 
after algebraic simplification is equivalent to k :s n- l x(M + 1). The implication 
of the preceding result is that the likelihood function increases as the integer 
value of k increases so long as k :s n-1 x(M + 1). Therefore, the ML estimate of k 
t,::quals the largest integer not exceeding n-1 x(M + 1), which we can represent as 
k(x) = trunc(n-1x(M + I)), where recall that trunc(w) is the truncation function 
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that tru'1cates the decimal part of w, e.g., trunc(2.76) = 2. The MLE of k would 
then be k(X) = trunc(n-1X(M + 1)). 0 

MlE Properties: Finite Sample 

As we stated at the beginning of this section, whether the estimates produced 
by the ML procedure are useful depends on the properties that an MLE pos­
sesses. It turns out that there are several reasons why we might suspect that 
the ML procedure would lead to good estimates of 8. First of all, if an unbiased 
estimator of 8 exists that achieves the CRLB, then the MLE will be this estima­
tor if the MLE can be defined by solving first-order conditions for maximizing 
the likelihood function. 

Theorem 8.11 (MLE Attainment of the CRLB) If there exists an unbiased estimator, T = 
t(X), of 8 that has a covariance matrix equal to the CRLB, and if the MLE 
can be defined by solving first-order conditions for maximizing the likelihood 
function, then the MLE is equal to T = t(X) with probability 1. 

Proof If there exists an unbiased estimator, t(X), whose covariance matrix equals the 
CRLB, then regardless of the value of 8 E Q, the theorem on the attainment 
of the CRLB (Theorem 7.17) implies that the estimator has outcomes defined 
by 

_ _ [alnL(8; X) alnL(8; X)']-l alnL(8; x) 
t(x) - 8 + E a8 a8 a8 

with probability I, where we have expressed the result of Th~oreJ!l 7.17 using 
likelihood function notation. Substituting the ML" estimat~, 8 = 8(x) E Q, for 
8 in the preceding equalitY,: implies that t(x) = 8, since 8 would satisfy the 
first-order conditions a In L(8; x)/a8 = [OJ. Then outcomes of the MLE and t(X) 
coincide with probability 1. • 

Thus, under the conditions of Theorem 8.11, the MLE will be the MVUE 
for 8. 

We can also show that if the MLE is uniquely defined, then the MLE can 
be equivalently represented as a function of any sufficient statistics for fIx; 8) 
and, in particular, a function of complete sufficient statistics when complete 
sufficient statistics exist. 

Theorem 8.12 (Unique MLEs are Functlons of Any Sufficient Statistics for f(x;8)) Assume 
that the MLE of 8, say 8, is uniquely defined in terms of X. If S = [SI," . ,sri' 
is any vector of sufficient statistics for fIx; 8) == L(8;x), then there exists a 
function of S, say T(S), such that iJ = T(S). 

Proof The Neyman factorization theorem states that 

L(8; x) == fIx; 8) = g(SI, ... , sr; 8)h(x), 
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where (SI, ... , sr) are sufficient statistics that can be complete sufficient statis­
tics if they exist. Now since L(8; x) ::: 0, g and h can always be defined as 
nonnegative-valued functions, in which case for a given value of x, 

L(8; x) ex g(SI, ... , Sr; 8) 

where "ex" means "proportional to" and the proportionality constant is h(x). It 
follows that for a given value of x, if the MLE is unique, then 

iJ = arg max L(8; x) = arg maxg(sl, ... , Sr; 8), 
geQ geQ 

i.e., iJ maximizes L(8; x) iff iJ maximizes g(SI' ... , Sr; 8). But the latter maxi­
mization problem implies that the ul1ique maximizing choice of 8 is then a 
function of the values (SI, ... , Sr), i.e., (J = r(slt ... , Sr).24 • 

If the sufficient statistics (SI,.'.' SrI used in the Neyman factorization the­
orem are complete, then the unique MLE 8 = T(SI, ... , SrI is a function of the 
complete sufficient statistics, by Theo~rem 8.12. It follow~ from the Lehmann­
Scheffe completeness theorem that if 8 is unbiased (or if 8 can be transformed 
to be unbiased) then the MLE (or the bias-adjusted MLE) is the MVUE for 8. 
We formalize this observation in the following theorem. 

Theorem 8.13 (MVUE Property of Unique MLEs) Assume that the MLE of 8,8, is uniquely 
defined in terms of X, and that a vector of complete sufficient statistics, S, 
exists for fIx; 8) == L(8;x). If 8 or 1](8) is an unbiased estimator of 8, then 8 
or 1](8) is the MVUE of 8. 

Proof From Theorem 8.12 it follows that the MLE is a function of the complete suffi­
cient statistics as 8 = T(S). It follows immediately from the Lehmann-Scheffe 
completeness theorem (Theor~em 7.19) that if 8 is unbiased, then 8 is the 
MVUE of 8. Alternatively, if 8 is biased, but the function of the MLE given by 
1](8) is an unbiased estimator of 8, then since 1](8) = 1](T(S)) is a (composite) 
function of the complete sufficient statistics, 1](8) is the MVUE of 8 by the 
Lehmann-Scheffe completeness theorem. • 

In Ex. 8.4, L::7=1 Xi is a complete sufficient statistic for f(x; e) - L(e; x), 
and the MLE is unique and unbiased, and thus the MLE is MVUE. In Ex. 8.5, 
L::7=1 Xl and L::7=1 Xi are complete sufficient statistics, and the MLEs [L and 
&2 are unique, so that they are functions of the complete sufficient statistics. 
However, &2 is not unbiased. The bias can be removed via multiplying &2 by 
n/(n - 1). Then the bias-adjusted MLE of fl and 0'2, namely ([L,n&2/(n - 1)), is 
the MVUE by the Lehmann-Scheffe completeness theorem. The case of Ex. 

24In the event that a MLE is not unique, then the set of MLEs is a function of any set of sufficient statistics. However, a particular 
MLE within the set of MLEs need not necessarily be a function of (S\, ... , Sf), although it is always possible to choose an MLE that is 
a function of (s\, ... , Sf). See D. S. Moore (1971), "Maximum likelihood and sufficient statistics," American Mathematical Monthly, 
January, pp. 50-52. 
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8~6 was discussed in the previous section on the least-squares estimator, where 
({3, na2 /(n - k))', which is the bias-adjusted MLE, was found to be the MVUE 
of ((3,0'2)'. In Ex. 8.7, it can be shown that the MLE b(X) = max(Xl, ... ,Xn ) 

and a(X) = min(Xl, .. . ,Xn) is unique and is itself a complete sufficient statistic 
and that a(X) = ((n + 1)/n)a(X), and ,8(X) = (In + 1)/n)h(X) are unbjased esti­
mators of a and b, respectively. Thus, the bias-adjusted MLE (a(X), (3(X)) is the 
MVUE for (a, b). (See Bickel and Doksum, Mathematical Statistic, pp. 125-126, 
and Johnson and Kotz (1969), Discrete Distributions, New York: John Wiley, 
pp. 146-148.) Finally, in Ex. 8.8, it can be shown that X is a complete sufficient 
statistic, and the unique MLE can be transformed as t(X) = (M/n)X to define 
an unbiased estimator of k. Then the bias-adjusted MLE, t(X) = (M/n)X, is the 
MVUE for k (see Bickel and Doksum, Mathematical Statistics, pp. 122-123). 

As we have seen here, the maximum likelihood procedure is a rather 
straightforward approach to defining estimators of unknown parameters, and 
in many cases the estimator, or a simple transformation of it, will be unbiased 
and the MVUE. Also, since a unique MLE will always be a function of com­
plete sufficient statistics whenever the latter exist, the unique MLE would at 
least appear to be a reasonable starting point in the search for the MVUE of the 
parameters of interest. On the other hand, the MLE need not be unbiased nor 
be the MVUE, and there may be no apparent transformation of the MLE that 
achieves the MVUE property. It is useful to examine asymptotic properties of 
MLEs since, even if a MLE does not possess the finite sample properties that 
one might desire, MLEs possess desirable, large-sample properties under gen­
eral conditions, and these latter properties might still rationalize the use of an 
MLE for estimating the parameters of a particular statistical model. 

MLE Properties: Large Sample 

There are two general approaches that one might follow in establishing asymp­
totic properties of a MLE. First of all, if a MLE can be explicitly solved for, so 
tpat ope can analyze an explicit, real-valued function of the random sample, 
S = SIX), then it migh! be possible to apply laws of large numbers and/or cen­
trallimit theorems to SIX) directly, to investigate the asymptotic properties 
of the MLE. Note the following example. 

Example 8.9 Recall Ex. 8.4, where it was found that the MLE of (), when random sampling 
from an exponential population distribution, is given bye = n- l L~=l Xj = Xn . 

Through direct evaluation of the MLE function definition, we can establish that 
e is a consistent, asymptotically normal, and asymptotically efficient estima­
tor of (). In fact, the procedure for establishing these asymptotic properties has 
already been carried out in Ex. 7.22, where it was demonstrated that e = Xn 
was a consistent and asymptotically efficient estimator of () having an asymp-
totically normal distribution given by e ~ N((), ()2/n ). 0 

At times, the function defining a MLE cannot be defined explicitly, even 
though the MLE estimates can be calculated, or else the explicit definition of 
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a MLE may be so complicated that it is unclear how laws of large numbers or 
central limit theorems could be applied. For these cases, regularity conditions 
on the likelihood functions have been presented in the literature that ensure 
the MLE is consistent, asymptotically normal, and asymptotically efficient. 
As an illustration of a situation in which direct evaluation of the asymptotic 
properties (and finite sample properties) of an MLE is not possible, consider the 
following example in which maximum likelihood estimation of the parameters 
of a Gamma density is being pursued. 

Example 8.10 MLE for Parameters of a Gamma Distribution 

Let (XI, ... , Xn) be a random sample from a Gamma population distribution 
representing the time between breakdowns of a certain type of refrigeration 
equipment used in the frozen foods section of a major supermarket chain, so 
that 

1 a-I -x;f fJ . . 
Xi '" ,8arla)Xj e I(O,oo)(X1 ) V 1. 

The likelihood function is given by 

1 n (n) n 
L(a,,8; x) = ,8na[rla)]n JJ Xf-I exp - t; xd,8 [p(O,OO) (Xi), 

where a > 0 and ,8 > O. The log-likelihood function is given by 

n n n 

In L(a, ,8; x) = -na(ln,8) - n(ln rIa)) + (a - 1) L In Xi - L xd,8 + In n I(o,oo)(Xj). 
i=1 i=1 

The first-order conditions characterizing the maximum of the log-likelihood 
function are given by 

alnL 
aa 

n dr(a) ~ 
- n(ln,8) - ria) (lct + f;t In Xi = 0, 

In attempting to solve the first-order conditions for a and ,8, note that the 
second condition implies that a,8 = Xn, or ,8 = Xn/a. Substituting this result 
for ,8 in the first condition implies 

and there is no explicit solution for a in terms of (XI, ... , xn ), although a is 
implicitly a function of (XI, ... , xn). A unique value of a satisfying the above 
equality can be solved for numerically on a computer; that value can then be 



474 Chapter 8 Point Estimation Methods 

used to solve for f3 using the equation f3 = Xn/a.25 Thus, the ML estimates for 
(a, f3) can be calculated. However, since an explicit functional form for the MLE 
is not identifiable, an analysis of the estimator's finite sample and asymptotic 
properties is quite difficult. Regarding finite sample properties of the MLE, the 
reader can verify by an appeal to Theorem 7.6 that (L~=l Xi, L~=llnXi) is a set of 
complete sufficient statistics for this problem, and so the MLE, (a(X), .B(X)), is a 
(implicit) function of complete sufficient statistics. However, the MLE is biased, 
and no MVUE estimator for (a, f3) has been presented in the literature. Bowman 
and Shenton26 have obtained expressions for low-order moments of (a(X), .B(X)) 
that are accurate to terms having order of magnitude n-6• For example, when 
a ~ 1 and n ~ 4, they found that 

Ea(X) ~ a + [3a - ~ + ~a-l + :~5 a-2 ] j(n - 3), 

and they suggest, as an "approximately unbiased" estimator of a, the following 
function of the MLE for a: 

a*(X) = [In - 3)&(X) + ~ ] In. 
Since a*(X) is a function of complete sufficient statistics (because the MLE a(X) 
is), and since a*(X) is "approximately unbiased," a*(X) might be interpreted as 
being "approximately MVUE" for a. For further details on finite sample prop­
erties of the MLE (a(X), .B(X)), see Bowman and Shenton. An analysis of the 
asymptotic properties of (a(X), .B(X)) will be developed in a subsequent exam­
~. 0 

A varied collection of regularity conditions on likelihood functions that rep­
resent sufficient conditions for MLEs to possess desirable asymptotic properties 
has been presented in the literature. Most of these conditions apply specifically 
to the case of random sampling from a population distribution, so that the ran­
dom sample (Xl, .. . ,Xn ) must be a collection of iid random variables. For a 
survey of alternative types of regularity conditions, the reader can refer to the 
article by Norden.27 We will concentrate on regularity conditions that do not 
cover all cases but that are relatively simple to comprehend and apply and that 
focus attention on key assumptions that lead to good asymptotic properties of 
MLEs. The conditions we present do not require that the random sample be a 
collection of iid random variables, and so the conditions can also be applied in 
cases other than random sampling from a population distribution. 

25 Alternatively, the solution for a can be determined by consulting tables generated by Chapman which were constructed specifically 
for this purpose (D. C. Chapman (1956), "Estimating parameters of a truncated gamma distribution." Ann. Math. Stat., 27, pp. 498-
506). 

26K. O. Bowman, and L. R. Shenton (1968), Properties of Estimators for the Gamma Distribution. Report CTC-l, Union Carbide 
Corp., Oak Ridge, Tenn. 

27R. H. Norden (1972), "A survey of maximum likelihood estimation." International Statistical Revue, 40, pp. 329-354 and (1973) 
41, pp. 39-58. 
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Henceforth, we focus on the case where an MLE is the unique global maxi­
mum of the likelihood function, which covers the majority of applications. An 
examination of the multiple local optimum case is more complicated and is 
best left to a more advanced course of study.28 

Consistency We first examine conditions that ensure the consistency of the 
MLE of 8 in the scalar case. 

Theorem 8.14 (MLE Consistency-Sufficient Conditions for Scalar 8) Let {f(x;8),8 E Q} be 
the statistical model for the random sample X, where 8 is a scalar.29 Assume 
that 

1. the PDFs f(x;8),8 E Q, have common support, 8, 
2. the parameter space, Q, is an open interval, 
3. In L( 8;x) is continuously differentiable with respect to 8 E Q V x E 8, 
4. alnL(8;x)/a8 = 0 has a unique solution for 8 E Q, and the solution 

defines the unique maximum likelihood estimate, 8(x), V x E 8, 
5. limn~oo P( lnL(80 ;x) > InL(8;x)) = 1 for 8 =I 8 0 , where 8 0 is the true 

value of 8 E Q.30 

Then 8 4 8 0 , and the MLE is thus consistent for 8. 

Proof Let h > 0 be such that 8 0 - h E Q and 8 0 + h E Q, where such an h exists by 
condition (2), and define the events 

An = (x: InL(80 ; x) > InL(80 - h; x)}, 

Bn = (x: lnL(80 ; x) > InL(8 0 + h; x)}, 

Hn =An nBn. 

As n ~ 00, P(Hn) ~ I, since P(Hn) = PIAn) + P(Bn) - PIAn U Bn), PIAn) and 
P(Bn) both converge to 1 as n ~ 00 by assumption (5), and PIAn U Bn) converges 
to 1 since PIAn U Bn) 2': PIAn) and PIAn U Bn) 2': P(Bn). 

Now note that x E Hn "* L(8; x) exhibits its unique maximum for some 
value 8* such that 8 0 - h < 8* < 8 0 + h since, by the differentiability of 
L(8; x), 8* solves alnL(8; xl/aS) = 0 and is thus the ML estimate, 8(xl, of 8 
given x. Note further that 

Hn C (x: 8 0 -h < 8(x) < 8 0 +h} 

since x E Hn implies 8 0 -h < 8(x) < 8 0 +h. Then P(Hn) ~ 1 asn ~ 00 implies 
P(Hnl ::: P(80 - h < 8(xl < 8 0 + h) ~ 1 as n ~ 00. Since the preceding result 

28See E. Lehmann (1983), Theory of Point Estimation, New York: John Wiley and Sons, pp. 420--427. 

29We remind the reader of our tacit assumption that e is identified (Def. 7.2). 

30By "true value" of e, we again mean that eo is the value of e E Q for which fIx; eo) == L(eo;x) is the actual joint density function 
of the random sample X. The value of eo is generally unknown and in the current context is the objective of point estimation. 
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remains true if we decrease the values of h to be arbitrarily close to zero (but 
still positive valued), then e -4 8 0 , • 

In some cases the verification of assumption (5) in Theorem 8.14 can be 
challenging. If random sampling is from a population distribution, so that the 
random sample Xl, ... , Xn is a collection of iid random variables, then assump­
tion (5) is not needed. 

Theorem 8.15 (MLE Consistency-iid and Scalar 8) Assume conditions (1)-(4) of Theorem 
8.14, and assume further that the random sample Xl, ... , Xn is a collection of 
iid random variables. Then e -4 8 0 , 

Proof Let 8e = 8 0 - £ and 8h = 8 0 + £ for any £ > 0 such that 8e and 8h E Q 
(such s's exist by assumption (2)). Define R(s) = (x: InL(80 ; x) > InL(8e; x) 
and InL(80 ; x) > InL(8h; x)), and note that x E R(s) => e E (80 - s, 8 0 + s) 
since the MLE is unique and is defined via alnL(8; x)/a8 = o. 

Now define A(8) = (x: InL(80 ; x) > InL(8; x)) for 8 ¥= 8 0 , and note that 
the event A(8) can be equivalently represented as 

n 

t'n(x) = n- I L In[f(xj; 8)/f(xj; 8 0 )] < O. 
j=1 

Because t'n(x) can be interpreted as the sample mean of n iid random variables 
of the form In[f(Xj; 8)/f(Xj ; 8 0 )], Khinchin's WLLN implies that 

t'n(X) -4 E In[f(Xj; 8)/f(Xj ; 8 0 )], 

Also, In(z) is strictly concave over its domain, and so, Jensen's inequality im­
plies that 

E In[f(Xj; 8)/f(Xj ; 8 0 )] < In E[f(Xj ; 8)/f(Xj ; 8 0 )], 

Then, since E[f(Xj ; 8)/f(Xj ; 8 0 )] = 1,31 the right-hand side of the preceding in­
equality is zero. Thus, t'n(X) converges in probability to a negative number, 
which implies that limn-+oo P(A(8)) = 1 when 8 =f. 8 0 , This in turn im­
plies that Fmn-+oo P(R(s)) = 1 'lis> 0 since Ris) = A(8e) n A(8h), and thus 
limn-o oo P(8 E (80 - s, 8 0 + s)) = 1 'lis> 0 and 8 -4 8 0 , _ 

Example 8.11 Consistency of MLE for Exponential Distribution 

Reexamine the case of estimating the value of () using the MLE when random 
sampling is from an exponential density function (recall Ex. 8.4 and Ex. 8.9). In 

311£ Xi is a continuous random variable, then since eo is the true value of e, 

100 f(x·· e) 100 

E[f(Xi; e)!f(Xi; eoll = f( .':e )f(xi; eo)dXi = f(xi; e)dXi = 1 
-00 Xl! 0 -00 

since f(xi; e) is a probability density function. The discrete case is analogous. 
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this case, the joint density function of the random sample is given by 

n 

fIx; 0) = o-ne- L;~I xd8 n IIO,oo)(xi). 
i=1 

The parameter space is an open interval since Q = (0, (0). The log of the like­
lihood function is continuously differentiable for 0 E Q, and a In L(O; x)laO = 
(-nIO) + (2:::7=1 xilj02 = 0 has the unique solution 8 = 2:::7=1 xi/n, which is the 
unique maximum likelihood estimate V x E R~.32 Therefore, it follows from 

Theorem 8.15 that e -4 8 0 , so the MLE is a consistent estimator. 0 

We now examine sufficient conditions for MLE consistency when 8 is k­
dimensional. We present two sets of sufficient conditions. The set that consists 
of (1 )-(4a) allows unbounded parameter spaces but is generally more difficult to 
apply. The other set, which contains (1)-(3) and (4b), is generally more tractable 
but requires the parameter space to be a bounded and closed rectangle (a closed 
and bounded set can also be used). As a practical matter, one can often state 
absolute bounds (perhaps very large) for the parameters of a statistical model 
based on real-world or theoretical considerations relating to an experiment. 
Thus, boundedness of the parameter space may not represent a serious restric­
tion in practice. 

Theorem 8.16 (MLE Consistency-Sufficient ConditionsJ Let (f(x;8J,8 E Q) be the statis­
tical model for the random sample X. Let N(B) = (8: d(8,80 ) < B) be an open 
B-neighborhood of 8 0 , where 8 0 is the true value of 8.33 Assume 

1. the PDFs flx;8J,8 E Q, have common support, 8; 
2. In L(8;x) has continuous first-order partial derivatives with respect to 8 E 

Q V X E 8;34 

3. alnL(8;x)la8 = [0] has a pnique solution that defines the unique maxi­
mum likelihood estimate 8(x) = argmaxeEQ L(8;x) V x E 8; 

4a. limn->oo P(lnL(80 ;x) > maxeEN1£) InL(8;xll = 1 V £ > 0 with Q being an 
open rectangle containing 8 0 ;35 

4b. limn->ooP(maxeEQ In- l lnL(8;xj - G(8l1 < B) = 1 VB> 0, where G(8) is a 
continuous function that is uniquely globally maximized at 8 = 8 0 and 
Q is a bounded closed rectangle containing 8 0 , 

Then <3 -4 8 0 , 

32That this unique solution is a maximum can be dem~nstrated by noting that 82In.L{8; x)/882 = (n/82 ) - (2 I:f=1 xd83 ), which, 
when evaluated at the maximum likelihood estimate 8 = I:f= 1 xd n, yields (a2ln L{O; x))/882) = _n3 /(I:f= I Xi)2 < O. 

33 N{e) is an open interval, the interior of a circle, the interior of a sphere, and the interior of a hypersphere in I, 2, 3, and 2: 4 
dimensions, respectively. 

34It is allowable that conditions (2) and (3) be violated on a set of x values having probability zero. 

35Change "max" to "sup" if max does not exist. 
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Proof Sufficiency of (1)-(4a): Define H(s) = {x: InL(80 ; x) > maxeeN(EI L(8; x)}, and 

note that x E H(s) =* 8 = argmaXeerl L(8; x) E N(s), where 8 is unique by (3). 
Assumption (4aJ implies that PIx E H(s)) ~ 1 as n ~ 00 V £ > 0, which in turn 
implies that P(8 E N(s)) ~ 1 as n ~ 00 V s > O. It follows from the definition 
of N(s) that 8 ~ 8 0 • 

·Sufficiency of (1)-3, (4b):36 Define ~(s) = G(80 ) - maxeerlnN(t:1 G(8) (be­
cause n is closed and bounded, the feasible space to the maximization problem 
is closed and bounded by the definition of N(s), and thus the maximum exists 
by Weierstrass's theorem). Let the event An(s) be defined as 

An(s) = {x: max In-1 lnL(8; x) - G(8)! < ~(s)/2}. 
eerl 

Letting 8 represent the unique MLE, it follows that 

1. x E An(s) =* G(8) > n-1 lnL(8; x) - ~(s)/2, 
2. x E An(s) =* n-1 lnL(8 0 ; x) > P(8 0 ) - ~(s)/2. 

By definition of~the MLE, L(8; x) 2: L(8 0 ; x), so it follows from (1) that 
3. x E An(s) =* G(8) > n-1 lnL(8 0 ; x) - ~(s)/2. 

Then, substituting the inequality in (2) into the right side of the inequality 
in (3) yields 

4. x E Anls) =* G(8) > G(80 ) - ~(s), 
which upon substituting the definition of ~Is) yields 

5. x E Anls) => G(8) > maxeerlnN(EI G(8) =* 8 E Nls). 

Then, since limn->oo PIAnls)) = 1 V s > 0, limn .... oo P(8 E N(s)) = 1 V s > 0, so 
that 8 ~ 8 0 • • 

We now return to the case of random sampling frorI} the Gamma density 
where the MLE cannot be explicitly solved for, although 8 is implicitly defined 
by first-order conditions. 

Example 8.12 Consistency of MLE for Gamma Distribution 

Reexamine the case of estimating the value of a and f3 using the MLE when 
random sampling is from a Gamma population distribution (recall Ex. 8.10). In 
an attempt to utilize Theorem 8.16 for demonstrating the consistency of the 
MLE, first note that fIx; 8) > 0 for x E R~, and so condition (1) is satisfied. 
Recalling Ex. 8.10, it is evident that InL(8; x) is continuously differentiable 
with respect to a and f3 V x E R~ and for all a > 0 and f3 > 0, validating condition 
(2). Also, the first-order conditions have a unique solution for (a, f3) V x E R~, 

which defines the unique maximum likelihood estimate la, P) lagain recall Ex. 
8.10), satisfying condition (3). 

36Th is proof is related to a proof by T. Amemiya (1985), Advanced Econometrics, Cambridge, MA: Harvard Univ. Press, p. 107, 
dealing with the consistency of extremum estimators. 
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We assume that bounds can be placed on the parameter values of a and 
f3, and we examine the validity of condition (4b) of Theorem 8.16. Note that 
(suppressing the indicator function) n-1 In L(a, f3; x) = -a In f3 - In r(a) + (a -
1)n-1 "Lf=llnxj - x/f3. Then, since plim X = aof3o and plim n-1 "Lf=llnXj = 
[((dr(ao)/da)/r(ao)) + In f301,37 it follows that 

plimn-1lnL(a, f3; x) = Cia, f3) = aln (~ ) + (a - 1) [dr~7~~)daJ -In ria) - aio -lnf3o 

uniformly in (a, f3). Furthermore, the maximum of Cia, f3) occurs at a = ao and 
f3 = f30. To see this, note that ao and f30 solve the first-order conditions for the 
maximization problem given by 

aC(a, f3) = In (f3o) + dr(a)/da _ dr(a)/da = 0 
oa f3 r(ao) ria) 

and 

aC(a, f3) __ ~ aof3o _ 0 
af3 - f3 + f32 - . 

The hessian matrix is negative definite, so that the second-order conditions for 
a maximum are met (see Ex. 8.15 for the explicit representation of t!,1e hessian 
matrix), and thus condition (4b) holds. Therefore, the estimator S, defined 
implicitly by the first-order conditions for maximizing the likelihood function, 
is consistent, that is, e ...J4. 8 0, so that both & ...J4. ao and S ...J4. f30. 0 

In the next example, we revisit Ex. 8.6, in which the MLE of (,8, a2 ) for 
the GLM was defined for the case where the random sample from a composite 
experiment had a joint density of the multivariate normal form, N(x,8, a 2I). 
In this case, the MLE can be explicitly solved for, and its consistency property 
evaluated directly, as we have done in Section 8.2, but for the sake of illustration 
we reexamine consistency using Theorem 8.16. 

Example 8.13 Consistency of MLE in GLM with Y '" N(xj3,0-21) 

Reexamine Ex. 8.6. To demonstrate consistency of the MLE using Theorem 
8.16, first note I( y; ,8, a2 ) > 0 for Y E Rn, and so condition (1) is satisfied. 

It is evident from Ex. 8.6 that L(,8, a2 ; y) is continuously differentiable 
with respect to SEQ for all y ERn, so that condition (2) is satisfied. Also, 
a In L(,8: a 2 ; y)/as = [01 has a unique solution (assuming x'x is of full rank), and 
this solution defines the unique MLE of (,8, a2 ). We assume that a2 E [ai, ahl 
and f3 E xf=df3u, f3jhl and attempt to verify condition (4b). Note that 

Zn = n- l lnL(,8, a2 ; y) = -(1/2) In(21l"a2 ) - (1/2)n- l l(y - x,8)'(y - x.BJ/a2 1· 

Since Y = x,8o + c:, Zn can be expressed equivalently as 

Zn = -(1/2) [In(21l"a2 ) + (,80 - ,8)'(n-1x'xJ(,80 - .BJ/a2 + n- l c:'c:/a2 + 2(,80 - ,8)'(n- l x'c:)/a2]. 

37This follows from Khinchin's WLLN upon recognizing that the bracketed expression represents E InXj. 
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Since the €;'S are iid because Y ~ N(x/3o, a 2I), it follows from Khinchin's 
WLLN that plim n-l€'€ = aJ. Also note that En-lx'€ = [0] and Cov(n-lx'€) = 
a 2n-2x'x, so that if we assume that x'x is o(n2 ), so that n-2x'x ~ [01 as n ~ 00, 

then n-1x'€ ~ [0], and thus n-lx'€ --4 [0] and (/30 - (3)'[n- lx'€)/a 2 --4 O. 
Assuming further that n-lx'x ~ Q, a positive definite symmetric, matrix, then 

1 
Zn --4 C(/3, a 2 ) = -2: [In(21l'a2 ) + (/30 - (3)'Q(/3o - (3)/a2 + a;/a2 ] 

uniformly in /3 and a2• 

The function C(/3, a 2 ) is maximized when /3 = /30 and a 2 = a;. To see this, 
note that /30 and a; satisfy the first-order conditions for maximizing G(/3, a2 ) 

given by 

aC(/3, a 2
) = Q(/3o _ (3) = [01, 

af3 
aC(/3, a2 ) = __ 1_ + (/30 - (3)'Q(/3o - (3) + a; = o. 

aa2 2a2 2a2 2a2 

The hessian matrix for checking second-order conditions, evaluated at f3 = f30 
and a2 = a;, is given by 

a2C(f3o, a;) 

aa2 a/3' 

[OJ ] 
1 , 

-2a4 
o 

which is negative definite, and thus C(/3, a 2 ) is indeed maximized at /30' a;. 

Therefore, by Th~orem 8.16, and under the preceding assumptions on x, e --4 
8 0 so that plim /3 = /30 and plim 8-2 = a;. 0 

* Asymptotic Normality and Asymptotic Efficiency In order for the MLE to be 
asymptotically normally distributed, additional conditions on the maximum 
likelihood estimation problem are needed. We present a collection of sufficient 
conditions below and remind the reader a variety of alternative sufficient con­
ditions exists in the literature (see R. H. Norden, Likelihood Estimation; also 
see T. Amemiya, Advanced Econometrics, pp. 111-112, for conditions related 
to those presented here). 

Theorem 8.17 (MLE Asymptotic Normality-Sufficient Conditions) In addition to condi­
tions (1 )-(4) of Theorem 8.16, assume that 

1. a2 ln L(8;x)/a8a8' exists and is continuous in 8 V 8 E Q and V x E 3, 
2. plim [n- 1(a2 InL(8*;X)/a8a8')1 = H(80) is a nonsingular matrix for any 

sequence of random variables {8~} such that plim 8~ = 8 0, 
3. n- I /2(alnL(8 0 ;X))/a8 ~ N([0],M(80)) where M(80) is a symmetric, pos­

itive definite matrix. 
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Then the MLE, S, is such that 

n l/2(8 - 8 0) --4 N([0],H(80rIM(80)H(80rl), 

S ~ N(80, n- IH(80r l M(80)H(80)-I). 
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"Proof The first-order derivative function of In L(8; xl can be represented by a Taylor 
series expansion around 8 0 as38 

alnL(8; X) alnL(80; X) a2 1nL(8*; XI ~ 
a8 = a8 + a8a8' (8 - 81, 

where 8* = A(X)S+(1-A(X))80 for A(X) E [0I,)J. Since 8 is the ML estimator, 
the value of the first-derivative vector, a In L( 8; Xl/a8, is [OJ by the first-order 
conditions for the maximum likelihood problem. Then, premultiplying the 
Taylor series expansion by n- I /2 obtains 

_n-1 a21~~(!: X) n l/2(8 _ 8 0 ) = n-I/2 a In L~~o; X) = z --4 N([O], M(8011, 

where convergence to the N([OJ, M(8011 limiting density follows from assump­
tion (3) of the theorem. 

Now note that plim 8* = 8 0 since, Ve > 0, 

lim P(1I8* - 8 011 < c) = lim P(IIA(x)S(x) + (1 - A(x))80 - 8 011 < c) 
n-+-oo n-+oo 

= lim P(IIA(x)(8(x) - 8 0)11 < c) 
n ..... oo 

= lim P(A(x)II(S(x) - 8 0)11 < c), 
n ..... oo 

where the last equality follows from the fact that A(x) E [0,1], and therefore 
A(x) is nonnegative, a1}d where IIzll = (z'z)l/2 repre~ents the distance of z from 
[0]. Noting that (x: 118(x) - 8 011 < e} C (x: A(x)1I8(x) - 8 011 < e} (again since 
~(x) E [0, Ill, it follows that P(1I8 - 8 011 < c) :::: P(A(x)IIS - 8 011 < c), and since 
8 -4 8 0, the left-hand side of the above inequality converges to 1 as n -+ 00, 

implying that the right-hand side converges to 1 as n -+ 00, V e > 0. Therefore, 
limn ..... oo P(1I8* - 8 011 < c) = 1, orplim 8* = 8 0, 

By assumption (2) of the theorem and by Slutsky'S theorem, it follows from 
the preceding two results that 

[H(80)-ln-1 [a21~(:,; X)]] n1/2(8 _ 8 0) --4 n l/2(8 - 8 0) 

--4 - H(80)-IZ '" N([O], H(80)-1 M(80)H(80)-1 I 

38See R. G. Bartle 11976), The Elements of Real Analysis, 2nd Ed., New York: John Wiley, p. 371. 
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since the probability limit of the bracketed expression is equal to the identity 
matrix. The statement in the theorem concerning the asymptotic distribution 
of 8 then follows immediately from De£. 5.10. • 

We present one further condition that leads to the asymptotic efficiency of 
theMLE. 

Theorem 8.18 (MLE Asymptotic Efficiency-Sufficient Conditions) In addition to the as­
sumptions in Theorems B.16 and B.17, assume that 

M(80 ) = J!'~ n- 1 E [a In LJ~o; X) a In ~(~o; X) ] = -H(80 ). 

Then <3 is asymptotically efficient. 

* Proof From Theorem 8.17, if M(80 ) and H(80 ) are as defined above, then nl/2(<3_ 
8 0 ) -4 Z "" N([OJ, M(80 )-I). Referring to the definition of asymptotic effi­
ciency (Def. 7.22), it follows that39 

n-1/2 [E [alnL~~o; X) aln~(~o; X)Jr/2 n 1/2(<3 _ 8) -4 M(80 )1/2Z "" N([O],I), 

so that <3 ~ N(80 , n-1 M(80 )-I) is asymptotically efficient. • 
In aEplications, since the value of 8 0 is unknown, the asymptotic covari­

ance of 8 is also unknown. However, under the assumptions of Theorems 8.17 
and 8.18, a consistent estimate of M(80 )-1 is obtained by using an outcome of 

-[n-1(a2 1nL(<3; X)/a8a8'W l 

(recall assumption (2) of Theorem 8.17 and the statement of Theorem 8.18). 
We now revisit Ex. 8.11 and Ex. 8.12 and illustrate the use of Theorem 8.17 

and Theorem 8.18 for establishing the asymptotic normality and asymptotic 
efficiency of the MLE. 

Example 8.14 Reexamine Ex. 8.11. Note that a21nL(0; x)/a02 = (n/OZ) - (2 I:7=1 xi/(3) exists 
and is continuous for V 0 > 0 and V x E 8, so assumption (1) of Theorem 8.17 is 
satisfied. Furthermore, assuming plim 8* = 00 , it follows by Slutsky'S theorem 

39Recall that the matrix square root is a continuous function of its arguments, so that 

plimA~/2 = (plimAn)I/2. 

Letting 

An = n-1E [alnL(So; X) alnL{So; X)] 
as as' 

leads to plimA~/2 = M{So)I/2. 
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that 

. -1 ()2lnL(8*; X) . -2 - 3 -2 3 -2 
phmn 002 = phm(8* - 2Xn /8*) = (00 - 200/(0) = -00 = H(Oo) 

so that assumption (2) of Theorem 8.17 applies. Also note that 

_1/2 alnL(00;X) __ 1/2Ll-l -1/2 (~Xi) 
n 00 - n U o + n ~ 02 

1=1 0 

_ 2. n (Xn -(0 ) d N(O 0-2) -N(O M(O)) [ 
1/2 - ] 

- 00 00 -"+ '0 - , 0, 

where M(Oo) = 0~2, which follows by a direct application of the Lindberg-Levy 
CLT to the bracketed expression and by Slutsky's theorem, since EXj = 00 and 
var(Xj ) = O~ V i. Then, from Theorem 8.17, it follows that n 1/2(8 - (0 ) -4 
N(O, O~), and e ~ N(Oo, n-l0~). 

Regarding asymptotic efficiency, recall from Ex. 7.20 that 

E [ alnL(Oo; X) alnL(Oo; X)] = /Ll2 
00 ao' n U o · 

Asymptotic efficiency of e follows immediately from Theorem 8.18 since the 
above results demonstrate the equality 

M(Oo) = -H(Oo) = J~ En- 1 [0 In LJ;o; Xl aln~~o; Xl] = 0;;2. o 

Example 8.15 Asymptotic Normality and Efficiency of MLE-Gamma Case 

Reexamine Ex. 8.12. The second-order derivatives of In L(a, fJ; x), divided by n, 
are given by 

~ a2InL(a,fJ; xl = _ [r(a)d2r(a f _ (dr(a))2] /r(a)2, 
n oa2 da2 da 

~ 021nL(a, fJ; x) = ~ a2lnL(a, fJ; x) = -fJ-1 

n aaofJ n afJaa ' 

~ a2lnL(a, fJ; x) = !!... _ 2 x 
n afJ2 fJ2 fJ3' 

and the derivatives themselves are continuous functions of la, fJ) for a> 0 and 
fJ> 0 and V XES, so that assumption (1) of Theorem 8.17 is satisfied.4o Letting 
8 = (~), 8 0 = (~:), and 8* be such that 8* -4 8 0 , it follows from continuity 

40The Gamma function, r(al, is continuous in a, and its first two derivatives are continuous in a, for a > O. rIal is in fact strictly 
convex, with its second·order derivative strictly positive for a > o. See Bartle, Real Analysis, p. 282. 
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(recall that plimX = a/3 in this case), so that the convergence condition in (2) 
of Theorem 8.17 applies. 

Regarding condition (3), note that 

n_1/2alnL(So; X) = [_n I/2 [In/3o + [d~:o)] jr(aol]_+n-1/2 tlnXi]. 
as 1/2 [ao] 1/2Xn -n - +n -/30 /3~ 

To establish the bivariate normal limiting density of this (2 xl) random vector, 
first note that (Z I, ... , Zn I, where Zi = U-~/~D, is a collection of iid random 
variables with41 

[ 
dr(aol ] EZi = IL = ---aa- jf(aa) + In /3a , 

aa/ /3a 

[ 
[r(aold2J~~o) _ (d~:o)) 2] jr(aol2 

Cov(Zj) = cI> = 

/3;;1 
The multivariate Lindberg-Levy CLT then implies that 

- [n- 1 tlnXi] 
where Z = 5c./fi~ . 

Noting that n-1/2(alnL(So; xI/aS) = n1/2(Z - ILl -4 N([OJ, M(Soll, where 
M(So) = -P, it follows that convergence to a bivariate normal density is es-

41 A way of deriving the expectations involving InXj that is conceptually straightforward, albeit somewhat tedious algebraically, is 
first to derive the MGF of InXj, which is given by ptr(a + t)/r(a). Then, using the MGF in the usual way establishes the mean and 
variance of InXj. The covariance between (Xii P~) and InXj can be established by noting that 

P-2EXolnX' = p-2 [ 1 ] l°O/1nxo)xaOe-xilf3odxo 
o I I 0 p,;'0r(ao ) 0 \ I I I 

= aop;;' E.lnXj, 

where E. denotes an expectation of In X; using a Gamma density having parameter values ao + 1 and Po. Then covHXilP~),lnXj) is 
equal to aol3;;-IE.lnX; -IElnX;E(Xill3~)) = a ol3;;-I(E.lnX; - ElnX;) = p;;-l. 
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tablished, and thus condition (3) of Theorem 8.17 is met. Finally, note that 

M(8 ) - 1· -IE [MnL(8 o; X) alnL(8o; X)] - -H(8 ) 
o - n~~ n a8 a8' - 0 , 

which follows immediately upon taking the expectation and recalling that 
EX = af3. Thus, the condition of Theorem 8.18 is met, and we can conclude 
that 

n l /2(8 - 8 0 ) ~ N([Oj, M(8o )-I), 8 ~ N(80 ,n- IM(8o)-I), 

and 8 is asymptotically efficient. o 

We pause to emphasize that although we were unable to explicitly solve for 
the function defining the MLE in the case of random sampling from a general 
Gamma density, our theorems on the asymptotic properties of the MLE still 
allowed us to establish the asymptotic properties of the MLE which were jm­
plicitly defined by first-order conditions. In particular, we now know that 8 is 
consistent, asymptotically normal, and asymptotically efficient as an estimator 
of (a, (3). 

The verification of the MLE's asymptotic properties can be somewhat com­
plicated at times. Regarding the density functions commonly used in practice, 
it can be said that the MLE is quite generally consistent, asymptotically normal, 
and asymptotically efficient when the random sample is iid from a population 
distribution. In particular, the MLE is consistent, asymptotically normal, and 
asymptotically efficient when random sampling from any of the exponential 
class densities we have presented in Chapter 4, and these asymptotic proper­
ties hold quite generally for exponential class densities (see E. Lehmann, Point 
Estimation, pp. 417-418 and 438-439). In more general situations involving 
composite experiments, one must generally verify the asymptotic properties of 
the MLE on a case-by-case basis. 

MlE Invariance Principle 

Our discussion of MLEs to this point has concentrated on the estimation of 
the parameter vector 8 itself. Fortunately, the maximum likelihood procedure 
has an invariance property that renders our preceding discussion entirely and 
directly relevant for estimating functions of the parameter vector. Before for­
mally stating the property, we provide some additional background discussion 
concerning the parameterization of density functions. 

The reader will recall that the members of parametric families of densities 
are indexed, or identified, by values of a parameter vector whose admissible 
values are identified by a set of values represented by the parameter space, Q. 
After a moment's reflection, it is evident that nothing is sacrosanct about a 
particular indexing of the members of a parametric family of densities. That is, 
a given collection of density functions fIx; 8), for 8 E Q, could be equally well 
represented by fIx; q-I(e)), where e = q(8) is any invertible function of 8 E Q. 
Such a parameter transformation is referred to as a reparameterization of the 
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density family. As a specific example, consider the exponential family 

1 
f(x; 0) = (j e-x/OI(o, 00) (x) for 0 E n, 

where Q = (0,00). This same family of densities could be represented equally 
well by 

h(x; ~) = I(x; qi l (~)) = ~e-~x I(o,oodx) for ~ E Q~, 

where ~ = qdO) = e- I for e E Q, so that Q~ = (0,00). Another parameterization 
of this same family of densities could be given as 

mIx; r) = I(x; q2 1(r)) = r- I /2 exp(-xr- I /2 )I(o,ool(x) for r E QT' 

where now r = q2(e) = e2 for e E Q, so that Q r = (0,00). In all cases, the exact 
same collection of densities is identified. Of course, the interpretation of the 
parameter differs in each case, where e is the mean of X, ~ is the reciprocal 
of the mean of X, and r is the variance of X (recall a 2 = e2 in the exponen­
tial family). The fact that a density family can be reparameterized provides the 
researcher with flexibility for redefining the maximum likelihood problem in 
terms of a parameter or parameter vector having an interpretation that may be 
of more fundamental interest to research objectives. The fact that the actual 
reparameterization process is unnecessary for obtaining the maximum likeli­
hood estimate of q(8) is presented in the following theorem. 

Theorem 8.19 (MLE Invariance Principle-Invertible Case) Let 8 be a MLE C}/8, and sup­
pose that the function q(8), lor 8 E Q, is invertible. Then q(8) is a MLE 01 
q(8). 

Proof The maximum likelihood estimate of 8 is given by 0 = argmaxeenL(8; x). 
Suppose e = q(8) is invertible, so the likelihood function can be reexpressed 
as a function of e by substituting 8 = q-I(e), e E Qe = Ie: e = q(8), 8 E 

Q}, in L(8; x). Then the maximum likelihood estimate for e would be ~ = 

arg max{eQe L(q-I (e); x). But since 0 maximizes L(8; x), a value of ~ that solves 

the latter likelihood maximization problem satisfies q-I(~) = 0, which implies 
by the invertibility of q that ~ = q(O). • 

The invariance principle in Theorem 8.19 implies that once a MLE, 8, 
of 8 has been found, one can immediately define the MLE of any invertible 
function of 8, say q(8), as q(8). This is obviously a very convenient prop­
erty of the maximum likelihood estimation approach. In fact, the invariance 
principle of maximum likelihood estimation extends to more general functions 
of 8, invertible or not, although the intuitive interpretation of invariance in 
terms of reparameterizing a family of density functions no longer follows. The 
more general invariance principle utilizes the notion of maximizing an induced 
likelihood function, as defined in the proof of the following generalization of 
Theorem 8.19. 
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Theorem 8.20 (MLE Invariance Principle-General Case) Let <3 be a MLE of the (k xI) pa­
rameter vector 8, and let q(8) be an (r x 1) real-valued vector function of 
8 E Q, where r:5 k. Then q(<3) is a MLE of q(8). 

Proof Let l(T) = {8: q(8) = T,8 E Q} V T E R(q), i.e., l(T) is the set of 8 values 
having the image value T based on the function q. The collection of T values 
represented by the range of the function, R(q), will be called the parameter space 
induced by q(8), and note that since there can be more than one 8 E Q that 
satisfies q(8) = T, then there can be more than one density and likelihood 
function, fix; 8) == L(8; x), identified by the 8 values that satisfy q(8) = T. 

Define the likelihood function induced by q( 8) as 

L*(T; x) = Max L(8; x) = Max fix; 8), 
eE1IT) eE1IT) 

i.e., L*(T; x) is the largest likelihood consistent with q(8) = T, or equivalently, 
L*(T; x) is the highest density weighting assigned to the random-sample out­
come, x, by the family of densities fix; 8), 8 E Q, given that q(8) = T. A 
maximum likelihood estimate of T = q(8) is then given by a value of T E R(q) 
that maximizes the induced likelihood function, as 

T = argmaxL*(T; x) = argmax [max L(8; x)] = argmax [max fix; 8)]. 
TERlq) TERlq) eE1IT) TERlq) eE1IT) 

(Note that a maximizing value of T then maintains the intuitively appealing 
property of associating with the sample outcome, x, the highest probability 
Idiscrete case) or highest density weighting (continuous case) that is possible 
within the parametric family fix; 8),8 E Q). 

Since 0 maximizes L18; x) == fix; 8), it follo'Ys that T = qlO) maximizes 
the induced likelihood function L*(T; x), so that q(8) is the MLE of q(8). (See P. 
W. Zehna (1966), "Invariance of maximum likelihood estimation." Ann. Math. 
Stat., 37, p. 755, for further discussion of the induced likelihood function con­
cept.) • 

The following examples illustrate both the versatility and the simplicity of 
Theorem's 8.19 and 8.20. 

Example 8.16 Let (XI,"" Xn) be a random sample from the Bernoulli population distribution 
f(z; p) = r(1 - pjI-zllo I)(z) representing whether or not a customer contact 
results in a sale. The MLE of p is given by P = X. Then by the invariance 
principle, the MLE of the variance of the Bernoulli population distribution, 
a 2 = q(p) = p(1 - p), is given by &2 = X(1 - X). 0 

Example 8.17 Reexamine the case of maximum likelihood estimation in the GLM (Ex. 8.6), 
where the MLE of f3 and a2 is given by {3 = (X'X)-lx'Y and &2 = (Y - x{3J'!Y -
x{3)/n. Then by the invariance principle, the MLE of LiE! fJi is given by LiE! /3i' 
the MLE of fJd fJ2 is given by /31//32' and the MLE of a is given by (&2)1/2. 0 
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While the invariance principle allows convenient and straightforward def­
initions of MLEs for functions of 8 once an MLE for 8 has been defined, the 
ip.variance principle does not iJp.ply that the estimator properties

A 
attributed to 

8 transfer to the estimator q(8) of q(8). That is, the fact that 8 may be un­
biased, MVUE, consistent, asymptotically normal, and/or asymptotically effi­
cient does not necessarily imply that the ML~ q(8) possesses any of the same 
properties. The small sample properties of q(8) as an estimator of q(8) would 
need to be checked on a case-by-case basis. Useful results are not available th~t 
delineate general problem conditions up.der XVhich small sample properties of 8 
are transferred to a general function of 8, q(8), used to estimate q(8). However, 
asymptotic properties of 8 transfer to q(8) under fairly general conditions, as 
the following two theorems indicate. 

Theorem 8.21 Let 8 be a consistent MLE of 8, and let q(8) be a continuous function of 
8 E Q. Then the MLE q(8) is a consistent estimator of q(8). 

Proof This follows directly from Theorem 5.5, since if q(8) is a continuous function 
of 8, and if plim 8 = 8, then plim q(8) = q(plim 8) = q(8). • 

Theorem 8.22 Let 8 be a consistent, asymptotically normal, and asymptotically efficient 
MLE of8, satisfying the conditions of Theorems 8.17 and 8.18 so that nl/2(8_ 
8 0 ) ~ N(lOj,M(8or 1). Let q(8) be continuously differentiable with respect 
to 8, and let aq(80 )/a8' have full row rank. Then q(8) is a consistent, asymp­
totically normal, and asymptotically efficient MLE of q(8). 

Proof It follows directly from Theorem 5.40 and Slutsky'S theorem that 

[aq~~o)' M(8o)-1 a~~o)rl/2 nl/2(q(8) - q(80 )) ~ N(lO),I). 

Using Theorems 8.17 and 8.18 and Slutsky'S theorems, it then also follows that 

[ aq(8o)' [EalnL(8o;X) alnL(80 ; X)]-l aq(8o)]-1/2( (8)- (8)) d N'[O) I) 
a8 a8 a8' a8 q q 0 --'-+ I , , 

which by Def. 7.22 justifies the conclusion of the theorem. • 
Example 8.18 Recall Ex. 8.16. The reader can demonstrate that P = X is consistent for p, 

n 1/2(p_ p) ~ N(O,p(l- pI), and P is asymptotically efficient as an estimator of 
p. Examine the MLE of a2 = q(p) = p(l - p), which by the invariance principle 
is given by &2 = X( 1 - X). 

Since p(l - p) is continuous for p E [0,11, &2 is consistent for p(1 - p) by 
Theorem 8.21. Now note that dq(p)/dp = 1 - 2p is continuous and # 0 (and 
thus "full rank") provided p # .5. Then X( 1 - X) is asymptotically normal and 
asymptotically efficient by Theorem 8.22, where 

&2 ~ N(a2, (1 - 2p)2p(1 - p)/n). 
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When p = .5, the asymptotic distribution of a2 can be shown to be equal to the 
distribution of the random variable .25(1 - Yin), where Y '" xi. See Bickel and 
Doksum, Mathematical Statistics, p. 53. 0 

Example 8.19 Recall Ex. 8.17. Assuming n-Ix'x -+ Q, a symmetric positive definite matrix, 

it can be shown that the MLE (t) is consistent, asymptotically normal, and 

asymptotically efficient as an estimator of [~], where 

Examine the MLE qI!,B, ( 2) = 'Lf=l fti of qI!,B, a2) = 'Lf=l {3i. Since qI!,B, a 2) 
is continuous in ,B and a2, qI!,B, ( 2) is a consistent estimator of qI!,B, a2) by 
Theorem 8.21. Also, since aqI/ae = [1 1 ... 1 0)' =I- [01 (where e = [~]), 
qd,B, ( 2 ) is asymptotically normal and asymptotically efficient by Theorem 
8.22, where 'LL,Bi ~ N(t',Bo, t'a2(x'x)-It-) with t a (k x 1) vector of ones. 

Now examine the MLE q2(,B, ( 2) = (a2)1/2 = a of q2(,B, a 2) = (a2)1/2 = a. 
Since q2(,B, a 2) is continuous in ,B and a 2 > 0, a is a consistent estimator of a 
by Theorem 8.21. Also, since aq2/ae = [0 '" 0 ((1/2)(a2)-1/2)), =I- [01 and the 
derivative is continuous for a2 > 0, a is asymptotically normal and asymptoti-
cally efficient by Theorem 8.21, where a ~ N(a, a 2 /2n). 0 

Example 8.20 Recall Ex. 8.4. We know that the MLE of 0 in the exponential population distri­
bution is given by 8 = X, and the MLE is consistent, asymptotically normal, 
and asymptotically efficient, where n l /2(8 - 0) ~ N(O, ( 2 ). Examine the MLE 
of the variance of the exponential population distribution, q(O) = 02 • By the 
invariance principle, the MLE is given by q(8) = X2. Since q(O) is continuous 
in 0, X2 is consistent for 8 2 by Theorem 8.21. Since aq(O)/ao = 20 =I- 0 and the 
derivative is continuous V 0 > 0, q(8) is asymptotically normal and asymptoti­
cally efficient by Theorem 8.22, where X2 ~ N(02, 404/n). 0 

MLE Property Summary 

Overall, the maximum likelihood procedure is a focused and relatively straight­
forward approach to defining point estimators for e and for a myriad of func­
tions of e. The procedure can sometimes lead to a MVUE for e or q(e), and 
very often in practice the MLE will possess useful asymptotic properties. Specif­
ically, properties of a MLE that we have examined in this section include the 
following: 

1. A MLE is not necessarily unbiased. 
2. If an upbiased estimator of e that achieves the CRLB exists, and if the 

MLE, e, is defined by solving first-order conditions, then the MLE will be 
unique and achieve the CRLB. 
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3. If a MLE is unique, then the MLE is a function of any set of sufficient 
statistics, including complete sufficient statistics if they exist. 

4. If a MLE of 8 is unique, and complete sufficient statistics exist, then 

a. if the MLE is unbiased for 8, it is MVUE for 8 j 

h. if a function of the MLE, q(E», is unbiased for 8, then this function is 
the MVUE for 8. 

5. Under general regularity conditions on the estimation problem (see Theo­
rems 8.14-8.18 I, the MLE is consistent, asymptotically normal, and asymp­
totically efficient. 

6. If e is the MLE of the (k x I) parameter vector 8, then q(e) is the MLE of 
the (I x I) vector q(8), I ~ k (MLE invariance principle). 

7. Under general regularity conditions (see Theorems 8.21 and 8.221, if the 
MLE e is consistent, asymptotically normal, and asymptotically efficient 
for estimating 8, then the MLE q(e) is consistent, asymptotically normal, 
and asymptotically efficient for estimating q(8). 

8.4 The Method of Moments 

The method-of-moments (MOM) approach to point estimation begins with the 
specification of moment conditions that must hold for each of the random vari­
ables in the random sample (Yl,"" Yn ), and for the true value of the parameter 
vector, relating to the statistical model {fly; 8),8 E Q}. The moment condi­
tions take the general form Egt(Yt, 8 0 ) = [OJ, t = I, ... , n, with the dimension 
of the vector function gt being at least as large as the number of elements in the 
8 0 vector. The Yt's can be either scalar or vector random variables, although in 
this section we will deal exclusively with the scalar case. An estimate, 8, of the 
parameters of the statistical model is then obtained by choosing the value of 8 
that satisfies, or satisfies as closely as possible, the sample moment counter­
part to the moment conditions, n-1 L~l gt(Yt, 8) = [OJ. When the dimension 
of gt and that of 8 are the same, a MOM estimate of 8 0 would be defined as 
8 = arge[n-1 L~=l gt(Yt, 8) = [0]]. 

For a concrete illustration of the MOM approach, consider a statistical 
~ode~ for a random sample of size n fro~ a Bernoulli "Population distribu­
tlOn, l.e., {fly; p), P E Q} where fly; p) = pL.=1 Yt (1 - p)n-Lt=1 Yt n~=l l{o, I) (Ytl and 
Q = [0, Ij. A moment condition that must hold for each Yt when p = Po 
in this statistical model is given by Eg(Yt,po) = EIYt - Po) = 0, t = I, ... , 
n. The appropriate sample moment counterpart to this moment condition is 
n- 1 L~=l g(Yt,p) = n-1 L~=dYt - p) = 0, which upon solving for p yields the 
MOM estimate p = y. In this (fortunate) situation, the MOM estimator is un­
biased, BLUE, MVUE, consistent, asymptotically normal, and asymptotically 
efficient for estimating p. 
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The basic rationale underlying MOM estimation is rooted in the laws of 
large numbers. If Egt(Yt, 8 0 ) = 10j defines a vector of k moment conditions in­
volving the (k x 1) vector 8 0 that hold V t, and if a law of large numbers applies 
to the random variables gt(Yt, 8 0 ), t = I, ... , n, then n- I 2:7=1 gdYt, 8 0 ) -4 10J 
(weak law) or n- I 2:7=1 gt(Yt, 8 0 ) ~ 10j (strong law). Moreover, if Egt(Yt, 8) = 
e(8) I-I0j when 8 I- 8 0 so that n- I 2:7=1 gdYt, 8) -+ e(8) in probability or al­
most surely, then intuitively we would expect that solving n- I 2:7=1 gtlYt, 8) = 

10j for 8 should produce a value, 0, that becomes very close to 8 0 as n increases; 
otherwise, the preceding convergence results will be ultimately contradicted. 
In fact, under appropriate regularity conditions, this is precisely true and the 
MOM estimator 8 converges in probability, or almost surely, to 8 0 • It is also 
possible (as in our preceding Bernoulli example) that 8 is asymptotically nor­
mal and efficient based on an application of central limit theory. Related argu­
ments establishing asymptotic properties of MOM estimators can be applied 
in more general contexts where the dimension of g exceeds 8, in which case 
some measure of the (weighted) distance between n- I 2:7=1 gr/Yt, 8) and [OJ is 
minimized. For example, 

with W being positive definite and symmetric, is one such (generalized) MOM 
estimator that can be consistent, asymptotically normal, and asymptotically 
efficient under appropriate regularity conditions. 

We will examine the ordinary method-of-moments procedure, which is 
based on iid sampling and which, for historical reasons, will simply be referred 
to as the method of moments. We will also provide an introduction to the gen­
eralized method-of-moments (GMM) procedure, which can be applied in much 
more general sampling contexts and which is recently gaining popularity in 
econometric applications. 

Method of Moments Estimator 

In order to apply the (ordinary) MOM procedure, it is assumed that random sam­
pling is from a population distribution, so that the random sample (Y1, ... , Yn ) 

is a collection of iid random variables. Given a statistical model for the ran­
dom sample {fly; 8),8 E Q}, our initial interest will focus on estimating 8. 
We have seen in our study of parametric families of densities that the mo­
ments of density functions are functions of the parameters characterizing the 
parametric family. For example, in the exponential density case, EYt = e and 
EY; = 2e2, or in the normal density case, EYt = f.L and EY; = 0'2 + f.L2. In gen­
eral, f.L~ = EYJ = hr(8), i.e., the rth moment about the origin for a parametric 
family of densities fly; 8),8 E Q, is a function of the parameter vector 8. 
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The MOM procedure for estimating the!k x 1) vector E> is to first define a 
!k x 1) vector of invertible moment conditions having the particular form 

Eg!Yt , E» = E[~r::~~\~II] = [OJ, t = 1, .. . ,n. 

yt -hk!E» 
The sample moment counterparts to the moment conditions are then specified 
as 

n [:~ =~~l~l] n- I t; g!Yt, E» = : = [OJ, 

mk - hk!E» 

and the solution for E> defines the MOM estimate via the inverse function h- I as 
8; = hi l (m'l' m;, ... , mk), j = I, ... , k.42 Note that an alternative motivation for 
the MOM estimate in this iid case is to define the sample moment conditions in 
terms of expectations taken with respect to the empirical distribution function 
of the y/s, and then solve for E> as iJ = arge[Epg!Y, E» = [0]]. Some examples 
of the procedure will illustrate its relative simplicity. 

Example 8.21 Let (Y l , ... , Yn ) be a random sample from a Gamma population distribution of 
waiting times between customer arrivals in minutes, and suppose it is desired 
to estimate the parameter vector !a, t3). In this case the moment conditions can 
be specified as 

Eg!Yt , a, t3) = E[ Y; !~/J2(f + a)] = [OJ, t = 1, ... , n. 

The sample moment counterpart to the moment conditions is given by 

n- l tg(Yt, a, t3l = [m' r:!~~ff+a)] = [OJ, 
t=l 2 

so that the MOM estimate is defined by 

[q] _ [!m~j2/[m; - !m~)2j] 
t3 - 1m; - !m~ )2J/m~ . 

If m'l = 1.35 and m; = 2.7, then the MOM estimate is given by a!y) = 2.0769 
and ,a(y) = .65. 0 

Example 8.22 Let !Yl , ... , Yn ) be a random sample from a normal population distribution rep­
resenting the weights, in hundredweights, of steers fed a certain ration of feed 

42While it is standard practice to use the first k population moments when defining the needed moment conditions, other moments 
about the origin, or even moments about the mean, can be used in defining the moment conditions. The key requirement is that 
the moment conditions be invertible so that e can be solved in terms of sample moments. 
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for six months, and suppose it is desired to estimate the parameter vector (J-L, a2). 
The moment conditions in this case are 

Eg(Yt, J-L, a 2) = E[ Y; 2'1;; ~ J-L2) J = [0], t = 1, ... , n. 

The sample moment counterpart to the moment conditions is given by 

n- I tg(Yt,J-L,a2) = [ ,m'(1 -; J-L 2)J = [0], 
t=1 m 2 - a + J-L 

so that the MOM estimate is defined by 

[%2 J = [m~ ~;~'d2l 
If m'l = 12.3 and m~ = 155.2, then the MOM estimate is given by Aly) = 12.3 
and &2(y) = 3.91. 0 

MOM Estimator Properties 

It is very often the case that the inverse function 0 = h-l(m'I"'" mk! is con­
tinuous, in which case the MOM estimator inherits consistency from the con­
sistency of M; for J-L~, Yr. 

Theorem 8.23 (Consistency of MOM Estimator 8) Let the MOM estimator ejkxl) = 
h-I(Mi, ... ,Mk) be such that h- I (J-L~, ... ,J-Lk! is continuous Y (J-L'I' ... ,J-Lk! E r = 

{(J-L'I' ... ,J-Lk!: J-Li = hj (8),i = 1, ... ,k,8 E Q}. Then e --4 8. 

Proof This is a direct consequence of Theorem 5.5 and the probability limit prop­
erties of sample moments about the origin. In particular, given the assumed 
continuity property of h- I, 

plim e = h-llplimMi, ... , plimMk) = h-I(J-L~, ... , J-L;J = 8 by the invertibility of h. • 

Example 8.23 Reexamine Ex. 8.21 and Ex. 8.22. In Ex. 8.21, (a, f3) is a continuous function of 
J-L'I and J-L~ for all (J-L'I' J-L~) E r = {(J-L'jI J-L~): J-L'I > 0, J-L~ > 0, J-L~ > (J-L'd2}, which 
constitutes all admissible values of (J-L'jI J-L~). (Recall a2 = J-L~ - (J-L'1)2 = afP > 0 
in the Gamma family.) Thus, by Theorem 8.23, the MOM estimator of (a, f3) 
is consistent. In Ex. 8.22, (J-L, a2) is a continuous function of (J-L'j1 J-L~) and so the 
MOM estimator of (J-L, a2) is consistent. 0 

In addition to consistency, the MOM estimator will have an asymptotic 
normal density if the inverse function 8 = h-I(J-L~, ... , J-Lkl is continuously 
differentiable and its Jacobian matrix has full rank. 

Theorem 8.24 ({\symptotic Normality of MOM Estimator of 8) Let the MOM estimator 
8 = h- I (Mi, ... ,Mkl be such that h- I (J-L;, ... ,J-L;J is differentiable Y IJ1,'1' ... , 
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J-LU E r = {(J-L'J! ... ,J-LzJ: J-L~ = hi (8),i = 1, .. . ,k,8 E n}, and let the elements of 

ah II (J-L;, ... , J-LzJ 

aJ-L'1 

A(J-L;, ... , J-LU = 

ahl l (J-L'II" .. , J-LU 

aJ-Lk 

ah; 1 (J-L;, ... , J-LU ah;l (J-L;, ... , J-Lk) 

aJ-L; aJ-Lk 

be continuous functions with A(J-L;, ... ,J-Lk) having full rank 'V (J-L'I' .. . ,J-Lk) E r. 
Then 

nl/2(E> - 8) -4 N[O],A}JA'), and E> ~ N(8,n- 1A}JA'), where}J = Cov(Mi, .. . ,Mk). 
kxk 

Proof Recall that the sample moments converge to a normal limiting distribution as 

nil' [[~] - [JJ] -'+ ~[Ol,~'· 
Then since the partial derivatives contained in A are continuous and since A has 
full rank, the result of the theorem follows directly from Theorem 5.40. • 

Example 8.24 Reexamine Ex. 8.21 and 8.22. In Ex. 8.21, 

which exists with continuous elements 'V (J-L'J! J-L~) E r. Furthermore, A has full 
rank, since det(A) = (J-L~ - (J-L; )2)-1 > 0 'V (J-L'J! J-L~J E r. Therefore, by Theorem 
8.24, the MOM estimator of (a, f3) is asymptotically normally distributed. In 
Ex. 8.22, 

A(J-L;,J-L~l = [-iJ-L; ~l 
which exists with continuous elements and has full rank 'V (J-L;, J-L~), and so the 
MOM estimator is asymptotically normally distributed, by Theorem 8.24. 0 

The reader should be warned that although the MOM estimator of e is con­
ceptually straightforward to define and is often quite straightforward to com­
pute, in some cases the inverse function may be difficult to define explicitly, if 
an explicit representation exists at all. A computer algorithm for solving sys­
tems of nonlinear equations might be needed to compute the inverse function 
values and thereby calculate outcomes of the MOM estimator. As an example 
of more complicated cases, the reader should consider MOM estimation of the 
parameter vector 8 when sampling from a Beta family of densities. 
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MOM estimators for a function of 8, say q(8), ca~ be defined by the cor· 
responding function of the MOM estimator of 8, as q(8) = q(h-I(Mi, ... ,MU). 
Under appropriate conditions on the function q, and if the MOM estimator of 
8 satisfies the conditions of Theorem's 8.23 and 8.24, then q(8) is consistent 
and asymptotically normal as an estimator of q(8). 

Theorem 8.25 (Consistency and {\symptotic Normality of MOM Estimator of q(8)) Let the 
MOM estimator 8 lkxl } = h-I(Mi, ... ,MU of 8 satisfy the conditions of The-
orems 8.23 and 8.21:. If the function q(8) is continuous for 8 E 0, then the 
MOM estimator q(8) is consistent for q(8). If oq(8)jo8' exists, has full row 
rank, and its elements are continuous functions of 8 for 8 E Q, then 

n l /2 (q(8) - q(8)) --4 N ([OJ, o~(~)' «I> o~~)), 

and 

(8) ~ N ((8) -I oq(8)' «I> oq(8)) 
q q ,n 88 08' 

where «I> is the covariance matrix of the limiting distribution of nl/2(8 - 8) 
defined in Theorem 8.24. 

Proof The proof is analogous to the proofs of Theorem's 8.23 and 8.24 and is left to 
the reader. • 

Overall, the MOM approach to point estimation of 8 or q(8) is conceptu­
ally simple, computation of estimates is often straightforward, and the MOM 
estimator is consistent and asymptotically normal under fairly general con­
ditions. However, the MOM estimator is often not unbiased, BLUE, MVUE, 
or asymptotically efficient. It has been most often applied in cases where the 
definition or computation of other estimators, such as the MLE, is extremely 
complex, or when the sample size is quite large so that the consistency of the 
estimator can be relied upon to ensure a reasonably accurate estimate. Further 
discussion of asymptotic efficiency of MOM estimators, in the context of GMM 
estimators will continue in the next subsection. 

Generalized Method of Moments (GMM) Estimator 

In the case of the GMM, the random sample is not restricted to iid random 
variables, and the moment conditions are not restricted to the particular form 
presented in the preceding discussion of MOM estimation. In fact, the moment 
conditions can take a myriad of different forms, depending on the statistical 
model being analyzed. However, the general estimation principles remain the 
same, namely, moment conditions Egt(Yt , 8 0 ) = [OJ, t = I, ... , n are specified 
pertaining to the statistical model (fly; 8), 8 E OJ, sample moment counter­
parts are specified as n- I L~=I gdYt, 8) = [OJ, and then the GMM estimate is 
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defined as the value of 8 that satisfies the sample moment conditions as closely 
as possible-exactly if g is of the same dimension as 8. 

The following examples demonstrate how the GMM estimator can be for­
mulated to subsume the least-squares estimator and the MLE as special cases. 

Example 8.25 Least-Squares Estimator as a GMM Estimation 

Let the statistical model of a random sample of the yields/acre of a particular 
type of corn be (incompletely) specified by the linear model Y = xf3 + c, where 
the classical GLM assumptions are assumed to apply and f3 is a k x 1 vector of 
parameters indicating the responsiveness of yield to various inputs. Moment 
conditions for the statistical model can be specified by the (k xI) vector function 

Egc!Yt, f3) = Ex~JYt - Xt.f3) = Ex~.t:t = [01, t = 1, ... , n. 

Corresponding sample moment conditions can be defined as 
n n 

n- I Lgt(Yt,f3) = n- I LX~.(Yt - Xt.f3) = n-I[x'y - x'xf31 = [01, 
t=1 t=1 

which when solved for f3 defines the GMM estimate of f3 as t3(y) = (x'X)-lx'y. 
Thus, the least-squares estimator is a GMM estimator. 0 

Example 8.26 MLE as a GMM Estimator 

Let If(y; 8),8 E O} be the statistical model for a random sample for which 
the Y/s are not necessarily iid, and represent the joint density of the random 
sample as fly; 8) = m(YI; 8) n~=2f(Yt I Yt-I, ... , YI; 8). Assume that differenti­
ation under the integral or summation sign is possible (recall CRLB regularity 
condition (4) of Def. 7.21) so that moment conditions can be defined as43 

E 'Y 8) - E [alnm(YI; 8 0 )] - [0] gil I, a - a8 -, 

Egc!Yt, 8 0 ) = E [alnf(YtIYta~" ,YI; 8 0 )] = [0] for t = 2, .. . ,n. 

The sample moment conditions are then 

-I ~ ( 8) _ -I [alnm(YI; 8) ~ alnf(Yt I Yt-I, .. ·,YI; 8)] 
n ~ gt Yt, a - n a8 + ~ a8 

t=1 t=2 

= n-I alnL(8; y) = [0], 
a8 

43Under the assumed conditions, for each density (conditional or notl, 

E alnf(Z; eol = 1"" af(z; eol d = a J~oof(z; eoldz = [01 
0 0 ae -00 ae z ae 

in the continuous case, and likewise in the discrete case. 
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which when solved for a defines the GMM estimate of a as iJ = 
arge(iHnLla; y)/aa = [0]]. Assuming the MLE of a is defined as the solution 
to first-order conditions, the MLE is a GMM estimator. 0 

In later studies of econometrics and/or advanced statistics, the reader will 
come to find that the GMM subsumes a large number of the estimation pro­
cedures used in practice. For example, instrumental variable techniques, two­
and three-stage least squares, and quasi- or pseudo-maximum likelihood esti­
mation techniques can all be interpreted as GMM procedures. The interested 
reader is referred to A. R. Gallant 11987), Nonlinear Statistical Models. New 
York: John Wiley, Chapter 4, and to R. Davidson and J. G. MacKinnon 11993), Es­
timation and Inference in Econometrics, New York, Oxford Univ. Press, Chap­
ter 17, for additional details on applying the GMM approach to more general 
statistical models. 

It is possible to apply the GMM procedure in cases where the vector func­
tions defining the moment conditions, gr(Yl, ai, are of larger dimension than 
the dimension of the vector a. In these cases the GMM estimate is defined to 
be the value of a that minimizes a weighted measure of the distance between 
the sample moments and the zero vector, as 

The matrix W nly) is a symmetric, positive definite, conformable weighting ma­
trix that mayor may not depend on y and is such that W n -4 w, with w being a 
nonrandom, symmetric, and positive definite matrix. The previous case where 
gt and a are of equal dimension is subsumed within the current context by 
defining W n = I, in which case the minimum of the distance measure occurs 
at the value of a for which n- l L~=l gllYl, a) = [0]. The GMM estimator is 
consistent and asymptotically normal quite generally with respect to choices 
of the weighting matrix, although asymptotic efficiency considerations require 
a specific choice of W n. These issues will be considered in the next section. 

GMM Properties 

As was the case for the MOM procedure, general statements regarding the prop­
erties of GMM estimators are relegated to the asymptotic variety. We will ex­
amine a set of sufficient conditions for the consistency and asymptotic nor­
mality of the GMM estimator as well as a sufficient condition for asymptotic 
efficiency within the class of estimators based on a particular set of moment 
conditions. The reader can refer to Gallant, Nonlinear Models, and L. P. Hansen 
11982), "Large sample properties of generalized method of moments estima­
tors," Econometrica, pp. 1029-1054, for alternative conditions that lead to 
asymptotic properties of the GMM estimator. Throughout this section we will 
be referring to the GMM estimator defined in terms of the minimization of the 



498 Chapter 8 Point Estimation Methods 

weighted distance measure presented at the end of the previous section, which 
subsumes the case where the dimensions of gt and 8 are equal. 

Consistency Sufficient conditions under which the GMM estimator is consis­
tent are given in the following theorem. Recall that Ee , Pe, and plime, respec­
tively, denote an expectation, a probability, and a probability limit taken with 
respect to a probability distribution characterized by the parameter value 8. 

Theorem 8.26 (Consistency of GMM Estimator) Let {I( y; 8),8 En} be the statistical model 
for the random sample Y, where 8 is (k x 1). Let Eegt! Yt,8) = [OJ be an (m xl) 
moment condition for t = I, ... , n with m ::: k. Define the GMM estimator of 
8as 

9 ~ arg mine," OnlY, Ell ~ arg mine," [[ n-1 ~ g,IY" 8 1)' W nlYI [n-1 ~ g,IY" Ell] l 
where plimeo W n(Y) = w, a nonrandom, positive definite, and symmetric ma­
trix. Assume that 

a. ~ is a closed and bounded rectangle, 
h. 8 is unique, 
c. plimeo [n- 1 L~=l gt(Yt,8n = G(8), a continuous, nonstochastic, (m x 1) 

vector function of 8 for which G(8) = [OJ iff 8 = 8 0 , 

d. limn .... ooPeo ( maxeen IQn(y,8) - h(811 < e) = I, Ve > 0, 

where h(8) = G(8j'wG(8). Then e -4 8 0 , 

"Proof The function h(8) = G(8I'wG(8) is a continuous function of 8 that is unique­
ly minimized at 8 = 8 0 since w is positive definite and G(8) = [OJ iff 8 = 
8 0 , Define N(e) = (8: d(8,8o ) < e}, which is an open e-neighborhood of 
the true parameter value 8 0 , and let ~(€') = mineennN"""eh(8) - h(8o ) (where 
the minimum exists by Weierstrass's theorem because m8) is continuous and 
Q n N(e) is closed and bounded). Let the event An(e) be defined as 

An(e) = (x: max IQn(Y, 8) - h(811 < ~(€')/2} for e > O. 
een 

Letting e represent the unique GMM estimate, it follows that 

1. x E An(e) => hIe) < Qn(Y, e) + ~(e)/2, 
2. x E An(e) => Qn(Y, 8 0 ) < h(8o ) + ~(e)/2~ 

By the definition of the GMM, Qn(y, 8) S Qn(y, 8 0 ), so it follows from (1) 
that 

3. x E An(e) => hIe) < Qn(Y, 8 0 ) + ~(e)/2. 
Substituting (2) into the right side of the inequality in (3) yields 

4. x E An(e) => hIe) < h(80 ) + ~(e). 
Then substituting the definition of ~(e) iI}to (4) yields 

5. x E An(e) => h(8) < mineennNIE)h(8) => 8 E N(e). 
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Since by condition (d) of the theorem limn-->oo PlAnts)) = 1 V e > 0, then 
limn--ooP(<3 E N(e)) = 1 V s > 0, and thus <3 -4 8 0 • • 

In practice, the GMM estimator is often represented by an explicit function 
of the random sample, in which case it is often more straightforward to verify 
consistency by taking probability limits directly. Sufficient conditions, such 
as those in Theorem 8.26, are generally needed when the GMM estimator is 
only an implicit function of the random sample. In the following example, we 
illustrate both approaches to verifying consistency. 

"Example 8.27 /Instrumental Variables Estimator) Let the aggregate demand for a given com­
modity be approximated by the linear function Y = Xf3 + V, where the Vt's 
are iid with EVt = 0 and varWtl = a2, V t. Suppose that the random matrix X 
contains factors affecting demand, including some commodity prices that are 
simultaneously determined with quantity demanded..! Y, so that E(X'X)-l X'V =1= 

[0) (recall Table 8.2). Thus, the OLS estimator of 13, 13 = (X'X)-l X'Y, will be bi­
ased and inconsistent. 

Suppose there existed a conformable (n x k) matrix of variables, z (called 
instrumental variables in the literature), such that 

where n-lz'z -+ Azz, a finite, positive definite matrix, and n-lz'X -4 Azx , a 
finite, nonsingular, square matrix. The sample moment conditions are 

n n 
n-1 L gt/Yt, 13) = n-1 L z~.(Yt - Xt.f3), = n-l[z'y - z'xf3) = [0). 

t=l t=l 

Assuming that z'x is nonsingular, the sample moment conditions have a unique 
solution defining the GMM estimate as ~ = (Z'X)-lz'y, which is also referred to 
in the literature as the instrumental variables estimate. Thus condition (b) of 
Theorem 8.26 is satisfied. 

Note that plim.ajn-1 L~=l gt/Yt , 13)] = Azx[f3o - 131 = G(f3), which equals [0] 
iff 13 = 130, satisfying condition (c) of Theorem 8.26. Assume that Q is a closed 
and bounded rectangle. Representing the GMM estimate equivalently as 

fj = argmin.aQn(Y, 13) = argmin.aeQ [n-1[z'y - z'xf3]'I[z'y - z'xf3)n-1], 

note that max.aeQ I Qn(Y, 13) - h(I3l1, where h(f3) = (130 - 13)' A~xAzx(f3o - 13), will 
exist by Weierstrass's theorem, and the maximum is a continuous function of 
the elements in n-1z'y and n-lz'x by the theorem of the maximum. It follows 
that 

plim [max IQn(Y, 13) - h(I3l1] = max I plim Qn(Y, 13) - h(f3l1 = [01 
~ ~Q ~Q 

so that condition (d) of Theorem 8.26 is satisfied. Therefore, fj -4 13. 
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Given the explicit functional definition of /3, the consistency of the GMM 
estimator can be proven more directly by noting that 

plim/3 = plim(n-1z'X)-I(n-1z'Y) 

= plim(n-1z'Xt l plim(n- l (z'Xj3 + z'V)) 

= A;xl(Azxj3) = ,13, 
where n-1z'V -4 [0] since var(n-1z'V) = (a2/nHn- I z'z) ~ [0]. o 

Asymptotic Normality and Efficiency in the CMM Class Under additional assump­
tions relating to the moment conditions, it can be shown that GMM estimators 
are asymptotically normally distributed.44 

Theorem 8.27 (Asymptotic Normality of GMM Estimator) Assume the conditions of Theo­
rem 8.26. In addition, assume that 

a. 82Qn(y,81/8888' exists and is continuous V 8 E 0, 
h. for any sequence 8~ for which plim 8~ = 8 0, 82Qn(Y,8~1/8S8S' -4 

D(80 1, a /inite, symmetric, nonsingular matrix, and 
c. n I/2(8Qn(Y,801/881 --4 z'" N([0],C(8011. 

Then 

n 1/2(8 - 8 01--4 N([0I,D(Sol-IC(801D(80t l l 

and 8 ~ N(80,n-ID(80rlC(801D(80rll. 

Proof By a first-order Taylor series representation, 

8Qn(Y,8) = 8Qn(Y, 8 01 + 82 Qn(Y, 8.) (8 _ 8 01 
88 88 8888' ' 

where 8. = A8 + (1 - A)8 0 and A E [0,1).45 By the first-order csmditions to 
the minimization problem defining the GMM estimator, 8Qn(y; 81/8S = [0), 
so that by Slutsky's theorems and the consistency of 8, 

n1/2(8 _ 8 0 1 = _ [82Qn(Y' 8.)J- I n l/2 8Qn(Y, 8 0 1 
8888' 88 

--4 -D(8o )Z '" N([O), D(8o )-1 C(80 1D(8o t l l, 
and the asymptotic distribution follows from Definition 5.10. • 

Example 8.28 Revisit the instrumental variable estimator of Ex. 8.27. Note that 82Qn(Y, ,1311 
8j38j3' = 2n-2x'zz'x, which exists and is (triviallyl continuous for j3 E O. Also, 

44See T. Amemiya, Advanced Econometrics, pp. 111-112, for a closely related theorem relating to extremum estimators. The 
assumptions of Theorem 8.26 can be weakened to assuming uniqueness and consistency of e for use in this theorem. 

45We are suppressing the fact that each row of the matrix a2 Qn(Y, e.l/aeae' will generally require a different value of e. defined 
by a different value of A for the representation to hold. The conclusions of the argument will remain the same. 



8.4 The Method of Moments 501 

82 Qn(Y, (3*)/8{38{3' = 2(n-1 x'zHz'Xn- I ) ~ D({3o) = 2A~xAzx, which is a finite, 
nonsingular matrix regardless of the sequence {{3*} for which {3* ~ {30. Fi-

nally, note that n l /28Qn(Y, (30)/8(3 = -2(n- 1 X'zHn- I/2z'V) -4 -2A~x T '" N([OI, 
4a2A~xAzzAzx), where n- I / 2 z'V -4 T "" N([O], a 2Azz) by an application of the 
multivariate Lindberg-Levy CLT. Then, from Theorem 8.27, 

n 1/2 /j3 - (30) -4 N/[0l, a 2/Azxt 1 Azz/A~x)-l), and 

j3 ~ N/{3o, (a2/nHAzx )-1 Azz(A~x)-l). 

An estimate of the asymptotic covariance matrix can be defined as 

&2(Z'xtlz'Z/x'ztl, where &2 = n- I (y - xj3)'/y - xj3). 0 

Regarding the efficiency of the GMM estimator, 1. P. Hansen, Moments 
Estimators, has provided conditions that characterize the optimal choice of 
Wn(y) in the definition of the GMM estimator 

(Jw. ~ arg mine [[ n- 1 t g,(Y" Ell)' W "(Y{ n- 1 t g,(Y" Ell]] . 
In particular, setting W n(Y) equal to the inverse of the asymptotic covariance 
matrix of n- I/2 2:7=1 gt(Yt, 8 0) is the choice that defines the GMM estimator 
that is asymptotically most efficient relative to all choices of the weighting 
matrix. Note that this result establishes asymptotic efficiency within the class 
of GMM estimators based on a particular set of moment conditions. Results 
relating to the optimal choice of moment conditions with which to define the 
GMM estimator in the general case are not available, although a number of spe­
cial cases have been investigated. The interested reader can consult Davidson 
and MacKinnon, Estimation and Inference, Chapter 17 for additional reading 
and references. 

Example 8.29 Revisit Ex. 8.28 concerning the instrumental variable estimator. Note that 
n 

n-1/2 Lgt(Yt ,{3o) = n- 1/2[z'Y - z'X{3ol = n- 1/2[z'VI-4 N/[OI,a2Azz ), 
t=1 

as argued in Ex. 8.28. Thus, the optimal GMM estimator, which is based on 
Wn(Y) = /a2Azz )-I, is defined by 

j3 = argmin,a [n-2(z'Y - z'X(3),(a2Azz )-I(z'Y - z'X{3J] = (Z'X)-Iz'Y. 0 

In practice, if the solution for <3 depends on a weighting matrix that con­
tains unknown elements (in Ex. 8.29, the fact that Azz was unknown is irrele­
vant-only its positive definiteness mattered), an estimator that converges in 
probability to the asymptotically efficient GMM estimator can be constructed 
using any weighting matrix that converges in probability to the inverse of the 
appropriate asymptotic covariance matrix of n-1/2 2:7=1 gt(Yt, 8 0), 
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Key Words, Phrases, and Symbols 

general linear model (GLM) 
dependent variable 
explanatory (or independent) 

variables 

least-squares estimator 
specification error 
heteroskedastic 
autocorrelated 

()( (proportional to) 
bias-adjusted MLE 
reparameterization of the density 

family 
disturbance, error, or residual vector 
classical assumptions of the GLM 
design matrix 

generalized least-squares estimator 
perfect multicollinearity 
econometrics, sociometrics 

parameter space induced by q(8) 
likelihood function induced by q(8) 
invariance principle 

homoskedas tici ty 
zero autocovariance or zero 

autocorrelation 
method of least squares 
coefficient of determination, R2 
Gauss-Markov's theorem 

least squares under normality 
likelihood function, L(8; x) 
maximum likelihood (ML) estimate 
maximum likelihood 

method of moments (MOM) 
generalized method of moments 

(GMM) 
instrumental variables estimator 

estimator (MLE) 

Problems 

1. The daily production of electricity generated by a 
coal-fired power plant operating in the midwest can be 
represented as 

Yj = {Jll~m~JeE; 

where 

Yj = quantity of electricity produced on day i, 
measured in megawatts, 

lj = quantity of labor input used on day i, 

measured in hundreds of hours, 

mj = units of fossil fuel input on day i, and 

ej - N(O, 0'2), the e/s being iid. 

One hundred days of observations on the levels of in­
puts used and the quantity of electricity generated were 
collected. The following information is provided to you 
by the utility company, where Y. = In(y), and x. is a 
matrix consisting of a vector of 1 's followed by column 
vectors corresponding to the natural logarithms of labor 
and fuel levels. 

Y:Y. = 288.93382, [
165.47200] x:y. = 180.32067 , 
122.90436 

[
.06156 -.05020 -.00177] 

(x:x.tl = .09709 -.07284 . 
(symmetric) .11537 

a. Transform the production function into a form in 
which parameters can be estimated using the least-

squares estimator. Estimate the parameters of the 
transformed model. 

b. Is the estimator you used in part (a) to estimate q(,B) 
(1) unbiased, (2) asymptotically unbiased, (3) BLUE, 
(4) MVUE, (5) consistent, and/or (6) normally dis­
tributed? 

c. Is the estimator you used to estimate 0'2 (1) un­
biased, (2) asymptotically unbiased, (3) BLUE, (4) 
MVUE, (5) consistent, and/or (6) Gamma dis­
tributed? 

d. Define the MVUE for the degree of homogeneity of 
the production function (i.e., define the MVUE for 
q.(,B) = {J2 + {Ja. Estimate the degree of homogene­
ity of the production function using the MVUE. Is 
the MVUE a consistent estimator of the degree of 
homogeneity? Is the MVUE normally distributed? 

e. Define an MVUE estimator for the covariance ma­
trix of the least-squares estimator. Estimate the co­
variance matrix of the least-squares estimator. 

2. Smith's Dairy is contemplating the profitability of 
utilizing a new bovine growth hormone for increasing 
the milk production of its cows. Smith's randomly se­
lects cows and administers given dosages of growth hor­
mone at regular intervals. All animals are cared for iden­
tically except for the levels of hormone administered. A 
random sample of size n from the composite experiment 
measuring the total milk production over the lactation 



Problems 

of each animal is represented by 

YI = fll + fl2XI + e l , t = I, ... , n, 

where the et's are presumed to be iid with a common 
marginal density function 

1 
I(z; a, b) = b _ /la,bl(Z) 

with a = -b, and b is some positive number. 
The XI values are the dosages of the growth hor­

mone, measured in cc units, at levels defined by 

Xt = t - 10 trunc C ;01) , t = 1,2,3, ... , 

and YI is the milk production of the tth dairy cow, mea­
sured in hundredweights. 

a. Is the least-squares estimator of (3 (1) unbiased, (2) 
BLUE, (3) consistent, and/or (4) asymptotically nor­
mal? Justify your answer. 

b. Is the estimator S2 of a 2 (1) unbiased, (2) consistent, 
and/or (3) asymptotically normal? Justify your an­
swer. 
(Hint: The Xt'S occur in a repeating sequence of the 

numbers I, 2, 3, ... , 10. It follows that L:7=1 xl/n 4- 5.5 
and L:~I xNn 4- 38.5.) 

c. In the outcome of a random sample of size 100, 
Smith's found that y'y = 4,454,656.3 and x'y = 
[ 21,097.673] E t' t th f h l' 11757078' SIma e e parameters 0 t e mear 

model using i3 and S2. 
d. Given that raw milk sells for $10 per hundred­

weight, define a BLUE for the expected marginal 
revenue per cow obtained from administering the 
growth hormone. If the total cost of the hormone 
treatment per cow over the entire lactation is $12 
per cc, and if the maximum allowable dose is 10 cc, 
is it profitable for Smith's to utilize the hormone 
based on the BLUE estimate of marginal revenu~ 
calculated above? Why or why not? If so, determine 
what level should be administered, and provide a 
BLUE estimate of the gain in profitability. 

e. Regarding Smith's linear model assumptions, are 
there other distributional assumptions that you 
would suggest for consideration besides the uni­
form distribution? Would this change any of your 
answers above? Would you suggest examining al­
ternative functional forms for the relationship be­
tween milk production and hormone treatment? If 
so, would this affect your answers to the questions 
above? 
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3. Suppose Ylnxll = xlnxkl{3lkxll + elnxll, where e 
N([Oj, a 2 I) and x has full column rank. 

a. Show that 

T = l'(i3 - (3) 
(S2l'(x'X)-ll)l/2' 

for any conformable l 1= [01, has at-distribution 
with (n - k) degrees of freedom. (Hint: Transform T 
so that it is expressed as a ratio of two independent 
random variables, with an N(O, 1) random variable 
in the numerator, and the square root ofaX2 ran­
dom variable divided by its degrees of freedom in 
the denominator.) 

b. Using the fact that T has a t-distribution with (n - k) 
degrees of freedom, define a random interval (21, 22) 
that satisfies P(l'{3 E (ZI,Z2)) = .95whenn-k = 25. 
(Hint: Define y~ur ZI and Z2 variables as appropriate 
functions of ({3, S2), which will be suggested by a 
transformation of PIt E (te, th)) = .95), for outcomes 
t of T. 

4. An economist is analyzing the relationship be­
tween disposable income and food expenditure for the 
citizens of a developing country. A survey of the citizens 
has been taken, and data have been collected on income 
and food expenditures. The following statistical model 
is postulated for the data: 

Yi = fllz,?e€i, 

where 

Yi = expenditure on food for the ith household, 

2i = disposable income for the ith household, 

e;s ~ iid N(O, a2 ). 

a. Transform the model into the GLM form. What pa­
rameters or functions of parameters are being esti­
mated by the least-squares estimator applied to the 
transformed model? 

b. Is the least-squares estimator unbiased, the BLUE, 
and/or the MVUE for the parameters or functions 
of parameters being estimated? 

c. The actual survey consisted of 5 000 observations 
and the following summary of th~ data is available; 

(X'XJ-I = [ .17577542 -.019177442J 
-.019177442 .0020946798' 

, _ [10759.646J 
x y - 98598.324 ' 

y'y = 149965.67, 
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where the x matrix is a (5, 000 x 2) matrix consist­
ing of a column of l's and a column representing 
the natural logarithms of the observations on in­
come, and the v-vector refers to the corresponding 
natural logarithms of food expenditures. Calculate 
the least-squares estimate of the parameters of the 
transformed model. What is your estimate of the 
elasticity of food expenditure with respect to in­
come? 

d. What is the probability distribution of /32' the least­
squares estimator of f32? Generate the MVUE es­
timates of the mean and variance of this distri­
bution. (You might find it useful to know that 
(Y'Y - y'x(x'x)-l x'y)/(4998) = 25.369055.) Given the 
assumptions of the model, and using the MVUE 
estimates of mean and variance, what is the (esti­
mated) probability that the income elasticity esti­
mated by the least-squares approach will be within 
=f.2 of the true income elasticity? 

e. Discuss any alterations to the specification of the 
relationship between food expenditure and dispos­
able income that you feel is appropriate for this 
problem. 

5. The research department of the Personal Computer 
Monthly magazine is analyzing the operating life of 
computer chips that are produced by a major manufac­
turer located in Silicon Valley. The research staff postu­
lates that a random sample of lifetimes being analyzed 
adheres to the statistical model 

n 
X - (J-n e- E7~1 Xi/I} n IjO.oo\(Xi), where (J > O. 

i=1 

The magazine publishes an index defined by f3 = 1/(J 
to measure the quality of computer chips, where the 
closer f3 is to zero, the better the computer chip. The 
joint density of X is reparameterized so that the density 
function is parameterized by f3, as 

n 

X - f3ne-fJE7~lxi n Ilo,ool(Xi), where f3 > O. 
;=1 

a. Does the reparameterized family of density func­
tions belong to the exponential class of density 
functions? 

b. Define a set of minimal sufficient statistics for the 
reparameterized density function. Are the minimal 
sufficient statistics complete sufficient statistics? 

c. Does there exist an unbiased estimator of f3 whose 
variance achieves the Cramer-Rao lower bound? 

d. Define the maximum likelihood estimator for the 
parameter f3. Is the MLE a function of the complete 
sufficient statistic? Is the MLE a consistent estima­
tor of f3? 

'e. Is the MLE the MVUE of f3? Is the MLE asymp­
totically normally distributed? Asymptotically ef­
ficient? 

6. A large commercial bank intends to analyze the ac­
curacy with which its bank tellers process cash trans­
actions. In particular, it desires an estimate of the ex­
pected proportion of daily cash transactions that the 
bank tellers process correctly. It plans to analyze 200 
past observations on the daily proportion of correct cash 
transactions by the tellers, and specify the statistical 
model underlying the daily observations as 

lIz; a) = az,,-IIjO,lI(Z), a E (0,00) 

(Le., lIz; a) is a beta density function with f3 = 1). 

a. Define the maximum likelihood estimator of a. 
b. Show that the MLE is a function of the complete 

sufficient statistic for this problem. 

c. Is the MLE of a a consistent estimator? 

d. It can be shown (you don't have to) that 

E (t lnX;) -I = -a/In - 1). 

(See W. C. Guenther (1967), "A best statistic 
with variance not equal to the Cramer-Rao lower 
bound." American Mathematical Monthly, 74, 
pp. 993-994, or else you can derive the density of 
('L7=llnX;)-1 and find its expectations-the density 
of 'L7=1 InX; is the mirror image (around the verti­
cal axis at zero) of a Gamma density.) Is the MLE 
the MVUE for a? If not, is there a function of the 
MLE that is MVUE for a? 

'e. Show that the MLE is asymptotically normal and 
asymptotically efficient, where 

n l / 2 (& - a) -4 N(0,a2 ). 

f. Define the MLE of q(a) = alIa + 1), which is the 
expected proportion of correct cash transactions. 

g. Is the MLE of q(a) a consistent estimator? 

h. Is the MLE of q(a) asymptotically normal and 
asymptotically efficient? If so, define the asymp­
totic distribution of the MLE estimator. 



Problems 

i. The outcome of the sufficient statistic was 
n 

Llnxi = -9.725. 
i=I 

Calculate the maximum likelihood estimate of a. 
Calculate the estimate of a using the MVUE of a. 

j. Calculate the maximum likelihood estimate of 
q(a) = a/(a + I), the expected proportion of correct 
transactions. 

k. Calculate the maximum likelihood estimate of the 
probability that there will be greater than or equal 
to 97% correct cash transactions on a given day. 
(Hint: Determine the appropriate function of a in 
this case, and use the invariance principle.) 

7. The personnel department of the ACME Textile Co. 
administers an aptitude test to all prospective assembly­
line employees. The average number of garments per 
hour that an employee can produce is approximately 
proportional to the score received on the aptitude test. 
In particular, the relationship is represented by 

Yi =Xi/3+Si 

where 

Yi = average number of garments per hour 
produced by employee i, 

Xi = score of employee i on aptitude test, 

/3 = proportionality factor, 

Si = error term, representing the deviation between 
actual average number of garments per hour 
produced by employee i and the production level 
implied by Xi/3. 

You may assume that the s/s are independent, and 
you may also assume that ESi = 0 and EST = a2, V i. Sup­
pose you had the outcome, {YI, Y2, ... , Yn}, of a random 
sample of average production rates for n employees, to­
gether with their associated scores, {XI,X2, ... ,Xn}, on 
the aptitude test. 

a. Should the random sample {Y1, ... ,Yn} be inter­
preted as a random sample from some population 
distribution, or should it be interpreted as a random 
sample generated from a composite experiment? 
(Note: It cannot be expected that the aptitude scores 
will all be the same.) 

b. Derive the functional form of the least-squares 
estimator of the proportionality factor, /3. Is the 
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least-squares estimator BLUE in this case? Is it the 
MVUE of /3? 

c. Presuming that you could increase the sample size 
without bound, is the estimator you derived in (b) a 
consistent estimator of /3? Is it asymptotically nor­
mally distributed? Justify your answer, being ex­
plicit about any assumptions you have made about 
the behavior of the Xi values and/or the Si values. 

d. From a sample of size n = 100, the sample outcome 
resulted in 
100 

LXiYi = 92,017 and 
i=I 

n 

LX; = 897,235. 
i=I 

Use the estimator you derived in (b) to generate an 
estimate of /3. 

8. A business consultant to the ACME Textile Co. 
suggests that the estimator 

f/ = (x'x +ktlx'y 

might be useful to consider as an alternative to the least­
squares estimator of /3 in the preceding problem (the 
estimator ~. is a special case of the so-called "ridge re­
gression" estimator in the statistics literature). In this 
case, 

and k is some positive constant. 

a. Is the estimator unbiased? If the estimator is not 
unbiased, derive an expression for the bias. 

b. Derive an expression for the variance of this esti­
mator. 

c. Is the estimator a consistent estimator of /3? Justify 
your answer, being explicit about any assumptions 
you have made about the behavior of the Xi values. 

d. Compare the mean square errors of the least­
squares estimator and the estimator ~'. Is one es­
timator superior in MSE to the other V /3 and a2 ? 
If not, can you characterize the problem conditions 
under which each estimator would be superior in 
terms of MSE? 

9. Henri Theil, a famous economist/econometrician, 
analyzed the demand for textiles in the Netherlands 
during the period 1923-1939, using a general linear 
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model framework. In particular, he specified the rela­
tionship between per-capita textile consumption, real 
price of textiles, and per-capita real income as 

t = 1923, ... , 1939, 

where 

Yt = per capita textile consumption in year t, 
represented as an index with base year 1925; 

Pt = retail price of clothing divided by a general 
cost-of-living index in year t,represented as an 
index with base year 1925, 

it = real income per capita in year t,defined as the total 
money income of private consumers divided by 
the population size and a general cost of living 
index, represented as an index with base year 1925, 

Et - iidN(O,a2), t = 1923, ... ,1939. 

The data Theil used in estimating the demand relation­
ship is presented in the following table. 

YEAR Y P 

1923 99.2 96.7 101.0 
1924 99.0 98.1 100.1 
1925 100.0 100.0 100.0 
1926 111.6 104.9 90.6 
1927 122.2 104.9 86.5 
1928 117.6 109.5 89.7 
1929 121.1 110.8 90.6 
1930 136.0 112.3 82.8 
1931 154.2 109.3 70.1 
1932 153.6 105.3 65.4 
1933 158.5 101.7 61.3 
1934 140.6 95.4 62.5 
1935 136.2 96.4 63.6 
1936 168.0 97.6 52.6 
1937 154.3 102.4 59.7 
1938 149.0 101.6 59.5 
1939 165.5 103.8 61.3 

a. Present the statistical model in a form that is con­
sistent with the general linear model framework 
(variables should be measured in a way that coin­
cides with the way they are used in the GLM spec­
ification). Can the random sample (YI, ... , Yn) be 
interpreted as a random sample from a population 
distribution? Why or why not? 

b. Define complete (and minimal) sufficient statistics 
for the parameters (,8, a). 

c. Define the BLUE estimator of (In {31, {32, {33)' Gener­
ate a BLUE estimate for this vector. 

d. Define the MVUE for the vector (In {31, {32, {33). Jus­
tify that your estimator is in fact the MVUE. Gen­
erate a MVUE estimate for the vector. 

e. What is the MVUE for ({32 + {33), i.e., what is the 
MVUE for the degree of homogeneity of the demand 
function in terms of relative prices and real income? 
Justify that your estimator is the MVUE for ({32 +{33). 
Generate an MVUE estimate of (132 + {33). 

f. Define the probability distribution of the MVUE for 
({32 + {33). What is the probability distribution of the 
MVUE for (In {31, {32, {33)? 

g. Present conditions under which the MVUE of 
(In{3l, 132, {33) would be: (I) a consistent estimator, 
and (2) an asymptotically normally distributed es­
timator. 

h. Define the MVUE for a2 • Justify that the estimator 
is, in fact, the MVUE. Generate an MVUE estimate 
of a2 • 

i. Present conditions under which the MVUE for a2 

would be a consistent estimator. 
j. Estimate the probability that your MVUE estima­

tor of the price elasticity of demand will generate 
an estimate that is within ±.15 of the true price 
elasticity. You may use estimates of unknown pa­
rameters in generating this probability estimate. 

A •• hiJ A A A 

k. Is EYt = e1hpt itl, where ({31·,{32,{33) is the BLUE 
estimator of (In {31, {32, {33), a consistent estimator of 
EYt for given values of Pt and it? 

.1. Is the estimator in (k) BLUE? MVUE? 

10. In each case ahead, determine whether, and under 
what assumptions, the stated relationship between Y 
and x can be represented in general linear model form 
such that the least-squares estimator will provide a 
BLUE estimator of the {3 parameters. 

a. Yj = exp(L:7=1 Xij{3; + Ed 
b. Yj = {3o + PIXj + P2xl + Ej 

{3 nk Pi c. Yj = 0 i=IXj; +Ej 

d. Yj = X2;!( 1 + ex,dP+ti) 

11. The following statistical model is postulated for 
representing the relationship between real aggregate 
disposable income and real aggregate expenditure on 
nondurable goods: 

Yj = exp(pi + {32Xj + Ej) 



Problems 

where 

Yi = real aggregate expenditure on nondurables in 
period i measured in billions of dollars, 

Xi = real aggregate disposable income in period i, 
measured in billions of dollars, and 

, "d' h b 1 a-I -e-/b/ I) SiS are 11 ,Wlt Si + a ~ baqa)si e I 10,oo)lSi. 

There are 100 observations, (YI, xII, ... , (YIOO, XIOO) avail­
able to estimate the values of /31, /32, and a2 = vaI(si). 
Assuming the model specification is correct, answer the 
following questions: 

a. Transform the model into GLM form. What param­
eters or functions of parameters are being estimated 
by the least-squares estimator applied to the trans­
formed model? 

b. Is the least-squares estimator unbiased? BLUE? 
Asymptotically unbiased? 

c. Letting 

x = [; ~~], 
1 Xn 

(a symmetric, posltlve definite matrix) as n -+ 
00, would it follow that the least-squares estima­
tor is consistent and asymptotically normally dis­
tributed? Why or why not? 

d. Letting 

_ [In.
YI

] Y. - : 

InYn 

and fJ be the BLUE of f3, is it true that 

S2 = (Y. - xfJ)' (Y. - xfJ) j(n - 2) 
is an unbiased and consistent estimator of ab2? 

12. In each case, indicate whether the statement re­
garding the relationship Y = xf3 + e is true or false, 
and justify your answer. 

a. Let the random (n xl) vector Y represent a random 
sample from some composite experiment, where 
Ee = [0], and Eee' = a 21. Suppose the x-matrix 
has full column rank, but that the first and second 
columns of x are nearly linearly dependent and, as a 
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result, the determinant of x'x is near zero, equaling 
.273 x 10-7• In this case, although fJ = (X'X)-lx'Y 
is still an unbiased estimator, it is no longer BLUE 
(i.e., it loses its "best" property of having the small­
est covariance matrix in the linear unbiased class 
of estimators). 

b. The s;'s are homoskedastic and independent with 
ESi = 8 =p 0 V i. Also, xf3 = /3IL + /32Z, where L is 
an (n xl) column vector of l's, and Z is an (n xl) 
column vector of explanatory variable values. Then 
if fJ is the least-squares estimator of /3, fi2 is the 
BLUE of /32, 

c. The disturbance terms are related as St = PSt-1 + Vt , 

where the Vt's are iid with EVt = 0 and varWt) = a 2 

V t, and ipi < 1. The least-squares estimator is both 
BLUE and consistent. 

13. Your company markets a disposable butane lighter 
called "surelight." In your product advertising, you use 
the slogan "lights on the first try-every time!" As a 
quality check, you intend to examine a random sam­
ple of 10,000 lighters from the assembly line and ob­
serve for each lighter the number of trials required for 
the lighter to light. Your assistant obtains the random­
sample outcome and reports to you that a total of 10,118 
trials was required to get all of the lighters to light. She 
did not record the 10,000 individual outcomes of how 
many trials were required for each lighter to light. You 
are interested in estimating both the expected number 
of trials needed for a lighter to light and the probability, 
p, that the lighter lights on any given trial. 

a. Define an appropriate statistical model for the 
10,000 outcomes of how many trials were required 
for each lighter to light. 

b. Define the MLE for the expected number of trials 
needed for a lighter to light. Is the estimator the 
MVUE? Is it consistent? Is it asymptotically nor­
mal? Is it asymptotically efficient? 

c. Define the MLE for the probability that the lighter 
lights on any given trial. *Is the estimator the 
MVUE? Is it consistent? Is it asymptotically nor­
mal? Is it asymptotically efficient? (Hint: Can you 
show that t(X) = (n-1)/UL7=1 XiI-I) has an expec­
tation equal to p?) 

d. Provide MLE estimates and MVUE estimates of 
both the expected number of trials needed for the 
first light and the probability that the lighter lights 
on any given trial. 
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14. A regional telephone company is analyzing the 
number of telephone calls that are connected to wrong 
numbers at its telephone exchange. It collects the num­
ber of wrong telephone connections on each of 200 days 
and treats the observations as the outcome of a random 
sample of size 200 from a Poisson population distribu­
tion: 

e-'J..i..z 
f(z; A) = -,-I{O.I.2 .... ,(Z). 

z. 
a. Define the MLE of A, the expected number of wrong 

connections per day. 
b. Is the MLE the MVUE for A? Is it consistent? 

Asymptotically normal? Asymptotically efficient? 
c. If E~~ Xi = 4,973, what is the ML estimate of 

the expected number of wrong connections? If each 
wrong connection costs the company $0.70, define 
a MLE for the expected daily cost of wrong connec­
tions, and generate a ML estimate of this cost. 

d. Define a MLE for the standard deviation of the daily 
number of wrong connections. Is the MLE consis­
tent? Is it asymptotically normal? Generate a ML 
estimate of the standard deviation. 

15. The number of minutes past the scheduled depar­
ture time that jets with no mechanical problems leave 
the terminal in an overcrowded airport in the northeast 
are iid outcomes from a uniform population distribution 
of the form f(z; 8) = 8-1110.81(z). A random sample of 
1,000 departures is to be used to estimate the parameter 
e and the expected number of minutes past the sched­
uled departure time that a jet will leave the terminal. 
Summary statistics from the outcome of the random 
sample include min(x) = .1, max(x) = 13.8, x = 6.8, 
S2 = 15.9. 

a. Define a MLE for e and for the expected number of 
minutes past the scheduled departure time that a jet 
will leave the terminal. Are these MLEs functions 
of minimal sufficient statistics? 

b. Use the MLEs you defined above to generate ML 
estimates of the respective quantities of interest. 

c. Are the estimators in (a) unbiased? consistent? 
(Hint: Emax(X) = ern/In + 111 and E(max(XIJ2 =: 

8 2[n/(n + 2)).) 
'd. Are the estimators in (a) MVUES? 

16. Define MLEs for the following problems: 

a. Estimating the p/s based on a random sample from 
a multinomial population distribution. 

b. Estimating the unknown parameters in the mean 
vector JL and covariance matrix :E based on a ran­
dom sample from a bivariate normal distribution. 

c. Estimating fJ in the population distribution 

fIx; fJ) = ~ exp [ -;2] 1,0.col(X)' 

d. Estimating the parameter p in a negative binomial 
population distribution, where r is known. 

17. Define MOM estimators in each of the following 
cases. Are estimators consistent? Are they asymptoti­
cally normal? 

a. Estimating J..L and (12 based on a random sample 
from a normal population distribution. 

b. Estimating a and fJ based on a random sample from 
a Beta population distribution. 

c. Estimating p based on a random sample from a ge­
ometric population distribution. 

d. Estimating a and b based on a random sample from 
a continuous uniform population distribution. 

*18. (Generalized least squares estimator) Consider the 
linear model Y = x{3 + E in which all of the classical as­
sumptions apply, except that Eee' = ~ =1= (121. Consider 
a GMM estimator of the parameter vector (3 based on 
the moment conditions 

Eg t (Yt,{3) = EZ;.(Yt - xt.(3) = [0), 

where z = ~-lX. 

a. Assuming temporarily that ~ were known, identify 
the sample moment conditions that would be used 
to define the GMM estimator. Solve the moment 
conditions to provide an explicit functional repre­
sentation of the estimator (called the generalized 
least squares estimator in the literature). 

b. Discuss conditions under which the estimator you 
have defined in (a) is consistent, asymptotically 
normal, and asymptotically efficient. 

c. For the general case where ~ is unknown, discuss 
how you would define an operational version of the 
GMM estimator, and discuss its relationship with 
the estimator in (a). 
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9.6 Noncentral t-Distribution 

A primary goal of scientific research often concerns the 
verification or refutation of assertions, conjectures, currently accepted laws, 
or descriptions relating to a given economic, sociological, physical, or biolog­
ical process or population. Statistical hypothesis testing concerns the use of a 
random sample of observations from the process or population being studied, 
together with probability and mathematical statistics principles, to judge the 
validity of stated assertions, conjectures, laws, or descriptions in such a way 
that the probability of making incorrect decisions can be controlled. The pre­
cise nature of the types of errors that can be made and how, and in what sense, 
the probabilities of such errors can be controlled is the subject of this chapter. 

We will henceforth use the word hypothesis generically to refer to any 
statement relating to a process or population under study for which a researcher 
wishes verification or refutation. Examples of hypotheses that might be tested 
include statements such as the following: 

1. The demand for fresh asparagus in the United States is price elastic; 
2. A newly formulated feeding ration results in higher milk production per 

cow than the formulation currently being fed to dairy cows in a commercial 
dairy operation; 

3. A new computer chip has an expected usable life span of over 50,000 hours; 
and 
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4. Fewer than 1 in 10,000 college-educated individuals engages in violent 
criminal activity in a given year in North America. 

9.2 Statistical Hypotheses 

Definition 9.1 
Statistical hypothesis 

In order to apply probability and mathematical statistics principles to the prob­
lem of hypothesis testing, it is required that a hypothesis be translated into 
statements relating to the characteristics of the probability space associated 
with a random sample from the random process or population being analyzed. In 
particular, a statistical hypothesis is a set of potential probability distributions 
for the random sample X. The statistical hypothesis is defined by statements 
of the characteristics asserted to be true about the probability space associated 
with X. These statements are often in the form of assertions about the values of 
parameters or functions of parameters relating to the true PDF of X. Hypothe­
ses will be statistically testable only if they can be represented in terms of a 
statistical hypothesis. 

A set of potential probability distributions for a random sample from a pro­
cess or population is called a statistical hypothesis. 

If a statistical hypothesis consists of a single element such that a specific 
probability distribution for X is completely and uniquely identified, the statis­
tical hypothesis will be called a simple hypothesis. If the statistical hypothesis 
is not simple, then it is called a composite hypothesis. A composite hypothesis 
is a statistical hypothesis containing two or more potential probability distri­
butions for the outcomes of the random sample. 

It is customary to represent the set of probability distributions that de­
fines a statistical hypothesis by the capital letter H and to use subscripts, when 
needed, to distinguish between various statistical hypotheses under investiga­
tion, such as Ho, H a, or H j • Regarding the set-defining conditions that are used 
to represent a statistical hypothesis, the researcher is responsible for identify­
ing the characteristics of the probability space of X that are of interest in any 
given problem setting. The following examples illustrate the representation of 
statistical hypotheses. 

Example 9.1 A manufacturer of metal hardware claims that the percentage of defective bolts 
in a shipment of 1,000 bolts is no more than 2 percent. The receiver of the 
shipment intends to use a random sample, with replacement, of size n from 
the bolt shipment to assess the validity of the manufacturer's assertion. The 
hypothesis of the manufacturer, translated into a statistical hypothesis stated 
in terms of a random sample of size n from the bolt population, (where Xj = 1 
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indicates a defective bolt, and Xi = 0 represents a nondefective bolt), is 

H = (/[X; p) = Dpxi[l - pjl-xiI{O,l}[xi), p E [0, .0211. 

511 

This statistical hypothesis is a composite hypothesis and specifies that the 
probability distribution of the random sample of size n from the bolt population 
is the product of n Bernoulli distributions, with the probability of observing a 
defective bolt in any Bernoulli trial being p :::: .02. The statistical hypothesis 
implies a range of potential probability distributions for defective bolts. 0 

Example 9.2 It is hypothesized that the expected life of a computer chip manufactured by 
a certain manufacturing process exceeds the industry average of 20,000 hours, 
and it is further hypothesized that the lifetimes of computer chips manufac­
tured by this process are distributed according to the exponential family of 
distributions. The statistical hypothesis, stated in terms of a random sample of 
size n from the population distribution of computer chip lifetimes [assuming 
elements of X are measured in thousands of hours), is 

H = (/[X; 0) = e-n exp ( - tXi/e) 0 IIO,oo)[xi), e E [20,00) I· 
This statistical hypothesis is composite since a single probability distribution 
is not completely and uniquely defined by H-the mean life measured in thou­
sands of hours, e, is any number larger than 20, according to H. Thus, the 
statistical hypothesis implies a range of potential probability distributions for 
the random sample of computer chip lifetimes. 0 

Example 9.3 Suppose in Ex. 9.1 that the hypothesis was that there are no defective bolts in 
the l,OOO-bolt shipment. Then the statistical hypothesis could be specified in 
terms of a random sample of size n from the bolt population as 

H = (/[XI = 0 I{o}(xi) I· 
This is a simple statistical hypothesis indicating that the probability distribu­
tion is degenerate with the outcome x = [Ollall x/s are nondefective) having 
probability 1. The statistical hypothesis could have been equivalently repre­
sented as in 9.1, but with p = 0 instead of p E [0, .021. 0 

Example 9.4 The average yield per acre for a particular variety of wheat grown in a certain 
region of the country is represented by 

Y i = f30 + f3di + f32ri + ei, ei '" NIO, a 2), 

where Yi is the average yield per acre measured in bushels in year i, Ii is the 
average pounds of fertilizer applied per acre, and ri is the average rainfall per acre 
measured in inches. Independent observations on 30 years' worth of values for 
Ii and ri and corresponding outcomes of Y i are available. A researcher wishes to 



512 Chapter 9 Elements of Hypothesis-Testing Theory 

assess the hypothesis that a 1 pound per acre increase in fertilizer applied to the 
crop generates an expected wheat yield increase of .25 bushels per acre. Note 
that the implied probability distribution for Yi is given by N(f3o + f3di + f32Ii' a2). 
Also note that the observations on wheat yields can be conceptualized as the 
vector outcome of a random sample generated via a composite experiment, 
with the joint probability distribution of Y = [YI , ... , Y301' being given by 

30 

Y '" n N(Yi; f30 + f3di + f32Ii, a2). 
i=I 

Translating the hypothesis of the researcher into a statistical hypothesis yields 

30 

H = (f(y; (3, a2) = n N(Yi; f30 + f311i + f32Ii' a2), f3I = .25}. 
i=l 

The statistical hypothesis is composite, since a unique probability distribution 
for Y has not been completely identified because f3o, f32, and a 2 were left un­
specified and thus can take any values that result in a legitimate normal density 
function. (Normal distributions are clearly only approximations in this case, 
since yields cannot be negative; it is assumed that P(Yi < 0) is negligible for the 
relevant Ii and Ii values being analyzed.) 0 

Example 9.5 The average annual salary of accountants in a certain region of the county 
is $38,250. An allegation is made that male accountants in this region have 
lower than average salaries, and a researcher wishes to assess the allegation. 
It is not known which parametric family of PDFs contains the distribution of 
male accountants' salary in the region. Translating the allegation into a sta­
tistical hypothesis concerning a random sample of size n from the population 
distribution of male accountants in the region yields 

n 

H = (f(x; 8) = n m(xi; 8), JL = EXi = h(8) < 38,250 Vi}. 
i=l 

The statistical hypothesis is composite, since H contains all PDFs for X that 
have EXi < 38,250 V i. 0 

When defining H, choices of functional forms for fIx) are often suggested by 
the nature of the random process or population being analyzed. For example, 
in Ex. 9.1, the Bernoulli family of density functions was dictated by the fact 
that the random sample was defined via random sampling, with replacement, 
from a finite population of defective/non defective bolts. In Ex. 9.2, the expo­
nential family of distributions was presumably motivated by certain physical 
features of the computer chips under study (nonnegativity of lifetimes is obvi­
ous; the exponential family of density functions might be suggested by a "good 
as new while functioning" characteristic of the chip-recall the "memoryless 
property" of the exponential family of distributions). In Ex. 9.3, the stated hy­
pothesis directly implied that only one outcome of X was possible, so that the 
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probability distribution of X must be degenerate. In Ex. 9.4, the normal fam­
ily of distributions might have been motivated via an appeal to a central limit 
theorem, where the error term, 8i, would be assumed to represent the additive 
effect of a large number of random influences not specifically accounted for in 
the simple linear relationship specified to represent EYj • In Ex. 9.5, there was 
no indication of the functional form of the probability distribution except for 
the range of possible values for its mean. 

When one represents statistical hypotheses, a simplification is often intro­
duced when the functional form of the joint density of X is taken to be known 
except for the value of some parameter vector 8, as in Ex. 9.1 through Ex. 9.4. 
In this case, H is often represented as simply a set of parameter values, the 
idea being that if fIx; 8) is known except for the value of 8, then 8 E H will 
characterize a set of potential probability distributions for X perfectly well and 
thus provide an equivalent representation of a statistical hypothesis. 

Example 9.6 Revisit Ex. 9.1 through Ex. 9.4. Assuming the functional form for the joint 
density of X to be given as stated in each example, the statistical hypotheses can 
be represented in abbreviated form as H = (p: 0 :5 P :5 .02}, H = {O: 0> 20}, 
H = (p: p = O}, and H = U,6, 0'2): ,61 = .25}, respectively. 0 

The representation of statistical hypotheses in the preceding case is often 
abbreviated still further, using general notation of the form H: set-defining 
conditions, meaning that H is a set of parameter values defined by whatever 
set-defining conditions are stated following the colon. This further abbreviation 
of the representation of H is illustrated below for the case of Ex. 9.1 through 
Ex. 9.4. 

Example 9.7 Revisit Ex. 9.6. Alternative abbreviated representations for the statistical hy­
potheses of Ex. 9.1 through Ex. 9.4 are given by H: 0 :5 P :5 .02, H: () > 20, 
H: p = 0, and H: f31 = .25, respectively. 0 

In general, the use of abbreviated representations of H are acceptable so long 
as the context of the problem being analyzed results in no ambiguity in defining 
the set of potential probability distributions for X constituting the statistical 
hypothesis. The notation is quite prevalent in cases of parametric hypothesis 
testing, where it is assumed at the outset that the probability distribution of X 
is a member of a given parametric family of PDFs. We will examine parametric 
hypothesis testing in considerable detail beginning in Section 9.4. 

For later reference, note that the specification of a statistical hypothesis 
H defines concurrently a set of potential outcomes for the random sample. 
That is, each PDF in H will imply a particular range of possible outcomes for 
the random sample X, and then the set of possible random-sample outcomes 
implied by the entire collection of PDFs in H is logically the union of all of the 
respective ranges for X. The idea is that since any of the PDFs in H is asserted to 
be a candidate for the true PDF of X, then any of the associated ranges of X is also 
a candidate for R(X). Assuming henceforth that the range of X is synonymous 
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with the support of X's PDF, we can define the set of potential random sample 
outcomes implied by Has 

R(X I H) = {x: fIx; 8) > ° and fIx; 8) E H}. 

We will refer to R(X I H) as the range of X over H.I Analogous definitions for 
the range of X over H and over HUH can be given as 

R(X I H) = {x: fIx; 8) > ° and fIx; 8) E H}, 

R(X I HUH) = {x: fIx; 8) > ° and fIx; 8) E HUH}. 

For now, it will suffice to interpret the complement of H, H, as the collection of 
all probability distributions not specified in H that are potential candidates for 
the true PDF of the random sample under study. Thus, the complement opera­
tion is being applied in the context of a universal set of all potential probability 
distributions relevant for the random sample being examined. Later we will 
be more specific about the probability distributions represented by H. Then 
R(X I HuH) can be interpreted as the set of all potential outcomes of the 
random sample. 

It can be the case that R(X I H) = R(X I H) = R(X I HUH), which occurs 
when all of the supports of the PDFs in Hand H are the same. Such is the case in 
Ex. 9.1, where all three sets equal x7=dO, I}. Alternatively, the sets can differ, 
as in Ex. 9.3, where these sets are res:eectively [OJ!. X7=I{O, I}, and X7=I{O, I}. 
The nature of the ranges of X over H, H, and HUH will play pivotal roles in 
determining whether an ideal statistical test of H exists (Le., a test that makes 
no errors in deciding the validity of H) and are also useful for motivating why 
one cannot generally expect statistical tests of the truth of H to be errorfree. 
We examine these ideas in the next section. 

9.3 Basic Hypothesis-Testing Concepts 

In this section we define the concept of a statistical hypothesis test, we identify 
two types of errors such a test can make, and we indicate in what sense such 
errors can be controlled. We also point out the general fact that the incidence 
of one type of test error can be lessened only at the expense of increasing the 
incidence of the other if the size of the random sample on which the test is 
based is held constant. 

Statistical Hypothesis Tests 

The objective of a test of a statistical hypothesis is to assess the validity of 
the statistical hypothesis. In practice, a statistical hypothesis is tested by first 
obtaining the outcome of a random sample from the process or population being 

1 Compare this set to the range of X over Q introduced in our discussion of minimal sufficient statistics, Section 7.4. 
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Definition 9.2 
Test of a statistical 

hypothesis 

Figure 9-1 
Test of a statistical 

hypothesis. 

analyzed and then using the observed outcome of the random-sample to assess 
whether it is reasonable to conclude that one of the probability distributions for 
the random sample implied by the statistical hypothesis could have governed 
the outcome behavior of the random sample. Deciding when an outcome of a 
random sample will cause rejection of H and when it will not is accomplished 
by a rule or procedure that partitions the range of potential random-sample 
outcomes into two subsets. The hypothesis is then rejected or not rejected 
depending on to which subset the outcome of the random sample belongs. In 
its most general sense, a test of a statistical hypothesis can be defined as follows. 

This is a rule or procedure, based on the outcome of a random sample from 
the process or population under study, used to decide whether to reject a 
statistical hypothesis. 

A test of a statistical hypothesis is often referred to simply as a statistical 
test. It follows from Def. 9.2 that a valid functional representation of a statistical 
test would be in the form of an indicator function whose domain elements 
are the potential outcomes of the random sample and whose range elements 
indicate whether or not the statistical hypothesis is rejected. A statistical test is 
fully defined when the set of potential random-sample outcomes is partitioned 
into two disjoint subsets, one called the rejection or critical region and the 
other called the acceptance region. Letting the set of potential random-sample 
outcomes be represented by CruCa, where Cr is the rejection (or critical) region, 
Ca is the acceptance region, and Cr n Ca = 0, then 

Icrlx) = [~J => [:~~:~tt ~ ] 
is a fully defined rule for deciding whether to reject the statistical hypothesis 
(see Figure 9.1). 

In the remainder of our discussion of hypothesis-testing concepts and meth­
ods, if an explicit definition of the acceptance region, Ca, is not given in any 
hypothesis-testing situation, it will always be tacitly assumed that Ca = Cr. 
The complement operation will be interpreted to occur within a universal set 
defined by R(X I HUH), which represents all possible outcomes of the random 
sample under PDFs in either H or H. With this convention in mind, a statistical 
test can be defined completely in terms of a critical region, C I , as was the case in 

Potential Random 
Sample Outcomes Rule: Ie (x) 

r 
Decision 

-------;..... Reject H 

......,1--------- 0 -----..... Accept H 
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Figure 9-2 
General hypothesis 

testing procedure 

Definition 9.3 
Type I and type II error 

I Specify a statistical hypothesis: X - f{x;8) E H I 
~ 

Define a statistical test of H: 

choose C, c R(X I H u Hj 

! 
Observe outcomes of random sample 

-
(X1, ••• ,Xn )- f(x;0)eHvH 

! 
I Test statistical hypothesis H 

J ! 
I x E C, I I x.eC,1 

~ ! 
I reject H I laccept HI 

our indicator function representation above. Furthermore, we will sometimes 
use the phrase statistical test defined by Cr to mean a statistical test defined as 
x E Cr => reject H, x rt Cr (or equivalently, x E Cr = Cal => accept H. 

A schematic overview of the general context of a hypothesis-testing prob­
lem appears in Figure 9.2. The design or choice of a statistical test is seen to 
be equivalent to the design or choice of the partition of the set of potential 
random-sample outcomes into rejection and acceptance regions. This begs the 
question of how the partition should be chosen so as to design a test that is 
"good" in some appropriate sense. Operationally, this will amount to design­
ing tests that minimize the probability of making incorrect decisions regarding 
the validity of hypotheses. The types of incorrect decisions that can be made 
using statistical tests are examined next. 

Type I Error, Type II Error, and Ideal Statistical Tests 

Given a situation where the researcher must decide whether to accept or reject 
a statistical hypothesis, H, and given that in reality the statistical hypothesis 
is either true or false, then there are four possible states of affairs with respect 
to test decisions and their validity, as summarized in Figure 9.3. 

The two potential error situations that can occur when deciding to accept 
or reject H are given distinct, albeit somewhat uninspired, names so that they 
can be clearly distinguished. 

Let H be a statistical hypothesis being tested for acceptance or rejection. 
Then the two types of errors that can be made by the statistical test are 
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1. type I error: rejecting H when H is true, 

2. type II error: accepting H when H is false. 

In other words, a type I error is committed when the statistical test mistak­
enly indicates that H should be rejected (i.e., the true probability distribution 
of X is an element of H, but the test outcome indicates that the true probability 
distribution is not in H). A type II error is committed when the statistical test 
mistakenly indicates that H should be accepted (i.e., the true probability distri­
bution of X is not an element of H, but the test outcome nonetheless indicates 
that the true probability distribution is in H). 

Clearly, the ideal statistical test would be such that once an outcome of 
the random sample were observed, the hypothesis would always be correctly 
identified as being either true or false, and thus no errors would be made. For 
such an ideal statistical test to exist, it must be possible to partition the range 
of potential random-sample outcomes a priori in such a way that outcomes in 
the acceptance region, Ca, would occur iff H were true and outcomes in the 
rejection region, C I , would occur iff H were false. To define such a partition, it 
is clear that R(X I H) and R(X I H) need to be disjoint so that, with certainty, x E 

Ca = R(X I H) => H is true and x E C I = R(X I H) => H is false. The following 
example illustrates a case where an ideal statistical test can be defined. 

Example 9.8 An envelope manufacturing machine is such that when all parts are functioning 
properly, the machine produces boxes containing 1,000 envelopes that never 
contain more than 2 defective envelopes, with the probability distribution of 
X, the number of defectives per box, being of the binomial form 

Figure 9-3 
Potential outcomes of 

statistical test relative to 
true probability distribution 

fIx; p) = (2!/[x!(2 - x) !])pX ( 1 - p)2-x I{O,1,2!lX), 

for p E (a, 1). The machine will continue to operate if one of the teeth on the 
main drive gear breaks, but then the distribution of defectives per box of 1,000 
envelopes changes such that the box will always contain at least 6 defective 
envelopes, with the probability distribution of the number of defectives per box 

True Probability Distribution 

H R 

H Correct Type II error 

Test Decision 

H Type I error Correct 
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changing to the distribution of Y = X + 6, i.e., 

g(y; pJ = (2!/[(y - 6J!(8 - yJ!]JpY-6(I - pJ8-YI(6,7,8}(yJ 

for p E (0, 1 J. Any other machine problem will cause the machine to shut down, 
so that no envelopes will be produced. A quality-control engineer wants to test 
the hypothesis that all parts of the envelope machine are working properly. Her 
statistical hypothesis, in terms of a random sample of one box of envelopes, is 

H = {f(x;pJ,P E (0, I)}. 

The engineer designs the statistical test as follows: 

x E Ca = {O, I, 2} => accept H and x E Cr = {6, 7, 8} => reject H. 

Note that the test is an ideal statistical test which produces no decision error 
of either type. For example, if the engineer were to observe that x = 1 in a box of 
envelopes she randomly chose to examine, she would conclude that H is true; 
all parts of the machine are working properly. She is certain the assessment 
is correct, since the statistical test used in making the decision is an ideal 
statistical test. 0 

If R(X I HJnR(X I HJ i= 0, which is virtually always the case in practice, then 
there are potential outcomes of the random sample that reside simultaneously 
in the supports of some PDFs in H and some PDFs in H. A random-sample 
outcome equal to one of the points in R(X I HJ n R(X I HJ cannot be used 
to resolve with certainty whether or not H is true, since such points are not 
uniquely associated with either H or H. It follows that there would not exist a 
dichotomous partition of R(X I H U HJ that would define a statistical test that, 
with a priori certainty, could always correctly decide the truth of H, since any 
dichotomous partition would include some points that were in both R(X I H) 
andR(X I HJ. 

If it were true that R(X I HJ i= R(X I HJ, then a trichotomous partition 
of R(X I H U HJ can be devised which leads to a decision rule that makes no 
errors in deciding the truth of H, but the rule will also result in situations 
in which random-sample outcomes lead to no decision whatsoever. The rule 
could be based on the sets Cn = R(X I HJ n R(X I HJ, Ca = R(X I HJ - Cn , and 
C r = R(X I HJ - Cn , as 

X E Ca :::} accept H, X E Cr :::} reject H, and x E Cn :::} no decision. 

While making no errors, such a rule can be wasteful of sample information, 
especially when outcomes in the set Cn have a high probability of occurring. 
Furthermore, in the majority of hypothesis-testing applications, R(X I HJ = 
R(X I HJ, so that not only is an ideal statistical test not available, but the 
preceding trichotomous partition of R(X I H U Hl is not available either. In 
practice, it is therefore generally the case that errorfree statistical tests cannot 
be defined. Instead, one must seek to define statistical tests that control the 
incidence of errors such that they occur at "acceptable levels." We examine 
this idea next. 
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Controlling Type I and II Errors 

In applications, a statistical test can often be designed to control type I and type 
II errors. By "controlling" the errors, we mean that Ca and Cr are chosen in a way 
such that the error probabilities are known, and thus controlled, in advance of 
performing the test and are at levels that are, in some sense, acceptable to the 
researcher. 

In order to illustrate how a statistical test can be designed to "control" 
errors, recall Ex. 9.3. In this case, R(X I H) = [OJ, R(X I fl) = x7=1 {O, I}, and thus 
R(X I ~ufl) = x7=1 {O, I}, where the definition of R(X I fl) follows from the fact 
that if H is true, then the population distribution for the problem is a Bernoulli 
density with p > 0, and so both 0 and 1 are potential outcomes of each Xi. Also 
note that R(X I H) n R(X I fl) = [OJ t 0, so that no ideal statistical test exists 
for this problem. 

Suppose a statistical test of H is defined b6' the following critical region 
for a random sample of size 100: Cr = {x: 2:J~1 Xi > O}. In other words, if the 
random sample of size 100 results in no defectives, we will decide H is true, 
while if any defectives are observed in tl ,:: outcome of the random sample, H 
will be declared false. Using this test, how probable are type I and type II errors? 
Determining the probability of type I error is straightforward in this case, since 
if H is true, then PIx rt Cr ) = PIx = [OJ) = I, which follows from the fact that 
P(Xi = 0) = 1 V i, so that PIx = [OJ) = P(Xi = 0, V i) = nJ~~ P(Xi = 0) = 1 (recall 
that the Xi's are independent random variables). It follows that if H is true, 
the probability of rejecting H is P(type I error) = PIx rt Cal = PIx E Cr) = O. 
Note that having "controlled" the type I error to have probability zero, we have 
substantial confidence that H is false if the test rejects H, since the probability 
is 0 that the test would mistakenly reject H. 

Now examine the probability of type II error. Assuming H is false, then Xi 
has a Bernoulli distribution with the probability, p, of observing a defective bolt 
in any Bernoulli trial being an element in the set {.OOI, .002, ... , l.000} (why?). 
Thus, the probability of type II error depends on which probability distribution 
in fl is assumed to be the correct one. Since we do not know which is correct (or 
else we would have no need to test a statistical hypothesis in the first place), we 
examine the range of possibilities for type II error as a function of p. In this case 
the parameter p serves as an index for the 1,000 possible alternative probability 
distributions for X that are contained in fl. Figure 9.4 provides a partial graph 
of the functional relationship between p and the probability of type II error (see 
graph labeled n = 100).2 Note that in this case, a probability of type II error 
is ~ual to PIx rt Cr ) = p(2:I~~ Xi = 0) based on a binomial distribution for 
2:;=1 Xi with a given value of p Efland n = 100. This definition of type II error 
probability is motivated from the fact that the event 2:7=1 Xi = 0 leads to the 
acceptance of H, and p E fl indicates that H is false, so that together these two 
conditions define a situation where a false H is accepted, i.e., a type II error is 

2For convenience, we have chosen to "connect the dots" and display the graph as a continuous curve. We will continue with this 
practice wherever it is convenient and useful. 
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Figure 9-4 
Probabilities of type II 
error for sample sizes: 
n = 100 and n = 200 
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committed. The functional relationship betweenp and the level of type II error, 
which indicates the probability levels at which type II error has been controlled 
for the various values of P E H, is given by 

P(type II error) = h(p) = (1 - p)lOO for p E {.OOI, .002, ... , l.000}. 

Figure 9.4 indicates that the probability of committing a type II error declines 
rapidly as p increases. When p is only .03, the probability of type II error is 
less than .05. Note, however, that when p is very close to its hypothesized 
value in H, i.e., p = 0, the probability of type II error can be quite high. For 
example, if p = .001, then P(type II error) = .905, or if p = .002, then P(type 
II error) = .819. Thus, in practice, if the bolt shipment has very few defectives 
(implying a very small p), then the proposed statistical test will not be very 
effective in rejecting the assertion that the shipment has no defectives, i.e., the 
probability of rejection will not be high. 

In general, the probabilities of type I error are equal to the values of P(x E Gr ) 

for each of the PDFs in H. The probabilities of type II error equal the values of 
P(x ¢ Gr ) for each of the PDFs in H. If the error probability characteristics of a 
given statistical test are unacceptable, the researcher generally has two options, 
which can also be pursued simultaneously-she can choose a different critical 
region, Gr , and thus define a different statistical test, or she can alter the size 
of the random sample on which to base the test. We continue examining the 
hypothesis in Ex. 9.3 to illustrate these options. First, suppose that rather than 
using a random sample size of 100, we increase the sample size to 200 but 
otherwise use a test rule analogous to the preceding rule to test the hypothesis 
that there are no defectives in the I,OOO-bolt shipment. Stated in terms of the 
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parameter p, the statistical hypothesis, H, remains precisely as before, H: p = O. 
The probability of type I error remains equal to zero, since if H were true, 
then P(type I error) = 1 - P(x = [Oil = 1 - P(L;~? Xi = 0) = 0, which can be 
demonstrated following the same reasoning as before except that now we are 
dealing with n = 200 independent random variables as opposed to n = 100. 

The probability of type II error as a function of p is now given by P(L;~ Xi = 
0) calculated using the binomial distribution of L;~? Xi with a given value of 
p > 0 and n = 200. The functional relationship between p and the level of type 
II error can be represented by 

P(type II error) = h(p) = (1 - p)200 for p E {.00l, .002, ... , l.000}, 

and a partial graph of P(type II error) as a function of p is given in Figure 9.4 
(see the graph labeled n = 200). It is seen that the probability of type II error 
has been uniformly lowered for all p > O. For example, the probability of type 
II error is less than .05 when p is only .015. The probability of type II error is 
appreciably reduced even for very small values of p, although the probability 
remains high for values of p close to the hypothesized value of 0 (when p = .001 
or .002, the probability is .819 or .670, respectivelyJ. 

If the sample size were increased further, the probabilities of type II error 
would continue to decline uniformly as a function of p. This becomes clear 
upon examining the functional relationship between p and the probability of 
type II error for an unspecified sample size of n, as 

P(type II errorJ = h(p, nJ = (1 - pJn for p E {.00l, .002, ... , l.000}. 

Note that dh(p,nJ/dn = (1 - pJn ln(1 - pJ < 0 V P E (0, IJ since In{1 - pJ < 0, 
and so the probability of type II error is a decreasing function of n V p E (0, 1 J 
(when p = 1, the probability of type II error is 0 V nJ.3 Note also that P(type II 
errorJ = h(p, nJ ~ 0 V P E (0, 1) as n ~ 00. These results illustrate a generally 
valid principle for "good" statistical tests: The more sample information one 
has, the more accurate a statistical test will be. 

Suppose it were too costly, or impossible, to increase the sample size be­
yond n = 100. Consider an alternative critical region in order to alter the error 
probabilities of the associated statistical test. In particular, suppose we define 
Gr = {x: LJ~ Xi ?: 2} and make test decisions accordingly. Then the probabil­
ity of type I error is still zero, since if H were true, then P(LJ~? Xi = OJ = I, and 
so long as the point x = [0] ¢ Gr, then P(x ¢ GrJ = 1 when H is true, and so 
the probability of type I error remains zero. The probability of type II error as a 

3Recall the general differentiation result 

dau1x)/dx = au1x)ln(a)(du/dx). 

In the case at hand, u(x) = x = n, and a = (1 - pl. 
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function of p, based on the binomial distribution of L:7=1 Xi, is now given by 

100 

P(type II error) = P(LXi = 0 or 1) 
i=1 

= (1 - p)IOO + 100p(I - p)99 for p E {.OOI, .002, ... , 1.000}. 

It is evident that the probabilities of type II error are uniformly higher for this 
statistical test as compared to the previous test (both tests using n = 100). 

The reader might have surmised by now that the original statistical test 
that we examined in Ex. 9.3 is, for any given sample size, the best one can do 
with respect to minimizing the probability of type II error while maintaining 
the probability of type I error at zero. This follows from the fact that the type I 
error probability will be zero iff Gr does not contain the element x = [OJ, and any 
element removed from Gr, while not affecting the probability of type I error, 
will increase the probability of type II error V p E (0, 1). Note further that the 
only other choice of type I error probability in this statistical hypothesis-testing 
situation is the value I, which would be the case for any critical region (Le., for 
any statistical test) for which [OJ E Gr. A statistical test having P(type I error) = 1 
would clearly be absurd since if H were true, one would be essentially certain 
to reject H! Thus, for the case in Ex. 9.3, the statistical test based on Gr = 
{x: L:7=1 Xi > O} is effectively the best one can do with respect to controlling 
type I and type II error probabilities for any sample size. 

In general hypothesis-testing applications, a primary concern is the choice 
of a statistical test that provides acceptable levels of control on both type I and 
type II errors. Unfortunately, these are most often conflicting objectives, as we 
now discuss. 

Type I/Type II Error Tradeoff 

The choice of values at which type I error probability can be controlled is gen­
erally not as limited as in the case discussed in the previous section. It is more 
typical for there to be a large number, or even a continuum, of possible choices 
for the type I error probability of a statistical test of a simple hypothesis. Fur­
thermore, there is typically also a tradeoff between the choice of type I and 
type II error probabilities such that the probability of one type of error can be 
decreased (increased) only at the expense of increasing (decreasing) the other. 
When H is composite, there is also a range of type I error probabilities to con­
sider, which results from the fact that H then contains a range of potential 
probability distributions for X. We will encounter a large number of examples 
of these more typical situations in the remainder of this chapter, as well as in 
Chapter 10. 

In order to illustrate some of the more general characteristics of statistical 
hypothesis tests, reexamine the hypothesis concerning the bolt shipment, as 
described in Ex. 9.1. In this case, 

R(X I HUH) = R(X I H) = R(X I H) = xt=I{O,IL 
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and thus no ideal statistical test exists to test the statistical hypothesis that 
the probability distribution of the random sample is defined via a product of 
identical Bernoulli densities with p ::: .02. How then should we choose a sta­
tistical test of H? Suppose we want the probability of type I error to equal 
o. In the current testing situation, this would mean that if the true PDF for 
the random sample were a product of identical Bernoulli densities having any 
value of p E {O, .001, .002, ... , .020}, we want our test to accept H with prob­
ability 1. Unfortunately, the only choice for Cr C R(X I H u il) that will 
ensure that PIx f/. Cr ) = 1 when H is true is C r = 0. This follows because 
V p E {.OOl, .002, ... , .020}, each and every point in x?:'l {O, I} is assigned a pos­
itive probability value. Then the statistical test would have the characteristic 
that PIx E Cr ) = 0 whether or not H is true. The test would always accept H, no 
matter what the outcome of the random sample. Thus to obtain a probability 
of type I error equal to 0, we have to accept a probability of type II error equal 
to 1. This is clearly unacceptable-we would never reject H, even if it were 
profoundly false (even if all of the bolts in the shipment were defective!). 

Given the preceding results, it is clear that to choose a useful statistical test 
in the current situation requires that we be willing to accept some positive level 
of type I error probability. Suppose we agree that the maximum probability of 
type I error that we are willing to accept is .05, i.e., we are implicitly stating 
that P(type I error) ::: .05 provides sufficient protection against type I error. The 
interpretation of "protection" is that if P(type I error) ::: .05, then we know 
that the test will mistakenly reject a true H no more than 1 time in 20, on 
the average, in a repeated sampling context. If the test actually rejects H for a 
given random-sample outcome, it is much more likely that the test is rejecting 
H because H is false, rather than because the test has mistakenly rejected a 
true H. The level of confidence we have that H is false when H is rejected by a 
statistical test is thus derived from the level of protection against type I error 
that the test provides. 

How should Cr be chosen in order to define a test with the desired control 
of type I error? We need to find a set Cr C R(X I Huil) such that PIx E Cr ) ::: .05 
no matter which probability distribution in H were true, i.e., no matter which 
p E {O, .001, ... , .020} were true. In addition, we want Cr to be such that P(type 
II error) is as small as possible no matter which probability model in il were 
true, i.e., no matter which p > .02 were true. Intuitively, it would make sense 
that if P(type II error) is to be minimized for a given level of control for type 
I error, then we should attempt to choose points for the rejection region, Cr, 

that would have their highest probability of occurrence if il were true. In the 
case at hand, this corresponds to choosing sample outcomes for inclusion in Cr 

that represent a higher number of defectives than lower, since il corresponds 
to bolt populations with more defectives than is the case for H. 

Suppose that a random sample of size n = 200 will be used to make 
the test. Examine the following critical region contained in R(X I H u il) = 
x~~{O, II: Cr = {x: L;~ Xi> 7}. In order to verify that the statistical test im­
plied by Cr has a probability of type I error that does not exceed .05, we must 
verify that PIx E Cr ) ::: .05 no matter which probability distribution in H were 
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Figure 9-5 
Probabilities of type II 

error for tests of p ~ .02 

true. In other words, we must verify that the outcome of the binomial random 
variable L7~? Xi is such that 

(
200 ) 200 200'. . 

P LXi> 7 = L '1(200 ~ ')lpl( 1 - pfOO-1 :::: .05 Vp E to, .001, ... , .020}. 
i=l i=8 ,. , . 

The industrious reader can verify that P(L7~? Xi > 7) in fact achieves a maxi­
mum of .049 when p = .02, and so the inequality is met for all choices of p 
implied by H. Thus, the probability of type I error is upper bounded by .05. We 
emphasize that in this case, since H was composite, the probability of type I 
error is a function of p, with the range of probabilities upper bounded by .05. 
The largest value of type I error probability over all PDFs in H is generally re­
ferred to as the size of the statistical test and is a measure of the minimum 
degree of protection against type I error provided by the test. We will examine 
this concept in more detail in Section 9.4. 

Now let's examine the probability of type II error as a function of p. The 
various probabilities of type II error are given by PIx ¢ GI ) = P(L7~? Xi :::: 7) 
evaluated with respect to binomial distributions for L7~? Xi that have p > .02 
(which are the values of p implied by iII. Figure 9.5 presents a partial graph of 
the probability of type II error as a function of p for this statistical test. It is 
seen from Figure 9.5 that the probability of type II error decreases rapidly as p 
increases, with P(type II error) :::: .05 when p 2: .065. However, as we have seen 
previously, P(type II error) is quite high for values of p close to those implied 
by H, e.g., if p = .025 or .03, then P(type II error) = .87 or .75, respectively. 
Thus, if the test does not reject H, the behavior of P(type II error) as a function 
of p suggests that we would have substantial confidence that p < .065, say, 
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since otherwise it would have been highly probable that the test would have 
rejected H (with a probability of .95 or greater). However, we do not have a 
great deal of confidence that H is literally true, since the test does not have a 
high probability of rejecting H if p > .02 but p is near .02. In this example, if 
H is accepted, it would be best to interpret this action as meaning that H is 
at least approximately true. In fact, we will see that this situation is typical of 
statistical tests in practice, so that in accepting H, it is best not to interpret the 
term accept in the literal sense.4 

If the relationship depicted in Figure 9.5 for the case where P(type I error) 
::: .05 were deemed unacceptable, the researcher has two basic options, as we 
discussed previously. One option would be to increase the random-sample size 
to some value larger than 200 and apply an analogous test rule to the larger 
random sample. This would decrease P(type II error) uniformly for all p > .02 
assuming Cr were chosen to minimize P(type II error) while maintaining P(type 
I error) ::: .05. The other option would be to accept a larger probability bound 
on type I error (i.e., define a different test based on the same sample size), 
which would also result in a uniform reduction in P(type II error). To illustrate 
the tradeoff between the two types of errors that occurs when pursuing the 
latter option, suppose we redesign the statistical test using the following critical 
region: Cr = {x: L7~~ Xi > 5}. Using the binomial distribution for L7~ Xi, it can 
be shown that P(L7~~ Xi> 5) ::: .215 V P E {O, .001, ... , .02l, and so P(type I error) 
is now upper bounded by .215. Thus, if H were true, then approximately lout 
of 5 times, in a repeated sampling context, the test would nonetheless reject H. 
Note, using the redesigned test, that there is notably less confidence that H is 
actually false when the test rejects H than was the case with the previous test 
since the test will mistakenly reject a true H 21.5 percent of the time, on the 
average. However, P(type II error) is also notably decreased using the redesigned 
test, as illustrated in Figure 9.5. Now if p = .025 or .03, then P(type II error) is 
reduced to .62 or .44, respectively, and P(type II error) ::: .062 V P > .05. 

In any application, the researcher must decide the appropriate degree of 
tradeoff between the type I and type II error probabilities of the test, as well as 
the appropriate sample size to use in defining the test. An acceptable choice of 
the level of protection against test decision errors will generally depend on the 
nature of the consequences of making a decision error, and on the cost and/or 
feasibility of changing the sample size. For example, if the hypothesis was that 
the level of residual pesticide that appears in fruit sold at retail exceeds levels 
that are safe for human consumption, it would seem that type I error would 
be extremely serious-we want a great deal of protection against making an 
incorrect decision that the level of residual pesticide is at a safe level. Thus, we 
would need to design a test with an extremely low probability of type I error. 
Type II error in this case would be a situation where a safe level of pesticide 
was declared unsafe, potentially resulting in increased processing and growing 

4In recognition of this difficulty, some authors advocate that one either reject or not reject a statistical hypothesis, the latter phrase 
taken to mean that the hypothesis is neither rejected nor accepted, i.e., one "reserves judgment." 
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Definition 9.4 
Test statistic 

costs, loss of sales by the pesticide manufacturer, and the loss of an input to 
the agricultural sector that could potentially lower the cost of food production. 
Thus, one would also need to strive for a low P(type II error) in fairness to 
the pesticide manufacturer, farmers, and consumers. The precise choice of the 
type I/type II error tradeoff must be addressed on a case-by-case basis. The 
reader should consider what the appropriate tradeoff might be for testing the 
bolt manufacturer's hypothesis examined previously.s 

Test Statistics 

It should be noted that the critical regions of the statistical tests defined in the 
previous two subsections could all be defined in terms of outcomes of a scalar 
statistic. In particular, the statistic used was of the form T = t(X) = L:7=1 Xi, 
and the set-defining conditions for the critical regions were of the general form 
t(x) > c. A scalar statistic whose outcomes are used to define critical regions of 
statistical tests is called a test statistic. 

Let Cr define the critical region associated with a statistical test of the hy­
pothesis H versus fI. If T = t(X) is a scalar statistic such that Cr = {x: t(x) E 

CiL i.e., the critical region can be defined in terms of outcomes, ci, of the 
statistic T, then T is referred to as a test statistic for the hypothesis H versus 
H. The set ci will be referred to as the critical (or rejection) region of the 
test statistic, T. 

The use of test statistics can simplify in at least two significant ways the 
problem of testing statistical hypotheses. First of all, it allows one to check 
whether a random-sample outcome is an element of the critical region of a sta­
tistical test by examining whether a scalar outcome of the test statistic resides 
in a set of scalars (the set Ci in Def. 9.4). This eliminates the need for dealing 
with n-dimensional outcomes and n-dimensional critical regions. In effect, the 
critical region of the statistical test is alternatively represented as a unidimen­
sional set of real numbers. Second, test statistics can facilitate the evaluation 
of type I and type II error probabilities of statistical tests if the PDF of the test 
statistic can be both identified and tractably analyzed. Relatedly, if an asymp­
totic distribution for a test statistic can be identified, then it may be possible 
to approximate type I and type II error probabilities based on this asymptotic 
distribution even when exact error probabilities for the statistical test cannot 
be established. We will examine the notion of asymptotic tests in Chapter 10. 

In practice, the vast majority of statistical hypothesis testing is conducted 
using test statistics, and the statistical test itself is generally defined in terms 

5If the magnitudes of the costs or losses incurred when errors are comitted can be expressed in terms of a loss function, then a formal 
analysis of expected losses can lead to a choice of type I and type II error probabilities. For an introduction to the ideas involved, see 
A. Mood, F. Graybill, and D. Boes (1974), Introduction to the Theory of Statistics, 3rd ed., New York: McGraw.Hill, pp. 414-418. 
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of the critical region of the test statistic. That is, a statistical test of H versus 
if will generally be defined as 

t(x) E C; => reject Hand t(x) ¢ C; => accept H. 

We will henceforth endeavor to express statistical tests in terms of test statistics 
whenever it is useful to do so. 

lt should be noted that test statistics are not unique. For example, the crit­
ical regions of the statistical tests in the preceding two subsections can be 
represented in terms of the test statistics Lf=l Xj, X, or InX (among a myriad 
of other possibilities), with corresponding critical regions for the test statistics 
given by (e, n], (G/n, 1], and (In(e/n), 0], respectively. The choice of Lf=l X j was 
particularly attractive in the preceding application because its PDF (binomial) 
was easily identified and tractable to work with. In general, the choice of func­
tional form for a test statistic is motivated by the ease with which the outcomes 
of the statistic can be obtained and by the tractability of the test statistic's PDF. 

Null and Alternative Hypotheses 

The terminology null and alternative hypotheses is sometimes used in the 
context of testing statistical hypotheses. Historically, a null hypothesis was a 
hypothesis interpreted as characterizing no change, no difference, or no effect. 
For example, if the average life of a "typical" 60-watt incandescent light bulb 
sold in the United States is 1,000 hours, then a test of the hypothesis that a 
bulb manufactured by General Electric Co. has a life equal to the average life, 
i.e., H: p, = 1, 000, could be labeled a null hypothesis and interpreted as repre­
senting a situation where there is "no difference" between General Electric's 
bulb and the average life of a typical bulb. The hypothesis that is accepted if 
the null hypothesis is rejected is referred to as the alternative hypothesis. In 
current usage, the term "null hypothesis" is used more generally to refer to any 
hypothesis whose mistaken rejection is assumed to characterize a type I error. 
Thus, a type I error refers to the mistaken rejection of a null hypothesis, while 
a type II error refers to a mistaken acceptance of the null hypothesis. 

Having examined a number of basic conceptual issues related to statistical 
hypothesis testing, we henceforth focus our attention on two specific classes 
of hypothesis-testing situations: (1) parametric hypothesis-testing, and (2) test­
ing distributional assumptions. The next two sections examine parametric hy­
pothesis testing in some detail. We defer discussing the testing of distributional 
assumptions until Chapter 10. 

9.4 Parametric Hypothesis Tests and Test Properties 

Inparametrie hypothesis testing, it is assumed at the outset that the probabil­
ity distributions in both H and if are all characterized by members of a known 
or given parametric family of distributions. Furthermore, it is assumed that 
the only unknown component of the true probability distribution associated 
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with random-sample outcomes is the true value of the parameter vector. In this 
case, the statistical hypothesis and its complement can be defined entirely in 
terms of sets of parameter values since such sets correspond directly to sets 
of probability distributions via parameter-indexing of specific members of the 
known or given parametric family of distributions. In the case of parametric 
hypothesis testing, one is then effectively testing hypotheses about parameters 
or functions of parameters. Example 9.1 and Ex. 9.3 are examples of parametric 
hypothesis tests, where the known parametric family of distributions underly­
ing the definitions of the statistical hypotheses and their complements is the 
Bernoulli distribution. Once it is understood that all probability distributions 
will be defined in terms of a Bernoulli distribution with parameter p, then 
the statistical hypotheses under consideration can be compactly represented 
in terms of statements about the value of p or about the value of a function 
ofp. 

In the parametric hypothesis-testing case, we will most often utilize the 
abbreviated notation H: set-defining conditions introduced in Section 9.2 to 
denote the statistical hypothesis. In this case, the set-defining conditions will 
denote that a parameter vector, or a function of the parameter vector, is con­
tained in a certain set of values (recall Ex. 9.7). We will adopt a simplification 
that is made possible by the parametric context and interpret H as a set of pa­
rameter values, and thus the notation e E H will mean that the parameter 
(vector) is an element of the set of hypothesized values. We emphasize that in 
the parametric hypothesis-testing context, H still concurrently identifies a set 
of probability distributions for X. 

Whether the hypothesis-testing situation in Ex. 9.2 could be viewed as a 
parametric hypothesis-testing problem depends on the nature of if. If it were 
known or given that the exponential family of distributions characterized the 
probability distributions in if as well as in H, then we could represent H in 
abbreviated form as H: e > 20, and if could be represented as if: e E (0,20]. 
The problem would then be one of parametric hypothesis testing. However, 
if the family of probability distributions characterizing the probability models 
in if were left unspecified, then H and if could no longer be represented in 
terms of two sets of e values, since there would be a question regarding the 
functional form of the probability distributions associated with the random 
sample if if were true, and thus it would not be known to what e referred in 
the set if. 

The real-world meaning of a statistical hypothesis concerning the values of 
parameters or functions of parameters depends on the characteristics of the real­
world population or process being analyzed and on the interpretation of what 
the parameters represent or measure in the context of the specified family of 
PDFs. For example, the exponential family of densities used in Ex. 9.2 leads to 
the interpretation of H: e > 20 as being an assertion about the mean of the 
distribution of computer lifetimes, while the Bernoulli family of densities used 
in Ex. 9.1 leads to the interpretation of H: p S .02 as an assertion about the 
proportion of defectives in a shipment of bolts. 
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Definition 9.5 
Maintained hypothesis 

Maintained Hypothesis 

A parametric hypothesis-testing situation will be characterized as having two 
major components: (1) the maintained hypothesis, and (2) the statistical hy­
pothesis. 

All facts, assertions, or assumptions about the probability space of a random 
sample that are in common to H and iI, and are thus maintained to be true 
regardless of the outcome of a statistical test of H versus H, are collectively 
called the maintained hypothesis. 

In a parametric hypothesis-testing situation, whatever parametric family 
of distributions is assumed to characterize the probability distributions in H 
and iI is then part of the maintained hypothesis. For example, in Ex. 9.1, the 
Bernoulli family of distributions is part of the maintained hypothesis, while in 
Ex. 9.2, the exponential family of distributions could be part of the maintained 
hypothesis if the distributions in H were also assumed to be in the exponential 
family. In addition to an assertion about the parametric family of distributions, 
a number of other "facts" about the probability space can be contained in the 
maintained hypothesis. For example, with reference to Ex. 9.4, in examining 
the hypothesis H: f3t = .25 versus H: f3t =1= .25, the maintained hypothesis 
includes assertions (explicitly or implicitly) that the normal family of distri­
butions characterizes the probability distributions for the c/s, the c/s are inde­
pendent random variables with ECj = 0 and var(Cj) = (12 V i, and the expected 
value of wheat yield in any given time period is a linear function of both the 
level of fertilizer applied and the level of rainfall. 

The facts contained in the maintained hypothesis can be thought of as 
contributing to the definition of the specific context in which a statistical test 
of any hypothesis is to be applied and interpreted. Indeed, the probabilities of 
type I and type II errors for a given statistical test of an assertion like H: e > 20, 
and in fact the fundamental meaning of the statistical hypothesis itself, will 
generally depend on the context of the parametric hypothesis-testing problem 
defined by the maintained hypothesis. 

Regarding the genesis of the maintained hypothesis, the facts that are in­
cluded in the maintained hypothesis might have been supported by the results 
of previous statistical tests of hypotheses. Alternatively, the facts may be de­
rived from laws or accepted theories about the process or population being 
studied. Finally, the facts may be largely unsubstantiated conjectures about 
the population or process under study that are tentatively accepted as truths 
for the purpose of conducting a parametric hypothesis test. In any case, the 
interpretation of a statistical test can depend critically on facts stated in the 
maintained hypothesis, and the result of a statistical test must be interpreted as 
being conditional on these facts. If a component of the maintained hypothesis 
is actually false, the interpretation of the type I and type II error probabilities of 
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Definition 9.6 
Power function of 

a statistical test 

a given statistical test, and the interpretation of a statistical hypothesis itself, 
can be completely changed and/or disrupted. Thus, in a parametric hypothesis­
testing situation, one must be careful that the facts stated in the maintained 
hypothesis are defensible. Facts that are "tentative" will generally require sta­
tistical testing themselves when convincing supporting evidence is lacking. At 
the least, the researcher is obliged to point out any tentative assumptions con­
tained in the maintained hypothesis when reporting the results of a statistical 
test. 

Power Function 

Conditional on the validity of the maintained hypothesis, the power function of 
a statistical test can be constructed in a parametric hypothesis-testing situation. 
The power function completely summarizes all of the operating characteristics 
of a statistical test with respect to probabilities of making correct/incorrect de­
cisions about H. The power function is useful in comparing alternative statis­
tical tests of a particular parametric hypothesis. The power function is defined 
as follows. 

Let a parametric statistical hypothesis be defined by H: 8 E nH , and let 
its complement be defined by H: 8 E nfl. Let the critical region Cr define 
a statistical test of H. Finally let f(x; 8), SEn = HUH, represent the 
parametric family of density functions indexed by H and H. Then the power 
function of the statistical test is the function of 8 E HuH defined by 

n(8) = P(x E Cr ; 8) == f··· f f(x; 8)dx (continuous case), 

xeC, 

== L"'Lf(x;8) (discrete case). 
xeC, 

In words, the power function indicates the probability of rejecting H for 
every possible value of 8. The value of the function n at a particular value 
of the parameter vector, 8, is called the power of the test at 8, which is the 
probability of rejecting H if S were the true value of the parameter vector. 
From the definition of the power function, it follows that n(8) is identically a 
probability of type I error if 8 E H, or else a probability of not making a type 
II error if S E H. Then [1 - n(S)] is identically the probability of type II error 
if 8 E iI and is the probability of not making a type I error if S .E H. The 
graph in Figure 9.6 represents a partial graph of the power function for the test 
of the hypothesis H: p ~ .02 from Ex. 9.1 using the statistical test based on 
Cr = {x: L7~? Xi > 5}. We know from before that P(type I error) ~ .215 for this 
test. As indicated in Figure 9.6, all relevant operating characteristics of the 
statistical test can be deduced from the graph of the power function. In fact, 
some statisticians utilize a function of S defined by OC(S) = 1 - n(S), called 
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Figure 9-6 
Power function of test 
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the operating characteristic function of a statistical test, to portray all of the 
relevant probabilities of correct and incorrect decisions associated with a sta­
tistical test. The two functions clearly can be used interchangeably to portray 
precisely the same information about the performance of a statistical test. 

The closer the power function of a test is to the theoretical ideal power func­
tion for the hypothesis testing situation, the better the test. The ideal power 
function can be compactly defined as 7ra(e) = Iif(e) (why?) and would corre­
spond to the ideal statistical test for a given H, were such a test to exist. When 
comparing two statistical tests of a given H, a test is better if it has higher 
power for e E H and lower power for e E H, which implies that the better 
test will have lower probabilities of both type I and type II error. Figure 9.7 
provides graphs of hypothetical power functions for two tests of the hypothesis 
that H: e ::::: c and a graph of the ideal power function for the test situation, 
where Q = HuH = [0, k]. From Figure 9.7, it is apparent that the statistical test 
associated with the power function 7r2(8) is the better test, having probabilities 
of type I and type II error everywhere less than or equal to the corresponding 
probabilities associated with the alternative test. The power function 7r2(8) is 
also seen to be closer to the ideal power function, 7r*(8). 

The power function of a statistical test can be used in defining additional 
properties of a test, including the size and significance level of the test, and 
whether a test is unbiased, consistent, and/or uniformly most powerful. We 
examine each of these test properties ahead. 

Properties of Statistical Tests 

Test Size and Significance Level A number of test properties can be examined to 
assess whether a given statistical test is appropriate in a given problem context 
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Figure 9-7 
Two power functions and 
the ideal power function 

for testing H: e ~ c 

Definition 9.7 
Size of statistical test 
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and/or to compare a test rule to competing test rules.6 One such property, called 
the size of the test, is a measure of the minimum level of protection against 
type I error that a given statistical test provides. 

Let n(8) be the power function of a test rule for testing the hypothesis H. 
Then ex = sUPeeH n(8) is called the size of the statistical test'! 

The size of the statistical test is essentially the maximum probability of type I 
error associated with a given test rule. The lower the size of the test, the lower 
the maximum probability of mistakenly rejecting H. 

An alternative concept that is used as a measure of protection against type I 
error is the significance level, or simply, the level of statistical tests. A level-a 
test of H is any test for which Pe(type I error) ~ ex V 8 E H. Thus, the level 
is an upper bound to the type I error probability of a statistical test. The key 
difference between the concepts of size and level of a statistical test is that the 
former represents the maximum (or at least the supremum) value of Pe(type I 
error) for 8 E H while the latter is only a bound that might not equal Pe(type 
I error) for any 8 E H nor equal the supremum of Pe(type I error) for e E H. 
Thus, a statistical test of H having size y is an a-level test for any a::: y. 

6The properties we will examine do not exhaust the possibilities. See E. Lehmann (1986), Testing Statistical Hypotheses, New York: 
John Wiley. 

7Recall that sUPSeH nlS) denotes the smallest upper bound to the values of nlS) for S E H ILe., the supremum). If the maximum 
of nlS) for S E H exists, then "sup" can be replaced by "max." 
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Definition 9.8 
Unbiasedness of 
a statistical test 

In applications when a hypothesis H is (not) rejected, it is often stated that 
H is (not) rejected at the a-level of significance, which is intended to indicate 
the bound on the level of protection against type I error that was used when 
conducting the test. Customarily, the phrase level of significance is often taken 
to be synonymous with size in applications, although this need not be the case 
and care should be exercised to eliminate ambiguity relating to whether the 
level of significance is actually achieved by the statistical test used. A more 
definitive statement regarding level of protection against type I error would be 
that H is (not) rejected using a size-a test. As an illustration of terminology, 
the power function in Figure 9.6 refers to a test that has a size of .215, and 
the significance level of the test is .215 (or any number larger than .215). If the 
hypothesis H: p ::: .02 is (not) rejected, then one could state that H: p ::: .02 is 
(not) rejected at the .215 level of significance, or that H: p::: .02 is not rejected 
using a size-.215 test. 

Unbiasedness The concept of unbiasedness within the context of hypothesis 
testing refers to a statistical test that has a smaller probability of rejecting the 
null hypothesis, H, when H is indeed true compared to when H is false. 

Let n(S) be the power function of a statistical test of H. The statistical test 
is called unbiased iff sUPeeH n(S) ::: infeeH n(S).s 

The property of unbiasedness makes intuitive sense as a desirable property 
of a test rule since we would generally prefer to have a higher probability of 
rejecting H when H is false then when H is true. As indicated in Def. 9.8, 
whether a test rule is unbiased can be determined from the behavior of its power 
function. In particular, if the height of the power function graph is everywhere 
lower for E> E H than for E> E H, the statistical test is unbiased. The tests 
associated with the power functions in Figures 9.6 and 9.7 are unbiased tests. 

More Powerful, Uniformly Most Powerful, Admissibility Another desirable prop­
erty of a statistical test is that, for a given level, a, the test exhibits the highest 
probability of rejecting H when H is false compared to all other competing 
tests of H having level a. Such a test is called uniformly most powerful of level 
a, where the term uniformly refers to the test being the most powerful (i.e., 
having highest power) for each and every E> in H (i.e., uniformly in H). In the 
formal definition of the concept presented below, we introduce the notation 
ncr(E» to indicate the power function of a test of H when the test is defined by 
the critical region Cr. 

8Recall the previous footnote and the fact that infeeH n(S) denotes the largest lower bound to the values of n(S) for S E if (i.e., 
the infimum). The sup and inf of n(S) can be replaced by max and min, respectively, when the maximum and/or minimum exists. 
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Definition 9.9 
Uniformly most 

powerful (UMP) 
level-a test 

Definition 9.10 
More powerful 

level Q test 

Let 8 = {Cr : sUPeeH 7rc,(8) :::: a} be the set of all critical regions of level a 
for testing the hypothesis H based on a random sample X '" f(x; 8) of size 
n. The critical region C; E 8, and the associated statistical test of H that C; 
defines, are each called uniformly most powerful of level a iff C; has level 
a and 7rC;(8) 2: 7rc,(8) veE if and VCr E 8. 

In the case where if is simple, the critical region, C;, and the associated 
test are also referred to as being most powerful (the adverb "uniformly" being 
effectively redundant in this case). The UMP test of H is seen to be the test of 
H, among all possible tests of H providing protection against type I error equal 
to P(type I error) :::: a, that has the highest probability of rejecting H when H is 
false (equivalently, it is the level-a test having the most power uniformly in 8 
for 8 E H). Such a test of H is effectively the "best one can do" with respect to 
minimizing the probability of type II error, given that protection against type I 
error is at level a. As implied by Def. 9.9, if one could plot the power function 
graphs of all tests of level a, the power function of the UMP level-a test of H 
would lie on or above the power functions of all other level-a tests of H V 8 E H. 
The reader is encouraged to reexamine Ex. 9.3, and the subsequent discussion 
of the example in the text, to deduce that Cr = {x: 2:7=1 Xj = O} defines the 
UMP test of level a = 0 for the null hypothesis H: p = O. We will examine 
general methods for finding UMP tests of H (when such tests exist) in Section 
9.5. Once we have introduced the Neyman-Pearson lemma in Section 9.5, we 
will also show that a UMP level-a test is also generally an unbiased test. 

Unfortunately, in a significant number of cases of practical interest, UMP 
tests do not exist. We will see later that it is sometimes possible to restrict 
attention to the unbiased class of tests and define a UMP test within this class, 
but even this approach fails in important cases. In practice, one then often 
resorts to the use of statistical tests that have at least acceptable (to the analyst 
and to those she wishes to convince regarding the validity of her hypotheses) 
power function characteristics. Assuming that a test of level a is deemed to 
provide sufficient protection against type I error, then in ranking two competing 
level-a tests of H, the test that is more powerful is preferred. 

Let Cr and C; represent two level-a statistical tests of H. The test based on 
C; is sa}d to be more powerful than the test based o~ Cr if 7rc;(8) ~ 7rc,(8) 
V 8 E H, with strict inequality for at least one 8 E H. 

The reason for preferring a more powerful test is clear-if both tests provide the 
same desired level of protection against type I error, then the one that provides 
more protection against type II error is better. I 

While in comparing level-a tests, the more powerful test is preferred, the 
less powerful test may have some redeeming qualities. In particular, the latter 
test may provide better protection against type I error for some or all 8 E H, and 
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Definition 9.11 
Admissibility of 

statistical test 

Definition 9.12 
Consistent sequence 

of level-ex. tests 

the test may then be appropriate in cases where a smaller level of significance 
is desired. Tests with no such possible redeeming qualities are inadmissible 
tests, formally defined as follows. 

Let Gr represent a statistical test of H. If there exists a critical region G; 
such that nq(8){;}nc,(8) V 8 E {Z}, with strict inequality holding for 
some 8 E HUH, then the test based on Gr is inadmissible. Otherwise, the 
test is admissible. 

From the definition, it follows that an inadmissible test is one that is dom­
inated by another test in terms of protection against both types of test errors. 
Thus, there is no a-level at which an inadmissible test would be the preferred 
test. Inadmissible tests can be eliminated from consideration in any hypothesis­
testing application. 

Consistency The limiting behavior of the power functions of a sequence of 
level-a tests as the size of the random sample on which the tests are based 
increases without bound relates to the property of consistency. In particular, 
a sequence of level-a tests of H for which the probability of type II error ~ 
o as n ~ 00 will be called a consistent sequence of level-a tests. Since the 
definition of the critical region of a test will generally change as the sample 
size, n, changes, we will introduce the notation Grn to indicate the dependence 
of the critical region pn sample size. 

Let {Grn} represent a sequence of tests of H based on a random sample 
(Xl, .. . ,Xn) '" f(Xl, .. . ,Xn; 8) of increasing size, n, and let the level of the 
test defined by Grn be a V n. Then the sequence of tests of level a is said to 
be consistent iff 

lim nc (8) = 1 "18 E H. 
n-+oo m 

Thus, a consistent sequence of tests of level a is such that, in the limit, 
the probability is 1 that H will be rejected whenever H is false. Then, for a 
large enough sample size n, the nth test in a consistent sequence of tests pro­
vides a level of protection against type I error given by a probability :5 a and is 
essentially certain to reject H if H is false. 

P Values 

Different analysts and/or reviewers of statistical analyses do not always agree 
on what the appropriate significance level of statistical tests should be when 
testing statistical hypotheses. In order to accommodate such differences of 
opinion, it is becoming frequent in applications to report P values (an abbrevia­
tion for "significance probability values") for each statistical test conducted. A 
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P value is effectively the marginal size test at which a given hypothesis would 
be rejected based on the observed outcome of X. 

In order for the idea of a marginal size to make sense, there should exist a 
prespecified family of nested critical regions, and thus an associated family of 
statistical tests, that correspond to increasing type I error probability values, a, 
for testing the null hypothesis under consideration. By nested critical regions 
corresponding to increasing values of (1., we mean that Gr(al) C Gr(a2) for (1.1 < 
a2, where Gr(a) is the critical region corresponding to P(type I error) = a. Then 
upon observing x, one calculates the P value as being equal to the smallest a­
level corresponding to the smallest critical region that contains x, i.e., P value = 
argmina[x E Gr(aJl = mina[suPBeH PIx E (Gr(a); 8) such that x E Gr(a)l. The P 
value can thus be interpreted as the smallest size at which the null hypothesis 
would be rejected based on the nested set of critical regions or statistical tests. 

Assuming there is general agreement on the nested set of critical regions 
and associated statistical tests to be used for testing a particular H, then once 
the analyst reports the P value, a reviewer of the statistical analysis will know 
whether she would reject H based on her own choice of test size within the set 
of possible size values.9 In particular, if the reviewer's choice of size were less 
than (greater than) the reported P value, then she would not (would) reject H 
since her critical region would be smaller than (larger than) the one associated 
with the reported P value and would not (would) contain x. The P value is 
also often interpreted as indicating the strength of evidence against the null 
hypothesis, where the smaller the P value, the greater the evidence against H. 
The idea is that if the P value is small, then the protection against type I error 
can be set high and H is still rejected by the test. 

An accepted set of nested critical regions and statistical tests necessary for 
calculating P values often exists in practice, especially when the critical regions 
can be defined in terms of a test statistic. We illustrate the use of both P values 
and other test properties in the following example. 

Example 9.9 A random sample of n = 100 observations on the miles per gallon achieved by 
a new model pickup truck manufactured by a major Detroit manufacturer is 
going to be used to test the null hypothesis that the expected miles per gallon 
achieved by the truck model is less than or equal to IS, the alternative hypoth­
esis being that expected miles per gallon> 15. It can be assumed that miles 
per gallon measurements are independent and that the population is (approxi­
mately) normally distributed with a standard deviation equal to .l. 

The null and alternative hypotheses in this parametric hypothesis-testing 
problem can be represented by Ho: f.-L ::: 15 and Ha: f.-L > IS, respectively. 
Suppose we desire to assess the validity of the null hypothesis using a statistical 
test of size .05. Examine a test based on the following rejection region: Grn = 
{x: lOn l /2(xn - 15) 2: l.64S}. To see that the rejection region implies a test of 

9In the case of continuous X, the choice of size is generally a continuous interval contained in [0, 1]. If X is discrete, the set of 
choices for size is generally finite, as previous examples have illustrated. 
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size .05, first note that 

Xn - 15 = (Xn - 15) = lOnl/2(Xn _ 15) 
a/.jii (.1/.jii) 

= ,lOnl/2(~n - JL~+lOnl/2(JL - 15) '" N(lOn 1/2(JL - 15),1). 

'" N(O, 1) 

It follows that the power function of the test can be defined as 

Jl'n(JL) = r~ N(z; lOn 1/2(JL - IS), l)dz = r~ N(z; 0, l)dz, 
11.64s 11.64S-lOn1/2(Jl-ISI 
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so that SUPwslS Jl'n(JL) = .05 and the test is of size .05.10 The test is also unbiased, 
since it is evident that sUPJ.L::::lS Jl'n(JL) ~ infJl>ls Jl'n(JL) = .05. 11 The consistency 
of the test can be demonstrated by noting that Y JL E H a, 

lim Jl'n(JL) = lim tXl N(z; 0, l)dz = 100 N(z; 0, l)dz = I, 
n->oo n->oo 11.64S-lOn1/2(J.L-lSI -00 

and so the test is a consistent test. 
The test is also a uniformly most powerful test for testing the null hypothe­

sis Ho: JL ~ 15 versus Ha : JL > IS, i.e., there is no other test rule with Jl'(JL) ~ .05 
Y JL E Ho that has higher power for any JL E Ha. The rationale in support of the 
UMP property will be provided in Section 9.5. A graph of the power function 
for this test is given in Figure 9.8. 

Upon examination of the power function of the test, it is clear that protec­
tion against type II error increases rapidly for values of JL > 15. In particular, 
it would seem reasonable to conclude that if Ho were accepted, then the true 
value of JL ~ 15.03, say, since the probability of accepting Ho when JL > 15.03 
is < .088. 

Suppose that the outcome of the random sample of 100 mile-per-gallon 
measurements yielded x = 15.02. It follows that x E Grn since lOn1/2(15.02-
15) = 2 ::: 1.645 when n = 100, and thus Ho: JL ~ 15 is rejected using a size .05 
test. 

Regarding the P value for this test where n = 100, first note that 

Gr(a) = {x: 100(x - 15) ::: klan 

forms a nested set of critical regions such that for each value of size a E (0, 1), 
there exists a constant k(a) such that maxJ.L::::lsP(X E Gr(a); JL) = PIx E Gr(a); JL = 
15) = a. The P value for the test is then 

P value = argmin [100(15.02 - 15) ::: k(aJ] 
C{ 

JOThe maximum is achievable in this case, and equals .05 when JL = 15. 

11 Note that minl'>15 7l'nIJL) does not exist in this case. The largest possible lower bound Ii.e., the infimum) is .05, which < 7l'nIJL), 
V JL > 15. 
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Figure 9-8 
Power function for testing 

Ho: JJ.::: 15 versus 
H.: JJ. > 15, n = 100. 
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= min [ roo N(z; 0, l)dz such that k(a) ~ 2] 
a lklal 

= 100 N(z; 0, 1 )dz = .023. 

It follows that Ho would not be rejected at a = .01 and would be rejected at 
a = .05, say. 0 

Asymptotic Tests 

As we have alluded to previously, it is sometimes difficult or intractable in 
practice to determine the exact probabilities of type I and type II errors for a 
given statistical test. Thus the determination of the exact power function of a 
test may not be possible. Similar to the case of point estimation, one must then 
rely on asymptotic properties to assess the efficacy of a given test rule. 

In the majority of hypothesis-testing applications, the critical regions of 
statistical tests are defined in terms of test statistics. It is often the case that 
laws of large numbers and central limit theory can be utilized to establish 
various convergence properties of a test statistic. In particular, asymptotic dis­
tributions of test statistics can be used to approximate power functions of tests, 
in which case the efficacy of a given test procedure can be assessed based on 
the power function approximation. In practice, the choice of a particular sta-
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tistical test for a given hypothesis is often motivated by its adequacy vis-a.-vis 
type I and type II error protection as assessed through an examination of its 
approximate rather than its exact power function characteristics. We will ex­
amine the asymptotics of some important general classes of statistical tests, 
including generalized likelihood ratio, Lagrange multiplier, and Wald tests, in 
Chapter 10. 

9.S Results on UMP Tests 

In this section we examine results that can be used to facilitate the discovery 
of a uniformly most powerful test of a given statistical hypothesis. However, 
it should be noted at the outset that UMP tests of hypotheses do not always 
exist. Whether a UMP test exists depends very much on the type of hypothesis 
being tested and on the characteristics of the joint density of the random sample 
under study. In a case where the results of this section cannot be applied, or 
in cases where UMP tests simply do not exist, it is nonetheless often possible 
to define statistical tests with acceptable exact or asymptotic power function 
characteristics, and we will examine specific procedures for defining such tests 
in Chapter 10. 

We will examine four basic approaches for attempting to find UMP tests: 
Neyman-Pearson, monotone likelihood, exponential class, and conditioning 
approaches. While these approaches have distinct labels, they are all interre­
lated to some degree as will become evident in our discussion of them. Most of 
our discussion will focus on scalar parameter cases, although some important 
multiparameter results will be examined. This scalar orientation is a practical 
one-UMP tests do not exist for most multipara meter hypothesis-testing con­
texts. In cases where a UMP test does not exist, it is sometimes still possible 
to define a UMP test within the class of unbiased tests, as we shall see. 

Neyman-Pearson Approach 

We begin here with the case where both the null and alternative hypotheses 
are simple. This situation is not representative of the typical hypothesis-testing 
problem in which at least one of the hypotheses is composite, but it provides 
a simplified context that can be used to motivate some of the basic principles 
underlying the definition of a UMP test. We note in this case that the alter­
native hypothesis consists of a single point. We could thus drop the adverb 
"uniformly" and characterize our objective as one of finding the most powerful 
test of the null hypothesis versus the alternative hypothesis. 

Simple Hypotheses Given that both the null and alternative hypotheses are 
simple, the hypotheses can be represented as Ho: e = eo and Ha: e = ea, 
where eo and e a are parameter vectors (or scalars). Under these conditions, 
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there is a well-defined procedure due to Neyman and Pearson 12 for defining a 
most powerful test of Ho. The procedure is motivated by the following theo­
rem, which is generally referred to in the statistical literature as the Neyman­
Pearson lemma. Recall from Def. 9.6 that the notation PIx E A; 8) represents 
the probability that x E A when 8 is the value of the parameter vector. 

Theorem 9.1 (Neyman-Pearson Lemma) A critical region of the form Cr(k) = {x: fIx; 8 0 ) :s 
kf(x;8a )}, for k > 0, is a most powerful critical region of level ex = PIx E 
Cr(k);80 ) E (0,1) for testing the hypothesis Ho: 8 = 8 0 versus Ha: 8 = 8 a. 
Furthermore, Cr(k) is the unique (with probability 1) most powerful critical 
region of size ex. 

Proof (Most powerful level ex): Let C; refer to any other critical region for which 
PIx E C;; 8 0 ) :s PIx E Cr(k); 8 0 ) = ex, so that the test of Ho versus Ha based 
on C; has a size no larger than the size of the statistical test based on Cr. Note 
that 

I () I!) [l-Ie.(X):::O,VxECr(k)] 
e,lk) x - e; x = 0 _ Ie;(x) :s 0, Vx ¢ Cr(k) , 

since the range of Ie;!x) is {O, I}. Also note that 

fIx; 8a){~ }k-1f(X; 8 0 ) if [~: g~l~l]' 
which follows directly from the definition of Cr(k). The preceding results to­
gether imply that 

[Ie,lk)!X) - Ie; Ix)] fIx; 8 a ) ::: k-1 [Ie,lk)lx) - Ie;lxl] fIx; 8 0 ), V x. 

Integrating both sides of the inequality over x E Rn if X is continuous, or 
summing over all x values for which fIx; 8 0 ) > 0 or fIx; 8 a ) > 0 if X is discrete, 
obtains 

PIx E Crlk); 8 a ) - PIx E C;; 8 a) ::: k-1 [PIx E Crlk); 8 0 ) - PIx E C;; 8 0 ll ::: o. 
The right-hand side of the first inequality is nonnegative because k- 1 > 0 and 
because the bracketed probability difference multiplying k- 1 is nonnegative 
Irecall that the size of the test based on C; is no larger than that of the test based 
on Crlk)). Since the probabilities on the left-hand side of the first inequality 
represent the powers of the respective tests when 8 = 8 a, the test based on 
Crlk) is the most powerful test. 

IUnique most powerful size ex): We discuss the proof for the discrete case. 
The continuous case is proven similarly by replacing summation with inte­
gration. Let the critical region C; define any other most powerful size ex test 
of Ho: 8 = 8 0 versus Ha: 8 = 8 a. Letting Eao and Eaa denote expecta­
tions taken using the densities fIx; 8 0 ) and fIx; 8 a ), respectively, note that 

12J. Neyman, and E. S. Pearson (1933), liOn the problem of the most efficient tests of statistical hypotheses, II Phil. Trans., A, 231, 
p.289. 
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a = EeoIC,lk)(X) = Eeolc~(X), and Eeic,lk)(X) = Eeic~(X), since by assump­
tion both tests have size a, and both tests are most powerful tests. It follows 
immediately that 

L··· L [IC,lk)(X) - Ic;(x)] [fIx; 8 0) - kf(x; 8 a ll 
XERlx) 

= Eeo [Ic,lk)(X) - Ie; (X)] - kEea [Ic,lk)(X) - Ic;(Xl] = O. 

Note further that the summand in the preceding summation is nonpositive 
valued Vx, as was shown in the proof of sufficiency above. Then the sum itself 
can be zero-valued only if the summand equals zero V x. This in turn implies 
that IC,lk)(x) = Ic;lx) V x E 1 = {x: fIx; 8 0 ) i- kflx; 8 a ll. Thus both Crlk) and 
C; contain the set of x's, 1, for which fix; 8 0 ) i- kf(x; 8 0 ). 

Regarding when fIx; 8 0 ) = kf(x; 8 0 ) note that x E Crlk) V X E K = {x: 
fIx; 8 0 ) = kflx; 8 a )}. Let A = K - C; be the set of x values satisfying fIx; 8 0 ) = 
kflx; 8 0 ) that are not in C;. Then PIx E A; 8 0) = PIx E A; 8 0 ) = 0, for consider 
the contrary. If PIx E A; 8 0 ) > 0, then since Cr(k) is an a-level test and C; = 
Crlk)-A, itfollows that PIx E c;; 8 0 ) < a = PIx E Crlk); 8 0 ), contradicting that 
C; is an a-size critical region. If PIx E A; 8 a ) > 0, then since C; does not contain 
A, PIx E C;; 8 0 ) < PIx E Crlk); 8 0 ), contradicting that C; is a most powerful 
critical region. Thus, the most powerful critical region for testing Ho: 8 = 8 0 

versus Ha: 8.= 8 0 has the form given in the statement of the theorem with 
probability 1. • 

Application of the Neyman-Pearson lemma for constructing most powerful 
tests of Ho: 8 = 8 0 versus Ha: 8 = 8 0 is relatively straightforward, at least 
in principle. In particular, one chooses the value of k that defines the critical 
region in Theorem 9.1 having the desired size a = PIx E Crlk); 8 0 ), and then 
the most powerful statistical test of having level a is defined by 

x E Crlk) => reject Ho and x (j Crlk) => accept Ho. 

Note that since the probability calculation for determining the size of the criti­
cal region Crlk) is based on the density fIx; 8 0 ), values ofxforwhichflx; 8 0 ) = 0 
are irrelevant and can be ignored. Then an equivalent method of finding an a­
size most powerful test via the Neyman-Pearson lemma is to find the value of k 
for which P(flx; 8 a )/flx; 8 0 ) ::: k- 1) = a, and define Crlk) accordingly. Likewise, 
if the supports 13 of the densities fIx; 8 0 ) and fIx; 8 0 ) are the same, then another 
equivalent method is to find thevalueofk forwhichPlflx; 8 0 )/flx; 8 0 ) ~ k) = a 
and use it in the definition of Crlk). We illustrate the procedure in the following 
examples. Note that in the case where X is discrete, the feasible choices of a 
can be somewhat limited, as will be illustrated ahead. 14 

13Recall that the support of a density function is the set of x values for which fix; 8 0 1 > 0, i.e., Ix: fix; 8 0 1 > 0) is the support of the 
density fix; 8 0 1. 
J4This limitation can be overcome, in principle, by utilizing what are known as randomized tests. Essentially, the test rule is made 
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Example 9.10 Your company manufactures a hair-restoring chemical for middle-aged balding 
men and claims that the chemical will stimulate hair growth in 80 percent of 
the men who use it. A competitor of the company claims that your scientists 
must be referring to the complementary event by mistake-the counter claim 
is that your chemical stimulates hair growth in only 20 percent of the men wHo 
use it. 

A government regulatory agency steps in to settle the dispute. It intends 
to test the hypothesis that the chemical is 20 percent effective versus the al­
ternative hypothesis that it is 80 percent effective. A random sample of 20 
middle-aged balding men received your company's hair-restoring treatment. 
The success (Xi = I) or failure (Xi = 0) of the chemical in stimulating hair 
growth for any given individual is viewed as the outcome of a Bernoulli trial, 
where 

Xi"" pXi(l - p)l-Xi[IO.I)(Xi), p E Q = {.2, .8}. 

The collection of 20 trials is viewed as a random sample from a Bernoulli pop­
ulation distribution, and letting (Xl, ... , X20) represent the random sample of 
size 20 from a Bernoulli distribution, we then have that 

20 
,,20 20 ,,20 TI fIx; p) = pL-I=1 xiII - p) -L-i~1 Xi [IO.lJ(Xi), P E Q = {.2, .8}. 

i=l 

In order to define the most powerful level-a test of the hypothesis Ho: P = 
.2 versus the hypothesis Ha: P = .8, use the Neyman-Pearson lemma and 
examine 

erIk) = {x: fIx; .20)lf(x; .80) ~ k} = {x: (.25)L;21 Xi (4j20-L;21 Xi ~ k) 

= Ix: (~Xi) In(.25)+ (20- ~Xi) In(4) ~ Ink) 

= I x: ~Xi 2: 10 - .36067 Ink ) (to five decimal places). 

Since Z = 2:721 Xi has a binomial distribution with parameters p and n = 20, 
the relationship between the choice of k and the size of the test implied by 
erIk) is given by 

a(k) = PIx E erIk); p = .20) = L CzO)!.20)Z(.80)20-ZII0.l •...• 20J!Z). 
z~ 1O-.36067Inlk) 

Some possible choices of test size are given as follows: 

to depend not only on the outcomes of X but also on auxiliary random variables that are independent of X, so as to allow any level 
of test size to be achieved. However, the fact that the test outcome can depend on random variables that are independent of the 
experiment under investigation has discouraged its use in practice. For an introduction to the ideas involved, see M. Kendall, and 
A. Stuart (1979), The Advanced Theory of Statistics, Vol. 2, 4th ed. New York: MacMillan, pp. 180-181. Also, see Problem 9.8. 
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In(k) 10 - .36067In(k) o:(k) 

24.95356 1 .9885 
22.18094 2 .9308 
19.40832 3 .7939 
16.63571 4 .5886 
13.86309 5 .3704 
11.09047 6 .1958 
8.31785 7 .0867 
5.54524 8 .0321 
2.77261 9 .0100 

Note that there are no other choices of a within the range [.01, .98851 other 
than the ones displayed above (why?). The most powerful statistical test of 
Ho: P = .20 versus Ha: P = .80 having level .01, say, is thus given by 

x E Cr => reject Ho: P = .20 and x ¢ Cr => accept Ho : P = .20, 

where we use k = exp(2.77261) = 16 to define 

Cr = {x: fix; .20)lf(x; .80) ::: 16}, 

The critical region can be represented more simply using the test statistic t(X) = 

I:f=l Xi as 

Suppose upon observing the successes and failures in the 20 treatments, the 
value of the test statistic was calculated to be I:;~l Xi = 5. It follows that x ¢ Gr, 
and the hypothesis Ho : P = .2 is not rejected. The government concludes that 
your competitor's claim has merit and instructs your company to refrain from 
claiming that your hair-restoring chemical is 80 percent effective. (Point to 
ponder: Would it be better if the null hypothesis were Ho: P = .8 and the 
alternative hypothesis were Ha : P = .2 in performing the statistical test? Why 
or why not?) 0 

The reader may have noticed that in Ex. 9.10, the choice of k used in the 
Neyman-Pearson lemma to define a UMP level-a test of Ho: 8 = 8 0 versus 
Ha: 8 = 8 a was not unique. For example, any choice of k such that 2.77261 ::: 
In(k) < 5.54524, would correspond to a critical region C; = Ix: I:;~l Xi 2: k*} 
for k* E 18,91 that would have defined a UMP critical region of level.Ol. This is 
due to the fact that none of the values of I:~l Xi E 18,9), or equivalently, none 
of the points in {x: 2.77261 < lnlf(x; 8 0 )lflx; 8 a )) < 5.54524} are in the support 
of fix; 8 0), i.e., the event I:;~l Xi E 18,9) has probability zero under fix; 80)' 
Henceforth, it will be tacitly understood that the value of k is chosen in the 
Neyman-Pearson lemma so that x values in the event {x: fix; 8 0 ) = kf(x; 8 a )} 
are in the support of fix; 8 0 ), Nothing of any practical consequence is lost by the 
assumption, and it allows one to avoid an irrelevant ambiguity in the definition 
of UMP tests. 
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Example 9.11 Your company is about to ship 10 LCD screens to a notebook computer manu­
facturing firm. The manufacturer requested that the screens have an expected 
operating life of 10,000 hours. Your company manufactures two types of 
screens-one having a lO,OOO-hour mean life, and one having a SO,OOO-hour 
mean life. The label on the batch of 10 screens you are about to send to the 
manufacturer is missing, and it is not known which type of screen you are 
about to send (although they were all taken from one of the screen production 
lines, so it is known they are all of the same type). The screens with a mean 
life of 50,000 hours cost considerably more to produce, and so you would rather 
not send the batch of 10 screens if they were the more expensive variety. The 
lifetimes of the screens can be nondestructively and inexpensively determined 
by a test you perform. Having observed the lifetimes of the screens, you wish to 
test the hypothesis that the mean lifetime of the screens is 10,000 hours versus 
the hypothesis that their mean lifetime is 50,000 hours. The lifetime distribu­
tion of each type of screen belongs to the exponential family of distributions 
as 

Xi"" 8- l e-X ;{°1(0,oo)(Xi}, 8 E n = {I,S}, 

where Xi is measured in lO,OOO-hour units. 
Let (Xl, ... ,XlO) be the random sample of size 10 from the appropriate (un­

known) exponential population distribution, so that 

fix; 8) = 8- 10 exp ( - ~Xd8) D 1(0,001 (Xi), 8 E n = {I,S}. 

In order to define the most powerful level-a test of the hypothesis Ho: 8 = I 
versus the hypothesis Ha : 8 = 5, use the Neyman-Pearson lemma and examine 

er(k} = {x: fIx; l)lf(x; 5}:s k} 

= Ix: (.2tlOexp(-.8~Xi) :SkI 

= Ix: -1OIn(.2) -.8 ~Xi :s In(k) I 

= Ix: ~Xi ~20.11797-1.25In(k)1 (to five decimal places). 

Since Z = 'LI21 Xi has a Gamma distribution with parameters a = 10 and 
fJ = 8, the relationship between the choice of k and the size of the test implied 
by erIk) is given by 

100 1 
a(k) = PIx E erIk); 8 = I} = r(10)z9 exp(-z)dz, 

20.11797-1.251n(k) 

integrating the Gamma distribution with a = 10 and fJ = 1. Note that in this 
case, any choice for the size of the test, a, within the range (0, 1) is possible 
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(why?). For example, to define the most powerful statistical test of Ho: e = 1 
versus Ha: e = 5 having level.05, the value of k would be found by solving the 
integral equation a(k) = .05 for k (recall the definition of a(k) above). Through 
the use of numerical integration on a computer, it can be shown that 

100 1 
r(10) z9 exp(-z)dz = .05 (to five decimal places). 

15.70522 

Therefore, k = 34.13079 (to five decimal places), and the most powerful statis­
tical test of level .05 is given by 

x E Cr ::::} reject Ho: e = 1 and x r:f. Cr ::::} accept Ho: e = I, 

where 

Cr = {x: fIx; 1)/f(x; 5)::: 34.13079}. 

The critical region can be represented more simply using the test statistic t(X) = 
2:7=1 Xi as 

10 

Cr = {x: I>i ~ 15.70522}. 
i=1 

Suppose the sum of the lifetimes of the 10 screens ultimately had an out­
come equal to 2:;~1 Xi = 54.4. It follows that x E Cr , and the hypothesis 
Ho: e = 1 is rejected at the .05 level. You conclude that the batch of 10 screens 
are the type having a mean life of 50,000 hours. (Point to ponder: Would it be 
better if the null hypothesis were Ho: e = 5 and the alternative hypothesis 
were Ha: e = 1 in performing the statistical test? Why or why not?) 0 

The density ratio implied in the statement of the Neyman-Pearson lemma 
can itself be viewed as a test statistic, i.e., t(X) = fIX; 8 al/f(X; 8 0 ) is a test 
statistic for given (hypothesized) values of 8 0 and 8 a• The test implied by 
the lemma can then be conducted by determining whether t(x) ~ c = k- 1• 

However, it is often the case in practice that the density function of this statistic 
is difficult to identify and/or work with, and thus determining the appropriate 
choice of k for an a-size test, and determining the power function of the test, 
may be difficult or intractable with respect to the test statistic in this form. 

We also note that the Neyman-Pearson lemma can be (and often is) stated 
in terms of likelihood functions instead of probability density functions. The 
alternative statement of the lemma then utilizes 

Cr(k) = {x: L/80 ; x) ::: kL(8a; x)}, for k > 0 

in the statement of Theorem 9.1. Of course, the proof of the restated lemma 
would be identical with that of Theorem 9.1 withf(x; 8 0 ) and fIx; 8 a ) replaced 
by L(80 ; x) and L(8a; x). When the critical region is expressed in terms of like­
lihood ratio values as Cr = (x: L(8a; x)/L(80 ; x) ~ k- 1}, the test implied by 
the lemma is then referred to as a likelihood ratio test. 

A most powerful test of Ho: 8 = 8 0 versus Ha: 8 = 8 a defined via the 
Neyman-Pearson lemma is also an unbiased test, as we state formally next. 
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Theorem 9.2 (Unbiasedness of Most Powerful Test of Ho: 8 = 8 0 versus Ha : 8 = 8 a ) Let 
Cr represent a most powerful level-a critical region defined by the Neyman­
Pearson lemma for testing Ho: 8 = 8 0 versus Ha: 8 = 8 a. Then the test 
implied by Cr is unbiased. 

Proof Let 2 represent a Bernoulli random variable that is independent of the random 
sample X and for whichp(z = 1) = a andp(z = 0) = 1- a. Suppose that regard­
less (i.e., independent) of the outcome of X, the hypothesis Ho is subsequently 
rejected or accepted based on whether the outcome of 2 is in the critical region 
C; = {l}. Let Ex and Ez represent expectations taken with respect to the prob­
ability distributions of X and 2, respectively. It follows by the independence of 
X and 2 that Ez(1(l}(2) I x) = a is the probability of rejecting Ho conditional on 
any given outcome of X, regardless of the value of 8 E {80, 8 a}. Then the (un­
conditional) probability of rejecting Ho is given by an application of the double 
expectation theorem as 

1fcd8) = P*(reject Ho; 8) = ExEz (1(lJl2) I X) = a, 8 E {80, 8 a }. 

Now let Cr represent a most powerful level-a test of Ho: 8 = 8 0 versus 
Ha: 8 = 8 a defined via the Neyman-Pearson lemma. Using an argument 
analogous to that used in the sufficiency proof of the lemma (replacing 1c;(x) 
with 1(I}(z), 

l1c, (x) - 1(IJlz)]f(x; 8 a )h(z) ~ k- 1 (Ic,(x) - 1[1) (z)] fIx; 8 0 )h(z), V x, z, 

where h(z) represents the Bernoulli density function for 2. Integrating both 
sides of the inequality over x E Rn if X is continuous or else summing over all x 
values for which fIx; 8 0 ) > 0 or fIx; 8 a ) > 0 if X is discrete, and then summing 
over the range of 2 obtains 

PIx E Cr ; 8 a ) - a ~ k-1IP(x E Cr ; 8 0 ) - a] = 0, 

where the right-hand side of the inequality equals 0 because Cr is an a-size 
critical region. Then PIx E Gr; 8 a) ~ a, so that the test implied by Gr is unbi­
ased. • 

The significance of Theorem 9.2 for applications is that once a most pow­
erfullevel-a test of Ho: 8 = 8 0 versus Ha: 8 = 8 a has been derived via the 
Neyman-Pearson lemma, there is no need to check whether the test is unbi­
ased, since such tests are always unbiased. As an illustration, the tests in Ex. 
9.10 and Ex. 9.11 are unbiased since they were most powerful Neyman-Pearson 
tests. We note, however, that unbiased tests are not necessarily most powerful. 

Composite Hypotheses In some cases, the Neyman-Pearson lemma can also 
be used to identify UMP tests when the alternative hypothesis is composite. 
The basic idea is to show via the Neyman-Pearson lemma that the critical 
region, Gr, of the most powerful test of Ho: 8 = 8 0 versus Ha: 8 = 8 a is the 
same V 8 a E na, where na is the set of alternative hypothesis values. It would 
then follow that the critical region defines a uniformly most powerful test of 
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Ho: 8 = 8 0 versus Ha: 8 E Qa, since the same critical region would be most 
powerful for each and every 8 E Qa, i.e., uniformly in 8 E Qa. We formalize 
the approach in the following theorem. 

Theorem 9.3 (UMP Test of Ho: 8 = 8 0 Versus Ha: 8 E Qa Using Neyman-Pearson lemma) 
The given critical region, Cr, of a statistical test of Ho: 8 = 8 0 versus Ha : 8 E 

Qa defines a UMP level-a test if PIx E Cr ;80) = a and V 8 a E Qa, 3 k/8a) ::: 0 
such that the given critical region can be defined as 

Cr = (x: fIx; 8 0 ) ~ k(8a)f/x; 8 a)}. 

Furthermore, Cr is then the unique (w-ith probability 1) UMP critical region of 
size a. 

Proof Since Cr is defined via the Neyman-Pearson lemma, it represents the most 
powerful level-a test of Ho: 8 = 8 0 versus Ha: 8 = 8 a. Since the same 
critical region, CII applies for any 8 a E Q a the test defined by Cr is also most 
powerful for any choice of 8 a E Qa and is thus a UMP level-a test of Ho: 8 = 
8 0 versus Ha: 8 E Qa. Finally, Cr is the unique size a critical region (with 
probability 1) since the most powerful critical region of size a is unique (with 
probability 1) by the Neyman-Pearson lemma V 8 a. • 

Example 9.12 Recall Ex. 9.10 in which hypotheses regarding the effectiveness of a hair­
restoring chemical were being analyzed. Examine the problem of testing the 
simple hypothesis Ho: P = .2 versus the composite alternative hypothesis 
Ha: P > .2 using a UMP test having level .01. Let Pa represent any choice 
of P E (.2, I], and define the critical region of the test of Ho: P = .2 versus 
Ha: P = Pa using the Neyman-Pearson lemma: 

Cr = (x: fIx; .2)/f(x; Pal ::: k/Pa)} 

= {x: (.2/Pa)L:f21 x;(.8/(1 - Pa))20-L:f21 x; ~ k(Pa)} 

= {x: I:Xi ::: In(k(Pa)) - 20InI.8/(1 - pa))). 
i=l In/.25(1 - Pal/Pal 

Using reasoning identical to that used in Ex. 9.10, Cr will define a size .01 test 
iff 

20 

Cr = {x: LXi::: 9} 
i=d 

regardless of the value of Pa, since under Ho the statistic L721 Xi has a binomial 
distribution withn = 20andp = .2. The nonnegative valuesofk(Pa)V~a E (.2, 1] 
can be solved for accordingly, and thus by Theorem 9.3, Cr = {x: Li21 Xi ::: 9} 
defines a UMP level-.Ol test of Ho: P = .2 versus Ha: P> .2. 0 

Example 9.13 Recall Ex. 9.11 in which hypotheses regarding the operating lives of screens 
for notebook computers were being analyzed. Examine the problem of testing 
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the simple hypothesis Ho: 0 = 1 versus the composite hypothesis Ha: 0 > 1 
using a UMP test having level .05. Let Oa represent any choice of 0 > I, and 
define the critical region of the test of Ho: 0 = 1 versus Ha: 0 = Oa using the 
Neyman-Pearson lemma: 

Cr = {x: f(x; 1)/f(x; Oa) ~ k(OaJ} 

= Ix: O!Oexp(-~xi[l-O~l]) ~k(Oal} 

= Ix: I:Xi 2: 101n(Oa) - ~~lk(Oa))} . 
i=1 (l - Oa I 

Using reasoning identical to that used in Ex. 9.11, Cr will define a size .05 test 
iff 

Cr = Ix: f>i 2: IS.70S22} 
1=1 

regardless of the value of Oa, since under Ho the statistic Li~l X j has a Gamma 
distribution with parameters ex = 10 and f3 = 1. The nonnegative values of 
k(Oal V Oa Ell, 00) can be solved for accordingly, and thus by Theorem 9.3, 
Cr = {x: Li~l Xi 2: IS.70S22} defines a UMP level-.OS test of Ho: 0 = 1 versus 
Ha: 0> 1. 0 

The uniqueness result of Theorem 9.3 can be used to demonstrate that a 
UMP test of Ho: 8 = 8 0 versus Ha: 8 E Q a having size ex does not exist, as 
in the following example. 

Example 9.14 Nonexistence of a UMP Test 

An untrusting gambler wishes to use a size .10 test that is also UMP level.lO to 
test the hypothesis that a roulette wheel being used for betting purposes in an 
Atlantic City casino is fair. The gambler suggests that the wheel be spun 100 
times and the random-sample outcome of red and black outcomes be used to 
test the "fairness" hypothesis. The joint density of the random sample in this 
case is given by 

100 

fIx; p) = pL.::?! xiiI - p)100-L.::?!x; n l(o,lIlxil 
i=1 

lassuming the red/black outcomes are iid Bernoulli trials I, where Xi = I denotes 
red and Xi = 0 denotes black. The null hypothesis to be tested is Ho: p = .5 
versus the alternative hypothesis that Ha: p i= .5. In the notation of Theorem 
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9.3, na = [0, 1]- .5. Following Theorem 9.3, define a critical region as 

{ . fIx; .5) k( I} 
x. "(. I::: Pa 

I' x, Pa 

= {x: (.51100/[pP~Xi(1_Pal100-E:~xiJ :::k(Pal} 

= Ix: In(Pa/(l - Pall ~Xi ~ Y(Pal) , 
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where y(Pal = 100ln(.S/(1 - Pall-ln(k(Pall. The critical region depends on Pa 
(i.e., Cr is not the same V Pa E nal, and thus there is no UMP level-.lD statistical 
test of the "fairness" hypothesis that has size .lD. To show how Cr depends on 
Pa, note that for Pa > .5, In(Pa/(l - Pal) > 0, while for Pa < .5, In(Pa/(l - Pal) < O. 
It follows that 

Cr = Ix: fXi ~ 1](pa)) if Pa > .5 
1=1 

or 

if Pa < .5, 

where 1](Pa) = y(Pa)/ln(Pa/(l-Pa)). Given that the size of the test is to be .lD, the 
reader can show by using the binomial distribution of 2:7=1 Xi with parameters 

n = lDO andp =.5 that p(2::~~Xi ~ S7;p= .5) = P(2::~Xi::: 43;p= .5) = 
.lD (to two decimal places). Thus, for PIx E Cr ; .5) = .lD, two different critical 
regions are defined as 

I 100 I Cr = x: ?=Xi ~ 57 
1=1 

for Pa > .5 

or 

Cr = Ix: fXi ::: 43) for Pa < .5. 
1=1 

For values of Pa > .5, the first critical region is UMP of level.lD by Theorem 
9.3, while for values of Pa < .5, the second critical region is UMP of level .lD 
by Theorem 9.3. Since the UMP level-.lD critical regions for Pa > .5 andPa < .5 
are not the same, no UMP level-.lD critical region exists for testing the fairness 
hypothesis Ho: P = .5 versus Ha : P -:/= .5. 0 

The previous three examples illustrate the notion of one-sided and two­
sided alternative hypotheses. In the current context, a one-sided alternative 
hypothesis is one for which either (ea - eo) > 0 V e a E na, or (8a - eo) < 0 
V ea E na (i.e., all values of ea E na are larger than 8 0, or else they are all 
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smaller than 8 0, so that the values of 8 a are all on "one side" of 8 0 ). A two­
sided alternative hypothesis is such that 3 8 a E Qa for which lea - 8 0 ) > 0 
and 3 8 a E Q a for which (8a - 8 0 ) < 0 (i.e., some values of e a E Q a are larger 
than eo and some values of e a E Q a are smaller than 80, so there are values of 
ea on "both sides" of 8 0 1. In practice, UMP level-a tests of simple hypotheses 
versus one-sided alternative hypotheses often exist when 8 is a scalar, but 
such is not the case when the alternative hypothesis is two-sided. In the latter 
case, one must generally resort to seeking a UMP test within a smaller class 
of tests, such as the class of unbiased tests. We will examine this case in more 
detail later. 

A UMP level-a test of Ho: 8 = 8 0 versus Ha: 8 E Qa defined using 
Theorem 9.3 is also an unbiased test, as indicated in the following extension of 
Theorem 9.2. 

Theorem 9.4 IUnbiasedness of Uniformly Most Powerful Test of Ho: 8 = 8 0 versus Ha: 8 E 

na) Let Cr represent a UMP level-a critical region for testing Ho: 8 = 8 0 

versus Ha: 8 E Q a defined using the Neyman-Pearson lemma as indicated in 
Theorem 9.3. Then the test implied by Cr is unbiased. 

Proof Let 8 a be any choice of 8 E Q a• Using an argument analogous to the proof of 
Theorem 9.2, it can be shown that 

Pix E Cr ; 8 a ) - a 2: kI8a l- 1[Plx E Cr ; 8 01 - a] = 0, 

where, again, the right-hand side of the inequality is 0 because Cr is a size a 
critical region. Since this holds V 8 a E Qa, it follows that PIx E -Cr ; 8 a l 2: a 
V 8 a E Qa, so that the test implied by Cr is unbiased. • 

The theorem implies that once a UMP level-a test of Ho: 8 = 8 0 versus 
Ha: 8 E Qa has been found via the Neyman-Pearson approach, one need not 
check to see whether the test is unbiased, since such tests are always unbiased. 
Examples 9.12 and 9.13 illustrate this fact, where both UMP level-a tests are 
also unbiased tests. However, it should be noted that an unbiased test is not 
necessarily a UMP test. 

Monotone Likelihood Ratio Approach 

In this subsection we will establish results that will be useful for constructing 
UMP level-a tests of the composite null hypothesis Ho: e ~ eo lor Ho: e 2: 
8 0 ) versus the composite one-sided alternative hypothesis Ha: 8 > eo (or 
Ha: 8 < eo). The results in this section will apply equally well to the case 
where Ho: e = 8 0, and thus this section can be interpreted as also provid­
ing additional results for testing Ho: 8 = 8 0 versus the composite one-sided 
alternative Ha: e > 8 0 lor Ha: < eo). 

The procedure for defining UMP level-a tests that we will present relies on 
the concept of a monotone likelihood ratio in the statistic T = t(X). 
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Definition 9.13 
Monotone likelihood 

ratio in statistic T = t(X) 

Let fix; e), e E Q, be a family of probability density functions indexed by a 
scalar parameter 8. The family of density functions is said to have a mono­
tone likelihood ratio in the statistic T = t(X) iff V 8 1,82 E Q for which 
8 1 > e 2, the likelihood ratio L(e l ; x)/L(e2 ; xl can be expressed as a nonde­
creasing function of t(x) V x E (x: fix; 8 1 ) > 0 andlor fix; 8 2 ) > OJ. 

Verification of whether a family of density functions has a monotone like­
lihood ratio in some statistic t(X) generally requires some degree of ingenuity. 
However, if the family of density functions belongs to the exponential class of 
densities, the verification process is often simplified by the following result. 

Theorem 9.5 (Monotone Likelihood Ratio and the Exponential Class of Densities) Let 
fix; 8), e E Q, be a one-parameter density family belonging to the exponential 
class of densities, as 

f(x; e) = exp(c(e)g(x) + d(8) + z/xJJIA/x), 8 E Q. 

If c/8) is a nondecreasing function of 8, then f(x;8), 8 E Q, has a monotone 
likelihood ratio in the statistic g(X). 

Proof Let e l > e 2, and V x E A examine the likelihood ratio 

L(81; x)/L(e2 ; x) = exp ([c(8d - c(82 JJg(x) + d(8d - d(e2 )) = 1J(g(x)) = ec,glxl+d., 

where c* = c(ed - c(82 ) and d* = died - d(8 2 ). Since c(8) is a nondecreas­
ing function of e, c* ::: 0 so that the likelihood ratio can be expressed as a 
nondecreasing function of g(x), V x E A. • 

The following examples illustrate the use of Theorem 9.5 for verifying the 
monotone likelihood ratio property. 

Example 9.15 Let (XI, ... , Xn) be a random sample from a Bernoulli distribution representing 
the population of television viewers in a certain region who can (Xi = I) or 
cannot (Xi = 0) recall seeing a certain television commercial. Then 

n 

fix; p) = p'D-1 Xi(l - p)n-Lf_1xi n IIO,II(Xi) 
i=1 

= explclp)g(x) + dip) + z(xlJIA(x), p E (0, I), 

where c(p) = In(pIll - p)), g(x) = L:?=I Xi, dip) = n Inl1 - p), z(x) = 0, and 
A = xf=I {O, I}. Then since dc(p)/dp = [P(l - p)]-I > 0, c(p) is strictly increasing 
in p, and fix; p), p E (0, I), has a monotone likelihood ratio in the statistic 
g(X) = L:?=I Xi. 0 

Example 9.16 Let (X I, ... ,Xn ) be a random sample from a Gamma population distribution 
with f3 = 2 representing the survival time of cancer patients treated with a new 
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form of chemotherapy. Then 

= exp(c(a)g(x) + dIal + z(x))IA(x), a> a, 

where cIa) = a -I, g(x) = LZ:llnxi' dIal = -n In(2IXr(a)), z(x) = -(1/2) L?=l Xi, 
and A = XI=l (0,00). Then since dc(a)/da = 1 > a, cIa) is strictly increasing 
in a and fIx; a), a > a, has a monotone likelihood ratio in the statistic g(X) = 
L?=llnXi. 0 

In the next example, we illustrate verification of the monotone likelihood 
ratio property for a family of density functions that does not belong to the 
exponential class of densities. 

Example 9.17 Let X have a hypergeometric probability density function in which the param­
eters nand M have known values no and Mo, respectively, with X representing 
the number of defectives found in a random sample, without replacement, of 
size no from a shipment of Mo compact disks. The density function for X can 
then be represented as 

(K)(MO-K) 
IIlx' K) - x no-x I (x) 
I" - (~:) (O,l,2, ... ,K) 

for K E (a, 1,2, ... , Mol. Examine the likelihood ratio 

L(K; x) [K] [(Mo - K - no + 1 + X)] [ I(o,l, ... ,K}(x) ] 
L(K - 1; x) = (K - x) (Mo - K + 1) I(O,l, ... ,K-lilx) 

(recall Ex. 8.8), and note that the ratio is a nondecreasing function of x E 

{a, I, ... , Kl = (x: fIx; K) > a and/or fIx; K - 1) > Ol, since the ratio is a product 
of three (in brackets) non decreasing functions of x. Now let Kl > K2, and note 
that the likelihood ratio 

= KI -nK2- 1 ([ Kl - i ] [(Mo - (Kl - iJ - no + 1 + xJ]) 
( ( )) for x E {a, I, ... , K2} 

i=O K 1 - i-x Mo - K 1 - i + 1 

= 00 for x E {K2 + I, ... , Kd 

is a nondecreasing function of x E {a, I, ... , K 1} = {x: fIx; Kl J > a and/or 
fIx; K2 J > a}, since it is strictly increasing for x E {a, I, ... , K2 }, and equals 
00 (and hence nondecreasing) for x E {K2 + 1, ... , K1}. Then the hypergeometric 
family of densities fIx; K), K E {a, 1, ... , Mo}, has a monotone likelihood ratio 
in the statistic t(XJ = X. 0 
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If the joint density function of the random sample can be shown to have a 
monotone likelihood ratio in some statistic, then UMP level-a tests of Ho: 8 :::: 
8 0 versus Ha: 8 > 8 0, or Ho: 8 ::: 8 0 versus Ha: 8 < 80, or Ho: 8 = 8 0 
versus one of either Ha: 8 > 8 0 or Ha: 8 < 8 0 will exist. In fact, ahead it will 
be seen that a monotone likelihood ratio is effectively a sufficient condition for 
the Neyman-Pearson approach of Theorem 9.3 to be applicable to the testing 
problem. 

Theorem 9.6 (Monotone Likelihood Ratios and UMP Level-a Tests) Let f(x;8),8 E Q, be a 
family of density functions having a monotone likelihood ratio in the statistic 
t(X). Let Cr = {x: f(x;80) :::: kf(x;8a ll be a size a critical region for testing 
Ho: 8 = 8 0 versus Ha: 8 = 8 a 

1. If 8 0 < 8 a, then Cr is UMP level a for testing either 

a. Ho: 8 = 8 0 versus Ha: 8 > 8 0, or 
h. Ho: 8 :::: 8 0 versus Ha: 8 > 8 0. 

2. If 8 0 > 8 a , then Cr is UMP level a for testing either 

a. Ho: 8 = 8 0 versus Ha: 8 < 8 0, or 
h. Ha: 8 ::: 80 versus Ha: 8 < 8 0. 

Proof We prove part (1). The proof of part (2) is analogous with appropriate inequality 
reversals and is left to the reader. 

Since fIx; 8 a )/f(x; 8 0) has a monotone likelihood ratio in t(x), 

fIx; 8 a )/f(x; 8 0 ) ::: k-1 iff g(t(x)) ::: k-1 

for some nondecreasing function g(.), and then g(t(x)) ::: k- 1 iff t(x) ::: c, where c 
is chosen to satisfy15 mine g(c) ::: k- 1. A Neyman-Pearson most powerful level­
a test of Ho: 8 = 8 0 versus Ha: 8 = 8 a, for 8 a > 8 0, is defined by choosing 
c so that P(t(x) ::: c; 8 0) = a. Note that this probability depends only on 8 0, so 
that the choice of c does not depend on 8 a and thus the same critical region 
Cr = {x: t(x) ::: c} defines a Neyman-Pearson level-a test of Ho: 8 = 80 versus 
Ha: 8 = 8 a, regardless of the value of 8 a > 8 0• Thus, by Theorem 9.3, Cr as 
defined in the current theorem is UMP level-a for testing Ho: 8 = 80 versus 
Ha: 8> 8 0 • 

Now examine 8* < 8 0, and let a* = Pix E Cr ; 8*). From the preceding 
argument, it is known that Cr represents a UMP level-a* test of Ho: 8 = 8* 
versus Ha: 8> 8*, and since the test is then unbiased (Theorem 9.4), we know 
that Pix E Cr ; 8*) :::: PIx E Cr ; 8 0) = a, which holds V 8* < 8 0. Thus, Cr 
represents a level-a test of Ho: 8 :::: 8 0 versus Ha: 8 > 8 0. 

Finally, let C; represent any other level-a test for testing Ho: 8 :::: 80 versus 
Ha: 8> 8 0. Then by definition ao = PIx E C;; 8 0) :::: SUP0::0oP(X E C;; 8) :::: a, 
so that C; has size ao :::: a for testing H: 8 = 8 0 versus Ha: 8 > 80. Then 

ISIf the likelihood ratio is strictly increasing in t!x), then c can be chosen to satisfy g!c) == k- I . 
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since Cr is UMP level-a for testing this hypothesis, PIx E Cr ; 8) ::: PIx E C;; 8) 
V 8 > 8 0, and thus Cr is also a UMP level a test of Ho: 8 ~ 8 0 versus 
~:8>~. • 

The UMP level-a critical region defined by Theorem 9.6 can be defined al­
ternatively in terms of the statistic t(X) for which the likelihood ratio is mono­
tone. 

Corollary 9.1 (UMP Level-a Tests in Terms of the t(X) of a Monotone Likelihood Ratio) Let 
f(x;8),8 E Q, be a family of density functions having a monotone likelihood 
ratio in t(X). Then 

1. Cr = (x: t(x) ::: c}, for the choice of c such that P(t(x) ::: c;80) = a, is a 
UMP level-a critical region for testing Ho: 8 = 8 0 versus Ha: 8 > 8 0, or 
Ho: 8 ~ 8 0 versus Ha: 8 > 8 0. 

2. Cr = {x: t(x) ~ c}, for choice of c such that P(t(x) ~ c;801 = a, is a UMP 
level-a critical region for testing Ho: 8 = 8 0 versus Ha: 8 < 8 0, or 
Ho: 8 ::: 8 0 versus Ha: 8 < 8 0. 

Proof The C/s are equivalent representations of the Neyman-Pearson critical regions 
referred to in Theorem 9.6. • 

It is also true that the UMP level-a tests based on the monotone likelihood 
ratio procedure are unbiased tests. We state this fact as a second corollary to 
that theorem. 

Corollary 9.2 (Unbiasedness of UMP Tests Based on Monotone Likelihood Ratios) The crit­
ical region, Cr, defined in Theorem 9.6 and Corollary 9.1, defines an unbiased 
size a test of the respective hypotheses stated in the theorem. 

Proof This follows immediately from the characteristics of the power function of the 
test established in the proof of Theorem 9.6. • 

Example 9.18 Your company manufactures personal computers and is in the process of eval­
uating the purchase of floppy disk controllers from various input suppliers. 
Among other considerations, a necessary condition for a disk controller to be 
used in the manufacture of your pes is that the controller have a minimum 
expected life of more than 5,000 operating hours. The lifetimes of all of the 
various brands of disk controllers are characterized by exponential densities, as 

Xi "" f(xi; B) = B-1 exp [-xi/B] llo,col(Xi I, B> 0, 

where Xi is measured in thousand's of operating hours. Define a. UMP level-.Ol 
test of Ho: B ~ 5 versus Ha: B > 5 based on a random sample of 100 lifetimes 
of a given brand of disk controller. 
Answer: The loint density of the random sample is given by fIx; Bl = 
B-100 exp[ - Ei=? xi/B] ni~? llo,col(Xi I, B > O. The density is in the exponential class 
with c(Bl = -B-1, which is a non decreasing function of B, so that fIx; BJ has a 
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monotone likelihood ratio bJ' Theorem 9.6. In particular, the likelihood ratio 
L(el ; X)/L(e2; x) ex: exp[ - L:~I xi(et - e;:l)J is a strictly increasing function of 
t(x) = L:~? Xi for el > e2 V x E xJ~I(O, 00). Then Theorem 9.6 and its corollaries, 
are applicable, so that the UMP critical region of level .01 is given by 

100 

Cr = (x: LXi 2: c} for c chosen so that P(x E Cr ; e = 5) = .Ol. 
i=1 

To calculate the appropriate value of c, first note that Z = L:~? Xi has a Gamma 
distribution, with parameters a = 100 and f3 = e.16 Then c is the solution to 
the integral equation 

100 1 99 ( / 
c eIOOf(lOO)z exp -z e)dz = .01 

with e = 5, which can be found with the aid of a computer to be c = 623.6l. 
The UMP level-.Ol and unbiased test of Ho: e :::: 5 versus Ha: e > 5 is then 
defined by the critical region for the test statistic T = t(X) = 2::7=1 Xi given by 
Ci = [623.61,00). An alternative test statistic for performing this UMP level­
.01 and unbiased test is the sample mean so that the test can also be conducted 
using the critical region for the test statistic X given by C; = [6.2361,00). D 

Example 9.19 A shipment of 300 blank video cassettes arrives at your video store. You in­
tend to randomly sample, without replacement, 25 video cassettes and observe 
whether or not they are defective. On the basis of the sample outcome, you wish 
to test the hypothesis that the shipment of video cassettes contains no more 
than 5 percent defectives. Define a UMP and unbiased test of the hypothesis 
having level .05 and a size as close to .05 as possible.1 7 

Answer: The density function associated with the number of defectives ob­
served in a random sample, without replacement, of size 25 from the population 
of 300 video cassettes can be defined as 

(K)(300-K) 
.(;(x· K) - x 25-x I (x) }', - e~~) {O,1,2, ... ,25}, 

i.e., hypergeometric with M = 300, n = 25, and K E to, 1, ... , 300}. As we have 
shown in Ex. 9.17, this hypergeometric density has a monotone likelihood ratio 
in the statistic t(X) = X. Note that the likelihood ratio L(KI; x)/L(K2; x), KI > K2, 
is in fact strictly increasing in t(x) = x for all values of x in the support of f(x; K2 ), 

as was shown in Ex. 9.17. Theorem 9.6 and its corollaries are applicable so that 
the UMP critical region of size a for testing Ho: K :::: 15 versus Ha: K > 15 

l6This can be shown via the MGF approach, since the MGF of 'L}2? Xi = nJ2? MXj(t) = (1 - et)-l = (1 - (ltl- IOO for t < (I-I, which 
is of the gamma form with f3 = (I, a = 100. 

17 Again, it is possible to use a randomized test to achieve a size of .05 exactly, but the test can depend on the outcome of a random 
variable that has nothing to do with the experiment being analyzed. See Problem 9.8 for an example of this approach. Randomized 
tests are not often used in practice. 
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is represented by Cr = {x: x ::: c} for c chosen so that PIx E Cr; K = 15) = a. 
Computing the values of the hypergeometric CDF on the computer reveals that 
a = .027, when c = 4. This is the choice of c that generates a value of a closest 
to .05 without exceeding it. Thus, a UMP level-.OS and unbiased size .027 test 
of Ho: K :5 15 versus Ha: K > 15 in a random sample, without replacement, 
of size 25 from the population of 300 video cassettes is defined by the critical 
region Cr = [4,25] for x. 0 

There does not generally exist a UMP level-a test of the hypothesis Ho: 8 = 
80 versus the two-sided alternative Ha: 8 i= 8 0 in the case of monotone 
likelihood ratios. This follows from the fact that the UMP level-a critical region 
of the test of such a hypothesis is different, depending on "which side" of 8 0 

the alternative value 8 is on. We demonstrate this phenomenon for the case 
where the monotone likelihood ratio statistic is a continuous random variable. 

Theorem 9.7 (Nonexistence of UMP Level-a Test of Ho: 8 = 8 0 versus Ha: 8 i= 8 0 for 
monotone likelihood ratios) Let f(x;8),8 E Q, be a family of PDFs having a 
monotone likelihood ratio in t(x), where t(X) is a continuous random variable. 
Then there does not exist a UMP critical region with level a E (0,1) for testing 
Ho: 8 = 80 versus Ha: 8 i= 8 0. 

Proof From Theorem 9.6 and Corollary 9.1, the UMP size-a critical region for testing 
Ho: 8 = 80 versus Ha: 8 > 8 0 is of the form Cr = {x: t(x) ::: c} with P(t(x) ::: 
c) = a while the UMP size a critical region for testing Ho: 8 = 80 versus 
Ha: 8 < 80 is of the form Cr = {x: t(x) :5 c} with P(t(x) :5 c) = a. Appropriate 
choices of c exist Y a E (0, 1) since t(X) is a continuous random variable. It 
follows that there is no critical region, C;, that is UMP level for both 8 < 8 0 

and 8 > 8 0 • • 

An implication of Theorem 9.7 is that we must consider alternative criteria 
than the UMP property when defining statistical tests of Ho: 8 = 80 versus 
Ho: 8 i= 80 and the sampling density has a monotone likelihood ratio. A sim­
ilar, albeit somewhat more complicated, argument can also be made when t(X) 
is a discrete random variable. In the next subsection we will examine situations 
in which UMP level-a tests of Ho: 8 = 80 versus Ha: 8 i= 80 exist within the 
unbiased class of tests. 18 A UMP test within the class of unbiased tests will be 
referred to as a uniformly most powerful unbiased (UMPU) test. 

Exponential Class of Densities 

For cases where the joint density of the random sample belongs to the expo­
nential class of densities with a scalar parameter 8, our preceding discussion 

18To this point, we have established UMP tests in the class of all tests of a certain level a. The reader should note that in all cases 
examined heretofore, we have shown that UMP level-a tests were also unbiased. This is clearly different than examining only 
unbiased tests of a certain level a and within this restricted set of tests, attempting to find one that is UMP. 
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lemma 9.1 
Differentiability of 

')'(8) = Ee¢(X) in the 
Case of an Exponential 

Class Density 

of monotone likelihood ratios can be used to motivate the general existence of 
UMP level-a tests of 

Ho: 8 = 8 0 versus Ha: 8 > 8 0, 

Ho: 8 = 8 0 versus Ha: 8 < 8 0, 

Ho: 8 :::: 8 0 versus Ha: 8 > 8 0, 

Ho: 8 :::: 8 0 versus Ha: 8 < 8 0, 

and the general nonexistence of a UMP level-a test of 

Ho: 8 = 8 0 versus Ha: 8 i= 8 0 . 

We now reconsider the problem of defining a test of the latter hypothesis. We 
will find that if the joint density of the random sample belongs to the exponen­
tial class with a scalar parameter 8, then it will generally be possible to find a 
critical region that is UMP level a within the class of unbiased critical regions 
for testing Ho: 8 = 8 0 versus Ha: 8 i= 80. We will also establish UMPU 
critical regions for testing Ho: 8 1 :::: 8 :::: 8 2 versus Ha: 8 ¢ [8 1,821. 19 Our 
discussion will be facilitated by the following result concerning the differen­
tiability of the expectation of a function taken with respect to an exponential 
class density. 

Let ilx; 8) = exp!c(8)g(x) + d(8) + z(x))IA(x), 8 E Q, be an exponential class 
density with Q defined as an open interval contained in R, and with c(8) and 
d(8) being differentiable functions of 8 E Q. Let Ee denote an expectation 
taken with respect to fix; 8). 

If the function ¢(x) is such that y(8) = Be¢(X) exists V 8 E Q, then y(8) = 
Ee¢(X) is a differentiable function of 8 E Q. Furthermore, 

(continuous) ar foo foo foo foo arf(x; 8) -:::r . . . ¢(x)f(x; 8)dx = . . . ¢(x) .. r dx, 
a8 -00 -00 -00 -00 a8 

(discrete) ~ r L' .. L ¢(x)f(x; 8) = L ... L ¢(x) ar f(:; r8), 
a8 xeR(XI xeR(XI a8 

i.e., differentiation can occur under the integral or summation sign. 

Proof: See E. L. Lehmann (1986), Testing Statistical Hypotheses, 2nd ed., 
New York: John Wiley, pp. 59-60, or D. V. Widder (1946), The Laplace Trans­
form, Princeton. pp. 240-241. 

19Results are available for a more general class of densities referred to as Polya distributions, which subsumes the exponential class 
densities as a special case. However, the mathematics involved in analyzing the more general distributions is beyond the scope of 
our study. Interested readers can consult the work of S. Karlin (1957), "Polya type distributions II." Ann. Math. Stat., 2S, pp. 2S1-30S. 
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The lemma allows one to establish the differentiability (and thus also con­
tinuity) of the power function associated with the critical region of a hypothesis 
test when the joint density of the random sample is an exponential class dis­
tribution. In particular, by defining ¢(x) = Idx), Lemma 9.1 becomes a result 
concerning the differentiability of power functions. 

Theorem 9.8 (Differentiability (and Continuity) of Power Function in the Case of an Expo­
nential Class Density) Let the joint density function of a random sample be 
a member of the exponential class of densities 

fIx; 8) = exp(c(8)g(x) + d(8) + z(x))IA(x), 8 E Q, 

with Q being an open interval contained in R, and with c(8) and d(8) being 
differentiable functions of 8 E Q. Let Cr be any critical region for testing 
some hypothesis Ho: 8 E Q o versus Ha: 8 E Qa.20 Then the power function 
1l'c,(8) = PIx E Cr;8) is differentiable (and hence continuous) with respect to 
8EQ. 

Proof Let ¢(x) == Ic,(x) in Lemma 9.1. Then since Ee¢(X) = EeIc,(X) = 1l'c,(8) = PIx E 

Cr ; 8) V 8 E Q, the power function 1l'c,(8) is differentiable V 8 E Q. Continuity 
of 1l'c,(8) follo'Y_s from differentiability of 1l'c,(8). • 

We now turn to the main result concerning the definition of UMPU level-a 
two-sided tests when the random sample has an exponential class density. 

Theorem 9.9 (UMPU Level-a Two-Sided Tests for Exponential Class Densities) Let the 
joint density of the random sample be given by fIx; 8) = exp (c(8)g(x) + d(8) + 
z(x))IA(x),8 E Q, with Q being an open interval contained in R, c(8) and d(8) 
being differentiable functions of 8 E Q, and c(8) being strictly monotonic 
(either increasing or decreasing) in 8. Define a critical region as 

Cr = {x: g(x) ::: CI or g(x) :::: C2}, 

where CI < C2. 

1. A size a Cr defines a UMPU level-a test of Ho: 8 = 8 0 versus Ha: 8 =j:. 8 0 
iff 8 0 = arg mineeHoUH.!1l'C,(8n = arg [d1l'c,(8)ld8 = 0], i.e., the power of 
the test is minimized at 8 0. 

2. A size a Cr defines a UMPU level-a test of Ho: 8 1 ::: 8 ::: 8 2 versus 
Ha: 8 ¢ [8 1,82 ], 8 1 < 8 2, iff 1l'c,(8d = 1l'c,(82) = a. 

Proof Necessity: For result (1), if the power function is not minimized at 8 0, then Cr is 
not an a-size unbiased test since then 38 E Ha such that 1l'c,(8) < 1l'c,(80) = a. 
The power function is differentiable by Theorem 9.8, and can be shown (see 
reference below) to be strictly convex, so that the minimum occurs at 8 0 iff 
d1l'c,(80)ld8 = O. 

20We are assuming that Cr is such that a power function is defined, i.e., Cr can be assigned probability by f(x;8),8 e Q. 
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For result (2), since the power function is continuous by Theorem 9.8, it is 
necessarythatrrc,(8d = rrc,(82 ) = a, for consider the contrary, whererrd8d < 
a and/or rrer!82 ) < a (note that rrd8d > a for i = I, 2 is ruled out since the 
test has size a). Then there exists a value of 8 E Ha close to 8 1 or 8 2 such that 
rrc,(8) < a by the continuity of rrd8), contradicting unbiasedness. 

Sufficiency: E. Lehmann, Testing Statistical Hypotheses, 2nd ed., pp. 135-
137. • 

The application of Theorem 9.9 to find UMPU level-a tests of Ho: 8 = 
8 0 versus Ha: 8 i= 8 a or of Ho: 8 1 ::: 8 ::: 8 2 versus Ha: 8 rf. [8 1,821 
is conceptually straightforward although a computer will often be needed as 
an aid in making the necessary calculations. Essentially, one searches for the 
appropriate CI and C2 values in Cr = {x: g(x) ::: CI or g(x) ::: C2} that produce an 
a-size critical region and that also satisfy either drrc, (80 )/d8 = 0 or rrd8d = 
rrd82 ), respectively. The following examples illustrate the process. 

Example 9.20 Bernoulli Population Distribution-Ho : p = Po versus Ha: p i= Po 

Recall Ex. 9.14 in which an untrusting gambler desired to test whether a roulette 
wheel used by an Atlantic City casino was fair. A random sample of 100 spins 
of the wheel was to be used for the test. The joint density of the random sample 
was in the form of a product of Bernoulli densities, which can be represented 
as a member of the exponential class 

f(x; p) = exp[c(p)g(x) + d(p) + z(xllIA(x), 

where c(p) = In(p/(I - p)), g(x) = L;~? Xj, d(p) = 1001n(I - p), z(x) = 0, and 
A = x}~~{O, I}, withp E Q = (0, 1). We demonstrated in Ex. 9.14 that there does 
not exist a UMP level-.l0 test of the "fairness" hypothesis Ho: p = .5 versus 
Ha: P i= .5 having size .10. We now use Theorem 9.9 to show that a UMPU 
level and size a test of the fairness hypothesis does exist. The critical region 
we seek has the form 

for choices of CI and C2 that yroduce an a-size critical region satisfying 
drrcJ5)/dp = O. Since Z = L:~I Xj has a binomial distribution, Cr will have 
size a when 

1 - rrcJs) = P (x E Cr;p = .5) = I: (I~O)(.s)Z(.s)lOO-ZI{O'l'''.'lOOJlZ) = 1- a. (1) 
z=cl+I 

The derivative of the power function can be represented as 

drrdp) 
dp = 
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which when evaluated at p = .5 and then set equal to 0 results in the appropriate 
condition on the choices of CI and C2, as 

d1fc,(.5) 
= dp 

(2) 

Equation (2) implies that CI and C2 must be chosen so that CI < Z, < C2 is 
a symmetric interval around the value 50, which is a direct consequence of 
the binomial density being a symmetric density around the point Z = 50 when 
p = .5. Thus, the possible choices of CI and C2 are given by the finite set of 
two-tuples A = {(CI, C2): CI = 50 - i, C2 = 50 + i, i = 1, ... , 50}, which restricts 
the admissible choices of test sizes to be 

B = {a: a = P(z ::s CI or Z ::: C2; p = .5), (CI, C2) E A}. 

Some specific possibilities for the size of the test are given as follows (calculated 
using a computer): 

37,63 
38,62 
39,61 
40,60 
41,59 
42,58 

a = p(x E C,;p = .5) 

.012 

.021 

.035 

.057 

.089 

.133 

Suppose a test size of a = .057 is acceptable to the concerned gambler. 
Then the critical region of the UMPU level-.OS7 test of the fairness hypothesis 
is given by 

Cr = Ix: ~Xi ~ 40 or ~Xi::: 60) 

and the hypothesis that the roulette wheel was fair would be rejected if red 
(Xi = 1) occurred 40 or fewer times, or 60 or more times. Note that the values 
of the power function (see Figure 9.9) for p E (0, 1) are given by 

( ) ~ (100) Z( )100 Z ( ) 1fc, P = 1 - ~ Z P 1 - P - I{O,l, ... ,IOO} Z . 
z=41 

Some selected values of the power function are given below. 

p 7rc,(p) 

.5 .057 
045,.55 .185 
A, .6 .543 
.3,.7 .988 
.2, .8 ~ 1.000 
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Figure 9-9 
Power function for 

the UMPU level-.OS7 
test of Ho : p = .S 

versus Ha : p i= .5. 

Example 9.21 

n(p) 
1 

0.8 

0.6 

0.4 

0.2 

o ~----~------~-----'-------r------~----~P 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 

(Point to ponder: Do you think the power function given in Figure 9.9 should 
be acceptable to the gambler? Why or why not? If not, what could you do to 
alter the power function to make it more acceptable to the gambler?) 0 

Normal Population Distribution-Ho : fL = fLo versus Ha: fL :f= fLo 

The manufacturer of a certain battery-powered notebook computer claims that 
the average operating time of the computer between full battery charges is 
2 hours. It can be assumed that the operating time, in hours, obtained from a full 
battery charge is a random variable having a normal distribution with standard 
deviation equal to .2, i.e., Xi ~ N(f.L, .04). A random sample of the operating 
times of 200 of the notebook computers is to be used to test the hypothesis 
that the average operating time is indeed 2 hours, i.e., a test of Ho: f.L = 2 
versus Ha: f.L :f= 2 is to be conducted. Define a test that is UMPU level a for 
testing Ho versus Ha.21 

Answer: The joint density of the random sample can be represented in the form 

~x; /L I ~ 12"Il~I.2 lwo exp [ -12.5 t Ix; - /L I' ] . 

The density can be written in the exponential class form 

fIx; f.L) = exp[clf.L)g(x) + d(f.L) + z(xJJIAlxl, 

210ne can show using the monotone likelihood ratio approach that a UMP level·a test of Ho versus Ha does not exist. Recall 
Theorem 9.7. 
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with 

200 

g(XJ = LXi, 
i=l 

200 

Z(XJ = -In ((2nJ lOO(.2j200) - 12.5 LX}, and A = Rn. 
i=l 

From Theorem 9.9, we seek a critical region of the form 

for choices of CI and C2 that produce an a-size critical region satisfying 
dnc,(2J/dJL = O. Using results for linear combinations of normally distributed 
random variables we know that Z = L7~? Xi ""' N(200JL,8J, and thus Cr will 
have size a when 

1 - nc,(2J = P(x E Cr ; JL = 2J = 1~2 ~.J8 exp [-116 (z - 400J2] dz = 1 - a. ( IJ 

The derivative of the power function can be represented as 

dnc,(JLJ = _lcI 25[z - 200JLI [_~( _ 200 J2] d 
d ~ In exp 16 z JL z, 

JL c, ,,2n,,8 

which when evaluated at JL = 2 and then set equal to 0 results in the condition 

dnc (2J lCI 
d' = -25 (z - 400JN(z; 400, 8Jdz = O. 

JL c, 
(2J 

Equation (2J implies that CI and C2 must be chosen so that CI < Z < C2 is a 
symmetric interval around the value 400, which is a direct consequence of 
the symmetry of the normal distribution around the point z = 400. Thus, the 
possible choices of CI and C2 are given by the uncountably infinite set of two­
tuples A = {(CI, C2J: CI = 400 - C, C2 = 400 + c, C E (0, oo)}, which then implies 
that the choice of test size can be any value E (0, 1 J, since 

B = {a: a = P(z ::: CI or z ~ C2; JL = 2J, (CI, C2J E A} = (0, IJ. 

Suppose a = .10 is chosen as the size of the test. The appropriate values of 
CI and C2 can be found by solving for C in the integral equation 

1400+c lC/J8 
N(z; 400, 8 Jdz = N(z; 0, 1 Jdz = .90 

400-c -c/J8 
and then setting CI = 400 - C and C2 = 400 + c. Using the computer, or the table 
of the standard normal distribution, we find that c/.../8 = 1.645, or C = 4.653. 
Then CI = 395.347 and C2 = 404.653, and the critical region of the UMPU size 
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Figure 9·10 
Power function of 

the UMPU level-.l0 
test of Ho: /1- = 2 

versus Ha : /1- f: 2. 

.10 test is given by 

Cr = I x: ~ Xi ~ 395.347 or ~ Xi 2: 404.653). 

The critical region can be equivalently expressed using the sample mean as a 
test statistic, in which case 

Cr = {x: x ~ 1.977 or x 2: 2.023}. 

Thus, the hypothesis is rejected if the average operating time of the 200 sampled 
notebook computers ~ 1.977 hours or 2: 2.023 hours. 

Note that the values ofthe powerfunction (see Figure 9.10) for /k E (-00,00) 
are given by 

i 404.653 11404.653-200JlJ/v'S 
nd/k) = 1 - N(z; 200/k, 8)dz = 1 - N(z; 0, 1)dz. 

395.347 1395.347-200JlJ/v'S 

Some selected values of the power function are given below. 

I'- 7rc, (I'-) 

2 .100 
1.99,2.01 .183 
1.98,2.02 .410 
1.97,2.03 .683 
1.96,2.04 .882 
1.95,2.05 .971 
1.94,2.06 .995 0 

1t(!1) 
1 

0.8 

0.6 

0.4 

0.2 

o I !1 
1.94 1.95 1.96 1.97 1.98 1.99 2 2.01 2.02 2.03 2.04 2.05 2.06 
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The reader may have noticed that in the preceding two examples, the char­
acterization of admissible values for CI and C2 was simplified by the fact that 
g(X), which was a test statistic in both examples, had a distribution that was 
symmetric about its mean under the assumption Ho is true. In cases where this 
symmetry in the distribution of g(X) does not occur, the characterization of 
admissible (CI' C2) values is somewhat more involved. 

Example 9.22 Exponential Population Distribution-Ho : e = eo versus Ha : e =1= eo 
The operating life of a memory chip manufactured by the Elephant Computer 
Chip Co. can be viewed as a random variable with a density function belonging 
to the exponential family of densities. A random sample of the lifetimes of 500 
memory chips is to be used to test the hypothesis that the mean life of the chip 
is 5,000 hours. With the X/s measured in thousands of hours, the joint density 
of the random sample is given by 

fIx; 0) = 0-500 exp ( - ~XdO) a 1,0,001 (Xi) 

for 0 E Q = (0,00). Define a UMPU level-.05 test of Ho : 0 = 5 versus Ha : 0 =1= 5. 
Answer: The joint density can be written in the exponential class form 

fIx; 0) = exp[c(O)g(x) + d(O) + z(x)]1A(x), 

with 
500 

C(O) = _0- 1, g(x) = LXi, d(O) = In(0-500), z(x)=O, and A = xf2?(o, 00). 
i=l 

From Theorem 9.9, we seek a critical region of the form 

I 500 500 I 
Cr = x: t;Xi ~ CI or t;Xi 2: C2 

for choices of CI and C2 that produce an a-size critical region satisfying 
d7rc,(5)/dO = O. Using the MGF approach, it can be established thatZ = Lf~? Xi 
has a Gamma(z; SOD, /1) distribution, i.e., 

Z '" (1/050°r(500))z499 exp( -z/O)1,o,ool(z) 

(recall Ex. 9.18). 
Then Cr will have size a when 

['2 1 499 
1 - 7rc,(5) = lei 5500 r(500)z exp(-z/5)1lo,ool(z) = 1 - a. (1) 

The derivative of the power function can be represented as 

Gamma (z; 500, O)dz, 
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which when evaluated as () = 5, then set equal to 0, results in the condition 

l C2 d7rcr(5)/d() = - [lz/25) - 1001 
CI 

Gamma (z; 500, 5 )dz = O. (2) 

Unlike the previous two examples, the distribution of Z is not symmetric 
about its mean, and (2) does not imply that (CI, C2) is a symmetric interval 
around EZ = 2,500. Nonetheless, (2) defines an implicit functional relationship 
between C2 and CI, say C2 = y(CI), that determines admissible values of Cl and C2. 

Using the computer, the simultaneous equations (1) and (2) can be numerically 
solved for CI and C2, given a choice of the test size a E (0, 1). This procedure was 
followed, yielding the following Cl and C2 values for selected test sizes: 

ex Cl C2 

.01 2222.920 2799.201 

.05 2287.190 2725.618 

.10 2320.552 2688.469 

.20 2359.419 2646.057 

To define a UMPU level-.05 test of Ho: () = 5 versus Ha: () f. 5, the critical 
region would be defined as 

Cr = Ix: ~Xj ::: 2287.190 or ~Xi ::: 2725.618). 

One could also use the sample mean as a test statistic, in which case the critical 
region could be defined alternatively as 

Cr = {x: x::: 4.574 or x::: 5.451}. 

Thus, the hypothesis Ho: () = 5 will be rejected if the average life of the 500 
sampled chips::: 4,574 hours or::: 5,451 hours. 

Power function values for () > 0 are given by (see Figure 9.11) 

r2725.618 1 
7rcr(()) = 1 - 12287.190 ()500 f'(500) Z499 exp(-z/())dz. 

Some selected values of the power function are given below. 

9 1rcr (9) 9 1rCr (9) 

4 .999 5.10 .073 
4.25 .954 5.25 .196 
4.50 .649 5.50 .573 
4.75 .206 5.75 .878 
4.90 .073 6.00 .981 
5.00 .050 6.25 .999 

Unlike the previous two examples, the power function is not symmetric about 
the point ()o = 5. However, it is "nearly" symmetric because of the fact that 
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Figure 9-11 
Power function of UMPU 

level-.OS test of Ho : () = S 
versus Ha : () =1= s. 
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Zn = 1:7=1 Xj has an asymptotic normal distribution, and a sample size of n = 
500 is sufficient for the asymptotic distribution to provide a good approximation 
to Zn's Gamma distribution. 0 

Example 9.23 Normal Population Distribution-Ho : Ji, E [Ji,l, Ji,2) versus Ha: Ji, f:. [Ji,1, Ji,2) 

Recall Ex. 9.21 regarding the operating times of notebook computers between 
full battery charges. Suppose instead of testing the hypothesis Ho: J-L = 2, a 
range of values for the mean operating time of the computer is to be tested. In 
particular, suppose we wish to test the hypothesis Ho: 1.75 :5 J-L :5 2.25 versus 
Ha: J-L < 1.75 or J-L > 2.25. We know from Ex. 9.21 that fIx; J-L) belongs to the 
exponential class of densities and satisfies the other conditions of Theorem 9.9. 
Using Theorem 9.9, we seek an a-size critical region defined by 

200 200 

Cr = {x: LXi :5 CI or LXi::: C2} 

i=1 i=1 

for choices of CI and C2 that satisfy 

l C2 lc2 1 - Jrc,(350) = N(z; 350, 8)dz = Nlz; 450,8)dz = 1 - Jrc,(450) = 1 - a. 
CI CI 

Choosing a specific value of a, the preceding condition becomes a system of two 
integral equations which can be solved simultaneously (using the computer) for 
the two unknowns CI and C2. 
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Figure 9-12 
Power function of UMP 

unbiased level .05 test of 
Ho: 1.75 ::: e ::: 2.25 versus 

H.: e < 1.75 ore> 2.25 

Suppose the size of the test is chosen to be ex = .05. Using a nonlinear, 
simultaneous equations solver/2 the solution to the preceding two-equation 
system was found to be CI = 345.348 and C2 = 454.652. Thus, the critical 
region of the UMPU level-.05 test defined by Theorem 9.9 is given by 

Cr = Ix: ~Xi ::: 345.348 or ~Xi ?: 454.6521. 
One could also use the sample mean for the test statistic, in which case Cr 

could be defined alternatively as 

Cr = {x: x::: 1.727 or x?: 2.273}. 

Power function values are given by Isee Figure 9.12) 

i454.652 

nc,IIL) = 1 - N(z; 200IL, 8)dz 
345.348 

Some selected values of the power function are given below. 

I-t 7rc,(I-t) I-t 7r c, (I-t) 

2 ~O 1.72,2.28 .68 
1.76,2.24 .01 1.71,2.29 .88 
1.75,2.25 .05 1.70,2.30 .97 
1.74,2.26 .17 1.69,2.31 ~ 1.00 
1.73,2.27 .41 

1t(Il) 

1.691.711.731.75 2.242 2.262 2.282 2.302 

22The algorithm actually used was the NLSYS procedure in the GAUSS Matrix language. 
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The power function verifies that the test defined by Cr is unbiased and has size 
.05. The hypothesis Ho: 1.75 S J.L S 2.25 is then rejected by the UMPU level­
.05 test if the average operating time of the 200 sampled notebook computers 
S 1.727 hours or ~ 2.273 hours. 0 

Example 9.24 Exponential Population Distribution-Ho : () E W!, ()2l versus Ha: () E I()!, ()2l 

Recall Ex. 9.22 regarding the operating life of memory chips. Suppose instead 
of testing the hypothesis Ho: () = 5, a range of values for the mean life of 
the memory chips is to be tested. In particular, suppose we wish to test the 
hypothesis Ho: 4.9 S () S 5.1 versus Ha: () < 4.9 or () > 5.1. We know from Ex. 
9.19 that fIx; ()) belongs to the exponential class of densities and adheres to the 
other conditions of Theorem 9.9. Using Theorem 9.9, we seek a size a critical 
region of the form 

for choices of Cl and C2 that satisfy 

1~ 1~ I - ircr(4.9) = Gamma(z; 500, 4.9)dz = Gamma(z; 500, s.I)dzi - ircr(s.I) = I-a. 
CI CI 

Choosing a specific value of test size a, the preceding condition becomes a 
system of two integral equations, which can be solved simultaneously (using 
the computer) for the two unknowns Cl and C2. 

Suppose the size of the test is chosen to be a = .05. Using a nonlinear 
equation solver,23 the solution to the two-equation system was found to be 
Cl = 2268.031 and C2 = 2746.875. Thus, the critical region of the UMPU level­
.05 test defined by Theorem 9.9 is given by 

C r = Ix: ~Xi S 2268.031 or ~Xi ~ 2746.875). 

One could also use the sample mean for the test statistic, in which case Cr 
could be defined alternatively as 

Cr = {x: x S 4.536 or x ~ 5,494}. 

Power function values are given by (see Figure 9.13) 

12746.875 

ircr(e) = 1 - Gamma(z; 500, e)dz 
2268.031 

Some selected values of the power function are given below. 

23The algorithm actually used was the NLSYS procedure in the GAUSS matrix language. 
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Figure 9-13 
Power function of 

UMPU level-.05 test of 
Ho: 4.9 ~ £) ~ 5.1 versus 

Ha: f) < 4.9 or£) > 5.1. 
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9 1i"c, (9) 9 1i"c, (9) 

4.00 .998 6.00 .973 
4.25 .932 5.75 .841 
4.50 .576 5.50 .504 
4.75 .157 5.25 .151 
4.90 .050 5.10 .050 
5.00 .032 

The power function verifies that the test defined by Cr is a size .05 unbiased 
test. The hypothesis Ho: 4.9 ::: e ::: 5.1 is then rejected by the UMPU level 
.05 test if the average life of the 500 sampled memory chips::: 4, 536 hours or 
::: 5,494 hours. 0 

We observed in previous examples that the definition of the UMPU level-a 
critical region for testing Ho: e = eo versus Ha: 8 =1= eo was substantially 
simplified if the test statistic had a density that was symmetric about its mean. 
This is a general property of the construction of UMPU tests, based on Theorem 
9.9, that we now formalize. 

Theorem 9.10 (Two-Sided UMPU Tests of Ho: e = eo Versus Ha: 8 =1= 8 0 When Test Statis­
tics Have Symmetric PDFs) Assume the conditions of Theorem 9.9, and let 
the density of the test statistic g(X) be symmetric about its mean y = Eg(X) 
when 8 = 8 0 . lfcl and C2 are such that P(g(x)::: c2;80 ) = a/2. and Cl = 2.Y-C2' 
then Cr = {x: g(x) ::: Cl or g(x) ::: C2} defines a UMPU level-a test of Ho: 8 = 8 0 

versus Ha: 8 =1= 8 0• 
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Proof The random variable Z = g(X) - Y is symmetric about zero, and thus 

Example 9.25 

P(g(x) 2: C2; Elo) = P(z 2: C2 - y; Elo) = P(z ::: y - C2; Elo) 

= P(g(x) ::: 2y - C2; Elo) 

= P(g(x) ::: Cl; eo) = a/2. 

It follows that Cr defines an a-size test. 
To see that dner(Elo)/dEl = 0 is satisfied, first note that since nc,(El) = 

Eslc,(X), it follows from the exponential class representation of the density of 
X and Lemma 9.1 that (continuous case-discrete case is analogous) 

1)/ d J~oo··· J~oo lc,(x) exp[c(El)g(x) + d(El) + z(x)]IA(x) 
dnc ,El de = ~-=-.:.......:::::.-~---==--------, dEl 

dc(e) dd(El) 
= Eslc,(X)g(X) de + de PIx E Cr ; El). 

Therefore, 

. dc(eo) dd(Elo ) 
dnC,(Elo)/dEl = 0 1ff Esolc,(X)g(X) de = -a dEl . 

The right-hand side of the iff statement does in fact hold under the current 
assumptions, since 

dc(Elo) [ dC(Elo)] dc(Elo) 
Esolc,(X)g(X) de = Eso (g(X) - y)lc,(X) dEl + Eso ylc, (X) dEl 

dc(eo) dd(eo) 
= ay de = -a dEl ' 

where the last equality follows from the fact that Esog(Xj(dc(Elo)/dEl) _ 
-(dd(Elo)/dEl), since 

d J~oo ... J~oo exp(c(El)g(x) + d(El) + z(x))IA(x)dx dc(El) dd(El) 
o = de = Esg(X) dEl + dEl .• 

Revisit Ex. 9.20 and Ex. 9.21. In the first example, since the binomial density 
of Z = 'Li2? Xi is symmetric about EZ = 50, we know from Theorem 9.10 that 
Cl and C2 such that P(z 2: C2; .5) = at2 and Cl = 2(50) - C2 will define a UMPU 
level-a critical region Cr = {x: 'Li2? Xi ::: Cl or 'Li2? Xj 2: C2}. In particular, 
P(z 2: 60; .5) = .0285, Cl = 100 - 60 = 40, and then Cr = {x: 'Li2? Xi ::: 40 or 
'LJ2? Xj 2: 60} defines the appropriate size .057 critical region. 

In the second example, since the normal distribution of Z = 'Li2? Xi is 
symmetric about EZ = 400, we know from Theorem 9.10 that CI and C2 such 
that P(z 2: C2; 400) = a/2 and CI = 2(400)-C2 will define a UMPU level-a critical 
region Cr = {x: 'LJ~? Xj ::: CI or 'LJ~? Xi 2: C2}. In particula~ P(z 2: 404.653) = 
.05, Cl = 800 - 404~653 = 395.347~ and then Cr = {x: 'Li2? Xj ::: 395.347 or 
'LJ2? Xi 2: 404.653} defines the appropriate size .10 critical region. 0 
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It should also be noted that in the discrete case, it may not be possible 
to define an unbiased test, let alone a UMPU test, without resorting to so­
called randomized tests (see Problem 9.8). The reader should revisit Ex. 9.20 
and examine alternative choices of p to explore the difficulty. The problem 
does not arise in the continuous case. 

*Conditioning in the Multiple Parameter Case 

In the multiple parameter case, the random sample, X, has a joint distribution, 
fIx; 8), that belongs to a family of distributions indexed by a (k x 1) param­
eter vector 8 E Q, where k > 1. We will examine hypotheses of the form 
Ho: 8 i E Qb versus Ha: 8 i E Q~, where Qi = Qb u Q~ represents the admis­
sible values c f the ith parameter 8 i • Note that for both Ho and Ha, the values 
of 8 i , j =1= i, are left unspecified, and so it is tacitly understood that 8 1, 8 2 , ••. , 

8 i - I , 8 i+I , ••• , 8 k can assume any admissible values for which 8 E Q. In this 
hypothesis-testing context, the parameters 8 i , i =1= i, are often referred to as 
nuisance parameters, since we are not interested in them from the standpoint 
of our stated hypotheses, but they must nonetheless be dealt with in defining 
a statistical test of Ho versus Ha. We will also examine explicitly tests of the 
more general hypotheses Ho: y(8) E Qb versus Ha: y(8) E Q~, where y(.) is a 
scalar function of the parameter vector 8. 

The approach we will use for defining tests in the multiparameter case will 
allow us to use the previous results we have obtained concerning tests for the 
single parameter case. In particular, we will seek to transform the problem into 
a single parameter situation by conditioning on sufficient statistics and then 
apply previous results for the single parameter case to the transformed problem. 
In a significant number of cases of practical interest, the approach can be used 
to define UMP level-a tests, or at least UMP level-a tests within the unbiased 
class of tests. We will examine a number of other useful and more versatile test 
procedures for the multiparameter case in Chapter 10, although the procedures 
will not necessarily be UMP or UMPU tests. 

There is a substantial literature on UMP and UMPU tests of statistical 
hypotheses in multipara meter situations that is more advanced than what we 
present here and that also applies to a wider array of problems. For additional 
reading, and a multitude of references, see E. Lehmann (1986), Testing Statisti­
cal Hypotheses, 2nd ed. New York: John Wiley, pp. 134-281. 

UMPU Level-a Tests via Conditioning The basic idea of conditioning in order 
to transform a multiparameter problem into a problem involving only a single 
parameter, or a scalar function of parameters, is as follows. Let SI, ... , Sr be a 
set of sufficient statistics for fIx; 8). Suppose that the elements in the param­
eter vector 8 have been ordered so that 8 1 is the parameter of interest in the 
hypothesis test, and 8 2, ... , 8 k are nuisance parameters. Suppose further that, 
for each fixed value of 8? E QI, Si' ... , Sr are sufficient statistics for the k-l pa­
rameter density fIx; 8?, 8 2, ••. , 8k), (8?, 8 2, •.• , 8kl E Q. It then follows from 
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Lemma 9.2 
Differentiability 

of-y(8) = EerjJ(X) 
in the Case of a 
Multiparameter 

Exponential 
Class Density 

the definition of sufficiency (recall Def. 7.18) that 

i.e., the conditional distribution of X, given si, ... , Sr, does not depend on the 
nuisance parameters O2, ••. , 0k. In effect, by conditioning on si' ... ' Sr the 
problem will have been converted into one involving only the parameter e 1. As 
long as we are concerned only with results obtained in the context of the con­
ditional problem, single parameter UMP or UMPU hypothesis-testing results 
would apply. 

An analogous argument can be applied to a reparameterized version of 
f(x; e). Suppose the joint density function of X was reexpressed in terms of 
the parameter vector e, where Cj = Cj(e) for i = 1, ... , k, so that f*(x; c), for 
e E Qc = {e: Cj = cj(e),i = 1, ... ,k,e E Q}, is an alternative representa­
tion of the parametric family of densities f(x; e), e E Q. Then if, for each 
fixed c? E Q~, Si, ... , S; is a set of sufficient statistics for f.(x; c?, C2, ... , Ck), 
(c?, C2, ... , Ck) E Qe, it would follow that 

f.*(x; c?) = f*(x; c?, C2,· .. , Ck lsi, ... , s;), c? E Q, 

i.e., the conditional distribution of X, given si, ... , s;, would not depend on 
C2, ... , Ck. Then single parameter UMP and UMPU results could be applied to 
testing hypotheses about cde), conditional on si, ... , s;. 

For the conditioning procedure to have practical value, the optimal prop­
erties possessed by the critical region, Cr, in the conditional problem need to 
carryover to the context of the original unconditional problem. In particular, 
we will focus on determining when a Cr that is UMPU level a for the condi­
tional problem also possesses this property in the unconditional problem. The 
exponential class of densities represents an important set of cases in which the 
conditioning procedure works well. We will have use for the following gener­
alizations of Lemma 9.1 and Theorem 9.8: 

Letf(x; e) = exp(L~=1 Cj(e)gj(x)+d(e)+z(x))IA(x), e E Q, be an exponential 
class density with Q defined as an open rectangle contained in Rk and with 
cde), ... , Ck(e) and d(e) being differentiable functions of e E Q. If the 
function rjJ(x) is such that y(e) = Ee¢(X) exists VeE Q, then y(e) = Ee(X) 
is a differentiable function of e E Q. Furthermore, 

(continuous) W+S 100 100 
ae~ae~ ... ¢(x)f(x; e)dx 

1 ,-00 -00 

-100 100 W+Sf(x; e) - . . . ¢(x) aer aes dx 
-00 -00 1, 

(discrete) 
w+s 

ae~ae~ L ... L¢(x)f(x; e) 
1 , XERIX) 



9.5 Results on UMP Tests 573 

= L'" L¢(X)(Y+sflx ; 8) 
xeRIXI aej aej 

for i and j = I, ... , k, i.e., differentiation can occur under the integral or 
summation sign. 

Proof: See references listed for Lemma 9.1. 

Theorem 9.11 (Differentiability (and Continuity) of Power Function in the Case of a Multipa­
rameter Exponential Class Density) Let the joint density of a random sample 
be a member of the exponential class of densities 

fix; 8) = exp (t ci(8)gi(X) + d(8) + Z(X)) IA(X), 

8 E Q, with Q defined as an open rectangle contained in Rk and with cd8), 
... , Ck( 8), d( 8) being differentiable functions of 8 E Q. Let Cr be any critical 
region for testing some hypothesis Ho: 8 E Q o versus Ha: 8 E Q a.24 Then the 
power /unction Jt'cr (8) = Pix E Cr ;8) is differentiable (and hence continuous) 
with respect to 8 E Q. 

Proof This follows from Lemma 9.2 with a proof analogous to the proof of Theorem 
9.B. • 

We will state our main results in terms of hypotheses concerning the value 
of the cd8) function in the definition of the exponential class density.25 There 
is no loss of generality in stating our results this way-indeed, there is a gain 
in generality from doing so. First note that the ordering of the functions cd8), 
... , ck(8) in the exponential class definition is arbitrary, and so the hypothesis­
testing results we will present can be interpreted as referring to any of the orig­
inally specified ci(8) functions given an appropriate reordering and relabeling 
of the functions Cl (8), ... , ck(8). Furthermore, since the parameterization of a 
density function is not unique, the cd8) function can be defined to represent 
various functions of 8 that might be of interest to the researcher, depending on 
the chosen parameterization of the density function. In particular, a parameter­
ization of the density of X that results in cd8) = E>i places hypotheses about 
ei under consideration. We will also be able to extend our results to the case of 

24We are assuming that Cr is such that a power function is defined, i.e., Cr can be assigned probability by f(x;8),8 E n. 
25Note that e = [CI, ... , cd' could be viewed as an alternative parameterization of the exponential class of densities, where 

f.(x; c) = exp (t Cjgj(x) + d.(e) + Z(X)) IA(X), e Ene, 

with d.(e) = In (1:0 ... f~oo exp (I:f=1 Cjgj(x) + z(x)) IA(X)dx) -I (Use summation in discrete case). This parameterization is referred 

to as the natural parameterization of the exponential class of densities. Note that the definition of d.(c) is a direct result of the fact 
that the density must integrate (or sum) to 1. 
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testing hypotheses concerning linear combinations of the functions c[ (e), ... , 
Ck(e). Thus, types of hypotheses that can be tested using the following theorem 
are much more general than they might at first appear. 

Theorem 9.12 /Hypothesis Testing in the Multiparameter Exponential Class) Let the density 
of the random sample X be given by f(x;E» = exp(ELl Cj(e)gj/x) + d(e) + 
z(x))IA(x),e E Q c Rk, where Q is an open rectangle, Sj(X) = gj(X), i = I, 
... , k, represents a set of complete sufficient statistics for f(x; e), and where 
c(e) = (cde), ... ,cde)) and d(e) are differentiable functions of e E Q. If the 
size-a critical region Cr is unbiased, then the following relationships between 
Ho, Ha, and Cr hold: 

Case Ho H. 

(1) c1(8) = c? c1(8) > c? 
c1(8)::: c? c1(8) > c? 

(2) c1(8) = c? c1(8) < c? 
c1(8) 2: c? c1(8) < c? 

(3) c1(8) = c? c1(8) #- c? 

(4) 

C, for UMPU level-a: Test 

C, = (x: 51 (x) 2: h(S2, ... ,Sk)} 

such that Pix E C,; c? I 52, ... ,Sk) = a, 
V (52, ... ,Sk)26 

C, = (x: 51 (x) ::: h(52, ... ,5k)} 

such that Pix E C,; c? I 52, ... ,5kl = a, 
V (52, ... ,5k)26 

C, = {x: 51 (x) ::: h1 (52, .•• ,sd, 
or 5dx) 2: h2(S2, ... ,Sk)} 

such that Pix E C,; c? I 52, ..• ,5k) = a, 
V (52, ... ,Sk)26 

C, = (x: sdx) ::: h 1(S2,'" ,Sk) 

or 51 (x) 2: h2(S2,'" ,Sk)) 

such that Pix E C,;c: 152, ..• ,5k) = a, 
Pix E C,;ct I 52, ... ,5k) = (x, 

V (52, ... ,5d26 

"Sketch of the Proof We focus on the case where the density function of the random sample is dis­
crete. The proofs in the continuous case can be constructed using a similar 
approach, except the conditional densities involved would be degenerate, so 
that line integrals would be needed to assign conditional probabilities to events 
(recall the footnote to our definition of sufficient statistics Def. 7.18, regarding 
the degenerate conditional distribution f(x I s).1 

Given the definition of f(x; el, examine the distribution of X, conditional 
on S2, ... , Sk: 

~( . e I I _ P ({xl n {x: Sj(x) = Sj, i = 2, ... , kl I 
I x, S2, •.• ,Sk - ( ) 

P S2, ... , Sk 

26Except, perhaps, on a set having probability zero. 
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exp (cd8)sdx) + L~=2 ci(8)Si + d(8) + zlx)) IA.lx) 
=--~--------~----~--------------------~-------------

exp (L~=2 Cj(8)Sj + d(8)) L'" L{x: sj(xl=sj,i=2, ... ,kl exp!cd8)sdx) + z(x))IA(x) 

= exp(cd8)sdx) + d*(cd + z(x))IA.lx), 

where A* = A n (x: Sj(x) = Si, i = 2, ... , k}, and 

d*!cl) = InrI: ... LXEA. exp!cl (8)sl (x) + Z(X))J-I. 

Thus, f*(x; cd8) I S2,.·., skl = fIx; 8 I S2,···, skI is a one-parameter exponen­
tial class density with parameter cd8) and parameter space QCI = {CI: CI = 
cd8),8 E Q}. Note that CI is differentiable with respect to CI, and it is also 
true that d*!cl) is differentiable. The latter result follows from the chain rule of 
differentiation, since the natural logarithmic function is differentiable for all 
positive values of its argument, and the positive-valued bracketed term in the 
definition of d*(ct! is differentiable by Lemma 9.1 with <p(x) = l. 

Since the assumptions of Theorem 9.11 are met under the stated conditions, 
all power functions for testing Ho versus Ha are continuous and differentiable. 
It follows that, conditional on (S2, ... , Sk), all of the previous results regard­
ing UMP and UMPU tests for the case of a single parameter exponential class 
density apply. In particular, the definitions of the C/s in cases (1)-(4) are all 
conditionally UMPU level-a, based on Theorems 9.5 and 9.6 and Corollaries 
9.1 and 9.2 for results (1) and (2), and on Theorem 9.9 for results (3) and (4). 

Examine result (I). Let C; be any other unbiased level-a test, so that 
Jrc;(c?) = a* ~ a. Then it must be the case that Jrc;!c? I S2, ... , Skl ~ a with 
probability 1. To see this, note that by the double expectation theorem, 

Jrc;-(c?) - a* = Ec?lci(X) - a* = E [Ec? (lq(X) I S2, ... , Sk) - a*] = 0, 

and since the bracketed expression is a function of the complete sufficient 
statistics (S2, ... , SkI it follows by definition that the bracketed expression must 
equal 0 and thus Ec?(lci(X) I S2, ... , SkI = a* ~ a with probability 1 (recall 
Def. 7.20). Thus, C; must be conditionally unbiased of level-a. 

Now since Cr has maximum power for CI > c? among all unbiased level-a 
tests conditional on IS2, ... , skI, it follows from the double expectation theorem 
that for CI > c?, 

Jrc,(cd = Ec (Ecl(lc,IX) I S2,"" SkI) 2: Ec (Eci (ICi(X) I S2, ... , Skl) = Jrc;!cd 

so that Cr defines a UMPU level-a test of the hypotheses in case (1). 
The proof of case (2) follows directly from the proof of case (1) via appropriate 

inequality reversals. Moderate extensions of the preceding argument can be 
used to prove results (3) and (4) (see T. Ferguson (1967), Mathematical Statistics, 
New York: Academic Press, pp. 230-232). • 

We now study examples illustrating how Theorem 9.12 can be used in 
practice to define UMPU level-a tests of statistical hypotheses. Some of the ex­
amples will illustrate the use of reparameterization for transforming a problem 
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into a form that allows Theorem 9.12 to be used for defining a statistical test. 
Where appropriate, we point out general hypothesis-testing contexts to which 
the results of the examples can be applied. 

Example 9.26 Testing Hypotheses About the Variance of a Normal Population Distribution 

The number of miles that a certain brand of automobile tire can be driven before 
the tread-wear indicators are visible and the tires need to be replaced is a random 
variable having a normal distribution with unknown mean and variance, i.e., 
Xi'" NIIL, a2 ). A random sample of 28 tires is used to obtain information about 
the mean and variance of the population distribution of mileage obtainable 
from this brand of tire. We wish to test the hypotheses that Ho: a2 ~ 4 versus 
Ha: a2 > 4, where the mileage measurement, Xi, is measured in thousands of 
miles. Define a UMPU level-.OS test of Ho versus Ha. Given that x = 45.175 
and S2 = 2.652, test the hypothesis. 
Answer: First note that the joint density of the random sample, fIx; IL, a2 ) = 
/1//2rr)n/2an)exp(-/1/2)2::7=dxi - IL)2/a2), for n = 28, can be written in expo­
nen tial class form as 

where 

n 

gdx) = Lxf, 
i=1 

n 

g2/X ) = LXi, 
i=1 

d/IL, a 2 ) = - ~ (~:) - lnI/2rr)n/2an), and z(x) = O. 

Letting Si(X) = gi(X) for i = 1,2, sdX) and S2(X) are complete sufficient statistics 
for fix; IL, a2 ). Examining the parameterization of the exponential class density, 
it is evident that hypotheses concerning a2 can be framed in terms of hypotheses 
about Cl. In particular, Ho: a 2 ~ 4 versus Ha: a 2 > 4 can be alternatively 
expressed as Ho: Cl ~ -.125 versus Ha: Cl > -.125. 

Given result (1) of Theorem 9.12, we seek h/s2 ) such that for c? = -.125, 

rrc,/c?) = P (sdx) ~ h/s2 ); c? I S2) = P (txl ~ h (tXi); c? I tXi) = a = .05 
1=1 1=1 1=1 

VS2 = 2:::1 Xi (except, perhaps, on a set of S2 values having probability zero). 
We can simplify this problem substantially by first recalling (Theorem 6.12) 

- 2 2 1 2 
that the two random variables 2::7=1 (Xi - X) = 2::7=1 Xi - n- (2::7=1 Xi) and 
2::7=1 Xi are independent random variables, given that the X/s are iid N/IL, a2 ). 
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Then the preceding probability equality can be written alternatively as 

P (i::tXi - xp ::: h. (tXi); c?) = ex = .05, 
~I 1=1 

where h. = h - n-I(:L?=I Xi)2. Note that we have eliminated the conditional 
probability notation since the probability distribution of the random variable 
:L?=I (Xi - xj2 is unaffected by the value of :L?=I Xi given the aforementioned 
independence property. 

We can simplify the problem still further by first recalling that :L?=dXi -
X)2/O'2 '" X;-l when theX/s are iid N(JL, 0'2) (recall Theorem 6.12). Now rewrite 
the preceding probability equality as 

( n / -)2 (n) ) \Xi - X 2 0 
P L 0'2 :::h. LXi /O'O;c1 =ex=.05 

1=1 0 1=1 

where 0'5 = 4. Note in I") that the probability is being calculated using the 
parameter value c? = -.125, which coincides with 0'5 = 4. In other words, the 
probability is being calculated assuming that Xi '" NIJL, 4) V i, so that :L:I IXi -
X)2/O'5 = :L:dXj -X)2/4 '" X;-l' It follows that the value of h.(:L?=1 xil/O'5 that 
solves (") can be obtained from the table of the X2 distribution, with n - 1 = 27 
degrees of freedom in this case. The tabled value of 40.1 corresponding to ex = 
.05 implies that 

h. (t.Xi) M = [h (t.Xi) _n- l (t.Xi) '] /(56 

= Ht.Xi) -;8 (t.xYk = 40.1, 

so that the solution for h(:L?=1 Xi) is 

h (t.Xi) = 160.4 + (t.Xi)' /28 

We are given that :Lf!IXi = 28(45.175) = 1264.9, so that h(1264.9) 
57,302.258. Then by Theorem 9.12, the critical region becomes 

Cr = Ix: tx;::: 57,302.258). 
1=1 

Equivalently, using (") with 0'5 = 4 and n = 28, 

Cr = {x: 28s2/4 ::: 40.1}. 

Then since 28s2/4 = 2812.652)/4 = 18.564 t. 40.1, the null hypothesis 0'2 ~ 4 
is not rejected. 
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Figure 9-14 
Power function of UMPU 

level-.05 unbiased 
test of Ho : (72 :::: 4 
versus Ha : (72 > 4. 

The power function of the test can be defined in terms of the parameter 0'2 

as 

The power function could also have been expressed as a function of Cl, but 
power in terms of 0'2 is more natural given the original statement of the hy­
pothesis. Since 28S2/O'2 '" xi7 when the variance of the X/s equals 0'2, we can 
use the CDF of the xi7 distribution to plot a graph of the power function for 
various potential values of 0'2: 
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Definition 9.14 
UMPU level-a 

statistical test of 
Ho: (j2 ~ (j~ versus 

Ha : (j2 > (j~ when 
sampling from a normal 
population distribution 

*Example 9.27 

Lemma 9.3 
Reparameterizing 
Exponential Class 

Densities via Linear 
Transformations 

Note that even though Cr defines a UMPU level-.OS test [by Theorem 9.12), 
the test is not very powerful for values of a 2 E [4,7), say. To increase the power 
of the test in this range, one would either need to increase the size of the 
random sample on which the test is based, or else use a test size larger than 
.05 [although the latter approach would, of course, increase the type I error 
probability associated with the test). 0 

We can generalize the results of the previous example as follows. 

Let Xl, ... , Xn be a random sample from N[/-L, ( 2 ). The critical region 

! ns2 ) 
Cr = x: aJ 2: X~-l;a , 

where X~-l;a is a value solving JJ_I;a f[z; n - l)dz = a, and f[z; n - 1) is a X2 

density function having n - 1 degrees of freedom, defines a UMPU level-a 
statistical test of Ho: a 2 ::: aJ versus Ho: a 2 > aJ. 

The next example illustrates the fact that a great deal of ingenuity may be 
required, concomitant with a rather high degree of mathematical sophistica­
tion, in order to implement the results of Theorem 9.12. 

[Testing Hypotheses About the Mean of a Normal Population Distribution) Re­
call Ex. 9.26 regarding mileage obtained with automobile tires. Define 
UMPU level-.OS tests of Ho: /-L = 40 versus Ha: /-L =1= 40, and of Ho: /-L ::: 40 
versus Ha: /-L > 40. 

The parameterization used in Ex. 9.26 is not directly useful for implement­
ing the results of Theorem 9.12 to define statistical tests of the hypotheses 
under consideration. In considering alternative parameterizations, the follow­
ing lemma is useful. 

Let an exponential class density be given by 

fIx; c) = exp [t Cjgj[x) + dIe) + Z[X)] fAlx). 

Let ci = Et=l QjCj, with QI =1= 0, and let e* = [ci, C2, ... , cd'. Then fIx; c) can 
be alternatively represented as 

fIx; c*) = exp [cigi[X) + ~ Cjgj[x) + d*[c*) + Z[X)] fAlx), 

where 
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and 

d'le'l ~ In [I: ... I: exp [CigllX) + t, c;gilxl + 21xl] IAlxldx r 
Proof: The proof is immediate upon substituting the definitions of ci and 
gj!x), i = I, ... , k, into the expression for fix; e*), and defining d!e*) so that the 
density integrates to 1. Replace integration with summation in the discrete 
case. 

The point of the lemma is that any linear combination of the cJ) functions 
in the definition of an exponential class density can be used as a parameter 
in a reparameterization of the density !note that the cJ) functions can always 
be reordered and relabeled so that the condition al =1= 0 is not a restriction 
in practice). Then Theorem 9.12 can be used to test hypotheses about ci or, 

equivalently, about Lf=l aiCi. 
In the case at hand, reorder the ci\-) functions and gi!X) functions so that 

ci = t aici!IL,0"2) = al (~) +a2 (-2\)· i=l 0" 0" 

Without knowledge of the value of 0"2, it is clear that for cj = c? to imply a 
unique value of IL, the condition c? = 0 is required, in which case IL = a2/!2ad. 
Then letting c? = 0 and a2/!2al) = 1L0 = 40, it follows that ci = 0 iff IL = 40, and 
ci ~ 0 iff 1L0 ~ 40, assuming al > o. This establishes an equivalence between 
the hypotheses concerning IL and hypotheses concerning ci as follows: 

I Ho: IL = 40 Ho: ci = 0 } { Ho: IL ~ 40 Ho: ci ~ 0 } 
versus ¢:=:> versus and versus ¢:=:> versus 

Ha: IL =1= 40 Ha: ci =1= 0 Ha: IL > 40 Ha: cj > 0 

Test of Ho: IL ~ 40 versus Ha: IL > 40: The reparameterized exponential 
class density can be written as 

!recall Lemma 9.3, and the fact that z!x) = 0 in this case). Our approach will be 
simplified somewhat if we rewrite fix; e*) as 

fix; e*) = exp [ci t !Xi :lILO) + C2 t!Xi -lLof + dO!e*)] fAlx) 

= exp[cisj +c2si +dO!e*)]IA!x) 

where dOle*) = d*!e*) - nIL5c2 + nlLocj/al,lLo = 40, and we have used the fact 
that -a2/al = -2ILo. 
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Result (1) of Theorem 9.12 indicates that a UMPU level-a test of Ho: cj ~ 0 
versus Ha: cj > 0 can be defined by first finding a function h(s;.1 such that 

p (sj(xl ~ h(s;'); c? Is;') = P (t (Xi: /Lol ~ h (t(Xi -/LOf) ; c? IS;') = a = .05 (*1 
1=1 1 1=1 

v s;' = I:7=dXi - /Lo12 (except, perhaps, on a set of s;' values having probability 
zero I, with c? = O. Letting CO = [c?, C21' = [0, C21', it is useful to recognize that 

fix; co) = exp [C2S;'(X) + dO(e°l] IA(xl, 

which indicates that the value of fix; cO) changes only when the value of s;'(x) 
changes. This observation then clarifies the nature of the conditional distri­
bution of X given S2' namely, the conditional distribution of X is a uniform 
distribution on the range R(X Is;') = {x: I:7=1 (Xi - /Lo12 = s;'}, where R(X I S2) 
defines the boundary of an n-dimensional hypersphere having radius (sij1/2 • 

Specifically,27 

. [n(s*)(n-1 1/2nn/2]-1 
fix; CO lsi) = ~ (¥ + 1) IR(Xlsil(x). 

It follows from the definition of the support of the density of X that fix; CO lsi) 
is a degenerate density function, since all of the probability mass for the (n xl) 
vector X is concentrated on the surface R(X I si), which has dimension n - 1. 

We can now define the function h(si) that satisfies (*). Let h(si) = YO'(Si)1/2, 
where yO' is a positive constant. Multiplying both sides of the inequality in (.) 
by a 1 then defines 

p (t(Xi -/Lo) ~ y~(sill/2; c? I si) = a = .05, 

where y~ = alYO' is to be chosen so that (**) is true. The choice of y~ will be 
motivated by examining the case where n = 2, although an analogous argument 
applies to arbitrary finite n. Examine a circle with center I/Lo, /Lo) and radius 
r = (S;.j1/2, as in Figure 9.15. Recall from basic trigonometry that with (/Lo, /Lol 
as the origin, the point (x~ - /Lo, x~ - /Lo) can be represented in terms of polar 
coordinates as (r cos e, r sin 8). The function of 8 defined by I:7:dXi - /Lo) = 
r[cos e + sin 81 is strictly concave for e E (-135,2251, attains a maximum at 
e = 45 (the maximized value being 1.4142r to four decimals I, and is symmetric 
around e = 45. It follows that an a proportion of the points (Xl, X2) on the 
circumference of the circle can be defined by appropriately choosing y~ < 1.4142 

27The surface area of an n-dimensional hypersphere is given by A = (nrn- 1JTn/21/rUn/21+ II, where r is the radius of the hypersphere. 
See R. G. Bartle 119761, The Elements of Real AnalysiS, 2nd ed. New York: John Wiley, pp. 454--455, and note that the surface 
area can be defined by differentiating the volume of the hypersphere with respect to r. For n = 2, the bracketed expression simply 
becomes 2JT(siI1/2, which is the familiar 2m. 
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Figure 9·15 
Graph of R(X I r) = 

{x: L:7=1 (Xi - 11-0)2 ::::: r2 }. 

as 

Da = {(XI,X2): (Xl - }.Ld = r cos 8, (X2 - }.L2) = rsin 8, r(cos 8 + sin 8) :::: y~r} 

! (XI,X2): t(Xi - }.La) :::: y~(Si)1/2I' 
and since (Xl, X2) is distributed uniformly on the circumference, P(Da lsi) = c¥. 

Now note that the preceding argument applies for arbitrary r = (Si)1/2 > 0, 
so that y~ is the same value V r > O. An analogous argument leading to the 
constancy of y~ can be applied to the case of an n-dimensional hypersphere. 

Thus the critical region for the test will have the form 

Cr = ! x: t(Xi -}.Lo) :::: y~(Si)I/2I' 
regardless of the value of si. The remaining task is then to find the appropriate 
value of y~ that defines a test of size c¥. 

It turns out that there is an alternative representation of the critical region 
in terms of the t-statistic, which is the form in which the test is usually defined 
in practice. To derive this alternative representation, first note that28 

n n [ (- )2] • 2 - 2 nx-}.Lo 
82 = 2JXi - }.Lo) = ?::(Xi - X) 1 + L:n (x. _ x)2 . 

1=1 1=1 1=1 1 

28Expanding LZ"d(Xi - x) + (x - 11-0))2 leads to the result. 
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Then the critical region can be represented as 

C I nix - J1.oJ * [1 nix - J1.oJ2 ] 1/2) 
r= x: >r. + . 

[L:7=dxi - XJ2]1/2 - a L:7=dXi - xJ2 

Multiplying both sides of the set-defining inequality by [In -1 J/ n Ji /2 and defining 
t = n 1/21x - J1.oJ/IL:%:dxi - XJ2 lin - IJP /2, we can equivalently represent Cr as 

Cr = {x: It2 + nt _ 1 )1/2 ~ y2} , 
where yg = y;/nI/2. Since t/lt2 + n - ljI/2 = 11 + In - IJ/t2J-1 /2 is strictly mono­
tonically increasing in t Ifor n > I J, there exists a value ta such that 

t 
It2 + n _ lJI/2 ~ Y2 {=} t ~ tn-l;a, 

so that Cr can be substantially simplified to 

Cr = {x: t ~ tn-l;a}. 

Assuming J1. = J1.0 to be true, it would follow that T has the student t­
distribution with n - 1 degrees of freedom so that the value of tn -l;a can be 
found as the value that makes Pit ~ tn-l;a; J1.oJ = ex = .05 true. From the table 
of the student t-distribution, with degrees of freedom equal to n - 1 = 27, it 
is found that t27;.05 = 1.703. Given that x = 45.175 and S2 = 2.652, it follows 
that for J1.0 = 40, t = (28)1 /2145.175 - 40J/(2.75)1/2 = 16.513. Since t > 1.703, we 
reject Ho: J1. :::: 40 in favor of Ha: J1. > 40. 

In order to graph the power function of the test, we must calculate values of 
nlJ1.J = Pit ~ 1.703; J1.J, which in turn requires that we identify the distribution 
of T when 11- i- 11-0. To see what is involved, note that we can represent T as 

T = IX - J1.J + 1J1. - J1.oJ I [nS2 lin _ 1J]1/2, 
a/../ii 0'2 

so that if 11- i- 11-0, we have 

[ J1. - J1.0J [ Y ] 1/2 
T= Z+ a/../ii I In-IJ ' 

where Z ,...., N(O,IJ, Y ,...., X;-l1 and Z and Yare independent. Letting A = 
111- - 11-0 J/la/ ../iiJ, the random variable T has a noncentral t-distribution, with 
non centrality parameter A, and degrees of freedom n - I, denoted as tn-dAJ. 
When A = 0, the ordinary central student t-distribution is defined. We discuss 
properties of the noncentral t-distribution in Section 9.6 of this chapter. For 
now, note that A depends not only on 11-, but also on a, which effectively im­
plies that we must either plot the power of the test in two dimensions lin terms 
of values of 11- and aJ, or else in a single dimension as a function of the noncen­
trality parameter. The latter is the approach most often followed in practice, 
and we follow it here as wellisee Figure 9.16J. Integrals of the noncentral t­
distribution can be evaluated by many modern statistical software packages, 
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Figure 9-16 
Power function of UMPU 

level-.05 test of Ho: /.L ~ 40 
versus Ha : /.L > 40, where 

A = (/.L - 40)/(u/ .J28). 
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Test of Ha : /L = 40 versus Ha : /L =1= 40: In order to define a test of Ha : /L = 40 
versus Ha: /L =1= 40, result (3) of Theorem 9.12 suggests that the critical region 
can be defined as 

Gr = {x: si(x) ::: hds2) or si(x) ?: h2(S2)} 

for hI and h2 chosen such that PIx E Gr ; c? I S2) = ex = .05 V S2 (except, perhaps, 
for a set of S2 values having probability zero). Using an argument along the lines 
of the previous discussion (see T. Ferguson, Mathematical Statistics, p. 232), it 
can be shown that 

Gr = {x: t::: tl or t ?: t2}, 

where t is defined as before, and tl and t2 are constants chosen so that when 
/L = /La = 40, PIx E Gr; /La) = .05. The additional condition in result (3) of 
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Figure 9-17 
Power function of UMPU 

level-.05 test of Ho : IJ. = 40 
versus Ha : IJ. =f. 40, where 

'A = (IJ. - 40)/(a/..j28). 

Theorem 9.12 is met by choosing tl = -t2 since T has the symmetric student t­
distribution when J-L = J-Lo and Theorem 9.10 applies. In particular, Cr is defined 
by 

Cr = {x: t ::: -tn-l;cx/2 or t ::: tn -l;cx/2}, 

where tn-l;cx/2 solves It:I:,,/2 fit; n - l)dt = a/2 with fIt; n - 1) being a student 
t-distribution with n -1 degrees of freedom. For a t-distribution with 27 degrees 
of freedom, t27;.025 = 2.052. Since t = 16.513> 2.052, Ho: J-L = 40 is rejected in 
favor of Ha: J-L =I 40. 

The power function of the test is defined by values of PIx E Cr ; J-L). As 
before, T has a noncentral t-distribution (see Section 9.6) with noncentrality 
parameter A = (J-L - 40)/(o/.J28'). Defining the power function in terms of A 
yields the following results. 
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The power function is graphed in Figure 9.17. 
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Definition 9.15 
UMPU level-a: statistical 

test of Ho : I-' ::; 1-'0 
versus Ha : I-' > 1-'0, 
and of Ho : I-' = 1-'0 

versus Ha : 1-'f=1-'0, when 
sampling from a normal 
population distribution 

We can generalize the results of the previous example as follows. 

LetXl, ... , Xn be a random sample from N(I-', a 2),let fit; v) denote the student 
t-distribution with v degrees of freedom, and define T = (n - Ij1/2(X - /.Lo)/S. 

1. Cr = {x: t::: tn_l;a}definesaUMPUlevel-astatisticaltestofHo: /.L::: /.Lo 
versus Ha: /.L > /.Lo, where it:1:" fit; n - 1 )dt = a. 

2. Cr = {x: t ::: -tn-l;a/2 or t ::: tn-l;a/2} defines a UMPU level-a statistical 
test of Ho: /.L = /.Lo versus Ha: /.L i= /.Lo, where it: 1:,,/1 fit; n - l)dt = a/2. 

Concluding Remarks 

In this section we examined some theory and procedures related to the defini­
tion of statistical tests that were either UMP or UMPU level-a for various types 
of hypotheses. As is evident from the proofs of the theorems and the illustrative 
examples, attempting to define UMP or UMPU level-a tests can sometimes be 
a substantial challenge. While the results provided in this section provide direc­
tion to the search for a statistical test, application of the results still requires 
considerable ingenuity, and the procedures are not always tractable or even 
applicable. 

In the next chapter we will examine well-defined procedures that will lead 
to specific statistical tests with less effort than the procedures introduced so 
far. While leading to the definition of statistical tests that generally work well 
in practice, the procedures do not explicitly incorporate the objective of finding 
a UMP or UMPU level-a test. As a result, they generally cannot be relied upon 
to produce tests with these properties. However, the power functions of such 
tests are nonetheless often quite adequate for hypothesis-testing applications, 
and the tests frequently do possess some optimal properties. 

9.6 Noncentral t-Distribution 

Family Name: Noncentral t-Distribution 

Parameterization 

v (degrees of freedom) and A (noncentrality parameter) 

(v, A) E Q = {(v, A): v is a positive integer, A E (-00, oo)} 

Density Definition 

. _ vv/2 2 -1v+11l2 [ A2V] [00 [1 ( At )2] 
fit, v, A) - nl/2[,(v/2)2Iv-l)/2 (t + v) exp 2(t2 + v) 10 exp -2: x - (t2 + vJl/2 XV dx 
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Moments 

J-L = alA for v > I, a 2 = a2A2 + a3 for v > 2, J-L3 = a4A3 + asA for v > 3, where 

al = (v/2)1/2r (V ~ 1) Ir (~), 
[ v(7 - 2v) 2] 

a4 = al (v _ 2)(v _ 3) + 2al , 

MGF Does not exist 

v 
a3= --, 

v-2 

The noncentral t-distribution is the distribution of the random variable 

T=~ 
jy/v' 

where Z '" N(A, 1), Y '" X~, and Z and Yare independent. Note that when A = 0, 
T will have the ordinary (central) student t-distribution derived in Chapter 
6. The density definition can be found by the change-of-variables approach, 
similar to the derivation of the t-density in Section 6.7. 

When A = 0, the t-distribution is symmetric around zero. When A > 0 
(A < 0), the mean of the distribution moves to the right (left) of zero, and the 
distribution becomes skewed to the right (left). 

Our principal use of the noncentral t-distribution is in analyzing the power 
function of statistical tests based on the t-statistic. We have already encoun­
tered a case where the statistic T = (n - 1)1/2(k - J-Lo)/S was used to test hy­
potheses about the mean of a normal distribution, such as Ho: J-L = J-Lo versus 
Ha: J-L =/:. J-Lo, or Ho: J-L :s J-Lo versus Ha: J-L > J-Lo (recall Ex. 9.27 and Def. 9.15). 
In particular, letting 

X - J-Lo (nS2 ) 1/2 Z 
T = a/../ii I a2 I(n - 1) = (Y/(n _ 1))1/2' 

where Z '" N((J-L - J-Lo)/(a/ ../iiJ, 1), Y '" X;-JI and Z and Yare independent (as 
in the context of Ex. 9.27), it follows from the definition of the noncentral t­
density that T '" fIt; n-1, A), with A = (J-L- J-Lo)/(a/ ../ii). Then the power function 
of any test defined by Cr = {x: t E C~} can be expressed as a function of A as 

n(AJ = 1 fIt; n - I, A)dt. 
teq 

The noncentral t-distribution can be integrated numerically, or the integral 
can be approximated via series expansions. Integration of the noncentral t­
distribution adequate for performing power calculations is readily available in 
software packages such as GAUSS, SAS, and Shazam. Regarding power function 
calculations, it is useful to note that 

100 fIt; v, A) dt increases as A increases, 
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i:f(t; v, A)dt increases as A. decreases,and 

i: fIt; v, I..)dt decreases as 11..1 increases. 

For further information, see the excellent survey article by D. B. Owen 
(1968), II A survey of properties and applications of the noncentral t-distribu­
tion./I Technometrics, pp. 445-478. 
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Problems 

1. A shipment of 20 projection screen television sets is 
at the receiving dock of a large department store. The de­
partment store has a policy of not accepting shipments 
that contain more than lD percent defective merchan­
dise. The receiving clerk is instructed to have a quality 
inspection done on two sets that are randomly drawn, 
without replacement, from the shipment. Letting k rep­
resent the unknown number of defective sets in the 
shipment of 20 sets, the null hypothesis Ho: k :5 2 will 
be rejected iff both sets that are inspected are found to 
be defective. 

a. Calculate the probabilities of committing type I er­
rors when k = 0, 1, or 2. 

b. Calculate the probabilities of committing type II 
errors when k 2: 3. 

c. Plot the power function of this testing procedure. 
Interpret the implications of the power function 
from the standpoint of both the department store 
and the television manufacturer. 

2. A pharmaceutical company is analyzing the effec­
tiveness of a new drug that it claims can stimulate hair 
growth in balding men. For the purposes of an adver­
tising campaign, the marketing department would like 
to be able to claim that the drug will be effective for 
at least 50 percent of the balding men who use it. To 
test the claim, a random sample of 25 balding men are 
given the drug treatment, and it is found that lD appli­
cations were effective in stimulating hair growth. The 
population of balding men is sufficiently large that you 
may treat this as a problem of random sampling with 
replacement. 

a. Test the null hypothesis Ho : P 2: .50 using as close 
to a .lD-size test as you can. 

b. Plot the power function for this test. Interpret the 
power function from the standpoint of both the 
pharmaceutical company and the consuming pub­
lic. 

c. Is the test you used in (a) a UMP test? Is it a UMPU 
test? Is it an unbiased test? Is it a consistent test? 

d. Calculate and interpret the p value for the test. 

3. In each case below, identify whether the null and 
the alternative hypotheses are simple or composite hy­
potheses. 
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a. You are random sampling from a Gamma popula­
tion distribution, and you are testing Ho: ex :5 2 
versus Ha : ex> 2. 

b. You are random sampling from a geometric popu­
lation distribution, and you are testing Ho: P = .01 
versus Ha: p> .Ol. 

c. The joint density of the random sample Y = xfJ + £ 

is N(xfJ, (J"2 I), and you are testing whether fJ = [0]. 
d. You are random sampling from a Poisson popula­

tion distribution, and you are testing Ho: A = 2 
versus Ha: A = 3. 

4. A large metropolitan branch of a savings and loan 
is examining staffing issues and wants to test the hy­
pothesis that the expected number of customers requir­
ing the services of bank personnel during the midweek 
(Tuesday-Thursday) noon hour :5 50. The bank has ob­
tained the outcome of a random sample consisting of 
lDO observations on the number of noon hour customers 
requiring service from bank personnel. It was observed 
that x = 54. You may assume that the population dis­
tribution is Poisson in this case. 

a. Design a UMP level-.OS test of the null hypothe­
sis having size as close to .05 as possible. Test the 
hypothesis. 

b. Plot the power function for the test. Interpret the 
power function both from the standpoint of man­
agement's desire for staff reductions and the need 
to provide quality customer service to bank cus­
tomers. 

5. The annual proportion of new restaurants that sur­
vive in business for at least one year in a U.S. city with 
population 2: 500,000 people is assumed to be the out­
come of some Beta population distribution. Part of the 
maintained hypothesis is that b = 1 in the Beta distri­
bution, so that the population distribution is assumed 
to be Beta(a, 1). A random sample of size 50 from the 
beta population distribution results in the geometric 
mean Xg = .84. 

a. Define a UMP level-.OS test of the hypothesiS that 
less than three-quarters of new restaurants are ex­
pected to survive at least one year in business in 
U.S. cities of size 2: 500,000. Test the hypothesis. 

b. Plot the power function for the test. Interpret the 
power function both from the standpoint of a po­
tential investor in a restaurant and from the per-
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spective of the managing director of a chamber of 
commerce. 

c. Calculate and interpret the p value for the test. 

6. A complaint has been lodged against a major do­
mestic manufacturer of potato chips stating that its 
16-oz. bags of chips are being underfilled. The man­
ufacturer claims that its filling process produces fill 
weights that are normally distributed with a mean of 
16.1 ounces and a standard deviation of :5 .05, so that 
over 97 percent of its product has a weight of ~ 16 oz. 
It suggests that its product be randomly sampled and 
its claims be tested for accuracy. Two independent ran­
dom samples of observations on fill weights, each of 
size 250, resulted in the following summary statistics: 
Xl = 16.05, X2 = 16.11, sf = .0016, and si = .0036. 

a. Define a UMPU level-.Os test of Ho: J.t = 16.1 ver­
sus Ha: J.t f 16.1 based on a random sample of size 
250. Test the hypothesis using the statistics asso­
ciated with the first random-sample outcome. Plot 
and interpret the power function of this test. 

b. Define a UMPU level-.Os test of Ho: a :5 .05 versus 
Ha: a > .05 based on a random sample of size 250. 
Test the hypothesis using the statistics associated 
with the second random-sample outcome. Plot and 
interpret the power function of this test. 

c. Calculate and interpret the p values of the tests in 
(a) and (b). 

d. Treating the hypotheses in (a) and (b) as a joint hy­
pothesis on the parameter vector of the normal pop­
ulation distribution, what is the probability of type 
I error for the joint hypothesis Ho: J.t = 16.1 and 
a :5 .05 when using the outcome of the two test 
statistics above to determine acceptance or rejec­
tion of the joint null hypothesis? Does the com­
plaint against the company appear to be valid? 

"e. Repeat (a)-(c) using a pooled sample of 500 obser­
vations. (Hint: In (c), it might be useful to consider 
Bonferroni's inequality for placing an upper bound 
on the probability of type I error.) 

7. In a random sample of size 10 from a Bernoulli pop­
ulation distribution, how many (nonrandomized) crit­
ical regions can you define that have size :5 .10 and 
that are also unbiased for testing the null hypothesis 
Ho: p = .4 versus Ha: p f .4? 

8. Randomized Test It was demonstrated in Ex. 9.10 
that the choices of size for most powerful tests of the 
hypothesis Ho: p = .2 versus Ha: p = .8 were quite 

limited. Suppose that a .05 level test of the null hypoth­
esis was desired and that you were willing to utilize a 
randomized test. In particular, examine the following 
randomized test rule: 

x ~ 8 :::} reject Ho, 

x = 7 :::} reject Ho with probability., 

accept Ho with probability (1 - .), 

x :5 6 :::} accept Ho. 

To implement the rule when x = 7 occurs, a uniform 
random number z with range (0,1) could be drawn, and 
if z :5 ., Ho would be rejected, and if z > ., Ho would be 
accepted. 

a. Find a value of • that defines a size·.Os test of the 
null hypothesis. 

b. Is it possible that two analysts, using exactly the 
same random sample outcome and exactly the 
same test rule could come to different conclusions 
regarding the validity of the null hypothesis? Ex­
plain. (This feature of randomized tests has discour­
aged their use.) 

c. Is the test you defined in (a) an unbiased size .05 
test of the null hypothesis? 

"d. Is the test you defined in (a) a most powerful size 
.05 test of the null hypothesis? 

9. The number of work-related injuries per week that 
occur at the manufacturing plant of the Excelsior Cor­
poration is a Poisson-distributed random variable with 
mean A ~ 3, according to company analysts. In an at­
tempt to lower insurance costs, the corporation insti­
tutes a program of intensive safety instruction for all 
employees. Upon completion of the program, a 12-week 
period produced an average of 2 accidents per week. 

a. Design a uniformly most powerfullevel-.1O test of 
the null hypothesis Ho: A ~ 3 versus the alterna­
tive hypothesis Ha: A < 3 having size as close as 
possible to, without exceeding, .10. 

b. Test the null hypothesis using the test you defined 
in part (a). What can you say about the effectiveness 
of the safety program? 

10. Being both quality and cost conscious, a major for­
eign manufacturer of compact disc players is contem­
plating its warranty policy. The standard warranty for 
compact disc players sold by competing producers is one 
year. The manufacturer is considering a two-year war­
ranty. The operating life until failure of the manufac-
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turer's compact disc player has the density 

f(x; m = (x/,82)exp(-x/mI IO.ooJ(X) 

for some value of ,8 > 0, where x is measured in years. 

a. The manufacturer wants its exposure to warranty 
claims to be, on the average, no more than 5 percent 
of the units sold. Find the values of ,8 for which 
P(x ::5 2; ,8) = f; f(x; ,8)dx ::5 .05. 

b. Based on a random sample of size 50, design a uni­
formly most powerfullevel-.1O test of the null hy­
pothesis that ,8 will be in the set of values you iden­
tified in (a). 

c. A nondestructive test of the disc players that de­
termines their operating life until failure is ap­
plied to 50 players that are randomly chosen from 
the assembly line. The measurements resulted in 
x = 4.27. Test the null hypothesis in (b). 

d. Plot the power curve of this test, and interpret its 
meaning to the management of the manufacturing 
firm. 

11. Referring to Def. 9.14, state the form of the UMPU 
level-a test of the null hypothesis Ho: a2 ::: a5 versus 
Ha: a2 < a5' Justify your answer. 

12. Referring to Def. 9.15, state the form of the UMPU 
level-a test of the null hypothesis Ho: fL ::: fLo versus 
Ho: fL < fLo. Justify your answer. 

13. Your company supplies an electronic component 
that is critical to the navigational systems of large jet 
aircraft. The operating life of the component has an ex­
ponential distribution with some mean value v, where 
operating life is measured in 100,OOO-hour units. You 
are seeking a contract to supply these components to 
a major aircraft manufacturer on the West Coast. The 
contract calls for a minimum mean operating life of 
750,000 hours for the component, and you must provide 
evidence on the reliability of your product. You have a 
random sample of observations on tests of 300 of your 
components that provide measurements on the compo­
nents' operating lives. According to the tests performed, 
the mean operating life of the components was 783,824 
hours. 

a. In designing a UMP level-a test in this situation, 
should the null hypothesis be defined as e ::: 7.5 or 
e ::5 7.5? Base your discussion on the characteristics 
of the power function of each of the tests. 

b. Design a UMP size a test of whichever null hypoth­
esis you feel is appropriate based on your discussion 

591 

in (a). Choose whatever size test you feel is appro­
priate, and discuss your choice of size. 

c. Conduct the hypothesis test. Should your company 
get the contract? Why or why not? 

*14. The Pareto distribution 

f(x; e, c) = cllex-ll+liJllc.ooJ(X), 

for e > 0 and c > 0, has been used to model the distri­
bution of incomes in a given population of individuals, 
where c represents the minimum level of income in the 
population. In a certain large state on the East Coast, 
the office of fiscal management is investigating a claim 
that professors at four-year universities have average an­
nual salaries that exceed the state average annual salary 
for middle management, white collar workers, which is 
known to be $62,471. A random sample of 250 profes­
sors' salaries was obtained, and the geometric mean of 
the observations was found to be (n7=1 x;p/n = 61.147, 
where the x;'s are measured in thousands of dollars. As 
part of the maintained hypothesis, the value of c is taken 
to be 30. 

a. Express the mean level of income as a function of 
the parameter e. 

b. Define a test statistic on which you can base a UMP 
level-a test of the null hypothesis Ho: fL ::5 62.471 
versus Ha: fL > 62.471. 

c. Define a UMP size .05 test of the null hypothesis 
Ho: fL ::5 62.471 versus Ha: fL > 62.471. (Hint: Use 
a test statistic for which you can apply an asymp­
totic normal distribution, and use the normal ap­
proximation. ) 

d. Test the hypothesis. Are university professors paid 
more than white collar, middle management work­
ers in this state? 

15. Suppose that a random sample of size n is drawn 
from a normal population distribution for which a2 is 
assumed to be known and equal to the given value a;. 
Define UMPU level-a tests of the following null hy­
potheses: 

a. Ho: fL ::5 fLo versus Ha: fL > fLo 

b. Ho: fL ::: fLo versus Ha: fL < fLo 

c. Ho: fL = fLo versus Ha: fL i= fLo 

16. Suppose that a random sample of size n is drawn 
from a normal population distribution for which fL is 
assumed to be known and equal to the given value fL •. 
Define UMPU level-a tests of the following null hy­
potheses: 
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a. Ho: 0'2 ~ 0'20 versus Ha: 0'2 > 0'20 

b. Ho: 0'2 ::: 0'20 versus Ha: 0'2 < 0'20 

c. Ho: 0'2 = 0'20 versus Ha: 0'2 # 0'20 

17. Control Charting A large mail-order house has ini­
tiated a quality-control program. It randomly samples 
100 of each day's orders and monitors whether or not 
the mail order-taking process is "under control" in the 
sense that errors in order taking are at minimum levels. 
The number of orders per day is sufficiently large that 
one can assume that the sampling is done with replace­
ment. The daily error proportion prior to the initiation 
of this program has been 3.2 percent. 

a. Define a UMPU level-a test of the hypothesis 
Ho: P = .032 versus Ha : pol .032. You may use the 
asymptotic normal distribution of the test statistic 
in defining the critical region. 

b. Conduct a size .05 UMPU test of the null hypoth­
esis on a day where x = 3.4. Is the order process 
under control? 

c. After quality-control training and closer monitor­
ing of clerical workers, a daily random sample re­
sulted in x = 2.6. Is there evidence that quality has 
increased over what it has been in the past? Why or 
why not? 
(The mail-order company of Alden's Inc. was one 

of the earliest companies to use control charting tech­
niques for monitoring clerical work. See John Neter 
(1952), "Some applications of statistics for auditing." 
f. American Statistical Assoc., March, pp. 6-24.) 

18. Revisit Ex. 9.27 and the power function graph in 
Figure 9.16 and consider the implications of the power 
function graph in the two-dimensional parameter space 
(tL,a). 

a. Plot the power surface in three dimensions, with 
the axes referring to power, the value of tL, and the 
value of a. (This is probably best done with the aid 
of a computer!) 

b. Plot the isopower contour in the (tL, a)-plane for a 
power level of .90. (An isopower contour is the set of 
(tL, a) points that result in the same level of power, 
which in the case at hand is equivalent to the set 
of (tL, a) points that result in the same value of the 
noncentrality parameter A.) Interpret the isopower 
contour with respect to the ability of the test to 
detect deviations from the null hypothesis. 

19. The Gibralter Insurance Co. is reevaluating the pre­
miums it charges on car insurance and is analyzing clas-

sifications of cars into high risk, average risk, and low 
risk on the basis of frequency of accidents. It is cur­
rently examining an imported mid-size four-door sedan 
and wishes to examine whether its frequency of claims 
history is significantly different than a range of values 
considered to be consistent with the expected frequency 
of claims of the average risk class, the range being be­
tween 2 percent and 4 percent of the vehicles insured. 
A random sample with replacement of 400 insured ve­
hicles of the type in question resulted in a claims per­
centage of 7 percent. 

a. Design a UMPU level-a test of the null hypothesis 
Ho: tL E [2,4J versus Ha: tL ¢ [2,4J. You can base 
your test on the asymptotic normal distribution of 
the test statistic. 

b. Test the null hypothesis using a size .05 UMPU test. 
Does the outcome contradict classifying the vehi­
cle in the average risk class? Why or why not? 

c. Supposing you rejected the hypothesis, what would 
be your conclusion? Is further statistical analysis 
warranted? 

·20. A certain business uses national telephone solici­
tation to sell its product. Its sales staff have individual 
weekly sales quotas of 10 sales that they must meet or 
else their job performance is considered to be unsatis­
factory and they receive only base pay and no sales com­
mission. In hiring sales staff, the company has claimed 
that the proportion of customers solicited that will ul­
timately buy the company's product is .05, so that on 
average, 200 phone calls per week should produce the 
required 10 sales. The company requires that a salesper­
son keep a record of how many phone solicitations were 
made, and when the tenth sale is made, the salesperson 
must indicate the number of phone calls that were made 
to obtain the 10 sales. The data on the last 200 weekly 
quotas that were met by various salespersons indicated 
that 289 phone calls were needed, on average, to meet 
the quota. A disgruntled employee claims that the com­
pany has overstated the market for the product, and she 
wants the quota lowered. 

a. Define a UMP level-a test of the hypothesis 
Ho: P = .05 versus Ha: P < .05. You may use an 
asymptotic normal distribution for the test statis­
tic, if it has one. 

b. Test the hypothesis with a UMP size .10 test. Does 
the disgruntled employee have a legitimate con­
cern? 
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c. Examine the asymptotic power function of the 
test li.e., construct a power function based on the 
asymptotic normal distribution of the test statis­
tic). Interpret the implications of the power func­
tion for the test you performed, both from the per­
spective of the company and from the perspective 
of the employee. If you were primarily interested 
in workers' rights, might you design the test differ-
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ently and/or would you consider testing a different 
null hypothesis? Explain. 

d. Suppose there was a substantial difference in the 
abilities of salespersons to persuade consumers to 
purchase the company's product. Would this have 
an impact on your statistical analysis above? Ex­
plain. 
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10.2 Heuristic Approach 
10.3 Generalized Likelihood Ratio Tests 
10.4 Lagrange Multiplier Tests 
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In this chapter we examine general methods that can be 
used to define explicit rules for testing statistical hypotheses. In particular, the 
likelihood ratio, Wald, and Lagrange multiplier methods for constructing sta­
tistical tests are widely used in empirical work, and they provide well-defined 
procedures for defining test statistics and critical regions in given hypothesis­
testing contexts. In addition, it is possible to find useful test statistics based 
entirely on a heuristic principle of test construction. None of these four meth­
ods is guaranteed to produce a statistical test with optimal properties in all 
cases. In fact, no method of defining statistical tests can provide such a guaran­
tee. The virtues of these methods are that they are relatively straightforward 
to apply (in comparison to direct implementation of many of the theorems in 
Section 9.5), they are applicable to a wide class of problems that are relevant 
in applications, they generally have excellent asymptotic properties, they often 
have good power in finite samples, they are sometimes unbiased and/or UMP, 
and they have intuitive appeal. 

These four methods of defining test rules, together with the results on UMP 
and UMPU testing presented in Section 9.5, by no means exhaust the ways in 
which a statistical test can be defined. (See E. Lehmann, Testing Statistical 
Hypotheses, for further reading.) However, the methods we present cover a 
large portion of the approaches to defining test rules that are used in practice. 
Ultimately, regardless of the genesis of a test rule, whether a statistical test is 
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useful in an application depends on its properties. We will often refer to the 
concepts presented in Chapter 9 to assess the usefulness of the tests that we 
examine in this chapter. 

This chapter will also provide a brief introduction to nonparametric tests 
that have been designed to assess assumptions relating to the functional form 
of the joint density of a random sample as well as to assess the ubiquitous iid 
assumption. Finally, we will introduce the concepts of confidence intervals and 
confidence regions as they relate to statistical tests of statistical hypotheses. 

10.2 Heuristic Approach 

In the heuristic approach to defining statistical tests, one attempts to imple­
ment the following heuristic principle of test construction: "Discover a test 
statistic whose probabilistic behavior is different under Ho and H a, and exploit 
the difference in defining a critical region for a statistical test. JJ For the choice of 
an appropriate test statistic T = t(XL one might examine a good estimator of E> 
or q(E>J, such as a maximum likelihood, least-squares, or method-of-moments 
estimator. Alternatively, a (minimal and/or completeJ sufficient statistic for E> 
or q(E>J might be useful in defining a test statistic. 

If the range of T over Ho U Ha can be partitioned as C; U Cr so that PIt E 
C;; E> J ::s a V E> E H 0, a level-a test of H 0 will have been defined. If it is also true 
that PIt E C;; E>J ::: a V E> E H a, the test will be unbiased. If the power function 
1rc;rlE>J = PIt E C;; E>J is acceptable to the analyst (and the reviewers of her 
analysisJ, the test represents at least a useful, if not optimal, statistical test of 
Ho versus Ha. The heuristic approach can be a substantially less complicated 
method of defining a test statistic than the UMP and UMPU approaches, which 
we discussed in Section 9.5. The following examples illustrate the heuristic 
method. 

Example 10.1 At the Union Bank a debate is raging over the expected rate at which customers 
arrive at the teller windows. If the expected rate ::s 2 per minute, management 
feels that staffing can be reduced. A random sample of 100 observations from 
the (assumedJ Poisson (AJ population of customer arrivals/minute was obtained, 
and the outcome of the complete sufficient statistic, and MLE estimator of A, 
X, was 2.48. Test Ho: A ::s 2 versus Ha: A > 2, where 

flx; A) ~ [e -"' AEr_. " / f! x;! ] f! Ito, I ,' ... llx;). 

with n = 100. 
Answer: Note that the statistic nX = I:?=l Xj '" Poisson(nAJ (straightforwardly 
shown via the MGF approachJ, and thus the event 100x ::: c will be more 
probable for higher values of A than for lower values. Thus heuristically, it 
seems reasonable to reject Ho: A ::: 2 for large values of 100x and not to reject 
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for small values. Furthermore, the probability of rejection, P( 100x ~ c; 100),) 
increases as ). increases, and so to identify a value of c that defines a level­
a test of Ho, it suffices to choose c so that P( 100x ~ c; 200) = a, since then 
P(lOOx ~ c; 100),) < a V ). < 2. The preceding observation also implies that a 
critical region defined by 100x ~ c defines an unbiased test. 

With the aid of the computer, we identify the following potential test sizes: 

c 1'(1 OOX ~ c; 200) = 1 - L;~~ e-20020oi Ii! 

219 .097 
220 .086 
221 .075 
222 .066 
223 .058 
224 .050 
225 .044 

Assuming the labor union and bank management agree that a level-.OS test 
is acceptable (should they agree o~ this level?), the critical region expressed in 
terms of_the test statistic k is C~ = {x: x ~ 2.24}. Since the outcome x = 
2.48 E C~, Ho is z:ejected at the .05 level. Using the results of Section 9.5, it can 
be shown that C~ defines the UMP level-.OS test of Ho: ). ::: 2 versus Ha: ). > 2. 
Note that the p value for this test is P(X ~ 2.48; 200) = P(nx ~ 248; 200) < .001, 
which indicates there is strong evidence against Ho. 0 

The next example deals with a complicated case involving nuisance param­
eters, and yet the heuristic principle of test construction leads rather straight­
forwardly to a test with accepted power characteristics. In fact, the test is a 
UMPU level-a test. 

Example 10.2 Revisit Ex. 8.3 relating to the estimation of a linear relationship between the 
number of new homes sold and hypothesized determinants of home sales. As­
sume that the disturbance term of the linear model is approximately normally 
c!istributed (why must this be only an approximation?), so that (approximately) 
{3 = (x'x)-lx'y "" N({3, a 2(x'x)-1). The realtor wishes to test whether mortgage 
interest rates actually impact home sales, and so she specifies the hypothesis 
Ho: fh = 0 versus Ha: fh =1= 0, where fh is the GLM parameter associated with 
the mortgage interest rate variable. Test the hypothesis at the .05 level, and 
also calculate the p value of the test. 
Answer: Under the prevailing assumptions, ft2 "" N(f32' var(ft2)), where var(ft2) 
is the (2,2) entry in the covariance matrix a 2(x'x)-1. Consider the statistic T = 
ft2/S{3" for defining a statistical test of the hypothesis, where S~ is the (2,2) 

2 {32 

entry of the covariance matrix estimator 52(x'x)-1. We know from Section 8.2 
that ft2 and 52 are independent random variables, and in the case at hand (ft2 -
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,82)/[var(,B2lP/2 '" N(O, 1) and (n - k)S21a2 '" X;-k' It follows that 

( ~ ) [ A] 1/2 
,82 -,82 I var(,82) ,B2 - ,82 

= 

has a (c<:.ntral) t-distribution withn-k degrees of freedom. Then under Ho: ,82 = 
0, T = ,821 S P2 has a central t-distribution with n - k degrees of freedom, whereas 
under Ha: ,82 =1= 0, T has a noncentral t-distribution with n - k degrees of 
freedom and noncentrality parameter A = ,82/[var(,B2W/2 (recall Section 9.6). 
We then know that P(ltl :::: e; A) increases monotonically as IAI -7 00, so that 
the event It I :::: e becomes ever more probable as 1,821 -7 00. Thus heuristically, 
it seems reasonable to reject Ho: ,82 = 0 for large values of It I and not to reject 
for small values. Therefore, the critical region for the test statistic T will be 
C; = [-00, -c) U [e, 00). Given the aforementioned behavior of P(ltl :::: e; A) as a 
function of A, it follows that C; will define an unbiased test of Ho. 

Referring to the table of the (central) t-distribution, we find that PIt :::: c) = 
.025 when e = 2.571 and the degrees of freedom are n - k = 10 - 5 = 5. Then, 
by the symmetry of the (central) t-distribution, it follows that PIt E Cn = .05 
where C; = (-00,-2.571) U [2.571,00). Since the outcome of T is t = -3.33 E 

C;, we reject Ho and conclude that mortgage interest rates do impact home 
sales. The p value of the test is given by P(ltl :::: 3.33) = .021, which suggests 
that the evidence against Ho is substantial. 

The power function of the test can be calculated with the aid of a computer 
(we use the GAUSS procedure CDFTNC here). Selected values of the power 
function are displayed in the following table, and a graph of the power function 
as a function of A = ,82/[var(,B2lP/2 is given in Figure 10.1. 

o 
.5, -.5 
1, -1 

loS, -1.5 
2,-2 
3,-3 
4,-4 
5, -5 

71'(..\) = p(t E C:;..\) 

.05 

.07 

.13 

.23 

.37 

.67 

.89 

.98 

Note that A effectively measures deviations of ,82 from 0 in terms of stan­
dard deviation units (i.e., ,82 is relative to the standard deviation [var(,B2JP/2). 
The power function suggests that ,82 must be a number of standard deviations 
away from zero before the test has appreciable power in rejecting Ho. This is 
typical for power functions associated with tests of the significance of param­
eters estimated by least squares, and it suggests that to be able to detect small 
departures of ,82 from zero, ,82 must be estimated quite accurately (i.e., var(,B2) 
must be small). 
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Figure 10-1 
Power function of UMPU 

size .05 test of Ho : fh = 0 
versus Ha : Ih =1= o. 

Example 10.3 
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In this application, it might be argued, based on economic theory consid­
erations, that fh must be nonpositively valued. If this is adopted as part of the 
maintained hypothesis, then a one-sided alternative hypothesis might be con­
sidered as Ha : fh < O. The reader is invited to reexamine the problem of testing 
Ho: fh = 0 using the one-sided alternative hypothesis and a .OS-level test. In 
such a case, the power of the test for fh E Ha is increased. 0 

In the next example we revisit Ex. 10.1 and illustrate how the asymptotic 
distribution of a test statistic can be used to define an asymptotic test of Ho. In 
the case at hand, this will allow the test to be conducted using standard normal 
tables and without the computer. It also allows one to circumvent the limited 
choice of test sizes in this discrete case, albeit in an approximate sense. 

Revisit Ex. 10.1 and consider using the asymptotic normal distribution of the 
test statistic k to conduct the test of Ho: ').. ::: 2 versus Ha: ').. > 2. In this 
case, where we are random sampling from the Poisson population distribution, 
we know that k ~ N(')..,n- 1')..), and thus Z = n 1/2(k - ')..)/')..1/2 ~ N(O, 1). Using 
heuristic reasoning analogous to that used in Ex. 10.1, we should reject Ho for 
large values of X, and thus for large values of z. This suggests a critical region of 
the form C; = [e, 00) for outcomes of Z. Consulting the standard normal table 
under the assumption that a .OS-level test is desired, we choose e = 1.645, so 
that P(z 2: 1.645) = .05 (as an asymptotic approximation). 

The reader may have noticed a serious practical flaw in the use of Z as a 
test statistic-namely, ').. is unknown and so Z is not a statistic! However, this 
problem is overcome by assigning').. a numerical value. Setting').. = 2 in the def­
inition of Z is the logical choice under the current circumstances. This follows 
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because if X ~ N(A, n-1A), then Z = n 1/2 (X - 2)/21/2 ~ N ((n/2)l/2(A - 2), A/2), 
and thus (asymptotically) 

JrCr(A) = P(z ::: 1.64Sl(:].OS, V A[: ~l 
so that e? then defines a .OS-level unbiased test of Ho: A :::: 2 versus Ha: A > 2. 
Restating the test in terms of a critical region for the outcome of X itself, and 
recalling that n = 100 in this case, we have that z ::: 1.645 iff x ::: 2.23, so that 
ef = [2.23,00), which is virtually the same critical region as in Ex. 10.1 based 
on the Poisson population distribution. The near equivalence of the two critical 
regions is du~ to the accuracy of the asymptotic normal distribution of X. Since 
x = 2.48 E e::, we reject Ho, as before. An asymptotic p value for the test can be 
calculated based on the observed value of z = 10(2.48 - 2)/21/2 = 3.394, so that 
p value = J3~94 N(z; 0, l)dz < .001, providing strong_ evidence for the rejection 
of Ho. Also, under the assumption of normality for X, it could be argued, using 
the results of Section 9.5, that the preceding test is a UMP level-.OS test. In this 
case, we then state that the test is asymptotically UMP level .05. The reader 
might consider plotting the power function of the test. 0 

In each of the preceding examples, a specific random-sample size is in­
volved. One might also consider whether sequences of level-.OS unbiased tests 
defined analogously to the preceding tests have the property of consistency as 
sample sizes increase without bound. Using asymptotic theory applied to the 
respective test statistics and the definitions of critical regions, one can argue 
that the respective test sequences are indeed consistent. 

Example 10.4 Revisit Ex. 10.1 to Ex. 10.3, and consider whether the respective sequences of 
.OS-level unbiased tests are consistent. Regarding Ex. 10.1, the nth_element in 
the appropriate sequence of critical regions will be of the form e::n = [cn , 00) 
such that P(xn ::: cn ) :::: .05 V n, where A = 2 is assumed when defining the 
probability of the critical region for Xn, and Cn is chosen as small as possible 
in order to maximize power for A E Ha. The preceding sequence of probability 
inequalities can be written alternatively as 

p(n1/2(Xn - A)/A 1/2 ::: nl/2(cn - A)/A 112) :::: .05, V n. 

Also, since Zn = n1/2(Xn - A)/A I /2 ~ N(O, 1) by the LLCLT, we can infer that 
n 1/2(Cn - A)/)..'/2 ~ 1.645, and thus Cn ~ A. Since A = 2 is used when defining 
the sequence of critical regions, then Cn ~ 2. By the consistency of Xn for A, we 
also know that Xn ---4 A. If A > 2, so that Ha is true, then Xn - Cn ---4 A - 2> 0, 
so that the probability that Ho is rejected when Ha is true converges to 1. Thus 
the sequence of tests is consistent, and a similar argument can be applied to 
demonstrate consistency in the case of Ex. 10.3. 

Regarding Ex. 10.2, note that the critical region for the T-statistic will ul­
timately converge to ein ~ c'[ = (-00, -1.96] U [1.96,00) since the (central) 
Tn random variable is such that Tn ~ Z ~ N(O, 1) and P(z E en = .05. As-
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suming O'2(x'xl- 1 -+ [0], so that fJ 4 {3, and assuming that 52 4 0'2 (e.g., 
assume that the error terms in the linear model are iidl, it follows that the non­
centrality parameter of the t-distribution associated with Tn = ~2/Sg2' given 

by A = .82/[var(~2lP/2, diverges to infinity as n -+ 00 whenever .82 =1= O. Then 
P(tn E Cin; Al -+ P(tn E C[; Al -+ 1, as n -+ 00, when Ha is true, and thus the 
test is consistent. 0 

10.3 Generalized Likelihood Ratio Tests 

Definition 10.1 
Generalized likelihood 

ratio (GLR) test of size 0: 

As its name implies, a generalized likelihood ratio (GLR) test of a statistical 
hypothesis is based on a test rule that is defined in terms of a ratio of likelihood 
function values. The adjective generalized is used here to distinguish the GLR 
test from the simple ratio of two likelihood function values presented in our 
discussion of the Neyman-Pearson lemma (Theorem 9.1). In the latter context, 
the likelihood function was evaluated at two distinct values of the parameter 
vector, 8. In the current context, the likelihood ratio is "generalized" by form­
ing the ratio of likelihood function suprema (or maxima if maximums exist), 
where the two suprema are taken with respect to two different feasible sets­
the set of null hypothesis values for 8, and the set of values of 8 represented 
by the union of the null and alternative hypotheses. The GLR test is a natu­
ral procedure to use for testing hypotheses about 8 or functions of 8 when 
maximum likelihood estimation is being used in a statistical analysis. 

Let the random sample (Xl, ... , Xn I have the joint probability density func­
tion f(xI, ... ,Xn; 81 and associated likelihood function L(8; Xl, ... , xnl. The 
generalized likelihood ratio (GLR) is defined as 

( I SUP8EHo L(8; Xl,·.· ,xnl 
AXl, ... ,Xn = (8 )' 

SUP8EHoUHa L -; Xl, ... , Xn 

and a generalized likelihood ratio test for testing Ho versus Ha is given by 
the following test rule: 

reject Ho iff A(Xl, ... , xnl ::: c, 

or equivalently, 

reject Ho iff I[O,el(A) = l. 

For a size a test, the constant c is chosen to satisfy 

sup n(8) = sup P(A(Xl, ... ,xnl::: c; 8) = a. 
8EHo 8EHo 

In order to provide some intuitive rationale for the GLR test, first note that 
the numerator of the GLR is essentially the largest likelihood value that can 
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be associated with the sample outcome lXI, ... , xn) when we are able to choose 
only among probability distributions that are contained in the null hypothesis, 
Ho. The numerator can then be interpreted as the likelihood function eval­
uated at the constrained maximum likelihood estimate of 8, the constraint 
being 8 E Ho. The denominator of the GLR is the largest likelihood value 
that can be associated with lXI, ... , xn) when we can choose any probability 
distribution contained in Ho and/or Ha. In most applications where Ho U Ha is 
the entire parameter space, Q, the denominator is then the likelihood function 
evaluated at the maximum likelihood estimate of 8. Since likelihood functions 
are nonnegatively valued, and since the feasible space for the numerator supre­
mum problem is contained in the feasible space for the denominator supremum 
problem, we can infer that A. E [a, 11. 

To see why the critical region of the test statistic Alxl' .. '., xn) is defined in 
terms of the lower tail, [a, cl, of the range of A, note that the smaller the value of 
A, the larger the maximum likelihood for values of 8 E HoUHa is relative to the 
maximum likelihood for 8 E Ho. Intuitively, this means that when).. is small, 
there is a value of 8 E Ha that is notably "more likely" to have characterized 
the true density fix; 8) associated with the outcome x than any other value of 
the parameter 8 E Ho. When fix; 8) is a discrete density function, we could also 
infer that there is a value of 8 E Ha that implies a notably higher probability 
of observing x than does any value of 8 E Ho. Thus, for small values of A, say 
c or less, it appears reasonable to reject Ho as containing the true probability 
distribution of x and to conclude instead that a better representation of the true 
probability distribution of x resides in the set Ha. 

Test Properties: Finite Sample 

Intuition aside, whether the GLR test represents a good statistical test for a 
given statistical hypothesis ultimately depends on the properties of the test in 
the given application. There is no guarantee that a GLR test is UMP, or even 
unbiased, in finite samples. Finite sample properties of the GLR test must be 
established on a case-by-case basis and will depend on both the characteristics 
of fix; 8) and the definition of the sets underlying Ho and Ha. Nonetheless, 
before we proceed to asymptotic properties for which general results do exist, 
we point out some parallels with the results presented in Chapter 9. 

Simple Hypotheses In the case where both Ho and Ha are simple hypotheses, 
the size ex GLR test and the most powerful level-ex test based on the Neyman­
Pearson lemma /Theorem 9.1) will be equivalent. 

Theorem 10.1 /Equivalence of GLR Test and Neyman-Pearson Most Powerful Test When Ho 
and Ha Are Simple Hypotheses) Suppose a size ex GLR test of Ho: 8 = 8 0 

versus Ha: 8 = 8 a exists with critical region 

C~LR = {x: A/x) ::: c}, where Pix E C~LR; 8 0 ) = ex E /0, 1). 
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Furthermore, suppose a Neyman-Pearson most powerful level-ex test also exists 
with critical region 

Cr = {x: L(80 ; x) ::: kL(8a; xj}, where PIx E Cr; 8 0 ) = ex. 

Then the GLR test and the Neyman-Pearson most powerful test are equivalent. 

Proof Since }.(x) E [0,1], and given that ex E (0,1), it follows that P(}.(x) ::: c; 8 0 ) = ex 
only if c <: 1. Now let 0 = S(x) = argmaxElE {Elo,Ela}[L(8; x)],l so that the GLR 
can be represented as }.(x) = L180 ; x)/L(O; x). Note the following relationship 
relating to a dichotomous partition of the range of X: 

X E A = (x: SIx) = 8 a} =} L(80 ; x) = L(~o; x) ::: 1, 
L(8a; x) L(O; x) 

A L180 ' x) L180 ' x) 
x E B = (x: 8(x) = 8 0} =} ':::: A ' = 1. 

L(8a; x) L(O; x) 

It follows that L180 ; x)/L/8a ; x) ::: c <: 1 only if }./x) = L(80 ; x)/L(O; x) < 

c <: 1. Whel1 both preceding inequalities hold, 0 = 8 a and L(!3o; x)/L(8a; x) = 
L(80 ; x)/L(O; x). Thus, for c <: 1 and ex E (0,1), if P(L(80 ; x)/L(O; xl::: c; 8 0 ) = ex 
and P(L(80 ; x)/L(8a ; x) ::: c; 8 0 ) = ex, then Cr = CfLR and the GLR test is 
equivalent to the Neyman-Pearson most powerful test of size ex. • 

Since the GLR test is equivalent to the Neyman-Pearson most powerful 
test when Ho and Ha are simple, we also know immediately by Theorem 9.2 
that the GLR test is also unbiased. We revisit a previous example, in which 
a most powerful test was found via the Neyman-Pearson Lemma to illustrate 
the GLR approach to the problem. 

Example 10.5 Recall Ex. 9.11, in which a decision is to be made regarding the population 
mean life of a type of LCD notebook computer screen. The likelihood function 
for the parameter () /the mean life of the screens) given the 10 observations on 
screen lifetimes represented by (Xl, ... , XIO) is given by (suppressing the indica­
tor functions) 

The null and alternative hypotheses under consideration are Ho: () = 1 and 
Ha: () = 5, respectively. 

I Recall that" arg maxEJEA [.J" represents the argument value of e contained in the set A that maximizes the function of e contained 
in brackets. 
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The GLR for this problem is given by 

L(I·x) {exp(-L;~lXi)} )..(x) = ' = min I, ---'-..,----'-----,-
max L(8; x) (5)-10 exp (_ ,,~o x-IS) 
Be{l,5} L...I=l I 

= min [ I, (.2)-10 exp ( -.8 ~Xi) I. 
It follows that, for c < I, the probability that )..(x) :s c is given by 

P()..(x) :s c) = P ((.2)-10 exp ( -.8 ~x) :s c) 

= P (~Xi ::: 20.11797 - 1.2Sln(C)) (to five decimal places). 

A size a GLR test with critical region [0, c] is defined by choosing c so that 
P()..(x) :s c) = a, where the probability value can be determined by utilizing the 
fact that L;~l Xj "" Gamma(lO, 0) and 0 = 1 under Ho. Comparing this result to 
the definition of the most powerful critical region given in Ex. 9.11, it is evident 
that the two critical regions are identical, and so the GLR test is both unbiased 
and the most powerful test of Ho: 0 = 1 versus Ha: 0 = 5. For a = .05, the 
critical region of the GLR test would be given by [0,34.13079], which can be 
transformed into a critical region stated in terms of the test statistic L;~l Xi as 
[15.70522, (0). 0 

Composite Hypotheses Similar to the Neyman-Pearson lemma's extension to 
the case of defining UMP tests for testing simple null versus composite alter­
native hypotheses (Theorem 9.3), the result of Theorem 10.1 can be extended 
to the case of testing simple null versus composite alternative hypotheses as 
follows: 

Theorem 10.2 (UMP Level-a GLR Test of Ho: 8 = 8 0 Versus Ha: 8 E Qa When Cr is 
Invariant) Suppose the given critical region, CfLR = {x: )..(xl :s c}, of the GLR 
test of Ho: 8 = 8 0 versus Ha: 8 E Qa defines a size a E (0,11 test and 
V 8 a E Ha 3ceQ ::: 0 such that 

CfLR = {x: )..e.!x) :s ceJ, 

where 

1 {l- L(80 ; xl Ae IX - ------~~~~~ 
Q maxee(eo,eo} L(8; xl 

and P(Ae.!xl:s ceQ; 8 01 = a. 

Furthermore, suppose a Neyman-Pearson UMP test of Ho versus Ha having 
size a exists. Then CfLR defines a UMP level-a test of Ho versus Ha. 

Proof Given that a Neyman-Pearson UMP test having size a exists, it is the Neyman­
Pearson most powerful size a test for every pair (80,8a l, by Theorem 9.3, 
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where Cr is invariant to the choice of 8 a E Ha. Because V (80, 8 a) pair, both 
the Neyman-Pearson and GLR size a E (0,1) tests exist, the tests are equivalent 
V (80, 8 a ) by Theorem 10.1. Then CfLR defines a UMP level-a test of Ho versus 
Ha. • 

The theorem implies that if the critical region of a size a GLR test of 
Ho: 8 = 8 0 versus Ha: 8 = 8 a is the same V 8 a E n a, then if a Neyman­
Pearson UMP test of Ho: 8 = 8 0 versus Ha: 8 E Q a having size a exists, it is 
given by the GLR test. The UMP test would also be unbiased (Theorem 9.4). 

Example 10.6 Recall Ex. 9.11,9.13, and 10.1 regarding the operating lives of computer screens. 
Examine the problem of defining a size .05 GLR test of Ho: () = 1 versus 
Ha: (J E n a, where na = (1,00). The GLR for this problem is given by 

L(l; x) exp (- LI~1 Xi) 
A(X) = = . 

sUPOe!I,oo) L((J; x) sUPOe!I,oo) (J-1O exp ( - LI~1 xd()) 

The maximum of L((J; x) for (J E [1,00) can be defined by first solving the first­
order condition 

dlnL((J; x) _ -10 LI~1 Xi _ 0 
d(J - () + (J2 -, 

which yields (J = LI~1 xd10 as the choice of (J that maximizes In L((J; x), and 
hence maximizes L((); x), when there are no constraints on (J. Then, if the con­
straint (J 2: 1 is recognized, A(x) can be defined ultimately as2 

10 

for LXi> 10, 
i=l 

otherwise. 
It follows that, for c < 1, the probability that A(x) ::: c is given by 

Recall that LI~l Xi ~ Gamma(10, 1) when (J = 1. Also, from Ex. 9.11 we know 
that P(L;~1 Xj 2: 15.70522) = .05. Note that LI~1 Xj - 10 In(L;~1 Xi) is strictly 
monotonically increasing in the value of LI~1 Xi for values of LI~1 Xi > 10, so 
that there will exist a value of c in (*) that defines the event L;~l Xi 2: 15.70522. 

2A more elegant solution procedure for this inequality-constrained maximization problem could be formulated in terms of Kuhn­
Tucker conditions. 
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In particular, the appropriate value is c = .30387 (to five decimal places). Thus, 
the critical region for the GLR is [0, .30387], and the associated critical region 
for x is C~LR = {x: Li~1 Xi:::: IS.70S22}, which we know (from Ex. 9.13) defines 
the UMP and unbiased test of Ho: () = 1 versus Ha: () > l. 

To see that the GLR test satisfies Theorem 1O.2-so that we could declare 
the test to be UMP and unbiased independently of knowing the result of Ex. 
9. 13-the reader can retrace the steps followed in Ex. 10.1, replacing Ha: () = 5 
with Ha : () = ea, where ea is an arbitrary choice of e E (1,00). The critical region 
will invariably have the form C~LR = {x: Li~1 Xi 2: IS.70S22} and will agree 
with the Neyman-Pearson most powerful critical region. 0 

The GLR test can also lead to UMP and unbiased tests of the simple or com­
posite null hypothesis Ho: e E no versus the composite alternative hypothesis 
Ha: e E na when e is a scalar, the alternative hypothesis is one-sided, and 
the problem is characterized by a monotone likelihood ratio. 

Theorem 10.3 (UMP and Unbiased GLR Level-a Test of Ho: 8 E no Versus One-Sided Ha: 
e E na in Case of Monotone Likelihood Ratio) Let tbe sampling density of 
X, given by f(x;8) for scalar 8 E n, be a family of density functions baving 
a monotone likelibood ratio in tbe statistic T = t(X). Tben tbe GLR test of 
Ho: e E no versus one-sided Ha: e E na is a UMP and unbiased level-a test 
if P(A(x) :s c) = a and eitber of tbe following conditions bolds: 

1. Ho : 0 = 00 or 0 ~ 00, Ha : 0 > 00, and A(X) ~ c iff t(x) ~ c·; or 
2. Ho : 0 = 00 or 0 ~ 00, Ha : 0 < 00, and A(X) ~ c iff t(x) ~ c·. 

Proof The proof follows immediately from Corollaries 9.1 and 9.2 upon recognition 
that A(x) :s c is simply an alternative representation of the UMP and unbiased 
level-a critical region for the respective hypothesis tests based on the properties 
of monotone likelihood ratios. • 

Example 10.7 A personal computer manufacturer claims that 2: 80 percent of its new com­
puters are shipped to its customers without any defects whatsoever. A random 
sample, with replacement, of 20 purchases of the company's products resulted 
in 6 reports of initial defects upon delivery of computers. The responses of the 
purchasers are viewed as outcomes of iid Bernoulli random variables as 

Xi"" pXi(l - p)I-Xi!{O, I) (Xi), 

where Xi = 1 => defect reported and Xi = 0 => no defect reported. We will 
construct a size .01 GLR test of the hypothesis that Ho: P:S .20 versus Ha: p> 
.20, i.e., we are testing the null hypothesis that the proportion of computers 
shipped that are defective is less than or equal to .20 versus the alternative that 
the proportion is greater than .20. 

The GLR for this problem is 
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The value of p that solves the denominator supremum problem is simply the 
MLE outcome for p, P = L:;~l xd20. The value of p that solves the numerator 
supremum problem is defined as 

Po = [~Xd20 if ~Xd20::: .20] . 

. 20 otherwise 

Therefore, Alx) can be represented as 

20 

if LXi>4, 
i=l 

{ 
1.20nSO)20-z 

Alx) = Iz/20)z/l ~ z/20)20-z 

otherwise 

where Z = L:;~1 Xi ~ BinomiaI120,p). 
Note that Alx) is a strictly decreasing function of z for z > 4. Since Plz 2: 

9) = .01, it follows that 

P(A(X) ::: .04172) = P(z 2: 9) = .01, 

and so the critical region for the GLR test is 

C~LR = {x: A(X)::: .04172} = Ix: fXi 2: 91· 
1=1 

The reader can verify that the statistic t(X) of the monotone likelihood ratio 
can be specified as t(X) = L:;~1 Xi. From Theorem 10.3 it follows that the GLR 
test is UMP and unbiased with level.Ol. Given that L:~~1 Xi = 6, the hypothesis 
Ho: p ::: .20 cannot be rejected at the .01 level. 0 

At this point we focus the reader's attention on a common procedure that 
was used in the preceding examples to assign probabilities to events for the 
GLR of the form A(X) ::: c. Namely, in each case we were able to find a strictly 
monotonically increasing or decreasing function of A(xl, say h(A(X)), whose PDF 
had a known tractable form. Then probability was assigned using the PDF of 
h(A(X)) as P(A(X) ::: c) = P(h ::: k) or P(h 2: k) for h(·) monotonically increasing 
or decreasing, respectively. It is often the case that the probability density of 
the GLR, A(X), is difficult to define or intractable to work with for defining a 
size ex critical region. In applications of GLR tests, one must often seek a test 
statistic, h(A(X)), having a tractable probability density in order to be able to 
both define a size ex critical region and investigate the finite sample properties 
of the GLR test. Unfortunately, in practice, it is not always possible to define 
such a test statistic. 

We will refrain from attempting to provide additional results concerning 
finite sample properties of GLR tests, mainly because few additional general­
izations can be made. Typically, a GLR test is constructed in a given problem 
context, and then an attempt to assess its properties is made. It is sometimes 
the case that little can be definitively established regarding the finite sample 
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properties of a GLR test. Fortunately, it is typically the case that the large sam­
ple properties of GLR tests are very good, and the results apply quite generally 
to simple or composite hypotheses involving scalar or multidimensional pa­
rameters for problems with or without nuisance parameters. We examine this 
topic next. 

Test Properties: Asymptotics 

The GLR test is generally a consistent test, and in cases where Ho is defined 
by functional restrictions on the parameter space, the asymptotic distribution 
of -21n )"(X) is generally a X2-distribution. In many cases, the verification of 
consistency and the identification of the asymptotic distribution of the GLR 
test can best be accomplished by analyzing either the properties of the random 
variable )"(X) directly or else the properties of a test statistic h()"(X)) that is a 
function of the GLR statistic. In other cases, there exist regularity conditions 
that ensure the consistency and asymptotic distribution of the GLR test. We 
present some results for the asymptotic properties of the GLR test ahead. Ad­
ditional results can be found in S. Wilks (1962), Mathematical Statistics. New 
York: John Wiley, p. 419; and R. J. Serfling (1980), Approximation Theorems of 
Mathematical Statistics. New York: John Wiley, pp. 151-160. 

We begin with the property of consistency and introduce a sufficient con­
dition that applies quite generally and is often not difficult to establish. 

Theorem 10.4 (Consistency of the GLR Test) Assume the conditions for consistency of the 
maximum likelihood estimator (MLE) given by any of Theorems 8.14-8.16. Let 
[O,cn ], for n = 1,2, 3, ... , represent level-a critical regions of the eLR statistic 
for testing Ho: 8 E Q o versus Ha: 8 E Q a based on increasing sample size n. 
Then limn ..... oo P()..(x) ~ cn ;8) = 1 V 8 E Ha, so that the sequence of eLR tests 
is consistent, if either of the following conditions holds: 

a. the eLR statistic is bounded below 1 with probability -+ 1 as n -+ 00 

V 8 E Ha, i.e., limn ..... oo P()..(x) ~ t';8) = 1 V 8 E Ha, where t' < 1; or 
h. plim)..(X) = 8(8) ~ t' < 1 V 8 E Ha. 

Proof a. Assuming th~t the trl}e 8 0 E Ho, it follows that plim ),,(Xl, ... , Xn) = 1. To 
see this, let 8 0 and 8 represent the MLEs for 8 .E Ho and 8 E HoAU Ha, 
respectively, and expand the logarithm of the likelihood function L(80 ; X) 
in a Taylor series around the point e to obtain In)..(X) = InL(eo; X) -

InL(e; X) = «HnL(8.; ~J/a8)' (eo - e)!. where 8. = l}eo + (1 -l})e and 
1} E [0,1].3 Since both 8 0 -4 8 0 and 8 -4 8 0 (recall ~o E.Ho), then 
8. -4 8 0, and it follows that both alnL(8.; X)/a8 and (80 - 8) -4 [0]. 
Therefore, In )"(X) -4 0, so that )..(Xl -4 1, and if the GLR test is to be 
of size ~ a V n, so that V n and V 8 E Ho, P()..(x) ~ en; 8) ~ a, it follows 

3R. G. Bartle, Real Analysis, p. 371. 
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that Cn -+ 1 as n -+ 00. Finally, if limn ..... oo P(A(x) ::: r; 8) = I, with r < 1 
V 8 E Ha, then limn ..... oo P(A(x) ::: Cn; 8) = 1 V 8 E Ha. 

b. V 8 E Ha, plimA(X) = 8(8) ::: r < 1 =} limn ..... ooP(A(x)::: r; 8) = 1 which 
leads to case (a). • 

Example 10.8 Revisit Ex. 10.6 regarding the operating lives of computer screens. Assume 
that the true go E Ha = (1, (0), and examine the behavior of the GLR A(X). Let­
ting Zn := Xn exp(n(1 - X n)), the GLR_ can be represented as _A(X) = I[O,Ii/Xn) + 
ZnIll,ool(Xn); if go E H a, then I[o,1](Xn) ~ 0 and Ill,ool(Xn) ~ 1. Then 
plimA(X) = plim(Zn) if the latter probability limit exists. Note that n-llnZn = 
n-1lnXn + (1 - Xn) ~ 1 - go = ~ < 0 since Xn ~ go > 1. It follows from the 
definition of convergence in probability that, Ve > 0, 

P(n-1lnzn < ~ + e) 2: P(~ - e < n-Ilnzn < ~ + e) -+ 1. 

Then choosing e > 0 small enough so that ~ + e < 0, 

P (n-1lnzn < ~ + e) = P(lnzn < n(~ + e)) = P(zn < exp (n(~ + e))) -+ 1. 

Since exp(n(~ + e)) -+ 0 and Zn 2: 0, limn--+ oo P(zn E [0, r)) = 1 V r > 0, so 
that plim Zn = 0, and thus plim A(X) = O. Then the sequence of GLR tests of 
Ho: g = 1 versus Ha: g> 1 is consistent by Theorem lO.4.b. 0 

Example 10.9 Recall Ex. 10.7 regarding the claim that 2: 80 percent of new computers are 
shipped free of defects. Assume that the true Po E Ha = (.20,11, and examine 
the behavior of the GLRA(X). Letting Wn = (.20)nx(.80)nll-xl/[xnx (1 - x)nl1-xIJ, 
the GLR cal! be represented as A(~) = Ibo,.20j(Xn) + WnII.20,ool(Xn), and if Po E H a, 

then I[o,.2oj(Xn) ~ 0 and II.2o,ool(Xn) ~ 1. Then plimA(X) = plim Wn if the 
latter probability limit exists. Note that 

(W )lln = (.20)X(.80)I1-XI ~ (.20)p(.80jI-P 

n [XX(1 _ X)II-Xl] pp(1 - p)l-p 

~ (,~or Cl'~Op)) I-p = ~ < 1 V P E (.2,IJ. 

Following reasoning similar to that in the previous example, one can establish 
that P(wn < (~+ e)n) -+ 1 for e > 0 small enough such that ~ + e is positive and 
less than 1. It follows from (~+ e)n -+ 0 and Wn 2: 0 that 

lim P(wn E [0, r)) = 1 V r> 0, 
n ..... oo 

so that Wn ~ 0, and thus A(X) ~ O. Then the sequence of GLR tests of 
Ho: p::: .20 versus Ha: P> .20 is consistent by Theorem lO.4.b. 0 

We have shown in the preceding examples that sequences of statistical tests 
are consistent, so that for large enough sample sizes, one is essentially certain 
to reject the null hypothesis if it is false. It is useful to note that consistent 
tests are effectively asymptotically unbiased tests in the sense that for large 
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enough n, the rejection probability will eventually exceed whatever level a < 1 
is associated with the consistent test sequence since the probability of rejecting 
a false Ho -?- 1. Thus, the tests in the sequence eventually become unbiased (if 
they weren't unbiased to begin with) as n -?- 00. 

In the examples of statistical tests presented heretofore, the probability 
density of either the GLR statistic or a function of the GLR statistic has been 
readily identifiable and tractable to work with. In cases where the identifica­
tion and/or tractability of the probability distributions of GLR test statistics is 
problematic, there are asymptotic results relating to the GLR test that can be 
helpful as long as sample sizes are not too small. We will examine one such re­
sult relating to the asymptotic distribution of the natural logarithm of the GLR 
statistic for a special but important and prevalent form of null hypothesis. A 
discussion of additional results, and further readings, can be found in D. R. Cox 
and D. V. Hinkley (1979), Theoretical Statistics. London: Chapman and Hall, 
pp.311-342. 

When considering the asymptotic distribution of the GLR, it will prove 
useful to focus attention on the function -2In(A(x)) rather than on A(X) it­
self. A general result regarding the asymptotic distribution of -2In(A(X)) can 
be obtained when Ho is defined via functional restrictions on the parame­
ter space. In particular, we will be examining null hypotheses of the form 
Ho = {E>: R(E» = [, E> E Q}, where R(E» is a (q x 1) differentiable vector func­
tion and R(E» = r places linear and/or nonlinear constraints on the elements 
of the parameter vector 8. It will be assumed that none of the q coordinate 
functions in R(E» is redundant. In this case, we can show that when the null 
hypothesis is true, -2ln(A(X)) ~ X~ so that an asymptotically valid size a GLR 
test of Ho: R(E» = r versus Ha: RIE» =1= r can be conducted as 

-2In(A(x)) ~ X~:Q' => reject Ho 

or in terms of the GLR statistic itself, 

A(X) :::: exp ( - ~ X~;Q') => reject Ho, 

where X~;Q' is the value ofax2-random variable with q degrees of freedom such 
that the event (X~;Q" 00) is assigned probability a. Furthermore, -2ln A(X) will 
have a noncentral X2 asymptotic distribution (see Section 10.9) when Ho is false 
(and when we examine local alternative hypotheses, to be discussed shortly), 
allowing asymptotically valid power functions to be constructed. The formal 
result on the asymptotic distribution of the GLR test when Ho is true is given 
next. 

Theorem 10.5 (Asymptotic Distribution of GLR Test of Ho: R(B) = r Versus Ha: R(E» =1= r 
When Ho is True) Assume the conditions for the consistency, asymptotic 
normality, and asymptotic efficiency of the MLE of the (k xl) vector E> as 
given in Theorem B.1B. Let A(X) = sUPeeHo L(8;x)/suPeeHouH.L(8;x) be the 
GLR statistic for testing Ho: R(B) = r versus Ha: R(8) =1= r, where R(B) 
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is a (q x 1) continuously differentiable vector function having nonredundant 
coordinate functions and q :::: k. Then -21n A(X) ~ X~ when Ho is true. 

• Proof The proof is somewhat challenging. For a related proof sketch, see T. Amemiya 
(1985), Advanced Econometrics. Cambridge, MA: Harvard Univ. Press, pp. 142-
144. The original work of A. Wald (1943), "Tests of statistical hypotheses con­
cerning several parameters when the number of observations is large." Trans­
actions of the American Mathematical Society. 54, pp. 426-482, provides an 
alternative, albeit more difficult and restrictive, proof of the asymptotic distri­
bution result. 

A Expand In L(80 ; XI in a second-order Taylor series around the ML estimator 
8 as4 

A 1 A (FlnL(8'XI A 

lnL(8; X) -lnL(80 ; X) = -:2(8 - 8 0 /' a8ae: (8 - 8 0 ), (1) 

where 8. = r8 + (1 - r)80 for r E [0,11, and the first-order term is dropped 
since BL(8; X)/B8 = [01 by the first-order conditions defining the MLE. Let 
R(8) = r be used to define q of the entries in 8 as functions of the remaining 
entries; without loss of generality, presume that the entries in 8 have been 
ordered so that the first q 8/s are functions of the remaining k - q 8/s, say as 
8 a = g(Sb), where 8 a = [81, •.. , 8 q l' and Sb = [8q+1, ... , 8k1'. Then under 
the constraint R(8) = r, the feasible 8 vectors can be characterized as 

8 = [g(Sb)] = h(Sb). 
8 b 

Making this substitution in the likelihood function defines the restricted like­
lihood function, Lr(8b ; x) == L(h(8b ); x). To simplify notation, define TJ == 8 b . 

Assuming Ho: R(8) = r to be true, then So = h(TJo), and we can expand 
In Lr(TJo; x) in a second-order Taylor series around the ML estimator iI, analo­
gous to the preceding expansion, as 

(2) 

Now note that since 8 ~ 8 0 and i] -+ TJo, then 8* ~ 8 0 and TJ. -+ TJo· 
Then rewrite the right-hand side of (11 as 

1(0 ~ I' 1/2 [ _la2lnL(8*;x)] 1/2/6 ~ I 
- - 0 - 00 n n n \0 - 00 

2 B8a8' ' 

and note that the bracketed expression converges in probability to M( 8 0 I, a pos­
itive definite, symmetric matrix. Then lnL(8; XI -lnL(80 ; X) and -1/2(8-
801'nl/2M(80)nI/2(8 - 8 0 ) will share the same limiting distribution, by The­
orem 5.7. An analogous argument applied to (2) indicates that lnLr(i]; X) -

4R. G. Bartle, Real AnalYSis, p. 371. 
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In Lr(1]o; x) and -1/2(iJ -1]0)'nI/2Mr(1]0)nI/2(iJ -1]0) share the same limiting dis­

tribution. Letting ,g, indicate equivalence in terms of limiting distributions, it 
follows from L(80 ; x) = Lr(1]o; xl that 

d ~ ~ / / -2In),,(XI = (8 - 80J'nI/2M(80)nI/2(8 - ( 0) - (iJ -1]o),n I 2Mr(1]01n1 2(iJ -1]0). (3) 

We now relate the limiting distributions of nI/2(E> - ( 0) and n I /2(iJ - 1]0). It 
follows from the proof of Theorem 8.17 that 

n 1/2(E> _ ( 0),g, M(80tin-I/2alnL~~0; X) -4 N (lOJ,M(80tl) 

and 

n 1/2(iJ -1]0),g, Mr (1]ot1n-1/2 alnL~~o; X) -4 N ([0], M r (1]O)-I). 

Since 
alnLr(1]o; X) ah(1]o) alnL(80; x) 

a1] = --a:T1 a8 

it follows that 

1/2/ ~ _ ) .!!. M / )-1 -1/2 ah(1]o) 1/2 [ -1/2 a In L(80; X)] 
n 11] 1]0 - rl1]O n a1] n n a8 . 

Substituting for nl/2(E> - ( 0) and n1/2(iJ -1]0) on the right-hand side of (3), and 
letting Zn = n-1/2(alnL(So; xl/aS) to simplify notation, 

-2In)..(X),g, z~ [M(80)-1 - G'Mr (1]O)-IG]Zn, (4) 

where G = ah(1]ol/a1]. 
Define Vn = M(80)-1/2Zn, so that Vn -4 V"" N([O], I), and rewrite (4) as 

-2In)..(X),g, V~ [I - M(80P/2G'Mr(1]otlGM(So)I/2] Vn. (5) 

The bracketed matrix is idempotent, which can be demonstrated by multiply­
ing the bracketed matrix by itself and using the condition GM(So)G' = Mr(1]o). 
Furthermore, the trace of the idempotent matrix is seen to be k -(k - q) = q. 
Then, representing the quadratic form in (5) in terms of the characteristic roots 
and vectors of the idempotent matrix as V~PAP'V n, analogous to the proof of 
Theorem 6.12b, we finally obtain 

q 

-2In)..(X) -4 V'PAP'V = L W; "" X~, 
i=I 

where W = P'V "" N([O], I) and A is a diagonal matrix having q I's and (k - q) 
D's along the diagonal. • 

In Ex. 10.5 and Ex. 10.6, which were based on random sampling from an 
exponential population distribution, we knew from our study of the MLE in 
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Chapter 8 that the MLE adheres to the conditions of Theorem 8.18 and is 
consistent, asymptotically normal, and asymptotically efficient. It follows by 
Theorem 10.5 that the GLR statistic for testing the simple null hypothesis 
Ho: () = 1 is such that -21n A(X) ~ xi. The asymptotic result would also apply 
to any simple hypotheses tested in the context of Ex. 10.7, where sampling 
was from a Bernoulli population distribution. While neither of these previous 
cases presented significant difficulties in determining critical regions of the 
test in terms of the distribution of the GLR test statistic, it is useful to note 
that the asymptotic result for the GLR test provides an approximate method 
for circumventing the inherently limited choices of test sizes in the discrete 
case (recall Ex. 9.10 and Problem 9.7). In particular, since the x2-distribution is 
continuous, any size test can be defined in terms of the asymptotic distribution 
of -21n A(X), whether or not fIx; G) is continuous, although the size will be an 
approximation that improves as the sample size increases. 

In order to establish an asymptotically valid method of investigating the 
power of the GLR test, we now consider the asymptotic distribution of the GLR 
when the alternative hypothesis is true. We will analyze local alternatives to 
the null hypothesis Ho: R(G) = r. In particular, we will focus on alternatives 
of the form R(G) = r + n-l/2¢. In this context, the vector ¢ specifies in what 
direction alternative hypotheses will be examined, and since n-l/2¢ -+ [OJ as 
n -+ 00, we are ultimately analyzing alternatives that are close, or local, to 
R(G) = r for large enough n. This type of local alternatives is also referred to 
as a Pittman drift. 

A primary reason for examining local alternatives as opposed to fixed alter­
native hypotheses is that in the latter case, power will always be 1 for consistent 
tests. Thus, no further information about the operating characteristics of the 
test is gained from asymptotic considerations other than what is already known 
about consistent tests, namely, that one is sure to reject a false null hypothesis 
when n -+ 00. There is an analog to degenerate limiting distributions, which are 
equally uninformative about the characteristics of random variables other than 
that they converge in probability to a constant. In the latter case, the random­
variable sequence was centered and scaled to obtain a nondegenerate limiting 
distribution that was more informative about the random-variable characteris­
tics of interest, e.g., variance. In the current context, the alternative hypotheses 
are scaled to establish "nondegenerate" power function behavior. 

Theorem 10.6 (Asymptotic Distribution of GLR Test of Ho: RIG) = rVersus Ha: RIG) i- r for 
Local Alternatives when Ho is False) Consider the GLR test of Ho: R(G) = r 
versus Ha: R(GI =I r under the conditions and notation of Theorem 10.5, and 
let a sequence of local alternatives be defined by Han: R(GI = r + n-1/2¢. As­
sume further that aR( Go II aG' has full row rank. Then the limiting distribution 
of -21n A(XI under the sequence of local alternatives is noncentral X2 as 



614 Chapter 1 0 Hypothesis-Testing Methods 

*Sketch of the Proof Let 8 r and.8 represent the MLEs for 8 E Ho and 8 E HoUHa, resp~ctively, and 
expand L(8r ; X) in a second-order Taylor series around the point 8 to obtain 

-2 [lnL(8 r ; X) -lnL(8; X)] = -2 In A(X) = (8 r - 8)' [ a21~~(:;,; X)] (8r - 8), 

where we have used the fact th~t a In L( 8i Xl/B8 = [0] in the first-order term 
of the Taylor series and 8+ = r8 + (1 - r)8r for some r E [a, I]. We know from 
the proofs of Theorems 8.17 and 8.18 that 

n l /2(8 _ 8 0) ~ M(80)-1 [n- 1/2 alnL(80; X)] 
a8 

(recall that II~II means equivalence in terms of limiting distributions) .• 
Under the sequence of local alternatives Han: R(8) = r + n-1/2c/>, 8 r -4 

8 0, and it can be shown that (see the subsequent proofs of Theorems 10.7 and 
10.8) 

n 1/2(8 r _ 8 0) ~ M(80)-1 [n_l/2aInL~~0; X)] 

+ M(80t 1G' [-GM(80t1G'rl [GM(80)-1 (n-1/2 aInL~~o; X)) - c/> l 
where G = aR(80)/a8'. Then 

n 1/2(8 r - 8) = n 1/2(8r - 8 0) - n 1/2(8 - 8 0) 

~ M(80)-IG' [-GM(80)-IG'r l [GM(80)-1 (n_l/2alnL~~0; X)) - c/> l 
~ M(80)-IG'Zn, 

where Zn ~ N([GM(80)-IG'j-lc/>, [GM(80)-IG']-I). 
d •• • A 

Noting that -2In A(X) = n 1/2(8r - 8)'M(80H8 r - 8)n 1/2 because 

_ -1 a2InL(8+; X) p M(8) 
n B8a8' ~ 0, 

it follows that 

-2InA(X) ~ Z~ [GM(80)-IG']Zn ~ X~(A) 

with A = (1/2)c/>' [GM(80)-IG'r l c/> since 

[GM(80)-IG'f/2 Zn ~ N([GM(80t 1G't1/2c/>, I) 

(see Section 10.9 on properties of the noncentral X2-distribution). • 
The GLR statistic and the LM and Wald statistics discussed in subsequent 

sections all share the same limiting distribution under sequences of local alter­
natives of the type identified here and are thus referred to as asymptotically 
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equivalent tests. This asymptotic equivalence will be established when we 
examine the alternative testing procedures. For related readings on the rela­
tionships between the triad of tests, see S. D. Silvey (1959), liThe Lagrangian 
multiplier test. II Annals of Mathematical Statistics, 30, pp. 389-407, R. David­
son and J. MacKinnon (1993), Estimation and Inference in Econometrics. New 
York: Oxford Univ. Press, pp. 445-449. 

Example 10.10 Asymptotic Power of GLR Test of Ho: 8 = 80 in Exponential Population 

Figure 10-2 
Asymptotic power of 

GLR test for Ho : e = eo 
versus H. : e > eo, 

local alternatives 
en == eo + n- 1/ 28, A = 82/2. 

Revisit Ex. 10.6, and consider the asymptotic power of the GLR test of Ho: e = 
eo versus Ha : e> eo for the sequence of local alternatives en = eo+n-1/20, where 
in this application eo = 1. For this case we know that -21n A(X) ~ XI(A), with 
1.= (1/2)0'0 = 02 /2, andn = 10 according to Ex. 10.6 (which is a bit small for the 
asymptotic calculations to be accurate). The asymptotic power function can be 
plotted in terms of the noncentrality parameter, or in this single parameter case, 
in terms of o. It is more conventional to graph power in terms of noncentrality, 
and we do this for a size .05 test in Figure 10.2, where n(A) = Jo:{ f(w; I, A)dw = 

XI;.05 

J3~41 f{w; I, A)dw and f(w; I, A) is a noncentral x2-density with 1 degree of free­
dom and noncentrality parameter A (the GAUSS matrix language, procedure 
CDFCHINC, was used to calculate the integrals). As is typical of other tests 
we have examined, the closer 0 is to zero, and thus the closer Ha : e = eo + n- 1/28 
is to Ho: e = eo, the less power there is for detecting a false Ho. 0 
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10.4 Lagrange Multiplier Tests 

In comparison to the GLR approach, the Lagrange multiplier (LM) test of a sta­
tistical hypothesis utilizes an alternative measure of the discrepancy between 
restricted (by Ho) and unrestricted estimates of the parameters of the joint den­
sity of a random sample in order to design a test rule. In particular, instead of 
analyzing the ratio of restricted and unrestricted likelihood function values as 
in the GLR approach, the LM approach assesses the significance of the magni­
tude of the Lagrange multipliers appearing in the restricted ML optimization 
problem. The intuition here is that the Lagrange multipliers in such a problem 
indicate the marginal changes to the optimized likelihood function value from 
constraint relaxation. Large values of Lagrange multipliers indicate that large 
increases in likelihood function values are possible from constraint relaxation. 
If the LM values are significantly different from zero, the indication is that the 
likelihood function can be significantly increased by examining parameter val­
ues contained in Ho, suggesting that Ho is false and should be rejected. Like the 
GLR test, the LM test is a natural testing procedure to use for testing hypotheses 
about E> or functions of E> when (restricted) maximum likelihood estimation is 
being used in a statistical analysis. We will focus on the asymptotic properties 
of the test.s 

In order to establish the form of the test rule, examine the problem of 
maximizing InL(E>; x) subject to the constraint R(E» = r specified in Ho, as 

maxlnL(E>; x) - X[R(E» - r], 
a,A 

where A is (q xl) vector of LMs. The first-order conditions for this problem are 

alnL(E>; xl _ aR(E» A = [0] and R(E» - r = [0]. 
aE> aE> 

Letting 8 r represent the restricted MLE that solves the first-order conditions 
and Ar represent the corresponding value of the LM, it follows that 

alnL;:r; X) _ a~(:r) Al = [0] and R(81 ) - I = [0]. 

We now establish the LM test and its asymptotic distribution under Ho. 

Theorem 10.7 (The LM Test of Ho: R(E>o) = I Versus Ha: R(E>o) # r) Assume the conditions 
and notation of Theorem 8.18 ensuring the consistellcy, asymptotic normality, 
and asymptotic efficiency of the MLE, E>, of E>. Let E>r and Al be the restricted 
MLE and value of the Lagrangian multiplier that satisfy 

maxL(E>; x) - X(R(E» - I), 
a,A 

SExcellent references for additional details include 1. G. Godfrey (1988), Misspecification Tests in Econometrics. New York: Cam­
bridge Univ. Press, pp. 5-20; and R. F. Engle (1984), "Wald, likelihood ratio and Lagrange multiplier tests." in Handbook of Econo­
metrics, vol. 2, Z. Giliches and M. Intriligator, eds. Amsterdam: North-Holland, pp. 775-826. 
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where R( 8 I is a continuously differentiable (q x 1 I vector function that contains 
no redundant coordinate functions. If G = aR(801/a8' has full row rank, then 
under Ho it follows that:6 

1. 

2. an asymptotic size a and consistent test of Ho: R(801 
R(801 # r is given by 

w [~J X~;a =* [:~~:~t ~oJ, 
and 

r versus Ha: 

3. an alternative and equivalent representation of W is given by 

W _ alnL(8r ;X)' [_ a2 InL(8 r ;XI]-1 alnL(8r ;X) 
- a8 a8a8' a8' 

(The test based on this alternative form ofW was called the scoring test by 
C. R. Rao (1948), "Large sample tests of statistical hypotheses." Proceed­
ings of the Cambridge Philosophical Society, 44, pp. 50-57.) 

·Proof Expanding both a InL(8r; X)/a8 and R(8r )-r = [0] in a first-order Taylor series 
around the true 8 0 allows the first-order conditions of the ML problem to be 
written as 

alnL(80 ;X) a2 InL(8*;X)(8 -8 )- aR(8 r 1A =[0] 
a8 + a8a8' r 0 a8 r , 

aR(8+I'(8 _ 8 1-[0] a8 r 0 - , 

where 8* and 8+ each lie between 8 0 and 8 r.? Note the second equation 
incorporates the fact that the first term in the Taylor series, R(801 - r, is zero 

6 A, is the random vector whose outcome is ~,. 

7We must alert the reader to a technical point that we suppress notationally regarding the use of Taylor series representations of 
vector functions. Specifically, such a representation is actually a collection of Taylor series representations, one for each entry in 
the vector function, say f(z). As such, the point of evaluation of the final derivative terms in each Taylor series can differ for each 
coordinate function. For example, if f(z) is Ii x I), then in the Taylor series representation 

af(z.)' 
f(z) = f(zo) + az--(z - zo), 

it can be that each row of af(z.)az' must be evaluated at a different z. = rz + (1 - r)zo, r E [0, IJ. Having alerted the reader to this 
situation, we will tacitly assume henceforth that this is understood. What is most important for our purposes is that z. -> Zo as 
z -> zo, so in this case, in the limit, all rows of af(z.)/az' will be evaluated at the same point. 
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under Ho, which we now assume is true. Premultiplying the first of the preced­
ing equations by n-1/2 and the second by n 1/2 leads to the matrix equation 

[ 

-I a21nL(e.; X) aR(sr)] 
-n aeae' ae [n1/2(Sr- e o)] _ [n_I/2alnL.(~0;X)] 
--a-R-(e-. -+)-, ----+--- n i/2 A - ae 

10] r 10] 
ae 

Observe that the right-hand side of the matrix equation (*) converges in distri­

bution to the vector [~], where Z '" N(lOj, M(eo)). 
10] 

In examining the asymptotic behavior of nl/2(Sr - eo) and n- 1/2 All it will 
be permissible by Theorem 5.9 to write the first matrix of (*) as 

[ 
M(eo) 

aR(eo)' 
ae 

aR(eo) ] 
ae 

10j 

since Sr, and thus e. and e+, -4 eo, aR(el/ae is continuous, and 

-1 a2 InL(e.; XI p (e I 
n aeae' ~ -M ·0 . 

Using partitioned inversion,8 n-1/2 Ar can be solved for, yielding 

-1/2A = [aR(eol'M(e 1-1 aR(eol ]-1 aR(eo)'M(e 1-1 [ -1/2 alnL(eo; XI] 
n r ae 0 ae ae 0 n ae . 

If G = aR(eol/ae' has full row rank, it follows by Slutsky's theorems that 

n-1/2Ar --4 N(lOj,IGM(eo)-IG't 11, 

and 

IGM(eot I G'jI/2n -l/2Ar --4 N(lOj,II. 

Since the limiting distribution is unaffected by replacing G with aR(Srl/ae' 
A d 

and M(eol by l-n-1(a2InL(e r ; xl/aeae')], we finally have (recall = means 

8Note since the lower right block of the matrix is [01, Lemma 8.3 cannot be used. One can use the following result for symmetric 
matrices (H. Theil (1971), Principles of Econometrics. New York: John Wiley, p. 18), proven by direct multiplication: 

[
A I C]-l = [A-l+A-lC(B-C'A-lC)-lC'A-1 -A-1C(B-C'A-1Cl-1]. 

C' B -(B-C'A-1C)-IC'A-1 (B-C'A-1C)-1 
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equivalent in limiting distributionJ 

w= -IA'[GM(S J-IG'jA ~A'aR(8rJ' [_a2 InL(8r;XJ]-1 aR(8rJA 
n r 0 r r ae as as' as r, 

-4 X~ under Ho. 

The size a test indicated in part (2J of the theorem follows immediately from 
the limiting distribution of W. Consistency can be demonstrated by retracing 
the previous argument beginning with the initial Taylor series expansion of the 
first-order conditions, but with R(eoJ - r = ¢ =1= [OJ so that [OJ is replaced by 
_n1/2¢ in the vector on the right-hand side of the equality in (*I. The net result 
is that p(w > rJ ~ 1 as n ~ 00 V r > 0, and so Ho is rejected for any critical 
region of size E (0, IJ of the form [X~;a' ooJ. See S. D. Silvey, The Lagrangian 
Multiplier Test, pp. 389-407, for furtlier discussion. 

The alternative representation of W in par;: (3 J of the theorerp. follows imme-
diately from the first-order conditions alnL(Sr; xl/aS = (aR(SrJ/aSJAr. • 

In certain applications, the LM test can have a computational advantage 
over the GLR test since the latter involves both the restricted and unrestricted 
estimates of S, whereas the former requires only the restricted estimates of 
e. In the following example, the relative convenience of the LM test is illus­
trated in the case of testing a hypothesis relating to the Gamma distribution. 
Note the GLR approach in this case would be complicated by the fact that the 
unrestricted MLE cannot be obtained in closed form. Obtaining the restricted 
MLE in the following case is relatively straightforward. 

Example 10.11 LM Test of Ho : ex = 1 (Exponential Family) Versus Ha: ex =1= 1 in Gamma Population 
Distribution 

The operating life of a new CD player produced by a major manufacturer is 
considered to be Gamma distributed as 

1 a-I -z/fJ 
Z '" j3al(aJz e [(O,ool(z), 

The marketing department is contemplating a warranty policy on the CD player 
and wants to test the hypothesis that the CD player is /I as good as new while 
operating," i.e., does the CD player's operating life adhere to an exponential 
population distribution? To test the null hypothesis Ho: a = 1 versus Ha: a =1= 

1, consider performing a size .05 LM test using a sample of 50 observations on 
the operating lives of the new CD player. 

The likelihood function is (suppressing the indicator function) 

1 n n 

L(a R. x) = TIx~-le-Li=lxdfJ 
,p, j3nafn(a) i=l 1 , 

with n = 50. We know from Ex. 8.15 that the conditions of Theorem 8.18 apply, 
and so Theorem 10.7 is applicable. Under the constraint a = 1, the restricted 
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ML estimate is the value of P such that 

A 1 "so 1f3 f3 = arg ~ax f350 e- £-;=1 x; , 

which we know to be the sample mean, X. 
To implement the LM test, consider calculating the LM statistic as indi­

cated in Theorem 10.7.3. The second order derivatives of InL(a, f3; x) are given 
in Ex. 8.15. In order to evaluate these derivatives at a = 1 and f3 = X, note that 
(to five decimal places) 

dr(a) d2 r(a) 
--aa-1a=1 = -.57722 and Ta2la=1 = 1.64493 

(see M. Abramowitz and I. Stegun (1970), Handbook of Mathematical Func­
tions, New York: Dover Publications, pp. 258-260, or else calculate numerically 
on a computer). Then letting S = [a, f3I', 

a2InL(S;x) _ [-1.31175 _x-I] 
asas' la=I,f3=x - n --I --2' -x -x 

where in this application, n = 50. 
The first derivatives of In L(a, f3; x) are given in Ex. 8.10, and when evaluated 

at a = 1 and f3 = x, they yield 

aInL(a, f3; x) _ ~ 
a I a=! = - n Inx + .57722n + L.." In Xi, 
a f3=x i=1 

alnL(a;f3;x)1 --I --I 0 
df3 a=! = - nx + nx = . 

f3=x 

The LM test statistic then takes the form (note that Or = [I, xl' 

W = a In L(Or; x)' [_ a21n L(Or; X)] -I a In L(Or; x) 
as as as' as 

n(lnxc -lnx + .57722) = ~----~~~----~ 
(.31175) 

where Xc = (n7=1 xiJl/n is the geometric mean of the x/s, and n = 50 in this 
application. The test rule is then 

W = 160.38492 (In (X;) + .57722) [~J3.84146 =} [:~!:~~ ~J 
where xLos = 3.84146. 

Suppose the 50 observations on CD player lifetimes yielded X = 3.00395 
andxc = 2.68992. The value of the LM test statistic is w = 74.86822, and since 
w 2: 3.84146, Ho is rejected. We conclude that the population distribution is 
not exponential at significance level .05. (In actuality, x and Xc were simulated 
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from a random sample of 50 observations from a Gamma(2, 10) population dis­
tribution, and so the test made the correct decision in this case). 0 

Analogous to the limiting distribution of -2InA(X) under local alternatives 
in the case of the GLR test, the limiting distribution of the LM statistic is 
noncentral X2 under general conditions. 

Theorem 10.8 (Asymptotic Distribution of LM Test of Ho: R(8) = r Versus Ha: R(8) =1= r For 
Local Alternatives When Ho Is False) Consider the LM test of Ho: R(8) = r 
versus Ha: R(8) =1= r under the conditions and notation of Theorem 10.7, and 
let a sequence of local alternatives be defined by Han: R(8) = r+n-I/2¢. Then 
the limiting distribution of the LM statistic is noncentral X2 as 

W = A' aR(8r )' [_ a2InL(8r ; X)]-I aR(8r ) A ~ 2(A) 
r a8 a8a8' a8 r Xq , 

where the noncentrality parameter is as follows: 

A = ~A-' [aR(80J' M(8 J-I aR(80J ]-1 A-
2'f" a8 0 a8 'f". 

Sketch of the Proof Assuming R(8J - r = n-I/2¢ -+ [OJ, as implied by the sequence of local al­
ternatives, it follows that the sequence of restricted MLEs of 8 0 is such that 
8 r --4 8 0 • The matrix equation (*) in the proof of Theorem 10.7 applies here, 
except that [OJ in the vector on the right-handA side of the equality changes 
to -¢ (since Athe Taylor series expansion of R(8r ) - r = [OJ is now n-I/2¢ + 
aR(8+J/a8'(8r - 8 0) = [OJ). Following the proof of Theorem 10.7 in applying 
partitioned inversion and the convergence result of Theorem 5.9, the revised 
matrix equation (*) yields 

n-I/2Ar ~ [a~~o)' M(80J-I a~(~oJrl [a~~o)' M(80t l (n_I/2alnL~~0; XJ) - ¢ l 
By Slutsky's theorem, the rightmost bracketed term converges in distribution 
to 

N (_A. aR(80J'M(8 J-I aR(80)) 
'1-', a8 0 a8 ' 

and letting G = aR(80J/a8', it follows that 

[GM(80t IG'j1/2n-I/2Ar ~ N (-[GM(80tIG'tl/2¢, I). 
Finally, since aR(8r J/a8' --4 G and n-1(a2InL(8r ; XJ/a8a8') --4 -M(80J, 
then 

8R(8r J' _n-1 82InL(8 r; Xl 8R(8rJ --4 [GM(80J-1G,]1/2 [
A [ A] -1 A] 1/2 

a8 88a8' a8 
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so that by Slutsky's theorem, 

= A' aR(8r )' [_ a21nL(8r ; Xl]-l aR(8 r ! A d 2(A) 
W r a8 a8a8' a8 r ~ Xq , 

with A = (1/21¢'[GM(80 )-IG'j-l¢ (see Section 10.9 for properties of the non­
central X2-distribution). • 

Given Theorem 10.8, the asymptotic power of the LM test as a function of A 
can be calculated and graphed. The asymptotic power function is monotonically 
increasing in the noncentrality parameter A. The LM test is also asymptotically 
unbiased for testing Ho: R{3 = r versus Ha: R{3 =1= r since the test is consis­
tent. Being that the LM statistic has the same limiting distribution under local 
alternatives as the statistic -2[lnL(8r ; X) -InL(8; x)] used in the GLR test, 
the two procedures cannot be distinguished on the basis of asymptotic power 
considerations. In applications the choice of whether to use a GLR or LM test 
is often made on the basis of convenience. Comparisons of the finite sample 
properties of the tests continue to be researched and are generally a case-by-case 
affair. 

Historically, the LM test procedure is the most recent of the GLR, Wald, and 
LM triad of tests, listed in order of discovery. Recently, substantial progress has 
been made in applying the LM approach to a wide range of testing contexts in the 
econometrics literature. Interested readers can consult the article by R. F. Engle, 
Lagrange Multiplier Tests, and the book by L. G. Godfrey, Misspecification 
Tests, to begin further reading. 

10.5 Wald Tests 

The Wald test for testing statistical hypotheses utilizes a third alternative mea­
sure of the discrepancy between restricted (by Ho) and unrestricted estimates of 
the parameters of the joint density of a random sample in order to define a test 
rule. In particular, the Wald test assesses the significance of the difference be­
tween the unrestricted estimate of R(8) and the value of R(8) that is specified 
in Ho, r. Significantly large values of R(8) - r indicate significant discrepan­
cies between the hypothesized value of R(8) and the unrestricted estimate of 
R(8) provided by the data, suggesting that Ho is false. It is not necessary that 
the estimator 8 be a MLE for the Wald test to be applicable. In fact, one need 
not specify a likelihood function at all to perform the test, and in this respect 
the Wald test is more general than either the GLR or LM test procedure, as 
presented heretofore. 

Theorem 10.9 (Wald Test of Asymptotic Size ex When 8 ~ N( 8 0,n- 1 ~)) Let the random sam­
ple (Xl, .. . ,Xn) have the joint probability density function f(xI, ... ,xn;80 ), let 
8 be a consistent estimator for 8 0 such that n l /2(8 - 8 0! ~ N([O],~), and let 
ntn be a consistent estimator of the positive definite ~. Furthermore, let the 
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null and alternative hypotheses be of the form Ho: R(el = rand Ha : R(el =1= r, 
where R(e) is a (q x 1) continuously differentiable vector function of e for 
which q :s k and R(e) contains no redundant coordinate functions. Finally, 
let aR(eo)/ae' have full row rank. Then a consistent and asymptotic size ex 
test of Ho versus Ha is given by 

w[~Jx~;~ => [;:~:~t ~J, 
where 

Proof Under the stated assumptions, Theorem 5.40 is applicable, so that 

n 1/2 [R(e) _ r] --4 N ([01, aR~~o)' ~a~(~o)) 

under Ro. Letting ~r represent the covariance matrix of this limiting distribu­
tion, it follows that 

nl/2~;1/2 [R(e) - r] --4 NHOI,Iq ), 

so that by Theorem 5.3 

n [R(e) - rT ~;l [R(e) - r] --4 x~. 

Now note that 

[ aR(e)'( t )aR(e)]-1 p ~-l 
ae n n ae ~ r 

by the continuity of aR(e)/ae and the continuity of the inverse matrix func­
tion, in which case it follows from Theorem 5.9 that W --4 X~, so that the test 
as defined above has size ex asymptotically. ~ 

Regarding consistency, assume ex > 0 and thus c X~;~ < 00. Since e ~ eo 

and R(e) is continuous, R(e) - r -4 ¢ =1= [01, assuming Ha: R(e) =1= r is true. 
Then n-1 W ~ ¢'~;l¢ > 0, so that limn ..... co P(w ~ c) = 1 for any c < 00, and 
the test is consistent. • 

Example 10.12 Revisit Ex. 10.5, and suppose that in addition to a hypothesis regarding the 
mean life of the computer screen, a hypothesis regarding the variance of the 
operating life is to be investigated. In particular, suppose Ho: ()2 = 1 versus 
Ha: ()2 =1= 1 is under consideration. We know in this case that 

nl/2(X - IL) --4 N(O,a2 ), and ntn = n (~) ~ a 2• 
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Thus, Theorem 10.9 is applicable, with R(el = e2 • Since dR(el/de = 2e, it 
follows that a Wald test of asymptotic size .05 can be defined as 

W[~]3.84 =} [reject HoJ 
< accept Ho 

where Pix ~ 3.841 = .05 when X "-' XI, and letting n = 10, 

w = (02 _ I)' [402 S2]-1 (02 _ II = 1O(x2 - 1)2. 
10 (4x2S2 ) 

Supposing that x = 1.4 and S2 = 2.1, then w = .56 < 3.84, and thus Ho would 
not be rejected using the Wald test. 0 

The asymptotic distribution of the Waldstatistic whenHo: R(81 = risfalse 
can be established for the case of local alternatives and leads to a noncentral 
X2-distribution, as in the case of the LM and GLR procedures. 

Theorem 10.10 (Asymptotic Distribution of Wald Statistic Under Ha: R(8) i= r) Let the con­
ditions and notation of Theorem 10.9 hold for testing Ho: R(8) = r versus 
Ha: R(8) i= r. Then for a sequence of local alternatives Han: R(8) = r+n- 1/2</>, 
it follows that W ~ X~(A) with non centrality parameter 

A = ~</>' [aR(801' ~aR(801J-l </>. 
2 a8 a8 

Proof It follows from Theorem 5.40 that nl/2(R(S) - R(80 11 -4 N([O), G~G'), where 
G = aR(8o)/a8'. Under the sequence oflocal alternatives, R(8) = r+n-1/2</> -+ 

rand nl/2(R(S) - (r + n-1/2</>)) -4 N([O), G~G'I, in which case nl/2(R(S) -
rl ~ N(</>, G~G'1 and [.9~G'J-l/2nl/2(R(SI- rl -4 N([G~G')-1/2¢, I). Since 
aR(8)/a8' ---4 G and n~n ---4 ~, it follows from Theorem 5.9 and properties 
of the noncentral X2-distribution that 

W = nl/2(R(S) _ r)' [aRtS)' (n:En ) aR(S)]-1 (R(S) _ r)n 1/2 

a8 a8 

~ nl/2(R(S) - r)'[G~G'tl(R(S) - r)n1/2 -4 X~(A), 
with A = (I/2)</>'(G~G')-1</>. • 

Example 10.13 Wald Test Based on a GMM Estimator 

Revisit Ex. 8.28 concerning GMM estimation of f3 in the demand function 
y = Xf3 + V, when X is random and E(X'X)-IX'V i= [0). The GMM estimator 
f3c = (z'X)-lz'y as defined in the example is a consistent and asymptotically 

normal estimator of f3 as nl/2(,Bc - f3o) -4 N([O), a2(A~xA;1 Azx)-ll. A consis­
tent estimator of the covariance matrix of the limiting distribution is given 



10.6 Tests in the GLM 625 

A2 A2 A A 
by na (X'z(z'zl-lz'XJ-I, where a = (Y - X,6c1'(Y - X,6c1/n. Let Ho: R,6 = r 
be any hypothesis concerning linear combinations of the parameters of the 
demand function, where R has full row rank. Then a Wald test of Ho having 
asymptotic size a can be based on outcomes of 

W = (R.8c - rl' [a-2R(X'z(z'zJ- 1z'XI- 1R'r l (R.8c - rl, 

where the critical region is defined by C;V = [X~;a' 001. How would the test 
change if the null hypothesis were nonlinear in ,6, i.e., Ho: R(,6J = r? 0 

The asymptotic power function of the Wald test is monotonically increasing 
in the non centrality parameter A since P(w ::: c; AI for C < 00 is monotonically 
increasing in A if W '" x~(AI. The Wald test is also asymptotically unbiased 
for testing Ho: R(eol = r versus Ho: R(eol =1= r based on asymptotic power 
considerations since the test is consistent. 

As we had noted at the end of our LM discussion, each of the tests in the 
GLR-LM-Wald triad has the same limiting distribution under sequences of 
local alternatives when all of the tests are based on the unrestricted and/or 
restricted MLEs of e. As such, the tests cannot be distinguished on the basis 
of asymptotic power comparisons. If convenience dictates the choice of test 
procedure, then the Wald procedure will be most useful when the unrestricted 
ML estimate is relatively easy to obtain. Consideration of small sample prop­
erties requires a case-by-case analysis. The Wald test has flexibility in being 
quite generally applicable to a wide array of estimation contexts other than ML 
estimation. We note, however, that this flexibility is not exclusive to the Wald 
test. In particular, the LM approach has been gradually expanding into con­
texts more general than maximum likelihood estimation (see Engle, Lagrange 
Multiplier Tests, Godfrey, Misspecification Tests, and the references contained 
therein I. 

10.6 Tests in the GlM 

In this section we examine some specific statistical tests that have been applied 
in the context of the GLM. The collection of tests that are presented here will 
allow testing of statistical hypotheses relating to values of the ,6 and a2 pa­
rameters. We begin in the context of multivariate normality of the disturbance 
term of Y = x,6 + c and later examine asymptotically valid procedures that do 
not depend on the normality of c. 

Tests When c Is Multivariate Normal 

In this subsection we begin by assuming that the classical assumptions of the 
GLM hold and in addition that c '" NUO], a 2I1 in Y = x,6 + c. We concentrate 
here on testing hypotheses relating to the value of linear combinations of ,6, 
i.e., R,6, and the value of a 2 • We will examine hypotheses concerning nonlinear 
functions of ,6 when we examine the more general nonnormal case. 
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Testing R{3 = r When R Is q x k: F-Tests Under the prevailing assumptions, 
Y '" N(x{3, a 2I) and /3 '" N({3, a 2(x'x)-1). Examine a Wald-type test of the null 
hypothesis Ho: R{3 = r versl;!s Ha: R{3 =1= r, where R is (q x k) with (ull 
row rank. We know that nl/2({3 - {3) '" N([O], u 2(n-1x'x)-1), and thus n 1/2({3 -
{3) -4 N([0],u2Q-l), assuming n-lx'x -+ Q, a positive definite matrix. Also, 
S2(n-1x'x)-1 is a consistent estimator of the covariance matrix of the limiting 
distribution for nl/2(/3 - {3). Then Theorem 10.9 suggests that outcomes of the 
Wald statistic 

W = (R/3 - r)' [S2R(x'x)-lR'r1(R/3 - r) 

can be used to test Ho, where the critical region C;V = [X~;aoo) defines an asymp­
totic size ex, asymptotically unbiased, and consistent test. 

In this case, we have sufficient information to establish the small sample 
distribution of W, and so we will also be able to define an exact size ex test of 
Ho. In particular, rewrite W in the following fractional form: 

_ (R/3 - r)' [a2R(x'x)-lR'r1(R,8 - r) _ Yq 
W- -. 

[In - k)S2/a2(n - k)] (Zn_k/(n - k)) 

Note that the numerator random variable is the sum of the squ~res of q indepen­
dent standard normal variates since V = [a2R(x'x)-lR'J-1/2(R{3 - r) '" N([O],Iq) 
under Ho, and the numerator can be represented as V'V. We know from Section 
8.2 that (n - k)S2/a2 '" X;-k' and thus the denominator random variable is a 

X;-k random variable divided by its degrees of freedom. Finally, recall that /3 
and S2 are independent random variables (Section 8.2) so that Yq and Zn-k are 
independent. It follows from Section 6.7 that W/q '" F(q,n - k) under Ho,9 so 
that W itself is distributed as an F random variable multiplied by q, where the 
F-distribution has q numerator and (n - k) denominator degrees of freedom. 

An exact size ex test of Ho: R{3 = r versus Ha: R{3 =1= r is defined by 

W[=::JqFa(q, n - k) => [reject HHo J, 
< accept 0 

where the value Fa(q, n - k) is such that PI! =:: Fa(q, n - k)) = ex when F '" 
F(q, n-k). This test is unbiased and is also consistent if (x'x)-l -+ [0] asn -+ 00. 

To see unbiasedness" note that if R{3 - r = ¢ =1= [0], so that Ha is trlle, then 
[a2R(x'x)-lR,]-1/2(R{3 - r - ¢) '" N([O],I), so that [a2R(x'x)-lR']-1/2(R{3 - r) '" 
N([a2R(x'x)-IR,]-1/2¢, I). Thus, the numerator of the previous fractional repre­
sentation of W is a random variable having a noncentral X2-distribution, i.e., 
Yq '" X~(A), with noncentrality parameter A = (1/2)¢'[a2R(x'x)-1 R']-l¢. It fol­
lows that W/q is the ratio of a noncentral X~ random variate to an independent 

9Note that under Ho, W/q is the ratio of two independent, central x2.random variables, each divided by its respective degrees of 
freedom. 
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central X~-k variate, each divided by its respective degrees of freedom, and thus 
W/q has a noncentral F-distribution, F(q, n -k, A) (see Section 10.9). Then since 
P(w/q ::: c; A) is monotonically increasing in A V c < 00, it follows that the power 
function of the F-test is strictly monotonically increasing in the noncentrality 
parameter, A, so that the test is unbiased. 

To motivate consistency, first note that if (x'x)-I -+ [OJ, so that R(X'x)-1 R' -+ 

[OJ, then all of the characteristic roots, AI, ... , Aq , of R(X'x)-IR' limit to 0 as 
n -+ 00 since L:L, Ai = trR(x'x)-IR' -+ 0 and Ai ::: 0 V i by the positive semi­
definiteness of R(x'X)-1 R'. Since the characteristic roots of [R(x'xt l R'J- I are the 
reciprocals of the characteristic roots of R(X'X)-I R', all of the characteristic roots 
of [R(x'x)-IR'J- I, say ~I, ... , ~q, will then increase without bound as n -+ 00. If 
Rf3 - r = cp =1= [OJ, it follows from results on the extrema of quadratic forms (see 
c. R. Rao, Statistical Inference, p. 62) that 

A = ~CP' [a2R(x'xt 'R'r' CP::: 2~2~SCP'CP, 
where ~s is the smallest characteristic root of [R(X'X)-I R'J- I, and thus if ~s -+ 00 

and cP' cP > 0, then A -+ 00. Finally, note that because 52 --4 a2, it follows 
that W ~ X~ under Ho, and qFa(q, n - k) -+ X~;a = C < 00. Therefore, since 
limA->oo P(w ::: c; A) = 1 when w "" X~(A), the test sequence is consistent. 

Example 10.14 Hypothesis Test Concerning Significance of Explanatory Variable Matrix in Repre­
senting EY 

In this example we examine a size a test of the null hypothesis that none of 
the explanatory variables, other than the intercept, is significant in explaining 
the expected value of the dependent variable in a GLM, Y = xf3 + e with 
e "" NUO], a 21). We suppose that the first column of x is a vector of l's, so that 
f31 represents the intercept. Then, from the foregoing discussion, a test of the 
hypothesis that none of the non intercept explanatory variables is significant, 
i.e., Ho: fJi = 0, i = 2, ... , k, versus Ha: not Ho can be performed in terms of 
the F-statistic W = (Rt3 - r)'(52R(x'x)-lR,)-1(Rt3 - r), where rlk-l)xl = [OJ and 
Rlk-l)xk = [[OJllk-d. In the current context, the test statistic can be represented 

alternatively as W = t3~(CoV(t3*))-1 t3*, where t3* = (/32' ... , /Jd' and CoV(t3*) is 
the sub-matrix of S2(x'X)-1 referring to the estimator of the covariance matrix 
of t3*. The test is defined by 

w[:::J1k - 1 )Falk - 1, n - k) :::} [reject Ho J. 
< accept Ho 

As a numerical illustration, suppose Y = xf3 + e represented a relationship that 
was hypothesized to explain quarterly average stock price levels for a certain 
composite of stocks sensitive to international market conditions. Let 

[ 
.25 .15 

b = [1.2,2.75,3.13]' and S2(X'X)-1 = .9 
(symmetric) 

.31] .55 
1.2 
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represent least-squares-based estimates of {3 and (T2(X'X)-I, where n = 3D, 
b I = 1.2 represents the estimated intercept of the relationship, and b2 = 2.75 
and b3 = 3.13 represent estimated coefficients on quarterly average composite 
exchange rates and western country aggregate real income. The value of the 
F-statistic for testing the significance of the explanatory variables other than 
the intercept is given by 

w = b:[s2R(x'x)-IR']-I]b* = [2.75 3.13][ .s; i~~ rl [~:i~] = 10.8347. 

Then Ho: fh = /33 = 0 is rejected using a size .05 unbiased and consistent test, 
since 

w = 10.8347::: 3.35 = F.os(2, 27). 

The interpretation of the result of the statistical test is then that at least one 
of the two explanatory variables is significant in explaining the expected value 
of the stock price composite. 0 

It turns out that there does not exist a UMP or UMPU test of Ho: R{3 = r 
versus Ha: R{3 i= r when R has two or more rows. Next we will see that for the 
case where R is a single row vector, a UMPU test does exist. 

Testing R{3 = r, R{3 ~ r, Or R{3 ::: r When R Is (1 x k): T -Tests In order to test 
Ho: R{3 = r versus Ha: R{3 i= r when R is a row vector, the F-statistic in the 
preceding subsection could be used without modification. However, since R{3 
is a scalar, an alternative representation of W is possible as 

W = (R,B - r)2/[S2R(x'x)-IR'] '" F(l, n - k) under Ho. 

An alternative test statistic based on the t-distribution whose square is equal 
to W is given by 

T = (R,B - r)/[S2R(x'x)-IR'jI/2 '" Tln-k) under Ho. 

Justification for the t-distribution of T can be provided from first principles 
(recall Problem 3(a) of Chapter 8), or else from the fact that the square of a 
T1n-k) random variable is a random variable having a F( 1, n - k) distribution. In 
terms of the t-statistic, the test is given by 

t[E](_oo, -ta/2(n - k)] u [ta /2(n - k), 00) :::::} [reject Ho], 
f/. accept Ho 

where ta/2(n - k) denotes the critical value of a t-distribution with n - k degrees 
of freedom for which PIt ::: tadn - k)) = a/2. 

It can be shown using the principles in Section 9.5 that the t-test (and thus 
the F-test) is a UMPU level-a test of Ho: R{3 = r versus Ha: R{3 =f. r. We 
will defer the demonstration of the UMPU property, as it is quite involved. 
Unbiasedness could alternatively be demonstrated from the equivalence of the 
t-test and F-test or from the power function of the test. In the latter context, 
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when R/3 - r = ¢ =1= 0, the aforementioned T -statistic has a non central t­
distribution with noncentrality parameter A = ¢/[a2R(x'x)-IR'jI/2. The power 
function, JrCr(A) = 1 - f1~2 fit; n - k, AJdt achieves its minimum value when 
A = 0 (Le., Ho is true) and is strictly monotonically increasing as A ~ 00 or 
A ~ -00 (see Section 9.6). Thus the test is unbiased. 

Consistency of the t-test sequence follows from consistency of the F-test se-
quence. As alternative motivation for consistency, first note that since Tn-k ~ 
N(O, 1) under Ho, then ta/2(n - k) ~ Za/2' where Jzoo Nlz; 0, 1 )dz = a/2. Based 

a/2 

on the t-test, the null hypothesis will be rejected iff IIR.8 - r)/sl ::: ta/2(n -
ls.HR(x'x)-IR'j1/2. Since the s/s are iid, S -4 a, and assuming IX'X)-l ~ [01, then 
/3 -4 /3. All of the preceding results imply collectively that the condition for 
rejecting Ho becomes I¢/al > 0 in the limit. Thus when ¢ i= 0, Ho is rejected 
with probability ~ 1 as n ~ 00, and the test sequence is consistent. 

Example 10.15 Revisit Ex. 10.14, and test the individual null hypotheses that each of the non­
intercept explanatory variables is significant in explaining the daily composite 
stock value. That is, test Ho: Pi = 0 versus Ha: Pi i= 0, for i = 2, 3. Use a size 
.05 test for each test. 
Answer: To test the first null hypothesis, set R = [0 1 01 and r = 0, and 
calculate the t-statistic as 

Rb -r 2.75 
t = IS2R(x'X)-IR')1/2 = 1.9)1/2 = 2.8988. 

Then since 

t = 2.8988 E C'{ = (-00, -t.o2s(27)J u [t.o2s(27)) = (-00, -2.0521 U [2.052, (0) 

we reject Ho: P2 = O. 
To test the second null hypothesis, set R = [0 0 1 I and r = 0, and calculate 

the t-statistic as 

t= Rb-r = 3.13 =2.8573 
IS2Rlx'x)-IR')1/2 11.2)1/2 . 

The critical region is the same as above, so that t E C'{ and Ho: /33 = 0 is re­
jected. It appears that both explanatory variables are significant in explaining 
the composite stock value; however, see the next subsection for the appropri­
ate interpretation of this joint conclusion in terms of the probability of type I 
~oc 0 

From the previous example it is clear that a test of the significance of any 
individual explanatory variable in the GLM will be based on a statistic whose 
value is equal to the explanatory variable's associated parameter estimate, bi , 

divided by the estimated standard error of the estimate, s(S;I' as t = bi/s(S;!" The 
statistic will be t-distributed with n - k degrees of freedom, and the critical 
region will be of the form (-00, -ta/2(n - k)J U [ta/2In - kl, (0). 
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The t-statistic can also be used to define level-a UMPU tests of Ho: R{3 :::: r 
versus Ha: R{3 > r or of Ho: R{3 2: r versus Ha: R{3 < r. The critical regions 
defined in terms of the t-statistic are as follows: 

Case Ho Cr 

(1) 

(2) 
R,B ::: r 
R,B 2: r 

R,B> r 
R,B < r 

t E [r.,.(n - k),oo) 
t E (-00, -r.,.(n - k)j 

The proof of the UMPU property can be based on the results of Section 9.5, 
but it is quite involved and is deferred. Unbiasedness can be verified from an 
investigation of the power functions of the tests. Examine case (1), and note 
that in terms of the noncentrality parameter, A = (R{3 - r)/[O'2R(x'x)-lR'P/2, 
of the non central t-distribution, an equivalent representation of Ho and Ha is 
given by Ho: A :::: 0 versus Ha: A > O. Since the power function of the test 

irc,(A) = 100 fIt; n - k, )')dt 
ta 

is strictly monotonically increasing in A, the test is an unbiased test. Unbiased­
ness of the test in case (2) follows from an analogous argument and is left to 
the reader. 

Regarding consistency of the respective test sequences, again examine case 
(1) and recall that ta(n -k) -+ Za, where fz": N(z; 0, l)dz = a. Based on the t-test, 
the null hypothesis will be rejected iff (Rb - I)/S 2: ta(n - kHR(x'xt l R'P/2. Given 
that S -4 a, (X'X)-l -+ [01, and thus fJ -4 {3, the condition for rejecting Ho 
becomes 4>/0' > 0 in the limit. Then if Ha is true, so that 4> > 0, the null hypoth­
esis will be rejected with probability -+ 1 as n -+ 00, and the test sequence is 
consistent. Consistency for case (2) follows analogously. 

Example 10.16 A constant elasticity quarterly demand relationship is specified as In Y = fil L + 
fi2ln P + fi3 ln Ps + fi4ln m + e where Y is quantity demanded of a commodity, 
p is its price, Ps is an index of substitute prices, m is disposable income, L is 
a vector of l's, and e '" N([OI, 0-21). Forty quarterly observations were used to 
calculate the least-squares-based estimates 

b = [10.1 -.77 .41 .56 J' 
and 

[
3.79 .05 .02 

A21 ' )-1 .04 .9 x 10-3 
S XX = .03 

(symmetric) 

.01 ] .1 x 10-3 

.1 X 10-3 . 

.02 

a. Using a size .05 test, test the significance of the matrix of explanatory 
variable values other than the intercept. 

h. Test the individual significance of the effect of price, of the substitute price 
index, and of disposable income, each at the .05 level of significance. 
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Test 

(a) 

(b) 

(c) 

(d) 

(e) 
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c. Test whether the demand equation is homogeneous degree zero in prices 
and income. 

d. Test whether the own price elasticity::: -1. 
e. Test whether the income elasticity is unitary elastic or larger. 

Answer: For each of the hypotheses being tested, we list the specification of 
R, r, the relationship hypothesized between Rf3 and r, whether the statistic 
used is an F-statistic (w) or at-statistic (t), the value of the calculated statistic, 
the critical region of the test statistic with degrees of freedom and distribution 
indicated, and the outcome of the test. 

R R~(~) r w or t C, Outcome 

[0 1 a 0] U] a a 1 a w = 36.6237 w> 2.86 reject Ho 
0001 > F.05 (3, 36) 

[0 1 a 0) a t = -3.85 t i:. (-2.028,2.028) reject Ho 
[0 a 1 0) a t = 2.3671 i:. (-(025(36), (025(36» reject Ho 
[0 a 01) a t = 3.9598 reject Ho 

[0 1 1 1) a t = .6587 t i:. (-2.028,2.028) accept Ho 
i:. (-(025(36), (025(36» 

[0 1 a 0) :s -1 t = 1.15 t E [1.688, (0) accept Ho 
E [(05(36), (0) 

[0 a 01) ::: t=-3.1113 t E (-00, -1.688) reject Ho 
E (-00, -(05(36») 

Test (a) indicates that at least one of the explanatory variables is significant 
at the .05 level; test (b) that each explanatory variable is individually signifi­
cant at the .05 level (but see the next subsection on the interpretation of the 
collective outcome of the three tests); test (c) that homogeneity of degree zero 
is acceptable as is test (d)'s conjecture that price elasticity::: -1; and test (e)'s 
conjecture that the income elasticity is unitary elastic or greater is rejected. 
Thus, one must conclude that the income response is inelastic. However, the 
reader should contemplate the power function of the tests used for the two 
hypotheses that were accepted in order to temper one's enthusiasm for literal 
acceptance of the respective hypotheses. 0 

Bonferroni joint Tests ofRif3 = ri,Rif3 ::: ri, or Rif3 ::: fj, i = I, ... , m Based on the 
Bonferroni probability inequality, it is possible to test individually a number of 
equality and/or inequality hypotheses concerning various linear combinations 
of f3 and still provide an upper bound to the probability of making a type I error 
with respect to the null hypotheses taken collectively or simultaneously. To see 
what is involved, suppose a collection of m tests based on the aforementioned 
t-statistics are performed that relate to any combination of hypotheses of the 
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form HOi: Rd3 = ri or HOi: Ri/3 ~ ri or HOi: RJ3 :::: ri versus, respectively, 
Hai : Rd3 =1= ri or Hai : Rd3 > ri or Hai : Rd3 < Ii, where R/s and r/s are (1 x k) 
vectors and scalars. Let Ti and C~, i = I, ... , m, represent the associated t­
statistics and critical regions, respectively, and suppose the sizes of the tests 
were ai, i = I, ... , m. It follows by Bonferroni's inequality that if all of the null 
hypotheses are true, 

m m 

P(ti ¢ C~,i = 1, .. . ,m):::: 1 - LP(ti E C~) = 1 - Lai. 
i=l i=l 

Thus the overall level of protection against type I error provided by the collec­
tion of tests is less than or equal to L:7,:l aj. 

For example, if four different tests are performed, each of size .025, then 
treating the four different null hypotheses collectively as a joint hypothesis re­
garding the parameter vector /3, the size of the joint test ~ .lD. In performing 
the four tests, one knows the probability that one or more individual hypothe­
ses will be rejected by mistake ~ .lD. In practice, one generally sets the overall 
bound on type I error, say a, that is desired for the joint test comprised of the 
m individual tests, and then sets the size of each individual test to aim. Alter­
natively, any distribution of test sizes across the m individual tests that sum 
to a will afford the same overall level of type I error protection. The Bonferroni 
approach can of course be applied in contexts other than the GLM. 

While the individual tests in the collection of tests may have optimal prop­
erties, such as being UMPU, the properties do not transfer to the Bonferroni­
type joint test in general. However, asymptotically the situation is favorable 
in the sense that if the individual test sequences are consistent, the joint test 
sequence will also be consistent. This follows from the fact that the joint test 
will reject the collection of Ho's as being simultaneously true with probability 

P (u:: 1 (y: ti(Y) E C~J) :::: P (ly: tj(Y) E C~J) Vi, 

and if P( (y: ti(Y) E C~}) ~ 1 as n ~ 00 when Haj is true, then P(u:: l (y: ti(Y) E 

C~lJ ~ 1 as n ~ 00. Thus the collection of null hypotheses U::1Hoi is rejected 
with probability ~ I, and the joint test sequence is consistent. 

A useful feature of the Bonferroni approach to joint testing of hypotheses is 
the ability to "look inside" a joint vector hypothesis R/3 = r to analyze which 
linear combinations of the entries in /3 are causing a rejection of the vector 
hypothesis. Specifically, if the joint test R/3 = r is rejected, say by a joint F-test, 
one can consider performing a series of tests of the individual null hypotheses 
HOi: Ri/3 = Ii, i = I, ... , m, to attempt to see which linear combination hy­
potheses are to be rejected and which are not. By choosing an overall level of 
type I error of a, and then distributing aim of this type I error probability to 
each of the individual tests, the collection of conclusions is protected at the 
level of type I error a. 

Example 10.17 Revisit Ex. lD.14, Ex. lD.15, and Ex. lD.16. In each case, an F-test rejected a joint 
null hypothesis of the form Ho: /3i = 0, i E I, and then individual t-tests were 
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performed on each of the null hypotheses HOi; {3i = 0 separately. For Ex. 10.14 
and Ex. 10.15, since each of the two tests had size .05, the overall conclusion 
that both explanatory variables are significant is protected against a type I error 
at level .10 by the Bonferroni approach. Likewise, the conclusion that each of 
the three explanatory variables is significant in Ex. 10.16 is protected against a 
type I error at level.lS. 0 

Tests fora2 ; x2 -Tests In order to test hypotheses concerning the magnitude of 
a2, consider the GLR approach. The likelihood function for ({3, ( 2 ) is given by 

1 
L({3, a 21Y) = (27l"a2)n/2 exp [-1/2(y - x(3)'(y - x(3)/a2]. 

Ho; a 2 = d Versus Ha; a 2 #- d Let Ho: a 2 = d and Ha; a2 #- d. In 
Section 9.3 we saw that the MLE for {3 and a2 is given by /3 = (X'X)-lx'Y and 

2 ~ ~ a (Y) = (Y - x(3)'(Y - x(3)/n, so that 

maxL({3, a 2 I y) = (27l"a2(y))-n/2 exp [-1/2(Y - xb)'(y - xb)/a2(y)] 
fJ,a2 

= (27l"a2(y)tn/2 exp[-n/2J. 

Now consider the MLE subject to the restriction a 2 = d. It is evident that 
L({3, d I y) is maximized when (y - x(3)'(y - x(3) is minimized, so that /3 remains 
the optimum choice of {3 under the restriction. The GLR statistic is then given 
by 

'(Y) ~ (&'~Y)) n~ exp [ ~ (\_ &'~Y)) J. 
In order to define a size a > 0 test, we need to find a positive number c < 1 such 
that PIA ::: c) = a when Ho is true. The GLR statistic has a complicated prob­
ability distribution and is therefore not convenient for solving this problem. 
We seek an alternative test statistic for determining the critical region of the 
GLR test. Letting z = a2(y)/d, note that InA = (n/2)lnz + (n/2)(1 - z) is such 
that dinA/dz = (n/2)[(l/z) - 11 and d2lnA/dz2 = -n/2z2 < 0 for z > 0, which 
indicates that In A, and thus A itself, attains its maximum when z = 1 and is 
strictly monotonically decreasing as z increases in value above 1 or decreases 
in value below 1 and moves toward zero. It follows that 

A ::: c iff a 2(yJ/d::: LI or ::: L2 

for appropriate choices of LI < L2. 
We can simplify the problem further via multiplying a 2(YI/d by the con­

stant n, resulting in na2(YJ/d = (n - kJS2 /d '" X;-k under Ho. We thus seek 
appropriate values of LI < L2 that satisfy both the size a requirement, 1 -
J:T~2 flw; n - kJdw = a, where f(w; n - kJ is a X;-k density, and the requirement 
that the GLR A have the same value, c, at LI and L2, implying that In LI +(1-LI J = 
In L2 + (1 - L2J, or In(LdL2J = LI - L2. The two simultaneous equations must be 
solved numerically to obtain the appropriate values of LI and L2 that define the 
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critical region [0, nrd U[nr2' ooJ for the x2-test-statistic outcome (n - kJS2/d. Al­
though obtaining the solutionis currently highly feasible on personal comput­
ers, it is probably safe to say that most practitioners nevertheless approximate 
the generalized likelihood ratio test by using an "equal-tails" test that can be 
defined by consulting a table of the X2 CDF. The equal-tails test would be 

(n - kJs2/d[:J [0, X~-k;l-aI2] U [X~-k;a/2' 00) =* [::::~: ~:l 
Note that the GLR test is a UMPU level-a test of Ho. The equal-tails test has 
level a but is not UMPU and in fact is not unbiased. 

Both the GLR test and the equal-tails test are consistent. To motivate con­
sistency in the case of the equal-tails test, note that Ho is rejected iff s2/d rf. 
Un -kJ-1 X~-k;l-aI2' (n -kJ-1 X~-k;aI2J. Since (n -kJ-1 X~-k -4 I, in the limit the 
test amounts to deciding whether or not plim 52/d = I, and since 52 -4 0'5, the 
test then amounts to whether O'51d = 1. Thus, if d =1= 0'5, so that Ha is true, Ho 
is rejected with probability --* 1 as n --* 00, and the test sequence is consistent. 

The consistency of the GLR test sequence can be established by showing 
that Theorem 10.4 applies. To see this, recall that In).. = (n12J InJa-2(YJ/dJ + 
(nI2)(1 - a-2(yJ/dJ achieves its maximum value, equal to 0, when a- (yJ/d = 1. 
Now note that plimn-1(2ln)..(YJJ = In(0'5/dJ + 1 - O'51d < 0 V 0'5 =1= d, which 
implies that )..(YJ -4 0 (recall Ex. 1O.8J. Then Theorem lO.4.b applies, and the 
GLR test sequence is consistent. 

Ho: 0'2 ~ d Versus Ha: 0'2 > d or Ho: 0'2 ::: d Versus Ha: 0'2 < d In 
order to test the hypothesis Ho: 0'2 ~ d versus Ha: 0'2 > d, the GLR approach 
of the previous subsection can be applied, where the constrained MLE is now 
found by maximizing L({3, 0'2 I yJ subject to the inequality constraint 0'2 ~ d. 
The solution for {3 remains b = (x'xJ-lx'y, while the solution for 0'2 is a-;(yJ = 
a-2(yJ = n-l(y - xbJ'(y - xbJ if a-2(yJ ~ d, and a-;(yJ = d otherwise. The resulting 
GLR statistic is therefore defined to be 

)..(YJ = (a-2(y))n/2 ex [~(1 _ a-2(Y))] . 
a-;(y) p 2 a-;(y) 

Note that the definition of a-; is such that a-2/a-; ::: 1. Given our previous 
discussion of the behavior of ).. = (zJn/2 exp[(n/2)(I-z)] indicating that).. achieves 
its maximum value of 1 when z = 1 and)" is strictly monotonically decreasing 
as z increases in value above I, it follows that 

).. ~ c iff a-2(yJ/a-;(y) ::: r 

for some appropriate choice of r > 1 for a size a > 0 test. Furthermore, since 
a-2(y)/0';(y) > 1 only if a-;(y) = d, it follows that 

).. ~ c iff a-2(yJ/d ::: r. 

Finally, by multiplying a-2(y)/d by n as before, we have 

).. ~ c iff (n - k)S2/d 2: nr. 
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To define the critical region of the size a GLR test, we need to find the value 
of nr that satisfies 

100 f(w; n - k)dw = a, 
nr 

where f(w; n - k) is a X2 density function with n - k degrees of freedom. The 
appropriate value of nr can be found in tables of the X2 CDF for the typical 
choices of a = .01, .05, or .10, or else they can be found through use of the 
computer. The GLR test is then 

(n-k)s2[E][ 2 . oo):::} [reject Ho]. 
d fj. Xn-k,ct' accept Ho 

It can be shown that the GLR test is a UMPU level-a test of Ho: a 2 :::: d 
versus Ha: a 2 > d. Consistency of the GLR test sequence can be demonstrated 
by showing that Theorem 10.4 applies following a similar argument to the one 
used in the previous subsection. In order to test the hypothesis Ho : a2 :::: d ver­
sus Ha: a2 < d, the GLR approach can be followed with appropriate inequality 
reversalsi it is left to the reader. The GLR test of Ho versus Ha is 

(n - k)S2 [E][O, X2 . ]:::} [reject Ho]. 
d fj. n-k,l-ct accept Ho 

The test is UMPU level a and consistent. 

Example 10.18 Suppose that in Ex. 10.14, S2 = .13. Test the null hypotheses that (a) a2 = .10, 
(b) a 2 :s .10, and (c) a 2 :::: .25. Use a size .05 test in each case. 
Answer: In each case, n - k = 40 - 4 = 36. We use the equal-tails test for (a), 
a~d the GLR tests for (~) and (c). Noting that X~6;.975 = 21.335, X~6;.025 = 54.437, 
X36;.05 = 50.998, and X36;.95 = 23.268, 

a. (n - k)S2/d = 36(.13)/.10 = 46.8 fj. [0,21.335] U [54.437, oo):::} accept HOi 
h. (n - k)S2/d = 36(.13)/.10 = 46.8 fj. [50.998,oo):::} accept HOi 
c. (n - k)S2/d = 36(.13)/.25 = 18.72 E [0,23.268] :::} reject Ho. 

The reader may wish to investigate the power function of the tests used in 
(a) and (b) to gain perspective on the danger of interpreting "acceptance" in the 
literal sense in these cases. 0 

Testing When e Is Not Multivariate Normal 

In order to test hypotheses about the parameters of the GLM when e is not 
multivariate normally distributed, we resort to asymptotic distributions of 
test statistics to establish asymptotically valid size a and consistent tests. 
We assume that the classical GLM assumptions apply and that the e/s are iid 
distributed according to some unknown, nonnormal PDF f(ei). Furthermore, 
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we assume that conditions exist so that n 1/2(/J - (3) --4 N([OJ, a 2Q-l) and 
n 1/2(52 - ( 2) --4 N(O, r) (e.g., see Table 8.1).10 

Testing Rf3 = r or R(f3) = r When R Has q Rows: Asymptotic x2-Tests We first 
reexamine the use of the Wald statistic for testing Ho: Rf3 = r versus Ha: Rf3 =f: 
r where R is (q x k) with full row rank. Assume the conditions of case (5) hold 
in Table 8.1 so that n1/2(/J - f3) --4 N([OJ, u 2Q-l), and a consistent estimator 
of a2Q-l is given by n52(x'x)-I. It follows directly from Theorem lD.9 that the 
Wald test of Ho: Rf3 = r versus Ha: Rf3 =f: r is given by 

w = (Rb - I)' [s2R(x'xt1R'rl (Rb _ r)[:::]x2. => [reject Ho] 
< q.CI accept Ho 

is an asymptotically valid size (x, asymptotically unbiased, and consistent test. 
It is thus seen that under assumptions that ensure the asymptotic normality of 
the estimator /J and the consistency of 52, the Wald test of Ho: Rf3 = r versus 
Ha: Rf3 =f: r can be applied when e is not multivariate normally distributed. 

A minor extension of the preceding argument allows the conclusion that the 
preceding test rule is appropriate for testing nonlinear hypotheses Ho: R(f3) = r 
versus Ha: R(f3) =1= r. In particular, assuming that R(f3) is continuously differen­
tiable and contains no redundant constraints and that aR(f3o)/af3' has full row 
rank, it follows directly from Theorem lD.9 that an asymptotic size (x, asymp­
totically unbiased, and consistent test of Ho: R(f3) = r versus Ha: R(f3) =1= r is 
given by 

w ~ IRISI - r)' (5' a~~I' Ix'xl-I a~tl) -I IRISI - ri(~) xi,. '* [::~:~~ ~J 
The asymptotically valid power function of the Wald test under sequences of 
local alternatives can be defined in terms of the noncentral X2':distribution 
based on Theorem lD.lD. We provide an example of this Wald test later in 
Ex. lD.19. 

Testing R(f3) = I, R(f3) :::: I, or R(f3) ::: I When R Is a Scalar Function: Asymptotic 
Normal Tests In the case where R(f3) is a scalar function of the vector 13, the 
Wald statistic of the preceding subsection specializes to 

W ~ IRISI - rl' / [5' a~~I' Ix'xrl a~tl ] --4 xl under Ho. 

An alternative test statistic whose square is W is given by 

[

A A ] 1/2 
Z = (R(/J) - I)I 52 a~~)' (x'x)-1 a~~) --4 N(O, 1) under Ho. 

10 Asymptotic tests can be defined even when n-lx'x fr Q or when the e/s are not iid. See H. White (19841, Asymptotic Theory for 
Econometricians. Orlando: Academic Press. 
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The latter limiting distribution can be esta~lished via an application of Theo­
rem 5.39 applied to the scal~r function, R(,6), of the asymptotically normally 
distributed random vector ,6 and through Slutsky'S theorem. An asymptotic 
size (x, asymptotically unbiased, and consistent test of Ho: R(,6) = r versus 
Ha: R(,6) i- r in terms of a critical region for the Z-statistic is given by 

z[~J (-00, -ZO'/2] u [ZO'/2' (0) => [reject HHo J. 
'i" accept 0 

Other asymptotic size (x, asymptotically unbiased, and consistent tests in terms 
of the Z-statistic are given as follows: 

Case 

(1) 

(2) 

Ho 

R({3) ~ r 
R({3) ~ r 

R({3) > r 
R({3) < r 

Cr 

Z E (z,,, (0) 

Z E (-00, -zal 

In order to test the linear hypothesis Ho: R,6 = r versus Ha: R,6 i- r, the test is 
performed with R replacing oR(/3)/o,6' and R/3 replacing R(/3) in the definition 
of the Z-statistic. It should be noted that in practice, the t-distribution is some­
times used in place of the standard normal distribution to define the critical 
regions of the aforementioned tests. In the limit, there is no difference between 
the two procedures, since tv -+ N(D, 1) as v -+ 00. However, in small samples, 
the t-distribution has fatter tails, so that to' > Zo', and thus the actual size of 
the aforementioned tests is smaller when based on to' and to'/2 in place of Zo' and 
ZO'/2, respectively. The use of the t-distribution can be viewed as a conservative 
policy toward rejection of Ho in that the probability of type I error is less and 
stronger evidence will be required for rejection. On the other hand, the actual 
power of the test is also reduced when the t-distribution is utilized. 

Asymptotically valid power calculations for local alternatives when one of 
the z-tests is used can be based on the standard normal distribution. In partic­
ular, for local alternatives of the form R(,6) - r = n-1/2¢, it follows that 

Then assuming that n-1x'x -+ Q, Slutsky'S theorems can be used to show that 

Z ~ N (¢/ [CT20~~)' Q-l o~:)r/2 ,I) = N (tIl), 
so that the asymptotic power function of the z-test is represented as 

rrd¢) = leGr N (Z; t, 1) dz. 

Note that the Bonferroni approach to hypothesis testing can be applied as before 
using either Wald statistics or t-statistics except that now the bound on the level 
of type I error is only asymptotically valid. 
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Example 10.19 A quadratic production function representing output in terms of two-variable 
inputs is specified as 

Yt = fhxt! + fhxt2 + [xt! Xt21[~: ~:] [~~:] + et, for t = 1,2, ... , n, 

where Yt is output is period t, Xti is quantity of input i used in period t, and the 
et'S are iid with Eet = 0 and Ee; = (12, V t. Representing the production function 
in a more obvious GLM form, we have 

y, = [X" x" x;, xi, 2x" x,,] [~~] +8" for t = 1,2, ... ,no or 

y = X.f3+e. 

Assuming that x. is a matrix with full column rank, the classical GLM as­
sumptions hold. Assume further that n-Ix~x. -+ Q, so that nl/2(,B - f3) --4 
N([O], u 2Q-l), and note that nS2(x~x.)-1 is a consistent estimator of (12Q-I. 

Suppose 40 observations are used to generate the following least-squares­
based estimates: 

b=[7.1 5.2 -.11 -.07 -.02]', 

(x:x.r l = 

6.463 7.187 
9.686 4.124 

5.766 
[

9.571 

(symmetric) 

4.400 
7.364 
2.814 
5.945 

8.247] 8.800 
6.087 . 
6.914 

11.254 

a. Test whether the production function is concave. Use an asymptotically 
valid level-.1O test. 

b. Test whether the marginal products (in terms of expected output) of inputs 
Xl and X2 are identical at equal input levels. Use an asymptotically valid 
size .05 test. 

Answer: 

a. Note that a necessary and sufficient condition for the production function 
to be concave is that f33 :5 0 and f33f34 - f3g 2: O. We will test each hypothesis 
using a Z-test of asymptotic size-.05, so that based on the Bonferroni ap­
proach, the joint test will have asymptotic size :5 .10 and thus asymptotic 
level.1O. 

Regarding Ho: f33 :5 0, the Z-statistic outcome is 

Rb -r -.11 - 0 
Z = [s2R(x:x.)-IR'jl/2 = .0588 = -1.8707, 

where R = [0 0 1 0 OJ and r = O. The critical region for the test is 
Gr = [Z,05, 00) = [1.645,00), and since w f/. Gr , Ho is accepted. 
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Regarding Ho: fhf34 - f3~ ~ 0, first note that aR(!3)/a!3 = a(f33f34 .­
f3~I/af3 = [0 0 f34 f33 2f3sJ'. Then 52(aR(,6)/a!3')(x~x*)-I(aR(,6)/a!3) = .3996 x 
10-4, so that the Z-statistic outcome is 

z = .0073 - 0 = 1.1548. 
(.3996 x 10-4)1/2 

Since the critical region is Cr = [-00, -z.osl = (-00, -1.645) and W f/ Cr , Ho 
is accepted. Overall, the joint null hypothesis of concavity of the production 
function is not rejected at the asymptotic .10 level of significance. 

h. Note that 
aEYt -a- = f31 + 2f33x rl + 2f3sxr2' 

Xtl 

aEYr 
-a- = f32 + 2f3sxrl + 2f34xr2. 

Xt2 

The marginal products will be identical at equal input levels iff 

aEYr aEYr 
-a- - -a- = f31 - f32 + 2(f33 - (34)~ = 0 V ~ = XII = Xr2· 

Xrl Xr2 

Thus we must test Ho: f31 - f32 = 0 and f33 - f34 = 0 versus H,,: not Ho. The 
Wald statistic appropriate for this problem has the form 

w = (Rb - r)' [s2R(x:x*)-lRT l (Rb - r). 

Note that 

[ 1 -1 0 0 
and R = 0 0 1 -1 

and the Wald statistic outcome is 17,390.828. Since the critical region of 
the test is Cr = [X~ 05,00) = [5.991,00) and 17,390.828 E Cr , Ho is (soundly) 
rejected at the asymptotic .05 level of significance. 0 

Tests fora2 : Asymptotic X2 and Normal Tests In order to test hypotheses concern­
ing the magnitude of a2, consider using a Wald statistic. Assume the conditions 
of case (7) in Table 8.1 ensuring the asymptotic normality of 52 based on The­
orem 8.8. Then nl/2(S2 - (12) ~ N(O, (f1~ - (14)), and it follows directly from 
Theorem 10.9 that a consistent, asymptotically unbiased, and asymptotic size 
Ci Wald test of Ho: a 2 = d versus Hll : a 2 I- d is given by 

_ n(52 - d)2 [EJ [2 ) [ reject Ho ] w - ~ Xla'OO =} , 
~ f/' accept Ho 

where ~ is a consistent estimate of var(E}) = JL~ _a4, such as ~ = n- I L;~l e; -54, 
with e = y - xb. 

Asymptotic size Ci, asymptotically unbiased, and consistent tests for one­
sided hypotheses can be defined using an asymptotically valid Z-statistic as 
follows: 
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Case 

(1) 

(2) 

Ho Cr 

/ A2 Al/2 n 1 2(5 - dJ/t; E [Za, (0) 
1/2 A2 A 1/2 n (s - dJ/t; E (-00, -Za) 

The reader will be asked to justify the asymptotic size and consistency of these 
tests in this chapter's problem section. 

Example 10.20 Recall Ex. 10.19, and test the null hypothesis Ho: 0-2 :::: .25 x 10-3 at the .05 
level of significance. 
Answer: Assuming the appropriate conditions for the asymptotic normality 
of ,$2 and the consistency of n-1 :L7=1 ej - ,$4 for j.t~ - 0-4, the z-statistic, with 
n-1 :L7=1 ej = .87 x 10-6, say, is 

n1/2(s2 - d) (40jI/2/'6 X 10-3 - .25 x 10-3 ) 

z = f/2 = /.51 X 10-6 )1/2 = 3.0997. 

The critical region of the test is CI = [Z.05, (0) = [1.645, (0), and since 3.0997 E 

C I , Ho is rejected. 0 

Note that in the preceding three subsections we have made no explicit as­
sumptions regarding the functional forms of the PDFs associated with the error 
terms of the GLM. We proceeded entirely on the basis of moment assumptions. 
If a functional form for the PDF of the error term is assumed, then the GLR or 
LM hypothesis-testing procedures can be used to provide alternative statistical 
tests for all of the preceding hypotheses. The reader is encouraged to contem­
plate the possibilities (see R. Davidson and J. G. MacKinnon, Estimation and 
Inference, pp. 452-458, for some such tests). 

10.7 Confidence Intervals and Regions 

In this section we provide an introduction to the concepts of confidence in­
tervals and confidence regions. We will approach the problem both from the 
perspective of the duality between hypothesis-testing and confidence-region (or 
interval) estimation and from the concept of pivotal quantities. The study of 
confidence-region or confidence-interval estimation encompasses its own the­
ory and practice that could easily consume considerably more space if treated 
at a general level. In particular, there is an entire paradigm that encompasses 
properties of confidence regions and methods of estimating optimal confidence 
regions or intervals that parallels the theories developed for hypothesis test­
ing. Moreover, there is a full duality between certain optimality properties of 
hypothesis tests and their counterpart for confidence-region or interval estima­
tion. We will point out some of these parallels in our discussion, but we will 
not examine them in detail. Readers interested in more detail can begin their 
readings by examining the work of M. Kendall and A. Stuart (1979), Advanced 
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Definition 10.2 
Confidence interval 

with confidence level, 

Statistics, Chapter 20, and E. Lehmann (1986), Testing Statistical Hypotheses, 
Chapter 5. 

In the case of a single scalar parameter, e, or a scalar function of parameters, 
R(8), a confidence interval is a random interval whose outcomes have a known 
probability of containing the true value of the parameter or function of parame­
ters. In practice, a confidence interval will be defined by random variables that 
represent the upper and lower bounds of the interval, and thus outcomes of the 
random variables defining the bounds also define an outcome of the random in­
terval. It is possible for one of the random variables defining the bounds of the 
confidence interval to be replaced by a constant, in which case the confidence 
interval is a one-sided confidence interval or a confidence bound. We provide 
a formal definition of what is meant by a confidence interval next. 

Let fIx; 8) for some 8 E n be the joint density of the random sample X, and 
let R(8) be some scalar function of the parameter vector 8. The following 
are confidence intervals for R(8) with confidence level y: 

a. two-sided: (e(X), u(X)) such that p(e(x) < R(8) < u(x); 8) 2: y, V 8 E n i 

h. one-sided lower: (e(X), 00) such that p(e(x) < R(8); 8) 2: y, V 8 E ni 

c. one-sided upper: (-00, u(X)) such that P(R(8) < JL(x); 8) 2: y, V 8 E n. 
The random variables e(X) and u(X) are called the lower and upper confidence 
limits, respectively. 

In any of the three cases in Def. 10.2, the smallest value lor infimum) of all of 
the probabilities for 8 E n is called the confidence coefficient. 

From the definition, it is seen that the random variables representing the 
lower and/or upper confidence limits are to be chosen so that they have out­
comes defining an interval containing the value of R(8) with probability 2: y 
for any value of 8, i.e., V 8 E Q. Note that the inequality is used here to 
accommodate discrete cases in which it may not be possible to achieve an 
exact level of probability y for all values of 8.11 With continuous random 
variables, strict equality can be achieved. Note further that for any given out­
come of a confidence interval, R(8) either is or is not in the interval, and so 
in practice we do not know whether or not R(8) is really contained in a given 
confidence-interval outcome. However, since the probability of the event that 
the confidence-interval outcome "covers" or contains R(8) is known to be 2: y, 
we do know that in repeated sampling 2: 100y percent of the intervals gener­
ated will contain the value of R(8), on average. It is in this sense that we have 
"confidence" that a confidence interval contains the value of Rle). 

II Analogous to our discussion of size in hypothesis testing, it is possible to overcome the difficulty if randomization of confidence 
intervals is allowed, which is similar to randomization of critical regions in hypothesis testing (recall Problem 9.8). This is rarely 
done in practice, and we will not pursue this topic further. 
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Definition 10.3 
Confidence region with 

confidence level 'Y 

The concept of a confidence region generalizes the concept of confidence 
intervals to the case where either (1) the random set designed to contain a scalar 
R(e) with known probability is not in the form of an interval, or else (2) R(e) 
is a vector function so that the random set used to contain R(e) with known 
probability is inherently in noninterval form. The random set defining the con­
fidence region will be designed so the probability that outcomes of the confi­
dence region contain the value of R( e) is known or is at least lower bounded 
in the discrete case. We now provide the formal definition of the concept of a 
confidence region. 

Let fix; e) be the joint density of the random sample X, and let R( e) be some 
scalar or vector function of the parameter vector e. Then a confidence region 
with confidence level y for R(e) is defined by a random set AIX) for which 
p(Rle) E Alx); e) 2: y, VeE o. 

As we remarked following Def. 10.2, the smallest value lor infimum) ofPIR(e) E 

A(x); e) for e E 0 is called the confidence coefficient. 
In practice the random set A(X) will be defined using random variables 

that appear in the set-defining conditions of the set. As these random variables 
take outcomes equal to the various values in their range, different outcomes 
of the random set are defined. For example, one possibility is that AIX) is a 
random open rectangle defined as AIXI = {Riel: ii(X) < Ri(e) < Ui(X), i = 
1, ... , m} so that a given outcome of the confidence region for R(el would be 
A(x) = Xf!\(ii(X), uilx)). Other examples of confidence sets will be presented 
subsequently. 

Note that confidence sets can be thought of as an alternative or supple­
mentary to point estimation where instead of only generating a best (in some 
sense) point estimate of the value of some unknown function of the parame­
ters of a joint density function, a set of values is generated that, a priori, has a 
high probability of containing the unknown function of the parameters. When 
one is interested in knowing a likely range of values for the unknown R(e), 
the confidence-set concept has obvious appeal. As further motivation for the 
use of confidence regions, recall that point estimators generally have a notable 
probability of generating point estimates that are literally wrong, and in fact 
the probability that a continuous point estimator will generate the true value 
of R(e) is zero! Alternatively, a random confidence set has a high probability 
of generating an outcome that contains the true Rle) by design. 

Defining Confidence Regions via Duality with Critical Regions 

The logical next question to ask is how does one go about defining confidence 
intervals or confidence sets? As it turns out, there is a duality between confi­
dence regions for R(e) and critical regions for hypothesis tests about Rle) in 
the sense that if a critical region has been defined for the hypothesis-testing 
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problem, one has in effect already defined a confidence region for Rle). The 
specific nature of this duality is presented in the following theorem. 

Theorem 10.11 IDuality Between Confidence and Critical Regions) Let the random sample X 
have joint density function flx;e) for some e E Q, and let GriT) be a level lor 
size) a critical region for testing Ho: R(e) = T versus one of the alternatives 
Ha: R(e) =1= Tor Ha: R(e) < Tor Ha: R(e) > T, for any T E ORIel = {T: T = 
R(e),e EO}. Then the random set of T values represented by 

A(X) = {T: X E Gr(T), T E QR(e)} 

is a confidence region for R(e) having confidence level (or coefficient) 1 - a. 

Proof Given the definitions of Gr(T) and A(x), it follows that x E Gr(T) {} T E A(x). 
To see this, first note that if x E Gr(T), then hypothesis R(e) = T would be 
accepted by the test defined by Gr(T). It follows that T is in the set of null 
hypotheses that would be accepted on the basis of the sample outcome x, this 
set being precisely A(x). Thus, x E GriT) =? T E A(x). Alternatively, if T E A(xj, 
then x is a sample outcome that results in Ho: R(e) = T being acceptable on 
the basis of Gr(T), so that x E Gr(T). Thus, T E A(x) =? x E Gr(T). 

From the equivalence of the two sets {x: x E Gr(T)} and {x: T E A(x)}, it 
follows that 

PIT E A(X)) = PIx E Gr(T)) 2: 1 - a, 

where the inequality follows from Gr(T)'S defining a level-a test so that a true 
e would be rejected with::::: a probability. Thus, A(X) is a confidence region for 
T = R(e) with confidence levell-a. If the size of the test defined by Gr(T) is a, 
so that the maximum probability of rejecting a true e equals a, then it follows 
that the smallest value of PIT E A(x)) is 1 - a, which equals the confidence 
coefficient. • 

Theorem 10.11 states that to generate an outcome of a confidence region 
for Rle), one can begin with a hypothesis-testing procedure for testing the null 
hypothesis Ho: R(e) = T against a one- or two-sided alternative hypothesis. 
Then a confidence-region outcome is the collection of all possible values of T 

(Le., values in QR(e)) that represent acceptable null hypotheses on the basis of 
the testing procedure applied to the sample outcome, x. Some examples will 
clarify the mechanics of the procedure. We will see that one-sided and two-sided 
hypothesis tests can lead respectively to one- sided and two-sided confidence 
intervals. 

Example 10.21 Confidence Interval for /-L in a Normal Distribution 

Let X be a random sample of size 50 from an N(JL, 0'2) population distribution 
representing observations on fill levels of 16-oz. bottles of a certain brand of 
liquid detergent. A sample outcome resulted in x = 16.02 and s2 = .0001. Cal­
culate a two-sided confidence-interval outcome having confidence coefficient 
.95 for the mean fill level of the bottles. 
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Answer: From Def. 9.15, we know that a UMPU level and size .05 test of 
Ho: /-L = /-Lo versus Ha: /-L i= /-Lo is given by 

x - /-Lo [E] [reject Ho] 
(s2J(n _ 1))1/2 ¢ (-00, -t.02S] U [t.OlS, 00) => accept Ho ' 

where t.02S refers to a critical point of the t-distribution with n - 1 degrees of 
freedom. Then on the basis of a given outcome x for the random sample, the 
collection of null hypotheses, /-La, that would be accepted on the basis of this 
test procedure is given by 

A(x) = {/-Lo: x - t.02S ~ < /-Lo < x + t.02S ~} . 
n-l n-1 

Since t.02S = 2.262 for a t-distribution with 9 degrees of freedom, it follows that 
the confidence-interval outcome is given by (16.017,16.023). The mean fill level 
is a number within the interval with confidence level (and coefficient) .95. 0 

Example 10.22 Confidence Interval for R,B in the GlM 

Let Yt = f30 n:=1 X~I ee t , t = I, ... ,25, represent a random sample of observations 
on a production function based on three inputs (Xtl, Xt2, Xt3), and assume that 
the classical GLM assumptions apply to the natural logarithmic transformation 
of the production function, 

3 

In Yt = f30 + L f3j lnxti + St· 

i=1 
Furthermore, let St""'" iid N(O, a2 ). An outcome of the random sample resulted 
in the following estimator outcomes corresponding to the transformed produc­
tion function: 

[
2.33] 

b = .17 
.60 
.18 

and [
.64 .011 .0001 

2(' )-1 _ .0025 .23 x 10-6 
s x*x* - .0003 

(symmetric) 

.0008 ] 
.3 x lO-s 

.47 x 10-6 

.0036 

Calculate a two-sided confidence interval having confidence level .95 for the 
degree of homogeneity of the production function, R{3 = [0 1 1 1]{3 = L::=I f3j 
(note that f30 is the first entry in {3). Also, calculate a one-sided upper confidence 
bound with confidence level .95 for the output elasticity with respect to input 
I, R{3 = [0 1 0 0]{3 = f31. 
Answer: Examine the problem of the two-sided confidence interval first. We 
know from Section 10.6 that a UMPU level and size ex test of Ho : R{3 = r versus 
the two-sided alternative Ha: R{3 i= r is given by 
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For a given outcome of /3 and S2, the set of null hypothesis values, r, that would 
be accepted on the basis of this test procedure is given by 

A(y) = {r: Rb - ta /2(s2R(x:x*t1R,)1/2 < r < Rb + ta /2(S2R(x:x*)-IR,)1/2}. 

Since t.025 = 2.08 for a t-distribution with 21 degrees of freedom, Rb = .95, and 
s2R(x:x*)-lR' = .00641, it follows that the two-sided confidence interval for 
the homogeneity of the production function is (.78, 1.12). We have confidence 
level (and confidence coefficient) .95 that the degree of homogeneity is some 
number in the interval. 

Regarding the one-sided upper confidence bound for R{3 = fh, we know 
from Section 10.6 that a UMPU size ex test of Ho: R{3 = r versus the (lower) 
one-sided alternative hypothesis H lI : R{3 < r is given by 

Rb - r [EJ( [reject Ho] 
A2 / -00, -tal =} . 

[s R(X~X*)-IR'P 2 f/. accept Ho 

The set of acceptable null hypothesis values, r, on the basis of a given sample 
outcome and this test procedure is given by 

A(y) = {r: r < Rb + ta (s2R(x:x*t IR,)1/2}. 

Since t.os = 1.721 for a t-distribution with 21 degrees of freedom, Rb = .17, and 
s2R(x:x*)-1 R' = .0025, it follows that the one-sided upper confidence bound for 
the output elasticity of input 1 is (-00, .26). We have confidence level (and con­
fidence coefficient) .95 that the elasticity is some number in the interval. 0 

Example 10.23 Confidence Interval for e in an Exponential Distribution 

Recall Ex. 10.6 in which operating lives of computer screens were being ana­
lyzed, and a UMPU level and size .05 test of Ho: 0 = 1 versus Ha: 0> 1 on the 
basis of a random sample of size 10 was found. Retracing the development of 
the statistical test, it is seen that the UMPU level-.05 GLR test of Ho: 0 = 00 

versus Ha: 0 > 00, for an arbitrary choice of 00 > 0, can be represented in the 
form In),,(x) = 101n(X/Oo) + 10(1 - X/Oo) ~ Inc. Under Ho: 0 = 00 , Xi's ~ iid 
001 exp(-xi/Oo), so that x '" Gamma(lO, 00/10) and thenX/Oo '" Gamma(lO,.I). 
Note that the value of In ),,(x) attains its maximum value of zero when X/Oo = I, 
and In ),,(x) strictly decreases for movements of x/Oo away from 1 in either direc­
tion. Since the one-sided nature of the GLR test is such that c < 1 <:? X/Oo > 1 
(recall Ex. 10.6), the test can be performed in terms of the test statistic x/Oo, 
and we seek a value of d such that P(x/Oo ~ d) = .05. With the Gamma(lO, .1) 
distribution of X/Oo, the value of d is found to be 1.57052 (compare to Ex. 10.6), 
and the UMPU level .05 test of Ho: 0 = 00 versus Ha: 0 > 00 is 

x [~J 1.57052 =} [reject Ho J. 
00 < accept Ho 

In order to calculate a one-sided lower confidence bound for 0 having con­
fidence level .95, note that the set of acceptable null hypothesis values, 00, 

based on the preceding UMPU level-.05 testing procedure and a given sample 



646 Chapter 10 Hypothesis-Testing Methods 

outcome is 

A(x) = {e: e> 1.5:052}. 

Suppose that x = 1.37. Then an outcome for the one-sided lower confidence 
bound is (.87232,00). We have confidence level (and confidence coefficient) .95 
that the true mean operating life of the computer screens is contained in the 
interval. 0 

Confidence intervals or regions can be based on hypothesis-testing proce­
dures that are only asymptotically valid, in which case the confidence regions 
inherit asymptotic validity from the duality result of Theorem lD.11.12 The 
use of asymptotic procedures can be especially convenient for Simplifying cases 
where the joint density of the random sample is discrete. Of course, the sim­
plification comes at the price of the confidence region's confidence level being 
only an approximation to the true confidence level. 

Example 10.24 Asymptotic Confidence Interval for p of Bernoulli Distribution 

A food processor has developed a new fat-free butter substitute and intends to 
use a random sample of consumers to determine the proportion of u.S. food 
consumers who prefer the taste of the new product to that of butter. Of 250 
consumers who sampled the product, 97 preferred the taste of the new butter 
substitute. Calculate a confidence-interval outcome with confidence level.90 
for the proportion of consumers who prefer the taste of the butter substitute. 
Given the small sample size relative to the size of the food-consuming public, 
you may treat the sample as having occurred with replacement. 
Answer: Recall that nl/2(X - p)/(p(1 - p)jI/2 -4 N(O, n by the LLCLT, when 
random sampling from the Bernoulli population distribution. Since the sample 
size n = 250 is large, we can consider using a Wald test based on a xi limiting 
distribution, or equivalently, a Z-statistic based on the N(O, 1) distribution to 
construct an asymptotic level-.lD consistent test of Ho: P = Po versus Ha: P =I­
Po. Adopting the latter approach, and realizing that XII - XJ -4 p(1 - pL an 
asymptotically valid level-.lD consistent test is given by 

(250jI/2(x - PoJ [EJ [reject Ho ] 
[x(l _ x)JI/2 f/. (-00, -1.6451 U [1.645, ooJ =} accept Ho ' 

where Jl~4S N(z; 0, 1 )dz = .05. 
Now consider using duality to define a confidence interval for p that has 

an asymptotic confidence level of .90. Based on a given outcome of the random 
sample, the collection of null hypotheses, Po, that would be accepted on the 

12We are suppressing a technical condition for this inheritance in that convergence of the test statistic's probability distribution to 
a limiting distribution should be uniform in e E n. This will occur for the typical PDFs used in practice. For further details, see 
c. R. Rao, Statistical Inference, pp. 350--351. 
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basis of the preceding test procedure is given by 

I (X(I-X))1/2 (X(I_X))1/2) 
A(x) = PO: x - 1.645 250 < Po < x + 1.645 250 . 

Since x = .388, the confidence-interval outcome is (.337, .439). We have confi­
dence at approximately (asymptotic) level (and approximate confidence coeffi­
cient) .90 that the true proportion of individuals preferring the butter substitute 
is contained in the interval. 0 

Although in principle a confidence region for two or more functions of 
parameters may have a myriad of shapes, the typical shape of a confidence 
regIon that is derived from duality with a hypothesis test based on the Wald 
statistic is an ellipse (two dimensions) or ellipsoid (three or more dimensions). 
A typical application is in the GLM. 

Example 10.25 Ellipsoid Confidence Region in the GlM 

Revisit the production function problem in Ex. 10.22. Construct a confidence 
region for the three output elasticities f31,fh and f33, having confidence level 
.95. 
Answer: From Section 10.6, we know that a level-.05 and consistent test of 
Ho: R{3 = r versus Ha: R{3 i= r can be defined in terms of the Wald statistic 
W = (R,B - r)'(S2R(x:x*)-IR,)-I(R,B - r) as 

w[:::Jqpa(q, n - k) :::} [reject HoJ 
< accept Ho 

where in the current application q = 3, n - k = 21, ex = .05, F.os(3, 21) = 3.07, 
and 

R=[g ~ ~ g]. 
000 1 

Based on the sample outcome reported in Ex. 10.22, the set of acceptable 
null hypotheses, r, based on the preceding test procedure is given by 

1 [ ]' [ -6 -S ] -I [ ] I .17 - LI .0025 .23 x 10 .3 x 10 .17 - LI 

A(y) = r: .60 - L2 .0003.47 x 10-6 .60 - L2 < 9.21 . 
. 18 - L3 (symmetric) .0036 .18 - L3 

The confidence region is a three-dimensional ellipsoid with center at (.17, .60, 
.18), and its shape resembles a football. We have confidence at level.95 that the 
ellipsoid contains the true value of the output elasticities f3I' f32' and f33. 0 

Properties of Confidence Regions 

Given the complete duality between confidence regions and hypothesis tests, 
one might expect that there is also a duality between properties of hypothesis 
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Definition 10.4 
Unbiased 

confidence region 

Definition 10.5 
Uniformly most 

accurate (UMA) level-y 
confidence region 

tests and properties of confidence regions. Such is indeed the case, and we 
will briefly discuss properties of confidence regions and their relationship with 
properties of hypothesis tests. 

Recall that in our discussion of hypothesis tests we examined the properties 
of significance level, size, unbiasedness, uniformly most powerful, uniformly 
most powerful unbiased, and consistency. Each of these has a counterpart with 
respect to properties of confidence regions; the relationships are as follows: 

Hypothesis-Test Property 

significance level, a 
size, a 
unbiased 
UMP (uniformly most powerful) 
UMPU (uniformly most powerful unbiased) 
consistent 

Confidence-Region Property 

confidence level, 1 - a 
confidence coefficient, 1 - a 
unbiased 
UMA (uniformly most accurate) 
UMAU (uniformly most accurate unbiased) 
consistent 

In deriving confidence regions via duality with hypothesis tests, each of 
the properties possessed by the hypothesis-testing procedure is transferred to 
the corresponding property of the confidence region. This begs the question re­
garding definitions of the latter four confidence-region properties. We examine 
each of the properties in turn. 

A confidence region is said to be unbiased if the probability that the confi­
dence region contains the true Rle) is greater than or equal to the probability 
that it contains a false Rle). The formal definition is as follows. 

A confidence region for Rle), AIX), is unbiased iff 

PIRie) E Alx); e) ::: PIRie) E Alx); e.), v Rle) =I Rle.). 

Unbiasedness is a reasonable property for a confidence region to possess, since 
one would certainly desire a confidence region to contain the true value of R(e) 
more often, or with higher probability, than false values. 

A confidence region for Rle) is uniformly most accurate (UMA) at confi­
dence level y if it has the lowest probability of containing false values of R(e) 
relative to any other confidence region for R(e) with confidence level y. 

A confidence region for R(e), A(X), having confidence level y is uniformly 
most accurate iff 

PIRIe) E A(x); e.) ~ PIRIe) E A.(x); e.), v R(e) =I R(e.), 

where A.(X) is any confidence region for Rle) having confidence level y. 
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Definition 10.6 
Uniformly 

most accurate 
unbiased (UMAU) 

confidence regions 

Definition 10.7 
Consistent level-""'( 

confidence 
region sequence 

Essentially, a UMA confidence region "filters out" false values of R(B) with 
probability as high or higher than any other confidence region of like confidence 
level, which is obviously a desirable property. 

We noted in our discussion of hypothesis testing in Section 9.5 that UMP 
tests, and thus now UMA confidence regions, do not exist with any degree of 
generality. However, UMPU tests exist much more frequently, and thus so do 
UMAU confidence regions. A UMAU confidence region is simply a confidence 
region that exhibits the UMA property when compared only to other unbiased 
confidence regions. 

A confidence region for R(B), A(X), having confidence level y is uniformly 
most accurate unbiased iff within the class of unbiased confidence regions 
with confidence level y, A(X) is UMA. 

In comparing confidence intervals for R(B), it can be shown that a UMAU 
confidence interval with confidence level y has the smallest expected length 
of any other confidence interval for R(e) with confidence level y. In terms of 
narrowing ignorance of the value of R(e), this is clearly a desirable property. 

Finally, consistency of a confidence-region sequence means that as the sam­
ple size n ~ 00, the length or volume of the confidence regions shrinks to zero 
at any confidence level, with the true R(B) remaining as the only point in the 
confidence region with probability ~ 1. 

A confidence-region sequence for R(e), {An (X)}, with all members of the se­
quence having confidence level y, is a consistent confidence-region sequence 
iff 

lim P(R(B) E An(x); B*) = 0, V R(B) 1= R(e*). 
n-+oo 

A consistent confidence-region sequence is such that as n ~ 00, all false values 
of R(B) are ultimately "filtered out" with probability ~ 1. 

Based on the duality between hypothesis tests and confidence regions, we 
can state that the confidence interval for J1, in Ex. 10.21, for Itl f3j and fh 
in Ex. 10.22, and the confidence interval for () in Ex. 10.23 are all unbiased, 
UMAU, and consistent. The confidence interval for p in Ex. 10.24 is approxi­
mately (asymptotically) unbiased and UMAU, and is also consistent. Finally, 
the ellipsoid confidence region for (f3l, f32' 133) in Ex. 10.25 is unbiased and con­
sistent. 

Confidence Regions from Pivotal Quantities 

A method of defining a confidence region for RIB) without invoking duality 
with a hypothesis test involves pivotal quantities, defined as follows. 
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Definition 10.8 
Pivotal Quantities Let the random sample X have PDF fIx; 8). A function of X and R(8), Q = 

q(X, R(8H, whose probability distribution does not depend on the value of 
8 E Q is called a pivotal quantity for R(8). 

The fact that the pivotal quantity has a fixed probability distribution that does 
not depend on the parameter vector 8 allows a confidence region for R( 8) to 
be defined via the following method. 

Theorem 10.12 (Pivotal Quantity Method of Confidence-Region Construction) Let Q = 
q(X,R(8)) be a pivotal quantity for R(8). Define the values e and J.L so that 
Pie < qlx,Rl8lJ < J.L;8) = y. Then AIX) = {R(8): e < q1X,R18lJ < J.L} defines a 
confidence region for R(8) having confidence levelland coefficient) y. 

Proof Since Q is a pivotal quantity, Pie < qlx, R(8)) < J.L; 8) = y holds for every 8 E n 
and, in particular, for the true 8 0 E O. Also note that for a given outcome of 
x, e < qlx, R(8)) < J.L <=> R(8) E Alx). It follows that P(RI8) E A(x); 8) = y 
V 8 E Q, and thus by Def. 10.3, A(X) defines a confidence region for R(8) with 
confidence levelland coefficient) y. • 

Historically, the reason why the random variable Q = q(X; RI8lJ of Def. 
10.8 and Theorem 10.12 was called a "pivotal" quantity is because when R(8) 
is a scalar many such random variables are such that the x argument in e < 
qlx, RI8lJ < J.L can be "pivoted" lor better, inverted) out of the center term to 
yield the alternative inequality representation te(x) < R(8) < tJ.llx). The lat­
ter inequality defines the confidence interval (te(X), tJ.l(Xll for R(8L which is 
the confidence region A(X) of Def. 10.2. In practice, while it is often the case 
that such "pivoting" can be accomplished so that a confidence interval is de­
fined, the characteristics of a pivotal quantity in Def. 10.8 do not guarantee 
that q(x, R(8lJ can be pivoted, in which case AIX) may not be an interval. Of 
course, if R(8) is a Ii x I) vector and j ~ 2, then obtaining a confidence in­
terval will be neither possible nor relevant. The reader may find it interesting 
to know that every example of confidence regions examined heretofore can be 
motivated within the context of the pivotal quantity method, as will be seen 
in the next example. 

Example 10.26 Revisit Ex. 10.21 through Ex. 10.25. For each of the examples, Table 10.1 iden­
tifies the pivotal quantity that can be used to derive the confidence region for 
the respective R(8) as defined in the example. In addition, the table identifies 
the fixed PDF for each pivotal quantity that applies regardless of the value of 
8 E Q, the event for each pivotal quantity from which the confidence region is 
defined, and the resultant explicit form of the confidence region for R(8). Note 
that in the case of Ex. 10.24, the table identifies an asymptotic pivotal quantity, 
meaning a random variable of the form q(X, R(8)) whose limiting distribution 
does not depend on 8 E Q. In practice, such asymptotic pivotal quantities are 
motivated via central limit theory. 0 
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A notable practical difficulty in using pivotal quantities to define confi­
dence regions is the problem of finding a pivotal quantity for a given R(8). 
There is no general method that can be relied upon to define pivotal quantities, 
and indeed a pivotal quantity need not exist at all. However, for certain special 
but important classes of problems, pivotal quantities are readily available. 

Theorem 10.13 (Pivotal Quantities for Location-Scale Parameter Families o( PDFs) Let X be 
a random sample from a population distribution f(z; 8). Let 8 denote the MLE 
of 8. The following relationships exist between the functional form of f(z;8) 
and pivotal quantities for the elements of 8, where fo(Y) denotes 'a PDF whose 
values do not depend on unknown parameters: . 

1. Location parameter family of PDFS: f(z;e) = fo(z - 8) =} Q = 8 - 8 is a 
pivotal quantity for a scalar e. 

2. Scale parameter family of PDFs: f(z;8) = 8- l fo(z/8) =} Q = 8/8 is a 
pivotal quantity for a scalar e. 

3. Location-scale family of PDFs: f(z; 8) = 8;:-l foUz - 8d/e2 ) =} Ql = (8 1 -

to)l )/0)2 and Q2 = 82/82 are pivotal quantities for 8 l and e2 in the (2 x 1) 
parameter vector 8. 

Proof C. E. Antlc, and L. J. Bain (1969), /I A property of maximum likelihood estimators 
of location and scale parameters./I SIAM Review, 11, p. 251. • 

The theorem indicates that as long as random sampling is from a population dis­
tribution having one of the indicated general forms, there are specific functions 
of the MLEs that define pivotal quantities for the parameters of the population 
distribution. 

A more general result that applies to random sampling from any continuous 
PDF having a scalar parameter 8 is as follows. 

Theorem 10.14 (Pivotal Quantities for Continuous Population PDFs) Let X be a random sam­
ple from the continuous PDF f(z; e), where 8 is a scalar. Then 

II 

-2 I)n F(Xj ; e) '" X~II 
j=1 

is a pivotal quantity for 8, where F(z;8) is the CDF for Z. 

Proof If Z "" f(z; 8), then the probability integral transform of Z, F(Z; e), is distributed 
uniformly (0,1) (recall Theorem 6.22). Itfollows that W = -lnF(Z; 8) "" Expo­
nential( 1) (use the change-of-variables approach to derive the PDF of WI. Then 
-2 I:7=llnF(Xj; 8) is 2 times the sum of n independent Exponential(l) random 
variables, which has a X2-distribution with 2n degrees of freedom (use the MGF 
approach to derive the PDF). Since Q = q(X, e) = -2 I:7=llnF(Xj; 8) "" X~II 
v 8 E Q, it follows that Q is a pivotal quantity for 8. • 

Theorem 10.14 implies that pivotal quantities always exist for a scalar 
0) when random sampling is from a continuous PDF fIx; 8). The reader will 
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be asked to demonstrate that -2 L7=1In[1 - F(Xj ; 8ll '" X~n is also a pivotal 
quantity for 8 (see Problem 10.21). 

Example 10.27 The proportion of the work day that a particular assembly line is stopped be­
cause of malfunctions on the line is the outcome of a random variable with 
PDF I(z; 8) = 8Z8 - 1I(o,l)(z), for 8 > O. Based on a random sample of n daily 
observations from I(z; 8), define a confidence region for 8 having confidence 
coefficient .95. 
Answer: To use Theorem 10.14, first note that the CDF of Z is F(b; 8J = 
b8 I[o,lj(bJ +I(l,oodb). Then -21nF(Xj ; 8) = -28 In Xi, and thus 

n 

Q = -28 L InXj '" X~n 
j=l 

is a pivotal quantity for 8. The probability of the event {q: X~n;1-a/2 < q < 

X~n.a/2} is 1-a, and given a random sample outcome x, the event can be pivoted 
to define a (1 - a) level confidence interval for 8 as 

2 2 
X2n; l-a/2 8 X2n;a/2 

n < ... < n . 
-2 Li=llnxj -2 Li=llnxj 

(Note when "pivoting" that -2 L7=llnxi > 0 in this case, and so the sense of 
the inequalities does not reverse in the pivot operation.) 0 

Regarding the choice of the pivotal quantity event from which the con­
fidence region is defined, if the pivotal quantity is monotone in R(e) and a 
confidence interval or bound is desired, the following relationships are useful. 

Pivotal Quantity Event 

-00 < q< f.L 

l<q<oo 

Monotonicity of q(x, R(8» 

increasing in R(8) 
decreasing in R(8) 
increasing in R(8) 
decreasing in R(8) 
increasing in R(8) 
decreasing in R(8) 

Confidence Interval 

tdx) < R(8) < t2 (x) 
tl (x) < R(8) < t2 (x) 

-00 < R(8) < t(x) 

t(x) < R(8) < 00 

t(x) < R(8) < 00 

-00 < R(8) < t(x) 

Also note that often many choices of e and J.L are available such that PIe < q < 
J.L) = y, e.g., an infinite number in the case when q is a continuous random 
variable and y E (0, 1). If q(x, R(e)) is monotone in R(e), then it is desirable to 
choose e and J.L so that the length, or expected length, of the resultant confidence 
interval is minimized. However, in practice, a rule of thumb for two-sided con­
fidence intervals is to choose e and J.L so as to define "equal-tail probabilities" 
in the definition of a y-Ievel confidence interval. That is, .e and J.L are chosen 
such that P(q < e) = P(q > J.L) = a/2, leading to a y = (1 - a)-level confidence 
interval. Note that this principle was followed when defining the confidence 
interval in Ex. 10.27. The expected length of the confidence interval could have 
been reduced slightly by choosing the lower and upper X2 values, say X~I and 
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Xa2 , so that X~ - Xa2 is minimized subject to the confidence-level condition 
~ ~ I 

P(X~I < q < X~~) = y, which can be accomplished on a computer. 
The pivotal quantity method does not guarantee that any optimal properties 

will apply to the confidence regions derived from it. However, the method is 
relatively straightforward, it applies in many cases of practical importance, 
and the confidence regions it defines are most often quite adequate for their 
intended purpose. 

Confidence Regions as Hypothesis Tests 

We briefly note that since there is a full duality between confidence regions and 
hypothesis tests, one can pursue the duality in the reverse of what we have done 
heretofore and derive hypothesis-testing procedures from confidence regions. 
Effectively, a null hypothesis is accepted or rejected depending on whether or 
not (respectively) the hypothesized value of R(8) is contained in the confidence 
region. It follows that the preceding pivotal quantity method can be used to de­
fine hypothesis tests. A hypothesis test is unbiased, UMP, UMPU, and/or con­
sistent according to whether the confidence region is unbiased, UMA, UMAU, 
and/or consistent, respectively. 

We will not pursue this further since for the approach to be of substantive 
practical use requires that we establish methods of deriving UMA, UMAU, 
and/or consistent critical regions independent of the hypothesis test to which 
it is dual. This requires further study of the theory of confidence-region estima­
tion, which the reader can begin by referring to the readings suggested at the 
beginning of this section. 

10.8 Nonparametric Tests of Distributional Assumptions 

In this section we provide an introduction to nonparametric testing of the dis­
tributional assumptions underlying a point estimation, hypothesis-testing, or 
confidence-region estimation problem. By "nonparametric" we mean that the 
hypotheses under consideration are not defined in terms of the values of param­
eters, per se, as has been the case heretofore. Rather, hypotheses examined here 
will be more general and refer to functional forms of density functions and to 
whether random variables contained in a sample are iid. The tests we will in­
troduce can be used in practice to address questions such as "could the random 
sample have come from a normal or exponential, or Beta, or ... distribution?" 
and "it is possible that the outcomes observed in the sample are outcomes of a 
random sample from some population distribution?" 

Note that to a large degree the methods of statistical inference that we 
have examined so far required certain basic assumptions to hold (collectively 
representing the maintained hypothesis) before any analysis could proceed. It 
is clearly useful to have methods of assessing the validity of these assumptions 
when they are held only tentatively and/or without conviction. Two of the more 
pervasive assumptions made to this point have been the assumption of a spe­
cific functional form for the density of the random sample and the assumption 
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that random variables in the sample are iid. We will focus on some nonpara­
metric tests relating to these assumptions that have been useful in practice 
and also concentrate on scalar random variables. The field of non parametric 
analysis is vast and growing. A useful place to begin additional reading and to 
seek additional references is J. D. Gibbons /1985), Nonparametric Methods lor 
Quantitative Analysis, 2nd ed., Columbus, OH: American Science Press. 

Functional Forms of Probability Distributions 

A number of testing procedures are available for testing hypotheses regarding 
the functional form of the joint density of the random sample (see M. Kendall 
and A. Stuart, vol. 2, Advanced Statistics, Chapter 30; and C. Huang and 
B. Bolch (1974), "On testing of regression disturbances for normality." TASA, 
pp. 330-335, for alternatives and references). We will examine the X2 goodness­
of-fit test because of its versatility, the Kolmogorov-Smirnov test because of its 
refinement in analyzing continuous distributions, and the Shapiro-Wilks test 
because of its superiority in testing the normality assumption. 

X2 Goodness-of-Fit Test The X2 goodness-of-fit test is used to test the null hy­
pothesis that a random sample is from a population distribution of the form 
I(z; 8) where 8 is a (k x 1) vector. In particular, the hypotheses under con­
sideration are Ho: X ~ n~=1 I(xi; 8) versus Ha: X f n~=1 I(xi; 8). The test 
procedure differs depending on whether the null hypothesis is simple, meaning 
that I(z; 8) is fully specified (i.e., it does not contain any unknown parameters), 
or the null hypothesis is composite, that is, 8 in I(z; 8) is left unspecified so 
that a lamily of density functions is specified as the null hypothesis. 

We first examine the case where the null hypothesis is simple. Given 
the null hypothesis Ho: Z ~ I(z; 8 0 ) for the population distribution where 
8 0 is fixed and known, and assuming the range of Z has been partitioned 
into m subintervals D.i, i = I, ... , m, it follows that under Ho, P(D.i; 8 0 ) = 
!ZEf). I(z; 8 0 )dz = Pi(GO), for i = 1, ... , m. For a random sample of size n, let 
ni represent the number of times an outcome occurs in interval D.i, i = 1, 
... , m. Then the probability distribution of (NI, ... , Nm ) is multinomial with 
parameters (PI, ... ,Pm), 2::::1 Pi = 1 (recall Chapter 4). 

Using the multivariate version of the LLCLT, itfollows thatn l /2(X*-p*) --4 
N([O],:E*), where X* = n-1(Nl, ... ,Nm_d', P* = (PI, ... ,Pm-d', and:E* is an 
(m - 1) x (m - 1) covariance matrix withpi(1 - Pi), i = I, ... , m -I, along the 
diagonal and -PiP; in the off-diagonal entries. (Note that nm is determined by 

nm = n - 2::::"11 ni, and thus nmln = 1 - 2::::"11 X*i.) Then from Theorem 5.9, 

W = n(X* - pS:E;l(X* - p*) = (N .. - np*)(n:E*)-l(N* - np*) --4 X~-II 

where N* = (Nil"" Nm- 1 )'. It follows that a size a test of Ho: Z '" f(z; 8 0 ) 

versus Ho: Z f I(z; 8 0 ) is given by 

[::=:] 2 [ reject Ho] 
W < Xm-I,a ~ accept Ho ' 
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where (PI, ... , Pm-I! in p. and in ~* are replaced by their values under Ho, i.e., 
Pi = Pi(8o), i = I, ... , m -1. The test is seen to reject Ho when the probabilities 
of the interval events i, i = I, ... , m, as hypothesized under Ho are in conflict 
with their estimated values, given by the relative frequencies, ndn. 

In practice, a statistic that is algebraically and numerically equivalent to 
W is generally used to calculate the test outcome. In particular, some tedious 
but conceptually straightforward matrix algebra leads to 

~ (ni -npi)2 
w=~ 

i=I npi 

(Kendall and Stuart, vol. 2, Advanced Statistics, p. 381). 
Now suppose that the null hypothesis is composite as Ho: Z "" f(z; 8), 

8 E Q, versus Ha: Z f f(z; 8),8 E Q. How do we proceed in this case when 
8 is left unspecified? The unknown parameters are estimated from the data, 
but how this is done has a substantial impact on the form of the test proce­
dure. Consider two different forms of MLEs, the difference being the choice of 
likelihood function. 

In one case, let the likelihood function be the multinomial distribution 
parameterized via 8 under H o, i.e., 

n 

Vi, Lni =n, 
i=I 

where Pi(8) = !ZE/).; f(z; 8)dx V i. After one obtains the maximum likelihood es­

timate of 8,0, one proceeds by replacing the p/s by Pi = Pi(O) in the calculation 
of the w-statistic, obtaining 

m ( A )2 
W= L ni-~Pi 

i=l nPi 

Finally, the test rule is defined as 

W[:JX~-I-k;a ~ [:;!:~tt ~J. 
The reason that one degree of freedom is lost for each parameter estimated is 
somewhat involved. A detailed proof can be found in H. Cramer (1946), Math­
ematical Methods of Statistics, Princeton, NJ: Princeton Univ. Press. 

An alternative ML procedure is to estimate 8 using the ML method ap­
plied to the likelihood function L(8; x) = n7=1 f(Xi; 8), i.e., use the hypothe­
sized population distribution directly to specify the likelihood function, and 
estimate 8 accordingly. One then computes Pi = !ZE/). f(z; 8)dz to calculate the 
w-statistic above. In this case, it turns out that W does not have a limiting 
X2-distribution at all. However, it can be shown that the distribution of W in 
this case is bounded between a X~-I and a X~-I-k distribution (H. Chernoff and 
E. L. Lehmann (1954), "The use of maximum likelihood estimates in X2 tests 
for goodness of fit." Ann. Math. Statist., p. 579). Unfortunately, the limiting 
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distribution is difficult to use, and in practice one can use X;-I;a to define a 
size::: ex test, or else use X;-I-k:a to define a test that is more likely to reject a 
true Ho than the size ex would indicate. The conservative (toward Ho) approach 
would be to utilize the latter critical value. 

It can be shown that all of the preceding tests are consistent for any alter­
natives that imply multinomial probabilities different from those implied by 
Ho. On the other hand, the tests are generally biased to some degree. 

One operational problem remains. How does one choose the sets b..i, i = I, 
... , m? Rules of thumb developed from both empirical and theoretical consid­
erations suggest that intervals be cJefined that have equal probability, i.e., l/m, 
under fIx; 8 0 ) (simple Ho) or fIx; 0) (composite Ho). Furthermore, in order for 
the asymptotics to be a reas~mable approximation, the intervals chosen should 
be such that npi(80 ) or npi(O) 2: 5 Y i. 

Example 10.28 Testing for an Exponential Population Distribution 

Forty observations on the waiting times, in minutes, between customer arrivals 
at a service station/convenience store in a mid-size city were as follows: 

1.37 1.96 0.74 0.42 
0.12 0.61 1.98 1.76 
1.73 3.32 1.44 2.46 
0.34 2.31 2.14 2.11 
2.84 2.47 1.25 0.66 
2.23 1.11 1.73 0.26 
1.77 1.35 2.91 0.93 
1.50 2.72 1.73 0.59 
0.36 0.24 2.68 0.30 
0.10 2.75 1.68 0.88 

Use a (approximate) size .05 X2 goodness-of-fit test to test the null hypoth­
esis that the waiting times are exponentially distributed versus some other 
family of distributions, i.e., Ho: z '" 0-1 exp(-z/O)I{o,oo)(xj, 0> 0, versus Ha: not 
Ho. 
Answer: The ML estimate of 0 based on the exponential population distribu­
tion assumption is 0 = x = 1.494. We let m = 8, and choose b..j, i = I, ... , 
8, so that P(z E b..j; 0) = (1/8) Y i. The boundaries of the intervals are found as 
follows: 

.125 = foCI (1.494t l exp(-z/1.494)dz ==> CI = .1995, 

.125 = t2 (1.494t l exp(-z/1.494)dz ==> C2 = .4298, 
1.1995 

C3 = .7022, 

C4 = 1.0356, 

C5 = 1.4654, 
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C6 = 2.07l1, 

.125 = t7 (1.494)-1 exp(-z/1.494)dz => C7 = 3.1067. 
12.0711 

The intervals and the number of observations that actually occurred in each 
interval are as follows: 

l:t. j nj 

(0, .1995J 2 
2 (.1995, .4298J 6 
3 (.4298, .7022J 3 
4 (.7022, 1.0356] 3 
5 (1.0356,1.4654] 5 
6 (1.4654,2.0711] 9 
7 (2.0711,3.1067] 11 
8 (3.1067,00) 

Since nPi = 40(.125) = 5, the value of the X2 statistic is given by 

w=t(n i -5)2 =17.2. 
i=1 5 

Adopting a conservative (toward Ho) stance and using the critical value 
X;-1-k:.05 = X~:05 = 12.6, w> 12.6 and the exponential family of distributions 
is rejected. Note that if the more liberal critical value of X~-1:.05 = XL05 = 14.1 
is used, w> 14.1 and Ho is still rejected, and we know that the significance 
level of this test:::: .05. 0 

Kolmogorov-Smirnov and Lilliefors Tests The Kolmogorov-Smirnov (K-S) test is 
an alternative procedure for testing whether a random-sample outcome was 
drawn from a specified population distribution. The test procedure is based on 
the empirical distribution function and the Glivenko-Cantelli theorem (recall 
Chapter 6), which effectively indicated that the EDF would converge function­
ally across all points of comparison to the true population CDF associated with 
a random sample. The basic idea of the K-S test is to reject Ho when there are 
significant discrepancies between an EDF and a hypothesized CDF as revealed 
through the probability integral transform of the data (recall Section 6.8). 

Before examining the test procedure in more detail, we note some advan­
tages and limitations of the K-S test relative to the aforementioned X2 test. On 
the positive side, the K-S test is fully applicable in the case of small samples, 
whereas the x2-test is strictly only an asymptotically valid test. The K-S test 
deals with sample observations directly, but the data must be summarized into 
categories for analysis via the X2 approach, and information can potentially be 
lost in the categorization process. The K-S test assumes the population distri­
bution is continuous and thus provides a more refined analysis specific to this 
case. Limitations include the fact that the K-S approach cannot be easily ad­
justed to allow for estimation of unknown parameters as in the X2 case, so that 
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in practice the K-S test is generally restricted to testing simple null hypotheses. 
Also, the applicability of K-S is limited to cases involving continuous distri­
butions. We note that the K-S test has been modified by H. Lilliefors (liOn the 
Kolmogorov-Smirnov test for normality with mean and variance unknown." 
rASA, 1967, pp. 399-4021 to accommodate the estimation of J-t and 0'2 when 
the null hypothesis is that of normality. We will examine this case later. Some 
work has also been done on extending the K-S approach to exponential and 
Weibull cases where parameters are unknown. 13 

In order to identify the test procedure, we begin with the null hypothesis for 
the population distribution Ho: Z '" Fo(zl versus Ha : Z i Fo(zl, where Fo(zl is a 
completely specified CDF. Let Xl, ... , Xn be a random sample, and let Fn(zl be 
the EDF based on the random sample. The Kolmogorov-Smirnov test statistic 
is given byl4 

dn = sup JFn(zl - Fo(zIJ. 
z 

The value of dn is seen to be the largest distance between the hypothesized CDF, 
Fo(zl, and the EDF estimate of the true CDF, Fn(zl. The larger is dn, the greater 
is the largest numerical discrepancy between the estimated and hypothesized 
CDFs. Note also that Yo = Fo(z) is effectively the probability integral transform 
of the random variable outcome z as conjectured in Ho, while the EDF can be 
viewed as estimating outcomes from the true probability integral transform 
y = F(zl. Thus, an alternative interpretation of dn is the largest discrepancy 
between hypothesized and estimated probability integral transforms of Z. 

It is useful to note for computational purposes that dn = max(d~, d;; I, where 

d~ = max (i/n - Fo(xliJlI, 
iE{I, ... ,nl 

d;; = max (Fo(xlill - (i - II/nl, 
iE[I, ... ,nl 

where x[ll' x(21' ... , x(nl are the random-sample outcomes ordered from low­
est to highest (Le., they are the order statisticsl. This computational approach 
makes the calculation of dn a simple matter on a computer through sorting and 
differencing operations. 

In order to decide whether a discrepancy is significant, the sampling distri­
bution of Dn is required. The exact distribution of Dn for n :::: 40 has been tabled 
by J. D. Gibbons, Nanparametric Methods, p. 400. It was shown by A. N. Kal­
mogorov (Giarn. Inst. Ital. Attuari, 4 (19331, pp. 83-911 that the limiting CDF 
of n l /2Dn could be represented as 

13See M. A. Stephens (19741, "EDF statistics for goodness·of fit and some comparisons," rASA, p. 730; and M. Chandra, et a1. (19811, 
"Kolmogorov statistics for tests of fit for the extreme-value and Weibull distributions," rASA, p. 729. 

14As always, "sup" can be replaced by "max" when the maximum exists. 
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which results in the approximate critical points 

IX .10 .05 .01 

1.224n-1/ 2 1.358n-112 1.628n-1/ 2 

Stephens (see footnote 6) has analyzed adjustments to these approximate criti­
cal values that make them accurate for small n. The adjustments are to divide 
each of them by the factor (1 + .12n- I /2 + .lln- I ). 

A size ex K-S test of Ho: Z ~ Fo(z) versus Ha: Z i Fo(z) is given as follows: 

dJl [:::Jdwct => [reject Ho J. 
<. accept Ho 

From the Glivenko-Cantelli theorem and the fact that dn;a -+ 0 Vex E (0,1), it 
follows that the test is consistent. 

Example 10.29 Revisit Ex. 10.28, and examine the null hypothesis that the distribution of 
waiting times is uniform over the interval (0,3.5), i.e., Ho: Z ~ Fo(z) versus 
Ht/: Z i Fo(z) with Fo(z) = z/3.5110,3.5)(z). The value of dn = sUPzEIO,3.SjIFn (z) -
z/3.51 = .1443, the maximum difference occurring for z = 2.47, which has 
an EDF value of .85 and a (hypothesized) CDF value of 2.47/3.5 = .7057. 
Stephens' adjusted critical value for n = 40 and a size ex = .05 test is given 
by d40;.os = [1.358/(40jI/2j/(I + .I2/(40jI/2 + .11/40) = .2102. Since dn = .1443 < 
d40 ;.os = .2102, we do not reject the hypothesis that waiting times are uniformly 
distributed over the interval (0, 3.5). 0 

Lilliefors provided an adjustment to the K-S test that justifies its use for 
testing the null hypothesis Ho: Z ~ N(J.L, a2 ) versus Ha: Z i N(J.L, a2 ) when 
J.L and a2 are unknown and must be estimated from the data. In particular, he 
tabled the distribution of Dn under the null hypothesis for n = 1, ... , 30, via 
Monte Carlo methods (see previous Lilliefors reference) and presented approx­
imate critical values that are accurate for n > 30 as follows: 

IX .10 .05 .01 

.805n-112 .886n-1/ 2 1.031 n- 1/ 2 

The test proceeds by first unbiasedly estimating J.L and a2 using the estimates 
x and a2 = ns2/(n - 1) (using the sample variance itself would lead to the same 
test size asymptotically). Then N(x, ( 2 ) is used for the distribution under the 
null hypothesis, and dn = supz IFn(z)- f~oo N(z; x, ( 2 )dzl is calculated. Finally, 
the K-S test is performed as before but using Lilliefors' critical values, d~;a' for 
dn;a. 

Example 10.30 Revisit Ex. 10.28, and use the K-S test, as adjusted by Lilliefors, to test the 
hypothesis Ho: Z ~ N(J.L, a2 ) versus Ha: Z i N(J.L, a2 ) for some J.L and a2• Use 
ex= .05. 
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Answer: The estimates of J.L and a2 are respectively fl = x = 1.494 and a-2 = 
.8338. Then using N(1.494, .8338) for the distribution of Z under the null hy­
pothesis, the value of the K-S statistic can be calculated as 

I (Z-.1.494 1/.9131 

dn = s~p IFnlz) - -00 N(z; 0, 1 )dz 1= .0955, 

which occurs for z = .74, in which case the EDF value is .30 and 

1·74 

-00 N(z; 1.494, .8338)dz = .2045. 

Using Lilliefors' critical value of .886/(40jl/2 = .1401, the hypothesis of nor­
mality cannot be rejected with this sample outcome. 0 

While the Lilliefors K-S test is usually very effective in detecting a false 
Ho, in this case it has failed. It turns out that the waiting-times data were 
indeed generated by a uniform distribution (based on uniform random numbers 
generated by a computer), and so the Lilliefors test failed to reject a false Ho. 
Note that for large enough n, we would have rejected the hypothesis, since this 
K-S test is consistent. We note that Lilliefors' own Monte Carlo calculations 
indicated that among all of the alternative distributions he examined, his test 
had the lowest power against the uniform distribution, which may be why the 
test had difficulty in the preceding example. 

Shapiro-Wilk Test The Shapiro-Wilk (SW) test was designed specifically tc 
test the hypothesis that a random sample is from an N(J.L, ( 2 ) population dis­
tribution, where the null and alternative hypotheses are Ho: Z ~ N(J.L, ( 2 ) and 
H ll : Z 'f N(J.L, ( 2 ), respectively, for some (unspecified) J.L and a 2 • The test pro­
cedure has been shown to perform especially well in comparison to other tests 
of normality when applied to the calculated residuals Cj = Y - xb of a least­
squares estimate of the GLM Y = xf3 + e. The null hypothesis in this case is 
that ej ~ N(O, ( 2 ) V i (see C. Huang and B. Bolch (1974), Testing Disturbances). 
The procedure fairs well in more general settings also. The SW test was orig­
inally devised by S. Shapiro and M. Will<: in /tAn analysis of variance test for 
normality." Biometrika, (1965), pp. 591-61l. 

The test statistic devised by SW for testing the normality hypothesis is 
calculated as 

[ 
n/2 if n is even, 

m = In _ 1 )/2 if n is odd, 

where (XIII, XI21, ... , xlnd are the sample observations ordered from smallest to 
largest (i.e., the order statistics), S2 is the sample variance, and the ai's are coef­
ficients that are tabulated in the article by SW, pp. 603-604. The distribution of 
the test statistic is quite involved, but it has been tabulated by SW for sample 
sizes :s 50 (p. 605 of SW article) and for various levels of tail probabilities. The 



662 Chapter 1 0 Hypothesis-Testing Methods 

test rule is given by 

[ ::::] [ reject Ho ] 
W Wn'l-a => H . 
>' accept 0 

The test procedure can be applied for small samples and is also a consistent test 
of Ho versus H a• 

The heuristic motivation for the test lies in the fact that under the null hy­
pothesis of normality, both the numerator and denominator of the SW statistic 
can be shown to be estimating the same quantity, 0'2, apart from constants. Un­
der the alternative hypothesis, the denominator will still lapart from n- l ) be 
estimating 0'2, but such will not be the case for the numerator lin general). The 
difference in behavior of the numerator and denominator under Ha is exploited 
by SW in the design of the test procedure, and further motivation can be found 
in their article. 

Example 10.31 The relationship between varying levels of advertising expenditures and the 
quantity demanded of a product being advertised was studied over a 20-week 
period, and 20 weekly observations were used to estimate the GLM Y = x{3+e, 
where an outcome of Y represents the vector of 20 observations on quantities 
sold, and x represents a matrix of variables explaining the demand for the prod­
uct, including the level of advertising expenditures. The calculated residuals, e, 
from the least-squares fit of the model yielded the following values, e*, ordered 
from lowest to highest rowwise: 

-7.0890 -5.6489 -5.1510 -4.9672 
-4.8390 -3.9812 -3.9161 -3.6296 
-3.5914 -3.2087 -2.9827 -2.7810 
-1.2857 -1.1390 0.8321 5.3253 

6.2581 11.3091 14.4254 16.0611 

Use the SW test to assess the hypothesis that Ho: e = NIIOj, 0'21) versus Ha: not 
Ho. Use a = .05. 
Answer: In this case, ns2 = L:7=llei - ~)2 = L:~l eJ = 906.0822 Isince ~ = 0). 
Since n is even, m = n/2 = 10. To calculate the numerator of the SW statistic, 
we need the appropriate values of an-i+l = a21-i, i = I, ... , 10, which are given 
in SW's table as 

a20 = .4734, alS = .1334, 

al9 = .3211, 

alB = .2565, 

all = .2085, 

al6 = .1686, 

Then 
10 

al4 = .1013, 

a13 = .0711, 

al2 = .0422, 

all = .0140, 

L a21-ilxI21-il - Xli)! = .4734116.0611 + 7.0890) + .3211114.4254 + 5.6489) 
i=l 
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+ .2565(11.3091 + 5.1510) + .2085(6.2581 + 4.9672) 

+ .0422(-2.7810 + 3.5914) + .0140(-2.9827 + 3.2087) 

= 26.8090. 

The critical value of w is found from SW's table to be W20;.OS = .905. Then since 
w = (26.8090)2/906.0822 = .7932 ::: .905, Ho: c "" N([OJ, a 2I) is rejected at the 
.05 level. 0 

liD Assumption 

We will examine a test of the hypothesis that (Xl, ... ,Xnl is a random sam­
ple from some population distribution, the alternative hypothesis being that 
(Xl, .. . ,Xn ) is a sample from some composite experiment. That is, Ho: X/s are 
iid versus Ha: X/s are not iid. The test we will present, the Wald-Wolfowitz 
(WW) runs test, depends on the concept of a run in the outcome of a random 
sample. To be able to define a run, we need to categorize the data according 
to some dichotomous criteria, which results in the sample outcomes' being 
transformed into a collection of iid Bernoulli outcomes if Ho is true. A run is 
defined to be a succession of one or more identical values (l's or O's) preceded 
and followed by a different value or else no value at all if the run occurs at the 
beginning or end of the sample sequence. For example in the sequence of O's 
and l's given by 

00 1 1 1 0 1 0 1 1 00 1 I, 

there are eight runs, which we differentiate by vertical lines as 

001111101110111100111. 

The basic idea underlying the test of the iid assumption based on runs is that 
if the random variables are truly iid, then neither too few nor too many runs 
should be observed in any given outcome of the sample. Too few runs could be 
indicative of grouping, clustering, or trending. Too many runs could indicate 
a systematic alternating pattern. The Wald-Wolfowitz runs test exploits this 
idea rigorously. 

Wald-Wolfowitz (WW) Runs Test The WW test is concerned with testing 
whether or not (Xl, .. . ,Xn ) might be considered a random sample from some 
population distribution. According to some dichotomous characteristic, we can 
transform the outcome of Xj into a 1 or 0, and we can apply the same dichoto­
mous characterization to all of the x;'s. Note that the characteristic can be 
something inherent to the experiment, such as the male/female characteristic 
in a case where X/s refer to some measurement of consumer's response in an 
(alleged) random sample of consumers. Alternatively, a dichotomy could be im­
posed on random variables whose outcomes are in the form of some numerical 
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response by assigning a 1 to values exceeding a specified value (e.g., the median 
value) and a 0 to values below the specified value. 

However the dichotomy is defined, note that if there are nl responses equal­
ing 1 and no responses equaling 0, then there are (n,~no) different ways to rear­
range the nil's and no O's. If the X/s are truly iid (i.e., Ho is true), then each of 
these rearrangements is equally likely, and the probability of each rearrange­
ment is (n,~nOrl, by classical probability. 

Now let WI and Wo represent the number of runs involving l's and involving 
O's, respectively. By the definition of a run, it must be the case that IWI -wol ::: l. 
Examine the case where the total number of runs, W = WI + wo, is even, so that 
WI = Wo = w/2, and consider the definition of sequences consisting of nil's 
and no O's that represent WI runs of l's and Wo runs of O's. How many different 
ways can we define the sequence of WI sets of l's in the collection of W runs? 
This number is equivalent to the number of different ways WI - 1 = w/2 - 1 
vertical lines can be inserted in the nl - 1 spaces between the nil's (recall our 
previous use of vertical lines to delineate runs) and equals (;;;!I)' Similarly, 
the number of different ways we can define the sequence of Wo sets of O's in the 
collection of w runs is (;7;-\). Finally, since the sequence of W runs can begin 

with either a group of O's or a group of l's, there are 2(;};-\)C7;!J different 
ways of obtaining W runs when W is even, and thus 

Now examine the case were W = WI + Wo is odd, so that either WI = (w + 1)/2 
and Wo = (w - 1)/2 if the sequence begins and ends with a group of l's, or else 
WI = (w - 1 )/2 and Wo = (w + 1 )/2 if the sequence begins and ends with a group 
of O's. Using logic analogous to the case where W was even, we have that the 
number of different ways of obtaining W runs when W is odd is given by the 
numerator of 

( n,-I )( no-I) (n,-I)( nO-I) 
pl. ) _ {w-IJ/2 {w-31/2 + {w-3J/2 {w-IJ/2 for odd w. 

(W, nl, no - (no~n,) , 

We define P(w; nl, no) = 0 in all other cases. 
The discrete density function P(w; nl, no) can be used to define upper and 

lower critical values, and thus upper and lower rejection regions for the test 
statistic outcome w. As usual, the size of the test will be determined by the 
choice of critical values and the associated upper and lower tail probabilities as 
indicated by P(w; nl, no). 

It can be shown that the mean and variance of P(w; nl, no) are respectively 
given by 

E(W) = 2nlno + 1 and 
nl +no 
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Furthermore, as nl ~ 00 and no ~ 00, it follows that [W - E(W)l![var(WH I/2 -4 
N(O, 1), allowing asymptotically valid size a tests of the iid assumption to be 
defined in terms of standard normal critical values. The rate of convergence 
to the limiting distribution is very rapid, so that for nl > 10 and no > 10, the 
normal distribution approximation is very good. A table of critical values based 
on P( w; n I, no) for n ::: 20 has been published by Swed and Eisenhart (1943), 
Annals of Mathematical Statistics. (14), pp. 66-87. 

A size a = ac + ah runs test can be defined as follows: 

w[:Jo, wnl,no;l-a/l U [wnl,no;ah' nJ[::~:~: ~J. 
It should be noted that the test will have no power against alternatives to 

Ho that do not alter the equally likely character of the different rearrangements 
of n, l's and no O's. For example, if the X/s were independent N(O, a~) random 
variables and outcomes were dichotomized on the basis of runs above and be­
low the median of 0, then the aforementioned null distribution of W would 
nevertheless hold, and the WW test would have no power for recognizing the 
heteroskedasticity of the X/so For this reason, not rejecting Ho with the WW test 
should be considered a necessary, but not sufficient condition for concluding 
that the X/s are iid. 

Example 10.32 Test whether the observations on the waiting times between customers given 
in Ex. 10.28 might be viewed as iid observations from some population distri­
bution. Use a test of size .05. 
Answer: The observations occurred sequentially rowwise in the data matrix of 
Ex. 10.28, and a median of the observation is (1.50 + 1.68 )/2 = 1.59. Classifying 
the sample outcomes as l's or O's according to whether the outcome is > or 
< 1.59 yields the following, with runs delineated by vertical lines 

o I 1 I 0000 I 1111 I 0 I 1 I 0 I 11111 I 00 I 1 I 0 I 1 I 0 I 1 I 0 I 1 I 00 I 11 I 000 I 1 I 00 I 11 I O. 

In this case, there are w = 23 runs. Since nl and no are each> 10, we use the 
normal approximation to the distribution of W to conduct the test. Note that 
nl = no = 20 in this case, so that 

E(W) = 2(20)(20) + 1 = 21 
40 

(W) = 2(20)(20)(2(20)(20) - 20 - 20) = 9 7436 
var (20 + 20)2(20 + 20 - 1) . . 

The size a runs test in terms of the asymptotic normal distribution for W 
is 

w - E(W) [E] [ reject Ho ] 
Z = 1/2 J (-OO,-ZIX/2] U [Z<x/2' 00) =} H . 

(var(W)) 'F accept 0 

Since in the case at hand Z = (23 -21)/(9.7436)1/2 = .6407 and Z,025 = 1.96, then 
Z ¢ (-00, -1.96] U [1.96, 00), and the iid hypothesis is not rejected. 0 
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One might contemplate using the runs test in the GLM context to check the 
validity of the iid assumption for the disturbances. Unfortunately, even if the e 
vector of Y = xf3 + e consists of iid random variables, e = Y - x{J does not, since 
Cov(e) = (12(1 - x(X'x)-lx'). However, as n increases, e = (I - x(x'x)-lx')e ~ e if 
(X'X)-l ~ [OJ, and so the runs test may serve as an approximate test for large 
samples. The properties of the runs test in this context are not well established. 

10.9 Noncentral X2- and F-Distributions 

Family Name: Noncentral X?-Distribution 

Parameterization: v (degrees of freedom) and A (noncentrality parameter) 

Density Definition: fIx; v, A) = L:f=O(Ai fj!)e-)..h(x; v + 2i)I(o,00)(x), where h(x; v + 
2iJ is the (central) x2-density with v + 2i degrees of freedom. 

Moments: J.L = v + 2A, (12 = 2(v + 4AL J.L3 = 8(v + 6A) 

MGF: Mx(t) = (1 - 2t)-v/2 exp[ 12!~t] for t < 1/2 
The non central X2-distribution is the distribution of Y = L:~=l Z;, where 

the Z/s are independent normally distributed random variables with unit vari­
ances and means I/>i, i = I, ... , v, i.e., Zi '" N(I/>i, n i = I, ... , v, with Zl, ... , Zv 
being independent random variables. The density definition can be found via 
the change-of-variables approach of Section 6.6. The noncentrality parameter 
A is related to the means of the Z/s as A = ¢'¢/2. 

Note that the density definition can be recognized as a Poisson-weighted 
sum of (central) X~+2i density functions, i = 0, I, 2, ... , and in effect can be 
thought of as the expected value ofax2-density with v + 2[ degrees of freedom, 
the "random variable" [ having a Poisson density. This type of density defini­
tion, where the parameters of one density function family are effectively being 
treated as random variables and an expectation is taken with respect to another 
family of density functions, produces what is known as a mixture distribution. 
That is, members of one family are effectively being "mixed" using weights, 
applied to parameters, that are provided by another density family. 

When A = 0, the central X2-distribution is defined, which we discussed 
in Chapter 4. When A > 0, the mean of the distribution moves to the right, 
and the variance and skewness increase so that the density has less height and 
has a fatter, more pronounced right tail compared to the central x2-density. In 
particular, for any c < 00, 

lim PIx 2: c; A) = lim roo fIx; v, A)dx = I, 
)..-+00 )..-+00 lc 
and PIx 2: c; A) is monotonically increasing as a function of A. 

Our principal use of the noncentral X2-distribution is in analyzing the power 
function of statistical tests based on x2-statistics whose distribution under Ha 
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is noncentral X2 • Power in these cases is generally represented as a function of 
the noncentrality parameter as 

]fCr(A) = 1 fIx; v, A)dx. 
XEC, 

Examples are given by the GLR, LM, and Wald statistics, all of which have 
asymptotically valid non central X2-distributions under local alternative hy­
potheses in Ra. 

Integration of the noncentral X2-distribution is straightforwardly accom­
plished on personal computers using software such as GAUSS, SAS, or Mathe­
matica. The reader must be warned that the parameterization of noncentrality 
is not standard in the literature. Other parameterizations include non central­
ity equal to 2A or ../IT. The parameterization we use is more prevalent in the 
econometrics literature. 

For further information, see N. 1. Johnson and S. Kotz (1970), Continuous 
Univariate Distributions, II. New York: Wiley, pp. 130-148. 

Family Name: Noncentral F-Distribution 

Parameterization: VI (numerator degrees of freedom), V2 (denominator degrees 
of freedom), A (noncentrality parameter) 

Density Definition: 

00 (Ai) _A [ (VI/V2J(VIX/V2)(vl/21+i-l ] 
f(x; VI, V2, A) = ~ T! e B((vI/2) +;, v2/2J(1 + VIX/V2).5(vl+v21+i 1(0,001 (x), 

where B(a, b) is the Beta function (recall the Beta distribution discussion in 
Chapter 4). 

Moments: 

V2(VI + 2A) 
/.L = , for V2 > 2, 

VdV2 - 2) 

a2 _ 2 (V2)2 (VI + 2A)2 + (VI + 4AJ(V2 - 2) for V2 > 4 
- VI (V2 - 2)2(V2 - 4) , 

/.L3 = g(Vl, V2, A) increasing in A and VI, decreasing in V2, for V2 > 6. 

MGF: Does not exist. 
The noncentral F-distribution is the distribution of Y = (ZvJVd/(ZV2/V2), 

where ZVI "v X~I (A) and ZV2 '" X~2 are independent noncentral and central X2 
random variables with VI and V2 degrees of freedom, respectively. The density 
of Y can be established via transformation from the joint density of (ZVII ZV2)' 
which is the product of a noncentral and a central x2-density. 
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When)... = 0, Y is the ratio of two independent central x2-random vari­
ables, each divided by their degrees of freedom, so that Y has the (central) F­
distribution as we derived in Section 6.7. When)... > 0, the mean of the distribu­
tion moves to the right, and the variance and skewness also increase so that the 
density has less height and has a fatter, more pronounced right tail in compar­
ison to the central F-distribution. In particular, for c < 00, limi. ..... oo PIx 2:: c; )...) = 
limi. ..... oo feoo fix; Vl, V2, )"')dx = I, and PIx 2:: c;)...) is monotonically increasing as 
a function of ).... 

As in the case of the noncentral X2-distribution, our principal use of the 
noncentral F-distribution is in analyzing the power function of statistical tests 
based on test statistics that have a noncentral F-distribution when Ha is true. 
Power in these cases is generally represented as a function of the noncentrality 
parameter as 

nc,l)...) = r fix; Vl, V2, )...)dx. 
JXECr 

An example of the use of the noncentral F-distribution was given in the discus­
sion of testing Ho: R{3 = r in the GLM context under normality, in which case 
the power function was representable in terms of a noncentral F-distribution. 

Integration of the noncentral F-distribution is straightforwardly accom­
plished on personal computers using software such as GAUSS, SAS, and Math­
ematica. The warning regarding the parameterization of non centrality given 
in our discussion of the non central X2-distribution applies equally well here. 
Further information can be found in N. 1. Johnson and S. Kotz, Continuous 
Distributions, pp. 189-200. 
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Problems 

Problems 

1. A manufacturer of breakfast cereals has been ac­
cused of systematically underfilling its cereal packages. 
The manufacturer claims that the complaint must stem 
from settling of the cereal that occurs in shipment and 
that the air space at the top of the package is normal set­
tling of the contents. It claims that the filling process 
is normally distributed and that the system is under 
control at a mean fill rate of J-l, = EZ = 16.03 ounces 
and a standard deviation of a = .01, so that it is highly 
improbable that a package is filled below its stated con­
tents of 16 ounces. It wants you to test the hypothesis 
that the filling system is under control at a level of sig­
nificance equal to .10. It provides you with the follow­
ing random-sample outcome of 40 observations on fill 
weights: 

15.97 15.75 15.90 15.87 
15.96 15.90 16.05 16.04 
16.13 15.92 15.70 15.89 
15.79 15.74 15.88 15.86 
16.01 15.89 15.83 15.97 
15.92 15.88 15.84 15.95 
15.82 16.07 16.01 16.04 
15.92 15.81 15.71 15.95 
15.88 15.81 15.85 15.84 
15.79 16.03 15.80 15.80 

a. Define a size .10 GLR test of the hypothesis 
Ho: IL = J-l,o, a = ao, versus Ha: not Ho. Test the 
hypothesis that the filling process is under con­
trol. You may use the asymptotic distribution of 
the GLR if you wish. 

b. Define a size .10 LM test of the same hypothesis as 
in (a), and test the hypothesis at significance level 
.10. Are the two tests different? Are the two test 
decisions in agreement? 

c. Test the two hypotheses Ho: J-l, = 16.03 and 
Ho: a = .01 individually, using size .05 tests. Use 
whatever test procedures you feel are appropriate. 
Interpret the outcomes of the tests individually. 
Interpret the tests jointly using a Bonferroni ap­
proach. 

·d. Can you define a Wald test for the hypothesis in (a)? 
If so, perform a Wald test of the joint null hypothe­
sis at significance level .10. 

2. Testing for Differences in 1\vo Populations: 
Variances 
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After the firm in Problem 10.1 was inspected by the 
Dept. of Weights and Measures, a new random sample 
of 40 observations on fill weights was taken the next 
day, resulting in the following summary statistics: 

m; = 16.02753 and S2 = .9968 X 10-2• 

You may continue to assume normality for the pop­
ulation distribution. 

a. Define a GLR size .05 test of Ho: ar ::: ai versus 
Ha: not Ho, where ar and ai refer to the variances 
of the populations from which the first and second 
samples were taken. Test the hypothesis. 

b. Repeat (a) for the hypothesis Ho: ar 2: ai versus 
Hn: not Ho. 

c. Define a GLR size .05 test of Ho: ar = ai versus 
Ha: not Ho. Either go to the computer and perform 
this test, or else define an approximation to this test 
based on "equal tails" and perform the test. 

"d. Define the power function for each of the hypothe­
sis-testing procedures you defined above. With the 
aid of a computer, plot the power functions and in­
terpret their meanings. 

3. Testing for Differences in Two Populations: Means 
(Equal Variances) 
Referring to the data obtained in both preceding prob­
lems, consider testing whether the two population 
means are the same. Assume that the population vari­
ances are identical in the two cases-did you find any 
evidence to contradict this in your answer to Problem 
10.2 above? 

a. Define a GLR size .05 test of Ho: J-l,l ::: IL2 versus 
Ha: not Ho, where J-l" and J-l,2 refer to the means 
of the populations from which the first and second 
samples were taken. Test the hypothesis. 

b. Repeat (a) for the hypothesis Ho: ILl 2: IL2 versus 
Ha: notHo. 

c. Define a GLR size .05 test of Ho: ILl = IL2 versus 
Ha: not Ho. Test the hypothesis at the .10 level of 
significance. 

"d. Define the power function for each of the hypothe­
sis-testing procedures you defined above. With the 
aid of a computer, plot the power functions and in­
terpret their meanings. 

"4. Testing for Differences in Two Populations: Means 
(Unequal Variances-The Behrens-Fisher Problem) 
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Consider the hypotheses in Problem 10.3 in the case 
where it is not assumed that the variances of the two 
populations are equal. 

a. Attempt to find a GLR test of the hypothesis 
Ho: J.tl = J.t2 versus H,,: not Ho based on at-statistic 
similar to what you found in Problem lO.3. Is this 
approach valid? The problem of testing hypothe­
ses concerning the means of two normal popula­
tion distributions when it is not assumed that the 
variances are equal is known as the Behrens-Fisher 
problem, which as of yet has no universally ac­
cepted solution. 
One reasonable solution to this problem is to use 

the statistic 

Xl - X2 
t = .,-,;-.,,---.-'---;;-:7----::-:-::-

1st/In 1 - 1) + sVln2 - l))I/2 

where nl and n2 refer to the respective sample sizes of 
samples from the two populations. It can be shown that 
a test of size ~ a of any of the hypotheses concerning 
the means of the two population distributions given in 
Problem 1O.3Ia)-lc) can be performed by defining critical 
regions as follows: 

Ho Ha e, 

ILl = IL2 ILl i=IL2 (-00, -fulz(m)1 U Iful2(m), 00) 

ILl ::: JL2 ILl < IL2 (-00, -f,Am)! 

ILl =:: IL2 ILl > ILz lfu(m),oo) 

The value of t"lm) is a typical critical value of the stu­
dent t-distribution found in totables, except the degrees­
of-freedom parameter m = min(nl' n2) - 1. The proce­
dure is sometimes referred to as the Hsu procedure. 
Further discussion of the Behrens-Fisher problem can 
be found in H. Scheffe Il970), "Practical solutions of the 
Behrens-Fisher problems." rASA, (65), pp. 1501-1508. 

b. Using the Hsu procedure discussed above, test the 
hypothesis of the equality of the means in the pop­
ulation distributions referred to in Problems 10.1 
and 10.2. 

5. Regarding the asymptotically valid Wald and Z­
tests for the value of a 2 in the case of non normally dis­
tributed populations and the GLM as discussed at the 
end of Section 10.6, justify their asymptotic size and 
consistency. 

6. Recall the analysis of the demand for textiles in 
the Netherlands performed by renown econometrician 
Henri Theil, as discussed in Problem 8.9. With reference 

to the least-squares-based estimate of the constant elas­
ticity demand function generated from the data in the 
problem, respond to the following, using size .10 tests 
when testing is needed. 

a. Test the hypothesis that the matrix of explanatory 
variables is significant in explaining changes in the 
logarithm of textile demand. 

b. Test whether income is significant in explaining 
textile consumption. "Plot the power function of 
the test, and interpret its meaning. 

c. Test whether price is significant in explaining tex­
tile consumption. 

d. Test whether the price elasticity is inelastic. Test 
whether the income elasticity is inelastic. 

e. Is the demand equation homogeneous degree zero 
in price and income? 'Plot the power function of 
the test, and interpret its meaning. 

f. Calculate a confidence interval that has a .95 con­
fidence coefficient for the income elasticity. Inter­
pret the meaning of this confidence interval. 

g. Calculate a confidence interval that has a .95 con­
fidence coefficient for the price elasticity. Interpret 
the meaning of this confidence interval. 

·h. Calculate a confidence region having confidence 
coefficient .90 for the income and price elasticities. 
With the aid of a computer, graph the confidence 
region. Superimpose the intervals you calculated in 
If) and Ig) on this graph. The regions are different­
interpret the difference. 

"i. Test the least-squares residuals for normality, 
preferably using the Shapiro-Wilks test Iyou'll need 
tables for this), or else use the X2 square goodness­
of-fit test. 

7. Testing the Equality of Two Exponential Popula­
tion Distributions 
The Reliable Computer Co. is considering purchasing 
CPU chips from one of two different suppliers to use in 
the production of personal computers. It has two bids 
from the suppliers, with supplier number one offering 
the lower bid. Before making a purchase decision, you 
want to test the durability of the chips, and you ob­
tain a random sample of 50 chips from each supplier. 
It is known that both CPUs have operating lives that 
are exponentially distributed, and you want to test the 
equality of the expected operating lives of the chips. 
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a. Define a size .10 GLR test of the equality of the 
means of the two population distributions, i.e., a 
test of Ho: 01 = O2 versus Ha: not Ho. 

b. The respective sample means of operating lives for 
the two samples were 3h = 24.23 and X2 = 18.23. 
Conduct the test of the null hypothesis. Does the 
test outcome help you decide from which supplier 
to purchase the chips? 

c. How would your test rule change if you wanted to 
test a one-sided hypothesis concerning the means 
of the population distributions? 

d. Consider using the LM test procedure for this prob­
lem. What is the test rule? Can you perform the test 
with the information provided? 

e. Consider using the WALD test procedure for this 
problem. What is the test rule? Can you perform 
the test with the information provided? 

*8. The Huntington Chemical Co. has been accused of 
dumping improperly treated waste in a local trout lake, 
and litigation may be imminent. The central allegation 
is that the trout population has been severely reduced by 
the company's dumping practices. The company coun­
ters with the claim that at least 100,000 trout still re­
main in the lake, and since this is a substantial number 
for a lake of its size, the firm is innocent of all charges. 
In order to investigate the size of the trout population, 
500 trout are captured, tagged, and then returned to the 
lake. After the fish have redistributed themselves in the 
lake, 500 fish are captured, and the number of tagged 
fish are observed. Letting x represent the proportion of 
tagged fish, can a size:::: .10 test of the company's claim 
be defined? Would an outcome of x = .14 support or 
contradict the company's claim? 

9. Use a Wald-Wolfowitz runs test to assess whether 
the data provided by the cereal manufacturer in Prob­
lem 10.1 might be the outcome of a random sample 
from some population distribution. The observations 
occurred sequentially rowwise. Use a size .05 test. 

10. Test whether the data of the cereal manufacturer 
provided in Problem 10.1 can be interpreted as an out­
come of a random sample from the specific normal 
population distribution claimed, i.e., test Ho: Z ~ 

N(16.03, .0001) versus Ha: not Ho. Perform another test 
that assesses the more general hypothesis that the data 
are the outcome of a random sample from some nor­
mal population distribution, i.e., test Ho: Z ~ N(/J-, a2 ) 

versus Ha: not Ho. Use size .05 tests. 
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11. Paired Comparisons of Means 
A family counseling service offers a one-day program of 
training in meal planning, which they claim is effective 
in reducing cholesterol levels of individuals completing 
the course. In order to assess the effectiveness of the 
program, a consumer advocacy group randomly sam­
ples the cholesterol levels of 50 program participants 
both one day before and one month after the course is 
taken. It then summarizes the pairs of observations on 
the individuals by reporting the sample mean and sam­
ple standard deviation of the differences between the 
before and after observations of the 50 program partici­
pants. Their finding were d = -11.73 and s = 3.89. 

a. Assuming that the pairs of observations are iid out­
comes from some bivariate normal population dis­
tribution with before and after means /J-b and /J-a, 
define the appropriate likelihood function for the 
mean /J- = /J-a - /J-b and variance a 2 of the popula­
tion distribution of differences in pairs of choles­
terol measurements. Use this likelihood function 
to define a GLR size .05 test of the hypothesis that 
the meal planning program has no effect, i.e., a test 
for Ho: /J- = 0 versus Ha: not Ho. Test the hypothe­
sis. 

b. Can you define an LM test of the null hypothesis in 
(a)? Can you test the hypothesis with the informa­
tion available? If so, perform the test-if not, what 
other information would you need? 

c. Describe how you might test the hypothesis that 
the observations on paired differences are from a 
normal population distribution. What information 
would you need to test the hypothesis? 

d. Suppose that normality of the observations is not 
assumed. Can you define another test of the effec­
tiveness of the meal-planning program? If so, use 
the test to assess the effectiveness of the meal­
planning program. Discuss any differences that are 
required in the interpretation of the outcome of this 
test compared to the test in (a) that you could per­
form if the observations were normally distributed. 

12. The production function for a commodity can be 
approximated over a restricted range of relevant input 
levels by a linear relationship of the form Y = x{3 + €. 
The columns of x include, in order, a column of l's and 
three column vectors representing observations on la­
bor, energy, and capital input levels. Thirty observations 
on weekly production levels yielded the following sum-
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mary statistics: 

[
13.792] 

b = ( , )-1 '= 3.005 
xx x y 1.327' 

6.385 

SZ = 3.775, 

[
4.002 -.136 

(X'X)-I = .020 

(symmetric) 

-.191 -.452] 
.006 -.007 
.041 .001 . 

.099 

In answering the following questions, be sure to clearly 
define any assumptions that you make. 

a. Test the joint significance of the input variables for 
explaining the expected level of production using a 
size .05 test. 

b. Test the significance of the input variables indi­
vidually. Which input variables contribute signif­
icantly to the explanation of the expected level of 
output? Be sure to explain the basis for your con­
clusion. 

c. Define confidence-interval outcomes for each of 
the marginal products of the inputs. Use .95 con­
fidence coefficients. What do these confidence in­
tervals mean? 

d. Test the hypothesis that expected output ::: 35 
when labor, energy, and capital are applied at levels 
8, 4, and 3, respectively. Use a size .05 test. 

e. Calculate a confidence-interval outcome for the ex­
pected level of production at the input levels indi­
cated in (d). Use a .95 confidence coefficient. What 
is the meaning of this confidence interval? 

g. Test the hypothesis that the variance of the pro­
Q.uction process ~ 6 at a .10 level of significance. 
Assume normality in conducting this test. What 
information would you need to conduct an asymp­
totically valid test of the hypothesis in the absence 
of normality? 

13. The production department of a paper products 
manufacturer is analyzing the frequency of breakdowns 
in a certain type of envelope machine as it contemplates 
future machinery repair and replacement policy. It has 
been suggested that the number of breakdowns per day 
is a Poisson-distributed random variables, and the de­
partment intends to test this conjecture. Forty days' 
worth of observations on the number of daily machine 
breakdowns yielded the following observations, which 

occurred in sequence rowwise: 

4 8 5 4 
3 5 8 2 
7 4 6 8 
7 9 8 8 
6 2 5 0 
8 1 7 3 
6 2 0 2 
0 4 3 5 
1 3 9 5 
3 4 3 0 

a. Test whether the observations might be a random­
sample outcome from some population distribu­
tion. Use a .1O-level runs test. 

b. Test the hypothesis that the observations are from a 
Poisson population distribution. Use a size .10 test. 

c. Test the hypothesis that the observations are from 
a uniform population distribution. Use a size .10 
test. 

d. Test the hypothesis that the expected number of 
daily breakdowns for this equipment ~ 8, using a 
significance level of .10. Use whatever test proce­
dure you feel is appropriate. Based on this test pro­
cedure, calculate a .90-level confidence interval for 
the expected number of daily breakdowns. 

14. The relationship between sales and level of adver­
tising expenditure is hypothesized to be quadratic over 
the relevant range of expenditure levels being examined, 
i.e., YI = /31 + /3zal + /33a; + el, where YI is the level of 
sales in period t, al is the level of advertising expenditure 
in period t, and the el'S are disturbance terms assumed 
to be iid normally distributed. The least-squares-based 
estimate of the relationship using 30 periods' worth of 
observations resulted in the following: 

b = (103.27 2.71 - .13), SZ = 1.27, 

[
111.17 1.71 .013] 

(X'X)-I = .64 .0017 . 
(symmetric) .004 

a. Test the hypothesis that advertising expenditure 
has a significant impact on the expected sales level. 
Use any significance level you feel is appropriate. 

b. Test whether the relationship between advertising 
expenditures and sales is actually a linear as op­
posed to a quadratic relationship. 

c. Define a confidence interval with confidence coef­
ficient .95 for the expected level of sales expressed 
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as a function of advertising level at. Plot the con­
fidence interval as a function of advertising expen­
ditures (use expected sales on the vertical axis and 
advertising expenditures on the horizontal axis). In­
terpret the plot. 

d. Test the hypothesis that the level of advertising ex­
penditure that maximizes expected sales:::: IS. 

"e. Calculate a confidence interval with confidence co­
efficient .95 for the level of advertising expenditure 
that maximizes expected sales. 

15. An analyst is investigating the effect of certain pol­
icy events on common stock prices in a given indus­
try. In an attempt to isolate abnormal from normal re­
turns of firms in the industry, the following returns­
generating equation was estimated via least squares: 
Rt == f31 + f32 Rmt + Ct, where Rt is the actual return by 
a firm on day t and Rlllt is the return on a large port­
folio of stocks designed to be representative of market 
return on day t. Abnormal returns arc defined to be 
ARt == Ct and arc estimated from an estimate of the 
returns-generating equation as 

ARt == Rt - Rt, where Rt == h + b2 Rlllt . 

Thus, the estimated abnormal returns are effectively 
the estimated residuals from the least-squares estimate 
of the returns-generating equation. A summary of the 
estimation results from an analysis of 43 observations 
on a given firm is given below: 

b == [.03 1.07)', ( , )-1 _ [ .0001 
x x - .2 X 10-4 

.2 X 10-4 ] 

.81 ' 

&2 == 1.0752, 

e== -0.44 1.49 -0.46 -0.90 
0.73 -0.45 -1.04 -0.24 

-0.68 -0.40 -0.070 -2.44 
-1.21 1.53 0.21 -0.30 
-0.23 -0.85 0.55 -0.58 
0.030 0.16 -0.74 -0.30 
1.52 2.39 0.28 0.66 

-0.10 -0.75 1.59 0.97 
-2.5 -0.62 -1.24 -0.24 
0.14 0.76 0.84 0.16 
0.18 -0.99 -1.74 

a. Use a runs test to provide an indication of whether 
the residuals of the returns-generating equation, 
and hence the abnormal returns, can be viewed as 
iid from some population distribution. Use a size 
.05 test. Comment on the appropriateness of the 
runs test in this application. 
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b. Test to see whether the abnormal returns can be 
interpreted as a random sample from some normal 
population distribution of returns. Use a size .05 
level of test. 

c. Assuming normality, test whether the expected 
daily return of the firm is proportional to market 
return. Use a size .05 test. 

d. Define and test an hypothesis that will assess 
whether the expected return of the firm is greater 
than market return for any Rmt :::: O. Use a size .05 
test. 

16. Testing for Independence in a Bivariate Normal 
Population Distribution 

Let (X" Y,), i == I, ... , n, be a random sample from 
some bivariate normal population distribution N(tL, ~) 
where af = ai- In this case, we know that the bivariate 
random variables are independent iff the correlation be­
tween them is zero. Consider testing the hypothesis of 
independence Ho: P == 0 versus the alternative hypoth­
esis of dependence H,,: polO. 

a. Define a size .05 GLR test of the independence of 
the two random variables. You may use the limiting 
distribution of the GLR statistic to define the test. 

b. In a sample of SO observations, it was found that 
s~ == 5.3 7, s~ == 3.62, and Sxy == .98. Is this sufficient 
to reject the hypothesis of independence based on 
the asymptotically valid test above? 

c. Show that you can transform the GLR test into a 
test involving a critical region for the test statistic 
w == SXy/[(s~ + s~)/2). 

'd. Derive the sampling distribution of the test statis­
tic W defined in (c) under Ho. Can you define a size 
.05 critical region for the test statistic? If so, test the 
hypothesis using the exact (as opposed to asymp­
totic) size .05 GLR test. 

17. Test of the Equality of Proportions 
Let XI and X2 be independent random variables with 
binomial distributions Binomial(n;,p;L i == 1,2, where 
the n;'s are assumed known. Consider testing the null 
hypothesis that the proportions (or probabilities) PI and 
P2 are equal, i.e., the hypothesis is Ho: PI == P2 versus 
H,,: PI #P2. 

a. Define an asymptotically valid size a Wald-type 
test of Ho versus H". 

b. If nl == 45, n2 == 34, XI == 19, and X2 == 24, is the 
hypothesis of equality of proportions rejected if 
Q( = .10? 
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c. Define an asymptotically valid, size GLR-type test 
of Ho versus Ha. Repeat part (b). 

18. Testing Whether Random Sample Is from a Dis­
crete Uniform Population Distribution 
Let Xi, i = 1, ... , n be a random sample from some 
discrete integer-valued population distribution. Let the 
range of the random variables be 1,2, ... , m. 

a. Describe how you would use the X2 goodness-of-fit 
size ex test to assess the hypothesis that the popu­
lation distribution was a discrete uniform distribu­
tion with support 1,2, ... , rn. 

b. The Nevada Gaming Commission has been called 
in to investigate whether the infamous Dewey, 
Cheatum & Howe Casino is using fair dice in its 
crap games. One of the alleged crooked dice is 
tossed 240 times, and the following outcomes were 
recorded: 

X Frequency 

1 33 
2 44 
3 47 
4 39 
5 31 
& 4& 

Does this die appear to be fair? What size test will you 
use? Why? 

19. Describe how you would test one-sided and two­
sided hypotheses, using both finite sample and asymp­
totically valid testing procedures, in each of the follow­
ing cases. Use whatever procedures you feel are appro­
priate. 

a. Testing hypotheses about the mean of a binomial 
distribution based on a random sample of size 1 
from the binomial distribution. 

b. Testing hypotheses about the mean of a Poisson dis­
tribution based on a random sample of size n from 
a Poisson population distribution. 

20. The weekly proportion of storage tank capacity that 
is utilized at a regional hazardous liquid waste receiv­
ing site is an outcome of a Beta(8, 1) random variable. 
At the end of each week the storage tank is emptied. 
A random sample of a year's worth of observations of 
capacity utilization at the site produced the following 

in sequence rowwise: 

0.148 0.501 0.394 0.257 
0.759 0.763 0.092 0.155 
0.409 0.257 0.586 0.919 
0.278 0.076 0.019 0.513 
0.123 0.390 0.030 0.082 
0.935 0.607 0.075 0.729 
0.664 0.802 0.338 0.539 
0.055 0.984 0.269 0.069 
0.679 0.382 0.549 0.028 
0.770 0.296 0.105 0.465 
0.194 0.675 0.696 0.068 
0.091 0.132 0.156 0.050 
0.477 0.754 0.164 0.527 

a. Define a GLR size ex test of Ho: 8 = 8 0 versus 
Ho: 8 =I 8 0 • 

b. Test the hypothesis that the expected weekly stor­
age tank capacity utilized is equal to .5 at a sig­
nificance level of .05. If the exact distribution of 
the GLR test appears to be intractable, then use an 
asymptotic test. 

c. Test that the observations might be interpreted as a 
random sample from some population distribution. 
Use a size .05 runs test. 

d. Test that the observations can be interpreted as a 
random sample from a Beta(8, 1) population distri­
bution. Use a size .05 test. 

e. Would the use of an LM test be tractable here? If so, 
perform an LM test of the hypothesis. 

21. Follow the proof of Theorem 10.14 to demonstrate 
that when random sampling from the continuous PDF 
I(z; 8) with scalar parameter 8, 

n 

-2 Lln[1 - F(Xi ; 8n - X~n 
i=l 

is a pivotal quantity for 8. 

22. Regional daily demand for gasoline in the summer 
driving months is assumed to be the outcome of an 
N(/-t, (72) random variable. Assume you have 40 iid daily 
observations on daily demand for gasoline with quantity 
demanded measured in millions of gallons, and x = 43 
and S2 = 2. 

a. Show that N(/-t, (72) is a location-scale parameter 
family of PDFs (recall Theorem 10.13). 

b. Define a pivotal quantity for /-t, and use it to define 
a .95-level confidence interval for /-t. Also, define a 
.95 lower confidence bound for /-t. 



Problems 

c. Define a pivotal quantity for a 2, and use it to define 
a .95-level confidence interval for a2 • 

·d. A colleague claims that mean daily gasoline de­
mand is only 37 million gallons. Is your answer to 
(b) consistent with this claim? Explain. 

23. The population distribution of income in a pop­
ulous developing country is assumed to be given (ap­
proximately) by the continuous PDF fIx; 8) = 8(1 + 
x)-le+1JI10.""J(x), where 8 > o. A summary measure of 
a random-sample outcome of size 100 from the popu­
lation distribution is given by L:}2'i' In( 1 + Xi) = 40.54, 
where Xi is measured in thousands of units of the devel­
oping country's currency. 

a. Define a pivotal quantity for the parameter 8 (Hint: 
Theorem 10.13 and Problem 10.21 might be useful 
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here.) 

b. Define a general expression for a level-y confidence 
interval for 8 based on n iid observations from 
f(x;8). 

c. Calculate an outcome of a .90-level confidence in­
terval for 8 based on the expression derived in (b). 
Note: For large degrees of freedom> 3D, 

X~;a::::; v [1- :v +z" (92v y/2r, 
where f"" N(x; 0, l)dx = (x, is a very good approxi-

z" 
mation to critical values of the X2 -distribution (M. 
Abramowitz and 1. A. Stegun (1972), Handbook 
of Mathematical Functions. New York: Dover, 
p.941). 



A.l Introduction 

Math Review: Sets, Functions, 
Permutations, Combinations, 
and Notation 

A.l Introduction 
A.2 Definitions, Axioms, Theorems, Corollaries, and 

Lemmas 
A.3 Elements of Set Theory 
AA Relations, Point Functions, and Set Functions . 
A.S Combinations and Permutations 
A.6 Summation, Integration and Matrix Differentiation 

Notation 

In this appendix we review basic results concerning set 
theory, relations and functions, combinations and permutations, and summa­
tion and integration notation. We also review the meaning of the terms defini­
tion, axiom, theorem, corollary, and lemma, which are labels that are affixed 
to a myriad of statements and results that constitute the theory of probability 
and mathematical statistics. The topics reviewed in this appendix constitute 
basic foundational material on which our study of mathematical statistics will 
be based. Additional mathematical results, often of a more advanced nature, 
are introduced throughout the text as the need arises. 

A.2 Definitions, Axioms, Theorems, Corollaries, and Lemmas 

The development of the theory of probability and mathematical statistics in­
volves a considerable number of statements consisting of definitions, axioms, 
theorems, corollaries, and lemmas. These terms will be used for organizing the 
various statements and results we will examine into these categories: 

1. descriptions of meaning; 
2. statements that are acceptable as true without proof; 
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3. formulas or statements that require proof of validity; 
4. formulas or statements whose validity follows immediately from other true 

formulas or statements; and 
5. results, generally from other branches of mathematics, whose primary pur­

pose is to facilitate the proof of validity of formulas or statements in math­
ematical statistics. 

More formally, we present the following meaning of the terms: 

Definition A statement of the meaning of a word, word group, sign, or symbol. 

Axiom (or postulate) A statement that has found general acceptance, or is 
thought to be worthy thereof, on the basis of an appeal to intrinsic merit 
or self-evidence and thus requires no proof of validity. 

Theorem (or proposition) A formula or statement that is deduced from other 
proved or accepted formulas or statements and whose validity is thereby 
proved. 

Corollary A formula or statement that is immediately deducible from a prov­
en theorem and that requires little or no additional proof of validity. 

Lemma An auxiliary proposition that has been proved either by the user or 
elsewhere and that is stated for the expressed purpose of immediate use in 
the proof of another proposition. 

Thus, in the development of the theory of probability and mathematical 
statistics, axioms are the fundamental truths that are to be accepted at face 
value and not proven. Theorems and their corollaries are statements deducible 
from the fundamental truths and other proven statements and thus are derived 
truths. Lemmas represent results that facilitate proofs of other statements that 
are of more fundamental interest. 

We elaborate on the concept of a lemma, since our discussions will implic­
itly rely on lemmas more than any other type of statement, but we will gen­
erally choose not to exhaustively catalogue lemmas in the discussions. What 
constitutes a lemma and what does not depends on the problem context or 
on one's point of view. A fundamental integration result from calculus could 
technically be referred to as a lemma when used in a proof of a statement in 
mathematical statistics, while in the study of calculus, it might be referred to 
as a theorem to be proved in and of itself. Since our study will require numerous 
auxiliary results from algebra, calculus, and matrix theory, exhaustively cata­
loguing these results as lemmas would be cumbersome and, more importantly, 
not necessary given the prerequisites assumed for this course of study, namely, 
a familiarity with the basic concepts of algebra, univariate and multivariate 
calculus, and an introduction to matrix theory. We will have occasion to state 
a number of lemmas, but we will generally reserve this label for more exotic 
mathematical results that fall outside the realm of mathematics encompassed 
by the prerequisites. 



A.3 Elements of Set Theory 679 

A.3 Elements of Set Theory 

Definition A.l 
Set 

In the study of probability and mathematical statistics, sets are the fundamen­
tal objects to which probability will be assigned, and it is important that the 
concept of a set, and operations on sets, be well understood. In this section we 
review some basic properties of and operations on sets. This begs the following 
question: What is meant by the term set? In modern axiomatic developments 
of set theory, the concept of a set is taken to be primitive and incapable of 
being defined in terms of more basic ideas. For our purposes, a more intuitive 
notion of a set will suffice, and we avoid the complexity of an axiomatic de­
velopment of the theory (see Marsden,l Appendix A, for a brief introduction 
to the axiomatic development). We base our definition of a set on the intu­
itive definition originally proposed by the founder of set theory, Georg Cantor 
(1845-1918).: 

A set is a collection of objects with the following characteristics: 

1. All objects in the collection are clearly defined, so that it is evident 
which objects are members of the collection and which are not; 

2. All objects are distinguishable, so that objects in the collection do not 
appear more than once; 

3. Order is irrelevant regarding the listing of objects in the collection, so 
two collections that contain the same objects but are listed in different 
order are nonetheless the same set; and 

4. Objects in the collection can be sets themselves, so that a set of sets can 
be defined. 

The objects in the collection of objects comprising a set are its elements. 
The term members is also used to refer to the objects in the collection. In order 
to signify that an object belongs to a given set, the symbol E, will be used in 
an expression such as x E A, which is to be read "x is an element (or member) 
of the set A," If an object is not a member of a given set, then a slash will be 
used as x f/. A to denote that "x is not an element (or member) of the set A." 
Note that the slash symbol, /, is used to indicate negation of a relationship. 
The characteristics of sets presented in Def. A.l will be clarified and elaborated 
upon in examples and discussions provided in subsequent subsections. 

IJ.E. Marsden, (1974), Elementary'Classical Analysis, San Francisco: Freeman and Co. 

2Cantor's original text reads: "Unter einer 'Menge' verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen 
Objekten m unserer Anschauung oder unseres Denkens (welche die 'Elemente' von M genannt werden) zu einem ganzen" (Collected 
Papers, p. 282). Our translation of Cantor's definition is, "By set we mean any collection, M, of clearly defined, distinguishable 
objects, m (which will be called elements of M), which from our perspective or through our reasoning we understand to be a whole," 
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Set-Defining Methods 

Three basic methods are used in defining the objects in the collection constitut­
ing a given set: (I) exhaustive listing; (2) verbal rule; and (3) mathematical rule. 
An exhaustive listing requires that each and every object in a collection be in­
dividually identified either numerically, if the set is a collection of numbers, or 
by an explicit verbal description, if the collection is not of numbers. The object 
descriptions are conventionally separated by commas, and the entire group of 
descriptions is enclosed in brackets. The following are examples of sets defined 
by an exhaustive listing of the objects that are elements of the set: 

Example A.l Sl = {HEAD, TAIL} 

Here S 1 is the set of possible occurrences when tossing a coin into the air and 
observing its resting position. Note the set can be equivalently represented as 
Sl = {TAIL, HEAD}. 0 

Example A.2 S2 = {1, 2, 3,4,5, 6} 

Here S2 is the set of positive integers from 1 to 6. Note that the set S2 can be 
equivalently represented by listing the positive integers 1 to 6 in any order. 0 

A verbal rule is a verbal statement of characteristics that only the ob­
jects that are elements of a given set possess and that can be used as a test 
to determine set membership. The general form of the verbal rule is {x: verbal 
statement}, which is to be read lithe collection of all x for which verbal state­
ment is true." The following are examples of sets described by verbal rules: 

Example A.3 S3 = {x: x is a college student} 

Here S3 is the set of college students. An individual is an element of the set S3 
iff (if and only if) he or she is a college student. 0 

Example A.4 S4 = {x: x is a positive integer} 

Here S4 is the set of positive integers 1,2,3, ... A number is an element of the 
set S4 iff it is a positive integer. 0 

A mathematical rule is of the same general form as a verbal rule, except 
the verbal statement is replaced by a mathematical expression of some type. 
The general form of the mathematical rule is {x: mathematical expression}, 
which is to be read lithe collection of all x for which mathematical expression 
is true." The following are examples of sets described by mathematical rules: 

Example A.S S5 = {x: x = 2k + 1, k = 0,1,2,3, ... } 

Here Ss is the set of odd positive integers. A number is an element of the set Ss 
iff the number is equal to 2k + 1 for some choice of k = 0, 1,2,3,.... 0 
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Example A.6 S6 = {x: 0::::: x ::::: 1} 

Here S6 is the set of numbers greater than or equal to 0 but less than or equal 
to 1. A number is an element of the set S6 iff it is neither less than 0 nor greater 
than 1. 0 

The choice of method for describing the objects that constitute elements 
of a set depends on what is convenient and/or feasible for the case at hand. 
For example, exhaustive listing of the elements in set S6 is impossible. On the 
other hand, there is some discretion that can be exercised, since, for example, 
a verbal rule could have adequately described the set S5, say as 55 = {x: x is an 
odd positive integer}. A mixing of the basic methods might also be used, such 
as S5 = {x: x = 2k+ 1, k is zero or a positive integer}. One can choose whatever 
method appears most useful in a given problem context. 

Note that although our preceding examples of verbal and mathematical 
rules treat x as inherently one-dimensional, a vector interpretation of x is 
clearly permissible. For example, we can represent the set of points on the 
boundary or interior of a circle centered at (0,0) and having radius 1 as 

S7 = {(Xl,X2): xl +xi ::::: I}, 

or we can represent the set of input-output combinations associated with a 
two-input Cobb-Douglas production function as 

S8 = {(y,XI ,X2): Y = boxf'x~2,Xl ~ 0,X2 ~ O} 
for given numerical values of bo, b l , and b2 • Of course, the entries in the x-vector 
need not be numbers, as in the set 

S9 = {(XI, X2): XI is an economist, X2 is an accountant}. 

Set Classifications 

Sets are classified according to the number of elements they contain and whe­
ther the elements are countable. We differentiate between sets that have a 
finite number of elements and sets whose elements are infinite in number, 
referring to a set of the former type as a finite set and a set of the latter type 
as an infinite set. In terms of countability, sets are classified as being either 
countable or uncountable. Note that when we count objects, we intuitively 
place the objects in a one-to-one correspondence with the positive integers, 
i.e., we identify objects one by one and count "I, 2,3,4, .... " Thus, a countable 
set is one whose elements can be placed in a one-to-one correspondence with 
some or all of the positive integers-any other set is referred to as an uncountable 
set. 

A finite set is, of course, always countable, and thus it would be redundant 
to use the term "countable finite set." Sets are thus either finite, countably 
infinite, or uncountably infinite. Of the sets Sl through S9 described earlier, SI, 
S2, S3, and S9 are finite, S4 and S5 are countably infinite, and S6, S7, and S8 are 
uncountably infinite (why?). 
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Definition A.2 
Subset 

Definition A.3 
Equality of sets 

Definition A.4 
Universal set 

Definition A.5 
Empty or null set 

Definition A.6 
Set difference 

Definition A.7 
Complement 

Definition A.S 
Union 

Definition A.9 
Intersection 

Definition A.l 0 
Mutually exclusive 

(or disjoint) sets 

Special Sets, Set Operations, and Set Relationships 

We now proceed to a number of definitions and illustrations establishing re­
lationships between sets, mathematical operations on sets, and the notions of 
the universal and empty sets. 

A is a subset of B, denoted as A C B and read A is contained in B, iff every 
element of A is also an element of B. 

Set A is equal to set B, denoted as A = B, iff every element of A is also an 
element of B, and every element of B is also an element of A, i.e., iff A c B 
and Be A. 

The set containing all objects under consideration in a given problem setting, 
and from which all subsets are extracted, is the universal set. 

The set containing no elements, denoted by 0, is called the empty, or null 
set. 

Given any two subsets A and B of a universal set, the set of all elements in A 
that are not in B is called the set difference between A and B and is denoted 
by A-B. If A c B, then A - B = 0 

Let A be a subset of a universal set, Q. The complement of the set A is the 
set of all elements in Q that are not in A, and is denoted by A. Equivalently, 
A=Q-A. 

Let A and B be any two subsets of a universal set, Q. Then the union of the 
sets A and B is the set of all elements in Q that are in at least one of the sets 
A or B; it is denoted by A U B. 

Let A and B be any two subsets of a specified universal set, Q. Then the 
intersection of the sets A and B is the set of all elements in Q that are in 
both sets A and B, it is denoted by A n B 

Subsets A and B of a universal set, Q, are said to be mutually exclusive or 
disjoint sets iff they have no elements in common, i.e., iff An B = 0. 
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We continue to use the slash, /, to indicate negation of a relationship (recall 
that / was previously used to indicate the negation of E). Thus, Act. B denotes 
that A is not a subset of B, and A i= B denotes that A is not equal to B. We note 
here (and we shall state later as a theorem) that it is a logical requirement that 
o is a subset of any set A, since if 0 does not contain any elements, it cannot be 
the case that 0 ct. A, since the negation of c would require the existence of an 
element in 0 that was not in A. 

Example A.7 Let the universal set be defined as n = {x: 0 ::: x ::: I}, and define three 
additional sets as 

A = {x: 0::: x::: .5}, B = {x: .25::: x::: .75} and, 

Then we can establish the following set relationships: 

B = {x: 0 ::: x < .25 or .75 < x ::: I}, 

Au C = {x: 0::: x ::: .5 or .75 < x::: I}, 

BcAUC, 

CnA=CnB=0, 

C = A U B = {x: 0::: x::: .75}, 

A - B = {x: 0::: x < .25}, 

A nB = {x: .25::: x::: .5}. 

C = {x: .75 < x::: I}. 

o 

Note that although our definitions of subset, equality of sets, set difference, 
complement, union, and intersection explicitly involve only two sets, A and B, 
it is implicit that the concepts can be applied to more complicated expressions 
involving an arbitrary number of sets. For example, since AnB is itself a set, we 
can form its intersection with a set C as (A n B) n C, or form the set difference, 
(A n B) - C, or establish that (A n B) = or i= C, and so on. The point is that 
the concepts apply to sets, which themselves may have been constructed from 
other sets via various set operations. 

Example A.8 Let Q, A, B, and C be defined as in Ex. A. 7. Then the following set relationships 
can be established: 

Au B U C = Q = {x: 0::: x::: I}, 

(A U C) n B = {x: .25::: x::: .5}, 

(A n B) n C = (A U B) n C = 0, 

(B U C) - A = {x: .5 < x ::: I}, 

((A U B) - (A n B)) c en (A U B). 

Can c be replaced with = in the last relationship? o 
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It is sometimes useful to conceptualize set relationships through illustra­
tions called Venn diagrams (named after the nineteenth-century English logi­
cian, John Venn). In a Venn diagram, the universal set is generally denoted by 
a rectangle, with subsets of the universal set represented by various geomet­
ric shapes located within the bounds of the rectangle. Figure A.I uses Venn 
diagrams to illustrate the set relationships defined previously. 

Rules Governing Set Operations 

Operations on sets must satisfy a number of basic rules. We state these basic 
rules as theorems, although we will not take the time to prove them here. The 
reader may wish to verify the plausibility of some of the theorems through the 
use of Venn diagrams. One of DeMorgan's laws will be proved to illustrate the 
formal proof method for the interested reader. 

Theorem A.l (Idempotency Laws) 

A u A = A and A n A = A 

Theorem A.2 (Commutative Laws) 

AuB=BuA ~d AnB=BnA 

Theorem A.3 (Associative Laws) 

(A U B) u C = A u (B u CJ and (A n B) n C = A n (B n CJ 

Theorem A.4 (Distributive Laws) 

A n (B u CJ = (A n B) u (A n CJ and A U (B n C) = (A u BJ n (A U CJ 

Theorem A.5 (Identity Elements nand u) 

Ann = A (n is the identity element for n) 

A U 0 = A (0 is the identity element for u) 

Theorem A.6 (Intersection and Union of Complements) 

A U A = n and A n A = 0 

Theorem A.7 (Complements of Complements) 

(A)=A 

Theorem A.8 (Intersection with the Null Set) 

An0=0 

Theorem A.9 (Null Set as a Subset) If A is any set, then 0 c A 
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Figure A-l 
Venn diagrams illustrating 
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AnB=0 

A and B mutually exclusive 

/' 
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shaded area = A 

n 

0 

set relationships. shaded area = An B 

Theorem A.l0 (OeMorgan's Laws) 

(A U B) = .A n B and (A n B) = .A U B 

Example A.9 Formal Proof of (A n B) = A U 8 
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A=B 

n 

0 
shaded area = A - B 

n 
~ ...-:::=::::... 

~ ~ 

shaded area = A u B 

By definition of the equality of sets, two sets are equal iff each is contained in 
the other. We first demonstrate that A nBc .A U B. By definition, x E An B 
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Definition A.ll 
Multiple union notation 

Definition A.12 
Multiple intersection 

notation 

Example A.l 0 

implies that x fj A n B. Suppose x fj A U 13. This implies x fj A and x fj 13, 
which implies x E A and x E B, i.e., x E An B, a contradiction. Therefore, if 
x E A n B, then x E Au 13, which implies A nBc A U 13. We next demonstrate 
that A U 13 c An B. Let x E Au 13. Then x fj An B, for if it were, then x E A 
and x E B, contradicting that x belongs to at least one of A and 13. However, 
x fj A n B implies x E A n B, and thus A U 13 c A n B. 0 

We remind the reader that since the sets used in Theorems AI-AlO. could 
themselves be the result of set operations applied to other sets, the theorems 
are extendable in a myriad of ways to involve an arbitrary number of sets. For 
example, in the first of DeMorgan's laws listed in Theorem A.lO, if A = CUD 
and B = E U F, then by substitution, ' 

(CUDUEUFJ = (CuDJn(EuFJ. 

Then by applying Theorem A.lO to both (C U DJ and (E U FJ, we obtain a gener­
alization of DeMorgan's law as 

(Cu D uEuFJ = CnbnEnF. 

Given the wide range of extensions that are possible, Theorems AI-A.lO pro­
vide a surprisingly broad conceptual foundation for applying the rules governing 
set operations. 

Some Useful Set Notation Situations sometimes arise in which one is required 
to denote the union or intersection of a large number of sets. A convenient 
notation that represents such unions or intersections quite efficiently is avail­
able. Two types of notations are generally used, and they are differentiated on 
the basis of whether the union or intersection is of sets identified by a natural 
sequence of integer subscripts or whether the sets are identified by subscripts, 
say i's, that are elements of some set of subscripts, I, called an index set. 

a. ul=IAj=AluA2uA3 ... UAn. 

h. UjeJAj = union of all sets A j for which i E I. 

a. nl=IAj = Ai nA2 nA3 ... nAn. 

h. nieJAj = intersection of all sets A j for which i E I. 

Let the universal set be defined as Q = {x: 0 :s x < I}, and examine the 
following subsets of f2: 

AI = {x: O:s x:s .2S}, 

A3 = {x: O:s x:s .7S}, 

A2 = {x: 0 :s x :s .S}, 

A4 = {x: .7S:sx:s I}. 

Define the index sets hand 12 as 

h={I,3} and h={I,3,4}. 
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Definition A.13 
Interval set notation 

Then, 

ULIAi = UL2Ai = U;=3Ai = {x: 0 ~ x ~ I} = Q, 

UieIIAi =Al UA3 = {x: 0 ~x ~ .7S}, 

UiehAi = Al UA3 UA4 = {x: 0 ~ x ~ I} = Q, 

n;=IAj = n;=2 Ai = 0, 

n;=3Ai = {.7S}, 

nieIIAi = Al nA3 = (x: 0 ~ x ~ .25), 

niehAi = Al nA3 nA4 = 0. o 

Whenever a set A is an interval subset of the realline (where the real line 
refers to all of the numbers between -00 and (0), the set can be indicated in 
abbreviated form by the standard notation for intervals, stated in the following 
definition. 

Let a and b be two numbers on the real line for which a < b. Then the 
following four sets, called intervals with endpoints a and b, can be defined 
as 

a. Closed interval: 

[a, bJ = {x: a ~ x ~ b}, 

h. Half-open (or half-dosed) intervals: 

(a, bl = {x: a < x ~ b}, and 

[a, b) = {x: a ~ x < b}, 

c. Open interval: 

(a, b) = {x: a < x < b}. 

Note that weak inequalities, x ~ or ~ x, are signified by brackets I or [, re­
spectively. Strong inequalities, x < or < x, are signified by parentheses,) or L 
respectively. Note further that whether the interval set contains its endpoints 
determines whether the set is closed. 

As we have already done, (x, y) will also be used to denote coordinates in the 
two-dimensional plane. The context of the discussion will make clear whether 
we are referring to an open interval (a, b) or a pair of coordinates (x, yJ. 

A.4 Relations, Point Functions, and Set Functions 

The concepts of point function and set function are central to our discussion 
of probability and statistics. We will see that probabilities can be represented 
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Definition A.14 
Cartesian product 

of A and 8 

by set functions and that in a large number of cases of practical interest, set 
functions can in turn be represented by a summation or integration operation 
applied to point functions. While readers may be somewhat familiar with point 
functions from introductory courses in algebra, the concept of a set function 
may not be familiar. We will review both function concepts within the broader 
context of the theory of relations. The relations context facilitates the presenta­
tion of a very general definition of "function" in which inputs into and outputs 
from the function may be objects of any kind, including, but not limited to, 
numbers. The relations context also facilitates a demonstration of the signifi­
cant similarities between the concept of a set function and the more familiar 
point function concept. 

Cartesian Product 

The concept of a relation can be made clear once we define what is meant by the 
Cartesian product of two sets A and B, named after the French mathematician 
Rene Descartes (1596-1650). 

Let A and B be two sets. Then the Cartesian product of A and B, denoted as 
A x B, is the set of ordered pairs 

A x B = {(x, y): x E A, Y E B}. 

In words, A x B is the set of all possible pairs (x, y) such that x is an element 
of the set A and y is an element of the set B. Note carefully that the pairs are 
ordered in the sense that the first object in the pair must come from set A and 
the second object from set B. 

Example A.ll Let A = {x: 1 ~ x ~ 2} and B = {y: 2 ~ Y ~ 4}. Then A x B = {(x, y): 1 ~ x ~ 2 
and 2 ~ Y ~ 4} (see Figure A.2). 0 

Example A.12 Let A = {x: x is a man} and B = {y: y is a woman}. Then A x B = {(x, y): x 
is a man and y is a woman}, which is the set of all possible man-woman pair­
ings. 0 

Definition A.1S 
Cartesian 

product (general) 

We will have use for a more general notion of Cartesian product involving 
more than just two sets. The extension is given in the next definition. 

Let AI, ... , An be n sets. Then the Cartesian product of AI, ... , An is the set 
of ordered n-tuples 

x7=lA i =AI XA2X ... xAn={(XI, ... ,Xn): xiEAi,i=I, ... ,n}. 

In words, x7=IA i is the set of all possible n-tuples (Xl, ... , xn ) such that Xl is 
an element of set AI, X2 is an element of set A2, and so on. Note that should the 
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Figure A-2 
A x B = shaded area. 

Definition A.16 
Binary Relation 

y 

4 -------~=====1 

2 -------+------1 

o 2 x 

A x B = shaded area 

need arise, a general Cartesian product of sets could also be represented by the 
notation XieIA i, where here the product is taken over all sets having subscript 
i in the index set I (recall Def. A.ll and Def. A.12, and the use of index set 
notation). 

In certain cases, we may be interested in forming a Cartesian product of a 
set A with itself. While we might represent such a Cartesian product by the 
notation 

X7=IA = {(Xl, ... ,xn ): Xi E A, i = 1, ... , n}, 

such a Cartesian product is generally denoted by An, and so, for example, A2 = 
AxA. 

Relation (Binary) 

We now define what we mean by the term binary relation. 

Any subset of the Cartesian product A x B is a binary relation from A to B. 

Note that the adjective binary signifies that only two sets are involved in 
the relation. Relations that involve more than two sets can be defined, but for 
our purposes the concept of a binary relation will suffice.3 Henceforth, we will 
use the word relation to mean binary relation. We should also mention that in 
the case where B = A, we will simply remain consistent with De£. A.16 and 

3 A higher-order relation could be defined by taking a subset of the Cartesian product xt=IAi, for example. 



690 Appendix A Math Review: Sets, Functions, Permutations, Combinations, and Notation 

refer to a subset of Ax A as a relation from A to A, although in this special case 
some authors prefer to call the subset of A x A a relation on A. 

Now let SeA x B. Thus, by definition, S is a relation from A to B. (We 
emphasize at this point that the choice of the letter S is quite arbitrary, and we 
could just as well have chosen any other letter to represent a subset of Ax B 
defining a relation from A to B.) If (x, y) E S, we say that x is in the relation S to 
y or that x is S-related to y. An alternative notation for (x, y) E S is xSy. Also, 
we use S: A -+ B as an abbreviation for lithe relation S from A to B." 

As it now stands, the concept of a relation no doubt appears quite abstract. 
However, in practice, it is the context provided by the definition of the subset 
S and the definitions of the sets A and B that provide intuitive meaning to 
xSy. That is, x will be S-related to y because of some property satisfied by the 
(x, y) pair, the property being indicated in the set definition of S. The real-world 
objects being related will be clearly identified in the set definitions of A and B. 
Some examples will clarify the intuitive side of the relation concept. 

Example A.13 Let A = [0, 00), and form the Cartesian product A 2 = {(x, y): x E A and YEA}. 
The set A2 can thus be interpreted as the nonnegative (or first) quadrant of 
the Euclidean plane. Then S = {(x, y): x ?: y, (x, y) E A 2} is a relation from A 
to A representing the set of points in the nonnegative quadrant for which the 
first coordinate has a value greater than or equal to the value of the second 
coordinate. The defining property of the relation S is "?:." This is displayed in 
Figure A.3. 0 

Example A.14 Let A = {x: x is an employed U.S. citizen} and B = {y: y is a U.S. corporation}. 

Figure A-3 
xSy in shaded area. 

Then A xB = {(x, y): x is an employed U.S. citizen andy isa U.S. corporation} is 
the set of all possible pairings of employed U.S. citizens with U.S. corporations. 

y 

x 
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Definition A.17 
Function 

Example A.15 

Definition A.18 
Domain and range 

of a function 

The relation S = {(x, y): x is employed by y, (x, y) E A x B} from A to B is the 
collection of U.S. citizens who are employed by U.S. corporations paired with 
their respective corporate affiliation. The defining property of the relation is 
the phrase "is employed by," and xSy iff x is a U.S. citizen employed by a U.S. 
corporation, and y is his or her corporate affiliation. 0 

Function 

We are now in a position to define what is meant by the concept of a function. 
As indicated in the following definition, a function is simply a special type of 
relation. In the definition we introduce the symbol V ,which means for every 
or for all, and the symbol 3, which means there exists. 

A function from A to B is a relation S: A -+ B such that V a E A 3 one 
unique b E B such that (a, b) E S. 

A relation satisfying the above condition will often be given a special sym­
bol to distinguish the relation as a function. A popular symbol used for this 
purpose is "f," where f: A -+ B is a common notation for designating the func­
tion f from A to B. As we had remarked when choosing a symbol to represent 
a relation, the choice of the letter f is arbitrary, and when it is convenient or 
useful, any other letter or symbol could be used to depict a subset of Ax B that 
represents a function from A to B. In the text we will often have occasion to 
use a variety of letters to designate various functions of interest. 

The unique element b E B that the function f: A -+ B associates with 
a given element x E A is called the image of x under f and is represented 
symbolically by the notation f(x). If fIx) is a real number, the image of x under 
f is alternatively referred to as the value of the function fat x. In the following 
example, we use R to denote the set of real numbers (-00,00), i.e., R stands for 
the real line. Furthermore, the nonnegative subset of the real line is represented 
by K::o, = [0,00). 

Let f: R -+ R>o be defined by f = {(x, y): y = x 2, X E R}. The image of -2 under 
f is f(-2) = 4~ The value of the function f at 3 is f(3) = 9. 0 

Associated with a given function, f, are two important sets called the do­
main and range of the function. 

The domain of a function f: A -+ B is defined as D(f) == A. The range of f is 
defined as R(f) = {y: y = f(x),x E A}. 

Thus, the domain of a function f : A -+ B is simply the set A of the Cartesian 
product A x B associated with the function. The range of f is the collection of 
all elements in B that are images of the elements in A under the function f. It 
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Figure A·4 
Function with domain 

D(f) and range R(f) 

Definition A.19 
Real-valued function 

B 

----- ------------,--------------... 

R(f) 

f: A-?B 

AxB ----- ------------4--------------4 

1 
1 
I 
1 
1 
I .. 

D(f) = A 

1 
I 
I 
1 
I 

.' 

follows that R(f) c B. Figure A.4 provides a pictorial example of a function, 
including its domain and range. 

Note that the concept of a function is completely general regarding the 
nature of the elements of the sets D(f) = A, R(f), and B. The elements can be 
numbers, or other objects, or the elements can be sets themselves. For our work, 
it will suffice to deal only with real-valued functions, meaning that R(f) is a set 
of real numbers. 

A function f: A ~ B such that R(f) c R is called a real-valued function. 

The function defined in Ex. A.15 is a real-valued function. The following is 
another example. 

Example A.16 Examine the Cobb-Douglas production function f: R;'o ~ R-~.o defined as f = 
{((XI, X2), y): Y = lOxfx2, (XI, X2) E R;'o}· Interpreting lXI, X2) as inputs into a 
production process, and y as the output of the process, we see that the domain 
of the production function is D(f) = R;'o, i.e., any nonnegative level of the input 
pair (XI, X2) is an admissible input level. The associated range of the production 
function is R(f) = R"?o, i.e., any nonnegative level of output, y, is possible. Since 
R(f) = [0, (0) c R, the production function is a real-valued function. 0 

In some cases the relation from A to B that defines the function f: A ~ B 
also defines a function from B to A. This relates to the concept of an inverse 
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Definition A.20 
Inverse function of f 

function. In particular, if for each element y E B there exists precisely one 
element x E A whose image under f is y, then such an inverse function exists. 

Let f: A ~ B be a function from A to B. If R(f) = B and V y E B 3 a unique 
x E A such thaty = fIx), then the relation ((y,x): y = fIx), y E B} is a function 
from B to A called the inverse function of f and denoted by 1-1: B ~ A. 

Note that neither of the functions in Ex. A.IS or Ex. A.16 is such that an 
inverse function exists. In Ex. A.IS, the uniqueness condition of Def. A.20 is 
violated since V y =1= 0 there exist two values of x for which y = x 2 , namely 
x = ±-JY. For example, when y = 4, x = 2 and -2 are each such that y = x 2 • 

The reader can verify that Ex. A.16 also violates the uniqueness condition where 
an infinite number of (Xl, X2) values satisfy y = lOxfx2 for a fixed value of y 
(defining level sets or isoquants of the production function). Also, note that an 
inverse function does not exist for the function illustrated in Figure A.4. 

As an example of a function for which an inverse function does exist, con­
sider the following. 

Example A.17 Let I: R ~ R+ be defined as 

f = {(x, y): y = eX, x E R}, where R+ = (0,00). 

Note that the inverse function can be represented as 

1-1 = {(y,x): x = lny,y E R+}, 

so that 1-1: R+ ~ R. It is clear that V y E R+, 3 one and only one x E R such 
that x = lny. 0 

The final concept concerning functions that we will review here is the 
inverse image of y E R(I) or of H C R(f). The inverse image of y is the set of 
domain elements x E D(I) such that y = f(x), i.e., the collection of all x values 
in the domain of I whose image under the function I is y. The inverse image 
of y can be represented as the set (x: I(x) = y}, and when the inverse function 
exists, the inverse image of y can be represented as the value I-l(y). In Ex. 
A.17, the inverse image of Sis f-l(S) = In(S) = 1.6094; in Ex. A.IS, the inverse 
image of 4 is {-2,2}; and in Ex. A.16, the inverse image of 3 is the isoquant 
{(Xl, X2): 3 = lOxfX2, (Xl, X2) E R;o}. Similarly, the inverse image of H C R(f) is 
the set of x values in the domain of f whose images under I equal some y E H, 
i.e., the inverse image of H is (x: I(x) = y, Y E H}, and if the inverse function 
exists, (x: x = I-l(y), Y E H}. 

Real-Valued Point Versus Set Functions 

Two types of functions-point functions and set functions-are utilized exten­
sively in modern discussions of probability and mathematical statistics. The 
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reader should already have considerable experience with the application of real­
valued point functions, since this type of function is the one that appears in 
elementary algebra and calculus courses and is central to discussions of utility, 
demand, production, and supply that the reader has encountered in his or her 
study of economic theory. Specifically, a real-valued point function is a real­
valued function whose domain consists of a collection of points, where points 
are represented by coordinate vectors in Rn. We have encountered examples of 
this type of function previously in Ex. A.IS through Ex. A.17. A typical ordered 
pair associated with a real-valued point function is of the form (x, y), where x 
is a vector in Rn and y is a real number in R. 

A set function is more general than a point function in that its domain 
consists of a collection of sets rather than a collection of points.4 A typical 
ordered pair belonging to a real-valued set function would have the form (A, yj, 
where A is a set of some type of objects and y is a real number in R. If the 
sets in the domain of the set function are contained in Rn, i.e., they are sets 
of real numbers, then a real-valued set function assigns a real number to each 
set of points in its domain, whereas a real-valued point function assigns a real 
number to each point in its domain. A pictorial illustration of a set function 
contrasted with a point function is given in Figure A.S. 

Examples of set functions are presented below. 

Example A.18 Let Q = {I, 2, 3), and let A be the collection of all of the subsets of Q, i.e., 
A = {A"A2, ... ,As),whereA 1 = {l),A2 = {2),A3 = {3),A4 = {I,2},As = {I,3}, 
A6 = {2,3}, A7 = {I,2,3}, and As = 0. 

(point function) 

(set function) 
Figure A-S 

Point versus set function. 

4Note that, in a sense, a point function can be viewed as a special case of a set function, since points can be interpreted as singleton 
(single-element) sets. The set function concept is introduced to accommodate the case where one or more sets in its domain are 
not singleton. 
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The following is a real-valued set function f: A ~ R: 

f = {(Ai, y): y = I: x, Ai C A}, 
XEA j 

where LXEAi x signifies the sum of the numerical values of all of the elements 
in the set Ai, and LXE0 x is defined to be zero. The range of the set function is 
R(f) = {O, 1,2,3,4,5, 6}, and the domain is the set of sets D(f) = A. The function 
can be represented in tabular form as follows: 

Ai (Ai) 

Al 1 

A2 2 
A3 3 
A4 3 
As 4 
A6 5 
A7 6 
A8 0 D 

Example A.19 Let A = {Ar: Ar = {(x, y): x2 + y2 ~ r2}, r E [0, 1 H, so that A is a set of sets, 
where the typical element Ar represents the set of points in R2 that are on 
the boundary and in the interior of a circle centered at (0,0) with radius r. The 
following is a real-valued set function f: A ~ R: 

Definition A.21 
Size of set function 

f = HAr , y): y = nr2, Ar C A}. 

Note that the set function assigns a real number representing the area to each 
set, A r . The assignment is made for circles having a radius anywhere from ° to 
1. The range of the set function is given by R(I) = [0, nl, and the domain is the 
set of sets D(I) = A. D 

A special type of set function called the size-of-set function will prove to 
be quite useful. 

Let A be any set of objects. The size-of-set function, N, is the set function 
that assigns to the set A the number of elements that are in set A, i.e., 
N(A) = LXEA 1.5 

Applying the size-of-set function in Ex. A.18, note that N(A) = 8. In Ex. 
A. 19, note that N(A) = 00. 

Another special (point) function that will be useful in our study is the in­
dicator function, defined as follows. 

SNote that LXEA 1 signified that a collection of l's are being summed together, the number in the collection being equal to the 
number of elements in the set A. If A = 0, effectively no l's are being added together, and thus N(01 = o. 
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Definition A.22 
Indicator function Let A be any subset of some universal set n. The indicator function, denoted 

by lA, is a real-valued function with domain n and range {O, I} such that 

( { I ifXEA} 
lA x) = ° if x fj. A . 

Note that the indicator function indicates the set A by assigning the number 
I to any x that is an element of A, while assigning zero to any x that is not an 
element of A. The main use of the indicator function is notational efficiency 
in defining functions, as the following example illustrates. 

Example A.20 Let the function f: R ~ R be defined by 

[
0 for x E (-00,0) ] 

f(x) = x forxE(O,2) . 
3 - x for x E (2,3) ° for x E (3,00) 

Utilizing the indicator function, we can alternatively represent fIx) as 

fIx) = xl{o.2j(x) + (3 - x)112.3j(x). o 

As a final note on the use of functions, we (as do the vast majority of other 
authors) will generally use a shorthand method for defining functions by simply 
specifying the relationship between elements in the domain of a function and 
their respective images in the range of the function. For example, we would 
define the function in Ex. A.19 by f (Ar) = rrr2 for Ar C A, or define the function 
in Ex. A.IS by fIx) = x2 for x E R. In all cases, the reader should remember 
that a function is a set of ordered pairs (x,f(x)), or (A,f(A)). The reader will 
sometimes find in the literature phrases like the function f (xl or the set function 
f (A). Literally speaking, such phrases are inconsistent, because f (x) and f (A) are 
not functions but rather images of elements in the domain of the respective 
functions. In fact, the reader should not take such phrases literally, but rather 
interpret these phrases as shorthand for phrases such as the function whose 
values are given by fIx) or the set function whose values are given by f(A). 

A.5 Combinations and Permutations 

In a number of situations involving probability assignments, it will be useful to 
have an efficient method for counting the number of different ways a group of r 
objects can be selected from a group of n distinct objects, n 2: r. Obviously, if two 
groups of r objects do not contain the same r objects, they must be considered 
different. But what if two groups of r objects do contain the same objects, except 
the objects in the group are arranged in different orders? Are the two groups to 
be considered different? If difference in order constitutes difference in groups, 
then we are dealing with the notion of permutations. On the other hand, if the 
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order of listing the objects in a group is not used as a basis for distinguishing 
between groups, then we are dealing with the notion of combinations. 

In order to establish a formula for determining the number of permutations 
of n distinct objects taken r at a time, the following example is suggestive. 

Example A.21 Examine the number of different ways a group of three letters can be selected 
from the letters a, b, c, d, where difference in order of listing is taken to mean 
difference in groups. Note that the first letter can be chosen in four different 
ways. After we have chosen one of the letters for the first selection, the second 
selection can be any of the remaining three letters. Finally, after we have chosen 
two letters in the first two selections, there are then two letters left to be 
potentially chosen for the third selection. Thus, there are 4·3·2 = 24 different 
ways of selecting a group of 3 letters from the letters a, b, c, d if difference in 
the order of listing constitutes difference in groups. (The reader should attempt 
to list the 24 different groups.) 0 

Example A.21 

6By definition, we take 0!=1. 

The logic of the preceding example can be applied to establish a general 
formula for determining the number of permutations of n distinct objects taken 
r at a time: 

nl 
(n)l = (n -·r)! = n(n - IJln - 2)· . . (n - r + 1), 

where! denotes the factorial operation, i.e., 

n! =n(n-IJln-2J1n-3) ... 1.6 

Thus, for example, 4! = 4 . 3 . 2 . 1 = 24. In Ex. A.2I, n = 4 and r = 3, so that 
(413 = 4!/I! = 24. 

In order to establish a formula for determining the number of combinations 
of n distinct objects taken r at a time, we return to Ex. A.2l. 

(continued) 

Examine the number of different ways a group of three letters can be selected 
from the letters a, b, c, d, where difference in order of listing does not imply the 
groups are different. Recall that we discovered that there were 24 permutations 
of the 4 letters a, b, c, d selected 3 at a time. Now note that any 3 letters, say 
a, b, c, can be arranged in (313 = 6 different orders, which represents "overcount­
ing" from the combinations point of view. Reducing the number of permuta­
tions by the degree of "overcounting" results in the number of combinations, 
i.e., there are 24/6 = 4 combinations of the 4 letters taken 3 at a time, namely 
(a, b, c), (a, b, d), la, c, d), and Ib, e, d). 0 

In the preceding example, the number of permutations of n 1= 4) objects 
taken r 1= 3) at a time was reduced by a factor of r! 1= 3!), where the latter value 
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represents the number of possible permutations of r objects. This suggests the 
general formula for the number of combinations of n objects taken r at a time: 

( n) (n)I n! 
r = Xl = (n -r)!r!· 

In Ex. A.21, we have 

G) = 1~~! = 4 

as the appropriate number of combinations. 
The concept of combinations is useful in determining the number of sub­

sets that can be constructed from a finite set A. Note that in counting the 
number of subsets, changes in the order of listing set elements do not produce 
a different set, e.g., the sets {a, b, e} and {e, a, b} are the same set of letters (recall 
the definition of a set). Then the total number of subsets of a set A contain­
ing n elements is given by the number of different subsets defined by taking 
no elements (Le., the null set) plus the number of different subsets defined by 
taking one element, plus the number of different subsets defined by taking two 
elements, ... , and finally, the number of different subsets defined by taking all 
n elements (Le., the set A itself). Thus, the total number of different subsets of 
A can be written as 

n (n) n n! L r = L (n -r)!r!· 
1=0 1=0 

This sum can be greatly simplified by recalling that 

(x + yIn = ta (~)X1yn-1, n = 1,2, ... , 

which is the binomial theorem. Then letting x = y = 1, we have that 

so that 2n is the number of different subsets contained in a set A that has n 
elements. 

Example A.22 In Ex. A.18, recall that we identified a total of eight subsets of the set Q = 
{I, 2, 3}. This is the number of subsets we would expect from our discussion 
above, i.e., since n = 3, there are 23 = 8 subsets of Q. 0 

It should be noted that (~) is defined to be 0 whenever n < r, or whenever n 
and/or r < 0 or are not integer valued. The rationale for G) = 0 in each of these 
cases is that there is no way to define subsets of size r from a collection of n 
objects for the designated values of nand r. 

When n is large, the calculation of n! needed in the previous formulas per­
taining to numbers of permutations or combinations can be quite formidable. 
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A result known as Stirling's formula can provide a useful approximation to n! 
for large n: 

Definition A.23 I 
Stirling's formula7 n! ~ !2rrjI/2nn+.Se-n for large n.8 

A logical question to ask regarding the use of Stirling's formula is how large is 
"large nil? Stirling's formula invariably underestimates n!, but the percentage 
error::: I % for n ::: 10, and it monotonically decreases as n ~ 00. 

A.6 Summation, Integration and Matrix Differentiation Notation 

We will use a number of variations on summation and integration notation 
in this text. The meaning of the various types of notation are presented in 
Table A.I. 

We illustrate the use of some of the notation in the following example. 

Example A.23 Summation Notation 

Let Al = {l, 2, 3}, A2 = {2, 4, 6}, A = Al X A2, B = IIXI,X2): Xl E AI, X2 E 
{XI,XI + 1, ... ,3xd}' Y = !YI,Y2, ... , Yn), and f!XI,X2) = Xl + 2x~. Then 

LX = I + 2 + 3 = 6, L X2 = 22 + 42 + 62 = 56, 
xeAI xeA2 

3 

L Yi = Y2 + Y4 + Y6, 
ieA 2 

L Yi = LYi = YI + Y2 + Y3, 
ieAI i=I 

LLf!XI,X2)= L L flXI,X2) =354, 
(xl,x2IeA XI eAI x2eA2 

3 3xI 

LLf!XI,X2) = L L !XI +2x~) = 802. 
(xl,x2IeB xl=I X2=XI 

Example A.24 Integration Notation 

o 

Let Al = [0,31, A2 = [2,4], A = Al X A2, B = IIXI, X2): Xl E AI, 0 < X2 < xr}, and 
f!XI,X2) = xlxi. Then 

1 103 2x2 
2xdx = 2xdx = ""2 15= 9, 

xeAI 0 

7See W. Feller (1968), An Introduction to the Theory of Probability and Its Applications, 3rd cd. pp. 52-54. 

8Note that ~ means "approximately equal to." 
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Table A.l Summation and Integration Notation 

LiE/Xi 

LXEA X 

L~=.,X 

Notation 

L ... L(x' ..... xn)EA ((Xl, .•. , Xn) 

L~; =a, ... L~:=an ((Xl, ... , Xn) 

t ((x)dx 

fXEA ((x)dx 

Definition 

Sum the values of Xe, Xl+l, ... , Xn, i.e., 
Xe + Xe+l + ... + Xn • 

Sum the values of the x/s, for i E I. 
Sum the values of X E A. 

Sum the values of X in the sequence of integers 
from a to b, i.e., a + (a + 1) + (a + 2) + ... + b. 
Sum the values of the x;/s for i = i, i + 1, ... , n 
and j = k, k + 1, ... , m. 
Sum the values of the x;/s for i Eland j E j, or for 
(i,)) E A. 

Sum the values of ((Xl, ... , xn) for Xi E Ai, i = 1, 
... , n. 
Sum the values of ((Xl, ... , xn) for (Xl, ... , Xn) E A. 

Sum the values of ((XI,''''Xn ) for Xi in the 
sequence of integers ai to bi, i = 1, ... , n. 
Integral of the function ((x) from a to b (a can be 
-00 and/or b can be (0). 

Integral of the function ((x) over the set of points 
A. 
Iterated integral of the function ((Xl, ... , Xn) over 
the points Xi E Ai, i = 1, ... , n. 
Multiple integral of the function ((Xl, ... , Xn) over 
the poi nts (Xl, ... , Xn) E A. 

Iterated integral of the function ((Xl, ... , xn) for 
Xi in the (open, half open-half closed, or closed) 
interval ai to bi , for i = 1, ... , n. 



Key Words, Phrases, and Symbols 

ff f(Xl,X2)dxl dX2 = fo3 fox; f(Xl,X2)dx2dxl 

IXI,X2IeB 

_ XlX2 IXI d _ Xl d 13 3 2 13 7 
- 0 Xl - Xl 

o 3 0 3 

8 
Xl 3 

= 24 10= 273.375. 
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o 

Regarding matrix differentiation notation, we utilize the following conven­
tions. Let g(x) and y(x) be a scalar and n x 1 vector function of the k x 1 vector 
x, respectively. Then 

Derivative Matrix Dimension (i, j)th Entry 

ag(x) k xl 
ag 

ax aXj 
ag(x) ag(x)' 

1 x k ag 

ax' ax aXj 

ag(x) 
kxk a2g 

ax ax' aXjaXj 

ay(x) kxn aYj 

ax aXj 
ay(x) ay(x)' 

nxk ayj --=--
ax' ax aXj 

Key Words, Phrases, and Symbols 

definition 
axiom (or postulate) 
theorem (or proposition) 
corollary 
lemma 
set 
element 
E 

negation, / 
exhaustive listing 
verbal rule 
mathematical rule 
finite set 
iff (if and only if) 
infinite set 
countable set 
uncountable set 

subset 
equality of sets, = 
universal set 
empty or null set, 0 
set difference, -
complement, .it 
union, U 

intersection, n 
mutually exclusive (disjoint) 
Venn diagram 
idem potency laws 
commutative laws 
associative laws 
distributive laws 
identity elements 
intersection and union of 

complements 

complements of complements 
intersection with null set 
null set as a subset 
DeMorgan's laws 
index set 
multiple union notation 
multiple intersection notation 
real line 
interval set notation 
closed, open, half-open-half-closed 

intervals 
Cartesian product 
binary relation from A to B, 

s: A~B 
xSy 
'If (for every) 
3 (there exists) 
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function from A to B, f: A -+ B 
real-valued function 

point function 
set function 

A2 =A xA 
R>o, R+ 
image of x under f 

size-of-set function 
indicator function, IA(x) 
"the function I(x)" 

permutations, (n)r 
combinations, e) 
binomial theorem 
Stirling's formula 
summation notation 
integration notation inverse function, I-I : B -+ A 

inverse image 
"the set function f(A)" 

Problems 

1. Using either an exhaustive listing, verbal rule, or 
mathematical rule, define the following sets: 

a. the set of all senior citizens receiving social security 
payments in the United States; 

b. the set of all positive numbers that are positive in­
teger powers of the number 10 (Le., 101, 102, etc.); 

c. the set of all possible outcomes resulting from 
rolling a red and a green die and calculating the val­
ues of y - x, where y = number of dots on the red 
die and x = number of dots on the green diej 

d. the set of all two-tuples (XI, X2) where XI is any real 
number and X2 is related to XI by raising the number 
e to the power XI. 

2. Label the sets you have identified in Problem 1. as 
being either finite, countably infinite, or uncountably 
infinite, and explain your choice. 

3. For each set below, state whether the set is finite, 
countably infinite, or uncountably infinite. 

a. S = {x: X is a U.S. citizen who has purchased a 
Japanese car during the past year}. 

b. S = {(x, y): y :::: x 2 , X is a positive integer, y E R~o}. 

c. S = {p: p is the price of a quart of milk sold at a re­
tail store in the United States on Friday, September 
13,I99I}. 

d. S = {x: x = 2y, y is a positive integer}. 

4. Let the universal set be Q = [0,10], and define the 
following subsets of Q: 

A = [0,2), B = [2,7], G = [5,6], D = {2}, 

E = {x: x = y-I, Y is an even positive integer ~ 4}. 

a. Define the following sets: 

AUB, AnB, AUG, (AuD)nB, 

B-G, AnE, bnB. 

b. For each of the sets in (a), indicate whether the set is 
finite, countably infinite, or uncountably infinite. 

5. Let the universal set be defined by Q = [-5,5], and 
define the following subsets of Q: 

AI = [-2, 1), 

A2 = (1,2), 

A3 = [2,5], 

A4 = [-5, -2). 

Also, define an index set I = {I, 3, 4}. 

a. Define UjelAj. 

b. Define uf=IAj. 

c. Define Al n A 2 • 

d. Define A4 - AI. 

e. Define A4 • 

6. Define the universal set, Q, as 

Q = {x: 0 :::: x :::: 5 or 10 :::: x :::: 20}, 

and define the following subsets of Q as 

Al = {x: 0:::: x < 2.5}, 

A2 = Ix: IS < x :::: 20}, 

A3 = {x: 2.5 :::: x :::: 5 or 10 :::: x :::: 20}, 

A4 = {x: 0 :::: x :::: 5 or 10 :::: x :::: IS}. 

In addition, define the following two index sets as 

It=(l,3}, 12= {l,4}. 

Define the following sets: 

a. UjeJ,Aj 

b. nf=IAj 
c. njehAj 

d. n~=IAj 



e. Al -A2 

f. A4 -A3 
g . ..43 
h. A2 - Uie/lAi 

Problems 

7. In each situation below indicate whether the rela­
tion is a function. If so, determine the domain and range 
of the function. 

a. A = [a, 101, B = [O,ln(11ll, S = {(x, y): y = In(l +x), 
(x,y) E A x BI. 

c. A = R;o, B = [a, (0), S = (((XI, X2), y): Y = 
5XIXi, ((XI, X2), y) E A x BI. 

8. For each relation below, state whether the relation 
is a function, and state whether an inverse function ex­
ists. Explicitly define the inverse function if it exists. 

a. Let P = ($.01, $.02, ... , $l.OO, $l.Ol, ... ) represent a 
set of possible prices for a given commodity, and 
let 0 = [a, (0) represent possible levels of quantity 
demanded. Define S: P ~ 0 as 

S = ((p, q): q = 20p-1S, (p, q) E P x 0). 

h. Let A = (V: D = {(XI,X2): XI E [al,bd,x2 E 

[a2' b2ll, al < bl, a2 < b2) be a set of rectangular 
sets. Define S: A ~ R as 

S={(D,y): y= areaofD,(D,Y)EAxR+). 

9. Let A = (a, (0), and examine the following relation 
onA: 

S = {(x, y): y = 2 + 3x, (x, Y) E A 2 )). 

a. Is 2S8? 
b. Is S a function? 

c. Does an inverse function exist? 

d. If you can, define f(2) and f- I (5). 

e. What is D(f)? What is R(f)? 

10. Define a universal set as 

Q = (x: a 5 x 5 5), 

and consider the set function 

PIA) =.51 xdx + 12.5, 
xeA 

where the domain of the set function is all subsets A c 
Q of the form A = [a, bl, for a 5 a 5 b 5 5. 
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a. What is the image of the set A = [0,21 under P? 

b. What is the image of Q under P? 

c. What is the image of the set A = [3,31 under P? 

d. What is the range of the set function? 

e. What is the invcrse image of 2? 

11. Define a set function that will assign the appropri­
ate area to all rectangles of the form [XI, xII X [YI, Y21, 
X2 ::: XI and Y2 ::: YI, contained in R~. Be sure to identify 
the domain and range of the set function. 

12. A statistics class has 20 students in attendance in 
a room where 25 desks arc availahle for the students. 
How many different ways can the students leave 5 desks 
unoccupied? 

13. There arc 15 students in an econometrics class that 
you are attending. 

a. How many different ways can a three-person com­
mittee be formed to give a class report? 

b. Of the numher of possible three-person committees 
indicated in (a), how many involve you? 

14. Competing for the title of Miss America are 50 
contestants from each of the 50 states plus 1 contes­
tant from the District of Columbia. How many different 
ways can the contestants be assigned the titles of Miss 
America, 1st runner up, ... , 4th runner up? 

15. Let AI = (x: x is a positive integer), A2 = 
(1,2,3,4,5), B = {(XI, X2): (XI, X2) E Al x A 2, XI 5 X2), 
and Yi = P. Calculate the values of the following sums. 

a. LXeA! X 

b. LieA2 Yi 

C. LXleAI LX2eA2(1/2)X'xi 

d. LxeAI_Al(1/3)X 

e. L L!XI,x2JeB(XI + X2) 

16. Let Al [a, (0), A2 [1,101, and B 
{(XI, X2): (XI, X2) E Al XA2' X2 > xil. Calculate the values 
of the following integrals. 

a. IxeA I (1/2 )e-x/2 dx 

b. j'l EA I IX2 EA2 X2 e- xl dX2 dXI 

C. II!x"xlJE8(xl + x2)dxI dX2 

d. 102 j'leA 1nA 2 xlxi dX2 dXI 



Useful Tables 

B.l Cumulative Normal Distribution 
B.2 Student's t Distribution 
B.3 Chi-square Distribution 
B.4 F-Distribution: 5% Points 
B.5 F-Distribution: 1 % Points 
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Table 8.1 Cumulative Normal Distribution F(x) = J~oo Jrre- t2/ 2dt 

x .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753 

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 

.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852 

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133 

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706 
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 
2.1 .9821 .9826 .9830 .9830 .9834 .9838 .9846 .9850 .9854 .9857 
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964 
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 
2.8 .9974 .9975 .9976 .9977 .9978 .9979 .9979 .9979 .9980 .9981 
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986 

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 
3.1 .9990 .9991 .9991. .9991 .9992 .9992 .9992 .9992 .9993 .9993 
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995 
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997 
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998 

(Source: Reprinted, by permission of the publisher, from A. M. Mood, F. A. Graybill, and D. C. 
Boes, Introduction to the Theory of Statistics, 3d ed., New York: McGraw-Hili, 1974, p. 552.) 
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Table B.2 Student's t Distribution 
The first column lists the number of degrees of 
freedom (v). The headings of the other columns 
give probabilities (p) for t to exceed the entry 
value. Use symmetry for negative t values. 

~ .10 .05 .025 

1 3.078 6.314 12.706 
2 1.886 2.920 4.303 
3 1.638 2.353 3.182 
4 1.533 2.132 2.776 
5 1.476 2.015 2.571 

6 1.440 1.943 2.447 
7 1.415 1.895 2.365 
8 1.397 1.860 2.306 
9 1.383 1.833 2.262 

10 1.372 1.812 2.228 

11 1.363 1.796 2.201 
12 1.356 1.782 2.179 
13 1.350 1.771 2.160 
14 1.345 1.761 2.145 
15 1.341 1.753 2.131 

16 1.337 1.746 2.120 
17 1.333 1.740 2.110 
18 1.330 1.734 2.101 
19 1.328 1.729 2.093 
20 1.325 1.725 2.086 

21 1.323 1.721 2.080 
22 1.321 1.717 2.074 
23 1.319 1.714 2.069 
24 1.318 1.711 2.064 
25 1.316 1.708 2.060 

26 1.315 1.706 2.056 
27 1.314 1.703 2.052 
28 1.313 1.701 2.048 
29 1.311 1.699 2.045 
30 1.310 1.697 2.042 

40 1.303 1.684 2.021 
60 1.296 1.671 2.000 

120 1.289 1.658 1.980 
00 1.282 1.645 1.960 

n 
o 

.01 .005 

31.821 63.657 
6.965 9.925 
4.541 5.841 
3.747 4.604 
3.365 4.032 

3.143 3.707 
2.998 3.499 
2.896 3.355 
2.821 3.250 
2.764 3.169 

2.718 3.106 
2.681 3.055 
2.650 3.012 
2.624 2.977 
2.602 2.947 

2.583 2.921 
2.567 2.898 
2.552 2.878 
2.539 2.861 
2.528 2.845 

2.518 2.831 
2.508 2.819 
2.500 2.807 
2.492 2.797 
2.485 2.787 

2.479 2.779 
2.473 2.771 
2.467 2.763 
2.462 2.756 
2.457 2.750 

2.423 2.704 
2.390 2.660 
2.358 2.617 
2.326 2.576 

(Source: Reprinted, by permission of the publisher, from P. G. Hoel, Introduction to 
Mathematical Statistics, 4th ed., New York: John Wiley and Sons, Inc., 1971, p. 393.) 
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Table B.3 Chi-square Distribution 
The first column lists the number of degrees of freedom (v). The headings of the other columns give 
probabilities (P) for the x~ random variable to exceed the entry value. 

IX 0.995 0.990 0.975 0.950 0.900 0.750 

1 392704 x 10-10 157088 x 10-9 982069 x 10-9 393214 X 10-8 0.0157908 0.1015308 
2 0.0100251 0.0201007 0.0506356 0.102587 0.210720 0.575364 
3 0.0717212 0.114832 0.215795 0.351846 0.584375 1.212534 
4 0.206990 0.297110 0.484419 0.710721 1.063623 1.92255 

5 0.411740 0.554300 0.831211 1.145476 1.61031 2.67460 
6 0.675727 0.872085 1.237347 1.63539 2.20413 3.45460 
7 0.989265 1.239043 1.68987 2.16735 2.83311 4.25485 
8 1.344419 1.646482 2.17973 2.73264 3.48954 5.07064 
9 1.734926 2.087912 2.70039 3.32511 1.16816 5.89883 

10 2.15585 2.55821 3.24697 3.94030 4.86518 6.73720 
11 2.60321 3.15347 3.81575 4.57481 5.57779 7.58412 
12 3.07382 3.57056 4.40379 5.22603 6.30380 8.43842 
13 3.56503 4.10691 5.00874 5.89186 7.04150 9.29906 
14 4.07468 4.66043 5.62872 6.57063 7.78953 10.1653 

15 4.60094 5.22935 6.26214 7.26094 8.54675 11.0365 
16 5.14224 5.81221 6.90766 7.96164 9.31223 11.9122 
17 5.69724 6.40776 7.56418 8.67176 10.0852 12.7919 
18 6.26481 7.01491 8.23075 9.39046 10.8649 13.6753 
19 6.84398 7.63273 8.90655 10.1170 11.6509 14.5620 

20 7.43386 8.26040 9.59083 10.8508 12.4426 15.4518 
21 8.03366 8.89720 10.28293 11.5613 13.2396 16.3444 
22 8.64272 9.54279 10.3923 12.3380 14.0415 17.2396 
23 9.26042 10.19567 11.6885 13.0905 14.8479 18.1373 
24 9.88623 10.8564 12.4011 13.8484 15.6587 19.0372 

25 10.5197 11.5240 13.1197 14.6114 16.4734 19.9393 
26 11.1603 12.1981 13.8439 15.3791 17.2919 20.8434 
27 11.8076 12.8786 14.5733 16.1513 18.1138 21.7494 
28 12.4613 13.5648 15.3079 16.9279 18.9392 22.6572 
29 13.1211 14.2565 16.0471 17.7083 19.7677 23.5666 

30 13.7867 14.9535 16.7908 18.4926 20.5992 24.4776 
40 20.7065 22.1643 24.4331 26.5093 29.0505 33.6603 
50 27.9907 29.7067 32.3574 34.7642 37.6886 42.9421 
60 35.5346 37.4848 40.4817 43.1879 46.4589 52.2938 

70 43.2752 45.4418 48.7576 51.7393 55.3290 61.6983 
80 51.1720 53.5400 57.1532 60.3915 64.2778 71.1445 
90 59.1963 61.7541 65.6466 69.1260 73.2912 80.6247 

100 67.3276 70.0648 74.2219 77.9295 82.3581 90.1332 
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Table 8.3 (continued) 

X 0.500 0.250 0.100 0.050 0.025 0.010 0.005 

1 0.454937 1.32330 2.70554 3.84146 5.02389 6.63490 7.87944 
2 1.38629 2.77259 4.60517 5.99147 7.37776 9.21034 10.5966 
3 2.36597 1.10835 6.25139 7.81473 9.34840 11.3449 12.8381 
4 3.35670 5.38527 7.77944 9.48773 11.1433 13.2767 14.8602 

5 4.35146 6.62568 9.23635 11.0705 12.8325 15.0863 16.7496 
6 5.34812 7.84080 10.6446 12.5916 14.4494 16.8119 18.5476 
7 6.34581 9.03715 12.0170 14.0671 16.0128 18.4753 20.2777 
8 7.34412 10.2188 13.3616 15.5073 17.5346 20.0902 21.9550 
9 8.34283 11.3887 14.6837 16.9190 19.0228 21.6660 23.5893 

10 9.34182 12.5489 15.9871 18.3070 20.4831 23.2093 25.1882 
11 10.3410 13.7007 17.2750 19.6751 21.9200 24.7250 26.7569 
12 11.3403 14.8454 18.5494 21.0261 23.3367 26.2170 28.2995 
13 12.3398 15.9839 19.8119 22.3621 24.7356 27.6883 29.8194 
14 13.3393 17.1170 21.0642 23.6848 26.1190 29.1413 31.3193 

15 14.3389 18.2451 22.3072 24.9958 27.4884 30.5779 32.8013 
16 15.3385 19.3688 23.5418 26.2962 28.8454 31.9999 34.2672 
17 16.3381 20.4887 24.4690 27.5871 30.1910 33.4087 35.7185 
18 17.3379 21.6049 25.9894 28.8693 31.5264 34.8053 37.1564 
19 18.3376 22.7178 27.2036 30.1435 32.8523 36.1908 38.5822 

20 19.3374 23.8277 28.4120 31.4104 34.1696 37.5662 39.9968 
21 20.3372 24.9348 29.6151 32.6705 35.4789 38.9321 41.4010 
22 21.3370 26.0393 30.8133 33.9244 36.7807 40.2894 42.7956 
23 22.3369 27.1413 32.0069 35.1725 38.0757 41.6384 44.1813 
24 23.3367 28.2412 33.1963 36.4151 39.3641 42.9798 45.5585 

25 24.3366 29.3389 34.3816 37.6525 40.6465 44.3141 46.9278 
26 25.3364 30.4345 35.5631 38.8852 41.9232 45.6417 48.2899 
27 26.3363 31.5284 36.7412 40.1133 43.1944 46.9630 49.6449 
28 27.3363 32.6205 37.9159 41.3372 44.4607 48.2782 50.9933 
29 28.3362 33.7109 39.0875 42.5569 45.7222 49.5879 52.3356 

30 29.3360 34.7998 40.2560 43.7729 46.9792 50.8922 53.6720 
40 39.3354 45.6160 51.8050 55.7585 59.3417 63.6907 66.7659 
50 49.3349 56.3336 63.1671 67.5048 71.4202 76.1539 79.4900 
60 59.3347 66.9814 74.3970 79.0819 83.2976 88.3794 91.9517 

70 69.3344 77.5766 85.5271 90.5312 95.0231 100.425 104.215 
80 79.3343 88.1303 96.5782 101.879 106.629 112.329 116.321 
90 89.3342 98.6499 107.565 113.145 118.136 124.116 128.299 

100 99.3341 109.141 118.498 124.342 129.561 135.807 140.169 

(Source: Reprinted, by permission of the Biometrika Trustees from C. M. Thompson, "Tables of Percentage 
Points of the X2 Distribution," Biometrika 32 (1941): 188-189.) 
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Table B.4 F-Distribution: 5% Points 
The first column lists the number of denominator degrees of freedom (V2)' The headings of the 
other columns list the numerator degrees of freedom (Vl). The table entry is the value of c for 
which P(FV"V2 :::: c) = .05. 

i~ 1 2 3 4 5 6 7 8 9 
V2 

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 
2 18.513 19.000 19.164 19.247 19.296 19.330 19.353 19.371 19.385 
3 10.128 9.5521 9.2766 9.1172 9.0135 8.9406 8.8868 8.8452 8.8123 
4 7.7086 6.9443 6.5914 6.3883 6.3560 6.1631 6.0942 6.0410 5.9988 

5 6.6079 5.7861 5.4095 5.1922 5.0503 4.9503 4.8759 4.8183 4.7725 
6 5.9874 5.1433 4.7571 4.5337 1.3874 4.2839 4.2066 4.1468 4.0990 
7 5.5914 4.7374 4.3468 4.1203 3.9715 3.8660 3.7870 3.7257 3.6767 
8 5.3177 4.4590 4.0662 3.8378 3.6875 3.5806 3.5005 3.4381 3.3881 
9 5.1174 4.2565 3.8626 3.6331 3.4817 3.3738 3.2927 3.2296 3.1789 

10 4.9646 4.1028 3.7083 3.4780 3.3258 3.2172 3.1355 3.0717 3.0204 
11 4.8443 3.9823 3.5874 3.3567 3.2039 3.0946 3.0123 2.9480 2.8962 
12 4.7472 3.8856 3.4903 3.2592 3.1059 2.9961 3.9134 2.8486 2.7964 
13 4.6672 3.8056 3.4105 3.1791 3.0254 2.9153 2.8321 2.7669 2.7144 
14 4.6001 3.7389 3.3439 3.1122 2.9582 2.8477 2.7642 2.6987 2.6458 

15 4.5431 3.6823 3.2874 3.0556 2.9013 2.7905 2.7066 2.6408 2.5876 
16 4.4940 3.6337 3.2389 3.0069 2.8524 2.7413 2.6572 2.5911 2.5377 
17 4.4513 3.5915 3.1968 2.9647 2.8100 2.6987 2.6143 2.5480 2.4943 
18 4.4139 3.5546 3.1599 2.9277 2.7729 2.6613 2.5767 2.5102 2.4563 
19 4.3808 3.5219 3.1274 2.8951 2.7401 2.6283 2.5435 2.4768 2.4227 

20 4.3513 3.4928 3.0984 2.8661 2.7109 2.5990 2.5140 2.4471 2.3928 
21 4.3248 3.4668 3.0725 2.8401 2.6848 2.5727 2.4876 2.4205 2.3661 
22 4.3009 3.4434 3.0491 2.8167 2.6613 2.5491 2.4638 2.3965 2.3419 
23 4.2793 3.4221 3.0280 2.7955 2.6400 2.5277 2.4422 2.3748 2.3201 
24 4.2597 3.4028 3.0088 3.7763 2.6207 2.5082 2.4226 2.3551 2.3002 

25 4.2417 3.3852 2.9912 2.7587 2.6030 2.4904 2.4047 2.3371 2.2821 
26 4.2252 3.3690 2.9751 2.7426 2.5868 2.4741 2.3883 2.3205 2.2655 
27 4.2100 3.3541 2.9604 2.7278 2.5719 2.4591 2.3732 2.3053 2.2501 
28 4.1960 3.3404 2.9467 2.7141 2.5581 2.4453 2.3593 2.2913 2.2360 
29 4.1830 3.3277 2.9340 2.7014 2.5454 2.4324 2.3463 2.2782 2.2229 

30 4.1709 3.3158 2.9223 2.6896 2.5336 2.4205 2.3343 2.2662 2.2107 
40 4.0848 3.2317 2.8387 2.6060 2.4495 2.3359 2.2490 2.1802 2.1240 
60 4.0012 3.1504 2.7581 2.5252 2.3683 2.2540 2.1665 2.0970 2.0401 

120 3.9201 3.0718 2.6802 2.4472 2.2900 2.1750 2.0867 2.0164 1.9588 
00 3.8415 2.9957 2.6049 2.3719 2.2141 2.0986 2.0096 1.9354 1.8799 
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Table B.4 F-Distribution: 5% Points (continued) 

~ 10 12 15 20 24 30 40 60 120 00 
V2 

1 241.88 243.91 245.95 248.01 249.05 250.09 251.14 252.20 253.25 254.32 
2 19.396 19.413 19.429 19.446 19.454 19.462 19.471 19.479 19.487 19.496 
3 8.7855 8.7446 8.7029 8.6602 8.6385 8.6166 8.5944 8.5720 8.5494 8.5265 
4 5.9644 5.9117 5.8578 5.8025 5.7744 5.7459 5.7170 5.6878 5.6581 5.6281 

5 4.7351 4.6777 4.6188 4.5581 4.5272 4.4957 4.4638 4.4314 4.3984 4.3650 
6 4.0600 3.9999 3.9381 3.8742 3.8415 3.8082 3.7743 3.7398 3.7047 3.6688 
7 3.6365 3.5747 3.5108 3.4445 3.4105 3.3758 3.3404 3.3043 3.2674 3.2298 
8 3.3472 3.2840 3.2184 3.1503 3.1152 3.0794 3.0428 3.0053 2.9669 2.9276 
9 3.1373 3.0729 3.0061 2.9365 2.9005 2.8637 2.8259 2.7872 2.7475 2.7067 

10 2.9782 2.9130 2.8450 2.7740 2.7372 2.6996 2.6609 2.6211 2.5801 2.5379 
11 2.8536 2.7876 2.7186 2.6464 2.6090 2.5705 2.5309 2.4901 2.4480 2.4045 
12 2.7534 2.6866 2.6169 2.5436 2.5055 2.4663 2.4259 2.3842 2.3410 2.2962 
13 2.6710 2.6037 2.5331 2.4589 2.4202 2.3803 2.3392 2.2966 2.2524 2.2064 
14 2.6021 2.5342 2.4630 2.3879 2.3487 2.3082 2.2664 2.2230 2.1778 2.1307 

15 2.5437 2.4753 2.4035 2.3275 2.2878 2.2468 2.2043 2.1601 2.1141 2.0658 
16 2.4935 2.4247 2.3522 2.2756 2.2354 2.1938 2.1507 2.1058 2.0589 2.0096 
17 2.4499 2.3807 2.3077 2.2304 2.1898 2.1477 2.1040 2.0584 2.0107 1.9604 
18 2.4117 2.3421 2.2686 2.1906 2.1497 2.1071 2.0629 2.0166 1.9681 1.9168 
19 2.3779 2.3080 2.2341 2.1555 2.1141 2.0712 2.0264 1.9796 1.9302 1.8780 

20 2.3479 2.2776 2.2033 2.1242 2.0825 2.0391 1.9938 1.9464 1.8963 1.8432 
21 2.3210 2.2504 2.1757 2.0960 2.0540 2.0102 1.9645 1.9165 1.8657 1 .811 7 
22 2.2967 2.2258 2.1508 2.0707 2.0283 1.9842 1.9380 1.8895 1.8380 1.7831 
23 2.2747 2.2036 2.1282 1.0476 2.0050 1.9605 1.9139 1.8649 1.8128 1.7570 
24 2.2547 2.1834 2.1077 2.0267 1.9838 1.9390 1.8920 1.8424 1.7897 1.7331 

25 2.2365 2.1649 2.0889 2.0075 1.9643 1.9192 1.8718 1.8217 1.7684 1.7110 
26 2.2197 2.1479 2.0716 1.9898 1.9464 1.9010 1.8533 1.8027 1.7488 1.6906 
27 2.2043 2.1323 2.0558 1.9736 1.9299 1.8842 1.8361 1.7851 1.7307 1.6717 
28 2.1900 2.1179 2.0411 1.9586 1.9147 1.8687 1.8203 1.7689 1.7138 1.6541 
29 2.1768 2.1045 2.0245 1.9446 1.9005 1.8543 1.8055 1.7537 1.6981 1.6377 

30 2.1646 2.0921 2.0148 1.9317 1.8874 1.8409 1.7918 1.7396 1.6835 1.6223 
40 2.0772 2.0035 1.9245 1.8389 1.7929 1.7444 1.6928 1.6373 1.5766 1.5089 
60 1.9926 1.9174 1.8364 1.7480 1.7001 1.6491 1.5943 1.5343 1.4673 1.3893 

120 1.9105 1.8337 1.7505 1.6587 1.6084 1.5543 1.4952 1.4290 1.3519 1.2539 
00 1.8307 1.7522 1.6664 1.5705 1.5173 1.4591 1.3940 1.3180 1.2214 1.0000 

(Source: Reprinted, by permission of the Biometrika Trustees from M. Merrington and C. M. Thompson, "Tables of Per­
centage Points of the Inverted Beta(F) Distribution," Biometrika 33 (1943): 80-81.) 
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Table 8.5 F-Distribution: 1 % Points 
The first column lists the number of denominator degrees of freedom (V2). The headings of the 
other columns list the numerator degrees of freedom (v,). The table entry is the value of c for 
which P(FV1 • V2 :::: c) = .01. 

~ 1 2 3 4 5 6 7 8 9 
V2 

1 4052.2 4999.5 5403.3 5624.6 5763.7 5859.0 5928.3 5981.6 6022.5 
2 98.503 99.000 99.166 99.249 99.299 99.332 99.356 99.374 99.388 
3 34.116 30.817 29.457 28.710 28.237 27.911 27.672 27.489 27.345 
4 21.198 18.000 16.694 15.977 15.522 15.207 14.976 14.799 14.659 

5 16.258 13.274 12.060 11.392 10.967 10.672 10.456 10.289 10.158 
6 13.745 10.925 9.7795 9.1483 8.7459 8.4661 8.2600 8.1016 7.9761 
7 12.246 9.5466 8.4513 7.8467 7.4604 7.1914 6.9928 6.8401 6.7188 
8 11.259 8.6491 7.5910 7.0060 6.6318 6.3707 6.1776 6.0289 5.9106 
9 10.561 8.0215 6.9919 6.4221 6.0569 5.8018 5.6129 5.4671 5.3511 

10 10.044 7.5594 6.5523 5.9943 5.6363 5.3858 5.2001 5.0567 .4.9424 
11 9.6460 7.2057 6.2167 5.6683 5.3160 5.0692 4.8861 4.7445 4.6315 
12 9.3302 6.9266 5.9526 5.4119 5.0643 4.8206 4.6395 4.4994 4.3875 
13 9.0738 6.7010 5.7394 5.2053 4.8616 4.6204 4.4410 4.3021 4.1911 
14 8.8616 6.5149 5.5639 5.0354 4.6950 4.4558 4.2779 4.1399 4.0297 

15 8.6831 6.3589 5.4170 4.8932 4.5556 4.3183 4.1415 4.0045 3.8948 
16 8.5310 6.2262 5.2922 4.7726 4.4374 4.2016 4.0259 3.8896 3.7804 
17 8.3997 6.1121 5.1850 4.6690 4.3359 4.1015 3.9267 3.7910 3.6822 
18 8.2854 6.0129 5.0919 4.5790 4.2479 4.0146 3.8406 3.7054 3.5971 
19 8.1850 5.9259 5.0103 4.5003 4.1708 3.9386 3.7653 3.6305 3.5225 

20 8.0906 5.8489 4.9382 4.4307 4.1027 3.8714 3.6987 3.5644 3.4567 
21 8.0166 5.7804 4.8740 4.3688 4.0421 3.8117 3.6396 3.5056 3.3981 
22 7.9454 5.7190 4.8166 4.3134 3.9880 3.7583 3.5867 3.4530 3.3458 
23 7.8811 5.6637 4.7649 4.2635 3.9392 3.7102 3.5390 3.4057 3.2986 
24 7.8229 5.6131 4.7181 4.2184 3.8951 3.6667 3.4959 3.3629 3.2560 

25 7.7689 5.5680 4.6755 4.1774 3.8550 3.6272 3.4568 3.3239 3.2172 
26 7.7213 5.5263 4.6366 4.1400 3.8183 3.5911 3.4210 3.2884 3.1818 
27 7.6767 5.4881 4.6009 4.1056 3.7848 3.5580 3.3882 3.2558 3.1494 
28 7.6356 5.4529 4.5681 4.0740 3.7539 3.5276 3.3581 3.2259 3.1195 
29 7.5976 5.4205 4.5378 4.0449 3.7254 3.4995 3.3302 3.1982 3.0920 

30 7.5625 5.3904 4.5097 4.0179 3.6990 3.4735 3.3045 3.1726 3.0665 
40 7.3141 5.1785 4.3126 3.8283 3.5138 3.2910 3.1238 2.9930 2.8876 
60 7.0771 4.9774 4.1259 3.6491 3.3389 3.1187 2.9530 2.8233 2.7185 

120 6.8510 4.7865 3.9493 3.4796 3.1735 2.9559 2.7918 2.6629 2.5586 
00 6.6349 4.6052 3.7816 3.3192 3.0173 2.8020 2.6393 2.5113 2.4073 



Appendix B Useful Tables 713 

Table B.5 F-Distribution: 1% Points (continued) 

~ 10 12 15 20 24 30 40 60 120 00 
V2 

1 6055.8 6106.3 6157.3 6208.7 6234.6 6260.7 6286.8 6313.0 6339.4 6366.0 
2 99.399 99.416 99.449 99.458 99.458 99.466 99.474 99.483 99.491 99.501 
3 27.229 27.052 26.872 26.690 26.598 26.505 26.411 26.316 26.221 26.125 
4 14.546 14.374 14.198 14.020 13.929 13.838 13.745 13.652 13.558 13.463 

5 10.051 9.8883 9.7222 9.5527 9.4665 9.3793 9.2912 9.2020 9.1118 9.0204 
6 7.8741 7.7183 7.5590 7.3958 7.3127 7.2285 7.1432 7.0568 6.9690 6.8801 
7 6.6201 6.4691 6.3143 6.1554 6.0743 5.9921 5.9084 5.8236 5.7372 5.6495 
8 5.8143 5.6668 5.5151 5.3591 5.2793 5.1981 5.1156 5.0316 4.9460 4.8588 
9 5.2565 5.1114 4.9621 4.8080 4.7290 4.6486 4.5667 4.4831 4.3978 4.3105 

10 4.8492 4.7059 4.5582 4.4054 4.3269 4.2469 4.1653 4.0819 3.9965 3.9090 
11 4.5393 4.3974 4.2509 4.0990 4.0209 3.9411 3.8596 3.7761 3.6904 3.6025 
12 4.2961 4.1553 4.0096 3.8584 3.7805 3.7008 3.6192 3.5355 3.4494 3.3608 
13 4.1003 3.9603 3.8154 3.6646 3.5868 3.5070 3.4253 3.3413 3.2548 3.1654 
14 3.9394 3.8001 3.6557 3.5052 3.4274 3.3476 3.2656 3.1813 3.0942 3.0040 

15 3.8049 3.6662 3.5255 3.3719 3.2940 3.2141 3.1319 3.0471 2.9595 2.8684 
16 3.6909 3.5527 3.4089 3.2588 3.1808 3.1007 3.0182 2.9330 2.8447 2.7528 
17 3.5931 3.4552 3.3117 3.1615 3.0835 3.0032 2.9205 2.8348 2.7459 2.6530 
18 3.5082 3.3706 3.2273 3.0771 2.9990 2.9185 3.8354 2.7493 2.6597 2.5660 
19 3.4338 3.2965 3.1533 3.0031 2.9249 2.8442 2.7608 2.6742 2.5839 2.4893 

20 3.3682 3.2311 3.0880 2.9377 2.8594 2.7785 2.6947 2.6077 2.5168 2.4212 
21 3.3098 3.1729 3.0299 2.8796 2.8011 2.7200 2.6359 2.5484 2.4568 2.3603 
22 3.2576 3.1209 2.9780 2.8274 2.7488 2.6675 2.5831 2.4951 2.4029 2.3055 
23 3.2106 3.0740 2.9311 2.7805 2.7017 2.6202 2.5355 2.4471 2.3542 2.2559 
24 3.1681 3.0316 2.8887 2.7380 2.6591 2.5773 2.4923 2.4035 2.3099 2.2107 

25 3.1294 2.9331 2.8502 2.6993 2.6203 2.5383 2.4530 2.3667 2.2695 2.1694 
26 3.0941 2.9576 2.8150 2.6640 2.5848 2.5026 2.4170 2.3273 2.2325 2.1315 
27 3.0618 2.2956 2.7827 2.6316 2.5522 2.4699 2.3840 2.2938 2.1984 2.0965 
28 3.0320 2.8959 2.7530 2.6017 2.5223 2.4397 2.3535 2.2629 2.1670 2.0642 
29 3.0045 2.8685 2.7256 2.5742 2.4946 2.4118 2.3253 2.2344 2.1378 2.0342 

30 2.9791 2.8431 2.7002 2.5487 2.4689 2.3680 2.2992 2.2079 2.1107 2.0062 
40 2.8005 2.6648 2.5216 2.3689 2.2880 2.2034 2.1142 2.0194 1.9172 1.8047 
60 2.6318 2.4961 2.3523 2.1978 2.1154 2.0285 1.9360 1.8363 1.7263 1.6006 

120 2.4721 2.3363 2.1915 2.0346 1.9500 1.8600 1.7628 1.6557 1.5330 1.3805 
00 2.3209 2.1848 2.0385 1.8783 1.7908 1.6964 1.5923 1.4730 1.3246 1.0000 

(Source: Reprinted, by permission of the Biometrika Trustees from M. Merrington and C. M. Thompson, "Tables of Per­
centage Points of the Inverted Beta(F) Distribution," Biometrika 33 (1943): 84-85.) 
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234 
in terms of MGFs, 238 
in terms of PDFs, 235 
to a constant, 235 

convergence in mean square (or 
convergence in quadratic 
mean),249 

implies convergence in 
probability, 252 

necessary and sufficient 
conditions for, 250 

convergence in probability, 241, 246 
for continuous functions, 244 
implies convergence in 

distribution, 246 
of relative frequency, 260 
properties, 245 

convergence mode relationships, 
258 

convergence of a function sequence, 
230 

convergence of a sequence of PDFs, 
235 

convergent, 230 
converges almost surely, 253 
coordinate function, 67 
correlation, 151 
correlation bounds, 150 

and linearity between random 
variables, 152 

correlation matrix, 160-161 
countable additivity, 12 
countable set, 681 
countably infinite set, 681 
covariance, 149 
covariance bound, 150 

covariance matrix, 157 
Cramer-Rao Lower Bound (CRLB), 

412 
alternative form, 413 
attainment of the CRLB, 417 
for scalar function case, 415 
regularity conditions, 409 

Cramer-Wold device, 282 
for normal limiting distributions, 

283 
critical (or rejection) region of 

statistical test, 515 
duality with confidence region, 

643 
of test statistic, 526 

cumulant-generating function, 
univariate, 146 

multivariate, 147 
cumulants, 146 
cumulative distribution function 

(CDF), univariate, 60-61 
duality between CDFs and PDFs, 

65,73 
CDF approach for deriving PDF of 

g(X),333 
CDF properties, 63 
multivariate or joint CDF, 73 

D 

degenerate density function, 153 
random variable, 153 

degrees of freedom, 192, 200 
dependent events, 29 
dependent variable, 429 
design matrix, 431 
discrete probability density 

function, 50 
discrete random variable, 50 
discrete sample space, 3 
discrete uniform density, 170 
disjoint events, 4 
distinct PDFs, 368 
disturbance vector in the GLM, 429 
divergent sequence, 224 
domain and range of a function, 691 
double array of random variables, 

279 
double expectation theorem, 

127-128,131 

717 

double exponential family of PDFs, 
216 

duality between confidence and 
critical regions, 643 

E 

econometrics, 460 
efficient estimator, 380, 382 
element (or member of the sample 

space),3 
elementary event, 4 
elements of a set, 679 
ellipsoid confidence region for (3 in 

the GLM, 647 
empirical distribution function 

(EDF), 308-309, 313-314 
empirical substitution principle, 

314 
empty or null set, 682 
eqUivalent events, 46 

approach for finding density of 
g(X),334 

error vector in the GLM, 429 
errors in variables problem in the 

GLM,459 
estimand,370 
estimate of e or g(e), 370 
estimating e or g(e), 370 
estimator for e or q(e), 370 
estimator properties, 370 

admissibility, 375 
asymptotic admissibility, 386 
asymptotically efficient, 388, 419 
asymptotically relatively more 

efficient, 386 
asymptotically unbiased, 386 
best asymptotically normal 

(BAN),419 
best linear unbiased estimator 

(BLUE),382 
bias, 374 
consistent, 384 
consistent asymptotically normal 

(CAN),385 
minimum variance linear 

unbiased estimator (MVLUE), 
382 

minimum variance unbiased 
estimator (MVUE), 380 
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estimator properties (cont.1 
relatively more efficient, 377 
strong mean square error (SMSEI 

superior, 376 
unbiased, 378 

event, 3 
elementary, 4 
mutually exclusive or disjoint 

events, 4 
occurrence of, 4 
occurs with probability one, 54 
occurs with probability zero, 54 

event space, 1, 9 
exp(n),143 
expected value, Ill, 113 

conditional, 126, 131 
existence of EX does not imply 

that Eg(X) exists, 120 
existence of EX for bounded R(X), 

115 
of function of X, Y = g(X), 117 
of a function of a multivariate 

random variable, 122 
of a matrix of random variables, 

123 
of a product, 124, 149 
of a sum, 124 
properties, 121-124 

experiment, 2 
exponential density, 190 

memoryless property, 191 
exponential class of densities, 214 

and complete sufficient statistics, 
402 

and sufficient statistics, 398 
differentiability of power function 

558,573 
natural parameterization, 573 

extreme values, 355 

f(xl. 691 
F-density, 344 

F 

fair or equitable game of chance, 
165 

family of densities, 358 
finite additivity, 12 
finite set, 681 
for every or for all, v, 691 

function f from A to B (f : A - BI, 
691 

functions of random variables, 
deriving probability densities, 
331-332 

change of variables approach, 
335-341 

CDF approach, 332-333 
equivalent events approach 

(discrete casel. 334 
MGF approach, 332 

G 

gamma density, 187 
additivity, 189 
effect of scaling, 189 
inverse additivity, 190 
wear-out effect, 191 
work-hardening effect, 191 

gamma function, 187 
general linear model (GLM), 428 

classical assumptions of, 430 
violations of classic GLM 

assumptions, 452 
generalized likelihood ratio (GLRI, 

601 
generalized likelihood ratio (GLRI 

test, 601 
asymptotic distribution when 

Ho : R(e) = r is true, 610 
asymptotic distribution when 

Ha : R(e) =1= r is true for local 
alternatives, 613 

asymptotic power of GLR Test of 
Ho : e = eo in Exponential 
Population, 615 

equivalence with 
Neyman-Pearson most 
powerful test for simple 
hypotheses, 602 

generalized least-squares estimator 
of fi in GLM, 456, 508 

generalized method of moments 
(GMM) estimator, 497-498 

geometric density, 176 
memoryless property, 176 

geometric mean, 591,620 
Glivenko-Cantelli theorem, 313 
goodness-of-fit test (X2), 655 

H 

heteroskedasticity, 453 
homoskedasticity, 432 
hypergeometric density, 183, 185 
hypothesis, 509 

abbreviated respresentation of, 
513 

one-sided alternative hypothesis, 
549 

rejected at the a-level of 
significance, 533 

rejected using a size-a test, 533 
statistical, 510 
two-sided alternative hypothesis, 

550 
hypothesis testing (see testingl 

I 

ideal statistical test,S 17, 531 
iff (if and only ifl, 680 
iid (independent and identically 

distributed), 223 
Wald-Wolfowitz (WW) runs test 

of,663 
image of x under f, 689 
inadmissible estimator, 375, 377 
increasing function, 64 
independence of random variables, 

90,93 
joint density factorization for, 91, 

94 
implies covariance equals zero, 

151 
of linear and quadratric forms in 

normally distributed random 
variables, 328 

of random vectors and functions 
of random vectors, 95 

independent events, 29, 32 
global independence of events, 90 

independent or explanatory 
variables, 429 

index set, 686 
indicator function, IA(xl, 695 
induced likelihood function, 486 
induced probability space, 47 
inequalities, Cauchy-Schwarz, 149 

Chebyshev, 133-134 
Jensen's Inequality, 120, 125 
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Kolmogorov's inequality, 263 
Markov's inequality, 133 

instrumental variables estimator, 
499 

integer programming, 469 
interval set notation, 687 
intervals, closed, 687 

half-open (or half-closed) 
intervals, 687 

open, 687 
inverse function from B to A, 

I-I : B -+ A, 693 
inverse image of y, I-I(y), 693 
inversion relationship between 

MGF and PDF, 144 
iso-density contours, 203 
isopower contour, 592 

J 
Jacobian matrix, 288, 340 
Jensen's Inequality, 120, 125 
joint density of the random sample, 

302,305 
when sampling from an 

exponential class distribution, 
404 

joint cumulative distribution 
function, 73 

joint probability density function, 
68 

K 

Khinchin's weak law of large 
numbers (WLLN), 259 

Kolmogorov's axioms of 
probability, 13 

inequality, 263 
SLLN, 264, 265 

Kolmogorov-Smirnov (K-S) test, 658 
Kronecker's Lemma, 265 

L 

Lagrange multiplier test, 616 
asymptotic distribution when 

Ho : R(e) = r is true, 617 
asymptotic distribution when 

Ha : R(e) =1= r is true for local 
alternatives, 621 

of Ho : R(en ) = r versus 
Ha : R(eo) =1= r, 616 

of Ho : a = 1 (exponential family) 
versus H a : a =1= 1 in gamma 
population distribution, 619 

least-squares estimator, 275, 437 
as a GMM estimator, 496 
as a maximum likelihood 

estimator, 468 
MVUE property of (,6, 52) under 

normality, 462 
Lebesque measure zero, 388 
Lehmann-ScheffC's completeness 

theorem, 421 
minimal sufficiency theorem, 395 
MVUE approach, 421 

Leibniz's rules for differentiation of 
integrals, 333 

level-a test, 532 
Liapounov CLT, 276 

for triangular arrays, 280 
Zolotarev's bound on 

approximation error, 278 
likelihood function, 464 
likelihood ratio test, 545 
limit of a real number sequence, 224 

of a real-valued matrix sequence, 
226 

limiting CDF of {Yn }, 234 
limiting density of {Yn }, 236 
limiting distribution, 236 

relationship with asymptotic 
distribution, 239, 272 

limiting function of {In} on Do, 230 
limiting moment-generating 

functions, 238 
Lindberg conditions, 274 
Lindberg CLT, 274 
Lindberg-Levy CLT, 270, 283 

Van Beeck's bound on 
approximation error, 273-274 

linear combinations of random 
variables, means and variance, 
156 

of normal random variables, 206 
linear in parameters, 428 
local alternative hypotheses, 613 
location parameter family of PDFS, 

652 
location-scale family of PDFs, 652 

719 

log-normal distribution, 216, 337, 
358,422,425 

M 

m-dependence,281 
maintained hypothesis, 529 
marginal 

cumulative distribution 
functions, 83 

cumulant-generating function, 
147 

densities for N(/L, :E), 207 
moment generating function, 147 
probability density, 78, 82 

Markov's inequality, 133 
mathematical induction, 11 
matrix A is smaller than matrix B, 

A::5 B, 379 
matrix differentiation, 433, 701 
maximum likelihood estimator 

(MLE),465 
as a GMM Estimator, 496 
asymptotic efficiency, 482 
asymptotic normality, 480 
attainment of the CRLB, 470 
consistency, 475 
for exponential distribution, 467 
for gamma distribution, 473 
for hypergeometric distribution, 

469 
for normal distribution, 467 
for uniform distribution, 469 
in the GLM, 468 
invariance principle, 487 
MVUE property of unique MLEs, 

471 
unique MLEs are functions of 

sufficient statistics, 470 
mean of a random variable, 132 
mean square error (scalar case), 373 

matrix, 374 
mean value theorem for integrals, 

87 
median of X, 139 
memory less property, geometic 

density 176 
exponential density, 191 

mesh, 114 
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method of moments (MOM) 
estimator, 491 

minimal sufficient statistic, 394 
minimum mean-square error 

criterion, 378 
minimum variance unbiased 

estimator (MVUE), 380 
necessary and sufficient 

conditions for, 406 
relationships between scalar and 

vector MVUEs, 406 
uniqueness of MVUEs, 408 

mixed discrete-continuous random 
variables, 59 

continuous density function 
component, 59 

discrete density function 
component, 59 

mixture distribution, 666 
mode of fIx), 141 
model, statistical, 365 
moment generating function 

(MGF), 141, 146 
marginal, 147 
properties of, 143 
uniqueness theorem, 144, 147 

moments, 132 
about the mean (or central 

moment), 132 
about the origin, 132 
central moments as functions of 

moments about the origin, 137 
existence of moments, 138 
joint moment about the origin and 

mean, 148 
joint sample moment about the 

origin and mean, 321, 323 
moments about the origin as 

functions of central moments, 
138 

sample moments about the origin 
and mean, 316, 321 

monotone likelihood ratio in 
statistic T = t/X), 551 

and the exponential class of 
densities, 551 

and UMP tests, 553 
multicollinearity, 457 
multinomial density, 174 
multiplication rule, 27, 28 

N 

natural numbers, 222 
negative binomial density, 176 
Neyman-Pearson lemma, 540 
Neyman's factorization theorem, 

392 
non central F-distribution, 667 

t-distribution, 583, 628 
X2-distribution, 666 

noncentrality parameter )..., 583 
nondecreasing function, 64 
nonparametric estimation, 364 
normal family of densities 197,202 
nuisance parameters, 571 
null hypothesis, 527 

o 
observable random variable, 307 
one-sided confidence interval or 

confidence bound, 641 
open interval, 687 

rectangle, 21 
operating characteristic function of 

a statistical test, 531 
order statistics, 351-352, 397 
order of magnitude in probability 

/Op/nk) or op/nk)), 248 
order of magnitude of a sequence, 

231 
of sums and products of 

sequences, 232 
outcome, of the experiment, 2 

of the random sample, 302, 305 
of the random variable, 45 

p 

p-values, 535 
pairwise independent, 32 
parameter identifiability, 368 
parameter space, 169 
parameterization of a family of 

PDFs, 169 
parameters, 169 
parametric estimation, 363 

distribution-free case, 364 
distribution-specific case, 364 

parametric families of density 
functions, 169 

parametric hypothesis testing, 528 
Pareto family of PDFs, 216, 591 
partition of a set, 10 
partitioned determinants, 209-210 

inversion, 209-210, 440 
Pascal distribution, 176 
piecewise invertible, 338 
Pittman drift, 613 
pivotal quantities, 650 

for location and/or scale 
parametric families of PDFs, 
652 

method of confidence-region 
construction, 650 

plim operator, 241 
properties, 245 
is an element-wise operator, 243 
applied to a matrix, 243 

point estimate, 371 
point estimator, 370 
Poisson density, 178 
Poisson process, 180-182 

mean rate of occurrence in, 182 
population, 298-299 

distribution, 300-302 
moments, 314 

posterior probabilities, 36 
power function of a statistical test, 

530 
ideal power function, 531 

prior information models, 463 
prior probabilities, 36 
probability, 8 

limit (See convergence in 
probability, and plim) 

measure, 13 
set function, 13 
space, 15 
of event A, 13 

probability integral transformation, 
348 

process, 297-299 
product notation, D7=I' 32 

Q 

quadratic formula for solving 
ax2 + bx + c = 0, 161 

quantile of X, 140 
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R 

R-squared, 434 
random number generator for 

standard normal PDF, 207 
for uniform PDF, 186-187, 350 
random sample, 305 

random sampling, from a 
population distribution, 301 

with replacement, 301 
without replacement, 303 
generated by a composite 

experiment, 305 
random variable, 44, 67 
random walk, 359 
randomized tests, 541, 555 
range of a random variable, R(X), 45, 

71 
range of X over the parameter space 

Q,393 
over H, 514 

Rao-Blackwell Theorem, 399, 400 
real line, 685 
real-valued function, 692 

point function, 694 
set function, 694 
vector function, 67 

rectangles in Rn, 21 
regression function, 211, 431 

curve, 129 
hyperplane, 211 
line, 211 
multivariate, 130 
of YonX, 129 

rejection or critical region of 
statistical test, 515 

of test statistic, 526 
relation from A to B, S : A --+ B,690 
relative efficiency of estimators, 

375,377 
relative frequency probability, 6 
relatively more efficient, 375, 377 
reparameterization, of a probability 

density family, 485 
of exponential class densities via 

linear transformations, 579 
reparameterized, 1 70 
residual vector in the GLM, 430 
ridge regression estimator, 505 
runs, 663 

s 
sample, correlation, 324 

correlation matrix, 327, 328 
covariance, 321 
covariance matrix, 327 
distribution function, 308 
mean, 317, 321 
median, 353 
moments, 316, 321 
moments about the origin and 

mean, 314-316, 321 
points, 3 
space, 2 
standard deviation, 324 
variance, 319, 321 

sampling, densities, 332 
distributions, 332 
distribution of order statistics, 

352-354 
error, 300 

scale parameter family of PDFs, 652 
scoring test (form of LM test), 617 
sequence of probability density 

functions, 224 
of random variables, 223 

sequences, 222 
adding, subtracting, and 

multiplying, 227 
asymptotic non positively 

correlated, 266 
bounded m-dependent sequences, 

281 
bounded sequence of real 

numbers, 225 
combinations of, 227 
divergent, 224 
diverges to infinity, 225 
limit of a real number sequence, 

224 
limit of a real-valued matrix 

sequence,226 
order of magnitude of, 231-232 

sets, 679 
countable set, 681 
elements or members of, 679 
infinite set, 681 
multiple union and intersection 

notation, 686 

721 

mutually exclusive (or disjoint), 
682 

operations and relationships, 
682-684 

partition of, 10 
subset of, 682 
uncountably infinite, 681 
universal set, 682 

set-defining methods, 680 
exhaustive listing, 680 
mathematical rule, 680 
verbal rule, 680 

Shapiro-Wilks (SW) test of 
normality, 661 

sigma-algebra (a-algebra), 21 
sigma-field (a-field), 21 
significance level, 532 
simple hypothesis, 510 
simulating outcomes of random 

samples, 350 
simultaneous equations estimation, 

459 
size of a statistical test, 524, 532 
size-of-set function, NIA), 695 
skewed density, 136 

to the left or right, 136 
skewness, 136 
Slutsky'S theorems, 248 
sociometries, 460 
square root matrix (symmetric), Vn , 

289 
standard deviation, of a random 

variable, 133 
of a sample, 324 

standard normal density and 
distribution, NIO, 1), 198 

random-number generators for, 
207 

random variable, 199 
standardizing a random variable, 

199 
statistic,307-308 
statistical hypothesis, 510 

inference, 297 
test, 515 
test defined by Cr , 516 

statistical model, 365 
stochastic process, 267, 299 



722 Index 

strong law of large numbers (SLLN), 
258,263,268 

Kolmogorov's, iid case, 264, 265 
non-iid case, 268 

strong mean square error (SMSE) 
superiority, 376 

subjective probability, 7 
consistency condition for, 18 

substitution theorem for 
conditional expectations, 127, 
131 

sufficient statistics, 389 
complete, 400 
Lehmann-Scheffe's completeness 

theorem, 420 
Lehmann-Scheffe's minimal 

sufficiency theorem, 395 
minimal, 394 
Rao-Blackwell Theorem, 398, 400 
role in defining MVUEs, 420 
sufficiency and the MSE 

Criterion, 398 
sufficiency of invertible functions 

of sufficient statistics, 404 
support of a probability density 

function, 335, 541 
symmetric density about JL, 136 

T 

t probability density function, 341 
converges to standard normal, 

Tv ~ N(O, 1),343 
Taylor series, expansion and 

remainder (Young's Form), 286 
representation of vector functions, 

617 
test construction, heuristic 

principle of, 596 
test of a statistical hypothesis, 515 

most powerful, 534 
rejecting at the a-level of 

significance, 533 
rejecting using a size-a test, 533 

test statistic, 526 
testing functional forms of 

probability distributions, 
655-663 

goodness-of-fit test (chisquare), 
655 

Kolmogorov-Smirnov (K-S) test, 
658 

Lilliefors test for normality, 660 
normality of GLM error terms, 

662 
Shapiro-Wilks (SW) test for 

normality, 661 
testing for a continuous uniform 

population distribution, 660 
discrete uniform population 

distribution, 673 
exponential population 

distribution, 657 
normal population distribution, 

660 
tests of hypotheses, 510-674 

differences between two 
populations, means (equal 
variances), 669 

means (unequal 
v ariances-Behrens-Fisher 
problem), 669 

variances, 669 
equality of proportions, 673 
equality of two exponential 

population distributions, 670 
general linear model parameters: 

for a 2 , asymptotic X2 and 
normal tests, 639-640 

for a 2, finite sample x2-tests, 
633-635 

R(.Bl ::::: r, R(j3) :::: r, or R(j3) ~ r, 
scalar asymptotic normal tests, 
636 

R(j3) ::::: r or R(j3) ::::: r when R has 
q rows, asymptotic x2-tests, 
636 

R(j3) ::::: r, Rj3 :::: r, or Rj3 ~ r 
when R is (1 X k), t-tests, 628 

Rj3 :: r when R is q X k, F-t~sts, 
626 

GLR test of Ho : R(eo) :: r versus 
Ha : R(eo) ;;/; r, 610 

independence of bivariate normal 
random variables, 673 

in the multiparameter 
exponential class, 574 

LM Test of Ho : R(eo)::::: r versus 
Ha : R(eol ;;/; r, 616 

mean of a Bernoulli population 
distribution, Ho : P :: Po versus 
Ha : P ;;/; Po, 559 

mean of a normal population, 
distribution, 561, 566, 579, 586 

Ho : JL :: JLo versus Ha : JL ;;/; JLo, 
561,579,586 

Ho : JL :::: JLo versus Ha : JL > JLo, 
579,586 

Ho : JL E [JLI, JL2) versus 
Ha : JL ¢ [JLI, JL2), 566 

mean of an exponential 
population distribution, 564, 
568 

Ho : e :: eo versus Ha : e ;;/; eo, 
564 

Ho : e E [el , ( 2 ) versus 
Ha : e ¢ [el , ( 2 ), 568 

paired comparisons of means, 671 
Wald Test of Ho : R(eo)::::: r versus 

Ha : R(eo) ;;/; r, 622-623 
there exists, 3, 691 
triangular array of random 

variables, 279 
true PDF of X, 364 
true value of e, 363 

of q(e), 364 
truncation function, trunc(xl, 62 
type I and type II error, 516 

controlling, 519 
protection against type I error, 523 

u 

unbiased, confidence region, 648 
estimator, 378 
statistical test, 533 

un correlated, 156 
uniform density function, 

continuous, 186 
discrete, 170 

uniform random-number 
generators, 186-187,350 

uniformly minimum variance 
unbiased estimator (UMVUE), 
380 

uniformly most accurate (UMA) 
confidence region, 648 
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uniformly most accurate unbiased 
(UMAU) confidence regions, 
649 

uniformly most powerful (UMP) 
test, 534 

GLR test of Ho : e = 9 0 versus 
Ha : 9 E Qa, 604 

GLR test of Ho : 9 E Q o versus 
one-sided Ha : 9 E Qa, 606 

in terms of the t(X) of a monotone 
likelihood ratio, 554 

nonexistence of a UMP test, 548, 
556 

of Ho : 9 = eo versus 
Ha : e E Qa using 
Neyman-Pearson lemma, 547 

unbiasedness of UMP tests, 546, 
550,554 

uniformly most powerful unbiased 
(UMPU) test, 556 

in multiple parameter cases via 
conditioning, 571 

of Ho : a2 ::: aJ versus Ha : a2 > aJ 
when sampling from a normal 
population distribution, 579 

of Ho : /.L ::: /.Lo versus H" : /.L > /.Lo, 
normal population 
distribution, 586 

of H 0 : /.L = /.Lo versus H a : /.L t= /.Lo, 
normal population 
distribution, 586 

of Ho : e = eo versus Ha : e t= eo 
when test statistics have 
symmetric PDFs, 569 

two-sided tests for exponential 
class densities, 558 

unimodal, 141 

723 

v 
variance of a random variable, 133 

sample variance, 319, 322 

W 

Wald test, 622-623 
asymptotic distribution when 

Ho : R(9) = r is true, 623 
asymptotic distribution when 

H" : R(e) t= r is true for local 
alternatives, 624 

based on a GMM estimator, 624 
Wald-Wolfowitz (WW) runs test of 

iid,663 
weak mean-square error (WMSE), 

377 
weak law of large numbers (WLLN), 

258 
Khinchin's, iid case, 259 

necessary and sufficient 
conditions for, 261 

non-iid case, 262 
wear-out effects, 191 
Weierstrass's approximation 

theorem, 429 
work-hardening effects, 191 
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