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We appreciate the schools that use the Second Edition and who have given us

useful suggestions to improve this book. To the best of our knowledge, this is the

only business statistics book that uses finance, economic, and accounting data

throughout the entire book. Therefore, this book gives students an understanding

of how to apply the methodology of statistics to real-world situations. In particular,

this book shows how descriptive statistics, probability, statistical distributions,

statistical inference, regression methods, and statistical decision theory can be

used to analyze individual stock price, stock index, stock rate of return, market

rate of return, and decision making. In addition, this book also shows how time-

series analysis and the statistical decision theory method can be used to analyze

accounting and financial data.

How This Edition Has Been Revised

In this edition, we first update the real-world examples and revise some sections to

improve the ease understanding the topics. The auto companies, GM and Ford, used

in empirical section of each chapter are replaced by two pharmaceutical firms,

Johnson & Johnson and Merck. We update the data of stock price, dividend per

share, earnings per share, and financial ratios of Johnson & Johnson and Merck until

2010. The annual macroeconomic data, such as prime rate, GDP, CPI, 3-month

T-Bill rate, are updated to 2009. The EPS, DPS, and PPS for Dow Jones 30 Indus-

trial Firms used in the project are also updated to 2009. The time aggregation and

the estimation of the market model are added in example 16.8. The questions added

to this edition are as follows:

Chapter Problems

1 28, 29, 30, 31

2 52, 53, 54, 55

3 50, 51, 52, 53

4 63, 64, 65, 66, 67, 68, 69, 70

5 83, 84, 85, 86

6 75, 76, 77, 78

7 70, 71, 72, 73

8 88, 89, 90, 91, 92

9 68, 69, 70, 71

10 102, 103, 104, 105

11 100, 101,102,103, 104

12 99, 100, 101, 102

13 77, 78, 79, 80, 81

14 70, 71, 72, 73, 74

15 66, 67, 68, 69, 70

16 72, 73, 74, 75, 76

17 82, 83, 84, 85, 86

18 77, 78, 79, 80, 81

(continued)
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Chapter Problems

19 64, 65, 66, 67, 68

20 86, 87, 88, 89, 90

21 68, 69, 70, 71, 72, 73

Alternative Ways to Use the Text

There are five alternative approaches to use the new edition of this book. They can

be described as follows:

A. Traditional Approach
The goal of this approach is to demonstrate to the students the basic applications

of statistics in general business, economics, and finance. This goal can be

achieved by skipping all appendices, technical footnotes, optional sections,

and other sections at the instructor’s discretion. Using this alternative, students

need only basic algebra, geometry, and business and economic common sense

to understand how statistics can be used in general business, economics, and

finance applications.

B. Accounting and Financial Data Analysis Approach
The goal of this approach is not only to illustrate basic overall business, eco-

nomic, and finance applications but to show how to use statistics in accounting

and financial data analysis and decision making. This goal can be achieved by

omitting all the technical appendices, technical footnotes, and most optional

sections but covering all or most of the following topics:

Chapter Topic

2 Appendices 2 and 3 on stock market rates of return and on financial statements and

financial ratio analysis

4 Appendix 3, financial ratios for two pharmaceutical firms

6 Appendix 2, applications of the binomial distribution to evaluate call options

7 Appendix 2, cumulative normal distribution function and the option pricing model

9 Section 9.8, analyzing the first four moments of rates of return of the 30 DJI firms

10 Appendix 1, a control chart approach for cash management

13 Appendix 1, derivation of normal equations and optimal portfolio weights

13 Appendix 4, American call option and bivariate normal CDF

16 Appendix 1, dynamic ratio analysis; Appendix 2, term structure of interest rate

19 Section 19.5, stock market indexes; Appendix 1, options on stock indexes and

currencies; Appendix 2, index futures and hedge ratio

21 Sections 21.7 and 21.8 on mean and variance trade-off analysis and the mean and

variance method for capital budgeting decisions; Appendices 2, 3, and 4 on the

graphical derivation of the standard deviation for NPV

(continued)
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C. Project Approach
Based upon all five projects, the instructor can use the project approach to teach

the course. Under this approach, the instructor can ask students to write a term

project by using accounting, economic, and financial data collected from Yahoo

Finance and St. Louis Federal Reserve Bank. The five projects are as follows:

Project I: Project for descriptive statistics

Project II: Project for probability and important distributions

Project III: Project for statistical inferences based on samples

Project IV: Project for regression and correlation analyses

Project V: Project for selected topics in statistical analysis

D. Calculus Approach
The objective of the fourth approach is to show students how calculus can be

used in statistical analysis. To achieve this goal, the instructor can try to cover

all optional sections and as many of the technical footnotes and appendices as

possible. To do this, of course, the instructor may have to skip many application

examples, such as the finance applications discussed in Approach B.

E. Financial Analysis, Planning and Forecasting Approach
This book can be used for a course entitled Financial Analysis, Planning and

Forecasting by covering every topic presented in Chapters 2, 3, 4, 6, 7, 9, 13, 14,

15, 16, 18, 19, and 21.

In addition to using this book as a textbook, it can also be very useful as a

reference book for managers who deal with accounting and financial data analysis.

We would like to recommend that the instructor consider requiring students

to solve the following problems by using either MINITAB, Microsoft Excel, or

SAS programs:

Chapter Problems

2 7, 23

3 22, 25, 30, 50, 51, 53

4 4, 6, 7, 8, 27, 38, 39, 40, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 64

6 8, 12, 73, 74

7 5, 43

8 7, 85, 86, 87

9 35, 39, 48

10 27, 28, 55, 104, 105

11 5, 9, 46, 98, 99

12 3, 20, 21, 22, 23, 44, 84, 99, 100, 101, 102

13 5, 10, 23, 47, 48, 49, 50, 51, 63, 64, 65, 66, 67, 68, 69, 70, 78, 79

14 7, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 40, 65, 70, 74

15 10, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 70

16 27, 28, 31, 34, 35, 38, 41, 42, 43, 44, 45, 66, 67, 68, 75, 76

17 17, 19, 39, 40, 41, 42, 63

18 7, 34, 35, 36, 37, 38, 39, 40, 41, 42, 50, 60, 61, 62, 64, 68, 69, 76, 77, 78, 79, 80, 81

19 62, 63, 68

20 72, 73

21 12, 65
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Supplementary Materials

Study Guide, by Li-Shya Chen, National Chengchi University, Taiwan, Lie-Jane

Kao, Kainan University, Taiwan, and Ronald L. Moy, St. John’s University. This

fine workbook encourages learning by doing. Each chapter begins with a section

describing the basic concept of that chapter in intuitive terms. Then, the student

goes on to a formal review of the chapter and several worked-out problems that

show in details how the solution is obtained. A variety of multiple-choice, true-

false, and open-ended questions and problems follows. All answers are included at

the end of each chapter.

Data Sets. A wide variety of macroeconomic, financial, and accounting data is

available on computer disks to facilitate student practice. A complete listing of

these data sets is given at the end of this book. The disks themselves are free of

charge.

Instructor’s Guide. The three main parts of the Instructor’s Guide are the Overview

and Objectives; the complete solutions to the text problems by Cheng F. Lee,

John C. Lee, Li-Shya Chen, Lie-Jane Kao; and the Test Bank, with more than

1,000 multiple-choice and true-false problems, by Alice C. Lee, Li-Shya Chen, and

Lie-Jane Kao. Most instructors will find the Instructor’s Guide indispensable.

Computerized Testing Program. With the Test Bank on CD-ROM for notebook

or desktop computers, instructors can select, rearrange, edit, or add problems as

they wish.

New Jersey, USA Cheng-Few Lee
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How This Edition Has Been Revised

In addition to correction of errors, the new edition uses the most updated real-world

data on accounting, finance, and economics. The most recent version of MINITAB

(Version 12) has been used for most of the empirical examples. In addition,

Microsoft Excel 97 has been explicitly introduced in this book. The new material

added to this edition is briefly described as follows:

Appendix 2A Microsoft Excel to Draw Graphs

Appendix 2B Stock Rates of Return and Market Rates of Return

Appendix 2C Financial Statements and Financial Ratio Analysis

Appendix 3A Financial Ratio Analysis

Appendix 4C Financial Ratio Analysis for Three Auto Firms

Appendix 7A Mean and Variance for Continuous Random Variables

Appendix 7B Cumulative Normal Distribution Function and the Option Pricing

Model

Appendix 7C Lognormal Distribution Approach to Derive the Option Pricing

Model

Section 9.4 The Chi-Square Distribution and the Distribution of Sample

Variance

Section 9.8 Analyzing the First Four Moments of Rates of Return of the 30 DJI

Firms

Appendix 9E Noncentral χ2 and Option Pricing Model

Section 10.9 Control Charts for Quality Control

Section 11.3 Hypothesis Test Construction and Testing Procedure

Appendix 11A The Power of a Test, the Power Function, and the Operating-

Characteristic Curve

Appendix 12A ANOVA and Statistical Quality Control

Appendix 13D American Call Option and Bivariate Normal CDF

Appendix 16A Dynamic Ratio Analysis

Appendix 16B Term Structure of Interest Rate

Application 19.3 CPI, Inflation Rate, and Interest Rate

Appendix 19A Options on Stock Indexes and Currencies

Appendix 19B Index Futures and Hedge Ratio

Section 21.7 Mean and Variance Trade-Off Analysis

Appendix E Useful Formula in Statistics

Appendix F Important Finance Topics

In addition, a real-world application project is added to the end of each part to

show how the topics discussed can be applied in analyzing the real-world financial

data. They are:

Project I: Project for Descriptive Statistics

Project II: Project for Probability and Important Distributions

Project III: Project for Statistical Inferences Based on Samples

Project IV: Project for Regression and Correlation Analyses

Project V: Project for Selected Topics in Statistical Analysis
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Alternative Ways to Use the Text

There are five alternative approaches to use the new edition of this book. They can

be described as follows:

A. Traditional Approach
The goal of this approach is to demonstrate to the students the basic applications

of statistics in general business, economics, and finance. This goal can be

achieved by skipping all appendices, technical footnotes, optional sections,

and other sections at the instructor’s discretion. Using this alternative, students

need only basic algebra, geometry, and business and economic common sense

to understand how statistics can be used in general business, economics, and

finance applications.

B. Accounting and Financial Data Analysis Approach
The goal of this approach is not only to illustrate basic overall business,

economic, and finance applications but to show how to use statistics in account-

ing and financial data analysis and decision making. This goal can be achieved

by omitting all the technical appendices, technical footnotes, and most optional

sections but covering all or most of the following topics:

Chapter Topic

2 Appendices 2 and 3 of Chap. 2 on stock market rates of return

and on financial statements and financial ratio analysis

3 Appendix 1 of Chap. 3, financial ratio analysis

4 Appendix 3 of Chap. 4, financial ratios for three auto firms

6 Appendix 2 of Chap. 6, applications of the binomial distribution

to evaluate call options

7 Appendix 2 of Chap. 7, cumulative normal distribution function

and the option pricing model

9 Section 9.8, analyzing the first four moments of rates of return

of the 30 DJI firms

10 Appendix 1 of Chap. 10, a control chart approach for cash

management

Appendix 1 of Chap. 13 Derivation of normal equations and optimal portfolio weights

Appendix 4 of Chap. 13 American call option and bivariate normal CDF

16 Appendix 1 of Chap. 16, dynamic ratio analysis and Appendix

2 of Chap. 16, term structure of interest rate

19 Section 19.5, stock market indexes and Appendix 1 of Chap. 19,

options on stock indexes and currencies. Appendix 2 of

Chap. 19, index futures and hedge ratio

21 Sections 21.7 and 21.8 on mean and variance trade-off analysis

and the mean and variance method for capital budgeting

decisions; Appendices 2, 3, and 4 of Chap. 21 on the

graphical derivation of the standard deviation for NPV

C. Project Approach
Based upon all five projects, the instructor can use the project approach to teach

the course. Under this approach, the instructor can ask students to write a term

project by using accounting, economic, and financial data.

Preface to the Second Edition xix



D. Calculus Approach
The objective of the fourth approach is to show students how calculus can be

used in statistical analysis. To achieve this goal, the instructor can try to cover

all optional sections and as many of the technical footnotes and appendices as

possible. To do this, of course, the instructor may have to skip many application

examples, such as the finance applications discussed in Approach B.

E. Financial Analysis, Planning and Forecasting Approach
This book can be used for a course entitled Financial Analysis, Planning and
Forecasting by covering every topic presented in Chaps. 2, 3, 4, 6, 7, 9, 13, 14,

15, 16, 18, 19 and 21.

In addition to using this book as a textbook, it can also be very useful as a

reference book for managers who deal with accounting and financial data analysis.

We would like to recommend that the instructor consider requiring students to

solve the following problems by using either MINITAB, Microsoft Excel, or SAS

programs:

Chapter Problems

2 7, 23

3 22, 25, 30

4 4, 6, 7, 8, 27, 38, 39, 40, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54

6 8, 12, 73, 74

7 5, 43

8 7, 85, 86, 87

9 35, 39, 48

10 27, 28, 55

11 5, 9, 46, 98, 99

12 3, 20, 21, 22, 23, 44, 84

13 5, 10, 23, 47, 48, 49, 50, 51, 63, 64, 65, 66, 67, 68, 69, 70

14 7, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 40, 65

15 10, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37

16 27, 28, 31, 34, 35, 38, 41, 42, 43, 44, 45, 66, 67, 68

17 17, 19, 39, 40, 41, 42, 63

18 7, 34, 35, 36, 37, 38, 39, 40, 41, 42, 50, 60, 61, 62, 64, 68, 69, 76

19 62, 63

20 72, 73

21 12, 65

Supplementary Materials

Study Guide, by Ronald L. Moy, St. John’s University. This fine workbook

encourages learning by doing. Each chapter begins with a section describing the

basic concept of that chapter in intuitive terms. Then, the student goes on to a

formal review of the chapter and several worked-out problems that show in details
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how the solution is obtained. A variety of multiple-choice, true-false, and

open-ended questions and problems follows. All answers are included at the end

of each chapter.

MINITAB and Microsoft Excel Book, by John C. Lee, Chase Manhattan Bank.

The book, which follows the textbook chapter by chapter, is designed to help

students use MINITAB and (or) Microsoft Excel throughout the course. Each

chapter includes a variety of specific applications and ends with a statistical

summary.

Data Sets. A wide variety of macroeconomic, financial, and accounting data is

available on computer disks to facilitate student practice. A complete listing of

these data sets is given at the end of this book. The disks themselves are free of

charge.

Instructor’s Guide. The three main parts of the Instructor’s Guide are the Overview

and Objectives; the complete solutions to the text problems by Cheng F. Lee,

John C. Lee, and Edward Bubnys; and the Test Bank, with more than 1,000

multiple-choice and true-false problems, by Alice C. Lee, Pricewaterhouse

Coopers. Most instructors will find the Instructor’s Guide indispensable.

Computerized Testing Program. With the Test Bank on disk for either IBM or

Macintosh computers, instructors can select, rearrange, edit, or add problems as

they wish.

New Jersey, USA Cheng-Few Lee

New Jersey, USA John C. Lee

Massachusetts, USA Alice C. Lee
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Preface to the First Edition

When I first began writing Statistics for Business and Financial Economics, my

goal was to develop a text that would give my students at the University of Illinois

and at Rutgers University the basic statistical tools they need not only for a general

business school education but also for the statistics that a finance major needs. Over

time, that original purpose has evolved into a broad statistical approach that

integrates concepts, methods, and applications. The scope has widened to include

all students of business and economics, especially upper-level undergraduates and

MBA students, who want a clear and comprehensive introduction to statistics. This

book is written for them.

A distinguishing feature of the text is the creative ways in which it weaves useful

and interesting concepts from general business (accounting, marketing, manage-

ment, and quality control), economics, and finance into the text. It actively shows

how various statistical methods can be applied in business and financial economics.

More specifically, the text incorporates the following pedagogical features:

Usefulness of statistical methods. This text features an unusually large number of

real-life examples that show students how statistical methods can help them.

Non-calculus approach. Extensive use of examples and applications (more than

500) in the text and problem sets at the end of the chapters (more than 1,500) shows

students how statistical methodology can be effectively implemented and applied.

All the examples, applications, and problems can be worked out using only high-

school algebra and geometry. Calculus, which offers an alternative and intellectually

satisfying perspective, is presented only in footnotes and appendixes.

Emphasis on data analysis. Most statistics texts, in their justifiable need to demon-

strate to students how to use the various statistical tests, focus all too often on the

mechanical aspects of problem solving. Lost is the simple but important notion that

statistics is the study of data. Data analysis is an important theme of this text. In

particular, one set of financial economic data for GM and Ford is used continuously

throughout the text for various types of statistical analysis.

xxv



Use of computers. After students understand the step-by-step processes, the text

shows how computers can make statistical analysis more efficient and less time

consuming. Examples utilizing MINITAB, Lotus 1-2-3, and SAS are shown, and a

supplementary manual based entirely on MINITAB is available.

Straightforward language. Not least, the text employs clear and simple language to

guide the reader to a knowledge of the basic statistical methods used in business

decision making and financial economics.

Additionally, this text explores in slightly greater depth many of the standard

statistical topics: There is more coverage of regression analysis than in other texts

(see Chaps. 13, 14, 15, and 16 and part of Chaps. 18, 19, 20, and 21). Quality control

is explicitly integrated with point and interval estimation (Chap. 10). Stock market

indexes and the index of leading economic indicators are both treated as an

expanded portion of regular index numbers (Chap. 19).

Many chapters have appendixes that develop useful financial applications of the

standard topics found in the chapter body. Some appendixes may be used as case

studies and the following will especially serve the purpose:

Financial Statements and Financial Ratio Analysis (Appendix 3 of Chap. 2,

Appendix 1 of Chap. 3, and Appendix 3 of Chap. 4 may be used together as a

single case study)

Applications of the Binomial Distribution to Evaluate Call Options (Appendix 2

of Chap. 6)

Cumulative Normal Distribution Function and the Option Pricing Model (Appendix

2 of Chap. 7)

Control Chart Approach for Cash Management (Appendix 1 of Chap. 10)

Organization of the Text

The text has 21 chapters divided into five parts. Part I, Introduction and Descriptive

Statistics, consists of four chapters. Following the introductory chapter, Chap. 2

addresses Data Collection and Presentation. Chapter 3 delves into Frequency

Distributions and Data Analyses. It is followed by Numerical Summary Measures in

Chap. 4.

Probability and Important Distributions, Part II, includes five chapters, the first

of which, Chap. 5, is entitled Probability Concepts and Their Analysis. Discrete

Random Variables and Probability Distributions are discussed in Chap. 6, after

which Chap. 7 covers The Normal and Lognormal Distributions. Sampling and

Sampling Distributions are covered in Chap. 8. Chapter 9 closes Part II of the text

by discussing Other Continuous Distributions and Moments for Distributions.

Part III, Statistical Inferences Based on Samples, comprises three chapters.

Chapter 10 covers Estimation and Statistical Quality Control. Chapter 11 explores

Hypothesis Testing and Chap. 12 provides an Analysis of Variance and Chi-Square

Tests.
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Chapters 13, 14, 15, and 16 make up Part IV, which is entitled Regression and

Correlation: Relating Two or More Variables. The first of these chapters is Simple

Linear Regression and the Correlation Coefficient. From a discussion of Simple

Linear Regression and Correlation: Analyses and Applications in Chap. 14, this

book moves on to address Multiple Linear Regression in Chap. 15. Finally,

Chap. 16 closes Part IV with a look at Other Topics in Applied Regression

Analysis.

The last part of the text, Part V, considers Selected Topics in Statistical Analysis

for Business and Economics. Nonparametric Statistics is the subject of Chap. 17,

which is followed by an exploration of Time Series: Analysis, Model, and

Forecasting in Chap. 18. Chapters 19 and 20 discuss Index Numbers and Stock

Market Indexes, and Sampling Surveys: Methods and Applications, respectively.

Statistical Decision Theory: Methods and Applications is the topic of the final

chapter, Chap. 21.

There are four appendixes. Appendix A provides 14 statistical tables. Appendix 1

gives a full description of the data sets available on a computer disk. Appendix 2

briefly describes the use of MINITAB, especially the microcomputer version,

and Appendix 3 introduces the microcomputer version of SAS. Finally, to make

sure they are on the right track in working the problems, students can consult the

section at the end of this book that gives short Answers to Selected Odd-Numbered

Questions and Problems. (Full solutions are given in the Instructor’s Guide.)

About This First Edition

One legitimate concern with a new statistics text is that the first edition will contain

errors (too many errors!) that must await correction only in the second edition. We

have taken action to confront this problem by carrying out a thorough and detailed

accuracy check of the entire text: Every problem in the text has been reworked by

“outsiders” to the project. So confident are we that this is an error-free book that the

publisher is willing to pay $10 for the first report (in writing) of each substantive

error.

Alternative Ways to Use the Text

Based upon my own teaching experience, I would like to suggest three alternative

ways to use this textbook.

Alternative One: The goal of this alternative is to demonstrate to students the basic

applications of statistics in general business, economics, and finance. This goal can be

achieved by skipping all appendixes, technical footnotes, optional sections, and other

sections at the instructor’s discretion. Using this alternative, the student needs only
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basic algebra, geometry, and business and economic common sense to understand

how statistics can be used in general business, economics, and finance applications.

Alternative Two: The goal of this alternative is not only to illustrate basic overall

business, economic, and finance applications but to show how to use statistics in

financial analysis and decision making. This goal can be achieved by omitting all

the technical appendixes, technical footnotes, and most optional sections but

covering all or most of the following topics:

Chapter Topic

2 Appendices 2 and 3 of Chap. 2 on stock and market rates of return and on financial

statements and financial ratio analysis

3 Appendix 1 of Chap. 3, financial ratio analysis

4 Appendix 3 of Chap. 4, financial ratios for three auto firms. As mentioned earlier,

Appendix 3 of Chap. 2, Appendix 1 of Chap. 3, and Appendix 3 of Chap. 4 can

be treated as a single case study

6 Appendix 2 of Chap. 6, applications of the binomial distribution to evaluate call

options

7 Appendix 2 of Chap. 7, cumulative normal distribution function and the option pricing

model

9 Section 9.8, analyzing the first four moments of rates of return of the 30 DJI firms

10 Appendix 1 of Chap. 10, a control chart approach for cash management

19 Section 19.5, stock market indexes

21 Sections 21.7 and 21.8 on mean and variance trade-off analysis and the mean

and variance method for capital budgeting decisions; Appendices 2, 3, and 4 of

Chap. 21 on the graphical derivation of the capital market line, present value and

net present value, and derivation of the standard deviation for NPV

Alternative Three: The objective of the third approach is to show students how

calculus can be used in statistical analysis. To achieve this goal, the instructor can

try to cover all optional sections and as many of the technical footnotes and

appendixes as possible. To do this, of course, the instructor may have to skip

many application examples, such as the finance applications discussed in Alterna-

tive Two.

Supplementary Materials

Study Guide, by Ahyee Lee, Monmouth College, and Ronald L. Moy, St. John’s

University. This fine workbook encourages learning by doing. Each chapter begins

with a section describing the basic import of each chapter in intuitive terms. Then,

the student goes on to a formal review of the chapter and several worked-out

problems that show in detail how the solution is obtained. A variety of multiple-

choice, true-false, and open-ended questions and problems follows, and finally a

brief sample test is given. All answers are included at the end of each chapter.
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M1N1TAB Manual, by John C. Lee, University of Illinois. This manual, keyed to

the text chapter by chapter, is designed to help students use M1NITAB throughout

the course. Each chapter includes a variety of specific applications and ends with

both a statistical summary and a summary of MINITAB commands.

Data Sets. A wide variety of macroeconomic, financial, and accounting data is

available on computer disks to facilitate student practice. A complete listing of

these data sets is given at the end of this book. The disks themselves are free of

charge.

Instructor’s Guide. The three main parts of the Instructor’s Guide are the Overview

and Objectives by Cheng F. Lee; the complete Solutions to the text problems by

Ahyee Lee and Ronald L. Moy; and the Test Bank, with more than 1,000 multiple-

choice and true-false problems, by Alice C. Lee, University of Pennsylvania. Most

instructors will find the Instructor’s Guide indispensable.

Computerized Testing Program. With the Test Bank on disk for either IBM or

Macintosh computers, instructors can select, rearrange, edit, or add problems as

they wish.

New Jersey, USA Cheng-Few Lee
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12.3.2 Scheffé’s Multiple Comparison . . . . . . . . . . . . . . . 556

12.4 Two-Way ANOVA with One Observation

in Each Cell, Randomized Blocks . . . . . . . . . . . . . . . . . . . . 557

12.4.1 Basic Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

12.4.2 Specifying the Hypotheses . . . . . . . . . . . . . . . . . . . 558

12.4.3 Between and Residual Sum of Squares . . . . . . . . . . 558

12.4.4 Between Variance, Error Variance,

and F-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560

12.4.5 Population Model for Two-Way ANOVA

with One Observation in Each Cell . . . . . . . . . . . . . 561

12.5 Two-Way ANOVA with More than One

Observation in Each Cell . . . . . . . . . . . . . . . . . . . . . . . . . . 563

12.5.1 Basic Concept and Hypothesis Testing . . . . . . . . . . 563

12.5.2 Generalizing the Two-Way ANOVA . . . . . . . . . . . 566

12.6 Chi-Square as a Test of Goodness of Fit . . . . . . . . . . . . . . . 568

12.7 Chi-Square as a Test of Independence . . . . . . . . . . . . . . . . . 572

12.8 Business Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574

12.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582

Questions and Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582

Project III: Project for Statistical Inferences Based on Samples . . . . . 606

Appendix 1: ANOVA and Statistical Quality Control . . . . . . . . . . . . 607

Part IV Regression and Correlation: Relating Two

or More Variables

13 Simple Linear Regression and the Correlation Coefficient . . . . . . 615

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616

13.2 Population Parameters and the Regression Models . . . . . . . . 616

13.2.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . 617

13.2.2 Building the Population Regression Model . . . . . . . 618

13.2.3 Sample Versus Population Regression Model . . . . . 621

xlii Contents



13.3 The Least-Squares Estimation of α and β . . . . . . . . . . . . . . . 622

13.3.1 Scatter Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 622

13.3.2 The Method of Least Squares . . . . . . . . . . . . . . . . . . 624

13.3.3 Estimation of Intercept and Slope . . . . . . . . . . . . . . . 625

13.4 Standard Assumptions for Linear Regression . . . . . . . . . . . . . 629

13.5 The Standard Error of Estimate and the Coefficient

of Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631

13.5.1 Variance Decomposition . . . . . . . . . . . . . . . . . . . . . 632

13.5.2 Standard Error of Residuals (Estimate) . . . . . . . . . . . 635

13.5.3 The Coefficient of Determination . . . . . . . . . . . . . . . 635

13.6 The Bivariate Normal Distribution

and Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 636

13.6.1 The Sample Correlation Coefficient . . . . . . . . . . . . . 638

13.6.2 The Relationship Between r and b . . . . . . . . . . . . . . 639

13.6.3 The Relationship Between r and R2 . . . . . . . . . . . . . 639

13.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646

Questions and Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646

Appendix 1: Derivation of Normal Equations and Optimal

Portfolio Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659

Appendix 2: The Derivation of Equation 13.20 . . . . . . . . . . . . . . . . 661

Appendix 3: The Bivariate Normal Density Function . . . . . . . . . . . . 661

Appendix 4: American Call Option and the Bivariate

Normal CDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664

14 Simple Linear Regression and Correlation: Analyses

and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675

14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675

14.2 Tests of the Significance of α and β . . . . . . . . . . . . . . . . . . . 676

14.2.1 Hypothesis Testing and Confidence Interval

for β and α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677

14.2.2 The F-Test Versus the t-Test . . . . . . . . . . . . . . . . . . 682

14.3 Test of the Significance of ρ . . . . . . . . . . . . . . . . . . . . . . . . . 685

14.3.1 t-Test for Testing ρ ¼ 0 . . . . . . . . . . . . . . . . . . . . . 686

14.3.2 z-Test for Testing ρ ¼ 0 or ρ ¼ Constant . . . . . . . . . 687

14.4 Confidence Interval for the Mean Response

and Prediction Interval for the Individual Response . . . . . . . . 688

14.4.1 Point Estimates of the Mean Response

and the Individual Response . . . . . . . . . . . . . . . . . . 688

14.4.2 Interval Estimates of Forecasts under Three

Cases of Estimated Variance . . . . . . . . . . . . . . . . . . 689

14.4.3 Calculating Standard Errors . . . . . . . . . . . . . . . . . . . 691

14.4.4 Confidence Interval for the Mean Response and

Prediction Interval for the Individual Response . . . . . 693

14.4.5 Using MINITAB to Calculate Confidence

Interval and Interval . . . . . . . . . . . . . . . . . . . . . . . . 696

14.5 Business Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700

Contents xliii



14.6 Using Computer Programs to Do Simple

Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713

14.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714

Questions and Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717

Appendix 1: Impact of Measurement Error and Proxy

Error on Slope Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734

Appendix 2: The Relationship Between the F-Test
and the t-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736

Appendix 3: Derivation of Variance for Alternative Forecasts . . . . . 736

15 Multiple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739

15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740

15.2 The Model and Its Assumptions . . . . . . . . . . . . . . . . . . . . . . 740

15.2.1 The Multiple Regression Model . . . . . . . . . . . . . . . . 740

15.2.2 The Regression Plane for Two

Explanatory Variables . . . . . . . . . . . . . . . . . . . . . . . 741

15.2.3 Assumptions for the Multiple Regression Model . . . . 742

15.3 Estimating Multiple Regression Parameters . . . . . . . . . . . . . . 744

15.4 The Residual Standard Error and the Coefficient

of Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747

15.4.1 The Residual Standard Error . . . . . . . . . . . . . . . . . . 747

15.4.2 The Coefficient of Determination . . . . . . . . . . . . . . . 748

15.5 Tests on Sets and Individual Regression Coefficients . . . . . . 750

15.5.1 Test on Sets of Regression Coefficients . . . . . . . . . . 750

15.5.2 Hypothesis Tests for Individual

Regression Coefficients . . . . . . . . . . . . . . . . . . . . . . 752

15.6 Confidence Interval for the Mean Response and

Prediction Interval for the Individual Response . . . . . . . . . . . 756

15.6.1 Point Estimates of the Mean and the

Individual Responses . . . . . . . . . . . . . . . . . . . . . . . . 756

15.6.2 Interval Estimates of Forecasts . . . . . . . . . . . . . . . . . 756

15.7 Business and Economic Applications . . . . . . . . . . . . . . . . . . 759

15.8 Using Computer Programs to Do Multiple

Regression Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766

15.8.1 SAS Program for Multiple Regression Analysis . . . . 766

15.8.2 MINITAB Program for Multiple

Regression Prediction . . . . . . . . . . . . . . . . . . . . . . . 771

15.8.3 Stepwise Regression Analysis . . . . . . . . . . . . . . . . . 772

15.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776

Questions and Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777

Appendix 1: Derivation of the Sampling Variance

of the Least-Squares Slope Estimations . . . . . . . . . . . . . . . . . . . . 788

Appendix 2: Derivation of Equation 15.30 . . . . . . . . . . . . . . . . . . . . 791

xliv Contents



16 Other Topics in Applied Regression Analysis . . . . . . . . . . . . . . . . 793

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794

16.2 Multicollinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794

16.2.1 Definition and Effect . . . . . . . . . . . . . . . . . . . . . . . 794

16.2.2 Rules of Thumb in Determining the Degree

of Collinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796

16.3 Heteroscedasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798

16.3.1 Definition and Concept . . . . . . . . . . . . . . . . . . . . . 798

16.3.2 Evaluating the Existence

of Heteroscedasticity . . . . . . . . . . . . . . . . . . . . . . . 800

16.4 Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804

16.4.1 Basic Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804

16.4.2 The Durbin–Watson Statistic . . . . . . . . . . . . . . . . . 805

16.5 Model Specification and Specification

Bias (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810

16.6 Nonlinear Models (Optional) . . . . . . . . . . . . . . . . . . . . . . . 816

16.6.1 The Quadratic Model . . . . . . . . . . . . . . . . . . . . . . . 816

16.6.2 The Log-Linear and the Log–Log-Linear

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819

16.7 Lagged Dependent Variables (Optional) . . . . . . . . . . . . . . . 822

16.8 Dummy Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832

16.9 Regression with Interaction Variables . . . . . . . . . . . . . . . . . 837

16.10 Regression Approach to Investigating the Effect

of Alternative Business Strategies . . . . . . . . . . . . . . . . . . . . 840

16.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841

Questions and Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841

Project IV: Project for Regression and Correlation Analyses . . . . . . . 859

Appendix 1: Dynamic Ratio Analysis . . . . . . . . . . . . . . . . . . . . . . . 869

Appendix 2: Term Structure of Interest Rate . . . . . . . . . . . . . . . . . . 870

Part V Selected Topics in Statistical Analysis

for Business and Economics

17 Nonparametric Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877

17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 878

17.2 The Matched-Pairs Sign Test . . . . . . . . . . . . . . . . . . . . . . . . 879

17.3 The Wilcoxon Matched-Pairs Signed-Rank Test . . . . . . . . . . 881

17.4 Mann–Whitney U Test (Wilcoxon Rank-Sum Test) . . . . . . . . 884

17.5 Kruskal–Wallis Test for m Independent Samples . . . . . . . . . . 889

17.6 Spearman Rank Correlation Test . . . . . . . . . . . . . . . . . . . . . . 892

17.7 The Number-of-Runs Test . . . . . . . . . . . . . . . . . . . . . . . . . . 894

17.8 Business Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896

17.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905

Questions and Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905

Contents xlv



18 Time Series: Analysis, Model, and Forecasting . . . . . . . . . . . . . . 927

18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928

18.2 The Classical Time-Series Component Model . . . . . . . . . . . . 928

18.2.1 The Trend Component . . . . . . . . . . . . . . . . . . . . . . . 929

18.2.2 The Seasonal Component . . . . . . . . . . . . . . . . . . . . 929

18.2.3 The Cyclical Component and Business Cycles . . . . . 929

18.2.4 The Irregular Component . . . . . . . . . . . . . . . . . . . . . 932

18.3 Moving Average and Seasonally Adjusted Time Series . . . . . 934

18.3.1 Moving Averages . . . . . . . . . . . . . . . . . . . . . . . . . . 934

18.3.2 Seasonal Index and Seasonally Adjusted

Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935

18.4 Linear and Log-Linear Time Trend Regressions . . . . . . . . . . 941

18.5 Exponential Smoothing and Forecasting . . . . . . . . . . . . . . . . 943

18.5.1 Simple Exponential Smoothing and Forecasting . . . . 943

18.5.2 The Holt–Winters Forecasting Model for

Nonseasonal Series . . . . . . . . . . . . . . . . . . . . . . . . . 947

18.6 Autoregressive Forecasting Model . . . . . . . . . . . . . . . . . . . . 952

18.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 956

Questions and Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 956

Appendix 1: The Holt–Winters Forecasting Model

for Seasonal Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 968

19 Index Numbers and Stock Market Indexes . . . . . . . . . . . . . . . . . 973

19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 974

19.2 Price Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 974

19.2.1 Simple Aggregative Price Index . . . . . . . . . . . . . . . . 974

19.2.2 Simple Average of Price Relatives . . . . . . . . . . . . . . 976

19.2.3 Weighted Relative Price Index . . . . . . . . . . . . . . . . . 977

19.2.4 Weighted Aggregative Price Index . . . . . . . . . . . . . . 979

19.3 Quantity Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 982

19.3.1 Laspeyres Quantity Index . . . . . . . . . . . . . . . . . . . . 982

19.3.2 Paasche Quantity Index . . . . . . . . . . . . . . . . . . . . . . 983

19.3.3 Fisher’s Ideal Quantity Index . . . . . . . . . . . . . . . . . . 985

19.3.4 FRB Index of Industrial Production . . . . . . . . . . . . . 985

19.4 Value Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 986

19.5 Stock Market Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 986

19.5.1 Market-Value-Weighted Index . . . . . . . . . . . . . . . . . 987

19.5.2 Price-Weighted Index . . . . . . . . . . . . . . . . . . . . . . . 988

19.5.3 Equally Weighted Index . . . . . . . . . . . . . . . . . . . . . 990

19.5.4 Wilshire 5000 Equity Index . . . . . . . . . . . . . . . . . . . 991

19.6 Business and Economic Applications . . . . . . . . . . . . . . . . . . 993

19.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1002

Questions and Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1002

Appendix 1: Options on Stock Indices and Currencies . . . . . . . . . . . 1013

Appendix 2: Index Futures and Hedge Ratio . . . . . . . . . . . . . . . . . . 1016

xlvi Contents



20 Sampling Surveys: Methods and Applications . . . . . . . . . . . . . . . 1019

20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019

20.2 Sampling and Nonsampling Errors . . . . . . . . . . . . . . . . . . . . 1020

20.3 Simple and Stratified Random Sampling . . . . . . . . . . . . . . . . 1021

20.3.1 Designing the Sampling Study . . . . . . . . . . . . . . . . . 1021

20.3.2 Statistical Inferences in Terms of Simple

Random Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 1022

20.3.3 Stratified Random Sampling . . . . . . . . . . . . . . . . . . 1027

20.4 Determining the Sample Size . . . . . . . . . . . . . . . . . . . . . . . . 1030

20.4.1 Sample Size for Simple Random Sampling . . . . . . . . 1030

20.4.2 Sample Size for Stratified Random Sampling . . . . . . 1034

20.5 Two-Stage Cluster Sampling . . . . . . . . . . . . . . . . . . . . . . . . 1036

20.6 Ratio Estimates Versus Regression Estimates . . . . . . . . . . . . 1040

20.6.1 Ratio Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040

20.6.2 Regression Method . . . . . . . . . . . . . . . . . . . . . . . . . 1042

20.6.3 Comparison of the Ratio and Regression Methods . . . 1043

20.7 Business and Economic Applications . . . . . . . . . . . . . . . . . . 1043

20.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046

Questions and Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046

Appendix 1: The Jackknife Method for Removing Bias

from a Sample Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1059

21 Statistical Decision Theory: Methods and Applications . . . . . . . . 1065

21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066

21.2 Four Key Elements of a Decision . . . . . . . . . . . . . . . . . . . . . 1067

21.3 Decisions Based on Extreme Values . . . . . . . . . . . . . . . . . . . 1068

21.3.1 Maximin Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 1068

21.3.2 Minimax Regret Criterion . . . . . . . . . . . . . . . . . . . . 1069

21.4 Expected Monetary Value and Utility Analysis . . . . . . . . . . . 1070

21.4.1 The Expected Monetary Value Criterion . . . . . . . . . . 1071

21.4.2 Utility Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073

21.5 Bayes’ Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1078

21.6 Decision Trees and Expected Monetary Values . . . . . . . . . . . 1080

21.7 Mean and Variance Trade-Off Analysis . . . . . . . . . . . . . . . . . 1085

21.7.1 The Mean–Variance Rule and the

Dominance Principle . . . . . . . . . . . . . . . . . . . . . . . . 1085

21.7.2 The Capital Market Line . . . . . . . . . . . . . . . . . . . . . 1089

21.7.3 The Capital Asset Pricing Model . . . . . . . . . . . . . . . 1090

21.8 The Mean and Variance Method for Capital

Budgeting Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1096

21.8.1 Statistical Distribution of Cash Flow . . . . . . . . . . . . 1097

21.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1100

Questions and Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1101

Project V: Project for Selected Topics in Statistical Analysis . . . . . . 1115

Contents xlvii



Appendix 1: Using the Spreadsheet in Decision-Tree Analysis . . . . . 1116

Appendix 2: Graphical Derivation of the Capital Market Line . . . . . 1119

Appendix 3: Present Value and Net Present Value . . . . . . . . . . . . . . 1121

Appendix 4: Derivation of Standard Deviation for NPV . . . . . . . . . . 1123

Appendix A Statistical Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125

Table A.1 Probability function of the binomial distribution . . . . . . . . . . . 1125

Table A.2 Poisson probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1130

Table A.3 The standardized normal distribution . . . . . . . . . . . . . . . . . . . 1135

Table A.4 Critical values of t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1137

Table A.5 Critical values of χ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138

Table A.6 Critical values of F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1140

Table A.7 Exponential function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147

Table A.8 Random numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148

Table A.9 Cutoff points for the distribution of the Durbin-Watson

test statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1149

Table A.10 Lower and upper critical values R for the runs test . . . . . . . . 1152

Table A.11 Critical values of W in the Wilcoxon Matched-Pairs

Signed-Rank test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1153

Table A.12 Lower and upper critical values Rn1 and Rn2

of the Wilcoxon Rank-Sum test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1153

Table A.13 Factors for control chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1154

Table A.14 Present value of $l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1155

Appendix B Description of Data Sets . . . . . . . . . . . . . . . . . . . . . . . . 1157

Appendix C Introduction to MINITAB 16 . . . . . . . . . . . . . . . . . . . . 1161

Appendix D Introduction to SAS: Microcomputer Version . . . . . . . 1165

Appendix E Useful Formulas in Statistics . . . . . . . . . . . . . . . . . . . . . 1171

Appendix F Important Finance and Accounting Topics . . . . . . . . . . 1193

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195

xlviii Contents



Part I

Introduction and Descriptive Statistics

Part I of this book describes how statistical data can be effectively presented.

The effective presentation of data is often very important, whether the presentation

itself is a final goal or is to be used as background for further analysis and inference.

Chapter 1 discusses the role of statistics and introduces the basic concepts of

descriptive, inferential, deductive, and inductive statistics. Chapter 2 covers data

collection and the presentation of data in tables and/or graphs (charts). Chapter 3

discusses how data sets can be organized in a frequency distribution. Finally,

in Chapter 4, important statistical measures of various data characteristics are

developed and presented; these measures are then used in statistical analyses.

The examples in Part I deal with macroeconomic data, financial ratios, and the

rates of return on shares of stock. Other, related topics are also discussed.

Chapter 1 Introduction

Chapter 2 Data Collection and Presentation

Chapter 3 Frequency Distributions and Data Analyses

Chapter 4 Numerical Summary Measures
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Introduction

Chapter Outline
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Key Terms

Statistics Hypothesis testing

Data Deduction

Descriptive statistics Deductive statistical analysis

Inferential statistics Induction

Population Inductive statistical analysis

Sample

1.1 The Role of Statistics in Business and Economics

Statistics is a body of knowledge that is useful for collecting, organizing, presenting,

analyzing, and interpreting data (collections of any number of related observations)

and numerical facts. Applied statistical analysis helps business managers and

economic planners formulate management policy and make business decisions

more effectively. And statistics is an important tool for students of business and

economics. Indeed, business and economic statistics has become one of the most

important courses in business education, because a background in applied statistics

is a key ingredient in understanding accounting, economics, finance, marketing,

production, organizational behavior, and other business courses.

C.-F. Lee et al., Statistics for Business and Financial Economics,
DOI 10.1007/978-1-4614-5897-5_1, # Springer Science+Business Media New York 2013

3



We may not realize it, but we deal with and interpret statistics every day. For

example, the Dow Jones Industrial Average (DJIA) is the best-known and most

widely watched indicator of the direction in which stock market values are heading.

When people say, “The market was up 12 points today,” they are probably referring

to the DJIA. This single statistic summarizes stock prices of 30 large companies.

Rather than listing the prices at which all of the approximately 2,000 stocks traded

on the New York Stock Exchange are currently selling, analysts and reporters often

cite this one number as a measure of overall market performance.

Let’s take another example. Before elections, the media sometimes present

surveys of voter preference in which a sample of voters instead of the whole

population of voters is asked about candidate preferences. The media usually give

the results of the poll and then state the possible margin of error. A margin of error

of 3 %means that the actual extent of a candidate’s popular support may differ from

the poll results by as much as 3 % points in either direction (“plus or minus”).

Anyone who conducts a survey must understand statistics in order to make such

decisions as how many people to contact, how to word the survey, and how to

calculate the potential margin of error.

In business and industry, managers frequently use statistics to help them make

better decisions. A shoe manufacturer, for instance, needs to produce a forecast of

future sales in order to decide whether to expand production. Sales forecasts

provide statistical guidance in most business decision making.

On a broader scale, the government publishes a variety of data on the health of

the economy. Some of the most popular measures are the gross national product

(GNP), the index of leading economic indicators, the unemployment rate, the

money supply, and the consumer price index (CPI). All these measures are statistics

that are used to summarize the general state of the economy. And, of course,

business, government, and academic economists use statistical methods to try to

predict these macroeconomic and other variables.

The following additional examples are presented to show that the use of statistics

is widespread not only in business and economics but in everyday life as well.

Example 1.1 TV Show Ratings. Television executives and advertisers use the

ratings provided by A. C. Nielsen to determine which television shows are the

most popular. The Nielsen organization regularly surveys a sample of television

viewers in the United States about their viewing habits. Their responses are then

used to draw conclusions about the viewing habits of the entire US population.

Example 1.2 ABC-GPA. In order to assign letter grades at the end of the semester, a

teacher may calculate each student’s grade point average to determine how well

that student has performed in the class. In so doing, the teacher is calculating the

mean or average of a series of grade points. The teacher might also want to know

how widely dispersed the scores are across students in that class. In Chap. 4, we will

discuss measures that describe the dispersion, or spread, of a group of data.

Example 1.3 One, Two, Three, “Fore!”. To improve their golf scores, golfers often

compute the average distance they can hit a ball with each golf club. These golfers

4 1 Introduction
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then use the mean of a series of measurements to select the best club and thus fine-

tune their game.

Example 1.4 Health Benefits of Oat Bran. To determine the health benefits of eating

oat bran, a doctor who has access to a large database to which many physicians have

contributed compares the average cholesterol level of people who eat oat bran with

that of similar people who don’t eat oat bran. The doctor is using statistics to evaluate

the health benefits of different diets.

Example 1.5 Fertilizer Choice and Plant Growth Rate. Refusing to accept on blind

faith the advertising claims of either supplier, a farmer compares the average

growth of plants fed with fertilizer A with the average growth of plants fed with

fertilizer B to determine which fertilizer is more effective.

1.2 Descriptive Versus Inferential Statistics

Having gotten a feel for the use of statistics by looking at several illustrations, we

can now refine our definition of the term. Statistics is the collection, presentation,

and summary of numerical information in such a way that the data can be easily

interpreted.

There are two basic types of statistics: descriptive and inferential. Descriptive
statistics deals with the presentation and organization of data. Measures of central

tendency, such as the mean and median, and measures of dispersion, such as the

standard deviation and range, are descriptive statistics. These types of statistics

summarize numerical information. For example, a teacher who calculates the mean,

median, range, and standard deviation of a set of exam scores is using descriptive

statistics. Descriptive statistics is the subject of the first part of this book.

The following are examples of the use (or misuse) of descriptive statistics.

Example 1.6 Baseball Players’ Batting Averages. Descriptive statistics can be

used to provide a point of reference. The batting averages of baseball players are

commonly reported in the newspapers, but to people unfamiliar with baseball, these

numbers may be misleading. For example, Wade Boggs of the Boston Red Sox hit

.366 in 1988; that is, he got a hit in almost 37 % of his official at bats. Because he

was unsuccessful over 63 % of the time, however, a person with little knowledge of

baseball might conclude that Boggs is an inferior hitter. Comparing Boggs’s

average to the mean batting average of all players in the same year, which was

.285, reveals that Boggs is among the best hitters.

Example 1. 7 Monthly Unemployment Rates. Graphical statistical analysis can be

used to summarize small amounts of information. Figure 1.1 displays the US

unemployment rates for each month from January 2001 to July 2011. It shows,

for instance, that the unemployment rates for December 2001, December 2005, and

December 2010 were 5.7 %, 4.9 %, and 9.4 %, respectively.
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Example 1.8 Comparison of Male and Female Earnings. Descriptive statistics can

also be used to compare different groups of data. For example, the mean earnings of

full-time working men of different age groups who have had a 4-year college

education can be compared with the mean earnings of full-time working women of

the same age groups with the same educational background to see whether any

differences exist between their earnings. Drawing on 1990 Bureau of the Census

data, the Home News of central New Jersey used the graph reproduced in Fig. 1.2 to

show that mean earnings for full-timeworkingmen are higher than those for full-time

working women. This figure also shows that the pay gap between full-time working

men and women is wider in older age groups. A college-educated woman between

the ages of 18 and 24 earns an average of 92 cents for every dollar earned by a man of

the same age and educational background. The gap widens steadily as we look at

older age groups. Between ages 55 and 64, the average female worker in 1991 was

making only 54 cents for every dollar earned by a man of like age and education.1

Example 1.9 Returns on Stocks and Bonds. A financial analyst computes financial

returns on stocks, corporate bonds, and government bonds to compare their perfor-

mance during, say, the past 20 years. Because the analyst is collecting and

summarizing data, we say that he or she is using descriptive statistics.

Example 1.10 Pitfalls of Comparing the Earnings of Males and Females. Wemust

always be careful when interpreting descriptive statistics. For example, it is some-

times noted that, on average, women earn 70 cents for each dollar that men earn.

10

8

6

4

01/01 01/02 01/03 01/04 01/05 01/06 01/07 01/08 01/09 01/10 01/11

5.7% 9.4%4.9%

Dec. ’10Dec. ’05Dec. ’01

Fig. 1.1 Monthly unemployment rate for the United States (January 2001–July 2011) (Source:
Bureau of Labor Statistics)

1 This graph is called a bar chart. Bar charts will be discussed in detail in Chap. 2.
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That is, the mean earnings for women are compared to the mean earnings for men

to suggest that women experience wage discrimination. These descriptive statistics,

however, may not tell the whole story. Differences in earnings may result from

different occupational choices (which are perhaps influenced by social perceptions

of the role women play), from different educational levels and choices (such as which

subject to major in), or from career interruptions (which women may experience

when choosing to leave their jobs to raise a family). Attributing wage differences

entirely to discrimination, then, is an example of the misuse of statistics.2

Inferential statistics deals with the use of sample data to infer, or reach, general

conclusions about a much larger population. In statistics, we define a population as

the entire group of individuals we are interested in studying. A sample is any subset of
such a population. In the election example presented earlier, the pollsters took a

sample because it would have been too expensive and time-consuming to contact

every voter. This is an example of the use of inferential statistics, because conclusions

about a population were made on the basis of sample information. There might be

differences between the characteristics of the actual population and the information

gained from a sample, so errors can result. Inferential statistics—and in particular
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Fig. 1.2 Mean earnings for full-time working men and women, by age and education (Source:
Home News, November 14, 1991. Reprinted by permission of the Associated Press)

2Whether or not career interruptions should be a factor is a matter of debate among behavioral

scientists.
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hypothesis testing, in which sample information is used to test a hypothesis about a

population—is the subject of another major part of this book. Here we will merely

look at several examples of inferential statistics.

Example 1.11 Sampling Survey of Residents’ Voting Decision. To obtain informa-

tion on how residents will vote, the Jericho Clarion takes a sample and asks the

people selected as part of the sample for whom they will vote. This newspaper is

using inferential statistics because it is inferring, from a sample, information about

a larger population. Again, the newspaper samples the population rather than

contacting all its members, because taking a sample is a lot cheaper and less

time-consuming.

Example 1.12 Unemployment Rate. The federal government releases information

on the unemployment rate every month, which has been discussed in Example 1.7.

To arrive at this figure, it samples households across the United States to determine

the employment status of the members of those households. Extrapolating from the

sample results to the general population is an example of applying inferential

statistics.

Example 1.13 Quality Control via Sampling Data. Suppose a production manager

of Ford Motor Company compares two samples of a piston produced by different

methods to find out whether the two methods result in different fractions of

defective units. This production manager takes a sample of 100 pistons produced

by one method and checks to see how many are defective and then compares this

number to the number of defectives generated by the second production method.

One hypothesis is that the number of defectives from the two methods is equal; an

alternative hypothesis is that they are not. Inferential statistics can be used here to

determine whether the proportions are sufficiently different for the first of these

hypotheses to be rejected. This cost-conscious manager has taken a sample to gain

information on a much larger quantity.

Example 1.14 A Record Drop in Stock Prices. Statistics is used to summarize the

performance of the stock market on a given day. The Dow Jones Industrial Average,

an average of the stocks of 30 major firms traded on the New York Stock Exchange,

is used as a barometer of the performance of the overall stock market. Other

indexes, such as Standard & Poor’s 500 Composite Index (S&P 500), the Value

Line Index, and the American Stock Exchange Index, are also calculated to generate

summary measures of stock market performance. Each of these measures is derived

through inferential statistics, because a sample is used to provide representative—

though incomplete—information about the stock market at large.3 For example, the

Dow Jones Industrial Average dropped 519.83 points on August 10, 2011. It was the

ninth largest point drop in history, as indicated in Table 1.1.

3 Such is not the case, however, with the NYSE Composite Index. This index is a weighted average

(mean) of all the firms on the NYSE and is thus the value of a population characteristic of a

population.
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Example 1.15 Average Daily Trading Volumes. The growth in the number of

financial instruments, and in the volume of trade in these instruments, today offers

both a timely, crucial, and apropos challenge to current market activities. For

example, the amount of trading in New York Stock Exchange has experienced

growth, as shown in Fig. 1.3. Secondary markets such as New York Stock

Exchange involve already existing issues that are traded among investors. In this

case, the instruments are traded between the current investors and the potential

investors in a corporation. The proceeds of the sale do not go to the firm but to the

current owners of the security.

Table 1.1 Ten largest Dow

Jones drops (10/27/97–08/10/11)
777.68 pts. to 10,365.45 (7.5 %) Sep. 29, 2008

733.08 pts. to 8,577.91 (8.5 %) Oct. 15, 2008

684.81 pts. to 8,920.70 (7.7 %) Sep. 17, 2001

679.95 pts. to 8,149.09 (8.3 %) Dec. 1, 2008

678.91 pts. to 8,579.19 (7.9 %) Oct. 9, 2008

634.76 pts. to 10,809.85 (5.9 %) Aug. 8, 2011

617.77 pts. to 10,305.78 (6.0 %) April 14, 2000

554.26 pts. to 7,616.14 (7.7 %) Oct. 27, 1997

519.83 pts. to 10,719.94 (4.8 %) Aug. 10, 2011

514.45 pts. to 8,519.21 (6.0 %) Oct. 22, 2008

Source: Wikipedia

Fig. 1.3 NYSE average daily trading volumes and Standard & Poor’s 500 Composite Index

(S&P500) (Source: NYSE Statistics Archive in NYSE Euronext website)
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1.3 Deductive Versus Inductive Analysis in Statistics

We also encounter another dichotomy in statistical analysis. Deduction is the use of

general information to draw conclusions about specific cases. For example, probabil-

ity tells us that if a student is chosen by lottery from a calculus class composed of 60

mathematics majors and 40 business administration majors, then the odds against

picking a mathematics majors are 4–6. Thus we can deduce that about 40 % of such

single-member samples of the students in this calculus class will be business admin-

istrationmajors. As another example of deduction, consider a firm that learns that 1%

of its auto parts are defective and concludes that in any random sample, 1%of its parts

are therefore going to be defective. The use of probability to determine the chance of

obtaining a particular kind of sample result is known as deductive statistical analysis.
In Chaps. 5, 6, and 7, we will learn how to apply deductive techniques when we

know everything about the population in advance and are concerned with studying

the characteristics of the possible samples that may arise from that known population.

Induction involves drawing general conclusions from specific information.

In statistics, this means that on the strength of a specific sample, we infer something

about a general population. The sample is all that is known; we must determine the

uncertain characteristics of the population from the incomplete information avail-

able. This kind of statistical analysis is called inductive statistical analysis. For
example, if 56 % of a sample prefers a particular candidate for a political office,

then we can estimate that 56 % of the population prefers this candidate. Of course,

our estimate is subject to error, and statistics enables us to calculate the possible

error of an estimate. In this example, if the error is 3 % points, it can be inferred that

the actual percentage of voters preferring the candidate is 56 % plus or minus 3 %;

that is, it is between 53 % and 59 %.

Deductive statistical analysis shows how samples are generated from a popula-

tion, and inductive statistical analysis shows how samples can be used to infer the

characteristics of a population. Inductive and deductive statistical analyses are fully

complementary. We must study how samples are generated before we can learn to

generalize from a sample.

1.4 Summary

This chapter introduced the concept of statistics by presenting examples from

everyday life. We saw that statistics can serve as a fundamental tool for decision

making not only in business and economics but also in teaching, sports, medicine,

quality control, and politics. Finally, we noted that statistics can be classified as

either descriptive or inferential, and we drew the distinction between deductive and

inductive analysis in statistics.

In the next chapter, we explain the process of collecting data and discuss how to

present these data so that they can be interpreted easily and effectively.
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Questions and Problems

1. Briefly explain why learning statistical inference is important for students of

business and economics. Give two examples.

2. Define the term statistics. What are the two basic types of statistics? Describe

them and give examples.

3. Explain the difference between deductive and inductive statistics. Illustrate

your answer with examples taken from everyday life.

4. You are assigned by your general manager to examine each of last month’s

sales transactions. Find their average, find the difference between the highest

and lowest sates figures, and construct a chart showing the differences between

charge account and cash customers. Is this a problem in descriptive or inferen-

tial statistics?

5. Suppose you are dealing with problems in probability and statistical inference.

Which is usually the larger value in the problem, the population size or the

sample size? Why?

6. State which type of statistical problem (deductive or inductive) makes each of

the following assumptions.

(a) You know what the population characteristics are.

(b) You know what the sample characteristics are.

7. When a cosmetic manufacturer tests the market to determine howmany women

will buy eyeliner that has been tested for safety without subjecting animals to

injury, is it involved in a descriptive statistics problem or an inferential

statistics problem? Explain your answer.

8. As controller of the Hamby Corporation, you are directed by the chairman of

the board to investigate the problem of overspending by employees who have

expense accounts. You ask the accounting department to provide you with

records of the number of dollars spent by each of 25 top employees during the

past month. The following record is provided:

$292 $494 $600 $807 $535

435 870 725 299 602

322 397 390 420 469

712 520 575 670 723

560 298 472 905 305

The question the board of directors wanted to be answered is “Howmany of our

25 top executives spent more than $600 last month?” What will be your

answer? Are you dealing with descriptive statistics or inferential statistics?

9. A teacher has just given an algebra exam. What are some of the statistics she

could compute?
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10. Suppose the teacher in question 9 is teaching four algebra classes. She would

like to predict the average course grade of all her students from only the

midterm scores. Should she use inferential or descriptive statistics?

11. Suppose the teacher in question 10 would like to predict the average grade of all

her students by using only the midterm scores from one class. Should she use

inferential or descriptive statistics?

12. A bullet manufacturer would like to keep the number of duds (bullets that won’t

fire) to a maximum of 2 per box of 100. Should inferential or descriptive

statistics be used to decide this issue? Why?

13. Explain why election pollsters use inferential statistics rather than descriptive

statistics to predict the outcome of an election.

14. Explain whether each of the following was arrived at via descriptive or

inferential statistics.

(a) Ted Williams’ lifetime batting average

(b) The number of people watching the Super Bowl, based on A. C. Nielsen’s

ratings

(c) The number of people who favor teacher-led prayer in school, based on a

survey of churchgoers

(d) The average rate of return for IBM stock over the last 10 years

15. Suppose you are interested in purchasing AT&T stock. You know that AT&T

stock has had an average rate of return of 8 % over the last 5 years. Explain

how you could use descriptive statistics to help you decide whether to

purchase AT&T.

16. A popular commercial claims that “Four out of five dentists prefer sugarless

gum.” Is this conclusion drawn from a sample or a population?

17. The most commonly reported indicator of stock market performance is the

Dow Jones Industrial Average. Explain whether the firms whose share price are

included in the DJIA represent a sample or a population.

18. Use the information given in the accompanying figure to answer the following

questions.

(a) Which month has the greatest amount of help-wanted advertising?

(b) How did help-wanted advertising fluctuate during the period of October

1988 through September 1991?

12 1 Introduction



170%

150%

130%

110%

90%

70%
1988 1989

Help-Wanted Advertising In percent,
seasonally adjusted (1967=100)

1990 1991

HELP-WANTED advertising remained
unchanged in September from a month
earlier at 91% of the 1967 average, the
Conference Board reports.

Source: Wall Street Journal, November 7, 1991, p. A1

19. Suppose a Gallup poll is to be conducted to predict the outcome of the 1992

presidential election. Should the pollsters survey a sample or a population?

20. If managers at Weight Watchers are interested in the average number of pounds

that people on Weight Watchers diets lose, should they use a sample or the

population to find out?

21. Suppose that in question 20, Weight Watchers uses a sample. Does this

represent the use of inferential or descriptive statistics? How would your

answer change if Weight Watchers used the population?

22. The following list gives the seven highest-paid baseball players for 1992 and

their salaries.

Dwight Gooden $5,166,666

George Brett 4,700,000

Roger Clemens 4,300,000

Will Clark 4,250,000

Andy Van Slyke 4,250,000

Darryl Strawberry 4,050,000

Fred McGriff 4,000,000

(a) Does this list represent a sample or population of baseball players’ salaries?

(b) If you were the agent for a top baseball star, how could you use the

foregoing information?

23. Suppose Greg Norman has the following scores in his last eight rounds of golf:

71, 68, 64, 73, 69, 62, 75, 69.

(a) If Greg computed his average score over these eight rounds, would he be

computing a descriptive or an inferential statistic?

(b) If Greg used these scores to predict his overall scoring average for the 1993

season, would he be using descriptive or inferential statistics?
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24. Suppose a real estate broker in Albany, New York, is interested in the average

price of a home in a development comprising 100 homes.

(a) If she uses 12 homes to predict the average price of all 100 homes, is she

using inferential or descriptive statistics?

(b) If she uses all 100 homes, is she using inferential or descriptive statistics?

25. J. D. Power is a consulting firm that assesses consumer satisfaction for the auto

industry. Do you think this company uses a sample or the population to conduct

its survey?

26. Using any newspaper of your choice, find examples of statistics from the

following sections:

(a) Sports section

(b) Business section

(c) Entertainment section

27. Are the statistics you found in answering question 26 inferential or descriptive

statistics?

28. The owner of a factory regularly requests a graphical summary of all

employees’ salaries. The graphical summary of salaries is an example of

descriptive statistics inferential statistics?

29. A manager asked 50 employees in a company of their ages. On the basis of this

information, the manager states that the average age of all the employees in the

company is 39 years. The statement of the manager is an example of descriptive

statistics inferential statistics.

30. Refer to Table 2.2, in which annual macroeconomic data including GDP, CPI,

3-month T-bill rate, prime rate, private consumption, private investment, net

exports, and government expenditures from 1960 to 2009 are given. Answer

the following questions.

(a) How many observations are in the data set?

(b) How many variables are in the data set?

31. Refer to Table 2.2, which of the variables are qualitative and which are

quantitative variables?
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2.1 Introduction

The collection, organization, and presentation of data are basic background mate-

rial for learning descriptive and inferential statistics and their applications. In this

chapter, we first discuss sources of data and methods of collecting them. Then we

explore in detail the presentation of data in tables and graphs. Finally, we use both

accounting and financial data to show how the statistical techniques discussed in

this chapter can be used to analyze the financial condition of a firm and to analyze

the recent deterioration of the financial health of the US banking industry.

In addition, we use a pie chart to examine how Congress voted on the Gulf

Resolution in 1991.

2.2 Data Collection

After identifying a research problem and selecting the appropriate statistical meth-

odology, researchers must collect the data that they will then go on to analyze.

There are two sources of data: primary and secondary sources. Primary data are

data collected specifically for the study in question. Primary data may be collected

by methods such as personal investigation or mail questionnaires. In contrast,

secondary data were not originally collected for the specific purpose of the study

at hand but rather for some other purpose. Examples of secondary sources used in

finance and accounting include the Wall Street Journal, Barron’s, Value Line
Investment Survey, Financial Times, and company annual reports. Secondary

sources used in marketing include sales reports and other publications. Although

the data provided in these publications can be used in statistical analysis, they were

not specifically collected for that use in any particular study.

Example 2.1 Primary and Secondary Sources of Data. Let us consider the follow-

ing cases and then characterize each data source as primary or secondary:

1. (Finance) To determine whether airline deregulation has increased the return and

risk of stocks issued by firms in the industry, a researcher collects stock data

from the Wall Street Journal and the Compustat database. (The Compustat

database contains accounting and financial information for many firms.)

2. (Production) To determine whether ball bearings meet measurement

specifications, a production engineer examines a sample of 100 bearings.

3. (Marketing) Before introducing a hamburger made with a new recipe, a firm

gives 25 customers the new hamburger and asks them on a questionnaire to rate

the hamburger in various categories.

4. (Political science) A candidate for political office has staff members call 1,000

voters to determine what candidate they prefer in an upcoming election.

5. (Marketing) A marketing firm looks up, in Consumer Reports, the demand for

different types of cars in the United States.
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6. (Economics) An economist collects data on unemployment from a Department

of Labor report.

7. (Accounting) An accountant uses sampling techniques to audit a firm’s accounts

receivable or its inventory account.

8. (Economics) The staff from the Department of Labor uses a survey to estimate

the current unemployment rate in the United States.

The cases numbered 1, 5, and 6 illustrate the use of secondary sources; these

researchers relied on existing data sets. The remainder involve primary sources

because the data involved were generated specifically for that study.

The main advantage of primary data is that the investigator directly controls how

the data are collected; therefore, he or she can ensure that the information is

relevant to the problem at hand. For example, the investigator can design the

questionnaires and surveys to elicit the most relevant information. The disadvan-

tage of this method is that developing appropriate surveys or questionnaires

requires considerable time, money, and experience. In addition, mail questionnaires

are usually plagued by a low response rate. What response rate is acceptable varies

with context and with other factors. A response rate of 50 % is often considered

acceptable, but it is rarely achieved with mail questionnaires.

Fortunately, there are many good secondary sources of information in business,

economics, and finance. Financial information such as stock prices and accounting

data is easy to locate but tedious to organize. As an alternative, databases such as

Compustat and CRSP (Center for Research on Securities Prices) tapes can be used.

Economic data can be found in many government publications, such as the Federal
Reserve Bulletin, the Economic Report of the President, and the Statistical Abstract
of the United States. In addition, macroeconomic variables are found in databases

such as that of Data Resources. Of course, not all secondary sources are unimpeach-

able. Possible problems include outdated data, the restrictive definitions used, and

unreliability of the source.

A sample or a census may be taken from either primary or secondary data.

A census contains information on allmembers of the population; a sample contains
observations from a subset of it. A census of primary data results, for example, from

the polling of all voters in a city to determine their preference for mayor. If a subset

of voters in the city is asked about their preference for mayor, a sample of primary

data results. These are both examples of using primary data because the data are

collected for purposes of the study that is under way.

If a researcher records the prices of all the securities traded on the New York

Stock Exchange for 1 day as they are listed in the Wall Street Journal, he or she is
taking a census from a secondary source. However, if he or she takes a subset from

the population—say, every fifth price—he or she is developing a sample of second-

ary data. Note that taking stock prices from the newspaper is an example of using

secondary data because the data were not collected specifically for the study.

Given that the purpose of taking a sample is to gain information on a population,

why do we not take a census every time we need information? The first reason is the

high cost of taking a census. It would be extremely expensive for a pollster who
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wanted information on the outcome of a presidential election to contact all the

registered voters in the country. Of course, the costs of obtaining the names of

voters, hiring people to conduct the survey, performing computer analysis, and

carrying out research must also be incurred when taking a sample, but because the

sample is usually much smaller than the population, these costs are substantially

reduced.

For example, to determine Illinois voters’ preferences in the 1988 presidential

election, the Chicago Tribune sampled 766 Illinois residents who said they would

vote in the election. Obviously, sampling was cheaper than contacting all Illinois

adults. The poll was accurate to within five percentage points, which is an accept-

able margin of error. In Chaps. 8 and 20, we will return to the topic of calculating

the error in sampling.

The second advantage of sampling is accuracy. Because fewer people are

contacted in a sample, the interviewers can allot more time to each respondent. In

addition, the need for fewer workers to conduct the study may make it possible to

select and train a more highly qualified staff of researchers. This, in turn, may result

in a study of higher quality.

Another problem in taking a large census is the time involved. For example,

suppose it would take at least 2 months for the Tribune to contact all the adults in

Illinois. If the election were only 1 month away, the poll would not be of any use. In

cases where the population is very large and will take a long time to reach, a sample

is the more timely method of obtaining information.

This is not to suggest that a sample is always better than a census. A census is

appropriate when the population is fairly small. For example, a census would be

feasible if you wanted information on how the members of a small high school class

intended to vote for student council president because the cost and time of

contacting every member of the class would be relatively low. In contrast, a sample

is more cost- and time-effective when the population is a city, state, nation, or other

large entity.

There are two types of errors that can arise when we are dealing with primary or

secondary data. The first is random error, which is the difference between the value
derived by taking a random sample and the value that would have been obtained by

taking a census. This error arises from the random chance of obtaining the specific

units that are included in the sample. Happily, random error can be reduced by

increasing the sample size, and it can be reduced to zero by taking a census.

Random error can also be estimated. Using statistics, the Chicago Tribune was

able to determine that this poll was subject to random error of plus or minus 5 %.

This issue will be discussed in Part III, on sampling and statistical inference.

Systematic error results when there are problems in measurement. Unlike

random error, which can occur only in sampling, systematic error can occur in

both samples and census. For example, suppose that a basketball coach measures

the heights of his players with an imprecise ruler. The resulting error is “system-

atic”: the ruler distorts all measurements equally. As another example, when a

researcher uses an incorrect computer program that calculates an arithmetic mean
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by dividing by the number of observations plus 5, a systematic error results because

the divisor should have been the number of observations.

Let us use the measurement of basketball players’ heights to compare random

and systematic errors. Suppose the basketball coach selects a sample of five players,

measures their heights with a “good” ruler, and finds (by dividing properly) that the

mean of the sample is 6 ft 1 in. If the actual average height of all the players is 6 ft

2 in., the mean random error is �1 in. A random error will result. Now suppose the

coach uses a ruler that is 2 in. too short. When measuring all the players’(a census), he

comes up with a population mean of 6 ft even. In this case, a systematic error of�2 in.

results.

2.3 Data Presentation: Tables

All data tables have four elements: a caption, column labels, row labels, and cells.

The caption describes the information that is contained in the table. The column

labels identify the information in the columns, such as the gross national product,

the inflation rate, or the Dow Jones Industrial Average. Examples of row labels

include years, dates, and states. A cell is defined by the intersection of a specific row

and a specific column.

Example 2.2 Annual CPI, T-Bill Rate, and Prime Rate. To illustrate, Table 2.1

gives some macroeconomic information from 1950 to 2010. The caption is “CPI,

T-bill rate, and prime rate (1950–2010).” The row labels are the years 1950–2010.

The column labels are CPI (consumer pace index), 3-month T-bill rate, and prime

rate. Changes in the consumer price index, the most commonly used indicator of the

economy’s price level, are a measure of inflation or deflation. (For a more detailed

description of the CPI, see Chap. 19.) The 3-month T-bill interest rate is the interest

rate that the USA Treasury pays on 91-day debt instruments, and the prime rate is the

interest rate that banks charge on loans to their best customers, usually large firms.

This table, then, presents macroeconomic information for any year indicated.

For example, the CPI for 2010 was 218.1 and the prime rate in 2008 was 5.09 %.

The relationship between the CPI and 3-month T-bill rate will be discussed in

Chap. 19.

2.4 Data Presentation: Charts and Graphs

It is sometimes said that a picture is worth a thousand words, and nowhere is this

statement more true than in the analysis of data. Tables are usually filled with highly

specific data that take time to digest. Graphs and charts, though they are often less

detailed than tables, have the advantage of presenting data in a more accessible and
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Table 2.1 CPI, T-bill rate, and the prime rate (1950–2010)

Year CPIa 3-Month T-bill rate Prime rate

50 24.1 1.218 2.07

51 26 1.552 2.56

52 26.5 1.766 3

53 26.7 1.931 3.17

54 26.9 0.953 3.05

55 26.8 1.753 3.16

56 27.2 2.658 3.77

57 28.1 3.267 4.2

58 28.9 1.839 3.83

59 29.1 3.405 4.48

60 29.6 2.928 4.82

61 29.9 2.378 4.5

62 30.2 2.778 4.5

63 30.6 3.157 4.5

64 31 3.549 4.5

65 31.5 3.954 4.54

66 32.4 4.881 5.63

67 33.4 4.321 5.61

68 34.8 5.339 6.3

69 36.7 6.677 7.96

70 38.8 6.458 7.91

71 40.5 4.348 5.72

72 41.8 4.071 5.25

73 44.4 7.041 8.03

74 49.3 7.886 10.81

75 53.8 5.838 7.86

76 56.9 4.989 6.84

77 60.6 5.265 6.83

78 65.2 7.221 9.06

79 72.6 10.041 12.67

80 82.4 11.506 15.27

81 90.9 14.029 18.87

82 96.5 10.686 14.86

83 99.6 8.63 10.79

84 103.9 9.58 12.04

85 107.6 7.48 9.93

86 109.6 5.98 8.33

87 113.6 5.82 8.22

88 118.3 6.69 9.32

89 124 8.12 10.87

90 130.7 7.51 10.01

00 172.2 5.85 9.23

01 177.1 3.44 6.91

02 179.9 1.62 4.67

03 184 1.01 4.12

04 188.9 1.38 4.34

(continued)
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memorable form. In most graphs and charts, the independent variable is plotted on

the horizontal axis (the x-axis) and the dependent variable on the vertical axis (the

y-axis). Frequently, “time” is plotted along the x-axis. Such a graph is known as a

time-series graph because on it, changes in a dependent variable (such as GDP,

inflation rate, or stock prices) can be traced over time.

Line charts are constructed by graphing data points and drawing lines to connect
the points. Figure 2.1 shows how the rate of return on the S&P 500 and the 3-month

T-bill rate have varied over time.1 The independent variable is the year (ranging

from 1990 to 2010), so this is a time-series graph. The dependent variables are often

in percentages.

Figure 2.2 is a graph of the components of the gross domestic product (GDP)—

personal consumption, government expenditures, private investment, and net

exports—over time. This is also a time-series graph because the independent

variable is time. It is a component-parts line chart. These series have been

“deflated” by expressing dollar amounts in constant 2005 dollars. (Chap. 19

discusses the deflated series in further detail.)

Figure 2.2 is also called a component-parts line graph because the four parts of

the GDP are graphed. The sum of the four components equals the GDP. Using this

type of graph makes it possible to show the sources of increases or declines in the

GDP. (The data used to generate Fig. 2.2 are found in Table 2.2.)

Bar charts can be used to summarize small amounts of information. Figure 2.3

shows the average annual returns for Tri-Continental Corporation for investment

periods of seven different durations ending on September 30, 1991. This figure

shows that Tri-Continental has provided investors double-digit returns during a

50-year period.

It also shows that the investment performance of this company was better

than that of the Dow Jones Industrial Average (DJIA) and the S&P 500.2

Table 2.1 (continued)

Year CPIa 3-Month T-bill rate Prime rate

05 195.3 3.16 6.19

06 201.6 4.73 7.96

07 207.3 4.41 8.05

08 215.3 1.48 5.09

09 214.5 0.16 3.25

10 218.1 0.14 3.25

Source: Economic Report of the President, January 2010
aCPI base: 1982–1984 ¼ 100

1 T-bill rate data can be found in Table 2.1; rates of return on the S&P 500 can be found in

Table 2.4 in Appendix 2 of this chapter. Most of the figures in this book are drawn with the

Microsoft Excel PC program. The procedure for using the Excel program to draw these graphs can

be found in Appendix 1 of this chapter.
2 Both the DJIA and the S&P 500 will be discussed in Chap. 19 of this book.
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As this example illustrates, using a bar graph is most appropriate when we are

comparing only a few items.

Pie charts are used to show the proportions of component parts that make up a

total. Figure 2.4 shows how the US soft drink market was broken down in 1985. The

two industry leaders, Coca-Cola and PepsiCo, enjoyed 40 % and 28 % of the market

share, respectively. The next four largest firms (Seven-Up, Dr Pepper, Royal

Fig. 2.1 Rates of return on S&P 500 and 3-month T-bills

Fig. 2.2 Components of GDP (billions of 2005 dollars)
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Table 2.2 Annual macroeconomic data 1960–2009 (in 2005 dollars)

Year GDPa CPIb

3-month

T-bill

rate

Prime

rate

Private

consumptiona
Private

investmenta
Net

exportsa
Government

expendituresa

1960 2,830.9 29.585 2.88 4.82 1,784.4 296.5 111.5 111.5

1961 2,896.9 29.902 2.35 4.50 1,821.2 294.6 119.5 119.5

1962 3,072.4 30.253 2.77 4.50 1,911.2 332.0 130.1 130.1

1963 3,206.7 30.633 3.16 4.50 1,989.9 354.3 136.4 136.4

1964 3,392.3 31.038 3.55 4.50 2,108.4 383.5 143.2 143.2

1965 3,610.1 31.528 3.95 4.54 2,241.8 437.3 151.4 151.4

1966 3,845.3 32.471 4.86 5.63 2,369.0 475.8 171.6 171.6

1967 3,942.5 33.375 4.31 5.63 2,440.0 454.1 192.5 192.5

1968 4,133.4 34.792 5.34 6.31 2,580.7 480.5 209.3 209.3

1969 4,261.8 36.683 6.67 7.95 2,677.4 508.5 221.4 221.4

1970 4,269.9 38.842 6.39 7.91 2,740.2 475.1 233.7 233.7

1971 4,413.3 40.483 4.33 5.72 2,844.6 529.3 246.4 246.4

1972 4,647.7 41.808 4.07 5.25 3,019.5 591.9 263.4 263.4

1973 4,917.0 44.425 7.03 8.02 3,169.1 661.3 281.7 281.7

1974 4,889.9 49.317 7.83 10.80 3,142.8 612.6 317.9 317.9

1975 4,879.5 53.825 5.78 7.86 3,214.1 504.1 357.7 357.7

1976 5,141.3 56.933 4.97 6.84 3,393.1 605.9 383.0 383.0

1977 5,377.7 60.617 5.27 6.82 3,535.9 697.4 414.1 414.1

1978 5,677.6 65.242 7.19 9.06 3,691.8 781.5 453.6 453.6

1979 5,855.0 72.583 10.07 12.67 3,779.5 806.4 500.7 500.7

1980 5,839.0 82.383 11.43 15.27 3,766.2 717.9 566.1 566.1

1981 5,987.2 90.933 14.03 18.87 3,823.3 782.4 627.5 627.5

1982 5,870.9 96.533 10.61 14.86 3,876.7 672.8 680.4 680.4

1983 6,136.2 99.583 8.61 10.79 4,098.3 735.5 733.4 733.4

1984 6,577.1 103.933 9.52 12.04 4,315.6 952.1 796.9 796.9

1985 6,849.3 107.600 7.48 9.93 4,540.4 943.3 878.9 878.9

1986 7,086.5 109.692 5.98 8.33 4,724.5 936.9 949.3 949.3

1987 7,313.3 113.617 5.78 8.20 4,870.3 965.7 999.4 999.4

1988 7,613.9 118.275 6.67 9.32 5,066.6 988.5 1,038.9 1,038.9

1989 7,885.9 123.942 8.11 10.87 5,209.9 1,028.1 1,100.6 1,100.6

1990 8,033.9 130.658 7.49 10.01 5,316.2 993.5 1,181.7 1,181.7

1991 8,015.1 136.167 5.38 8.46 5,324.2 912.7 1,236.1 1,236.1

1992 8,287.1 140.308 3.43 6.25 5,505.7 986.7 1,273.5 1,273.5

1993 8,523.4 144.475 3.00 6.00 5,701.2 1,074.8 1,294.8 1,294.8

1994 8,870.7 148.225 4.25 7.14 5,918.9 1,220.9 1,329.8 1,329.8

1995 9,093.7 152.383 5.49 8.83 6,079.0 1,258.9 �98.8 1,374.0

1996 9,433.9 156.858 5.01 8.27 6,291.2 1,370.3 �110.7 1,421.0

1997 9,854.3 160.525 5.06 8.44 6,523.4 1,540.8 �139.8 1,474.4

1998 10,283.5 163.008 4.78 8.35 6,865.5 1,695.1 �252.6 1,526.1

1999 10,779.8 166.583 4.64 7.99 7,240.9 1,844.3 �356.6 1,631.3

2000 11,226.0 172.192 5.82 9.23 7,608.1 1,970.3 �451.6 1,731.0

2001 11,347.2 177.042 3.39 6.92 7,813.9 1,831.9 �472.1 1,846.4

2002 11,553.0 179.867 1.60 4.68 8,021.9 1,807.0 �548.8 1,983.3

2003 11,840.7 184.000 1.01 4.12 8,247.6 1,871.6 �603.9 2,112.6

(continued)
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Crown, and Cadbury Schweppes) accounted for 21.8 % of the market, and the

remaining 10.2 % of the market was divided among still smaller companies.

2.5 Applications

In the last several sections, we have drawn primarily on macroeconomic data to

show how tables and graphs can be used to examine various economic variables. In

this section, we will use the same tabular and graphical tools to analyze financial

and accounting data that are important in financial analysis and planning. We also

will see how Congress voted on the Gulf Resolution.

Table 2.2 (continued)

Year GDPa CPIb

3-month

T-bill

rate

Prime

rate

Private

consumptiona
Private

investmenta
Net

exportsa
Government

expendituresa

2004 12,263.8 188.908 1.37 4.34 8,532.7 2,058.2 �688.0 2,232.8

2005 12,638.4 195.267 3.15 6.19 8,819.0 2,172.2 �722.7 2,369.9

2006 12,976.2 201.550 4.73 7.96 9,073.5 2,230.4 �729.2 2,518.4

2007 13,254.1 207.335 4.35 8.05 9,313.9 2,146.2 �647.7 2,676.5

2008 13,312.2 215.247 1.37 5.09 9,290.9 1,989.4 �494.3 2,883.2

2009 12,988.7 214.549 0.15 3.25 9,237.3 1,522.8 �353.8 2,933.3

Source: Department of Commerce (Bureau of Economic Analysis), Economic Report of the

President, February 2010
aBillions of 2005 dollars
bCPI base: 1982–1984 ¼ 100
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Fig. 2.3 Average annual returns for Tri-Continental Corporation for investment periods of seven different

durations ending on September 30, 1991 (Source: Wall Street Journal, November 18, 1991. p. C5)
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Application 2.1 Analysis of Stock Rates of Return and Market Rates of

Return. Stock prices and stock indexes are two familiar measures of stock market

performance. In addition to these indicators, percentage rates of return can be

calculated to determine how well a particular stock—or the stock market

overall—is doing.

Figure 2.5 is a line graph of yearly rates of return for Johnson & Johnson, Merck,

and the S&P 500, which, as we have noted, is a market index. The yearly rates of

return have been similar for the three. This indicator has fluctuated relatively

Fig. 2.4 US soft drink market breakdown (1985) (Data: Beverage Digest, Montgomery Securities.

Source: Business Week)

Fig. 2.5 Rates of return for S&P 500, Johnson & Johnson, and Merck
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similar as well for the Merck stock and Johnson & Johnson stock, while the overall

market (as gaged by the S&P 500) has varied least of all.3

Application 2.2 Financial Health of the Banking Industry: 1981 Versus 1989.

On January 6, 1991, the business section of the Home News (a central New Jersey

newspaper) printed an Associated Press article that used two pie charts prepared by

VERIBANC Inc., a financial rating service. The pie charts, presented in Fig. 2.6,

compare the financial condition of the US commercial banks in 1981 to their

condition in 1989. These two pie charts show that the percentage of nonproblem

banks (those whose equity is 5 % or more of their assets) has fallen from 98 % to

77.8 %, revealing that the probability that depositors are dealing with a problem-

plagued bank has increased about 11 times.4 In view of this deterioration, the article

offers the following five tips to anyone shopping for a new financial institution:

1. Determine whether deposits are protected by federal deposit insurance, which

covers deposits of up to $100,000.

2. Research any state deposit insurance funds.

3. Investigate the institution’s history.

4. Check new reports for the health of specific banks and other industry trends.

5. Ask the bank for its yearly financial statement. Or contact federal bank

regulators for the institution’s quarterly statement of financial condition and its

income statement.

Fig. 2.6 How healthy is your

bank? (Source: Home News,
January 6, 1991. Reprinted by

permission of The Associated

Press)

3 Rates of return for Johnson & Johnson and Merck and market rates of return are analyzed in more

detail in Appendix 2.
4 Eleven times can be calculated as 1:0�:778

1:0�:98 ¼ :111.
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Application 2.3 How Congress Voted on the Gulf Resolution. Following a

heated debate, Congress voted to grant President Bush the power to go to battle

against Iraq if the Iraqis did not withdraw from Kuwait by January 15, 1991.

As indicated in the pie chart in Fig. 2.7, the Senate vote of 52–47 and the House

vote of 250–183 authorized President Bush to use military force against Iraq.

Among those voting yes were 43 Republican senators, 9 Democratic senators,

164 Republicans in the House of Representatives, and 86 Democrats in the House

of Representatives; among those voting no were 2 Republican senators and 45

Democratic senators. In the House, 3 Republicans, 179 Democrats, and 1 indepen-

dent voted no. In terms of percentages, about 52.53 % of the Senate and 57.74 % of

the House voted to support the Gulf Resolution. One senator and two

representatives were not present.

Application 2.4 Bar Charts Reveal How Several Economic Indicators Are

Related. In Time magazine, November 1991, eight bar charts showed how eco-

nomic conditions fluctuated during 1989–1991.

To stimulate the economy, policy decision makers at the Fed lowered interest

rates. Mortgage rates dropped from 10.32 % in 1989 to 8.76 % in 1991, while auto

loan rates dropped from 12.27 % to 11.78 %. Despite these lower interest rates, both

housing starts and auto sales experienced surprising declines. Figure 2.8a–h gives a

clear picture of these relationships.

Fig. 2.7 How congress voted

on the Gulf Resolution

(Source: Home News. January
6, 1991. Reprinted by

permission of The Associated

Press)
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Fig. 2.8 (continued)
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Fig. 2.8 Eight macroeconomic indicators: (a) mortgage rates, (b) housing starts, (c) consumer

finance rate for auto loans, (d) domestic auto sales, (e) 1-year CD interest yield, (f) portion of income

derived from interest, (g) time and savings account deposits, and (h) NASDAQ Composite Index

(Source: Adapted from “Statistics for Business and Economics.” TIME Magazine, November 25,

1991. Copyright 1991 the Time, Inc. Magazine Company. Reprinted by permission)
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Because interest rates such as that on 1-year CDs declined (specifically, from

8.67 % to 6.24 %) over the 3-year period, the proportion of savers’ income derived

from interest also went down (from 15 % in 1989 and 1990 to 14 % in 1991).

During these 3 years, time deposits and savings account deposits sank from

$1,710 billion to $1,595 billion. Many savers withdrew their savings to invest them

in the stock market. Consequently, the stock market indexes went up dramatically.

For example, the NASDAQ Composite Index (an index compiled from over-the-

counter stock) fluctuated from 454.8 in 1989 to 373.8 in 1990 to 531.3 in 1991.

As we can see in Fig. 2.8, bar charts can very effectively and clearly show

changes in economic conditions. Common sense is all that the viewer needs to

interpret the charts.

We discussed some of the data analysis related to Fig. 2.8a–h in this chapter; in

later chapters, we will discuss it further, using more sophisticated statistical

methods. These bar charts give us a great deal of information. And other statistical

analysis related to this set of information will improve our understanding of

macroeconomic analysis.

2.6 Summary

Good data are essential in business and economic decision making. Hence, it is

important to be familiar with the sources of business and economic data and to

know how these data can be collected.

Data for a census or a sample can be gleaned from both primary and secondary

sources. However, we must guard against random error when using a sample and

against systematic error in all our data collection.

Because we want to use sample data to make inferences about the population

from which they are drawn, it is important for us to be able to present the data

effectively. Tables and charts are two simple methods for presenting data. Line

charts, bar charts, and pie charts are three basic and important graphical methods for

describing data. In the next chapter, we will discuss other tabular and graphical

methods for describing data in a more sophisticated and detailed manner.

Questions and Problems

1. What is a primary source of data? Give two examples of primary sources of

data.

2. What is a secondary source of data? Give two examples of secondary sources of

data.

3. What is a sample? What is a census? What advantages does using a sample

have over using a census? Are there any advantages to using a census?

4. What two types of error might we encounter when dealing with primary and

secondary sources of data?

30 2 Data Collection and Presentation



5. Explain how the following can be used to present data.

(a) Line chart

(b) Component-parts line chart

(c) Bar chart

6. Frederick Hallock is approaching retirement with a portfolio consisting of cash

and money market fund investments worth $135,000, bonds worth $165,000,

stocks worth $185,000, and real estate worth $1,200,000. Present these data in a

bar chart.

7. LaPoint Glass Company has the following earnings before interest and taxes

(EBIT) and profits (EBIT and profits are in millions of dollars).

Year 1988 1989 1990 1991

EBIT 3.3 3.3 4.1 5.5

Profits 1.6 1.8 2.1 2.8

Present these data in a bar chart by hand and by using Lotus 1-2-3.

8. Of 354 MBA students, the following numbers chose to concentrate their study

in these fields: 35 in finance, 63 in accounting, 70 in marketing, 35 in operations

management, 52 in management information systems, 56 in economics, and 43

in organizational behavior. Present these data in a pie chart.

9. Use the data in Table 2.1 to draw line charts for the following:

(a) GNP

(b) CPI

(c) GNP and CPI

(d) 3-month T-bill rate and prime rate

10. Study Fig. 2.2, and comment on the relationship between GNP and private

consumption.

11. Using the data in Fig. 2.3, analyze the average rates of return for

(a) The DJIA

(b) The S&P 500

(c) Tri-Continental Corporation

12. Using the graph in Fig. 2.17, answer the following questions:

(a) Which company has the higher current ratio?

(b) Which company’s current ratio appears to be more stable over time?

13. Using the graph in Fig. 2.19, carefully explain the relationship between Ford’s

inventory turnover and GM’s.

14. You are given the following information about a certain company’s current

assets over the past 4 years:
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Current assets

Years

1988 1989 1990 1991

Cash and marketable securities 4,215 5,341 6,325 5,842

Receivables 6,327 6,527 7,725 6,750

Inventories 9,254 9,104 10,104 11,100

Other current assets 2,153 3,277 4,331 3,956

Use a component-lines graph to plot this firm’s current assets.

15. Explain under what conditions it is best to use a pie chart to present data.

16. Using the data given in question 14, present the components of total current

assets for 1990 in two pie charts, one drawn by hand and one by using

Microsoft Excel.

17. A statistics teacher has given the following numbers of the traditional grades to

her class of 105 students:

Number of students Grade

10 A

30 B

50 C

10 D

5 E

(a) Use a bar graph to show the distribution of grades.

(b) Use a pie chart to show the distribution of grades.

(c) Which of these graphs do you think is best for presenting the distribution of

grades? Why?

18. Using the data in Table 2.5, show the distribution of current assets for 1996 in a

pie chart and a bar chart. Which of these graphs do you think is best for

presenting the data?

19. The following table gives the sales figures for five products manufactured by

Trends Clothing Company, your employer.

Item Sales

Sweaters $5 million

Shirts 12 million

Pants 9 million

Blazers 16 million

Overcoats 7 million

The president of the company asks you for a report showing how sales are

distributed among the five goods. What type of chart would you use?

20. Explain the benefits of graphs over tables in presenting data.

21. In the course of researching the benefits of diversification, you collect the

information given in the table on page 47 (top), which presents rates of return

for different portfolios.
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(a) Use a line chart to plot the 20-year return for all five portfolios.

(b) What information do these plots provide?

1
3 stocks

60 % stocks
1
3 bonds BB&K

Year Stocksa Bondsb 40 % bonds 1
3
cash Indexc

1970 4.01 % 12.10 % 7.52 % 7.98 % 4.7 %

1971 14.31 13.23 14.14 10.83 13.7

1972 18.98 5.68 13.54 9.38 15.1

1973 �14.66 �1.11 �9.11 �3.03 �2.2

1974 �26.47 4.35 �14.88 �5.44 �6.6

1975 37.20 9.19 25.65 17.04 19.6

1976 23.84 16.75 21.18 15.19 11.5

1977 �7.18 �.67 �4.57 �0.94 6.1

1978 6.56 �1.16 3.65 4.40 13.0

1979 18.44 �1.22 10.28 9.14 11.5

1980 32.42 �3.95 17.45 13.17 17.9

1981 �4.91 1.85 �1.99 4.06 6.4

1982 21.41 40.35 28.98 23.97 14.4

1983 22.51 .68 13.43 10.52 15.4

1984 6.27 15.43 10.11 10.75 10.4

1985 32.16 30.97 31.85 23.38 25.4

1986 18.47 24.44 21.11 16.61 23.3

1987 5.23 �2.69 3.59 3.92 8.6

1988 16.81 9.67 13.97 11.01 13.2

1989 31.49 18.11 26.24 19.22 14.3

Compound annual return 11.55 9.00 10.89 9.78 11.54

Source: Bailard, Biehl&Kaiser, Ibbotson Associates. Inc. This figure was printed in theWall
Street Journal on January 25, 1990, p. Cl
aStandard & Poor’s 500 index
bLong-term Treasury bonds
c20 % US stocks, 20 % bonds, 20 % cash, 20 % real estate, 20 % foreign stocks

22. Use the data given in question 21 to construct a bar graph for 1985 through

1989.

23. You are given the following exchange rate information for the number of

dollars it takes to buy 1 British pound and the number of dollars it takes to

buy 100 Japanese yen:

Month $/BP $/100 yen

Jan 88 1.7505 .7722

Feb 88 1.7718 .7782

Mar 88 1.8780 .8042

Apr 88 1.8825 .8015

May 88 1.8410 .7995

Jun 88 1.7042 .7475

Jul 88 1.7160 .7533

(continued)
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Month $/BP $/100 yen

Aug 88 1.6808 .7307

Sep 88 1.6930 .7477

Oct 88 1.7670 .7951

Nov 88 1.8505 .8227

Dec 88 1.8075 .8013

(a) Draw a line chart showing the exchange rates between British pounds (BP)

and US dollars during this period.

(b) Draw a line chart showing the exchange rates between Japanese yen and

US dollars.

(c) Use Microsoft Excel to draw a line chart containing the exchange rates in a
and a line chart representing the exchange rates in b.

24. You are given the following financial ratios for Johnson & Johnson and for the

pharmaceutical industry:

Current ratio

Inventory

Turnover

Year Industry J&J Industry J&J

79 2.30 2.73 2.17 2.71

80 2.29 2.55 2.22 2.70

81 2.18 2.50 2.34 2.78

82 2.12 2.50 2.30 2.38

83 2.12 2.66 2.34 2.28

84 2.09 2.41 2.40 2.37

85 2.19 2.47 2.27 2.45

86 1.91 1.40 2.38 2.33

87 1.86 1.86 2.24 2.27

88 1.93 1.88 2.27 2.32

ROA Price/earnings

Year Industry J&J Industry J&J

79 .11 .12 12.04 13.76

80 .11 .12 15.03 15.35

81 .10 .12 28.02 14.79

82 .11 .12 15.19 17.79

83 .11 .11 14.56 15.90

84 .10 .11 14.88 13.14

85 .10 .12 17.98 15.66

86 .10 .06 23.46 35.47

87 .09 .13 35.09 15.50

88 .12 .14 15.98 14.88

(a) Draw a line chart showing the current ratio over time for the industry and

for J&J, and compare the two.

(b) Use a bar graph to present the data for the industry and J&J’s current ratio.
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25. Repeat question 24 for inventory turnover.

26. Repeat question 24 for return on total assets (ROA).

27. Repeat question 24 for the price/earnings ratio.

28. An August 27, 1991, Wall Street Journal article reported that increasing

numbers of small software firms are being absorbed by that industry’s biggest

companies. According to WSJ, the result of this dominance by a few giants is

that the industry has become much tougher for software entrepreneurs to break

into. The newspaper printed the chart given in the accompanying figure to

depict the breakdown of market share among software companies. Refer to this

chart to answer the following questions:

(a) List the companies in descending order of market share.

(b) What is the combinedmarket share for Lotus Development andWordPerfect?

(c) What is the combined market share for Micro soft, Lotus Development, and

Novell?

From entrepreneurs to corporate giants: market share among the top 100

software companies, based on total 1990 revenue of $5.7 billion.

29. The results of the 1991 city council election (voters could vote for more than

one person) in Monroe Township, New Jersey, were
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Nalitt 4,656

Riggs 4,567

Anderson 4,140

Miller-Paul 4,142

17,505

Use a pie chart to present the results of the election.

30. Redo question 29 using a bar chart. Which method is better for presenting these

election results?

To answer questions 31–37, refer to the table, which gives the rankings for

team defense and offense for NFC teams for the first 9 weeks of the 1991 season.

Rankings of team defense and offense for NFC teams in the 1991 season

(rankings based on averages a game)

NFC team defense

Yds Rush Pass Avg.

Philadelphia 1,955 715 1,240 217.2

New Orleans 2,035 562 1,473 226.1

Washington 2,325 830 1,495 258.3

San Francisco 2,460 851 1,609 273.3

New York 2,551 959 1,592 283.4

Tampa Bay 2,652 1,065 1,587 294.7

Chicago 2,665 950 1,715 296.1

Green Bay 2,684 775 1,909 298.2

Atlanta 2,728 1,202 1,526 303.1

Dallas 2,736 863 1,873 304.0

Minnesota 3,097 1,147 1,950 309.7

Detroit 2,799 932 1,867 311.0

Phoenix 3,277 1,381 1,896 327.7

Los Angeles 2,986 959 2,027 331.8

NFC team offense

Avg.Yds Rush Pass

San Francisco 3,392 1,178 2,214 376.9

Washington 3,019 1,337 1,682 335.4

Dallas 2,969 970 1,999 329.9

New York 2,842 1,254 1,588 315.8

Minnesota 3,095 1,328 1,767 309.5

Atlanta 2,768 998 1,770 307.6

Detroit 2,705 1,070 1,635 300.6

New Orleans 2,665 918 1,747 296.1

Chicago 2,662 1,006 1,656 295.8

Los Angeles 2,515 748 1,767 279.4

Phoenix 2,636 897 1,739 263.6

Philadelphia 2,319 688 1,631 257.7

Green Bay 2,250 650 1,600 250.0

Tampa Bay 2,142 779 1,363 238.0

Source: USA TODAY, November 7, 1991, p. 11C
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31. Use a pie chart to show how San Francisco’s total team offense is divided

between rush and pass.

32. Use a pie chart to show how Phoenix’s total team defense is divided between

rush and pass.

33. Use a bar chart to show the total pass offense for the 14 NFC teams.

34. Repeat question 33 for rush offense.

35. Repeat question 33 for pass defense.

36. Repeat question 33 for rush defense.

37. Use the graphs from questions 33–36 to answer the following questions;

(a) Which team has the best pass offense?

(b) Which team has the best pass defense?

(c) Which team has the best rush offense?

(d) Which team has the best rush defense?

38. The following table is a table of salaries for the top NHL forwards and

defensemen:

(a) Use a bar chart to show the players’ salaries.

(b) Do you think the bar chart is a better vehicle than a table for comparing

players’ salaries?

Salary comparisons for top NHL forwards and defensemen

Position Name Team Gross salary ($ millions)

C Wayne Gretzky Los Angeles Kings $3

C Mario Lemieux Pittsburgh Penguins $2.338

RW Brett Hull St. Louis Blues $1.5

C Pat LaFontaine Buffalo Sabres $1.4

C Steve Yzerman Detroit Red Wings $1.4

LW Kevin Stevens Pittsburgh Penguins $1.4

LW Luc Robitaille Los Angeles Kings $1.3

C John Cullen Hartford Whalers $1.2

D Ray Bourque Boston Bruins $1.2

D Scott Stevens New Jersey Devils $1.155

Source: USA TODAY, October 7, 1991, p. 8C

39. The accompanying pie chart presents data on why teenagers drink. Use infor-

mation shown in the pie chart to answer the following questions:

(a) For what reason do the highest numbers of teenagers drink?

(b) What percentage of teenagers drink because they are bored or because they

are upset?
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To answer questions 40–42, use the following results of the election to the

General Assembly from one New Jersey district in 1991.

Batten 17,026

Lookabaugh 17,703

LoBiondo 27,452

Gibson 24,735

40. Use a bar graph to show the distribution of votes.

41. Use a pie chart to show the distribution of votes.

42. Which type of graph presents these data more effectively?

43. The following bar graph shows net purchases of bond mutual funds. Does this

graph tell us anything?
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44. On November 9, 1991, the Home News of central New Jersey used the bar chart

given in the accompanying figure to show quarterly net income or losses for

both Ford and GM.
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(a) Comment on the possible implications of this bar chart.

(b) If you were a stock broker, would you recommend that your client buy

either Ford’s or GM’s stock now?

45. The two pie charts given here present household income for new first-time

homeowners and all other homeowners, by income group, in 1989.

(a) Describe these two pie charts.

(b) Recent first-time homeowners are most likely to be in which income group?

46. (a) Describe the three pie charts (in terms of 1989 home ownership data) in the

next column (top).

(b) Do members of minority groups show any gains among new first-time

homeowners?

47. On March 20, 1991, the Home News (a central New Jersey newspaper) used the

bar charts given here (next column, bottom) to show the amount of money

pledged to, and the amount received by, the United States from allied countries

as financial support for the Gulf War. Use the information in this chart to draw

pie charts of total pledged and total received allied financial contribution.

Analysis. (Hint: Use the pie chart.)
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Figures in billions of dollars
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48. On March 14, 1991, the Home News (a central New Jersey newspaper) used the

bar chart given here to show what problems New Jerseyans considered “very

serious.”

(a) What do New Jerseyans consider the most serious problem?

(b) Is traffic congestion regarded as more serious than crime? Explain your

answer.

49. On March 14, 1991, the Home News used two pie charts (next column, top) to

show (1) the main causes of air pollution in New Jersey and (2) people’s

attitudes toward using increased taxes to reduce air pollution. Discuss the

implications of these two pie charts and of the bar chart given in question 48.
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50. The Home News used this bar chart (next column, bottom) on page Dl of its

November 20, 1991, issue to depict the increasing popularity of turkey not just

at holiday meals but throughout the year.

(a) How much turkey was consumed per person in1960–1990, respectively?

(b) How much has per person consumption of turkey increased from 1970 to

1990?
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51. The following line chart was printed in the Home News on page Al of its

November 22, 1991, issue to show the increase in the number of college

students over age 35 during the period of 1972–1989.

(a) Percentage wise, did more men or more women over 35 years old attend

college during this 18-year period?

(b) What was the percentage increase for older female college students from

1977 to 1989?

(c) What was the percentage increase for college students over age 35 from

1972 to 1989?
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Appendix 1: Using Microsoft Excel to Draw Graphs

This appendix explains how to use Microsoft Excel to draw graphs. Eight steps are

involved: entering Microsoft Excel, preparing the data, and drawing the graph(s):

Stage 1: Start Excel and enter data for Johnson & Johnson and Merck as shown in

Fig. 2.9.

Stage 2: Select the data to be graphed as shown in Fig. 2.10.

Stage 3: From the Insert Menu, choose Line on charts option as shown in Fig. 2.11

to get the 2-D line chart as shown in Fig. 2.12.

Stage 4: Choose the Select Data on Chart Tools as shown in Fig. 2.12.
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Stage 5: Choose Year and press Remove as shown in Fig. 2.13. Then press Edit to

select axis labels as shown in Fig. 2.14.

Stage 6: Select Cell A2 to Cell A22 in Axis label range as shown in Fig. 2.14 and

press OK.

Stage 7: Press OK on Select Data Source again, and then we can get the chart as

shown in Fig. 2.15. Press Move Chart on Chart Tools, select New sheet, and

press OK. The finished chart is shown in Fig. 2.16.

Microsoft Excel has strong charting features. With more work, the chart in

Fig. 2.16 can look like the chart in Fig. 2.17.

Fig. 2.9 Rates of return for JNJ and MRK
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Appendix 2: Stock Rates of Return and Market Rates of Return

Table 2.3 presents data on earnings per share (EPS), dividends per share (DPS), and

price per share (PPS) for Johnson & Johnson, Merck, and the S&P 500 during the

period 1988–2009. Table 2.4 shows rates of return for Johnson & Johnson, Merck,

and the S&P 500, calculated from the data in Table 2.3.

The formula for calculating the rate of return, Rjt, on the jth individual stock in

period t is

Rjt ¼ Pjt � Pjt�1 þ djt
Pjt�1

(2.1)

Fig. 2.10 Data to be graphed
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where Pjt represents price per share for the jth stock in period t and djt represents
dividends per share for the jth stock. The market rate of return, Rmt, in period t is

SPt � SPt�1

SPt�1

(2.2)

where SPt represents the S&P 500 in period t.
The rate of return on an individual stock can be rewritten as

Rjt ¼ ðPjt � Pjtþ1Þ
Pjt�1

þ djt
Pjt�1

¼ Capital gain yieldþ dividend yield (2.3)

Fig. 2.11 Select graph option
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The first term of the rewritten equation is the capital gain yield (in percent); the

second is the dividend yield (also in percent). As an example, let us calculate the

rate of return for Johnson & Johnson in 2009. From Table 2.3, we know that

PPS08 ¼ $59.83, PPS09 ¼ $64.41, and DPS09 ¼ $1.91. Thus, the rate of return

for Johnson & Johnson in 2009 equals

RJNJ09 ¼ 64:41� 59:83þ 1:91

59:83
¼ :1085:

Fig. 2.12 Step 1 of Chart Tools
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As another example, from Table 2.3, we know that the S&P 500 was 1220.04

and 948.05 in 2008 and 2009, respectively. Thus, the market rate of return in 2008

equaled

RM08 ¼ 948:05� 1220:04

1220:04
¼ �0:2229

Figure 2.5 in the text compares the rates of return for Johnson & Johnson, Merck,

and the S&P 500 over time, as discussed in Sect. 2.5 of this chapter.

Fig. 2.13 Step 2 of Chart Tools
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Appendix 3: Financial Statements and Financial Ratio Analysis

Review of Balance Sheets and Income Statements

Accounting concepts are used to understand a firm’s financial condition. We will

discuss two basic sources of accounting information: the balance sheet, which
reveals the assets, liabilities, and owners’ (stockholders’) equity of a firm at a
point in time, and the income statement, which shows the firm’s profit or loss

over a given period of time. Assets, which are things that the firm owns, can be

classified as current, fixed, or “other” assets. Current assets consist of cash and

Fig. 2.14 Step 3 of Chart Tools
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of property that can be turned into cash quickly. Examples of current assets

include cash, stocks, bonds, inventory, and accounts receivable (cash that

customers owe the firm). Fixed assets are not easily convertible into cash; they

include land, machinery, and buildings. Fixed assets are generally valued at their

historical value (purchase price) minus depreciation, not at their current market

value. Other assets include intangibles such as goodwill, trademarks, patents,

copyrights, and leases.

Liabilities, which are debts of the firm, are divided into current and long-term

debts. Current debts come due within 1 year, whereas long-term debts are due in

more than 1 year. Current debts include accounts payable (unpaid bills), notes

payable, debts on agreements, accrued expenses, expenses incurred but not yet

Fig. 2.15 Step 4 of Chart Tools
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paid, and taxes payable. Examples of long-term liabilities include mortgages,

payable corporate bonds, and capitalized leases.

Stockholders’ equity makes up the second part of the liabilities section of a

balance sheet. It consists of funds invested by shareholders plus retained earnings.

The net worth of the firm is calculated by subtracting total liabilities from total

assets.

Whereas a balance sheet looks at the firm at a point in time, the income

statement, as we noted earlier, evaluates the firm over a period of time. The end

product of the income statement is the profit or loss, which is calculated by taking

the sales for a period and subtracting the cost of goods sold and such expenses as

Fig. 2.16 Line Charts of rates of return for JNJ and MRK
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Table 2.3 EPS, DPS, and PPS for Johnson & Johnson, Merck, and the S&P 500

Johnson & Johnson Merck

Year DPS EPS PPS DPS EPS PPS S&P500

1988 1.89 5.63 85.13 1.37 3.02 57.75 265.79

1989 1.10 3.19 59.38 1.70 3.74 77.50 322.84

1990 1.29 3.38 71.75 2.00 4.51 89.88 334.59

1991 1.51 4.30 114.50 2.34 5.39 166.50 376.18

1992 0.88 1.54 50.50 0.95 1.70 43.38 415.74

1993 1.00 2.71 44.88 1.06 1.86 34.38 451.41

1994 1.12 3.08 54.75 1.15 2.35 38.13 460.42

1995 1.25 3.65 85.50 1.24 2.63 65.63 541.72

1996 0.72 2.12 49.75 1.44 3.12 79.63 670.5

1997 0.83 2.41 65.88 1.70 3.74 106.00 873.43

1998 0.95 2.23 83.88 1.93 4.30 147.50 1,085.5

1999 1.04 2.94 93.25 1.09 2.45 67.19 1,327.33

2000 1.22 3.39 105.06 1.23 2.90 93.63 1,427.22

2001 0.66 1.83 59.10 1.36 3.14 58.80 1,194.18

2002 0.78 2.16 53.71 1.41 3.14 56.61 993.94

2003 0.91 2.39 51.66 1.45 3.03 46.20 965.23

2004 1.08 2.83 63.42 1.50 2.61 32.14 1,130.65

2005 1.26 3.46 60.10 1.52 2.10 31.81 1,207.23

2006 1.44 3.73 66.02 1.52 2.03 43.60 1,310.46

2007 1.60 3.63 66.70 1.51 1.49 58.11 1,477.19

2008 1.77 4.57 59.83 1.52 3.64 30.40 1,220.04

2009 1.91 4.40 64.41 1.58 5.68 36.54 948.05

Source: EPS, DPS, and PPS for Johnson & Johnson and Merck are from Standard & Poor’s

Compustat, Wharton Research Data Services (WRDS)

Table 2.4 Rates of return for

Johnson & Johnson and

Merck stock and the S&P 500

Year JNJ MRK S&P500

1989 �0.2896 0.3715 0.2146

1990 0.2301 0.1854 0.0364

1991 0.6168 0.8786 0.1243

1992 �0.5513 �0.7338 0.1052

1993 �0.0916 �0.1830 0.0858

1994 0.2449 0.1424 0.0200

1995 0.5846 0.7539 0.1766

1996 �0.4098 0.2353 0.2377

1997 0.3408 0.3525 0.3027

1998 0.2877 0.4097 0.2428

1999 0.1242 �0.5371 0.2228

2000 0.1397 0.4119 0.0753

2001 �0.4312 �0.3575 �0.1633

2002 �0.0780 �0.0133 �0.1677

2003 �0.0212 �0.1583 �0.0289

2004 0.2486 �0.2720 0.1714

2005 �0.0325 0.0369 0.0677

2006 0.1225 0.4183 0.0855

2007 0.0346 0.3674 0.1272

2008 �0.0764 �0.4508 �0.1741

2009 0.1085 0.2541 �0.2229



research and development, interest, and selling, general, and administrative

expenses.

Table 2.5 presents JNJ’s balance sheet for 2004–2009. Total assets are divided

into current and fixed assets. Again, the current assets are those assets that can be

converted into cash in a year or less; fixed assets such as land cannot be turned

quickly into cash. The liabilities section is separated into liabilities and

Table 2.5 Johnson & Johnson corporation balance sheet ($ million)

Assets 2004 2005 2006 2007 2008 2009

Current assets

Cash and cash equivalent $9,203 $16,055 $4,083 $7,770 $10,768 $15,810

Marketable securities 3,681 83 1 1,545 2,041 3,615

Account receivable 6,831 7,010 8,712 9,444 9,719 9,646

Inventory 3,744 3,959 4,889 5,110 5,052 5,180

Deferred taxes on income 1,737 1,845 2,094 2,609 3,430 2,793

Prepaid expenses and other receivable 2,124 2,442 3,196 3,467 3,367 2,497

Total current assets 27,320 31,394 22,975 29,945 34,377 39,541

Marketable securities—noncurrent 46 20 16 2 – –

Property, plant and equipment, net 10,436 10,830 13,044 14,185 14,365 14,759

Intangible assets, net 11,842 12,175 28,688 28,763 27,695 31,185

Deferred taxes on income 551 385 3,210 4,889 5,841 5,507

Other assets 3,122 3,221 2,623 3,170 2,634 3,690

Total assets 53,317 58,025 70,556 80,954 84,912 94,682

Liabilities and shareholder’s equity

Current liabilities

Loans and notes payable 280 668 4,579 2,463 3,732 6,318

Account payable 5,227 4,315 5,691 6,909 7,503 5,541

Accrued liabilities 3,523 3,529 4,587 6,412 5,531 5,796

Accrued rebates, returns, and promotion 2,297 2,017 2,189 2,318 2,237 2,028

Accrued salaries, wages, and

commissions

1,094 1,166 1,391 1,512 1,432 1,606

Taxes on income 1,506 940 724 223 417 442

Total current liabilities 13,927 12,635 19,161 19,837 20,852 21,731

Long-term debt 2,565 2,017 2,014 7,074 8,120 8,223

Deferred tax liability 403 211 1,319 1,493 1,432 1,424

Employee-related obligations 2,631 3,065 5,584 5,402 7,791 6,769

Other liabilities 1,978 2,226 3,160 3,829 4,206 5,947

Shareowners’ equity

Preferred stock—without par value – – – – – –

Common stock–par value $1.00 3,120 3,120 3,120 3,120 3,120 3,120

Net receivable from employee stock plan �11 – – – – –

Accumulated other comprehensive

income

�515 �755 �2,118 �693 �4,955 �3,058

Retained earnings 35,223 41,471 49,290 55,280 63,379 70,306

Less: common stock held in treasury 6,004 5,965 10,974 14,388 19,033 19,780

Total shareowners equity 31,813 37,871 39,318 43,319 42,511 50,588

Total liabilities and shareholders’ equity 53,317 58,025 70,556 80,954 84,912 94,682
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stockholders’ equity. GM’s liabilities include long-term debt, current liabilities

such as accounts payable, and deferred taxes. Stockholders’ equity consists of

common stock and paid-in surplus, preferred stock, retained earnings, and other

adjustments. Note that total assets equal the sum of total liabilities and equity.
Table 2.6 displays JNJ’s income statement for both 2004–2009, showing the

firm’s profit after expenses are subtracted from revenues. To determine gross

profits, the costs of goods sold are subtracted from net sales. Operating income is

then calculated by deducting selling and administrative expenses, debt amorti-

zation, and depreciation. Earnings before interest and taxes (EBIT) are next

obtained by adding other income to operating income, and interest is subtracted

to get earnings before taxes (EBT). Finally, net income is obtained by

subtracting the provision for income taxes and adding earnings in unconsoli-

dated subsidiaries and associates. Both earnings per share and dividends per

share also are reported.

Financial Ratio Analysis

To help them analyze balance sheets and income statements, financial managers

construct various financial ratios. There are five basic types of these ratios: leverage

ratios, activity ratios, liquidity ratios, profitability ratios, and market value ratios.

Table 2.6 Income statement for Johnson & Johnson corporation ($ milIion)

(Dollars in millions except per

share figures) 2004 2005 2006 2007 2008 2009

Sales to customers $47,348 $50,514 $53,324 $61,095 $63,747 $61,897

Cost of products sold 13,422 13,954 15,057 17,751 18,511 18,447

Gross profit 33,926 36,560 38,267 43,344 45,236 43,450

Selling, marketing, and

administrative expenses

15,860 16,877 17,433 20,451 21,490 19,801

Research expense 5,203 6,312 7,125 7,680 7,577 6,986

Purchased in-process research

and development

18 362 559 807 181 –

Interest income �195 �487 �829 �452 �361 –90

Interest expense, net of portion

capitalized

187 54 63 296 435 451

Other (income) expense, net 15 �214 �671 1,279 �1,015 547

21,088 22,904 23,680 30,061 26,307 27,695

Earnings before provision for

taxes on income

12,838 13,656 14,587 13,283 16,929 15,755

Provision for taxes on income 4,329 3,245 3,534 2,707 3,980 3,489

Net earnings 8,509 10,411 11,053 10,576 12,949 12,266

Basic net earnings per share $2.87 $3.50 $3.76 $3.67 $4.62 $4.45

Diluted net earnings per share $2.84 $3.46 $3.73 $3.63 $4.57 $4.40
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Let us use Merck (MRK) and Johnson & Johnson data to calculate a number of

these ratios and discuss their significance.

Table 2.7 shows how financial ratios are derived from the 2009 balance sheet

and income statement. The information for the current ratio comes from the assets

side of the balance sheet. The ratio for JNJ is 1.82, which means that 1 dollar in

current liabilities is matched by 1.82 dollars in current assets. To calculate the

inventory turnover ratio, we use cost of goods sold from the income statement and

inventories from the current assets in the balance sheet. The resulting ratio (3.561)

reveals how often the average value of goods in inventory was sold in 2009.

The total debt to total assets ratio is derived from the balance sheet; it indicates

that about 45.1 % of JNJ’s assets are financed by debt. Data to calculate the net

profit margin come from the income statement. JNJ’s profit margin is .198, that is,

about 20 cents out of every dollar of sales is profit (net income). ROI (return on

investment) is more accurately described as return on total assets; it is calculated

from information in both the income statement and the balance sheet. The resulting

figure for JNJ is 12.9 %.

The price/earnings (P/E) ratio is calculated by taking the price per share divided

by the earnings per share (EPS). Although the price per share does not appear in the

balance sheet or the income statement, it can be found in stock reports in

newspapers. The EPS is then found by dividing net income by the number of

common shares. (The ratio cannot be calculated if the firm experienced losses.)

The P/E ratio for JNJ is 14.474.

Finally, the payout ratio is calculated by dividing the price of the stock by the

dividends per share (DPS). DPS is the value of dividends paid out divided by the

number of shares of common stock. This ratio reveals that JNJ paid out about

0.434 % of its earnings in dividends.

The seven ratios discussed in Table 2.7 for both Johnson & Johnson and Merck

during 2004–2009 are presented in Table 2.8 following the method discussed in

Appendix 2. Line charts in terms of data presented in Table 2.8 are presented

in Figs. 2.17, 2.18, 2.19, 2.20, 2.21, 2.22 and 2.23. By using these seven graphs, we

now compare the financial ratios of JNJ to those of Merck.

Table 2.7 Financial and market ratio calculations for JNJ, 2009 (dollars amounts in millions)

1. Current ratio ¼ Current Assets
Current Liabilities

¼ $39;451
$21;731 ¼ 1:82 liquidity ratioð Þ

2. Inventory turnover ¼ Cost of Goods sold
inventories

¼ $18;447
$5;180 ¼ 3:561 activity ratioð Þa

3. Total debt to total asset ratio ¼ Total debt
Total assets

¼ $42;670
$94;682 ¼ 0:451 leverage ratioð Þ

4. Net profit margin ¼ Net income
Net sales

¼ $12;266
$61;897 ¼ 0:198 profitability ratioð Þ

5. Return of total asset ¼ Net income
Total assets

¼ $12;266
$94;682 ¼ 0:129 profitability ratioð Þ

6. Price = earnings ratio ¼ Price per share
earnings per share

¼ $64:41
$4:45 ¼ 14:474 market value ratioð Þ

7. Payout ratio ¼ dividend per share
earnings per share

¼ $1:93
$4:45 ¼ 0:434 market value ratioð Þ

aFrom 10 K

From Compustat
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As mentioned above, there are five basic types of financial ratios. Liquidity
ratios measure how quickly or effectively the firm can obtain cash. If the bulk of

a firm’s assets are fixed (such as land), the firm may not be able to obtain enough

cash to finance its operations. The current ratio, defined as current assets divided by
current liabilities, is used to gage the firm’s ability to meet current obligations. If the

firm’s current assets do not significantly exceed current liabilities, the firm may not

be able to pay current bills, because although current assets are expected to generate

cash within 1 year, current liabilities are expected to use cash within that same 1-

year period. In Fig. 2.17, this ratio is graphed for both Johnson & Johnson and

Merck for the years 1990–2009. As the figure reveals, JNJ had a higher current ratio

almost the entire time with the exception of 1998 when its current ratio was1.364,

while Merck’s was 1.685.

Leverage ratios measure how much of the firm’s operation is financed by debt.

Although some debt is expected, toomuch debt can be a sign of trouble. One indicator

of how much debt the firm has incurred is the ratio of total debt to total assets, which

measures the percentage of total assets financed by debt. Figure 2.18 shows that

Johnson & Johnson had a greater share of its assets financed by debt than did

Merck over most of the 1977–2009 periods. This fact is not necessarily a reason for

concern unless Johnson & Johnson’s leverage ratio was too high in absolute terms.

The general trend shows that both firms increased their debt during the period,

particularly from 1985 to 1998, and that a sharp increase occurred from 1987 to 1992.

Activity ratios measure how efficiently the firm is using its assets. Figure 2.19

graphs the inventory turnover ratio for each firm; it is found by dividing cost of

goods sold by average inventory. This ratio measures how quickly a firm is turning

over its inventories. A high ratio usually implies efficiency because the firm is

selling inventories quickly. This ratio varies greatly with the line of business,

however. A supermarket must have a high turnover ratio because it is dealing
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Fig. 2.17 Current ratio for JNJ and MRK
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with perishable goods; in contrast, a jewelry store selling diamonds has a much

lower turnover ratio. The seasonality of the product must also be considered. Auto

dealers have high inventories in the fall, when the new autos arrive, and lower

inventories in other seasons. On the other hand, Christmas tree dealers have rather

low inventories in August!

Profitability ratios measure the profitability of the firm’s operations. One of

these ratios is the return on total assets, defined as net income divided by total

assets. This ratio, often abbreviated ROA, measures how much the company has

earned on its total investment of financial resources. Looked at in another way, it

measures how well the firm used funds, regardless of how the firm’s assets are
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Fig. 2.18 Total debt to total assets ratio for JNJ and MRK
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divided into fixed and current assets. As Fig. 2.20 suggests, Merck had a higher

ROA than Johnson & Johnson until 2004–2007.

The net profit margin, defined as net income divided by net sales, is another

measure of profitability. This ratio gages the percentage of sales revenue that

consists of profit. This ratio varies for different industries; a successful supermarket

might have a ratio of 20 %, whereas most manufacturing firms tend to have ratios

around 8 %. Although many Americans believe that corporations make a profit of

25 cents or more on each dollar of sales, the average net profit ratio for the Fortune
500 industrial firms in 1981 was 4.6 %. The net profit margins for Merck and

Johnson & Johnson are presented in Fig. 2.21.
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Fig. 2.20 Return on total assets for JNJ and MRK
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An indirect profitability indicator is the payout ratio, which measures the

proportion of current earnings paid out in dividends. This ratio, which is expressed

as dividends per share divided by earnings per share, can fluctuate widely because

of the variability in earnings per share. . The reason, for example, why the payout

ratio was so high for Merck in 1981 is that earnings per share were low. The payout

ratios for Merck and Johnson & Johnson are illustrated in Fig. 2.22.

Market value ratios measure how stock price per share is related to either

earnings per share or book value per share. The price/earnings ratio, or P/E, is
shown in Fig. 2.23. This ratio, defined as the price per share of a stock divided by

the earnings per share, is usually reported in stock quotations in newspapers such as
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theWall Street Journal every day. However, you should be careful in looking at P/E
ratios because a high ratio can be the result of low earnings. This seems to have

been the case for Merck in 2007. Moreover, firms calculate earnings per share

differently, making comparisons of P/E ratios between firms difficult or even

misleading.
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Chapter 3

Frequency Distributions and Data Analyses
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3.1 Introduction

Using the tabular and graphical methods discussed in Chap. 2, we will now develop

two general ways to describe data more fully. We discuss first the tally table

approach to depicting data frequency distributions and then three other kinds of

frequency tables. Next, we explore alternative graphical methods for describing

frequency distributions. Finally, we study further applications for frequency

distributions in business and economics.
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3.2 Tally Table for Constructing a Frequency Table

Before conducting any statistical analysis, we must organize our data sets. One way

to organize data is by using a tally table as a worksheet for setting up a frequency

table. To set up a tally table for a set of data, we split the data into equal-sized

classes in such a way that each observation fits into one and only one class of

numbers (i.e., the classes are mutually exclusive). Sometimes data are reported in a

frequency table with class intervals given but with actual values of observations in

the classes unknown; data presented in this manner are called grouped data. The
analyst assigns each data point to a class and enters a tally mark made by that class.

Let’s see how this works.

Example 3.1 Tallying Scores from a Statistics Exam. Suppose a statistics professor

wants to summarize how 20 students performed on an exam. Their scores are as

follows: 78, 56, 91, 59, 78, 84, 65, 97, 84, 71, 84, 44, 69, 90, 73, 77, 80, 90, 68, and

75. Data in this form are called nongrouped data or raw data. We can use a tally

table like Table 3.1 to list the number of occurrences, of frequency, of each score.

A corresponding diagram is shown in Fig. 3.1.

This table presents nongrouped data, and no pattern emerges from them. As an

alternative, the data can be grouped into classes by letter grade. If the professor uses

a straight grading scale, the classes might be 90–99, 80–89, 70–79, 60–69, and

below 60. After establishing the classes, the professor counts scores in each class

and records these numbers to obtain a tally sheet, as shown in Table 3.2 and

Fig. 3.2.

Note that each observation is included in one and only one class. The tallies are

counted, and a frequency table is constructed as shown in Table 3.3, where letter

grades are assigned to each class.

Table 3.1 Student exam

scores
Score Tallies Frequency

44 / 1

56 / 1

59 / 1

65 / 1

68 / 1

69 / 1

71 / 1

73 / 1

75 / I

77 / 1

78 // 2

80 / 1

84 /// 3

90 // 2

91 / 1

97 / 1

Total 20
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Frequency

44 56 59 65 68 69 71 73 75 77 78 80 84 90 91 97

Score
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Fig. 3.1 Bar graph for nongrouped student exam scores given in Table 3.1

Table 3.2 Tally table for

statistics exam scores
Class Tally Frequency

Below 60 /// 3

60–69 /// 3

70–79 ////// 6

80–89 //// 4

90–99 //// 4

20

Frequency

6

5

4

3

2

1

0
Below 60 60-69 70-79 80-89 90-99

Score

Fig. 3.2 Bar graph for grouped student exam scores given in Table 3.2
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Example 3.2 A Frequency Distribution of Grade Point Averages. Suppose that

there are 30 students in a classroom and that they have the grade point averages

listed in Table 3.4. A tally table is constructed, in which classes are (arbitrarily)

defined at every half-point and each tally marked next to a particular class accounts

for one data entry. The entries are then counted to obtain a frequency distribution,
as shown in Table 3.5. A frequency distribution simply shows how many

observations fall into each class. We will discuss this concept in further detail in

the next section.

Generally, a data set should be divided into 5–15 classes. Having too few or too

many classes gives too little information. Imagine a frequency distribution with

only two classes: 0.0–2.0 and 2.1–4.0. With such broadly defined classes, it is

difficult to distinguish among GPAs. Similarly, if the class interval were only one-

tenth of a point, the large number of classes, each with only one or a few tallies,

would make summarizing the data almost impossible.

Table 3.3 Frequency table

for statistics exam scores
Class Grade Frequency

Below 60 F 3

60–69 D 3

70–79 C 6

80–89 B 4

90–99 A 4

20

Table 3.4 Student GPAs:

raw data
1.2 3.9 1.9

3.8 2.4 2.7

2.3 2.3 2.6

0.7 3.1 3.7

3.6 2.9 4.0

2.2 2.7 1.2

1.9 0.8 1.8

2.1 0.3 2.4

3.1 3.2 3.2

0.8 3.1 3.6

Table 3.5 Student GPAs:

tally table and frequency

distribution

Range Tallies Frequency

Below 1.5 ////// 6

1.5–1.9 /// 3

2.0–2.4 ////// 6

2.5–2.9 //// 4

3.0–3.4 ///// 5

3.5–4.0 ////// 6

Total 30
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In the GPA example, it was relatively easy to construct the classes because GPA

cutoffs were used. However, in most examples, there are no natural dividing lines

between classes. The following guidelines can be used to construct classes:

1. Construct from 5 to 15 classes. This step is the most difficult, because using too

many classes defeats the purpose of grouping the data into classes, whereas

having too few classes limits the amount of information obtained from the data.

As a general rule, when the range and number of observations are large, more

classes can be defined. Fewer classes should be constructed when the number of

observations is only around 20 or 30.

2. Make sure each observation falls into only one class. This can often be accom-

plished by defining class boundaries in terms of several decimal places. If the

percentage return on stocks is carried to one decimal place, for example, then

defining the classes by using two decimal places will ensure that each observa-

tion falls into only one class.

3. Try to construct classes with equal class intervals. This may not be possible,

however, if there are outlying observations in the data set.

Example 3.3 A Frequency Distribution of 3-Month Treasury Bill Rates. Table 3.6

presents another example, and here the data presented are the interest rates on

3-month treasury bills (T-bills) from 1990 to 2009. (T-bills are debt instruments

sold by the US government to finance its budgetary needs.) The annual data for

interest rates (average daily rates for a year) are taken from Economic Report of the

President, January 2009.

As we have noted, a frequency distribution gives the total number of occurrences

in each class. In the next chapter, we will talk about using a frequency distribution

to present data.

By setting up a tally table and a frequency table, we can scrutinize data for

errors. For example, if the data value 123 appears in a column for the rate in the

T-bill example, a mistake has clearly been made – one that could be due to a

missing decimal point. Probably, the data point could be 12.3 % instead, which

makes more sense because it is in the range of the other data points. Data should

also be checked for accuracy. Otherwise, invalid conclusions could be reached.

Table 3.6 T-bill interest

rates, 1990–2009
Class (%) Tallies Frequency

0–1.49 //// 4

1.50–3.49 ///// 5

3.50–5.49 ///////// 9

5.50–6.49 / 1

6.50 and greater / 1

Total 20
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3.3 Three Other Frequency Tables

In this section, using the frequency table discussed in the Sect. 3.2, we move ahead

to cumulative frequency tables, relative frequency tables, and relative cumulative

frequency tables.

Example 3.4 Frequency Distributions for Statistics Exam Scores. Suppose that for

the data listed in Table 3.3, the professor wants to know how many students receive

a C or below, the proportion of students who receive a B, and the proportion of

students who receive a D or an F. To obtain this information, she calculates

cumulative, relative, and cumulative relative frequencies.

By constructing cumulative frequencies, the professor determines the number of

students who scored in a particular class or in one of the classes before it (Table 3.7).
Obviously, the cumulative frequency for the first class is the frequency itself (3):

there are no classes before it. The cumulative frequency for the second class is

calculated by taking the frequency in the first class and adding it to the frequency in

the second class (3) to arrive at a cumulative frequency of 6. This means that 6

students were in the first two classes. Then 6 is added to the frequency of the third

class (6) to derive a cumulative frequency of 12. Thus, 12 students scored a C or a

worse grade. The remaining cumulative frequencies are calculated in a similar

manner. Note that the cumulative observation in the last class equals the total

number of sample observations, because all frequencies have occurred in that

class or in previous classes.

Another important concept is the relative frequency, which measures the pro-

portion of observations in a particular class. It is calculated by dividing the

frequency in that class by the total number of observations. For the data

summarized in Table 3.7, the relative frequency for both the first and second classes

is 0.15, and the relative frequencies for the remaining three classes are 0.30, 0.20,

and 0.20, respectively, as shown in Table 3.8. The sum of the relative frequencies

always equals 1.

This table indicates that 15 % of the class received an F, 15 % a D, 30 % a C, and

so on. The professor can calculate the cumulative relative frequency for any class

by adding the appropriate relative frequencies. Cumulative relative frequency
measures the percentage of observations in a particular class and all previous

classes. Thus, if she wants to determine what percentage of the students scored

below a B, our conscientious professor can add the relative frequencies associated

with grades C, D, and F to arrive at 60 %.

Table 3.7 Cumulative frequency table for grade distribution

Class Grade Frequency Cumulative frequency

Below 60 F 3 3

60–69 D 3 6

70–79 C 6 12

80–89 B 4 16

90–99 A 4 20
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Example 3.5 Frequency Distributions of Current Ratios for JNJ and MRK. The

current ratios for JNJ and MRK from 1990 to 2009 are shown in Table 3.9.

A frequency distribution for the current ratios of Johnson and Johnson and Merck

is shown in Table 3.10. This ratio is a measure of liquidity, which (as we noted in

Chap. 2) indicates how quickly a firm can obtain cash for operations. The first

column defines the classes. Note that the use here of class boundaries ensures that

each observation will fall into only one class.

The next column shows the frequency – that is, the number of times that an

observation appears in each class. In Table 3.10, we see that JNJ experienced one

current ratio between 1.0 and 1.2, seven between 1.201 and 1.700, and so on. The

third column presents the cumulative frequency. Because there are 20 observations

in the population, the cumulative frequency for the last class is 20.

The fourth column presents the relative frequency, which measures the percentage

of observations in each class. Relative frequencies can be thought of as probabilities.

For example, the probability that an observation is in the first class is 0.1.

Table 3.9 Current ratio for

JNJ and MRK
Year JNJ MRK

1990 1.778 1.332

1991 1.835 1.532

1992 1.582 1.216

1993 1.624 0.973

1994 1.566 1.270

1995 1.809 1.515

1996 1.807 1.600

1997 1.999 1.475

1998 1.364 1.685

1999 1.771 1.285

2000 2.164 1.375

2001 2.296 1.123

2002 1.683 1.199

2003 1.710 1.205

2004 1.962 1.147

2005 2.485 1.582

2006 1.199 1.197

2007 1.510 1.227

2008 1.649 1.348

2009 1.820 1.805

Table 3.8 Relative frequency table for grade distribution

Class Grade Relative frequency Cumulative relative frequency

Below 60 F 0.15 0.15

60–69 D 0.15 0.30

70–79 C 0.30 0.60

80–89 B 0.20 0.80

90–99 A 0.20 1.00

3.3 Three Other Frequency Tables 71

http://dx.doi.org/10.1007/978-1-4614-5897-5_2


The last column indicates the cumulative relative frequency, which measures the

percentage of observations in a particular class and all previous classes. The

cumulative relative frequency for Merck’s fourth class is calculated by adding

the relative frequencies of the first four classes to arrive at 0.95. That is, 95 % of

the observations occur in the first four classes. The cumulative relative frequency

of the last class always equals 1, because the last class includes all the observations.

3.4 Graphical Presentation of Frequency Distribution

We have spoken before of the special effectiveness of using graphs to present data.

In this section, we discuss four different graphical approaches to presenting fre-

quency distributions.

3.4.1 Histograms

Frequency distributions can be represented on a variety of graphs. The histogram,
which is one of the most commonly used types, is similar to the bar charts discussed

in Chap. 2 except that

1. Neighboring bars touch each other.

2. The area inside any bar (its height times its width) is proportional to the number

of observations in the corresponding class.

To illustrate these two points, suppose the age distribution of personnel at a

small business is as shown in Table 3.11.

Table 3.10 Frequency distributions of current ratios for JNJ and MRK

Class Frequency

Cumulative

frequency

Relative

frequency

Cumulative relative

frequency

JNJ

1.00–1.2 1 1 0.05 0.05

1.21–1.4 1 2 0.05 0.1

1.41–1.60 3 5 0.15 0.25

1.61–1.80 6 11 0.3 0.55

1.81–2.00 6 17 0.3 0.85

2.01–2.5 3 20 0.15 1.00

Total 20 1.00

MRK

0.81–1.00 1 1 0.05 0.05

1.01–1.2 4 5 0.2 0.25

1.21–1.4 8 13 0.6 0.65

1.41–1.60 5 18 0.25 0.9

1.61–1.80 1 19 0.05 0.95

1.81–2.00 1 20 0.05 1.00

Total 20 1.00
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To construct a histogram, we need to enter a scale on the horizontal axis.

Because the data are discrete, there is a gap between the class intervals, say between

20 and 29 and 30–39. In such a case, we will use the midpoint between the end of

one class and the beginning of the next as our dividing point. Between the 20–29

interval and 30–39 interval, the dividing point will be (29 þ 30)/2 ¼ 29.5. We find

the dividing point between the remaining classes similarly.

To satisfy the second condition, we note that all five classes have an interval

width of 10 years. Figure 3.3 is the histogram that reflects these data.

Drawn from the data of Table 3.10, Fig. 3.4a, b are histograms of JNJ’s and

MRK’s current ratios for the years 1990–2009.The x-axis indicates the classes and

the y-axis the frequencies. As the histograms show, MRK’s current ratios have

tended to fall in the 1.0–1.4 range, whereas those of JNJ show no exact pattern, but

many can be found in the 1.61–2.00 range. (In Chap. 4, we will cover measures of

skewness, which give us more insight into the shape of a distribution.)

Table 3.11 Age distribution

of personnel
Class Frequency

20–29 3

30–39 6

40–49 7

50–59 4

60–69 1

70–79 1

Frequency

7

6

5

4

3

2

1

0
19.5 29.5 39.5 49.5 59.5 69.5 79.5

Age

Fig. 3.3 Histogram of age distribution given in Table 3.11
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Most standard statistical software packages will construct a histogram from

these data. Using MINITAB, we can specify the class width and the starting class

midpoint, or we can let MINITAB select these values. The output will contain the

frequency distribution as well as a graphical representation in the form of a

histogram (without the bars). MINITAB will provide each class frequency next to

the corresponding class midpoint (not class limits). Figure 3.5a contains the neces-

sary MINITAB commands and the resulting output for the current ratio of MRK

where the class width (CW) and the midpoint of the first class were not specified.

Figure 3.5b specified CW as .2000 and the first midpoint as .905. We can use the

output as it appears or use this information to construct Fig. 3.4b, which is a

graphical representation of MRK’s current ratios as given in Table 3.10.

Fig. 3.4 (a) Frequency histogram of JNJ’s current ratios as given in Table 3.10 (b) Frequency

histogram of MRK’s current ratios as given in Table 3.10

74 3 Frequency Distributions and Data Analyses



Histograms can also be used to chart the companies’ relative and cumulative

frequencies, as shown in Figs. 3.6 and 3.7. Note the similarity between the frequency

and relative frequency histograms (Figs. 3.4 and 3.6) and between the cumulative

frequency and the relative cumulative frequency graphs (Figs. 3.7 and 3.8); the only

difference between them is the variable on the y-axis. Note also that geometrically,

the relative frequency of each class in a frequency histogram equals its area divided

Data Display  
a

b

MRK
   1.332   1.532   1.216   0.973   1.27    1.515   1.6     1.475   1.685
   1.285   1.375   1.123   1.199   1.205   1.147   1.582   1.197   1.227
   1.348   1.805 

Histogram of MRK 

* NOTE * The character graph commands are obsolete.

Histogram  

Histogram of MRK   N = 20 

Midpoint        Count 
     1.0            1  * 
     1.1            2  ** 
     1.2            5  *****
     1.3            4  **** 
     1.4            1  * 
     1.5            3  *** 
     1.6            2  ** 
     1.7            1  * 

Histogram  

Histogram of MRK   N = 20

Midpoint        Count 
   0.905            1  * 
   1.105            4  **** 
   1.305            8  ********
   1.505            5  ***** 
   1.705            1  * 
   1.905            1  * 

Fig. 3.5 (a) Histogram using MINITAB, where the class width and the midpoint of the first class

are not specified (b) Histogram using MINITAB using specified classes, where the class width is

0.2000 and the first midpoint is 0.905
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by the total area of all the classes. For example, the area for the first class for

Merck’s current ratio (Fig. 3.4b) is equal to the base of the bar times its height

(0.19 � 1 ¼ 0.19), and the sum of all the areas is 3.8. The relative frequency for the

first class is thus .19/3.8 ¼ .05.

3.4.2 Stem-and-Leaf Display

An alternative to histograms for the presentation of either nongrouped or grouped

data is the stem-and-leaf display. Stem-and-leaf displays were originally developed
by John Tukey of Princeton University. They are extremely useful in summarizing

data sets of reasonable size (under 100 values as a general rule), and unlike

histograms, they result in no loss of information. By this, we mean that it is possible

Fig. 3.6 (a) Relative frequency histogram of JNJ’s current ratios (b) Relative frequency histo-

gram of MRK’s current ratios
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to reconstruct the original data set in a stem-and-leaf display, which we cannot do

when using a histogram.

For example, suppose a financial analyst is interested in the amount of money

spent by food product companies on advertising. He or she samples 40 of these food

product firms and calculates the amount that each spent last year on advertising as a

percentage of its total revenue. The results are listed in Table 3.12.

Let’s use this set of data to construct a stem-and-leaf display. In Fig. 3.9, each

observation is represented by a stem to the left of the vertical line and a leaf to the

right of the vertical line. For example, the stems and leaves for the first three

observations in Table 3.12 can be defined as

Fig. 3.7 (a) Cumulative Frequency histogram of JNJ’s current ratios (b) Cumulative frequency

histogram of MRK’s current ratios
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Stem Leaf

12 0.5

8 0.8

11 0.5

In other words, stems are the integer portions of the observations, whereas leaves

represent the decimal portions.

The procedure used to construct a stem-and-leaf display is as follows:

1. Decide how the stems and leaves will be defined.

2. List the stems in a column in ascending order.

Fig. 3.8 (a) Cumulative relative frequency histogram of JNJ’s current ratios (b) Cumulative

relative frequency histogram of MRK’s current ratios
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3. Proceed through the data set, placing the leaf for each observation in the

appropriate stem row. (You may want to place the leaves of each stem in

increasing order.)

The percentage of revenues spent on advertising by 40 production firms listed in

Table 3.12 is represented by a stem-and-leaf diagram in Fig. 3.9. From this diagram,

we observe that the minimum percentage of advertising spending is 5.3 % of total

revenue, the maximum percentage of advertising spending is 13.9 %, and the

largest group of firms spends between 9.1 % and 9.8 % of total revenue on

advertising. Also, the 7 leaves in stem row 7 indicate that 7 firms’ advertising

spending is at least 7 % but less than 8 %. The 3 leaves in stem row 13 tell us at a

Table 3.12 Percentage

of total revenue spent

on advertising

Company Percentage Company Percentage

1 12.5 21 6.4

2 8.8 22 7.8

3 11.5 23 8.5

4 9.1 24 9.5

5 9.4 25 11.3

6 10.1 26 8.9

7 5.3 27 6.6

8 10.3 28 7.5

9 10.2 29 8.3

10 7.4 30 13.8

11 8.2 31 12.9

12 7.8 32 11.8

13 6.5 33 10.4

14 9.8 34 7.6

15 9.2 35 8.6

16 12.8 36 9.4

17 13.9 37 7.3

18 13.7 38 9.5

19 9.6 39 8.3

20 6.8 40 7.1

Stems Leaves Frequency

5 1
6 4 5 6 4
7 1 3 4 5 7
8 2 3 3 5 7
9 1 2 4 4 8 8

10 1 2 3

3
8

6 8 8
6 8 9
5 5 6

4 4
11 3 5 8 3
12 5 8 9 3
13 7 8 9 3

Total 40

Fig. 3.9 Stem-and-leaf

display for advertising

expenditure
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glance that 3 firms spend more than 13 % of total revenue on advertising. A

MINITAB version of the stem-and-leaf diagram generated by these data is shown

in Fig. 13.10. A stem-and-leaf diagram is presented in the last portion of Fig. 3.10.

In the first column of this diagram, (8) represents the total observation in the middle

group with a stem of 9; 1, 5, 12, and 19 represent the cumulative frequencies from

the first group up to the fourth group; and 3, 6, 9, and 13 represent the cumulative

frequencies from the ninth group up to the sixth group.

3.4.3 Frequency Polygon

A frequency polygon is obtained by linking the midpoints indicated on the x-axis of

the class intervals from a frequency histogram. A cumulative frequency polygon is

derived by connecting the midpoints indicated on the x-axis of the class intervals

from a cumulative frequency histogram. Figures 3.11 and 3.12 show the frequency

polygon and the cumulative frequency polygon, respectively, for JNJ’s current

ratio. Although a histogram does demonstrate the shape of the data, perhaps the

shape can be more clearly illustrated by using a frequency polygon.

Data Display

ADV EXP

12.5 8.8 11.5 9.1 9.4 10.1 5.3 10.3

10.2 7.4 8.2 7.8 6.5 9.8 9.2 12.8

13.9 13.7 9.9 6.8 6.4 7.8 8.5 9.5

11.3 8.9 6.6 7.5 8.3 13.8 12.9 11.8

10.4 7.6 8.6 9.4 7.3 9.5 8.3 7.1

MTB   >   STEM   AND   LEAF   USING    ‘ADV   EXP’

Character Stem-and-Leaf Display

Stem-and-leaf of ADV EXP N = 40
Leaf Unit = 0.10

1 5 3

5 6 4568

12 7 1345688

19 8 2335689

(8) 9 12445589

13 10 1234

9 11 358

6 12 589

3 13 789

Fig. 3.10 Stem-and-leaf diagram for advertising expenditure using MINITAB
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3.4.4 Pie Chart

Histograms are perhaps the graphical forms most commonly used in statistics, but

other pictorial forms, such as the pie chart, are often used to present financial and

marketing data. For example, Fig. 3.13 depicts a family’s sources of income. This

pie chart indicates that 80 % of this family’s income comes from salary.

For data already in frequency form, a pie chart is constructed by converting the

relative frequencies of each class into their respective arcs of a circle. For example,

a pie chart can be used to represent the student grade distribution data originally

presented in Table 3.3. In Table 3.13, the arcs (in degrees) for the five slices shown

in Fig. 3.14 were obtained by multiplying each relative frequency by 360�.

Fig. 3.11 Frequency polygon of JNJ’s current ratios

Fig. 3.12 Cumulative frequency polygon of JNJ’s current ratios
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3.5 Further Economic and Business Applications

3.5.1 Lorenz Curve

The Lorenz curve, which represents a society’s distribution of income, is a cumula-

tive frequency curve used in economics (Fig. 3.15a). The cumulative percentage of

families (ranked by income) is measured on the x-axis, and the cumulative

Fig. 3.13 Sources of family income

Table 3.13 Grade

distribution for 20 students
Class Frequency Relative frequency Arc (degrees)

Below 60 3 0.15 54

60–69 3 0.15 54

70–79 6 0.30 108

80–89 4 0.20 72

90–99 4 0.20 72

Total 20 1.00 360

Fig. 3.14 Grade distribution pie chart
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Fig. 3.15 (a) and (b) Lorenz curves
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percentage of family income received is measured on the y-axis. For example,

suppose there are 100 families, and each earns $100 – that is, the distribution of

income is perfectly equal. The resulting Lorenz curve will be a 45� line (OP),
because the cumulative percentage of families (e.g., 40 %) and the cumulative share

of family income received are always equal.

Now suppose that one family receives 100 % of total family income – that is, the

income distribution is absolutely unequal. The resulting Lorenz curve (ONP)
coincides with the x-axis until point N, where there is a discontinuous jump to

point P. This is because, with the exception of that single family (represented by

point N), each family receives 0 % of total family income. Therefore, these

families’ cumulative share of total family income is also 0 %.

The shape the Lorenz curve is most likely to assume is curve H, which lies

between absolute inequality and equality. This curve indicates that the lowest-

income families, who comprise 40 % of families (point A), receive a disproportion-
ately small share (about 7 %) of total family income (point C). If every family had

the same income, the share going to the lowest 40 % would be represented by point

B (40 %).

Note that with a more equitable distribution of income, the Lorenz curve is less

bowed, or flatter. Curve S in Fig. 3.15b is the Lorenz curve after a progressive

income tax is imposed. Because S is flatter than H (which is reproduced from

Fig. 3.15a), we can conclude that the distribution of income (after taxes) is more

nearly equal than before, as would be expected.

One way to measure the inequality of income from the Lorenz curve is to use the

Gini coefficient.

Gini coefficient for curve H ¼ area I

area ðIþ IIÞ

TheGini coefficient can range from 0 (perfect equality) to 1 (absolute inequality,
wherein one family receives all the income).

Examining Fig. 3.15b reveals that the Gini coefficient will be smaller for curve S
than it is for curve H. In other words, the progressive income tax makes the

distribution of income more nearly equal.

3.5.2 Stock and Market Rate of Return

Table 3.14 presents the frequency tables for the rate of return for Johnson and

Johnson, Merck, and the stock market overall. (The data are drawn from Table 2.4

in Appendix 2 of Chap. 2.) Because the two firms have similar frequency

distributions, we can conclude that the performances of Johnson and Johnson and

Merck’s stocks have been similar. However, Johnson and Johnson’s highest class is
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0.001–0.200, while Merck’s highest classes are spread but found at �0.200 and

below and at 0.201–0.400.

The stock market’s overall lowest class was found at �0.200 and below, but its

highest class was only 0.001–0.200. Thus, the overall market has fluctuated less

than the return of the two pharmaceutical firms. And although Johnson and Johnson

and Merck have a higher top class, the market suffered through fewer negative

returns. Moreover, Johnson and Johnson and Merck had 9 and 8 years, respectively,

of losses, while the market had only five. In other words, the pharmaceutical firms

offered the potential of higher returns but also threatened the investor with a greater

risk of loss.

3.5.3 Interest Rates

Histograms can be used to summarize movements in such interest rates as the prime

rate and the treasury bill rate. The prime rate is the interest rate that banks charge to

their best customers; treasury bills are short-term debt instruments issued by the US

Table 3.14 Rates of return for JNJ and MRK stock and the S&P 500

Class

Frequency

(years)

Cumulative

frequency

Relative

frequency

Cumulative relative

frequency

JNJ

�0.200 and below 4 4 0.1905 0.1905

�0.199 to 0.000 5 9 0.2381 0.4286

0.001–0.200 5 14 0.2381 0.6667

0.201–0.400 5 19 0.2381 0.9048

0.401–0.600 1 20 0.0476 0.9524

0.601–1.00 1 21 0.0476 1.0000

Total 21 1.000

MRK

�0.200 and below 5 5 0.2381 0.2381

�0.199 to 0.000 3 8 0.1429 0.3810

0.001–0.200 3 11 0.1429 0.5238

0.201–0.400 5 16 0.2381 0.7619

0.401–0.600 3 19 0.1429 0.9048

0.601–1.00 2 21 0.0952 1.0000

Total 21 1.000

S&P 500 (market)

�0.200 and below 1 1 0.0476 0.0476

�0.199 to 0.000 4 5 0.1905 0.2381

0.001–0.200 11 16 0.5238 0.7619

0.201–0.400 5 21 0.2381 1.0000

Total 21 1.000
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government. Let us examine how these rates have moved over the period

1990–2009, as shown in Table 3.15.

As can be seen in Table 3.16 and Fig. 3.16, the prime rate is skewed to the right,

with 65 % of the observations appearing in the ranges made up of the slightly higher

midrange interest rates (6–6.9 %, 7–7.9 %, and 8–8.9 %). If you were to predict a

future value for the prime rate, your best guess would be in the 6–9 % range. This

wide range would probably not be of much use. Better methods for prediction, such

as multiple regression and time series analysis, will be discussed later (Chaps. 15

and 18).

Table 3.15 3-Month T-bill

rate and prime rate

(1990–2009)

Year 3-Month T-bill rate Prime rate

90 7.49 10.01

91 5.38 8.46

92 3.43 6.25

93 3.00 6.00

94 4.25 7.14

95 5.49 8.83

96 5.01 8.27

97 5.06 8.44

98 4.78 8.35

99 4.64 7.99

00 5.82 9.23

01 3.39 6.92

02 1.60 4.68

03 1.01 4.12

04 1.37 4.34

05 3.15 6.19

06 4.73 7.96

07 4.35 8.05

08 1.37 5.09

09 0.15 3.25

Table 3.16 Frequency distributions of interest rates

T-bill Prime rate

Class (%) Frequency Relative frequency Frequency Relative frequency

0–1.99 0 0.00 5 0.25

2–2.99 0 0.00 0 0.00

3–3.99 1 0.05 4 0.20

4–4.99 3 0.15 5 0.25

5–5.99 1 0.05 5 0.25

6–6.99 4 0.20 0 0.00

7–7.99 3 0.15 1 0.05

8–8.99 6 0.30 0 0.00

9–9.99 1 0.05 0 0.00

10–10.99 1 0.05 0 0.00

Total 20 1.00 20 1.00
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The frequency table for the treasury bill rate is shown in Table 3.16. This

distribution, like that of the prime rate, is skewed to the right. Fifty percent of the

observations appear in the third and fourth classes, 4–4.9 % and 5–5.9 %. This

distribution is depicted in the histogram shown in Fig. 3.17.

If you were to make a prediction of the treasury bill rate, it would probably be in

the 3–6 % range. Again, better methods for predicting observations will be

discussed later.
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Fig. 3.16 Frequency histogram of prime lending rates given in Table 3.15
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Fig. 3.17 Frequency histogram of T-bill rates given in Table 3.15
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3.5.4 Quality Control

Figure 3.18 depicts the quality control data on electronic parts given in Table 3.17.

This control chart shows the percentage of defects for each sample lot. Figure 3.18

indicates that both lots 5 and 7 have exceeded the allowed maximum defect level of

3 %. Therefore, the product quality in these two lots should be improved.

Percentage Defective

4

3

2

1

0
1 2 3 4 5 6 7 8

Lot Number

Fig. 3.18 Frequency bar graph of the percentage of defects for each sample lot

Table 3.17 Quality control

report on electronic parts
Sample Lot Sample Defects Percentage

1 1,000 15 1.5

2 1,000 20 2.0

3 1,000 17 1.7

4 1,000 25 2.5

5 1,000 35 3.5

6 1,000 20 2.0

7 1,000 36 3.6

8 1,000 28 2.8

Total 8,000 196 2.45 (mean)
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3.6 Summary

In this chapter, we extended the discussion of Chap. 2 by showing how data can be

grouped to make analysis easier. After the data are grouped, frequency tables,

histograms, stem-and-leaf displays, and other graphical techniques are used to

present them in an effective and memorable way.

Our ultimate goal is to use a sample to make inferences about a population.

Unfortunately, neither the tabular nor the graphical approach lends itself to mea-

suring the reliability of an inference in data analysis. To do this, we must develop

numerical measures for describing data sets. Therefore, in the next chapter, we

show how data can be described by the use of descriptive statistics such as the

mean, standard deviation, and other summary statistical measures.

Questions and Problems

1. Explain the difference between grouped and nongrouped data.

2. Explain the difference between frequency and relative frequency.

3. Explain the difference between frequency and cumulative frequency.

4. Carefully explain how the concept of cumulative frequency can be used to form

the Lorenz curve.

5. Suppose you are interested in constructing a frequency distribution for the

heights of 80 students in a class. Describe how you would do this.

6. What is a frequency polygon? Why is a frequency polygon useful in data

presentation?

7. Use the prime rate data given in Table 3.6 in the text to construct cumulative

frequency and cumulative relative frequency tables.

8. Use the percentage of total revenue spent on advertising listed in Table 3.12

of the text to draw a frequency polygon and a cumulative frequency polygon.

9. On November 17, 1991, the Home News of central New Jersey used the bar

chart given here to show that foreign investors are taxed at a lower rate than the

US citizens.

(a) Construct a table to show frequency, relative frequency, and cumulative

frequency.

(b) Draw a frequency polygon and a cumulative frequency polygon.
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Foreign investors get big tax breaks
on money made in the U.S.
1988 tax rates, in percent.

Rate for
middle-
income* U.S.
taxpayers:
10.7%

. . . If taxed at the same
rate. granted Kuwaiti
investors in the U.S..
the American would
have paid just
$454

An American taxpayer
earning $30,000 to
$40,000 paid
$3,708 . . .

Japan
6.065.635.214.644.39

4.393.953.67

2.502.241.97

1.861.291.02.76
.14
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Source: Philadelphia Inquirer, Internal Revenue Service.

*$30,000
to $40,000

Source: Home News, November 17, 1991, Reprinted by permission of Knighi-

Ridder Tribune News

10. Use the EPS and DPS data given in Table 2.3 in Chap. 2 to construct frequency

distributions.

11. Use the data from question 10 to construct a relative frequency graph and a

cumulative relative frequency graph for both EPS and DPS.

12. On November 17, 1991, the Home News of central New Jersey used the bar

chart in the accompanying figure to show the 1980–1991 passenger traffic

trends for Newark International Airport.

(a) Use these data to draw a line chart and interpret your results.

(b) Use these data to draw a stem-and-leaf diagram and interpret your results.
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Source: Home News, November 17, 1991. Reprinted by permission of the

publisher

13. An advertising executive is interested in the age distribution of the subscribers

to Person magazine. The age distribution is as follows:

Age Number of subscribers

18–25 10,000

26–35 25,000

36–45 28,000

46–55 19,000

56–65 10,000

Over 65 7,000

(a) Use a frequency distribution graph to present these data.

(b) Use a relative frequency distribution to present these data.

14. Use the data from question 13 to produce a cumulative frequency graph and a

cumulative relative frequency graph.
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15. Construct stem-and-leaf displays for the 3-month T-bill rate and the prime rate,

using the data listed in Table 3.15.

Use the goaltenders’ salaries for the 1991 NHL season given in the following

table to answer questions 16–20.

Name Team Gross salary

Patrick Roy Montreal Canadiens $1.056Ma

Ed Belfour Chicago Blackhawks $925,000

Ron Hextall Philadelphia Flyers $735,000

Mike Richter New York Rangers $700,000

Kelly Hrudey Los Angeles Kings $550,000

Mike Liut Washington Capitals $525,000

Mike Vernon Calgary Flames $500,000

Grant Fuhr Toronto Maple Leafs $424,000

John Vanbiesbrouck New York Rangers $375,000

Ken Wregget Philadelphia Flyers $375,000

Tom Barrasso Pittsburgh Penguins $375,000
aRoy’s salary is $500,000 Canadian, and $700,000 Canadian deferred. The salary listed is US

equivalent

16. Group the data given in the table into the following groups: $351,000–400,000;

401,000–450,000; 451,000–500,000; 501,000–550,000; 551,000–600,000;

601,000–650,000; 651,000–700,000; over 701,000.

17. Use your results from question 16 to construct a cumulative frequency table.

18. Use your results from question 16 to construct a relative frequency table and a

cumulative relative frequency table.

19. Use a bar graph to plot the frequency distribution.

20. Use a bar graph to plot the cumulative relative frequency.

21. Briefly explain why the Lorenz curve shown in Fig. 3.15b has the shape it does.

22. The students in an especially demanding history class earned the following

grades on the midterm exam: 86, 75, 92, 98, 71, 55, 63, 82, 94, 90, 80, 62, 62,

65, and 68. Use MINITAB to draw a stem-and-leaf graph of these grades.

23. Use the data given in question 22 to construct a tally table for the grades. Use

intervals 51–60, 61–70, 71–80, 81–90, and 91–100.

24. Construct a cumulative frequency table for the tally table you constructed in

question 23.

25. Use the data in question 24 to graph the cumulative frequency on a bar chart by

using Microsoft Excel.

26. Suppose the Gini coefficient in some country were equal to 0. What would that

tell us about income in this country?

27. Suppose the Gini coefficient in another country were equal to 1. What would

that tell us about income in this country?

Use the following information to answer questions 28–34. Suppose Weight

Watchers has collected the following weight loss data, in pounds, for 30 of its

clients.

15, 20, 10, 6, 8, 18, 32, 17, 19, 7, 9, 12, 14, 9, 25, 18, 21, 3, 2, 18, 12, 15, 14,

28, 34, 30, 18, 12, 11, 8
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28. Construct a tally table for weight loss. Use 5-lb intervals beginning with 1–5 lb,

6–10 lb, etc.

29. Construct a cumulative frequency table for weight loss.

30. Construct a frequency histogram for weight loss using MINITAB.

31. Construct a frequency polygon for weight loss.

32. Construct a table for the relative frequencies and the cumulative relative

frequencies.

33. Graph the relative frequency.

34. Graph the cumulative relative frequency.

35. The following graph shows the Lorenz curves for two countries, Modestia and

Richardonia. Which country has the most nearly equal distribution of income?

Cumulative Percentage
of Family Income

Cumulative Percentage
of Families

Modestia

Richardonia

Use the following information to answer questions 36–41. Suppose a class of

high school seniors had the following distribution of SAT scores in English.

SAT score Number of students

401–450 8

451–500 10

501–550 15

551–600 6

601–650 4

651–700 1

36. Construct a cumulative frequency table.

37. Use a histogram to graph the cumulative frequencies.

38. Construct a frequency polygon.

39. Compute the relative frequencies and the cumulative relative frequencies.

40. Construct a relative frequency histogram.

41. Construct a cumulative relative frequency histogram.

Use the following prices of Swiss stocks to answer questions 42 through 49.
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Switzerland (in Swiss francs) Close Prev. close

1. Alusuisse 976 982

2. Brown Boveri 3,960 4,080

3. Ciba-Geigy br 3,190 3,240

4. Ciba-Geigy reg 3,080 3,110

5. Ciba-G ptc ctf 3,020 3,040

6. CS Holding 1,920 1,915

7. Hof LaRoch br 8,280 8,300

8. Roce div rt 5,360 5,330

9. Nestle bearer 8,420 8,450

10. Nestle reg 8,310 8,310

11. Nestle ptc ctf 1,570 1,585

12. Sandoz 2,390 2,410

13. Sulzer 465 470

14. Swiss Bank Cp 301 299

15. Swiss Reinsur 2,520 2,530

16. Swissair 667 680

17. UBS 3,230 3,230

18.Winterthur 3,390 3,420

19. Zurich Ins 4,080 4,090

Source: Wall Street Journal, November 1, 1991

42. Construct a tally table for the closing stock prices “Close” column. Use 1,000-

point intervals beginning with 301–1,300, 1,301–2,301, etc.

43. Compute the change in prices by subtracting the previous closing price from

the current closing price.

44. Use your answer to question 43 to construct a tally table. Use 30-point intervals

beginning with �120 ~ �91,–90 ~ �61, etc.

45. Use your answer to question 44 to compute the cumulative frequencies.

46. Use your answer to question 44 to compute the relative and cumulative relative

frequencies.

47. Use your answer to question 46 to graph the relative frequency.

48. Use your answer to question 46 to graph the cumulative frequency.

49. Create a frequency polygon using data from question 44.

50. Draw the stem-and-leaf display of DPS of JNJ and Merck during the period

1988–2009 using Table 2.3, in which data on EPS, DPS, and PPS for JNJ,

Merck, and S&P 500 during the period 1988–2009 are given.

51. Refer to Table 2.5, in which the balance sheet of JNJ company for the year 2008

and 2009 are given. Draw the pie chart of the composition of the total current

asset of JNJ for the year 2008 and 2009, respectively.

Using Table 2.8, in which the 7 financial ratios of JNJ and Merck during the

period 1990–2009 are given.

52. Construct a frequency, cumulative frequency, and relative frequency table for

the “price–earnings ratio” (PER) of the JNJ company using class boundaries:

�20.000 < PER �0.000, 0.000 < PER �5.000, 5.000 < PER �10.000,

10.000 < PER �15.000, 15.000 < PER �20.000, 20.000 < PER �27.000.

53. Draw the histogram and frequency polygon of the above frequency distribution.
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4.1 Introduction

In this chapter, we extend the graphical descriptive method in data analysis by

examining measures of central tendency, dispersion, position, and shape. All these

numerical summary measures are important because they enable us to describe a set

of data with only a small number of summary statistics. One use of these summary

statistics is to compare individual observations from a data set. For example,

a student in a statistics class could use one measure of central tendency, the class

average, or mean, to determine how well her performance stacks up to the rest of the

class. Measures of central tendency can also be used to compare two different sets

of data. For example, a statistics teacher interested in comparing the performances

of two different statistics classes could take the average, or mean, for each class and

compare the two.

We first address four measures of central tendency, discussing how they are

computed from a data set and how they help us locate the center of a distribution

(see Fig. 4.1a). Similarly, we examine measures of dispersion, which describe the

dispersion, or spread, of a set of observations and therefore of its distribution

(see Fig. 4.1b). The coefficient of variation (a measure of relative dispersion) is

also investigated. Next, we explore measures of a distribution’s position.Numerical

descriptive measures have also been devised to measure shape: the skewness of

a distribution (the tendency of a relative frequency distribution to stretch out in one

direction or another) and its kurtosis (peakedness). Here, we discuss only the

numerical measurement of skewness. The numerical measurement of kurtosis

will be discussed in Chap. 9. Finally, we present applications of numerical descrip-

tive statistics in business and economics.

4.2 Measures of Central Tendency

The purpose of a measure of central tendency is to determine the “center” of

a distribution of data values or possibly the “most typical” data value. Measures of

central tendency include the arithmetic mean, geometric mean, median, and mode.

Fig. 4.1 Numerical summary measures: (a) central tendency and (b) dispersion

96 4 Numerical Summary Measures

http://dx.doi.org/10.1007/978-1-4614-5897-5_9


Using a quality control example, we will illustrate each of these measures with

the following data, which represent the number of defective parts in each of four

samples1:

5, 8, 14, 3

4.2.1 The Arithmetic Mean

Most of you have calculated your grade point average or average test score in a

course by adding all your grade points or scores and dividing by the number of

courses or tests. You might not have realized it, but you were calculating the

arithmetic mean.
The arithmetic mean of a set of raw data is denoted by x1, x2, . . ., xN (N represents

the total number of observations in a population) or x1, x2, . . ., xn (n represents the

sample size). We find it by adding together all the observations and dividing by the

number of observations. A sample mean is denoted by �x, a population mean by m.
For the quality control data set, n ¼ 4, so

�x ¼ ð5þ 8þ 14þ 3Þ=4 ¼ 30=4 ¼ 7:5

Thus, when the observations are x1, x2, . . ., xn, the sample mean is

�x ¼
Pn
i¼1

xi

n
(4.1)

The population mean is

m ¼
XN
i¼1

xi=N (4.2)

where N is the total number of observations of the population and the observations

are x1, x2, . . ., xN. The summation notation (∑) used in Eqs. 4.1 and 4.2 simply

means that the first observation is added to the second and so on, until all the

observations have been added.

Example 4.1 Six from Nine to Five. Say we want to find the average annual salary

of all secretaries. We believe we can do this on the basis of our knowledge of the

annual salaries of six particular secretaries, who each year earn $10,400, $34,000,

1Quality control was addressed briefly in Table 3.17 of Chap. 3. This issue will be discussed

further in Chaps. 10 and 11.

4.2 Measures of Central Tendency 97

http://dx.doi.org/10.1007/978-1-4614-5897-5_3
http://dx.doi.org/10.1007/978-1-4614-5897-5_10
http://dx.doi.org/10.1007/978-1-4614-5897-5_11


$14,000, $18,500, $27,000, and $25,800, respectively. This is a sample of n ¼ 6,

where x1 ¼ 10,400, x2 ¼ 34,000, x3 ¼ 14,000, x4 ¼ 18,500, x5 ¼ 27,000, and

x6 ¼ 25,800. We find the sample mean by adding all the observations and dividing

by 6:

�x ¼ ðx1 þ x2 þ x3 þ x4 þ x5 þ x6Þ=6 ¼ 129;700=6

¼ $21;616:67

Our result is a samplemean because we are interested in finding the mean annual

income of all secretaries on the basis of the annual income of a smaller sample

consisting of only six secretaries.

Example 4.2 Arithmetic Average of Stock Rates of Return. As an example of

computing the mean of a population, suppose an individual owns five stocks that

last year returned 15 %, 10 %, �4 %, 7 %, and �10 %. We find the mean of this

population by adding all the returns and dividing by N ¼ 5. Thus, the population

mean is m ¼ (15 þ 10 þ �4 þ 7 þ �10)/5 ¼ 18/5 ¼ 3.6 %.

4.2.2 The Geometric Mean

The geometric mean of a set of observations is another measure of central tendency.

It can be calculated by multiplying all the observations and taking the product to the

l/N or the 1/n power, depending on whether the observations come from a finite

population or a sample. The sample mean (�xg) and the population geometric mean

(mg) can be expressed as follows:

�xg ¼ ðx1 � x2 � � � � � xnÞ1=n (4.3)

mg ¼ ðx1 � x2 � � � � � xNÞ1=N (4.4)

Using the quality control data set, we find that

�xg ¼ ð5 � 8 � 14 � 3Þ1=4 ¼ ð1680Þ1=4 ¼ 6:40

Note that the geometric mean, 6.4, is smaller than the arithmetic mean, 7.5.

All the observations in Eqs. 4.3 and 4.4 must be positive. It should be noted that

the geometric mean is less sensitive to extreme values than is the arithmetic mean.

The geometric mean is frequently used in finance to calculate the rate of return on a

stock or bond. The reason why the geometric mean is popular in calculating average

rates of return is that this method explicitly incorporates the concept of compound
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interest (interest received on interest).2 To avoid negative and zero returns, holding

period returns (HPR) are used. An HPR is calculated by taking the rate of return and

adding 1. Adding 1 avoids negative numbers and makes it possible to calculate an

average return. Now let’s use the data given in Example 4.2 to calculate the

geometric average of stock rates of return.

Example 4.3 Geometric Average of Stock Rates of Return. Here, we must calculate

a geometric mean of the following rates of return: 15 %, 10 %, �4 %, 7 %,

and �10 %. To obtain the HPR, we add 1 to each of the returns, which yields

1.15, 1.10, .96, 1.07, and .90. To obtain the geometric mean of the HPR, we

multiply the individual HPRs and take the product to the 1/N power:

mg ¼ ½ð1:15Þð1:10Þð:96Þð1:07Þð:90Þ�1=5 ¼ ð1:169Þ1=5 ¼ 1:032

To obtain the geometric mean for the conventional rate of return, we subtract

1 from the geometric-mean HPR, arriving at .032 or 3.2 %. Note that the geometric

mean is 3.2 %, whereas the arithmetic mean (calculated in Example 4.2) is 3.6 %. In

general, the geometric mean is smaller than the arithmetic mean and less sensitive

to extreme observations.

4.2.3 The Median

The median (Md) is the middle observation of a set of ordered observations if the

number of observations is odd; it is the average of the middle pair if the number of

observations is even. In other words, if there are N observations, where N is an odd

number, the median is the [(N þ l)/2]th observation. If N is even, the median is the

average of the (N/2)th and the [(N þ 2)/2]th observations. Sometimes the median is

a preferred measure of central tendency, particularly when the data include extreme

observations that could affect the geometric or arithmetic mean.

Consider again our quality control data. We find the median Md by first

constructing an order array:

3, 5, 8, 14

Because N is an even number (4), Md ¼ (5 þ 8)/2 ¼ 6.5. The median (6.5) is

smaller than the mean (7.5), as indicated in Fig. 4.2. This difference is essentially

caused by the extreme value 14. The relationship between mean and median will be

discussed in Sect. 4.5.

2 The advantage of using the geometric average rather than the arithmetic average is discussed by

Lee et al. (1990), Security Analysis and Portfolio Management, Scott, Foresman, Little, Brown

(Chap. 3).
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Example 4.4 Median of Stock Rates of Return. Arrange the rate-of-return data in

Example 4.2 in numerical order:�10%,�4%, 7 %, 10%, and 15%. There is an odd

number of observations, so the median is the third observation—[(5 þ 1)/2] ¼
3—which in this case is 7 %.

Example 4.5 What Does “Average” Mean? Arithmetic Mean Versus Median for
Sample Family Income. The median can be particularly useful when there are a few

extreme observations. Consider the following incomes for six sample families:

$10,000, $13,400, $15,000, $17,000, $19,000, and $120,000. Although the arithmetic

mean of the series is $32,400, the median is ($15,000 þ $17,000)/2 ¼ $16,000. The

substantial difference between the two means is due mainly to the extreme observa-

tion of $120,000. The median is the better measure of central tendency in this

example. Note that the median would not change if the fifth and sixth observations

were larger. For example, the last number could be $5,000,000 and the median would

remain unchanged. Thus using the median is preferred when outlying data could lead

to a distorted picture of the mean of a distribution.

Calculations of average income are especially vulnerable to such distortions.

Consider the effect of that single $120,000 income if, say, federal assistance for day

care were being made available in communities where the average income was

under $20,000—and the “average income” of our community of six families were

being interpreted as the mean.

Example 4.6 This Teacher Is Really Mean. Students may complain that one or two

very high scores raise the class average on an exam and thus lower their letter grade.

See Table 4.1, where the “rank on exam” in the third column is obtained by ranking

all scores in order from lowest to highest. If the mean is taken as the average score

that translates into a grade of C, five of these seven students have scored “below

average.” Students who see this as unfair are in effect arguing against using the

mean exam score as a measure of central tendency. Are they right?

Well, Albert and Sue did score exceptionally high on the exam, and they do in

fact raise the mean score dramatically. Should the teacher base the class grades on

the mean of 72.43 or use some other measure of central tendency? The median

(here it is 62), which lies in the middle and is not altered by the extreme values that

affect the mean, may be a better measure of central tendency in this case. (Juan and

Mary, whose grades have just risen from D to B and C, respectively, will certainly

think so.)

Fig. 4.2 Sample quality control data with mean and median shown
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4.2.4 The Mode3

The mode of a set of observations is the value that occurs the most times. In cases of

a tie, it may assume more than one value. The mode is most useful when we are

dealing with data that are in categories where the mean and median are not useful.

For example, suppose that a computer sales representative sells the brands and

numbers of computers shown in Table 4.2. Here, it makes no sense to take the mean

or median of the data, because the categories are mutually exclusive. Instead, the

sales rep is interested in the most popular and the least popular products. Thus, he or

she wants to know which is the modal class (it is the Compaq computer) because

that class contains the highest number of computers sold.

The main disadvantage of the mode is that it does not take the nonmodal

observations into consideration. Thus, in the computer example, the mode does not

reflect the facts that the IBMM30 has almost as many sales as the Compaq model and

that the IBM M70 has almost the same amount of sales as the IBM M30. As another

example, suppose a sample of the incomes ofworkers is taken and the arithmeticmean

is $25,746. Suppose further that the observation $38,500 appears the most times and

therefore is the mode. Obviously, the mode is not a good measure of central tendency

here, because it is so far away from the mean. This problem occurs often, and

researchers must be aware of the limitations of this and other statistical measures.

Example 4.7 The Model Wears 4, but the Modal Is 7. Suppose a clerk in a shoe

store sells eight pairs of shoes in the following sizes: 5, 7, 7, 7, 4, 5, 10, and 11.

Table 4.1 Student exam

scores
Student Score Rank on exam

Kim 60 2

Mary 62 4

Tom 55 1

Ann 61 3

Juan 70 5

Albert 99 6

Sue 100 7

Total 507

Mean ¼ �x ¼ 72.43

Median ¼ 62

Table 4.2 Sales of personal

computers
Type Number sold

IBM PS2/M30 487

IBM PS2/M50 201

IBM PS2/M70 432

Compaq 506

3 Relationships among mean, median, and mode will be discussed in Sect. 4.5.
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The modal shoe size is 7 because it appears the greatest number of times. If this

result is obtained regularly, it is certainly something the purchasing manager wants

to know. Although the mean and median are more widely used as measures of

central tendency in business and economics, the mode gives useful information on

the most numerous value in a set of observations.

The numerical example discussed in Example 4.7 is a unimodal distribution. The

following is a bimodal distribution: 5, 5, 7, 7, 7, 8, 9, 10, 10, 10 (7 and 10 are the

modes). It should be noted that if each different number has the same frequency,

there is no mode. An example of a case of no mode is 1, 1, 2, 2, 4, 4.

4.3 Measures of Dispersion

The mean, median, and mode all give us information about the central tendency of a

set of observations, but these measures shed no light on the dispersion, or spread, of
the data. For example, suppose a professor gives a test to two classes and the mean

for each class is 75. However, suppose that all the students in the first class scored in

the 70s, with a high of 79 and a low of 70. In the second class, the lowest score was

42 and the highest 97. It is obvious that the scores in the second class are more

widely dispersed, or spread, around the mean than the scores in the first. In this

section, we discuss measures of dispersion: the variance, standard deviation, mean

absolute deviation, range, and coefficient of variation. We will use our now-familiar

quality control data (3, 5, 8, 14) to illustrate these different measures.

4.3.1 The Variance and the Standard Deviation

Suppose we have a set of observations from a population x1, x2, . . ., xN. We are

interested in finding a dispersion measure, so it would seem natural to calculate the

deviations from the mean (x1 � m), (x2 � m), . . ., (xN� m). But the negative deviations
from the mean cancel out the positive deviations,4 so the sum of these deviations

will always be zero, which sheds no light on the extent of dispersion. To avoid

this problem, we square and sum the deviations (distances) to give an indication of

the total dispersion:

ðx1 � mÞ2 þ ðx2 � mÞ2 þ � � � þ ðxN � mÞ2

If we take this sum and divide by the number of observations, N, we arrive at the
variance, which represents the average squared deviation (distance) from the mean.

The population variance is denoted by s2, as indicated in Eq. 4.5, and the sample

4 Because ðx1 � mÞ þ ðx2 � mÞ þ � � � þ ðxN � mÞ ¼
XN
i¼1

xi � Nm ¼ Nm � Nm ¼ 0:
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variance by s2, as indicated in Eq. 4.7. The standard deviation is the square root of

the variance; it is denoted by s for the population (Eq. 4.6) and by s for the sample

(Eq. 4.8).

Population variance Population standard deviation

s2 ¼
PN
i¼1

ðxi�mÞ2

N ð4:5Þ s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðxi�mÞ2

N

s
ð4:6Þ

Sample variance Sample standard deviation

s2 ¼
Pn
i¼1

ðxi��xÞ2

n�1
ð4:7Þ s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi��xÞ2

n�1

s
ð4:8Þ

A shortcut formula that can be used to compute the variance and standard

deviation for samples and populations is given in Appendix 1.

Using the quality control data, we calculate the sample variance and standard

deviation in accordance with Eqs. 4.7 and 4.8. Recall that �x ¼ 7.5.

x (xi � �x) (xi � �x)2

3 �4.5 20.25

5 �2.5 6.25

8 .5 .25

14 6.5 42.25

Total 30 ∑(xi � �x) ¼ 0 ∑(xi � �x)2 ¼ 69

Substituting ∑(x � �x)2 ¼ 69 into Eqs. 4.7 and 4.8, we obtain

s2 ¼ 69=ð4� 1Þ ¼ 23

s ¼ 4:80

Note that we use the divisor (n� 1) instead of n to calculate the sample variance.

This is because using the divisor (n � 1) yields a more precise estimate of s2 than

dividing the sum of squared distances by n.5

For purposes of comparison, let’s calculate the variance and the standard devia-

tion of another set of quality control data (3, 4, 5, 6):

�x ¼ ð3þ 4þ 5þ 6Þ=4 ¼ 4:5

s2 ¼ ð3� 4:5Þ2 þ ð4� 4:5Þ2 þ ð5� 4:5Þ2 þ ð6� 4:5Þ2
4� 1

¼ 1:67

s ¼ 1:29

5 “More precise” means that s2 with a divisor of (n� 1) instead of n has the mean s2. See Sect. 9.4
for the proof.
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We see, then, that the variance of the second set of quality control data is smaller

than the variance of the first. The smaller variance of the second set of data is

graphically represented in Fig. 4.3.

Example 4.8 Variability of Profit Margin. Suppose we want to calculate the vari-

ance and standard deviation for the net profit margins indicated, for a certain firm

over a 5-year period, in Table 4.3. Because this is a sample, n ¼ 5.
The next computations show how to calculate the variance and standard

deviation by using the shortcut formulas of Eqs. 4.7a and 4.8a, as indicated in

Appendix 1:

Variance ¼ s2 ¼
Pn
i¼1

x2i � n�x2

n� 1

¼ 104:19� 5ð3:822Þ2
4

¼ 7:79

Standard deviation ¼ s ¼
ffiffiffiffiffiffiffiffiffi
7:79

p
¼ 2:79

Note that the answers are the same as those derived with the standard formulas as

indicated in Table 4.3.

Fig. 4.3 Two sets of quality control data: (a) first set of data and (b) second set of data

Table 4.3 Worksheet for

data on net profit ratios
Net profit margin

(x) (x � �x) (x � �x)2 x2

5.6 1.778 3.16 31.36

2.7 �1.122 1.26 7.29

7.3 3.478 12.10 53.29

3.5 �.322 .103 12.25

.01 �3.812 14.53 .00

19.11 0 31.1533 104.19

Mean ¼ �x ¼ 19.11/5 ¼ 3.822

Variance ¼ s2 ¼ 31.153/4 ¼ 7.79

Standard deviation ¼ s ¼ ffiffiffiffiffiffiffiffiffi
7:79

p ¼ 2.79

104 4 Numerical Summary Measures



Example 4.9 Variability of Sales. Suppose a sample of sales is taken from four

firms and that the figures are $2.3 million, $1.1 million, $.7 million, and $6.8

million (see Table 4.4). Substituting related information into Eqs. 4.1, 4.7, and

4.8, we obtain

Mean ¼ �x ¼ 10:9=4 ¼ 2:725

Variance ¼ s2 ¼ 23:53=ð4� 1Þ ¼ 7:8

Standard deviation ¼ s ¼
ffiffiffiffiffiffiffi
7:8

p
¼ 2:8

Calculating the variance and standard deviation via the shortcut formula of

Eqs. 4.7a and 4.8a, we get

s2 ¼ 53:23� 4ð2:725Þ2
3

¼ 7:8

s ¼
ffiffiffiffiffiffiffi
7:8

p
¼ 2:8

Again, the results are identical to those obtained with the standard formula.

4.3.2 The Mean Absolute Deviation

Rather than squaring the deviations from the mean, we can arrive at another useful

measure by calculating the absolute deviations from the mean or median and then

dividing by the number of observations to obtain the average absolute deviation

from the mean or median. This measure, called the mean absolute deviation
(MAD), is defined as follows:

MAD ¼
Pn
i¼1

jxi � �xj
n

or

Pn
i¼1

jxi �Mdsj
n

(4.9)

Table 4.4 Worksheet for

sales data
Sales (x) x � �x (x � �x)2 x2

2.3 �.425 .181 5.29

1.1 �1.625 2.64 1.21

.7 �2.025 4.100 .49

6.8 4.075 16.60 46.24

10.9 0 23.53 53.23
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where n is the sample size, �x is the sample mean, and Mds is the sample median.

If population data instead of sample data are used, then

MAD ¼
PN
i¼1

jxi � mj
N

or

PN
i¼1

jxi �MADpj
N

(4.10)

where N is the total observations of population, m is the population mean, and

MADp is the population median. Let us calculate xi � �xj j and xi �MDsj j for our
quality control data. Recall that �x ¼ 7.5 and Mds ¼ 6.5.

xi xi � �xj j xi �Mdsj j
3 4.5 3.5

5 2.5 1.5

8 .5 1.5

14 6.5 7.5

Total 30 14 14

Substituting
P

xi � �xj j ¼ 14 and
P

xi �Mdsj j ¼ 14 into Eq. 4.9, we obtain

MAD ¼ 14=4 ¼ 3:5 if samplemean is used

MAD ¼ 14=4 ¼ 3:5 if samplemedian is used

One advantage of this measure is that it is not influenced so much as the variance

by extreme observations. A second advantage is that the MAD is easier to interpret

than the standard deviation. It is much easier to form a mental picture of the average

deviation from the mean than to visualize the square root of the squared deviation

from the mean! The MAD is not used much in statistical analysis, however, because

complications can arise from its use in making inferences about a population on the

basis of sample observations alone.

Example 4.10 Variability of Inflation Forecast. Assume that a population of

inflation forecasts for next year consists of the following values: 7 %, 5 %, 4 %,

2 %, and 1 %. The worksheet for calculating MAD by using Eq. 4.10 is given in

Table 4.5.

The MAD we find by using the mean is 1.84, and the MAD we find by using the

median is 1.80. In this case, the results are not identical because the distribution is

not symmetric. If the distribution were highly skewed (like that of the student exam

scores given in Table 4.1), the MAD found in terms of the mean would be very

different from that found in terms of the median. Should we use the mean or the

median, then, in calculating the mean absolute deviation? That depends on which

measure of central tendency we believe is best for describing our distribution.
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4.3.3 The Range

The range is one of the easiest measures of dispersion to calculate and interpret. The

range is simply the difference between the highest and lowest values:

R ¼ xmax � xmin (4.11)

where R ¼ range, xmax ¼ the largest value of all observations, and xmin ¼ the

smallest value of all observations. The range of our quality control data is

R ¼ 14� 3 ¼ 11

The disadvantage of using this measure is that it takes into consideration only

these two values. Thus, it is easily thrown off by extreme values. In contrast, the

variance, standard deviation, and MAD use all the observations. Despite this

problem, the range has some value, for example, the typical range of temperatures

in New England during the winter tells us a lot about that area’s climate. The Wall
Street Journal and other newspapers use the range when they report the 52-week

high and low for each stock price per share. For example, on January 9, 1991, the

52-week high and low for IBM and Digital Equipment Corporation were $123 1
8

�$95 and $95 1
8
� $45 1

2
, respectively (see Fig. 4.4). Comparing these two ranges

reveals that the price range of Digital Equipment ($495
8
) was much greater than the

price range of IBM ($28 1
8
).

4.3.4 The Coefficient of Variation

The coefficient of variation (CV) is the ratio of the standard deviation to the mean.

The coefficient of variation for sample data can be defined as

Table 4.5 Inflation forecasts Forecast

(x, %) x� m¼ x � 3.8 � 3.8 x� mj j x�medianj j
7 3.2 3.2 3

5 1.2 1.2 1

4 .2 .2 0

2 �1.8 1.8 2

1 �2.8 2.8 3

9.2 9

m ¼ 19/5 ¼ 3.8. Mdp ¼ 4

MAD ¼ 9.2/5 ¼ 1.84

MAD ¼ 9/5 ¼ 1.80
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CVx ¼ s=x
*

(4.12)

For our quality control data,

CVx ¼ 4:8=7:5 ¼ :64

The coefficient of variation is particularly useful when we must compare the

variabilities of data sets that are measured in different units. For example, suppose a

researcher wants to see how Japanese and American wage incomes compare in

variability. Because workers are paid in yen in Japan and in dollars in the United

States, it would be difficult to make this comparison using, say, the standard

deviation. Being a relative expression—that is, a ratio—the coefficient of variation

neatly avoids this problem.

The coefficient of variation is also useful when we are comparing data of the

same type from different time periods. Suppose, for example, that the mean sales for

a firm from 1980 to 1985 were $.5 million with a standard deviation of $50,000. The

mean sales for the same firm from 1986 to 1991 were $3.2 million with a standard

deviation of $100,000. If we compared the standard deviations and concluded

that sales in the 1980s were less variable, we would obtain a distorted picture.

The value of sales during the earlier period was much lower than during the later

period, so the resulting standard deviation is almost certain to be smaller. Therefore,

we use the coefficient of variation, which we calculate as .1 for the earlier period

and .03 for the later. Sales were actually less variable from 1986 to 1991.

Example 4.11 Using Coefficient of Variation to Analyze the Volatility of Stocks.
Whenever we compare two different stocks (A and B), it is useful to know two

particular statistics: (1) the average, or mean, of the stocks’ rates of return and (2)

the standard deviation of the returns, which is an indicator of risk. A high rate of

return and low risk are desirable, so having a high mean and a low standard

deviation is the most desirable combination. Let’s say the average rates of return

( �R) and standard deviations (s) for these two stocks are

�R s

Stock A 10 % 1 %

Stock B 12 % 1.5 %

Fig. 4.4 Ranges of stock prices per share for Digital Equipment and IBM (in dollars)
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Stock B has a higher mean return (�R), but it also has a larger standard deviation (s),
which means it is more risky. Because A is less risky but B has a higher expected

return, the choice between the two is not obvious. By using the coefficient of

variation, however, we can find the amount of risk (standard deviation) per unit of

expected return, which is an appropriate measure of relative variability that combines

risk and rate of return. Substituting the values of �R and s into Eq. 4.12 yields

CVA ¼ :01=:10 ¼ :10

CVB ¼ :015=:12 ¼ :125

Thus, stock B has a greater risk per unit of expected return than stock A.

4.4 Measures of Relative Position

In some situations, we may want to describe the relative position of a particular

measurement in a set of data. In this section, we discuss three measures of relative

standing: percentiles, quartiles, and Z scores.

To illustrate these measures, suppose the personnel managers of Johnson &

Johnson have administered an aptitude test to 40 job applicants. Their scores are

presented in Table 4.6. The mean of the data is �x ¼ 58.45, and the standard

deviation is s ¼ 22.99. The sample size is n ¼ 40.

4.4.1 Percentiles, Quartiles, and Interquartile Range

One useful way of describing the relative standing of a value in a set of data is

through the use of percentiles. Percentiles give valuable information about the rank

of an observation. Most of you are familiar with percentiles from taking

standardized college admissions tests such as the SAT or ACT. These tests assign

each student not only a raw score but also a percentile to indicate his or her relative

performance. For example, a student scoring in the 85th percentile scored higher

than 85 % of the students who took the test and lower than (100 � 85) ¼ 15 % of

those who took it.

Let x1, x2,. . ., be a set of measurements arranged in ascending (or descending)

order. The Pth percentile is a number x such that P percent of the measurement fall

below the Pth percentile and (100 � P) percent fall above it.
Quartiles are merely particular percentiles that divide the data into quarters. The

25th percentile is known as the first quartile (Q1), the 50th percentile is the second

(Q2), and the 75th percentile is the third (Q3).
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To approximate the quartiles from a population containing N observations, the

following positioning point formulas are used:

Q1 ¼ value corresponding to the
N þ 1

4
ordered observation

Q2 ¼ median; the value corresponding to the
2ðN þ 1Þ

4
¼ N þ 1

2

ordered observation

Q3 ¼ value corresponding to the
3ðN þ 1Þ

4
ordered observation

The formulas given for Q1 and Q3 sometimes are defined as the (N þ l)/4th and

(3N þ l)/4th observations, respectively. If Q1, Q2, or Q3 is not an integer, then the

interpolation method can he used to estimate the value of the corresponding

observation.

Interquartiles range (IQR), a measure commonly used in conjunction with

quartiles, can be defined as

IQR ¼ Q3 � Q1 (4.13)

The interquartile range has an easy and sometimes convenient interpretation. For

large data sets, it is the range that contains the middle half of all the observations.

Now we use the Johnson & Johnson applicant data to determine the first quartile

(Q1), second quartile (Q2), third quartile (Q3), and interquartiles range (IQR). First

we find the locations Q1 ¼ 41(.25) ¼ 10.25, Q2 ¼ 41(.5) ¼ 20.5, and Q3 ¼ 41

(.75) ¼ 30.75. On the basis of these locations and the information in Table 4.6,

we find that the scores for Q1, Q2, and Q3 are 41.25, 55.5, and 77.25. Then,

according to Eq. 4.13, IQR ¼ 77.25 � 41.25 ¼ 36.

Table 4.6 Ordered array of

aptitude test scores for 40 job

applicants (�x ¼ 58.45,

s ¼ 22.99)

i x i x i x i x

1. 20 11. 42 21. 56 31. 78

2. 21 12. 43 22. 58 32. 80

3. 23 13. 43 23. 59 33. 81

4. 25 14. 46 24. 61 34. 85

5. 30 15. 48 25. 62 35. 90

6. 35 16. 50 26. 65 36. 92

7. 36 17. 51 27. 68 37. 96

8. 39 18. 52 28. 70 38. 98

9. 40 19. 54 29. 71 39. 99

10. 41 20. 55 30. 75 40. 100
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Example 4.12 Finding One Applicant’s Percentile. If James Fleetdeer received an

aptitude test score of 92, what is the percentile value?

Because Table 4.6 is arranged in ascending order, Mr. Fleetdeer’s 5th-highest

score is the 36th-smallest value (out of a total of 40). Hence, the percentile is

P ¼ 36

40
:100 ¼ 90

4.4.2 Box and Whisker Plots: Graphical Descriptions Based
on Quartiles

A box and whisker plot is a graphical representation of a set of sample data that

illustrates the lowest data value (L), the first quartile (Q1), the median (Q2, Md), the

third quartile (Q3), the interquartile range (IQR), and the highest data value (H).
In the last section, the following values were determined for the aptitude test

scores in Table 4.6: L ¼ 20,Q1 ¼ 41 þ .25(42 � 41) ¼ 41.25,Q2 ¼ Md ¼ 55.5,

Q3 ¼ 75 þ .75(78 � 75) ¼ 77.25, IQR ¼ 36, and H ¼ 100.

A box and whisker plot of these values is shown in Fig. 4.5. The ends of the box

are located at the first and third quartiles, and a vertical bar is inserted at the median.

Consequently, the length of the box is the interquartile range. The dotted lines are

the whiskers; they connect the highest and lowest data values to the end of the box.

This means that approximately 25 % of the data values will lie in each whisker and

in each portion of the box. If the data are symmetric, the median bar should be

located at the center of the box. Consequently, the location of the bar informs us

about any skewness of the data; if the bar is located in the left (or right) half of the

box, the data are skewed right (or left), as defined in the next section.

In Fig. 4.5, the distribution of the data is skewed to the right because the median

bar is located in the left. A box and whisker plot using MINITAB is shown in

Fig. 4.6. In this figure, a rectangle (the box) is drawn with the ends (the hinges)

drawn at the first and third quartiles (Q1 andQ3). The median of the data is shown in

the box by the symbolþ. There are two boxes in Fig. 4.6. The only difference is that

the second specifies the starting value at 15.

Example 4.13 Using MINITAB to Compute Some Important Statistics of 40 Aptitude
Test Scores. The MINITAB/PC input and printout are presented in Fig. 4.7. This

printout presents mean, median, standard deviation, L (MIN), Q1, Q3, and H
(MAX), which we have calculated and analyzed before. Note that the MINITAB/

PC can calculate this information very effectively. In Fig. 4.7, 40 aptitude test

scores are first entered into the PC. Then ten statistics will automatically print if the

command “MTB > describe Cl” is entered. Two of those statistics, TRMEAN and

SEMEAN, are not discussed in this book.
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4.4.3 Z Scores

A sample Z score, which is based on the mean �x and standard deviation s of a data
set, is defined as

Z ¼ x� �x

s
(4.14)

Like a percentile, a Z score expresses the relative position of any particular data

value in terms of the number of standard deviations above or below the mean.

Recall from Example 4.12 that Mr. Fleetdeer had a score of 92 on the test. For this

score, �x ¼ 58.45 and s ¼ 22.99, as indicated in Table 4.6. His score of 92 is in the

90th percentile. The corresponding Z score is

Fig. 4.5 Box and whisker plot for 40 aptitude test scores (Data in Table 4.6)

Fig. 4.6 Box and whisker plot of aptitude test scores using MINITAB

Fig. 4.7 The MINITAB/PC input and printout of some important statistics of 40 aptitude test

scores
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Z ¼ 92� 58:45

22:99
¼ 1:46

This means that Mr. Fleetdeer’s score of 92 is 1.46 standard deviations to the

right of (above) the mean. Thus, if Z is positive, it indicates how many standard

deviations x is above the mean.

A negative value implies that x is to the left of (below) the mean. Look at

Table 4.6 again. What is the Z score for the person who got a score of 30 on Johnson

& Johnson’s aptitude examination?

Z ¼ 30� 58:45

22:99
¼ �1:24

This individual’s score is 1.24 standard deviations below the mean.

As a rule of thumb, for mound-shaped data sets, approximately 68 % of the

observations have a Z score between �1 and 1 and approximately 95 % of the

observations have a Z score between �2 and 2.6

Z scores of the aptitude test scores indicated in Table 4.6 are calculated and

listed in Table 4.7. From Table 4.7, we find that 67.5 % (27/40) of these

observations have a Z score between �1 and 1. All of the observations have

Z scores between �2 and 2.

4.5 Measures of Shape

A basic question in many applications is whether data exhibit a symmetric pattern.

Skewness and kurtosis are two important characteristics that determine the shape of

a distribution.

4.5.1 Skewness

In addition to measures of central tendency and dispersion, there are measures that

give information on the skewness of the distribution. The skewness indicates

whether the distribution is skewed to the left or right in relation to the mean or is

symmetric about the mean. The population skewness for raw data is given by

m3 ¼
PN
i¼1

ðxi � mÞ3

N
(4.15)

6 Z scores and their application will be explored further in Chap. 7. This rule of thumb is derived

from Tchebysheff’s theorem, defined as follows: in any data set, the proportion of items within� k
standardized deviations of the mean is at least 1 � (1/k)2, where k is any number greater than 1.0.
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We can scale the result by dividing m3 by s3. This gives us the coefficient of
skewness (CS):

CS ¼ m3
s3

(4.16)

The estimate of m3 for a sample can be defined as

Skewness ¼
Xn
i¼1

ðxi � �xÞ3=n (4.15a)

The sample coefficient of skewness (SCS) can be defined as

SCS ¼
Pn
i¼1

ðxi � �xÞ3=n
s3

(4.16a)

An alternative measure of skewness is given by the Pearson coefficient, which is
defined as

Pearson coefficient ¼ 3 mean�medianð Þ= standard deviationð Þ (4.16b)

Table 4.7 Z scores of

aptitude test scores for

40 applicants

i xi Zi i xi Zi

1 20 �1.6728 21 56 �.1066

2 21 �1.6293 22 58 �.0196

3 23 �1.5422 23 59 .0239

4 25 �1.4552 24 61 .1109

5 30 �1.2377 25 62 .1544

6 35 �1.0202 26 65 .2850

7 36 �.9767 27 68 .4155

8 39 �.8462 28 70 .5025

9 40 �.8027 29 71 .5460

10 41 �.7592 30 75 .7200

11 42 �.7157 31 78 .8505

12 43 �.6721 32 80 .9375

13 43 �.6721 33 81 .9810

14 46 �.5416 34 85 1.1551

15 48 �.4546 35 90 1.3726

16 50 �.3676 36 92 1.4596

17 51 �.3241 37 96 1.6336

18 52 �.2806 38 98 1.7206

19 54 �.1936 39 99 1.7641

20 55 �.1501 40 100 1.8076
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Returning to our quality control data, we can calculate the skewness as follows

(recall that �x ¼ 7.5 and s ¼ 4.8).

x ðx� �xÞ3
3 �91.13

5 �15.63

8 .13

14 274.63

Total 30 168

Substituting ∑(xi � �x)3 ¼ 168, n ¼ 4, and s ¼ 4.8 into Eqs. 4.15a and 4.16a, we

obtain the skewness and the sample coefficient of skewness as

Skewness ¼ 168

4
¼ 42

SCS ¼ 42

ð4:8Þ3 ¼ :38

This implies that the quality control data are skewed to the right.

A zero skewness coefficientmeans that the distribution is symmetric with mean¼
median (see Fig. 4.8), which is also equal to the mode if the distribution is unimodal.

A positive skewness coefficientmeans that the distribution is skewed to the right,

or positively skewed, and that the mode (most observations) and median lie below

the mean (see Fig. 4.9). A negative skewness coefficient means that the distribution

is skewed to the left, or negatively skewed, and that the mode and median lie above

the mean (see Fig. 4.10).

Fig. 4.8 Symmetric

distribution
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4.5.2 Kurtosis

Skewness reflects the tendency of a distribution to be stretched out in a particular

direction. Another measure of shape, referred to as kurtosis, measures the peaked-

ness of a distribution. In principle, the kurtosis value is small if the frequency of

observations close to the mean is high and the frequency of observations far from

the mean is low. Because kurtosis is not so frequently used as other numerical

summary measures, it is not pursued in further detail here. However, the numerical

calculation of kurtosis will be discussed in Chap. 9. Both skewness and kurtosis

measures are useful in analyzing stock rates of return (see Chap. 9).

Fig. 4.9 Positively skewed

distribution

Fig. 4.10 Negatively skewed

distribution
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4.6 Calculating Certain Summary Measures from Grouped

Data (Optional)

In this section, we discuss how to calculate mean (arithmetic average), median,

mode, variance, standard deviation, and percentiles for grouped data.

4.6.1 The Mean

Sometimes data are in grouped form, so calculating the mean from raw data is

impossible. Recall from Chap. 3 that raw data are sometimes grouped into classes.

For example, a teacher might group exam scores into A’s (90–100), B’s (80–89),

and so on. In cases such as this, we can estimate the mean from the grouped data by

multiplying the midpoint of each class by the number of observations and dividing

by the total number of observations (N):

m ¼
Xk
i¼1

fimi=N (4.17)

where fi ¼ the frequency or number of observations in the ith group, mi ¼ the

midpoint of the ith group, and k ¼ the number of groups. Note that

Xk
i¼1

fi ¼ N

Although this is the formula for estimating the population mean from grouped

data, we estimate the sample mean in the same manner by substituting n for N.

Example 4.14 Finding the Mean of Market Rates of Return in Terms of Grouped
Data. Table 4.8 presents a frequency distribution for the rate of return on the S&P

composite stock index from 1990 to 2009; it has eight classes or groups. Suppose

we do not have access to the raw data that underlie this frequency distribution

(which, however, are shown in Table 4.9). Will our calculated group mean be

reasonably close to the true mean? In this example,

X7
i¼1

fi ¼ 19:

Following Eq. 4.17, we calculate the group mean as
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X7
i¼1

fimi=19 ¼ 1:35=19 ¼ :0711:

The actual mean of the raw data (see Table 4.9) is 1.5525/19 ¼ .0817. The

outcome of our test suggests that the mean of the grouped data is a fairly accurate

measure of the true mean of the series.

Table 4.8 Frequency

distribution of annual market

rates of return

Class Midpoint (mi) Class frequency (fi) mifi

�.40 to �.30 �0.385 1 �0.385

�.29 to �.20 �0.234 1 �0.234

�.19 to �.10 �0.116 2 �0.232

�.09 to .00 �0.040 2 �0.081

.01 to .10 0.054 5 0.270

.11 to .20 0.166 2 0.331

.21 to .30 0.257 4 1.028

.30 to .40 0.326 2 0.651Pn
i¼1

mifi ¼ 1:35

Table 4.9 Annual market

rates of return in terms of

S&P 500 (1990–2009)

Year Rate of return

90 �0.0656

91 0.2631

92 0.0446

93 0.0706

94 �0.0154

95 0.3411

96 0.2026

97 0.3101

98 0.2667

99 0.1953

00 �0.1014

01 �0.1304

02 �0.2337

03 0.2638

04 0.0899

05 0.0300

06 0.1362

07 0.0353

08 �0.3849

09 0.2345

Sum 1.5525
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4.6.2 The Median

Although a median can also be calculated for grouped data, it may be impossible to

determine the exact value of the median if individual data values are not available.

However, we can approximate the median value by first assuming that data fall

equally throughout the median class. For example, suppose we have five students

who scored between 90 and 100 on the exam. By assuming that the observations are

equally spaced, we can hazard an educated guess of the five students’ scores.

Because the width of this class is 10 and because there are five students in the

class, an assumption of equal spacing means each pair of “adjacent” scores should

be separated by 2 points. Making this assumption for all the classes enables us to

find what is approximately the median or middle score.

To obtain the median for grouped data, find the class in which the median

observation appears. Then apply the following formula to estimate the median:

m ¼ Lþ ðN=2� FÞ
f

ðU � LÞ (4.18)

where L and U are the lower and upper boundaries, respectively, of the class that

contains the median; f is the frequency in this class; and F is the cumulative

frequency of the observations in the classes prior to this class.

Example 4.15 Finding the Median of Stock Rates of Return in Terms of Grouped
Data. Referring to the grouped data in Example 4.14, we know that the median is

the 11th observation. Thus, we know that the median is in the .110 to .200 class. F is

equal to 9 because nine observations occurred before the class; f is equal to

8 because there are eight observations in the class; and the lower (L) and upper

(U) boundaries of the class are110 and .200, respectively. Hence, the median

estimate is

m ¼ :110þ ð21=2� 9Þ
8

ð:200� :110Þ ¼ :1269

The median for the raw data is .1240, which is similar to that calculated from

grouped data.

4.6.3 The Mode

For nongrouped data, the mode of a set of observations is the value that occurs the

most times; for grouped data, the modal class is the one with the highest frequency.

Like nongrouped data, grouped data can have more than one class as modal classes.

In Example 4.14 on market rates of return, the modal class, .11 to .20, contains

eight observations.
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4.6.4 Variance and Standard Deviation

Note that both of the variance formulas yield the same answer.

We can calculate the standard deviation and variance for grouped data by using

the following formulas:

Population variance Population standard deviation

s2 ¼
Pk
i¼1

fiðmi�mÞ2

N ð4:19Þ s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
i¼1

fiðmi�mÞ2

N

s
ð4:20Þ

Sample variance Sample standard deviation

s2 ¼
Pk
i¼1

fiðmi��xÞ2

n�1
4:21ð Þ s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
i¼1

fiðmi��xÞ2

n�1

s
ð4:22Þ

where fi ¼ frequency or number of observations in the ith group

mi ¼ midpoint of the ith group

k ¼ number of groups

The shortcut formulas found in Appendix 3 can be used to arrive at the same answer.

Example 4.16 Analyzing a GDP Forecast. Suppose we want to calculate the mean,

variance, and standard deviation for a sample of forecasts for next year’s GDP

growth rate. We record our data in Table 4.10.

Using the shortcut formulas of Eq. 4.21a, we can calculate the sample standard

deviation as follows:

�x ¼ �4þ 12þ 24þ 30

30
¼ 62=30 ¼ 2:07

s2 ¼ 238� ½30� ð2:07Þ2�
30� 1

¼ 109:45

29
¼ 3:77

s ¼
ffiffiffiffiffiffiffiffiffi
3:77

p
¼ 1:94

4.6.5 Percentiles

The calculation of a particular percentile boundary (B) for grouped data for

percentiles is similar to that of the median for grouped data:

B ¼ Lþ ðpN � FÞ
f

ðU � LÞ (4.23)

Here, N is the number of observations, p is the percentile desired, and the product
pN gives the corresponding observation. F is the number of observations up to the
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lower limit of the class that contains the observation, and f is the frequency of the

class. L and U are the lower and upper boundaries, respectively.

Example 4.17 Playing with Percentiles for the Prime Rate. Suppose we have the

grouped data given in Table 4.11 for the prime interest rate for the past 20 years

(1990–2009) [see Table 4.16 in this Chapter].

To determine the 60th percentile boundary, we reason as follows: p ¼ .60 and

.60 � 20 ¼ 12. The 12th observation is in the 6.1 to 9 class. Thus, L ¼ 6.10,

f ¼ 12, F ¼ 6, and U ¼ 9.00. Our estimate of the 60th percentile boundary is

therefore

6:10þ ð:60Þð20Þ � 6

12
ð9:00� 6:10Þ ¼ 7:55

By this estimate, 60 % of the observations are below 7.55 %.

Example 4.18 Examining the Skewness of ACT Scores. Suppose the grouped data

in Table 4.12 represent the ACT scores for a high school class. The population

skewness for grouped data is

Table 4.10 Forecasts of GDP growth rate

Forecast class (%) Class midpoint (mi) Frequency (fi) fimi m2
i fim

2
i

�2–0 �1 4 �4 1 4

0–2 1 12 12 1 12

2–4 3 8 24 9 72

4–6 5 6 30 25 150

30 62 238

Table 4.11 Prime rate,

1990–2009
Class (%) Frequency Cumulative frequency

3.1–6 6 6

6.1–9 12 18

9.1–12 2 20

12.1–15 0 20

Source: Economic Report of the President, January 2010

Table 4.12 ACT scores

ACT x f xf x�m (x�m)2 f(x�m)2 (x�m)3 f(x�m)3

14–18 16 8 128 �8.5 72.25 578.0 �614.13 �4913.00

19–23 21 34 714 �3.5 12.25 416.5 �42.88 1457.75

24–28 26 20 520 1.5 2.25 45.0 3.38 67.50

29–33 31 10 310 6.5 42.25 422.5 274.63 2746.25

34–38 36 8 288 11.5 132.25 1058.0 1520.88 12,167.00

80 1,960 2,520 8,610
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m3 ¼
Pk
i¼1

fiðxi � mÞ3

N
(4.24)

Using the information listed in Table 4.12, we can calculate the summary

statistics as follows:

m ¼ 1960

80
¼ 24:5

s2 ¼ 2520

80
¼ 31:5

s ¼ 5:61

Skewness ¼ m3 ¼
X f ðx� mÞ3

N
¼ 8610

80
¼ 107:63

CS ¼ m3
s3

¼ 107:63

176:56
¼ :610

The skewness m3 is positive and equal to 107.63. The coefficient of skewness

(.610) is positive, indicating that the distribution is skewed to the right. We can use

the same formula (Eq. 4.24) for a sample if we replace m by �x and N by n.

4.7 Applications

In this section, we will demonstrate how measures of central tendency, dispersion,

position, and skewness can be used to analyze sample market survey data, rates of

return on a stock, and economic data.7 First, a sample of survey data is used to show

how statistical analysis can be applied inmaking an inventory decision. Second, these

same concepts are used to examine the market rates of return for Johnson & Johnson

and Merck stock and for the stock market overall. The T-bill and prime interest rates

are explored in the third application, and the fourth application involves the macro-

economic variables GNP, personal consumption, and disposable income. Finally, in

Appendix 3, we return to the seven accounting ratios for the auto industry presented

in Chap. 3 and analyze them in terms of mean, median, MAD, variance, standard

deviation, and coefficient of variation, as well as percentiles and skewness.

Application 4.1 Statistical Analysis of a Soda Survey. Suppose Jack Miller, a

manager at A&P, wants to determine the average monthly purchase, per dwelling

unit, of six-packs of soda in the central New Jersey area. This average monthly

purchase information will help A&P establish an inventory policy.

7 Financial ratio analysis for two pharmaceutical firms is carried out in Appendix 3.
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Miller has hired you to conduct a survey and perform statistical analyses in

accordance with simple random survey procedures. Let us see how you proceed.

First you conduct a survey and assemble the results in Table 4.13. Then, using the

random sample data, in Table 4.13, you calculate the related summary statistics and

list them in Table 4.14. You have computed all the descriptive statistics discussed in

this chapter except the geometric mean. (Because some of the values of x are equal

Table 4.13 Monthly

purchase of six-packs of soda

per dwelling unit in the

central New Jersey area as of

January 1991

i xi i xi

1 8 21 9

2 4 22 8

3 4 23 1

4 9 24 4

5 3 25 6

6 3 26 5

7 1 27 4

8 2 28 2

9 0 29 1

10 4 30 0

11 2 31 8

12 3 32 7

13 5 33 5

14 7 34 6

15 10 35 4

16 6 36 3

17 5 37 2

18 7 38 1

19 3 39 0

20 2 40 8

Table 4.14 Summary

measures of monthly

purchase of six-packs of soda

Arithmetic mean 4.30

Median 4.00

Mode 4.00

Range 10.00

Standard deviation 2.77

Variance 7.65

Mean absolute deviation from mean 2.30

Mean absolute deviation from median 2.25

Coefficient of variation .64

Coefficient of skewness 1.32

Percentiles

10th 1.00

25th 2.00

50th 4.00

75th 6.00

90th 8.00

Interquartiles ranges 4.00
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to zero, it would make no sense to compute the geometric average, wherein the data

are multiplied together.)

Your measures of central tendency—the mean, median, and mode—indicate

where the center of the data is. In addition, because the mean is greater than the

median, you know the data are positively skewed. The fact that the coefficient of

skewness is positive confirms this.

The variance, standard deviation, and mean absolute deviation provide informa-

tion on how the data are spread out around their average value.

Finally, you show percentiles for the data. The nth percentile reveals that

n percent of the data will be below that value. For example, the 50th percentile

has a value of 4, so 50 % of the data will have a value of 4 or less. Likewise, because

the 90th percentile has a value of 8, 90 % of the data will have a value of 8 or less.

The interquartile range is just the difference between the third and first quartiles.

Using the information you have provided, the manager can make better

decisions about how many six-packs of soda to keep in inventory.

Application 4.2 Stock Rates of Return for Johnson & Johnson, Merck, and the

Market. Central tendency and dispersion statistics can also be used to analyze the

rates of return for JNJ and MRK stock, as well as for the general stock market.

The rates of return listed in Table 4.15 are calculated on a yearly basis. With

these statistics, we can determine whether the stock rates of return for the two firms

fluctuated more than the market. And we can determine whether the stocks have

generally outperformed or underperformed the market over this period.

Much useful information can be obtained by merely perusing Table 4.15. The

greatest gain for JNJ occurred in 1991, when the price of its stock increased by

.617 %. JNJ’s worst year occurred in 1992, when its stock lost .551 % of its value.

Table 4.15 Rates of return

for JNJ, MRK, and S&P 500
Year JNJ MRK S&P 500

1990 0.230 0.185 0.036

1991 0.617 0.879 0.124

1992 �0.551 �0.734 0.105

1993 �0.092 �0.183 0.086

1994 0.245 0.142 0.020

1995 0.585 0.754 0.177

1996 �0.410 0.235 0.238

1997 0.341 0.353 0.303

1998 0.288 0.410 0.243

1999 0.124 �0.537 0.223

2000 0.140 0.412 0.075

2001 �0.431 �0.357 �0.163

2002 �0.078 �0.013 �0.168

2003 �0.021 �0.158 �0.029

2004 0.249 �0.272 0.171

2005 �0.032 0.037 0.068

2006 0.122 0.418 0.086

2007 0.035 0.367 0.127

2008 �0.076 �0.451 �0.174

2009 0.108 0.254 �0.223
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The range of the three stock rates of return—the difference between the highest and

lowest values—was 1.168 (.617 þ .551) for JNJ, 1.62 (.879 þ .734) for MRK, and

.526 (.303 þ .223) for the overall market. Note that the three tended to move

together; when the market went up, the stocks also tended to rise and vice versa.

However, this does not always hold, as can be seen in 2009 when the market went

down by over .233 % and the two pharmaceutical stocks went up. The relationship

between the market rate of return and the rate of return for individual firms will be

analyzed in Chap. 14 when simple regression analysis is discussed.

Examining the ranges alone makes it appear that the overall market was less

volatile than the two stocks. However, recall that because the range takes into

consideration only the highest and lowest observations, it is strongly influenced by

outlying observations. Therefore, we must examine more sophisticated measures of

dispersion, such as the standard deviation, CS, and CV, to obtain a sense of the

volatility of the observations. MRK had the highest standard deviation (.425),

followed by JNJ (.303) and the market (.151). These rankings hold when comparing

the coefficient of variation (CV) as well. Here, MRK has the highest CV followed

by JNJ and the market.

For the two pharmaceutical firms, the mean return is less than the median due to

the fact that a few extreme observations on the low side of the distribution are

pushing down the mean. For example, JNJ had a return of 12.4 % in 1999, while

MRK suffered a return of �53.7 % in 1999. These observations affect the mean but

do not influence the median. Thus, the median is probably a more accurate indicator

of central tendency.

Investors would have preferred owning MRK instead of JNJ stock because of its

mean and median returns of 8.7 % and 16.4 %, respectively. However, when MRK

is compared to the market, notice that MRK has a higher mean but a lower median

than the market. We also notice that both JNJ’s and Merck’s means are lower than

their medians, indicating their returns are negatively skewed, matching the market’s

mean below its median, indicating negative skewness. This indicates that MRK,

JNJ, and the market all have more observations which lie above the mean. See Sect.

9.7 in Chap. 9 for further discussion on this implication.

MEAN 0.070 0.087 0.066

MEDIAN 0.115 0.164 0.086
STD 0.303 0.425 0.151

CS. -10.688 -1.743 -162.890

CV 4.353 4.879 2.284

PERCENTILES

10th –0.412 -0.459 –0.168
25th –0.077 –0.205 0.008

50th 0.115 0.164 0.086

75th 0.246 0.378 0.173
90th 0.365 0.452 0.238
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Application 4.3 3-Month Treasury Bill Rate and Prime Rate. Table 4.16 shows

two key interest rates, the 3-month T-bill rate and the prime rate, for the period

1990–2009. As we have noted, a T-bill is a short-term debt instrument issued by

the United States government. T-bills are backed by the full faith and credit of

the US government, which makes these investments the safest in the world and the

closest thing to a risk-free asset. The prime rate is the rate that banks charge their

best customers, such as large corporations. This rate may differ slightly from bank

to bank.

As Table 4.16 shows, the T-bill rate fluctuated between 3 % and 7 % from 1990

to 2001. It stayed constant with a little decline in 2002 until 2004, with a slight

increase again to 3.15 % in 2005. The trend for the prime rate is similar, although

the prime is several percentage points higher.

The T-bill rate is lower largely because the T-bill is close to a risk-free asset,

whereas the prime rate includes a risk premium. This relationship is illustrated

statistically by the means and medians of the two rates. The mean for the T-bill rate

from 1990 to 2009, for example, is 3.77 %; it is 6.97 % for the prime rate. For the

same period, the median for the T-bill rate is 4.3 %; it is 7.55 % for the prime rate.

The fact that the mean is lower than the median indicates that a few extreme

observations are pushing down the mean and that both distributions are negatively

Table 4.16 T-bill rate and

prime rate (%), 1990–2009
3-Month Prime

Year T-bill rate Rate

90 7.49 10.01

91 5.38 8.46

92 3.43 6.25

93 3.00 6.00

94 4.25 7.14

95 5.49 8.83

96 5.01 8.27

97 5.06 8.44

98 4.78 8.35

99 4.64 7.99

00 5.82 9.23

01 3.39 6.92

02 1.60 4.68

03 1.01 4.12

04 1.37 4.34

05 3.15 6.19

06 4.73 7.96

07 4.35 8.05

08 1.37 5.09

09 0.15 3.25

Mean 3.7735 6.9785

Median 4.3 7.55

Std dev 1.8952 1.9018

CV 0.4407 0.2725

CS �0.0398 �0.0671
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skewed. The coefficient of skewness for the T-bill rate is �3.98 %, which is higher

than that for the prime rate, �6.7 %.

The range for the T-bill over the period 1990–2009 is 7.49 � 0.15 ¼ 7.34;

the range for the prime is 10.01 � 3.25 ¼ 6.76. The standard deviation for the

prime (1.9018) is also higher than the T-bill standard deviation (1.8952). Finally,

the coefficient of variation is higher for the prime rate. One reason why the

prime rate has fluctuated more than the 3-month T-bill rate during this 20-year

period may be the fact that 3-month treasury bills, in general, have shorter

maturities than loans made at the prime rate. Because this time period was

marked by more volatile interest rates (especially between 2000 and 2006), the

prime rate may have been adjusted to reflect the added risk associated with

longer-term loans. In addition, because T-bills are marketable securities, the rate

they return is determined by the market. Loans made at the prime rate, in

contrast, arc not marketable, so the prime rate is adjusted (by bankers) only

periodically. This may make it more volatile.

Application 4.4 GDP, Personal Consumption, and Disposable Income. Here,

we will examine annual data on national income. The GDP is one of the most

popular economic indicators because it measures the market value of all final goods

and services produced in the United States within a given time period. GDP is a key

indicator of the health of the economy: the occurrence of consecutive quarters of

decline in real (inflation-adjusted) GDP is sometimes used to define a recession.

The GDP is calculated by adding personal consumption expenditures, gross private

domestic investment, government purchases, and net exports. Disposable income is

the amount of after-tax income that individuals have available to spend.

Data on GDP, personal consumption, and disposable income in constant

2005 dollars for the period 1960–2009 are shown in Table 4.17. Clearly,

there is a tendency for the indicators to increase steadily disposable income

declined in only 1 year (1972–1973), while personal consumption only declined

in 2009. GDP declined in 6 years (1974, 1975, 1980, 1982, 1991, and 2009.

The mean for GDP is $7339.92 billion dollars, and the median is $6713.2.

Because the mean is greater than the median, the distribution is positively

skewed. The mean is also greater than the median for consumption and

disposable income. However, there is a large difference between the two

measures of central tendency for GDP, personal consumption, and disposable

income, indicating that there is a great deal of skewness and, therefore, the

distribution is not symmetric.

The standard deviation for GDP is higher than the standard deviation for consump-

tion. However, the CV is lower for GDP. The CV is probably a better measure of

variability than the standard deviation because the level of GDP is always higher than

consumption. The standard deviation for disposable income is lower than the standard

deviation for GDP and greater than the standard deviation for consumption. However,

the CV of disposable income is lower than the CV for consumption and greater than
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Table 4.17 GDP, personal consumption, and disposable income, 1960–2009

Year GDP Personal consumption Disposable income

1960 2,830.90 331.8 365.2

1961 2,896.90 342.2 381.6

1962 3,072.40 363.3 404.9

1963 3,206.70 382.7 425

1964 3,392.30 411.5 462.3

1965 3,610.10 443.8 497.8

1966 3,845.30 480.9 537.4

1967 3,942.50 507.8 575.1

1968 4,133.40 558 624.7

1969 4,261.80 605.1 673.8

1970 4,269.90 648.3 735.5

1971 4,413.30 701.6 901.4

1972 4,647.70 770.2 869

1973 4,917.00 852 978.1

1974 4,889.90 932.9 1,071.7

1975 4,879.50 1,033.80 1,187.3

1976 5,141.30 1,151.30 1,302.3

1977 5,377.70 1,277.80 1,435

1978 5,677.60 1,427.60 1,607.3

1979 5,855.00 1,591.20 1,790.9

1980 5,839.00 1,755.80 2,002.7

1981 5,987.20 1,939.50 2,237.1

1982 5,870.90 2,075.50 2,412.7

1983 6,136.20 2,288.60 2,599.8

1984 6,577.10 2,501.10 2,891.5

1985 6,849.30 2,717.60 3,079.3

1986 7,086.50 2,896.70 3,025.8

1987 7,313.30 3,097.00 3,435.3

1988 7,613.90 3,350.10 3,726.3

1989 7,885.90 3,594.50 3,991.4

1990 8,033.90 3,835.50 4,254

1991 8,015.10 3,980.10 4,444.9

1992 8,287.10 4,236.90 4,736.7

1993 8,523.40 4,483.60 4,921.6

1994 8,870.70 4,750.80 5,184.3

1995 9,093.70 4,987.30 5,457

1996 9,433.90 5,273.60 5,759.6

1997 9,854.30 5,570.60 6,074.6

1998 10,283.50 5,918.50 6,498.9

1999 10,779.80 6,342.80 6,803.3

2000 11,226.00 6,830.40 7,327.2

2001 11,347.20 7,148.80 7,684.5

2002 11,553.00 7,439.20 8,009.7

2003 11,840.70 7,804.00 8377.8

2004 12,263.80 8,285.10 8,889.4

2005 12,638.40 8,819.00 9,277.3

(continued)
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the CV for GDP. Thus, we must use the CV when comparing the variability of data

that are different in range of values. Because GDP is greater than consumption and

disposable income, it usually has a greater variance. But using the CV makes it

possible to compare the dispersion because the dispersion is standardized.

4.8 Summary

In this chapter, we showed how a series of data can be described by using only a few

summary statistics.

1. Measures of central tendency such as the mean, median, and mode provide

information on the center of the distribution.

2. Measures of dispersion such as the variance, standard deviation, mean absolute

deviation, and coefficient of variation provide information on how spread out the

data are.

3. Measures such as percentiles, quartiles, interquartiles, and Z scores provide

information on the relative position of a data set.

4. Shape measures such as skewness are used to measure the degree of a

distribution’s asymmetry.

In the next chapter, we introduce the concepts of probability that are required for

making statistical inference. However, we will continue to use descriptive statistics

such as the mean and variance to describe the central tendency and the dispersion of

a distribution.

Questions and Problems

1. The midterm scores from an honors seminar in accounting are 25, 84, 82, 83,

90, 91, 99, 100, and 100. Find the mean, median, and mode. Is one measure

preferable to another? Why or why not?

2. What is your mean speed if you drive 35 miles per hour for 2 h and 55 miles per

hour for 3 h?

Table 4.17 (continued)

Year GDP Personal consumption Disposable income

2006 12,976.20 9,322.70 9,915.7

2007 13,254.10 9,826.40 10,403.1

2008 13,312.20 10,129.90 10,806.4

2009 12,988.70 10,092.60 10,964.5

Median 6,713.2 2,609.35 2,958.65

Mean 7,339.924 3,522.16 3,840.374

Std Dev 3,225.559 3,077.678 3,276.337

CS 0.417176 0.744179 0.708301

CV 0.439454 0.873804 0.85313
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3. What are descriptive statistics? Why are they important? Give some examples

of descriptive statistics.

4. The following sample annual starting salaries were offered to 12 college

seniors in 1992:

$21,400 $15,600 $16,500 $24,200

22,300 20,000 17,000 21,750

18,750 19,250 14,900 15,750

(a) Calculate the mean and median for these observations.

(b) Calculate the variance and standard deviation for these observations.

(c) Use MINITAB to construct a box and whisker plot and explain the result.

5. A $250 suit is on sale for $190, and a $90 pair of shoes is on sale for $65. Find

the average percent decrease in price for the 2 items.

6. The following are the average daily reported share volumes traded on the

NYSE, in thousands, for the years listed:

1971 15,381 1981 46,882

1972 16,487 1982 64,859

1973 16,084 1983 85,336

1974 13,904 1984 91,229

1975 18,551 1985 109,132

1976 21,186 1986 141,489

1977 20,928 1987 188,796

1978 28,591 1988 161,509

1979 32,233 1989 165,568

1980 44,867 1990 156,777

(a) Calculate the mean and median share volume for these observations.

(b) Calculate the variance and standard deviation for these observations.

7. The following data are annual rates of return on the DJIA and the S&P 500:

DJIA S&P 500

1960 �9.34 �2.97

1961 18.71 23.13

1962 �10.91 �11.81

1963 17.12 18.89

1964 14.57 12.97

1965 10.88 9.06

1966 �18.94 �13.09

1967 15.20 20.09

1968 5.24 7.66

1969 �15.19 �11.36

1970 4.82 .10

1971 6.11 10.80

(continued)
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DJIA S&P 500

1972 14.58 15.57

1973 �16.58 �17.37

1974 �27.57 �29.64

1975 38.34 31.49

1976 17.86 19.18

1977 17.27 �11.53

1978 �3.15 1.05

1979 4.19 12.28

1980 5.57 25.86

1981 4.66 �9.94

1982 �5.21 15.49

1983 34.60 17.06

1984 �1.00 1.15

1985 12.71 26.33

1986 34.97 14.62

1987 26.95 2.03

1988 �9.45 12.40

1989 21.74 27.25

1990 6.78 �6.56

(a) Calculate the arithmetic mean and standard deviation of the DJIA and the

S&P 500 for the years 1960–1979, 1970–1989, and 1981–1990.

(b) Calculate the geometric mean for these same years.

8. A sample of 20 workers in a small company earned the following weekly

wages:

$175, 175, 182, 175, 175, 200, 250, 225, 250, 200, 195, 200, 200, 190, 325, 300,

310, 325, 400, 225

(a) Calculate the mean and standard deviation.

(b) Calculate the mode.

(c) Calculate the median.

9. You are given the following information about stock A and stock B:

State of world next year Chance of occurrence

Returns next year

A B

Recession .30 10 % 9.8 %

Normal growth .40 11 % 11.2 %

Inflation .30 12 % 13.0 %
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(a) Calculate the mean, standard deviation, and coefficient of variation for each

stock.

(b) If you could purchase only one stock, which would you choose? Why?

10. Consider the following annual data on profit rates for Cherry Computers,

Lemon Motors, and Orange Electronics:

Year Cherry computers Lemon motors Orange electronics

1983 14.2 �6.2 37.5

1984 12.3 13.3 �10.6

1985 �16.2 �8.4 40.3

1986 15.4 27.3 5.4

1987 17.2 28.2 6.2

1988 10.3 14.5 10.2

1989 �6.3 �2.4 13.8

1990 �7.8 �3.1 11.5

1991 3.4 15.6 �6.2

1992 12.2 18.2 27.5

(a) Calculate the mean and standard deviation of each company’s profits.

(b) Compare the performance of these three companies. Which company do

you believe was the best performer over these 10 years?

11. The following table gives the price of Charleston Corporation’s stock under

different economic conditions:

Economic condition Chance of occurrence Price per share

Depression .25 $65

Recession .25 $80

Normal growth .3 $95

Inflation .2 $100

(a) Sketch a relative frequency diagram for Charleston’s stock.

(b) Calculate the mean and standard deviation of the stock’s price.

12. The final scores from an honors seminar in marketing were

65 55 70 80 90 100 50 75

Find the mean, median, and mode. Is one measure preferable to another. Why

or why not?

13. (a) Briefly compare the arithmetic mean with the geometric mean. Cite some

cases where the geometric mean would be preferred.

(b) Use data given in Table 4.9 to calculate the arithmetic mean and the

geometric mean of market rates of return during 1970–1990.

(c) Analyze the results which you obtained in part (b).
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14. Compare the use of the mean to the use of the median as a measure of central

tendency. If you were taking a tough calculus class where 3 brilliant students

out of 20 nevertheless received perfect scores of 100 on the midterm, would

you prefer that the professor use the mean or the median to determine the

average grade? Or would it make no difference? (Hint: If you said it doesn’t

matter, you must be very good at calculus; you’re one of the three who got a

perfect score!)

15. In major league baseball, rookies earn a minimum salary of $100,000, whereas

superstar players earn as much as $5 million per year. Do you think the mean or

the median of major league salaries would be higher?

16. Suppose you are a market researcher and have been asked to assess the popularity

of four brands of coffee. Should you construct your test on the basis of the mean,

median, or mode?

17. Why is the standard deviation sometimes preferred to the variance as a measure

of dispersion, even though they measure the same thing?

18. In finance, we generally use a measure of dispersion such as the variance to

measure the risk of a stock’s returns. Explain why the variance may not,

however, be the best measure of risk of a stock’s returns.

19. Carefully explain the difference between a population and a sample.

Why is the formula we use to calculate the population standard devia-

tion different from the one we use to calculate the sample standard

deviation?

20. The members of the offensive line of the Denver Broncos weigh 275, 281, 285,

265, and 292 lb, respectively.

(a) Calculate the mean and median weight of the offensive line.

(b) Calculate the variance and standard deviation for these observations.

21. A quality control manager finds the following number of defective light bulbs

in 10 cases of light bulbs:

Case Number defective Case Number defective

1 3 6 6

2 3 7 3

3 7 8 4

4 1 9 5

5 0 10 2

(a) Draw a frequency diagram for the class intervals

0–2 3–5 6–8 9 and over

(b) Draw a relative frequency diagram for these data.

(c) Calculate the mean, variance, and skewness for the observations and do

some analysis.
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22. Use the data of question 21 to calculate

(a) Coefficient of skewness

(b) Pearson coefficient

23. You are given the following information about two stocks:

Economic condition Chance of occurrence Return on A (%) Return on B (%)

Recession .25 7 0

Normal growth .50 8 10

Inflation .25 9 20

(a) Calculate the mean, standard deviation, and coefficient of variation for each

stock.

(b) If you had to purchase only one stock, which would you choose?

24. What is the coefficient of variation? What does it measure? Explain how the

coefficient of variation can be used to decide which of these two stocks to

purchase.

25. Suppose you are an efficiency expert who is concerned with the absentee rate

for workers in a factory. You collect the following information:

Days absent per month Number of employees

0 10

1 17

2 25

3 28

4 30

5 27

(a) Calculate the moan and standard deviation for days absent.

(b) Calculate the median and mode of the distribution.

(c) Is the distribution symmetric?

26. When a distribution is skewed to the right, which measure of central

tendency—the mean, median, or mode—has the highest value? Which has

the lowest value?

27. Calculate the mean, variance, and skewness coefficient for the data given in

Table 4.9. Is the distribution symmetric ?

28. On November 17, 1991, the Home News used the information in this figure to

show that the US Congress taxes foreigners at lower rates than it taxes

American citizens.

(a) Calculate the mean and standard deviation of the tax rates for the 16 foreign

countries.

(b) Calculate the Z scores for the 16 foreign countries and then draw related

conclusions.
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Source: Reprinted by permission of Knight-Ridder Tribune News

29. Compare the following measures of dispersion: variance, standard deviation,

mean absolute deviation, and range.

(a) What are the benefits and disadvantages of each measure?

(b) Which measure is the easiest to compute? Which is the most difficult?
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30. Calculate the range andmean absolute deviation for the data given in question 21.

31. Explain whether each of the following distributions is symmetric, positively

skewed, or negatively skewed.

32. (a) Use the data from the following figure, which are reprinted from the Home
News of November 17, 1991, to calculate the mean, standard deviation, and

Z score of Newark International Airport’s passenger traffic trends for the

period 1980–1990.

(b) What do the Z scores you obtained in part (a) suggest?
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Source: Port Authority of NY and NJ
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33. Your long-lost great uncle has recently died, leaving you $5,000 but stipulating

that you must invest it in the stock of either XYZ Company or ABC Company.

To compare their rates of return you calculate that over the last 10 years, they

had the following means and standard deviations:

XYZ (%) ABC (%)

Mean 8 10

Standard deviation 2 3

Which stock would you choose? Have you done everything possible to help

you make this decision? That is, are there any other statistics that would be

helpful?

34. Suppose you were the agent for Ralph “Boomer” Smith, the punter for the Los

Angeles Rams. Explain how you could use the mean yards and standard

deviation for Boomer’s punts to argue for a pay increase for Boomer.

35. You are a quality control specialist for Brite Lite Company, a light bulb

manufacturer. Carefully explain why the standard deviation is as important to

you as the mean number of defective light bulbs per case.

36. Use the data given in question 23 of Chap. 2 to compute the mean, standard

deviation, and coefficient of variation for
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(a) The exchange rate between dollars and pounds.

(b) The exchange rate between dollars and yen.

37. Comment on the following statement: “Investors don’t care about the

variability of a stock’s returns, because they have the same chance of falling

below the median as above the median. Therefore, on average, their returns will

be the same.”

38. (a) Use the 3-month T-bill rate and prime rate information given in Table 4.16

to calculate the Z score.

(b) Use this information on Z score to do related analysis.

39. Use the data given in Table 3.9 to compute the mean, standard deviation,

coefficient of variation, and coefficient of skewness for the current ratio of JNJ.

40. Repeat question 39 using the current ratio data for MRK.

41. You would like to compare the risk and return of two mutual funds. You have

the following information:

Fund A (%) Fund B (%)

Expected return 10 7

Standard deviation 3 2.5

Which fund do you think is more desirable? Explain.

42. You are given the following information about two stocks:

State of economy Chance of occurrence Return on A (%) Return on B (%)

Poor .35 5 0

Good .20 6 10

Excellent .45 9 20

(a) Calculate the mean and standard deviation for each stock.

(b) Compare the mean, standard deviation, and coefficient of variation of each

stock. Is the coefficient of variation or the standard deviation a better

measure of risk here?

(c) If you could buy only one stock, which would you choose?

43. Calculate the skewness coefficient for the data given in question 42.

The following information is for questions 44–52. The following table gives

the current ratio and inventory turnover for Chrysler, Ford, GM, and the auto

industry from 1969 to 1990:

Current ratio

Year Chrys Ford GM Indus

69 1.32 1.37 2.30 1.66

70 1.40 1.33 1.93 1.55

71 1.46 1.39 1.76 1.54

(continued)
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Current ratio

Year Chrys Ford GM Indus

72 1.49 1.44 2.12 1.68

73 1.55 1.37 2.04 1.65

74 1.36 1.28 1.91 1.52

75 1.27 1.33 1.99 1.53

76 1.37 1.37 1.95 1.56

77 1.34 1.38 1.92 1.55

78 1.43 1.33 1.79 1.52

79 .97 1.25 1.68 1.30

80 .94 1.04 1.26 1.08

81 1.08 1.02 1.09 1.06

82 1.12 .84 1.13 1.03

83 .80 1.05 1.40 1.08

84 .97 1.11 1.36 1.15

85 1.12 1.10 1.09 1.10

86 1.05 1.18 1.17 1.13

87 1.74 1.24 1.53 1.50

88 1.76 1.29 1.71 1.59

89 1.59 .97 1.72 1.43

90 1.50 .94 1.37 1.27

Inventory turnover

Year Chrys Ford GM Indus

69 5.76 6.46 6.46 6.27

70 5.03 6.03 4.56 5.21

71 5.68 6.47 7.08 6.41

72 7.11 7.26 7.25 7.21

73 6.53 6.41 6.92 6.62

74 4.47 5.55 4.93 4.98

75 5.61 6.31 6.28 6.07

76 6.60 6.62 7.46 6.89

77 6.37 7.70 7.66 7.24

78 6.88 7.58 8.34 7.60

79 6.41 7.39 8.21 7.34

80 4.82 7.23 7.98 6.68

81 6.76 8.24 8.68 7.89

82 8.87 8.99 9.71 9.19

83 10.17 10.81 11.26 10.75

84 12.04 12.73 11.40 12.06

85 11.41 11.47 11.65 11.51

86 13.29 10.83 14.21 12.78

87 11.46 23.51 12.82 15.93

88 11.93 18.70 13.81 14.81

89 10.57 12.16 14.08 12.27

90 8.39 11.50 11.87 10.59

(continued)
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44. Draw a frequency and cumulative frequency histogram for Chrysler’s current

ratio. Is this frequency histogram symmetric or skewed?

45. Compute the mean, variance, and coefficient of variation for Chrysler’s current

ratio.

46. Compute the mean, variance, and coefficient of variation for Chrysler’s current

ratio for the period 1969–1978 and the period 1979–1990. Compare these

descriptive statistics to those you computed in question 45. Have any changes

occurred over the two different time periods? If so, can you propose an

explanation?

47. Draw a frequency and cumulative frequency histogram for Chrysler’s inven-

tory turnover. Is this frequency histogram symmetric or skewed?

48. Compute the mean, variance, and coefficient of variation for Chrysler’s inven-

tory turnover.

49. Compute the mean, variance, and coefficient of variation for Chrysler’s inven-

tory turnover for the period 1969–1978 and the period 1979–1990. Compare

these descriptive statistics to those you computed in question 48. Have any

changes occurred over the two different time periods? If so, can you propose an

explanation?

50. Answer the following questions by referring to the MINITAB output of Ford’s

current ratio:

(a) Is the frequency histogram of Ford’s current ratio symmetric or skewed?

(b) Compare and analyze the means, variances, and coefficients of variance of

Ford’s current ratio calculated from different periods.

51. Using a calculator and the MINITAB program, answer questions 45–46 and

48–49 again, using the data for GM.

52. Answer questions 45–46 and 48–49 again, using the data for the auto industry.

The following information from Best’s Aggregates and Averages can be

used for questions 53–55. You are given the following information on

the property–casualty insurance industry. NPW (net premiums written) is a

measure of the dollar value of premiums written in property–casualty insurance

(such as auto insurance, home insurance, and so on). PHS (policyholders’

surplus) is a measure of the net worth, or equity, of an insurer:

Insurance industry

Year NPW PHS

1967 23,583 14,802

1968 25,766 16,192

1969 28,956 13,964

1970 32,578 15,499

MINITAB Output of Ford’s Current Ratio (Question 50)
MT3 > NAME Cl ‘FORD’
MTB > SET INTO ‘FORD’
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DATA> 1.379 1.333 1.249 1.044 1.024 0.844 1.049 1.114
1.097 1.181

DATA> 1.235 1.488 1.480 1.453 1.539 1.552 1.586 1.701
1.674 1.688

DATA> END
MTB > GSTD
* NOTE * Standard Graphics are enabled.

Professional Graphics are disabled.
Use the GPRO command to enable Professional Graphics.
MTB > HISTOGRAM ‘FORD’

Character Histogram
Histogram of FORD N ¼ 20

Midpoint Count

0.8 1 *

0.9 0

1.0 3 * * *

1.1 2 * *

1.2 3 * * *

1.3 1 *

1.4 1 *

1.5 4 * * * *

1.6 2 * *

1.7 3 * * *

MTB > SET INTO ‘FORD’
DATA. 1.379 1.333 1.249 1.044 1.024 0.844 1.049 1.114

1.097 1.181
DATA> END
MTB > MEAN ‘FORD’

Column Mean
Mean of FORD ¼ 1.1314

MTB > STDEV ‘FORD’

Column Standard Deviation
Standard deviation of FORD ¼ 0.15926
MTB > NAME C2 ‘F0RD2’
MTB > SET INTO ‘FORD2’
DATA> 1.235 1.488 1-480 1.453 1.539 1.552 1.586 1.701

1.674 1.688
DATA> END
MTB > MEAN ‘FORD2’
Column Mean
Mean of FORD2 ¼ 1.5396
MTB > STDEV ‘FORD2’

Column Standard Deviation
Standard deviation of FORD2 ¼ 0.13942
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Year NPW PHS

1971 35,860 19,065

1972 38,930 23,812

1973 42,075 21,389

1974 44,704 16,270

1975 49,605 19,712

1976 60,439 24,631

1977 72,406 29,300

1978 81,699 35,379

1979 90,169 42,395

1980 95,702 52,174

1981 99,373 53,805

1982 104,038 60,395

1983 109,247 65,606

1984 118,591 63,809

1985 144,860 75,511

1986 176,993 94,288

53. Draw a relative and cumulative relative frequency histogram for NPW and

PHS.

54. Compute the mean, standard deviation, and coefficient of variation for NPW

and PHS.

55. If you were interested in comparing the dispersion of NPW to the dispersion of

PHS, should you use the variance, the standard deviation, or the coefficient of

variation’? Which variable—NPW or PHS—has the greater dispersion around

its mean?

56. Suppose the variance of a population is 0. What can you say about the members

of that population?

57. Suppose you have three populations containing two members each. Sup-

pose the means and the variances of the three populations are the same. Are

the numerical values of the members of the first population necessarily

identical to the numerical values of the members of the second or third

population?

58. Reconsider question 57, but this time assume that each population has three

members.

59. In a class of ten students, we find that the students spent the following amounts

of money on textbooks for the semester:

$225 $178 $272 $310 $190 $145 $150

$220 $285 $112

(a) Find the median dollar value spent on books.

(b) Find the mean and standard deviation for the dollar value spent on books.
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60. Suppose you are in a statistics class of 12 students. Your score on the test is a 75

out of 100. The scores for the entire class (including your score) were

100 75 100 50 45 100 60 65 72 70 66 74

Would you prefer that the teacher use the median or the mean as the average

score when deciding how to draw the curve that she or he will use in determin-

ing grades?

61. The Home News used the chart reproduced here in its September 29, 1991,

issue to show the economic growth record for 12 different periods since World

War II.

Source: Knight-Ridder Tribune News/Marty Westman and Judy Treible as

found in the Home News. September 29, 1991. Reprinted by permission of

Knight-Ridder Tribune News

(a) Calculate the mean and the median.

(b) Calculate the standard deviation and mean absolute deviation.

(c) Calculate the Z scores and do related analysis.
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62. The following table, reprinted from the November 20, 1991, Wall Street
Journal, shows the percentage change of stock prices for ten Dow Jones sectors

over two different periods.

(a) Calculate the arithmetic mean and geometric mean of the two sets of data.

(b) Calculate the standard deviation and mean absolute deviation of these two

sets of data.

(c) Calculate the Z scores and do related analysis.

Of the market’s slide: performance of the DJ sectors

% Change 11/13/91 to 11/19/91 % Change 12/31/90 to 11/19/91

Conglomerates �2.73 % 19.50 %

Utilities �3.50 3.73

Energy �3.65 2.63

Consumer noncyclical �3.97 24.35

DJ equity index �4.52 16.53

Technology �5.04 15.32

Consumer cyclicals �5.16 23.11

Industrial �5.36 13.94

Basic materials �5.63 15.64

Financial �5.73 31.12

Source: Wall Street Journal, November 20, 1991. Reprinted by permission of the Wall Street

Journal, # 1991 Dow Jones & Company, Inc. All Rights Reserved Worldwide

Refer to Table 4.17, in which the GDP, personal consumption, and disposable

income during the period 1960–2009 are given.

63. Please give the two quartiles Q1 and Q3 for the GDP, personal consumption,

and disposable income, respectively.

64. Please draw the box and whisker plots for the GDP, personal consumption, and

disposable income, respectively.

65. Please calculate the skewness for the GDP, personal consumption, and

disposable income, respectively.

66. Please calculate the kurtosis for the GDP, personal consumption, and disposable

income, respectively.

Refer to Table 2.3, in which data on EPS, DPS, and PPS for JNJ, Merck, and

S&P 500 during the period 1988–2009 are given.

67. Please calculate the mean, median for EPS, DPS, and PPS for JNJ during the

period 1988–2009.

68. Please calculate the standard deviation for EPS, DPS, and PPS for JNJ during

the period 1988–2009.

Refer to Table 2.4, in which data on rates of return for JNJ, Merck, and S&P

500 during the period 1989–2009 are given.

69. Please calculate the skewness for the rates of return for JNJ and S&P 500

during the period 1989–2009.

70. Please calculate the kurtosis for the rates of return for JNJ and S&P 500 during

the period 1989–2009.
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Project I: Project for Descriptive Statistics

1. Use 3-month T-bill rate and prime rate presented in Table 2.1 to do the

following:

(a) Draw a time chart.

(b) Use either MINITAB or Microsoft Excel to calculate the mean,

variance, coefficient of variation, and coefficient of skewness

(c) Analyze the statistical results of (a) and (b)

2. Use the data presented in Table 2.4 to do the following:

(a) Draw a time chart.

(b) Use either MINITAB or Microsoft Excel to calculate the mean,

variance, coefficient of variation and coefficient of skewness

(c) Analyze the statistical results of (a) and (b)

3. Use seven key ratios for both JNJ and Merck as presented in Table 2.8 to

do the following:

(a) Use Microsoft Excel to draw the time charts as presented in Figs. 2.17,

2.18, 2.19, 2.20, 2.21, 2.22, and 2.23

(b) Use either MINITAB or Microsoft Excel to reproduce Table 4.18

4. Update seven key ratios for both JNJ and Merck as presented in Table 2.8

from Yahoo Finance and redo 3(a) and 3(b).
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Appendix 1: Shortcut Formulas for Calculating Variance

and Standard Deviation

Population variance Population standard deviation

s2 ¼
PN
i¼1

x2i

N � m2 ð4:5aÞ s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

x2i

N � m2

s
ð4:6aÞ

Sample variance Sample standard deviation

s2 ¼
Pn
i¼1

x2i �n�x2

n�1
ð4:7aÞ s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

x2i �n�x2

n�1

s
ð4:8aÞ

where N ¼ number of observations in the population

n ¼ number of observations in the sample

�x ¼ sample mean of x
m ¼ population mean of x

Appendix 2: Shortcut Formulas for Calculating Group Variance

and Standard Deviation

Population variance Population standard deviation

s2 ¼
Pk
i¼1

fim
2
i

N � m2 ð4:19aÞ s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
i¼1

fim2
i

N � m2

s
ð4:20aÞ

Sample variance Sample standard deviation

s2 ¼
Pk
i¼1

fim
2
i

n�1
� n�x2

n�1
ð4:21aÞ s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
i¼1

fim2
i

n�1
� n�x2

n�1

s
ð4:22aÞ

where fi ¼ frequency or number of observations in the ith group

mi ¼ midpoint of the ith group

k ¼ number of groups

Appendix 3: Financial Ratio Analysis for Two Pharmaceutical

Firms

Summary statistics for seven accounting ratios for the two US pharmaceutical

companies over the time period 1990–2009 are presented in Table 4.18.

The mean and median enable us to compare the central tendencies of the various

ratios. Recall that the mean is calculated by adding all the observations in the

sample and dividing by the number of observations in the sample (here, 20). That is
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�x ¼ P
20
i¼1xi=20. For the current ratio, for example, the ratios for all the 20 years are

added and divided by 20. The means for the other ratios are calculated in a similar

manner.

The second measure of central tendency presented is the median, the middle

observation of an ordered set of observations. In this example, there are 20

observations, so the median is the 10th observation of the current ratio. As noted

previously, the median is not affected by extreme observations, because it takes into

consideration only the middle observations. In contrast, the mean uses all the

observations. The mean and the median are usually close if the data contain no

outliers, but if there are extreme observations, the mean and median may differ

substantially.

Table 4.18 Statistics for selected financial ratios of two pharmaceutical companies

CA/CL Inventory turnover TD/TA NI/SAL NI/TA P/E ratio Payout ratio

JNJ

Mean 1.781 2.660 0.448 0.155 0.142 23.208 0.385

Median 1.775 2.496 0.448 0.159 0.145 22.512 0.367

STD 0.301 0.301 0.056 0.037 0.020 6.663 0.053

Variance 0.091 0.091 0.003 0.001 0.000 44.392 0.003

Skewness 0.525 0.360 0.167 �0.305 �0.883 0.415 2.552

Kurtosis 0.823 �1.724 �0.076 �0.570 2.065 �0.694 7.897

MAD 0.215 0.276 0.042 0.031 0.142 5.397 0.034

CV 0.169 0.113 0.125 0.240 0.141 0.287 0.136

CS 19.247 13.180 957.997 �5983.078 �111526.6 0.001 17590.079

Percentiles

10th 1.495 2.350 0.388 0.116 0.120 16.188 0.344

25th 1.614 2.426 0.422 0.128 0.130 17.556 0.358

50th 1.775 2.496 0.448 0.159 0.145 22.512 0.367

75th 1.867 2.992 0.483 0.181 0.153 27.616 0.387

90th 2.177 3.080 0.535 0.203 0.160 31.681 0.435

CA/CL Inventory turnover TD/TA NI/SAL NI/TA P/E ratio Payout ratio

Merck

Mean 1.355 3.589 0.455 0.220 0.244 21.591 0.151

Median 1.309 2.229 0.473 0.200 0.250 20.541 0.162

STD 0.212 2.561 0.066 0.076 0.057 8.409 0.039

Variance 0.045 6.559 0.004 0.006 0.003 70.711 0.002

Skewness 0.438 0.953 �0.085 2.105 �0.279 0.115 �0.152

Kurtosis �0.364 �0.261 �1.200 5.672 �0.723 �0.421 0.203

MAD 0.173 2.140 0.057 0.051 0.046 6.842 0.030

CV 0.157 0.714 0.144 0.344 0.233 0.389 0.258

CS 45.678 0.057 �300.197 4842.189 �1532.780 0.000 �2563.660

Percentiles

10th 1.145 1.475 0.371 0.152 0.166 11.871 0.103

25th 1.204 1.762 0.403 0.191 0.205 15.801 0.131

50th 1.309 2.229 0.473 0.200 0.250 20.541 0.162

75th 1.519 5.295 0.498 0.236 0.287 26.995 0.169

90th 1.609 7.451 0.534 0.306 0.316 31.812 0.183

Source: Standard & Poor’s Compustat, Wharton Research Data Services (WRDS)
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The measures of variability presented are MAD, variance, and standard deviation

(STD). The variance measures the average squared deviation from the mean, and the

standard deviation is the square root of the variance. TheMAD is the average absolute

deviation from the mean. The difference between the variance and the MAD is that

we square the deviations from the mean when calculating the variance and use the

absolute value of the deviations when calculating the MAD.

The boundaries for the 10th, 25th, 50th, 75th, and 90th percentiles are presented

to suggest the rank of the data. Recall that the percentiles indicate the percentages

of observations below a certain score. For example, the boundary for the 25th

percentile for JNJ’s current ratio (CA/CL) is 1.6135. This means that 25 % of JNJ’s

current ratios were below 1.6135.

The skewness coefficient enables us to measure the shape of the distribution.

A positive coefficient means that the distribution is skewed to the right, and a

negative value indicates left skewness.

These statistics can be used to compare the performance of one firm to that of

other firms. A high mean and a high median for the current ratio, net profit margin,

and return on total assets indicate that the firm is performing well. A high current

ratio (current assets divided by current liabilities) means that the firm has enough

liquidity to meet current obligations, such as accounts payable and wages payable.

The net profit margin measures the percentage of each dollar that goes to profits.

High profit margins are a sign of profitability. The return on total assets is another

measure of profitability; specifically, it measures how effectively the total assets are

being utilized.

A high inventory turnover ratio is good up to a point, but very high ratios

indicate that the firm may be running out of certain items in stock and losing

sales to competition. Thus, inventory levels must be reasonable for the firm to

maintain profitability. Generally, a high P/E ratio is also good because it means that

investors believe that the firm has good growth opportunities; however, a firm may

have a very high P/E ratio (approaching infinity) because of low earnings.

The total debt/total assets ratio (TD/TA in Table 4.18) is a measure of the

relative amount of debt the firm has assumed. A high ratio indicates that the firm

may be taking on too much debt and could be a credit risk.

The debt that a firm takes on is related to financial activity. In periods of

recession, the firm is unlikely to invest in new plant and equipment, because if it

did so, its existing plants and equipment would be underutilized. The firm is more

likely to incur debt and invest in new projects when the economy is expanding and

its plant is operating at full capacity.

Current Ratio

To determine which of the three firms was in the best liquidity position during the

20-year period, let us examine the mean and median of each firm’s current ratio.

JNJ had the highest current ratios, with a mean of 1.7806 and a median of 1.7745.
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Figure 2.17 in Appendix 3 of Chap. 2 shows the current ratio of JNJ over time.

During this period, JNJ’s current ratios were close to 1.6 in the early years but later

increased around 2000 to a point of 2.295 in 2001. Not following JNJ’s trend, MRK

had its own variance in its current ratios, remaining anyway between 0.93 and 1.4

from 1990 to 2000. Following this, it remained comfortable around 1.2 with slight

variations throughout the years.

To examine the variability of the current ratio, let us look at the variance,

standard deviation, coefficient of variation, and MAD. Ideally, firms like to have

a high current ratio with low variability so that managers can plan from year to year.

Merck had the lowest variance, 0.0451. The MAD follows the same pattern.

However, it would be a mistake to conclude that JNJ’s current ratio is less volatile

merely on the basis of the variance and MAD because JNJ may have a lower mean

and therefore a lower variance.

To eliminate this scaling problem, we use the coefficient of variation, which is

calculated by dividing the standard deviation by the mean. By this standard, Merck

had the lowest variability, .1732. On the basis of the central tendency and dispersion

statistics, we can conclude that JNJ has experienced higher current ratios but also

greater variability. While the higher ratios are beneficial, the greater dispersion is

not welcomed by managers because it makes planning difficult.

The skewness coefficient can give useful information on the shape of the

distribution. In this case, managers would like to have negatively or left skewed

distributions because this indicates that most of the current ratios have appeared on

the high end of the distribution. JNJ’s skewness coefficient is 0.525, while Merck’s

coefficient is 0.438.

The percentiles give the rank of the data. Again, recall that the values listed for

each percentile show the percentage of observations below that value. For example,

the 10th percentile for MRK’s current ratio is 1.144 indicating that 10 % of the

current ratios for this 20 year period lie below 1.114. Likewise, the 10th percentile

for JNJ’s current ratio is 1.495. By comparing the percentiles of MRK and JNJ’s

current ratios, we can get a feeling of how the current ratios of these two companies

have fluctuated over time. This measure shows that JNJ enjoyed superior ratios

because the firm had the highest values for each of the percentiles.

Inventory Turnover Ratio

The second ratio examined is the inventory turnover ratio, which is calculated by

dividing the cost of goods sold by the average value of inventory. A high inventory

turnover ratio is a sign of efficiency. Both firms had similar median inventory ratios,

with JNJ’s being 2.496 and Merck’s being 2.2285. JNJ’s mean inventory ratio is

2.659 and Merck’s is 3.589, showing that their ratios have a slight difference. With

Merck’s mean a point higher than its median, this indicates a positive skewness in

the data points. JNJ’s mean and median inventory ratio are very similar, showing
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little skewness in the data. From these central tendency measures, we can conclude

that JNJ has been more consistent than Merck with its inventory turnovers.

JNJ had the lowest variance, standard deviation, MAD, and coefficient of

variation for this ratio, indicating that its inventory turnover has been less volatile

than that of the other firms. A stable inventory turnover ratio makes it easier for

managers to plan inventory levels. Merck performed worse compared to JNJ in this

instance.

Managers also welcome a negatively skewed distribution because most of the

observations are on the high end. Under this criterion, the firms did not fare well

because each firm had a positively skewed distribution.

Total Debt/Total Asset Ratio

Let’s look more closely at the total debt/total assets ratio (TD/TA). Both JNJ and

Merck have relied steadily on debt over the 20-year time period with mean and

median ratios in the 40 % range. Both firms remained somewhat constant with

slight variations in their debt to asset ratios, ranging anywhere from .35 to .55, but

none ever crossing the .557 mark. Both companies had similar means with JNJ and

MRK’s means being .448 and .455, respectively. Their medians were also, respec-

tively, .448 and .4725. With these similarities in ratios, we can see that both

Johnson & Johnson and Merck had similar debt structures in their industries.

We can see that both company’s debt ratios have fluctuated very slightly, with

JNJ’s variance of .0031 and Merck’s variance .0043. There coefficients of variation

are also similar, with JNJ’s being .1246 and Merck’s at .1443. Since Merck’s debt

ratio CV is higher, it is implied that Merck’s debt ratio has greater variability, even

after we adjust for the mean of each company’s debt ratio. Merck’s superior

position can be seen in the percentiles because the firm has the lowest values in

all of the percentiles presented.

Net Profit Margin

The net profit margin is one of the most important ratios for managers and

shareholders because it reveals what percentage of each sales dollar goes to profits.

This ratio, calculated by dividing net income by sales (NI/SAL in Table 4.18), is

one measure of a firm’s overall profitability. As can be seen by the mean and

median statistics, by this measure of profitability, Merck has been operating much

more profitably than the other firms with a mean profit ratio of 0.22 and a median

measure of .2. This means that about 22 % of Merck’s income winds up as profits.

As can be seen in Fig. 2.20 of Appendix 3 (Chap. 2), both JNJ and Merck had only

positive net profit margins. The highest ratio was 0.470 in 2009 by Merck and the

low was .075 by JNJ in 1992.
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JNJ comes in second place with a mean net profit margin of .154 and a median

of.1585. By examining the data, you can see that the values for JNJ have tended to

be lower than Merck’s, with the exception of a few years such as 2001 and 2002 in

which JNJ’s net profit margin was higher.

JNJ, however, had the lowest variability as measured by the variance, MAD, and

coefficient of variation. The coefficient of variation for Merck is .3438, while JNJ

had a CV of .23964.

The firms would like to have a negatively skewed distribution indicating that

most of the observations are on the high side of the distribution. However, only JNJ

showed a negative skewness of �.3051, while Merck showed a skewness of 2.104.

Return on Total Assets

The return on total assets is important to managers because it indicates how

effectively the firm is using assets. This ratio is calculated by dividing net income

by total assets (NI/TA). The higher the ratio, the greater the income generated from

each dollar of total assets. As in the net profit ratio case, Merck outpaced its

competitors with a mean of .2437 and a median of .2495, followed by JNJ with

mean and median of .1416 and .145, respectively. JNJ had the lowest variance at

.000387, with Merck’s being .003213.

Price/Earnings (P/E) Ratios

Let us turn now to the price/earnings ratio. For both companies, their mean and

median P/E ratios are similar. JNJ’s mean P/E for this period stood at 23.2077,

while Merck’s was 21.5906. Their median P/E ratios, for JNJ and Merck,

respectively, are 22.512 and 20.541. Because the mean is higher than the median

in both cases, these results are slightly positively skewed, though not very

skewed in nature due to the similarity between the companies’ means and

medians.

Payout Ratio

The last ratio presented is the payout ratio, which reveals what percentage of the

firms’ earnings are paid out in dividends. This ratio is calculated by dividing

dividends per share by earnings per share. For obvious reasons, investors pay a

great deal of attention to this ratio. JNJ’s investors enjoyed the highest payout ratio

with a mean of .3849 and a median of .366. In other words, JNJ paid out on average

about 38.49 % of earnings in dividends. Merck was next with a mean of .151 and a

median of .162.
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From the foregoing discussion, we can conclude that, of the two pharmaceutical

companies, Merck was in the best financial condition for the period 1990–2009.

Although Merck didn’t have the highest mean current ratio, it did have the highest

mean net profit margin and return on total assets. Other things standing, like JNJ’s

and Merck’s similar debt ratios, Merck came out financially stronger with JNJ not

far behind.
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Part II

Probability and Important Distributions

Chapter 5 introduces and explains such basic probability concepts as conditional,

marginal, and joint probabilities. Chapter 6 discusses the analysis of discrete

random variables and their distributions. Chapter 7 deals with the normal and

lognormal distributions and their applications. In Chapter 8, we introduce sampling

and sampling distributions. Other important continuous distributions are discussed

in Chapter 9.

The examples and applications presented in Part II involve determining com-

mercial lending rates, finding the expected value of stock price by means of

the decision tree approach, determining option value via binomial and normal

distributions and stock rates of return distribution, and studying auditing sampling.

Other business decision applications also are explored.

Chapter 5 Probability Concepts and Their Analysis

Chapter 6 Discrete Random Variables and Probability Distributions

Chapter 7 The Normal and Lognormal Distributions

Chapter 8 Sampling and Sampling Distributions

Chapter 9 Other Continuous Distributions and Moments for Distributions
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5.1 Introduction

In Part I of this book, we discussed the use of descriptive statistics, which is

concerned mainly with organizing and describing a set of sample measurements

via graphical and numerical descriptive methods. We now begin to consider the

problem of making inferences about a population from sample data. Probability and

the theory that surrounds it are discussed in this chapter. These topics provide an

essential foundation for the methods of making inferences about a population on the

basis of a sample. A well-known example is the election poll, in which pollsters

select at random a small number of voters to question in order to predict the winner

of an election. Probability is also used in daily decision making. For example,

investment decisions are based on the investor’s assessment of the probable future

returns of various investment opportunities, and such assessments are often based

on some sample information.

In this chapter, we first discuss how basic concepts such as random experiment,

outcomes, sample space, and event can be used to analyze probability. Then, we

investigate alternative events and their probabilities. In probability theory, condi-

tional, joint, and marginal probabilities are the most important concepts in

analyzing statistical business and economic problems. Therefore, they are explored

in detail in this chapter. We also discuss independent and dependent events and

Bayes’ theorem. Finally, four business applications of probability are demonstrated.

5.2 Random Experiment, Outcomes, Sample Space, Event,

and Probability

A random experiment is a process that has at least two possible outcomes and is

characterized by uncertainty as to which will occur.

Each of the following examples involves a random experiment:

1. A die is rolled.

2. A voter is asked which of four candidates he or she prefers.

3. A person is asked whether President Bush should order US troops to liberate

Kuwait.

4. The daily change in the price of silver per ounce is observed.

When a die is rolled, the set of basic outcomes comprises 1 through 6; these basic

outcomes represent the various possibilities that can occur. In other words, the

possible outcomes of a random experiment are called the basic outcomes. The set of
all basic outcomes is called the sample space. Thus, basic outcomes are equivalent

to sample points in a sample space.

Suppose you are interested in getting an even number in rolling a die; in this

case, the event is rolling a 2, 4, or 6, which is a subset of {1, 2, 3. 4, 5, 6}. In other

words, an event is a set of basic outcomes from the sample space, and it is said to
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occur if the random experiment gives rise to one of its constituent basic outcomes.

Each basic outcome within each event (e.g., {2} {4} {6}) can also be called a

simple event. Hence, an event is a collection of one or more simple events. Finally,

a basic event is a subset of the sample space. The concepts of random experiment,

outcomes, sample space, and event, then, are fundamental to an understanding of

probability.

5.2.1 Properties of Random Experiments

The starting point of probability is the random experiment. Random experiments

have three properties:

1. They can be repeated physically or conceptually.

2. The set consisting of all of possible outcomes—that is, the sample space—can be

specified in advance.

3. Various repetitions do not always yield the same outcome.

Simple examples of conducting a random experiment include rolling dice,

tossing a coin, and drawing a card from a deck of 52 playing cards.

Because of uncertainty in the business environment, business decision making is

a tricky and an important skill. If the executive knew the exact outcomes of the

courses of action available, he or she would have no difficulty making optimal

decisions. However, the executive generally does not know the exact outcome of a

decision. Thus, business executives spend much time evaluating the probabilities of

various alternative outcomes. For example, an executive may need to determine the

probability of extensive employee turnover if the firm moves to another area. Or a

business decision maker may want to evaluate the impact of changes in economic

indicators such as interest rate, inflation, and gross national product (GNP) on a

company’s future earnings.

5.2.2 Sample Space of an Experiment and the Venn Diagram

For convenience, we can represent each outcome of a random experiment by a set

of symbols. The symbol S is used to represent the sample space of the experiment.

As we have noted, the sample space is the set of all basic outcomes (simple events)

of the random experiment. In the foregoing die-rolling example, the sample space is

S ¼ {1, 2, 3, 4, 5, 6}. When a person takes a driver’s license test, the sample space

contains only two elements: S ¼ {P, F}, where P indicates a pass and F a failure. In

a stock price forecast, the sample space could contain three elements: S ¼ {U, D,
N}, where U, D, and N represent movement up, movement down, and no change in

the price of a stock. In sum, the different basic outcomes of an experiment are often

referred to as sample points (simple events), and the set of all possible outcomes is

called the sample space. Thus, the sample points (simple events) form the sample

space.

5.2 Random Experiment, Outcomes, Sample Space, Event, and Probability 159



A Venn diagram can be used to describe graphically various basic outcomes

(simple events) in a sample space. The rectangle represents the sample space, and

the points are basic outcomes. Events are usually represented by circles or

rectangles. Figure 5.1 shows a Venn diagram. The elements labeled represent the

six basic outcomes of rolling a die. In Fig. 5.2, the circle indicates the event of all

even numbers that can result from rolling a single die. Let event A ¼ {2, 4, 6}.

Again, the sample space is the possible outcomes of rolling a die. Figure 5.3 shows

events A ¼ {1, 3} and B ¼ {4, 5}. When two events have no basic outcome in

common, they are said to be mutually exclusive events. When events have some

elements in common, the intersection of the events is the event that consists of the

common elements. Say we have one event A ¼ {2, 3, 4, 6} and another event

B ¼ {2, 3, 5}. The intersection of these events is shown in Fig. 5.4. The common

elements are 2 and 3.

1 2 3

4 5 6

Fig. 5.1 Venn diagram

showing six different sample

points

2

3
1

4

A

6

5

Fig. 5.2 Venn diagram for

event A

A B

5

6

3 41

2

Fig. 5.3 Venn diagram for

mutually exclusive events
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5.2.3 Probabilities of Outcomes

The probability of an event is a real number on a scale from 0 to 1 that measures the

likelihood of the event’s occurring. If an outcome (or event) has a probability of 0,

then its occurrence is impossible; if an outcome (or event) has a probability of 1.0,

then its occurrence is certain. Getting either a head or a tail in a coin toss is an

example of an event that has a probability of 1.0. Because there are only two

possibilities, either one event or the other is certain to occur. An event with a zero

probability is an impossible event, such as getting both a head and a tail when

tossing a coin once.

When we roll a fair die, we are just as likely to obtain any face of the die as any

other. Because there are six faces to a die, we generally say the “outcome” of the

toss can be one of six numbers: 1, 2, 3, 4, 5, 6.

The probability of an outcome can be calculated by the classical approach, the

relative frequency approach, or the subjective approach. The first two approaches

are discussed in this section, the third approach in the next.

Classical probability is often called a priori probability, because if we keep

using orderly examples, such as fair coins and unbiased dice, we can state the

answer in advance (a priori) without tossing a coin or rolling a die. In other words,

we can make statements based on logical reasoning before any experiments take

place. Classical probability defines the probability that an event will occur as

Probability of an event ¼ number of outcomes contained in the event

total number of possible outcomes
(5.1)

Note that this approach is applicable only when all basic outcomes in the sample

space are equally probable.

For example, the probability of getting a tail upon tossing a fair coin is

PðtailÞ ¼ 1

1þ 1
¼ 1

2

4

6

2 3

5

1BA
Fig. 5.4 Venn diagram for

the intersection of events

A and B
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And for the die-rolling example, the probability of obtaining the face 4 is

Pð4Þ ¼ 1
6

The relative frequency approach to calculating probability requires the random

experiment to take place as defined in Eq. 5.2:

Pðo ¼ eiÞ ¼ ni
N

or PðeiÞ ¼ ni
N

(5.2)

where

o ¼ outcome

ei ¼ outcome associated with ith event

ni ¼ number of times the ith outcome occurs

N ¼ total number of times the trial is repeated

From Eq. 5.2, we know that we can obtain the relative frequency by dividing the

total number of trials being repeated into the number of ith outcomes occurring.

Another explanation for Eq. 5.2 would be P(ei)¼ fi/N, where fi equals the number of

favorable outcomes for event ei and N equals the total outcome in sample space, S.
The credit cards issued by Citicorp in 1984 are listed here (the data is from

Fortune magazine, February 4, 1985, page 21):

Credit card Number of cards issued (in millions)

Visa and MasterCard 6.0

Diners club 2.2

Carte blanche .3

Choice 1.0

Visa and MasterCard credit cards are issued by thousands of banks, including

Citicorp. The other three credit cards listed above are issued by Citicorp only. If one

Citicorp credit card customer is selected randomly, the probability that the cus-

tomer selected uses one of Citicorp’s own credit cards is

2:2þ :3þ 1:0

2:2þ :3þ 1:0þ 6:0
¼ :368:

Example 5.1 Toss a Fair Coin. Suppose a random experiment is to be carried out

and we are interested in the chance of occurrence of a particular event. The concept

of probability can help us, because it provides a numerical measure for the likeli-

hood of an event or a set of events occurring.

We conduct 50 experiments of tossing a fair coin in different sample sizes

(N ¼ 10, 20, . . ., 500). The results of these experiments are presented in Table 5.1.

In Table 5.1, the first column represents that the ith (i ¼ 1, 2, . . ., 50) experiment

has been done; the second column, N, shows the number of times a coin has been
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Table 5.1 Frequency and proportion in tossing a fair coin

MTB > PRINT C51–C53

Data display

Row N f p

1 10 7 0.700000

2 20 12 0.600000

3 30 17 0.566667

4 40 19 0.475000

5 50 22 0.440000

6 60 34 0.566667

7 70 30 0.428571

8 80 44 0.550000

9 90 52 0.577778

10 100 37 0.370000

11 110 57 0.518182

12 120 64 0.533333

13 130 59 0.453846

14 140 63 0.450000

15 150 78 0.520000

16 160 78 0.487500

17 170 95 0.558824

18 180 88 0.488889

19 190 90 0.473684

20 200 100 0.500000

21 210 117 0.557143

22 220 109 0.495455

23 230 115 0.500000

24 240 119 0.495833

25 250 130 0.520000

26 260 128 0.492308

27 270 137 0.507407

28 280 126 0.450000

29 290 140 0.482759

30 300 158 0.526667

31 310 161 0.519355

32 320 157 0.490625

33 330 160 0.484848

34 340 165 0.485294

35 350 168 0.480000

36 360 188 0.522222

37 370 201 0.543243

38 380 199 0.523684

39 390 190 0.487179

40 400 198 0.495000

41 410 220 0.536585

42 420 192 0.457143

43 430 207 0.481395

(continued)
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tossed for experiment; the third column lists the number of times heads appeared;

and the fourth column gives the proportion of heads that appeared.1 Figure 5.5 is the

figure generated by MINITAB in terms of the data given in the fourth column.

In this example, we know that if the coin is fair, anytime we toss the coin, the

probability of our getting heads is 1
2
. One important property of probability is that

the sum of the probabilities of all outcomes must be equal to 1. The sum of the

probabilities must equal 1 because the possible outcomes are collectively exhaus-

tive and mutually exclusive. From our previous example of the toss of a coin, the

outcomes are mutually exclusive and collectively exhaustive because we have

included all the possible basic outcomes (simple events) that can occur. Mathemat-

ically, we can express this property for our roll of the die as

PðHÞ þ PðTÞ ¼ 1 (5.3)

where P(H) and P(T) represent the probability of getting heads and that of getting

tails, respectively.

Note that the results of Table 5.1 are obtained by tossing a coin again and again.

Tossing it only 4 (or even 20) times would not be enough to average out the chance

fluctuations shown in Table 5.1. When N is large enough, however, the relative

frequency of tossing a coin for heads moves toward 1
2
, as indicated in Fig. 5.5.

So far, we have used both the classical and the relative frequency approaches to

define probability. We now summarize the definition of probability in terms of

relative frequency. Let ni be the number of occurrences of event i in N repeated

trials.

Then under the relative frequency concept of probability, the probability that

event i will occur is the relative frequency (the ratio ni/N) as the number of trials N
becomes infinitely large. Alternatively, the probability can be interpreted as the

proportion of times the ith event (ni/N) occurs in the long run (N becomes infinitely

large) when conditions are stable.

Table 5.1 (continued)

MTB > PRINT C51–C53

Data display

Row N f p

44 440 210 0.477273

45 450 226 0.502222

46 460 217 0.471739

47 470 239 0.508511

48 480 243 0.506250

49 490 233 0.475510

50 500 243 0.486000

1 This set of data was generated by the Bernoulli process, which will be discussed in the next

chapter.
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5.2.4 Subjective Probability

An alternative view about probability, which does not depend on the concept of

repeatable random experiments, defines probability in terms of a subjective, or

personalistic, concept. According to this concept of subjective probability, the
probability of an event is the degree of belief, or degree of confidence, an individual

places in the occurrence of an event on the basis of whatever evidence is available.

This evidence may be data on the relative frequency of past occurrences, or it may

be just an educated guess. The individual may assign an event the probability of 1,

0, or any other number between those two. Here are a few examples of situations

that require a subjective probability:

1. An individual consumer assigns a probability to the event of purchasing a TV

during the next quarter.

2. A quality control manager asserts the probability that a future incoming ship-

ment will have 1.5 % or fewer defective items.

3. An auditing firm wishes to determine the probability that an audited voucher will

contain an error.

Fig. 5.5 M1NITAB output for the proportion of heads in N tosses of a fair coin
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4. An investor ponders the probability that the Dow Jones closing index will be

below 3,000 at some time during a 3-month period beginning on November 10,

1992.

5.3 Alternative Events and Their Probabilities

As we have stated, an event is the result of a random experiment consisting of one

or more basic outcomes. If an event consists of only one basic outcome, it is a

simple event; if it consists of more than one basic outcome, it is a composite event.
In the die-rolling experiment discussed in Fig. 5.1, the sample space is S ¼ {1, 2, 3,

4, 5, 6}.

Suppose we are interested in the event E, where the outcome is 1 or 6. We can

clearly describe the event E as E ¼ {1. 6}. An event E is a subset of the sample

space S. This is a composite event because it includes the simple events {1} and

{6}. The subset definition enables us to define an event in general.

In the tossing of a fair die, suppose that event A represents the faces 1, 2, 3, 4, and

5 and event B the faces of 4, 5, and 6. Graphically, the relationship between basic

outcomes and events can be represented as shown in Fig. 5.6. The intersection of

these two events is the faces 4 and 5, because these faces are common to both

events.

5.3.1 Probabilities of Union and Intersection of Events

An event can often be viewed as a composite of two or more other events. Such an

event, called a compound event, can be classified as union or as intersection. The

union of two events A and B is the event that occurs when either A or B or both occur

on a single performance of the experiment. For example, if event B is getting an

even number (2, 4, or 6) on a die toss and event A is getting a number 1 or 2, then the

union of events A and B, which we represent as A [ B, is 1, 2, 4, and 6. The union

A [ B is indicated in Fig. 5.7.

A B

1

2 6

3

4

5

Fig. 5.6 Venn diagram for

the intersection of events

A and B
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The intersection of two events A and B is the event that occurs when both A and

B occur on a single performance of the experiment. That is, the common members

make up the intersection of two events. Because 2 is the only common sample point

in our two events, the intersection of events A and B, which we represent asA \ B, is
2. This intersection is indicated by the shaded area in Fig. 5.8.

Example 5.2 Pick a Card, Any Card. To illustrate the union and intersection of

events, we shall use a standard deck of cards. We know that there are 52 cards in a

deck (13 spades, 13 hearts, 13 diamonds, and 13 clubs) and 4 cards for each number

(see Table 5.2). Using this information, let’s calculate the probability of the union

and intersection of events in the sample space of a deck of playing cards.

5.3.1.1 Probability of Union

To assess the probability of union, first, imagine we randomly select one card from

the deck. Let event A¼ {club} and event B¼ {heart or diamond}. LetA [ B denote

the union, so A [ B ¼ {club, heart, diamond}.

The union of A and Bmeans the event “A or B” occurs. We can now compute the

mathematical probability of A or B:

PðAÞ ¼ 13

52
¼ 1

4
and PðBÞ ¼ 13þ 13

52
¼ 1

2

1 2 4

6

A B
Fig. 5.7 Venn diagram for

A [ B

1 2 4

6

A ∩ B

Fig. 5.8 Venn diagram for

A \ B
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The probability of getting a club, a heart, or a diamond is obtained by adding the

number of club, heart, and diamond cards and dividing by the total number of cards,

52. As a result, the probability of drawing a card that is a member of the union of

these two events is

PðA [ BÞ ¼ PðAÞ þ PðBÞ ¼ 1
4
þ 1

2
¼ 3

4

Thus, we have a 3
4
¼ 75 % chance of randomly drawing a single card that is a

club or a heart or a diamond.

If A and B are mutually exclusive, the probability formula for a union of A and B
is

PðA [ BÞ ¼ PðAÞ þ PðBÞ (5.4)

The rule for obtaining the probability of the union of A and B as indicated in

Eq. 5.4 is the addition rule for two events that are mutually exclusive. This addition

rule is illustrated by the Venn diagram in Fig. 5.9, where we note that the area of

two circles taken together (denotingA [ B) is the sum of the areas of the two circles.

Table 5.2 Playing card

sample space
Spades Hearts Diamonds Clubs

A A A A

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

7 7 7 7

8 8 8 8

9 9 9 9

10 10 10 10

J J J J

Q Q Q Q

K K K K

A

P(A ∪ B) = P(A) + P(B)

B

Fig. 5.9 Venn diagram for

the probability of two

mutually exclusive events
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As another example, if A ¼ all clubs and B ¼ all diamonds, then

PðA [ BÞ ¼ 13
52
þ 13

52
¼ 26

52
¼ 1

2

A new pharmaceutical product is about to be introduced commercially, and both

Upjohn andMerck want to be the first to put the product on the market. An industrial

analyst believes that the probability is .40 that Upjohn will be first and .25 that Merck

will be first. If the analyst’s beliefs are correct, what is the probability that either

Upjohn or Merck will be first, assuming that a tie does not occur?

Let A be the event that Upjohn is first. Let B be the event that Merck is first.

Then, from Eq. 5.4, we have PðA [ BÞ ¼ :40þ :25 ¼ :65: Consequently, the

probability that either Upjohn or Merck will be first is .65.

If A and B are not mutually exclusive, then the simple probability of union

defined in Eq. 5.4 must be modified to take the intersection into account and thereby

avoid double counting:

PðA [ BÞ ¼ PðAÞ þ PðBÞ � PðA \ BÞ (5.5)

The rule for obtaining the probability of the union of A and B as indicated in

Eq. 5.5 is the addition rule for two events that are not mutually exclusive. This

addition rule is illustrated by Fig. 5.10. In Fig. 5.10a, the event A [ B is the sum of

the areas of circles A and B. The event A \ B is the shaded area in the middle, as

indicated in Fig. 5.10b. When we add the areas of circles A and B, we count the

shaded area twice, so we must subtract it to make sure it is counted only once.

If, instead, A ¼ all diamonds and B ¼ all diamonds or all hearts, then

PðA [ BÞ ¼ 1
4
þ 1

2
� 1

4
¼ 1

2

Midlantic Bank in New Jersey gives summer jobs to two Rutgers University

business school students, Mary Smith and Alice Wang. The bank personnel

a b

A A

∪ AA

B B

B B∩

Fig. 5.10 Venn diagram for the probability of two events that are not mutually exclusive:

(a) A [ B and (b) A \ B
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manager hopes that at least one of these students will decide to work for the bank

upon graduation. Assume that the probability that Mary will decide to work for the

bank is .4, the probability for Alice is .3, and the probability that both will decide to

work for the bank is .2. Then, the probability that the personnel manager’s hopes

will be fulfilled is

PðA [ BÞ ¼ :4þ :3� :2 ¼ :5:

Example 5.3 Probability Analysis of Family Size. Table 5.3 contains data on the

size of families in a certain town in the United States in 1992. If we randomly

choose a family from this town, what is the probability that this family includes

three or more children?

Using Eq. 5.4, we can calculate the answer as

Pð3; 4; 5; 6 ormoreÞ ¼ Pð3Þ þ Pð4Þ þ Pð5Þ þ Pð6Þ þ Pð7 ormoreÞ
¼ :26þ :14þ :10þ :05þ :01

¼ :56

5.3.1.2 Probability of Intersection

If A ¼ {diamond} and B ¼ {diamond or heart}, then A \ B ¼ {diamond} ¼ set of

points that are in both A and B. Using Table 5.2, we obtain

PðAÞ ¼ 13
52
¼ 1

4

PðBÞ ¼ ð13þ 13Þ=52 ¼ 1
2

PðA \ BÞ ¼ 13
52
¼ 1

4

Thus, the probability of drawing a diamond and drawing a diamond or a heart is

the probability of drawing a diamond, which is 1
4
, or 25 %.

From Eq. 5.5, we can define the probability of an intersection as

PðA \ BÞ ¼ PðAÞ þ PðBÞ � PðA [ BÞ (5.6)

If, instead, A ¼ all diamonds and B ¼ all diamonds or all hearts, then

PðA \ BÞ ¼ 1
4
þ 1

2
� 1

2
¼ 1

4

Table 5.3 Family size data

Number of children Proportion of families having

this many children

0 1 2 3 4 5 6 7 or more

.04 .11 .29 .26 .14 .10 .05 .01
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5.3.2 Partitions, Complements, and Probability of Complements

Now, suppose we randomly choose a card from the deck. Let A¼ (red suit) and B¼
(black suit). A card cannot be a member of both a red suit and a black suit.

Therefore, we say A and B are mutually exclusive events; they have no basic

outcomes in common. In addition, if mutually exclusive events A and B cover the

whole sample space S, we call the collection of events A and B a partition of S.
Another alternative is to partition the card deck sample space as follows:

A ¼ fclubg B ¼ fdiamondg C ¼ fheartg; D ¼ fspadeg

Those four events—A, B, C, and D—are mutually exclusive and collectively

exhaustive; the collection of these events is called a partition of sample space S,
which can be explicitly defined as

S ¼ fA;B;C;Dg (5.7)

Equation 5.7 can itself be partitioned again into G1 and G2 as

S ¼ fG1;G2g; (5.8)

where G1¼ {A, B} and G1 ¼ {C, D}. G1 consists of exactly those cards that are not

inG2. We therefore callG2 the complement ofG1, denoted by �G1 (which is read “not

G1”). In other words, �G1 represents a set of cards that are not in G1: �G1 ¼ {C, D}.
Figure 5.11 depicts three different types of partitions. Figure 5.11a depicts two

mutually exclusive sets, G1 and G2. Figure 5.11b shows mutually exclusive events,

A, B, C, and D. �G1 is the complement of G1 in Fig. 5.11c. �G1 and G1 are mutually

exclusive for a simple partition.

G1 G1A B

DCG2 G1

a b c

Fig. 5.11 Venn diagrams of mutually exclusive events, showing partitions and complements
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5.3.2.1 Probability of Complement

Because an event and its complement, {E, E}, constitute a simple partition, these

events are mutually exclusive. By Eq. 5.4,

PðE [ EÞ ¼ PðEÞ þ PðEÞ (5.9)

E and E constitute all of the sample space, so

PðE [ EÞ ¼ 1 (5.10)

Substituting Eq. 5.10 into Eq. 5.9, we obtain

1 ¼ PðEÞ þ PðEÞ
PðEÞ ¼ 1� PðEÞ ð5:11Þ

Recalling Eq. 5.8 about playing cards, where G1 represents a club or a diamond,

we find that the probability of �G1 (neither a club nor a diamond) is

Pð �G1Þ ¼ 1� PðG1Þ
¼ 1� 26=52

¼ 1=2

In 1987, 112,440,000 workers were employed in the United States. Table 5.4

shows the relative frequencies of these employed workers, classified by different

types of occupations.

Table 5.4 Employed

workers in 1987
Occupation Relative frequency

Male worker .552

Managerial/professional .137

Technical/sales/administrative .110

Service .053

Precision production, craft, and repair .110

Operators/fabricators .115

Farming, forestry, and fishing .027

Female worker .448

Managerial/professional .109

Technical/sales/administrative .202

Service .081

Precision production, craft, and repair .010

Operators/fabricators .040

Farming, forestry, and fishing .006

Source: Statistical Abstract of the United States: 1989, p. 388
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If we need to select a worker randomly from the population and determine his or

her occupation, the probability that the worker will not be in a technical/sales/

administrative occupation can be calculated as follows:

P(nontechnical/sales/administrative occupation)

¼ 1 – P(technical, sales, or administrative occupation)

¼ 1 – P(male, technical, sales, or administrative occupation) – P(female, technical,

sales, or administrative occupation)

¼ 1 – .110 – .202 ¼ .688.

5.3.3 Using Combinatorial Mathematics to Determine
the Number of Simple Events

The purpose of introducing combinatorial mathematics here is to show how the

number of simple events can be determined and the probability computed. Combi-
natorial mathematics is the mathematics that develops counting principles and

techniques in terms of permutations and combinations, which are discussed in

Appendix 1. For example, a simple rule for finding the number of different samples

of r auto part items selected from n auto part items in doing quality control sampling

can be derived from the combination formula discussed in this section. According

to the combination formula developed in Appendix 1, the total number of possible

combinations of samples is

n
r

� �
¼ n!

r!ðn� rÞ! (5.12)

where n is the number of possible objects (items), r is the number of objects to be

selected, and the factorial symbol (!) means that, say,

n! ¼ nðn� 1Þðn� 2Þ � � � 3 � 2 � 1
ðn� rÞ! ¼ ðn� rÞðn� r � 1Þ � � � 3 � 2 � 1

For example, 6! ¼ 6 � 5 � 4 � 3 � 2 � 1: (The quantity of 0! is defined as equal to 1.)
Example 5.4 Possible Combinations in Selecting Gifts. The United Jersey Bank in

New Jersey is giving out gifts to depositors. If eligible, depositors may choose any

two out of six gifts. How many possible combinations of gifts can different

depositors select? This question can be answered either manually or by combinato-

rial mathematics.

Manual Method
Let g1, g2, g3, g4, g5, and g6 represent first gift, second gift, third gift, fourth gift,

fifth gift, and sixth gift. The number of possible combinations of two gifts chosen

from among these six gifts is 15:
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g1, g2 g2, g3 g3, g5
g1, g3 g2, g4 g3, g6
g1, g4 g2, g5 g4, g5
g1, g5 g2, g6 g4, g6
g1, g6 g3, g4 g5, g6

Combinatorial Mathematics Method
Or, if we have less paper, we can use Eq. 5.5 and find the number of possible

combinations as follows:

6

2

� �
¼ 6!

ð2!Þð6� 2Þ! ¼
6 � 5 � 4 � 3 � 2 � 1
ð2 � 1Þð4 � 3 � 2 � 1Þ ¼ 15

This result agrees with the result we obtained manually.

If both n and r are large, combinatorial mathematics is the far better method for

counting the number of outcomes in the sample space. Trust me.

Example 5.5 Just Take the Toaster. If the two gifts are randomly selected, what is

the probability of gift 1 being selected? Well, there are five combinations that

include gift 1, and there are 15 possible combinations. The probability of gift 1

being selected, then, is P ¼ 5/15 ¼ 1/3.

5.4 Conditional Probability and Its Implications

5.4.1 Basic Concept of Conditional Probability

Conditional probability is the probability that an event will occur, given that (on the
condition that) some other event has occurred. The concept of conditional proba-

bility is relatively simple. In the example involving playing cards that was

discussed in Sect. 5.3, we have 13 spades, 13 hearts, 13 diamonds, and 13 clubs.

Suppose we put 13 spades on the table and then select a card randomly from that

group.2 What is the probability that the card’s face value will be 2, P(S2), given that
it is a spade? Here, we have changed the condition under which the experiment is

performed, because we are now considering only a subset of the population: just the

spades. To obtain a new probability for each element of this subpopulation, we

simply find the total probability of the subpopulation (spades) and then divide the

probability of each event in the subpopulation by the total probability. We know

that the total probability of the subpopulation is 13/52 [(1/52)(13)]. The new

probabilities we assign are

2 This is equivalent to randomly drawing a card from the deck and finding that it is a spade.
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PðS2 j spadesÞ ¼ PðS2Þ
PðspadesÞ ¼

1=52

13=52
¼ 1

13

PðS3 j spadesÞ ¼ 1=52

13=52
¼ 1

13

:

:

:

PðSA j spadesÞ ¼ 1=52

13=52
¼ 1

13

where S2, S3, and SA represent the 2, 3, and ace of spades. The notation|means

“given.” For example, P(S2|spades) means the probability of drawing a 2 of spades,

given that the card is a spade.

If we let A¼ the event of picking a spade from the deck and B¼ the card being a 2,

the conditional probability of this drawing is written as

PðB jAÞ ¼ PðB \ AÞ
PðAÞ ¼ 1=52

13=52
¼ 1

13

where P(B [ A) is the probability that the card is a 2 of spades and P(A) is the
probability that the card is a spade. Now, we can give the formula for conditional

probability as

PðB jAÞ ¼ PðB \ AÞ
PðAÞ (5.13)

Assume that J, Q, and K are greater than 10, as defined in Table 5.2. If we let A
represent the event that the card we draw is a spade and let B represent the event that

the card is a jack, queen, or king, then

PðB \ AÞ ¼ 1=52þ 1=52þ 1=52 ¼ 3=52

P(A) is the probability that the card we pick up is a spade, or 13/52 ¼ 1/4. Then,

PðB jAÞ ¼ PðB \ AÞ
PðAÞ ¼ 3=52

1=4
¼ 3

13
¼ 23:08%

The conditional probability P(B | A) ¼ 3/13 can be shown on a Venn diagram as

indicated in Fig. 5.12, where A \ B takes 23.08 % of the total area of A, which
means that P(B | A) ¼ 23.08 %.
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5.4.2 Multiplication Rule of Probability

An immediate consequence of the definition of conditional probability is the

multiplication rule of probability, which expresses the probability of an intersection
in terms of the probability of an individual event and the conditional probability. It

can be derived as follows. From Eq. 5.13, we know that

PðA jBÞ ¼ PðA \ BÞ
PðBÞ (5.13a)

From Eqs. 5.13 and 5.13a, we obtain

PðB \ AÞ ¼ PðB jAÞPðAÞ (5.14)

PðA \ BÞ ¼ PðA jBÞPðBÞ (5.15)

Clearly, ðB \ AÞ ¼ ðA \ BÞ. Thus, from Eqs. 5.14 and 5.15, we obtain

PðA \ BÞ ¼ PðB jAÞPðAÞ ¼ PðA jBÞPðBÞ (5.16)

For example, suppose 30 % of all students receive a grade of C (event A). Of all
students who receive C, 60 % are male (event B). This is a conditional probability
because we are limiting ourselves to male students. In symbols, P(B|A) ¼ .60.

What is the probability of a randomly selected student who is a male having a

grade of C?

The event of a male student with a grade of C is the intersection of A and B.
We also know that

PðAÞ ¼ :3

PðBjAÞ ¼ :6

A

A

( )∩ B

B

Fig. 5.12 Venn diagrams

of conditional probability
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Then, from our rule of Eq. 5.16, we find that

PðA \ BÞ ¼ PðAÞPðBjAÞ ¼ ð:3Þð:6Þ ¼ :18

Example 5.6 Joint Probability on Wall Street. Let A be the event that the stock

market will be bullish next year, and let B be the event that the stock price of

Meridian Company will increase by 10 % next year. An investment analyst would

like to estimate the probability that the stock price of Meridian Company will

increase and that the stock market will be bullish next year. Let

PðAÞ ¼ probability that the stockmarket will be bullish next year

¼ 60 percent

PðBjAÞ ¼ probability that the stock price of Meridian Companywill increase by 10

percent; given that the stockmarket will be bullish

¼ 30 percent

Using Eq. 5.15, we obtain

PðA \ BÞ ¼ ð:6Þð:3Þ ¼ :18

This implies that there is about an 18 % chance that the stock price of Meridian

Company will increase and that the stock market will be bullish.

The probability P(A \ B) of Eq. 5.15 is called the joint probability, which is

discussed in Sect. 5.5 in further detail. Equation 5.15 can also be used to derive

Bayes’ theorem, which is discussed in Sect. 5.7.

5.5 Joint Probability and Marginal Probability

In this section, we will examine joint and marginal probabilities and their

relationships to the conditional probability we discussed in Sect. 5.4.

5.5.1 Joint Probability

In many applications, we are interested in joint probability, the probability of two or
more events occurring simultaneously. To illustrate joint probabilities, consider the

data in Table 5.5. These figures represent the results of a market survey in which

500 persons were asked which of two competitive soft drinks they preferred, soft

drink 1 from company I or soft drink 2 from company II. To simplify the discussion,

as shown in Table 5.5, we use M, F, S1, and S2 to represent male, female, prefers
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soft drink 1, and prefers soft drink 2. Hence, the joint outcome that an individual is

both male and prefers soft drink l is denoted as “M and S1,” and the joint probability
that a randomly selected individual is male and prefers soft drink 1 is P(M and S1)¼
PðM \ S1Þ. This probability is

PðM \ S1Þ ¼ 100

500
¼ 0:20

Other joint probabilities can be calculated similarly. Table 5.6 is a joint proba-

bility table obtained by dividing all entries in Table 5.5 by the total number of

individuals.

For two events, a joint probability is the probability of the intersection of two

events—in other words, the probability that both events will occur at the same time.

As we saw in Eq. 5.16, the joint probability can be defined as

PðA \ BÞ ¼ PðB jAÞPðAÞ ¼ PðA jBÞPðBÞ (5.16)

PðA \ BÞ can be also represented as P(A and B). It is used to denote the

probability that both events A and B will occur. This equation implies that a joint

probability is the product of a marginal probability [either P(A) or P(B)] and a

conditional probability [either P(B|A) or P(A|B)]. In Table 5.6, marginal

probabilities are presented in the last row and the last column. The concept of

marginal probability is discussed later in this section.

In the case where we drew a spade from among 13 spades, P(A) ¼ 13/52 and

P(B | A) ¼ 1/13. So the joint probability is

PðB \ AÞ ¼ ð1=13Þð13=52Þ ¼ 1=52

Table 5.5 500 persons

classified by sex and product

preference

Product preference

Sex S1 S2 Total

Male 100 160 260

Female 200 40 240

Total 300 200 500

Table 5.6 Joint probability

table for 500 persons

classified by sex and product

preference

Product preference

Sex S1 S2 Marginal probability

Male .20 .32 .52

Female .40 .08 .48

Marginal probability .60 .40 1.00
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5.5.2 Marginal Probabilities

In addition to joint probability, we can also obtain from Table 5.6 probabilities for

the two classifications “sex” and “product preference.” These probabilities, which

are shown in the margins of the joint probability table, are referred to as marginal
probabilities or unconditional probabilities. For example, the marginal probability

that a randomly chosen individual is female is P(F) ¼ .48, and the marginal

probability that a person prefers soft drink 1 is P(S1) ¼ .60. In these cases, the

marginal probabilities for each classification are obtained by summing the appro-

priate joint probabilities. Because marginal probability is a probability of a simple

event, it is often called the simple probability.
Armed with this information on joint probability and marginal probability, we

can calculate conditional probability as indicated in Eq. 5.13. The probability that

the individual is female and prefers soft drink 1, for example, can be calculated, in

terms of data listed in Table 5.6, as PðS1 \ FÞ ¼ .40. We also know that

P(F) ¼ .48. Substituting this information into Eq. 5.13, we obtain

PðS1 jFÞ ¼ PðS1 \ FÞ
PðFÞ ¼ :40

:48
¼ 40

48
¼ 5

6

For comparison, we now calculate

PðF j S1Þ ¼ PðF \ S1Þ
PðS1Þ ¼ :40

:60
¼ 2

3

Note that P(F | S1) 6¼ P(S1 | F). Note that PðS1 \ FÞ can be calculated by

dividing 500 into 200 (see the data presented in Table 5.5).

To further illustrate this point, let’s consider the following example.

Example 5.7 Classifying Students by Two Criteria. Suppose we consider the

problem of randomly selecting 1 student as a representative from a class of 80

students. In this class, there are 5 black male students, 25 black female students, 35

white male students, and 15 white female students, as indicated in Table 5.7.

Let

B ¼ event that the student is black

W ¼ event that the student is white

M ¼ event that the student is male

F ¼ event that the student is female

Table 5.7 Eighty persons

classified by sex and race
Sex Black White Total

Male 5 35 40

Female 25 15 40

Total 30 50 80
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Events B and W classify the students by race. Events M and F classify them by

sex.

Because each event represents only one of the different classifications (sex or

race), the probabilities of these events are called marginal probabilities. Marginal

probabilities for race and sex can be calculated as

PðBÞ ¼ 30

80
; PðWÞ ¼ 50

80
; and PðB [WÞ ¼ 1

PðMÞ ¼ 40

80
; PðFÞ ¼ 40

80
; and PðM [ FÞ ¼ 1

We can calculate the conditional and joint probabilities by using Table 5.7. The

conditional probabilities are

PðBjMÞ ¼
5
80
40
80

¼ 5

40

PðWjMÞ ¼
35
80
40
80

¼ 35

40

PðFjWÞ ¼
15
80
50
80

¼ 15

50

PðFjBÞ ¼
25
80
30
80

¼ 25

30

The joint probabilities are

PðB \MÞ ¼ 5

40

40

80
¼ 5

80

PðB \ FÞ ¼ 25

30

30

80
¼ 25

80

PðW \MÞ ¼ 35

40

40

80
¼ 35

80

PðW \ FÞ ¼ 15

50

50

80
¼ 15

80

Suppose we do not know the exact numbers indicated in the table, but we know

the joint probabilities and conditional probabilities. We can obtain the marginal

probabilities from the joint probabilities by simply summing the joint probabilities.
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For example, if we want to know the probability of selecting a black student, we can

sum all the probabilities we know to be associated with black students. The

probability of selecting a black student is the probability of selecting a black

male student plus the probability of selecting a black female student. That is,

PðBÞ ¼ PðB \MÞ þ PðB \ FÞ ¼ 5

80
þ 25

80
¼ 30

80

We can calculate other marginal probabilities in the same way:

PðWÞ ¼ PðW \MÞ þ PðW \ FÞ ¼ 35

80
þ 15

80
¼ 5

8

PðMÞ ¼ PðB \MÞ þ PðW \MÞ ¼ 5

80
þ 35

80
¼ 1

2

PðFÞ ¼ PðB \ FÞ þ PðW \ FÞ ¼ 25

80
þ 15

80
¼ 1

2

Hence, the probabilities for individual events—P(B), P(W), P(M), and P(F)—
are known as marginal probabilities. In this example, say A represents sex and B
represents color. The probabilities of individual events can then be represented as

P(Ai) and P(Bi) where i ¼ B, W and j ¼ M, F.

Example 5.8 Marginal Probabilities on Wall Street. Let A represent the state of

economic conditions, and let B represent movement upward or downward of the

stock price for Linden, Inc. The probabilities for Linden’s stock price movement are

presented in Table 5.8.

Let us use I, D, G, N, and P to represent the events of stock price increase, stock

price decrease, good economic conditions, normal economic conditions, and poor

economic conditions. Then, from Table 5.8, we can calculate the marginal

probabilities for the stock price movement of Linden, Inc.:

PðIÞ ¼ PðG \ IÞ þ PðN \ IÞ þ PðP \ IÞ
¼ :28þ :16þ :05

¼ :49

Table 5.8 Probabilities for

stock prices and economic

conditions Economic condition

Stock price

Increase Decrease Total

Good .28 .06 .34.

Normal .16 .15 .31

Poor .05 .30 .35

Totals .49 .51 1.00
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PðDÞ ¼ PðG \ DÞ þ PðN \ DÞ þ PðP \ DÞ
¼ :06þ :15þ :30

¼ :51

This outcome implies there is a 49 % chance that the stock price will increase

and a 51 % chance that the stock price will decrease.

5.6 Independent, Dependent, and Mutually Exclusive Events

Two events are referred to as independent events when the probability of one event
is not affected by the occurrence of the other. For example, suppose a fair coin is

flipped twice. The probability of getting a head on the second toss is not affected by

having gotten a head or a tail on the first trial; thus, the two trials are independent.

However, many events are not independent. For example, the probability that a

child in a less developed country will receive an advanced education is affected by

his or her family’s economic status. If the family is well-off, the child probably will

go on to higher education. Otherwise, the child may have to give up the opportunity

for education to help support the family. Therefore, the event of the child’s higher

education depends on the event of his or her family’s financial condition.

Suppose a fair coin is tossed once with the probability of 1/2 of obtaining a tail

(event A). Let event B be the event of tossing the coin a second time and getting a

tail. What is the probability of event B, given event A (one tail)? Or, in symbols,

P(B | A)?
We observe that the occurrence of the second tail is not influenced by (is

independent of) the occurrence of the first tail. In such a case, we say event B is

statistically independent of event A. Here, P(B|A) ¼ P(B) ¼ .5, because the occur-

rence of A has no influence on B.
For independent events, then,

PðA jBÞ ¼ PðAÞ (5.17)

PðB jAÞ ¼ PðBÞ

PðA \ BÞ ¼ PðB \ AÞ ¼ PðBÞPðAÞ (5.18)

Equation 5.18 is a special case of Eq. 5.16. From Eqs. 5.17 and 5.18, we know

that the joint probability of two independent events is equal to the product of the

marginal probabilities of these two events.

Let A and B be independent such that we know P(A \ B) ¼ P(A)P(B). Under
what circumstances could A and B also be mutually exclusive? If they were, P(A\B)
would be equal to 0, which implies either P(A) ¼ 0 or P(B) ¼ 0. Thus, independent

events with positive marginal probabilities can never be mutually exclusive.
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For example, the GMAT score of student A is independent of the score of student B.

The events {A scores � 700} and {B scores � 650} are assumed independent, but

they are not mutually exclusive, and two mutually exclusive events cannot be

independent.

In sum, a pair of events are mutually exclusive if they cannot jointly occur—that

is, if the probability of their intersection is zero.

5.7 Bayes’ Theorem

On the basis of Eq. 5.13, we can incorporate additional information into probability

analysis. From Eqs. 5.13 and 5.15, we define the conditional probability P(B|A) as

PðB jAÞ ¼ PðA \ BÞ
PðAÞ ¼ PðAjBÞPðBÞ

PðAÞ (5.19)

Equation 5.19 represents Bayes’ theorem, which can be used to incorporate some

extra information into the analysis.3 The most interesting interpretation of Bayes’

theorem is in terms of subjective probability, which was discussed in Sect. 5.2.

If we are interested in the event B and form a subjective view of the probability

that B will occur, then P(B) is called the prior probability in the sense that it is

assigned prior to the observation of any empirical information. If we later acquire

the information that the event A has occurred, this may cause us to modify original

judgment about the probability of event B. Because A is known to have occurred,

the relevant probability of event B is now the conditional probability of B given A,
and it is called the posterior probability, or the revised probability, because it is

assigned after the observation of empirical evidence or additional information.

Bayes’ theorem provides a method for incorporating new information into our

probability beliefs. Formally, we use Bayes’ theorem to update a prior probability

to a posterior probability when additional information about event A becomes

available. We do this by multiplying the prior probability by the adjustment factor

P(A | B)/P(A).
For example, financial analysts have observed stock prices declining when

interest rates increase. They have also observed stock prices moving randomly.

If we collect historical data, we can obtain estimates of the probability of the

event “a stock price increase and a decline in interest rates.” The probability of a fall

in stock prices is what we are most interested in. This probability is called the prior
probability, because it is based on historical data and our own subjective judgment.

If we see the interest rate rise (this is additional information), using Bayes’ theorem
gives us a better estimate of the probability that stock prices will fall. This

forecasting method is described in Fig. 5.13.

3 This theorem is attributed to an English clergyman, the Reverend Thomas Bayes (1702–1761).
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To use Eq. 5.19 in the analysis, let

ID ¼ event that interest rates decline

IU ¼ event that interest rates increase

SD ¼ event that stock prices fall

SU ¼ event that stock prices increase

Then, the conditional probability PðSDjIUÞ can be defined as

PðSDjIUÞ ¼ PðSD \ IUÞ
PðIUÞ ¼ PðSDÞPðIUjSDÞ

PðIUÞ (5.19a)

Table 5.9 summarizes the historical data derived from 2,000 observations of

changes in stock price.

From Table 5.9, we can easily estimate PðSDjIUÞ as

PðSDjIUÞ ¼ PðSDÞPðIUjSDÞ
PðIUÞ ¼ ð950=2; 000Þð850=950Þ

1; 000=2; 000

¼ 850

1; 000
¼ :85 ðrevised probabilityÞ

Fig. 5.13 Flow chart of stock

price forecasting

Table 5.9 Frequency

distribution of changes in

stock price

Interest rate

Unit: frequencyStock price Decline Increase

Decline 100 850 950

Increase 900 150 1,050

1,000 1,000 2,000

184 5 Probability Concepts and Their Analysis



Using the new information that the interest rate will rise helps us predict a fall in

stock prices more accurately. In other words, we are better able to predict the

decline in the stock price.

Comparing P(SD|IU) with P(SD) reveals the importance of Bayes’ theorem,

defined in Eq. 5.19 or Eq. 5.19a. Using Bayes’ theorem enables us to make better

decisions by incorporating additional information into our probability estimates.

Here, we have discussed using Bayes’ theorem for just one basic event. The use

of Bayes’ theorem for two or more than two events, and the application of this

technique in decision making, will be discussed in Chap. 21.

5.8 Business Applications

Application 5.1 Determination of the Commercial Lending Rate. In this exam-

ple, we show a process for estimating the lending rate a financial institution would

extend to a firm (or the lending rate that a borrower would feel is reasonable) on the

basis of economic, industry, and firm-specific factors.

In standard banking practice, the lending rate depends in part on the interest rate

on government Treasury bills.4 Therefore, in order to determine the commercial

lending rate, we need a forecast of the Treasury bill rate (Rƒ). This rate will be

estimated for three types of economic conditions: boom, normal, and recession.

The second component of the lending rate, (Rp), is the risk premium.5 It is

possible to calculate Rp for each firm by examining the change in earnings before
interest and taxes (EBIT) under the three types of economic conditions. The EBIT

is used as an indicator of the ability of the borrower to repay borrowed funds.

Table 5.10 lists all probability information we need to determine the commercial

lending rate for Briarworth Company. Column (4) gives the marginal probability,

and the probabilities listed in columns (1), (2), and (3) are the joint probabilities.

The probabilities shown in Table 5.10 can also be presented in terms of a tree

diagram. Figure 5.14 shows that there are a total of nine possible joint probabilities

under the three different economic conditions and the three possible EBIT forecasts.

We can use Table 5.10 and Eq. 5.13 to calculate the conditional probabilities of

EBIT level given the economic condition. For example, the probability that

Briarworth Company has middle EBIT, given that the economic condition is

boom, is

4 The Treasury bill rate was discussed in Chaps. 2 and 3.
5 The risk premium is the portion of the interest rate that is above the Treasury bill rate. This

additional amount of interest is paid to compensate the lender for the risk it runs in making the

loan.
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Pðmiddle EBITÞjboomÞ ¼ Pðboom \middle EBITÞ
PðboomÞ

¼ :075

:25
¼ :30

The conditional probabilities for EBIT level given economic condition are

displayed in Table 5.11.

According to Sect. 5.6, a pair of events are independent if and only if their joint

probability is the product of their marginal probabilities. In our example, for the

events “normal” (normal economic condition) and “middle EBIT,” we have, from

Table 5.10,

Pðnormal \middle EBITÞ ¼ :15

and

Pðmiddle EBITÞPðnormalÞ ¼ ð:275Þð:50Þ ¼ :1375

Table 5.10 Probabilities of the lending rate determination for Briarworth Company

Economic condition

Level of EBIT

Totals (4)High (1) Middle (2) Low (3)

Boom .15 .075 .025 .25

Normal .20 .15 .15 .50

Poor .025 .05 .175 .25

Totals .375 .275 .350 1.00

Fig. 5.14 Tree diagram of events for lending rate forecasting
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The product of the marginal probabilities is .1375, which differs from the joint

probability .15. Hence, the two events are not statistically independent.

In order to calculate the potential lending rate for Briarworth Company, the loan

officer assumes that the predicted Treasury bill rates for boom, normal, and poor

economic conditions are 12 %, 10 %, and 8 %, respectively. In addition, the loan

officer assumes that the risk premiums for the three different EBIT levels are 3 %,

5 %, and 8 %. Using all this information, the loan officer constructs a worksheet

such as Table 5.12.

Table 5.12 shows that during a boom, the Treasury bill rate is assumed to be

12 % but the risk premium can take on different values. There is a 60 % chance that

it will be 3.0 %, a 30 % chance it will be 5.0 %, and a 10 % chance it will be 8.0 %.

According to the joint probability concepts we discussed in Sect. 5.5, the products

of the conditional probability associated with Rp and the marginal probability

associated with Rf are the joint probabilities of occurrence for the lending rates

computed from these parameters. Therefore, during a boom, there is a 10 % chance

that a firm will be faced with a 15 % lending rate, a 7.5 % chance of a 17 % rate, and

a 7.5 % chance of a 20 % rate. This process also applies for the other conditions:

normal (Rf ¼ 10 %) and recession (Rf ¼ 8 %).

From Table 5.12, the loan officer for Briarworth Company can estimate the

potential lending rates and their probabilities as follows:

Table 5.11 Conditional

probabilities of EBIT levels,

given economic condition Economic condition

EBIT level

High Middle Low

Boom .60 .30 .10

Normal .40 .30 .30

Poor .10 .20 .70

Table 5.12 Worksheet for alternative lending rate estimates for Briarworth Company

(B) (D) (B � D) (A + C)
Economic (A) Marginal (C) Conditional Joint Lending

Condition Rf Probability Rp Probability Probability Rate

Boom 12 % .25 3.0 % .60 .15 15 %

5.0 .30 .075 17

8.0 .10 .025 20

Normal 10 % .50 3.0 % .40 .200 13 %

5.0 .30 .150 15

8.0 .30 .150 18

Poor 8 % .25 3.0 % .10 .025 11 %

5.0 .20 .05 13

8.0 .70 .175 16
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Potential lending rate (xi), % Probability (Pi), %

20 7.5

18 15.0

17 7.5

16 7.5

15 25.0

13 27.5

11 10.0

100.0 %

To calculate the estimated average lending rate, we generalized the simple

arithmetic average indicated in Eq. 4.2 in Chap. 4 as6

�x ¼
XN
i¼1

Pixi (5.20)

where
PN
i¼1

Pi ¼ 1. If P1 and P2 ¼ . . . ¼ PN ¼ 1
N , then Eq. 5.20 reduces to Eq. 4.1.

Substituting the information xi and Pi into Eq. 5.20 yields the estimated average

lending rate:

�x ¼ ð:20Þð:075Þ þ ð:18Þð:15Þ þ ð:17Þð:075Þ þ ð:16Þð:075Þ
þ ð:15Þð:25Þ þ ð:13Þð:275Þ þ ð:11Þð:10Þ

¼ 15:1%

The loan officer can use this estimated average lending rate as a guideline in

determining the lending rate. The variance associated with this lending rate and

other related analyses will be explored in Example 6.8 and Application 7.4.

Application 5.2 Analysis of a Personnel Data File. The personnel office of the

J. C. Francis Company has files for 21,600 employees. These employees are broken

down by age and sex in Table 5.13.

If one file is selected at random from the personnel office, what is the probability

that it represents:

1. An employee who is 40 years old or younger?

2. A female employee who is 40 years old or younger?

3. Either a male employee or any employee over 40?

4. A male employee over 40?

5. A female employee or any employee 30 years old or older?

6We treat x as a measure of central tendency, as discussed in the last chapter. Alternatively, it can

be treated as the expected value of a discrete random variable (lending rate), which will be

discussed in Sect. 6.3.
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We shall denote the various events involved by A ¼ under 30, B ¼ 30–40,

C ¼ over 40, M ¼ male, and F ¼ female:

1. P(40 or under) ¼ P(A [ B)

¼ 5; 500

21; 600
þ 8; 350

21; 600
¼ :6412

2. P(female 40 or under) ¼ P(A \ F) + P(B \ F)

¼ 3; 000þ 4; 550

21; 600
¼ :3495

3. P(male or over 40) ¼ P(M [ C) ¼ P(M) + P(C) – P(M \ C)

¼ 11; 200þ 7; 750� 4; 900

21; 600
¼ :6505

4. P (male and over 40) ¼ P(M \ C) ¼ 4; 900
21; 600

¼ .2269

5. P(female or 30 or older)¼ P[F [ (B [ C)]¼ P(F) + P(B [ C) – P[F \ (B\ C)]

¼ 10; 400þ 8; 350þ 7; 750� ð4; 550þ 2; 850Þ
21; 600

¼ :8843

Application 5.3 Soda Purchase Survey. Mr. Mac Francis, manager of a Pathmark

Supermarket in central New Jersey, would like to determine:

1. The percentage of Kyle City families that did not purchase any soda during July

of 1991

2. The percentage of Kyle City families that purchased either diet or regular soda

(or both) during July of 1991

3. The percentage of Kyle City families that purchased only diet soda (no regular

soda) during July of 1991

4. The percentage of Kyle City families that purchased only regular soda (no diet

soda) during July of 1991

5. Whether diet soda purchases were related to regular soda purchases during the

observed month, July of 1991

Table 5.13 Age and sex

classification for J. C. Francis

Company

Sex

Female (F) Male (M) Total

Under 30 (A) 3,000 2,500 5,500

30–40(B) 4,550 3,800 8,350

Over 40(C) 2,850 4,900 7,750

Total 10,400 11,200 21,600
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Mr. Francis has asked you to conduct a study to answer these questions. He has

provided you with sufficient Kyle City families for you to draw a random sample of

200. You conduct the survey and present Mr. Francis with Table 5.14, which

summarizes the data you have accumulated.

The data presented in Table 5.14 make it possible to answer all of Mr. Francis’s

questions:

1. P[(DSODA ¼ 0) \ (RSODA ¼ 0)] 53
200

¼ .265

Hence, it is inferred that 26.5 % of Kyle City families did not purchase soda

during July of 1991. Note that (DSODA ¼ 0) is an event. It does not imply that

P(DSODA) ¼ 0.

2. P[(DSODA > 0) [ (RSODA > 0)] ¼ P(DSODA > 0) + P(RSODA > 0)

� P[(DSODA > 0) \ (RSODA > 0)] ¼ 85þ 101� 39
200

¼.735

Consequently, it is inferred that 73.5 % of Kyle City families purchased either

diet or regular soda (or both) during July of 1991.

3. P[(DSODA > 0) \ (RSODA ¼ 0)] ¼ 46
200

¼ .23

Hence, it is inferred that 23 % of Kyle City families purchased only diet soda (no

regular soda) during July of 1991.

4. P[(DSODA ¼ 0) \ (RSODA > 0)] ¼ 62
200

¼ .31

Consequently, it is inferred that 31 % of Kyle City families purchased only

regular soda (no diet soda) during July of 1991.

5. Last, we come to the joint probability of (DSODA � 1) and (RSODA � 1):

P½ðDSODA � 1Þ \ ðRSODA � 1Þ� ¼ 39

200
¼ :195

PðDSODA � 1Þ � PðRSODA � 1Þ ¼ 85

200
� 101

200
¼ :2146

The fact that .195 6¼ .2146 implies that the joint probability is not equal to the

product of two marginal probabilities. Hence, in accordance with the definition

of dependence given in Sect. 5.6, it can be concluded that the purchase of diet

Table 5.14 Summary table of diet soda and regular soda purchases for Kyle City families during

July of 1991

Purchases of six-packs of regular

soda (RSODA)

Purchases of six-packs of diet soda (DSODA)

0 1 or more Total

0 53 46 99

1 or more 62 39 101

Total 115 85 200
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soda was statistically dependent on the purchase of regular soda (and vice versa)

during July of 1991.

Application 5.4 Ages and Years of Teaching Experience. Table 5.15 presents

the age and number of years of teaching experience of 15 marketing professors.

Figure 5.15 is the MINITAB printout of a Venn diagram of set A of marketing

professors between 33 and 43 years of age, inclusive, and set B of marketing

professors with more than 5 years of teaching experience.

From the Venn diagram, we can calculate the following probabilities:

1. PðAÞ ¼ 11
15

¼ :73

2. PðBÞ ¼ 7
15

¼ :47

3. PðA \ BÞ ¼ 6
15

¼ :40

4. PðA [ BÞ ¼ 12

15

¼ PðAÞ þ PðBÞ � PðA \ BÞ
¼ :73þ :47� :4

¼ :80

5. PðAjBÞ ¼ PðA \ BÞ
PðBÞ ¼

6
15
7
15

¼ 6
7
¼ :857

Table 5.15 Age and years of

teaching experience of 15

marketing professors
Person Age

Years of teaching

experience

1 38 5

2 33 4

3 40 6

4 43 7

5 45 10

6 38 6

7 36 7

8 29 3

9 35 5

10 28 3

11 30 2

12 42 5

13 41 6

14 37 1

15 42 7
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MTB > NAME Cl ‘AGE’ C2 ‘EXP’
MTB > READ ‘AGE’  ‘EXP’
DATA> 38 5
DATA> 33 4
DATA> 40 6
DATA> 43 7
DATA> 45 10
DATA> 38 6
DATA> 36 7
DATA> 29 3
DATA> 35 5
DATA> 28 3
DATA> 30 2
DATA> 42 5
DATA> 41 6
DATA> 37 1
DATA> 42 7
DATA> END
15 rows read. 
MTB > PRINT ‘AGE’ ‘EXP’

Data Display
Row    AGE    EXP
 1 38 5
 2 33 4
 3 40 6
 4 43 7
 5 45 10
 6 38 6
 7 36 7
 8 29 3
 9 35 5
10 28 3
11 30 2
12 42 5
13 41 6
14 37 1
15 42 7
MTB > GSTD

* NOTE  * Standard Graphics are enabled.
  Professional Graphics are disabled.
  Use the GPRO command to enable Professional Graphics. 

MTB > PLOT ‘EXP’  ‘AGE’

Fig. 5.15 MINITAB printout of Venn diagram for age and years of teaching experience
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5.9 Summary

In this chapter, we developed some of the basic tools of probability. The concept of

probability enables us to assess the probabilities of various sample outcomes, given

a specific population structure. In addition to discussing the basic concepts of

probability, we explored more advanced topics such as conditional probability,

joint probability, and marginal probability. We also showed how it is possible to use

additional information to update probabilities by applying Bayes’ theorem.

In Chap. 6, we extend the topics discussed in this chapter by introducing the

concepts of discrete random variables and probability distributions. And in Chaps. 7

and 9, we extend these concepts to the case of continuous random variables.

Questions and Problems

1. Two cards are drawn from an ordinary deck of shuffled cards.

(a) What is the probability that they are both queens if the first card is replaced?

(b) What is the probability that they are both queens if the first card is not

replaced?

2. Find the probability of a 5 turning up at least once in 2 tosses of a fair die.

3. Find the probability of rolling a 1 on the first roll of a die, a 2 on the second, and

a 3 on the third.

4. A bag consists of ten balls, three white and seven red.

(a) What is the probability of drawing a white ball?

(b) What is the probability of drawing a white ball on the first draw and a red

ball on the second draw when the first ball is replaced?

(c) How would your answer to part (b) change if there were no replacement?

5. You are given the sample space S ¼ {a, b, c, d, e} and the events A ¼ {a, c, e}
and B ¼ {b, d, e}.

(a) List the events A [ B; A \ B; �A; �B; �A \ B; and ðA [ BÞ.
(b) Draw a Venn diagram for A \ B.

6. Suppose you are flipping a fair coin.

(a) Find the probability of flipping four heads in a row.

(b) Find the probability of flipping H T H T H.

(c) Find the probability of flipping five heads in six flips.

7. What is the probability that at least two students in a class of 20 students will

have the same birthday? Assume that there are no twins among the students and

that all of the 365 birthdays are equally likely.

8. What is the probability of drawing three spades in a row from a standard deck

of cards without replacement?
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9. Roll a pair of dice ten times and then calculate the mean and standard deviation

for these rolls.

(a) What is the largest possible mean?

(b) What is the smallest possible mean?

(c) What is the smallest possible standard deviation?

10. Suppose a bag contains 12 balls distributed as follows: five red dotted balls, two

red striped balls, one gray dotted ball, and four gray striped balls.

(a) Suppose you draw a red ball from the bag. What is the probability that it is

striped?

(b) Suppose you draw a gray ball. What is the probability that it is dotted?

(c) Suppose you draw a dotted ball. What is the probability that it is red?

11. Determine the probability of betting on a winning number in a game of roulette.

The numbers on the wheel are 0, 00, and 1 through 36. Each number is as likely

as any other to become a winning number.

12. The probability that a car dealer will make a sale when he meets a prospective

customer is 20 %. If he meets three customers at random, what is the probabil-

ity that all three customers will purchase a car?

13. Find the following joint probability: the probability that a sale will result in a sales

commission, given that 75% of the sales representatives receive a commission on

their sales and that 80 % of the company’s sales are made by sales reps.

14. Roll a die 25 times and construct a table showing the relative frequency of each

of the 6 possible numbers.

15. Calculate the probability for scores less than 600.

SAT scores for Fiesta University

SAT Number of students

750–800 40

700–750 60

650–700 100

600–650 250

550–600 375

500–550 575

450–500 400

<450 100

16. In which of the following sets are the two events independent? In which are

they mutually exclusive? In which are they neither?

(a) The Detroit Pistons win the NBA champion ship and the Oakland A’s win

the World Series.

(b) The Boston Red Sox win the pennant and the Boston Red Sox sell more

than two million tickets in the same season.

(c) Both the New York Mets and the New York Yankees win the World Series

in 1995.
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(d) Both the New York Mets and the New York Yankees win the pennant in

1995.

17. A bag contains three balls: a black one, a white one, and a red one. A magician

takes the balls out one by one. Draw an outcome tree. What is the probability of

drawing the balls in the order of red-white-black?

18. Suppose that P(E1) ¼ 0.3 and P(E2) ¼ 0.4. Obtain PðE1 [ E2Þ, P(E1jE2), and

P(E2 jEl), given that PðE1 \ E2Þ¼ .1.

19. A baseball player has a lifetime batting average of .3. During a game, he has

5 at bats. A student of statistics argues that his chance of going 5 for 5 is (.3)5.

Do you agree? What assumption does the student make to come up with this

answer?

20. The sales department wants to send two sales representatives on a business trip.

There are five women and five men in the department. If the sales manager

randomly selects two people, what is the probability that one woman and one

man will be picked?

21. A survey of 200 students yields the following data:

Own TV Do not own TV

Own computer 50 30

Do not own computer 80 40

(a) What is the probability of drawing at random a student who owns both a

computer and a TV?

(b) What is the probability of drawing at random a student who owns only a

computer?

(c) In part (b), suppose we draw a student who owns a computer. What is the

probability that this student also owns a TV?

(d) What is the marginal probability of owning a computer?

22. In question 21, if we draw two students at random without replacement, what is

the probability of our getting a student who owns both and a student who owns

neither?

23. A cereal company runs a certain advertisement in three media: newspaper,

radio, and TV. Of the customers surveyed, 40 saw the advertisement on TV, 40

heard it on the radio, 30 read it in the newspaper, 20 saw it both in the

newspaper and on TV, 20 know it both from TV and radio, 20 know it both

from newspaper and radio, and 10 know it from all three media. How many

customers were surveyed? (Hint: Use a Venn diagram.)

24. A city company has 300 employees. Among these employees, two out of every

three take public transportation to work, one out of every two owns a car, and

one out of every three owns a car but takes public transportation to work. How

many employees do not own a car and take public transportation to work?

25. Draw 2 cards from a deck of cards without replacement. What is the probability

of getting a diamond on the first draw and a club on the second? What is the
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probability of drawing 2 cards and getting a diamond and a club regardless of

order?

26. What is the probability of getting the same outcome in 2 rolls of a die? What is

the probability that the sum of 2 outcomes is 7?

27. Of the light bulbs delivered on May 25, 400 are produced in the morning shift,

300 in the evening shift, and 300 in the night shift. Say we pick a light bulb at

random.

(a) What is the probability that we have a light bulb produced in the night shift?

(b) What is the probability that we have a light bulb produced in either the

morning shift or the night shift?

28. In question 27, assume that 1
10

of the light bulbs produced in the morning shift,
1
10

of the light bulbs produced in the evening shift, and 1
5
of the light bulbs

produced in the night shift are detective. Say we pick a light bulb at random.

(a) What is the probability that the light bulb is defective?

(b) What is the chance that the light bulb is defective and was produced in the

night shift?

(c) Suppose we get a defective light bulb. What is the chance that this light

bulb was produced in the night shift?

29. A sports magazine wants to learn something about its subscribers. The

subscribers are classified as teenagers or older people and as being in school

or holding a job. The magazine sends out a questionnaire to its readers and

obtains the following results:

40 % are older than 20.

60 % are teenagers.

40 % of the teenagers who subscribe are in school.

40 % of the subscribers hold a job.

What is the possibility that a subscriber is older than 20 and holds a job?

30. The business majors at Metropolitan University can be broken down as

follows:

Major Male Female Total

Accounting 200 400 600

Finance 400 250 650

Marketing 200 250 450

Management 200 100 300

Total 1,000 1,000 2,000

(a) We have randomly selected four students to attend a regional conference.

What is the probability that we have a representative from each major?

(b) We have randomly selected four students to attend a regional conference.

What is the probability that we have a female student from each department?
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(c) The dean has randomly selected a student from each department to attend a

regional conference. What is the probability that all four students selected

are females?

31. A survey at Metropolitan College shows that among 750 economics majors,

every student has taken at least one course in either economics or statistics. We

also know that:

450 students have taken statistics.

450 have taken microeconomics.

450 have taken macroeconomics.

250 have taken both micro- and macroeconomics.

200 have taken both microeconomics and statistics.

250 have taken both macroeconomics and statistics.

(a) How many students have taken all three courses?

(b) What is the probability that a student who we know has taken a course in

microeconomics has also taken statistics?

32. A local factory has two shifts: day shift and night shift. The day shift produces
2
3
of the total product. Of the day shift product, 1 % are defective. Of the night

shift product, 2 % are defective. If we randomly select one product, what is the

chance that it was produced during the day shift? If the selected product is

defective, what is the probability that it was produced during the night shift?

33. The following picture helps you obtain the probability that events A, B, and C,
happen jointly. Write down the formula for obtaining PðA \ B \ CÞ.

A B

C

34. A hospital found that the probability of a power failure in a certain time period

is .00001. To guarantee the functioning of the hospital, the hospital installed a

backup system that has a probability of .005 of breaking down. The two power

systems operate independently. What is the probability that the hospital will

completely stop functioning?

35. An insurance agent talks to three customers each day. Her probability of

making a sale in the first meeting with a customer is .2. When she gets the

second meeting with the same customer, the probability of making a sale
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increases to .8. In the past 2 days, this agent has talked to three customers twice.

What is the probability that she made no sales?

36. Three different manuals were used to teach students how to type. Each manual

was used by 1
3
of the students. The results show that 30 % of the students using

manual A, 20 % of the students using manual B, and 10 % of the students using

manual C can pass a typing test. We have found a student who passed the test.

What is the probability that this student used manual A?

37. Fifty percent of the economists in the country are conservatives. The other

50 % are liberals. Thirty percent of the conservative economists and 20 % of the

liberal economists believe that we will have a recession. We have found an

economist who thinks we will see a recession in the next year.

What is the probability that he or she is a conservative economist?

38. A training program is effective for 80 % of the students whose mathematics

background is strong, but it is effective for only 60 % whose math background

is not good. Assume that only 60 % of a group of students are well trained in

mathematics. What is the chance that the training program will be effective for

this group of students?

39. A training program is effective for 80 % of the students who are strongly

motivated, but it is effective on only 60 % of the students who are not strongly

motivated. Assume that only 60 % of the students are strongly motivated. We

have selected a student who has benefited from the program. What is the

probability that this student was strongly motivated?

40. Three percent of the products produced by the new assembly line are defective.

Five percent of the products produced by the old machine are defective. The

new machine produced 70 % of the total product. The old machine produced

30 % of the total product. We randomly draw a product and discover that it is

defective. What is the probability that this defective item was produced by the

old machine?

41. Mr. Doe wants to send two employees in his company on a business trip. He has

five employees in the company. In how many different ways can he organize

the trip?

42. When playing the Megabucks Lottery, a player is supposed to pick 6 numbers

out of 48. If the lottery committee randomly picks the same 6 numbers, then the

player hits the jackpot. What is the chance that a player will hit the jackpot?

43. An advertising agency wanted to find out what kinds of readers subscribed to a

sports magazine. The agency sent out questionnaires with the magazine and

received the following result:

Blue-collar job White-collar job

Teenagers 20 30

The middle aged 30 30

Old people 30 10

(a) If we know that a reader is a blue-collar worker, what is the probability that

this reader is also an old person?
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(b) If we know that a reader is a teenager, what is the probability that this

reader is also a white-collar worker?

44. Define the following terms: event, random experiment, subset, sample space,

sample points.

45. Why is the concept of probability important to understanding statistics?

46. Explain what we mean when we say two events are independent.

47. Compare a simple event to a composite event. Give an example of each.

48. What do we mean by the union of two events? What do we mean by the

intersection of two events? Use a Venn diagram to illustrate this point.

49. Explain what we mean by mutually exclusive events.

50. Briefly define conditional probability. Give some examples of conditional

probability.

51. What is a joint probability? What is a marginal probability?

52. What is a prior probability? What is a posterior probability? Briefly explain

how Bayes’ theorem can be used to link the two.

53. What is the probability of obtaining a head in one toss of a fair coin? What is

the probability of rolling a 5 in one roll of a fair die? What is the probability of

tossing a head and rolling a 5?

54. You are dealt 4 cards from a standard 52-card deck. What is the probability that

you will be dealt all 4 aces?

55. Again, you are dealt 4 cards. The first card is a spade, the second a heart, the

third a diamond, and the fourth a club. What is the probability that you are dealt

all 4 aces?

56. Consider the roll of a 6-sided die, its faces numbered 1, 2, 3, 4, 5, and 6. Draw a

Venn diagram showing the six possible outcomes. Now draw circles showing

the following rolls:

(a) An odd number

(b) 2 or an odd number

(c) 3 or an even number

57. Again, consider the roll of a 6-sided die. Given the following events A and B,
find the intersection and the union for A and B if

(a) A ¼ {1,3, 5} and B ¼ {2,4,6}

(b) A ¼ {l,3} and B ¼ {1,3,5}

(c) A ¼ {1,2, 3} and B ¼ {2,4,5}

(d) A ¼ {1,2, 3, 4} and B ¼ {3,4,5,6}

58. You have drawn three diamonds, one spade, and one heart from a deck of cards.

If you discard the spade and the heart, what is the probability of your drawing

two cards from the remaining 47 cards to obtain a flush (five cards of the same

suit)?

59. In poker, a royal flush consists of A, K, Q, J, and ten of the same suit. What is

the probability of drawing five cards and obtaining a royal flush? What is the

probability of being dealt a royal flush in spades?
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60. Suppose there are six unrelated people in a room. What is the probability that

any two of them have the same birthday?

61. Suppose you toss a coin three times. What is the probability of tossing three

heads in a row? What is the probability of tossing three tails in a row? What is

the probability of tossing either three heads or three tails in a row?

62. An advertising executive decides that a television commercial should be shown

on two television stations. If three television stations serve the area the com-

pany wants to reach, how many possible combinations does the executive have

to choose from? If a fourth television station becomes available, how many

combinations are there now?

63. An automobile manufacturer produces cars in four different colors and offers

three different options packages. How many different combinations of color

and options package can the auto manufacturer offer?

64. A basketball player makes 75 % of his shots from the foul line. What is the

probability of this player making 10 shots in a row from the foul line? Are there

any assumptions we need to make to compute this answer?

65. Your investment advisor has a portfolio of 75 stocks: 40 high-growth stocks

and 35 high-dividend stocks. Of the 40 high-growth stocks, 25 have increased

in value over the last year, whereas 10 of the high-dividend stocks have

increased in value.

(a) If a stock is selected at random, what is the probability that the stock will be

a high-dividend stock that has increased in value?

(b) What is the probability of selecting a stock that has not increased in value?

(c) If the stock selected has increased in value, what is the probability that it is

a high-growth stock?

66. The Whiter Smile Company is about to begin selling a new toothpaste. Com-

pany planners know that the probability of the new product being profitable is

10 %. They also know from previous market research that when their test panel

likes the product, it has an 80 % chance of being profitable. Historically, panels

like 10 % of the new products. Using the Bayesian approach, find the probabil-

ity that the panel liked the product if the toothpaste is profitable.

67. Suppose you flip a fair coin once and roll a 6-sided die once. What is the

probability of tossing a tail and rolling a one?

68. Suppose you flip a coin twice and roil a die twice. What is the probability that

you will toss 1 head and 1 tail and will roll two 6’s?

69. A top amateur bowler has a 70 % chance of roiling a strike. What is the

probability that this bowler will bowl a perfect game (12 strikes in a row)?

Are there any assumptions we need to make to answer this question?

70. The Tastee Coffee Company is about to begin selling a new gourmet coffee.

Company managers know that the probability the product will be profitable is

20 %. They also know that the probability that the test panel will like the

product is 20 %. They also know from previous market research that when the

product is profitable, there is a 60 % chance that their test panel liked the

product and that when it is unprofitable, there is a 95 % chance that the panel
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did not like it. Using the Bayesian approach, find the probability that the

gourmet coffee is profitable if the test panel liked the product.

71. A real estate developer offers homes in five different colors and three different

models. How many different combinations of color and model can the real

estate developer offer?

72. Rah Rah College has a limited number of dorm rooms available to students, so

every year students participate in a lottery to determine whether they will have

school housing next year. Suppose that every year 25 % of the students do not

receive school housing. In his sophomore year, Bob Smith is one of the “losers”

in the lottery and does not receive school housing. He consoles himself by

noting that because 25 % of the students do not receive housing each year

“everyone should lose once in the 4 years of college.” He therefore figures that

he is assured of getting housing in his junior and senior years. Is Bob’s

assumption accurate?

73. A stock broker owns five suits and 12 ties. Assuming that all the suits and ties

match, determine how many different outfits (combinations) the stock broker

can wear.

74. An advertising agency suggests that a bicycle manufacturer advertises in four

of the seven bicycling magazines. How many different combinations of four

magazines can be selected?

75. A Senate committee consists of six Democrats and five Republicans. In how

many ways can a subcommittee consisting of four Democrats and four

Republicans be formed?

76. You believe you have come up with a fool-proof way to win at roulette.

Because the odds are nearly 50–50 that red will come up and nearly 50–50

that black will come up in roulette, you believe that whenever black comes up,

red will come up next, and vice versa. Do you think this is a winning strategy?

77. At the beginning of each week, a company decides how much to spend on

newspaper ads for that week. It spends either $250 or $500 each week on

newspaper ads. Assuming there is an equal probability of spending either

amount, find the probability that in a month (4 weeks), the total advertising

expenditure is greater than $1,250.

78. A car salesman meets 12 customers each week. His probability of making a sale

in the first meeting with a customer is .3. When he gets the second meeting with

the same customer, the probability of making a sale increases to .9. Over the

last 2 weeks, he talked to four customers twice. What is the probability that he

made no sales?

79. A life insurance company knows with certainty that all people will die some-

day. Does it make sense for the insurance company to use probability theory to

set its life insurance rates?

80. Consider the sample space S ¼ {A, B, C, D, E, F, G} and the following events:

I ¼ {A, C, E, G}
II ¼ {B, D, E}
III ¼ {A, B, C, D}
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IV ¼ {E, F, G}
V ¼ {B, F}
VI ¼ {B, D, E, F}

Are the following sets of events mutually exclusive, collectively exhaustive,

both, or neither?

(a) I and II
(b) III and IV
(c) I and III
(d) II and IV
(e) I and IV
(f) II and III
(g) I and V
(h) I and VI

81. State the complement of each of the following events:

(a) Drawing a spade from a full deck of cards

(b) Inflation of less than 5 % per year

(c) GNP growth of more than 4 % per year

82. The figure below is a plot of salary and experience of employees of the Endicott

Company. Answer the following questions by using a Venn diagram.

(a) The probability of experience between 3 and 5 years

(b) The probability of more than 4 years’ experience and a salary of between

$25,000 and $37,000
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83. All the students of a university are assigned ID numbers. The ID number

consists of the first three letters of a student’s last name, followed by four

numbers. How many possible different ID numbers are there?

84. Suppose there are four events A, B, C, and D. The following information is

given:

P(A) ¼ .5 P(A
S

D) ¼ .72

P(B) ¼ .15 P(A j B) ¼ .25

P(C) ¼ .20 P(A
T

C) ¼ .04

P(A
T

D) ¼ .03

(a) Compute P(D).

(b) Compute P(A j D).
(c) Compute P(A

T
B).

(d) Compute P(A
S

B).

(e) Are A and B mutually exclusive? Explain your answer.

(f) Are A and B independent? Explain your answer.

85. Assume you have applied to two different universities A and B. In the past,

30 % of students who applied to University A were accepted, while University

B accepted 45 % of the applicants. Assume events are independent of each

other.

(a) What is the probability that you will be accepted in both universities?

(b) What is the probability that you will be accepted to at least one graduate

program?

(c) What is the probability that one and only one of the universities will accept

you?

(d) What is the probability that neither university will accept you?

86. Suppose 20 % of the employees of company ABC have only a high school

diploma, 60 % have bachelor degrees, and 20 % have graduate degrees.
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Of those with only a high school diploma, 15 % hold management positions;

whereas, of those having bachelor degrees, 30 % hold management positions.

Finally, 60 % of the employees who have graduate degrees hold management

positions.

(a) What percentage of employees holds management positions?

(b) Given that a person holds a management position, what is the probability

that she/he has a graduate degree?

Appendix 1: Permutations and Combinations

In some probability problems, we encounter a finite set with n distinct elements

(objects) {ei, i ¼ 1, 2,. . ., n} in the sample space:

S ¼ fe1; e2; . . . ; eng (5.21)

If we want to know how many different ways there are of ordering these

elements, then using permutation and combination techniques is the most effective

way to proceed. For example, we know that 10 % of Wakeley Company’s accounts

receivable contain errors. If 6 are selected at random, with replacement, then we can

use permutation and combination techniques to calculate the probability that

exactly two of those selected contained errors. (The solution of this problem

appears in Example 5.10.)

Permutations
The number of distinct arrangements that can be made from n elements of S,

using r of them at a time, is denoted by nPr and is called the number of permutations
of n things taken r at a time (r � n). The number of permutations of a set of objects

represents the number of ways the objects can be ordered. To obtain the result of

nPr, we can apply the basic counting rule to the coin-tossing case. If a coin was

tossed four times, then there are four steps (tosses), and each toss has two possible

outcomes (heads and tails). The total number of outcomes in the experiment (N) is
N ¼ 2 ∙ 2 ∙ 2 ∙ 2 ¼ 16.

To generalize this type of calculation, suppose we denote the number of

outcomes in the first step of the experiment as n1, the number of outcomes in the

second step as n2, and so on, where nk denotes the number of outcomes in the last

(the kth) step. The basic counting rule states that the total number of outcomes (N)
equals the product of the numbers of outcomes in all steps:

N ¼ n1 � n2 � n3 � � � � � nk (5.22)

Suppose we have some number r of objects that are to be placed in order, and

suppose each object can be used only once. How many different sequences are

possible? This problem is similar to that defined in Eq. 5.22. It can readily be shown
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that n1 ¼ r, n2 ¼ r – 1, . . ., nr ¼ 1. Hence, the number of possible orderings of r
objects is

r! ¼ ðrÞðr � 1Þ � � � ð2Þð1Þ (5.23)

Equation 5.23 represents a factorial product.

Suppose now that we have n objects from which r are to be selected. The number

of ways in which it is possible to select the r objects can be determined from the

following product:

n � ðn� 1Þ � ðn� 2Þ � � � � � ðn� r þ 1Þ

where

n ¼ number of choice for the first object

n – 1 ¼ number of choice for the second object

n – 2 ¼ number of choice for the third object

n – r + 1 ¼ number of choice for the (n – r + 1)th object

Thus, the permutations nPr can be defined as

nPr ¼ nðn� 1Þ � � � ðn� r þ 1Þ
¼ n!

ðn� rÞ! ð5:24Þ

For example, say we want to know in how many arrangements we can assign

four students to three seats. We can put any of the four students in the first seat;

there are four possibilities here. Then, we can put any of the remaining three in the

second seat. Finally, we must choose between the remaining two for the third seat.

Thus, 4P3 ¼ (4)(3)(2) ¼ 24. This example illustrates that the “order,” or arrange-

ment, is important for a permutation.

Example 5.9 Permutations of the Letters A, B, and C. We are given the three letters

A, B, and C. To determine the number of possible arrangements, note that we have

three ways to select the first letter. Once the first letter has been selected, there are

two ways to select the second letter from those that remain. There is only one way to

select the third letter. Of course, no letter can be selected more than once in any

arrangement. Using Eq. 5.22, we find that the total number of ways to make the

selection (i.e., to arrange the letters in order) is

3! ¼ 3 � 2 � 1 ¼ 6

Figure 5.16 is a tree diagram showing six possible arrangements of the three

letters. Each arrangement is a branch of the tree.

Combinations
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The number of permutations of a set of objects represents the number of ways

the object can be ordered. Suppose we are interested in the number of different

ways in which r objects can be selected from n, but we are not concerned with the

order. Then, the number of possible selections is called the number of combinations

and is denoted by n
r

� �
. It can be shown that n

r

� �
and nPr are related by formula

r!
n
r

� �
¼ nPr ¼ n!

ðn� rÞ!

Therefore,

n
r

� �
¼ n!

r!ðn� rÞ! (5.25)

For example, if n ¼ 5 and r ¼ 3, then

n
r

� �
¼ 5!

3!ð5� 3Þ! ¼
5 � 4 � 3 � 2 � 1
ð3 � 2 � 1Þð2 � 1Þ ¼ 10

Permutations and combinations can be used to simplify probability expressions

and facilitate their evaluation.

Example 5.10 Errors of Accounts Receivable. Suppose 10 % of Wakeley

Company’s accounts receivable are known to contain errors. If six accounts receiv-

able are selected at random, with replacement, what is the probability that:

1. None of those selected contains an error?

2. Exactly two of those selected contain errors?

3. At most two of those selected contain errors?

4. At least two of those selected contain errors?

Fig. 5.16 Tree diagram: permutations of the letters A, B, and C
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Solutions

1. P(no errors) ¼ (9/10)6 � .531

2. We consider first the probability that the first two accounts receivable chosen

contain errors and the remaining four do not. This is given by

1

10
� 1
10

� 9
10

� 9
10

� 9
10

� 9
10

¼ 1

10

� �2
9

10

� �4

But there are 6
2
¼ 6

4
combinations of the accounts with errors and four without.

Each of these arrangements occurs with the probability

1

10

� �2
� 9

10

� �4

Thus, by using Eq. 5.25, we obtain

Pðexactly two errorsÞ ¼ 6

2

� �
ð1=10Þ2ð9=10Þ4

¼ 6!

2!4!
� ð:1Þ2ð:9Þ4

¼ ð15Þð:0066Þ
¼ :098

3. By repeatedly employing the binomial formula as discussed in Part 2, we obtain

Pðatmost 2Þ ¼ Pðexactly 2Þ þ Pðexactly 1Þ þ Pð0Þ

¼ 6

2

� �
ð1=10Þð9=10Þ4 þ 6

1

� �
ð1=10Þð1=9Þ5 þ 6

0

� �
ð9=10Þ6

¼ :098þ :354þ :531

¼ :984

4. P(at least 2) ¼ P(exactly2) þ P(more than 2)

¼ .098 þ [1 �P(at most 2)]

¼ .098 þ 1.000 � .984 ¼ .114

Of course, this problem can also be solved by direct computation similar to the

method used in Part 3.

Example 5.11 The Birthday Problem. To compute probabilities, we often need to

understand the concept of permutations and combinations. The “birthday problem”

is a popular example of probability based on permutations. In the birthday problem,

we are interested in the probability that at least two people in a given room have the
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same birthday. As we increase the number of people in the room, the number of

possible combinations of people increases. With only two people in a room, there is

only one possibility for a match. With three people (A, B, and C) in a room, there

are three possible matches: A with B, A with C, and B with C. With four people in a

room there are six possible matches and so on.

What is the probability that in a class of m ¼ 50 students, at least two students

have the same birthday? To solve this, we assume that there are not twins among the

m people in the class and that each of the 365 possible birthdays is equally likely.

We therefore assume that anyone born on February 29 (leap year) will consider her

or his birthday to be March 1 to make the problem manageable.

On the basis of these assumptions, we can see that there are 365 possible

birthdays for each of the m people. Therefore, the sample space contains 365m

outcomes, all of which are equally probable. Now we proceed as though we were

interested in the probability that no two people have the same birthday. We divide

the number of permutations by the total number of outcomes. Letting B represent

the event of m students having different birthdays is precisely the same as asking in

how many ways m birthdays can be selected from 365 possible birthdays and

arranged in order. This is just the number of permutations, 365Pm. Then,

Pð �BÞ ¼ 365Pm

365m

is the probability that of our m people, no two have the same birthday. This is the

complement of event B, at least two people having the same birthday.

Using Eqs. 5.11 and 5.24, we find that the probability P that out of m students at

least two people have the same birthday is

PðBÞ ¼ 1� 365Pm

365m
¼ 1� 365!

ð365� mÞ!365m (5.26)

The following table shows the probability (P) for different values of m. We can

see that with only 50 students in a class, there is a 97 % probability that two or more

students will have the same birthday.

m P

10 .117

20 .411

30 .706

40 .891

50 .970

100 .9999997

Outcome Trees and Probabilities
The probability of an outcome is often much more difficult to calculate than that

of the outcome of rolling a die once. For example, consider a biased coin that has a

1/3 probability of coming up heads and a 2/3 probability of coming up tails. If we
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flip this biased coin four times and list the possible outcomes toss by toss, we obtain

the results shown in Fig. 5.17, which make up an outcome tree.
Let’s consider the possible outcomes listed in the fifth column of Fig. 5.17.

There are 16 distinct possible outcomes, which can be represented as

fe1; e2; e3; . . . ; e16g

where e1 ¼ (HHHH), e2 ¼ (HHHT), . . ., el5 ¼ (TTTH), and e16 ¼ (TTTT). Using

the relative frequency concept of probability as indicated in Eq. 5.2 in the text, how

do we find the probability of, for example, e1 ¼ (HHHH)? If the probability of an

individual outcome is independent, we can find P(e1) by multiplying together the

probabilities of all outcomes. An event is said to be independent if its outcome does

not depend on past outcomes in this case. For example, from our coin-tossing

Fig. 5.17 An outcome tree for four tosses of a biased coin
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experiment, the probability of tossing a head is always 1/3, regardless of the

previous toss. So the probability of tossing two heads in a row is the probability

of tossing a head on the first toss multiplied by the probability of tossing a head on

the second toss. Thus, the probability of getting four heads is

1

3
� 1
3
� 1
3
� 1
3
¼ 1

81

and the probability of getting two heads first and two tails later is

1

3
� 1
3
� 2
3
� 2
3
¼ 4

81

From Fig. 5.17, we can calculate the probability of the event consisting of three

heads and one tail as

2

81
þ 2

81
þ 2

81
þ 2

81
¼ 8

81

Alternatively, this probability can be calculated as follows:

n

r

 !
ðpÞ0ð1� pÞn�r ¼ 4

3

 !
1

3

� �3
2

3

� �
¼ 4!

3!1!

2

81

� �
¼ 8

81
(5.27)

Equation 5.27 represents a binomial combination formula for calculating the

probability. This formula was discussed in Example 5.10. The concept will be used

in developing binomial distribution in the next chapter.
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6.1 Introduction

In Chaps. 2, 3, and 4, we explored descriptive statistical measures, and we exam-

ined probability concepts and techniques in Chap. 5. Here we will build on this

foundation as we establish the definitions of discrete and continuous random

variables and discuss important discrete probability distributions in terms of

specific numerical outcomes.

The binomial distribution, hypergeometric distribution, Poisson distribution, and

joint probability functions are discussed in detail in this chapter. We also explore

the Poisson approximation to the binomial distribution and examine joint proba-

bility functions and distributions. Finally, we investigate expected value and

variance of the sum of both uncorrelated and correlated random variables.

In Appendix 1, the mean and variance for the binomial distribution are derived.

And in Appendix 2, we explain how the binomial distribution can be used in

developing the binomial option pricing model.

6.2 Discrete and Continuous Random Variables

A random experiment generally results in numerical values that can be attached to

the possible outcomes. In experiments such as throwing a die or measuring a firm’s

net earnings, the outcomes are naturally in numerical form. The possible outcomes

of tossing a fair die are 1, 2, 3, 4, 5, and 6, and the corresponding probabilities are 1
6

for each outcome, as we saw in Chap. 5. The result of a random experiment can be

conveniently described by a random variable. A random variable is a variable that
assigns a numerical value to each possible outcome of a random experiment. We

can think of a random variable as a value or magnitude that changes from occur-

rence to occurrence in no predictable sequence. A breast cancer screening clinic, for

example, has no way of knowing exactly how many women will be screened on any

one day. So tomorrow’s number of patients is a random variable. For another

example, say a company manufactures TV sets that are sometimes defective.

Buyers return the defective sets for repair. A variable used to describe the number

of TV sets that will be returned before the warranty runs out is a random variable.

Random variables are either discrete or continuous. A discrete random variable
is one that can take on a countable number of values; usually it is an integer. The

number of claims on an automobile policy in a particular year is a discrete random

variable. Another discrete random variable is the number of defective parts

produced in a particular run. Here the discrete random variable can take on the

values 0, 1, 2, . . ., n. If we let X stand for a discrete random variable, then we can

use x to represent one of its possible values. In other words, X is a quantity and x a
value. For example, before the results of rolling a fair die are observed, the random

variable can be used to denote the outcome. This random variable can assume the
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specific values x ¼ 1, x ¼ 2, . . ., x ¼ 6, and each value has a probability of 1
6
.

Other discrete random variables include:

1. The number of bids received in a stock offering: x ¼ 0, 1, 2, . . .
2. The number of customers waiting to be served in a bank at a particular time:

x ¼ 0, 1, 2, . . .
3. The number of sales made by a salesperson in a given month: x ¼ 0, 1, 2, . . .
4. The number of people in a sample of 800 who favor a particular presidential

candidate: x ¼ 0, 1, 2, . . ., 800

In contrast, a continuous random variable can take on an uncountable number of

values within an interval. The amount of rainfall in a given area is a continuous

random variable. This number can take on an infinite number of values – 8.01 in. of

rain is different from 8.012 in.. Measurement may stop at some number of decimal

points, but the variable is theoretically continuous. Although it is impossible to

attach a probability to the amount of rain equaling exactly 8.012000 . . . inches, it is
possible to give the probability that the amount of rain will be within an interval.

Continuous random variables can also represent the amount of time it takes to fill a

food order at a restaurant or the length of a bolt used in the production of an

automobile. Other continuous random variables appear in the following examples:

1. Let X be the arrival time at an airport between 8:00 and 9:00 a.m.:

8:00 � x � 9:00.

2. For a new residential division, the length of time X from completion until a

specified number of houses are sold: a � x � b, for b > a.
3. Let Y be the amount of orange juice loaded into a 24-oz bottle in a bottling

operation: 0 � y � 24.

4. The depth at which a successful natural gas drilling venture first strikes natural

gas.

5. The weight of a bag of rice bought in a supermarket.

6.3 Probability Distributions for Discrete Random Variables

6.3.1 Probability Distribution

To analyze a random variable, we must generally know the probability that the

variable will take on certain values. The probability function, or the probability
distribution, of a discrete random variable is a systematic listing of all possible

values a discrete random variable can take on, along with their respective

probabilities. The probability that the random variable X will assume the value x
is symbolized by P(X ¼ x) or simply P(x). Note that X is a quantity and x a value.
Because a discrete probability function takes nonzero values only at discrete points

x, it is sometimes called a probability mass function.
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Example 6.1 Probability Distribution for the Outcome of Tossing a Fair Coin.
Suppose a fair coin is tossed. Let the random variable X represent the outcome,

where 1 denotes heads and 0 denotes tails. The probability that heads appears is

P(X ¼ 1) ¼ .5, and the probability that tails appears is P(X ¼ 0) ¼ .5. Figure 6.1

shows a probability distribution where the possible outcomes are charted on the

horizontal axis and probabilities on the vertical axis. The spikes in the figure place

the probability of heads and that of tails at .5. Note that the probabilities for both

outcomes (heads and tails) are between 0 and 1 inclusive and that the sum of both

probabilities is 1.

Example 6.2 Probability Distribution for Section Assignment in a Marketing
Course. Suppose that five sections of a marketing course are offered and each

section has a different number of openings (see Table 6.1). If students are assigned

randomly to the sections, then a probability distribution can be drawn for section

assignment. The probability that a student is assigned to section 1, P(X ¼ 1), is

equal to 23
179

¼ :128; the probability that a student is assigned to section 2, P(X ¼ 2),

is equal to 45
179

¼ :251 . The rest of the probabilities are calculated in the same

manner, as indicated in the third column of Table 6.1. Figure 6.2 shows this

probability distribution.

Example 6.3 Probability Distribution for the Outcome of Rolling a Fair Die. The

probability distribution for the roll of a fair die is shown in Fig. 6.3. Here all the

spikes are equal to 1
6
because PðX ¼ 1Þ ¼ PðX ¼ 2Þ ¼ � � � ¼ PðX ¼ 6Þ ¼ 1

6
.

Examples 6.1, 6.2, and 6.3 show that the probability of a random variable X
taking on the specific value x can be denoted as P(X ¼ x). The probability distri-

bution of a random variable is a representation of the probabilities for all possible
outcomes. P(X ¼ x) is the probability function of random variable X denoting the

Fig. 6.1 Probability

distribution for Example 6.1
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probability that X takes on the value of x. This expression can be rewritten as

P(X ¼ x) ¼ P(x) where the function is evaluated at all possible values of X.
For all probability functions of discrete random variables,

1. P(xi) � 0 for all i

2.
Xn
i¼1

P xið Þ ¼ 1

Table 6.1 Probability

distribution of marketing

course openings

Section, x Openings Probability, P(x)

1 23 23/179 ¼ .128

2 45 45/179 ¼ .251

3 21 21/179 ¼ .117

4 56 56/179 ¼ .313

5 34 34/179 ¼ .190

Total 179 1.00

Fig. 6.2 Probability

distribution for marketing

course openings

Fig. 6.3 Probability function

for Example 6.3
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where xi is the ith observation of random variable X. Property 1 states that the

probabilities cannot be negative. Property 2 implies that the individual probabilities

add up to 1.

6.3.2 Probability Function and Cumulative Distribution Function

For some problems, we need to find the probability that X will assume a value less

than or equal to a given number. A function representing such probabilities is called

a cumulative distribution function (cdf) and is usually denoted by F(x). If x1, x2, . . .,
xm are the m values of X given in increasing order (i.e., if x1 < x2 < . . ., < xm),
then the cumulative distribution function of xk, 1 � k � m, is given by

F xkð Þ ¼ P X � xkð Þ (6.1)

In Eq. 6.1, P(X � xk) gives us the probability that X will be less than or equal to

xk. The relationship between the probability function P(x) and the cumulative

distribution function F(xk) can be expressed as follows:

F Xkð Þ ¼ P x1ð Þ þ P x2ð Þ þ � � � þ P xkð Þ ¼
Xk
i¼1

P xið Þ (6.2)

Because the values outside the range of X (values smaller than x1 or larger than xm)
occur only with probability equal to zero, we may equally well write

F xkð Þ ¼ Pk
i¼�1

P xið Þ for k � m (6.2a)

The following examples show how to calculate the cumulative distribution

function.

Example 6.4 Cumulative Distribution Function for Rolling a Fair Die. Reviewing

Example 6.3, we find that the value of a random variable X and its probability of

occurring upon the rolling of a fair die are listed in the first and second columns of

Table 6.2, respectively. Because x1 < x2 < . . . < x6, the cumulative distribution

function can be calculated in accordance with Eq. 6.1 as follows:

Fð1Þ ¼ PðX ¼ 1Þ ¼ 1
6

Fð2Þ ¼ PðX ¼ 1Þ þ PðX ¼ 2Þ ¼ 1
6
þ 1

6
¼ 1

3

Fð3Þ ¼ PðX ¼ 1Þ þ PðX ¼ 2Þ þ PðX ¼ 3Þ ¼ 1
6
þ 1

6
þ 1

6
¼ 1

2
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and so on, as listed in the last column of Table 6.2. The cumulative distribution

function is shown in Fig. 6.4.

This graph is a step function: the values change in discrete “steps” at the

indicated integral values of the random variable X. Thus, F(x) takes the value 0 to

the left of the point x ¼ 1, steps up to FðxÞ ¼ 1
6
at x ¼ 1, and so on. The dot at the

left of each horizontal line segment indicates the probability for that integral value

of x. At these points, the values of the cumulative distribution function are read

from the upper line segments.

6.4 Expected Value and Variance for Discrete Random

Variables

Probability distributions tell us a great deal about the probability characteristics of a

random variable. Graphical depictions reveal at a glance the central tendency and

dispersion of a discrete distribution, but numerical measures of central tendency

and dispersion for a probability distribution are also useful. The mean (central

location) of a random variable is called the expected value and is denoted by E(X).
The expected value of a random variable, which we also denote as m, is calculated
by summing the products of the values of the random variable and their

corresponding probabilities:

m ¼ EðXÞ ¼
XN
i¼1

xiP xið Þ (6.3)

John Kraft, a marketing executive for Computerland, Inc., must decide whether

to use a new label on one of the company’s personal computer products. The firm

will gain $900,000 if Mr. Kraft adopts the new label and it turns out to be superior to

the old label. The firm will lose $600,000 if Mr. Kraft adopts the new label and it

proves to be inferior to the old one. In addition, Mr. Kraft feels that there is

Table 6.2 Cumulative distribution function for the outcome of tossing a fair die

x Probability function, P(x) Cumulative distribution function, F(x)

1 1/6 1/6

2 1/6 1/3

3 1/6 1/2

4 1/6 2/3

5 1/6 5/6

6 1/6 1

Total 1
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.60 probability that the new label is superior to the old one and .40 probability that it

is not. The expected value of the firm’s gain for adopting the new label is

EðXÞ ¼ ð$900; 000Þð:6Þ þ ð�$600; 000Þð:4Þ
¼ $300; 000

Therefore, Mr. Kraft should consider adopting the new label.

Example 6.5 Expected Value for Earnings per Share. Suppose a stock analyst

derives the following probability distribution for the earnings per share (EPS)

of a firm.

EPS ($) P(x) EPS ($) P(x)

1.50 .05 2.25 .15

1.75 .30 2.50 .10

2.00 .35 2.75 .05

To calculate the expected value (the mean of the random variable), we multiply

each EPS by its probability and then add the products:

EðXÞ ¼ 1:50 :05ð Þ þ 1:75 :30ð Þ þ 2:00 :35ð Þ þ 2:25 :15ð Þ þ 2:50 :10ð Þ þ 2:75 :05ð Þ
¼ 2:025

Fig. 6.4 Cumulative

probability distribution for

Example 6.4

218 6 Discrete Random Variables and Probability Distributions



The expected value for the earnings per share is 2.025.

Example 6.6 Expected Value of Ages of Students. Suppose the distribution of the

ages of students in a class is

Age P(x) Age P(x)

20 .06 24 .10

21 .10 25 .03

22 .28 26 .04

23 .39

The expected age is

EðXÞ ¼ 20 :06ð Þ þ 21 :10ð Þ þ 22 :28ð Þ þ 23 :39ð Þ þ 24 :10ð Þ þ 25 :03ð Þ þ 26 :04ð Þ
¼ 22:62

In addition to calculating expected value for a probability distribution, we can

compute the variance and standard deviation as measures of variability. The

variance of a distribution is computed similarly to the variance for raw data,

which we discussed in Chap. 4. The variance is the summation of the square of

the deviations from the mean, multiplied by the corresponding probability:

s2 ¼
XN
i¼1

xi � mð Þ2P xið Þ (6.4)

where s2 is the variance of X, m is the mean of X, and P(xi) is the probability

function of xi. If P x1ð Þ ¼ P x2ð Þ ¼ � � � ¼ P xNð Þ ¼ 1=N, then Eq. 6.4 reduces to

s2 ¼
PN
i¼1

xi � mð Þ2

N
(6.4a)

1 From Eq. 6.4, the variance of X is

s2 ¼
XN
i¼1

x2i � 2mxi þ m2
� �

P xið Þ

¼
XN
i¼1

x2i PðxiÞ � 2m
XN
i¼1

xiPðxiÞ þ m2
XN
i¼1

PðxiÞ

Because
PN
i¼1

xiPðxiÞ ¼ m and
PN
i¼1

PðxiÞ ¼ 1,

s2 ¼
XN
i¼1

x2i PðxiÞ � 2m2 þ m2 ¼
XN
i¼1

x2i PðxiÞ � m2

¼
XN
i¼1

x2i PðxiÞ � m2:
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The standard deviation is the square root of the variance. An alternative – and

possibly easier – way to calculate the variance is to sum the product of the square of

values of the random variables multiplied by the corresponding probabilities and

then subtract the expected value squared1:

s2 ¼
XN
i¼1

x2i PðxiÞ � m2 (6.5)

Example 6.7 Expected Value and Variance: Defective Tires. Suppose the follow-

ing table gives the number of defective tires that roll off a production line in a day.

Calculate the mean and variance.

Defects Probability

0 .05

1 .15

2 .20

3 .25

4 .25

5 .10

The expected value is equal to (0)(.05) þ (1)(.15) þ (2)(.20) þ (3)(.25) þ (4)

(.25) þ (5)(.10) ¼ 2.8. Thus, the mean number of defective tires in a production

run is 2.8 tires in a day.

The variance is

0� 2:8ð Þ2 :05ð Þ þ 1� 2:8ð Þ2 :15ð Þ þ 2� 2:8ð Þ2 :20ð Þ
þ 3� 2:8ð Þ2 :25ð Þ þ 4� 2:8ð Þ2 :25ð Þ þ 5� 2:8ð Þ2 :10ð Þ ¼ 1:86

The alternative formula yields the same answer for the variance:

02
� �

:05ð Þ þ 12
� �

:15ð Þ þ 22
� �

:20ð Þ þ 32
� �

:25ð Þ þ 42
� �

:25ð Þ þ 52
� �

:10ð Þ� �
� 2:8ð Þ2
¼ 1:86

Example 6.8 Expected Value and Variance: Commercial Lending Rate. Returning

to the example of commercial lending interest rates in Sect. 5.8, we can tabulate the

possible lending rates x and the corresponding probabilities, P(x), as follows:

x P(x) x P(x)

15 % .100 18 % .150

17 .075 11 .100

20 .075 13 .075

13 .200 16 .075

15 .150
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From formulas for the expected value and the variance for discrete random

variables, the mean of X is

EðXÞ ¼
XN
i¼1

xiPðxiÞ ¼ m

¼ ð:100Þð:15Þ þ ð:075Þð:17Þ þ ð:075Þð:20Þ þ ð:200Þð:13Þ
þ ð:150Þð:15Þ þ ð:150Þð:18Þ þ ð:100Þð:11Þ þ ð:075Þð:13Þ
þ ð:075Þð:16Þ

¼ 15:1% ð6:6Þ

The standard deviation of X can be calculated from

s ¼
XN
i¼1

xi � mð Þ2P xið Þ
" #1=2

¼ :100ð Þ 15� 15:1ð Þ2 þ :075ð Þ 17� 15:1ð Þ2 þ :075ð Þ 20� 15:1ð Þ2
h
þ :200ð Þ 13� 15:1ð Þ2 þ :150ð Þ 15� 15:1ð Þ2 þ :150ð Þ 18� 15:1ð Þ2

þ :100ð Þ 11� 15:1ð Þ2 :075ð Þ 13� 15:1ð Þ2 þ :075ð Þ 16� 15:1ð Þ2
i1=2

¼ 2:51% ð6:7Þ

A bank manager may use this information to make lending decisions, which is

discussed in Application 7.4 in Chap. 7.

6.5 The Bernoulli Process and the Binomial Probability

Distribution

In this section, we examine first the Bernoulli process and then the binomial

probability distribution and its applications.

6.5.1 The Bernoulli Process

The binomial distribution is based on the concept of a Bernoulli process, which has
three important characteristics. First, a Bernoulli process is a repetitive random

process consisting of a series of independent trials. This means that the outcome of

one trial does not affect the probability of the outcome of another. Second, only two

outcomes are possible in each trial: success or failure. The probability of success is

equal to p, and the probability of failure is (1 � p). Third, the probabilities of
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success and failure are the same in each trial. For example, suppose the owner of an

oil firm believes that the probability of striking oil is .10. Success is defined as

striking oil and failure as not striking oil. If the probability of striking oil is .10 on

every trial and all the trials are independent of each other, then this is a Bernoulli

process. Note that the events of striking oil and not striking oil are mutually

exclusive.

A simple example of a Bernoulli process is the tossing of a fair coin. The

outcomes can be classified into the events’ success (e.g., heads) and failure

(tails). The outcomes are mutually exclusive, and the probability of success is

constant at .5. The MINITAB output of the Bernoulli process for the first four

experiments of Table 5.1 is presented in Fig. 6.5. Columns C1, C2, C3, and C4

present the number and sequence of heads and tails occurring for random

experiments with N ¼ 10, 20, 30, and 40.

6.5.2 Binomial Distribution

If n trials of a Bernoulli process are observed, then the total number of successes in

the n trials is a random variable, and the associated probability distribution is known

as a binomial distribution. The number of successes, the number of trials, and the

probability of success on a trial are the three pieces of information we need to

generate a binomial distribution.

To develop the binomial distribution, assume that each of the n trials of an

experiment will generate one of two outcomes, a success, S, or a failure, F. Suppose

the trials generate x successes and (n � x) failures. The probability of success on a

particular trial is p, and the probability of failure is (1 � p). Thus, the probability of
obtaining a specific sequence of outcomes is

px 1� pð Þn�x
(6.8)

Equation 6.8 presents the joint probability of x successes and (n � x) failures
occurring simultaneously. Because the n trials are independent of each other, the

probability of any particular sequency of outcomes is, by the multiplication rule of

probabilities (Sect. 5.6), equal to the product of the probabilities for the individual

outcomes.

6.5.3 Probability Function

There are several ways in which x successes can be arranged among (n � x)
failures. Therefore, the probability of x successes in n trials for a binomial random

variable X is
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MTB > RANDOM 10 C1;
SUBC> BERNOULI 0.5.
MTB > RANDOM 20 C2;
SUBC> BERNOULI 0.5.
MTB > RANDOM 30 C3;
SUBC> BERNOUL1 0.5.
MTB > RANDOM 40 C4;
SUBC> BERNOULI 0.5.
MTB > PRINT C1-C4

Data Display

Row C1 C2 C3 C4
1 1 1 1 0
2 0 1 1 0
3 0 1 1 0
4 1 0 1 1
5 0 1 1 1
6 1 1 1 0
7 0 0 0 0
8 0 1 1 0
9 0 0 0 0
10 0 1 1 1
11 0 0 1
12 1 0 1
13 1 1 0
14 0 0 1
15 1 0 1
16 0 1 0
17 0 1 1
18 0 1 1
19 0 0 0
20 1 0 1
21 0 0
22 0 0
23 0 0
24 0 1
25 0 0
26 0 1
27 0 0
28
29

0 1
1 1

30 0 0
31 1
32 0
33 0
34 1
35 1
36 0
37 0
38 0
39 0
40 0

Fig. 6.5 MINITAB output of

Bernoulli process for four

experiments (N ¼ 10,

N ¼ 20, N ¼ 30, and

N ¼ 40)
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PðX ¼ xÞ ¼ n

x

� �
px 1� pð Þn�x

¼ n!

x! n� xð Þ! p
x 1� pð Þn�x; x ¼ 0; 1; . . . ; n; ð6:9Þ

where

n
x

� �
¼ n combinations taken x at a time

n! ¼ nðn� 1Þðn� 2Þðn� 3Þ � � � ð1Þ

The symbol n! is read “n factorial.” When n ¼ 0, then n! ¼ 0! ¼ 1. Equation 6.9

is the binomial probability function, which gives the probability of x successes in n
trials: using this formula, we can evaluate a binomial probability.

Example 6.9 Probability Distribution for JNJ Stock. Suppose that the price of a

share of stock in Johnson & Johnson company in the future will either go up (U) or

come down (D) in 1 day with the probabilities .40 and .60, respectively. Calculate

the probability of each possible outcome of the stock price 4 days later.2

Using the outcome tree approach discussed in Appendix 1 of Chap. 5, we find

the possible outcomes e and probabilities p(e) indicated in Table 6.3.

2 Assume that the price movement of JNJ stock today is completely independent of its movement

in the past. See Example 6.23 in Appendix 2 for further discussion.

Table 6.3 Probability

distribution of JNJ stock

4 days later

Outcome, e Probability, p(e)

e1 (UUUU) (.4)(.4)(.4)(.4) ¼ .0256

e2 (UUUD) (.4)(.4)(.4)(.6) ¼ .0384

e3 (UUDU) (.4)(.4)(.6)(.4) ¼ .0384

e4 (UUDD) (.4)(.4)(.6)(.6) ¼ .0576

e5 (UDUU) (.4)(.6)(.4)(.4) ¼ .0384

e6 (UDUD) (.4)(.6)(.4)(.6) ¼ .0576

e7 (UDDU) (.4)(.6)(.6)(.4) ¼ .0576

e8 (UDDD) (.4)(.6)(.6)(6) ¼ .0864

e9 (DUUU) (.6)(.4)(.4)(.4) ¼ .0384

el0 (DUUD) (.6)(.4)(.4)(.6) ¼ .0576

e11 (DUDU) (.6)(.4)(.6)(.4) ¼ .0576

e12 (DUDD) (.6)(.4)(.6)(.6) ¼ .0864

e13 (DDUU) (.6)(.6)(.4)(.4) ¼ .0576

e14 (DDUD) (.6)(.6)(.4)(.6) ¼ .0864

e15 (DDDU) (.6)(.6)(.6)(.4) ¼ .0864

e16 (DDDD) (.6)(.6)(.6)(.6) ¼ .1296
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The probability of JNJ stock going up three times and coming down

once is the sum of the probabilities associated with e2, e3, e5, and e9:
.0384 þ .0384 þ .0384 þ .0384 ¼ .1536.

Alternatively, this probability can be calculated in terms of the binomial combi-

nation formula (Eq. 6.9):

4

3

� �
:4ð Þ3 :6ð Þ ¼ 4!

ð4� 3Þ!3! :0384ð Þ ¼ :1536

Hence, the binomial combination formula can be used to replace the diagram for

calculating such a probability.

Example 6.10 Probability Function of Insurance Sales. Assume that an insurance

sales agent believes that the probability of she making a sale is .20. She makes five

contacts and, eager to leave nothing to chance, calculates a binomial distribution:

Pð0 successÞ ¼ 5!

0!5!
:20:85 ¼ :3277

Pð1 successÞ ¼ 5!

1!4!
:21:84 ¼ :4096

Pð2 successesÞ ¼ 5!

2!3!
:22:83 ¼ :2048

Pð3 successesÞ ¼ 5!

3!2!
:23:82 ¼ :0512

Pð4 successesÞ ¼ 5!

4!1!
:24:81 ¼ :0064

Pð5 successesÞ ¼ 5!

5!0!
:25:80 ¼ :0003

Alternatively these numbers can be calculated by the MINITAB program as

shown here:

MTB > SET INTO Cl

DATA> 0 1 2 3 4 5

DATA> END

MTB > PDF C1;

SUBC> BINOMIAL 5 0.2.

Probability Density Function
Binomial with n ¼ 5 and p ¼ 0.200000
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x P(X ¼ x)

0.00 0.3277

1.00 0.4096

2.00 0.2048

3.00 0.0512

4.00 0.0064

5.00 0.0003

Figure 6.6 gives the probability distribution for this sales agent’s successes.

Because the events of the sales agent’s number of successes are mutually exclusive,

the probability that she has three or more successes is equal to P(3 successes) þ
P(4 successes) þ P(5 successes) ¼ .0512 þ .0064 þ .0003 ¼ .0579.

Example 6.11 Cumulative Probability Distribution for Insurance Sales. Suppose

the sales agent we met in Example 6.10 wants to determine the probability of

making between 1 and 4 sales:

Pð1 successÞ þ Pð2 successesÞ þ P 3 successesð Þ þ Pð4 successesÞ ¼ :672

Unless the number of trials n is very small, it is easier to determine binomial

probabilities by using Table Al in Appendix A of this book. All three variables

listed in Eq. 6.9 (n, p, and x) appear in the binomial distribution table extracted from

the National Bureau of Standards tables. Using probabilities from this table, we can

calculate both individual probabilities and cumulative probabilities.

The individual probabilities drawn for Example 6.11 from the binomial table are

listed in Table 6.4. These probabilities are identical to those we found with Eq. 6.9.

The cumulative binomial function can be denned as

Bðn; pÞ ¼
Xn
x¼0

n
x

� �
px 1� pð Þn�x

(6.10)

Fig. 6.6 Binomial

probability distribution for

Example 6.10 (n ¼ 5, p ¼ .2)
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Using Table 6.4, we can calculate the cumulative probabilities for the sales agent

having two or more successes:

PðX � 2jn ¼ 5; p ¼ :2Þ ¼ PðX ¼ 2Þ þ PðX ¼ 3Þ þ PðX ¼ 4Þ þ PðX ¼ 5Þ

¼
X5
x¼2

n

x

� �
ð:2Þxð:8Þ5�x

¼ :2048þ :0512þ :0064þ :0003 ¼ :2627

In a nationwide poll of 2,052 adults by the American Association of Retired

Persons (USA Today, August 8, 1985), approximately 40 % of those surveyed

described the current version of the federal income tax system as fair. Suppose

we randomly sample 20 of the 2,052 adults surveyed and record x as the number

who think the federal income tax system is fair. To a reasonable degree of

approximation, x is a binomial random variable. The probability that x is less

than or equal to 10 can be defined as3

PðX � 10jn ¼ 20; p ¼ 0:4Þ

¼
X10
x¼1

n

x

� �
0:4ð Þx 0:6ð Þ20�x

¼ 0þ :005þ :0031þ :0123þ :0350þ :0746þ :1244

þ :1659þ :1797þ :1597þ :1171 ¼ :8725

Another situation that requires the use of a binomial random variable is lot
acceptance sampling, where we must decide, on the basis of sample information

about the quality of the lot, whether to accept a lot (batch) of goods delivered from a

manufacturer (see Appendix 1 in Chap. 11 for further detail). It is possible to

calculate the probability of accepting a shipment with any given proportion of

defectives in accordance with Eq. 6.9.

Example 6.12 Cumulative Probability Distribution: A Shipment of Calculator
Chips. A shipment of 800 calculator chips arrives at Century Electronics. The

contract specifies that Century will accept this lot if a sample of size 20 drawn from

Table 6.4 Part of binomial

table (n ¼ 5, p ¼ .2)
x P(x)

5 .0003

4 .0064

3 .0512

2 .2048

1 .4096

0 .3277

3 Refer to Table A1 in Appendix A at the end of the book.
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the shipment has no more than one defective chip. What is the probability of

accepting the lot by applying this criterion if, in fact, 5 % of the whole lot (40

chips) turns out to be defective? What if 10 % of the lot is defective?

This is a binomial situation where there are n ¼ 20 trials and p ¼ the probability

of success (chip is defective) ¼ .05. The shipment is accepted if the number of

defectives is either 0 or 1, so the probability of the shipment being accepted is

Pðshipment acceptedÞ ¼ PðX � 1Þ
¼ Pð0Þ þ Pð1Þ

Using Table A1 in Appendix A (n ¼ 20, p ¼ .05), we obtain P(0) ¼ .3585 and

P(1) ¼ .3774. Hence, the probability that Century Electronics accepts delivery is

P shipment acceptedð Þ ¼ :3585þ :3774 ¼ :7359

Similarly, if 10 % of the items in the shipment are defective (i.e., if p ¼ .10),

then

P shipment acceptedð Þ ¼ :1216þ :2702 ¼ :3918

This implies that the higher the proportion of defectives in the shipment, the less

likely is acceptance of the delivery. And that’s as it should be.

6.5.4 Mean and Variance

The expected value (mean) of the binomial distribution is simply the number of

trials times the probability of a success:

m ¼ np (6.11)

The variance of the binomial distribution is equal to

s2 ¼ npð1� pÞ (6.12)

Thus the standard deviation of the binomial distribution is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞp

. The

derivation of Eqs. 6.11 and 6.12 can be found in Appendix 1.

Example 6.13 Probability Distribution of Insurance Sales. In the insurance sales

case we discussed in Examples 6.10 and 6.11, the expected number of sales can be

calculated in terms of Eq. 6.11 as np ¼ 5(.20) ¼ 1. The variance of the distribution

can be calculated in terms of Eq. 6.12 as np(1 � p) ¼ 5(.2)(.8) ¼ .8. Thus, the

expected number of sales by the sales agent is equal to 1, and the standard deviation

is
ffiffiffiffi
:8

p ¼ :894.
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6.6 The Hypergeometric Distribution (Optional)

In the last section, we described the binomial distribution as the appropriate

probability distribution for a situation in which the assumptions of a Bernoulli

process are met. A major application of the binomial distribution is in the compu-

tation of probability for cases where the trials are independent. If the experiment

consists of randomly drawing n elements (samples), with replacement, from a set of

N elements, then the trials are independent.

In most practical situations, however, sampling is carried out without replace-
ment, and the number sampled is not extremely small relative to the total number in

the population. For example, when a researcher selects a sample of families in a city

to estimate the average income of all families in the city, the sampling units are

ordinarily not replaced prior to the selection of subsequent ones. That is, the

families are not replaced in the original population and thus are not given an

opportunity to appear more than once in the sample. Similarly, when a sample of

accounts receivable is drawn from a firm’s accounting records for a sample audit,

sampling units are ordinarily not replaced before the selection of subsequent units.

Sampling without replacement also takes place in quality control sampling and

other sampling. Furthermore, if the number sampled is extremely small relative to

the total number of items, then the trial is almost independent even if the sampling

is without replacement (as in Example 6.12).4 Under such circumstances and in

sampling with replacement, the binomial distribution can be used in the analysis.

The hypergeometric distribution is the appropriate model for sampling with-

out replacement. To solve the following hypergeometric problems, let’s divide

our population (such as a group of people) into two categories: adults and

children. For a population of size N, h members are S (successes) and (N � h)
members are F (failures). Let sample size ¼ n trials, obtained without replace-

ment. Let x ¼ number of successes out of n trials (a hypergeometric random

variable).

Suppose there are h ¼ 60 adults and N � h ¼ 40 children. Thus, there are

N ¼ 100 persons. Numbers from 1 to 100 are assigned to these individuals and

printed on identical disks, which are placed in a box. If 10 chips are randomly

drawn from the box, then the hypergeometric problem involves calculating the

probability of there being x adults and (n � x) children in a sample of size 10. If

n ¼ 10 people are selected, what is the probability that exactly four adults will be

included in the sample?

Because there are h ¼ 60 adults, there are
h
x

� �
possible ways of selecting

x ¼ 4 adults. Of the n ¼ 10 people, n � x ¼ 10 � 4 ¼ 6 are children. Hence,

4 In that case, the probability on the first trial, P, is 50/800 ¼ .0625. On the second trial, p is either
50/799 ¼ .06258 (if the first chip was not defective) or 49/799 ¼ .06133 (if the first chip was

defective).
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there are
N � h
n� x

� �
possible ways of selecting n � x ¼ 6 children. Thus, the total

number of ways of selecting a group of 10 persons that includes exactly four adults

and six children is
h
x

� �
N � h
n� x

� �
. There are

N
n

� �
¼ 100

10

� �
possible ways of

selecting 10 persons from 100 persons. Thus, the probability of selecting a group of

10 persons that includes x ¼ 4 adults is

60

4

� �
40

10� 4

� �
100

10

� �

6.6.1 The Hypergeometric Formula

From the example we just outlined, we can state the general hypergeometric

probability function for a hypergeometric variable X as

PðX ¼ xÞ ¼ P½ðx successes andðn� xÞ failuresÞ� ¼
h
x

� �
N � h
n� x

� �
N
n

� � (6.13)

The hypergeometric formula gives the probability of x successes when a random
sample of n is drawn without replacement from a population of N within which

h units have the characteristic denoting success. The number of successes achieved

under these circumstances is the hypergeometric random variable.

Example 6.14 Sampling Probability Function of Party Membership. Consider

a group of 10 students in which four are Democrats and six are Republicans.

A sample of size six has been selected. What is the probability that there will be

only 1 Democrat in this sample?

Using the hypergeometric probability function shown in Eq. 6.13, we have

Pðx ¼ 1 and n� x ¼ 5Þ ¼
4

1

� �
10� 4

6� 1

� �
10

6

� � ¼
4!

1!ð4� 1Þ!
6!

5!ð6� 5Þ!
10!

6!4!

¼
24

ð1Þð6Þ
720

ð120Þð1Þ
3; 628; 800

ð720Þð24Þ
¼ ð4Þð6Þ

210
¼ :1143
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Similarly, we can calculate other probabilities. All possible probabilities are as

follows:

P(x ¼ 0) ¼ .0048

P(x ¼ 1) ¼ .1143

P(x ¼ 2) ¼ .4286

P(x ¼ 3) ¼ .3809

P(x ¼ 4) ¼ .0714

The hypergeometric probability distribution is shown in Fig. 6.7.

6.6.2 Mean and Variance

The mean of the hypergeometric probability distribution for Example 6.14 can be

calculated by using Eq. 6.3:

m ¼
Xn
i¼1

xiPðxiÞ ¼ 0ð:0048Þ þ 1ð:1143Þ þ 2ð:4286Þ þ 3ð:3809Þ þ 4ð:0714Þ

¼ 2:40

On average, we expect 2.40 students to be Democrats. Alternatively, it can be

shown that the mean of this distribution is

m ¼ nðh=NÞ (6.14)

Fig. 6.7 Probability

distribution for Example 6.14

(hypergeometric distribution

for N ¼ 10, x ¼ 4, n ¼ 6)
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The ratio h/N is the proportion of successes on the first trial. The product n(h/N)
is similar to the mean of the binomial distribution, np. It can be shown that the

variance of the hypergeometric distribution is equal to

s2 ¼ N � n

N � 1

� �
n

h

N

� �
1� h

N

� �	 

(6.15)

In other words, the variance of the hypergeometric distribution is the variance of

the binomial distribution with an adjustment factor, N�n
N�1

� �
. If the sample size is

small relative to the total number of objects N, then N�n
N�1

� �
is very close to 1.

Consequently, the binomial distribution can be used to replace the hypergeometric

distribution.5

Example 6.15 Mean and Variance of a Hypergeometric Probability Function.
Using the data of Example 6.14, we can calculate the mean and variance of a

hypergeometric function as follows:

m ¼ 6
4

10

� �
¼ 2:4

s2 ¼ 10� 6

10� 1

� �
ð6Þ 4

10

� �
1� 4

10

� �	 

¼ :64

6.7 The Poisson Distribution and Its Approximation

to the Binomial Distribution

In the previous two sections, we have discussed two major types of discrete

probability distributions, one for binomial random variables and the other for

hypergeometric random variables. Both of these random variables were defined

in terms of the number of success, and these successes were obtained within a fixed
number of trials of some random experiment. In this section, we will discuss a

distribution called the Poisson distribution. This distribution can be used to deal

with a single type of outcome or “event,” such as number of telephone calls that

come through a switchboard and number of accidents. It is also possible to use a

Poisson distribution to investigate the probability of, say, a certain number of

defective parts in a plant in a 1-year period, a certain number of sales in a given

week, and a certain number of customers entering a bank in a day.

5 The approximation is valid only when N is large. Usually we require N/n � 20.
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6.7.1 The Poisson Distribution

The Poisson distribution, which is named after the French mathematician Simeon

Poisson, is useful for determining the probability that a particular event will occur a

certain number of times over a specified period of time or within the space of a

particular interval. For example, the number of customer arrivals per hour at a bank

or other servicing facility is a random variable with Poisson distribution. Here are

some other random variables that may exhibit a Poisson distribution:

1. The number of days in a given year in which a 50-point change occurs in the

Dow Jones Industrial Average

2. The number of defects detected each day by a quality control inspector in a light

bulb plant

3. The number of breakdowns per month that a supercomputer experiences

4. The number of car accidents that occur per month (or week or day) in the city of

Princeton, New Jersey

The formula for the Poisson probability distribution is

PðX ¼ xÞ ¼ e�llx x!= for x ¼ 0; 1; 2; 3; . . . and l> 0 (6.16)

where X represents the discrete Poisson random variable; x represents the number of

rare events in a unit of time, space, or volume; l is the mean value of x; e is the base
of natural logarithms and is approximately equal to 2.71828; and ! is the factorial

symbol.

It can be shown that the value of both the mean and the variance of a Poisson

random variable X is l. That is,

EðXÞ ¼ l (6.17a)

VarðXÞ ¼ l (6.17b)

We will explore this distribution further in Chap. 9 when we discuss the

exponential distribution.

In studying a retailer’s supply account at a large US Air Force base, the Poisson

probability distribution was used to describe the number of customers (x) in a 7-day
lead time period (Management Science, April 1983). Here “lead time” is used to

describe the time needed to replenish a stock item.

Items were divided into two categories for individual analysis. The first category

was items costing $5 or less and the second category was items costing more than

$5. The mean number of customers during lead time for the first category was

estimated to be .09. For the second category, the mean was estimated to be .15.

From Eqs. 6.17a and b, the mean and variance for the number x of customers who

demand items that cost over $5 during lead time is
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EðXÞ ¼ VarðXÞ ¼ l ¼ :15:

From Eq. 6.16, the probability that no customers will demand an item that costs

$5 or less during the lead time is

PðX ¼ 0Þ ¼ e�0:09ð:09Þ0=0! ¼ :9139

Example 6.16 Customer Arrivals in a Bank. Suppose the average number of

customers entering a bank in a 30-min period is five. The bank wants to determine

the probability that four customers enter the bank in a 30-min period. Substituting

l ¼ 5 and X ¼ 4 into Eq. 6.16, we obtain

PðX ¼ 4Þ ¼ e�5
� �

54
� �

4!=

Table A2 in Appendix A of this book is a Poisson probability table that can be

used to calculate probabilities. From this table, we find that (e�5)(54)/4! ¼ .1755.

As another example, say we know that the probability that three customers enter the

bank is .1404. Using the Poisson probability table, we can calculate the other

individual probabilities for X ¼ 0, 1, and 2. Table 6.5 gives the probability function

for X ¼ 0, 1, . . ., 4.
Our calculations can tell us such things as the probability that 0, 1, 2, 3,

or 4 customers arrive within a 20-min period. From Table 6.5, we know

that the probability that four or fewer individuals enter the bank is .1755 þ
.1404 þ .0842 þ .0337 þ .0067 ¼ .4405.

We could continue by calculating the probabilities for more than four customers

and eventually produce a Poisson probability distribution for this bank. Table 6.6

shows such a distribution. To produce this table, we used Eq. 6.16. The probability

of more than four customer arrivals can also be calculated from Table A2.

Alternatively, MINITAB can be used to calculate part of Table 6.6 as follows:

Table 6.5 Probability

function for Example 6.16

(l ¼ 5)

x P(x)

4 .1755

3 .1404

2 .0842

1 .0337

0 .0067
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MTB > SET INTO Cl

DATA> 0 1 2 3 4 5 6 7

DATA> END

MTB > PDF Cl;

SUBC> POISSON 5.

K P(X ¼ K)

0.00 0.0067

1.00 0.0337

2.00 0.0842

3.00 0.1404

4.00 0.1755

5.00 0.1755

6.00 0.1462

7.00 0.1044

MTB > PAPER

Figure 6.8 uses MINITAB to illustrate graphically the Poisson probability

distribution of the number of customer arrivals.

Example 6.17 Defective Spark Plug. In one day’s work on a spark plug assembly

line, the average number of defective parts is 2. The manager is concerned that

more than four defectives could occur and wants to estimate the probability of

that happening. Using the Poisson distribution table (Table A2 in Appendix A),

she determines that the probability of 0–4 defective spark plugs is P(X ¼ 0) þ
P(X ¼ 1) þ P(X ¼ 2) þ P(X ¼ 3) þ P(X ¼ 4) ¼ .1353 þ .2707 þ .2707 þ
.1804 þ .0902 ¼ .9473. Then the probability of having more than four defective

spark plugs is 1 � .9473 ¼ .0527.

Table 6.6 Poisson probability distribution of customer arrivals per 3-min period

x ¼ number of customer arrivals P(x) ¼ probability of exactly that number

0 .0067

1 .0337

2 .0842

3 .1404

4 .1755

5 .1755

6 .1462

7 .1044

8 .0653

9 .0363

.9682

10 or more .0318 (1 – .9682)

1.0000
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6.7.2 The Poisson Approximation to the Binomial Distribution

The Poisson distribution can sometimes be used to approximate the binomial

distribution and avoid tedious calculations.

If the number of trials in a binomial, n, is large, then a Poisson random variable

with l ¼ np will provide a reasonable approximation. This is a good approxi-

mation, provided that n is large (n > 20) and p is small (p < .05):

PðX ¼ xÞ ¼ e�np npð Þx
x!

(6.18)

Example 6.18 Comparison of the Poisson and Binomial Probability Approaches.
Suppose 20 parts are selected from a production process and tested for defects. The

manager of the firm wants to determine the probability that three defectives are

MTB > SET INTO C1
DATA> 0123456789
DATA> END
MTB > SET INTO C2
DATA> 0.0067 0.0337 0.0842 0.1404 0.1775 0.1775 0.1462 0.1044 0.0653 
0.0363 
DATA> END
MTB >  GPRO
* NOTE  * Professional Graphics are enabled. 

Standard Graphics are disabled.
Use the GSTD command to enable Standard Graphics.

MTB > Plot C2*C1;
SUBC> Project;
SUBC> Axis 1;
SUBC> Label “X”;
SUBC> AXIS 2;
SUBC> Label “PROBABILITY”.

Fig. 6.8 MINITAB output of Poisson probability distribution for the number of customer arrivals
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encountered. Previous experience indicates that the probability of a part being

defective is .05. The mean is np ¼ (20)(.05) ¼ 1. Setting l ¼ 1, we can use the

Poisson distribution formula of Eq. 6.18 to calculate the probability:

PðX ¼ 3Þ ¼ 13e�1=3! ¼ :0613

If we use the binomial distribution formula of Eq. 6.9, then the probability is

PðxÞ ¼ 20!

3!ð20� 3Þ! ð:05Þ
3ð:95Þ17 ¼ :0596

The difference between .0613 and .05916 is slight (only about .2 %).

6.8 Jointly Distributed Discrete Random Variables (Optional)

In Sects. 5.4 and 5.5, we discussed conditional, joint, and marginal probabilities in

terms of events. We now consider these probabilities for two or more related discrete

random variables. For a single random variable, the probabilities for all possible

outcomes can be summarized by using a probability function; for two or more

possible related discrete random variables, the probability function must define the

probabilities that the randomvariables of interest simultaneously take specific values.

6.8.1 Joint Probability Function

Suppose we want to know the probability of a worker being a member of a labor

union and over age 50. We now concern ourselves with the distribution of random

variables, age (X) and membership in a labor union (Y). In notation, the probability
that X takes on a value x and that Y takes on a value y is given by

Pðx; yÞ ¼ PðX ¼ x; Y ¼ yÞ (6.19)

Equation 6.19 represents the joint probability function of X and Y. Joint

probabilities are usually presented in tabular form so that the probabilities can be

identified easily. Joint probability distributions of discrete random variables are

probability distributions of two or more discrete random variables. The next

example illustrates the use of Eq. 6.19.

Example 6.19 Joint Probability Distribution for 100 Students Classified by Sex and
by Number of Accounting Courses Taken. Table 6.7 shows the probability function

for two random variables, X (the total number of accounting courses a student takes)

and Y (the sex of the student, where 1 denotes a male student and 0 a female).

The values in the cells of Table 6.7 are joint probabilities of the outcomes denoted

by the column and row headings for X and Y. Also displayed in the margins of the

table are separate univariate probability distributions of X and Y.
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The joint probability that a student is female and takes three courses, P(3, 0) ¼
P(X ¼ 3, Y ¼ 0), is equal to .17. The probability that a student is male and takes

four courses, P(4, 1) ¼ P(X ¼ 4, Y ¼ 1), is equal to .12. The probabilities inside

the box are all joint probabilities, which are, again, probabilities of the intersection

of two events.

The probability distribution of a single discrete random variable is graphed by

displaying the value of the random variable along the horizontal axis and the

corresponding probability along the vertical axis. In the case of a bivariate distri-

bution, two axes are required for the values of random variables and a third for the

probability. A graph of the joint probability of Table 6.7 is shown in Fig. 6.9.

6.8.2 Marginal Probability Function

The marginal probability can be obtained by summing all the joint probabilities

over all possible values. In other words, the probabilities in the margins of the table

are the marginal probabilities. These probabilities form marginal probability

functions. For example (see Table 6.7 in Example 6.19), the probability that a

randomly selected student is female, P(Y ¼ 0), is found by adding the respective

probabilities that a female student takes two courses (.14), three courses (.17), four

courses (.08), and five courses (.12), for a total of .51. The probability that a

randomly selected student is male, P(Y ¼ 1), is therefore .49 (1 � .51). Similarly,

the probability that a randomly selected student takes two courses, P(X ¼ 2), is
equal to the probability that a female takes two courses (.14), plus the probability

that a male takes two courses (.16), for a total of .30. Note that the sum of the

marginal probabilities is 1. From these results, we can define marginal probability
functions for X and Y as follows:

PðxiÞ ¼
Pm
j¼1

Pðxi; yjÞ; i ¼ 1; . . . ; n (6.20)

PðyjÞ ¼
Pn
i¼1

Pðxi; yjÞ; j ¼ 1; . . . ;m (6.21)

where

xi ¼ the ith observation of the X variable

yj ¼ the jth observation of the Y variable

Table 6.7 Joint probability

distribution for 100 students

classified by sex and number

of accounting courses taken

X

Y 2 3 4 5 Total

0 .14 .17 .08 .12 .51

1 .16 .20 .12 .01 .49

Total .30 .37 .20 .13 1
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6.8.3 Conditional Probability Function

Conditional probability functions can be calculated from joint probabilities. The

conditional probability function of X, given Y ¼ y, is

PðxjyÞ ¼ Pðx; yÞ=PðyÞ (6.22)

The conditional probability is found by taking the intersection of the probability

of X ¼ x and Y ¼ y and dividing by the probability of Y. For example, the

probability from Table 6.7 that a student takes four courses, given that the student

is female, is P(4|0) ¼ P(4,0)/P(0) ¼ .08/.51 ¼ .16.

Similarly, the probability that a student is male, given that the student takes three

courses, is P(1|3) ¼ P(3,1)/P(3) ¼ .20/.37 ¼ .54. The conditional probability
distribution for X given Y ¼ 1 is shown in Table 6.8.

Fig. 6.9 Graph of the bivariate probability distribution shown in Table 6.7

6.8 Jointly Distributed Discrete Random Variables (Optional) 239



6.8.4 Independence

Returning to the terminology of events explained in Chap. 5, we saw in Sect. 5.6 that

if two events are statistically independent, then P(B|A) ¼ P(B) and P(B \ A) ¼
P(B)P(A). In random variable notation, the analogous statement is that if X and Y are

independent random variables, then

PðX ¼ xjY ¼ yÞ ¼ PðX ¼ xÞ for all X
PðY ¼ yjX ¼ xÞ ¼ PðY ¼ yÞ and all Y

(6.23)

Equation 6.23 implies that the conditional probability function of X given Y or of

Y given X is the same as the marginal probability of X or Y. We will illustrate this

definition of independence by returning to Table 6.7.

Suppose we consider the outcome pair (3, 1) – that is, X ¼ 3 and Y ¼ 1. In this

case,

PðX ¼ 3jY ¼ 1Þ ¼ :20

:49
¼ :4082

and

PðX ¼ 3Þ ¼ :37

Because P(X ¼ 3|Y ¼ 1) is not equal to P(X ¼ 3), X and Y are not independent.

Example 6.20 Store Satisfaction. Table 6.9 shows the probability function for two

random variables: X,which measures a consumer’s satisfaction with food stores in a

particular town, and Y, the number of years the consumer has resided in that town.6

Table 6.8 Conditional

probability distribution for

numbers of accounting

courses, given that the student

is male (Y ¼ 1)

x P(X ¼ x\Y ¼ 1)

2 .16/.49 ¼ .3265

3 .20/.49 ¼ .4082

4 .12/.49 ¼ .2449

5 .01/.49 ¼ .0204

1.0000

Table 6.9 Joint probability

distribution for consumer

satisfaction (x) and number of

years of residence in a

particular town (Y)

x

y 1 2 3 4 Total

1 .04 .14 .23 .07 .48

2 .07 .17 .23 .05 .52

Total .11 .31 .46 .12 1

6 This example is based on the material discussed in J. H. Miller, “Store Satisfaction and Aspira-

tion Theory,” Journal of Retailing, 52 (Fall 1976), 65–84.
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Suppose X can take on the value 1, 2, 3, and 4, which reflect a satisfaction level

ranging from low to high, and that Y takes on the value 1 if the consumer has lived

in the town fewer than 6 years and 2 otherwise. The values in the cells of Table 6.9

are joint probabilities of the respective joint events denoted by the column and row

headings for x and y. Also displayed in the margins of the table are separate

univariate probability distributions of x and y.
The joint probability that a consumer has satisfaction level 3 and has lived in

town fewer than 6 years, P(3, 1) ¼ P(X ¼ 3, Y ¼ 1), is .23. The probability that

a consumer has satisfaction level 4 and has lived in the town more than 6 years,

P(4, 2), is .05. The probabilities inside the box are all joint probabilities, which are,
again, the intersections of two events.

The marginal probability is obtained by summing the joint probabilities over all

possible values, as discussed in Example 6.19. For example (see Table 6.9), the

probability that a consumer has lived in town fewer than 6 years, P(Y ¼ 1), is found

by adding the probabilities that a consumer has satisfaction level 1, 2, 3, and 4, a

total of .48. The marginal probability that a consumer has lived in town 6 or

more years, P(Y ¼ 2), is therefore .52. Similarly, the probability that a randomly

selected consumer has satisfaction level 1, P(X ¼ 1), is equal to the probability that

a consumer has lived in town fewer than 6 years, .04, plus the probability that a

consumer has lived in the town more than 6 years, .07, for a total of. 11. Note that

the sum of the marginal probabilities is equal to 1.

Conditional probability functions can be calculated from joint probabilities as

discussed in Example 6.19. The conditional probability is found by taking the

intersection of the probability of X ¼ x and Y ¼ y and dividing by the probability

of Y ¼ y. For example, the probability (from Table 6.9) that a consumer has

satisfaction level 4, given that the consumer has lived in town fewer than 6 years,

is P(X ¼ 4|Y ¼ 1) ¼ P(X ¼ 4, Y ¼ 1)/P(Y ¼ 1) ¼ .07/.48 ¼ .1458.

Similarly, the probability that a consumer has lived in town 6 or more years,

given that the consumer has satisfaction level 3, is P(Y ¼ 2|X ¼ 3) ¼ P(Y ¼ 2,

X ¼ 3)/P(X ¼ 3) ¼ .23/.46 ¼ .5. The conditional probability distribution for

X given Y ¼ 2 is shown in Table 6.10.

Table 6.10 Conditional

probability distribution for

satisfaction level for a

consumer who has lived in

town 6 or more years

x P(X ¼ x\Y ¼ 2)

1 .07/.52 ¼ .1346

2 .17/.52 ¼ .3269

3 .23/.52 ¼ .4423

4 .05/.52 ¼ .0962

1.0000
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6.9 Expected Value and Variance of the Sum of Random

Variables (Optional)

6.9.1 Covariance and Coefficient of Correlation Between
Two Random Variables

The concept of expected value and variance of discrete random variables discussed

in Sect. 6.4 can be extended to measure the degree of relationship between two

discrete random variables X and Y. Here we will discuss two alternative means of

determining the possibility of a linear association between two random variables X
and Y. These two measures are covariance and coefficient of correlation.

The covariance is a statistical measure of the linear association between two

random variables X and Y. Its sign reflects the direction of the linear association.

The covariance is positive if the variables tend to move in the same direction. If the

variables tend to move in opposite directions, the covariance is negative. Specifi-

cally, the covariance between X and can be defined as

CovðX; YÞ ¼ sX;Y ¼ E X � mXð Þ Y � mYð Þ½ � (6.24)

where mX and my are the means of X and Y, respectively. For discrete variables,

Eq. 6.24 can be defined as

sX;Y ¼
Xm
j¼1

Xn
i¼1

Xi � mXð Þ Yj � mY
� �

P Xi; Yj
� �

(6.25)

Equation 6.25 can be written as a shortcut formula as follows7:

CovðX; YÞ ¼ EðXYÞ � mXmY

¼
Xm
j¼1

Xn
i¼1

XiYj
� �

P Xi;Yj
� �� Xn

i¼1

XiP Xið Þ
" # Xm

j¼1

YjP Yj
� �" #

ð6:26Þ

To illustrate, we evaluate the covariance between number of years of residence

in the town and satisfaction level, as discussed in Example 6.20. Using the

probabilities in Table 6.9, we calculate mX, my, and E(XY) as

7

CovðX;YÞ ¼ E X � mXð Þ Y � mYð Þ½ �
¼ E XY � YmX � XmY þ mXmYð Þ
¼ EðXYÞ � mXEðYÞ � mYEðXÞ þ mXmY
¼ EðXYÞ � mXmY � mYmX þ mXmY ¼ EðXYÞ � mXmY
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mX ¼
X4
i¼1

XiP Xið Þ ¼ 1ð:11Þ þ 2ð:31Þ þ 3ð:46Þ þ 4ð:12Þ ¼ 2:59

mY ¼
X2
j¼1

YjP Yj
� � ¼ 1ð:48Þ þ 2ð:52Þ ¼ 1:52

EðXYÞ ¼
Xm
j¼1

Xn
i¼1

XiYj
� �

P XiYj
� �

¼ ð1Þð1Þð:04Þ þ ð1Þð2Þð:14Þ þ ð1Þð3Þð:23Þ þ ð1Þð4Þð:07Þ þ ð2Þð1Þð:07Þ
þ ð2Þð2Þð:17Þ þ ð2Þð3Þð:23Þ þ ð2Þð4Þð:05Þ

¼ 3:89

Substituting this information into Eq. 6.26, we obtain the covariance:

CovðX; YÞ ¼ 3:89� ð2:59Þð1:52Þ ¼ �0:05

The negative value of covariance indicates some tendency toward a negative

relationship between number of years of residence in the town and level of

satisfaction.

In addition to the direction of the relationship between variables, we may want to

measure its strength. We can easily do so by scaling the covariance to obtain the

coefficient of correlation.

The coefficient of correlation p between X and Y is equal to the covariance

divided by the product of the variables’ standard deviations. That is,

r ¼ sX;Y
sXsY

(6.27)

where r ¼ coefficient of correlation, sx ¼ standard deviation of X, and sY ¼
standard deviation of Y.

It can be shown that r is always less than or equal to 1.0 and greater than or equal

to �10:

� 1 � r � 1

Again, let us use data given in Table 6.9 to show how to calculate the correlation

coefficient between X and Y. We use Eq. 6.5 to calculate the variances of X and Y:

s2X ¼
X4
i¼1

X2
i P Xið Þ � mXð Þ2

¼ ð1Þ2ð:11Þ þ ð2Þ2ð:31Þ þ ð3Þ2ð:46Þ þ ð4Þ2ð:12Þ � 2:59ð Þ2
¼ :7019
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s2Y ¼
X2
j¼1

Y2
j P Yj
� �� mYð Þ2

¼ ð1Þ2ð:48Þ þ ð2Þ2ð:52Þ � 1:52ð Þ2
¼ :2496

Then we substitute sX;Y ¼ �:15, sX ¼ ffiffiffiffiffiffiffiffiffiffiffi
:7019

p ¼ :8378, and sY ¼ ffiffiffiffiffiffiffiffiffiffiffi
:2496

p ¼ :5
into Eq. 6.27. We obtain

r ¼ �:05

ð:8378Þð:5Þ ¼ �:1194

This means the relationship between X and Y is negative, as indicated by the

covariance.

As might be expected, the notions of covariance (and coefficient of correlation)

and statistical independence are not unrelated. However, the precise relationship

between these notions is beyond the scope of this book. Covariance and coefficient

of correlation will be discussed in detail in Chaps. 13 and 14.

6.9.2 Expected Value and Variance of the Summation of Random
Variables X and Y

If X and Y are a pair of random variables with means mX and mY and variancess2X and
s2Y and the covariance between X and Y is Cov(X, Y) ¼ sx.y, then:

1. The expected value of their sum (difference) is the sum (difference) of their

expected values:

EðX þ YÞ ¼ mX þ mY
EðX � YÞ ¼ mX � mY

2. The variance of the sum of X and Y, Var(X þ Y), or the difference of X and Y,
Var(X � Y), is the sum of their variances plus (minus) two times the covariance

between X and Y:

VarðX þ YÞ ¼ s2X þ s2Y þ 2sX;Y

VarðX � YÞ ¼ s2X þ s2Y � 2sX;Y

Example 6.21 Rates of Return and Variance for a Portfolio. Rates of return for

stocks A and B are listed in Table 6.11. Let X ¼ rates of return for stock A, and let

Y ¼ rates of return for stock B. The worksheet for calculating mX, mY, sX, sY, rXY, E
(X þ Y), and Var(X þ Y) is presented in Table 6.12.
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mX ¼ :25

5
¼ :05

mY ¼ �:05

5
¼ �:01

Substituting information into related formulas for variance, covariance, and

correlation coefficient yields

s2X ¼ :025=4 ¼ :00625

s2Y ¼ :032=4 ¼ :008

sX;Y ¼ �:015=4 ¼ �:00375

rX;Y ¼ �:00375ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið:00625Þð:008Þp ¼ �:5303

The MINITAB output of these empirical results is presented in Fig. 6.10.

To calculate the expected rate of return and the variance of a portfolio which

composes W1 percent of stock A and W2 percent of stock B, we need to modify

Eqs. 6.28 and 6.29 as8

Table 6.11 Rates of return for stocks A and B

Time period Stock A Stock B

1 .10 �.10

2 –.05 .05

3 .15 .00

4 .05 �.10

5 .00 .10

Table 6.12 Worksheet to calculate summary statistics

Time period Xi Yi (Xi � mX) (Yi � mY) (Xi � mX)
2 (Yi � mY)

2 (Xi � mX) (Yi � mY)

1 .10 �.10 .05 �.09 .0025 .0081 �.0045

2 �.05 .05 �.10 .06 .010 .0036 �.006

3 .15 .00 .10 .01 .010 .0001 .001

4 .05 �.10 .00 �.09 .00 .0081 .00

5 .00 .10 �.05 .11 .0025 .0121 �.0055

Total .25 �.05 0 0 .0250 .032 �.015

8 See Appendix 1 in Chap. 13 for further discussion about how to obtain optimal weights for a

portfolio.
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Data Display

Row C1 C2

1 0.10 –0.10
2 –0.05 0.05
3 0.15 0.00
4 0.05 –0.10
5 0.00 0.10

MTB  > MEAN  C1

Column Mean

Mean of C1 = 0.050000
MTB  > MEAN  C2

Column Mean
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Covariances
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Correlations (Pearson)

Correlation of C1 and C2 = –0.530

Fig. 6.10 MINITAB output

for Example 6.21
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VarðRpÞ ¼ Var W1X þW2Yð Þ
¼ W2

1 VarðXÞ þW2
2 VarðYÞ þ 2W1W2CovðX; YÞ (6.28)

EðRpÞ ¼ EðW1X þW2YÞ ¼ W1EðXÞ þW2EðYÞ (6.29)

where E(Rp) and variance (Rp) represent the expected rates of return and variance,

respectively. In addition, the summation of weights is assumed to be one

(W1 þ W2 ¼ 1). This assumption is used to guarantee that all available money

has been invested in either stock A or stock B.

If John has invested 40 % and 60 % of his portfolio in stock A and stock B,

respectively, then the expected rate of return and variance of his portfolio can be

calculated in accordance with Eqs. 6.280 and 6.290 as

EðRpÞ ¼ ð:6Þð:05Þ þ ð:4Þð�:01Þ ¼ :026

VarðRpÞ ¼ :6ð Þ2ð:00625Þ þ :4ð Þ2ð:008Þ þ 2ð:6Þð:4Þð�:00375Þ
¼ :00173

These statistics suggest several things:

1. The average rate of return for stock A is higher than that for stock B, and the

variance of rates of return for stock A is smaller than that for stock B.

2. The rates of return for stock A are negatively correlated with those of stock B.

3. E(W1X þ W2Y) ¼ .026 represents the average rate of return for a portfolio

wherein the different percentage of the money is invested in stock A and in

stock B.

4. Var(W1X þ W2Y) ¼ .00173 represents the variance of a portfolio:

6.9.3 Expected Value and Variance of Sums of Random Variables

For n random variables, X1, X2, . . ., Xn, Eq. 6.28 can be generalized as

E X1 þ X2 þ � � � þ Xnð Þ ¼ E X1ð Þ þ E X2ð Þ þ � � � þ E Xnð Þ (6.30)

Thus the expected value of a sum of n random variables is equal to the sum of the

expected values of these random variables.

A somewhat analogous relationship exists for variances of uncorrelated random
variables.9 If X1, X2, . . ., Xn are n uncorrelated variables, then

Var X1 þ X2 þ � � � þ Xnð Þ ¼ Var X1ð Þ þ VarðX2Þ þ � � � þ VarðXnÞ (6.31)

9 Independent variables imply uncorrelated variables, so Eq. 6.31 also holds for independent

random variables. Applications of Eqs. 6.30 and 6.31 will be discussed in Appendix 1 and Sect.

21.8 as well as in Appendix 3 of Chap. 21.
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Otherwise covariances are needed, as in Eq. 6.29.

Example 6.22 Rates of Return, Variance, and Covariance for JNJ, MRK, and
S&P 500. Using annual rates of return for Johnson & Johnson, Merck, and S&P

500 during the period 1970–2009, we calculate the average rate of return, variance,

Data Display Data Display 

JNJ

-0.681455    0.735557    0.329385   -0.132041   -0.276278    0.120214

-0.119259    0.001873   -0.017184    0.101555    0.286313   -0.619442

0.362091   -0.155059   -0.087818    0.491250    0.272454    0.165022

0.162139   -0.289582    0.230108    0.616842   -0.551293   -0.091578

0.244915    0.584558   -0.409758    0.340804    0.287688    0.124207

0.139719   -0.431191   -0.078010   -0.021172    0.248595   -0.032496

0.122480    0.034602   -0.076435 0.108473

Data Display Data Display 

MRK

-0.105661    0.274854   -0.272215   -0.080191   -0.160629    0.064286

0.004346   -0.162669    0.249828    0.097778    0.205990    0.031377

0.031582    0.101627    0.074488    0.493088   -0.080899    0.300894

-0.627023    0.371471    0.185441    0.878595   -0.733803   -0.182990

0.142442    0.753915    0.235280    0.352548    0.409696   -0.537078

0.411867   -0.357447   -0.013313   -0.158294   -0.271964    0.036942

0.418327    0.367425   -0.450781    0.254065

Data Display Data Display 

S&P

-0.149428    0.181086    0.110998   -0.016209   -0.228800    0.039952

0.183960   -0.037349   -0.022200    0.072797    0.153092    0.078043

-0.065131    0.339988    0.000312    0.164402    0.264933    0.213633

-0.073354    0.214643    0.036396    0.124301    0.105162    0.085799

0.019960    0.176578    0.237724    0.302655    0.242801    0.222782

0.075256   -0.163282   -0.167680   -0.028885    0.171379    0.067731

0.085510    0.127230   -0.174081   -0.222935

Fig. 6.11 MINITAB output for Example 6.22
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covariance, and correlation coefficient by using MINITAB. The MINITAB outputs

are presented in Fig. 6.11.

If we let X, Y, and Z represent rates of return for JNJ, MRK, and S&P 500,

respectively, then we find from Fig. 6.11 that �X ¼ :0510; �Y ¼ :0638; �X þ �Y ¼ :11

48; S2X ¼ :1042. S2Y ¼ :1190; SXY ¼ :0523; and rXY ¼ :470. Means of these annual

rates of return can be used to measure the profitability of the investments; variances

MMean of JNJ

Mean of JNJ = 0.0510197

Standard Deviation of JNJ

Standard deviation of JNJ = 0.322755

Mean of MRK

Mean of MRK = 0.0638299

Standard Deviation of MRK

Standard deviation of MRK = 0.345036

Mean of S&P

Mean of S&P = 0.0687443 

Standard Deviation of S&P
Standard deviation of S&P = 0.146719

Covariances: JNJ, MRK, S&P

   JNJ  MRK S&P

JNJ 0.1041709

MRK  0.0523250  0.1190496

S&P 0.0151314  0.0175118 0.0215263

Correlations: JNJ, MRK

Pearson correlation of JNJ and MRK = 0.470

P-Value = 0.002

Fig. 6.11 (continued)
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of these annual rates of return can be used as a measure of the risk, or uncertainty,

involved in the different investments.

6.10 Summary

In this chapter, we discussed basic concepts and properties of probability

distributions for discrete random variables. Important discrete distributions such

as the binomial, hypergeometric, and Poisson distributions are discussed in detail.

Applications of these distributions in business decisions are also examined.

Using the probability distribution for a random variable, we can calculate the

probabilities of specific sample observations. If the probabilities are difficult to

calculate, then the means and standard deviations can be used as numerical descrip-

tive measures that enable us to visualize the probability distributions and thereby to

make some approximate probability statements about sample observations.

In this chapter, we also discussed joint probability of two random variables. The

covariance and coefficient of correlation were presented as means of measuring the

degree of relationship between two random variables X and Y.

Questions and Problems

1. A team of students participates in a project. The results show that all students

are able to finish the project in 7 days. The distribution for the finishing time is

given in the following table.

Finishing time, hours 1 2 3 4 5 6 7

Students 21 43 23 48 31 29 35

Define x as the finishing time.

(a) Obtain P(X ¼ 1), P(X ¼ 2), . . ., P(X ¼ 7).
(b) Draw the probability distribution.

(c) Calculate the cumulative function Fx(x).
(d) Draw the cumulative function.

2. An investment banker estimates the following probability distribution for the

earnings per share (EPS) of a firm.

x(EPS) 2.25 2.50 2.75 3.00 3.25 3.50 3.75

P(x) .05 .10 .20 .35 .15 .10 .05

Calculate the expected value of the EPS.
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3. The following table gives the number of unpainted machines in a container.

Calculate the mean and standard deviation.

Unpainted 0 1 2 3 4 5 6 7

Probability .05 .09 .15 .30 .25 .10 .05 .01

4. The following table gives the probability distribution for two random variables:

x, which measures the total number of times a person will be ill during a year,

and y, the sex of this person, where 1 represents male and 0 female.

x l 2 3 4 Total

Y

0 .10 .11 .11 .17 .49

1 .13 .16 .07 .15 .51

.23 .27 .18 .32 1.00

(a) Calculate the expected value and standard deviation of the number of times

a person will be ill during a year, given that the sex of the person is male.

Hint: The conditional expectation and conditional standard deviation,

which we have not addressed, can be defined as follows:

F Xkð Þ ¼ P X � XkjY ¼ 0ð Þ

F Xkð Þ ¼ P X � XkjY ¼ 1ð Þ

m0 ¼
X

Xk P X ¼ XkjY ¼ 0ð Þ

m1 ¼
X

Xk;P X ¼ XkjY ¼ 1ð Þ

s0 ¼
Xn
i¼1

Xi � m0ð Þ2P XijY ¼ 0ð Þ
" #1=2

s1 ¼
Xn
i¼1

Xi � m1ð Þ2P XijY ¼ 1ð Þ
" #1=2

(b) Calculate the mean and standard deviation of the number of times a person

will be ill during a year, given that the sex of the person is female.

5. The rate of defective items in a production process is 15 %. Assume a random

sample of 10 items is drawn from the process. Find the probability that two of

them are “defective”. Calculate the expected value and variance.

6. Find the mean and standard deviation of the number of successes in binomial

distributions characterized as follows:
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(a) n ¼ 20, p ¼ .5

(b) n ¼ 100, p ¼ .09

(c) n ¼ 30, p ¼ .7

(d) n ¼ 50, p ¼ .4

7. A fair die is rolled 10 times. An “ace” means to roll a “6.” Find the probability

of getting exactly four aces, of getting five aces, of getting six aces, and of

getting four aces or more.

8. A fair coin is tossed eight times.

(a) Use MINITAB to construct a probability function table.

(b) What is the probability that you will have exactly four heads?

9. Consider a group of 12 employees of whom five are in management and seven

do clerical work. Select at random a sample of size 4. What is the probability

that there will be one manager in this sample?

10. A survey was conducted. Of 20 questionnaires that were sent, 12 were

completed and returned. We know that 8 of the 20 questionnaires were sent

to students and 12 to nonstudents. Only two of the returned questionnaires were

from students.

(a) What is the response rate for each group?

(b) Assume we have a response in hand. What is the probability that it comes

from a student?

11. The number of people arriving at a bank teller’s window is Poisson distributed

with a mean rate of .75 persons per minute. What is the probability that two or

fewer people will arrive in the next 6 min?

12. The Wicker company has one repair specialist who services 200 machines in

the shop and repairs machines that break down. The average breakdown rate is

l ¼ .5 machine per day (or 1 breakdown every 2 days). This technician can fix

two machines a day.

(a) Use MINITAB to construct a probability function, including breakdown

frequency from 0 to 10 cases per day. Assume a Poisson distribution.

(b) Wicker is interested in determining the probability that there will be more

than two breakdowns in a day.

13. Two teams are playing each other in seven basketball games. Team A is

considered to have a 60–40 % edge over team B. What is the probability that

team A will win four or more games?

14. A baseball player usually has four at bats each game. Suppose the baseball

player is a lifetime 0.25 hitter. Find the probability that this player will have:

(a) Two hits out of four at bats

(b) No hits out of four at bats

(c) At least one hit out of four at bats
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15. A certain insurance salesman sees an average of five customers in a week. Each

time he speaks to a customer, he has a 30 % chance of making a deal. What is

the probability that he makes five deals after speaking with five customers in a

week?

16. A student takes an exam that consists of 10 multiple-choice questions. Each

question has five possible answers. Suppose the student knows nothing about

the subject and just guesses the answer on each question. What is the probabil-

ity that this student will answer four out of the 10 questions correctly?

17. A hospital has three doctors working on the night shift. These doctors can

handle only three emergency cases in a time period of 30 min. On average, 1
2
an

emergency case arises in each 30-min period. What is the probability that four

emergency cases will arise in a 30-min period?

18. An average of three small businesses go bankrupt each month. What is the

probability that five small businesses will go bankrupt in a certain month?

19. During each hour, 0.1 % of the total production of paperclips is defective. For a

random sample of 500 pieces of the product, what is the chance of finding more

than one defective item?

20. The local bank manager has found that one out of every 400 bank loans end up

in default. Last year the bank made 400 loans. What is the probability that two

bank loans will end up in default?

21. Every week a truckload of springs is delivered to the warehouse you supervise.

Every time the springs arrive, you have to measure the strength of 400 springs.

You accept the shipment only when there are fewer than 20 bad springs. One

day a truckload of springs arrives that contains 10 % bad springs. What is the

probability that you will accept the shipment? (Just set up the question. Do not

try to solve it.)

22. Returning to question 21, say (1), your company’s policy is to accept the

shipment only when fewer than two springs (out of 400 springs examined)

are bad, and (2) the proportion of the bad springs in the truck is only 0.0001.

Under these conditions, what is the probability that you will accept the

shipment?

23. Despite your discomfort with statistics, you find yourself employed by a dog

food manufacturer to do statistical research for quality control purposes. Your

job is to weigh the dog food to determine whether the cans contain the 16 oz of

dog food that the label will claim they contain. You pick 25 cans from each

hour’s production and weigh them. If there are more than two cans that contain

less than 16 oz, you are to discard the production from that hour. If in a certain

hour, 5 % of the cans of dog food produced actually contain less than 16 oz,

what is the probability that the whole hour’s production will be discarded?

24. A medical report shows that 5 % of stock brokers suffer stress and need medical

attention. There are 10 brokers working for your brokerage house. What is the

probability that three of them will need medical attention as a result of stress?

25. There are 38 numbers in the game of roulette. They are 00, 0, 1, 2, . . ., 36. Each
number has an equal chance of being selected. In the game, the winning number
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is found by a spin of the wheel. Say a gambler bets $1 on the number 35 three

times.

(a) What is the probability that the gambler will win the second bet?

(b) What is the probability that the gambler will win two of the three bets?

26. In the game of roulette, a gambler who wins the bet receives $36 for every

dollar she or he bet. A gambler who does not win receives nothing. If the

gambler bets $1, what is the expected value of the game?

27. A company found that on average, on a given day, .5 % of its employees call in

sick. Assume a Poisson distribution. What is the probability that fewer than two

of 300 employees will call in sick?

28. Billings Company is considering leasing a computer for the next 3 years. Two

computers are available. The net present value of leasing each computer in the

next 3 years, under different business conditions, is summarized in the follow-

ing table.

Business is

Good Bad

Plan A: big computer 200,000 20,000

Plan B: small computer 150,000 100,000

A consulting company estimates that the chances of having good and of having

bad business are 20 % and 80 %, respectively. Compute the expected net

present value of leasing a big computer. Compute the expected value of leasing

a small computer. What are the variances of these two plans?

29. The makers of two kinds of cola are having a contest in the local shopping mall.

Assume that 60 % of the people in this region prefer brand A and 40 % prefer

brand B. Ten local residents were randomly selected to test the colas. What is

the probability that five of these 10 testers will prefer brand A?

30. In a certain statistics course, the misguided professor is very lenient. He fails

about 1 % of the students in the class. Assume that the probability of failing the

course follows a Poisson distribution. In a certain year, the professor teaches

400 students. What is the probability that no one fails the course? What is the

average number of failing students?

31. A factory examines its work injury history and discovers that the chance of

there being an accident on a given workday follows a Poisson distribution. The

average number of injuries per workday is .01. What is the probability that

there will be three work injuries in a given month (30 days)?

32. The state highway bureau found that during the rush hour, in the treacherous

section of a highway, an average of three accidents occur. The probability of

there being an accident follows a Poisson distribution. What is the probability

that there is no accident in a given day?

33. In question 32, what is the probability that there are no traffic accidents in all

five workdays of a week?
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34. Of seven prominent financial analysts who are attending a meeting, three are

pessimistic about the future of the stock market, and four are optimistic. A

newspaper reporter interviews two of the seven analysts. What is the probabil-

ity that one of these interviewees takes an optimistic view and the other a

pessimistic view?

35. After assembly, a finished TV is left turned on for one full day (24 h) to

determine whether the product is reliable. On average, two TVs break down

each day. Yesterday 500 TVs were produced. What is the probability that less

than one TV broke down?

36. A soft drink company argues that its new cola is the favorite soft drink of the

next generation. Ten teenagers were picked to test-drink the cola one by one.

Assume that five of them liked the new cola and the rest did not.

(a) What is the probability that the first test-drinker liked the new cola?

(b) What is the probability that the second test-drinker liked the new cola?

(c) What is the probability that after five test-drinks, the new product received

three yes votes and two no votes?

37. Suppose school records reveal that historically, 10 % of the students in Milton

High School have dropped out of school. What is the probability that more than

two students in a class of 30 will drop out?

38. An insurance company found that one of 5,000 50-year-old, nonsmoking males

will suffer a heart attack in a given year. The company has 50,000 50-year-old,

nonsmoking male policyholders. What is the probability that fewer than three

such policyholders will suffer a heart attack this year?

39. Suppose that of 40 salespersons in a company, 10 are females and the rest

males. Five of them are randomly chosen to attend a seminar. What is the

probability that three females and two males are chosen?

40. Consider a single toss of a fair coin, and define X as the number of heads

that come up on that toss. Then X can be 0 or 1, with a probability of 50 %.

The expected value of X is 1
2
. Can we “expect” to get 1

2
a head when we toss the

coin? If not, how should we interpret the concept of the expected value?

41. What is a random variable? What is a discrete random variable? What is a

continuous random variable? Give some examples of discrete random

variables.

42. Tell whether each of the following is a discrete or a continuous random

variable:

(a) The number of beers sold at a bar during a particular week

(b) The length of time it takes a person to drive 50 miles

(c) The interest rate on 3-month Treasury bills

(d) The number of products returned to a store on a particular day

43. An analyst calculates the probability of McGregor stock going up in value for

any month as .6 and the probability of the same stock going down in any month
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as .4. Calculate the probability that the stock will go up in value in exactly

7 months during a year. (Assume independence.)

44. Using the information from question 43, compute the probability that the stock

will go up in at least 7 months during the year.

45. What is a Bernoulli trial? Give some examples of a Bernoulli trial related to the

binomial distribution.

46. What is the Poisson distribution? Give some examples of situations wherein it

would be appropriate to use the Poisson distribution. Compare the Poisson

approximation to the binomial distribution.

47. Suppose Y represents the number of times a homemaker stops by the local

convenience store in a week. The probability distribution of Y follows. Find the

expected value and variance of Y.

y Probability

0 .15

1 .25

2 .25

3 .20

4 .15

48. The managers of a grocery store are interested in knowing how many people

will shop in their store in a given hour. Suppose they collect data and find that

the average number of people who enter the store in any 15-min period is 12.

Find the probability that eight people will enter the store in any 15-min period.

What is the probability that no more than eight people will enter the store in any

15-min period?

49. Suppose you are tossing a fair coin 20 times. What is the probability that you

will toss exactly five heads? What is the probability that you will toss five or

fewer heads?

50. Calculate the mean and variance for the distribution given in question 49.

51. You are rolling a six-sided fair die eight times. What is the probability that you

will roll exactly two sixes? What is the probability that you will roll two or

fewer sixes?

52. Calculate the mean and variance for the distribution given in question 51.

53. Doctors at the Centers for Disease Control estimate that 30 % of the population

will catch the Tibetan flu. What is the probability that in a sample of 10 people,

exactly three will catch the flu? What is the probability that three or fewer

people in this sample will catch the flu? (Assume that the conditions of a

Bernoulli process apply.)

54. A golfer enters a long-driving contest in which he wins if he drives the golf ball

300 yards or more and loses if he drives it less than 300 yards. Assume that

every time he hits a golf ball, he has a 40 % chance of driving it over 300 yards.
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If the golfer gets to hit four balls and needs only one 300-yard drive to win,

what is the probability that he will win?

55. A phone marketing company knows that the number of people who answer the

phone between 10:00 and 10:15 a.m. has a Poisson distribution. The average

number is eight. What is the probability that the phone company will reach

exactly 10 people when it calls during this period? What is the probability that

it will reach exactly three people?

56. A market survey shows that 75 % of all households own a VCR. Suppose 100

households are surveyed.

(a) What is the probability that none of the households surveyed owns a VCR?

(b) What is the probability that exactly 75 of the households surveyed own a

VCR?

(c) Suppose X is the number of households that own a VCR. Compute the mean

and variance for X.

57. You are given the following information about a stock:

S ¼ $100 Price of stock

X ¼ $10 l Exercise price for a call option on the stock

r ¼ .005 Interest rate per month

n ¼ 5 Number of months until the option expires

u ¼ 1.10 Amount of increase if stock goes up

d ¼ .95 Amount of decrease if stock goes down

Calculate the value of the call option if the stock goes up in 3 out of the

5 months.

58. Answer question 57 when u ¼ 1.20. How does a change in the amount of

increase if the stock goes up affect the value of the call option?

59. Answer question 57 when d ¼ .85. How does a change in the amount of

decrease if the stock goes down affect the value of the call option?

60. Answer question 57 when X ¼ $95. How does a change in the exercise price

affect the value of the call option?

61. Answer question 57 when S ¼ $110. How does a change in the value of the

stock affect the value of the call option?

62. Answer question 57 again, finding the value of the option if the stock goes up in

4 out of the 5 months.

63. Suppose a box is filled with 25 white balls and 32 red halts. Find the probability

of drawing six red balls and four white balls in 10 draws without replacement.

64. Redo question 63 with replacement.

65. You are drawing five cards from a standard deck of cards with replacement.

You win if you draw at least three red cards in five draws. What is the

probability of your winning?

66. Two tennis players are playing in a final-set tie breaker. Player A is considered

to have a 70–30 % edge over player B. The player who wins seven of 13 points
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will win the championship. What is the probability that player B will win the

championship?

67. A car sales representative sees an average of four customers in a day. Each time

she talks to a customer, she has a 25 % chance of making a deal. What is the

chance that she will make four deals after talking to four customers in a day?

68. Again consider the car sales rep in question 67. What is the probability that she

will make at least two sales after speaking to four customers?

69. Again consider the car sales rep in question 67. What is the probability that she

will make exactly two sales after speaking to four customers?

70. The following test is given to people who claim to have extrasensory percep-

tion (ESP). Five cards with different shapes on them are hidden from the

person. A card is randomly drawn, and the person is then supposed to guess

(or use ESP to determine) the shape on the card. Suppose that this test is

administered 10 times with replacement. What is the probability that the

subject will get five correct? Do you think getting more than five out of 10

correct supports the subject’s claim to be endowed with ESP?

71. Again consider the test in question 70. What is the probability that a person

taking the test will get eight out of 20 correct? Do you believe that a person who

gets eight out of 20 correct has ESP?

72. Say we toss two six-sided dice and let the random variable be the total number

of dots observed.

(a) Calculate both the probability and the cumulative probability distributions.

(b) Draw a graph associated with probability distribution you obtained

in part (a).

73. (a) Use the monthly rates of return for both GM and Ford listed in Fig. 6.11 to

calculate the correlation coefficient between the monthly rates of return for

these two companies.

(b) Using the results you obtained in part (a) and some other statistics listed in

Fig. 6.11, discuss how these two securities are related and how this

information can be used to make investment decisions.

74. The following table exhibits the monthly rate of return of S&P 500 and

American Express. Use the MINITAB program to:

(a) Calculate the mean and standard deviation of both returns.

(b) Calculate the correlation coefficient between these two sets of monthly

returns.

(c) Explain the results you get from the two questions above.

S&P 500 AMEX

1989 9 �.65 �2.69

10 �2.52 12.73

11 16.54 �2.97

(continued)
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(continued)

S&P 500 AMEX

12 21.42 �1.11

1990 1 �6.88 �15.25

2 8.54 �2.10

3 24.26 �11.59

4 �2.69 6.23

5 9.20 6.93

6 �.89 5.91

75. A production process produces 0.05 % defective parts. A sample of 10,000

parts from the production is selected. In (a) and (b), what is the probability that:

(a) The sample contains exactly two defective parts?

(b) The sample contains no defective parts?

(c) Find the expected number of defective parts.

(d) Find the standard deviation for the number of defective parts.

76. The results of a survey of married couples and the number of children they had

are shown below.

Number of children Probability

0 0.150

1 0.125

2 0.500

3 0.175

4 0.050

Determine the expected number of children and the standard deviation for the

number of children.

77. The average number of calls received by an operator in a 30-min period is 12.

(a) What is the probability that between 17:00 and 17:30 the operator will

receive exactly eight calls?

(b) What is the probability that between 17:00 and 17:30 the operator will

receive more than nine calls but fewer than 15 calls?

(c) What is the probability that between 17:00 and 17:30 the operator will

receive no calls?

78. In a lot of 200 parts, 50 of them are defective. Suppose a sample of 10 parts is

selected at random, what is the probability that two of them are defective? What

is the expected number of defective parts? What is the standard deviation of the

number of defective parts?
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Appendix 1: TheMean and Variance of the Binomial Distribution

Let Xi represent the Bernoulli random variable; then the random variables X1, X2,

. . ., Xn are independent Bernoulli variables. From Eqs. 6.3 and 6.4, we know that the

mean of a Bernoulli variable is

EðXiÞ ¼
X2
i¼1

xiP xið Þ ¼ 0ð1� pÞ þ 1ðpÞ ¼ p (6.32)

and that the variance is

Var Xið Þ ¼
X2
i¼1

xi � mXð Þ2P xið Þ

¼ 0� pð Þ2ð1� pÞ þ 1� pð Þ2p ¼ pð1� pÞ ð6:33Þ

To find the mean and variance of the binomial distribution, we use the fact that

the binomial random variable can be expressed as the sum of independent Bernoulli

random variables (Xi):

X ¼ X1 þ X2 þ � � � þ Xn (6.34)

From Eqs. 6.30 and 6.32, we can derive Eq. 6.11 as

EðXÞ ¼ m ¼ E X1 þ X2 þ � � � þ Xnð Þ ¼ E X1ð Þ þ E X2ð Þ þ � � � þ E Xnð Þ
¼ np (6.35)

Because the Xi variables are statistically independent of one another, the vari-

ance of their sum is equal to the sum of their variances. Therefore, following

Eq. 6.31, we can derive Eq. 6.12 as

s2 ¼ Var
Xn
i¼1

Xi

 !
¼ Var X1ð Þ þ Var X2ð Þ þ � � � þ Var Xnð Þ ¼ npð1� pÞ

Appendix 2: Applications of the Binomial Distribution

to Evaluate Call Options

In this appendix, we show how the binomial distribution is combined with some

basic finance concepts to generate a model for determining the price of stock

options.
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What Is an Option?

In the most basic sense, an option is a contract conveying the right to buy or sell a

designated security at a stipulated price. The contract normally expires at a

predetermined date. The most important aspect of an option contract is that the

purchaser is under no obligation to buy; it is, indeed, an “option.” This attribute of

an option contract distinguishes it from other financial contracts. For instance,

whereas the holder of an option may let his or her claim expire unused if he or

she so desires, other financial contracts (such as future and forward contracts)

obligate their parties to fulfill certain conditions.

A cad option gives its owner the right to buy the underlying security a put option
the right to sell. The price at which the stock can be bought (for a call option) or sold

(for a put option) is known as the exercise price.

The Simple Binomial Option Pricing Model

Before discussing the binomial option pricing model, we must recognize its two

major underlying assumptions. First, the binomial approach assumes that trading

takes place in discrete time – that is, on a period-by-period basis. Second, it is

assumed that the stock price (the price of the underlying asset) can take on only two

possible values each period; it can go up or go down.

Say we have a stock whose current price per share S can advance or decline

during the next period by a factor of either u (up) or d (down). This price either will
increase by the proportion u � 1 � 0 or will decrease by the proportion 1 � d,
0 < d < 1. Therefore, the value S in the next period will be either uS or dS. Next,
suppose that a call option exists on this stock with a current price per share of C and

an exercise price per share of X and that the option has one period left to maturity.

This option’s value at expiration is determined by the price of uS underlying stock

and the exercise price X. The value is either

Cu ¼ Maxð0; uS� XÞ (6.36)

or

Cd ¼ Maxð0; dS� XÞ (6.37)

Why is the call worth Max(0, uS � X) if the stock price is uS? The option holder
is not obliged to purchase the stock at the exercise price of X, so she or he will

exercise the option only when it is beneficial to do so. This means the option can

never have a negative value. When is it beneficial for the option holder to exercise

the option? When the price per share of the stock is greater than the price per share

at which he or she can purchase the stock by using the option, which is the exercise

price X? Thus, if the stock price uS exceeds the exercise price X, the investor can
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exercise the option and buy the stock. Then he or she can immediately sell it for uS,
making a profit of uS � X (ignoring commission). Likewise, if the stock price

declines to dS, the call is worth Max(0, dS � X).
Also for the moment, we will assume that the risk-free interest rate for both

borrowing and lending is equal to r percent over the one time period and that the

exercise price of the option is equal to X.
To intuitively grasp the underlying concept of option pricing, we must set up a

risk-free portfolio – a combination of assets that produces the same return in every

state of the world over our chosen investment horizon. The investment horizon is

assumed to be one period (the duration of this period can be any length of time, such

as an hour, a day, and a week). To do this, we buy h shares of the stock and sell the
call option at its current price of C.10 Moreover, we choose the value of h such that

our portfolio will yield the same payoff whether the stock goes up or down:

hðuSÞ � Cu ¼ hðdSÞ � Cd (6.38)

By solving for h, we can obtain the number of shares of stock we should buy for

each call option we sell:

h ¼ Cu � Cd

ðu� dÞS (6.39)

Here h is called the hedge ratio. Because our portfolio yields the same return

under either of the two possible states for the stock, it is without risk and therefore

should yield the risk-free rate of return, r percent, which is equal to the risk-free

borrowing and lending rate. The condition must be true; otherwise, it would be

possible to earn a risk-free profit without using any money. Therefore, the ending

portfolio value must be equal to (1 þ r) times the beginning portfolio

value, hS � C:

ð1þ rÞðhS� CÞ ¼ hðuSÞ � Cu ¼ hðdSÞ � Cd (6.40)

Note that S and C represent the beginning values of the stock price and the option

price, respectively.

Setting R ¼ 1 þ r, rearranging to solve for C, and using the value of h from

Eq. 6.39, we get

C ¼ R� d

u� d

� �
Cu þ u� R

u� d

� �
Cd

	 
�
R: (6.41)

where d < r < u. To simplify this equation, we set

10 To sell the call option means to write the call option. If a person writes a call option on stock A,

then he or she is obliged to sell at exercise price X during the contract period.
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p ¼ R� d

u� d
so 1� p ¼ u� R

u� d

� 
(6.42)

Thus we get the option’s value with one period to expiration:

C ¼ pCu þ ð1� pÞCd½ � R= (6.43)

This is the binomial call option valuation formula in its most basic form. In other

words, this is the binomial option valuation formula with one period to expiration of

the option.

To illustrate the model’s qualities, let’s plug in the following values while

assuming the option has one period to expiration. Let

X ¼ $100

S ¼ $100

u ¼ ð1:10Þ; so uS ¼ $110

d ¼ ð:90Þ; so dS ¼ $90

R ¼ 1þ r ¼ 1þ :07 ¼ 1:07

First we need to determine the two possible option values at maturity, as

indicated in Table 6.13.

Next we calculate the value of p as indicated in Eq. 6.42:

p ¼ 1:07� :90

1:10� :90
¼ :85 so 1� p ¼ 1:10� 1:07

1:10� :90
¼ :15

Solving the binomial valuation equation as indicated in Eq. 6.43, we get

Table 6.13 Possible option values at maturity

Today

Stock (S) Option (C) Next period (maturity)

C

uS ¼ $110Cu ¼ Max ð0; uS� XÞ
¼ Max 0; 110� 100ð Þ
¼ Max 0; 10ð Þ
¼ $10

$100
dS ¼ $90Cd ¼ Max 0; dS� Xð Þ

¼ Max 0; 90� 100ð Þ
¼ Max 0;�10ð Þ
¼ $0
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C ¼ :85ð10Þ þ :15ð0Þ½ � 1:07=

¼ $7:94

The correct value for this particular call option today, under the specified

conditions, is $7.94. If the call option does not sell for $7.94, it will be possible

to earn arbitrage profits. That is, it will be possible for the investor to earn a risk-free

profit while using none of his or her own money. Clearly, this type of opportunity

cannot continue to exist indefinitely.

Fig. 6.12 Price path of underlying stock (Source: R. J. Rendelman, Jr., and B. J. Bartter(1979).

“Two-State Option Pricing,” Journal of Finance 34 (December), 1096)

11 This section is essentially based on Cheng F. Lee, Joseph E. Finnerty, and Donald H. Wort

(1990) Security Analysis and Portfolio Management (Glenview. III.: Scott. Foresman),

Chapter 15. Copyright # 1990 by Cheng F. Lee. Joseph E. Finnerty, and Donald H. Wort.

Reprinted by permission of Harper Collins Publishers.
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The Generalized Binomial Option Pricing Model

Suppose we are interested in the case where there is more than one period until the

option expires.11 We can extend the one-period binomial model to consideration of

two or more periods. Because we are assuming that the stock follows a binomial

process, from one period to the next, it can only go up by a factor of u or go down by
a factor of d. After one period the stock’s price is either uS or dS. Between the first

and second periods, the stock’s price can once again go up by u or down by d, so the
possible prices for the stock two periods from now are uuS, udS, and ddS. This
process is demonstrated in tree diagram form (Fig. 6.12) in Example 6.23 later in

this appendix.

Note that the option’s price at expiration, two periods from now, is a function of

the same relationship that determined its expiration price in the one-period model.

More specifically, the call option’s maturity value is always

CT ¼ Max 0; ST � X½ � (6.44)

where T designates the maturity date of the option.

To derive the option’s price with two periods to go (T ¼ 2), it is helpful as an

intermediate step to derive the value of Cu and Cd with one period to expiration

when the stock price is uS and dS, respectively:

Cu ¼ pCuu þ ð1� pÞCud½ � R= (6.45)

Cd ¼ pCdu þ ð1� pÞCdd½ �=R (6.46)

Equation 6.45 tells us that if the value of the option after one period is Cu, the

option will be worth either Cuu (if the stock price goes up) or Cud (if stock price goes

down) after one more period (at its expiration date). Similarly, Eq. 6.46 shows that

if the value of the option is Cd after one period, the option will be worth either Cdu

or Cdd at the end of the second period. Replacing Cu and Cd in Eq. 6.43 with their

expressions in Eqs. 6.45 and 6.46, respectively, we can simplify the resulting

equation to yield the two-period equivalent of the one-period binomial pricing

formula, which is

C ¼ p2Cuu þ 2pð1� pÞCud þ ð1� pÞ2Cdd

h i
=R2 (6.47)

In Eq. 6.47, we used the fact that Cud ¼ Cdu because the price will be the same in

either case.

We know the values of the parameters S and X. If we assume that R, u, and d will
remain constant over time, the possible maturity values for the option can be

determined exactly. Thus, deriving the option’s fair value with two periods to

maturity is a relatively simple process of working backward from the possible

maturity values.
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Using this same procedure of going from a one-period model to a two-period

model, we can extend the binomial approach to its more generalized form, with n
periods to maturity:

C ¼ 1

Rn

Xn
k¼0

n!

k! n� kð Þ!p
k 1� pð Þn�k

Max 0; ukdn�kS� X
� �

(6.48)

To actually get this form of the binomial model, we could extend the two-period

model to three periods, then from three periods to four periods, and so on. Equa-

tion 6.48 would be the result of these efforts. To show how Eq. 6.48 can be used to

assess a call option’s value, we modify the example as follows: S ¼ $100,

X ¼ $100, R ¼ 1.07, n ¼ 3, u ¼ 1.1, and d ¼ .90.

First we calculate the value of p from Eq. 6.42 as .85, so 1 � p is. 15. Next we

calculate the four possible ending values for the call option after three periods in

terms of Max[0, ukdn�kS � X]:

C1 ¼ Max 0; 1:1ð Þ3 :90ð Þ0 100ð Þ � 100
h i

¼ 33:10

C2 ¼ Max 0; 1:1ð Þ2 :90ð Þ 100ð Þ � 100
h i

¼ 8:90

C3 ¼ Max 0; 1:1ð Þ :90ð Þ2 100ð Þ � 100
h i

¼ 0

C4 ¼ Max 0; 1:1ð Þ0 :90ð Þ3 100ð Þ � 100
h i

¼ 0

Now we insert these numbers (C1, C2, C3, and C4) into the model and sum the

terms:

C ¼ 1

ð1:07Þ3
3!

0!3!

	
ð:85Þ0ð:15Þ3 � 0þ 3!

1!2!
ð:85Þ1ð:15Þ2 � 0

þ 3!

2!1!
ð:85Þ2ð:15Þ1 � 8:90þ 3!

3!0!
ð:85Þ3ð:15Þ0 � 33:10




¼ 1

1:225
0þ 0þ 3� 2� 1

2� 1� 1

	
ð:7225Þð:15Þð8:90Þ

þ 3� 2� 1

3� 2� 1� 1
� ð:61413Þð1Þð33:10Þ

¼ 1

1:225
½ð:32513� 8:90Þ þ ð:61413� 33:10Þ�

¼$18:96

As this example suggests, working out a multiple-period problem by hand with

this formula can become laborious as the number of periods increases. Fortunately,

programming this model into a computer is not too difficult.

Now let’s derive a binomial option pricing model in terms of the cumulative

binomial density function. As a first step, we can rewrite Eq. 6.48 as

266 6 Discrete Random Variables and Probability Distributions



C ¼ S
Xn
k¼m

n!

k! n� kð Þ! p
k 1� pð Þn�k u

kdn�k

Rn

" #
� X

Rn

Xn
k¼m

n!

k! n� kð Þ! p
k 1� pð Þn�k

" #

(6.49)

This formula is identical to Eq. 6.48 except that we have removed the Max

operator. In order to remove the Max operator, we need to make ukdn�kS � X
positive, which we can do by changing the counter in the summation from k ¼ 0 to

k ¼ m. What is m? It is the minimum number of upward stock movements

necessary for the option to terminate “in the money” (i.e., ukdn�kS � X > 0).

How can we interpret Eq. 6.49? Consider the second term in brackets; it is just a

cumulative binomial distribution with parameters of n and p.12 Likewise, via a

small algebraic manipulation, we can show that the first term in the brackets is also

a cumulative binomial distribution. This can be done by defining p0 � (u/R)p and

1� p0 � d=Rð Þ 1� pð Þ:13 Thus

pk 1� pð Þn�k u
kdn�k

Rn
¼ p0k 1� p0ð Þn�k

Therefore, the first term in brackets is also a cumulative binomial distribution

with parameters of n and p0. Using Eq. 6.10 in the text, we can write the binomial

call option model as

C ¼ SB1ðn; p0;mÞ � X

Rn
B2ðn; p;mÞ (6.50)

where

12Note that this is not exactly a cumulative binomial distribution as defined by a statistician.

Strictly speaking,

1� ½ � ¼
Xm�1

k¼0

n!

k! n� kð Þ!p
k 1� pð Þm�k

is a cumulative binomial distribution.
13 Because u < R < d,

ðu=RÞP ¼ 1� d=R

1� d=u
<1
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B1 n; p0;mð Þ ¼
Xn
k¼m

nCkp
0k 1� p0ð Þn�k

B2ðn; p;mÞ ¼
Xn
k¼m

nCkp
k 1� pð Þn�k

and m is the minimum amount of time the stock has to go up for the investor to

finish in the money (i.e., for the stock price to become larger than the exercise

price).

In this appendix, we showed that by employing the definition of a call option and

by making some simplifying assumptions, we can use the binomial distribution to

find the value of a call option. In the next chapter, we will show how the binomial

distribution is related to the normal distribution and how this relationship can be

used to derive one of the most famous valuation equations in finance, the

Black–Scholes option pricing model.

Example 6.23 A Decision Tree Approach to Analyzing Future Stock Price. By

making some simplifying assumptions about how a stock’s price can change from

one period to the next, it is possible to forecast the future price of the stock by

means of a decision tree. To illustrate this point, let’s consider the following

example.

Suppose the price of company A’s stock is currently $100. Now let’s assume that

from one period to the next, the stock can go up by 17.5 % or go down by 15 %. In

addition, let us assume that there is a 50 % chance that the stock will go up and a

50 % chance that the stock will go down. It is also assumed that the price movement

of a stock (or of the stock market) today is completely independent of its movement

in the past; in other words, the price will rise or fall today by a random amount. A

sequence of these random increases and decreases is known as a random walk.
Method of testing the randomness of stock rates of return will be discussed in Sect.

17.8 of Chap. 17.

Given this information, we can lay out the paths that the stock’s price may take.

Figure 6.12 shows the possible stock prices for company A for four periods.

Note that in period 1 there are two possible outcomes: the stock can go up in

value by 17.5 % to $117.50 or down by 15 % to $85.00. In period 2, there are four

possible outcomes. If the stock went up in the first period, it can go up again to

$138.06 or down in the second period to $99.88. Likewise, if the stock went down

in the first period, it can go down again to $72.25 or up in the second period to

$99.88. Using the same argument, we can trace the path of the stock’s price for all

four periods.
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If we are interested in forecasting the stock’s price at the end of period 4, we can

find the average price of the stock for the 16 possible outcomes that can occur in

period 4:

�P ¼
P16
i¼1

Pi

16
¼ 190:61þ 137:89þ � � � þ 52:20

16

¼ $105:09

We can also find the standard deviation for the stock’ return:

sP ¼ 190:61� 105:09ð Þ2 þ � � � þ 52:20� 105:09ð Þ2
16

" #1=2

¼ $34:39

�p and sP can be used to predict the future price of stock A.
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7.1 Introduction

In Chap. 6, we discussed discrete random variables and their distributions. Particu-

larly, we focused on the means and variances of binomial, hypergeometric, and

Poisson distributions. Although the distributions derived from these discrete
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random variables are useful, they are limited. And therefore, statisticians have

derived several important continuous distributions to substitute for and/or comple-

ment the discrete distributions. The normal distribution is the first important

continuous distribution discussed in this chapter. Examples of continuous random

variables include the number of miles a car travels on 1 gal of gas and the exact

weight of a box of cereal.

The lognormal distribution, a transformation of the normal distribution, is the

second important continuous distribution we will examine. It is useful in many

business and economic analyses. Because the lognormal distribution is valid only

for nonnegative values of the random variable, it is more appropriate than the

normal distribution for describing the distribution of a stock’s price.

In this chapter, we also discuss how the normal distribution can be used to

approximate both binomial and Poisson distributions when the sample size is large.

7.2 Probability Distributions for Continuous

Random Variables

7.2.1 Continuous Random Variables

Unlike the values of discrete random variables, which are limited to a finite or

countable number of distinct (integer) values, values of continuous variables are not
limited to being integers; theoretically, they are infinitely divisible. A continuous
random variablemay take on any value within an interval, as we noted in Sect. 6.2.

Measures of height, weight, time, distance, and temperature fit naturally into this

category. In general, specific probabilities cannot be assigned to individual values

of continuous random variables. The probability that any one specific value will

occur for a continuous random variable is zero. For example, the probability that

today’s temperature is exactly 83.231� is zero, because temperature is regarded as a

continuous variable.

One may argue that in the real world, all data are discrete. For example, if a scale

permits determination of weight only to the nearest thousandth of a pound, then any

resulting data will be discrete in units of thousandths of pounds. Despite the

limitations of measuring instruments, however, it is useful in many instances to

use continuous mathematical models that treat certain discrete variables as contin-

uous. If we use a continuous mathematical model of heights of individuals, where

the underlying data are discrete, we may conceive of this model not as a convenient

approximation but rather as a model of reality that is more accurate than the discrete

data from which the model was derived. In sum, even though measurement

limitations make continuous data discrete, we are going to treat data as continuous

because the model that results when we do so is more accurate.
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7.2.2 Probability Distribution Functions for Discrete
and Continuous Random Variables

We shall now consider experiments for which the theoretical set of possible

outcomes forms a continuous interval on the real number line. Note that such

observations are often rounded off so that the set of observations may seem to

come from a finite set of real numbers. For such an experiment, we should consider

conceptual sample spaces that are intervals of finite or infinite length. In this

section, we contrast probability distribution functions for continuous random

variables with those for discrete random variables, which we discussed in Sect. 6.3.

7.2.2.1 Approximation of a Histogram by a Continuous Curve

In Chap. 6, we showed that the probability distribution of a discrete random

variable can be represented by a histogram. It can also be shown that a histogram

can be approximated by a continuous curve. Now we use a fair coin-tossing

example to demonstrate the meaning of a graph of the probability distribution of

a continuous random variable. This example demonstrates the relationship between

the probability distribution of a discrete variable and the probability distribution of

a continuous variable.

Example 7.1 Using a Continuous Curve to Approximate the Histogram of a Fair
Coin-Tossing Experiment. The binomial distribution discussed in Chap. 6 is an

example of a probability distribution of a discrete random variable. To get better

insight into the meaning of a graph of the probability distribution of a discrete

versus a continuous random variable, we first graph a binomial distribution as a

histogram.

If we toss a fair coin four times, the probabilities of our getting 0, 1,2, 3, and 4

heads, respectively, can be calculated by using the binomial formula, Eq. 6.9:

PðX1 ¼ 4 tailsÞ ¼ 4

0

� �
1

2

� �0
1

2

� �4
¼ 1

16

PðX2 ¼ 1 head and 3 tailsÞ ¼ 4

1

� �
1

2

� �
1

2

� �3
¼ 4

16

PðX3 ¼ 2 heads and 2 tailsÞ ¼ 4

2

� �
1

2

� �2
1

2

� �2
¼ 6

16

PðX4 ¼ 3 heads and 1 tailÞ ¼ 4

3

� �
1

2

� �3
1

2

� �
¼ 4

16

PðX5 ¼ 4 headsÞ ¼ 4

4

� �
1

2

� �4
1

2

� �0
¼ 1

16
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This is a binomial distribution with p¼ 1
2
and n¼ 4. The graph of this histogram

is shown in Fig. 7.1. Using this histogram, we interpret 0, 1, 2, 3, and 4 heads not as

discrete values but as midpoints of five classes whose respective limits are – 1
2
to 1

2
,

1
2
to 1 1

2
, 1 1

2
to 2 1

2
, 2 1

2
to 3 1

2
, and 3 1

2
to 4 1

2
. The probabilities or relative frequencies

associated with these classes are represented in the graph by the areas of rectangles

or bars. Thus, because the rectangle for the class interval 1 1
2
to 2 1

2
has 1.5 times the

area of that for the interval 2 1
2
to 3 1

2
, it represents 1.5 times the probability. We can

draw a continuous curve over the histogram and make the total area of this curve

equal to the total area of the sum of five rectangles, which is 1.

The curve would pass through the rectangle at B for 3 heads, as shown in

Fig. 7.1. For example, area ABCDE represents the probability of the class with 3

heads in terms of a continuous-variable curve. This is due to the fact that DABF is

approximately equal to DBCG. The area under the curve bounded by the class limits

for any given class represents the probability of occurrence of that class.

If n increased (say, to 6 or 200), the width of the rectangles would decrease, and

the corresponding shape of the histogramwould approach that of a continuous curve

more closely. Just as the total area of the rectangles in a histogram, representing a

discrete random variable distribution, is equal to 1, so is the total area under the

continuous curve representing a continuous random variable distribution.

We will use this example first to review the probability distributions for discrete

variables. Then we will develop probability distributions for continuous variables by

contrasting them with the probability functions of discrete variables discussed here.

Fig. 7.1 Approximation of a binomial distribution histogram by a continuous curve (n ¼ 4,

p ¼ 1/2)
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7.2.2.2 Cumulative Probability and Cumulative Distribution Function for

Discrete Random Variables

Let the value of the probability mass function (PMF) of a discrete random variable

X at x be denoted as P(x). In accordance with Eq. 6.2, the cumulative probability for
X, which is the probability that X will assume a value less than or equal to a given

number xk, can be defined as

FðxkÞ ¼ PðX � xkÞ ¼ Pðx1Þ þ Pðx2Þ þ � � � þ PðxkÞ ¼
Xk
i¼1

PðxiÞ (6.2)

where x1 < x2 . . . < xk.
Now let us see how cumulative probabilities are calculated.

Example 7.2 Cumulative Probability for Fair Coin-Tossing Experiments. In the

coin-tossing case discussed in Example 7.1, P(x1) ¼ 1
16
, P(x2) ¼ 4

16
, P(x3) ¼ 6

16

P(x4) ¼ 4
16
, and P(x5) ¼ 1

16
. We calculate the cumulative probabilities F(x2), F(x4),

and F(x5) by using Eq. 6.2:

Fðx2Þ ¼ 1

16
þ 4

16
¼ 5

16

Fðx4Þ ¼ 1

16
þ 4

16
þ 6

16
þ 4

16
¼ 15

16

Fðx5Þ ¼ 1

16
þ 4

16
þ 6

16
þ 4

16
þ 4

16
þ 1

16
¼ 1

If the values outside the range of X (i.e., the values smaller than x1 or larger

than xk) occur with probability equal to zero, then in accordance with Eq. 6.2a, the

cumulative distribution function (CDF) of X can be written as

FðxkÞ ¼
Xk
i¼�1

PðxiÞ (6.2a)

The probability that X lies between a and b is

Pða � X � bÞ ¼ FðbÞ � FðaÞ

¼
Xb
i¼1

PðxiÞ �
Xa
i¼1

PðxiÞ ð7:1Þ

where F(a) and F(b)are cumulative probabilities at X ¼ b and X ¼ a, respectively.

Example 7.3 Cumulative Distribution Function for the Tossing of a Fair Coin. For

the fair coin-tossing case discussed in Example 7.1, the CDFs calculated in accor-

dance with Eq. 6.2 are presented in Table 7.1. Using the probabilities of Table 7.1,

we calculate the probability that lies between x4 and x2 as

Pðx2 � X � x4Þ ¼ Fðx4Þ � Fðx2Þ ¼ 15
16
� 5

16
¼ 10

16
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7.2.2.3 Probability Distributions for Continuous Random Variables

The probability density function (PDF) for a continuous random variable is a curve,

f(x), that shows the probability of a range of values as the area under the curve. For
example, the probability of the birth weights of infants being between 2 and 12 lb

can be written P(2 < X < 12). Graphically, it is represented by the shaded area of

Fig. 7.2.

For continuous random variables, the probability that X has a value between a
and b is written P(a� X� b). This probability is equal to P(a < X < b), because the
probability at a point is considered to be zero; that is, P(X¼ a)¼ 0 and P(X¼ b)¼ 0.

Thus, we can write P(a � X � b) ¼ P(a < X � b) ¼ P(a � X < b) ¼ P(a < X < b).
Analogously to Eq. 7.1, we define the probability that X lies between a and b for

a continuous random variable as

Pða<X< bÞ ¼ FðbÞ � FðaÞ (7.2)

To show how Eq. 7.2 can be used to calculate the probability of a continuous

variable, we first discuss the simplest continuous cumulative density function, the

Table 7.1 Cumulative

distribution function for coin

tossing

Possible values of X F(x)

0 1/16

1 5/16

2 11/16

3 15/16

4 1

Fig. 7.2 Probability density function
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so-called cumulative uniform density function. The density and cumulative density

functions for this random variable can be defined as

f ðXÞ ¼
1

d � c
if c � X � d

0 elsewhere

8<
: (7.3a)

FðX � xÞ ¼
0 x<c
x� c

d � c
c � x � d

1 x>d

8><
>: (7.3b)

where X ¼ x is a continuous random variable that represents a point in the interval

c� x� d, as described in Fig. 7.3. Any one value of a uniform random variable is as

likely to occur as any other, so the distribution is evenly spread over the entire

region of possible values. In Chap. 9, we will discuss the uniform distribution
further.

If there exist two points, a and b, between c and d in Fig. 7.3, the probability of x
being between a and b for a uniform distribution can be calculated as follows: first,

substituting x ¼ a and x ¼ b into Eq. 7.3b, we get

FðaÞ ¼ a� c

d � c

FðbÞ ¼ b� c

d � c

Then, substituting both F(b) and F(a) into Eq. 7.2, we obtain the probability of

x being between a and b:

Fig. 7.3 The uniform probability distribution

7.2 Probability Distributions for Continuous Random Variables 277

http://dx.doi.org/10.1007/978-1-4614-5897-5_9


Pða<X< bÞ ¼ b� a

d � c

For other types of continuous random variables, the calculation of Eq. 7.2

generally requires knowledge of calculus.1 For example, if c ¼ 10, d ¼ 20,

a ¼ 15, and b ¼ 19, then P(a < X < b) ¼ (19 – 15)/(20 – 10) ¼ .30.

7.3 The Normal and Standard Normal Distribution

7.3.1 The Normal Distribution

The normal distribution is the most widely used continuous density distribution in

statistics. Many random variables have been found to be normally distributed,

including measurements of weight, height, age, time, snowfall, yields, dimension,

and other measures of interest to managers in both the public and private sectors.2

When attempting to make an assertion about a population by using sample infor-

mation, a major assumption we often make is that the population has a normal

distribution.

From Fig. 7.4, it is obvious that the normal distribution is centered on its mean.

Because the distribution is symmetric, the mean and median also occur at the same

point. In addition, the bell-shaped normal curve has a single peak; it is unimodal.

The normal probability density function (PDF) for a normal variable X gives the

height of an observation such as cd in Fig. 7.4.3

1 The probability that X lies between a and b for a continuous variable can be defined as

Pða<X< bÞ ¼
ðb
a

f ðxÞ dx ¼ FðbÞ � FðaÞ (A)

where f(x) represents the PDF of a continuous random variable X being valued at x.
From integral calculus, we know that the integration (

Ð
) for the continuous case is the

counterpart of the summation (∑) in the discrete case. From Fig. 7.2 and Eq. A, we know that

the probability for a continuous PDF is represented by the area bounded by the curve whose value

at x is f(x), by the x-axis, and by the lines x¼ a and x¼ b.Discussion of areas under the continuous
PDF and of the mean and variance of a continuous variable can be found in Appendix 1.
2 Karl F. Gauss (1777–1855) discovered that the measurement of errors often follows a normal

distribution.
3 The PDF of a normal random variable can be defined as

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
e�ðx�mÞ2=2s2 ; �1< x<1

where p ¼ 3.14159, e ¼ 2.71828, and m(�1 < m< 1) and s2(0 < s2 < 1) are the mean and

variance of the normal random variable X. To graph the normal curve, we must know the

numerical values of m and s2.
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Normally distributed populations with different shapes may nevertheless have

many characteristics in common. The factor that determines shape is standard

deviation: the larger the standard deviation, the wider the curve. Figure 7.5 shows

MINITAB results for three normal distributions with mean 0 and three different

standard deviations. Note that the mean m and standard deviation s completely

characterize the normal PDF.

7.3.2 Areas Under the Normal Curve

7.3.2.1 Measuring the Area Under a Normal Curve

No matter what the values of m and s for a normal probability distribution, the total

area under the normal curve is 1.00, so we may think of areas under the curve as

representing probability. Table 7.2 shows how the area under the curve within a

certain interval can be determined mathematically.4

Fig. 7.4 Normal distribution

There is no closed-form expression for Pða<X< bÞ ¼ Ð ba f ðxÞ dx for the normal probability

distribution. However, the value of the definite integral can be obtained by numerical approxima-

tion procedures. The areas in Table A3 in Appendix A were obtained by using such a procedure

(see Appendix 1).
4 It is virtually impossible to capture all observations under the curve because, theoretically, the

tails continue indefinitely in both directions, never touching the horizontal axis. Integrating the

probability density function over the range from –1 toþ1would yield the total area of a normal

distribution, which is equal to 1.
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Example 7.4 The Normal Distribution: An Application to EPS. Firms frequently

use debt to fund various projects. The overall level at which a company employs

debt throughout its operations directly affects the expected level and range of its

earnings per share (EPS). This is because of the increased risk to which debt

exposes the firm within the capital markets.5 A firm that employs debt is said to

be leveraged. The more debt it uses, the higher the firm is leveraged. A firm that

does not use any debt financing is said to be without leverage.

If we calculate the means and standard deviations for a hypothetical firm with

and without leverage, we can estimate the interval of the possible EPS in the future.

The means and standard deviations of the firm are listed in Table 7.3. Figure 7.6

shows the distributions in terms of the parameter values given in Table 7.3.

When we say that EPS is normally distributed, we mean that as the number of

observations becomes very large, graphing them yields a normal curve. We can

predict EPS intervals for the firm from the information given in Table 7.3 by using

Fig. 7.5 MINITAB results of normal distributions with different standard deviations

Table 7.2 Using the mean and standard deviation to determine the area of a normal distribution

Approximately 68.26 % of the area (probability) under the normal curve lies between – s
and m þ s.

Approximately 95.45 % of the area (probability) under the normal curve lies between m –2s
and m þ 2s.

Approximately 99.73 % of the area (probability) under the normal curve lies between m –3s
and m þ 3s.

Table 7.3 Mean and

standard deviation of EPS
With leverage Without leverage

mEPS ¼ $1.98 mEPS ¼ $1.80

sEPS ¼ $0.32 sEPS ¼ $0.20

5 Increased risk results because interest and principal payments on debt represent legal obligations.

Because stock represents ownership in a company, dividends are not a legal obligation of the firm.
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the empirical rule described in Table 7.2. Over a large number of observations, x
percent will lie within a specified interval that we can determine via the mean and

standard deviation. Table 7.4 shows the results of predictions about the firm’s EPS.

In Table 7.4, X is the EPS for the firm. For example, the last interval statement

implies that without leverage, approximately 99.7 % of EPS should lie between

$1.20 and $2.40.

7.3.2.2 The Standard Normal Distribution and the Z Statistic

There is an infinitely large number of normal curves—one for each pair of values

for m and s. It is neither possible nor necessary to have different tables for every

possible normal curve. The standard normal distribution is a transformation of the

normal distribution. In the standard normal curve, m ¼ 0 and s ¼ 1. This standard

normal curve can be displayed in terms of Z scores (presented in Sect. 4.5) as

indicated in Fig. 7.7.

The standard normal curve helps simplify the calculation of probabilities for

normally distributed populations. Because not all normally distributed random

variables have m ¼ 0 and s ¼ 1, we need to transform the variable so that m ¼ 0 and

s ¼ 1. We do this by using the Z score, which is calculated as follows:

Fig. 7.6 EPS distributions

Table 7.4 Interval

statements about the EPS for a

hypothetical firm

Chance With leverage Without leverage

68 % $1.66 � X � $2.30 $1.60 � X � $2.00

95.5 % $1.34 � X � $2.62 $1.40 � X � $2.20

99.7 % $1.02 � X � $2.94 $1.20 � X � $2.40
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Z ¼ X � m
s

(7.4)

The Z score represents the distance, or deviation, between a given value of the

continuous random variable X and its mean m in standard units. With this informa-

tion in hand, we can construct the standard normal area table as presented in

Table A3 in Appendix A to calculate the area under the curve associated with the

value of Z. It is important to note that for any positive value of Z, we are looking at

only half the curve. We must therefore add .5 to that value to find the total area

under the curve at or below that point.

7.3.3 How to Use the Normal Area Table

Assume that the IQs of undergraduate students at your school are normally

distributed with m ¼ 120 and s ¼ 15. What proportion of these undergraduates

have an IQ between 120 and 142.5? In this case, we have to find the area of the

shaded portion in Fig. 7.8.

To use the normal area table, we need to calculate the 2 value for X ¼ 142.5:

Z ¼ X � m
s

¼ 142:5� 120

15
¼ 1:5

This implies that the value 142.5 lies 1.5 standard deviations above the mean.

Using this information and the normal area table (Table A3 of Appendix A), we find

that the corresponding portion in the table is .4332, as indicated in Fig. 7.8.

Fig. 7.7 Normal probability distribution with m ¼ 0 and s ¼ 1
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Note that the portions in the normal area table show the area under the upper tail

of the normal curve. Because the total area under the normal curve is 1.0, each half

is .5. Hence, the area that we seek in Fig. 7.9 is .5¼ .0668¼ .4332. The sought area

is 43.32 % of the total area. From the probability concepts discussed in Chap. 5, we

can write the event “IQ between 120 and 142.5” as E, and we conclude that P(E) ¼
.4332. In other words, 43.32 % of the undergraduate students at your school have an

IQ between 120 and 142.5.

Alternatively, the MINITAB program can be used to calculate the percentage of

undergraduate students at your school who have IQ scores between 120 and 142.5,

as indicated here:

MTB > SET INTO Cl

DATA> 142.5 120

DATA> END

MTB> CDF Cl;

Fig. 7.8 Normal distribution for student IQs with interval between 120 and 142.5 in shaded area

Fig. 7.9 Normal distribution for student IQs with intervals above 142.5 in shaded area
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SUBC> NORMAL 120 15.

142.5000 0.9332

120.0000 0.5000

MTB> PAPER

From the example, we know that 93.32 % of the students at your school have IQ

scores of 142.5 or below and 50 % of the students have IQ scores of 120 or below.

By subtracting 50 % from 93.32 %, we obtain 43.32 %.

The marketing manager of a chain of supermarkets needed to know the weekly

sales of extra large eggs. He asked one of his staff to do a survey over a 25-week

period. The survey revealed that the weekly sales of extra large eggs were normally

distributed, with a mean of 743 cartons and a standard deviation of 254 cartons

(Journal of Marketing Research, August 1984).
From this information, we can calculate the probability that a supermarket will sell

between 550 and 850 cartons of extra large eggs in a randomly selected week as:

Pf550<X< 850g ¼ P
550� 743

254
� X � 850� 743

254

� �
¼ Pfz � :42g þ Pfz � �:76g
¼ Pfz � :42g þ Pfz � :76g
¼ :1628þ :2764 ¼ :4392 ðFrom Table A3Þ

Example 7.5 Determining Daily Donut Demand (in Dozens). A Dunkin’ Donuts

shop located in New Brunswick, New Jersey, sells dozens of fresh donuts. Any

donuts remaining unsold at the end of the day are either discarded or sold elsewhere at

a loss. The demand for the Dunkin’ Donuts at this shop has followed a normal

distribution with m¼ 50 dozen and s¼ 5 dozen. Howmany dozen donuts should this

Dunkin’ Donuts shopmake each day so that it can meet the demand 95% of the time?

Let the random normal variable X represent the demand for fresh Dunkin’

Donuts (measured in dozens). To meet the demand 95 % of the time, the Dunkin’

Donuts shop must determine an amount—say, A dozen—such that

PðX � AÞ ¼ :95

Similarly to the student IQ case, we can express this probability statement in

terms of Z:

P
X � m
s

� A� m
s

� �
¼ P Z � A� m

s

� �
¼ :95

Because we know that m ¼ 50 and m ¼ 5, we can rewrite the probability

statement as

P Z � A� 50

5

� �
¼ :95
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In accordance with table A3 in Appendix A, a Z curve having an area to the left

equals .95, as shown in Fig. 7.10. From Fig. 7.10, we know that

Pð0 � Z � 1:64Þ ¼ :4495 ffi :45

which means that

PðZ � 1:64Þ ¼ :5þ :45 ¼ :95

Thus

A� 50

5
¼ 1:64

A ¼ 58:2

and

A ¼ 50þ 8:20 ¼ 58:20 dozen

To be conservative, we round this value up to 59 dozen and assume that any

occasional surplus will be welcome at a nearby shelter for the homeless. By

stocking 59 dozen donuts each day, the Dunkin’ Donuts shop will meet the demand

for donuts 95 % of the time.

Fig. 7.10 P(Z � 1.64)
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7.4 The Lognormal Distribution and Its Relationship

to the Normal Distribution (Optional)

7.4.1 The Lognormal Distribution

Before we discuss the lognormal distribution,wemust briefly review and expand on

three topics covered in Chap. 4: mean, variance, and skewness.6 For a continuous

random variable, we can generally calculate the mean, variance, and skewness.

Values of these parameters affect the shape of a distribution. Lognormally

distributed random variables are related to the normally distributed continuous

variables, but normally distributed random variables have zero skewness, whereas

lognormally distributed continuous random variables have positive skewness.

If a continuous random variable Y is normally distributed, then the continuous

variable X defined in Eq. 7.5 is lognormally distributed:

X ¼ eY (7.5)

By performing a logarithmic transformation on this variable X, we obtain a

normally distributed variable Y:

lnðXÞ ¼ lnðeYÞ ¼ Y

where In denotes the natural logarithm and e is a constant approximately equal to

2.71828. Lognormal continuous random variables have the following properties:

Mean : E½lnðXÞ� ¼ EðYÞ ¼ m

Variance : Var½lnðXÞ� ¼ VarðYÞ ¼ s2

Our discussion in the next section of the mean and variance for a lognormal

variable X is based on these relationships.

7.4.2 Mean and Variance of Lognormal Distribution

Because of the relationship between X and Y indicated in Eq. 7.5, the mean and

variance of variable X can be denned as follows7:

6 This section can be omitted without affecting the continuity of the text. Further discussion on the

lognormal distribution can be found in Aitchison, J., Brown, J.A.C.: The Lognormal Distribution

with Special Reference to Its Uses in Economics. Cambridge University Press, London (1957).
7 The density function of a lognormal distribution can be defined as
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mX ¼ emþ1=2s2 (7.6)

s2X ¼ e2mþs2 es
2 � 1

� �
(7.7)

where m ¼ E[ln X], s2 ¼ Var[ln X], and e ¼ 2.71828.

Equations 7.6 and 7.7 indicate that both mean and variance of a lognormal

variable are functions of the mean and variance of a normal variable. The normal

and the corresponding lognormal frequency curves are illustrated in Fig. 7.11. Note

that the mean of the lognormal is larger than the mode of the lognormal, because it

is a positively skewed distribution. In addition, the shape of a lognormal is affected

by7 the values of both mean m and variance s2, as indicated in Figs. 7.12 and 7.13.

Furthermore, the lognormal distribution differs from the normal distribution in that

its mean, median, and mode are not identical.

f ðxÞ ¼ 1

xs
ffiffiffiffiffiffi
2p

p exp � 1

2s2
ðln x� mÞ2

	 

; x> 0

This is similar to the density function of a normal distribution as defined in footnote 3 of this

chapter. Mean, variance, and skewness of the lognormal distribution will be discussed and derived

in Sect. 9.7.

Fig. 7.11 Frequency curves of the normal and lognormal distributions (Source: Nelson, C.R.:
Applied Time Series Analysis, p. 164. Holden-Day, Oakland (1973))
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In surveys of household income and in the examination of consumer behavior,

the lognormal distribution is useful in the income distribution analysis.8 In addition,

the lognormal distribution is more suitable than the normal distribution for

cost–volume–profit analysis, which is discussed in Application 7.2. Furthermore,

Fig. 7.12 Frequency curves of the lognormal distribution for three values of m from the parent

normal (Source: Nelson, C.R.: Applied Time Series Analysis, p. 164. Holden-Day, Oakland

(1973))

Fig. 7.13 Frequency curves of the lognormal distribution for three values of s2 (Source: Nelson,
C.R.: Applied Time Series Analysis, p. 165. Holden-Day, Oakland (1973))

8 This is because household income is generally lognormally distributed. See Aitchison and Brown

(1957), Chapters 11 and 12.
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in the option pricing model discussed in Appendix 2, it is assumed that stock price

per share is lognormally distributed (see Eq. 7.35).

To show how Eqs. 7.6 and 7.7 can be used to calculate the mean and standard

deviation of a lognormal distribution, we let X represent the stock price per share of

JNJ as presented in Table 2.3 in Chap. 2. Then, we can calculate E(In(X)) ¼ E(Y)
¼ 4.0749 Var[In(X)] ¼ Var(Y) ¼ s2 ¼ .08995 by MINITAB as shown here.

Substituting E(Y) ¼ m ¼ 4.0749 and Var(Y) ¼ s2 ¼ .08995 into Eqs. 7.6 and 7.7,

we obtain

mX ¼ e4:11988 ¼ 61:5516

s2X ¼ ð61:5516Þ2ðe:08995 � 1Þ ¼ 356:5814:

MTB > SET INTO C1

DATA> 57.63 78.50 62.88 53.75
50.00 45.00 38.50 62.38
74.38 78.38

DATA> 61.38 83.50 42.25 34.38
28–88 32.25 54.88 42.13
52.88 58.00

DATA>
END

MTB >
MEAN C1

Column Mean
Mean of Cl ¼ 54.597

MTB >
STDEV C1

Column Standard Deviation
Standard deviation of C1 ¼ 15.916

MTB >
LET C2¼L0GE(C1)

MTB >
PRINT C2

Data Display
C2

4.05404 4.36310 4.14123
3.98434 3.91202
3.80666 3.65066
4.13324

4.30919 4.36157 4.11708
4.42485 3.74360
3.53747 3.36315
3.47352

4.00515 3.74076 3.96803
4.06044
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MTB > MEAN C2

Column Mean
Mean of C2 ¼ 3.9575

MTB > STDEV C2

Column Standard Deviation
Standard deviation of C2 ¼ 0.30423

7.5 The Normal Distribution as an Approximation

to the Binomial and Poisson Distributions

In Chap. 6, we discussed binomial and Poisson distributions. Recall that when we

were interested in deriving the cumulative probability from the binomial distribu-

tion, the computations could be quite burdensome. For example, if we toss a coin

100 times to test the probability that the number of heads will be 50 or less, we need

to compute P(X ¼ 0), P(X ¼ 1), P(X ¼ 2), . . . P(X ¼ 50). An analogous situation

arises for the Poisson distribution. Fortunately, it is possible to reduce the job of

computation greatly by approximating the binomial or Poisson distribution with a

normal distribution.

7.5.1 Normal Approximation to the Binomial Distribution

As the sample size gets large, we can use a normal distribution to approximate the

binomial distribution. For an experiment that does n independent trials each having
probability of success p, the distribution of the number of successes, X, is binomial

and has the following mean and variance:

Mean : EðXÞ ¼ m ¼ np (7.8)

Variance : VarðXÞ ¼ npð1� pÞ (7.9)

From Eq. 7.4, we substitute for the mean m and standard deviation s and get the

following expression for the Z statistic:

Z ¼ X � npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞp (7.10)

We say that the distribution of the random variable Z is approximately standard

normal. This approximation works well when np > 5 and n(1 – p) > 5. Because X
stands for the number of successes of the binomial trials, we can now determine the

probability that the actual number of successes will lie within a certain interval.
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If the range we wish to examine is between a and b, inclusive, then we may

obtain the following probability:

Pða � X � bÞ ¼ P
a� npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞp � Z � b� npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

npð1� pÞp
 !

(7.11)

Example 7.6 Using a Normal Distribution to Approximate a Binomial Distribu-
tion. Suppose a very bumpy conveyor belt in a brewery transports beer bottles

from the point where they are capped to the point where they are boxed for

shipping. Furthermore, let us suppose there is a 16 % chance that each beer bottle

will fall off the conveyor belt. In 1 h, exactly 1,000 beer bottles travel from one end

of the belt to the other. Because n is large, we can make probability statements

about whether the actual number of bottles, X, that fall off the conveyor will be

within a certain range. Using Eqs. 7.8 and 7.9, we get the following results for a

binomially distributed random variable with the mean and variance shown:

EðXÞ ¼ np ¼ 160

VarðXÞ ¼ npð1� pÞ ¼ 134:4

Suppose we wish to know the probability that the actual number of beer bottles

that fall off the conveyor belt will be between 142 and 185. Using Eq. 7.11 yields

Pð142 � X � 185Þ ¼ P
142� 160ffiffiffiffiffiffiffiffiffiffiffi

134:4
p � Z � 185� 160ffiffiffiffiffiffiffiffiffiffiffi

134:4
p

� �
¼ Pð�1:553 � Z � 2:156Þ

Now we can use the values of the Z statistic and the standard normal distribution

table to compute the probability. We calculate the area beneath the curve between

these two numbers. Then we let the symbol Fz represent the value of cumulative

probability as taken from the standard normal distribution table. Then

Pð�1:55 � Z � 2:16Þ ¼ FZð2:16Þ � FZð�1:55Þ
¼ FZð2:16Þ � ½1� FZð1:55Þ�
Because FZð�wÞ ¼ 1� FZðwÞ

¼ :9846� ½1� :9394�
¼ :9240

Thus, there is a 92.4 % chance that the number of beer bottles that fall off the

conveyor belt during the period will be between 142 and 185.

This example illustrates how the normal distribution can be used to approximate

the binomial distribution. Further applications of the normal distribution are given

in Appendix 2.
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7.5.2 Normal Approximation to the Poisson Distribution

Recall from Sect. 6.7 that the Poisson random variable measures the probability of

X occurrences of some event in the time interval between 0 and t. Therefore, this
distribution measures successes when they occur within specified units of time.

Recall the Poisson probability function:

PðX ¼ xÞ ¼ e�llx=x! for x ¼ 0; 1; 2; 3; . . . and l>0 (6.16)

where l is the average number of successes in the unit of time and e is the base of
the natural logarithms (2.71828). The mean and variance of this distribution are

Mean : EðXÞ ¼ m ¼ l (7.12)

Variance : VarðXÞ ¼ s2 ¼ l (7.13)

Note that both the variance and the mean are equal to l.
The Poisson probabilities can be approximated by the normal distribution when

the sample size is large—say, greater than 30. To calculate Poisson probabilities in

this manner, we can develop the Z statistic by substituting for the mean and

variance in Eq. 7.4 as follows:

Z ¼ X � lffiffiffi
l

p (7.14)

Now we can examine the probability that the number of successes is within a

certain range.

Pða � X � bÞ ¼ P
a� lffiffiffi

l
p � Z � b� lffiffiffi

l
p

� �
(7.15)

Example 7.7 Using a Normal Distribution to Approximate a Poisson Distribution.
In Example 6.16, we examined the average number of customers entering a bank in

a 10-min period. Now let’s assume that in a 20-min period, we have an average of

50 customers instead of 5; X is still a Poisson random variable. This change is made

so that normal approximation will hold. Eqs. 7.12 and 7.13 reveal that the mean and

variance of this Poisson random variable are both 50.

Suppose we wish to find the probability that the number of people entering the

bank in a 20-min period will be between 42 and 57, inclusive. We can calculate this

probability by using the standard normal distribution and its related Z statistic:
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Pð42 � X � 57Þ ¼ P
42� 50ffiffiffiffiffi

50
p � Z � 57� 50ffiffiffiffiffi

50
p

� �
¼ Pð�1:13 � Z � :99Þ

Now the Fz’s are computed in the same way as in Example 7.6. Then

Pð�1:13 � Z � :99Þ ¼FZð:99Þ � FZð�1:13Þ
¼ :8389� ð:1292Þ
¼ :7097

There is a 70.97 % chance that the number of customers who arrive in a 20-min

period will fall between 42 and 57, inclusive.

7.6 Business Applications

Application 7.1 Analyzing Earnings per Share and Rates of Return. In finan-

cial analysis, historical data are often used to forecast future values. Table 7.5

presents data on earnings per share and rates of return on stock in Johnson &

Johnson and Merck over a 20-year period (1990–2009). Mean, standard deviation,

and skewness estimates for EPS and rates of return are presented in Table 7.6.

By analyzing past data, and by assuming that the data on JNJ and MRK are

distributed normally, we can make interval statements about EPS and return for

JNJ and MRK, as indicated in Table 7.7.

First consider the return on JNJ and MRK stock. The average return on JNJ (see

Table 7.6) is higher than that on MRK. However, the standard deviation measure

presented in Table 7.6 makes it clear that Merck’s stock is less volatile than Johnson

and Johnson’s. An investor seeking a higher return might choose Johnson and

Johnson but, in doing so, would incur a greater risk of losing money.

Now we analyze the mean and standard deviation of EPS presented in Table 7.6.

EPS is an absolute measure, so the EPS data for MRK and JNJ are not directly

comparable; one share of Merck stock does not cost the same as one share of

Johnson & Johnson stock. Therefore, EPS are earnings on different amounts

of investment per share. The problem can be resolved by comparing the coefficient
of variation (CV) of EPS for Merck and Johnson & Johnson. Recall that the

coefficient of variation, which we discussed in Chap. 4, divides the standard

deviation by the mean and gives an indication of relative volatility. Substituting

the related data of Table 7.6 into Eq. 4.11, we obtain the coefficients of variation of

EPS for both Merck and Johnson & Johnson:

CVðJNJÞ ¼ :8694=3:0375 ¼ 0:2862 CVðMRKÞ ¼ 1:1640=3:0898 ¼ 0:3767
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Comparing these two coefficients of variation, we see that Merck’s EPS is much

more volatile than JNJ’s. Therefore, the risk-averse investor might prefer JNJ stock

to Merck.

Application 7.2 Cost–Volume–Profit Analysis Under Uncertainty: The Normal

Versus the Lognormal Approach. Cost–volume–profit (CVP) analysis is one of

Table 7.5 EPS and rates of

return for JNJ and MRK
Year

EPS Rate of return

JNJ MRK JNJ MRK

1990 3.38 4.51 1.778 1.332

1991 4.30 5.39 1.835 1.532

1992 1.54 1.70 1.582 1.216

1993 2.71 1.86 1.624 .973

1994 3.08 2.35 1.566 1.270

1995 3.65 2.63 1.809 1.515

1996 2.12 3.12 1.807 1.600

1997 2.41 3.74 1.999 1.475

1998 2.23 4.30 1.364 1.685

1999 2.94 2.45 1.771 1.285

2000 3.39 2.90 2.164 1.375

2001 1.83 3.14 2.296 1.123

2002 2.16 3.14 1.683 1.199

2003 2.39 3.03 1.710 1.205

2004 2.83 2.61 1.962 1.147

2005 3.46 2.10 2.485 1.582

2006 3.73 2.03 1.199 1.197

2007 3.63 1.49 1.510 1.227

2008 4.57 3.64 1.649 1.348

2009 4.40 5.68 1.820 1.805

Table 7.6 Mean, standard

deviation, and skewness

estimates for EPS and rates

of return

Year

EPS Rate of return

JNJ MRK JNJ MRK

Mean 3.0375 3.0898 1.7806 1.3545

Std. Dev. 0.8694 1.1640 0.3010 0.2124

Skewness 0.1257 0.8487 0.5253 0.4382

Table 7.7 Probability

distribution for EPS

and return

EPS

Chance JNJ MRK

68.3 % 2.1681 � X � 3.9069 1.9258 � X � 4.2538

95.4 % 1.2987 � X � 4.7763 0.7618 � X � 5.4178

99.7 % 0.4293 � X � 5.6457 �0.4022 � X � 6.5818

Rate of return

68.3 % 1.4796 � X � 1.5669 1.1421 � X � 1.5669

95.4 % 1.1785 � X � 1.7793 0.9297 � X � 1.7793

99.7 % 0.8776 � X � 1.9917 0.7173 � X � 1.9917

294 7 The Normal and Lognormal Distributions



the most important concepts in accounting, economics, finance, marketing, and

production management. The total profit w of a firm can be defined as

w ¼ TR� TC ¼ QðP� VÞ � F (7.16)

where

TR ¼ total revenue

TC ¼ total cost

Q ¼ unit sales

P ¼ price per unit

V ¼ variable cost per unit

(P – V) ¼ contribution margin per unit

F ¼ fixed cost

This model can be analyzed in terms of the certainty approach or the uncertainty

approach. Under certainty analysis, we assume that future Q, P, and V are known

for sure and that, accordingly, the specified future total profit will occur with 100 %

certainty.

Uncertainty analysis is more complicated and (not surprisingly) less certain.

Hilliard and Leitch (1975) have suggested two alternative assumptions9:

1. Q is not known for certain, and it is normally distributed with mean mq and

variance. s2q . Thus, the random variable w is normally distributed with mean

mw and variance s2w as follows:

mw ¼ mqðP� VÞ � F

s2w ¼ s2qðP� VÞ2 (7.17)

Following Hilliard and Leitch (1975), we suppose that mq ¼ 5,000 units, sq ¼
400 units, price ¼ $3,000/unit, variable cost ¼ $l,750/unit, and fixed costs ¼
$5,800,000. Thus, mw ¼ $450,000 and sw¼ $500,000. We can calculate

the probability of a profit greater than $200,000 (A) by using Table A3 in

Appendix A:

Pðw>$200; 000Þ ¼ 1� Pðw � $200; 000�
¼ 1� Fw½ðA� mwÞ=sw�

¼ 1� Fw
200; 000� 450; 000

500; 000

� �
¼ 1� Fwð�:5Þ ¼ 1� :3085 ¼ :6915

9Hilliard, J.E., Leitch, R.A.: Cost-volume-profit analysis under certainty: A lognormal approach.

Acc. Rev., 69–80 (1975 January).
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This implies there is a 69.2 % chance that the firm’s profit will exceed $200,000.

Similarly, we can calculate the probability of meeting the break-even point by

setting w equal to 0.

2. Q is not known for certain, and it is lognormally distributed. Following Eqs. 7.6

and 7.7, we can define the mean and variance of Q as

mq ¼EðQÞ ¼ emþ1=2s2

s2q ¼VarðQÞ ¼ e2mþs2 es
2 � 1

� �

where m ¼ E(ln Q) and s2 ¼ Var(ln Q).
Logical assumptions for a CVP model would require that sales be nonnegative.

In addition, it would be somewhat surprising if the distribution of sales (Q) were
perfectly symmetric about its mean. Thus, assuming the lognormal distribution

might be more suitable than assuming the normal.

The relationships between the normal and lognormal distributions under

conditions of large and small coefficients of variation are presented in Figs. 7.14

Fig. 7.14 Comparison of normal and lognormal distributions: Coefficient of variation ¼ .50

(Source: Hilliard, Leitch, CVP under uncertainty. Acc. Rev. p. 71, January (1975))
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and 7.15, respectively. In Fig. 7.14, both the normal and the lognormal distribution

have identical means, identical variances, and a coefficient of variation of .50. This

relatively large coefficient of variation emphasizes the difference between the

normal and lognormal distributions. The figure indicates that the major differences

between these two distributions are the skewness of the lognormal and the possi-

bility of the occurrence of negative values for the normal distribution. In Fig. 7.15,

the distributions are nearly coincident, as we expect for small coefficients of

variation (CV ¼ .08). The important observation, however, is that the lognormal

assumption is an intuitive choice for the CVP model inputs, regardless of the values

of the coefficient of variation.

Under the lognormal distribution assumption, Hilliard and Leitch (1975) have

derived the probability of a given level, say A, as

Fig. 7.15 Comparison of normal and lognormal distributions: Coefficient of variation ¼ .08

(Source: Hilliard, Leitch, CVP under uncertainty. Acc. Rev. p. 72, January (1975))
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P½w>A� ¼ 1� P½w � A�
¼ 1� Fwf½lnðAþ FÞ � mw�=swg ð7:18Þ

where

mw ¼ ln m2q= s2q þ m2q
� �1=2	 


þ lnðP� VÞ

s2w ¼ ln ðsq=mqÞ2 þ 1
h i

Substituting the information used in case 1 into these two formulas, we obtain

mw ¼ 2 lnð5; 000Þ � 1

2
ln½ð400Þ2 þ ð5; 000Þ2� þ lnð3; 000� 1; 750Þ

¼ 17:034� 8:521þ 7:131 ¼ 15:644

s2w ¼ ln
400

5; 000

� �2

þ 1

" #
¼ :0064

sw ¼ :08

Substituting A, F, mw, and sw into Eq. 7.18 yields

P½w>200; 000� ¼ 1� Fwf½lnð200; 000þ 5; 800; 00Þ � 15:644�=:08g
¼ 1� Fw½�:4625�
¼ 1� :3219

¼ :6781

The probability we get when we make the lognormal assumption is 67.81 %,

which is lower than that in terms of the normal assumption, 69.15 %.

Application 7.3 Investment Decision Making Under Uncertainty. Professor

Hillier (1963) suggested several easy and effective ways for a business firm to

evaluate risky investment projects.10 In one of his approaches, Hillier assumes that

the net cash inflow from an investment to the firm in the tth future year after the

investment is made is normally distributed.11 He has also shown that the net present

value (NPV) of a proposed investment is normally distributed with mean mNPV and

10Hillier, R.S.: The derivation of probabilities information for the evaluation of risky investments.

Manage. Sci., 443–457 (April 1963). Section 21.8 and Appendix 4 (Chap. 21) will discuss this

issue in further detail.
11 Via Eq. 7.16, net cash inflow can be defined as net profit + depreciation.
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variance s2NPV:
12 Using the assumption that NPV is normally distributed, Hillier has

provided an example of how management can evaluate the risk of an investment.

Suppose that, on the basis of the forecasts regarding prospective cash flows from a proposed

investment of $10,000, it is determined that mp ¼ $1,000 and sp ¼ $2,000. Ordinarily,

the current procedure would be to approve the investment since mp > 0. However, with the

additional information available (sp ¼ $2,000) regarding the considerable risk of the

investment, the executive can analyze the situation further. Using widely available tables

for the normal distribution, he could note that the probability that NPV < 0, so that the

investment won’t pay, is 0.31. Furthermore, the probability is 0.16, 0.023, and 0.0013,

respectively, that the investment will lose the present-worth equivalent of at least $ 1,000,

$3,000, and $5,000, respectively. Considering the financial status of the firm, the executive

can use this and similar information to make his decision. Suppose, instead, that the

executive is attempting to choose between this investment and a second investment with

mp ¼ $500 and sp ¼ $500. By conducting a similar analysis for the second investment, the

executive can decide whether the greater expected earnings of the first investment justifies

the greater risk. A useful technique for making this comparison is to superimpose

the drawing of the probability distribution of NPV for the second investment upon the

corresponding drawing for the first investment. This same approach generalizes to the

comparison of more than two investments.

Let’s see how Hillier obtained his probabilities:

PðNPV<0Þ ¼ :31 PðNPV<� $1; 000Þ ¼ :16

PðNPV<� $3; 000Þ ¼ :023 PðNPV<� $5; 000Þ ¼ :0013

by using the information mNPV ¼ $1,000 and sNPV ¼ $2,000.

PðNPV<0Þ ¼ P Z � 0� 1; 000

2; 000

� �
¼PðZ � �:5Þ ¼ PðZ � :5Þ

¼ :5� :1915 ¼ :31

PðNPV<� $1; 000Þ ¼ P Z � �1; 000� 1; 000

2; 000

� �
¼PðZ � �1:0Þ ¼ PðZ � 1:0Þ

¼ :5� :3413 ¼ :16

PðNPV<� $3; 000Þ ¼ P Z � �3; 000� 1; 000

2; 000

� �
¼PðZ � �2:0Þ ¼ PðZ � 2:0Þ

¼ :5� :4772 ¼ :023

PðNPV<� $5; 000Þ ¼ P Z � �5; 000� 1; 000

2; 000

� �
¼PðZ � �3:0Þ ¼ PðZ � 3:0Þ

¼ :5� :4987 ¼ :0013

12How to calculate the NPV is explained in Appendix 4 (Chap. 21). In Hillier’s example discussed

below, he used P to represent NPV.
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The above probability can be calculated directly by using the MINITAB pro-

gram as indicated here:

MTB > SET INTO Cl

DATA> 0–1000 -3000 -5000

DATA> END

MTB > CDF Cl;

SUBC > NORMAL 1000 2000.

Cumulative Distribution Function

Normal with mean ¼ 1000.00 and standard deviation ¼ 2000.00

x P(X <¼ x)

0.0000 0.3085

�1-0E+03 0.1587

�3.0E+03 0.0228

�5.0E+03 0.0013

Application 7.4 Determination of Commercial Lending Rates.
13 The loan

officers of a bank and the financial analysts of a firm seeking to borrow money

consider the firm’s total risks when analyzing the lending rate to the firm or—what

is the same thing—the firm’s cost of borrowing.

The lending rate is based partly on the risk-free rate (e.g., the federal government

bond rate is free from default risk). First, we have to forecast the risk-free rate (Rf)

for three economic conditions: boom, normal, and recession.

The second component of the lending rate is the risk premium (Rp). Risk
premium is the bank’s reward for taking risk. It can be calculated individually for

each firm by examining the change in EBIT (earnings before interest and tax) under

the three types of economic conditions. The EBIT is used as an indicator of the

ability of the prospective borrower to repay borrowed funds.

Table 7.8 contains the information on Rf, EBIT, and Rp required for the analysis.

It also shows the probability that each economic conditions will prevail (column B)

and the probability of various levels of EBIT for the firm (column D).

A total of nine lending rates under the three different economic conditions are

given in column F of Table 7.9. The probabilities of their occurrence under the

different conditions are shown in column E.

Let us see how the numbers for columns E and F of Table 7.9 are calculated.

During a period of normal economic conditions, the risk-free rate is at 10 %, as

indicated in column A, but the risk premium can take on different values. There is a

40 % chance it will be 3.0 %, a 30 % chance it will be 5.0 %, and a 30 % chance it

will be 8.0 %, as indicated in column D. We must multiply the probability for the

risk-free rate by the conditional probability for the risk premium to get the proba-

bility of their occurring jointly (column E). The chance that the firm will receive a

13 This application is similar to Applications 5.1 and Example 6.8. Note that the conditional

probability used here is different from that used in Application 5.1 and Example 6.8.
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13 % lending rate during normal economic conditions is 20 %; for a 15 % or 18 %

rate, the probability is 15 % (see column F). This process also applies for the other

two conditions (boom and recession).

For the problem set up in Table 7.9, the weighted-average lending rate is

�R ¼ð:150Þð:150Þ þ ð:075Þð:17Þ þ ð:025Þð:20Þ þ ð:200Þð:13Þ þ
ð:150Þð:15Þ þ ð:150Þð:180Þ þ ð:025Þð:11Þ þ ð:050Þð:13Þ þ
ð:175Þð:16Þ

¼:1531 ¼ 15:31%

with a standard deviation of

Table 7.8 Worksheet for interest rate calculation

(A) (B) (C) (D) (E)

Economic condition Rf Marginal probability EBIT Conditional probability RP

Boom 12.0 % .25 $2.5m .60 3 %

1.5 .30 5

.5 .10 8

Normal 10.0 .50 $2.5m .40 3 %

1.5 .30 5

.5 .30 8

Poor 8.0 .25 $2.5m .10 3 %

(recession) 1.5 .20 5

.5 .70 8

Table 7.9 Worksheet for interest rate calculation

(A) (B) (C) (D) (E) (F)

Economic

condition Rf

Marginal

probability Rp

Conditional

probability

Joint probability

(B 	 D)

Lending rate

(A þ C)

Boom 12 % .25 3.0 % .60 .150 15 %

5.0 .30 .075 17

8.0 .10 .025 20

Normal 10 .50 3.0 % .40 .200 13 %

5.0 .30 .150 15

8.0 .30 .150 18

Poor 8 .25 3.0 % .10 .025 11 %

(recession) 5.0 .20 .050 13

8.0 .70 .175 16

1.000
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s ¼ ð:15Þð:15� :153Þ2 þ ð:075Þð:17� :153Þ2
h

þ
ð:025Þð:20� :153Þ2 þ ð:20Þð:13� :153Þ2þ
ð:15Þð:15� :153Þ2 þ ð:15Þð:18� :153Þ2þ
ð:025Þð:11� :153Þ2 þ ð:050Þð:13� :153Þ2þ
ð:175Þð:16� :153Þ2

i1=2
¼ :000001þ :000021þ :000055þ :000107½ þ

:000001þ :000109þ :000046þ :000027þ :000008�1=2
¼ 0:194

We assume that the distribution of the lending rate is normal. Given the mean

and standard deviation for such a distribution from Table 7.2, we see that 68.3 % of

the observations of a normal distribution are within one standard deviation of the

mean, 95.5 % are within two standard deviations, and 99.7 % are within three.

On the basis of the mean and standard deviation of the estimated lending rate, we

can depict the expected lending rate and its standard deviation as shown in

Fig. 7.16.

The percentages in Fig. 7.16, along with the mean and standard deviations, are

an illustration of the normal distribution. The average lending rate is normally

distributed with a mean of 15.31 % and a standard deviation of 1.94 %. This implies

that almost all rates (99.7 %) will lie in the range of 9.49–21.13 %. We also know

that 68.3 % of the rates will lie in the range of 13.37–17.25 %.

Fig. 7.16 Probability distribution for estimated lending rate
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The MINITAB output of the empirical calculation procedure for this problem is

presented in Fig. 7.17.

7.7 Summary

In this chapter we introduced two of the most important continuous distributions,

the normal and lognormal distributions. These distributions can be used to describe

a wide variety of random variables in business, economics, and finance. In fact,

even when our distribution is not normally distributed, it may be possible to

transform our random variables (e.g., the logarithmic transformation discussed in

MTB> SET INTO C1
DATA> .15 .17 .20 .13 .15 .18 .11 .13.16
DATA> END
MTB > SET INTO C2
DATA> .150  .075  .025  .200  .150  .150  .025  .050  .175
DATA> END
MTB” > LET C3=C1*C2
MTB > SUM C3 INTO Kl

Column Sum

Sum  Of C3 = 0.15300
MTB> LET C4=C1-K1
MTB > LET C5=C4**2
MTB > LET C6=C5*C2
MTB > SUM C6 INTO K2

Column Sum

Sum  Of C6 = 0.00037600
MTB > LET K3=K2**.5
MTB > PRINT  C1-C6  K1-K3

Data Display

Kl    0.153000
K2    0.000376000
K3    0.0193907

Row Cl C2 C3 C4 C5 C6

1 0.15 0.150 0.02250 -0.003 0.000009 0.0000014

2 0.17 0.075 0.01275 0.017 0.000289 0.0000217

3 0.20 0.025 0.00500 0.047 0.002209 0.0000552

4 0.13 0.200 0.02600 -0.023 0.000529 0.0001058

5 0.15 0.150 0.02250 -0.003 0.000009 0.0000014

6 0.18 0.150 0.02700 0.027 0.000729 0.0001093

7 0.11 0.025 0.00275 -0.043 0.001849 0.0000462

8 0.13 0.050 0.00650 -0.023 0.000529 0.0000265

9 0.16 0.175 0.02800 0.007 0.000049 0.0000086

Fig. 7.17 MINITAB output for Application 7.4
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Sect. 7.4) so they are approximately normally distributed. This means that many of

the analyses we will perform throughout the rest of the book will be based on the

normal distribution. We illustrated this point by showing how the binomial and

Poisson distributions could be approximated by using the normal distribution.

We also showed how the normal distribution could be applied to a variety of

business problems, including EPS forecasting, CVP analysis, determining of com-

mercial lending rates, and option pricing (see Appendix 2).

Questions and Problems

1. A study indicates that an assembly line task should take an average of 3.20 min

to complete, with a standard deviation of 0.75 min. What is the probability that

the task will take between 1.80 and 3.80 min to complete? Graph the area being

determined by assuming that the completion time is normally distributed.

2. Indicate whether each of the following random variables is continuous or

discrete.

(a) The time it takes a mechanic to service a car.

(b) The number of new housing starts in New Jersey this year.

(c) The age of an applicant for an MBA program.

(d) The sex of a new company chief executive officer.

3. The random variable Z is normally distributed with a mean of mz ¼ 0 and a

standard deviation of sz ¼ 1. Find the following probabilities:

(a) P(Z > 1.65)

(b) P(Z > �2.38)

(c) P(Z > 2.95)

(d) P(Z < �1.37)

(e) P(l.05 < Z < 2.82)

(f) P(�2.43 < Z < 1.72)

4. The random variable Z is normally distributed with mZ¼ 0 and sZ¼ 1. Find the

following values of b:

(a) P(Z < b) ¼ .9280

(b) P(Z > b) ¼ .9949

(c) P(Z > b) ¼ .0074

(d) P(Z < b) ¼ .0130

(e) P(�b < Z < b)¼ .5408

(f) P(0 < Z < b) ¼ .1844

5. A random variable X is normally distributed with mX¼ 5 and sX¼ 2.7. Find the

following probabilities, using both manual calculations and the MINITAB

program:

(a) P(X < 7.40)

(b) P(X > �1.50)
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(c) P(X>8.32)

(d) P(X<.95)

(e) P(2.35 < X < 7.05)

(f) P(�2.80 < X < 0)

6. The random variable Y is normally distributed with mY ¼ 28.00 and sY ¼ 10.

Find the following values of b:

(a) P(Y < b) ¼ .8962

(b) P(Y > b) ¼ .8106

(c) P(Y > b) ¼ .0099

(d) P(Y < b) ¼ .3409

(e) P(b < Y < 38) ¼ .0227

(f) P(b < Y < 25) ¼ .1148

7. Suppose that X represents the number of cars arriving at a toll booth in 1 min.

Further, suppose that X can assume the values 1, 2, 3, 4, and 5 and has the

following distribution:

r 1 2 3 4 5

P(X ¼ r) .10 .20 .30 .25 .15

Calculate the expected value of this random variable and explain your result.

8. The following table gives the amount of time X, in seconds, by which an

automated manufacturing process misses the designed completion time when

performing a certain task. Negative values indicate early completion, and

positive values late completion.

r �1 0 1 2

P(X ¼ r) .1 .2 .3 .4

(a) Find the mean and the variance of X.
(b) On average, how do the completion times for this particular task compare

with the designed completion times?

9. Find the probability density function of Y ¼ ex when x is normally distributed

with parameters m and s2. The random variable Y is said to have a lognormal

distribution (because log Y has a normal distribution) with parameters m and s2.
10. Suppose that 35 % of the employees of the Harrison Company belong to

unions. To determine union members’ attitudes toward management, the

company’s personnel manager takes a random sample of 100 employees.

The selection of a union member in this random sample is a “success.”

Calculate the probability that the number X of successes will be between 20

and 40, inclusive.

11. What is the probability that the number X of successes in the personnel

manager’s sample of 100 employees in question 10 will be 48 or more?

12. Suppose that a batch of n¼ 80 items is taken from a manufacturing process that

produces a fraction p¼ .16 of defectives. What is the probability that this batch
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will contain between 19 and 20 defectives? (Finding a defective is considered a

success.)

13. The IQ scores of human beings are scaled to follow a normal distribution with

mean 100 and standard deviation 16. If those with IQ scores higher than 154 are

regarded as geniuses, how many geniuses are there among 20,000 children?

14. A college professor teaches corporate finance every semester. The tests for the

course are standardized so that the test scores exhibit a normal distribution with

a mean of 75 and a standard deviation of 12. The professor gives 15 % A, 25 %

B, 30 % C, 20 % D, and 10 % F.

(a) What letter grade will a student who scores 79 points on the test receive?

(b) What letter grade will a student who scores 58 points receive?

(c) How many points does a student need to score to get an A?

(d) How many points does a student need to score to pass the course?

15. The manager in the local bank discovers that people come in to cash their

paychecks on Friday. The amount of money withdrawn on Friday follows a

normal distribution with 5 million as the mean and 1 million as the standard

deviation. The bank manager wants to make sure that the amount of money in

the bank can cover 99.9 % of the Friday withdrawals. What is the minimum

amount of money he or she should plan to have on hand?

16. A local bakery found that it was throwing out too many cookies every night, so

the manager conducted a study on the sales of cookies and found that on an

ordinary day, the sales of cookies follow a normal distribution with 30 lb as the

mean and 12 lb as the standard deviation. The manager then decided to prepare

only 35 lb of cookies each day. What is the chance that the bakery will run out

of cookies on a certain day?

17. A soft drink producer has just installed a new assembly line. The assembly line

is adjusted to dispense an average of 12.05 oz of soda into the 12-oz soda can

with a standard deviation of .02. What is the probability that certain cans will

contain less than 12 oz of soda?

18. In question 17, what is the probability that 2 cans out of a six pack will contain

less than 12 oz?

19. In question 17, the average amount of soda dispensed into the cans is

adjustable. If we want to make sure that 99.9 % of the soda cans contain

more than 12 oz, to what should we adjust the average?

20. A battery producer invents a new product. The life of the new battery is found

to follow a normal distribution with a mean of 72 months and a standard

deviation of 12 months. The producer guarantees that the new battery will

last longer than 60 months or the full price will be refunded. Last year the

producer sold one million batteries, how many refunds will be claimed?

21. A car manufacturer designs a fuel-efficient car for 1993. The company argues

that the car can attain an average of 45 miles per gallon. The miles per gallon of

the car follows a normal distribution with a standard deviation of 5. What is the

probability that a certain car will reach 40 or more miles per gallon?
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22. You work for a furniture factory that procures springs from an outside supplier.

Every month, a truckload of springs comes in. From each shipment, you

randomly inspect 400 springs. If there are 10 or more bad springs, then you

send the shipment back. One day a shipment arrives that actually contains 3 %

bad springs. What is the probability of your accepting this shipment?

23. A consumer rights organization wants to find out whether a local dairy farm

actually puts 16 oz of milk into the container that is labeled 16 oz. Assume the

milk put into the container by the local dairy farm follows a normal distribution

with a mean of 16.05 and a standard deviation of .03.

(a) What is the probability that a certain container contains more than 16 oz of

milk?

(b) The consumer rights organization bought 400 bottles of milk. What is the

probability that among them, it found fewer than 12 bottles that do not

contain enough milk?

24. A name-brand TV dinner boasts that its pot roast has no more than 120 calories

per serving. Suppose 95 % of the servings of this product actually contain fewer

than 120 calories. Find the probability that out of a random sample of 500 packs

of pot roast, fewer than 10 packs (servings) actually contain more than 120

calories.

25. The Food and Drug Administration randomly tests 1,000 of a certain brand of

cigarettes to see whether the nicotine content reaches a dangerous level. If 20 or

more cigarettes contain more nicotine than a prespecified level, the production

of the cigarettes is suspended. Assume that in this month, as a result of either

machine failure or worker discontent, 3 % of the cigarettes contain more than

the prespecified level. What is the probability that cigarette production will be

suspended?

26. The light bulbs produced by Edison Lighting Corporation last an average of

300 h. The life of the light bulbs is believed to follow a normal distribution with

a standard deviation of 10. A customer buys 2 dozen light bulbs during a sale.

What is the probability that 1 light bulb used will last longer than 315 h?

27. The number of phone calls that reach 1–800 numbers in a certain time period

follows a Poisson distribution. Assume that there are about 15,000 potential

callers. Each caller has a probability of 0.001 of making such a phone call.

What is the probability that we have less than 20 callers who make phone calls

during this time period?

28. A camcorder is sold with a 1-year warranty. The probability that a camcorder is

brought back for service under the warranty is 2 %. It costs the manufacturer

$20 on average to repair a camcorder brought back under warranty. Last year,

5,000 camcorders were sold. What is the probability that fewer than 80 of them

will be brought back to be repaired under warranty? How much should the

company expect to spend living up to the warranty?

29. What are the advantages of using the lognormal distribution over using the

normal distribution to describe stock prices?
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30. Suppose that X is distributed as normal with a mean of 5 and a standard

deviation of 2. Compute the standard normal values of X, given the following

values of X:

(a) 3

(b) 2

(c) 9

(d) 11

(e) 6

(f) 10

31. Use the standard normal values you computed in question 30, and find the

probability that Z is less than those values.

32. Calculate the area under the normal curve between the following:

(a) z ¼ 0 and z ¼ 2.0

(b) z ¼ � 3.5 and z ¼ � 1

(c) z ¼ 1.2 and z ¼ 3

(d) z ¼ �1.3 and z ¼ 1.3

(e) z ¼ ¼ 1 and z ¼ 1

(f) z ¼ 3 and z ¼ 4

33. Find the value for z0 for the following probabilities:

(a) P(z > z0) ¼ .10

(b) P(z > z0) ¼ .75

(c) P(�z0 < z< z0) ¼ .95

(d) P(z < z0) ¼ .95

(e) P(�z0< z< z0) ¼ .90

(f) P(�z0 < z < z0)¼ 1.00

34. Suppose that X is normally distributed with a mean of 5 and a standard

deviation of 2. Find the following probabilities:

(a) X is between 5 and 9.

(b) X is between 0 and 8.

(c) X is greater than 6.

(d) X is less than 10.

(e) X is between �1 and 3.

35. Briefly explain why it is useful for us to be able to approximate the binomial

and Poisson distributions by using a normal distribution. Explain how we make

this approximation.

36. Use the normal approximation to the binomial distribution with n ¼ 100 and

p ¼ .3.

(a) What is the probability that a value from the binomial distribution will have

a value greater than 35?
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(b) What is the probability that a value from the binomial distribution will have

a value less than 20?

(c) What is the probability that a value from the binomial distribution will have

a value between 15 and 45, inclusive?

37. Use the normal approximation to the binomial distribution with n ¼ 500 and

p ¼ .7.

(a) What is the probability that a value from the binomial distribution will have

a value greater than 325?

(b) What is the probability that a value from the binomial distribution will have

a value less than 325?

(c) What is the probability that a value from the binomial distribution will have

a value between 325 and 375, inclusive?

38. Use the normal approximation to the Poisson distribution with l ¼ 75.

(a) What is the probability that a value from the Poisson distribution will be

greater than 50?

(b) What is the probability that a value from the Poisson distribution will be

between 50 and 80, inclusive?

(c) What is the probability that a value from the Poisson distribution will be

less than 60?

39. The time a customer waits for service at a bank is distributed normally with a

mean of 4 min and a standard deviation of 1 min. Compute the probability that a

customer must wait for:

(a) More than 10 min

(b) Less than 5 min

(c) Between 2 and 6 min

d. Between 3 and 9 min

40. The time it takes to get a car’s oil changed at Speedy Lube is distributed

normally with a mean of 12 min and a standard deviation of 2 min. Compute

the probability that a customer will have her or his oil changed:

(a) In less than 9 min

(b) In between 9 and 15 min

41. A quality control manager has determined that the number of defective light

bulbs in a case of 1,000 follows a normal distribution with a mean of 10 and a

standard deviation of 3. Compute the probability that the number of defective

light bulbs in a case is:

(a) Greater than 10

(b) Less than 9

42. A survey of recent masters of business administration (MBAs) reveals that their

starting salaries follow a normal distribution with mean $48,000 and standard
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deviation $9,000. Find the probability that a randomly selected MBA degree

holder will begin his or her career earning:

(a) More than $50,000

(b) Less than $35,000

43. Use the Black–Scholes option pricing formula to compute the value of a call

option, given the following information:

S ¼ $55 Price of stock

X ¼ $50 Exercise price

r ¼ .065 Risk-free interest rate

t ¼ .5 Time until the option expires, in years

s ¼ .25 Standard deviation of the stock’s return

44. Answer question 43 again for an option with an exercise price of $55. How

does the exercise value of the call option affect the option’s price?

45. Answer question 43 again for an option with t ¼ .3 years. How does the time

until the option expires affect the value of the call option?

46. Answer question 43 again for an option whose stock price is $60. How does the

price of the stock affect the value of the call option?

47. Answer question 43 again when r¼ .10. How does a change in the risk-free rate

of interest affect the value of the call option?

48. Answer question 43 again when s2¼ .50. How does a change in the variance of

the stock’s return affect the value of the call option?

49. Draw a standard normal probability function and show the area under the curve

for

(a) Plus or minus one standard deviation from the mean

(b) Plus or minus two standard deviations from the mean

(c) Plus or minus three standard deviations from the mean

50. A company has a mean earnings per share (EPS) of $3.25 with a standard

deviation of $1.21. Assume that the earnings are normally distributed. Compute

the probability that EPS will be:

(a) Between $1.50 and $6.00

(b) Above $5.00

51. An investment analyst is following the stock of High Flyer Company. She

believes that in any month, the stock has a 65 % chance of going up and a 35 %

chance of going down. Using the binomial distribution, compute the probabil-

ity that the stock goes up in 18 or more months during a 36-month period. Now

use the normal approximation to the binomial distribution to recompute your

answer. Compare the two results. Which method was easier to use?

52. A gas station finds that the mean number of people buying gas in any 30-min

period is 16. Use the Poisson distribution to compute the probability that
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between 25 and 35 people, inclusive, will buy gas in any 30-min period. Use the

normal approximation to the Poisson to recalculate your result. Which method

is easier to use?

53. Calculate ey for the following values of y:

(a) y ¼ 1

(b) y ¼ .5

(c) y ¼ �.5

(d) y ¼ �2.5

(e) y ¼ 3.1

(f) y ¼ � I

(g) y ¼ .05

(h) y ¼ .32

(i) y ¼ 6.1

(j) y ¼ �5.4

54. Suppose x ¼ ey. Compute the value of y, given the following values of x:

(a) x ¼ 2

(b) x ¼ 3

(c) x ~ 1.5

(d) x ¼ .3

(e) x ¼ .5

(f) x ¼ .002

(g) x ¼ 10

(h) x ¼ 1

55. Briefly explain what a cumulative distribution function is. Give some examples

of occasions when the cumulative distribution function is useful.

56. A quality control manager has found that the mean number of ounces of cereal

in a 16-oz box is 16 oz with a standard deviation of 2 oz. Calculate the

probability that a randomly selected box of cereal will contain;

(a) More than 16 oz of cereal

(b) Less than 15 oz of cereal

(c) Between 14 and 18 oz of cereal

(d) Between 15 and 17 oz of cereal

57. An investment analyst calculates that the mean price of gold is $392 per ounce

with a standard deviation of $12. Assume the price of gold follows a normal

distribution. Compute the probability that the price of gold will be:

(a) Greater than $400 an ounce

(b) Less than $350 an ounce

58. You know that a certain stock’s dividend yield has a mean of 6 % and a

standard deviation of 2 %. Assume the dividends follow a normal distribution.

Compute the probability that the dividend yield will be:

(a) Less than 2 %
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(b) Greater than 10 %

(c) Between 4 % and 8 %

59. Use the Black–Scholes option pricing formula to compute the value of a call

option, given the following information:

S ¼ $105 Price of stock

X ¼ $110 Exercise price

r ¼ .055 Risk-free interest rate

t ¼ .9 Time until the option expires, in years

s ¼ .45 Standard deviation of the stock’s return

60. The number of claims filed each week with Security Insurance Company has a

mean of 700 and a standard deviation of 250. Calculate the probability that the

number of claims this week will be:

(a) Greater than 1,000

(b) Less than 500

(c) Between 300 and 800

(d) Between 1,000 and 1,250

61. From past history, we know that 60 % of people audited by the IRS owe money

to the government. If we take a random sample of 500 people who are being

audited, what is the probability that between 280 and 320, inclusive, owe the

IRS money?

62. The probability is .1 that a customer entering a food store will buy a can of

coffee. If 1,000 customers enter the store, what is the minimum number of cans

of coffee the store must have on hand to prevent the probability of running out

of coffee from being higher than 5 %?

63. Determine the following probabilities. Assume that X follows a normal

distribution:

(a) P(80 � X � 95 | m ¼ 92, s ¼ 10)

(b) P(X � 150 | m ¼ 99, s ¼ 25)

64. A public library has observed that the fine for overdue books is approximately

normally distributed with a mean of $2.72 and a standard deviation of $.37.

(a) What is the probability that a fine will be greater than $3?

(b) What is the probability that a fine will be less than $2?

65. The breaking strength for paper bags used in a grocery store is approximately

normally distributed with a mean of 15 lb and a standard deviation of 2 lb.

(a) What proportion of these bags has a breaking strength less than 10 lb?

(b) What proportion of the bags has a breaking strength greater than 17 lb?

66. A newspaper publisher has mean sales of 28,200 copies per day with a standard

deviation of 3,100. If the publisher distributes 32,000 copies of the paper to the

newsstands, what is the probability that at least 6,000 or more copies will go

unsold?
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67. Value Line ranks 1,700 stocks according to their timeliness and riskiness. In

other words, Value Line classifies these 1,700 stocks into five ranks (groups) on

the basis of their return potential and the degree of riskiness as follows:

These five groups are classified by assuming that they are normally distributed.

(a) Find what percentage of the 1,700 stocks is classified in each group.

(b) Calculate the mean and standard deviation of this ranking.

68. The following MINITAB output displays the cumulative distribution function

curves of three normal distributions. Their mean and variance, respectively, are

(0, .5), (0, 1), and (0, 2). Please compare the three cumulative distribution

curves indicated in the figure.
MTB > SET C1
DATA> �5;5/0.1
DATA> END
MTB > CDF C1 C2;
SUBC> NORMAL 0 0.5.
MTB > CDF C1 C3;
SUBC> NORMAL 0 1.
MTB > CDF C1 C4;
SUBC> NORMAL 0 2.
MTB > GPRO
* NOTE * Professional Graphics are enabled.
Standard Graphics are disabled.
Use the GSTD command to enable Standard Graphics.
MTB > Plot C2*C1 C3*C1 C4*C1;
SUBC> Connect,
SUBC> Type 1;
SUBC> Color 1;
SUBC> Size 1;
SUBC> Overlay;
SUBC> Axis 1;
SUBC> Label “X”;
SUBC> Axis 2;
SUBC> Label “fx)”.
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69. The following MINITAB output exhibits the cumulative distribution function

curves of three lognormal distributions. Their mean and variance, respectively,

are (1, .5), (1, 1), and (1, 2). Compare the three cumulative distribution curves

indicated in the figure.
MTB > SET C1
DATA> 0:10/0.1
DATA> END
MTB > CDF C1 C2;
SUBC> LOGNORMAL 1 .05.
MTB > CDF C1 C3;
SUBC> LOGNORMAL 1 1.
MTB > CDF C1 C4;
SUBC> LOGNORMAL 1 2.
MTB > GPRO
* NOTE * Professional Graphics are enabled.
Standard Graphics are disabled.
Use the GSTD command to enable Standard Graphics.
MTB > Plot C2*C1 C3*C1 C4*C1;
SUBC> Connect;
SUBC> Type 1;
SUBC> Color 1;
SUBC> Size 1;
SUBC> Overlay;
SUBC> Axis 1;
SUBC> Label “x”;
SUBC> Axis 2;
SUBC> Label “f(x)”.

Rank 1 Top 100

Rank 2 Next 300

Rank 3 Middle 900

Rank 4 Next 300

Rank 5 Bottom 100
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70. The monthly earnings of financial analysts are normally distributed with a

mean of $5,700. If only 6.68 % of the financial analysts have a monthly income

of more than $6,140, what is the value of the standard deviation of the monthly

earnings of the financial analysts?

71. Suppose 15 % of the parts produced by a machine are defective. Use a normal

approximation to the binomial distribution. What is the probability that a

sample of 50 parts contains:

(a) Five or more defective parts?

(b) Ten or fewer defective parts?

(c) The expected number defective parts.

(d) The standard deviation of the number of defective parts.

72. Suppose the grades of students were normally distributed with a mean of 73 and

a standard deviation of 15.

(a) If 10 % of her students failed the course and received Fs, what was the

maximum score among those who received an F?

(b) If 35 % of the students received grades of B or better (i.e., As and Bs), what

is the minimum score of those who received a B?

73. A local bank has determined that the daily balances X of the checking

accounts of its customers are lognormally distributed with an E(lnX)¼$5.5

and Var(lnX) ¼ 1.5.

(a) What percentage of its customers has daily balances of more than $275?

(b) What percentage of its customers has daily balances less than $243?

(c) What percentage of its customers’ balances is between $241 and $301.60?

Appendix 1: Mean and Variance for Continuous Random

Variables

In this appendix, we will discuss areas under a continuous PDF and explore the

variance for continuous random variables.

Areas Under Continuous Probability Density Function

In accordance with Eq. 6.2a, the cumulative distribution function (CDF) for a

continuous variable X is given by

Fðx0Þ ¼
ðx0
�1

f ðxÞ dx (7.19)
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where x0 is any value that the random variable X can take. Eq. 7.19 implies that the

area under curve f(x) is to the left of x0.
Using Eq. 7.19, we can calculate the probability that X lies between a and b for a

continuous random variable:

Pða � X � bÞ ¼
ðb
a

f ðxÞ dðxÞ

¼
ðb
�1

f ðxÞ dx�
ða
�1

f ðxÞ dx ¼ FðbÞ � FðaÞ ð7:20Þ

For any a � b, F(a) � F(b). Equation 7.20 is similar to Eq. 7.1 for a discrete

variable case.

A diagrammatic representation of cumulative probability is given in Fig. 7.18.

The total area under the curveƒ(x) is 1. In integral calculus notation,

Fig. 7.18 Areas under continuous probability density function
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ð1
�1

f ðxÞ dx ¼ 1 (7.21)

Following Eqs. 7.19 and 7.20, the CDF of lognormal distribution can be defined

as ð1
a

f ðxÞdx (7.22)

where f(x) is the probability density function (PDF) of a lognormal distribution.

Its PDF is

f ðxÞ ¼ 1

xs
ffiffiffiffiffiffi
2p

p exp � 1

2s2
ðx� mÞ2

	 

; x> 0

In addition, it is well known that the PDF of a normal distributed variable y can
be defined as

f ðyÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp � 1

2s2
ðy� mÞ2

	 

; �1< y<1

By comparing the PDF of normal distribution and the PDF of lognormal

distribution, we know that

f ðxÞ ¼ f ðyÞ
x

(7.23)

In addition, it can be shown that14

dx ¼ x dy (7.24)

If we transform variable x in Eq. 7.22 into variable y, then the upper and lower

limits of integration for a new variable are 1 and ln a. Using this information, the

CDF for lognormal distribution can be written in terms of the CDF for normal

distribution as15

ð1
a

f ðxÞdx ¼
ð1
ln a

f ðyÞ
x

� �
x dy ¼

ð1
lnðaÞ

f ðyÞdy (7.25)

By substituting the PDF of normal distribution into the right-hand side of

Eq. 7.25, it can be shown that

14 From Eq. 7.5, we know that x ¼ ey. Then dx ¼ d(ey) ¼ ey dy ¼ xdy.
15 This relationship is obtained by substituting both Eqs. 7.23 and 7.24 into Eq. 7.22
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ð1
a

f ðxÞdx ¼
ð1
lnðaÞ

f ðyÞdy ¼ NðdÞ (7.26)

where

d ¼ m� lnðaÞ
s

This is the CDF of a lognormal distribution.

The value of N(d) can be obtained from Table A3 of Appendix A as discussed in

the text. Alternatively, the N(d) can be approximated by the following formula:

NðdÞ 
 1� a0e
�d2=2 a1tþ a2t

2 þ a3t
3

� �
(7.27)

where

t ¼ 1/(1þ0.33267d)
ao ¼ 0.3989423, a1 ¼ 0.4361836, a2 ¼ �0.1201676, a3 ¼ 0.9372980

Mean of Discrete and Continuous Random Variables

From Chap. 6, we know that the expected value of a discrete random variable can be

defined as

m ¼ EðXÞ ¼
XN
i¼1

xiPðxiÞ (6.3)

The expected value of a continuous variable can be defined in a similar fashion. If

X is a continuous random variable with probability density f(x), its expected value is

EðXÞ ¼
ð1
�1

xf ðxÞ dx (7.28)

We carry out the integration from –1 toþ1 to make sure that all possible values

of x are covered.
Let’s look at an example of how Eq. 7.28 can be used to calculate the mean of a

continuous variable. Suppose we let

f ðxÞ ¼ 2ð1� xÞ; 0< x< 1

¼ 0 otherwise

Substituting f(x) ¼ 2(1 – x) into Eq. 7.22, we obtain
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ð1
�1

2ð1� xÞ dx ¼
ð1
0

2ð1� xÞ dx

¼ 2x� x2
1
0
¼ 1

Therefore, f(x) is a PDF between x � 0 and x� 1. This PDF is shown in Fig. 7.19.

The expected value of X in terms of f(x) – 2(1 – x) can be calculated as

EðXÞ ¼
ð1
�1

xf ðxÞ dx ¼
ð1
0

ðxÞ2ð1� xÞ dx

¼x2 � 2

3
x3

1

0

¼ 1� 2

3
¼ 1

3

From Eq. 7.6 in the text, the mean of a lognormal variable can be defined as

ð1
0

xf ðxÞdx ¼ emþ1=2s2 (7.29)

If the lower bound a is larger than 0, then the partial mean of x can be shown as16

ð1
0

xf ðxÞdx ¼
ð1
lnðaÞ

f ðyÞeydy ¼ emþs2=2NðdÞ (7.30)

where

Fig. 7.19 Probability density

function of 2(1 � x)

16 The first equality is obtained by using the technique to show Eq. 7.25. The second equality is

obtained by substituting the PDF of normal distribution into
Ð1
lnðaÞ f ðyÞeydy and do the appropriate

manipulation.
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d ¼ m� lnðaÞ
s

þ s

Since d is positive, therefore, N(d) < 1. This implies that the partial mean of a

lognormal variable is the mean of x times an adjustment term, N(d).

Variance for Discrete and Continuous Random Variables

For discrete variables, we calculate the variance by averaging the squares of all

possible individual deviations about the mean. The variance is a measure of how

spread out the observations are, and it indicates the general shape of a distribution.

When all members of the population are obtainable and are used, we can define the

variance of a discrete random variable as

s2 ¼
XN
i¼1

ðxi � mÞ2PðxiÞ (6.4)

For a continuous random variable, the variance is defined as

s2 ¼
ð1
�1

ðx� mÞ2f ðxÞ dx (7.31)

Equation 7.31 can be rewritten as17

s2 ¼ EðX2Þ � m2 (7.32)

where

EðX2Þ ¼
ð1
�1

x2f ðxÞ dx (7.33)

17 From Eq. 7.31, we obtain

s2 ¼
ð1
�1

ðx2 � 2xmþ m2Þf ðxÞ dx

¼
ð1
�1

ðx2Þf ðxÞ dx� 2m
ð1
�1

xf ðxÞ dxþ m2
ð1
�1

f ðxÞ dx

¼
ð1
�1

ðx2Þf ðxÞ dx� 2m2 þ m2

¼
ð1
�1

ðx2Þf ðxÞ dx� m2 ¼ EðX2Þ � m2
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Now let’s see how we can use Eq. 7.32 to calculate the variance for a continuous

random variable. For f(x) ¼ 2(1 – x), E(X2) can be calculated in accordance with

Eq. 7.32 as

EðX2Þ ¼
ð1
�1

x2f ðxÞ dx ¼
ð1
0

ðx2Þ2ð1� xÞ dx

¼ 2

3
x3 � 2

4
x4

1

0

¼ 2

3
� 2

4
¼ 1

6

Substituting E(X2) ¼ 1
6
and E(X) ¼ 1

3
into Eq. 7.32, we obtain

s2 ¼ EðX2Þ � ½EðXÞ�2 ¼ 1
6
� 1

9
¼ 1

18

Appendix 2: Cumulative Normal Distribution Function

and the Option Pricing Model

The cumulative normal density function tells us the probability that a random

variable Z will be less than some value x. Note in Fig. 7.20 that P(Z < x) is simply

the area under the normal curve from –1 up to point x.
One of the many applications of the cumulative normal distribution function is in

valuing stock options. Recall from Appendix 2 (Chap. 6) that a call option gives the

Fig. 7.20 P(Z < x)
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option holder the right to purchase, at a specified price known as the exercise price,

a specified number of shares of stock during a given time period. A call option is a

function of the following five variables:

1. Current price of the firm’s common stock (S)
2. Exercise price of the option (X)
3. Term to maturity in years (T)
4. Variance of the stock’s price (a)
5. Risk-free rate of interest (r)

From Appendix 2 (Chap. 6), the binomial option pricing model defined in

Eq. 6.55 can be written as

C ¼ S
�XnT
k¼m

nT!

k!ðnT � kÞ! p
0kð1� p0ÞnT�k�

� X

ð1þ r
nÞTn

�XnT
k¼m

nT!

k!ðnT � kÞ! p
kð1� pÞnT�K�

¼ SBðnT; p0;mÞ � X

ð1þ r
nÞTn

BðnT; p;mÞ

where

n ¼ number of periods per year of term to maturity (T)
T ¼ term to maturity in years

m¼minimum number of upward movements in stock price that is necessary for the

option to terminate “in the money”

p ¼ R�d
u�d and 1� p ¼ u�R

u�d

where

R ¼ 1 þ r ¼1 þ risk-free rate of return

u ¼ 1 þ percentage of price increase

d ¼ 1 þ percentage of price decrease

p0 ¼ u

R

� �
p

and

BðnT; p;mÞ ¼
XnT
k¼m

nTCkp
kð1� pÞn�k

By using Eq. 7.10 in the text and a form of the central limit theorem, when

n ! 1 the cumulative binomial density function can be approximated by the

cumulative normal density function as

B1ðnT; p0;mÞ ffi N Z1; Z
0
1

� �
B2ðnT; p;mÞ ffi N Z2; Z

0
2

� �
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where

Z1 ¼ m� nTp0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nTp0ð1� p0Þp ; Z0

1 ¼
nT � nTp0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nTp0ð1� p0Þp

Z2 ¼ m� nTpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nTpð1� p0Þp ; Z0

2 ¼ nT � nTpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nTpð1� pÞp

It can be shown that

lim
n!1

1

ð1þ r
nÞnT

¼ e�rT and lim
n!1 Z0

1 ¼ lim
n!1 Z0

2 ¼ 1

Then Eq. 7.34 can be rewritten as

C ¼ SNðZ1Þ � Xe�rTNðZ2Þ (7.34a)

Using the definition of m and property of lognormal distribution, it can be shown

that Eq. 7.34a can become Eq. 7.3518:

C ¼ SNðd1Þ � Xe�rTNðd2Þ (7.35)

where

C ¼ price of the call option

S ¼ current price of the stock

X ¼ exercise price of the option

e ¼ 2.71828. . .
r ¼ short-term interest rate (T-bill rate) ¼ Rf

T ¼ time to expiration of the option, in years

N(di) ¼ Fz(di) ¼ value of the cumulative standard normal distribution (i ¼ 1, 2)

s2 ¼ variance of the stock rate of return

d1 ¼ lnðS=XÞ þ r þ 1

2
s2

� �
T

	 
.
s
ffiffiffi
T

p

d2 ¼ d1 � s
ffiffiffi
T

p

If future stock price is constant over time, then s2 ¼ 0. It can be shown that both

N(d1) and N(d2) are equal to 1 and that Eq. 7.35 becomes

C ¼ S� Xe�rT (7.36)

18 See Rendleman, Jr R.J., Barter, B.J.: Two-state option pricing. J. Finance 34, 1093–1010 (1979).

The lognormal approach to derive the option pricing model will be shown in Appendix 3.
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Alternatively, Eqs. 7.35 and 7.36 can be understood in terms of the following

steps:

Step 1: The future price of the stock is constant over time.

Because a call option gives the option holder the right to purchase the stock at

the exercise price X, the value of the option, C, is just the current price of the stock
less the present value of the stock’s purchase price. The concept of present value is

discussed in Appendix 3 (Chap. 21) in detail. Mathematically, the value of the calf

option is

C ¼ S� X

ð1þ rÞT (7.37)

Note that Eq. 7.37 assumes discrete compounding of interest, whereas Eq. 7.36

assumes continuous compounding of interest. To adjust Eq. 7.37 for continuous

compounding, we substitute e–rT for 1/(1 þ r)T to get

C ¼ S� Xe�rT

Step 2: Assume the price of the stock fluctuates over time (St).

In this case, we need to adjust Eq. 7.36 for the uncertainty associated with that

fluctuation. We do this by using the cumulative normal distribution function. In

deriving Eq. 7.35, we assume that St follows a lognormal distribution, as discussed

in Sect. 7.4.19

The adjustment factors N(d1) and N(d2) in the Black–Scholes option valuation

model are simply adjustments made to Eq. 7.36 to account for the uncertainty

associated with the fluctuation of the price of the stock.

Equation 7.35 is a continuous option pricing model. Compare this to the bino-

mial option pricing model given in Appendix 2 (Chap. 6), which is a discrete option

pricing model. The adjustment factors N(d1) and N(d2) are cumulative normal

density functions. The adjustment factors B1 and B2 are cumulative binomial

probabilities.

We can use Eq. 7.35 to determine the theoretical value, as of November 29,

1991, of one of IBM’s options with maturity on April 1992. In this case, we have

X ¼ $90, S ¼ $92.5, s ¼ 0.2194, r ¼ 0.0435, and T ¼ 5
12
¼ .42 (in years).20 Armed

with this information, we can calculate the estimated d1 and d2:

19 See Lee, C.F. et al.: Security Analysis and Portfolio Management, pp. 75–760. Scott, Foresman/

Little, Brown, Glenview (1990)
20 Values of X ¼ 90, S ¼ 92.5, and r ¼ .0435 were obtained from Section C of the Wall Street
Journal on December 2, 1991. And s ¼ .2194 is estimated in terms of monthly rates of return

during the period January 1989 to November 1991.
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d1 ¼
lnð92:5=90Þ þ ð:0435Þ þ 1

2
ð:2194Þ2

h i
ð:42Þ

n o
ð:2194Þð:42Þ1=2

¼ :392

d2 ¼ d1 � ð0:2194Þð0:42Þ1=2
¼ :25

In Eq. 7.35, N(d1) and N(d2) are the probabilities that a random variable with a

standard normal distribution takes on a value less than d1 and a value less than d2,
respectively. The values for N(d1) and N(d2) can be found by using the tables in the
back of the book for the standard normal distribution, which provide the probability

that a variable Z is between 0 and x (see Fig.7.21).
To find the cumulative normal density function, we need to add the probability

that Z is less than zero to the value given in the standard normal distribution table.

Because the standard normal distribution is symmetric around zero, we know that

the probability that Z is less than zero is .5, so

PðZ< xÞ ¼ PðZ< 0Þ þ Pð0< Z< xÞ ¼ :5þ value from table

We can now compute the values of N(d1) and N(d2).

Nðd1Þ ¼PðZ<d1Þ ¼ PðZ<0Þ þ Pð0< Z< d1Þ
¼PðZ<:392Þ ¼ :5þ :1517

¼ :6517

Nðd2Þ ¼PðZ<d2Þ ¼ PðZ<0Þ þ Pð0< Z< d2Þ
¼PðZ<:25Þ ¼ :5þ :0987

¼ :5987

Fig. 7.21 P(0 < Z < x)
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Then the theoretical value of the option is

C ¼ð92:5Þð:6517Þ � ½ð90Þð:5987Þ�=eð:0435Þð0:42Þ�
¼ 60:282� 53:883=1:0184

¼ $7:373

and the actual price of the option on November 29, 1991, was $7.75.

Appendix 3: Lognormal Distribution Approach to Derive

the Option Pricing Model

To derive the option pricing model in terms of lognormal distribution, we begin by

assuming that the stock prices follow a lognormal distribution. Denote the current

stock price by S and the stock price at the end of tth period by St.

Then ST
ST�1

¼ exp½kt� is a random variable with a lognormal distribution21

where Kt is the rate of return in tth period and is a random variable with

normal distribution. Assume Kt has the same expected value mk and s2k for each t.
Then kt+ K2 + . . . + KT is a normal random variable with expected value Tmk and
variance Ts2k .

22

Following Eq. 7.6 in the text, we can define the expected value (mean) of
ST
S ¼ exp½K1 þ K2 þ . . .þ KT � as

E
ST
S

	 

¼ exp Tmk þ

Ts2k
2

	 

(7.38)

Under the assumption of a risk-neutral investor,23 the expected return E
ST
S

	 

is

assumed to be exp[rT] (where r is the riskless rate of interest). In other words,

mk ¼ r � s2k=2 (7.39)

Following Appendix 2 (Chap. 6), the call option price C can be determined by

discounting the expected value of the terminal option price by the riskless rate of

interest:

C ¼ exp½�rT�E½MaxðST � X; 0Þ�; (7.40)

where T is the time of expiration and X is the striking price.

21 This is based upon the multiplicative property of lognormal distribution.
22 This is based upon the additive property of normal distribution.
23 The concept of risk-neutral investor will be discussed in Chap. 21 in detail.
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Note that MaxðST � X; 0Þ ¼ S
ST
S
� X

S

� �� �
for

ST
S
>
X

S

¼ 0 for
ST
S
<
X

S
ð7:41Þ

Let x ¼ ST
S has a lognormal distribution. Then

C ¼ exp½�rT�E½MaxðST � XÞ�

¼ exp½�rT�
ð1
X
S

S x� X

S

	 

gðxÞdx

¼ exp½�rT�S
ð1
X
S

xgðxÞdx� exp½�rT�S:X
S

ð1
X
S

gðxÞdx

where g(x) is the probability density function of XT ¼ XT ¼ ST
S .

Substituting m ¼ r – s2/2 and a ¼ X
S into Eqs. 7.26 and 7.30, we obtain

ð1
X
S

xgðxÞdx ¼ erNðd1Þ

where

d1 ¼
r � ð1=2Þs2 � ln X

S

s
þ s (7.43)

ð1
X
S

gðxÞdx ¼ Nðd2Þ

d2 ¼
r � ð1=2Þs2 � ln X

S

s
(7.44)

Substituting Eqs. 7.43 and 7.44 into Eq. 7.42, we obtain

C ¼ SNðd1Þ � X exp½�rT�Nðd2Þ; (7.45)

d1 ¼
ln S

X

� �þ r þ 1
2
s2k

� �
T

sk
ffiffiffi
T

p

d2 ¼
ln S

X

� �þ r � 1
2
s2k

� �
T

sk
ffiffiffi
T

p ¼ d1 � sk
ffiffiffi
T

p

This is Eq. 7.35 defined in Appendix 2.
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In Appendix 2 (Chap. 6), we have defined a put option as a contract conveying

the right to sell a designated security at a stipulated price. It can be shown that the

relationship between a call option (C) and a put option (P) can be defined as24

A B

1 The Black-Scholes Pricing Formula Calculation

2

3 S(current stock price)= 42

4 X(exercise price of option)= 40

5 r(risk-free interest rate)= 0.1

6 σ(volatility of stock)= 0.2

7 T-t(expiraiion date of option · current time)= 0.5

8 d1 = =(LN(B3/B4)+(B5+B6^2/2)*(B7))/(B6*SQRT(B7))

9 d2= =(LN(B3/B4)+(B5-B6^2/2)*(B7))/(B6*SQRT(B7))

10

11 c(value of European call option to buy one share)= =B3*NORMSDIST(B8)-B4*EXP(–B5*B7)*NORMSDIST(B9)

12 p(value of European put option to sell one share}= =B4*EXP(-B5*B7)*NORMSDlST(-B9)-B3*NORMSDIST(-B9)

Fig. 7.22 The excel calculations of The Black-Scholes Pricing Formula

A B

1 The Black-Scholes Pricing Formula Calculation

2

3 S(current stock price)= 42

4 X(exercise price of option)= 40

5 r(risk-free interest rate)= 0.1

6 σ(volatility of stock)= 0.2

7 T-t(expiration date of option -current time)= 0.5

8 d1 = 0.7693

9 d2= 0.6278

10

11 c(value of European call option to buy one share)= 4.76

12 p(value of European put option to sell one share)= 0.81

Fig. 7.23 The Black-Scholes Pricing Formula calculation

24 The relationship is known as put-call parity. See Hall, J.C.: Introduction to Futures and Option

Markets Prentice-Hall, New Jersey (1995)
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Cþ Xe�rT ¼ Pþ S (7.46a)

Substituting Eq. 7.45 into 7.46a, we obtain the put option formula as

P ¼ Xe�rTNð�d2Þ � SNð�d1Þ (7.46b)

where S, C, r, T, d1, and d2 are identical to those defined in the call option model.

Example 7.8 Excel Program for Calculating Black–Scholes Call and Put Option
Models. Assume S ¼ $42, X ¼ 40, r ¼ 0.1, s ¼ 0.2, and T – t ¼ 0.5

Using Eqs. 7.45 and 7.46a, we can write the Excel program for calculating the

call and put option program as presented in Fig. 7.22. The results are presented in

Fig. 7.23. From Fig. 7.23, we obtain C ¼ $4.76 and P ¼ $0.81.
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8.1 Introduction

In this chapter, we take an in-depth look at the operational end of statistical analysis.

Statistical analysis primarily involves selecting parts of populations (known as

samples) and analyzing them in order to make inferences about the populations.

Inferences made about a population by using sample data are widespread in business,
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economics, and finance. For example, the A. C. Nielsen Company infers the number

of people who watch each television show on the basis of a sample of TV viewers.

The use of political polls to project election winners is another example of statistical

inference. And when you fill out a warranty card on an appliance you have bought,

you are often asked to provide information about yourself that the warrantor compiles

(and probably sells to someone who will later try to convince you to buy a magazine

subscription). These data are also sample data.

First, sampling from a population is discussed. Second, we explore the issue of

sampling costs versus sampling errors. Next, sampling distributions for sample means

and sample proportions are illustrated. Then one of the most important principles in

statistics, the central limit theorem, and confidence intervals are discussed in detail.

Finally, an accounting application illustrates how sampling and sampling distributions

can be used in auditing. The sampling distribution concept also is used to do patient

waiting-time analysis.

8.2 Sampling from a Population

In previous chapters, we have discussed many different topics in statistics. Among

these are distributions, probabilities, measurements of dispersion and symmetry,

and data collection and analysis. The topic most closely related to sampling is data

collection, organization, and presentation, which we discussed in Chap. 2. Either a

census or a sampling survey approach can be used in data collection. A census is a
survey that attempts to include every element in the universe, or population, in

which we are interested. Sampling is used to count or measure only a subset of the

population; these collected data are called sample data. In this book, we will return

again and again to problems whose solutions depend on making inferences about a

population from a sample.

The management, analysis, and interpretation of data are the foundation of statis-

tics. In order to make full use of the information that data can yield, the statistician

must start with clear objectives and follow well-defined pathways to a desired result.

Along these pathways, there are points where the analyst must make decisions on the

basis of an evaluation of costs and benefits. Key considerations include how much

information is appropriate, how specific this information should be, and whether

statistical inferences drawn from the data are analytically sound.

Now let us formally define the terms population and sample. A population
consists of all members, objects, or observations that fall into a certain category.

A sample is a subset of the members, objects, or observations in a given population.

In analyzing the characteristics of a population, a researcher can analyze the

entire population or draw conclusions about the entire population on the basis of a

random sample selected from the population. Using sampling to determine the true

characteristics of a population offers several advantages:

1. The cost is less.

2. The data are more manageable.
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3. It is less time-consuming.

4. Sample observation can be more accurate.

5. It makes analysis possible even when not all population elements are accessible.

As in other areas of statistics, the goal of the researcher is to choose methods that

will lead to informative and useful results. These issues are discussed in the following

section.

Sampling enables a statistician (or researcher) to make inferences about a given

population from a more manageable segment of the population. It follows that the

sample must be chosen in a manner that will ensure that it represents the original

population. Two kinds of errors can arise in a sampling experiment: sampling errors

and nonsampling errors. Before we can examine samples, we must thoroughly

understand these two types of errors.

8.2.1 Sampling Error and Nonsampling Error

Sampling errors are errors that result from the chance selection of sampling units.

They occur only when a sample, rather than the entire population, is observed. They

are random errors (or chance errors), as discussed in Chap. 2. For example, if the

sample from a given population had a mean of .6 and the true populationmean was .5,

there is an average sampling error of .1. Sampling error can be reduced by takingmore

observations, and it can be eliminated by taking all observations. Sampling error can

usually be analyzed by first identifying the source of the error and then making the

needed inferences. The relationship between sampling cost and sampling error is

discussed in the next section of this chapter.

Nonsampling errors are errors that result from inaccurate measurement of the

data or improper selection of sample observations. For example, if you measure

flour with a cup that holds 15 oz rather than 16, the bread you make will contain less

flour than the recipe intended. This kind of error is not related to the number of

observations but rather is due to the inaccurate measurement of data. If a given

section of the population has an unduly low or an unduly high chance of being

selected for a sample, then sampling data can result in systematic, rather than

random, sampling error. Other examples of nonsampling error include faulty

questions and choosing observations that do not pertain to the population being

examined. Nonsampling error is systematic error (or bias), as discussed in Chap. 2.
Unlike sampling error, nonsampling error cannot be reduced by increasing the

sample size. (This issue will be discussed further in Chap. 20.) Although it is

possible to minimize this type of error by carefully specifying the criteria by

which observations are selected or measured, nonsampling error persists to a certain

extent in almost all cases. The more complicated the data set, the greater the chance

that nonsampling error will creep in.
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8.2.2 Selection of a Random Sample

For a sample to be drawn from a population representatively, each member, object,

or observation must have an independent and equal chance of being selected for the

sample. Suppose a sample of n elements must be selected from a population of

N elements. A simple random sampling procedure is one in which every possible

combination
N

n

� �� �
of n elements in the population has an equal probability of

being selected. The n elements obtained from simple random sampling constitute a

simple random sample or random sample. Random selection is the key to this

process; it significantly reduces nonsampling errors due to improper selection of

sample observations.

There are two useful methods for carrying out simple random sampling: drawing

chips from a box and using random-number tables.

8.2.2.1 Drawing from a Box

If we want to draw, with replacement, a simple random sample of five students from

a business statistics class made up of 80 students, we assign the numbers 1–80 to the

students and place these numbers on physically similar balls, slips of paper, or

poker chips. We then put all the balls (or whatever) in a box, shake the box to mix

them thoroughly, and proceed to draw the sample. The first ball is drawn, and we

record the number written on it. We then replace the ball and shake the box again,

draw the second ball, and record the result. We repeat the process until we have

drawn five distinct numbers. The students corresponding to these five numbers

constitute the required simple random sample.

8.2.2.2 Using a Random-Number Table

If the population size is large, the method just described becomes unwieldy and time-

consuming. Furthermore, it may introduce biases if the balls are not thoroughly

mixed. Using such random-number tables as Table 8.13 in Appendix 1 to draw

random samples is much easier. A table of random digits is simply a table of digits

generated by a random process. The application of random-number tables to draw

random samples will be thoroughly discussed in Chap. 20.

MINITAB, SAS, and other computer programs can be used to generate random

numbers. Both Tables 8.1 and 8.2 are generated from MINITAB. Table 8.1 contains

the instructions for generating 200 random numbers between 1 and 1,000 in terms of

a uniform distribution. Table 8.2 contains the instructions for generating 200 numbers

between 0 and 1 in terms of a uniform distribution.
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Whichever sampling method is used, the analyst must be sure the population

under consideration is appropriate for the analysis; taking this precaution largely

eliminates another kind of nonsampling error.

8.3 Sampling Cost Versus Sampling Error

This section deals primarily with the costs associated with selecting a sample and

with how those sampling costs can affect sampling errors. This type of analysis is

often referred to as cost–benefit analysis of sampling. Cost–benefit analysis in this

context involves comparing the benefits of sampling with its disadvantages (costs).

The underlying need for the information is the gauge by which incurred costs and

allowable error are measured. This issue will be explored further in Chap. 20.

The aim of drawing a random sample from a population is to measure indirectly

population attributes such as mean and variance without having to include all

possible data. We have all heard the saying “time is money.” This is the heart of

this issue. It takes people (and usually machines as well) to work through detailed

analyses, and neither of these resources is free. A researcher must pay employees to

collect the data and enter them into a computer; it also costs a lot to buy, use, and

run the computer. The computer costs are numerous: hardware, software, electric-

ity, paper, maintenance, operators, storage, and so on. If the computer is rented,

these costs are included in the rental fee. Either way, the more data collected and

analyzed, the higher the costs of the study. It is obvious that the statistician faces a

crucial question: How much data are actually necessary?

The Gallup Organization and National Opinion Research Center used a sampling

survey approach in their poll to obtain Americans’ views on their work ethic in a

timely manner. The results of the poll were published in the Wall Street Journal
(February 13, 1992, p. Bl).

The three questions asked and the results are presented here.

Would you welcome or not welcome less emphasis on working hard?

Would not 67 %

Would 30 %

Are you satisfied or dissatisfied with Americans’ willingness to work hard to

better themselves?

Dissatisfied 45 %

Satisfied 52 %

Would you strongly agree, agree, disagree, or strongly disagree with the

following:

“I am willing to work harder than I have to in order to help this organization

succeed.”
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Strongly disagree 1 %

Disagree 9 %

Agree 52 %

Strongly agree 38 %

Note that the percentages for questions 1 and 2 add up to only 97 % because the

category of “no response” was omitted during the poll.

8.3.1 Sampling Size and Accuracy

If an entire population is used as a sample for analysis, then such numerical

characteristics as the mean and variance of the sample are identical to those of

the population. However, suppose the population is very large – say, 10 million

units. To collect all the observations and analyze them would be a ponderous task.

Fortunately, if only some of the members are chosen at random and analyzed, the

population mean and variance can be estimated with some precision from the

sample. Even though it is possible to estimate the population parameters by

analyzing a random sample of the observations, the results are only estimates. In

general, the fewer the observations used in the sample, the larger the sample error.

Significantly, sample error is not necessarily a linear function; that is, there is not

necessarily an equal trade-off between additional data and greater accuracy.

A relatively small sample of the entire population may yield estimates close to

the true population values. However, it generally takes increasing amounts of data

to make sample estimates closer to the true population value. Consequently, to have

the sample estimates equal the population parameters is very expensive. The

following two applications may shed some light on the problem of whether large

or small samples should be used in the real world.

Application 8.1 A Case for a Large Sample. Suppose a pharmaceutical firm

wishes to test a new shampoo formulated to help control dandruff for an acceptable

amount of a certain active ingredient. If there is not enough of the active ingredient,

the shampoo is not effective, yet if too much of the active ingredient is present, the

shampoo may cause harmful side effects, including hair loss. Although there is a

great need for accuracy, it is not economically feasible to test an entire batch of the

shampoo. A sample can be used to test the content of the shampoo and to conduct

related analyses and make inferences. In this case, it is particularly important to work

with a large sample in order to reduce sampling errors because hair loss among users

would be an intolerable outcome.

Application 8.2 A Case for a Small Sample. Suppose a company manufactures a

crude grade of cement mix to be used as a foundation for sidewalks. The company

wishes to check that a certain amount of small stones is included in each 50-lb bag.

ALL components of the cement mix are equally valuable, so the only reason for

conducting this test is to ensure the most durable mixture possible. A few stones

more or less in a bag of cement mix will negligibly affect the performance of the
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cement mix. Therefore, the producer will want only a small sample of the total

number of cement mix bags to be examined to ensure that the stone content of each

is within a certain range. Here, the underlying need for accuracy is small, so the

company can save money by examining its product infrequently. When extremely

high accuracy is not required, cost considerations and time constraints usually hold

down sample size.

8.3.2 Time Constraints

If there is a deadline to be met, that in itself may limit the number of observations

that are analyzed in a given study. For example, if we want to know the monthly

inflation rate of the United States of America for an economic policy decision, we

can use only a small number of sample data to calculate the monthly inflation rate in

time. (How to use a price index to calculate the inflation rate will be discussed in

Chap. 19.)

In general, sampling cost and sampling error are traded off according to the

needs of the situation. The greater the accuracy required, the lower the allowable

sampling error and the higher the cost of analysis. The issue of trade-offs between

sampling cost and sampling error will be analyzed in more detail in Chap. 20.

In addition to the examples discussed so far, we turn to the real-world example of

a telephone sampling survey used to find out about the different opinions among

Americans and Japanese regarding their trade relationship.

Infoplan/Yankelovich International polled 500 Japanese adults via telephone on

January 28 and 29 of 1992; 1,000 American adults were surveyed via phone by

Yankelovich Clancy Shulman on January 30. The results of the TIME/CNN

sponsored poll that posed questions about how Japanese and Americans feel

about each other were published in the February 10, 1992, issue of TIME. Sampling

errors are plus or minus 4.5 % for the survey of Japanese and 3 % for the survey of

Americans. Responses of “not sure” were omitted.

Here are the results of 1 of the 5 questions in the TIME article.

Which is the main reason for the large trade imbalance between the United

States and Japan?

1. Sixty-six percent of the Americans and 33 % of the Japanese surveyed responded

that Japan unfairly keeps American products out of the country.

2. “American products are not as good as Japanese products,” according to 22 % of

the American respondents and 44 % of the Japanese.

8.4 Sampling Distribution of the Sample Mean

In previous chapters, we examined population distributions. Now we will examine

sampling distributions of the sample mean. The sampling distribution is derived

from a set of values taken at random from the population. In short, the population
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distribution represents the distribution of the members of a population, whereas the

sample distribution represents the distribution of a sample statistic for certain

randomly chosen members of a population.

8.4.1 All Possible Random Samples and Their Mean

The following example shows how to calculate all possible random samples and

their mean.

Example 8.1 Sampling Distribution: Three Cases. Consider the data in Table 8.3,

which consist of the numbers of years of work experience for six secretaries in

Francis Engineering, Inc.

The mean of this population is

m ¼ 1þ 2þ 3þ 4þ 5þ 6ð Þ 6= ¼ 3:5

A sample mean as indicated in Eq. 8.1 can be used to estimate this population

mean:

X ¼ 1

n

� � Xn
i¼1

Xi (8.1)

where X1, X2, . . ., Xn denote the sample observations.

This example will show how the distribution of the sample mean can be affected

by the sample size n as in the cases here.

Case 1: n ¼ 2

Table 8.4 shows the possible values for a sample consisting of two observations

from the above-mentioned population. Table 8.4 indicates that there are 15 possible

samples. Because all are equally likely to be selected, the probability that any specific

sample will be selected is 1/15. Using this information, we can summarize the

probability distribution associated withX indicated in Table 8.4 as shown in Table 8.5.

Now look at Fig. 8.1. Part (a) is the population distribution of work experience for six

secretaries, which is a uniform distribution. Part (b) shows the sampling distribution

of the mean for a sample size of 2; the information on which it is based is taken from

Table 8.5. Note the difference between these probability distributions. That in part (b)

looks more like the bell shape of the normal distribution. The numbers in the

population range from 1 to 6 and the sample means have a more narrow range –

from 1.5 to 5.5.

Table 8.3 Work experience for six secretaries in Francis Engineering, Inc

Secretary Mary Gerry Alice Debbie Elizabeth Kimberly

Years of experience 1 2 3 4 5 6
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Case 2: n ¼ 3

If the sample size is increased from 2 to 3, then the sample means and probabilities

are as shown in Tables 8.6 and 8.7. Comparing Table 8.7 with Table 8.5 reveals that

the range of possible values of the sample mean has been reduced from (5.5–1.5) to

(5–2) – that is, from 4 to 3. Note that Fig. 8.2 looks more like a bell-shaped normal

distribution than Fig. 8.1b.

Case 3: n ¼ 4

If the sample size is increased to 4, then the sample means and probabilities are

as shown in Tables 8.8 and 8.9. Comparing Table 8.9 with Tables 8.5 and 8.7

reveals that the range of the possible values of the sample mean has been further

reduced, from (5–2) to (4.5–2.5) – that is, from 3 to 2. The sampling distribution

shown in Fig. 8.3 looks almost like a normal distribution.

In Example 8.1, we saw how the sampling distribution can be identified, how the

sample size can affect the variation of a sample mean distribution, and how the

sample distribution approaches a bell-shaped normal distribution when sample size

increases. It remains to consider how the sample size affects the number of possible

sample means and sample variances. Let N be the size of a population with mean mX

and standard deviation sx. A random sample of n observations is drawn from this

population, so there are
N
n

� �
sample means Xi and

N
n

� �
sample variances S2i ,

where i ¼ 1, 2, . . .,
N
n

� �
. Let’s use the information related to Example 8.1 to

illustrate this concept.

Table 8.4 Possible samples

and sample means (n ¼ 2)
Sample Sample mean Sample Sample mean

1, 2 1.5 2, 6 4

1, 3 2 3, 4 3.5

1, 4 2.5 3, 5 4

1, 5 3 3, 6 4.5

1, 6 3.5 4, 5 4.5

2, 3 2.5 4, 6 5

2, 4 3 5, 6 5.5

2, 5 3.5

Table 8.5 Probability

function of X for n ¼ 2
X P(X)

1.5 1/15

2 1/15

2.5 2/15

3 2/15

3.5 3/15

4 2/15

4.5 2/15

5 1/15

5.5 1/15
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Fig. 8.1 (a) Population distribution. (b) Sampling distribution of mean work experience (n ¼ 2)

Table 8.6 Possible samples

and sample means (n ¼ 3)
Sample Sample mean Sample Sample mean

1, 2, 3 2 2, 3, 4 3

1, 2, 4 2.33 2, 3, 5 3.33

1, 2, 5 2.67 2, 3, 6 3.67

1, 2, 6 3 2, 4, 5 3.67

1, 3, 4 2.67 2, 4, 6 4

1, 3, 5 3 2, 5, 6 4.33

1, 3, 6 3.33 3, 4, 5 4

1, 4, 5 3.33 3,4, 6 4.33

1, 4, 6 3.67 3, 5, 6 4.67

1, 5, 6 4 4, 5, 6 5
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Fig. 8.2 Sample distribution of mean work experience for n ¼ 3

Table 8.8 Possible samples and sample means (n ¼ 4)

Sample Sample mean Sample Sample mean

1, 2, 3, 4 2.5 1, 3, 5, 6 3.75

1, 2, 3, 5 2.75 1, 4, 5, 6 4

1, 2, 3, 6 3 2, 3, 4, 5 3.5

1, 2, 4, 5 3 2, 3, 4, 6 3.75

1, 2, 4, 6 3.25 2, 3, 5, 6 4

1, 2, 5, 6 3.5 2, 4, 5, 6 4.25

1, 3, 4, 5 3.25 3, 4, 5, 6 4.5

1, 3, 4, 6 3.5

Table 8.7 Probability

distribution of X for n ¼ 3
X P(X)

2 1/20

2.33 1/20

2.67 2/20

3 3/20

3.33 3/20

3.67 3/20

4 3/20

4.33 2/20

4.67 1/20

5 1/20

1.00
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Example 8.2 Sizes of Sample Means and Their Distributions. In Example 8.1,
N ¼ 6, and random samples of size 2, 3, and 4 were used to show how all possible

sample means can be calculated when sampling without replacement. The possible

numbers of samplemeans and sample variances for these three alternative samples are

6

2

� �
¼ 6!

2!ð6� 2Þ! ¼
ð6Þð5Þð4Þð3Þð2Þð1Þ
ð2Þð1Þð4Þð3Þð2Þð1Þ ¼ 15

6

3

� �
¼ 6!

3!ð6� 3Þ ¼
ð6Þð5Þð4Þð3Þð2Þð1Þ
ð3Þð2Þð1Þð3Þð2Þð1Þ ¼ 20

6

4

� �
¼ 6!

4!ð6� 4Þ! ¼
ð6Þð5Þð4Þð3Þð2Þð1Þ
ð2Þð1Þð4Þð3Þð2Þð1Þ ¼ 15

If sampling with replacement, the number of samples will be (6)2 ¼ 36,

(6)3 ¼ 216, and (6)4 ¼ 1296.

Table 8.9 Probability

distribution of X for n ¼ 4
X P(X)

2.5 1/15

2.75 1/15

3 2/15

3.25 2/15

3.5 3/15

3.75 2/15

4 2/15

4.25 1/15

4.5 1/15

1.00

Fig. 8.3 Probability distribution X for n ¼ 4
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In the next section, we will discuss the concepts of mean and variance analyti-

cally for the sample mean distribution in accordance with the results we got in

Examples 8.1 and 8.2.

8.4.2 Mean and Variance for a Sample Mean

Example 8.1 shows how a random sample of n observations is drawn from a

population with mean m and variance s2X , where the sample members are denoted

X1, X2, . . ., Xn. The sample mean is obtained from a random sample drawn from the

population, so the expected value of the sample mean X of Eq. 8.1 is the population

mean m:1

mX ¼ E X
� � ¼ m (8.2)

The variance of the sample mean is equal to the variance of the summation of the

individual observations of X divided by the number of observations in the sample.

This can be written arid simplified as follows:2

1 This is because

E X
� � ¼ E

1

n

Xn
i¼1

Xi

 !

¼ 1

n
E X1ð Þ þ E X2ð Þ þ � � � þ E Xnð Þ½ �

¼ 1

n
ðnmÞ ¼ m

2X1, X2, . . ., Xn are independent of each other, so we can use Eq. 6.31 in Chap. 6 to obtain

Var
Xn
i¼1

Xi

 !
¼ Var X1ð Þ þ Var X2ð Þ þ � � � þ Var Xnð Þ

¼ ns2X

Therefore,

1

n2
Var

Xn
i¼1

Xi

 !
¼ 1

n2
ns2x
� � ¼ s2X

n

Because s2X generally is not known, it can be estimated by s2X, the sample variance:

s2X ¼
Pn
i¼1

Xi � X
� �2
n� 1
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Var X
� � ¼ Var

1

n

� �Xn
i¼1

Xi

" #
¼ 1

n2
Var

Xn
i¼1

Xi

 !
¼ s2X

n
(8.3)

The variance of the sampling distribution of X decreases as the sample size n
increases. In other words, the more observations in the sample, the more

concentrated is the sampling distribution of the sample mean around the population

mean, as we saw in Example 8.1. Using Eq. 8.3, we find the standard deviation of

the sample mean as follows:

sX ¼ sX
ffiffiffi
n

p	
(8.4)

Equation 8.2 is applicable to both an infinite sample or a finite sample, with and

without replacement. Equation 8.4, however, is applicable only to either an infinite

sample or a finite sample with replacement.

8.4.3 Sample Without Replacement from a Finite Sample

In the case of a sample drawn without replacement, it is important to consider the

size of the sample relative to the population sizeN. If the sample size is less than 5 %

of the population (n � .05 N), then Eq. 8.4 may be used as it appears here. If the

population is large, and if the sample size is larger than 5 % of the total population

(n > .05 N), then a correction factor must be incorporated into Eq. 8.4. When

samples are drawn from populations without replacement, each observation can be

chosen only once. Therefore, as the available choices for new sample members

become large, the chance that a given sample member will be chosen is still random,

but there is a larger probability of its being chosen than in samplingwith replacement

because fewer members remain in the population. This has been shown to bias

sample variance and standard deviation. The bias can be corrected as follows:

Var X
� � ¼ s2X

n
� N � n

N � 1
(8.5)

sX ¼ sXffiffiffi
n

p �
ffiffiffiffiffiffiffiffiffiffiffiffi
N � n

N � 1

r
(8.6)

for all samples where n > .05 N. Here, (N � n)/(N � 1) is called the finite popul-
ation multiplier.3 Equations 8.5 and 8.6 are the variance and standard deviation in

cases of finite population.

3We encountered this issue in Chap. 6, where we found that the hypergeometric distribution

considered the population size N but the binomial distribution did not. Equation 6.15 can be

redefined as

Variance of hypergeometric

random variable

� �
¼ Variance of corresponding

binomial random variable

� �
� N � n

N � 1

� �
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Example 8.3 Sample Mean Distribution with Samples of Different Size. Suppose a

class has six students with the following grade points: 1.5, 2, 3, 3.5, 4, 5.

The population mean and standard deviation of this set of data are

m ¼ 1:5þ 2þ 3þ 3:5þ 4þ 5ð Þ 6= ¼ 3:167

sX ¼ 1:5� 3:167ð Þ2 þ � � � þ 5� 3:167ð Þ2 6=
h i1=2

¼ 8:334=6ð Þ1=2 ¼ 1:179

If samples of two were drawn from this population, 15 combinations would be

possible. Fifteen samples of two students each and the calculated X for each sample

are listed in Table 8.10. These sample means are not all 3.167, but they are close to

3.167.

The mean and standard deviation and other related information for 15 sample

means generated by MINITAB are presented in Fig. 8.4. Here, we learn that (1) the

average mean of these 15 values is 3.167 (this is equal to m ¼ 3.167) and (2) the

standard deviation of these 15 values is .772 or .745, which depends on whether

n � 1 or n is used as the denominator for calculating the standard deviation.

Substituting N ¼ 6, n ¼ 2, and sX ¼ 1.179 into Eq. 8.6, we obtain

sX ¼ 1:179ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffi
6� 2

6� 1

r
¼ :7456

This result also proves that Eq. 8.6 holds approximately true. We have proved

the E X
� � ¼ m, indicated in Eq. 8.2, holds true.

Table 8.10 All possible sample means and associated probabilities

Number of sample Combinations of grade points Mean ðXÞ
1 1.5, 2 1.75

2 1.5, 3 2.25

3 1.5, 3.5 2.50

4 1.5, 4 2.75

5 1.5, 5 3.25

6 2, 3 2.50

7 2, 3.5 2.75

8 2, 4 3.00

9 2, 5 3.50

10 3, 3.5 3.25

11 3, 4 3.50

12 3, 5 4.00

13 3.5, 4 3.75

14 3.5, 5 4.25

15 4, 5 4.50

EðXÞ ¼ 3.167
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Now we offer two other examples to show how Eqs. 8.2, 8.4, and 8.6 can be

applied.

Suppose an extremely large population has mean m ¼ 90.0 and standard devia-

tion sX ¼ 15.0. We already know that the expected value of the sample mean is

equal to the population mean. Therefore, the sampling distribution of the sample

means for a sample size of n ¼ 25 has the following parameters:

E X
� � ¼ m ¼ 90:0

sX ¼ sX
ffiffiffi
n

p	 ¼ 15:0
ffiffiffiffiffi
25

p.
¼ 15:0 5:0= ¼ 3:0

Suppose this time that the population is N ¼ 50 firms in an industry. Further,

let’s assume that the population represents earnings per share (EPS) observations

for all firms in a given industry with mean $10 and standard deviation $2.

A financial analyst takes a random sample of 20 of these firms. Because the sample

size n > .05 N, our estimate of the standard deviation of the sample mean must take

Fig. 8.4 Sample distribution on sample mean (N ¼ 6, n ¼ 2)
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the correction factor (N � n/N � 1) into account. We use Eqs. 8.2 and 8.6 to

calculate the sample mean and sample standard deviation:

E X
� � ¼ m ¼ $10

sX ¼ sX
ffiffiffi
n

p	� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � nð Þ N � 1ð Þ=

p
¼ 2

ffiffiffiffiffi
20

p.
 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50� 20ð Þ 50� 1ð Þ=

p
¼ $0:35

If the population is either normally distributed or large and n � 30, then the

random variable Z is distributed standard normally and is defined as follows:

Z ¼ X � m
� �
sX

ffiffiffi
n

p
=

(8.7)

Researchers then can use Eq. 8.7 and the standard normal distribution table

(Table A3 in Appendix A at the end of the book) to do statistical analysis in terms of

X and sX
ffiffiffi
n

p
= .

Application 8.3 Probability and Sampling Distributions of Radial Tires’

Lives. Suppose there is a population of radial tires whose lives are normally

distributed and have a mean of 26,000 miles with a standard deviation of

3,000 miles. A random sample of 36 of these tires was taken and found to have a

mean life of 25,000 miles. If the population parameters are correct, what is the

probability of finding a sample mean less than or equal to 25,000? Following Sect.

7.4 of Chap. 7 on the use of the normal area table and using Eq. 8.7, we find that the

probability is

P X � 25; 000
� � ¼ P X � m

� �
sX
	 � P 25; 000� mð Þ sX

	� 
But, from Eq. 8.4, we know that the standard deviation of the sample mean is

sX ¼ sX
ffiffiffi
n

p	 ¼ 3; 000
ffiffiffiffiffi
36

p.
¼ 500

and

P X � 25; 000
� � ¼ P Z � ð25; 000� 26; 000Þ 500=½ �

¼ P Z � �2½ �
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Because the distribution of Z is a standard normal distribution, we use Table A3

to calculate the probability:

P X � 25; 000
� � ¼ FZð�2:0Þ

¼ 1� FZð2:0Þ
¼ 1� :9772

¼ :0228

Thus, the probability that the sample mean for the life of the radial tires is less than

or equal to 25,000 miles is approximately 2.3 %. The normal probability curves for

the Z and X statistics for the population distribution are shown in Fig. 8.5.

To further investigate the relationship between sample size and the sampling

distribution ofX, we use the information of Application 8.3. The expected value and

standard deviation of the sampling distribution of X for five different sample sizes

can be calculated as follows:

Fig. 8.5 The normal probability curve for Z and X statistics
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Sample size EðXÞ ¼ m sX ¼ sX=
ffiffiffi
n

p

n ¼ 1 26,000 3; 000

1
¼ 3; 000

n ¼ 2 26,000 3; 000ffiffiffi
2

p ¼ 2121:3407

n ¼ 8 26,000 3; 000ffiffiffi
8

p ¼ 1060:6703

n ¼ 16 26,000 3; 000ffiffiffiffiffi
16

p ¼ 750

n ¼ 32 26,000 3; 000ffiffiffiffiffi
32

p ¼ 530:3258

On the basis of this information, five different normal distributions with mean

26,000 and five different standard deviations are displayed in Fig. 8.6. Sample size

does not affect the expected value m of the sample mean, but the standard deviation

sX of the sample mean becomes smaller when the sample size increases.

Fig. 8.6 Sampling distributions of X for five different sample sizes
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8.5 Sampling Distribution of the Sample Proportion

Sometimes in statistical analysis, it is important to estimate the proportion of a

certain characteristic in a population. For example, it may be of interest to estimate

the proportion of people in New York City who are unemployed or the proportion

of students at Rutgers University who favor changing the grading system. The

sample proportion, p̂, is simply the number of sample members X with the specified

characteristic divided by the sample size n:

p̂ ¼ X

n
(8.8)

The mean and variance of a sample proportion can be derived from the binomial

distribution discussed in Chap. 6. Recall that the mean and standard deviation of a

binomially distributed random variable X are

m ¼ np (6.11)

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞ

p
(6.12)

where p is the probability of success.

From Eqs. 6.11 and 6.12, the mean and standard deviation of a sample propor-

tion p̂ can be calculated as

mp̂ ¼
np

n
¼ p (8.9)

sp̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞp

n
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
(8.10)

For the same reasons as stated in Sect. 8.4, we need the finite population correction

if n > .05 N. The corrected variance for large samples (relative to population size) is

s2p̂ ¼ pð1� pÞ n=½ �ðN � nÞ ðN � 1Þ= (8.11)

and

sp̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½pð1� pÞ=n

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðN � nÞ=ðN � 1Þ�

p
(8.12)

Finally, if the sample size is large – say, greater than 30 – then the following

Z statistic is approximately distributed as standard normal:
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Z ¼ ðp̂� pÞ=sp̂ (8.13)

Mean, variance, and standard deviation calculations are performed in the same

manner as in Eq. 8.7 of Sect. 8.4. The following example illustrates the inferential

use of the Z statistic shown in Eq. 8.13.

Example 8.4 Calculating the Probability of Defective Chips. A shipment of 1,000

calculator chips arrives at Kraft Electronics. Suppose the company takes a random

sample of 50 chips. The company claims that the proportion of defective chips in

this shipment is about 25 %. Assume the claim is correct. What is the probability

that this shipment will contain between 23 % and 27 % defective chips?

We begin with the information available and calculate the associated probability

with Eq. 8.13. The population proportion is p ¼ .25, and the related probability can

be defined as

Pð:23< p̂< :27Þ ¼ P
:23� p

sp̂
<
p̂� p

sp̂
<
:27� p

sp̂

� �

and

sp̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ n=

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð:25Þð:75Þ 50=

p
¼ :061

Therefore,

Pð:23< p̂< :27Þ ¼ P
:23� :25

:061
<
p̂� p

sp̂
<
:27� :25

:061

� �

Using the cumulative distribution function FZ(Z) of the standard normal random

variable and the standard normal distribution table (Table A3 in Appendix A), we

obtain

Pð:23< p̂< :27Þ ¼ Pf�:33< Z<:33g
¼ FZð:33Þ � FZð�:33Þ
¼ FZð:33Þ � 1� FZ :33ð Þ½ �
¼ :6293� 1� :6293½ �
¼ :2586

There is a 25.86 % chance that between 23 % and 27 % of the chips in this

shipment will be defective.
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8.6 The Central Limit Theorem

As we found in Sect. 8.4, the sample means of
N
n

� �
possible samples have the

following properties:

1. If the population is normally distributed, the distribution of the sample mean is

normal.

2. If the population is large but not normally distributed – for example, if the

distribution is uniform or U-shaped – the distribution of sample mean approaches

a normal distribution provided that the sample is large, as indicated in Fig. 8.7.4

Following these results is one of the most important theorems in statistics, the

central limit theorem:
As the sample size (n) from a given population gets “large enough,” the

sampling distribution of the mean, X, can be approximated by a normal distribution

with mean m and standard deviation s=
ffiffiffi
n

p
, regardless of the distribution of the

individual values in the population.

Alternatively, the central limit theorem can be stated in the following way. Let,

X1, X2, . . . Xn be independent and identically distributed random variables with

mean m and standard deviation s. LetX represent the sample mean with sample size

n. Then, as n becomes large, the distribution of the following Z statistic as indicated

in Eq. 8.7 approaches the standard normal distribution:

Z ¼ X � m
sX

ffiffiffi
n

p
=

(8.7)

Many useful calculations can be made via the central limit theorem. It is

worthwhile to know that the central limit theorem can be employed to justify

using the normal distribution as an approximation for both binomial and Poisson

distributions, as discussed in Chap. 6.

Why is the central limit theorem so important in statistics? It enables us to

analyze the means of many different random variables even when we don’t know

the actual population distributions of these variables. For instance, in Application

8.3, we computed the probability that the mean tire life was less than or equal to

25,000 miles. Even though we assumed that tire life was normally distributed, we

could have conducted this analysis without making that assumption simply by using

the central limit theorem.

Other possible uses of the central limit theorem include quality control analysis

(such as examining the mean number of defective parts in a car, which will be

discussed in Chap. 10), investment analysis (such as examining the mean rates of

return for stocks, which was discussed in Chaps. 3 and 4), and educational analysis

(such as examining mean IQ scores).

4 Random samples from a uniform distribution for sample size n ¼ 2, 5, 10, 25, and 50 are

presented in Appendix 1.
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Example 8.5 Illustrating the Central Limit Theorem. The distribution of annual

earnings of all marketing assistant professors in the United States with 5 years of

experience is skewed negatively, as shown in part (a) of Fig. 8.8. This distribution

has a mean of $55,000 and a standard deviation of $4,000. Say we draw a random

sample of 50 assistant professors of marketing. What is the probability that their

Fig. 8.7 Sample mean distribution with samples of different size
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annual earnings will average more than $56,500? Part (b) of Fig. 8.8 shows the

sampling distribution of the mean that will result. It also indicates the area

representing “earnings over $56,500.”

First we calculate the standard deviation of the mean from the population

standard deviation in accordance with Eq. 8.4:

sX ¼ sXffiffiffi
n

p

¼ $4; 000ffiffiffiffiffi
50

p

¼ $565:68

From Eq. 8.2, we know that

E X
� � ¼ mX ¼ m ¼ $55; 000

Because the sample mean X is normally distributed, we can use Eq. 8.7 to

calculate

Z ¼ X � m
sX

ffiffiffi
n

p
=

¼ $56; 000� $55; 000

$565:68

¼ 2:65

Fig. 8.8 (a) Population and (b) sampling distributions for marketing assistant professors’ annual

earnings
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Finally, we use the Z statistics given in Table A3 in Appendix A to obtain the

desired probability:

P X> $56; 500
� � ¼ PðZ> 2:65Þ

¼ :5000� :4960 ¼ :0040

We have determined that there is .4 % chance of average annual earnings being

more than $56,500 in a group of 50 assistant marketing professors.

8.7 Other Business Applications

Application 8.4 Audit Sampling. It is possible in accounting to make inferences

about an entire large, finite population by drawing samples of size n and thus using

only a small portion of the data. The information in Table 8.11 on a sample of 30

accounts was taken from the population of 3,000 trade accounts receivable for a

given company.5 Using Eq. 8.1, we can calculate the mean of the sample in

Table 8.9 as follows:

X ¼ 1

n

� �Xn
i¼1

Xi

¼ 1

30

� �
195:81þ 152:65þ � � � þ 215:95½ �

¼ $202:10 (8.1)

Using Eq. 4.7, we can calculate the variance of the sample as follows:

s2 ¼
Xn
i¼1

Xi�X
� �2
n� 1

¼ ð1=29Þ 195:81� 202:10ð Þ2þ 152:65� 202:10ð Þ2þ �� �þ ð215:95� 202:10Þ2
h i

¼ 719:164

Armed with this information and with information on the population standard

deviation sX, we can make inferences about the population mean.6 This is achieved

by using the same structure as in Table 7.2.

5 Bailey A.D. Jr.: Statistical Auditing: Review, Concepts and Problems, pp. 138–42. New York,

Harcourt, Brace Jovanovich (1981)
6 If population standard deviation is not available, we can substitute sX for sX, but in this case, the Z
statistics defined in Eq. 8.7 can no longer be used. A different statistic can be used, however.

See Sect. 9.3 for the discussion and application.
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The fact that the population mean is unknown is the motivation for this analysis.

By taking a sample of 30 observations from a population of 3,000, the auditor can

calculate the mean and standard deviation of this sample. From this type of informa-

tion, the auditor can use the central limit theorem to determine the possible ranges

that should include the true population mean if the population standard deviation is

known. Suppose the population standard deviation is $25,560. We can use Eq. 8.4 to

estimate the standard deviation of the sample mean:7

Table 8.11 Sample of trade accounts receivable balances

Account number Customer name Book amounta �X1 Rank by dollar size

101 Beekmans, F.M. $ 195.81 10

102 Morsby, A.F. 152.65 2

103 Sack, I.E. 225.74 25

104 Hoschke, K.R. 190.73 8

105 Hosken, A.J. 207.66 18

106 Manitzky, A.A. 207.57 17

107 Worner, C.J. 210.21 19

108 Walsh, A. 147.75 1

109 Ryland, K.L. 217.73 22

110 Nolde, J.P. 206.47 15

111 Rehn, L.M. 222.12 24

112 Argent, A. 204.26 14

113 Mollison, A.M. 247.35 30

114 Conolly, E.W.J. 230.24 27

115 England, A.G. 198.12 11

116 Brown, C. 220.03 23

117 Luther, E. 216.36 21

118 Sarikas, A.D. 241.62 29

119 Martinez, B.P. 169.53 6

120 Beech, D.F. 228.98 26

121 Bedford, B.A. 159.57 4

122 Apps, A.J. 194.75 9

123 Hamlyn-Harris, T.H. 181.01 7

124 Mangan, M.R. 157.60 3

125 Topel, Z.H. 198.15 12

126 Westaway, W.R. 203.73 13

127 A-Izzedin, T.B. 206.47 16

128 Alrey, R.C. 239.12 28

129 Biment, W. 165.76 5

130 Dimick, M.C. 215.95 20

$6,063.04

Source: Andrew D. Bailey, Jr., Statistical Auditing: Review, Concepts and Problems, pp. 138–42.
Copyright # 1981 by Harcourt Brace Jovanovich, Inc., reprinted by permission of the publisher
aThese amounts were generated by using a mean of $200.00, a standard deviation of $30.00, and an

assumed normal distribution. Rounding is to the nearest cent

7 If the population standard deviation is not known, then we can use the information on sample

mean and sample variance to do a similar analysis. This kind of analysis will be done in Sect. 9.3.
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SX ¼ sX
ffiffiffi
n

p	 ¼ 25:56
ffiffiffiffiffi
30

p.
¼ 4:667

The guidelines listed in Table 7.2 give us a rule for determining confidence
intervals. We can use this rule to make the three confidence-interval statements

listed in Table 8.12. For example, the first confidence-interval statement can be

expressed as follows: “We can be about 68 % confident that the population mean m
will fall between $197.43 and $206.77.”

Application 8.5 Patient Waiting Time. Sloan and Lorant (1977) studied the

relationship between the length of time patients wait in a physician’s office and

certain demand and cost factors.8 They obtained data on typical patient waiting times

for 4,500 physicians and reported a mean waiting time of 24.7 min and a standard

deviation of 19.3 min.

Suppose a pediatrician does not have this set of data and has one of the nurses in

the office monitor the waiting times for 64 randomly selected patients during the year.

Applying the central limit theorem, we know that the sample mean, X, is approxi-
mately normally distributed and that the mean mX and standard deviation sX are

mX ¼ m ¼ 24:7min

sX ¼ sXffiffiffi
n

p ¼ 19:3ffiffiffiffiffi
64

p ¼ 2:4min

The chance of the sample mean falling between 18 and 26 min can be calculated

as follows. Because X is normally distributed, we can use Eq. 8.7 to calculate

Z1 ¼ X � m
sX

ffiffiffi
n

p
=

¼ 18� 24:7

2:4
¼ �2:79

Z2 ¼ 26� 24:7

2:4
¼ :54

By using Table A3 in Appendix A, we can calculate the probability that the

sample mean X falls between 18 and 26 min as

Table 8.12 Confidence

intervals of accounts

receivable population

mean (m)

Confidence level (%) Confidence interval

68.0 $197.43 < m < $206.77

95.5 $192.77 < m < $211.43

99.7 $188.10 < m < $216.10

8 Sloan F.A., Lorant J.H.:The role of patient waiting time: Evidence from physicians’ practices.

J. Bus. , October, 486–507 (1977)
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P 18 � X � 26
� � ¼ Pð�2:79 � Z � :54Þ

¼ :4974þ :2054

¼ :7028

There is about a 70.28 % chance that the sample mean will fall between 18 and

26 min. The pediatrician can use this information to determine how efficiently the

office is operating.

8.8 Summary

In this chapter, we began our treatment of inferential statistics by discussing the

concept of sampling and sampling distributions. Inferential statistics deals with

drawing inferences about population parameters by looking at a sample of the

population. We considered the costs and benefits of sampling and how to draw a

random sample. In addition, we discussed the distribution of the sample mean and

one of the most important theorems in statistics, the central limit theorem.

In Chap. 9, we will examine other important continuous distributions. In Chap. 10,

we continue our discussion of inferential statistics by introducing the concepts of

point estimation and confidence intervals.

Questions and Problems

1. A grocery store sells an average of 478 loaves of bread each week. Sales (X) are
normally distributed with a standard deviation of 17.

(a) If a random sample of size n ¼ 1 (week) is drawn, what is the probability

that the X value will exceed 495?

(b) If a random sample of size n ¼ 4 (weeks) is drawn, what is the probability

that the X value will exceed 495?

(c) Why does your response in part (a) differ from that in part (b)?

2. A random variable s measures the daily balances in customers’ savings

accounts. It is normally distributed, with a mean of ms – $108 and a standard

deviation of $15.

(a) If a random sample of size n ¼ 4 is drawn, what is the probability that the

s4 value exceeds $116?
(b) If a random sample of size n ¼ 16 is drawn, what is the probability that the

sl6 value exceeds $116?
(c) What happened to the standard deviation of �s when the sample size

increased from n ¼ 4 to n ¼ 16?

(d) What happened to the probability of observing �s � $116 as the sample size

increased from n ¼ 4 to n ¼ 16?
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3. On average, a book distributor fills orders for 1,000 books per day. If daily

orders are normally distributed and the standard deviation is 100, what is the

probability that a 5-day average will be between 900 and 1,100 books?

4. A company makes a pastry called a chocco. During the manufacturing process,

the individual choccos are placed in a baking oven. The time it takes to bake

them is normally distributed around a mean of 64 min with a standard deviation

of 5 min. Thus, distribution of the population of baking times is normal in

shape.

(a) When choccos are baked, what is the probability that the mean baking time

of four choccos will be 64 min and 45 s or longer?

(b) What proportion of the individual choccos bake in 57 min or less?

5. In a large group of corporate executives, 20 % have no college education, 10 %

have exactly 2 years of college, 20 % have exactly 4 years, and 50 % have

6 years. A sample size of 2 (with replacement) is to be taken from this population.

Find the sampling distribution of the mean number of years in college of the

executives in the sample.

6. Out of 10 pay telephones located in a municipal building, two phones are to be

picked at random, with replacement, for a study of phone use. The actual usage

of the phones on a particular day is shown in the accompanying table.

Number of calls Number of phones with this number of calls

10 2

12 5

16 3

(a) Find the sampling distribution of the average number of calls per phone in

the sample of two phones.

(b) Find the variance of this distribution.

7. To demonstrate the central limit theorem, draw 100 samples of size 5 from a

random-number table and calculate the sample mean for each of the 100

samples. Construct a frequency distribution of sample means. Do the same

for 100 samples of size 10 and compare the two frequency distributions. Does

the central limit theorem appear to be working?

8. The accompanying probability density function is a uniform distribution

showing that a certain delicate new medical device will fail between 0 and

10 years after it is implanted in the human body. The mean time to failure is

m ¼ 5 years, and the standard deviation is s ¼ 2.88 years.
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(a) Verify that the total area beneath this density function is 1.0.

(b) Find the probability that an individual device will fail more than 8 years

after implantation.

(c) Find the probability that in a sample of n ¼ 36 of these devices, the sample

mean time of failure �x will be 8 years or less.

9. The daily catch of a small tuna-fishing fleet averages 130 t. The fleet’s logbook

shows that the weight of the catch varies from day to day and this variation is

measured by the standard deviation of the daily catch, s ¼ 42 t. What is the

probability that during a sample of n ¼ 36 fishing days, the total weight of the

catch will be 4,320 t or more?

10. A type of cathode ray tube has a mean life of 10,000 h and a variance of 3,600.

If we take samples of 25 tubes each and for each sample we find the mean life,

between what limits (symmetric with respect to the mean) will 50 % of the

sample means be expected to lie?

11. The population of times measured by 3-min egg timers is normally distributed

with m ¼ 3 min and s ¼ .2 min. We test samples of 25 timers. Find the time

that would be exceeded by 95 % of the sample means.

12. A light bulb manufacturer claims that 90 % of the bulbs it produces meet tough

new standards imposed by the consumer protection agency. You just received a

shipment containing 400 bulbs from this manufacturer. What is the probability

that 375 or more of the bulbs in your shipment meet the new standards?

(Hint: Use the continuity approximation.)

13. At the beginning of every decade, the US government conducts a census. Why

does it take a census? What are the advantages of a census over a sample?

14. Briefly explain the relationship between inferential statistics and sampling.

15. Suppose a town consists of 2,000 people, 1,100 of whom are registered voters.

You are interested in how the people in this town will vote on a bond issue.

What group constitutes the population? Give an example of a sample from this

population.
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16. What is sampling error? Give an example. Is there any way to eliminate

sampling error?

17. What is nonsampling error? Give an example. Is there any way to eliminate

nonsampling error?

18. State whether each of the following represents sampling or nonsampling error.

(a) The sample weight of newborn babies is taken with a scale that is inaccu-

rate by 1 lb.

(b) Sample data suggest that the price of a new home in New Jersey is

$150,000 when the actual new home price is $ 180,000.

(c) A movie theater owner asks the first 100 people leaving the theater whether

they liked the movie. By chance, however, the first 100 people to leave are

all women. (This in itself may say something about the movie!)

19. What is a representative sample? Why is getting a representative sample

important?

20. Briefly explain the relationship between sampling cost and sampling error.

Give some examples of sampling costs.

21. The mean life of light bulbs produced by the Brite Lite Bulb Company is 950 h

with a standard deviation of 225 h. Assume that the population is normally

distributed. Suppose you take a random sample of 12 light bulbs.

(a) What is the mean of the sample mean life?

(b) What is the standard deviation of the sample mean?

22. Suppose the mean amount of money spent by students on textbooks each

semester is $175 with a standard deviation of $25. Assume that the population

is normally distributed. Suppose you take a random sample of 25 students.

(a) What is the mean of the sample mean amount spent on textbooks?

(b) What is the standard deviation of the sample mean?

23. The Better Health Cereal Company produces Healthy Oats cereal. The true

mean weight of a box of cereal is 24 oz with a standard deviation of 1 oz.

Assume the population is normally distributed. Suppose you purchase eight

boxes of cereal.

(a) What is the mean of the sample mean weight?

(b) What is the standard deviation of the sample mean?

24. Explain the relationship between a probability distribution and a sampling

distribution.

25. Suppose the average time a customer waits at the check-out line in a grocery

store is 12 min with a standard deviation of 3 min. If you take a random sample

of five customers, what is the probability that the average check-out time will

be at least 10 min? What is the mean of the sample check-out time? What is the

standard deviation of the sample mean?

26. Historically, 65 % of the basketball players from Slam Dunk University

graduate in 4 years. If a random sample of 50 former players is taken, what
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proportion of the samples is likely to have at least 25 basketball players

graduating?

27. A coffee machine is set so that it dispenses a normally distributed amount of

coffee with a mean of 6 oz and a standard deviation of .4 oz. Samples of 12 cups

of coffee are taken. What is the probability that the sample means will be more

than 6.2 oz?

28. Suppose that historically 61 % of the companies on the NYSE have prices that

go up each year. If random samples of 100 stocks are taken, what proportion of

samples is likely to have between 55 % and 65 % of stock prices going up?

29. Suppose the mean life for a company’s batteries is 12 h with a standard

deviation of 3 h. If you take a sample of 20 batteries, what is the standard

deviation of the sampling distribution of the mean?

30. The mean useful life of better traction tires is 40,000 miles with a standard

deviation of 4,000 miles. If you purchase four of these tires for your car, what is

the probability that the mean useful life of the four tires is less than

35,000 miles?

31. The mean interest rate of 500 money market mutual funds is 7.98 % with a

standard deviation of 1.01 %. Suppose you draw a sample of 25 mutual funds.

(a) What is the mean of the sample mean rate?

(b) What is the variance of the sample mean?

(c) What is the probability that this sample will have a mean rate above 8.2 %?

32. Of 500 students in a high school, 72 % have indicated that they are interested in

attending college. What is the probability of selecting a random sample of

50 students wherein the sample proportion indicating interest in college is

greater than 80 %?

33. The professor in a statistics course takes a random sample of 100 students from

campus to determine the number in favor of multiple-choice tests. Suppose that

50 % of the entire college population are actually in favor of the multiple-

choice test. What is the probability that more than 50 % of the students sampled

will favor the multiple-choice test?

34. Suppose 40 % of the students in Genius High School scored above 650 on the

math portion of the SAT. What is the probability that more than 50 % of a

random sample of 150 students will score less than 650?

35. The Sorry Charlie Tuna Company produces canned tuna fish. The true mean

weight of a can of tuna is 6 oz with a standard deviation of 1 oz. Assume the

population is normally distributed, and suppose you purchase 9 cans of tuna.

(a) What is the mean of the sample mean weight?

(b) What is the variance of the sample mean?

36. Suppose the time a customer waits in line at a bank averages 8 min with a

standard deviation of 2 min. In a random sample of five customers, what is the

probability that the average time in line will be at least 10 min? What is the

mean of the sample waiting time? What is the standard deviation of the sample

mean?
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37. In Freeport High School, 40 % of the seniors who are eligible to vote indicated

that they plan to vote in the upcoming election. What is the probability of

selecting a random sample of 400 students with a sample proportion of voting

greater than 35 %?

38. A credit card company accepts 70 % of all applicants for credit cards. A random

sample of 100 applications is taken.

(a) What is the probability that the sample proportion of acceptance is between

.60 and .80?

(b) What is the probability that the sample proportion is greater than .75?

(c) What is the probability that the sample proportion is less than .65?

39. From past history, a bookstore manager knows that 25 % of all customers

entering the store make a purchase. Suppose 200 people enter the store.

(a) What is the mean of the sample proportion of customers making a

purchase?

(b) What is the variance of the sample proportion?

(c) What is standard deviation of the sample proportion?

(d) What is the probability that the sample proportion is between .25 and .30?

40. Suppose 60 % of the members in a lifeguards’ union favor certification tests for

lifeguards. If a random sample of 100 lifeguards is taken, what is probability

that the sample proportion in favor of certification tests is greater than 70 %?

41. A bank knows that its demand deposits are normally distributed with a mean of

$1,122 and a standard deviation of $393. A random sample of 100 deposits is

taken.

(a) What is the probability that the sample mean will be greater than $1,000?

(b) Compute the mean of the sample mean demand deposits.

(c) Compute the variance of the sample mean.

42. A company claims that its accounts receivable follow a normal distribution

with a mean of $500 and a standard deviation of $75. An auditor will certify the

bank’s claim only if the mean of a random sample of 50 accounts lies within

$25 of the mean. Assume that the bank has accurately reported its mean

accounts receivable. What is the probability that the auditor will certify the

bank’s claim?

43. Consider the members of a group with ages 23, 19, 25, 32, and 27. If a random

sample of two is to be taken without replacement, what is the sampling

distribution for their mean age? What is the mean and variance for the

distribution?

44. Answer question 31 again, assuming that the sample is taken with replacement.

45. Consider a population of six numbers, 1, 2, 3, 4, 5, and 6. What is the mean of

this population? Suppose you roll a pair of dice. Construct a table showing the

different possible combinations of the two numbers you will obtain. Construct a

probability function for this sample. Find the mean of the sample.
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46. Answer question 45 again, assuming that the sample is taken from a population

of four numbers, 1, 2, 3, and 4.

47. Answer question 45 again, assuming that the sample is taken from a population

of three numbers, 1, 2, and 3.

48. Compute the values for
N
n

� �
if

(a) N ¼ 5, n ¼ 2

(b) N ¼ 6, n ¼ 3

(c) N ¼ 6, n ¼ 2

(d) N ¼ 4, n ¼ 3

49. Why are we interested in the sample mean and its distribution?

50. Consider the members of a weight-loss group who weigh 225, 231, 195, 184,

and 131 lb. If a simple random sample of size 2 is to be taken without

replacement, what is the sampling distribution for their mean weight? What

are the mean and variance for the distribution?

51. Suppose there are 2,000 members in a construction workers’ union and 40 % of

the members favor ratifying the union contract. If a random sample of 100

construction workers is taken, what is the probability that the sample propor-

tion in favor of ratifying the contract is greater than 50 %?

52. From past history, a service manager at Honest Abe’s Auto Dealership knows

that 35 % of all customers entering the dealership will have service work done

that is under warranty. Suppose 200 people enter the dealership for service

work on their cars.

(a) What is the mean of the sample proportion of customers having work done

that is covered by the warranty?

(b) What is the variance of the sample proportion?

(c) What is standard error of the sample proportion?

(d) What is the probability that the sample proportion is between .25 and .40?

53. A quality control engineer knows from past experience that the mean weight

for ball bearings is 7.4 oz with a standard deviation of 1.2 oz. Suppose the

engineer draws a random sample of 20 ball bearings. What is the probability

that the mean of the sample will be greater than 8.0 oz?

54. Suppose you take an ordinary deck of 52 cards randomly select five cards

without replacement. How many different combinations of sample car can you

have?

55. Suppose you draw three balls without replacement from a bag of balls num-

bered 1–10. How many different possible combinations sample balls you have?
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56. Suppose the ages of members of a senior citizens’ bridge club are 63, 71, 82,

60, 84, 75, 77, 65, and 70.

(a) Compute the population mean and standard deviation for the age of the

bridge club members.

(b) If you were to select a sample of four members from the bridge club, how

many possible samples could you select?

57. Use the information given in question 43 to randomly select five samples of

four people and determine the mean and standard deviation for each sample

58. In each of the following cases, find the mean a standard deviation of the

sampling distribution for the sample mean, for a sample of size n from a

population with mean m and standard deviation s.

(a) n ¼ 5, m ¼ 10, s ¼ 2

(b) n ¼ 10, m ¼ 10, s ¼ 3

(c) n ¼ 10, m ¼ 5, s ¼ 3

(d) n ¼ 20, m ¼ 5, s ¼ 2

59. Suppose the cost of sampling is 50 cents per observation. If the population has

zero variance, large a sample should be collected to estimate mean of the

population?

60. Suppose you would like to randomly select four of the following six companies

for a study: IBM, Apple Computer, AT&T, MCI, Ford, and Chrysler. What is

the probability that Apple Computer will be in the sample? What is the

probability that at least one company from the auto industry, one from the

computer industry, and one from the telecommunications industry will be

included in the sample?

61. Suppose a population is normally distributed. What is the probability that the

sample mean will be less than the population mean?

62. Suppose an obstetrician knows from past experience that the mean weight of a

newborn baby is 7.5 lb with a standard deviation of 2 lb. The doctor randomly

chooses five newborn babies. What is the expected value of the sample mean

weight? What is the expected value of the sample mean variance?

63. Review the information given in question 62. What is the probability that a

sample of 50 babies will have a mean weight greater than 8 lb?

64. A cigarette manufacturer came up with a new brand of cigarettes called Long

Life. The nicotine content of the cigarettes follows a normal distribution with a

mean of 20 and a standard deviation of 5. A consumer bought a pack of Long

Life that contains 25 cigarettes. Consider these 25 cigarettes as a random sample.

(a) What is the probability that a cigarette contains over 23 units of nicotine?

(b) What is the probability that the average nicotine content for the whole pack

of cigarettes is higher than 23?

65. Table 8.5 shows the probability distribution of X for n ¼ 2. Show that the

average of the random variable X is 3.5. What is the standard deviation of X?
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66. Assume the tips received by five waitresses in a given weeknight are $25, $27,

$28, $29, and $30. We draw two numbers randomly and take the average. Write

the probability distribution of the sample mean. What are the expected value

and standard deviation of the sample mean?

67. In a big university, 70 % of the faculty members like to give plus and minus

grades (such as B plus and C minus). The other 30 % of the faculty members do

not like the plus and minus system. The school newspaper randomly surveyed

200 faculty members for their opinions. What is the probability that more than

half of the faculty members interviewed will be in favor of plus and minus

grades? What is the expected number of faculty interviewed who answer the

question positively?

68. Assume that the amount of milk in a 16-oz bottle follows a normal distribution

with a mean of 16 and a standard deviation of 1. A consumer protection agency

bought 30 bottles of milk and weighed them. What is the probability that the

average weight of these 30 bottles of milk falls between 15.9 and 16.1 oz?

69. If, in question 68, 90 % of the bottles contain more than 16 oz of milk, what is

the probability that fewer than 3 of the 30 bottles that the agency bought contain

more than 16 oz of milk?

70. The newly produced 1992 Honda boasts 45 miles per gallon on the highway.

Assume that the distribution of the miles per gallon is a normal distribution

with a mean of 40 and a standard deviation of 5. The Environmental Protection

Agency randomly draws 100 1992 Hondas to test-drive.

(a) What is the probability that a certain car can achieve 45 miles per gallon?

(b) What is the probability that the average of 100 cars exceeds 45 miles per

gallon?

71. In question 70, what is the probability that of the 100 cars test-driven, more than

35 cars get more than 45 miles per gallon? How many of the 100 cars tested

would you expect to get more than 45 miles per gallon?

72. The National Treasury Bank wants to approve, at random, two of five loan

applications that have been submitted. The loan amounts are $5,000, $8,000,

$9,000, $10,000, and $12,000. Obtain the sampling distribution of average

loans. What is the expected amount of loans?

73. Recently the State Education Department of New Jersey wanted to determine

the competence in math of the state’s fourth-grade students. Assume that 20 %

of the students are actually incompetent in mathematics. A test was given to

120 fourth-grade students in New Jersey. What is the probability that at least

20 % of the students who took the test failed it?

74. Assume that 80% of the employees are union members, whereas 20% are not. In

the last year, 100 of 500 employees were randomly selected to receive a working

bonus. If the company does not discriminate against the union members, what is

the probability that 30 or more bonus recipients are union members?

75. Suppose the sampling distribution of a sample mean that was developed from a

sample of size 40 has a mean of 20 and a standard deviation of 10. Assuming

that the population exhibits a normal distribution, find the mean and standard

deviation of the population distribution.
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76. A natural food company is marketing a new yogurt that it advertises as having

only half the fat of regular yogurt. The average amount of fat in a cup of regular

yogurt is 1 unit. The Food and Drug Administration has asked us to investigate

the product to see whether the company has engaged in false advertising. The

test results are as follows:

Amount of yogurt tested 400 cups

Average amount of fat contained per cup .52 units

Number of cups containing more than half the fat of regular yogurt 12 cups

Standard deviation of the amount of fat .2 units

What is the probability of our observing .52 units of average fat, as shown in the

report if the population average fat is .5, as stated in the advertisement?

77. On the basis of your answer to question 76, do you believe the advertisement is

accurate?

78. The company in question 76 further claims that only 2 % of the cups contain

more than half the fat of regular yogurt. What is the probability of our seeing

more than 12 cups out of 400 (which is what we saw in the report) that contain

more than half the fat of regular yogurt?

79. In a game, a player rolls two dice and counts how many points he gets between

them. Write out the sampling distribution.

80. What are the expected value and standard deviation of the random variable

generated in question 79?

81. In a local factory, 20 % of the assembly line workers make $5 per hour and

80 % earn $8 per hour. The union computes the mean hourly wage by randomly

drawing five workers. Write the sampling distribution for the five workers’

average wage.

82. Write out the sampling distribution for rolling a die and flipping a coin.

83. Suppose you play a game in which you flip three coins. If the flip is a head, you

receive 1 point; if the flip is a tail, you receive 2 points. Write out the sampling

distribution. What are the expected value and standard deviation of this random

variable?

84. Suppose you draw two cards from a standard 52-card deck with replacement.

Write out the sampling distribution for the suit drawn.

85. The MINITAB output in the figure (see pages 371–372) is 20 random samples

drawn from a uniform distribution between 0 and 1. Calculate the sample means

and sample standard deviations by using the MINITAB program.

86. Use MINITAB to draw histograms for both the sample means and the sample

standard deviations, which have been calculated in question 85. Explain the

results.

87. Use the results you got in question 85 to plot sample means against sample

standard deviation. What is the probability of the range, the sample means

between .45 and .55, and the sample standard deviation between .2 and .35?

88. In a survey by the United Airlines of 100 flights between Jan. 2, 2012 to

Feb. 15, 2012, whether the flights arrive their destination on time or not are

recorded. What is the sample proportion? Please estimate the standard
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deviation of the sample proportion, and calculate the probability that the

sample proportion is less than 30 %.

The financial data of 37 companies in the communication and internet sector is

given below. In the data set, the debt-to-asset, dividend per share, current ratio,

fixed asset turnover, ROA, and P/B ratio of September, 2011 are given.

Debt-to-asset (%) Dividend per share Current ratio Fixed asset turnover ROA P/B

60.35 0 130.4 2.16 �5.36 0.92

78.74 0 87.75 9.8 �1.4 0.91

24.3 5.73 36.76 1.08 1.24 1.03

45.53 10.08 151.46 14.43 2.55 1.05

22.58 0 171.58 1.17 0.02 0.85

13.27 5.44 174.97 0.17 2.78 2.19

53.93 5.99 137.16 3.18 0.22 1.56

28.8 12.1 150.26 13.8 1.06 1.17

53.05 0 125.28 0.91 1.45 0.72

35.8 4.4 215.22 12.08 4.5 4.82

17.58 1.07 394.77 0.29 3.71 2.47

17.69 8.16 438.73 3.08 4.52 1.47

54.66 0 220.43 1.04 �9.68 1.88

63.65 5.06 129.16 9.33 7.41 6.5

19.89 7.6 419.59 0.48 �1.31 0.77

34.34 1.01 122.9 1.06 1.23 0.65

46.59 4.37 39.16 0.47 4.04 6.24

24.21 1.5 373.75 10.75 �1.62 0.83

33.55 2.29 253.04 9.52 2.85 1.88

40.79 7.96 176.64 9.87 4.67 2.24

35.49 7.35 218.21 6.83 2.23 1.06

39.01 0 164.8 2.02 0.26 0.84

37.82 3.1 209.99 5.42 2.57 0.94

51.42 5.52 157.65 27.38 0.73 1.49

0.32 3.42 151.9 0 0.59 0.89

22.85 5.49 54.93 0.47 2.69 2.13

45.63 3.4 155.36 4.23 1.12 0.94

57.04 4.69 135.61 5.36 2.11 1.84

4.17 11.24 1,229.48 2.28 3.16 0.9

60.48 1.06 127.84 1.9 1.4 0.65

37.98 7.65 195.28 19.95 2.87 1.3

13.01 7.26 664.24 1.41 3.28 1.1

28.33 0 111.58 0.86 �1.86 0.56

49.46 4.38 166.77 4.26 3.1 2.44

35.55 6.59 246.69 1.98 5.96 2.01

27.64 1.33 264.17 11.09 �1.58 2.46

64.18 0 121.05 25.71 2.68 1.64

Please use the sample means and variances of the above six financial variables

in 2011 as an estimate of the population means and variances of the year 2012,

and answer the following questions:
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89. What is the probability that the sample mean of dividend per share of the

37 companies is greater than eight in 2012?

90. What is the probability that the sample mean of ROA of the 37 companies is

greater than �1.5 but less than 4.5 in 2012?

91. What is the sample proportion of the ROAs of the 37 companies that are

negative in 2011?

92. What is the probability that the sample proportion of negative ROAs is greater

than 0.2 in 2012?

MINITAB for question 85

MTB > RANDOM 10 Cl;

SUBC> UNIFORM A ¼ 0 B ¼ 1.

MTB > RANDOM 10 C2;

SUBC> UNIFORM A ¼ 0 B ¼ 1.

MTB > RANDOM 10 C3;

SUBC> UNIFORM A ¼ 0 B ¼ 1.

MTB > RANDOM 10 C4;

SUBC> UNIFORM A ¼ 0 B ¼ 1.

MTB > RANDOM 10 C5;

SUBC> UNIFORM A ¼ 0 B ¼ 1.

MTB > RANDOM 10 C6;

SUBC> UNIFORM A ¼ 0 B ¼ 1.

MTB > RANDOM 10 C7;

SUBC> UNIFORM A ¼ 0 B ¼ 1.

MTB > RANDOM 10 C8;

SUBC> UNIFORM A ¼ 0 B ¼ 1.

MTB > RANDOM 10 C9;

SUBC> UNIFORM A ¼ 0 B ¼ 1.

MTB > RANDOM 10 C10;

SUBC> UNIFORM A ¼ 0 B ¼ 1.

MTB > RANDOM 10 C11;

SUBC> UNIFORM A ¼ 0 B ¼ 1.

MTB > RANDOM 10 C12;

SUBC> UNIFORM A ¼ 0 B ¼ 1.

MTB > RANDOM 10 C13;

SUBC> UNIFORM A ¼ 0 B ¼ 1.

MTB > RANDOM 10 C14;

SUBC> UNIFORM A ¼ 0 B ¼ 1.

MTB > RANDOM 10 C15;

SUBC> UNIFORM A ¼ 0 B ¼ 1.

MTB > RANDOM 10 C16;

SUBC> UNIFORM A ¼ 0 B ¼ 1.

MTB > RANDOM 10 C17;

SUBC> UNIFORM A ¼ 0 B ¼ 1.

MTB > RANDOM 10 C18;

(continued)
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(continued)

SUBC> UNIFORM A ¼ 0 B ¼ 1.

MTB > RANDOM 10 C19;

SUBC> UNIFORM A ¼ 0 B ¼ 1.

MTB > RANDOM 10 C20;

SUBC> UNIFORM A ¼ 0 B ¼ 1.

MINITAB for Question 85 (Continued)
MTB > PRINT C1-C20
Data display

Row C1 C2 C3 C4 C5 C6 C7

1 0.697491 0.908023 0.029563 0.658749 0.893156 0.260689 0.253072

2 0.795475 0.874655 0.132406 0.541380 0.313101 0.435039 0.231828

3 0.087242 0.109459 0.646564 0.587851 0.510025 0.679080 0.431409

4 0.434503 0.378682 0.398421 0.174592 0.906581 0.841402 0.552284

5 0.918639 0.022752 0.699634 0.694702 0.930529 0.521381 0.776129

6 0.916262 0.653844 0.040985 0.064612 0.215344 0.785744 0.922679

7 0.273922 0.842171 0.895335 0.001518 0.281558 0.499460 0.068693

8 0.170415 0.090264 0.478746 0.440146 0.082488 0.649124 0.485246

9 0.592387 0.268102 0.222450 0.258805 0.133108 0.453357 0.600180

10 0.206343 0.353241 0.845340 0.079208 0.043057 0.242360 0.289269

Row C8 C9 C10 C11 C12 C13 C14

1 0.397762 0.289712 0.488420 0.041530 0.999002 0.006478 0.087947

2 0.714043 0.147901 0.808523 0.143075 0.443159 0.483238 0.298676

3 0.632163 0.805329 0.098366 0.859493 6.642793 0.290319 0.746221

4 0.845410 0.265249 0.495131 0.385223 0.760022 0.436757 0.899756

5 0.823078 0.371113 0.549316 0.116782 0.980880 0.280550 0.656451

6 0.162076 0.563014 0.556136 0.103806 0.611204 0.103753 0.371799

7 0.590319 0.779153 0.296261 0.465100 0.479442 0.888985 0.248135

8 0.526598 0.558167 0.035587 0.666268 0.086061 0.714802 0.107576

9 0.188762 0.566992 0.116197 0.064171 0.510456 0.775933 0.397762

10 0.286430 0.743237 0.729364 0.171575 0.510366 0.227915 0.913113

Row C15 C16 C17 C18 C19 C20

1 0.421177 0.649618 0.436579 0.926484 0.908857 0.158414

2 0.228157 0.405771 0.933013 0.865197 0.785487 0.987785

3 0.810667 0.515916 0.578425 0.824179 0.974714 0.093386

4 0.698915 0.747788 0.163641 0.992973 0.976558 0.302980

5 0.116913 0.492599 0.228659 0.565895 0.387054 0.525864

6 0.953395 0.855334 0.676257 0.168689 0.134300 0.763466

7 0.209950 0.415589 0.644835 0.230382 0.072556 0.096998

8 0.708988 0.744951 0.921576 0.520743 0.261274 0.808271

9 0.471597 0.970680 0.521095 0.258895 0.213202 0.524599

10 0.418113 0.158896 0.594759 0.263435 0.324730 0.251105
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Appendix 1: Sampling Distribution from a Uniform Population

Distribution

To show how sample size can affect the shape and standard deviation of a sample

distribution, consider samples of size n ¼ 2, 5, 10, 25, and 50 taken from the

uniform distribution shown in Fig. 8.9.

To generate different random samples with different sample sizes, we use the

MINITAB random variable generator with uniform distribution. Portions of this

output are shown in Fig. 8.1b in the text discussion. First we generate 40 random

samples with a sample size of 2. Similarly, we generate 40 random samples for

n ¼ 5, n ¼ 10, n ¼ 25, and n ¼ 50.

Forty sample means for sample sizes equal to 2, 5, 10, 25, and 50 are presented in

Table 8.13. Histograms based on the five sets of data given in Table 8.13 are

presented in Figs. 8.10, 8.11, 8.12, 8.13, and 8.14, respectively. The means

associated with Figs. 8.10, 8.11, 8.12, 8.13, and 8.14 are .4458, .4857, .4776,

.48688, and .49650, respectively; the standard deviations associated with

Figs. 8.10, 8.11, 8.12, 8.13, and 8.14 are .1927, .1300, .0890, .06235, and .04414.

By comparing these five figures, we can draw two important conclusions. First,

when sample size increases from 2 to 50, the shape of the histogram becomes more

similar to the bell-shaped normal distribution. Second, as the sample size increases,

the standard deviation of the sample mean falls drastically. In sum, this data

simulation reinforces the central limit theorem discussed in Sect. 8.6.

Fig. 8.9 Uniform distribution from 0 to 1
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MTB > GSTD
* NOTE * Standard Graphics are enabled.

Professional Graphics are disabled.
Use the GPRO command to enable Professional Graphic.

MTB > HISTOGRAM C1;
SUBC> START=0.1;
SUBC> INCREMENT=0.05.

Character Histogram

Histogram of  Cl    N = 40

Midpoint Count
0.1000 0
0.1500 2 **
0.2000 2 **
0.2500 3 ***
0.3000 7 *******
0.3500 4 ****
0.4000 6 ******
0.4500 0
0.5000 1 *
0.5500 4 ****
0.6000 2 **
0.6500 2 **
0.7000 3 ***
0.7500 1 *
0.8000 3 ***

Fig. 8.10 Histogram of 40 sample means (n ¼ 2)
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MTB > GSTD
* NOTE  * Standard Graphics are enabled.

Professional Graphics are disabled.
Use the GPRO command to enable Professional Graphic.

MTB > HISTOGRAM C2; 
SUBC> START=0.1; 
SUBC> INCREMENT=0.05.

Character Histogram

Histogram of  C2 N = 40

Midpoint Count
0.1000 0
0.1500 0
0.2000 0
0.2500 2 **
0.3000 3 ***
0.3500 5 *****
0.4000 5 *****
0.4500 3 ***
0.5000 7 *******
0.5500 4 ****
0.6000 5 *****
0.6500 2 **
0.7000 2 **
0.7500 2 **

Fig. 8.11 Histogram of 40 sample means (n ¼ 5)
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MTB > GSTD
* NOTE * Standard Graphics are enabled.

Professional Graphics are disabled.
Use the GPRO command to enable Professional Graphics.

MTB > HISTOGRAM C3;
SUBC> START=0.1;
SUBC> INCREMENT=0.05.

Character Histogram

Histogram of  C3    N = 40

Midpoint Count
0.1000 0
0.1500 0
0.2000 0
0.2500 0
0.3000 2 **
0.3500 3 ***
0.4000 6 ******
0.4500 10 **********
0.5000 9 *********
0.5500 7 *******
0.6000 1 *
0.6500 1 *
0.7000 0
0.7500 1 *

Fig. 8.12 Histogram of 40 sample means (n ¼ 10). Histogram of 40 sample means (n ¼ 5)

MTB > GSTD
* NOTE * Standard Graphics are enabled.

Professional Graphics are disabled.
Use the GPRO command to enable Professional Graphics.

MTB > HISTOGRAM C4;
SUBC> START=0.1;
SUBC> INCREMENT=0.05.

Character Histogram

Histogram of  C4    N = 40

Midpoint Count
0.1000 0
0.1500 0
0.2000 0
0.2500 0
0.3500 0

0.4000 0
0.4500 11 ***********
0.5000 12 ************
0.5500 6 ******
0.6000 3 ***
0.6500 1 *

Fig. 8.13 Histogram of 40 sample means (n ¼ 25). Histogram of 40 sample means (n ¼ 5)
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MTB > GSTD
* NOTE  * Standard Graphics are enabled.

Professional Graphics are disabled.
Use the GPRO command to enable Professional Graphics.

MTB > HISTOGRAM C5;
SUBC> START=0.1;
SUBC> INCREMENT=0.05.

Character Histogram

Histogram of  C5    N = 40

Midpoint Count
0.1000 0
0.1500 0
0.2000 0
0.2500 0
0.3000 0
0.3500 0
0.4000 1 *
0.4500 13 *************
0.5000 16 ****************
O.5500 8 ********
0.6000 2 **

Fig. 8.14 Histogram of 40 sample means (n ¼ 50)
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9.1 Introduction

Two very useful continuous distributions, the normal and lognormal distributions,

were discussed in Chap. 7. Because many random variables have distributions that

are not normal, in this chapter, we explore five other important continuous

distributions and their applications. These five distributions are the uniform distri-

bution, Student’s t distribution, the chi-square distribution, the F distribution, and

the exponential distribution. All are directly or indirectly used in analyzing business

and economic data. The relationship between moments and distributions is also

discussed in this chapter. Finally, we explore business applications of statistical

distributions in terms of the first four moments for stock rates of return.

9.2 The Uniform Distribution

The simplest continuous probability distribution is called the uniform distribution.
This probability distribution provides a model for continuous random variables that

are evenly (or randomly) distributed over a certain interval. To picture this distri-

bution, assume that the random variable X can take on any value in the range from,

for example, 5 to 15, as indicated in Fig. 9.1. In a uniform distribution, the

probability that the variable will assume a value within a given interval is propor-

tional to the length of the interval. For example, the probability that X will assume a

value in the range from 6 to 8 is the same as the probability that it will assume a

value in the range from 9 to 11, because these two intervals are equal in length.

The uniform distribution has the following probability density function:

f ðXÞ ¼
1

b�a if a � X � b
0 elsewhere

�
(9.1)

If the foregoing condition holds, then X is uniformly distributed, and the shape

under the density function forms a rectangle, as shown in Fig. 9.1. The rectangle’s

area is equal to 1, which means that X is sure to take on some value between a ¼ 5

and b ¼ 15. Mathematically, we can express this as P(5 � X � 15) ¼ 1.

Figure 9.1 shows a density function for a set of values between a and b. Each
density is a horizontal line segment with constant height 1/(b � a) over the interval
from a to b. Outside the interval, f(X) ¼ 0. This means that for a uniformly

distributed random variable X, values below a and values above b are impossible.

Substituting b ¼ 15 and a ¼ 5 into Eq. 9.1, we obtain 1/(b � a) ¼ 1/(15 � 5) ¼ . 1,

as indicated in Fig. 9.1.

From Chaps. 5 and 7, we know that the probability that X will fall below a point

is provided by the area under the density curve and to the left of that point. In other

words, the cumulative probability distribution function, P(X � x) ¼ (x � a)/
(b � a), is represented by this area. The cumulative function for values of X
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between a and b is the area of the rectangle, which, again, is found by multiplying

the height, 1/(b � a), times the base, x � a. To the left of a, the cumulative

probabilities must be zero, whereas the probability that X lies “below points beyond

b” must be 1.

The cumulative probabilities for a uniform distribution are

PðX � xÞ ¼
0 if x< a

x�a
b�a if a � x � b
1 if x>b

8<
: (9.2)

Figure 9.2 shows the cumulative distribution function in terms of data indicated

in Fig. 9.1. It presents the cumulative probabilities for X ¼ 5, X ¼ 10, X ¼ 15, and

X ¼ 20 at points A, B, C, and D, respectively. Cumulative probabilities for these

three points can be calculated as follows:

At point A: PðX � 5Þ ¼ 5� 5

15� 5
¼ 0

At point B: PðX � 10Þ ¼ 10� 5

15� 5
¼ 1

2

At point C: PðX � 15Þ ¼ 15� 5

15� 5
¼ 1

At point D: P X � 20ð Þ ¼ P X � 15ð Þ þ P 15 � X � 20ð Þ ¼ 1þ 0 ¼ 1

The mean and standard deviation of a uniform distribution (see Appendix 1) can

be shown as

m ¼EðXÞ ¼ aþ b

2

sX ¼ b� affiffiffiffiffi
12

p ð9:3Þ

Fig. 9.1 The uniform probability distribution
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Example 9.1 An Application of the Uniform Distribution in Quality Control. A

quality control inspector for Gonsalves Company, which manufactures aluminum

water pipes, believes that the product has varying lengths. Suppose the pipes turned

out by one of the production lines of Gonsalves Company can be modeled by a

uniform probability distribution over the interval 29.50–30.05 ft. The mean and

standard deviation of X, the length of the aluminum water pipe, can be calculated as

follows. Substituting b ¼ 30.05 ft and a ¼ 29.50 ft in Eq. 9.3, we obtain

m ¼ 30:05þ 29:50

2
¼ 29:775 ft

and

sX ¼ 30:05� 29:50ffiffiffiffiffi
12

p ¼ :1588 ft

This information can be used to create a control chart to determine whether the

quality of the water pipes is acceptable. The control chart and its use in statistical

quality control will be discussed in Chap. 10.

Computer simulation is an application of statistics that frequently relies on the

uniform distribution. In fact, the uniform distribution is the underlying mechanism

for this often-complex procedure. Thus, although not so many “real-world”

populations resemble this distribution as resemble the normal, the uniform

Fig. 9.2 Cumulative distribution function for the data of Fig. 9.1
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distribution is important in applied statistics. For example, managers may use the

uniform distribution in a simulation model to help them decide whether the

company should undertake production of a new product.1 Basic concepts of invest-

ment decision making can be found in Sect. 21.8.

9.3 Student’s t Distribution

Student’s t distribution was first derived by W. S. Gosset in 1908. Because Gosset

wrote under the pseudonym “A Student,” this distribution became known as

Student’s t distribution.

If the sampled population is normally distributed with mean m and variance s2X,
the sample size n is equal to or larger than 30, and s2X is known, then from the last

chapter, we know that the Z score for sample mean �X defined as

Z ¼
�X � m
sX

ffiffiffi
n

p
=

(8.7)

which we met as Eq. 8.7, has a normal distribution with mean 0 and variance 1.

Under most circumstances, however, the population variance is not known. In order

for us to conduct various types of statistical analysis, we need to know what happens

to Eq. 8.7 when we replace the population standard deviation sX by the sample

standard deviation sX. We then have the following equation for the t statistic:

t ¼
�X � m
sX

ffiffiffi
n

p
=

(9.4)

Thus, the Z of Eq. 8.7 has only one source of variation: each sample has a

different �X. Equation 9.4, however, has two sources of variation: both the sample

mean �X and the sample standard deviation sX change from sample to sample. Thus,

the term on the right-hand side of Eq. 9.4 follows a sampling distribution different

from the normal distribution, which is the distribution followed by the term on the

right-hand side of Eq. 8.7. Equation 9.4 is used only when the population from

which the n sample items are drawn is normally distributed and the sample size (n)
is smaller than 30.

The t distribution forms a family of distributions that are dependent on a

parameter known as the degrees of freedom. For the t variable in Eq. 9.4, the

degrees of freedom (v) are (n � 1), where n is the sample size. In general, the

degrees of freedom for a t statistic are the degrees of freedom associated with

the sum of squares used to obtain an estimate of the variance. The variance estimate

1 See Lee C.F.: Financial Analysis and Planning: Theory and Application, pp. 358–363. Reading,

Addison-Wesley (1985)
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depends not only on the size of sample but also on how many parameters must be

estimated with the sample. The more data we have, the more confidence we can

have in our results; the more parameters we have to estimate, the less confidence we

have. Statisticians keep track of these two factors by calculating the degrees of

freedom as follows:

Degrees of

freedom
¼ number of

observations
� number of parameters that must

be estimated beforehand

Here we calculate sX by using n observations and estimating one parameter (the

mean). Thus, there are (n � 1) degrees of freedom.

The t distribution is a symmetric distribution with mean 0. Its graph is similar to

that of the standard normal distribution, as Fig. 9.3 shows. However, the tail areas

are greater for the t distribution, and the standard normal distribution is higher in the

middle. The larger the number of degrees of freedom, the more closely the

t distribution resembles the standard normal distribution. As the number of degrees

of freedom increases without limit, the t distribution approaches the standard

normal distribution. In fact, the standard normal distribution is a t distribution
with an infinite number of degrees of freedom.

To determine whether the normal distribution or the Student’s t distribution is

more suitable for describing stocks’ rates of return, Blattberg and Gonedes (1975,

Journal of Business, pp. 244–280) used both daily and weekly stock rates of return

for Dow Jones 30 companies to estimate the degrees of freedom for these two kinds

of rates of return. They found, for example, that the degrees of freedom for Allied

Chemical are 5.04 when daily data is used and 89.98 when weekly data is used. This

indicates that the student’s t distribution is more suitable for daily data for Allied

Chemical, whereas the normal distribution better describes weekly data for Allied

Chemical.

In addition, they found that the average degree of freedom for daily rates of

return for these 30 companies is 4.79. The average degree of freedom in terms of

Fig. 9.3 The t distribution and the standard normal distribution
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weekly rate of return for these 30 companies is 11.22. They concluded that

Student’s t distribution is more suitable for describing daily stock rate of return

distribution, and normal distribution is more suitable for weekly rate of return

distribution. Hence, t distribution is an important distribution for describing daily

stock rate of return.

The t table, as presented in Table A4 at the end of the book, gives the value, ta,
such that the probability of the t value larger than ta is equal to a. The percentage
cutoff point ta is defined as that point at which

P t> tað Þ ¼ a (9.5)

Because the distribution is symmetric around 0, only positive t values (upper-tail
areas) are tabulated. The lower a cutoff point is �ta, because

P t<� tað Þ ¼ P t> tað Þ ¼ a (9.6)

In general, we denote a cutoff point for t by ta,v where a is the probability level

and v is the degrees of freedom. The number of degrees of freedom determines the

shape of the t distribution. Figure 9.4 shows t distributions of varying degrees of

freedom.

Example 9.2 Using the tDistribution to Analyze Audit Sampling Information. Let’s

borrow information presented in Sect. 8.7 to see how the t distribution can be used

to do audit sampling analysis.

Fig. 9.4 t distributions of three different degrees of freedom
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The sample mean and the sample variance for 30 trade accounts receivable

balances are

�X ¼ $202:10 and s2X ¼ $719:164

From Table A4, we know that the t statistics with 30 � 1 ¼ 29� of freedom and

a ¼ .05 is 1.6991. Substituting related information into Eq. 9.4, we obtain

1:699 ¼ $202:10� mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
719:164=30

p ¼ $202:10� m
4:896

This implies that there is a 5 % chance that the average population account

receivable value will be smaller than $202.10 � $(11.699)(4.896) ¼ $193.78. By

symmetry, there is also a 5 % chance that the average population account receivable

value will be larger than $202.10 þ $(1.699)(4.896) ¼ $210.42.

Other applications of the t distribution appear in Chaps. 10 and 11, and we will

encounter more when we discuss regression analysis in Chaps. 13, 14, 15, and 16.

9.4 The Chi-Square Distribution and the Distribution of Sample

Variance

In this section, we first show how a chi-square distribution can be derived from a

standard normal distribution and then derive the distribution of a sample variance.

9.4.1 The Chi-Square Distribution

The chi-square distribution (w2) is a continuous distribution ordinarily derived as

the sampling distribution of a sum of squares of independent standard normal

variables. For instance, let X1, X2, . . ., Xn denote a random sample of size n from

a normal distribution with mean m and variance s2X. Because these variables are not
standardized, we can standardize them as

Zi ¼ Xi � m
sX

where Zi is normally distributed with mean 0 and variance 1.

Now, if we define a new variable Y such that

Y ¼ Z2
1 þ Z2

2 þ � � � þ Z2
n ¼

Xn
i¼1

Xi � m
sX

� �2

(9.7)
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it can be shown that this new variable is distributed as w2 with n degrees of

freedom.2

Equation 9.6 can be rewritten as3

Xn
i¼1

Xi � mð Þ2
s2X

¼ n �X � mð Þ2
s2X

þ ðn� 1Þs2X
s2X

(9.8)

where

s2X ¼
Pn
i¼1

Xi � �Xð Þ2

n� 1
;
Xn
i¼1

Xi � mð Þ2
s2X

has an x2 distribution with n degrees of freedom, as discussed in Eq. 9.6. In addition,

from the last chapter, we know that �X is normally distributed with mean m and

variance s2X n= , so
ffiffiffi
n

p �X � mð Þ sX= is normally distributed with mean 0 and variance

1. It can be shown that n �X � mð Þ2 s2X
�

has an x2 distribution with 1� of freedom.

From this information, it can be proved that

ðn� 1Þs2X
s2X

defined in Eq. 9.8, has a w2 distribution with (n � 1) degrees of freedom.4

2 First, it can be proved that Xi � mð Þ2 s2X
�

is a w2 distribution with I degree of freedom. Then, by

using the additive property of x2 distribution, we can prove that
Pn
i¼1

Xi�m
sX

� �2
is also a w2 distribution

with n degrees of freedom.
3 Since

Xn
i¼1

Xi � mð Þ2 ¼
Xn
i¼1

Xi � �X þ �X � mð Þ2

¼
Xn
i¼1

Xi � �Xð Þ2 þ 2 �X � mð Þ
Xn
i¼1

Xi � mð Þ þ
Xn
i¼1

�X � mð Þ2

¼
Xn
i¼1

Xi � �Xð Þ2 þ n �X � mð Þ2

because

2 �X � mð Þ
Xn
i¼1

Xi � �Xð Þ ¼ 0 (9.A)

by dividing Eq. 9.A by s2X, we obtain Eq. 9.8.
4 In addition to the condition described here, it is also necessary to assume that �X is independent

of s2X .
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ðn� 1Þs2X
s2X

can be redefined as expressed in Eq. 9.9:

ðn� 1Þs2X
s2X

¼
Xn
i¼1

Xi � �X

sX

� �2
(9.9)

where s2X ands
2
X are sample variance and population variance, respectively. The left-

hand side of Eq. 9.9 implies that the ratio of sample variance to population variance,

multiplied by (n � 1), has a w2 distribution with (n � 1) degrees of freedom. The

w2 distribution defined in Eq. 9.9 can be used to describe the distribution of s2X ,
which will be discussed later in this section.

The w2 distribution is a skewed distribution, and only nonnegative values of the

variable w2 are possible. It depends on a single parameter, the degrees of freedom

v ¼ n � 1. The w2 distributions for degrees of freedom 5, 10, and 30 are graphed in

Fig. 9.5. The figure shows that the skewness decreases as the degrees of freedom

increase. In fact, as the degrees of freedom increase to infinity, the w2 distribution
approaches a normal distribution.5

Critical values of the w2 distributions are given in Table A5 in Appendix A.6

They are defined by

P w2 � w2a;n
� �

¼ a (9.10)

where is that value for the w2 distribution with v degrees of freedom such that the

area to the right (the probability of a larger value) is equal to a. For example, the

upper 5 % point for w2 with 10 degree of freedom, w2:05;10, is 18.307 (see Fig. 9.6 and
Table A5). In other words, P(w2 > 18.307) ¼ .05. In addition, P(w2 < 18.307) ¼
1 � .05 ¼ .95.

The mean and variance of this distribution are equal to the number of degrees of

freedom and twice the number of degrees of freedom. That is,

5 Johnson, W. L., Katz S.: In Continuous Univariate Distribution I, pp. 170–181. HoughtonMifflin,

Boston, 1970, show that a normalized x2 distribution approaches a standard normal distribution

when the number of degrees of freedom approaches infinity. The normalized statistic is defined as

w2n � n
	 
 ffiffiffiffiffi

2n
p�

.
6We can approximate x2a by the formula

w2a ¼ n 1� 2

9n
þ za

ffiffiffiffiffi
2

9n

r !3

where v ¼ degrees of freedom and za ¼ standard normal value (from Table A.3).
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E w2n
	 
 ¼ n; and Var w2n

	 
 ¼ 2n (9.11)

where n is the degree of freedom of a w2 distribution.

Fig. 9.5 The w 2 distributions with three different degrees of freedom

Fig. 9.6 The w2 distribution with 10� of freedom
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9.4.2 The Distribution of Sample Variance

The properties of the w2 distribution can be used to find the mean and variance of the

sampling distribution of the sample variance (s2X).

9.4.2.1 The Mean of s2X

From the definition of the mean for a w2 distribution, we obtain

E
ðn� 1Þs2X

s2X

� �
¼ n� 1

Because E a � Xð Þ ¼ a � EðXÞ, we have
ðn� 1Þ
s2X

E s2X
	 
 ¼ n� 1

Thus,7

E s2X
	 
 ¼ s2X (9.12)

Equation 9.12 implies that the mean of the sample variance is equal to the

population variance.

9.4.2.2 The Variance of s2X

On the basis of the definition of the variance for a w2 distribution, we have

Var
ðn� 1ÞS2X

s2X

� �
¼ 2ðn� 1Þ

Because Var aXð Þ ¼ a2 � VarðXÞ, we have

n� 1ð Þ2
s4X

Var s2X
	 
 ¼ 2ðn� 1Þ

so

Var s2X
	 
 ¼ 2s4X

n� 1
(9.13)

7 This result suggests why
Pn
i¼1

Xi � �Xð Þ2 n� 1= instead of
Pn
i¼1

Xi � �Xð Þ2 n= is an unbiased estimator

for the population variance, s2X. Unbiased estimators will be discussed in Chap. 10.
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This is the variance of the sample variance. In sum, if X is normally distributed,

then the mean and variance of s2X are s2X and 2s4X ðn� 1Þ= , respectively. We will

explore applications of the w2 distribution and the distribution of sample variance in

Chaps. 10 and 11 when we discuss confidence intervals and hypothesis testing for

population variances.

Drawing on the concepts of the w2 distribution and the normal distribution, we

can interpret the t distribution by rewriting Eq. 9.40 as

t ¼
�X � mð Þ sX

ffiffiffi
n

p
=ð Þ=

sX sX=
(9.40Þ

In Eq. 9.40, �X � mð Þ sX
ffiffiffi
n

p
=ð Þ= is normally distributed with mean 0 and variance

1; it is a standard normal distribution. Sx sx= is a square root of a w2-distributed
variable with (n � 1) degrees of freedom divided by n ¼ n � 1. Hence, a t distri-
bution with v degrees of freedom is the ratio between a standard normal variable

and a transformed w2 variable:

tn ¼ Zffiffiffiffiffiffiffiffiffiffi
w2n n=

p (9.14)

9.5 The F Distribution

Some problems revolve around the value of a single population variance, but often

it is a comparison of the variances of two populations that is of interest. This will be

discussed in Chaps. 13, 14, and 15. In addition, we may want to know whether the

means of three or more populations are equal. This will be discussed in Chap. 12.

The F distribution is used to make inferences about these kinds of issues.

Assume two populations, each having a normal distribution. We draw two

independent random samples with sample sizes nX and nY and population variances

s2X ands
2
Y. From each sample, we can compute sample variancesS2X andS

2
Y. Then, the

random variable of Eq. 9.15 follows a distribution known as the F distribution:

F ¼ S2X s2X
�

S2Y s2Y
� (9.15)

Equation 9.15 can be rewritten as

F ¼ w2n1ðXÞ n
X
� 1

	 
�
w2n2ðYÞ nY � 1

	 
� (9.140Þ

where w2n1ðXÞ ¼ ðnX � 1ÞS2X s2X
�

and w2n2ðYÞ ¼ ðnY � 1ÞS2Y s2Y
�

; n1 ¼ nx – 1;

n2 ¼ ny – 1.

9.5 The F Distribution 393

http://dx.doi.org/10.1007/978-1-4614-5897-5_10
http://dx.doi.org/10.1007/978-1-4614-5897-5_11
http://dx.doi.org/10.1007/978-1-4614-5897-5_13
http://dx.doi.org/10.1007/978-1-4614-5897-5_14
http://dx.doi.org/10.1007/978-1-4614-5897-5_15
http://dx.doi.org/10.1007/978-1-4614-5897-5_12


In other words, a random variable formed by the ratio of two independent chi-

square variables, each divided by its degrees of freedom, is called an F variable.
The F distribution has an asymmetric probability density function defined only

for nonnegative values. It should be observed that the F distribution is completely

determined by two parameters, v1 and v2, which are degrees of freedom. These

density functions with different sets of degrees of freedom are illustrated in Fig. 9.7.

The cutoff points Fn1;n2;a, for a equal to .05, .025, .01, and .005, are provided in

Table A6 at the end of this book. For example, in the case of 10 numerator degrees

of freedom and six denominator degrees of freedom,

F10;6;:05 ¼4:06 F10;6;:025 ¼ 5:46

F10;6;:01 ¼7:87 F10;6;:005 ¼ 10:25

MINITAB output for F10, 6 is presented in Fig. 9.8. Hence,

P F10:6>4:06ð Þ ¼ :05 P F10:6>5:46ð Þ ¼ :025

P F10:6>7:87ð Þ ¼ :01 P F10:6>10:25ð Þ ¼ :005

These probabilities also can be calculated by using MINITAB as shown here.

MTB > SET C1
DATA> 4.06 5.46 7.87 10.25
DATA> END
MTB > CDF C1;
SUB > F 10 6.
Cumulative Distribution Function
F distribution with 10 DF in numerator and 6 DF in

denominator
x P( X <¼ x)
4.0600 0.9500
5.4600 0.9750
7.8700 0.9900
10.2500 0.9950
By subtracting 1 from .95, we obtain .05; by subtracting 1 from .975, we obtain

.025; by subtracting 1 from .99, we obtain .01; finally, by subtracting 1 from .9950,

we obtain .005. In practice, we usually place the larger sample variance in the

numerator. The four significance levels listed here are the cutoff points that are

often used to test the hypothesis of equality of population variances, which will be

discussed in Chaps. 11 and 12. When the population variances are equal, Eq. 9.15

becomes

F ¼ S2X
S2Y

(9.16)
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The right-hand side of Eq. 9.16 is the ratio of two sample variances.

Applications of the F distribution will be discussed in Chaps. 11 and 12 and in

the chapters related to regression analysis.

Fig. 9.8 MINITAB output for F10, 6

Fig. 9.7 F distributions with three different sets of degrees of freedom
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9.6 The Exponential Distribution (Optional)

The exponential distribution is related to the Poisson distribution, which, as we

noted in Chap. 6, is often applied to occurrences of an event over time. The Poisson

distribution is the distribution of the number of occurrences of an event in a given

time interval of length t. The single parameter of the Poisson distribution is l, the
intensity of the process. Think of the number as the average occurrence of the event

being counted. For example, say, the average arrival rate of customers at the

Brownell Bank is 5 per 100 s. Suppose that instead of the number of occurrences

in a given time period, we are interested in the amount of time until the first

customer arrives at the bank. This is a problem to be solved by the exponential

distribution instead of the Poisson distribution. As another example, if the number

of traffic accidents in an interval of time follows the Poisson distribution, the length

of time from one accident to another follows the exponential distribution. The

exponential distribution can also be applied to (1) the length of time that must pass

before the first incoming telephone call and (2) the length of time someone must

wait for a cab in a given location, such as Penn Station in New York City.

Denoting the mean rate at which events occur over time by l and denoting the

time until the first event occurs by t, we can use the Poisson probability density

function to derive the exponential probability density function (PDF).8 It is

f ðtÞ ¼ le�lt; t � 0

¼ 0; t<0 ð9:17Þ

where l > 0 is the only parameter.

From Eq. 9.38 we know that the cumulative probability function is given by

FðtÞ ¼ PðT � tÞ ¼1� e�lt; t � 0

¼0; t<0 ð9:18Þ

where T is a random variable representing time and t is a specific value.

Figure 9.9 represents four exponential functions for which l equals 3, 2, 1, and 1
2
.

From Appendix 2, we know that

EðTÞ ¼ 1

l
(9.19)

VarðTÞ ¼ 1

l2
(9.20)

8 See Appendix 2 for the derivation.
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Example 9.3 “No More Than 8 Items in This Line, Please!”. Under fairly plausible

assumptions about the behavior of clerks at supermarket check-out counters, it is

possible to show that the time T (in minutes) a customer spends at a check-out

counter is a random variable with the exponential distribution described by

Eq. 9.17.

Suppose a supermarket check-out counter has a mean number of customers per

minute ¼ 1
3
; that is, l ¼ 1

3
. Our task is to find the probability that the length of time

between a pair of customer arrivals is less than 6 min.

Substituting l ¼ 1
3
and t ¼ 6 into Eq. 9.18, we obtain F(T � 6) ¼ 1 � e�6/3.

And referring to Table A7 of Appendix A (or to a hand calculator), we find

P(T < 6) ¼ 1 � .1353 ¼ .8647. Thus, the probability that the service time avail-

able between two customer arrivals at the check-out counter will be less than 6 min

is approximately .86. Alternatively, the probability .8647 can be obtained by

MINITAB as shown here:

MTB > CDF 6;
SUBC> EXPONENTIAL 3.
Cumulative Distribution Function
Exponential with mean ¼ 3.00000
x P(X <¼ x)
6.0000 0.8647

Fig. 9.9 Four exponential density functions specified by four alternative values of l
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9.7 Moments and Distributions (Optional)

The properties of a distribution can be described in many ways, but the most

popular approach is by means of a set of measurements called moments. Moments
describe the central tendency, degree of dispersion, asymmetry, peakedness, and

many other aspects of a distribution. This section discusses only the first four

moments of a distribution; they are the most important statistical characteristics.

The first k moments can be defined either as

m0k ¼ E Xk
	 


(9.21)

or

mk ¼ E X � mð Þk
h i

(9.22)

Equation 9.21 defines the k moments about the origin, and Eq. 9.22 defines the

moments about the population mean m. (The relationship between m0k and m0k is

discussed in Appendix 3.) The population mean is the first moment about the origin.

We obtain the first moment of a distribution about the origin by letting k ¼ 1 in

Eq. 9.21. It is defined as follows:

m01 ¼ EðXÞ ¼ m

This is the population mean of X. Following Eq. 4.1, we can define m for a

discrete variable as

m ¼
XN
i¼1

Xi N= (4.2)

where N is the total number of observations in the population. The sample mean �X
associated with m can be defined as

�X ¼
Pn
i¼1

Xi

n
(4.1)

where n is the sample size.

9.7.1 The Second Moment and the Coefficient of Variation

The second moment about the mean, the variance, is a measure of the dispersion of

the random variable around the mean. The larger the variance, the more dispersed

the distribution. Letting k ¼ 2 in Eq. 9.22, we obtain
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m2 ¼ s2X ¼ E X � EðXÞ½ �2

This is the population variance of X. Following Eq. 4.5, we can define the

population variance for a discrete variable as

s2X ¼
XN
i¼1

Xi � mð Þ2 N= (4.5)

The sample variance (s2X) associated with X can be defined as

s2X ¼
Xn
i¼1

Xi � �Xð Þ2 ðn� 1Þ= (4.7)

Following Eq. 4.12, we can define the sample coefficient of variation (CV) as

CV ¼ sX
�X

(4.12)

9.7.2 The Third Moment and the Coefficient of Skewness

The third moment about the mean – skewness, which characterizes the asymmetry

of the distribution – is given by

m3 ¼ E X � EðXÞ½ �3

Following Eq. 4.15, we can define the population skewness for a discrete

variable as

m3 ¼
XN
i¼1

Xi � mð Þ3 N= (4.15)

Following Eq. 4.16, we can define the coefficient of skewness (CS), which is a

relative measure of asymmetry, as

CS ¼ m3
s3

(4.16)

Following Eq. 4.16a, we can define the sample coefficient of skewness (SCS) as

SCS ¼
Pn
i¼1

Xi � �Xð Þ3 n� 1ð Þ=

s3X
(4.16a)
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where

s2X ¼
Xn
i¼1

Xi � �Xð Þ2 n� 1ð Þ=

Figures 9.10a, b, and c present graphs of distributions with differing degrees of

symmetry. Figure 9.10a shows a symmetrical distribution – that is, a distribution

with zero skewness. Note that the symmetrical distribution’s measures of central

tendency (the mean, median, and mode) all coincide. We can also see that the half

of the distribution above the mode is a mirror image of the half of the distribution

below the mode.

Figure 9.10b presents a distribution that is said to be positively skewed because

the distribution tapers off more slowly to the right of the mode than to the left. It is

clear that the mean, median, and mode do not coincide. Here, the mode is smaller

than the median and the mean.

Figure 9.10c presents a distribution that is said to be negatively skewed because

the distribution tapers off more slowly to the left of the mode than to the right. Once

again, the mean, median, and mode do not coincide. Here the median and mean lie

to the left of the mode.

Fig. 9.10 (a) Zero skewness, (b) Positive skewness, and (c) negative skewness

400 9 Other Continuous Distributions and Moments for Distributions



9.7.3 Kurtosis and the Coefficient of Kurtosis

The fourth moment about the mean – kurtosis, which characterizes the degree of

peakedness – is defined by

m4 ¼ E X � EðXÞ½ �4

For discrete variables, the population kurtosis can be defined as

m4 ¼
XN
i¼1

Xi � mð Þ4 N= (9.23)

and can be estimated in terms of sample data as follows:

Sample kurtosis ¼
Xn
i¼1

Xi � �Xð Þ4 n=

The relative peakedness of a distribution is expressed by the ratio of the fourth

moment to the square of the second moment. It is called coefficient of kurtosis (CK):

CK ¼ m4 m22
�

(9.24)

This ratio measures the degree of peakedness relative to the level of dispersion.

Using sample information, we can estimate the coefficient of kurtosis by

SCK ¼
Pn
i¼1

Xi � �Xð Þ4 n� 1ð Þ=

s4X
(9.25)

Of two distributions having the same dispersion, the one with the larger kurtosis

ratio has more observations concentrated near the mean and also at the tails of the

distribution (at the expense of the intermediate area).

9.7.4 Skewness and Kurtosis for Normal and Lognormal
Distributions

The bell-shaped normal curve is characterized by the mesokurtic shape: a value of 3
for the coefficient of kurtosis as defined in Eq. 9.25. Distributions with values of the

kurtosis ratio greater than 3 are leptokurtic. These distributions are more peaked

than the standard mesokurtic (normal curve) shape. Distributions with values of the
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coefficient of kurtosis less than 3 are platykurtic – flatter in shape than the standard

normal distribution. Each of these types of coefficients of kurtosis is illustrated in

Fig. 9.11. Sometimes, the sample coefficient of kurtosis (SCK) can be redefined as

SCK0 ¼
Pn
i¼1

Xi � �Xð Þ4

S Xi � �Xð Þ2
h i2 � 3 (9.26)

The value for the redefined CK for a normal distribution is 0 instead of 3.

If X is lognormally distributed, then from Sect. 7.6, the mean and variance of X
can be defined as

m01 ¼ mX ¼ emþ1=2s2 (7.6)

m2 ¼ s2X ¼ e2mþs2 es
2 � 1

� �
(7.7)

where m ¼ E log Xð Þ and s2 ¼ Var log Xð Þ.
From Eqs. 7.6 and 7.7, the coefficient of variation (�) for X can be defined as

� ¼ es
2 � 1

� �1=2
(9.27)

The third and fourth moments about the mean for lognormal distributions are

m3ðskewness of XÞ ¼ mXð Þ3 �6 þ 3�4
	 


(9.28)

Fig. 9.11 Three types of

kurtosis
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m3ðkurtosis of XÞ ¼ mXð Þ4 �12 þ 6�10 þ 15�8 þ 16�6 þ 3�4
	 


(9.29)

where �2 ¼ es
2 � 1. (See Appendix 4 for the derivation of Eqs. 9.28 and 9.29.)

Substituting m1, m3, and m4 into Eqs. 4.16 and 9.24, we obtain the following

equations for the coefficient of skewness (CS) and the coefficient of kurtosis (CK):

CS ¼ �3 þ 3� (9.30)

CK ¼ �8 þ 6�6 þ 15�4 þ 16�6 (9.31)

where �2 ¼ es
2 � 1.

From Eqs. 9.28, 9.29, 9.30, and 9.31, we know that the coefficient of variation is

the key variable in determining the magnitude of both skewness and kurtosis for a

lognormal distribution.

In the next section, we will see how Eqs. 4.1, 4.7, 4.12, 4.16a, and 9.26 are

applied with data on stock rates of return.

9.8 Analyzing the First Four Moments of Rates of Return

of the 30 DJl Firms

In Table 9.1, we have listed the first four moments of the monthly returns of the 30

companies included in the Dow Jones Industrial (DJI) Average. These moments

describe the central tendency, variability, asymmetry, and peakedness of the

monthly return distributions between January 1990 and December 2009, inclusive.

The mean column gives us a measure of central tendency. The average mean of

these 30 companies is .0013. The highest monthly return mean was from

McDonald’s, followed by Disney, Verizon Inc., and United Technologies Corp.

The lowest performances were for Bank of America and Alcoa, which had returns

of �.037 and �.02, respectively.

The measure of variability is given by the standard deviation. The average

standard deviation was .0813. The two companies that showed the highest

variability were Bank of America and Alcoa. The lowest variability was achieved

by Johnson & Johnson, followed by McDonald’s.

In fact, we usually observe that higher rates of return are associated with higher

levels of risk. Note that these companies that generated high rates of return tend to

have high variability. The principle is simple: the higher the return you seek, the

more risk you have to take. There is a trade-off between risk and return, which will

be discussed in Chap. 21 in some detail.

The skewness can be used to evaluate the stock’s upside potential and downside

risk. Positive skewness indicates the upside potential for a stock, because such a

stock has a greater probability of very large payoffs. On the other hand, negative
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skewness is associated with downside risk; it indicates that the stock has a greater

probability of very small payoffs.9 There are 28 companies in Table 9.1 exhibit the

downside risk associated with negative skewness. The others, American Express

and Microsoft, exhibit the upside potential associated with positive skewness.

Table 9.1 Statistical estimates for the Dow Jones 30 industrial firms (January 1990–December

2009)

Monthly statistical estimates

Company name n Mean
Standard
deviation Skewness Kurtosis

Coefficient of
variation

1 3M Co. 120 0.0019 0.0665 �0.4896 0.549 35.762

2 Alcoa Inc. 120 �0.0211 0.1765 �3.0010 13.522 �8.373

3 American Express 120 �0.0094 0.1230 0.1616 4.211 �13.032

4 AT&T 120 0.0055 0.0616 �1.0458 0.834 11.191

5 Bank of America 120 �0.0370 0.2225 �2.5486 10.608 �6.021

6 Boeing 120 �0.0036 0.0965 �1.0373 1.596 �26.544

7 Caterpillar Inc 120 0.0029 0.1279 �1.9207 6.756 43.496

8 Chevron 120 0.0087 0.0624 �0.7818 0.619 7.168

9 Cisco 120 �0.0010 0.0892 �0.6297 0.612 �86.495

10 Coca-Cola 120 0.0093 0.0510 �0.9161 3.869 5.483

11 E.I. du Pont de Nemours 120 0.0024 0.0872 �0.7714 1.938 36.005

12 Exxon 120 0.0048 0.0520 �0.4104 �0.067 10.810

13 General Electric 120 �0.0135 0.1126 �1.0687 2.134 �8.322

14 Hewlett-Packard 120 0.0044 0.0752 �1.0900 1.269 17.139

15 Home Depot 120 �0.0028 0.0768 �0.3816 0.091 �27.759

16 Intel 120 �0.0041 0.0855 �0.9769 0.878 �20.822

17 IBM 120 0.0093 0.0603 �1.6744 5.742 6.494

18 Johnson & Johnson 120 0.0019 0.0443 �0.9569 1.848 22.763

19 JPMorgan and Chase 120 �0.0016 0.0991 �0.6226 0.947 �61.561

20 Kraft Foods 120 0.0030 0.0623 �1.2024 2.413 20.474

21 McDonald’s 120 0.0173 0.0461 �0.2755 �0.159 2.667

22 Merck 120 0.0086 0.0778 �0.2400 0.473 9.049

23 Microsoft 120 0.0058 0.0802 0.0533 0.482 13.939

24 Pfizer 120 0.0012 0.0638 �0.1491 0.028 51.410

25 Procter and Gamble 120 0.0051 0.0489 �0.3265 0.172 9.660

26 Traveler’s Companies Inc. 120 0.0072 0.0537 �0.1024 1.817 7.451

27 United Technologies

Group

120 0.0094 0.0616 �0.4312 �0.035 6.564

28 Verizon 120 0.0095 0.0571 �0.0976 �0.544 5.986

29 Walmart 120 0.0051 0.0473 �0.3584 1.539 9.333

30 Walt Disney 120 0.0109 0.0700 �0.3271 0.961 6.431

Mean 0.0013 0.0813 �0.7873 2.170 2.678

9 This is so because a positively skewed distribution has more observations above the mode and a

negatively skewed distribution more observations below.

404 9 Other Continuous Distributions and Moments for Distributions



The kurtosis column shows that 26 companies here have a leptokurtic distribu-

tion (kurtosis ratio > 0)10; these companies have more monthly returns

concentrated near the mean. Only four companies have a distribution close to

platykurtic (kurtosis ratio < 0): Exxon with SCK0 ¼ �.067, McDonald’s with

SCK0 ¼ �.159, United Technologies Corp with SCK0 ¼ �.035, and Verizon

with SCK0 ¼ �.544.

The last column, showing the coefficient of variation, enables us to compare

monthly returns for the different companies.Remember that the coefficientof variation

is a unitless figure that expresses the standard deviation as a percentage of the mean.

High coefficients of variation showvolatile monthly returns. The companies that show

high volatility are Pfizer, 3M,Caterpillar, and E.I du Pont deNemours. The companies

with the lowest volatility are Cisco, JPMorgan Chase, Home Depot, and Boeing.

9.9 Summary

In this chapter, we discussed five continuous distributions. Four of these – Student’s

t distribution and the exponential, F, and w2 distributions – are closely related to the
normal distribution discussed in Chap. 7. These five distributions, along with

the normal and lognormal distributions, are the primary distributions we will use

throughout the rest of the text for conducting statistical analyses such as determi-

nation of confidence intervals, hypothesis testing, and goodness-of-fit tests.

In Chaps. 11, 12, 13, 14, and 15, we will begin to apply these distributions in

alternative statistical analyses.

Questions and Problems

1. Briefly discuss the cumulative distribution function of the uniform distribution

presented in Fig. 9.2.

2. Briefly discuss the relationship between the Poisson distribution and the expo-

nential distribution.

3. X is normally distributed, and the sample variance s2 ¼ 20 is calculated from

20 observations. Calculate E(s2) and Var(s2).
4. W is a normally distributed random variable with mean 0 and variance 1, and V

is a w2-distributed random variable with degrees of freedom (n � 1). How can

both t and F distributions be defined in terms of the variables W and V?
5. Briefly discuss how F statistics can be used to test the difference between two

sample variances.

6. Briefly discuss how mean, variance, skewness, kurtosis, and the coefficient of

variation can be used to analyze stock rates of return.

10We use Eq. 9.26 to calculate the coefficient of kurtosis.
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7. Suppose a random variable X can take on only values in the range from 2 to 10

and that the probability that the variable will assume any value within any

interval in this range is the same as the probability that X will assume another

value in another interval of similar width in the range. What is the distribution

of X? Draw the probability density function for X.
8. Use the information given in question 7 to find P(3 � X � 7).

9. Use the information given in question 7 to find P(X � 8).

10. Use the information given in question 7 to find P(X < 2 or X > 10).

11. Draw the cumulative distribution function for the distribution given in

question 7.

12. Suppose a random variable X is best described by a uniform distribution with

a ¼ 8 and b ¼ 20.

(a) Find f(x).
(b) Find F(x).
(c) Find the mean and variance of X.

13. Suppose a random variable Y is best described by a uniform distribution with

a ¼ 3 and b ¼ 32.

(a) Find f(y).
(b) Find F(y).
(c) Find the mean and variance of Y.

14. A very observant art thief (who should probably be teaching statistics instead)

notices that the frequency of security guards passing by a museum is uniformly

distributed between 15 and 60 min. Therefore, if X denotes the time (in

minutes) before the guard passes by, the probability density function of X is

fxðxÞ ¼ 1=ð60� 15Þ for 15<x<60

0 for all other values of x

�

(a) Draw the probability density function.

(b) Find and draw the cumulative distribution function.

15. Use the information given in question 14.

(a) Find the probability that the guard passes by within 35 min of the thief’s

arrival.

(b) Find the probability that the guard does not pass by within 30 min.

(c) Find the probability that the guard passes by between 30 and 45 min after

the thief’s arrival.

16. An art dealer at an auction believes that the bid on a certain painting will be a

uniformly distributed random variable between $500 and $2,000.

(a) What is the probability density function for this random variable?

(b) Find the probability that the painting will sell for less than $675.

(c) Find the probability that the painting will sell for more than $1,000.

406 9 Other Continuous Distributions and Moments for Distributions



17. Suppose X has an exponential distribution with l ¼ 5. Find the following

probabilities:

(a) P(X > 4)

(b) P(X > .7)

(c) P(X > .50)

18. Suppose X has an exponential distribution with l ¼ 4. Find the following

probabilities:

(a) P(X � .3)

(b) P(X � .5)

(c) P(X � 1.6)

19. Suppose X has an exponential distribution with l ¼ 1
3
. Find the following

probabilities:

(a) P(3 � X � 5)

(b) P(5 � X � 10)

(c) P(2 � X � 1)

20. Suppose the random variable X is best approximated by an exponential distri-

bution with l ¼ 8. Find the mean and the variance of X.
21. Suppose the random variable Y is best approximated by an exponential distri-

bution with l ¼ 3. Find the mean and the variance of Y.
22. Briefly compare the normal distribution discussed in Chap. 7 with the t distri-

bution discussed in this chapter.

23. Find ta for the following:

(a) a ¼ .05 and v ¼ 10

(b) a ¼ .025 and v ¼ 4

(c) a ¼ .10 and v ¼ 7

24. Find the value t0 such that

(a) P(t � t0) ¼ .025, where v ¼ 6

(b) P(t � t0) ¼ .05, where v ¼ 12

(c) P(t � t0) ¼ .10, where v ¼ 9

25. Find the value t0 such that

(a) P(t � t0) ¼ .10, where v ¼ 25

(b) P(t � t0) ¼ .025, where v ¼ 14

(c) P(t � t0) ¼ .01, where v ¼ 17

26. Find the following probabilities for the t distributions.

(a) P(t > 3.078) if v ¼ 1

(b) P(t < 1.943) if v ¼ 6

(c) P(t > 2.492) if v ¼ 24
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27. Find the following probabilities for the t distributions.

(a) P(t > 1.734) if v ¼ 18

(b) P(t > 1.943) if v ¼ 6

(c) P(t < 1.645) if v ¼ 1
28. Find the following w2a;n values.

(a) a ¼ .05 and v ¼ 25

(b) a ¼ .025 and v ¼ 5

(c) a ¼ .10 and v ¼ 50

(d) a ¼ .01 and v ¼ 60

29. Find the following w2a;n values.

(a) a ¼ .025 and v ¼ 30

(b) a ¼ .0l and v ¼ 70

(c) a ¼ .10 and v ¼ 10

(d) a ¼ .01 and v ¼ 20

30. Find the following probabilities.

(a) P(w2 > 10.8564) when v ¼ 24

(b) P(w2 < 10.8564) when v ¼ 24

(c) P(w2 < 48.7576) when v ¼ 70

(d) P(w2 > 59.1963) when v ¼ 90

31. Find the following probabilities.

(a) P(w2 � 3.84146) when v ¼ 1

(b) P(w2 � 15.9871) when v ¼ 10

(c) P(w2 < 140.169) when v ¼ 100

(d) P(w2 > 1.61031) when v ¼ 5

32. Find the following Fn1;n2;a values.

(a) v1 ¼ 8, v2 ¼ 10, and a ¼ .01

(b) v1 ¼ 3, v2 ¼ 11, and a ¼ .005

(c) v1 ¼ 12, v2 ¼ 9, and a ¼ .05

(d) v1 ¼ 24, v2 ¼ 19, and a ¼ .025

33. Find the following Fn1;n2;a values.

(a) v1 ¼ 10, v2 ¼ 10, and a ¼ .05

(b) v1 ¼ 15, v2 ¼ 3, and a ¼ .01

(c) v1 ¼ 12, v2 ¼ 15, and a ¼ .025

(d) v1 ¼ 20, v2 ¼ 10, and a ¼ .005

34. Find the probabilities, given v1 and v2 as shown.

(a) v1 ¼ l and v2 ¼ 3; P(F > 17.44)

(b) v1 ¼ 3 and v2 ¼ 1; P(F > 864.2)
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(c) v1 ¼ 3 and v2 ¼ 1; P(F < 215.7)

(d) v1 ¼ 30 and v2 ¼ 12; P(F < 4.33)

35. Using the MINITAB program, find the probabilities, given v1 and v2 as shown.

(a) v1 ¼ 120 and v2 ¼ 120; P(F > 1.35)

(b) v1 ¼ 00 and v2 ¼ 1; P(F > 1.00)

(c) v1 ¼ 6 and v2 ¼ 17; P(F < 3.28)

(d) v1 ¼ 3 and v2 ¼ 23; P(F > 4.76)

36. Find the probability that an exponentially distributed random variable X with

mean 1/l ¼ 8 will take on the values:

(a) Between 2 and 7

(b) Less than 9

(c) Greater than 6

(d) Between 1 and 15

37. Suppose the lifetime of a television picture tube is distributed exponentially

with a standard deviation of 1,400 h. Find the probability that the tube will last:

(a) More than 3,000 h

(b) Less than 1,000 h

(c) Between 1,000 and 2,000 h

38. Suppose the time you wait at a bank is exponentially distributed with mean 1/

l ¼ 12 min. What is the probability that you will wait between 10 and 20 min?

39. Suppose the length of time people wait at a fast-food restaurant is distributed

exponentially with a mean of 1/7 min. Use MINITAB to answer the following

questions.

(a) What percentage of people will be served within 4 min?

(b) What percentage of people will be served between 3 and 8 min after they

arrive?

(c) What percentage of people will wait more than 9 min?

40. Suppose the length of time a student waits to register for courses is distributed

exponentially with a mean of 1/15 min.

(a) What percentage of students will register within 10 min?

(b) What percentage of students will register after waiting between 10 and 20 min?

(c) What percentage of students will wait more than 20 min to register?

41. Suppose a random variable is distributed as an x2 distribution with n degrees of
freedom. Consider the probability P(x2 � 9). Explain the relationship between

the probability and the degrees of freedom.

42. Suppose a random variable is distributed as Student’s t distribution with

(n � 1) degrees of freedom. Consider the probability P(t � .7). Explain the

relationship between the probability and the degrees of freedom.
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43. The incomes of families in a town are assumed to be uniformly distributed

between $15,000 and $85,000. What is the probability that a randomly selected

family will have an income above $40,000?

44. At an antiques auction, the winning bids were found to be uniformly distributed

between $500 and $2,500. What is the probability that a winning bid was less

than $1,000? What is the probability that a winning bid was between $750 and

$1,500?

45. The manager of a department store notices that the amount of time a customer

must wait before being helped is distributed uniformly between 1 and 4 min.

Find the mean and variance of the time a customer must wait to be helped.

46. A quality control expert for the Healthy Time Cereal Company notices that in a

16-oz package of cereal, the amount in the box is uniformly distributed between

15.3 and 17.1 oz. Find the mean and standard deviation for the weight of this

cereal in a package of cereal.

47. The shelf life of hearing aid batteries is found to be approximated by an

exponential distribution with a mean of 1/12 day. What fraction of the batteries

would be expected to have a shelf life greater than 9 days?

48. A computer programmer has decided to use the exponential distribution to

evaluate the reliability of a computer program. After 10 programming errors

were found, the time (measured in days) to find the next error was determined

to be exponentially distributed with a l ¼ .25.

(a) Graph this distribution.

(b) Find the mean time required to find the 11th error.

49. Use the information given in question 48 to find the probability that it will take

more than 5 days to find the 11th error. Find the probability that it will take

between 3 and 10 days to find the 11th error.

50. An advertising executive believes that the length of time a television viewer

can recall a commercial is distributed exponentially with a mean of .25 days.

Find how long it will take for 75 % of the viewing audience to forget the

commercial.

51. Use the information given in question 50 to find the proportion of viewers who

will be able to recall the commercial after 7 days.

52. An investment advisor believes that the rate of return for Horizon Company’s

stock is uniformly distributed between 3 % and 12 %. Find the probability that

the return will be greater than 5 %. Find the probability that the return will be

between 6 % and 8 %.

53. The mean life of a computer’s hard disk is found to be exponentially distributed

with a mean of 12,000 h. Find the proportion of hard disks that will have a life

greater than 20,000 h.

54. Suppose the life of a car battery is assumed to be uniformly distributed between

3.9 and 7.3 years. Find the mean and variance of the life of a car battery.

55. Use the information given in question 54 to find the probability that the life of

the car battery will be greater than 5 years. Find the probability that the life of

the battery will be between 4 and 6 years.
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56. The chief financial officer at Venture Corporation believes that an investment

in a new project will have a cash flow in year one that is uniformly distributed

between $1 million and $10 million. What is the probability that the cash flow

in year one will be greater than $1.7 million?

57. A hospital collects data on the number of emergency room patients in during a

certain period. It is estimated that in an hour, the average number of emergency

room patients to arrive is 1.2. If the time between two consecutive arrivals of

patients follows an exponential distribution, what is the probability that a

patient will show up in the next hour?

58. The campus bus at Haverford College is scheduled to arrive at the business

school at 8:00 a.m. Usually, the bus arrives at the bus stop during the interval

7:56–8:03. Assume that the arrival time follows a uniform distribution.

(a) What is the probability that the bus arrives at the business school before

8:00?

(b) What is the average arrival time?

(c) What is the standard deviation of arrival time?

59. A gas station’s owner found that about two cars come into the station every

minute. If the arrival time follows an exponential distribution, what is the

probability that the next car will arrive in 1.5 min?

60. A college professor gives a standardized test to her students every semester.

She finds that the students’ grades follow a uniform distribution with 100 points

as the maximum and 65 points as the minimum.

(a) Find the mean score.

(b) Compute the standard deviation of the score.

(c) If the passing grade is 70, what percentage of students will fail the course?

61. Suppose the weight of a football team is uniformly distributed with a minimum

weight of 175 lb and a maximum weight of 285 lb.

(a) Find the mean weight of the team.

(b) Compute the standard deviation of the weight.

(c) Find the percentage of players with a weight of less than 195 lb.

62. Briefly explain how the mean, standard deviation, coefficient of variation, and

skewness can be used to analyze the returns of IBM and Boeing in Table 9.1.

63. A bank manager finds that about six customers enter the bank every 5 min. If

the customer arrival time follows an exponential distribution, what is the

probability that the next customer will arrive in 2 min?

64. Suppose the life of a steel-belted radial tire is uniformly distributed between

30,000 and 45,000 miles.

(a) Find the mean tire life.

(b) Find the standard deviation of tire life.

(c) What percentage of these tires will have a life of more than 40,000 miles?

65. Briefly discuss the relationship among t, w2, and F distributions.
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66. Given v1 ¼ 5 and a ¼ .05, find v2 for the following F values.

(a) 5.05

(b) 3.33

(c) 2.53

67. In their study, Vardeman and Ray (Technometrics, May 1985, pp. 145–150)

found that the number of accidents per hour at an industrial plant is exponen-

tially distributed with a mean l ¼ .5. Use the formula f ðtÞ ¼ le�lt to determine

each of the following.

(a) f(1)
(b) f(4)
(c) E(t)

68. Suppose there is a sample of 30 items drawn from a normal population. Find the

probability that the sample variance exceeds 36.6869.

69. Suppose there are two independent normal populations with population

variances s2
1 ¼ 4.5 and s2

2 ¼ 2.5, respectively. Two random samples of

sizes s21 and s22, respectively, are drawn from the two normal populations

with sample variances s21 and s22, respectively.

(a) What is the probability that the ratio s21/s
2
2 is greater than 4.230?

(b) What is the probability that the ratio s21/s
2
2 is greater than 6.066?

(c) What is the probability that the ratio s21/s
2
2 is less than 0.5263?

70. A random sample of size 7 is drawn from a population with population variance

s2 ¼ 2.5.

(a) Determine the probability that the variance of the sample is greater than

7.008.

(b) Determine the probability that the population mean is less than 0.3634.

71. The following random sample is taken from a normal population.

94 72 43 69 28 63 93 54 77 58

(a) If the population man is m ¼ 60, what is t statistics for the sample?

(b) If the population man is m ¼ 55, what is t statistics for the sample?

(c) What is the degree of freedom of the t statistics in (a)?

Project II: Project for Probability and Important Distributions

1. Use rates of return data presented in Table 2.4 to do the following:

(a) Use either MINITAB or Microsoft Excel to calculate:

1. Mean

2. Standard deviation

(continued)
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Project II: (continued)

3. Coefficient of variation

4. Skewness

5. Kurtosis

(b) Analyze the statistical results of (a).

(c) Use both the standard deviation for JNJ and Merck calculated in (a)

and the following information to calculate the call option and put

option values for JNJ and Merck:

S ¼ $50 X ¼ 45 r ¼ 6% T ¼ :6

2. Use MINITAB and the statistical estimates for JNJ and Merck obtained in

(a) to calculate the mean and the variance of a portfolio with the following

weights:

1. w1 ¼ .4 and w2 ¼ .6

2. w1 ¼ .2 and w2 ¼ .8

3. w1 ¼ .3 and w2 ¼ .7

4. w1 ¼ .1 and w2 ¼ .9

3. Download monthly adjusted close price data of JNJ from Yahoo Finance

during the period from January 2005 to current month:

(a) Calculate monthly rates of return of JNJ.

(b) Redo 1a–c.

Appendix 1: Derivation of the Mean and Variance for a Uniform

Distribution

On the basis of the definitions of E(X) and E(X2) for a continuous variable given in

Appendix 1 of Chap. 7, we can derive the mean and the variance of a uniform

distribution as follows. First, substituting Eq. 9.1 into Eq. 7.22, we get

EðXÞ ¼
ðb
a

xf ðxÞdx ¼
ðb
a

x

b� a
dx

¼ 1

b� a
� x

2

2


b

a

¼ b2 � a2

2ðb� aÞ ¼
aþ b

2
ð9:32Þ

Then, substituting Eq. 9.1 into Eq. 7.25 yields
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E X2
	 
 ¼ ðb

a

x2f ðxÞdx ¼ 1

b� a

ðb
a

x2dx ¼ 1

b� a
� x

3

3


b

a

¼ b3 � a3

3ðb� aÞ ¼
b� að Þ b2 þ abþ a2ð Þ

3ðb� aÞ ¼ b2 þ abþ a2

3
ð9:33Þ

Finally, substituting Eqs. 9.32 and 9.33 into the definition of variance given in

Eq. 7.24, we obtain

s2X ¼E X2
	 
� EðXÞ½ �2 ¼ b2 þ abþ a2

3
� aþ b

2

� �2

¼ 4b2 þ 4abþ 4a2 � 3b2 � 6ab� 3a2

12
¼ b� að Þ2

12
ð9:34Þ

This implies that sX ¼ ðb� aÞ ffiffiffiffiffi
12

p�
.

The following example shows how the formulas for both the mean and the

variance of a continuous variable, as discussed in Appendix 1 of Chap. 7, can be

applied for a uniform distribution.

Example 9.4 Calculating the Mean and Variance of a Uniform Distribution. Let us

look at an example of a continuous random variable in terms of the uniform

distribution. Consider the density function of Eq. 9.35 as depicted in Fig. 9.12:

f ðxÞ ¼ 1:55� :06x if 20 � x � 25

0 otherwise

�
(9.35)

For every value of x between 20 and 25, we get f(x) > 0, and for every x value
outside of this range, we have f(x) ¼ 0. Therefore, for every x, we have f(x) � 0.

Furthermore, the area under the curve equals 1:

ð25
20

ð1:55� :06xÞdx ¼1:55x


25

20

� :06x2

2


25

20

¼ 1

This confirms that f(x) is a density function. Now, let us calculate the expected

value and variance of X:

EðXÞ ¼
ð25
20

xf ðxÞdx ¼
ð25
20

xð1:55� :06xÞdx

¼ 1:55x2

2


25

20

�:06x2

3


25

20

¼ 174:375� 152:5 ¼ 21:875
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Next, let us calculate E(X2):

E X2
	 
 ¼ ð25

20

x2ð1:55� :06xÞdx

¼ 1:55x3

3


25

20

� :06x4

4


25

20

¼ 3939:583� 3459:375 ¼ 480:208

From this result, we obtain

VðXÞ ¼ E X2
	 
� EXð Þ2 ¼ 480:208� 21:875ð Þ2 ¼ 1:692

To find the probability, such as P(22 � X � 24.5), we calculate

Pð22 � X � 24:5Þ ¼
ð24:5
22

f ðxÞdx ¼
ð24:5
22

ð1:55� :06xÞ

¼ 1:55x


24:5

22

� :06x2

2


24:5

22

¼ 3:875� 3:4875 ¼ :3875

Appendix 2: Derivation of the Exponential Density Function

The cumulative distribution function (CDF) for the first event to occur in time

interval t can be written as

PðT � tÞ ¼ Pðwait until next arrival � tÞ
¼ Pðat least one arrival in time tÞ
¼ 1� Pðnon-arrival in time tÞ ð9:36Þ

Fig. 9.12 The density

function f(x)
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where T is the random variable of which t is a specific value. P(non-arrival in time t)
can be obtained by letting x ¼ 0 in the Poisson function as defined in Eq. 6.16. We

obtain P(non-arrival in time interval [0, t]) as

f ð0Þ ¼ PðT � tÞ ¼ ltð Þ0e�lt

0!
¼e�lt for t � 0

¼0 for t<0 ð9:37Þ

where l denotes the mean rate at which events occur over time. Substituting

Eq. 9.37 into Eq. 9.36, we obtain the CDF as

FðtÞ ¼ PðT � tÞ ¼ 1� e�lt (9.38)

If we differentiate F(t) with respect to t, we obtain the PDF as11

f ðtÞ ¼le�lt; t � 0

¼0; t<0 ð9:39Þ

The probability that the waiting time lies between a and b is

PðaÞÞ ¼
ðb
a

le�lt (9.40)

From the definition of E(t) in Appendix 1 of Chap. 7, we obtain

EðTÞ ¼
ð1
�1

tf ðtÞdt ¼ l
ð1
0

te�ltdt

The integral can be evaluated by parts. Let U ¼ t and dn ¼ e�lt dt, so dU ¼ dt
and n ¼ �e� lt/l. Then

EðTÞ ¼l �te�lt=l
	 
1

0
þ 1

l

ð1
0

e�ltdt

� �

¼l ð�0þ 0Þ þ 1

l2
ð�0þ 1Þ

� �
¼ 1

l

11 This is because

dFðtÞ
dt

¼ d 1� e�lt
	 


dt
¼ 0� dð�ltÞ

dt

� �
e�lt ¼ le�lt
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Similarly, we can prove that

VarðTÞ ¼ 1

l2
(9.41)

This appendix shows how a mean value formula of a continuous variable, which

was discussed in Appendix 1 of Chap. 7, can be applied to an exponential

distribution.

Example 9.5 The Average Time Required to Find the Next Computer Program
Error. In finding and correcting errors in a computer program (debugging) and

determining the program’s reliability, Schick and others have noted the importance

of the distribution of the time until the next program error is found. The cumulative

exponential probability function of Eq. 9.37 is most useful in analyzing this

problem.

By using the computer debugging data supplied by the US Navy, Schick (1974,

Decision Sciences, Vol. 5, pp. 529–544) estimated the value of l. After 26 of 31

program errors were found, Schick estimated l to be .042. Accordingly, 1/l ¼ 23.8

days. This means that the average time it would take to find 1 of the remaining

errors (the 27th error) would be about 24 days. From this information, we can

estimate, for example, that the probability of taking 50 or more days to find the next

error is

PðT � 50Þ ¼ e�ð:042Þð50Þ ¼ e�2:1 ¼ :1125:

The second equality is obtained by using Table A7 in Appendix A.

Example 9.6 The Probability of Truck Arrivals. Rutgers Trucking Company had

15,600 trucks to unload at the receiving warehouse during the last calendar year.

The warehouse was open from 8 a.m. to 8 p.m. each weekday. There was no

noticeable pattern of truck arrivals each day. It is known that approximately five

trucks arrived to unload cargo each hour. What is the probability that on September

20, 1991, the first truck arrived between 8:15 and 8:30 a.m.?

To use exponential distribution to solve this problem, we first use a time interval

of 15 min (8:15–8:30) for which l ¼ (5/60)(15) ¼ 1.25.

Substituting l ¼ 1.25, a ¼ 1, and b ¼ 2 into Eq. 9.40,12 we obtain the proba-

bility that the first truck arrived between 8:15 and 8:30 a.m.:

Pð1<T<2Þ ¼
ð2
1

e�1:25tð1:25dtÞ ¼ �e�1:25t


2

1

¼ �e�2:5 þ e�1:25 ¼ :2

12We regard 15 min as 1 time unit that can be expressed as a time interval between a ¼ 1 and

b ¼ 2.
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Appendix 3: The Relationship Between the Moment About

the Origin and the Moment About the Mean

Let k ¼ 1 in Eq. 9.22. Then

m1 ¼ E X � m01ð Þ ¼ EðXÞ � m01 ¼ 0

This implies that the first moment about the population mean is zero.

Alternatively, if we let k ¼ 2 in Eq. 9.22 and let m1 ¼ m1, we obtain

m2 ¼ EðX � m01

2 ¼ E X2 � 2Xm01 þ m01

	 

¼ E X2

	 
� 2m01EðXÞ þ m021 ¼ m02 � m021 ð9:42Þ

where m02 and m01 are second and first moments, respectively. Equation 9.42 is

identical to Eq. 7.24 in Appendix 1 of Chap. 7. It is a shortcut formula to calculate

variance.

Now, if we let k ¼ 3 in Eq. 9.23 and substitute m1 ¼ m01, we obtain

m3 ¼E X � m01
	 
3 ¼ E X3 � 3X2m01 þ 3Xm021 � m031

	 

¼EðX3Þ � 3m01EðX2Þ þ 3m021 EðXÞ � m031
¼m03 � 3m01m

0
2 þ 2m031

(9.43)

wherem01 andm02 are defined in Eq. 9.42 andm03 is the third moment about the origin.

Finally, letting k ¼ 4 in Eq. 9.22 and substituting m1 ¼ m1, we obtain

m4 ¼ E X � m01
	 
4

¼ E X4 � 4X3m01 þ 6X2m021 � 4EðXÞm031 þ m041
	 


¼ E X4
	 
� 4E X3

	 

m01 þ 6E X2

	 

m021 � 4EðXÞm031 þ m041

¼ m04 � 4m03m
0
1 þ 6m02m

02
1 � 3m041 ð9:44Þ

where m01, m02, and m03 have been defined in Eq. 9.43 and m04 is the fourth moment

about the origin.

In Appendix 4, Eqs. 9.42, 9.43, and 9.44 will be used to derive variance,

skewness, and kurtosis of the lognormal distribution.

Appendix 4: Derivations of Mean, Variance, Skewness,

and Kurtosis for the Lognormal Distribution

Following Aitchison and Brown (1963), we express the moments about the origin

for the lognormal distribution as
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m0k ¼ ekmþ1=2k2s2 ; k ¼ 1; 2; � � � (9.45)

In accordance with definitions given in Appendix 3, the mean, variance skew-

ness, and kurtosis of a lognormal distribution can be derived as follows.

Mean

Substituting k ¼ 1 into Eq. 9.45 yields

m01 ¼ emþ1=2s2

This is Eq. 7.6.

Variance

Substitutingm02 ¼ e2mþ2s2 andm01 ¼ emþ1=2s2 into Eq. 9.42 in Appendix 3, we obtain

e2mþ2s2 � e2mþs2 ¼ e2mþs2 es
2 � 1

� �

This is Eq. 7.7.

Skewness

Substituting m01, m02, and m03 ¼ e3mþ9=2s2 into Eq. 9.43 gives

m3 ¼ m01ð Þ3 e3s
2 � 3es

2 þ 2
h i

¼ m01ð Þ3 e3s
2 � 3e2s

2 þ 3es
2 � 1

� �
þ 3 e2s

2 � 2es
2 þ 1

� �h i
¼ m01ð Þ3 �6 þ 3�4

	 

where �2 ¼ es2 – 1. This is Eq. 9.28.

Appendix 4: Derivations of Mean, Variance, Skewness, and Kurtosis. . . 419



Kurtosis

Substituting m01, m02, m03, and m04 ¼ e3mþ8s2 into Eq. 9.44, we get

m4 ¼ m01ð Þ4 e6s
2 � 4e3s

2 þ 6es
2 � 3

h i

By considerable mathematical rearrangement of terms, it can be shown that

m4 ¼ m01ð Þ4 �12 þ 6�10 þ 15�8 þ 16�6 þ 3�4
� �

where �2 ¼ es
2 � 1. This is Eq. 9.29.

Appendix 5: Noncentral x2 and the Option Pricing Model

From Eq. 9.6, we know that Y ¼Pn
i¼1

Xi�m
sx

� �2
is distributed as w2 with n degree of

freedom. This is a central w2 distribution. It can be shown that Y0 ¼Pn
i¼1

X2
i is

distributed as noncentral w2 with n degree of freedom and a noncentral parameter13

l ¼ 1

2

X
m2i �

If m ¼ 0, the distribution of Y0 reduces to the central w2 distribution.
The option pricing model defined in Appendix 2 of Chap. 7 assumed that the

variance of stock rate of return (s2) is constant. If the variance of stock rate of return
is a function of stock price per share, s2Sb�2, then the option pricing model defined

in Eq. 7.35 can be generalized as14

C ¼ S 1� w2 2n; 2þ 2

2� b
; 2m

� �� �
� Xe�rðT�tÞ w2 2m;

2

b� 2
; 2n

� �� �
ðb<2Þ (9.46)

13 See Robert V.H. Allen T.C.: Introduction to Mathematical Statistics 4th Edition, pp. 288–290.

Macmillan, New York, (1978)
14 The derivation of this formula can be found in Mark S.: Computing the constant elasticity of

variance option pricing formula. J. Finance. 44, 211–220 (1989)
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C ¼ S 1� w2 2m;
2

2� b
; 2n

� �� �
� Xe�rðT�tÞ w2 2n; 2þ 2

b� 2
; 2m

� �� �
ððb<2Þ (9.47)

where T ¼ time of expiration of option, t ¼ current time, and r ¼ risk-free rate.

w2 (W, V, l) is the cumulative noncentral chi-square distribution function withW, V,
and, l being the upper limit of the integral, degree of freedom, and noncentrality,

respectively. In addition m, n, and K can be defined as

m ¼ KS2�beð2�bÞmðT�tÞ

n ¼ KS2�b

K ¼ 2m
s2 2� bð Þ eð2�bÞmðT�tÞ � 1ð Þ (9.48)

Now, we discuss three possible special cases associated with Eqs. 9.46 and 9.47.

(a) If b ¼ 2, both m and n approach infinity. Then it can be shown that both

Eqs. 9.46 and 9.47 reduce to the well-known Black–Scholes formula as defined

in Appendices 2 and 3 of Chap. 7.

(b) If b ¼ 1, it can be shown that Eqs. 9.46 and 9.47 reduce to

C ¼ S� Xe�rðT�tÞ
� �

N y1ð Þ þ Sþ Xe�rðT�tÞ
� �

N y2ð Þ þ n n y1ð Þ � n y2ð Þ½ � (9.49)

where

n ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2rðT�tÞ

2r

r

y1 ¼ S� Xe�rðT�tÞ

n

y2 ¼�S� Xe�rðT�tÞ

n

N(y1) and N(y2) ¼ cumulative standardized normal distribution function in

terms of y1 and y2, respectively.
n(y1) and n(y2) ¼ standardized normal density function in terms of y1 and y2,
respectively.

(c) If b ¼ 0, it can be shown that Eqs. 9.46 and 9.47 reduce to

C ¼ SN qð4Þ½ � � Xe�rðT�tÞN qð0Þ½ � (9.50)
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where

qðwÞ¼
1þhðh�1Þ wþ2y

ðwþyÞ2
 !

�hðh�1Þð2�hð1�3hÞ ðwþ2yÞ2
2ðwþyÞ4
 !

� z

ðwþyÞ
� �h

2h2
wþ2y

ðwþyÞ2
 !

ð1�ð1�hÞð1�3hÞ wþ2y

ðwþyÞ2
 !( )1

2

hðwÞ ¼ 1� 2

3
wþ yð Þ wþ 3yð Þ wþ 2yð Þ�2

y ¼ 4rS

s2 1� e�rðT�tÞð Þ and z ¼ 4rX

s2 e�rðT�tÞ � 1ð Þ

The elasticity of variance (s2Sb�2) with respect to stock price per share S is

�s ¼
@ s2Sb�2
	 


@S

� �
S

s2Sb�2

� �
¼ b� 2ð Þs2Sb�2Þ

S

� �
S

s2Sb�2

� �
¼ b� 2 (9.51)

This implies that the option pricing model defined in Eqs. 9.46 and 9.47 is a

constant elasticity of variance (CEV) type of OPM.

The CEV type of option pricing model can be reduced to the following special

models15:

(a) b ¼ 2, Eqs. 9.46 and 9.47 reduce to the Black–Scholes model.

(b) b ¼ 1, Eqs. 9.46 and 9.47 reduce to the absolute model as defined in Eq. 9.49.

(c) b ¼ 0, Eqs. 9.46 and 9.47 reduce to the square root model as defined in

Eq. 9.50.

From Appendix 2 of Chap. 6, Appendices 2 and 3 of Chap. 7 and this appendix,

we can conclude that the binomial, normal, lognormal, and noncentral

w2 distributions are basic statistical distributions needed for understanding alterna-

tive option pricing models.

15 See Beckers S.: The constant elasticity of variance model and its implications for option pricing.

J. Finance. 35, 661–673 (1980)
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Part III

Statistical Inferences Based on Samples

In the next three chapters, we will discuss statistical inference based on samples

and the applications of such statistical inference. So far, our discussion has focused

on descriptive statistics, sampling and sampling distributions, and the analytical

techniques and distributions used to describe statistical data.

Inferential statistics, on the other hand, is used to make inferences about a

population by looking at a subset of that population. In Chapter 10, we continue

the discussion of the previous five chapters by looking at point estimation,

confidence intervals, and statistical quality control. In Chapter 11, we apply these

techniques to testing hypotheses about a population. In Chapter 12, we discuss

the analysis of variance for sample data and the use of chi-square tests in analyzing

sample data.

Chapter 10 Estimation and Statistical Quality Control

Chapter 11 Hypothesis Testing

Chapter 12 Analysis of Variance and Chi-Square Tests
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Sufficient statistic �X-chart

Mean squared error R-chart

Interval estimation S-chart

Confidence interval P-chart

10.1 Introduction

In the previous two chapters, we discussed the basic principles of sampling and

sampling distributions – techniques that enable us to make inferences about a

population by looking at a subset of that population. In this chapter, we continue

our discussion of inferential statistics by examining point estimation, confidence

intervals, and statistical quality control. Note that this chapter draws heavily on

your understanding of the standard normal distribution discussed in Chap. 7, the

fundamental concepts of sampling discussed in Chap. 8, and the t distribution and

chi-square distribution discussed in Chap. 9.

We first examine point estimates for population parameters and then discuss

desirable attributes of point estimators. Second, basic concepts and the necessity of

using interval estimates are discussed in detail. Third, we explain how to compute

confidence intervals for population means both when the population variance is

known and when it is unknown. Fourth, confidence intervals for the population

proportion and the population variance are explored. Finally, we present

applications of the use of confidence intervals for quality control. An application

of confidence intervals for a cash management model appears in Appendix 1.

Appendix 2 shows how MINITAB can be used to generate control charts.

10.2 Point Estimation

As we have said, statistical inference enables us to make judgments about a popula-

tion on the basis of sample information. The mean, standard deviation, and

proportions of a population are called population parameters; in other words, they

serve to define the population. Estimating a population’s parameters is essential to

statistical analysis, and sometimes sampling is the best (fastest and most economical)

way to approach the study.

10.2.1 Point Estimate, Estimator, and Estimation

A parameter is a characteristic of an entire population; a statistic is a summary

measure that is computed to describe a characteristic for only a sample of the

population. An estimate is a specific observed value of a statistic. The rule that

specifies how a sample statistic can be obtained for estimating the population

parameter is called an estimator. For example, if a professor wants information on

426 10 Estimation and Statistical Quality Control

http://dx.doi.org/10.1007/978-1-4614-5897-5_7
http://dx.doi.org/10.1007/978-1-4614-5897-5_8
http://dx.doi.org/10.1007/978-1-4614-5897-5_9


central tendency in a list of test scores, she can calculate a sample mean. The number

for the sample mean is called the estimate, and the sample mean is the estimator for

the populationmean. The point estimate is the single number that is obtained from the

estimator.

The symbols we use to represent several important population parameters and

their sample counterparts follow.

Population Sample

Parameter Statistic

Mean m �X

Standard deviation sX sX
Variance s2X s2X
Proportion p p̂

Example 10.1 Sample Mean and Sample Variance: Point Estimate. Suppose that a

professor, whose course has an enrollment of 50 students, wants information on the

performance of his class. He takes a sample of 10 scores:

95; 67; 89; 70; 56; 97; 68; 78; 50; 79

The estimator for the population mean is the sample mean, �X. The estimate for

the population mean, on the basis of the 10 sample scores, is �X ¼ 74.9.

The estimator for the population variance is the sample variance. The estimate of

the population variance is

s2X ¼ ð952 þ 672 þ � � � þ 792Þ � 10ð74:9Þ2
10� 1

¼ 247:65

The professor can use �X ¼ 74.9 and s2X ¼ 247.65 to do his or her class

performance analysis.

The relationship among the point estimate, point estimator, and point estimation

can be summarized as follows. A point estimate is a single value that is calculated

from only one sample. In Example 10.1, �X ¼ 74.9 is an estimate for population

mean m, and s2X ¼ 247.65 is an estimate for population variance s2X . Using the

formula for combinations reveals that there are
50

10

� �
¼ 10; 272; 278; 000 possible

sample estimates for Example 10.1.1 The random variable that is defined by a

formula, and from which we obtain all possible estimates, is called the point

1 From the combination formula discussed in Appendix 1 of Chap. 5, we obtain

50

10

� �
¼ 50!

10!ð50� 10Þ! ¼
ð50Þð49Þ � � � ð41Þ
ð10Þð9Þ � � � ð1Þ ¼ 10; 272; 278; 000
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estimator. A point estimate is a single value that is used to estimate a population

parameter. A point estimator is a sample statistic used to estimate a population

parameter. Point estimation is a process that generates specific numbers, each of

which is a point estimate.

Example 10.2 Population Mean: Point Estimate. We can use a sampling approach

to obtain the point estimate of a population mean m. In Example 8.1, we

demonstrated the sampling results of taking samples of 2, 3, or 4 elements out of

a uniformly distributed population that represents the numbers of years of working

experience of six secretaries (1, 2, 3, 4, 5, and 6) at Francis Engineering Inc. If

samples of three elements are randomly taken from this population, then there are

20 possible samples, as listed in Table 10.1.

The population mean and population standard deviation are

m ¼ 1þ 2þ 3þ 4þ 5þ 6

6
¼ 3:5

sX ¼ ð1� 3:5Þ2 þ ð2� 3:5Þ2 þ � � � þ ð6� 3:5Þ2
6

" #1=2
¼ 1:71

All possible sample means listed in Table 10.1 are point estimates of the

population mean mx. MINITAB output is given in Fig. 10.1, which indicates that

both the mean and the median of this set of sample means are equal to 3.5.

10.2.2 Four Important Properties of Estimators

A number of different estimators are possible for the same population parameter,

but some estimators are better than others. To understand how, we need to look at

four important properties of estimators: unbiasedness, efficiency, consistency, and

sufficiency.

Table 10.1 Possible samples and their sample means (sample size ¼ 3)

Possible

samples

Elements

in sample

Sample

mean

ð �XiÞ
Possible

samples

Elements

in sample

Sample

mean

ð �XiÞ
1 1, 2, 3 2 11 2, 3, 4 3

2 1, 2, 4 2.33 12 2, 3, 5 3.33

3 1, 2, 5 2.67 13 2, 3, 6 3.67

4 1, 2, 6 3 14 2, 4, 5 3.67

5 1, 3, 4 2.67 15 2, 4, 6 4

6 1, 3, 5 3 16 2, 5, 6 4.33

7 1, 3, 6 3.33 17 3, 4, 5 4

8 1, 4, 5 3.33 18 3, 4, 6 4.33

9 1, 4, 6 3.67 19 3, 5, 6 4.67

10 1, 5, 6 4 20 4, 5, 6 5

Sum ¼ 30 Sum ¼ 40
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10.2.2.1 Unbiasedness

An estimator exhibits unbiasedness when the mean of the sampling estimator ŷ is

equal to the population parameter y. In other words, the expected value of the

estimator is equal to the population parameter: E(ŷ) ¼ y. Let’s use data given in

Table 10.1 as an example:

Eð �XiÞ ¼ SPð �XiÞ �Xi ¼
P20
i¼1

�Xi

20
¼ 2þ 2:33þ � � � þ 4:67þ 5

20
¼ 70

20

¼3:5 ¼ m

Note that Pð �XiÞ¼ 1
20

because each sample of 3 is equally likely. Figure 10.2 shows

the sampling distributions of two estimators, ŷ1 and ŷ2; ŷ1 is an unbiased estimator and

ŷ2 a biased estimator. Figure 10.2 indicates that E ðŷtÞ ¼ ŷ and E ðŷ2Þ > y.
In general, unbiasedness is a desirable property for an estimator. The sample

mean is an unbiased estimator of the population mean because the mean of the

sampling distribution of �X , E( �X), is equal to the population mean m. Similarly,

the sample variance is an unbiased estimator of the population variance

because the mean of the sample distribution of s2X , E s2X
� �

, is equal to population

variance s2X.
2 And the sample proportion is an unbiased estimator of the popula-

tion proportion; E ðp̂Þ ¼ p. However, because standard deviation is a nonlinear
function of variance, the sample standard deviation is not an unbiased estimator of

population standard deviation.

The bias of a point estimator is defined in Eq. 10.1:

Bias ¼ EðŷÞ � y (10.1)

MTB > SET INTO Cl
DATA> 2 2.33 2.67 3 2.67 3 3.33 3.33 3.67
DATA> 4 3 3.33 3.67 3.67 4 4.33 4 4.33 4.67 5
DATA> END
MTB > DESCRIBE Cl

Descriptive Statistics
Variable N Mean Median Tr Mean StDev SE Mean
C1 20 3.500 3.500 3.500 0.781 0.715

Variable Min Max Q1 Q3
C2 2.000 5.000 3.000 4.000

Fig. 10.1 MINITAB output for Example 10.2

2 If we divide the sum of squared discrepancies from �X by (n�1) rather than n, Eq. 9.11 in Chap. 9
can be used to demonstrate this point.
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For example, in Fig. 10.2 the bias of using ŷ2 as an estimator of y is equal to

E ðŷ2Þ –y.
Unbiasedness, then, is an important attribute of estimators. But suppose we have

a number of unbiased estimators to choose from. Here are three other criteria that

could be used to select an estimator.

10.2.2.2 Efficiency

Efficiency is another standard that can be used to evaluate estimators. Efficiency
refers to the size of the standard error of the statistics. The most efficient estimator

is the one with the smallest variance. Thus, if there are two estimators for y with

variances Var(ŷ1) and Var(ŷ2), then the first estimator ŷ is said to be more efficient

than the second estimator ŷ2 if Var(ŷ1 ) < Var(ŷ2) although E(ŷ1 ) ¼ E(ŷ2) ¼ y.
Figure 10.3 shows the distributions of the two density functions.

The relative efficiency of one estimator compared with another is simply the

ratio of their variances. Given two unbiased estimators ŷ1 and ŷ2 with variances

Var(ŷ1) and Var(ŷ2), the relative efficiency of ŷ2 with respect to ŷ is

Relative efficiency ¼ Varðŷ1Þ
Varðŷ2Þ

(10.2)

Why is the variance of the benchmark estimator (ŷ1) placed in the numerator?

Well, suppose two estimators are calculated for the population mean. The first is the

sample mean ŷ1 and the second is the sample median ŷ2. It can be shown that the

Fig. 10.2 Probability density functions for y1 and y2
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variance of the sample median of a normal distribution isVarðŷ2Þ ¼ p s2X=2n
� �

. The

variance for the sample mean is s2X=n. The relative efficiency of the sample median

with respect to the sample mean is

Efficiency ¼ Varðŷ1Þ
Varðŷ2Þ

¼ s2X=n
p s2X=2n

¼ 2

p
¼ 63:66%

The sample mean, rather than the sample median, is the preferred estimator of

the population mean because the amount of variability associated with the sample

mean is about 64 % of that associated with the sample median. Note that the sample

mean is the best estimate of central tendency for symmetric distributions and that

the sample median is generally used for skewed distributions.

10.2.2.3 Consistency

A third property of estimators, consistency, is related to their behavior as the sample

size gets large. A statistic is a consistent estimator of a population parameter if, as the

sample size increases, it becomes almost certain that the value of the statistic comes

very close to the value of the population parameter. For example, suppose we are

tossing a coin and are interested in rolling a head. The sample proportion X/n is an

estimator for the population proportion, where X is the number of heads tossed and n
is the number of trials. We know that the population proportion of heads tossed is

equal to 1/2, so we would expect the sample proportion to get closer to 1/2 as the

Fig. 10.3 Probability density functions of two unbiased estimators ŷ1 and ŷ2; Var(ŷ1) < Var(ŷ2)
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number of trials n increases. (This result was demonstrated by a computer simulation

in Chap. 5.) We need information on the probability that the absolute difference

between the estimator and the parameter will be less than some positive number є.
In other words, we need P(| X/n– p | � є), and this probability should be close to

1 as n gets large. If it is, then X/n is said to be a consistent estimator of p.

It can be shown that an unbiased estimator ŷ n for y is a consistent estimator if the

variance approaches 0 as n increases. For example, we can show that the sample

mean is a consistent estimator of the population. The sample mean is unbiased

because E(�X) ¼ m. The variance of X is s2X/n. As n becomes large, the variance gets

closer to 0; this estimator is consistent. Finally, it should be noted that the sample

standard deviation is a consistent estimator of population standard deviation,

although it is not an unbiased estimator of population standard deviation.

Following this approach, we can see that the sample proportion X/n ¼ p̂ is also

consistent. From the last chapter, we know that E( p̂ ) ¼ p, which establishes

unbiasedness. Because the variance is equal to p̂ (1 – p̂)/n, the variance approaches

0 as n gets large. Thus, X/n is a consistent estimator of p. ŷn is a consistent estimator

of y if, for any positive number є

lim
n!1P

��ŷn � y
�� � E

� �
¼ 1 (10.3)

where n ! 1 means that sample size approaches infinity.

10.2.2.4 Sufficiency

The last property of a good estimator that we will consider is sufficiency, which was

developed by Sir R. A. Fisher, a famous statistician, in 1922.3 A sufficient statistic

(such as �X) is an estimator that utilizes all the information a sample contains about

the parameter to be estimated. For example, �X is a sufficient estimator of the

population mean m. This means that no other estimator of m from the same sample

data, such as the sample median, can add any further information about the

parameter m that is being estimated.

It can be shown that the sample mean �X and the sample proportion p̂ are sufficient
statistics (estimators) for m and p.

10.2.3 Mean Squared Error for Choosing Point Estimator

Frequently, a trade-off must be made between bias and efficiency for a point

estimator. Sometimes there is much to be gained by accepting some biases for the

sake of increasing the efficiency of an estimator. A statistic called themean squared

3 R. A. Fisher (1922), “On the Mathematical Foundations of Theoretical Statistics,” Phil. Trans.
Roy. Soc. London. Series A, Vol. 222.
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error (MSE), the expectation of the squared difference between the estimators and

parameters as indicated in Eq. 10.4, can be used to measure the trade-off between

bias and efficiency for an estimator:

MSE ŷ
� �

¼ E ŷ� y
� �2

(10.4)

It can be shown4 that

MSEðŷÞ ¼ VarðŷÞ þ ½BiasðŷÞ�2 (10.5)

where Var(ŷ) ¼ E[ŷ – E(ŷ)]2 and Bias(ŷ) ¼ E(ŷ) – y.
Equations 10.4 and 10.5 imply that an estimator’s variance is a measure of the

dispersion of the sampling distribution around the estimator’s expected value, E(ŷ),
whereas theMSE is a measure of dispersion around the true population parameters, y.
If the estimator is unbiased, then E(ŷ) ¼ y and MSE(ŷ) ¼ Var(y). For example, in

Fig. 10.3 the expected variability of ŷ2 around the true parameter, y, is greater than
that around E(ŷ2), which is the center of the sample distribution. Both nonsampling

error and systematic sampling error bias an estimator.

10.3 Interval Estimation

In the last section, we discussed point estimation of a population parameter. We

investigated methods for estimating population mean, variance, standard deviation,

and proportion and methods for evaluating desirable features of estimators.

Although these estimators give us much information about a population parameter,

more information is usually desired. Many times, an interval estimate is needed. For

example, a manager may want to know how likely it is that the mean number of

defects is between 1 % and 3 %, or a professor may want to know how likely it is

that between 10 % and 20 % of her class will get an A on the final exam. Sample

statistics such as the mean and variance do not provide any information on the range

of values the population parameters are likely to fall in.

We now wish to estimate a parameter m by the interval

a< m< b

4

Eðŷ� yÞ2 ¼ E½ŷ� EðŷÞ þ EðŷÞ � y�2

¼ E½ŷ� EðŷÞ�2 þ ½EðŷÞ � y�2 þ 2E½ŷ� EðŷÞ�½EðŷÞ � y�
¼ E½ŷ� EðŷÞ�2 þ ½EðŷÞ � y�2 because E½ŷ� EðŷÞ� ¼ 0
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where a and b are obtained from sample observation. The estimation of a and b,
values between which the parameter of interest will lie with a certain probability, is

called interval estimation.
Suppose y is a parameter to be estimated. A random sample is taken, and two

random variables a and b are computed. The interval from a to b is called a confidence
interval; its probability is (1�a). In other words, if all of the population is repeatedly
sampled and the intervals are calculated in the same fashion, then the probability is

(1�a) that the confidence interval will contain the population parameter:

Pða< y< bÞ ¼ 1� a (10.6)

For example, if 1�a ¼ .95, then the probability that a is less than y and b is

greater than y is .05. Because 1�a ¼ .95, a ¼ .05. The term (1�a) is called the

confidence level (probability content). The quantity a is often termed the risk
probability or significant level. In the next four sections, we will use Eq. 10.6 to

estimate the confidence interval for population mean, population proportion, and

population variance.

10.4 Interval Estimates for m When sX
2 Is Known

In this section, we construct confidence intervals for the population mean. We

assume that the random sample is taken from a normal distribution and that the

population variance is known. The latter assumption is somewhat unrealistic

because the population variance is rarely known. However, these assumptions

enable us to illustrate concepts that we will need later.

Suppose a random sample is taken with an unknown mean and known variance.

The confidence interval uses the fact that the random variable Z where

Z ¼
�X � m
sX=

ffiffiffi
n

p

has a standard normal distribution. Suppose a 100(1�a) percent confidence interval
is set up, so that a/2 is the area of the right tail of the normal distribution, a/2 is the
area of the left tail, and (1�a) is the area in the center, as shown in Fig. 10.4. The

cutoff points on the normal distribution are za/2 and�za/2. The confidence interval is
derived as follows:

1� a ¼Pð�za=2 < Z< za=2Þ

¼P �za=2 <
�X � m
sX=

ffiffiffi
n

p < za=2

� �

1� a ¼ P �X � za=2
sXffiffiffi
n

p

 �

< m< �X þ za=2
sXffiffiffi
n

p

 �� 

(10.7)
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Equation 10.7 implies that confidence intervals have the following

characteristics:

1. As the standard deviation increases, the length of the confidence interval

increases. This result is understandable: the wider the deviation, the more

uncertain the estimate of the mean.

2. The bigger the sample size, the smaller the confidence interval for a given

variance. This is because more information decreases the interval, making a

better interval possible.

3. The confidence interval is larger for smaller confidence levels (a). A 99 %

confidence interval has a smaller a than a 95 % interval because a 99 % interval

has more certainty.

Example 10.3 Confidence Intervals in Terms of 20 Samples. Let us now refer to the

20 samples in Table 10.1 and use the information sx ¼ 1.71 and the 20 random

samples given there. We calculate 20 different 95 % confidence intervals in terms

of Eq. 10.7 by using MINITAB as presented in Fig. 10.5. The 95 % confidence

interval (CI) results listed in Fig. 10.5 reveal that all 20 samples resulted in a

confidence interval containing m ¼ 3.5.

Fig. 10.4 Risk probability for sample mean estimate

10.4 Interval Estimates for m When sX
2 Is Known 435



MTB > READ C1-C20

DATA> 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 4

DATA> 2 2 2 2 3 3 3 4 4 5 3 3 3 4 4 5 4 4 5 5

DATA> 3 4 5 6 4 5 6 5 6 6 4 5 6 5 6 6 5 6 6 6

DATA> END

3 rows read.

MTB > PRINT C1-C20.

Data Display

Row C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

1 1 1 1 1 1 1 1 1 1 1 2 2 2 2

2 2 2 2 2 3 3 3 4 4 5 3 3 3 4
3 3 4 5 6 4 5 6 5 6 6 4 5 6 5

Row C15 C16 C17 C18 C19 C20

1 2 2 3 3 3 4
2 4 5 4 4 5 5

3 6 6 5 6 6 6

MTB > STORE

STOR> ZINTERVAL USING 95%, SIGMA=1.71, DATA IN CK1

STOR> LET K1=K1+1

STOR> END

MTB > LET Kl=l

MTB > EXECUTE ‘MINITAB’ 20

Executing from file: MINITAB.MTB

Confidence Intervals

The assumed sigma = 1.71

Variable N Mean StDev SE Mean 95.0  %  CI
C1 3 2.000 1.000 0.987 (0.065, 3.935)

Confidence Intervals

The assumed sigma = 1.71

Variable N Mean StDev SE Mean 95.0  %  CI
C2 3 2.333 1.528 0.987 (0.398,  4.269)

Confidence Intervals

The assumed sigma = 1.71

Variable N Mean StDev SE Mean 95.0  %  CI
C3 3 2.667 2.082 0.987 (0.731,    4.602)

Confidence Intervals

The assumed sigma = 1.71

Variable N Mean StDev SE Mean 95.0  %  CI
C4 3 3.000 2.646 0.987 (1.065,    4.935)

Fig. 10.5 (continued)
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Confidence Intervals

The assumed sigma = 1.71

Variable N Mean StDev SE Mean 95.0  %  CI
C5 3 2.667 1.528 0.987 (0.731,    4.602)

Confidence Intervals

The assumed sigma = 1.71

Variable N Mean StDev SE Mean 95.0  %  CI
C6 3 3.000 2.000 0.987 (1.065,    4.935)

Confidence Intervals

The assumed sigma = 1.71

Variable N Mean StDev SE  Mean 95.0  %  CI
C7 3 3.333 2.517 0.987 (1.398, 5.269)

Confidence Intervals

The assumed sigma = 1.71

Variable N Mean StDev SE Mean 95.0  %  CI
C8 3 3.333 2.082 0.987 (1.398, 5.269)

Confidence Intervals

The assumed sigma = 1.71

Variable N Mean StDev SE  Mean 95.0  %  CI
C9 3 3.667 2.517 0.987 (1.731,    5.602)

Confidence Intervals

The assumed sigma = 1.71

Variable N Mean StDev SE  Mean 95.0  %  CI
C10 3 4.000 2.646 0.987 (2.065,    5.935)

Confidence Intervals

The assumed sigma = 1.71

Variable N Mean StDev SE  Mean 95.0  %  CI
C11 3 3.000 1.000 0.987 (1.065,    4.935)

Confidence Intervals

The assumed sigma = 1.71

Variable N Mean StDev SE  Mean 95.0  %  CI
C12 3 3.333 1.528 0.987 (1.398, 5.269)

Confidence Intervals

The assumed sigma = 1.71

Variable N Mean StDev SE  Mean 95.0  %  CI
C13 3 3.667 2.082 0.987 (1.731,    5.602)

Fig. 10.5 (continued)
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Example 10.4 Sandbags We Can Have Real Confidence In: 95 % and 99 %
Confidence Intervals. Suppose a machine dispenses sand into bags. The population

standard deviation is 9.0 lb, and the weights are normally distributed. A random

sample of 100 bags is taken, and the sample mean is 105 lb. Let’s calculate a 95 %

confidence interval by using Eq. 10.7.

Confidence Intervals

The assumed sigma = 1.71

Variable N Mean StDev SE  Mean 95.0  %  CI
C14 3 3.667 1.528 0.987 (1.731,          5.602)

Confidence Intervals

The assumed sigma = 1.71

Variable N Mean StDev SE  Mean 95.0  %  CI
C15 3 4.000 2.000 0.987 (2.065,        5.935)  

Confidence Intervals

The assumed sigma = 1.71

Variable N Mean StDev SE  Mean 95.0  %  CI
C16 3 4.333 2.082 0.987 (2.398,        6.269)

Confidence Intervals

The assumed sigma = 1.71

Variable N Mean StDev SE  Mean 95.0  %  CI
C17 3 4.000 1.000 0.987 (2.065,        5.935)

Confidence Intervals

The assumed sigma = 1.71

Variable N Mean StDev SE  Mean 95.0  %  CI
C18 3 4.333 1.528 0.987 (2.398,        6.269)

Confidence Intervals

The assumed sigma = 1.71

Variable N Mean StDev SE  Mean 95.0  %  CI
C19 3 4.667 1.528 0.987 (2.731,        6.602)

Confidence Intervals

The assumed sigma = 1.71

Variable N Mean StDev SE  Mean 95.0  %  CI
C20 3 5.000 1.000 0.987 (3.065,        6.935)

Fig. 10.5 MINITAB output for Example 10.3
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The estimate of sample standard deviation is 9=
ffiffiffiffiffiffiffiffi
100

p
. The confidence level is

(1�a) ¼ .95. Thus, a ¼ .05 and a/2 ¼ .025. The Z-value that corresponds to this

area is 1.96. This is due to the fact that the area of the right tail is .025. The area of

the left tail is .025. The 95 % confidence interval is

105� ð1:96Þ ð9Þffiffiffiffiffiffiffiffi
100

p < m< 105þ ð1:96Þ ð9Þffiffiffiffiffiffiffiffi
100

p

or 103:24< m< 106:76

The 95 % confidence interval for the mean weight of the bags ranges from

103.24 to 106.76, as presented in Fig. 10.6a. In other words, we are certain that

95 % of such intervals contain the population mean.

Suppose a 99 % confidence interval is needed for the case discussed here. The

confidence level is 1�a ¼ .99. Thus, a ¼ .01 and a/2�.005. The Z-value is 2.575.
The confidence interval is

105� ð2:575Þ ð9Þffiffiffiffiffiffiffiffi
100

p < m< 105þ ð2:575Þ ð9Þffiffiffiffiffiffiffiffi
100

p

or

102:68< m< 107:32

This 99 % confidence interval is wider than the 95 % confidence interval, as

indicated in Fig. 10.6b. Now we are certain that the interval generated by our

statistics will include the true population mean 99 % of the time.

Example 10.5 95 % Confidence Interval for the Sandbag Sample with a Smaller
Sample Size. Assume that rather than taking a sample of 100, we take a sample of

30. The 95 % confidence interval becomes

105� ð1:96Þ ð9Þffiffiffiffiffi
30

p < m< 105þ ð1:96Þ ð9Þffiffiffiffiffi
30

p

Fig. 10.6 (a) and (b) The effects of sample size and probability content on confidence intervals in

cases of sample mean of 105 (c) The effects of sample size and probability content on confidence

interval in the case of sample mean of 105

10.4 Interval Estimates for m When sX
2 Is Known 439



or

101:779< m< 108:22

This interval is wider than the interval with a sample size of 100, as indicated in

Fig. 10.6c.

Example 10.6 95 % Confidence Interval for the Mean External Audit Fees for 32
Diverse Companies. To study the effect of internal audit departments on external

audit fees, W. A. Wallace recently conducted a survey of the audit departments of

32 diverse companies (Harvard Business Review, March–April 1984). She found

that the mean annual external audit paid by the 32 companies was $779,030 and the

standard deviation was $1,083,162.

Because this is a large-sample case, we can replace the sample standard devia-

tion for the population standard deviation. Substituting both the sample mean and

the sample standard deviation and other information into Eq. 10.7, we obtain the

95 % confidence interval as

779; 030� ð1:96Þ ð1; 083; 162Þffiffiffiffiffi
32

p < m< 779; 030þ ð1:96Þ ð1; 083; 162Þffiffiffiffiffi
32

p

or

403; 733:23< m< 1; 154; 326:77

A 95 % confidence interval for the mean external audit fees paid by all

companies during the year ranges from $403,733.23 to $ 1,154,326.77.

10.5 Confidence Intervals for m When sX
2 Is Unknown

In the previous section, we constructed confidence intervals for known population

variances. For a large sample size, the assumption of known population variance

can be relaxed. In this section, we construct confidence intervals for small sample

sizes (n < 30) and unknown population variance.

In some cases, it is not possible to obtain a large sample size. For example, we

might be interested in constructing a confidence interval for sales in a particular

industry that contains only 10 firms. Because of the size of the sample, the normal

distribution cannot be used; the central limit theorem applies only to large sample

sizes (n � 30).

Remember that the random variable

Z ¼
�X � m
sX=

ffiffiffi
n

p
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has a standard normal distribution. However, in our example the sample size is

small and the population standard deviation is unknown, so the t statistic discussed
in Chap. 9 must be used. Recall that the t statistic has a shape that is very similar to

the normal distribution, which is bell-shaped and symmetrically distributed.

However, the t distribution has fatter tails than the Z (the standardized normal)

distribution. This is because using the sample standard deviation rather than the

population standard deviation introduces uncertainty. The similarities and

differences between the two distributions are shown in Fig. 10.7.

The probability in the tail and the shape of the distribution depend on the number

of degrees of freedom, n�1, where n is the number of observations in the sample.

Table A4 in Appendix A shows the relationship between the number of degrees of

freedom and the t value of the distribution. For example, if the number of degrees of

freedom equals 6 and the area in both tails combined is 0.100, then the t value is

1.943. If the degrees of freedom equal 12, then the t value is 1.782. In addition, the

t value will be greater than the Z-value for the same area under the curve. As the

number of degrees of freedom approaches infinity, the t distribution approaches the Z
distribution. This is due to the fact that as n becomes larger, the sample standard

deviation s approaches the population standard deviation s. We use a cutoff n ¼ 30

to distinguish between large and small samples because there is little difference

between the two distributions at that sample size.

The random variable t with v ¼ (n�1) degrees of freedom can be defined as

tn ¼
�X � m
sX=

ffiffiffi
n

p (10.8)

which follows the t distribution with (n�1) degrees of freedom. Note that this is

similar to the Z statistic, but the sample standard deviation is used instead of the

population standard deviation.

Fig. 10.7 Standardized normal distributions versus t distribution
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To use the t distribution for confidence intervals, we need to take areas on both

sides of the distribution. Thus, if we want a 95 % confidence interval with a sample

size of 10, we divide 5 % by 2 (0.05/2 ¼ 0.025) and look up 0.025 with (10–1)

degrees of freedom in the t tables to arrive at a t value. The positive value will

correspond to the right-side tail and the negative value to the left-side tail. This is

shown in Fig. 10.8.

Using the t distribution, we find that the confidence interval is

1�a¼P �tn�1;a=2<
�X�m

sX=
ffiffi
n

p <tn�1;a=2

h i
¼P �X� tn�1;a=2

sXffiffi
n

p <m< �Xþ tn�1;a=2
sXffiffi
n

p
h i

ð10:9Þ

Example 10.7 95 % Confidence Interval for the Average Weight of Football
Players. A random sample yields the following weights of eight football players,

in pounds.

250 210 185 242 190 200 220 205

The sample mean is �X ¼ 212.75, and the sample standard deviation is

sX ¼ 23.34.

Suppose we want a 95 % confidence interval. The number of degrees of freedom

is 8–1 ¼ 7, and the corresponding a is 0.05. The t value that is desired is

tn–1,a/2 ¼ t7,0.05/2 ¼ 2.365.

Fig. 10.8 A t distribution with n ¼ 10 and 1�a ¼ 95 %
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Substituting all this information into Eq. 10.7, we get

212:75� ð2:365Þ ð23:34Þffiffiffi
8

p < m< 212:75þ ð2:365Þ ð23:34Þffiffiffi
8

p

or

193:23< m< 232:27

Thus, we can say with 95 % certainty that the true mean weight of the football

players is between 193.2 and 232.3 lb. The MINITAB solution for this example is

shown in Fig. 10.9.

Example 10.8 90 % Confidence Interval for the Average Weight of Football
Players. Suppose a 90 % confidence interval is constructed for the information

given in Example 10.7. The t value is t7, 0.10/2. The 90 % confidence interval is

212:75� ð1:895Þ ð23:34Þffiffiffi
8

p < m< 212:27þ ð1:895Þ ð23:34Þffiffiffi
8

p

or

197:11< m< 228:39

Here, because we have chosen a 90 % confidence interval, the confidence

interval has gotten narrower.

Example 10.9 Estimate for Waiting Time at a Bank. As part of an effort to improve

customer service, a bank pledges not to keep customers waiting in line an unrea-

sonable time. To determine the time interval of waiting in line, the bank collects the

following data for nine customers.

MTB > SET INTO C1
DATA> 250  210  185  242  190  200  220  205
DATA> END
MTB > TINTERVAL WITH  95%  CONFIDENCE  USING  Cl

Confidence Intervals

Variable N Mean StDev SE  Mean 95.0  %  CI

C1 8 212.75 27.34 8.25 (193.22 ,   232.28)

Fig. 10.9 MINITAB solution to Example 10.7
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Customer Waiting time (min)

A 4

B 3

C 6

D 2

E 7

F 1

G 3

H 4

I 2

The mean is �X ¼ 3.56, and the standard deviation is sx ¼ 1.94. The t value
is t8, 0.05/2 ¼ 2.306. The bank constructs a 95 % confidence interval for the mean

waiting time per customer. It is

3:56� ð2:306Þ ð1:94Þffiffiffi
9

p < m< 3:56þ ð2:306Þ ð1:94Þffiffiffi
9

p

or

2:069< m< 5:051

The bank concludes that the true mean number of minutes a customer must wait

is between 2.069 and 5.051 min with 95 % probability.

Example 10.10 95 % Confidence Interval for the True Mean Incremental Profit of
“Successful” Trade Promotion. Each year, thousands of manufacturers’ sales

promotions are conducted by North American packaged goods companies. A

sample of Canadian packaged goods companies provided information on examples

of past sales promotion, including trade promotion. By interviewing the company

managers, K. G. Hardy (Journal of Marketing, July 1986, Vol. 50, No. 7) identified
21 “successful” sample trade promotions with the mean incremental profit $53,000

and the standard deviation $95,000.

If the population from which the sample is selected has an approximate normal

distribution, then the 95 % confidence interval for the true mean incremental profit

of “successful” trade promotion can be calculated in terms of Eq. 10.9 as

53; 000� ð2:086Þ ð95; 000Þffiffiffiffiffi
21

p < m< 53; 000þ ð2:086Þ ð95; 000Þffiffiffiffiffi
21

p

or

9; 755:99< m< 96; 244:01

Hardy concluded that the true mean incremental profit of “successful” trade

promotions is between $9,755.99 and $96,244.01 with 95 % probability.
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10.6 Confidence Intervals for the Population Proportion

Suppose a quality control expert needs to determine the proportion of defective

parts for a company – that is, the proportion of a particular item that is returned by

the company’s customers. Or suppose a political analyst would like to report the

proportion of voters who support a particular candidate for a US Senate race. In this

section we will derive confidence intervals for population proportions. The

concepts are similar to those used in the section on large-sample mean confidence

intervals because the standard normal distribution is used in both.

In Chap. 8 we found that for large sample sizes, the random variable

Z ¼ p̂� pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=np (10.10a)

Z ¼ p̂� pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ=np (10.10b)

has a normal distribution, where p̂ and p are the sample proportion and the

population proportion, respectively. Equation 10.10a is defined in terms of popula-

tion standard deviation, and Eq. 10.10b is defined in terms of sample standard

deviation. We will use Eq. 10.10b to develop a confidence interval for the popula-

tion proportion:

1� a ¼ Pð�za=2 < Z< za=2Þ

¼ P �za=2 <
p̂� pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂ð1� p̂Þ=np < za=2

" #

where za/2 is the number such that P(Z > za/2) ¼ a/2. We now move all the terms

except the population proportion to the right and left sides of P, which gives a (1�a)
confidence interval.

1� a ¼ P p̂� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ

n

r
< p< p̂þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ

n

r( )
(10.11)

In order for us to use the Z statistic, the sample size must be large. For most

purposes, a sample size that is greater than 30 will do. By looking at the confidence

interval, we can see that the larger the a value, the smaller the Zs (and the

confidence interval) will be. In addition, as the sample size increases, the confi-

dence interval gets narrower.

Example 10.11 95 % Confidence Interval for Voting Proportion. Suppose that a

random sample of 100 voters is taken, and 55 % of the sample supports the
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incumbent candidate. Construct a 95 % confidence interval for this proportion. The

sample size is large, so we can use Eq. 10.11 to obtain the interval.

The Z-value for a 95 % confidence interval is z0.05/2 ¼ 1.96.

:55� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:55ð1� :55Þ

100

r
< p< :55þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:55ð1� :55Þ

100

r

or

:452< p< :648

The 95 % confidence interval for the true proportion of voters supporting the

incumbent goes from 45.2 % to 64.8 %.

Now suppose we want a 90 % confidence interval.

:55� 1:645

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:55ð1� :55Þ

100

r
< p< :55þ 1:645

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:55ð1� :55Þ

100

r

or

:468< p< :632

As we have come to expect, the 95 % confidence interval is wider than the 90 %

confidence interval.

Example 10.12 95 % Confidence Interval for Commodity Preference Proportion.
A marketing firm discovers that 65 % of the 30 customers who participated in a

blind taste test prefer brand A than brand B. The firm develops a 95 % confidence

interval in terms of Eq. 10.10b for the number of people who prefer brand A.

:65� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:65ð1� :65Þ

30

r
< p< :65þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:65ð1� :65Þ

30

r

or

:479< p< :821

The firm can be 95 % certain that the true proportion of those who prefer brand A

lies between 47.9 % and 82.1 %. If the sample size were increased, the confidence

interval would be narrower.

Example 10.13 95 % Confidence Interval for the Proportion of Working Adults Who
Use Computer Equipment. A recent study (Journal of Advertising Research, April/
May 1984) to find the proportion of working adults using computer equipment

(personal computers, microcomputers, computer terminals, or word processors) on
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the job employed the random sample approach to survey 616 working adults. The

survey revealed that 184 of the adults now regularly use computer equipment on the

job.

A 95 % confidence interval for working adults’ computer usage can be calcu-

lated in accordance with Eq. 10.11. In this case, n ¼ 616; p ¼ 184/616 ¼
.299; z.05/2 ¼ 1.96.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ

n

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð:299Þð:701Þ

616

r
¼ :018

Substituting all of this information into Eq. 10.11, we obtain

:299� ð1:96Þð:018Þ< p< :299þ ð1:96Þð:018Þ

or

:264< p< :334

In other words, the 95 % confidence interval for the true proportion of all

working adults who regularly use computer equipment on the job is between

0.264 and 0.334.

10.7 Confidence Intervals for the Variance

Despite an increased awareness of the importance of quality and despite the

subsequent introduction of robots and other precision tools into factories, some

variance is inevitable in any manufacturing process. Manufacturers need to know

whether the variance falls within an acceptable range. To determine this, they

construct confidence intervals. We have seen that confidence intervals can be

constructed by using the normal distribution (large-sample population means) and

the t distribution (small-sample population means). For variance we must use the chi-

square distribution because, as we noted in Chap. 9, the variance is w2 distributed.
Figure 10.10 shows the chi-square distribution and its confidence interval. The

area of the middle part is (1�a), the area of the right tail is a/2, and the area of the left
tail is a/2. The number corresponding to the right tail is w2v, a/2 and the number for

the left tail is w2n;1�a=2, where v is the degrees of freedom (the number in the sample

less one, n�1). For example, if a 90 % confidence interval is desired with a sample

size of 20, then the critical values are w219;:05 ¼ 30:1435 and w219;:95 ¼ 10:1170.

As discussed in Chap. 9, the random variable

w2n ¼
ðn� 1Þs2X

s2X
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is a chi-square random variable with v ¼ (n�1) degrees of freedom. The confi-

dence interval for the population variance is derived as follows:

1� a ¼P w2n;1�a=2 < w2n < w2n;a=2
� �

¼P w2n;1�a=2 <
ðn� 1Þs2X

s2X
< w2n;a=2

� �

¼P
ðn� 1Þs2X
w2n;a=2

< s2X <
ðn� 1Þs2X
w2n;1�a=2

 !
¼ 1� a ð10:12Þ

Hence, if s2X is the sample variance estimate, it follows that a 100(1�a) percent
confidence interval for a population variance is given by

ðn� 1Þs2X
w2n;a=2

< s2X <
ðn� 1Þs2X
w2n;1�a=2

(10.13)

This formula gives us a (1�a) confidence interval for the population variance.

We find a confidence interval for the standard deviation simply by taking the square

root of the upper and lower limits.

Example 10.14 Confidence Intervals for s2X. Suppose a random sample of 30 bags

of sand is taken and the sample variance of weight is 5.5. Find a 95 % confidence

interval for the population variance of the bags. In this example, a ¼ 0.05 and

w2n;a=2 ¼ w229;:025 ¼ 45:7222 and w2n;1�a=2 ¼ w229;:975 ¼ 16:0471

Fig. 10.10 w2 distribution
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Substituting all related information into Eq. 10.13, we obtain

ð29Þð5:5Þ
45:7222

< s2X <
ð29Þð5:5Þ
16:0471

or

3:488< s2X < 9:94

This implies that the 95 % confidence interval for the sample variance of

sandbag weight is between 3.488 and 9.94.

10.8 An Overview of Statistical Quality Control5

Consumers are generally looking for a product that offers reasonable quality at a

reasonable price. The quality of a good or service is often perceived by the

consumer in terms of appearance, operation, and reliability. Examples of these

three dimensions are listed in Table 10.2. Therefore, product or service quality

should generally be managed and controlled in accordance with these criteria.

Stevenson, Grant and Leavenworth, Griffith, Evans and Lindsay, and others have

shown that statistical methods are key ingredients for the management and control of

product or service quality.6 Three basic statistical quality control issues are:

How much to inspect and how often Acceptance sampling Process control

The first two issues involve determination of the sample size and the sampling

methods used for statistical quality control, which will be discussed in this section.

Process control consists of (1) the construction and application of control charts in

doing quality control and (2) related statistical analysis and testing of control charts.

The construction and application of control charts will be discussed in the next

section. Further statistical analysis and testing of control charts will be discussed in

Chap. 11.

5 This and the next section are essentially drawn from J. R. Evans and W. M. Lindsay (1989), The
Management and Control of Quality (St. Paul, MN: West), Chaps. 12, 13, and 15. Reprinted by

permission by West Publishing Company. All rights reserved. The main reason for including

quality control in this chapter is that the construction and use of control charts in process control

are similar to the construction and use of interval estimates discussed in the last five sections. Note,

however, that the interval estimate focused on the static estimate of confidence intervals based on

fixed populations, whereas quality control charts involve the dynamic estimate of confidence

intervals to detect potential changes in populations.
6W. J. Stevenson (1990), Production/Operations Management, 3rd ed. (Homewood, IL: Irwin);

E. L. Grant and R. S. Leavenworth (1988), Statistical Quality Control, 6th ed. (New York:

McGraw-Hill); G. K. Griffith (1989), Statistical Process Control Methods for Long and Short
Runs (Milwaukee, WI: ASQC Quality Press); and J. R. Evans and W. M. Lindsay (1989),

The Management and Control of Quality, (St. Paul, MN: West).
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10.8.1 The Sample Size of an Inspection

The amount of inspection can range from conducting no inspection at all to

scrutinizing each item many times. Low-cost, high-volume items such as paper

clips, paper cups, and wooden rulers often require little inspection because the cost

associated with defectives is low and the processes of production are usually very

reliable. On the other hand, high-cost, low-volume items such as critical components

of an occupied space vehicle are closely scrutinized because of the risk to human

safety and high cost of mission failure. Themajority of quality control applications lie

somewhere between these two extremes, and here sampling comes into play.

The sample size of sampling surveys is determined by finding the proper trade-

off between the costs and the benefits of inspection. The amount of inspection is

optimal when the total cost of conducting the inspection and of passing defectives is
minimized, as indicated in Fig. 10.11.7

10.8.2 Acceptance Sampling and Its Alternative Plans

Statistical quality control generally uses only the sampling approach to examine the

quality of a product. In acceptance sampling, the decision whether to accept an

entire lot of a product or service is based only on a sample of the lot. By a lot we
generally mean an amount of material that can be conveniently handled. It may

consist of a certain number of items, a case, a day’s production, a car load, or such

similar quantity. These lots might be described as convenience lots. The following
two sampling plans are customarily based on convenience lots.

Table 10.2 Examples of dimensions of quality

Product/

service Appearance Operation Reliability

Color TV Cabinetry, position of controls,

exterior workmanship

Clarity, sound, ease of adjustment,

reception, realistic colors

Frequency

of repair

Clothing Seams matched, no loose

threads or missing buttons,

pattern matched, fit, style

Warm/cool, resistance

to wrinkles, colorfastness

Durability

Restaurant

meal

Color, arrangement, atmosphere,

cleanliness, friendliness

of servers

Taste and consistency

of food

Indigestion?

Source: Stevenson (1990), Table. 16.1, p. 808

7 The formula for determining optimal sample size can be found in Sect. 20.4.
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10.8.2.1 Single-Sampling Plans

In a single-sampling plan, one random sample with sample size n is drawn from

each lot with N items, and every item in the sample is examined and classified as

either good or defective. If any sample contains more than a specified number of

defectives, c, then that lot is rejected.

10.8.2.2 Double-Sampling Plans

Double-sampling plans provide for taking a second sample when the results of a

first sample are marginal, as is often the case when lots are of borderline quality.

Such plans are commonly based on five statistics:

n1 ¼ size of the first sample

c1 ¼ acceptance number of defectives for the first sample (n1)
n2 ¼ size of the second sample

c2 ¼ acceptance number of defectives for n1 + n2
k1 ¼ retest number for the first sample

For example, say c1 ¼ 3, c2 ¼ 8, k1 ¼ 6, n1 ¼ 25, and n2 ¼ 40. This sample

plan dictates the lot size (the size of the initial sample), n1 ¼ 25 items, and it

specifies the accept/reject criteria for the initial sample, c1 ¼ 3 and k1 ¼ 6. If 3 or

fewer defectives are found, it tells us, accept the lot; if more than 6 defectives are

found, reject the lot; and if 4, 5, or 6 defectives are found, take a second sample with

sample size n2 ¼ 40.

Fig. 10.11 The amount of inspection is optimal when the sum of the cost of inspection and the

cost of passing defectives is minimized (Source: W. J. Stevenson, Production/Operations
Management, 3rd ed., 1990, Fig. 16.7, p. 826. Reprinted by permission of Richard D. Irwin)
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10.8.2.3 The Advantages of Double-Sampling Plans

A double-sampling plan makes n1 smaller than the sample size for a single-sampling

plan that has essentially the same ability to discriminate between lots of high quality

and lots of low quality. This means that good-quality lots of product or service are

accepted most of the time on the basis of smaller samples than a comparable single-

sampling plan requires. Also, bad lots are generally rejected on the basis of the first

sample. A double-sampling plan also gives lots of marginal quality a second chance.

This feature appeals to practical-minded production managers.

How well it discriminates between lots of high quality and lots of low quality is

an important feature of a sampling plan. The ability of a sampling plan to discrimi-

nate can be analyzed and tested, as we will see in Appendix 1 of Chap. 11.

10.8.3 Process Control

Process control is concerned with ensuring that future output is acceptable. Toward
that end, periodic samples of process output are taken and evaluated. If the output is

acceptable, the process is allowed to continue; if the output is not acceptable, the

process is stopped and corrective action is instituted. The basic elements of control

for quality, costs, labor power, accidents, and just about anything else are the same:

1. Define what is to be controlled.

2. Consider how measurement for control will be accomplished.

3. Define the level of quality that is to be the standard of comparison.

4. Distinguish between random and nonrandom variability and determine what

process is out of control.

5. Take corrective action and evaluate that action.

Among these elements of quality control, determining whether an output process

is in control or out of control is the most important task. To do so, we need to

analyze the statistical product distribution of the process. If the process variation is

due to random variability (common causes of variation), then the process is in

control. If the process variation is due to nonrandom variability (special causes of

variation), then the process is out of control. The control charts discussed in the next

section can help us differentiate between process variation attributable to common

causes and variation due to special causes.

10.9 Control Charts for Quality Control

Control charts were first proposed byWalter Stewart at Bell Laboratories in the 1920s.

More recently the control chart has become a principal tool in assisting businesses in

Japan, the United States, and elsewhere in their quality and productivity efforts.
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A control chart is a graphical tool for describing the state of control of a process.
Figure 10.12 illustrates the general structure of a control chart. Time is measured on

the horizontal axis, which usually corresponds to the average value of the quality

characteristic being measured on the vertical axis. Two other horizontal lines

(usually dashed) represent the upper control limit (UCL) and the lower control
limit (LCL). These limits are chosen such that there is a high probability (generally

greater than 0.99) that sample values will fall between them if the process is in

control. Samples are chosen over time, plotted on the appropriate chart, and

analyzed. Basic statistical concepts used to draw the control charts include the

expected value, standard deviation, and confidence interval, which we discussed

earlier in this chapter. The control charts we will examine in this section are the
�X-chart; the �R� chart; and the S-chart.

10.9.1 �X -Chart

A statistical quality control chart for means ( �X-chart) relies on the interval estimate

concept discussed in Sects. 10.4 and 10.5. The �X-chart is used to depict the variation
in the centering process. Say copper rods that have a sample mean diameter

�X of 3 cm and a given8 standard deviation sx of .15 cm are being produced by a

particular process. It is known that the diameter measurements are normally

distributed. The quality control manager might like to determine what control limits

will include 99.73 % of the sample mean if the process is generating random output

(around the mean) for sample size n ¼ 36.

To solve this problem, the quality control department establishes an upper

control limit (UCL) and a lower control limit (LCL) in accordance with Eq. 10.7.

For the upper control limit,

Fig. 10.12 The structure of a control chart (Source: Evans and Lindsay (1989), Fig. 12.3, p. 318)

8 In quality control, given standard deviation means the quality standards of a product are given.
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Pð �X>UCLÞ ¼ P
�X � m
s �X

>
UCL � m

s �X

� �

¼ P z>
UCL� 3

:15=
ffiffiffiffiffi
36

p
 !

¼ :00135

For the lower control limit,

Pð �X<LCLÞ ¼
�X � m
s �X

<
LCL� m

s �X

� �

¼ z<
LCL� m

:15=
ffiffiffiffiffi
36

p
 !

¼ :00135

From Table A3 of Appendix A, we can solve for UCL and LCL as follows9:

UCL� 3

:025
¼ 3

LCL� 3

:025
¼ �3

From these two equations, we obtain

UCL ¼ :075þ 3 ¼ 3:075 cm

LCL ¼ 3� :075 ¼ 2:925 cm

This example shows that we can calculate control limits for the �X � chart for

given standards by using the interval estimate for the population mean m when s2X is
known, as was discussed in Sect. 10.4.

In quality control, a sequence of k samples with nj observations each is taken over
time on a measurable characteristic of the output of a production process. From this

sample, the sample mean �Xi (i ¼ 1,2,. . .,k) and the overall mean can be defined as

�Xi ¼
Xn
j¼1

Xij=n and

�X ¼
Xk
i¼1

�Xi=k

Taking into account �X, the given standard deviation sX, and the logic illustrated

in the foregoing example, we see that UCL and LCL can be defined as

UCL �X ¼ �X þ AsX (10.14a)

9 In quality control work, control limits are three standard errors on either side of the mean of the

sampling distribution. These limits are called 3�s limits.
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LCL �X ¼ �X � AsX (10.14b)

where A ¼ 3=
ffiffiffi
n

p
, �X ¼ mean of sample means, and sX ¼ given process standard

deviation. Equations 10.14a and 10.14b can be used to construct the �X-chart when
standards are given (sX is assumed to be known). The value of A can be found in

Table A13 of Appendix A.

If the process standard deviation is not known, then it must be estimated from

sample standard deviations as indicated in Eq. 10.15:

�s ¼
Xk
i¼1

si=k (10.15)

where

si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

ðXij � �XjÞ2
n� 1

vuut

and Xij is the jth observation in the ith sample. The sample standard deviation, of

course, is a biased estimator of population standard deviation. If the population

distribution is normal, it can be shown that

Eð�sÞ ¼ C4sX (10.16)

where C4 is a number that can be calculated as a function of the sample size n. Then

the standard deviation estimate for X can be defined as �s=ðC4

ffiffiffi
n

p Þ. This information

enables us to write Eqs. 10.14a and 10.14b as10

UCL �X ¼ �X þ A3�s (10.17a)

LCL �X ¼ �X � A3�s (10.17b)

where A3 ¼ 3�s=ðC4

ffiffiffi
n

p Þ, which can be found in Table A13.

In quality control, we often use sample range instead of sample standard deviation

to estimate both upper and lower control limits for our �X chart. Recall fromEq. 4.11 in

Chap. 4 that the range R of a sample is the difference between the maximum and

10 If the underlying sampling is the Poisson distribution as discussed in Sect. 6.7, then the �x and �s

can be defined as �c and
ffiffiffi
�c

p
, respectively (�c is defined as the mean number of defects per unit). In this

situation the �X -chart defined in Eqs. 10.17a and 10.17b is called the C-chart (see Evans and

Lindsay, 1989, pp. 366–368).
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minimum measurement in the sample. The range can be used to obtain an unbiased

estimator for sX defined as follows11:

ŝX ¼ RG

d2

where

RG ¼
Xk
i¼1

Ri=k; Ri

equals the range in ith sample and d2 is a constant that can be found in Table A13.

If sample range instead of sample standard deviation is used to replace the

process standard deviation, then the control limits can be defined as

UCL �X ¼ �X þ A2RG (10.18a)

LCL �X ¼ �X � A2RG (10.18b)

where A2 ¼ 3=d2
ffiffiffi
n

p
can be found in Table Al3 of Appendix A and d2 is a function

of sample size n.

10.9.2 �R -Chart and S-Chart

Besides the variation of centering (mean), we are also interested in the variation of

dispersion (standard deviation or range) in quality control. The �R -chart is used to

depict the variation of the ranges of the samples. The S-chart is used to depict the

variation of standard deviation. In other words, both the S-chart and �R -chart can be

used to detect changes in process variation. The �R -chart is used more frequently

than the S-chart because the range is much easier to calculate than the standard

deviation.

It can be shown that E(�s ) ¼ C4sX, as we have noted, and that the standard

deviation of�s issX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

4

p
. When no standards are given, we use�sas an estimate of

C4sX. Then the upper and lower limits of the S-chart can be denned as

UCLs ¼ B4�s (10.19a)

LCLs ¼ B3�s (10.19b)

11 See T. T. Ryan (1989), Statistical Methods for Quality Improvement (New York: Wiley), for a

detailed discussion of this relationship.
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where B4 ¼ 1þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

4

p
=C4 and B3 ¼ 1� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

4

p
=C4. Both can be found in

Table A13.

If no standards are given, the upper and lower limits of the �R -chart can be

defined as

UCL �R ¼ D4RG (10.20a)

LCL �R ¼ D3RG (10.20b)

where RG is the average of sample ranges and where D4 ¼ 1 þ 3d3/d2 and

D3 ¼ 1�3d3/d2 can be found in Table A13.

The �X -chart, S-chart, and �R -chart, then, all use the confidence interval concept to

construct upper and lower limits. Now we will use quality control data on

Consolidated Auto Supply Company to show how these control charts are

constructed.

Application 10.1 �X -Chart, �R -Chart, and S-Chart for Consolidated Auto Supply

Company. The quality control manager has measured the size of U-bolts by taking

samples of 5 every hour over 3 shifts.12 The sample is presented in Table 10.3,

which also shows the mean and range of each sample. How do we perform this

statistical quality control analysis?

To construct our �X -chart and �R -chart, we first compute the average mean �X and

average range RG as follows:

�X ¼ 10:7þ 10:77þ � � � þ 10:66

24
¼ 10:7171

RG ¼ :20þ :20þ � � � þ :10

24
¼ :1792

Using the information on �X, RG, and n ¼ 5, we calculate control limits for our
�X -chart and �R -chart in accordance with Eqs. 10.18a, 10.18b, 10.20a, and 10.20b.

UCL �X ¼10:7171þ :58ð:1792Þ ¼ 10:8210

LCL �X ¼10:7171� :58ð:1792Þ ¼ 10:6132

UCL �R ¼2:11ð:1792Þ ¼ :3782

LCL �R ¼0ð:1792Þ ¼ 0

The �X -chart and �R -chart for Consolidated Auto Supply Company are displayed

in Figs. 10.13 and 10.14, respectively. These control charts can be used to do

statistical quality control analysis.

12 This example is drawn from J. R. Evans and W. M. Lindsay (1989). The Management and
Control of Quality (St. Paul, MN: West), pp. 317–323 and pp. 359–360.
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The location of points and patterns of points in a control chart makes it possible

to determine, with only a small chance of error, whether a process is in a state of

statistical control. In both Figs. 10.13 and 10.14, the chance that a sample mean or

range will fall outside the control limits is only .27 %. Therefore, the first indication

that a process may be out of control is a point lying outside the control limits. In the
�R -chart, sample 11 is outside the UCL limit, indicating that the variability of the

process has changed. In this case, it is found that the change in process variability is

due to the fact that a substitute operator was used. In the �X -chart, sample 21 is

outside the LCL, and samples 18 through 24 are all on one side. This indicates that

the process mean has shifted. In this case, it is found that the shift in process mean

occurred because nonconforming material was used.

From Table 10.3, we find that the standard deviation of the observation is �s ¼
.07958. Substituting �X ¼ 10.7171, �s ¼ .07958, n ¼ 5, A3 ¼ 1.427, B3 ¼ 0, and

B4 ¼ 2.089 (from Table A13 in Appendix A) into Eqs. 10.19a, 10.19b, 10.17a, and

10.17b, we obtain the following control limits for the S-chart and �X -chart:

Table 10.3 Sample means and ranges for Consolidated Auto Supply Company

Sample Observations Mean Range

1 10.65 10.70 10.65 10.65 10.85 10.70 0.20

2 10.75 10.85 10.75 10.85 10.65 10.77 0.20

3 10.75 10.80 10.80 10.70 10.75 10.76 0.10

4 10.60 10.70 10.70 10.75 10.65 10.68 0.15

5 10.70 10.75 10.65 10.85 10.80 10.75 0.20

6 10.60 10.75 10.75 10.85 10.70 10.73 0.25

7 10.60 10.80 10.70 10.75 10.75 10.72 0.20

8 10.75 10.80 10.65 10.75 10.70 10.73 0.15

9 10.65 10.80 10.85 10.85 10.75 10.78 0.20

10 10.60 10.70 10.60 10.80 10.65 10.67 0.20

11 10.80 10.75 10.90 10.50 10.85 10.76 0.40

12 10.85 10.75 10.85 10.65 10.70 10.76 0.20

13 10.70 10.70 10.75 10.75 10.70 10.72 0.05

14 10.65 10.70 10.85 10.75 10.60 10.71 0.25

15 10.75 10.80 10.75 10.80 10.65 10.75 0.15

16 10.90 10.80 10.80 10.75 10.85 10.82 0.15

17 10.75 10.70 10.85 10.70 10.80 10.76 0.15

18 10.75 10.70 10.60 10.70 10.60 10.67 0.15

19 10.65 10.65 10.85 10.65 10.70 10.70 0.20

20 10.60 10.60 10.65 10.55 10.65 10.61 0.10

21 10.50 10.55 10.65 10.80 10.80 10.66 0.30

22 10.80 10.65 10.75 10.65 10.65 10.70 0.15

23 10.65 10.60 10.65 10.60 10.70 10.64 0.10

24 10.65 10.70 10.70 10.60 10.65 10.66 0.10

Source: Evans and Lindsay (1989), Table 12.2, p. 319
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UCLs ¼ 2:089ð:07958Þ ¼ :1662

LCLs ¼ 0ð:07958Þ ¼ 0

UCL �X ¼ 10:7171þ 1:427ð:07958Þ ¼ 10:8307

LCL �X ¼ 10:7171� 1:427ð:07958Þ ¼ 10:6035

The �X-chart and S-chart are displayed in Figs. 10.15 and 10.16, respectively.

Both charts indicate that the product process is in a state of statistical control.

Application 10.2 Establishing Statistical Control and Determining Process

Capability. Control charts have three basic applications: (a) to establish a state

of statistical control, (b) to determine process capability, and (c) as a monitoring

device to signal the existence of assignable causes in order to maintain a state of

statistical control. The process capability represents the natural variation resulting

from using a given combination of people, machinery, materials, methods, and

management.

Both Figs. 10.13 and 10.14 have indicated that the process is out of control, and

this has been discussed in detail in Application 10.1. These results imply that the

control limits will be in error. To revise the control limits for �X -chart, we exclude

points 18, 19, . . ., and 24. The new control limits of �X-chart are established as

Fig. 10.13 �X-chart for Consolidated Auto Supply Company (Source: Evans and Lindsay (1989),

Fig. 12.5, p. 321)
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UCL �X ¼ 10:7394þ :58ð:1696Þ ¼ 10:8378

LCL �X ¼ 10:7394� :58ð:1696Þ ¼ 10:6410

From the revised �X-chart established from these new control limits, it can be

shown that the control process is in control.

To revise the control limits for �R -chart, we exclude point 11. It can be shown that
�R is now equal to .1696. The new control limits for the range are

UCL �R ¼ 2:11ð:1696Þ ¼ :3579

LCL �R ¼ 0ð:1696Þ ¼ 0

After a process has been brought to a state of statistical control by eliminating

special causes of variation, we can determine the capability of the process. This is a

simple calculation based on the average range. However, a critical assumption is

that the distribution of process output follows a normal probability distribution;

otherwise, we cannot invoke the central limit theorem as discussed in Sect. 8.6 in

Chap. 8. If this is not the case, the results of this calculation will not be correct, and

Fig. 10.14 �R -chart for Consolidated Auto Supply Company (Source: Evans and Lindsay (1989),

Fig. 12.4, p. 320)
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Fig. 10.15 �X � chart in terms of �s for Consolidated Auto Supply Company (Source: Evans and
Lindsay (1989), Fig. 12A.2, p. 377)

Fig. 10.16 S-chart for Consolidated Auto Supply (Source: Evans and Lindsay (1989), Fig. 12A.3,
p. 378)
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different techniques must be used. Under the normality assumption, the process

standard deviation s can be estimated as follows:

s ¼ RG=d2

where values for d2 depend on the sample size and are also listed in Table A13.

For n ¼ 5 and d2 ¼ 2.326, we have

s ¼ :1696=2:326 ¼ :0729

Three-sigma limits on the natural process variation are given by �X � 3s or

10.7394–3(.0729) ¼ 10.5207 and 10.7394 þ 3(.0729) ¼ 10.9581. Using these new

limits, we can compute the percentage of nonconforming parts if the specifications

are 10.55–10.90. We leave it to you to verify that the Z-values corresponding to

10.55and 10.90 are 2.60 and 2.21, respectively. Using Table A3, we find that the

areas to the left and right of these values under the standard normal density are 0.0119

and 0.0136. Therefore, the proportion of nonconforming U-bolts that are expected to

be produced by this process is 0.0119 þ 0.0136 ¼ 0.0255, or 2.55 %. This cannot be

improved unless the design standards are changed or the process is improved.

There is one word of caution which we wish to emphasize. Control limits are

often confused with specification limits. Specification dimensions are usually stated

in relation to individual parts for “hard” goods, such as automotive hardware.

However, in other applications, such as in chemical processes, specifications are

stated in terms of average characteristics. Thus, control charts might mislead one

into thinking that if all sample averages fall within the control limits, all output will

be conforming. This is not true. Control limits relate to averages, while specifica-
tion limits relate to individual measurements. It is possible that a sample average

falls within the upper and lower control limits and yet some of the individual

observations are out of specification. Since s �X ¼ s=
ffiffiffi
n

p
, control limits are narrower

than the natural variation of the process and do not represent process capability.

10.9.3 Control Charts for Proportions

Control charts for proportions are used when the process characteristic is counted

rather than measured. The P-chart is used to measure the percentage of defectives

generated by a process. The theoretical basis for a P-chart is the binomial distribu-

tion (see Chap. 6). Conceptually, a P-chart is constructed and used in much the

same way an �X -chart is.

Let p̂i be the fraction of defectives in the ith sample with n observations; then the
center line on a P-chart is the average fraction of defectives for k samples as defined

as:
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�P ¼
Pk
i¼1

k
P̂i

The standard deviation associated with �P is

s �P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Pð1� �PÞ=n

q

and the upper and lower control limits are

UCL �P ¼ �Pþ 3s �P (10.21a)

LCL �P ¼ �P� 3s �P (10.21b)

Application 10.3 P-Chart for Quality Control at the Newton Branch Post

Office. In the post office, operators use automated sorting machines that read the

ZIP code on a letter and divert the letter to the proper carrier route.13 Over 1

month’s time, 25 samples of 100 letters were chosen, and the numbers of errors

were recorded. This information is summarized in Table 10.4. The fraction

nonconforming is found by dividing the number of errors by 100. The average

fraction nonconforming, �P, is determined to be

�P ¼ :03þ :01þ � � � þ :01

25
¼ :022

The standard deviation is

s �P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:022ð1� :022Þ

100

r
¼ :01467

Thus, the upper control limit, UCLp, is .022 þ 3(.01467) ¼ .066, and the lower

control limit, LCP�p , is .022–3(.1467) ¼ �.022. Because this latter figure is nega-

tive, zero is used instead. The control chart for the Newton Branch Post Office is

Table 10.4 Sorting errors at the Newton Branch Post Office

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Errors 3 1 0 0 2 5 3 6 1 4 0 2 1 3 4

Sample 16 17 18 19 20 21 22 23 24 25

Errors 1 1 2 5 2 3 4 1 0 1

Source: Evans and Lindsay (1989), Table 12.4, p. 333

13 This example is drawn from Evans and Lindsay (1989), pp. 332–333.
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shown in Fig. 10.17. The sorting process appears to be in control. If any values had

been found above the upper control limit or if an upward trend were evident, it

might indicate a need for operators with more experience or for more training of the

operators.

10.10 Further Applications

In the last section we showed how interval estimates for the mean, proportion, and

standard deviation can be used to construct quality control charts. The next two

examples show how interval estimates can be used for other business applications.

Application 10.4 Using Interval Estimates to Evaluate Donors and Donations

Models. Britto and Oliver (1986) developed models to forecast (1) the total

numbers of donors, gifts, and donations by the end of each year and (2) the

cumulative numbers of donors, gifts, and donations received up to and including

the tth month for the Berkeley Engineering Fund.14

Fig. 10.17 P-chart for Newton Branch Post Office (Source: Evans and Lindsay (1989), Fig. 12.14,
p. 333)

14M. Britto and R. M. Oliver (1986), “Forecasting Donors and Donations,” Journal of Forecasting
5, 39–55.
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Forecasts are based on data from previous campaigns because identical mailings

were used from 1982 to 1984. Monthly proportions of total giving have been stable

from year to year, as shown in Tables 10.5A and 10.5B. For each mailing date, the

forecasters determined the distribution for the number of gifts for each of the four

subgroups (see Table 10.6), as well as estimates of the mean and standard deviation

of gift size (see Table 10.7).

Parent data from 1982 to 1983 and 1983 to 1984 were used to test whether the

Poisson distribution on which the model is based is acceptable. Using both Poisson

tables and a normal approximation (discussed in Chap. 7), Britto and Oliver

constructed 95 % confidence intervals as shown in Figs. 10.18 and 10.19. For

Table 10.5A Fraction of donations arriving in or before month t

Month Alumni Parents Faculty Friends

1 0.09 0.04 0.01 0.05

2 0.15 0.10 0.01 0.12

3 0.21 0.19 0.04 0.20

4 0.29 0.30 0.16 0.28

5 0.41 0.37 0.28 0.37

6 0.65 0.58 0.77 0.56

7 0.74 0.75 0.90 0.71

8 0.77 0.77 0.94 0.72

9 0.79 0.87 0.96 0.73

10 0.84 0.88 0.97 0.75

11 0.94 0.93 0.98 0.95

12 1.00 1.00 1.00 1.00

Source: M. Britto and R. M. Oliver (1986), “Forecasting Donors and Donations.” Journal of
Forecasting 5, 39–55. Reprinted by permission of John Wiley & Sons, Ltd

Table 10.5B Fraction of gifts arriving in or before month t

Month Alumni Parents Faculty Friends

1 0.08 0.04 0.01 0.05

2 0.13 0.10 0.01 0.12

3 0.19 0.18 0.04 0.20

4 0.26 0.28 0.16 0.29

5 0.38 0.35 0.27 0.39

6 0.61 0.56 0.75 0.68

7 0.70 0.73 0.89 0.76

8 0.72 0.76 0.93 0.78

9 0.76 0.86 0.95 0.78

10 0.80 0.87 0.95 0.80

11 0.90 0.90 0.96 0.95

12 1.00 1.00 1.00 1.00

Source: M. Britto and R. M. Oliver (1986), “Forecasting Donors and Donations,” Journal of
Forecasting, 5, 39–55. Reprinted by permission of John Wiley & Sons, Ltd
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both years, the actual donor counts for all months except September fell within

95 % confidence limits. This leads us to believe that the Poisson distribution

assumption is a good one.

Application 10.5 Shoppers’ Attitudes Toward Shoplifting and Shoplifting

Prevention Devices. Guffey, Harris, and Laumer (1979) studied attitudes of

Table 10.6 Prior expected numbers of donations and gifts in 1984–1985

Donors Gifts

Alumni 2,807 3,265

Parents 248 277

Faculty 117 129

Friends 87 93

Source: M. Britto and R. M. Oliver (1986), “Forecasting Donors and Donations,” Journal of
Forecasting, 5, 39–55. Reprinted by permission of John Wiley & Sons, Ltd

Table 10.7 1983–1984 Mean and standard deviation of gift size

Mean Standard deviation

Alumni 215 1,820

Parents 200 930

Faculty 225 445

Friends 505 1,215

Source: M. Britto and R. M. Oliver (1986). “Forecasting Donors and Donations,” Journal of
Forecasting, 5, 39–55. Reprinted by permission of John Wiley & Sons, Ltd

Fig. 10.18 1982–1983 Fitting parent donor counts
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shoppers toward shoplifting and devices for its prevention.15 They sampled 403

shopping center patrons. Twenty-four percent of this sample expressed awareness

of and uncomfortableness with the use of TV cameras as a device to prevent

shoplifting.

Employing this information, we now find a 95 % confidence interval of the

population proportion that was used to describe the attitudes of shoppers about

relaying on TV devices to prevent shoplifting. Following Eq. 10.11, we can define

the 95 % confidence interval for the true proportion p as

:24� z:025

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð:24Þð:76Þ

403

r
< z:025

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð:24Þð:76Þ

403

r

From Table A3 Appendix A, we know that z.025 ¼1.96. Substituting z.025 ¼1.96

onto the previous equation, we obtain the 95 % confidence interval for p as

:240� ð1:96Þð:021Þ< p< :240þ ð1:96Þð:021Þ

or

:199< p< :281

Hence, the interval for p ranges from 19.9 % to 28.1 %.
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Fig. 10.19 1983–1984 Fitting parent donor counts

15 H. L. Guffey, J. R. Harris, and J. F. Laumer (1979), “Shopper Attitudes Toward Shoplifting and

Shoplifting Prevention Devices,” Journal of Retailing 55, 75–99.
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10.11 Summary

In this chapter, we used concepts discussed in Chaps. 7, 8, and 9 to show how point

estimates and confidence intervals are constructed. Applications of point estimation

and of the confidence interval in constructing quality control charts and other

business applications were also discussed. In Chap. 11, we will draw on the

concepts discussed in this chapter to test hypotheses about sample point estimates.

Questions and Problems

1. For the following results from samples drawn from normal populations, what

are the best estimates for the mean, the variance, the standard deviation, and the

standard deviation of the mean?

(a) n ¼ 9, SXi ¼ 36, S (Xi� �X)2 ¼ 288

(b) n ¼ 16, S Xi ¼ 64, S (Xi� �X)2 ¼ 180

(c) n ¼ 25, S Xi ¼ 500, SX2
i ¼12,400

2. For each of the following samples drawn from normal populations, find the best

estimates for m, s1, s, and the standard deviation of �X.

(a) 4, 10, 2, 8, 4, 14, 12, 8, 30

(b) –4, 2, –6, 0, 6, 2, 4, 0, –4

(c) 6, 15, 13, 21, 10, 17, 12

3. Find the value of za|2 for the following values of a.

(a) a ¼ .01 b. c. a ¼ .002

(b) a ¼ .03

(c) a ¼ .002

4. A stockbroker has taken a random sample of 4 stocks from a large population of

low-priced stocks. Stock prices for this population are normally distributed.

The sample prices of the 4 stocks are $5, $12, $17, and $10.

(a) Calculate a point estimate of the population mean.

(b) Calculate a point estimate of the population variance. What is your estimate

for a population standard deviation?

(c) Calculate a point estimate of the proportion of stocks in this population that

are priced at $10 or more.

5. A 90 % confidence interval for the population mean time (in minutes) needed to

finish a certain assembly process is 90 < mx < 130.

(a) Sketch this interval, indicating the margin for sampling error.

(b) If the sample size was n ¼ 25, what was the sample standard deviation?

(c) To interpret this confidence interval, what did you have to assume about the

population? Why?
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6. Assuming you have samples from normal populations with known variance,

find

(a) The degree of confidence used if n ¼ 19, s ¼ 8, and the total width of a

confidence interval for the mean is 3.29 units

(b) The sample size when a2 ¼ 100 and the 95 % confidence interval for the

mean is from 17.2 to 22.8

(c) The known variance when n ¼ 100 and the 98 % confidence interval for

the mean is 28.26 units in width

7. (a) Find the value of t such that the probability of a larger value is .005 when

the value for the degrees of freedom is very large.

(b) Find the value of t such that the probability of a smaller value is .975 when

the value for the degrees of freedom is very large (infinite).

(c) Are the t values essentially the same as corresponding Z-values when the

value of the degrees of freedom is very large?

8. A poll reported that 48 % of probable voters seem determined to vote against

the president. Assume that this sample was based on a random selection of 789

probable voters. Construct a 99 % confidence interval for the probable voters

who seem determined to vote against the president.

9. A survey of low-income families in New Jersey was designed to determine the

average heating costs for a family of 4 during January and February. Heating

costs are known to have a standard deviation of $25.75. The economists

conducting the study wish to construct a 95 % confidence interval with a

margin for sampling error of no more than $3.95. Find the appropriate sample

size.

10. A company has just installed a new automatic milling machine. The time it

takes the machine to mill a particular part is recorded for a sample of 9

observations. The mean time is found to be �X ¼ 8.50, and S2 ¼ .0064. Find a

90 % confidence interval for the unknown mean time for milling this part.

11. A survey indicated that companies with fewer than 1,000 employees are

expected to increase their spending by 20.4 %. Form a 99 % confidence interval

for the unknown mean increase, assuming that the sample standard deviation is

6.8 % and the sample size is 346.

12. A study conducted in 1984 reported that the median pay in the United States

was $18,700. What difficulties do you see in using this type of study for

assessing incomes? Would you be willing to use $18,700 as a point estimate

of the central location of US incomes?

13. What is a point estimate? What is a point estimator? What is point estimation?

How are these concepts related to the concepts of sampling that we discussed in

Chap. 9?

14. What is an unbiased estimator? What is an efficient estimator? What is a

consistent estimator? Why are these concepts important?

15. Briefly explain why we sometimes construct confidence intervals for the

population mean.
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16. Explain what happens to the size of the confidence interval when

(a) The standard deviation increases.

(b) The standard deviation decreases.

(c) The probability content (1�a) increases from 95 % to 99 %.

(d) The sample size increases from 100 to 1,000.

17. Labor economists at the Department of Labor say they have 95 % confidence

that factory workers’ earnings will lie between $22,000 and $61,000. Explain

what this means.

18. A real estate agent in Connecticut is interested in the mean home price in the

state. A random sample of 50 homes shows a mean home price of $175,622 and

a sample standard deviation of $37,221. Construct a 95 % confidence interval

for the mean home price.

19. Reconstruct the confidence interval for the mean home prices given in question

18, but this time construct a 99 % confidence interval. What happens to the size

of the confidence interval?

20. Again, use the information given in question 18. This time assume that 100

homes are randomly sampled instead of 50. Construct a 95 % confidence

interval for the mean home price. What happens to the size of the confidence

interval?

21. Again, use the information given in question 18. This time, assume that the

sample standard deviation is $28,000. Construct a 95 % confidence interval for

the mean home price. What happens to the size of the confidence interval?

22. An auditor randomly samples 75 accounts receivable of a company and finds a

sample mean of $128 with a sample standard deviation of $27. Construct a

90 % confidence interval for the mean accounts receivable.

23. A random sample of 300 residents of a town shows that 55 % believe the mayor

is doing a good job. Construct a 95 % confidence interval for the proportion of

all residents who believe the mayor is doing a good job.

24. A random sample of 200 students at Academic University finds the sample

mean grade point average to be 3.10 with a standard deviation of 0.80.

Construct a 99 % confidence interval for the mean grade point average.

25. An insurance company is interested in the average claim on its auto insurance

policies. It believes the claims are normally distributed. Using the last 37

claims, it finds the mean claim to be $1,270 with a standard deviation of

$421. Construct a 95 % confidence interval for the mean claim on all policies.

26. A random sample of the luggage of 30 passengers of Fly Me Airlines finds that

the mean weight of the luggage is 47 lb with a standard deviation of 8 lb.

Construct a 90 % confidence interval for the mean weight of Fly Me Airlines

luggage.

27. A bank manager finds from reviewing her records that the amount of money

deposited on Saturday morning is normally distributed with a standard devia-

tion of $150. A random sample of 7 customers reveals the following amounts

deposited on Saturday morning:

$825 $972 $311 $1,212 $150 $1,800 $725
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(a) Find a 95 % confidence interval for the mean amount of deposits by using

the MINITAB program.

(b) Find a 90 % confidence interval for the mean amount of deposits by using

MINITAB gain. Compare your answer to the confidence interval you

computed in part (a). Which is larger?

28. Redo question 27, parts (a) and (b), this time assuming the population standard

deviation is unknown. Use MINITAB.

29. A quality control engineer believes that the life of light bulbs for his company is

normally distributed with a standard deviation of 100 h. A random sample of 10

light bulbs gives the following information on the life of the light bulbs:

1.000 h; 1,200 h; 600 h; 400 h; 900 h; 500 h; 1,520 h; 1,800 h; 300 h; 525 h

(a) Find a 90 % confidence interval for the mean life of the light bulbs.

(b) Suppose the standard deviation is not known. Construct a 90 % confidence

interval for the mean life of the light bulbs.

30. Managers at the Smooth Ride Car Rental Company are interested in the mean

number of miles that people drive per day. From past experience, they know

that the standard deviation is 75 miles. A random sample of 6 car rentals shows

that the people drove the following numbers of miles: 152, 222, 300, 84, 90,

and 122. Construct a 99 % confidence interval for the mean number of miles

driven.

31. A credit manager at the Bargain Basement Department Store is interested in the

proportion of customers who pay their credit card balances in full each month.

A random sample of 200 customers indicates that 95 paid their balance in full

each month. Construct a 99 % confidence interval for the proportion of

customers who pay their balances in full each month.

32. Construct point estimates for the following situations:

(a) A labor union randomly samples 75 of its members and finds that 40 favor

the new contract. Estimate the proportion of all workers who favor the new

contract.

(b) An economics professor randomly samples 100 students in her class and

finds that 70 do not know the meaning of elasticity. Estimate the proportion

of all students in her class who cannot define this term.

33. An auditor randomly samples 50 accounts payable of a company and finds a

sample mean of $1,100 with a sample standard deviation of $287. Construct a

90 % confidence interval for the mean accounts payable.

34. A random sample of 250 residents of a town shows that 55 % favor a bond issue

to finance new school construction. Construct a 99 % confidence interval for

the proportion of all residents who favor the bond issue.

35. A random sample of 500 students at Average College finds the sample mean

combined-SAT score to be 1.050 with a standard deviation of 120. Construct a

90 % confidence interval for the mean SAT score.
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36. Reviewing his records, a grocery store manager finds that the amount of money

spent shopping on Friday evenings is normally distributed with a standard

deviation of $22. A random sample of 5 customers reveals the following

amounts spent shopping on Friday night: $125, $72, $15, $88, and $96.

(a) Find a 95 % confidence interval for the mean amount of money spent

shopping.

(b) Find a 90 % confidence interval for the mean amount of money spent

shopping. Compare your answer to the confidence interval you computed

in part (a). Which is larger?

37. A random sample of 75 observations from a population yielded the following

summary statistics:

P
x ¼ 1; 270

P
x2 ¼ 21; 520

Construct a 95 % confidence interval for the population mean m.
38. A random sample of 100 observations from a population yielded the following

summary statistics:

P
x ¼ 375

P
x1 � �xð Þ2 ¼ 972

Construct a 99 % confidence interval for the population mean m.
39. Suppose a random sample of 40 professional golfers is taken and the mean

scoring average of the sample is found to be 72.8 strokes per round with a

standard deviation of 1.2 strokes per round. Construct a 99 % confidence

interval for the population’s mean strokes per round.

40. Suppose a random sample of 10 professional golfers is taken and the mean

scoring average of the sample is found to be 71.8 strokes per round with a

standard deviation of 1.3 strokes per round. Construct a 90 % confidence

interval for the population mean strokes per round.

41. Reconsider the information given in question 40. Suppose now that the popu-

lation standard deviation is known to be 1.3 strokes per round. Construct a 90 %

confidence interval for the population mean strokes per round. Compare your

answer to your answer in question 40. Why are they different?

42. Suppose you construct a 95 % confidence interval for the mean of an infinite

population. Will the interval always be narrower when s is known than when s
is unknown?

43. A random sample of 75 observations reveals that the sample mean is 20. You

know that the population standard deviation is 5. Construct a 90 % confidence

interval for the population mean.

44. In a national survey, 200 cola drinkers were asked to compare Yum Yum Cola

to Yuk Yuk Cola. Of the 200 people sampled, 120 preferred Yum Yum.

Construct a 95 % confidence interval for the actual proportion of consumers

who prefer Yum Yum Cola.
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45. The 80 members of a random sample of graduates of Mary’s Typing School

indicate that their mean salary is $22,500 with a sample standard deviation of

$3,100. Construct a 99 % confidence interval for the true mean salary.

46. Suppose a random sample of 30 college students reveals that the mean amount

of money spent on textbooks each semester is $ 145 with a standard deviation

of $25. Construct a 90 % confidence interval for the mean amount of money

that students spend on textbooks each semester.

47. The Better Health Cereal Company produces Healthy Oats cereal. A sample of

100 boxes of this cereal indicates that the mean weight of a box of cereal is

24 oz with a standard deviation of 1 oz. Construct a 99 % confidence interval

for the population’s mean weight.

48. The Better Health Cereal Company produces Healthy Oats cereal. A sample of

15 boxes of this cereal indicates that the mean weight of a box of cereal is 24 oz

with a standard deviation of 1 oz. Construct a 99 % confidence interval for the

population mean weight. Compare your answer to your answer in question 47.

Why are they different?

49. A sample of 100 former basketball players from Slam Dunk University shows

that 55 of the players graduated in 4 years. Construct a 90 % confidence interval

for the proportion of basketball players graduating in 4 years from Slam Dunk U.

50. A sample of 20 cups of coffee from a coffee machine has a mean amount of

coffee of 6 oz. The standard deviation is known to be .5 oz. Construct a 99 %

confidence interval for the mean amount of coffee per cup.

51. Reconsider question 50. This time, assume that the standard deviation is not

known and that .5 oz is the sample standard deviation. Again construct a 99 %

confidence interval for the mean amount of coffee per cup. Compare your

answer to your answer in question 50.

52. Suppose a sample of 500 companies listed on the NYSE is found to contain 327

companies paying dividends that have increased over the last year. Construct a

95 % confidence interval for the mean proportion of companies that paid

dividends that increased over the last year.

53. A sample of 100 steel-belted radial tires yields a mean life of 35,000 miles with

a sample standard deviation of 4,000 miles. Construct a 90 % confidence

interval for the mean life of steel-belted radial tires.

54. Suppose a bowler takes a random sample of 15 games she has bowled and finds

the sample mean to be 172. She knows that the standard deviation of her score

is 8. Construct a 99 % confidence interval for her score.

55. Flip a coin 50 times and record the number of tails. Construct a 99 % confi-

dence interval for the proportion of tails in the tossing of a coin.

56. A random sample of 450 people who took Dollar Dave’s CPA review course

reveals that 310 of them passed the CPA exam on the first try. Construct a 90 %

confidence interval for the proportion of people who pass the CPA exam on the

first try after taking Dollar Dave’s course.

57. A random sample of 225 people who went to the Matchmaker Dating Service

finds that 100 of those people found their spouse through the service. Construct

Questions and Problems 473



a 95 % confidence interval for the proportion of people who find a spouse

through this dating service.

58. A random sample of 200 observations from a population yielded the following

summary statistics:

P
x ¼ 1; 202

P
x2 ¼ 121; 020

Construct a 90 % confidence interval for the population mean m..
59. A random sample of 80 observations from a population yielded the following

summary statistics:

P
x ¼ 475

P
x� �xð Þ2 ¼ 772

Construct a 95 % confidence interval for the population mean m.
60. A random sample of 100 bullets in a case of 1,000 includes 5 that are defective.

Construct a 99 % confidence interval for the proportion of defective bullets in a

case.

61. Suppose a golfer on the University of Houston golf team plays 70 rounds of

golf and breaks par 32 times. Construct a 90 % confidence interval for the

proportion of rounds in which this golfer will break par.

62. You roll a die 100 times and get the following results.

Number on die Number of rolls

1 13

2 16

3 15

4 14

5 22

6 20

Construct a 90 % confidence interval for the proportion of rolls that will be 1 s.

63. Use the information given in question 62 to construct a 90 % confidence

interval for the proportion of rolls that will come up 6.

64. A surge in health insurance premiums imposes an additional burden on a

business. A random sample of 10 employees indicates that the average cost

increase per employee is about $2,345 with a standard deviation of $245.

Assuming a normal distribution for the per-employee increase, construct a

90 % confidence interval for the average increase.

65. The owner of a local bakery feels that too many bagels are thrown out every

night, so he decides to estimate the demand for bagels. After a month’s

observation, he collected 30 days’ sales and ascertained that the average sales

were 120 and the standard deviation of daily sales was 10. Assume that the

daily bagel sales follow a normal distribution. Construct a 90 % confidence

interval for the demand for bagels.
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66. Suppose the owner in question 65 observed the sales for 60 days and found the

average sales to be 115 with a standard deviation of 12. Obtain the 90 %

confidence interval for the demand for bagels.

67. The manager in the local shoe factory wants to estimate the productivity of the

midnight shift. He draws a random sample of 10 nights and records the

productivity as follows:

124 124 145 132 123 124 122 141 133 122

(a) Estimate the average productivity.

(b) Assuming that the data follow a normal distribution, derive a 95% confidence

interval.

68. A local dairy farm has just installed a new machine that pumps milk into 16-oz

bottles. The manager of the farm wants to make sure that the amount of milk

put in the bottles is 16 oz, so he randomly selects 12 bottles of milk each hour

and weighs the milk. The results obtained in the last hour were

16.01 16.03 15.89 15.99 16.02 16.03

16.04 16.01 15.99 16.03 16.04 16.05

(a) Obtain the average weight of the milk.

(b) Obtain a 95 % confidence interval for the average amount of milk in the

bottles.

69. The personnel office found that in the last 5 years, the average cost of recruiting

management trainees has been $500. The cost varies but follows a normal

distribution. The standard deviation is estimated to be 25. Assume that the cost

of recruitment will remain the same next year and that the company will hire 50

new employees. Howmuchmoney should the company allocate for recruitment?

Construct a 90 % confidence interval to estimate the recruitment expenses.

70. A survey wherein 90 employees were randomly drawn shows that the average

number of sick days taken by employees each year is 5.4 days. The number of

sick days follows a normal distribution with a standard deviation of 1.5. Obtain

a 90 % confidence interval for the average number of sick days.

71. A recent poll shows that 53 % of the voters interviewed strongly support the

incumbent and are willing to vote for her in the coming election. The poll was

taken by asking 1,000 voters. Estimate the proportion of support for the

incumbent with a 95 % confidence interval.

72. A consumer rights organization tests a new car to estimate the car’s average

gasoline mileage. Because its budget is limited, the organization can test only

25 cars. The standard deviation of the cars tested is 2. What is the range of the

90 % confidence interval?

73. A poll is conducted to predict whether new municipal bonds should be issued.

Assume that 230 out of 500 interviewees voted for issuance of the new bonds.

How precise is this prediction? Construct a 95 % confidence interval for the

proportion of yes votes.
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74. In question 73, assume that 45 % of the entire population of voters support

issuance of the new bonds. Under this condition, if the pollsters want to stay

within 2 % error (plus and minus 1 %), howmany voters should they interview?

75. A multinational company wants to find out how society perceives it. The

company sends a questionnaire to 2,000 people and learns that 893 have

favorable opinions and others either have an unfavorable opinion or no opinion.

(a) What percent of the people surveyed have favorable opinions of the

company? Construct a 90 % confidence interval.

(b) What is the percentage of people who have favorable opinions of the

company? Construct a 95 % confidence interval.

76. When we construct a 90 % confidence interval for, say, a mean, we build a

range that has an upper bound and a lower bound, and we write the confidence

interval as

P(lower bound < mean < upper bound) ¼ 90 %

Comment on the following statement: would you say the probability that the

mean occurs between the upper and lower bounds is 90 %?

77. A new machine was designed to cut a metal part at a length of .24 in.. Although

the machine is well designed, for some uncontrolled reasons, the machine cuts

the metal with a standard deviation of .01 in.. For quality control purposes, the

company wants to draw a sample from each hour’s production and measure

the average length of the sample metal parts. If the company wants to control

the 99 % confidence interval in a range of .01, how many parts should the

company sample every hour?

78. The trains scheduled to arrive at the New Brunswick train station at 7:35 A.M.

every weekday do not always arrive at 7:35. A commuter carefully recorded the

arrival time for the last 200 working days and found that late arrivals follow a

normal distribution with a mean delay of 0 min and a standard deviation of

1 min.

(a) Estimate the average arrival time for the train.

(b) Estimate the average arrival time using a 90 % confidence interval.

(c) If you plan to arrive at the train station at 7:34 regularly for the next 200

working days, how many trains should you expect to miss?

79. A marketing consulting company wants to estimate the percentage of students

holding credit cards by sending questionnaires to students. The sponsor of this

research wants to establish a 95 % confidence interval and a � 1 % error

margin. To achieve this precision, how many questionnaires should the com-

pany send out if every student responds?

80. In a survey of 2,000 voters, 36 %were found to support increasing taxes to build

a new school system. Obtain the 95 % confidence interval for the proportion

supporting the tax increase.

81. The manager in the local supermarket wanted to know whether it is worth the

trouble to keep the store open 24 h a day. He randomly sampled and recorded

20 nights’ sales and got
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245 145 123 178 125 175 182 130

214 192 120 187 163 148 198 192

129 134 139 271

Use M1NITAB to answer the following questions:

(a) Estimate the average sales per night.

(b) Construct the 90 % confidence level for the average sales.

82. A large mail-order company wants to find the effect of sending catalogs to

potential customers. Of the 600 potential customers who have just received the

new catalogs, 123 responded with an order within a month. Estimate the

proportion of responses and establish a 90 % confidence interval.

83. The personnel department wants to estimate the cost of hiring a new secretary.

The following data are collected on 8 new secretaries:

$2,100 $2,135 $2,545 $2,433

$2,344 $2,564 $2,457 $2,556

Estimate the average cost of hiring. Construct a 90 % confidence interval.

84. The dean of student activities wants to estimate the average spending on beer

per week by a student. From a previous study, the standard deviation of

spending was estimated to be $39. If the dean wants to control the 90 %

confidence interval within � $5, how many students should he survey?

85. The dean of student activities wants to know students’ reaction to the new student

center. Of the 500 students queried, 350 report that they like the new building.

Estimate the proportion of the students who like the building. Construct a 90 %

confidence interval.

86. In question 85, if the dean wants to narrow the 90 % confidence interval

to � 1 %, how many students should he ask?

87. A soft drink producer installs a new assembly line to fill 12-oz soda cans.

After a week of operation, the plant manager randomly samples 120 cans of

soda and weighs the soda. He finds that the soda cans contained an average of

12.05 oz of soda. The standard deviation of the weight is .02 oz. Construct a

95 % confidence interval for the average amount of soda pumped into the

cans.

88. In question 87, what is the 95 % confidence interval for the variance of the soda

pumped into the cans?

Use the following information to answer questions 89 to 91. In an airline

company, a committee was formed to study the seriousness of late arrivals of

freight. The following report was compiled about the arrival record:

Total number of freight shipments 625

Total number of late arrivals 159

Average late time 34 min

Standard deviation of late time 25 min
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89. Construct a 90 % confidence interval to estimate the average late time.

90. Construct a 90 % confidence interval to estimate the percentage of late

arrivals.

91. Construct a 90 % confidence interval to estimate the standard deviation of late

time.

92. A potential candidate in the third borough conducted a poll to decide whether

he should challenge the incumbent. From a previous poll, he knows that the

current incumbent has the support of 45 % of the people. He wants to construct

a 90 % confidence interval with a �3 % error margin. How many voters

should he survey?

Use the following information to answer questions 93–96. An automobile

manufacturer wants to study the repair record of its own cars. The performance

of 1,000 cars and their maintenance records were monitored after they were sold

to consumers. In a span of 3 years, 3,560 repairs occurred among the 1,000 cars

monitored. The standard deviation of the number of repairs for 1 car is 2.5. A

total of $303,000 was spent to repair the cars. The standard deviation of repair

costs for 1 car is $60. There are 205 cars that did not have any repairs in the

3 years.

93. Compute the average cost of 1 repair. Construct an 80 % confidence interval.

94. Compute the average number of repairs for each car. Construct an 80 %

confidence interval.

95. Construct a 90 % confidence interval for the standard deviation of costs.

96. Construct a 90 % confidence interval for the proportion of trouble-free cars.

What is the error margin?

97. Define the following:

(a) Convenience lot

(b) Single-sampling plan

(c) Double-sampling plan

(d) Upper control limit

(e) Lower control limit

(f) Acceptance sampling

98. Discuss the similarities and differences among �X -charts, �R -charts, S-charts,
and P-charts.

99. Thirty samples of 100 items each were inspected, and 68 were found to be

defective. Compute control limits for a P-chart.
100. The following table gives the fraction defective for an automotive piston for

20 samples. Three hundred units are inspected each day. Construct a P-chart
and interpret the results.

Fraction Fraction

Sample Defective Sample Defective

1 0.11 11 0.16

2 0.16 12 0.25

3 0.12 13 0.15

(continued)
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Fraction Fraction

Sample Defective Sample Defective

4 0.10 14 0.12

5 0.09 15 0.11

6 0.12 16 0.11

7 0.12 17 0.14

8 0.15 18 0.18

9 0.09 19 0.10

10 0.13 20 0.13

101. One hundred insurance forms are inspected daily over 25 working days, and

the numbers of forms with errors are recorded below. Construct a P-chart.

Number Number

Day Defective Day Defective

1 4 14 4

2 3 15 1

3 3 16 3

4 2 17 4

5 0 18 0

6 3 19 1

7 0 20 1

8 1 21 0

9 6 22 2

10 3 23 6

11 2 24 2

12 0 25 1

13 0

102. The monthly incomes (in $1,000) from a random sample of eight workers in a

factory are 4.2, 5.1, 7.8, 6.2, 8.2, 5.5, 6.7, and 9.1. Assume the population has

a normal distribution. Give your answer for (a) and (b).

(a) Compute the standard error of the sample mean (in dollars).

(b) Compute a 95 % confidence interval for the mean of the population.

103. A machine produces parts used in cars. A sample of 25 parts was taken. The

average length in the sample was 15.95 in. with a sample variance of 0.4 in..

(a) Construct a 95 % confidence interval for the population variance.

(b) Construct a 99 % confidence interval for the population variance.

104. A production process is considered in control if no more than 3 % of the items

produced are defective. Samples of size 500 are used for the inspection

process.

(a) Determine the standard error of the sample proportion.

(b) Determine the upper and the lower control limits for the P-chart.

(continued)
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105. A filling machine is set up to fill bottles with 35 oz of coke each. The standard

deviation s is known to be 1.2 oz. The quality control department periodically

selects samples of 20 bottles and measures their contents. Assume the distri-

bution of filling volumes is normal.

(a) Determine the upper and lower control limits and explain what they

indicate.

(b) The means of six samples were 37.8, 29.2, 41.9, 25.9, 32.1, and 43.8 oz.

Construct an X bar chart and indicate whether or not the process is in

control.

Appendix 1: Control Chart Approach for Cash Management

The Miller–Orr model for cash management starts with the assumption that there

are only two forms of assets: cash and marketable securities.16 It also allows for

cash balance movement in both positive and negative directions and for the optimal

cash balance to be a range of values rather than a single point estimate. In other

words, the Miller–Orr model uses the control chart approach we discussed in

Sect. 10.9 to do cash management. This model is especially useful for firms that

are unable to predict day-to-day cash inflows and outflows.

Figure 10.20 shows the functioning of the Miller–Orr model. Note that the cash

balance is allowed to meander undisturbed as long as it remains within the

predetermined boundary range shown by the upper limit H and the lower limit L.
At point B, however, the cash balance reaches the maximum allowable level. At this

point, the firm could purchase marketable securities in an amount equal to the

dashed line, which would lower the cash balance to the “return point” from which it

would again be allowed to fluctuate freely. At point M, the firm’s cash balance

reaches the minimum allowable level. At this point, the firm could sell marketable

securities to investors or borrow to bring the cash level back up to the return point.

In how much of a range (H–L) should the cash balance be allowed to fluctuate?

According to the Miller–Orr model, the higher the day-to-day variability in cash

flows and/or the higher the fixed-transactions cost associated with buying and

selling securities, the farther apart the control limits should be set. On the other

hand, if the opportunity cost of holding cash (the interest foregone by not purchas-
ing marketable securities) is high, the limits should be set closer together.

Management’s objective is to minimize total costs associated with holding cash.

Minimization procedures establish that the spread between the upper and lower

cash limit (S), the return point (R), the upper limit (H), and the average cash balance
(ACB) are

16 This section on Miller and Orr’s model for cash management is taken from Cheng F. Lee and

Joseph E. Finnerty (1990), Corporate Finance: Theory, Method, and Applications (New York:

Harcourt) pp. 595–598.
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S ¼ 3
3Fs2

4k


 �1=3
(10.22)

R ¼ S

3
þ L (10.23)

H ¼ Sþ L (10.24)

ACB ¼ 4R� L

3
(10.25)

where L ¼ lower limit, F ¼ fixed-transactions cost, k ¼ opportunity cost on a

daily basis, and a2 ¼ variance of net daily cash flow.

The firm always returns to a point one-third of the spread between the lower and

upper limits. With the return point set here, the firm is likely to bump against its

lower limit more frequently than against its upper limit. Although this lower point

does not minimize the number of transactions and their resulting cost (as the middle

point would), it is an optimal point in that it minimizes the sum of transactions cost

and foregone-interest cost, the latter of which the firm incurs whenever it holds

excessive cash.

To use the Miller–Orr model, the financial manager takes three steps:

1. Set the lower limit.

2. Estimate the variance of cash.

3. Determine the relevant transactions cost and lost-interest cost.

Fig. 10.20 The workings of the Miller–Orr Model (Source: Cheng F. Lee and Joseph E. Finnerty,

Corporate Finance: Theory, Method and Applications, Fig. 20.3, p. 595. Copyright # 1990 by

Harcourt Brace Jovanovich, Inc. Reprinted by permission of the publisher, Harcourt Brace

Jovanovich, Inc.)
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Setting the lower limit is essentially a subjective task, but common sense and

experience help. The lower limit is likely to be some minimum safety margin

above 0. An important consideration in setting this limit is any bank requirements

that must be satisfied.

To estimate the variance of cash flows, the manager can record the net cash

inflows and outflows for each of the preceding 100 days and then compute the

variance of those 100 observations. This approach requires regular updating,

particularly if net cash flows have been unstable over time. One additional aspect

to consider in this calculation is the impact of seasonal effects (see Chap. 18), which

may also require adjusting the variance estimate.

To determine the relevant transactions cost, the financial manager need only

observe what the firm currently pays to buy or sell a security. Interest foregone can

be derived from current available market returns on short-term, high-grade securities.

The financial manager may want to use a forecasted interest rate for the planning

period if a significant change from current interest-rate levels is expected.

We now demonstrate the actual calculations for the Miller–Orr model. First,

assume the following:

Minimum cash balance ¼ $20,000

Variance of daily cash flows ¼ $9,000,000 (hence the standard deviation

s ¼ $3,000 per day)

Interest rate ¼ 0.0329 % per day

Transactions cost (average) of buying or selling one security ¼ $20

Utilizing these data, we first compute the spread between the lower and upper

limits in accordance with Eq. 10.22:

Spread ¼ 3
3� 20� 9; 000; 000

4� :000329

� �1=3

¼ $22; 293

Next, we compute the upper limit and return point in accordance with Eqs. 10.24

and 10.23:

Upper limit ¼ lower limitþ spread

¼ $20; 000þ $22; 293

¼ $42; 293

Return point ¼ 20; 000þ 22; 293

3

� �
¼ $27; 431

Using Eq. 10.25, we find the average cash balance:

Average cash balance ¼ 4ð$27; 431Þ � $20; 000

3

¼ $29; 908:
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Then, on the basis of our assumed input values and model calculations, we can

establish the following rule:

If the cash balance rises to $42,293, invest $42,293–$27,431 ¼ $14,862 in

marketable securities; if the cash balance falls to $20,000, sell

$27,431–$20,000 ¼ $7,431 of marketable securities. Both will restore the cash

balance to the return point.

Appendix 2: Using MINITAB to Generate Control Charts

This appendix shows how MINITAB may be used to generate an �X -chart, an
�R – chart, and an S-chart based on the following data:

MTB > SET INTO Cl
DATA> 10.65 10.70 10.65 10.65 10.85
DATA> 10.75 10.85 10.75 10.85 10.65
DATA> 10.75 10.80 10.80 10.70 10.75
DATA> 10.60 10.70 10.70 10.75 10.65
DATA> 10.70 10.75 10.65 10.85 10.80
DATA> 10.60 10.75 10.75 10.85 10.70
DATA> 10.60 10.80 10.70 10.75 10.75
DATA> 10.75 10.80 10.65 10.75 10.70
DATA> 10.65 10.80 10.85 10.85 10.75
DATA> 10.60 10.70 10.60 10.80 10.65
DATA> 10.80 10.75 10.90 10.50 10.85
DATA> 10.85 10.75 10.85 10.65 10.75
DATA> 10.70 10.70 10.75 10.75 10.70
DATA> 10.65 10.70 10.85 10.75 10.60
DATA> 10.75 10.80 10.75 10.80 10.65
DATA> 10.90 10.80 10.80 10.75 10.85
DATA> 10.75 10.70 10.85 10.70 10.80
DATA> 10.75 10.70 10.60 10.70 10.60
DATA> 10.65 10.65 10.85 10.65 10.70
DATA> 10.60 10.60 10.65 10.55 10.65
DATA> 10.50 10.55 10.65 10.80 10.80
DATA> 10.80 10.65 10.75 10.65 10.65
DATA> 10.65 10.60 10.65 10.60 10.70
DATA> 10.65 10.70 10.70 10.60 10.65
DATA> END
MTB > PAPER

Step 1: We input the data into MINITAB, storing it in Column 1 (C1) as

presented in the data above.

Step 2: We can use different commands to ask MINITAB to generate an �X -chart,

an �R -chart, or an S-chart.
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Fig. 10.21 �X -chart for C1

Fig. 10.22 �R -chart for C1
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The command to generate the �X -chart is “XBARCHART C1 5,” the command to

generate the �R -chart is “RCHART C1 5,” and the command to generate the S-chart
is “SCHART C1 5.”

In these three commands, “C1” indicates where the data is located and “5”

indicates that there are five observations in each sample. The output for the �X -chart,

the �R -chart, and the S-chart is presented in Figs. 10.21, 10.22, and 10.23.

Fig. 10.23 S-chart for C1
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11.1 Introduction

Business managers must always be ready to make decisions and take action on the

basis of available information. During the process of decision making, managers

form hypotheses that they can scientifically test by using that available information.

They then make decisions in the light of the outcome. In this chapter, we use the

concepts of point estimate and interval estimate discussed in Chaps. 8, 9, and 10 to

test hypotheses made about population parameters on the basis of sample data.

Hypotheses are assumptions about a population parameter. Hypothesis testing
involves judging the correctness of the hypotheses. In fact, we often rely heavily on

sample data in decision making. For example, the results of public opinion polls

may actually dictate whether a presidential candidate decides to keep running or to

drop out of the primary race. Similarly, a firm may use a market sampling survey to

gauge consumer interest in a given product and thus determine whether to allocate

funds for research and development of that product. And a plant manager may use a

sample of canned food products produced by a food canning machine to determine

whether the quality of this year’s products is the same as that of the previous year’s

offering.

In this chapter, we first discuss the basic concepts of hypothesis testing and the

errors it is subject to. Second, methods of constructing a hypothesis test and testing

procedures are explored. Third, we examine in detail one-tailed tests and two-tailed

tests for large samples. Small-sample hypothesis tests for means and chi-square

tests of a normal distribution variance are discussed next. Then we investigate

hypothesis testing for a population proportion and compare the variances of two

normal populations. Finally, we present some business applications of hypothesis

testing. The power of a test, the power function, and the operating-characteristic

curve are discussed in Appendix 1.

11.2 Concepts and Errors of Hypothesis Testing

11.2.1 Concepts

The information obtained from the sample can be used to make inferential

statements about the characteristics of the population from which the sample is

drawn. One way to do this is to estimate unknown population parameters by

calculating point estimates and confidence-interval estimates.

Alternatively, we can use sample information to assess the validity of a hypoth-

esis about the population. For example, the production manager in charge of a

cereal box filling process hypothesizes that the average weight of a box of cereal is

30 ounces.
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In statistics, hypotheses always come in pairs: the null hypothesis and the

alternative hypothesis. The statistical hypothesis that is being tested is called the

null hypothesis. Our cereal production manager can use a sample of 35 boxes and

calculate their average weight and variance to ascertain the validity of the following

null and alternative hypotheses:

1. The average weight of cereal per box is 30 ounces (the null hypothesis).

2. The average weight of cereal per box is not 30 ounces (the alternative hypothe-

sis). This implies that it is less than 30 ounces or it is more than 30 ounces.

Rejection of the null hypothesis that is tested implies acceptance of the other

hypothesis. This other hypothesis is called the alternative hypothesis. These two

hypotheses represent mutually exclusive and exhaustive theories about the value of

a population parameter such as population mean μ, population variance σ2, or
population proportion P. When hypotheses are mutually exclusive, it is impossible

for both to be true. When they are exhaustive, they cover all the possibilities, that is,
either the null hypothesis or the alternative hypothesis must be true.

The null hypothesis is traditionally denoted as H0, and the alternative hypothesis

as H1. Each of these symbols is always followed by a colon and then by the

statement about a population parameter.

The first problem we encounter in hypothesis testing is how to construct the test.

To construct a hypothesis test, we first need to specify the null and alternative

hypotheses. Because our goal in hypothesis testing is to find out whether we can

reject the null hypothesis, we set up the null hypothesis so that it is consistent with

the status quo. In addition, H0 has to be a specific value so that the sampling

distribution under H0 can be determined for the test. By constructing our hypothesis

test in this way, we ensure that the status quo is maintained unless we have

sufficient information to prove otherwise (i.e., unless we are able to reject H0).

For example, to minimize the risk of sending an innocent person to jail, our legal

system is set up so that the accused is “innocent until proven guilty.” We can restate

this principle as the following null and alternative hypothesis:

H0 : Not guilty

H1 : Guilty ð11:1Þ

The hypothesis test is set up in this way so that the status quo (innocence) is

upheld unless the test results show “beyond a reasonable doubt” that the null

hypothesis should be rejected.

Another example of hypothesis testing is testing whether the average weight of a

package of cookies is equal to the required weight. In this case, the hypotheses are

H0 : μ ¼ w�

H1 : μ 6¼ w�

where w* is the required weight for each pack of cookies. The manufacturer does

not want more or less than the required amount of cookies in each package.

11.2 Concepts and Errors of Hypothesis Testing 489



Therefore, it conducts a test to determine whether the statistics from the sample

show any severe deviation from the required weight. If H0 is rejected, then the

manufacturer must impose tighter control on the packing process.

11.2.2 Type I and Type II Errors

It seems like a very simple idea that if we can’t reject the null hypothesis, we accept

it. But we must think twice before accepting H0. When H0 cannot be rejected, there

are two possibilities: (1) H0 is indeed true and (2) H0 is wrong anyway. Maybe the

sample size was not large enough or, for some other reason, test results did not

enable us to reject H0. In any case, we cannot conclude from the fact that H0 can’t

be rejected that H0 is necessarily true. We can only say that, on the basis of the

sample under study, we can’t reject the null hypothesis. For example, suppose we

are interested in testing the null hypothesis that there is no life on Mars. It is clear

from this example that we will never be able to show that this statement is true.

Why? Because even if astronauts are unable to find life on Mars, it doesn’t mean

that there are no living things on Mars—only that the astronauts were unable to find

any living things. However, it will be possible to reject the null hypothesis if these

astronauts do find life on Mars. In other words, we can never prove that the null

hypothesis is true but only that we are able or unable to reject it.

Table 11.1 illustrates the relationship between the actions we take concerning a

null hypothesis and the truth or falsity of that hypothesis (which is called the state of

nature). This table shows that the errors made in testing hypotheses are of two types.

We make a Type I error when H0 is true, but we reject it. We make a Type II error
when H0 is false, but we accept it.

11.3 Hypothesis Test Construction and Testing Procedure

11.3.1 Two Types of Hypothesis Tests

There are two types of hypothesis testing that we will be interested in: (1) testing

whether or not the population mean is equal to a specific value (including zero) and

(2) testing whether the population mean is greater than (or less than) a specific value.

The first test is a two-tailed test; the other is a one-tailed test. These two concepts and
the related testing procedures will be discussed in detail in Sects. 11.4 and 11.5.

Table 11.1 Actions and the

states of nature of the null

hypothesis Action

State of nature

H0 is true H0 is false

Do not reject H0 Correct decision Type II error

Reject H0 Type I error Correct decision
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The first step in our hypothesis testing procedure is to divide the sample space

into two mutually exclusive areas, the acceptance region and the rejection (or

critical) region. We begin by assuming that we have a large sample (n > 30) so that

we can use the central limit theorem. Later we will examine how our hypothesis

testing procedure can be modified to account for small samples (n < 30). Where

the acceptance and rejection regions lie depends on two things: whether the test is a

one- or a two-tailed test and the significance level we assign to our test. The

significance level, α, refers to the size of the Type I error that we are willing to

accept. In other words, α represents the probability of Type I error:

α ¼ Pðreject H0jH0 is correctÞ
¼ PðType I errorÞ

Similarly, the probability of Type II error can be defined as

β ¼ Pðfail to reject H0jH0 is falseÞ
¼ PðType II errorÞ

How large a significance level we choose depends on the costs associated with

making a Type I error. For example, the significance level used by a cookie company

interested in the average weight of a package of cookies should differ from the

significance level used by a pharmaceutical company interested in the average

amount of an active ingredient in one of its medications. Clearly, the cost to the

cookie company of having too many or too few cookies in a package is small

compared to the cost to the pharmaceutical company of using too much or too little

of an active ingredient in one of its products. (Too little may render the product

ineffective; too much may cause the product to lead to harmful side effects or even

death.) Similarly, there are costs associated with making a Type II error (failing to

reject the null hypothesis even though it is false). The cost associated with making a

Type II error is also smaller for the cookie company than for the pharmaceutical firm.

Figure 11.1 illustrates the sampling distribution of the sample mean �X, showing
the acceptance and rejection regions for a null hypothesis. Here we display only

Type I error. We will discuss both Type I and Type II errors and the trade-off

between these two types of errors in the next section.

In Fig. 11.1, CL is the critical value for the lower-tailed test, and CU is the critical

value for the upper-tailed test. CL and CU are the critical values for the two-tailed

test. The critical value is the cutoff point for hypothesis testing; its value depends
on a level of probability, such as 5 percent, 1 percent, or some other percentage.

Figure 11.1a presents the case of a lower-tailed test. We conduct a one-tailed test

in the lower tail of the distribution when we are concerned only with when the

population mean μ is smaller than some specified value μ0. For example, an investor

who is trying to evaluate a stockbroker’s performance may be concerned only with

below-par performance. In this case, a lower-tailed test is in order, and the investor

rejects the null hypothesis of average or above-average performance on the part of

the stockbroker if the broker’s mean return �X is less than the critical value CL.
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An upper-tailed test (Fig. 11.1b) is in order when we are concerned only with

when the population mean μ is larger than the specified value μ0. For example, a

pharmaceutical company might be interested in the average amount of an active

ingredient in its sleeping pills. Because too much of the active ingredient may lead

to harmful side effects, the company may choose to conduct an upper-tailed test. In

Fig. 11.1b, we can see that the company rejects the null hypothesis of an average or

below-average amount of the active ingredient if the sample mean of the sleeping

pills tested, μ, is greater than the critical value CU.

Fig. 11.1 Different types of hypothesis testing: (a) lower-tailed test, (b) upper-tailed test, and

(c) two-tailed test
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A two-tailed test is called for when we are interested in the population mean μ
being either much larger or much smaller than the specified value μ0. For example,

a cookie manufacturer is interested in the average number of cookies per package.

Too few cookies in a package may lead to complaints from consumers; too many

will reduce the company’s profits. In this case (Fig. 11.1c), the company rejects the

null hypothesis of the correct number of cookies in a package if the sample mean �X
falls below the lower critical value CL or above the upper critical value CU.

11.3.2 The Trade-off Between Type I and Type II Errors

One way to visualize the trade-off between Type I and Type II errors is to assume

that there are only two distributions in which we are interested. One distribution

corresponds to H0, and the other is consistent with H1. In this case, we are assuming

that both the null and alternative hypotheses are simple. A simple hypothesis is

one wherein we specify only a single value for the population parameter, θ.
A parameter is a summary measure that is computed to describe a characteristic

of an entire population. For example, we might be interested in testing H0: μ ¼ 5

versus H1: μ ¼ 8. In this example, both the null and the alternative hypotheses

are simple.

On the other hand, wemay choose to specify a range of values for the parameter θ.
In this case, the hypothesis is called a composite hypothesis. For example, we could

test a simple null hypothesis, H0: μ ¼ 5, and a composite alternative hypothesis, H1;

μ > 5. Here, the alternative hypothesis is composite because H1 is consistent with a

range of values for μ. For both simple and composite hypotheses, we need to choose

a significance level such as α ¼ .10, .05, or .01.

In order to present the relationship between Type I and Type II errors in the

simplest fashion, let’s examine the case of testing a simple null hypothesis, H0:

Fig. 11.2 α and β when sample size ¼ n
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μ ¼ μ0, and a simple alternative hypothesis, H1: μ ¼ μ1. Figs. 11.2 and 11.3 is a

graph for this example.

In Fig. 11.2, we can see that there are two distinct locations for the distributions �X.
One corresponds to the null hypothesis, and the other to the alternative hypothesis.

Because the two distributions overlap, two possible errors can result from our

hypothesis test. Type I error occurs when we reject H0 when it is true. That is,

even though the distribution of �X is consistent with H0, we reject H0 because our

sample mean is larger than the critical value C*. Type I error is represented by α, the
area under the H0 distribution curve that lies to the right of the critical value C*.
Type II error occurs when we fail to reject H0 when H1, instead of H0, is correct. In

this case, even though the distribution of �X is consistent with H1, we accept H0

because our sample mean is smaller than the critical value C*. Type II error is

represented by β, the area under the H1 distribution curve that lies to the left of the

critical value C*.
As we can see, the areas α and β are related. If we choose to make α smaller (i.e.,

reduce the chance of a Type I error), we must settle for a larger β (i.e., increase the

chance of a Type II error). This is the trade-off between α and β.
Does this trade-off imply that the only way for us to reduce the chance of making a

Type II error is to settle for a larger chance of making a Type I error? The answer to

this question is no. By increasing our sample size, it is possible to reduce our chance

of making a Type II error without increasing our chance of making a Type I error.

The sample standard deviation of both H0 and H1 distributions can be defined as

sX ¼ sX=
ffiffiffi
n

p
(11.2)

where sx and n represent sample standard deviation and sample size, respectively.

If sample size increases from n to n0, then the standard deviations of both H0 and

Fig. 11.3 α and β when sample size ¼ n’(n’ > n)
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H1 distributions become smaller. Hence, both α and β decrease, as indicated in

Fig. 11.3.

The relationship between the critical value C* and sample size can be written as

C� ¼ μ0 þ z0
sXffiffiffi
n

p
� �

(11.3)

C� ¼ μ1 � z1
sXffiffiffi
n

p
� �

(11.4)

where z0 and z1 represent the standard deviation units to the right of μ0 and the

standard deviation units to the left of μ1, respectively.
We can express the required sample size by solving the simultaneous Eqs. 11.3

and 11.4. The solution is

n ¼ z0 þ z1ð ÞsX
μ1 � μ0ð Þ

� �2
(11.5)

For example, let z0 ¼ 1.60, z1 ¼ 1.80, μ0 ¼ 550, μ1 ¼ 580, and sx ¼ 200. Then

the required sample size is

n ¼ 1:60þ 1:80ð Þ 200ð Þ
580� 550ð Þ

� �2

n ¼ 22:67

Therefore, a simple random sample of 23 (to the nearest integer) should be

required in order to obtain the desired levels of error control. The critical value can

be obtained by substituting n ¼ 23 into either Eqs. 11.3 or 11.4. Substituting into

Eq. 11.3 yields

C� ¼ 550þ 1:60ð Þ 200ffiffiffiffiffi
23

p
� �

¼ 616:67

Applications of Eqs. 11.3, 11.4, and 11.2 in quality control will be discussed in

Appendix 1

11.3.3 The P-Value Approach to Hypothesis Testing

Another approach to hypothesis testing is through the use of a probability value
(p-value). Under this approach, rather than testing a hypothesis at such preassigned
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levels of significance as α ¼ .05 or .01, investigators often determine the smallest

level of significance at which a null hypothesis can be rejected. The p-value is this
significance level. In other words, it is the probability of getting a value of the test

statistic as extreme as or more extreme than that which is actually obtained, given

that the tested null hypothesis is true. Using the p-value in hypothesis testing

enables us to determine how significant or insignificant our test results are. Did

we barely reject the null hypothesis or did we reject it overwhelmingly? The

p-value is often referred to as the observed level of significance. If the p-value is

smaller than or equal to significance level α, the null hypothesis is rejected; if the
p-value is greater than α, the null hypothesis is not rejected. The advantage of

the p-value approach is that it frees us from having to choose a value of α.
The disadvantage is that we may obtain an inconclusive test. Applications of the

p-value will be discussed further in the next two sections.

So far, our discussion of hypothesis testing has focused on determining the level of

significance, α, of our test. In addition, we discussed the method of computing a

critical value in terms of α and p-value and examined the relationship between

the p-value and α. In all cases, our tests involved controlling the Type I error, α.
We have also discussed the trade-off between Type I error and Type II error. It is

important to investigate how well the hypothesis test controls Type II errors. The

power of a test,which is defined as 1–β, can be used tomeasure howwell Type II error

has been controlled. This issue and related concepts will be discussed in Appendix 1.

11.4 One-Tailed Tests of Means for Large Samples

As we noted in Sect. 11.3, hypothesis tests can be conducted as one-tailed or two-

tailed tests. In this section, we further examine one-tailed tests of means. We begin

by examining the case where only one sample is drawn and where that sample is

large. Using a large sample offers two important advantages. A large sample makes

it possible to apply the central limit theorem. And it enables us, through our choice

of significance level (α), to reduce our chance of making a Type II error.

11.4.1 One-Sample Tests of Means

In this section, we examine the one-tailed test of means where only one large

random sample is taken. In this case, the null hypothesis is that the population mean

is equal to some specified value μ0. This hypothesis is denoted H0: μ ¼ μ0. Suppose
the alternative hypothesis of interest is that the population mean is smaller than this

specified value, that is, H1: μ < μ0.
It is natural to base tests of population mean μ on the sample mean �X:

In particular, we would like to know whether the observed sample mean is greatly

smaller than the specified value of μ0. To do this, we require the format of a test with
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some preassigned significance level α. As described in the previous section, α is

used to denote the Type I error.

By using the central limit theorem, we saw in Chap. 8 that when the sample size

is large, the sample mean �X is approximately normally distributed. Therefore, the

random variable Z, defined in Eq. 11.6, follows a standard normal distribution:

Z ¼ X � μ0
σX=

ffiffiffi
n

p (11.6)

This equation implies that the sampling distribution of the sample mean �X is

normally distributed with mean μ0 and standard deviation σx/
ffiffiffi
n

p
when the null

hypothesis is true. For large samples, the sample standard deviation s can be used in

place of σ in Eq. 11.6. The null hypothesis is to be rejected if the sample mean �X is

greatly smaller than the hypothesized value μ0. Thus, we will reject H0 if we

observe a large absolute value of the random variable Z, as indicated in Eq. 11.6.1

If the Type I error α is fixed, then we can follow Chap. 10 in using zα, for which P
(Z < �zα) ¼ α. If the null hypothesis is true, then the probability that the random

variable as indicated in Eq. 11.6 is smaller than�zα is α. In terms of sample mean �X,
the decision rule is

Reject H0 if
X � μ0
σX

ffiffiffi
n

p
=

<� zα

This situation is illustrated in Fig. 11.4. In this case, because zα is in the lower

tail, we have a lower-tailed hypothesis test.

Alternatively, by letting

Xα � μ0
σ

X
=
ffiffiffi
n

p ¼ �zα

we can obtain �Xα as indicated in Eq. 11.7:

Xα ¼ μ0 � ZασX ¼ μ0 � ZασX=
ffiffiffi
n

p
(11.7)

�Xα can be used as an acceptance limit for performing the null hypothesis test (see

Fig. 11.5). From the normal distribution in Table A3 of Appendix A at the end of

the book, we find that P(Z � � 1.645) ¼ .05. If α ¼ .05, then �Xα can be estimated

as μ0–(1.645) σX=
ffiffiffi
n

p
. Similarly, when α ¼ .01, we find that z ¼ �1.96 and �Xα ¼

μ0–(l.96) σX
=
ffiffiffi
n

p
. If �X is smaller than �Xα, then we reject the null hypothesis.

1 The observed value of Z is negative if the alternative hypothesis is μ < μ0. It is positive if the

alternative hypothesis is μ > μ0.
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Example 11.1 Testing the Average Weight of Cat Food per Bag. Say we want to

test whether the average weight of 60-ounce bags of cat food is equal to or smaller

than 60 ounces at significance level α ¼ .05. The null and alternative hypotheses

can be stated as

H0 : μ ¼ 60

H1 : μ< 60

In addition, suppose we know that sample size n ¼ 100, sample mean �X ¼ 59,

and standard deviation sX ¼ 5. We now will use three different approaches to

do the test.

11.4.2 The zα-Value Approach

Substituting related information into Eq. 11.6, we obtain

Z ¼ 59� 60
5
10

¼ �2

If α ¼ .05, the test statistic is�z.05 ¼ �1.645, as indicted in Fig. 11.6. A glance

at Fig. 11.6 reveals that �2 is in the rejection region, so we reject the null

hypothesis.

Fig. 11.4 Lower-tailed hypothesis test at the α significance level
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11.4.3 The �xα -Value Approach

Substituting this information into Eq. 11.7 in terms of α ¼ .05, we obtain �X:05 ¼
60�(1.645 � 5)/10 ¼ 60�8.225/10 ¼ 59.1775.

Figure 11.7 reveals that the observed sample mean of 59 ounces is in the

rejection region, so the null hypothesis, H0, is rejected.

11.4.4 The p-Value Approach

Because this is only a one-tailed test, the p-value approach represents the probabil-

ity in only one tail of the distribution. From the z-value approach, we know that

Fig. 11.5 Lower-tailed hypothesis test at the �Xα significance level

Fig. 11.6 The location of the critical value in a lower-tailed test when the test statistic is

�z0.5 ¼ �1.645
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�z.05 ¼ �1.645. Using the p-value approach, we find that the probability of

obtaining a z-value smaller than �2.0 is .500–.4772 ¼ .0228 (see Fig. 11.8). This

is less than α ¼ .05, so we reject the null hypothesis.

Thus, we can choose among three approaches to doing one-tailed null hypothesis

tests. Note that the zα-value approach is equivalent to the �xα -value approach.

11.4.5 Two-Sample Tests of Means

Another important issue is how to test the difference between two population

means, μ1 and μ2, of two normally distributed populations with variances σ21 and

σ22. Because we will use large samples, the assumption of normality is not necessary.

We select two independent random samples from two different populations for

n1 and n2 observations with observed sample means �X1 and �X2. Are we willing to

attribute the difference between �X1 and �X2 to chance sampling errors, or should we

conclude that the populations from which the two samples are drawn have different

means? In this case, we have two options: the following one-sided tests with

significance level α:

1. Upper-tailed null hypothesis

H0 : μ1 � μ2 ¼ D

H1 : μ1 � μ2 >D

where D can be either zero or a positive number.

Fig. 11.7 The location of the critical value in a lower-tailed test when the test statistic is �x:05 ¼
59.1775
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2. Lower-tailed null hypothesis

H0 : μ1 � μ2 ¼ D

H1 : μ1 � μ2 <D

where D can be either zero or a positive number.

The z statistic in terms of the central limit theorem that is used to do the

aforementioned one-tailed tests can be defined as follows2:

Z ¼ X1 � X2

� �� Dffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
1

n1
þ σ2

2

n2

q (11.8)

If sample sizes n1 and n2 are large, tests of significance level α for the difference

between μ1 and μ2 are obtained by replacingσ21 andσ
2
2 by s

2
1 and s

2
2. Equation 11.8 can

be rewritten as

Z ¼ X1 � X2

� �� μ1 � μ2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

n1
þ s2

2

n2

q (11.9)

The following example demonstrates how to test the difference between two

population means.

Example 11.2 Comparing Unleaded Gasoline Prices at Texaco and Shell
Stations. David Smith conducts a market survey to compare the prices of unleaded

Fig. 11.8 Determining the p-value for a one-tailed test

2 Because �X1 is independent of �X2,

Var �X1 � �X2ð Þ ¼ Var �X1ð Þ þ Var �X2ð Þ ¼ σ21
n1

þ σ22
n2
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gasoline at Texaco stations and Shell stations. A random sample of 32 Texaco

stations and 38 Shell stations in central New Jersey is used. The cost of 1 gallon of

unleaded gasoline is recorded, and the resulting data are summarized here.

Sample A (Texaco)

1.06 .97 .97 .96 1.02 1.09

1.08 1.04 1.11 1.12 1.19 1.07

1.14 1.17 1.22 .97 1.08

1.05 1.21 .95 .99 1.18

1.05 1.21 1.03 1.14 1.14

1.13 1.00 1.16 .96 .98

n1 ¼ 32 �X1 ¼ $1,076 s1 ¼ $.085

Sample B (Shell)

1.08 .96 1.06 1.11 1.07

1.17 1.01 1.05 1.04 1.09

1.05 1.06 1.14 1.04 .94

1.01 .99 1.07 1.18 .94

1.08 1.13 1.16 1.00 .94

1.13 .91 1.13 .96 .95

1.00 1.09 1.15 1.13

.98 1.04 1.03 1.17 .98

n2 ¼ 38 �X2 ¼ $1,054 s2 ¼ $.075

Is Texaco’s average unleaded gasoline price per gallon (�X1) more than Shell’s

average price per gallon ( �X2) at α ¼ .05? To perform the test, we can follow these

steps:

Step 1: Define the hypotheses and evaluate the test statistic.

The question is whether the data support the claim that μ1 > μ2.
3

H0: μ1 � μ2 (Texaco is less expensive or equally expensive.)

H1: μ1 > μ2 (Texaco is more expensive.)

From Eq. 11.9, the test statistic can be calculated as

Z ¼ X1 � X2ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

n1
þ s2

2

n2

q ¼ 1:076� 1:054ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð:085Þ2
32

þ ð:075Þ2
38

q
¼ :022=:0188 ¼ 1:1702:

Step 2: Define the rejection region and state a conclusion.

Figure 11.9 indicates that the null hypothesis is to be rejected if Z > 1.645 under

a significance level of .05. Because Z ¼ 1.1702 is smaller than 1.645, we accept H0,

and because �X1 is not significantly larger than �X2 , we claim that μ1 � μ2. We

conclude that the Texaco stations charge the same or less for gasoline (on the

3 This kind of hypothesis is called composite null and alternative hypothesis. The decision rule is

identical to that for a simple alternative hypothesis specified as H0: μ1 ¼ μ2 versus H1: μ1 > μ2.
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average) than the Shell stations. Alternatively, we input sample data into MINITAB

and obtain the mean, standard deviation, t-statistic, and p-value as follows:

MTB > SET INTO
Cl

DATA> 1.06 1.05 0.97 1.21 0.97 0.95 0.96 0.99 1.02 1.18 1.09

DATA> 1.08 1.05 1.04 1.21 1.11 1.03 1.12 1.14 1.19 1.14 1.07

DATA> 1.14 1.13 1.17 1.00 1.22 1.16 0.97 0.96 1.08 0.98

DATA> END

MTB > SET INTO
C2

DATA> 1.08 1.08 0.96 1.13 1.06 1.16 1.03 1.04 0.96 1.07 0.94

DATA> 1.17 1.13 1.01 0.91 1.05 1.13 1.11 1.18 1.13 1.09 0.94

DATA> 1.05 1.00 1.06 1.09 1.14 1.15 1.04 1.00 1.17 0.94 0.95

DATA> 1.01 0.98 0.99 1.04 1.07

DATA > END

MTB > TWOSAMPLE Cl C2;

SUBC > ALTERNATIVES ¼ 1.

Two Sample T-Test and Confidence Interval
Two sample T for Cl vs C2

N Mean StDev SE Mean

Cl 32 1.0763 0.0846 0.015

C2 38 1.0537 0.0754 0.012

95% CI for mu Cl - mu C2: ( �0.016, 0.061)

T-Test mu Cl ¼ mu C2 (vs >): T ¼ 1.17 P ¼ 0.12 DP ¼ 62

From this computer output, we find that the t statistic is equal to 1.17 and the

p-value equals .12. We conclude, therefore, that the average price per gallon of

unleaded gasoline from Texaco stations is the same as that from Shell stations.

Fig. 11.9 z curve showing rejection region for example 11.2
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11.5 Two-Tailed Tests of Means for Large Samples

11.5.1 One-Sample Tests of Means

A cookie store sells individual cookies and cookies in packages. All the packages

are sold for the same price, so the weights of the packages should be equal. If the

weight is greater than the specified weight on the packing box, the store suffers a

loss. If the weight is less, customers complain. Hence, the store must periodically

draw samples and test whether the average weight deviates from the required

weight. The hypotheses tested are

H0 : μ ¼ D

H1 : μ 6¼ D

Figure 11.10 illustrates thehypothesis test.Note that the significance level isα/2 instead
of α.

The decision rule can be either of the following:

1. Reject H0 if �x is greater than the upper critical value CU or less than the lower

critical value CL.

2. Reject H0 if the p-value is less than α, no matter which tail the sample mean falls

in.

Using data from Example 11.1, we set up the two-tailed hypothesis test as

H0 : μ ¼ 60

H1 : μ 6¼ 60

and calculate the Z statistic as

Z ¼ 59� 60

5=10
¼ �2

From the standardized normal distribution table (Table A3 in Appendix A), we

know that zα/2 ¼ 1.96 and �zα/2 ¼ �1.96. Our z ¼ �2 is less than �zα/2, so our

decision is to reject H0.

Using the p-value approach, we could determine the probability of obtaining a

Z-value smaller than �2.0. From Appendix A, that probability is

.5000 � .4772 ¼ .0228. Because we are performing a two-tailed test, we also

need to find the probability of obtaining a value larger than 2.00. The normal

distribution is symmetrical, so this value is also .0228. Thus, the p-value for the

two-tailed test is .0456 (see Fig. 11.11). This result may be interpreted to mean that

the probability of obtaining a more extreme result than the one observed is .0456.

Because this value is smaller than α ¼ .05, the null hypothesis is rejected.
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In addition, let’s look at this real-world example based on C. S. Patterson’s study

of a sample of 47 large public electric utilities with revenues of $300 million or

more according to Moody’s Manual (Financial Management, Summer 1984).

Patterson’s study focused on the financing practices and policies of these regulated

utilities. Compilation of the actual debt ratios, or long-term debt divided by total

capital, of the companies yielded the following results:

X ¼ :485 sX ¼ :029

Before giving their actual debt ratios, the companies cited .459 as the mean debt

ratio at which they should operate to maximize shareholder wealth.

Fig. 11.10 Two-tailed hypothesis testing

Fig. 11.11 Determining the p-value for a two-tailed test
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From this information, we can test whether the actual mean debt ratio of public

utilities differed from the optimum value .459 at α ¼ .01. The two-tailed hypothe-

sis test can be defined as

H0 : μ ¼ :459

H1 : μ 6¼ :459

and the z statistic can be calculated as

Z ¼ X � μ0
sX=

ffiffiffi
n

p ¼ :485� :459

:029=
ffiffiffiffiffi
47

p ¼ 6:146

From Table A3 in Appendix A, we know that z.005 ¼ 2.575. Since z > z.005, we
reject the null hypothesis H0.

11.5.2 Confidence Intervals and Hypothesis Testing

The hypothesis testing discussed in this chapter applies the same concepts as do the

confidence intervals we discussed in the last chapter. We used confidence intervals

to estimate parameters, whereas we used hypothesis testing to make decisions about

specified values of population parameters.

In many situations, we can turn to confidence intervals to test a null hypothesis.

This can be illustrated for the test of a hypothesis for a mean. In Example 11.1

(testing whether the average weight of packages of cat food was different from

60 ounces), we employed the formula

Z ¼ X � μ0
σXffiffi
n

p (11.11)

We could also solve the cat food problem by obtaining a confidence-interval

estimate of μ0 in terms of sample mean �x. If the hypothesized value of �x¼ 59 did not

fall in the interval, the null hypothesis would be rejected. That is, the value 59

would be considered unusual for the data observed. On the other hand, if it did fall

in the interval, the null hypothesis would not be rejected because 59 would not be an

unusual value. The confidence-interval estimate in terms of data defined in Exam-

ple 11.1 was

X � zα
sXffiffiffi
n

p

60� ð1:645Þ 5

10
¼ 60� :8225
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so that 59.1775 � μ � 60.8225. This interval does not include the hypothesized

value of 59, so we would reject the null hypothesis. This, of course, is the same

decision we reached by using the hypothesis testing technique.

11.5.3 Two-Sample Tests of Means

Two-sample tests involve testing the equality of two sample means. Two-tailed

tests are similar to one-tailed tests, but the alternative hypothesis H1 assumes that

two population means are “unequal” and the significance level for each tail is now

α/2. The hypothesis test can be expressed as follows:

H0 : μ1 � μ2 ¼ D

H1 : μ1 � μ2 6¼ D

where D can be either zero or a positive number.

In order to test, we can calculate either the p-value or the critical values on both

tails. The decision rules are:

1. Reject H0 if the p-value is less than α.
2. Reject H0 if ( �X1 – �X2 ) is either greater than CU or less than CL, as shown in

Fig. 11.12.

CL is calculated as follows:

CL ¼ �zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21
n1

þ σ22
n2

s
(11.13)

If σ21 and σ
2
2 are unknown, sample variances s21 and s

2
2 can be used to approximate

CL, which can be denned as

CL ¼ �zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

n1
þ s22
n2

s
(11.14)

Furthermore,

CU ¼ zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

1

n1
þ σ22

n2

s

can be approximated by

11.5 Two-Tailed Tests of Means for Large Samples 507



zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

n1
þ s22
n2

s
(11.15)

With critical values CL and CU, we can perform the null hypothesis test as in the

case of a one-sample test.

Using the unleaded gasoline prices in Example 11.2 as an example, we now

show how Eqs. 11.14 and 11.15 can be used to do a two-tailed test at α ¼ .05. The

question is whether data support the claim that μ1 ¼ μ2:

H0 : μ1 � μ2 ¼ 0

H1 : μ1 � μ2 6¼ 0

From Table A3 in Appendix A, we find z.025 ¼ 1.96. Substituting z.025 ¼ 1.96,

s1 ¼ .085, s2 ¼ .075, n1 ¼ 32, and n2 ¼ 38 into Eqs. 11.14 and 11.15, we obtain

CL ¼ �ð1:96Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð:085Þ2
32

þ ð:075Þ2
38

s
¼ �ð1:96Þð:0188Þ

¼ �:0368

CU ¼ ð1:96Þð:0188Þ ¼ :0368

Since �X1 � �X2 ¼ 1.076–1.054 ¼ .022 is smaller than CU and larger than CL, we

cannot reject the null hypothesis μ1 ¼ μ2.

Fig. 11.12 Rejection and acceptance regions for two-samples case
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11.6 Small-Sample Tests of Means with Unknown Population

Standard Deviations

So far, our discussion of hypothesis testing has focused on cases where the sample

size is large. This large sample size has enabled us to employ the central limit

theorem and to use the normal distribution in our hypothesis tests. If our sample size

is small (n < 30), however, we must modify our test. As we noted in Chap. 10,

when the sample size is small, we should use the t distribution in place of the normal

distribution. Note that the use of the t distribution with small samples requires that

the original population be distributed normally. Using the Z test for small-sample

hypothesis testing leads to inaccurate results. Table 11.2 shows how tα approaches
Zα as the sample size increases. It gives some idea how “small” a sample should be

for us to use the t test when population variances are unknown.

We will use both the one-tailed and the two-tailed tests to show how the t test can
be employed for both one-sample and two-sample tests of means.

11.6.1 One-Sample Tests of Means

If the population variance is unknown and the sample size is small, then we can use

the t statistic defined in Eq. 10.16 to test the null hypothesis associated with both

one-tailed and two-tailed cases:

tv ¼ X � μ

sX=
ffiffiffi
n

p (10.16)

Example 11.3 Average Mileage of a Moving Van. United Van Lines Company is

considering purchasing a large, new moving van. The sales agency agreed to lease

the truck to United Van Lines for 4 weeks (24 working days) on a trial basis. The

main concern of United Van Lines is the miles per gallon (mpg) of gasoline that the

van obtains on a typical moving day. The mpg values for the 24 trial days were

8.5 9.5 8.7 8.9 9.1 10.1 12.0 11.5 10.5 9.6

8.7 11.6 10.9 9.8 8.8 8.6 9.4 10.8 12.3 11.1

10.2 9.7 9.8 8.1

United Van Lines will purchase the van if it is convinced that the average value

for miles per gallon is greater than 9.5.

To perform the hypothesis testing, we define the null and alternative hypothesis

tests as

H0 : μ � 9:5

H1 : μ> 9:5
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The significance level for this test is α ¼ .05.
The MINITAB output for Example 11.3 is presented in Fig. 11.13. From this

output, we calculate the test statistic as

t ¼ X � 9:5

sX=
ffiffiffi
n

p ¼ 9:925� 9:5

:243

¼ 1:75

From Table A4, we find that t.05,23 ¼ 1.714. Because 1.75 > 1.714, we reject

H0—and advise United Van Lines to buy the van.

11.6.2 Two-Sample Tests of Means

To test the difference between two means when the population variances are

unknown and the samples are small, we use the t statistic of Eq. 11.17, which is

similar to Eq. 10.16. Here, two populations are normally distributed, and the two

samples that are used to do the test are independent of each other. The hypotheses

for a two-tailed case can be expressed as

Table 11.2 Values of

tα versus zα
Sample size

tα value

.10 .05 .025 .01

10 1.372 1.812 2.228 2.764

20 1.325 1.725 2.086 2.528

120 1.289 1.658 1.980 2.358

1 1.282 1.645 1.960 2.326

zα 1.282 1.645 1.960 2.326

MTB > SET INTO Cl
DATA> 8.5 9.5 8.7 8.9 9.1 10.1 12.0 11.5 10.5 9.6 8.7 11.6 10.9 9.8 8.8 8.6 9.4

DATA> 10.8 12.3 11.1 10.2 9.7 9.8 8.1

DATA> END
MTB > TINTERVAL WITH 95% 

Confidence Intervals

Variable N Mean StDev SE Mean 95.0 % CI
Cl 24 9.925 1.189 0.243 (9.423, 10.427)
MTB >   TTEST 9.5 Cl

T-Test of the Mean

Test of mu = 9.500 vs mu not = 9.500

Variable N Mean StDev SE Mean T P
Cl 24 9.925 1.189 0.243 1.75 0.093

CONFIDENCE USING Cl

Fig. 11.13 MINITAB output for Example 11.3
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H0 : μ1 � μ2 ¼ D

H1 : μ1 � μ2 6¼ D

where D can be either zero or a positive number. The statistic for testing the

hypotheses can be defined as

t ¼ ð �X1 � �X2Þ � D

s
ffiffiffiffiffiffiffiffiffi
n1þn2
n1n2

q (11.17)

This statistic has a t distribution with (n1þn2�2) degrees of freedom and where

s2 ¼ ðn1 � 1Þs21 þ ðn2 � 1Þs22
ðn1 þ n2 � 2Þ (11.18)

is the pooled variance. Note that the t statistic denned in Eq. 11.17 also can be used
in a one-tailed test. Two examples are used to show how Eq. 11.17 can be used to do

both two-tailed and one-tailed tests.

Example 11.4 Competitive Versus Coordinative Bargaining Strategies. We now

use a real-world example to show how the t statistics defined in Eqs. 11.17 and

11.18 can be used to test whether the competitive bargaining strategy differs in its

results from the coordinative bargaining strategy. This example is adapted from S.

W. Clopton’s research (Journal of Marketing Research, February 1984) in which he
compared so-called competitive and coordinative bargaining strategies in

buyer–seller negotiations. Inflexibility in an effort to force concessions best defines

competitive bargaining. A coordinative bargaining strategy, however, involves a

great deal more cooperation and more of a problem-solving approach.

One of Clopton’s negotiation experiments involved a sample of 16 organiza-

tional buyers. Clopton reported that in negotiations in which the maximum profit

was fixed, the sample participants were perfectly divided in their choice of strategy;

that is, 8 buyers employed a competitive bargaining strategy and the other 8 buyers

used a coordinative approach.

The table lists the individual savings for the two groups of buyers. Using

α ¼ .05, test to find if there is a difference in mean buyer savings for the two

strategies.

Competitive Coordinative

Sample size 8 8

Mean savings $1,706.25 $2,106.25

Standard deviation $ 532.81 $ 359.99
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H0 : ðμ1 � μ2Þ ¼ 0

H1 : ðμ1 � μ2Þ 6¼ 0

Since sample size is only 8 for each, the t test statistic of Eq. 11.17 should be used
to do the test. Substituting related information into Eqs. 11.18 and 11.17, we obtain

s2 ¼ ð8� 1Þð532:81Þ2 þ ð8� 1Þð359:99Þ2
8þ 8� 2

¼ 206; 739:648

t ¼ 1; 706:25� 2; 106:25ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
206; 739:648 1

8
þ 1

8

� �q
¼ �400

227:343
¼ �1:759

From Table A4 in Appendix A, we find t14, .025 ¼ 2.145. Because 1.759 is

smaller than 2.145, the null hypothesis cannot be rejected.

Example 11.5 The Effect of a Moderator on the Number of Ideas Generated. Fern

(1982) studied the impact of the presence of a moderator on the number of ideas

generated by groups.4 He first randomly sampled 4 groups that included a modera-

tor. Then he independently and randomly sampled another four groups that lacked a

moderator. The mean number of ideas generated and the sample standard deviation

for the two sets of samples were:

First set of samples: �X1 ¼ 78.00, s1 ¼ 24.4, n1 ¼ 4

Second set of samples: �X2 ¼ 63.5, s2 ¼ 20.2, n2 ¼ 4

Let μ1 and μ2 represent the respective population means for groups with and

without a moderator. Then the test can be defined as

H0 : μ1 � μ2 ¼ 0

H1 : μ1 � μ2 > 0

The significance level for this test is α ¼ .05. To perform the test, we substitute

all related information into Eqs. 11.17 and 11.18 and obtain

s2 ¼ ð3Þð24:4Þ2 þ ð3Þð20:2Þ2
4þ 4� 2

¼ 501:7

s ¼
ffiffiffiffiffiffiffiffiffiffiffi
501:7

p
¼ 22:4

4 Fern E.F.: The use of focus groups for idea generators: The effect of group size, acquaintance-

ship, and moderator on response quantity and quality. J. Mark. Res. 19, 1–13 (1982)
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Then,

t6 ¼ 78:0� 63:5

22:4
ffiffiffiffi
8
16

q ¼ :915

From Table A4 in Appendix A of this book, we find t6,0.05 ¼ 1.943. Because

.915 is smaller than 1.943, the null hypothesis of equality of population means

cannot be rejected.

11.7 Hypothesis Testing for a Population Proportion

In Sect. 10.6, we discussed the confidence intervals for a population proportion. The

Z statistic for the sample proportion ðP̂Þ and the confidence interval for the

population proportion (P) are repeated here for convenience:

Z ¼ P̂� Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂ð1� P̂Þ n=

q (10.10b)

1� α ¼ P P̂� Zα 2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂ð1� P̂Þ

n

s
<P< P̂þ Zα 2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂ð1� P̂Þ

n

s8<
:

9=
; (10.11)

where za/2 is the number such that P(Z > zα/2) ¼ α/2. The sample standard devia-

tion used in Eq. 10.11 can be defined as

SP̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂ð1� P̂Þ

n

s
(11.19)

Note that P̂ instead of P is used to estimate sP̂ because P is unknown and must be

replaced by its estimate, P̂.
The procedure discussed in Sects. 11.4, 11.5, and 11.6 for testing population

means for both one and two samples can be used to test the population proportion.

Table 11.3 compares the null hypothesis for testing population means with that for

testing population proportions.

In Table 11.3, both D and C can be zero or nonzero. If the sample size is large,

the Z statistic should be used to do the null hypothesis test; if the sample size is

small, the t statistic should be used. The Z statistic for testing one population

proportion is
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Z ¼ P̂� P0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0ð1� P0Þ n=

p (11.20)

where P0 is the value of P specified in H0. Equation 11.20 is obtained by

substituting P0 for P in Eq. 10.19. The Z statistic for testing the difference between

two population proportions is defined as

Z ¼ P̂1 � P̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Pð1� �PÞ
n1

þ �Pð1� �PÞ
n2

q (11.21)

where �P is defined as

P̂1n1 þ P̂2n2
n1 þ n2

Now let’s see how the Z statistic of Eqs. 11.20 and 11.21 for testing proportions

can be applied.

Example 11.6 The Promotability of Company Employees. Francis Company is

evaluating the promotability of its employees—that is, determining the proportion

of employees whose ability, training, and supervisory experience qualify them for

promotion to the next level of management. The human resources director of

Francis Company tells the president that 80 percent of the employees in the

company are “promotable.” However, a special committee appointed by the presi-

dent finds that only 75 percent of the 200 employees who have been interviewed are

qualified for promotion. Use this information to do a two-tailed null hypothesis test

at α ¼ 5 %:

H0 : P ¼ :80

H1 : P 6¼ :80

From Table A3, we know that we should reject H0 if Z > z.025 ¼ 1.96 or if

Z < �z.025 ¼ �1.96.

Table 11.3 Null hypothesis for testing population means and population proportions

Population means Population proportions

One sample Two samples One sample Two samples

1.Upper-tailed test H0: μ ¼ D μ1–μ2 ¼ D P ¼ C P1–P2 ¼ C

H1: μ > D μ1–μ2 > D P > C P1–P2 > C

2.Lower-tailed test H0: μ ¼ D μ1–μ2 ¼ D P ¼ C P1–P2 ¼ C

H1: μ < D μ1–μ2 < 0 P < C P1–P2 < C

3.Two-tailed test H0: μ ¼ D μ1–μ2 ¼ D P ¼ C P1–P2 ¼ C

H1: μ 6¼ D μ1–μ2 6¼ D P 6¼ C P1–P2 6¼ C
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Substituting p ¼ .75, p0 ¼ .80, and n ¼ 200 into Eq. 11.20, we obtain

Z ¼ :75� :80ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð:8Þð1�:8Þ

200

q ¼ �:05

:0283

¼ �1:7668

Because �1.7668 > �1.96, we cannot reject H0. In other words, the percentage

of “promotable” employees is 80 %.

Example 11.7 Defects in Canned Food. A food manufacturer has two canning

plants. The company’s management wants to know whether the mean defect rate of

a canned food from the new plant is different than that of the same canned food

from the old plant. The canned food is packed in a carton that holds 24 cans. There

are 500 cartons in each lot. Table 11.4 gives the sample data obtained from each

plant.

The hypotheses to be tested in terms of Eq. 11.21 are

H0 : P1 � P2 ¼ 0

H0 : P1 � P2 6¼ 0

First we calculate P̂1�P̂2 and the standard derivation of (P̂1�P̂2) as follows: P̂1�
P̂2 ¼ .065–.052 ¼ .013

P ¼ P̂1n1 þ P̂1n2
n1 þ n2

¼ ð:065Þð50Þ þ ð:052Þð40Þ
50þ 40

¼ :059

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Pð1� �PÞ

n1
þ

�Pð1� �PÞ
n2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð:059Þð:941Þ

50
þ ð:059Þð:941Þ

40

r
¼ :05

where s ¼ standard deviation of (P̂1�P̂2). If we specify α ¼ .05 and z.025 ¼ 1.96,

then using the Z-value approach, we have

Z ¼ :013

:05
¼ :26

Table 11.4 Sample data on

canned food from old and new

plants

Plant Mean defect rate from each lot Size of sample

New P̂1 ¼ .065 n1 ¼ 50

Old P̂2 ¼ .052 n2 ¼ 40
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Z is smaller than 1.96, so we cannot reject H0. In other words, the management

confirms that the mean defect rate of the new plant is not statistically different from

the mean defect rate of the old plant.

11.8 Chi-Square Tests of the Variance of a Normal Distribution

In Chap. 10, we discussed confidence intervals for the variance. Now it is time to

consider how to conduct hypothesis tests on the variance from a normal population.

When we conducted tests on the population mean μx, we based our test on the

sample mean �X. Thus, it seems natural that when we conduct tests of the population

variance σ2X, we base our tests on the sample variance s2X. From Chaps. 9 and 10, we

know that

χ2n�1 ¼
ðn� 1Þs2X

σ2X

which follows a chi-square distribution with (n�1) degrees of freedom. We are

interested in testing whether the population variance is equal to some specific value,

σ�2X ; that is,

H0 : σ
2
X ¼ σ�2X

Thus, when the null hypothesis is true, the random variable defined in Eq. 11.22

follows a chi-square distribution with (n�1) degrees of freedom.

χ�2n�1 ¼
ðn� 1Þs2X

σ�2X
(11.22)

For many applications, we are concerned that the variance of our population may

be equal to, larger than, or smaller than some specified value, σ�2x . The hypothesis

testing on σ2x can be defined as follows:

1. Two-tailed test

H0 : σ
2
X ¼ σ�2X

H1 : σ
2
X 6¼ σ�2X

Test statistics χ2 ¼ ðn� 1Þs2X
σ�2X

Reject H0 if χ
2 > χ2α 2;n�1= or if χ2 < χ21�α 2;n�1= :
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2. One-tailed test

H0 : σ2X � σ�X H0 : σ2X � σ�X

H1 : σ2X > σ�X H1 : σ2X < σ�X
Reject H0 if χ

2 > χ2α;n�1:Reject H0 if χ
2 < χ21�α;n�1:

Example 11.8 Variability in Customer Waiting Time. Suppose themanager of a bank

is thinking of introducing a “single-line” policy that directs all customers to enter a single

waiting line in the order of their arrival and “feeds” them to different tellers as the latter

become available. Although such a policy does not change the average time customers

must wait, the manager prefers it because it decreases waiting-time variability. The

manager’s critics, however, claim that this variability will be at least as great as for a

policy ofmultiple: independent lines {which in the past had a standard deviation ofσ�X¼
6min per customer. All have agreed to use a hypothesis test at the 5% significance level

to settle the issue. This test is to be based on the experience of a random sample of 20

customers on whom the new policy is “tried out.” The two opposing hypotheses are

H0 : σ
2
X � 36

H1 : σ
2
X < 36

Here, 36 is chosen as the H0 value even though any number greater than 36 is in H0.

The bank’s statistician selects the test statistic as

χ2n�1 ¼
ðn� 1Þs2X

σ�2X

For a desired significance level of α ¼ .05 and 19 degree of freedom, Table A5

in Appendix A suggests a critical value of 10.117 (this being a lower-tailed test).

Thus, the decision rule must be as follows: fail to reject H0 if σ21�0:05;19 ¼ 10:117.

After taking a sample of 20 customers, the statistician finds the sample single-line

waiting times to have a standard deviation of sX ¼ 4 min per customer. Accord-

ingly, the computed value of the test statistic is

χ2n�1 ¼
ðn� 1Þs2X

σ�2X
¼ 42ð20� 1Þ

36
¼ 8:44

Because 8.44 is smaller than 10.117, the null hypothesis should be rejected at

the 5 % significance level, which means that the sample result is statistically

significant. In other words, the observed divergence from the hypothesized value

of σ�X ¼ 6 min is not likely to be the result of chance factors operating during

sampling.
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11.9 Comparing the Variances of Two Normal Populations

In the last section, we showed that an x2 distribution can be used to test whether the
population variance of a normal distribution is equal to a specific value. In Chap. 9,

we showed that the ratio of two independent x2 variables (each divided by its

degrees of freedom) is an F random variable. The F random variable is defined as

F ¼ s2X σ2X
	

s2Y σ2Y
	 (11.23)

The F random variable follows an F distribution. If σX ¼ σY, then Eq. 11.23

reduces to F ¼ s2X=s
2
Y. The F distribution has degrees of freedom (nX–l) and (nY–l).

If we want to test whether σ2X is equal to σ2y , the hypotheses are

H0 : σ
2
X ¼ σ2Y

H1 : σ
2
X 6¼ σ2Y

Using the data of Example 11.5, we define the F statistic as F ¼ (24.4)2/

(20.2)2 ¼ 1.46. The degrees of freedom are (nx–1) ¼ 3 and (ny–1) ¼ 3 (from

Table A6 in Appendix A), so we have F3,3, 0.05 ¼ 9.28. Because the alternative

hypothesis is two-sided, this is the appropriate critical value for testing at the 10 %

significance level. Clearly, 1.46 is much smaller than 9.28; the null hypothesis

cannot be rejected. There is no evidence that variances are different in the two

testing groups.

11.10 Business Applications

Application 11.1 EPS and Rates of Return for JNJ Versus Those for MRK. In

Chap. 7, we calculated descriptive statistics for the earnings per share (EPS) and

rates of return (R) for JNJ and MRK. This information is presented in Table 11.5.

Using 20 years of EPS data (1990–2009), we can test whether JNJ’s average EPS

($3.0375) is significantly different from MRK’s EPS ($3.0898). Our sample

consists of only 20 years of data, so we should use the t test instead of the Z test.

The hypotheses to be tested are

H0 : μ1 � μ2 ¼ 0

Hl : μ1 � μ2 6¼ 0

where μ1 and μ2 are the average EPS for JNJ and MRK, respectively.
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Because the sample is small, we use the pooled variance of Eq. 11.18 and the test

statistic of Eq. 11.17. Substituting into Eqs. 11.17 and 11.18, we get5

t ¼ 3:0898� 3:0375ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð20�1Þð1:1640Þ2þð20�1Þð0:8694Þ2

20þ20�2
20þ20
20�20


 �q
¼ 0:0523

0:32487
¼ 0:16099

From Table A4, we can see that the critical t value for α ¼ .05 with 40 degree of

freedom is 2.021. Our test statistic has n1þn2–2 ¼ 20þ20–2 ¼ 38 degree of

freedom, so we compare 0.16099 to 2.021 and learn that we are unable to reject

the null hypothesis that the average EPS of JNJ and MRK are the same.

Alternatively, we input EPS data into MINITAB and obtain the means, the

standard deviations, the t statistic, and the p-value as follows:
Data Display

EPS(JNJ)

3.38 4.30 1.54 2.71 3.08 3.65 2.12 2.41 2.23 2.94 3.39

1.83 2.16 2.39 2.83 3.46 3.73 3.63 4.57 4.40

Data Display

EPS(MRK)

4.51 5.39 1.70 1.86 2.35 2.63 3.12 3.74 4.30 2.45 2.90

3.14 3.14 3.03 2.61 2.10 2.03 1.49 3.64 5.68

Two-Sample T-Test and CI: EPS(MRK), EPS(JNJ)

Two-sample T for EPS(MRK) vs EPS(JNJ)

N Mean StDev SE Mean

EPS(MRK) 20 3.09 1.16 0.26

EPS(JNJ) 20 3.038 0.869 0.19

Table 11.5 Annual EPS and

returns for JNJ and MRK
EPS Return

JNJ MRK JNJ MRK

Mean 3.0375 3.0898 1.7806 1.3545

Std. Dev. 0.8694 1.1640 0.3010 0.2124

Skewness 0.1257 0.8487 0.5253 0.4382

5 If the nonpooled variance is used, then the t value is

t ¼ ð3:0898� 3:0375Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1:1640Þ2

20
þ ð0:8694Þ2

20

s,
¼ 0:0523

0:32487
¼ 0:16099
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Difference ¼ mu (EPS(MRK)) - mu (EPS(JNJ))

Estimate for difference: 0.053

95 % CI for difference: (�0.607, 0.713)

T-Test of difference ¼ 0 (vs not ¼): T-Value ¼ 0.16 P-Value ¼ 0.871

DF ¼ 38

From this computer output, we find that the t statistic equals .16 and the p-value
equals .871. Again, we are unable to reject the null hypothesis that the average EPS

of JNJ and MRK are the same.

Application 11.2 Analysis of the Bank Risk Premium. The international bank-

ing crisis of 1974, involving the failure of the Franklin National Bank in New York,

led the Federal Reserve System to guarantee the international as well as the

domestic deposits of the bank.6 Giddy (1980) hypothesized that this “Franklin

Message” would lead to a decrease in the risk premium attached to large American

banks’ deposits. (Risk premium here is taken to be measured by the excess of

secondary-market certificate of deposit rates over Treasury bill yields.) For 48

months before the “Franklin Message,” the mean risk premium was .899 and the

variance was .247. For 48 months after the message, the mean and variance were

.703 and .320. If μ1 and μ2 denote the means before and after the message,

respectively, test the null hypothesis

H0 : μ1 � μ2 ¼ 0

against the alternative hypothesis

H1 : μ1 � μ2 > 0

Assume that the data can be regarded as independent random samples from the

two populations.

The decision rule is to reject H0 in favor of H1 if

X1 � X2ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

n1
þ s2

2

n2

q > Zα

In this example, �X1¼ .899, s21¼ .247, n1 ¼ 48, �X2¼ .703, s22¼ .320, and n2 ¼ 48,

so

X1 � X2ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

n1
þ s2

2

n2

q ¼ :899� :703ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:247
48

þ :320
48

q ¼ 1:80

6 This example is drawn from a study by Giddy I.H.: Moral Hazard and Central Bank Rescues in an

international context. Financ. Rev. 15(2), 50–60 (1980). Reprinted by permission of the publisher.
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From Table A3 in Appendix A, we find that the value of α corresponding to

zα ¼ 1.80 is .0359. Hence, the null hypothesis can be rejected at all levels of

significance greater than 3.59 %. If the null hypothesis of equality of population

means were true, the probability of observing a sample result as extreme as or more

extreme than that found would be .0359. This is quite strong evidence against the

null hypothesis of equality of these means, suggesting rather a decrease in the mean

risk premium after the “Franklin Message.”

Application 11.3 Analysis of Rates of Return for Retail Firms.7 In their study

aimed at finding early warning signals of business failure, Sharma and Mahajan

(1980) used a random sample of 23 failed retail firms that 3 years before showed a

mean return on assets of .058 and a sample standard deviation .055. An independent

random sample of 23 nonfailed retail firms showed a mean return of .146 and a

standard deviation of .058 for the same period. If μ1 and μ2 denote the population
means for failed and nonfailed firms, respectively, test the null hypothesis

H0 : μ1 � μ2 � 0

against the alternative hypothesis

H1 : μ1 � μ2 < 0

Assume that the two population distributions are normal and have the same

variance.

The decision rule is to reject H0 in favor of H1 if

�X1 � �X2

s
ffiffiffiffiffiffiffiffiffi
n1þn2
n1n2

q <� tv;α

For these data, we have �X1¼ .058, s1 ¼ .055, n1 ¼ 23, �X2¼ .146, s2 ¼ .058, and

n2 ¼ 23. Hence,

s2 ¼ ðn1 � 1Þs21 þ ðn2 � 1Þs22
n1 þ n2 � 2

¼ ð22Þð:055Þ2 þ ð22Þð:058Þ2
23þ 23þ�2

¼ :0031945

so that s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:0031945

p ¼ .0565. Then,

7 This example is taken from Sharma S., Mahajan V.: Early warning indicators of business failure.

J. Mark. 44, 80–89 (1980). Reprinted by permission of the American Marketing Association.
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X1 � X2

s
ffiffiffiffiffiffiffiffiffi
n1þn2
n1n2

q ¼ :058� :146

:0565
ffiffiffiffiffiffiffiffiffiffi
23þ23
23�23

q ¼ �5:282

For a 1 % level test, we have, by interpolation from Table A4, Student’s

t distribution with 44 (23 + 23�2) degrees of freedom, t44,.01 ¼ 2.414. Because

�5.282 is much less than �2.414, the null hypothesis is rejected at α ¼ 1 %. The

data cast considerable doubt on the hypothesis that the population mean return on

assets is at least as large for failed than for nonfailed retail firms.

The test just discussed and illustrated is based on the assumption that the two

population variances are equal. It is also possible to develop tests that are valid

when this assumption does not hold.

Application 11.4 Hypothesis Testing Approach to Interpret the Quality Con-

trol Chart. To use a quality control chart as discussed in Sect. 10.9 is to perform a

statistical test of a hypothesis each time a sample is taken and plotted on the chart.

In general, the null hypothesis H0 is that the process is in control, and the alternative

hypothesis H1 is that the process is out of control. For example, in an �X -chart, to

determine whether the process mean has shifted, we can test the hypothesis

H0 : μ ¼ μ0 versus H1 : μ 6¼ μ0

where μ is the population mean and μ0 is the specified value for μ. This null

hypothesis can be converted into a confidence interval at a specified α value, as

we noted in Sect. 11.5. This confidence interval defines the upper and lower limits

of a control chart.

The �X -chart for Consolidated Auto Supply Company given in Application 10.1

illustrates how a hypothesis testing approach can be used to interpret the quality control

chart. Under the assumption of α ¼ .27 %, UCLX ¼ 10.8210, and LCLX ¼ 10.6132,

it is found that 1 out of 24 sample means is smaller than 10.6132. Because 1
24
¼ 4.17 %

is larger than .27 %, the null hypothesis should be rejected.

Application 11.5 Comparison of Organizational Values at Two Different

Companies. Professor J. M. Liedtka used survey data from two firms, company

A and company B.8 Nine managers from each company were asked to rate the

importance of each of a given list of organizational values on a scale of 1–7.

Table 11.6 gives the ratings ascribed to these values by each company’s managers.

By using the t statistic as indicated in Eqs. 11.17 and 11.18, Liedtka performed a

test. The t-values are indicated in the last column of Table 11.6. From this table, we

see that the managers of company A rated industry leadership most important,

8 Liedtka J.M.: Value congruence: The interplay of individual and organizational value systems.

J. Bus. Ethics 8, 805–815 (1989). Reprinted by permission of Kluwer Academic Publishers.
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followed by reputation of the firm integrity and product quality. The managers of

company B rated profit maximization most important, followed by reputation of the

firm and industry leadership. From the t-values presented in Table 11.6, it is evident
that the ratings of organizational values differed significantly at α ¼ .10 for most of

the items but not for budget stability, organizational growth, and customer service.

11.11 Summary

Using the concepts of statistical distributions and interval estimates, we showed

how these concepts can be employed to test hypotheses about the parameters of a

population. Hypothesis tests for one-tailed and two-tailed tests for both large and

small samples were analyzed in detail. In addition to using the normal and

t distributions for performing hypothesis testing, we discussed the use of the chi-

square distribution to test null hypotheses about the sample variance from a

normally distributed population.

The statistical concepts and methods discussed in the last 11 chapters will be

used in the remaining 10 chapters to conduct further statistical analyses.

Table 11.6 Organizational values at companies A and Ba

Company A Company B

Value Score Standard deviation Score Standard deviation t-value

Industry leadership 6.4 .5 5.6 1.0 �2.3c

Reputation of the firm 6.1 .8 5.9 .6 �.7

Employee welfare 5.0 1.0 3.0 .9 �4.5d

Tolerance for diversity 5.0 .9 3.9 1.4 �2.1b

Service to the general public 3.6 1.9 3.7 .9 .2

Value to the community 3.6 1.8 3.8 1.1 .3

Stability of the organization 5.3 1.2 3.3 1.3 �3.3d

Budget stability 4.3 1.5 4.6 1.3 .3

Organizational growth 5.2 1.6 4.9 1.1 �.5

Profit maximization 5.6 .7 6.7 .5 3.8d

Innovation 5.7 1.3 4.0 1.3 �2.9c

Honesty 5.9 1.1 4.7 1.8 �1.8b

Integrity 6.0 1.1 4.4 2.2 �1.9b

Product quality 6.0 .9 4.0 1.6 �3.3d

Customer service 5.0 1.3 4.0 1.9 �1.3

Average score 5.3 1.2 4.4 1.3

Source: Adapted from Jeanne M. Liedtka (1989), “Value Congruence: The Interplay of Individual

and Organizational Value Systems,” Journal of Business Ethics 8. Reprinted by permission of

Kluwer Academic Publishers.
aScore is based on a Likert Scale of 1 (of lesser importance) to 7 (of greater importance).
bSignificant at alpha of. 10
cSignificant at alpha of .05
dSignificant at alpha of .01
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Questions and Problems

1. For each of the following, test the indicated hypothesis.

(a) n ¼ 16, �x ¼ 1,550, s2 ¼ 12, H0: μ ¼ 1,500, H1: μ > 1,500, α ¼ .01

(b) n ¼ 9, �x ¼ 10.1, s2 ¼ .81, H0: μ ¼ 12, H1: μ 6¼ 12, α ¼ .05

(c) n ¼ 49, �x ¼ 17, s ¼ 1, H0: μ � 18, H1: μ < 18, α ¼ .05

2. The estimated variance based on 4 measurements of a spring tension was .25 g.

The mean was 37 g. Test the hypothesis that the true value is 35 g. Use α ¼ .10

and H1: μ > 35.

3. A population has a variance σ2 of 100. A sample of 25 from this population had

a mean equal to 17. Can we reject H0: μ ¼ 21 in favor of H1: μ 6¼ 21? Let

α ¼ .05.

4. Suppose a sample of 15 rulers from a given supplier has an average length of

12.04 in. and the sample standard deviation is .015 in.. If α is .02, can we

conclude that the average length of the rulers produced by this supplier is 12 in.,

or should we accept H1: μ 6¼ 12.00?

5. The drained weights, in ounces, for a sample of 15 cans of fruit are given

below. At a 5 % level of significance, use MINITAB to test the hypothesis that

on average a 12-oz drained-weight standard is being maintained. Use H1:

μ 6¼ 12.0 as the alternative hypothesis.

12.0 12.1 12.3 12.1 12.2

11.8 12.1 11.9 11.8 12.1

12.4 11.9 12.3 12.4 11.9

6. An advertisement for a brand-name camera stated that the cameras are

inspected and that “60 % are rejected for the slightest imperfections.” To test

this assertion, you observe the inspection of a random selection of 30 cameras

and find that 15 are rejected. Construct a test, using α ¼ .05.

7. A 1984 study indicated that the average yearly housing cost for a family of 4

was $12,983. A random sample of 200 families in a US city resulted in a mean

of $ 14,039 with a standard deviation of $2,129. Is this city’s sample mean

significantly higher than the population mean? Use α–.05.
8. The data entry operation in a large computer department claims that it gives its

customers a turnaround time of 6.0 h or less. To test this claim, one of the

customers took a sample of 36 jobs and found that the sample mean turnaround

time was �x ¼ 6.5 h with a sample standard deviation of s ¼ 1.5 h. Use H0:

μ ¼ 6.0, H1: μ > 6.0, and α ¼ .10 to test the data entry operation’s claim.

9. The following data represent the time, in seconds, that it took the sand in a

sample of timers to run out. At the 10 % significance level, can we conclude

that the mean for timers of this type is not equal to the nominal 3 min?

190 199 198 176 180 174

181 183 208 188 198 165
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(a) Use H1: μ 6¼ 180 as the alternative hypothesis.

(b) Use MINITAB to test (1) H1: μ 6¼ 180 and (2) H1:μ > 180.

10. Independent random samples from normal populations with the same variance

gave the results shown in the following table. Can we conclude that the

difference between the means, μ1–μ2, is less than 5? That is, test H0:

μ1–μ2 � 5 with α ¼ .05.

Sample n Mean Standard deviation

1 15 22 9

2 9 25 7

11. What is hypothesis testing? Why are we interested in hypothesis testing? In

hypothesis testing, is it possible to prove a hypothesis true?

12. What are the types of errors that can be made in hypothesis testing? Which type

of error is generally regarded as more serious?

13. For each of the following pairs of hypotheses, explain what the null hypothesis

should be.

(a) Not guilty versus guilty in a court case.

(b) Cage is safe versus cage is unsafe when testing the safety of lion cages.

(c) New drug is safe to use versus new drug is unsafe when determining

whether the FDA should allow a new arthritis medicine to be sold.

(d) New treatment is safe versus new treatment is unsafe when determining

whether the FDA should allow a new treatment for AIDS to be used.

14. Compare the concepts of interval estimation discussed in Chap. 10 with the

concept of hypothesis testing discussed in this chapter. How are they related?

15. Compare a one-tailed test with a two-tailed test. Give some examples wherein a

one-tailed test is preferable to a two-tailed test. Give some examples wherein a

two-tailed test is preferable to a one-tailed test.

16. Briefly explain what is meant by the power of a test. Why is the power of the

test important?

17. What is a simple hypothesis? What is a composite hypothesis? Give some

examples of a simple hypothesis. Give some examples of a composite

hypothesis.

18. In 1981, the election for governor of the state of New Jersey in which Tom

Kean defeated Jim Florio was so close that Florio demanded a recounting of the

votes. If you were Florio and you were conducting a hypothesis test of who won

the election, what would your null hypothesis be? How would your answer

change if you were Kean?

19. In conducting a hypothesis test, how do we determine the rejection region?

20. Briefly explain why the central limit theorem is important in hypothesis testing.

21. Evaluate the following statement: “If we reject the null hypothesis that μ ¼
μ0 in a two-tailed test, we will also reject it in a one-tailed test (using the

same α).”
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22. Find the critical values for the following standard normal distributions:

(a) Two-tailed test for α ¼ .05

(b) One-tailed test for α ¼ .05

(c) Two-tailed test for α ¼ .01

(d) One-tailed test for α ¼ .01

(e) Two-tailed test for α ¼ .10

(f) One-tailed test for α ¼ .10

23. You are given the information �x ¼ 10, σ ¼ 2, and n ¼ 35. Conduct the

following hypothesis test at the .05 level of significance:

H0 : μ ¼ 0 versus H1 : μ> 0

24. Use the information given in question 23 to test

H0 : μ ¼ 0 versus H1 : μ 6¼ 0

at the .05 level of significance.

25. You are given the information �x ¼ 150, σ ¼ 30, and n ¼ 20. Conduct the

following hypothesis test at the .01 level of significance:

H0: μ ¼ 100 versus H1: μ > 100

26. Use the information given in question 25 to test

H0: μ ¼ 100 versus H1: μ 6¼ 100

at the .01 level of significance.

27. You are given the information �x ¼ 1,050, sx ¼ 250, and n ¼ 20. Conduct the

following hypothesis test at the .10 level of significance:

H0: μ ¼ 1,100 versus H1: μ < 1,100

28. Use the information given in question 27 to test

H0: μ ¼ 1,100 versus H1: μ 6¼ 1,100

at the .10 level of significance.

29. A sample of 100 students in a high school has a sample mean score of 550 on

the math portion of the SAT. Assuming that the sample standard deviation is

75, test, at the .05 level of significance, the hypothesis that the high school’s

mean SAT score is 500 against the alternative hypothesis that the school’s

mean SAT score does not equal 500.

30. Redo question 29, testing H0: μ ¼ 500 against H1: μ > 500.

31. A sample of 20 students in a high school has a sample mean score of 520 on the

English portion of the SAT. If the sample standard deviation is 65, test, at the

.01 level of significance, the hypothesis that the school’s mean SAT score is

equal to 500 against the alternative hypothesis that the school’s mean SAT

score does not equal 500.

32. Redo question 31, substituting the alternative hypothesis H1: μ > 500.

33. Suppose a random sample of 25 people at a local weight-loss center is taken

and the mean weight loss is found to be 12 lb. From past history, the standard
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deviation is known to be 3 lb. Test the hypothesis that the mean weight loss for

all the members of the weight-loss center is 10 lb against the alternative that it

is more than 10 lb. Do the test at the .05 level of significance.

34. Redo question 33, but assume that the standard deviation is not known and that

3 lb represents the sample standard deviation. Do the test at the 5 % level of

significance.

35. A quality control engineer is interested in testing the mean life of a new brand

of light bulbs. A sample of 100 light bulbs is taken, and the sample mean life of

these light bulbs is found to be 1,075 h. Suppose the standard deviation is

known and is 100 h. Use a .05 level of significance to test the hypothesis that

the mean life of the new bulbs is greater than 1,000 h.

36. Suppose that the quality control engineer in question 35 does not know what the

standard deviation is and therefore uses the sample standard deviation. Does

your answer to question 35 change? Why or why not?

37. Suppose that the quality control engineer in question 35 does not know what

the standard deviation is and that this time, he selects a random sample of only

25 light bulbs. Does your answer to question 35 change? Explain.

38. An auditor is interested in the mean value of a company’s accounts receivable.

He randomly samples 200 accounts receivable and finds that the mean accounts

receivable is $231. From past experience, he knows that the standard deviation

is $25. Use a .01 level of significance to test whether the population mean

accounts receivable is different from $200.

39. Use the information given in question 38 to test the hypothesis that the

population mean accounts receivable is greater than $200 at the .05 level of

significance.

40. An investment advisor is interested in determining whether a retirement com-

munity represents a potential clientele base. Of the 2,000 residents, he ran-

domly samples 100 individuals and finds their mean wealth to be $525,000 with

a sample standard deviation of $52,000. Use a .10 level of significance to test

the hypothesis that the mean wealth is greater than $500,000.

41. An automobile manufacturer claims that a new car gets an average of

35 miles per gallon. Assume that the distribution is known to be normal with

a standard deviation of 3.2 miles per gallon. A random sample of 10 cars gives

an average of 35.1 miles per gallon. Test, at the .01 level of significance, the

alternative hypothesis that the population mean is more than 35 miles per

gallon.

42. Use the information given in question 41, except this time assume that

the standard deviation is not known and that 3.2 miles per gallon represents

the sample standard deviation. Again test, at the .01 level of significance,

the alternative hypothesis that the population mean is at least 35 miles per

gallon.

43. An aspirin manufacturer claims that its aspirin stops headaches in less than

30 min. A random sample of 100 people who use the pain killer finds that the

average time it takes to stop a headache is 28.6 min with a sample standard
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deviation of 4.2 min. Test, at the 5 % level of significance, the manufacturer’s

claim that this product stops headaches in less than 30 min.

44. Bob’s SAT preparation service claims that the course it offers enables students

to score an average of 600 or better on the math portion of the SAT. Suppose a

random sample of 25 people taking the course has a mean score of 650 with a

sample standard deviation of 50. Would it be more appropriate to use a one-

tailed or a two-tailed test? Test the company’s claim at the 10 % level of

significance.

45. An advertising company claims that 80 % of stores that use their

advertisements show increased sales. A random sample of 100 stores that

used the company’s advertisements reveals that 80 showed increased sales.

Test, at the 5 % level of significance, whether at least 75 % of stores using the

advertisements had increased sales.

46. Flip a coin 40 times and count the number of heads. Test, at the 5 % level of

significance, whether the proportion of heads is .5.

47. A manufacturer claims that 95 % of its parts are free of defects. A random

sample of 100 parts finds that 92 are free of defects. Test the manufacturer’s

claim at the 1 % level of significance.

48. An investment advisor claims that 70 % of the stocks she recommends will

increase in price. Suppose testing a random sample of 125 stocks she

recommends reveals that 75 have increased in price. Test her claim at the

10 % level of significance.

49. Ed’s bar exam review claims that 90 % of the people who take its review course

pass the bar exam on the first try. A random sample of 500 people who took the

course reveals that 425 passed the bar exam on the first try. Test, at the 5 %

level of significance, the null hypothesis that at least 90 % of those who take the

review course pass the bar exam on the first try.

50. Use the information given in question 49 to test, at the 1 % level of significance,

the null hypothesis that less than 80 % of those who take the course pass the bar

exam on the first try.

51. In a taste test using 400 randomly selected people, 220 preferred a new brand of

coffee to the leading brand. Test, at the 1 % significance level, the alternative

hypothesis that at least 52 % prefer the new brand.

52. A popular commercial states that 4 out of 5 dentists who chew gum prefer

sugarless gum. Suppose a random sample of 100 gum-chewing dentists is taken

and 75 are found to prefer sugarless gum. Test, at the 10 % level of significance,

the null hypothesis that the commercial’s claim is true.

53. A diet center claims that people subscribing to its program lose an average of

4 lb in the first week of the diet. Suppose 25 people in the diet center’s program

are chosen at random and are found to have lost 4.3 lb in the first week with a

sample standard deviation of 1.1 lb. Test, at the 5 % level of significance, the

hypothesis that the mean weight loss is 4 lb.

54. Use the information given in question 53 and test, at the 5 % level of signifi-

cance, the alternative hypothesis that the mean weight loss is at least 4 lb.
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55. Suppose a farmer is interested in testing two fertilizers to see which is more

effective. He uses the two fertilizers and gets the following results.

Fertilizer Mean growth Standard deviation Size of sample

A 7 in. .5 in. 100

B 6 in. .2 in. 125

Test, at the 10 % level of significance, the hypothesis that the mean difference

in growth between the two fertilizers is not significant.

56. A production manager is interested in the number of defects in batches derived

from different production processes. He examines a random sample drawn

from each process and records the following data:

Process Mean defects Standard deviation Size of sample

A 221 25 90

B 300 80 110

Test, at the 1 % level of significance, the hypothesis that the mean difference in

number of defects between the two production processes is not significant.

57. Suppose an attorney specializing in wage discrimination cases is interested in

determining whether the earnings of men and women are significantly differ-

ent. He collects the following data on earnings for a random sample of first-year

accountants:

Sex Mean earnings Standard deviation Size of sample

Female $39,217 $12,210 125

Male $43,121 $17,020 100

Test, at the 5 % level of significance, the hypothesis that the mean earnings of

male and female first-year accountants do not differ significantly.

58. Suppose a political scientist is interested in whether wealth is a determining

factor in the individual’s propensity to vote. A random sample of 500 people

who earned $ 100,000 or more showed that 390 voted, whereas a random

sample of 400 people who earned less than $25,000 showed that 280 voted.

Test, at the 10 % level of significance, the null hypothesis that the two

population voting rates are equal against the alternative hypothesis that the

voting rate is higher for people earning $ 100,000 or more.

59. A mutual fund manager claims that the returns of stocks in her fund have a

variance of no more than .50. A random sample of 25 stocks in her fund has a

sample variance of .72. Assuming that the distribution is normal, test the fund

manager’s claim at the 5 % level of significance.

60. Bob claims that the variance of the score for the people who took the SAT

review course he offers is 100. Fred believes that Bob’s students have a

variance larger than 100. A random sample of 10 of Bob’s students has a

variance of 162. Test Fred’s claim at the 10 % level of significance.
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61. A political science professor believes students majoring in political science are

more likely to vote in elections than students majoring in other disciplines. He

collects the following information from two random samples of students:

Major Proportion voting Number of students

Political science .65 120

Other .62 113

Test, at the 5 % level of significance, this professor’s hypothesis against a two-

sided alternative that the population proportions are equal.

62. An education professor is interested in whether there is any difference between

the proportion of students who have taken a review course that pass the bar

exam and the proportion of those who have not taken a review course that pass

the exam. She collects the following information from a random sample of

students:

Proportion passing Number of students

Review course .55 300

No review course .49 400

Test the hypothesis that the population proportions are equal at the 10 % level

of significance in terms of a two-tailed test.

63. Use the information given in question 62, but this time test the hypothesis that

the proportion of students passing the exam is greater for those who take the

course than for those who do not.

64. The IRS is interested in knowing whether people who have an accountant

prepare their tax returns have fewer errors than people who prepare their own

returns. A random sample of 500 people who had their returns professionally

prepared reveals that 125 had errors. A random sample of 450 returns of people

who prepared their own returns reveals that 128 had errors. Test, at the 1 %

level of significance, the hypothesis that there is no difference between the

number of errors for returns prepared by an accountant and the number of errors

for returns prepared by the individual.

65. Use the information given in question 64 to test, at the 1 % level of significance,

the hypothesis that the number of errors is greater for individuals who prepare

their own returns than for people who have their returns professionally

prepared.

66. A muffler manufacturer claims that the variance of its product is no more than

200. A random sample of 25 mufflers has a sample variance of 391. Assuming a

normal distribution, test the manufacturer’s claim at the 10 % level of

significance.

67. An SAT review course claims that the variance of test scores of its graduates is

less than 150. A random sample of 30 students who took the course is found to

have a variance of 225. Assuming a normal distribution, test the review

course’s claim at the 10 % level of significance.
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68. From past experience, a teacher finds that the variance of midterm test scores is

76. A random sample of 21midterms in her course has a sample variance of 110.

Assuming that the population is distributed normally, test whether the sample

variance is different from the population variance at a 5 % level of significance.

69. Refer to question 4I to find the power of a 10 % level test when the true

population mean mileage is 36 miles per gallon.

70. Referring to question 43, find the power of a 5 % level test when the true

population mean time for headache relief is 35 min.

71. Assume that you’re taking a part-time job in a zoo. You are called upon to

inspect a new cage built to contain a ferocious lion. Do you set up the null

hypothesis that the cage is safe or that the cage is dangerous?

Use the following information to answer questions 72–78. A college professor

gives a test that has 10 true–false questions. Two students take the test. Student

A, who does not know anything about the subject, answers the questions by

tossing a coin. The college professor sets up the following hypothesis, where

p represents the probability that a student gets an answer right.

H0: The students do not know anything (p ¼ .5).

H1: The students know the subject (p > .5).

72. What is the consequence of a Type I error in this question?

73. What is the chance of student A getting exactly 6 correct answers when the null

hypothesis is true?

74. If the professor decides to reject the null hypothesis (that means passing the

student) when the students get eight or more correct answers, what is the

probability of a Type I error?

75. If the professor wants to raise the standard for passing the test to nine or more

correct answers, what is the probability of a Type I error?

76. Student B studies one night before the test, so he knows about 60 % of the

material. What is the probability that this student can pass the test when the

standard for passing is eight correct answers?

77. Plot the OC curve, assuming p ¼ .5, .6, .7, .8, .9, 1.

78. Plot the power curve, assuming p ¼ .5, .6, .7, .8, .9, 1.

79. A poll was done to predict the outcome of the upcoming election. Of the 900

potential voters who responded, 500 plan to vote for the incumbent. If a

candidate needs 50 % of the votes to win the election, can you reject the

hypothesis that the incumbent will win? Do a 5 % level of significance test.

80. On a given trading day, a financial economist randomly examines the stock

prices of 500 companies and discovers that 205 went up and 295 went down.

On this evidence, can he argue that more than 50 % of all the stocks went down

in price? Do a 10 % level of significance test.

81. The head of the accounting department randomly examined some accounting

entries and was upset with the high proportion of incorrect invoices. He

instituted a new system to keep the proportion of bad invoices below 0.1 %.

A year later, 10,000 invoices were randomly examined and six were found to be

incorrect. Can this manager reject the null hypothesis that the proportion of bad

invoices is 0.1 %? Do a 5 % level of significance test.
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82. You are working for a consumer rights organization. You are interested in

knowing whether the milk contained in 16-oz (1-pint) bottles really weighs 16

oz. You do not want to accuse the packer of cheating its customers unless you

obtain convincing evidence. You collect 60 bottles of milk. The average weight

is 15.32, and the standard deviation is 1 oz. Test at a 5 % significance level.

83. You areworking for aVCRmanufacturer. There are three shifts in the plant:morning

shift, evening shift, andmidnight shift. Themanager suspects that themidnight shift’s

productivity is lower than 70 units. He wants to shut down themidnight shift without

causing any labor-management tension. That means he will take that action only

when he has enough evidence. Your responsibility is to test whether the productivity

of the midnight shift is really lower than 70 units. You obtain the production for 100

nights and compute the mean as 68 and the standard deviation as 15. Test at a 5 %

significance level. Propose your suggestion to the manager.

84. A college wants to increase its dormitory facilities to house 60 % of the

students enrolled. In order to make sure that more than 60 % of the students

want to live in the dormitory, the school randomly surveys 400 students and

finds that 255 students intend to live in the dormitory. Can the school reject the

null hypothesis of p ¼ 60 %? Test at a 5 % significance level.

85. A cola company wants to change its formula for producing cola, but first it

wants to make sure that more than 70 % of its customers will like the new cola

better than the old. Two thousand people taste tested the cola, and 1,422 liked

the new product better. Can the company reject the null hypothesis that only

70 % of its customers will like the new cola more? Do a 5 % test.

86. In order to control the job turnover ratio, the personnel department did a survey

and found that out of the 500 employees who were hired in the last year, only

234 stayed. Does that provide enough evidence to support the hypothesis that

the retention ratio is lower than 50 %? Do a 5 % test.

87. An insurance company wants to study the chances that a teenaged driver who

owns a sports car will have an auto accident. Two thousand teenaged

policyholders who own sports cars were sampled in the last year. Fifteen of

them got into an accident and filed a claim for damages. Can the researcher

reject the null hypothesis that less than 1 % of the policyholders got into

accidents last year? Do a 5 % test.

88. A food company claims that its new product, low-fat yogurt, is 99 % fat-free.

The management wants to keep the proportion of bad (not 99 % fat-free)

products below 2 %. Inspectors check 500 cups of yogurt every month. In

September, 20 cups of yogurt were discovered to be bad. Can you reject the null

hypothesis that less than 2 % of the product is bad? Do a 5 % test.

89. A questionnaire was sent to 500 of a dry cleaner’s customers to solicit their

opinions about service received. Twenty-three customers were found to be

unhappy with the service. On this evidence, can you reject the null hypothesis

that more than 10 % of the customers are unhappy? Do a 5 % test.

90. The dean of the school of business wants the proportion of A grades given out by

his faculty members to be around 10 %. He randomly surveys 2,000 students in
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50 classes and finds that of the 2,000 grades given, 198 were A. Can he reject the

null hypothesis that the proportion of A grades is about 10 %? Do a 10 % test.

91. The placement office in a college wants to know whether experience with

personal computers is important in obtaining a job. The placement director

randomly selects 600 job openings and finds that 313 jobs require computer

experience. On this evidence, can he support the hypothesis that more than half

of the jobs in the market today require computer experience? Do a 5 % test.

92. The head accountant in a large corporation conducted a survey last year to

study the proportion of incorrect invoices. Of the 2,000 invoices sampled, 25

were incorrect. To lower the proportion, he instituted a new system. A year

later, he wants to know whether the new system worked. He collects 3,000

invoices and obtains 30 incorrect invoices. Can he argue that his new system

has successfully lowered the proportion of incorrect invoices? Do a 5 % test.

93. A new medicine was invented to treat hay fever, but the new drug was found to

have unpleasant side effects. An experiment on 5,000 women and 4,000 men

showed that 100 women and 60 men suffered side effects after they took the

medicine. Does the evidence support the hypothesis that the drug causes side

effects in more women than men? Test at the 5 % level.

94. A company believed its new toothpaste to have an effect in controlling tooth

decay among children. It randomly selected a group of 400 children and gave

them the new toothpaste. Another 300 children were randomly selected also

and given another brand of toothpaste. It was found that 30 children using the

new toothpaste and 25 children using the other brand suffered tooth decay. Can

the manufacturer legitimately argue that the new toothpaste is more effective in

controlling tooth decay? Do a 5 % test.

95. The PPP cola company wants to determine what age groups like its product. It

surveyed 500 teenagers and 600 middle-aged people and found that 300

teenagers and 350 middle-aged people liked PPP cola. Can the company

conclude that PPP cola is more popular among teenagers than among middle-

aged people? Do a 5 % test.

96. Wood et al. (1979) studied the impact of comprehensive planning on the

financial performance of banks. They used 4 random samples to perform

their study. The sample size n, average annual percent return on owner’s equity
�x, and sample standard deviation s are presented in the table.

Average Annual Percent Return on Net Income

Classification n �x% s

Comprehensive formal planners 26 11.928 3.865

Partial formal planners 6 9.972 7.470

No formal planning system 9 4.936 4.466

Control group 20 2.098 10.834

Source: Wood, D.R., LaForge, R.L.: The impact of comprehensive planning on financial

performance. Acad. Manag. J. 22, 516–526 (1979). Reprinted by permission of the publisher
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(a) Use the data in this table to construct a 90 % confidence interval for the

difference between the mean of the “comprehensive formal planners”

group and that of the “no formal planning system” group.

(b) Perform a hypothesis test at α ¼ 10 %.

97. Professor Preston et al. (1978) studied the effectiveness of bank premiums

(stoneware, calculators) given as an inducement to open bank accounts9. They

randomly selected a sample of 200 accounts each for “premium offered” and

“no premium offered.” They found that 79 % of the accounts opened when a

premium was offered and 89 % of accounts opened when a premium was not

offered were retained over a 6-month period. Use these data to test whether

Px ¼ 79 % is statistically different from Py ¼ 89 %. Do a 5 % test.

98. Use the data in the table to answer the following questions by using MINITAB.

Current ratios for GM and Ford

Year Ford GM

81 1.02 1.09

82 .84 1.13

83 1.05 1.40

84 1.11 1.36

85 1.10 1.09

86 1.18 1.17

87 1.24 1.56

88 1.00 1.00

89 .97 1.72

90 .93 1.37

(a) Test whether the current ratio is equal to 1 for both GM and Ford,

respectively, at α ¼ .05.

(b) Construct a 95 % confidence interval of current ratio for both GM and Ford.

(c) Test whether there is a difference between current ratios of Ford and GM at

α ¼ .05. (Assume that their variances are different.)

(d) Test whether there is a difference between current ratios of Ford and GM at

α ¼ .05. (Assume that their variances are equal.)

99. The result of a random sample of before and after weights of 11 participants in a

weight-loss program is shown in the table to the right. Using MINITAB, test

whether the average weight loss is at least 16 lb at the 5 % significance level.

Weights before and after a weight-loss program

9 Preston R.H., Dwyer F.R., Rudelius W.: The effectiveness of bank premiums. J. Mark. 42(3),

39–101 (1978)
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Before After

187 168

200 177

218 201

205 190

192 170

175 159

191 172

200 185

206 184

231 202

240 215

100. Refer to Table 10.3, in which the sizes of U-bolts by taking samples of 5 every

hour over three shifts from a population with mean μ and standard deviationσ .
In Table 10.3, the means of the 24 samples are also given. By considering the

means of the 24 samples as a random sample from a population with mean μ
and standard deviation σ=

ffiffiffiffiffi
24

p
, test whether the population mean μ is signifi-

cantly deviates from 10 in..

101. A manager claims that the standard deviation in their mean delivery time is

less than 2.5 days. A sample of 25 customers is taken. The average delivery

time in the sample was 4 days with a standard deviation of 1.2 days. Suppose

the delivery times are normally distributed; at 95 % confidence, test the

manager’s claim.

102. A candidate believes that more than 30 % of the citizens will vote for him. A

random sample of 250 citizenswas taken and 101 of them vote for the candidate.

(a) State the null and alternative hypotheses.

(b) Using the critical value approach, test the hypotheses at the α ¼ 1 % level

of significance.

(c) Using the p-value approach, test the hypotheses at the α ¼ 1 % level of

significance.

103. A poll on the preference of two presidential candidates A and B is shown

below.

Candidate Voters surveyed Voters favoring this candidate

A 500 292

B 400 225

At 99 % confidence, test to determine whether or not there is a significant

difference between the preferences for the two candidates.

104. To test whether a bonus plan will improve the monthly sale volume in units,

the monthly sale volumes of six salespersons before and after a bonus plan

were recorded. At 99 % confidence, determine whether the bonus plan has

increased sales significantly.
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Monthly sales

Salesperson After Before

1 94 90

2 82 84

3 90 84

4 76 70

5 79 80

6 85 80

Appendix 1: The Power of a Test, the Power Function,

and the Operating-Characteristic Curve

The main purpose of this appendix is to discuss the power of a test and the power

function. The related concepts of the power curve and the operating-characteristic

curve (OC curve) are also discussed.

The Power of a Test and the Power Function

The power of a test is the probability of rejecting H0 when it is false. The probability

is equal to (1–β), where β denotes the probability of Type II error. Other things

being equal, the greater the power of the test, the better the test. The formula used to

calculate (1–β) can be derived as follows:

Power ¼ 1� β

¼ Pðnull hypothesis rejected when it is falseÞ

¼ P
X � μ0
σX

ffiffiffi
n

p
=

>zα

� �

¼ P X>μ0 þ
zασXffiffiffi

n
p

� �

¼ P
X � μ1
σX

ffiffiffi
n

p
=

>
μ0 � μ1
σX

ffiffiffi
n

p
=

þ zα

� �

¼ P Z>
μ0 � μ1
σX

ffiffiffi
n

p
=

þ zα

� �
ð11:24Þ

where μ1 is the true population mean when the null hypothesis is false.

The functional relationship defined in Eq 11.24 is called the power function. This
power function is derived from the assumption of an upper-tailed test. Similarly, the
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power function in terms of a lower-tailed test can be denned as Eq. 11.25, and

the power in terms of a two-tailed test can be denned as Eq. 11.26:

1� β ¼ P Z<
μ0 � μ1
σX

ffiffiffi
n

p
=

� zα

� �
(11.25)

1� β ¼ P Z>
μ0 � μ1
σX

ffiffiffi
n

p
=

þ zα 2=

� �
þ P Z<

μ0 � μ1
σX

ffiffiffi
n

p
=

� zα 2=

� �
(11.26)

Example 11A.1 Power Function and Type II Error. From Example 11.1,

investigating the average weight of a bag of cat food, we express the two

hypotheses as

H0 : μ ¼ 60

H1 : μ> 60

Using the data for Example 11.1 in the text, we have z.05 ¼ 1.645, n ¼ 100, and

sx ¼ 5. We calculate (1–β) for μ1 ¼ 60, 60.5, 61, 61.5, and 62 in accordance with

Eq. 11.24:

1. μ1 ¼ 60 1� β ¼ P Z>
60� 60

5 10=
þ 1:645

� �
¼ PðZ>1:645Þ
¼ :05

2. μ1 ¼ 60:5 1� β ¼ P Z>
60� 60:5

5 10=
þ 1:645

� �
¼ PðZ>:645Þ
¼ :25945

3. μ1 ¼ 61 1� β ¼ P Z>
60� 61

5 10=
þ 1:645

� �
¼ PðZ>� :355Þ
¼ :6387

4. μ1 ¼ 61:5 1� β ¼ P Z>
60� 61:5

5 10=
þ 1:645

� �
¼ PðZ>� 1:355Þ
¼ :9123

5. μ1 ¼ 62 1� β ¼ P Z>
60� 62

5 10=
þ 1:645

� �
¼ PðZ>� 2:355Þ
¼ :99075
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Using these results for (1–β), we can easily calculate the values of β. Values for
both (1–β) and β are listed in Table 11.7. In Fig. 11.14, we present the relationship

between the power function (1–β) and the probability of Type II error (β). Curve I,
which describes the relationship between (1–β) and μ1, is called the power curve.
It is an increasing function of the value of μ1 . Curve II, which describes the

relationship between β and μ1, is called the operating-characteristic (OC) curve.
The OC curve is a decreasing function of μ1. Overall, the relationship among μ1,

Type II error, and the power of the test can be summarized as follows: the larger the

value of μ1, the smaller the Type II error and the larger the power of the test. As we

will see in the next section, the OC curve is frequently used in statistical quality

control to analyze the risk involved in a sampling plan.

Operating-Characteristic Curve10

In Chap. 10, we constructed quality control charts by using sampling production

process data. To collect sample data for quality control, we need sample plans that

specify the lot size N, the sample size n, and the acceptance/rejection criterion.

Table 11.7 The relationship

among μ1, β1, and (1–β1)
μ1 1–β β

60.0 .05 .95

60.5 .25945 .74055

61.0 .6387 .3613

61.5 .9123 .0877

62.0 .99075 .00925

Fig. 11.14 The power function and the probability of Type II error

10 The material in this section draws heavily on Stevenson W.J.: Production/Operations Manage-

ment, 3rd ed., pp. 829–836. Homewood, irwin), (1990)
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An important feature of a sampling plan is how well it discriminates between lots

of high quality and lots of low quality. The operating-characteristic curve can be

used to describe the ability of a sample plan to differentiate high-quality lots from

low-quality lots.

Acceptance sampling which has been discussed in Sect. 10.8 of Chap. 10 is

frequently the most desirable method for quality control. The inspector takes a

statistically determined random sample and applies a decision rule to determine the

acceptance or rejection of the lot on the basis of the observed number of

nonconforming items. The Type II error and Type I error discussed in this chapter

are bases for the decision rule for statistical quality control. The probability that a

lot containing the lot tolerance percentage defective (LTPD) will be accepted is

known as the consumer’s risk, or beta (β), or a Type II error. The probability that a

lot containing the acceptable quality level (AQL) will be rejected is known as the

producer’s risk, or alpha (α), or a Type I error. Sampling plans are frequently

designed so that they have a producer’s risk of 5 % and a consumer’s risk of 10 %,

although other combinations also are used. Figure 11.15 shows an OC curve with

the AQL, LTPD, producer’s risk (α ¼ 10 %), and consumer’s risk (β ¼ 10 %).

In Fig. 11.15, the horizontal axis represents lot quality (fraction defective) and

the vertical axis represents probability of acceptance lot. We can see from the graph

that a lot with 2 % defectives (the AQL) would have about 90 % probability of

being accepted (and hence α ¼ 1.00�.90 ¼ .10), Similarly, a lot with 17 % defec-

tive (the LTPD) would have about 10 % probability of being accepted (and hence

β ¼ .10).

It is possible to use trial and error to design a plan that will provide selected

values for alpha (α) and beta (β) given the AQL and LTPD. In addition, Eq. 11.2 in

the text can be used to determine the required sample size in a simple-sampling

plan. However, standard references such as government MIU-STD (military stan-

dard) tables are widely used to obtain sample sizes and acceptance criteria for

sample plans.

Example 11A.2 Construction of an OC Curve with Sample Size n ¼ 10 and
Defective Items C ¼ 1. Suppose we want the OC curve for a situation in which a

sample of n ¼ 10 items is drawn from lots containing N ¼ 2,000 items and lots are

accepted if no more than C ¼ 1 defective is found.

The ratio n/N 10/2,000 ¼ .5 %, so it is small enough for us to use the binomial

distribution.11 In this case, n ¼ 10 and C ¼ 1. Table 11.8 presents the probability

of acceptance (β) for 12 different fractions defective (P).
The β values indicated in Table 11.8 are obtained from Table Al in Appendix A.

For example, when n ¼ 10, C ¼ 1, and P ¼ .20, β is calculated as follows:

11 Because the sampling is generally done without replacement, the hypergeometric distribution

would be more appropriate if the ratio n/N exceeded 5 %.

Appendix 1: The Power of a Test, the Power Function. . . 539

http://dx.doi.org/10.1007/978-1-4614-5897-5_10


Fig. 11.15 The AQL indicates “good” lots; LTPD indicates “bad” lots (Source: W. J. Stevenson,

Production/Operations Management, 3rd ed., 1990, p. 833, reprinted by permission of Richard D.

Irwin)

Table 11.8 β for different

fractions defective (n ¼ 10,

C ¼ 1)

Fraction

defective (P) Probability of acceptance (β)

.05 .9139

.10 .7361

.15 .5443

.20 .3758

.25 .2440

.30 .1493

.35 .0860

.40 .0464

.45 .0233

.50 .0107

.55 .0045

.60 .0017
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10

0

 !
ð:20Þ0ð1� :2Þ10 þ 10

1

 !
ð:20Þ1ð1� :20Þ10�1 ¼ :1074þ :2684 ¼ :3758

By plotting all 12 different β values on a graph and connecting them, we get the

OC curve shown in Fig. 11.16.

In theoretical statistics, only the power curve is generally considered. But in

practical statistics, in certain types of problems, the OC curve is much easier to

interpret for practical purposes such as quality control. Hence, the OC curve has

been extensively used in quality control.

Up to this point, we have investigated the power function when the sample size is

fixed. If sample size increases, then σX=
ffiffiffi
n

p
will decrease and the absolute value of

ðμ0�μ1Þ
σX=

ffiffi
n

p will increase. From Eqs. 11.24, 11.25, and 11.26, it is obvious that the power

(1–β) increases. When n > 20 and p < .05, the Poisson distribution is useful in

constructing OC curves for proportions. In effect, the Poisson distribution can be

used to approximate the binomial distribution which has been discussed in Sect. 6.7

of Chap. 6.

Fig. 11.16 OC curve for n ¼ 10, c ¼ 1 (Source: W. J. Stevenson, Production/Operations
Management, 3rd ed., 1990, p. 835, reprinted by permission of Richard D. Irwin.)
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A key aspect of an acceptance sampling plan is to offer protection, both to the

consumer (who doesn’t want to accept a bad lot) and to the producer/vendor (who

doesn’t want a good lot to be rejected). In this appendix, we have defined

α ¼ producer’s risk ¼ probability of rejecting product of acceptable quality

β ¼ consumer’s risk ¼ probability of accepting product of unacceptable quality

For a given sampling plan, the corresponding OC curve provides a value for the

consumer’s risk for each specified value of product quality (the proportion

nonconforming). In Example 11A.2, the consumer will have a 37.58 % risk of

accepting a lot containing 20 % nonconforming parts using that particular sampling

plan. One option for the producer is to negotiate with the consumer for an accept-

able quality level (AQL) that allows for a high chance of accepting a lot containing

a low percentage of nonconforming parts.

It becomes clear that there is no one sampling plan that best fits all situations.

Both the producer and the consumer want a plan that assures good quality yet

preserves their individual interests. It is therefore appropriate to give careful

consideration to the family of OC curves in the selection of a sampling plan.
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12.1 Introduction

Both w2 and F distributions and their related testing statistics have been discussed in

detail in the last three chapters. In this chapter, we will talk about how these two

distributions can be used to do data analysis involving the means or the proportions

of more than two populations. In other words, we will develop an understanding of

(1) a technique known as analysis of variance (ANOVA), which enables us to test

the significance of the differences among sample means in terms of an F distribu-

tion and (2) tests of goodness of fit and independence in an w2 distribution. The

ANOVA is used to test the equality of more than two population means. The

goodness-of-fit test is used to test the equality of more than two population

proportions or to assess the appropriateness of a distribution. The test of indepen-

dence determines whether the differences among several sample proportions are

significant or are instead likely to be due to chance alone.

First, we consider a one-way ANOVA model that has only one factor (charac-
teristic) with several groups, such as different years of work experience or different

types of tires. Then we explore both simple and simultaneous confidence intervals.

Two-way analysis of variance with a single observation and more than one obser-

vation per cell is discussed in detail, as are tests of goodness of fit and indepen-

dence. Finally, we consider applications of analysis of variance in business.

12.2 One-Way Analysis of Variance

In the analysis of variance, the F statistic is used to test whether the means of two or

more groups are significantly different. It operates by breaking down the variance of

the two or more populations into components. These components are then used to

construct the sample statistic—hence, the term analysis of variance. TheANOVA can

be used to analyze certain decisions, such as whether some products sell better when

placed in certain sections of stores (e.g., as point-of-purchase, or impulse, sales),

whether advertising is more effective in selling some products than in selling others,

whether some employees are more motivated by some incentives than by others,

and whether technology is variously effective in different workplaces. Furthermore,

an accountant can use this technique to test whether the mean value of one set of

sample accounts receivable is significantly different from another set or other sets.

The groups of data used to do the analysis of variance can be defined in terms of

a single basis of classification (location, design, region, company, or the like) or by

a dual classification. An ANOVA based on group data that are defined by a single

classification is called one-way ANOVA. An ANOVA based on group data that are

defined by a dual classification is called two-way ANOVA. In principle, both one-

way and two-way analyses of variance are used to find out whether the means of all

the populations considered are equal to one another.
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12.2.1 Defining One-Way ANOVA

Suppose we want to test whether number of years of work experience since

graduation has an effect on beginning salary for economics majors. The three

treatments (or groups) are:

Treatment 1: Bachelor’s degree with no work experience

Treatment 2: Bachelor’s degree with 1 year of work experience

Treatment 3: Bachelor’s degree with 2 years of work experience

We also assume that each student in this sample graduated from Rutgers

University and specialized in labor economics. In order to simplify the necessary

computations, we have restricted this to a random sample of only 12 observations—

three samples (of four graduates) from each of the combinations. (A larger sample

size would yield more convincing results.) Table 12.1 gives the 12 sample salaries,

along with the respective means for the three treatments.

Let’s consider individually the notations enclosed in parentheses in Table 12.1.

There are four rows and three columns in Table 12.1. Salary observations in this table

are represented by xij, where i stands for the number of rows (students) and j the
number of columns (treatments). There are a total of n � m observations in the table;

in this case, 4 � 3 ¼ 12. For example, x32 denotes the salary of the third student who
has 2 years of work experience. In this problem, different years of work experience

are indicated in the columns of the table, and interest centers on the differences among

salaries in the three columns. This is typical of one-factor (or one-way) analysis of
variance, in which an attempt is made to assess the effect of only one factor (in this

case, years of work experience) on the observations. Here we denote the values in the

columns as xi1, xi2, and xi3 and the totals of these columns as Sixi1, Sixi2, and ∑ixi3.
The subscript i under the summation signs indicates that the total of each column is

obtained by summing the entries over the rows. We will refer to the means of the

columns as �x1, �x2, and �x3, or, in general, as �xj:Finally, we denote the overall mean as �x;
where �x is the mean of all observations.

12.2.2 Specifying the Hypotheses

As stated earlier, we want to test whether the combination of a Bachelor’s degree

with 3 different levels of work experience affects beginning salaries. From

Table 12.1, we calculated the following mean salaries of graduates from the three

combinations: �x1 ¼ $17, �x2 ¼ $20, and �x3 ¼ $23. Also included in the table is an

overall average of the 12 graduates, �x ¼ $20, which is referred to as the overall
mean. Hence, we want to test whether these three sample means were drawn from

populations that have identical means. In other words, we want to test the following

null hypothesis:
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H0 : m1 ¼ m2 ¼ m3 ð12:1Þ

against the alternative hypothesis

H1: At least two population means are not equal.

Thus, we are testing whether the differences between the sample means are too

large to be attributed solely to chance. If the test results indicate that the sample

means are significantly different, then we can conclude that different years of work

experience have an impact on beginning salaries. Note that we make inferences

concerning the means of more than two populations here.

12.2.3 Generalizing the One-Way ANOVA

Table 12.1 can be generalized to resemble Table 12.2, where we see n observations
and m populations. Here, each of the m populations is a treatment. Table 12.2

illustrates how we initially set up a generalized matrix to perform the one-way

analysis of variance. Here, the top row indicates that we will be testing the equality

of m different means. Within each column, there are n individual samples taken

from each of the m treatments. In developing the one-way ANOVA model, our

purpose is to specify the underlying relationships among the various treatments.

Hence, the first step is to calculate the sample means from the random observations

taken from each of the m treatments. That is,

�xj ¼
Pnj
i¼1

xij

nj
; j ¼ 1; . . . ;m ð12:2Þ

Table 12.1 Salaries of 12 graduates with varying work experience (in thousands of dollars)

Student (i)

Years of work experience (j)

1(xi1) 2(xi2) 3 (xi3)

1 16 (x11) 19 (x12) 24 (x13)

2 2l (x21) 20 (x22) 2l (x23)

3 I8 (x3l) 21 (x32) 22 (x33)

4 I3 (x4l) 20 (x42) 25 (x43)

Total
P
i

xij

� �
68

P
i

xi1

� �
80

P
i

xi2

� �
92

P
i

xi3

� �
Mean ð�xjÞ 17 ð�x1Þ 20 (�x2) 23 (�x3)

Overall mean �x ¼
X3
j¼1

�xj=3

¼ $17þ $20þ $23ð Þ=3 ¼ $20
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where

�xj — sample mean for the jth treatment

xij — ith sample observation for the jth treatment

nj — number of sample observations in the jth treatment

As we have noted, the null hypothesis specifies that all of the j treatments have

identical means. Thus, the next step in our analysis is to obtain an estimate of a

common mean, which we will call the global mean. The global mean, or overall
mean, is the summation of the individual sample observations divided by the

number of total observations. Stated formally,

�x ¼

Pm
j¼1

Pnj
i¼1

xij

n
ð12:3Þ

where

�x ¼ global mean

n ¼
Xm
j¼1

nj

and variables xij and nj have the same meaning as in Eq. 12.2. Alternatively, we can

restate the overall mean as

�x ¼

Pm
j¼1

nj�xj

n
ð12:4Þ

Table 12.2 General notation

corresponding to Table 12.1
Observation (i)

Population (j)

1 2 3 . . . m

1 x11 x12 x13 . . . x1m
2 x21
3

4

⋮
n xn1 xn2 xn3 . . . xnm
Total ∑i xi1 ∑i xi2 ∑i xi3 ∑i xim
Mean �x1 �x2 �x3 �xm
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To test the null hypothesis that the treatment means are equal, we need to assess

two measures of variability. First, we are interested in the variability of the sample

within each treatment. This classification of variability is called within-group
variability. We are also interested in the variability between the m treatments,

which is called between-groups variability. From our sample data, we can obtain

measures of both.

12.2.4 Between-Treatments and Within-Treatment Sums
of Squares

The aforementioned concepts are illustrated graphically in Fig. 12.1. When sample

data are combined, they appear to be observations from a single population with

high dispersion, as shown in part (a). But when each treatment is viewed separately,

these salary figures appear to belong to three separate populations with a smaller

Fig. 12.1 Distributions for ANOVA: (a) Sample data combined, (b) each treatment viewed

separately, (c) the assumption the null hypothesis makes
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variance, as indicated in part (b). Under the null hypothesis, the treatment

populations have identical frequencies, as shown in part (c).

The term variation refers to the sum of squared deviations, which is also called

the sum of squares. We begin our analysis of variance by measuring the variation

between the treatment means. The calculation is

SST ¼
Xm
j

nj �xj � �x
� �2 ð12:5Þ

where

SST ¼ between-treatments sum of squares (between-groups variability)

nj ¼ sample size of treatment j
�xj ¼ sample mean of the jth treatment

�x ¼ overall mean

Table 12.3 illustrates calculation of the between-treatments variation for the data

given in Table 12.1.

Substituting all squared-deviation values given in Table 12.3 into Eq. 12.5, we

obtain the between-treatments sum of squares as follows:

X3
j¼1

nj �xj � �x
� �2 ¼ 4ð9Þþ 4ð0Þ þ 4ð9Þ

¼ 72

Again, this measure of variability may specify why treatment means are

different.

On the other hand, the within-treatment variability specifies the treatment effect.

That is, the within-treatment sum of squares indicates the unexplained variability

that is due to the random sampling process. The calculation is

SSW ¼
Xm
j¼1

Xnj
i¼1

ðxij � �xjÞ2 ð12:6Þ

where

SSW ¼ within-treatment sum of squares (within-group variability)

�xij ¼ value of the observation in the ith row and the jth column

�xj ¼ mean of the jth treatment

Calculation of the within-treatment sum of squares is illustrated in Table 12.4.
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The between-treatments variation and within-treatment variation together repre-

sent the total variation of the ANOVA model. We calculate the total variation by

summing the squared deviations of individual observations about the global mean.

Formally, the total sum of squares can be written as

TSS ¼
Xm
j¼1

Xnj
i¼1

xij � �x
� �2 ð12:7Þ

where

TSS ¼ total sum of squares

xij ¼ value of the observation in the ith row and the jth column
�x ¼ overall mean

We obtain the within-treatment sum of squares by substituting all squared-

deviation values given in Table 12.4 into Eq. 12.6.

SSW ¼
Xm
j¼1

Xnj
i¼1

xij � �xj
� �2 ¼ 34þ 2þ 10

¼ 46

To put it more simply, we find the total sum of squares by adding the between-

treatments variation to the within-treatment variation.

TSS ¼ SSTþ SSW

¼ 72þ 46

¼ 118

Even though the test of the null hypothesis for the one-way analysis of variance

involves only between-treatments and within-treatment variation, it is useful to

understand the relationship between total variation and its components.

Table 12.3 Worksheet for

calculating between-

treatments sum of squares

n1(�x1��x)2 ¼ 4(17–20)2 ¼ 36

n2(�x2��x)2 ¼ 4(20–20)2 ¼ 0

n3(�x3��x)2 ¼ 4(23–20)2 ¼ 36

Table 12.4 Worksheet for

calculating within-treatment

sum of squares

Treatment 1 Treatment 2 Treatment 3

(16–17)2 ¼ 1 (19–20)2 ¼ 1 (24–23)2 ¼ 1

(21–17)2 ¼ 16 (20–20)2 ¼ 0 (21–23)2 ¼ 4

(18–17)2 ¼ 1 (21–20)2 ¼ 1 (22–22)2 ¼ 1

(13–17)2 ¼ 16
34

(20–20)2 ¼ 0
2

(25–23)2 ¼ 4
10
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12.2.5 Between-Treatments and Within-Treatment Mean Squares

The number of degrees of freedom associated with the between-treatments variation

is (m–1). That is, because there arem treatments, orm samplemeans, there arem sums

of squares used to measure the variation of these sample means around the overall

mean. The overall mean is the only estimate of the population mean, so 1 degree of

freedom is lost. Thus, in our example, which consists of three treatments, there are

3�1 ¼ 2 degree of freedom associated with the between-treatments mean square.

The number of degrees of freedom associated with the within-treatment variation

is (n–m). Because there are n n ¼Pm
j¼1 nj

� �
observations, there are m sums of

squares used to measure the within-treatment variation, with each deviation taken

around its respective treatment mean. There arem treatment means, each an estimate

of its respective population, so there is a loss of m degrees of freedom. Hence, in our

example, which contains 12 observations and three treatment means, there are

12�3 ¼ 9 degree of freedom associated with the within-treatment mean square.

Again, the test of the null hypothesis is based on the assumption that all the m
treatments have a common variance. If the null hypothesis is in fact true, then SST

and SSW can be used as a basis for an estimate of a common variance. To calculate

these estimates, we can now divide each of the variability measures by its number

of degrees of freedom. Hence, the unbiased estimate of the between-treatments
mean square can be obtained by dividing SST by (m–1) degrees of freedom:

MST ¼ SST= m� 1ð Þ

where

MST ¼ between-treatmentsmean square varianceð Þ

In our example, the between-treatments mean square is MST ¼ 72/2 ¼ 36.

Similarly, an unbiased estimate of the within-treatment mean square is found by

dividing SSW by (n–m) degrees of freedom:

MSW ¼ SSW= n� mð Þ

where

MSW ¼ within-treatmentmean square varianceð Þ

In our example, the within-treatment mean square is MSW ¼ 46/9 ¼ 5.111.

We test the null hypothesis that the population treatment means are equal by

comparing the between-treatments mean square with the within-treatment

mean square.
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12.2.6 The Test Statistic

Comparison of the between-treatments mean square with the within-treatment

mean square is performed by computing a ratio:

F ¼ MST=MSWð Þ ð12:8Þ

If the null hypothesis that the population treatment means are equal were true,

the ratio given in Eq. 12.8 would tend to equal 1. Alternatively, if the null

hypothesis were not true, the ratio would be greater than 1 (MST generally cannot

be smaller than MSW), which implies that the treatment means do differ because

the between-treatments variance exceeds the within-treatment variance. In the

context of our example, this would imply that different amounts of work experience

do have an impact on starting salaries for graduates. The ratio for our example can

be calculated as F ¼ 36/5.111 ¼ 7.04.

From this calculation, it appears that we can reject the null hypothesis that the

population treatment means are equal. But first we need to determine how large the

ratio must be in order for us to reject the null hypothesis. To do this, we must refer

to the probability distribution of the F-distributed random variable discussed in

Chap. 9 (the F distribution) and to the F table given as Table A6 in Appendix A at

the end of the book. For our purposes, we will test the null hypothesis that the

population treatment means are equal at the .05 level of significance. We refer to the

F random variable as Fv1,v2,a, where v1 ¼ (m–1) is the between-treatments degrees

of freedom, v2 ¼ (n – m) is the within-treatment degrees of freedom, and a is the

level of significance. When the null hypothesis is true, the F variable in Eq. 12.8 is

distributed as Fv1,v2. From Table A6, we find that the critical value at the 5 % level

of significance is

F2;9;:05 ¼ 4:26

Thus, if the F ratio calculated for our example is greater than the critical

value, then we can reject the null hypothesis that the population treatment means

are equal. On the other hand, if the F ratio we calculate is less than the critical

value, then we must accept the null hypothesis that the population treatment

means are equal. Our sample F ratio, 7.04, is greater than the critical value, 4.26,

so the null hypothesis is rejected at the .05 level of significance. We can

conclude that the treatment means are significantly different. That is, work

experience does affect starting salaries for graduates. A summary of this analysis

of variance appears in Table 12.5, and Fig. 12.2 presents MINITAB output

related to Table 12.5.
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12.2.7 Population Model for One-Way ANOVA

The one-factor ANOVA model discussed in this section can also be described in a

different type of specification. Let the random variable Xij denote the ith observa-

tion from the jth population, and let mj denote the mean of this population. In

addition, let m denote the overall mean of m combined populations.

Then the population model for ANOVA states that any value xij is the sum of the

grand mean m, the treatment effect tj, and the random error. In symbols, the one-

factor ANOVA model is

Xij ¼ mþ tj þ eij
¼ mþ mj � m

� �þ Xij � mj
� � ð12:9Þ

Table 12.5 Summary of one-way ANOVA table

(1) Source of variation (2) Sum of squares (3) Degrees of freedom (4) Mean square

Between-treatments 72 (SST) 2 (m � 1) 36 (MST)

Within-treatment 46 (SSW) 9 (n � m) 5.111 (MSW)

F2;9 ¼ 36
5:111 ¼ 7:04

F2:9;:05 ¼ 4:26

Fig. 12.2 MINITAB output for Table 12.5
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where

Xij ¼ value of the dependent variable in the ith row and the jth column; this is the

variable under investigation

mj ¼ mean of the jth column; this is the average value for the jth treatment.

mj ¼ m + tj
m ¼ grand mean; this is the mean of all the column means

tj ¼ treatment effect for the jth column, defined as (mj–m); this is the difference

between a column mean and the grand mean. The value of tj indicates how
much effect a particular treatment has on the grand mean, tj ¼ mj–m

єij ¼ random error associated with Xij, defined as the difference between Xij and mj.
This is the amount by which a particular value of the dependent variable

differs from the mean of all values in that column. єij ¼ Xij–mj

By using the model of Eq. 12.9, we can redefine the null hypothesis defined in

Eq. 12.1 as Eq. 12.1. Then our null hypothesis is that every population mean mj is
the same as the overall mean m.

H0 : t1 ¼ t2 ¼ t3 ¼ 0 ð12:10Þ

where tj ¼ mj–m (j ¼ 1, 2, 3).

12.3 Simple and Simultaneous Confidence Intervals

In the salary study we have examined in this chapter, the analysis of variance was

used to determine whether there was a difference in average salary among workers

with different numbers of years of work experience. Once differences in the means

of the groups are found, however, it is important to determine which particular

groups are different. In other words, we are interested in establishing a confidence

interval for the difference between two population means.

12.3.1 Simple Comparison

To compare the differences of the population means of group 1 and group 2, we can

construct a confidence interval for (m1–m2) by using our estimates ðX1�X2Þ as

discussed in Chaps. 10 and 11. Formally, the (1–a) percent confidence interval for
m1–m2 is

X1 � X2

� �� ta=2;ðn�mÞSp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

r
ð12:11Þ
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where

m1, m2 ¼ population means for treatments 1 and 2, respectively

�X1; �X2 ¼ sample means for treatments 1 and 2, respectively

ta=2; n�mð Þ ¼ t statistic at the a/2 level of significance with (n–m) degrees of freedom

S2p ¼ SSW/(n–m), the within-treatment mean square, where SSW has been defined

in Eq. 12.6

n1, n2 ¼ number of observations for treatments 1 and 2, respectively.

Hence, our pooled variance from the three treatments is calculated as follows:

S2p ¼
1

n� mð Þ SSWð Þ ¼ 1

9
34þ 2þ 10ð Þ

¼ 5:111

and the pooled standard deviation is Sp ¼
ffiffiffiffiffi
S2p

q
¼ ffiffiffiffiffiffiffiffiffiffiffi

5:111
p ¼ 2:261: As we noted

earlier for the within-treatment variation, the pooled standard deviation has

(n–m), or 9, degrees of freedom. From Table A4 in Appendix A, we have

t.025,9 ¼ 2.262. Therefore, according to Eq. 12.11, a 95 % confidence interval

for the difference of the population means for treatments 1 and 2 can be deter-

mined as follows:

17� 20ð Þ � 2:262ð Þ 2:261ð Þ:
ffiffiffiffiffiffiffiffiffiffiffi
1

4
þ 1

4

r !
¼ �3� 3:616 or �6:616,þ :616ð Þ

Thus, we conclude that the mean salary for treatment 2 is approximately

between $6,616 higher and $616 less than that for treatment 1.

Accordingly, for our example, the 95 % confidence intervals for the difference

between two population treatment means are

17� 20ð Þ � 3:616<m1 � m2< 17� 20ð Þ þ 3:616; or �6:616,þ :616ð Þ
17� 23ð Þ � 3:616<m1 � m3< 17� 23ð Þ þ 3:616; or �9:616,� 2:384ð Þ
20� 23ð Þ � 3:616<m2 � m3< 20� 23ð Þ þ 3:616; or �6:616,þ :616ð Þ

Note that each confidence interval has the same width. This is due to the fact that

each interval contains the pooled variance and each treatment contains the same

number of observations. Also note that not all 3 intervals overlap zero.

There is one problem with this approach. Although we may be 95 % confident of

the individual intervals listed, we are less confident that the whole system of intervals
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is true. The problem we face is to determine a simultaneous confidence level for the

whole system given that the intervals are independent (all have the same Sp). We can

achieve this goal by using Scheffé’s multiple comparison.

12.3.2 Scheffé’s Multiple Comparison

The problem we have just posed can be restated as determining howmuch wider the

intervals must become in order for each interval simultaneously to yield a (1–a)
percent level of confidence. This can be done by employing Scheffé’s multiple
comparison. For the 95 % confidence interval for the difference between the

population means for treatment 1 and treatment 2, Scheffé’s multiple comparison

formula1 is

X1 � X2

� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 1ð Þ Fa;m�1;n�m

� �
S2p

� �r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

r
ð12:12Þ

where

Fa,m–1,n–m ¼ critical value of F with (m–1) and (n–m) degrees of freedom at the a
level of significance

m ¼ number of the means to be compared

n1, n2 ¼ number of observations for combination 1 and combination 2, respectively

Sp ¼ sample standard deviation pooled from all samples

From Table A6, we have F.05,2,9 ¼ 4.26. Then, at a 95 % level of confidence,

17� 20ð Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 4:26ð Þ 2:261ð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

� �
þ 1

4

� �s
¼�3� 2:919ð Þ 2:261ð Þ :707ð Þ

¼�3� 4:666; or �7:666,þ 1:666ð Þ

For the entire system, we have

�7:666<m1 � m2<þ 1:666

�10:666<m1 � m3<� 1:334

�7:666<m2 � m3<þ 1:666

1 See H. Scheffé(l959), The Analysis of Variance (New York: Wiley). This method has been

adjusted for the number of means to be compared. This is the simplest case of Scheffé’s multiple

comparison.
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As we expected, the increased width of each interval now makes us 95 %

confident that all the foregoing statements are simultaneously true. Again, not all

3 intervals overlap zero; only the second null hypothesis should be rejected.

12.4 Two-Way ANOVA with One Observation in Each Cell,

Randomized Blocks

In this section, we extend one-way ANOVA to two-way ANOVA. We discuss first

the case of two-way ANOVA with one observation per cell, then the case of two-

way ANOVA with more than one observation per cell.

12.4.1 Basic Concept

This section offers a more in-depth interpretation of ANOVA technique. In the

example we have been using, our primary interest focused on a single aspect of the

one-way analysis of variance (years of work experience), but it is possible that

another factor also affects the outcome. In the one-way analysis of variance, we

concluded that number of years of work experience had a significant impact on

starting salary. However, we may suspect that some of the variability of the model

is due to the geographic location of the job. Hence, we now want not only to look at

treatment effects of number of years of work experience but also to isolate the

impact of geographic location on the starting salaries of the graduates. By setting up

a two-way ANOVA problem, we want to design a more accurate test to explain the

differences in the mean population of the various treatments.

Our new model must be constructed in such a way as to test for the influence that

a second factor may have on the starting salaries. Using the data from Table 12.6,

we will have the 4 rows represent 4 geographic locations in the United States.

Hence, we will be able to acquire information about the various years of work

experience as well as information about the geographic location of the job. This

new factor in our analysis is called a blocking variable. To simplify our analysis, the

blocks will contain only a single observation per cell. Thus, as in our one-way

ANOVA problem, we will use only the 12 observations from Table 12.6. Each of

the four rows will represent a geographic location.

Row 1: West Row 3: Northeast

Row 2: Midwest Row 4: South

Table 12.6 illustrates how to set up the two-way analysis of variance. The salary

data of Table 12.6 are identical to those of Table 12.1. However, in Table 12.6, we

interpret 4 students’ salaries within each column, representing salaries from 4
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different geographic regions. Therefore, different locations (regions) constitute an

additional factor.

12.4.2 Specifying the Hypotheses

Our purpose is to test the following two hypotheses:

1. H0: Population mean salaries among various years of work experience are equal.

2. H0: Population mean salaries among various geographic locations are equal.

Again, the alternative hypotheses are that the mean population values are not

equal.

12.4.3 Between and Residual Sum of Squares

The necessary calculations for the two-way analysis of variance are:

SST ¼ between-treatments sum of squares

SSB ¼ between-blocks sum of squares

TSS ¼ total sum of squares

SSE ¼ error sum of squares

Here treatments and blocks represent different years of work experience and

different locations, respectively.2

From the one-way analysis of variance, we have already calculated SST

(Table 12.3), SSW (Table 12.4), and TSS. The next step is to calculate the

Table 12.6 Salaries of 12 students with varying work experience in 4 different geographic

locations (in thousands of dollars)

Region

Years of work Experience

Row sums Row means1 2 3

1 16 19 24 59 19.667

2 21 20 21 62 20.667

3 18 21 22 61 20.333

4 13 20 25 58 19.333

Column sums 68 80 92 240

Column means 17 20 23

Global mean �x ¼ 20

2Alternatively, we can use levels of factors (treatments) A and B to represent different years of

work and different locations.
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between-blocks (between-rows) sum of squares. In this case, the observation can be

represented by xijk. The subscripts i, j, and k represent the kth salary observation in

the ith row and the jth column. Then the between-rows sum of squares can be

defined as

SSB ¼
XI
i¼1

JK �xi: � �xð Þ2 ð12:13Þ

where

SSB ¼ between-blocks sum of squares

�xi:: ¼ samplemean of the ith row ¼

PJ
j¼1

xij:

JK

�x ¼ overall mean

Table 12.7 illustrates calculation of the between-blocks sum of squares for our

example.

The between-treatments (between columns) sum of squares can be defined as

SST ¼
XJ
j¼1

IK �x:j: � �x
� �2 ð12:14Þ

where

SST ¼ between-treatments sum of squares

�x:j: ¼ samplemean of the jth column ¼
PI
i¼1

xij:

IK

�x ¼ over all mean

From Table 12.3, we have SST ¼ 72.

Finally, because TSS ¼ SST þ SSB þ SSE, the residual sum of squares is

calculated as follows:

SSE ¼ TSS� SST� SSB ¼
XI
i¼1

XJ
j¼1

xijk � �xi � �xj þ �x
� �2 ð12:15Þ
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Hence, SSE ¼ 118�72�3.336 ¼ 42.664.

Before we can proceed with the test of our hypotheses, we must determine how

many degrees of freedom are associated with the between-blocks variation and the

residual variation.

The number of degrees of freedom associatedwith the between-blocks variation is

(I–1). That is, because there are I blocks, or I sample factormeans, there are n sums of

squares used to measure the variation of these sample means around the global mean.

The global mean is again the only estimate of the population mean, so 1 degree of

freedom is lost. Thus, for our example, which consists of 4 levels of the block, there

are 4�1 ¼ 3 degree of freedom associated with the between-blocks sum of squares.

12.4.4 Between Variance, Error Variance, and F-Test

The number of degrees of freedom associated with the residual variation is (J–1)
(I–1). In this instance, the residual variation takes into account both the variation

between the treatments and the variation between the blocks. Hence, we must adjust

the residual variation by the degrees of freedom associated with both the between-

treatments degrees of freedom and the between-blocks degrees of freedom. Thus,

for our example, the number of degrees of freedom associated with the residual

variation is (2)(3) ¼ 6.

Now we can obtain unbiased estimates of the between-blocks variance and the

residual variance. The between-blocks variance is calculated as follows:

MSB ¼ SSB

I � 1ð Þ ¼
3:336

3
¼ 1:112

Analogously, the residual variance is

MSE ¼ SSE

J � 1ð Þ I � 1ð Þ ¼
42:664

6
¼ 7:111

To test our null hypothesis about the influence of various years of work experi-

ence, we must calculate the F ratio.

F 2; 6ð Þ ¼ MST

MSE
¼ 36

7:111
¼ 5:063

Table 12.7 Between-blocks

sum of squares
(J)(�x1��x) ¼ (3)(19.667�20)2 ¼ .333

(J)(�x2��x) ¼ (3)(20.667�20)2 ¼ 1.335

(J)(�x3��x) ¼ (3)(20.333�20)2 ¼ .333

(J)(�x4��x) ¼ (3)(19.333�20)2 ¼ 1.335

SSB ¼ 3.336
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The critical value associated with this test is 5.14 (F2,6,.05), from Table A6 in

Appendix A at the end of the book. Because the F ratio is less than the critical value,

we cannot reject the null hypothesis that there is no difference between the

population means of salaries associated with various years of work experience.

In testing the null hypothesis for the influence of geographic location on salaries,

we find that the F ratio is

F 3; 6ð Þ ¼ MSB

MSE
¼ 1:112

7:111
¼ :156

The critical value associated with this test is 4.76 (F 3,6,.05), from Table A5.

Again we cannot reject the null hypothesis that the population means of salaries

associated with geographic location are equal.

In conclusion, having accepted both hypotheses, we can state that there are no

significant differences among various years of work experience or among various

geographic locations in the effect they have on starting salaries for graduates. Note

that the effect of work experience obtained from two-way ANOVA is different

from that of one-way discussed in Sect. 12.2. Table 12.8 summarizes the data for

the two-way analysis of variance. The MINITAB output of Table 12.8 is presented

in Fig. 12.3.

Because F2,6 ¼ 5.06 < 5.14, we conclude that the null hypothesis cannot be

rejected. In other words, different years of work experience do not affect starting

salary. Similarly, F3,6 ¼ .156 < 4.76, so we should conclude that no salary

differences exist among different regions. This is a good illustration of the fact

that MSB is generally smaller than MSE when the null hypothesis is true.

For the two-factor model, we use three subscripts. As in the one-factor model,

the letter j represents column treatments and runs from 1 to J. The letter i represents
row treatments and runs from 1 to I. The letter k represents the number of the

observations in a cell and runs from 1 to K.

12.4.5 Population Model for Two-Way ANOVA with One
Observation in Each Cell

Following Eq. 12.9 and assuming there is no interaction between treatment and

block, we can construct a population model for two-way ANOVA without interac-

tion. It is

Xijk ¼ mþ tj þ li þ eijk ð12:16Þ

where

Xijk ¼ kth population value in the jth column and the ith row

mj ¼ population mean of the jth treatment
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mi ¼ population mean of the ith block

m ¼ grand mean of the population

li ¼ block effect of the ith row; li ¼ mi–m
tj ¼ block effect of the jth column; tj ¼ mj–m

Table 12.8 Two-way ANOVA summary

(1) Source of variation (2) Sum of squares (3) Degrees of freedom (4) Mean square

Between-treatments 72 (SST) 2 (J�1) 36

Between-blocks 3.336 (SSB) 3 (I�1) 1.112

Residuals 42.664 (SSE) 6 [(J�1)(I�1)] 7.111

MST ¼ SST
J�1

¼ 72
2
¼ 36

MSB ¼ SSB
I�1

¼ 3:336
3

¼ 1:112

MSE ¼ SSE
J�1ð Þ I�1ð Þ ¼ 42:664

6
¼ 7:111

F2;6 ¼ MST
MSE

¼ 36
7:111 ¼ 5:063

F2,6,.05 ¼ 5.14

F3;6 ¼ MSB
MSE

¼ 1:112
7:111 ¼ :156

F3,6,.05 ¼ 4.76

Fig. 12.3 MINITAB output for Table 12.8
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So far we have discussed two-way ANOVA with only one observation in each

cell. If there is more than one observation in each cell, then there exists an interaction

effect in addition to treatment and block effects. And matters get more complicated.

12.5 Two-Way ANOVA with More than One Observation

in Each Cell

12.5.1 Basic Concept and Hypothesis Testing

The data that we used to do the two-way ANOVA contained only one observation

in each cell. Now we expand the data set of Table 12.6 by allowing two sample

observations in each cell, as shown in Table 12.9. Here the total sums of squares can

be dissected into four components and can be defined as follows:

Total sums of squares (TSS) ¼ between-treatments sum of squares (SST)

+ between-blocks sum of squares (SSB) + interaction sum of squares (SSI)

+ error sum of squares (SSE)

or, more briefly,

TSS ¼ SSTþ SSBþ SSIþ SSE

In this case, we add an interaction sum of squares because there is more than one

observation in each cell. On the basis of the data listed in Table 12.9, we calculate

block means, treatment means, cell means, and overall mean as follows:

1. Block means

�x1:: ¼ 16þ 16:5þ . . .þ 25

6
¼ 19:583

�x2:: ¼ 21þ 20:5þ . . .þ 2 2:5

6
¼ 20:667

�x3:: ¼ 18þ 19þ . . .þ 21

6
¼ 20:317

�x4:: ¼ 13þ 13:5þ . . .þ 23

6
¼ 19:217
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2. Treatment means

�x:1: ¼ 16þ 21þ . . .þ 13:5

8
¼ 17:188

�x:2: ¼ 19þ 20þ . . .þ 20:8

8
¼ 19:713

�x:3: ¼ 24þ 21þ . . .þ 23

8
¼ 22:938

3. Cell means

�x11: ¼ 16þ 16:5

2
¼ 16:25 �x21: ¼ 19þ 17

2
¼ 18

Similarly, we can obtain

�x21: ¼ 20:75 �x22: ¼ 19:50 �x13: ¼ 24:50 �x43: ¼ 24:00

�x31: ¼ 18:50 �x32: ¼ 20:95 �x23: ¼ 21:75

�x41: ¼ 13:25 �x42: ¼ 20:40 �x33: ¼ 21:50

4. Overall mean

We use the average of column means to calculate the overall mean.

�x ¼ 17:188þ 19:713þ 22:938

3
¼ 19:946

Table 12.9 Salaries of 24

students with varying work

experience in four different

geographic locations (in

thousands of dollars)

Region 1

Years of work experience

2 3

1 16 16.5 19 17 24 25

2 21 20.5 20 19 21 22.5

3 18 19 21 20.9 22 21

4 13 13.5 20 20.8 25 23

564 12 Analysis of Variance and Chi-Square Tests



Using all related data, we calculate TSS, SST, and SSB as follows:

TSS ¼ S
i
S
j
S
k

xijk � �x
� �2 ¼ 16� 19:946ð Þ2

þ 21� 19:946ð Þ2 þ � � � þ 23� 19:946ð Þ2
¼ 226:380

SST ¼ IK
XJ
j¼1

ðxijk � �xÞ2 ¼ ð4Þð2Þ 17:188� 19:946ð Þ2
h

þ 19:713� 19:946ð Þ2 þ 22:938� 19:946ð Þ2
i

¼ 132:903

SSB ¼ JK
Xl
i¼1

�xi:: � �xð Þ2 ¼ ð3Þð2Þ 19:583� 19:946ð Þ2
h

þ 20:667� 19:946ð Þ2 þ 20:317� 19:946ð Þ2

þ 19:217� 19:946ð Þ2
i

¼ 7:921

Because there is more than one observation in each cell, the SSE given by

Eq. 12.15 can be dissected into interaction and error. The interaction term (SSI)

is similar to the SSE with only one observation in each cell, as defined in Eq. 12.15.

The error term, SSE, can be defined as

SSE ¼ S
i
S
j
S
k

xijk � �xij:
� �2 ð12:17Þ

In terms of our data, the SSI and SSE are calculated as follows:

SSI ¼ K S
i
S
j

�xij: � �x:j: � �xi:: þ �x
� �2

¼ 2 16:250� 17:188� 19:583þ 19:946ð Þ2
h

þ 20:750� 17:188� 20:667þ 19:946ð Þ2
þ � � � þ 21� 22:938� 20:317ð
þ 19:946Þ2 þ 24� 22:938� 19:217þ 19:946ð Þ2

i
¼ 77:730

SSE ¼ S
i
S
j
S
k

xijk � �xij:
� �2

¼ 16� 16:250ð Þ2 þ 16:500� 16:250ð Þ2

þ . . .þ 25� 24ð Þ2 þ 23� 24ð Þ2
¼ 7:825
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Using the foregoing data, we calculate the two-way ANOVA table with interac-

tion. Our results are listed in Table 12.10.

From the F ratio shown in column (5) of Table 12.10, we can test whether the

years-of-education effect, the regional effect, and the interaction effect are statisti-

cally significant. From Table A6 in Appendix A, we find that the critical values at

a ¼ .05 are F2,12,.05 ¼ 3.89, F3,12,.05 ¼ 3.49, and F6,12,.05 ¼ 3.00. Comparing

these values with the F ratio listed in column (5) of Table 12.10 leads to the

conclusion that number of years of education, geographic region, and their interac-

tion all have significant impacts on the starting salary. The MINITAB output of

Table 12.10 is presented in Fig. 12.4.

12.5.2 Generalizing the Two-Way ANOVA

If there are several observations per cell, then the cell mean can be defined as

�xij: ¼
PK
k¼1

xijk

K

Here the column (group) mean �x:j: and the row (block) mean �xi:: can be defined as

�x:j: ¼
PI
i¼1

PK
k¼1

xijk

IK

�xi:: ¼

PJ
j¼1

PK
k¼1

xijk

JK

Table 12.10 Two-way analysis of variance with interaction summary

(1)

Source of variation

(2)

Sum of squares

(3)

Degrees of freedom

(4)

Mean square

(5)

F ratio

Between-treatments (SST) 132.903 2 66.452 101.91

Between-blocks (SSB) 7.921 3 2.640 4.05

Interaction (SSI) 77.730 6 12.955 19.87

Errors (SSE) 7.825 12 .652

Total (TSS) 226.379
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In addition, the overall mean (�x) can be defined as

�x ¼
XI
i¼1

XJ
j¼1

XK
k¼1

xijk IJK= ¼
XJ
j¼1

�x:j:=J ¼
XI
i¼1

xi::=I

Using the cell mean, treatment mean, block mean, overall mean, and other

related concepts and notations discussed in this section, we can define the general

format of the two-way ANOVA with K observations per cell as shown in

Table 12.11. The population model for Table 12.11 is

Xijk ¼ mþ tj þ li þ ltð Þij þ eijk ð12:18Þ

where m, tj li, and єijk are as defined in Eq. 12.16

Fig. 12.4 MINITAB output for Table 12.10
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(lt)ij ¼ interaction effect in the ith row and the jth column ¼ mij–mi–mj þ m
mij ¼ population mean of the cell in the ith row and the jth column

mi ¼ population mean of the ith block

mj ¼ population mean of the jth treatment

12.6 Chi-Square as a Test of Goodness of Fit

In this section, we will show how the chi-square statistic can be used to test the

appropriateness of a distribution—its goodness of fit for a set of data. Goodness-of-
fit tests are designed to study the frequency distribution to determine whether a set

of data are generated from a certain probability distribution, such as the uniform,

binomial, Poisson, or normal distribution.

Among the goodness-of-fit tests, the chi-square test is used to test the equality of
more than two proportions if a probability distribution is assumed to be uniform.

This is similar to using the F statistic to test the equality of more than two means in

the analysis of variance.

If a marketing manager is interested in knowing whether 4 different brands of

painkillers are recommended equally often by doctors (or enjoy the same market

shares), the manager can set up the following hypotheses:

H0: Same market shares

H1: Different market shares

To test this hypothesis, the manager can send out questionnaires to 1,000 doctors

asking what painkiller they usually recommend to their patients. The responses can

be tallied to obtain the observed sample frequency distribution. The tallied

Table 12.11 General format of the two-way ANOVA table with K observation per cell

(1)

Source of

variation

(2)

Sum of squares

(3)

Degrees of

freedom

(4)

Mean square

(5)

F ratio

Between-

treatments SST ¼ IK
PJ
j¼1

�x:j: � �x
� �2 J�1 MST ¼ SST

J�1
MST
MSE

Between-

blocks SSB ¼ JK
PI
i¼1

�xi:: � �xð Þ2 I�1 MSB ¼ SSB
I�1

MSB
MSE

Interaction SSI ¼ K
P
i

P
j

ð�xij: � �x:j: � �xi:: þ �xÞ2 (J�1)(I�1) MSI ¼ SSI
ðJ�1ÞðI�1Þ

MSI
MSE

Error SSE ¼P
i

P
j

P
k

ðxijk � �xij:Þ2 JI(K�1) MSE ¼ SSE
IJðK�1Þ

Total TSS ¼P
i

P
j

P
k

ðxijk � �xÞ2 IJK�1
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responses are called the observed frequency. If the null hypothesis of equal market

shares is true, we would expect to see that roughly 250 doctors recommended each

brand. This frequency distribution is called the expected frequency because it is

anticipated when the null hypothesis is true. In applying the goodness-of-fit test, we

compare the expected frequency with the observed frequency to determine whether

the observed frequency conforms to the expected frequency—and hence supports

the null hypothesis. If the null hypothesis is true, the frequencies for four brands of

painkillers will be equal. Therefore, we can regard this example as a test of uniform

distribution.

To take another example, many statistical inferences drawn in studying stock

rates of return are based on the assumption that the rates of return of a stock follow a

normal distribution. It should be interesting to test whether the rates of return are

really generated from a normally distributed population. Here the null hypothesis is

that the data are from a normally distributed population, and the alternative

hypothesis is that the data are not from a normally distributed population. Again

we perform the goodness-of-fit test by comparing the anticipated frequency distri-

bution when the null hypothesis is true with the frequency distribution that is

actually observed.

The chi-square statistic for determining whether the data follow a specific

probability distribution is

w2k�1 ¼
Xk
i¼1

f oi � f ei
� �

f ei

2

ð12:19Þ

where

f oi ¼ observed frequency

f ei ¼ expected frequency

k ¼ number of groups
w2k�1 ¼ chi-square statistic with (k–1) degrees of freedom

The following examples illustrate various applications of the goodness-of-fit test

in deciding whether the population that generates the data follows a presumed

distribution. This presumed distribution can be a uniform distribution, a binomial

distribution, or a Poisson distribution.

Example 12.1 Uniform Distribution: Market Shares of Different Types of Cars. A

marketing manager wants to test his belief that four different categories of cars

share the auto market equally. These four categories of cars are brand A, brand B,

brand C, and imported cars. He sends out 2,000 questionnaires to car owners

throughout the nation and receives the following responses:
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Brand

Number of owners

(observed frequency)

A 475

B 505

C 495

Imported 525

Total 2,000

Armed with these data, we can help him solve the problem. We first set up the

hypotheses

H0 : Samemarket shares uniform distributionð Þ
H1 : Different market shares nonuniform distributionð Þ

The chi-square test statistic defined in Eq. 12.19 can be used to perform the

hypothesis test. When the null hypothesis is true, there should be 500 responses for

each category of product. This implies that the expected frequency should be 500

for each category of product. Computation of the chi-square statistic in terms of

Eq. 12.19 is given in column (4) of Table 12.12.

In this example, we divided the total sample into four groups. The frequencies of

these four groups must add up to 2,000. This means that when any three groups’

frequencies are known, the fourth group’s frequency is also set. The number of

degrees of freedom is therefore (k–1), so here it is 4�1 ¼ 3. From the w2 distribution
table (Table A5 in Appendix A of this book), we obtain w23;:05 ¼ 7.81. Because

w23 ¼
Xk
i¼1

f oi � f ei
� �2

f ei
¼ 2:6

which is smaller than 7.81, we fail to reject the null hypothesis at a ¼ .05. We

conclude that we do not have enough evidence to argue that the frequency distribu-

tion of different car brands is not uniformly distributed. In other words, the

differences in market share among these four different brands of automobiles are

not statistically significant.

Example 12.2 Binomial Distribution: Correct Picks in a Football Pool. A football

fan keeps track of the football betting record for the football betting pool in her

company. In each bet, a player has to pick the winner for ten games. In the last

season, 1,000 bets were placed. The numbers of correct picks are tallied in column

(2) of Table 12.13; these figures are observed frequencies.

We would like to know whether the numbers of correct picks follow a binomial

distribution with P ¼ .5. Accordingly, we have

H0: A binomial distribution with P ¼ .5 is a good description of the number of

correct picks.
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H1: A binomial distribution with P ¼ .5 is not a good description of the number of

correct picks.

To solve this problem, we must determine whether the discrepancies between the

observed frequencies and those we would expect to observe if the binomial distribu-

tion were the proper model to use are actually due to chance. To calculate the

expected frequencies, we find the probabilities of the numbers of correct picks in

Table Al in Appendix A by looking for n ¼ 10 and P ¼ .5. The probabilities are

listed in column (3) of Table 12.13. Since the number of bets is 1,000, the expected

frequencies f ei can be obtained by multiplying the probabilities listed in column (3) by

1,000; they are indicated in column (4). Again, comparing the observed and expected

frequencies gives us the test statistic. Column (5) of Table 12.13 gives the results of

computation of the test statistic in accordance with Eq. 12.19. From column (5), we

obtain

Xk
i

f oi � f ei
� �2

f ei
	 ¼ 4:68

Table 12.12 Computation of

the chi-square test statistic for

Example 12.1

(1)

Brand

(2)

Number of owners

(3)

f ei

(4)

(f oi –f
e
i )

2/ f ei
A 475 500 5/4

B 505 500 1/20

C 495 500 1/20

Imported 525 500 5/4

Sum 2000 2000 w23 ¼ 52/20 ¼ 2.6

Table 12.13 Computation of

the chi-square test statistic for

football betting pool problem

(1)

Number of

correct

picks

(2)

Number

of bets,

f oi

(3)

Expected

binomial

probability

(4)

Expected

frequency,

f ei

(5)

(f oi –f
e
i )

2/ f e

0 2 .001 1 1

1 8 .010 10 .4

2 39 .044 44 .57

3 123 .117 117 .31-

4 207 .205 205 .02

5 250 .246 246 .07

6 203 .205 205 .02

7 115 .117 117 .03

8 40 .44 44 .36

9 13 .10 10 .9

10 0 .001 1 1

Sum 1,000 1.00 1,000 4.68
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From Table A5, we find thatw210;:05¼ 18.31. Because 4.68 < 18.31, we conclude

that there is not enough evidence for us to reject, at a ¼ .05, the null hypothesis that

the data are from a binomial distribution.

Example 12.3 Poisson Distribution: Number of Patient Arrivals. Suppose a hospi-

tal has kept track of the number of patients arriving at the emergency room during a

given hour for the last 480 h (20 days). It was found that 960 patients came to the

emergency room during that period. The observed distribution of the arrival of

patients is given in row (1) of Table 12.14. We would like to know whether this

distribution is a Poisson distribution. If the null hypothesis is true, the data are

generated by the Poisson probability distribution—that is,

PðxÞ ¼ e�llx

x!

where l is the expected number of patients arriving in a given hour. In the last

480 h, there were 960 patients. The expected number of patients, l, can be

estimated as 2(960/480) per hour. Using the foregoing Poisson distribution formula,

we compute the probability of x ¼ 0,1, 2, and x � 3. We use the Poisson probabil-

ity table, Table A2 in Appendix A, to obtain the expected probabilities indicated in

row (2) of Table 12.14. Multiplying the probabilities by 480, we obtain f ei as shown

in row (3) of Table 12.14. Row (4) of this table gives the values of f oi � f ei
� �2

f ei
	

.

From row (4), we obtain

w24�1 ¼ :38þ :77þ :19þ 0 ¼ 1:34<w23;:05 ¼ 7:81

Therefore, we conclude that the null hypothesis that patient arrivals are

generated by the Poisson probability distribution cannot be rejected.

12.7 Chi-Square as a Test of Independence

In this section, we show how to use the chi-square test introduced in Sect. 12.6 to

test the independence of two variables (this was briefly discussed in Chap. 5).

Suppose a sample is taken from a population each of whose members can be

Table 12.14 Computation of the chi-square test statistic for patient arrivals

Number of patients arriving during 1 h

0 1 2 3 or more Sum

(1) Number of hours, f oi 60 140 125 155 480

(2) Probability .135 .271 .271 .323 1.00

(3) Number of hours, f ei 65 130 130 155 480

(4)
ðf oi � f ei Þ2

f ei

.38 .77 .19 0 1.34
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uniquely cross-classified according to a pair of attributes. To illustrate, Table 12.15

contains information on a sample of 300 students who are classified by major and

by grade earned in a basic statistics course.

This type of table, which has one basis of classification across the columns (in this

case, grade) and another across the rows (major), is known as a contingency table.
Because Table 12.15 has three rows and four columns, it is called a three-by-four

(often written 3 � 4) contingency table. In general notation, in an r � c contingency
table (see Table 12.16), where r denotes the number of rows and c the number of

columns, there are r � c cells.
We want to find out whether these data provide strong enough evidence to

support the hypothesis that the majors and the grades are somehow related. To

solve this problem, we need to compare the observed frequencies with the expected

frequencies. When the expected frequencies are far away from what we observed,

the test statistic yields a large value that leads to rejection of the null hypothesis. To

compute the test statistic, we must find the expected frequencies.

First, we note that of the 300 students surveyed, 90 are science majors, 90 are

humanities majors, and 120 are business majors. That means the distribution of

students among the three majors is 30 %, 30 %, and 40 %, respectively.

If the students’ majors are independent of their performance, the distribution of

grades among the 3 majors should also be 30 %, 30 %, and 40 %, respectively. In

other words, because science majors make up 30 % of the population, they would be

expected to receive 30 % of each grade. That means we expect science majors to

account for 9 of the 30 As, 27 of the 90 Bs, 45 of the 150 Cs, and 9 of the 30 Fs.

Similarly, we can obtain the expected frequencies for humanities and business

majors. This process of obtaining expected frequencies is summarized in

Table 12.17. From Tables 12.15 and 12.17, we can calculate the chi-square statistic

of Eq. 12.19 as indicated in Table 12.18. The chi-square statistic is w2 ¼ 11.37.

The degrees of freedom in this question can be obtained by the formula

r � 1ð Þ c� 1ð Þ ¼ 3� 1ð Þ 4� 1ð Þ ¼ 6

where r is the number of rows (majors) and c is the number of columns (grades).

Note that once (r–1)(c–1) cells are known, the remaining cells are determined

(if marginals are known). From Table A5, we find w26;:05 ¼ 12.59. Because

12.59 > 11.37, we accept the null hypothesis that the majors and the grades

received are independent of each other.

Table 12.15 300 students

classified by grades and major
Major

Grade

SumA B C F

Science 12 36 34 8 90

Humanities 10 24 46 10 90

Business 8 30 70 12 120

Sum 30 90 150 30 300
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A MINITAB solution to this example is presented in Fig. 12.5. The format of

this table is similar to that of Table 12.18 with the observed value f oi and the

expected value f oi in each cell.

12.8 Business Applications

In this section, we use 6 examples to show how ANOVA and the w2-test can be used
to make business decisions.

Application 12.1 Comparing Cash Compensation for Different Groups of

Corporate Executives. Business Week’s Executive Compensation Scoreboard is

BW’s annual report of the total cash compensation (salary and bonus) of the top

corporate executives. The table lists the data from the 1986 report (Business Week,

Table 12.16 Cross-

classification of n
observations in an r � c

contingency table

Attribute A

Attribute B

1 2 . . . c Totals

1 011 012 . . . 01c RS1
2 021 022 . . . 02c RS2
⋮ ⋮ ⋮ . . . ⋮ ⋮
r 0r1 0r2 . . . 0rc RSr
Totals CS1 CS2 CSc n

Table 12.17 Expected grade

frequency distribution of 300

students

A B C F Sum

Science 9 27 45 9 90

Humanities 9 27 45 9 90

Business 12 36 60 12 120

Sum 30 90 150 30 300

Table 12.18 Computation of

chi-square test statistics for

student performance in

different majors

f oi f ei ðf oi � f ei Þ2=f ei
12 9 1

36 27 3.00

34 45 2.69

8 9 .11

10 9 .11

24 27 .33

46 45 .02

10 9 .11

8 12 1.33

30 36 1

70 60 1.67

12 12 0

Sum 300 300 11.37
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May 4, 1987, pp. 59–94). Assume that the data represent independent random

samples of the 1986 total cash compensations for 8 corporate executives in each

of 3 industries—banks, utilities, and office equipment/computers. Also assume that

the experiment is a completely randomized design.

1986 Total cash compensation for three groups of executives (thousands of
dollars)

Banks and bank

Holding companies Utilities

Office equipment

and computers

$ 755 $520 $438

712 295 828

845 553 622

985 950 453

1,300 930 562

1,143 428 348

733 510 405

1,189 864 938

Fig. 12.5 MINITAB output for test for independence for student grade distribution
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To test whether there is a difference in the 1986 total cash compensation for the 3

groups of corporate executives, we use SAS to generate the following ANOVA

table.

SAS 22:22 Sunday, March 15, 1992 5

Analysis of Variance Procedure

Dependent variable: COMPENS

Sum of Mean

Source DF squares square F-value Pr > F

Model 2 685129.3333 342564.6667 6.45 0.0065

Error 21 1115232.5000 53106.3095

Corrected Total 23 1B00361.8333

R-square CV Root MSE COMPENS mean

0.380551 31.95859 230.4481 721.083333

SAS 22:22 Sunday, March 15, 1992 6

Analysis of Variance Procedure

Dependent variable: COMPENS

Source DF ANOVA SS Mean Square F-value Pr > F

Group 2 685129.3333 342564.6667 6.45 0.0065

From Table A6 of Appendix A, we found F.01,2,21 ¼ 5.78. This value is smaller

than 6.450 indicated in the ANOVA table. Therefore, we cannot accept the hypoth-

esis that the 1986 total cash compensation for the 3 groups of corporate executives

is equal at a ¼ .01.

Application 12.2 Effects of Visual Display Scale on Estimates of Duration.

Professor Bobko et al. investigated the effects of visual display scale on duration

estimates.3 They solicited 72 undergraduate volunteers (36 females, 36 males) from

an introductory course in psychology. The experimental stimuli were 3 commer-

cially available black-and-white television sets with 3 different screen sizes. The

screens had diagonal measurements of .13 m (small), .28 m (medium), and .58 m

(large). Using ANOVA with interaction to analyze the empirical data, these

researchers got the results listed in Table 12.19.

This value is larger than the critical value F2,66,.05 ¼ 3.11 (obtained by interpola-

tion from Table A5 in Appendix A), and the p-value for the factor is .005, so the null
hypothesis that the display scale does not affect the duration estimates should be

rejected. The effect of sex was marginally significant at F1,66 ¼ 3.73, p-value
¼ .06. The interaction of screen size and sex was not significant.

3 D. J. Bobko, P. Bobko, and M. A. Davis (1986), “Effects of Visual Display Scales on Duration

Estimates,” Human Factor 28, 153–158. Reprinted with permission. Copyright # 1986 by The

Human Factors Society, Inc. All rights reserved. The duration is estimated by the length of time

passing as a moving display is watched.
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Application 12.3 Current Ratios for Failed and Nonfailed Firms. In our exam-

ple from Sect. 12.2, involving starting salaries of economics graduates, each of the

3 treatments consisted of the same number of sample observations. Though it may

be more convenient to work with samples of equal size, it is not always possible.

We apply the technique of one-way analysis of variance where the sample

observations are not of equal size. In this application, we will test whether the

population mean current ratio for two classifications of firms, failed and nonfailed,

is significantly different.

Table 12.20 contains the sample current ratios for 6 nonfailed firms and 8 failed

firms. The table also includes the sample mean for each treatment and a global

mean. Our purpose is to test the following null hypothesis against the following

alternative:

H0: The mean current ratio for nonfailed firms

¼ the mean current ratio for failed firms.

H1: The mean current ratios for nonfailed and for failed firms are not equal.

The overall mean is calculated from the data as follows:

�x ¼ ð2:267Þð6Þ þ ð1:6125Þð8Þ
14

¼ 1:892871

First, the within-group sum of squares (SSW) is calculated; it is presented in

Table 12.21. Accordingly, SSW ¼ 1.1736 + .3891 ¼ 1.5627.

Next we pursue a measure of between-groups variability. In this example, the

between-groups variability (SST) is determined as follows:

SST1 ¼ ð2:267� 1:8928571Þ2 ¼ :1400

SST2 ¼ ð1:6125� 1:8928571Þ2 ¼ :0786

Therefore, SSB ¼ 6(.1400) þ 8(.0786) ¼ 1.4686983. Note that each squared

discrepancy is weighted by the number of observations in each treatment.

Finally, we calculate the total sum of squares of the two treatments.

TSS ¼ 1:5627þ 1:4686983 ¼ 3:0313983

Table 12.19 Analysis of

variance for the effects of

screen size and sex on

estimates of duration

Source Sum of squares Df Mean square F ratio

Screen size 12.73 2 6.36 5.81a

Sex 4.08 1 4.08 3.73b

Interaction .29 2 .15 .13

Residual 72.26 66 1.09

Total 89.36 71
ap <.005;
bp <.06
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In order to test our hypothesis, we must calculate an unbiased estimate of

the within-group and between-groups variances. Again, we find the estimate of

the within-group variance by dividing the total sum-of-squares deviations of the

within-groups variability (SSW) by the appropriate degrees of freedom (n–J).

MSW ¼ 1:5627

12
¼ :130225

Similarly, we find the estimate of the between-groups variance by dividing the

total sum-of-squares deviations of the between-groups variability (SST) by the

appropriate degrees of freedom (J–1).

MST ¼ 1:4686983

1
¼ 1:4686983

Our calculated value of the F ratio is

F ¼ MST

MSW
¼ 1:4686983

:130225
¼ 11:27816

Table 12.20 Current ratios

for nonfailed and failed firms
Nonfailed Failed

2.0 1.8

1.8 1.9

2.3 1.7

3.1 1.5

1.9 1.2

2.5 1.8

1.6

1.4

n1 ¼ 6 n2 ¼ 8

�x1 ¼ 2.267 �x2 ¼ 1.6125

Table 12.21 Within-group

sum of squares
Nonfailed Failed

(2.0�2.267)2 (1.8�1.6125)2

(1.8�2.267)2 (1.9�1.6125)2

(2.3�2.267)2 (1.7�1.6125)2

(3.1�2.267)2 (1.5�1.6125)2

(1.9�2.267)2 (1.2�1.6125)2

(2.5�2.267)2 (1.8�1.6125)2

(1.6�1.6125)2

(1.4�1.6125)2

SSW1 ¼ 1.1736 SSW2 ¼ .3891
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From the F distribution in Table A6 with (J–1) and (n–J) degrees of freedom and

a .05 significance level, the critical value is 4.75. Because the calculated F ratio is

greater than the critical value, we do not accept the null hypothesis that the mean

current ratios of failed and nonfailed firms are equal.

Application 12.4 Distribution of Stock Rates of Return. In financial analysis,

we are often interested in whether the rate of return of a certain stock follows a

normal distribution. The example that follows demonstrates how we used the

goodness-of-fit test to find out whether the rates of return of a mutual fund follow

a normal distribution.

A stock analyst collected the annualized daily rates of return xi of a mutual fund

in the past 200 trading days and got a mean �x of 15 % and a standard deviation sx of
5 %. The rates of return are summarized in Table 12.22. Do the data support

rejecting the hypothesis that the rates of return follow a normal distribution? A

test at 5 % level of significance follows.

To do the test, we first formulate the hypotheses.

H0: The annualized daily average mutual fund rates of return are normally

distributed with a mean of 15 % and a standard deviation of 5 %.

H1: The annualized daily average mutual fund rates of return are not normally

distributed with a mean of 15 % and a standard deviation of 5 %.

Second, we need to calculate the theoretical frequency (f oi ) in accordance with

the standard normal distribution table (Table A3 in Appendix A). The computation

procedure is presented in Table 12.23.

Finally, we calculate w 2 in terms of Eq. 12.19, as indicated in Table 12.24. The

test statistic w2 ¼ 236.69. If a level of significance of a ¼ .05 is selected, the

critical value of w 2 with 2 degree of freedom is 5.991. Because 281.92 > 5.991,

we conclude that the annualized daily mutual fund rates of return are not normally

distributed with mean 15 % and standard deviation 5 %.

Application 12.5 Market-Share Pattern of a New Cereal Product. G. A.

Churchill proposed a goodness-of-fit technique to test the market-share pattern

of a new cereal called score produced by a breakfast food manufacturer.4 The

cereal was packaged in three standard sizes: small, large, and family size. The

manufacturer’s experience with other cereals suggested that, for every small pack-

age, three of the large and two of the family size are also sold. The manufacturer

wanted to know whether this same consumption pattern would hold with score,

because a change in consumption pattern could have significant implications for

production and packaging. The manufacturer therefore decided to conduct a market

test over a 1-week period. In this period, 1,200 boxes of the new cereal were sold.

The distribution of sales by size is given in Table 12.25.

4G. A. Churchill, Jr. (1983), Marketing Research: Methodological Foundations, 3rd. ed.,

pp. 523–524. Copyright # 1983 by The Dryden Press, reprinted by permission of the publisher.
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To test whether the relative frequencies of the various sizes of the new product

are the same as those of the old product, we can test the hypotheses

H0 : P1 ¼ 1

1þ 3þ 2
¼ 1

6
; P2 ¼ 3

1þ 3þ 2
¼ 1

2
; P3 ¼ 2

1þ 3þ 2
¼ 1

3

H1 : At least one of these Pis is incorrect:

To perform this test, we first calculate the expected frequencies:

f ei ¼ 1; 200

6
¼ 200; f e2 ¼ 1; 200

2
¼ 600; f e2 ¼ 1; 200

3
¼ 400

Table 12.22 Rate-of-return

data for 200 days
Rates of return, xi ( %) Observed frequency, f oi
Under � 5 20

�5 to under 0 33

0 to under 10 48

10 to under 20 41

20 to under 30 29

30 or above 29

Total 200

Table 12.23 Computation of theoretical frequencies in each rate-of-return interval

Class boundaries x z ¼ (x–15)/5

Area under

standard

normal curve

left of x
Area of class

interval (P)

Expected frequency

if H0 is true,

f oi ¼ 200P

Under �5 �5 �4 0 0 0

:26
31:48

9=
;

31.74

�5 to under 0 0 �3 .0013 .0013

0 to under 10 10 �1 .1587 .1574

10 to under 20 20 1 .8413 .6826 136:52

31:48
26


 31.74

20 to under 30 30 3 .9987 .1574

30 and above 1 1 1.0000 .0013

Total 1.0000

Table 12.24 Worksheet for

computing the test statistic w2 Class boundaries f oi f ei ðf oi � f ei Þ ðf oi � f ei Þ2=f ei
Under 10 101 31.74 69.26 151.13

10 to under 20 41 136.52 �95.52 66.83

20 and above 58 31.74 26.26 21.73

Total 200 200 0 239.69

Table 12.25 Distribution of

boxes of new cereal sold
Small Large Family Total

240 575 385 1,200
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Substituting both expected and observed frequencies into Eq. 12.19, we obtain

w23�1 ¼
ð240� 200Þ2

200
þ ð575� 600Þ2

600
þ ð385� 400Þ2

400
¼ 9:60

From Table A5, we find that w22;:05 ¼ 5.99, which is smaller than 9.60. Hence, we

reject H0 and accept H1. In other words, the null hypothesis of sales in the ratio of

1:3:2 is rejected. This result suggests that the sale of the new cereal, score, will

follow a different pattern.

Application 12.6 The Effect of Price Advertising on Alcoholic Beverage Sales.

To study the effect of price advertising on alcoholic beverage sales, G. B. Wilcox

examined the effects of price advertising on sales of beer in Lower Michigan.

Wilcox used Michigan in his study because since 1975, except for the short period

from March 1982 until May 1983, Michigan has banned retailers from advertising

the price of beer products. The data he used covers 3 different periods and are

presented in Table 12.26.

To examine whether there is sufficient evidence to indicate differences in the

average total sales of beer in the 3 periods, we use SAS to generate the following

ANOVA output.

SAS 23:34 Sunday, March 15, 1992

Analysis of Variance Procedure Dependent variable: Sales

Sum of Mean

Source DF squares square F-value Pr > F

Model 2 11357.82500 5678.91250 0.78 0.4760

Error 15 109152.67500 7276.84500

Corrected Total 17 120510.50000

R-square C.V. Root MSE Sales mean

0 094248 16.39944 85.30443 520.166667

SAS 23:34 Sunday, March 15, 1992 3

Analysis of Variance
Procedure Dependent variable: SALES

Source DF Anova SS Mean square F-value Pr > F

PERIOD 2 11357.82500 5678.91250 0.78 0.4760

From Table A6 in Appendix A, we found F.05,2,15 ¼ 3.68. This number is larger

than .78 indicated in the above ANOVA table; therefore, we cannot reject the

hypothesis that price advertisements on alcoholic beverages did not affect sales of

beer in the three different periods in the state of Michigan.
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12.9 Summary

Using the basic concepts of mean, variance, and F statistics discussed in previous

chapters, we explored a statistical method called analysis of variance for testing the

difference between sample means. We also examined the use of the chi-square

statistic in goodness-of-fit tests and in testing the assumption of independence.

Several applications of analysis of variance in business decisions were discussed in

some detail.

Questions and Problems

1. The following table shows the sales figures for 4 salespeople on 3 randomly

selected days. Use analysis of variance to test the hypothesis that the mean

daily sales figures (in thousands of dollars) are the same for all 4 salespeople.

That is, test H0: m1 ¼ m2 ¼ m3 ¼ m4. Use a ¼ .05.

Salesperson

1 2 3 4

Day 15 9 17 12

17 12 20 13

22 15 23 17

Mean 18 12 20 14

Variance 13 9 9 7

Table 12.26 Bimonthly beer sales for three different periods (units: thousands of 31-gal barrels)

Period 1: Price advertising

restricted (May/June 1981–Jan./

Feb.1982)

Period 2: No restrictions

(March/April 1982–May/June

1983)

Period 3: Price advertising

restricted (July/August

1983–March/April 1984)

462 522 433

417 508 470

516 427 609

605 477 442

654 603 446

692

584

496

Source: G. B. Wilcox, “The Effect of Price Advertising on Alcoholic Beverage Sales,” Journal of
Advertising Research, Vol. 25, No. 5, October/November 1985, 33–37
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2. The yearly portfolio returns for 3 different investment firms over a 10-year

period are listed in the accompanying table. Do these data show a statistically

significant difference in the firms’ performances? Assume that the population

errors meet the conditions necessary for ANOVA. Let a ¼ .01.

Firm 1 Firm 2 Firm 3

Mean return 11.5 12.0 10.0

Standard deviation 3.0 2.0 2.4

Number of investments 20 10 25

3. A consumer organization wants to compare the prices charged for a particular

dishwasher in 3 types of stores in a suburban county: discount stores, department

stores, and appliance stores. Random samples of 4 discount stores, 6 department

stores, and 5 appliance stores were selected. The results were as shown.

Discount Department Appliance

12 15 15

14 18 18

16 18 16

15 14 16

18 19

15

At the .05 level of significance, is there any evidence of a difference in the

average price between the types of stores? Use the MINITAB commands

presented in Fig. 12.2 to answer this question.

4. Three packaging materials were tested for moisture retention by storing the

same food product in each for a fixed period of time and then determining the

moisture loss. Each material was used to wrap 10 food samples. The results are

given in the accompanying table.

(a) Construct the ANOVA table.

(b) Can we reject the hypothesis that the materials are equally effective? Use

a ¼ .05.

Material 1 Material 2 Material 3

Number of 10 10 10

packages

Mean loss 231 238 224

Sample variance 40 38 30

5. The quality control manager at a sugar refinery was worried that two packaging

production lines might be filling the packages with different weights. Samples

of size 16 were taken from each of the production lines, and the contents of

these 10-lb packages were carefully weighed. The following sample results

seem to indicate that the mean weights of the 10-lb packages from the two lines
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are the same, but there appears to be much more variation in the weights of the

packages coming off the second line. Test the hypothesis that the two lines

have the same variation in weights by testing H0: s21¼s22 with a ¼ .05. Use H1:

s21 < s22. If the following data do not support rejection of the null hypothesis,

what must we do to test H0: m1 ¼ m2?

n1 ¼ 16 n2 ¼ 16

X1 ¼ 10:15 X2 ¼ 10:16

S1 ¼ :07 S2 ¼ :1

6. The Environmental Protection Agency is studying coliform bacteria counts at

the beaches of a large suburban county. Three types of beaches are to be

considered (ocean, bay, and sound) in three geographic areas of the county

(west, central, and east). Two beaches of each type are randomly selected in

each region of the county. The coliform bacteria counts (in parts per thousand)

at each beach on a particular day were as shown in the table.

Type of beach

Geographic area

West Central East

Ocean 25 9 3

20 6 6

Bay 32 18 9

39 24 13

Sound 27 16 5

30 21 7

(a) Use the .05 level of significance and determine (1) whether there is an

effect due to type of beach, (2) whether there is an effect due to geographic

area, and (3) whether interaction between type of beach and geographic

area has an effect.

(b) What conclusions about average bacteria count do the results support?

7. Explain the difference between the one-factor and the two-factor ANOVA

models.

8. A researcher has an ANOVA problem with five columns (treatments). Would

you recommend testing for differences between the columns by looking at pairs

of columns? Explain why. How many pairs are there?

9. A researcher concludes that there is no difference in the column treatments in a

one-factor model. Upon reanalysis of the same data via two-factor ANOVA,

however, the researcher concludes that there is a difference in the column

treatments. Did the researcher make a mistake? Which conclusion (if either

of them) is true? Explain how these contradictory conclusions can (or cannot)

be justified.
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10. A secretarial training school is experimenting with four different manuals for a

typing course. The school divided 20 students into four classes, and each class

used a different manual. At the end of the training session, a test was given, and

the scores shown in the table were reported. Do the data support the hypothesis

that the four different manuals create different effects? Do a 5 % test.

Manual

A B C D

78 67 75 89

74 79 95 86

95 85 69 87

93 79 60 87

85 86 94 73

11. A research institution says that gasoline is gasoline. That is, there is no

difference among different brands of gasoline in terms of mileage per gallon.

An independent consumer rights organization did an experiment on three

different brands of gasoline. It divided cars of the same make and the same

condition into three groups, and the members of each group were filled with a

different brand of gasoline. The test results follow. Do the data support the

hypothesis of no difference among gasolines? Do a 5 % test.

Gasoline
A B C

34 29 32

28 32 34

29 31 30

37 43 42

42 31 32

27 29 33

29 28

12. A college professor taught an interdisciplinary course in the last 3 years to

students of different majors. He believes that the students’ majors do not have

any impact on their performance in the class. He picked 24 students who

represented 3 different majors and recorded their test scores. Do the data

necessitate rejection of the professor’s hypothesis? Do a 5 % test.

Business Humanities Science

85 84 63

57 95 73

92 87 83

83 73 64

84 83 79

83 73 74

75 85 65

73 72 98
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13. A doctor recruited 15 volunteers and put them on 3 different diets that were

supposed to lower the subjects’ cholesterol levels. The effects of the diet plans

in terms of lowered cholesterol level are recorded in the table. Do the data

cause as to reject the null hypothesis that the three different diet plans have the

same effect? Do a 5 % test.

Diet plan
A B C

20 12 13

14 15 13

21 21 23

15 16 19

17 18 14

14. General Motors, the largest auto producer in this country, produces and sells its

cars under five different brand names. Some of the cars sold under different

names can be considered “sister cars” that should turn in the same performance.

An auto analyst wants to see whether the “sister cars” sold under different

names do indeed have the same performance. He tested 20 cars from three

different brands and recorded the mileages per gallon. Do the data require

rejection of the null hypothesis that the mileages per gallon generated by three

“sister cars” are the same? Do a 5 % test.

Brand
A B C

32 31 34

29 28 25

32 30 31

25 34 37

35 39 32

33 36

34 38

31

15. Market analysts want to investigate the popularity of three types of radio

programs. Their market research yielded the following ratings over the last

5 months. Can the analysts conclude that the three types of programs have

different ratings? Do a 5 % test.

Time Talk show Sports show Music

Early morning 20 30 17

Late morning 17 15 15

Afternoon 18 21 12

Evening 23 27 18

Midnight 25 22 11
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16. In question 15, the market analyst hired a statistician to do the research. The

statistician, realizing that these programs are broadcast at five different times of

day, took the time factor into consideration. Do a test for the same hypothesis.

Use 5 %.

17. On a beach, there are three ice cream stands that are supposed to be occupying

equally good locations. The management of the beach wants to know whether

this assumption is true. The ice cream sales during the past few days, in

hundreds of dollars, are recorded here. Do a 5 % test to determine whether

the ice cream sales are the same in the three locations.

Location
A B C

12 31 21

14 21 14

14 20 17

18 17 16

21 12 23

18. A stock analyst thinks four stock mutual funds generate about the same return.

She collected the accompanying rate-of-return data on four different mutual

funds during the last 5 years.

Fund

A B C D

1988 12 11 13 15

1989 12 17 19 11

1990 13 18 15 12

1991 18 20 25 11

1992 12 19 19 10

(a) Do a one-way ANOVA to decide whether the funds give different

performances. Use 5 %.

(b) Do a two-way ANOVA to decide whether the funds give different

performances. Use 5 %.

19. The personnel office recently produced a set of aptitude test questions

designed to determine whether a potential employee can be a good salesper-

son. The test was tried on current employees before it was used for future

employees. The test scores on employees in three different departments are

listed here. Do the tests generate different scores for different departments?

Do a 5 % test.
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Accounting

Department
Sales Production

78 85 76

79 87 77

80 89 97

72 79 71

87 99 81

98 95 79

Use the following information to answer questions 20–23. An investor recorded

the performance of stock mutual funds during the last 3 years. He classified the

stock mutual funds into three categories, growth, income, and mixed. The rates

of return during the last 3 years are presented here:

Year

Type

Growth Income Mix

1990 12 14 15

17 12 16

19 12 17

17 13 15

1991 18 19 18

21 14 15

21 16 17

1992 22 13 15

21 15 18

20. Use MINITAB to do a one-way ANOVA to determine whether the 3 different

years have the same average rate of return. Use the 5 % level of significance.

21. Use MINITAB to do a one-way ANOVA to determine whether the 3 different

types of mutual funds have the same rate of return. Use the 5 % level of

significance.

22. Use MINITAB to do a two-way ANOVA to determine whether the three

different types of mutual funds have the same rate of return. Use the 5 %

level of significance. (Hint: Follow the procedure presented in Fig. 12.4.)

23. Use MINITAB to do a two-way ANOVA to determine whether the three

different years have the same average rate of return. Use the 5 % level of

significance. (Hint: Follow the procedure presented in Fig. 12.4.)

24. A researcher contacted 1,000 doctors and asked them what kind of pain reliever

they would like to have with them if they were stranded on a desert island. The

responses were

Brand A Brand B Brand C Others

250 230 260 260

Do a test to determine whether the 4 categories of products receive the same

number of recommendations from doctors. Use 5 %.
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25. Four instructors teach introductory-level economics courses during the same

time period. The numbers of students taking their courses are

Instructors
A B C D

100 120 90 110

Can we reject that the four instructors are about equally popular among the

students? Do a 5 % test.

26. The personnel manager wants to know whether an equal number of employees

call in sick on the 5 days of the regular work week. The sick days recorded

during last year were distributed as follows:

M T W Th F

40 30 32 25 45

Can we conclude that the five different weekdays have different frequencies of

sick calls? Do a 5 % test.

27. An economics consulting company wants to study bank managers’ opinions

about what lending rate will prevail for the next 3 months. It sends

questionnaires to 940 bank managers and gets the following responses:

Higher Lower Same No idea

210 220 210 300

(a) Can we reject that all of the four opinions are held by about the same

number of bank managers? Do a 5 % test.

(b) Can we reject that the three kinds of opinions (excluding “No idea”) are

held by about the same number of bank managers? Do a 5 % test.

28. A management consulting company is interested in how managers look at the

prospects for the economy in this country. Questionnaires were sent to 2,000

managers in different areas of the country. The responses were:

Future prospects

Optimistic Pessimistic No change

Top-level managers 300 250 100

Middle managers 200 200 220

(a) Does the evidence suggest that middle managers are equally split among

the three different opinions? Do a 5 % test.

(b) Does the evidence suggest that middle management’s opinion pattern is

similar to that of top-level management? Do a 5 % test.
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29. Lotteries are gettingmore andmore popular in this country.Many books claiming

to teach people how to pick winning numbers have been published. According to

an official in the state’s lottery office, the game is fair in the sense that even

number has the same chance of being drawn. Briefly explain how you can test this

contention. (And remember that if it is true, any money spent on “systems” or

“secrets” for winning the lottery is money wasted.)

30. Professor Maloy uses different textbooks to teach statistics to two different

college classes. Book 1 is the standard textbook also used by other instructors.

Book 2 is a more recently introduced text. Over the years, Maloy recorded the

grade distribution of the students.

A B C D F

Book 1 20 80 100 20 10

Book 2 5 22 30 4 1

Can the professor conclude that the grade distribution pattern of students using

book 1 is different from the grade distribution pattern of students using book 2?

31. An insurance company reviewed its policyholders’ records during last year and

organized the data in the following table. Do the data dictate rejection of the

null hypothesis that the accident pattern has a Poisson distribution? Do a 5 %

test.

Number of accidents Number of policyholders

0 2000

1 150

2 10

3 1

32. The number of patients to arrive at an emergency room each day is recorded in

the accompanying table. The average number of emergency room patients is

approximately 10. Do the data support the hypothesis that the number of

emergency room patients follows a Poisson distribution? Do a 5 % test.

Number of patients 0 1 2

Number of days 400 14 1

33. An eight o’clock train that pulls into Penn Station in New York City every

weekday has a 20 % chance of being late. A supervisor from the Port Authority

recorded the number of days that the train arrived late each week for the last

100 weeks. Does the evidence compel us to refute the null hypothesis that the

data come from a binomial distribution? Do a 5 % test.

Number of late arrivals in a week 0 1 2 3 4 5

Number of weeks 5 15 30 30 15 5
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34. A nationwide testing service collected scores from a set of examination questions

that were used during the last 3 years. The distribution is summarized in the

accompanying table. The mean is 600 and the standard derivation is 200. Does

the evidence support rejection of the hypothesis that the data come from a normal

distribution? Do a 5 % test.

Score Frequency

<300 10

301–400 25

401–500 40

501–600 45

601–700 44

701–800 35

801–900 20

More than 900 15

35. The daily rate of return for a stock (adjusted to an annual rate) is summarized in

the following table. Can you show that these data do not come from a normal

distribution? The mean is 0 % and the standard derivation is 1.6 %. Do a 5 % test.

Rate of return Frequency

Less than �3 % 20

�3 % to �2 % 25

�2 % to �1 % 30

–l % to 0 50

0–1 % 40

1–2 % 25

More than 2 % 5

36. The highway bureau records the following numbers of accidents during the past

365 days. Does this frequency distribution cause us to reject the null hypothesis

that the accidents exhibit a Poisson distribution? Do a 5 % test.

Number of accidents in a day Number of days

0 320

1 30

2 10

3 5

37. A college professor wants to use a normal distribution to analyze his students’

grades. He randomly selects 200 previous grades and organizes them in the

following table. The mean is 67.75 and the standard deviation is 13. Does the

frequency distribution support the hypothesis that students’ grades follow a

normal distribution? Do a 5 % test.
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Grades Frequency

�40 2

41–50 15

51–60 35

61–70 70

71–80 40

81–90 28

>90 10

38. In a hospital, 100 patients were checked for their cholesterol level. The mean was

200 and the standard deviation was 27.2. Do the data collected support the

hypothesis that the cholesterol levels follow a normal distribution? Do a 5 % test.

Cholesterol Level Frequency

�160 4

161–180 21

181–200 25

201–220 30

221–240 10

241–260 8

>260 2

39. A college professor has taught business statistics for the last 5 years. He used

standard tests every semester. The distribution of grades during the past 5 years

was

A B C D F

15 % 30 % 40 % 10 % 5 %

This professor has just finished grading students this semester and has found

that the frequency distribution of the grades is

A B C D F

6 12 15 5 1

He feels that this semester’s students have a different grade distribution pattern.

Do you agree with him? Do a 5 % test.

40. A travel agency was curious about whether the service a guest receives is

related to the size of the hotel. The agency surveyed 300 customers and

summarized their responses in the accompanying table. Determine whether

the data support the hypothesis that the customer’s opinion and the size of the

hotel are related. Each customer gave only one opinion for one size of hotel.

Use 5 %.
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Size of hotel

Large Midsize Small

Satisfied 80 40 30

So-so 60 30 10

Dissatisfied 20 20 10

Use the following information to answer questions 41–43. Four hundred and

fifty economists of different ideologies were asked to forecast the prospects for

the economy during the Bush administration. Here’s what they said:

Ideology

Opinion

Boom So-so Recession

Conservative 80 60 60

Liberal 60 40 40

Radical 50 30 30

41. Do the data support the hypothesis that ideology and opinion are related? Do a

5 % test.

42. Test, at the 5 % level, the hypothesis that about equal numbers of economists

hold each opinion.

43. Can you say that the opinion pattern of the liberal economists is the same as the

opinion pattern of the radical economists? Do a 5 % test.

44. A magazine is interested in knowing whether which newspaper is read and

level of education of the reader are related.

Education

Newspaper

Post News Tribune

High school 300 200 100

College 200 300 100

Graduate school 100 200 300

Use MINITAB to determine whether newspaper read and education are related.

Use the 5 % level of significance. (Hint: Follow the procedures presented in

Fig. 12.5.)

45. The sales manager wants to know whether salespeople’s performance is related

to their zodiac sign. Three hundred salespeople were surveyed. Their perfor-

mance is summarized in the following table.

Zodiac sign

Performance

Good Mediocre Bad

Leo 80 30 20

Gemini 50 20 10

Virgo 40 40 10

Do the data support the belief that the performance and zodiac sign of a

salesperson are related? Do a 5 % test.
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46. An advertising agency wants to know whether there is a relationship between

TV shows and the age of the audience. The following data were compiled.

TV show

Age of the audience

10 and younger Teenager 20–40 40 and older

Game 100 120 200 400

show

Sitcom 20 120 400 200

News 2 40 48 50

Do the data support the hypothesis that the age of the audience is related to the

type of show that is preferred? Do a 5 % test.

Use the following information to answer questions 47–49. A developer asks

visitors how they heard of the housing project they are looking at. Their

responses are shown in the following table.

Distance from

construction site

Source of information

Referred by a friend Newspaper Radio TV

Within 10 40 200 120 150

miles

10–30 miles 30 180 120 120

Farther than 10 150 100 100

30 miles

47. Is the distance from the construction sites independent of the way people hear

of the housing project? Do a 5 % test.

48. Can we conclude that the effects of publicizing the project in the 3 different

media (newspaper, radio, and TV) are different? Do a 5 % test.

49. If you live 10–30 miles away from the construction site, is your sources of

information pattern the same as that of the people living within 10 miles? Do a

test of 5 %.

Use the following information to answer questions 50–55. A company operates

three mutual funds. The managers of these mutual funds invest the money

entrusted to them in different kinds of assets. The rates of return in the last

5 years are recorded in the following table.

Real estate fund Government bond fund Stock fund

1985 6 % 7 % 3 %

1986 20 8 9

1987 6 12 8

1988 15 9 15

1989 3 10 20
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The company also randomly sampled its customers and compiled the following

table:

Real estate

fund Government fund Stock fund

Retirees 30 80 40

51–65 40 60 50

36–50 80 20 50

20–35 40 40 70

50. Do the three different kinds of mutual funds attract about the same numbers of

investors? Do a 5 % test.

51. Can we conclude that the 3 different kinds of mutual funds generate about the

same average rate of return? Do a 5 % test, using a one-way ANOVA.

52. Do a two-way ANOVA to determine whether the rates of return for the three

kinds of mutual funds are about the same. Do a 5 % test.

53. Determine whether the stock fund is equally popular among the four different

age groups. Do a 5 % test.

54. Determine whether the investment pattern of the age group 20–35 is the same

as that of the age group 51–65. Do a 5 % test.

55. Are fund preference and age group related? Do a 5 % test.

56. A plant that runs three shifts would like to know whether the three shifts are

equal in average productivity. The productivity breakdown is presented in the

following table.

Day Shift 1 Shift 2 Shift 3

Monday 30 40 20

Tuesday 40 50 30

Wednesday 40 40 30

Thursday 40 30 20

Friday 20 30 20

(a) Are average productivities of the three different shifts the same? Do a 5 %

test, using a one-way ANOVA.

(b) Are the average productivities of the three different shifts different? Do a

5 % test. Consider the weekday factor in testing this hypothesis.

57. A nationwide real estate brokerage house wants to study the relationship

between rent per square foot and size of the property. The data collected are

summarized in the accompanying table. Using these data, can we reject the null

hypothesis that the average rents per square foot are equal? Do a 5 % test.
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Size of the property (in square feet)

Less than 1,000 1,000 to 2,000 2,000 or more

3 2 3

4 5 6

5 5 7

5 6 7

5 5 7

4 6 6

58. A consultant argues that location, the most important factor in the real estate

business, was not considered in the test performed in question 57. He suggests

redoing the test by controlling the location factor. Do a 5 % test to see whether

the conclusion changes when the data are presented as follows:

Size of the property (in square feet)

Location

Size of the property (in square feet)

Less than 1,000 1,000 to 2,000 2,000 or more

Bad 3 2 3

4 5 6

So-so 5 5 7

5 6 7

Good 5 5 7

4 6 6

59. The performances of 250 salespeople in a company are summarized in the

following table.

Sales Frequency

Less than 78 13

78–80 37

81–83 40

84–86 50

87–89 60

90 or more 20

Derive the expected frequencies, assuming that the data are from a normal

distribution. Do the data collected support the hypothesis that the sales follow-

ing a normal distribution? Do a 5 % test.

60. A chicken farm came up with 4 different ways of mixing chicken feeds. The

feeds were tested on 20 chickens. The results, given in terms of the chickens’

weight, are presented in the accompanying table. Do a 5 % test of the hypothe-

sis that the weights resulting from the different feeds are approximately the

same.
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Group

A B C D

4.5 4.2 4.1 4.6

4.4 4.3 4.6 4.2

4.5 4.3 4.2 4.9

4.3 4.2 4.3 4.4

4.9 4.9 4.8 4.7

Use the following information to answer questions 61–64. A survey was sent to

400 students to solicit their opinions about a new rule for using the student

centers. Here are the results:

Year Against Indifferent Agree

First year 30 30 40

Sophomore 50 40 30

Junior 20 50 30

Senior 10 30 40

Total 110 150 140

61. Do you think the three different opinions have about the same number of

responses? Do a 5 % test.

62. Do you think the three different opinions receive about the same amount of

support among first-year students? Do a 5 % test.

63. Do you think opinion pattern and year in school are related? Do a 5 % test.

64. Do you think there are equal amounts of support for the new rule from the four

different classes? Do a 5 % test.

65. An insurance company is interested in knowing the relationship between traffic

accident claims arid the type of cars that policyholders drive. The numbers of

accidents per 1,000 automobiles during last year in six states are reported in the

accompanying table. Determine whether the three kinds of cars have the same

average accident rate. Use a 5 % level of significance.

State

Type of automobile

Sports Car Sedan Wagon

New Jersey 30 15 16

New York 20 15 17

Connecticut 15 12 11

Massachusetts 17 13 12

Vermont 18 21 15

New 17 12 13

Hampshire
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66. The accompanying table shows highway patrol data on the numbers of speed-

ing tickets given in the last 3 months. Do the data show that all 3 months have

about the same number of tickets? Do a 5 % test.

Sports cars Sedans Wagons Trucks

April 44 30 32 18

May 46 32 30 25

June 45 35 37 27

67. In a poll, people were asked their opinions about the death penalty. The break-

down of the responses is given in the accompanying table. Do the data show that

educational level and opinion are independent of each other? Do a 5 % test.

Educational level Favor Oppose

Elementary school 400 200

High school 200 400

College 200 400

68. In a recent survey, people were asked whether they are happy with the current

income tax structure. Do the results that follow support the hypothesis that how

people feel about the tax structure depends on what tax bracket they are in? Do a

5 % test.

Satisfied Dissatisfied Very dissatisfied

Low bracket 40 40 50

Middle bracket 50 30 30

High bracket 30 50 60

Use the following information to answer questions 69–71. A company puts

vending machines in different locations. The numbers of sodas sold

(in thousands) in the last 3 months are presented in the following table.

Location

Beach School gymnasium Gas stations

April 3 4 4

3 5 5

2 5 6

May 6 4 5

8 5 6

6 4 7

June 10 4 8

10 6 7

12 6 8
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69. Do the data support the hypothesis that April, May, and June have the same

amount of sales? Do a 5 % test, using one-way ANOVA.

70. Do a one-way ANOVA to see whether you can argue that the three different

locations have different amounts of sales. Use 5 %.

71. Do a two-way ANOVA to see whether the three different locations have

different amounts of sales. Use 5 %.

72. Hannah, a wine dealer, believes that the taste of wine depends on the year the

wine was bottled. Do the data she collected from a recent wine-tasting contest

support her belief? Do a 5 % test.

Year

1968 1973 1985

Excellent 40 45 25

Good 35 25 45

Fair 45 15 20

Yuck 10 15 20

73. The manager in a department store believes that whether a customer pays by

cash, charge, or check depends on the amount of money spent. Do the following

data support what the manager believes? Do a 5 % test.

Amount spent Charge Check Cash

Less than $10 20 30 70

Between $10 40 40 40

and $100

Over $100 60 40 20

74. The demand for different types of automobiles should be related to their owners’

needs. A manager in a local auto dealership randomly pulls samples from the

dealership’s customer files. Do the resulting data support the manager’s belief?

Do a 5 % test.

Auto purchased

Sedan Wagon Sports car

Single 30 5 20

Married, no 40 15 20

children

Married, at least 30 40 20

one child

75. An advertising agent believes that different types of programs attract audiences

of different age groups. She collects the following data to study her claim.
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Age group

Program type

Sitcom Game Show News

10–19 40 40 20

20–29 60 40 50

30–39 60 30 60

40 or older 40 20 40

Determine, at a ¼ 5 %, whether you can reject her claim.

76. A consumer rights organization wanted to check out different diet plans. It

recruited 33 volunteers and sent them to four different programs. After the first

2 weeks, the weight losses, in pounds, were recorded and organized in the

accompanying table. Do a 5 % test to determine whether the 4 programs are

equally effective.

A B C D

8.0 9.9 8.9 7.6

8.8 9.1 8.2 7.7

8.7 9.8 8.1 7.5

8.6 9.8 8.0 7.8

8.0 9.9 8.6 7.6

8.8 9.6 8.6 7.3

8.5 9.2 8.6 7.1

9.8 8.4 8.0

7.5

8.0

77. The dean of the business school wants to find out whether the instructors in four

departments are grading students similarly. The following data are compiled.

Do you think the grade distribution depends on the department? Do a 5 % test.

Finance Management Accounting Marketing

A 35 45 35 25

B 50 60 55 35

C 15 30 25 10

F 30 45 35 20

78. A Consumer Protection Coalition decides to study the delay times, in minutes,

for four different airlines: A, B, C, and D.

A B C D

25 22 21 30

35 31 24 28

35 33 34 32

30 28 29 27

44 41 40 15

31 32 17 19
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It is believed that the average delay times of the 4 airlines are about equal. Do a

test at the 5 % level to decide whether the data support rejecting this hypothesis.

79. In question 78, a statistician argues that the length of delay may depend on the

airport from which the airplane departs. Accordingly, the data were regrouped

to reflect departure sites X, Y, and Z. Here are the results:

Airlines

A B C D

X 25 22 21 30

35 31 24 28

Y 35 33 34 32

30 28 29 27

Z 44 41 40 15

31 32 17 19

Redo the test to decide whether the airlines’ delay times are about equal by

considering the effect of departure location. Use 5 %.

80. The delay times of 200 delayed flights were compiled in the following fre-

quency distribution. The mean is about 45 and the standard deviation is 20. Do

the data follow a normal distribution? Do a 5 % test.

Delay time

(in minutes) Frequency

0–15 20

16–30 32

31–45 48

46–60 52

61–75 38

76–90 10

81. The numbers of missing pieces of luggage are compiled in the following table.

Do the data. follow a Poisson distribution? Do a 5 % test.

Number of missing

Pieces of luggage

Number of

flights

0 985

1 10

2 4

3 1

More than 3 0

82. A bank manager is interested in the amount of cash being withdrawn each

Friday. He collects data on the last 90 Fridays and compiles them in the

accompanying table. The mean is 340 and the standard deviation is 64. Deter-

mine whether the amount of cash withdrawn follows a normal distribution. Use

a 5 % significance level.
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Cash withdrawn Frequency

Less than 250 5

250–300 21

301–350 25

351–400 20

401–450 15

More than 450 4

83. A financial analyst is interested in conducting an extensive study of credit card

debt. He wants to know whether the income of cardholders is related to the size

of the debt. He compiles the data in the accompanying table. Determine

whether size of debt and income level are independent. Use a 5 % level of

significance.

Income

Size of debt

$200 to $500 $500 to $1,000 $1,000 and above

Less than $20,000 400 200 100

$20,000 � $40,000 450 500 300

Higher than 100 200 500

$40,000

84. There are many books to help people learn to use computer software packages.

An instructor checked these books and found that they are all of similar quality.

He picked four books and used them in his classes. If the students have the same

average grades, he will use the cheapest book. On the basis of the test results

that follow, do you think the four classes have about the same grades? Do a 5 %

test.

Class

W X Y Z

43 77 72 72

45 72 73 74

67 75 71 75

68 69 65 65

73 67 68 66

72 66 69 68

55 65 73 74

62 63 72 81

85. It is believed that the quality of a certain product is related to the time of day the

product is produced. The following table summarizes the results of tests on

some random samples produced in a single day.
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Time Good So-so Bad

Morning shift 25 10 5

Afternoon shift 15 20 5

Evening shift 10 20 10

Use a 5 % test to determine whether the quality of the product is independent of

the time it was produced.

86. The placement office in a business school randomly sampled 24 graduates from

three departments and recorded their starting salaries. Determine whether

graduates of the 3 departments have about the same starting salaries. Use a

5 % level of significance.

Management Marketing Accounting

$24,550 $25,200 $24,150

24,790 27,200 24,100

24,310 24,100 23,900

24,200 25,400 25,650

24,900 23,300 23,700

25,200 24,200 24,900

23,900 25,000 24,350

87. A magazine wants to know the relationship between people’s voting behavior

and their level of income. Questionnaires were sent to 200 voters, and FCE

responses are summarized here. Do the data support the hypothesis that income

and voting behavior are related? Use a 5 % level of significance.

Income

High Medium Low

Incumbent 35 22 10

Challenger 25 25 40

Did not vote 10 23 10

Use the following information to answer questions 88–91. A questionnaire was

sent to 200 students on the campus, asking them to indicate their ethnic

background and give their opinion about race relations on campus. The

responses are summarized in the following table.

Ethnic

Background

Opinion on race relations

Good So-so Bad

White 40 80 40

African–American 6 8 6

Asian–American 6 10 14

88. Are African–Americans’ opinions equally split among the three categories? Do

a 5 % test.
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89. The makeup of the student body is 75 % white, 15 % African–American, and

10 % Asian–American. If the samples are randomly selected, the samples’

ethnic distribution should be similar to the ethnic distribution on the campus as

a whole. Do the data support that hypothesis? Do a 5 % test.

90. Are ethnic background and opinion on this issue related? Do a 5 % test.

91. Do the two minority groups have a similar opinion pattern? Do a 5 % test.

Assume we know that African–Americans’ pattern is exactly 30 % for good,

40 % for so-so, and 30 % for bad.

92. Two hundred and ten people were asked which TV news programs they usually

watch. The answers are compiled in the following table. Can you say that the

three networks have audiences of about the same size? Do a 5 % test.

Network A Network B Network C

80 70 60

93. An election was held in a big city whose population is 50 % white, 40 % black,

and 10 % Hispanic. Among the elected, 40 council members are white, 30 are

black, and 10 are Hispanic. Do we have enough evidence to say that the three

ethnic groups are represented on the council in proportion to their representa-

tion in the population?

94. Do workbooks make a difference in students’ performance? A statistics instruc-

tor uses her class as a sample. Do the results suggest that the grade patterns of

those who own a workbook and of those who do not are different? Do a 5 % test.

Grade

A B C D F

Own a workbook Don’t own a workbook 5 4 6 2 1

2 6 4 3 2

95. The president of a local bank suspects that his employees care only about the

big customers. He randomly sampled 325 loans made during the last year and

asked the borrowers their opinion of the service they received. On the basis of

the results, do you think loan size and service received are independent? Do a

5 % test.

Service

Loan size

Small Midsize Large

Satisfied 10 20 40

Acceptable 20 45 30

Dissatisfied 33 33 24

96. A gambler wants to know whether the dice used in a casino are fair. If the dice

are fair, the probabilities of seeing 1, 2,. . ., 6 are all 1
6
:. The gambler recorded

the outcomes of 600 rolls of the dice. Here are his results:

1 2 3 4 5 6

98 93 107 105 97 100
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Do the data support the hypothesis that the dice are fair? Do a 5 % test.

97. A magazine wants to study the relationship between people’s education and the

medium they are exposed to the most. Questionnaires were sent to 100 people

of different educational backgrounds. The results are summarized here. Are

educational background and medium used the most related? Do a 5 % test.

TV Radio Newspaper

Elementary school 20 15 15

High school 15 12 3

College 10 8 2

98. On November 18, 1980, theWall Street Journal published a Gallup survey of the
opinions of 782 chief executives of US corporations. The 782 chief executives

represent samples of 282 from large firms, 300 frommedium-sized firms and 200

from small firms. Frank Allen, a staff reporter for theWall Street Journal, used a
questionnaire to ask “How many people in your company are capable of doing

your job as chief executive?” The results are presented in the table.

Use the chi-square statistic to test whether “number of people capable of doing

your job” is independent of “size of firm” at a ¼ .05.

A 6 � 3 Contingency table for 782 chief executives’ responses

Suitable

successors

Large

firms

Medium

firms

Small

firms

1 6 % 10 % 22 %

2 14 27 30

3 24 26 18

4 or 5 30 21 8

6 or more 22 11 4

Don’t know 4 5 18

Source: Wall Street Journal, November 18, 1980. Reprinted by permission of

the Wall Street Journal, # 1980 Dow Jones & Company, Inc. All Rights

Reserved Worldwide

99. Money magazine (Money, March 2003) reports percentage returns and expense

ratios for top bond funds under four categories: US government (G), high-yield

corporate (H), tax exempt (T), world bond funds (W). Can we conclude that

there is significant difference in the mean expense ratio among the four types of

bond funds? Do a 5 % test, using a one-way ANOVA.

G H T W

5.0 9.7 5.6 4.5

4.9 8.8 5.1 4.2

4.5 7.6 4.5 7.4

3.6 7.1 3.0 8.8

3.9 7.1 4.5 3.4

4.4 8.0 3.6 4.0

4.5 9.7 5.0 4.4

4.9 8.4 4.2 3.7
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100. Use the data from problem 99. At the a ¼ 0.05, use Scheffé’s multiple

comparison to test for the difference between any pair.

101. The rates of returns data from year 2000 to 2009 in Table 4.15 is

listed below:

Year JNJ MRK S&P 500

2000 0.140 0.412 0.075

2001 �0.431 �0.357 �0.163

2002 �0.078 �0.013 �0.168

2003 �0.021 �0.158 �0.029

2004 0.249 �0.272 0.171

2005 �0.032 0.037 0.068

2006 0.122 0.418 0.086

2007 0.035 0.367 0.127

2008 �0.076 �0.451 �0.174

2009 0.108 0.254 �0.223

At the a ¼ 0.05, can we conclude that the two stocks and the general market

generate about the same average rate of return by using a one-way ANOVA?

102. Use the data in Problem 9. At the a ¼ 0.05, do a two-way ANOVA to

determine whether the rates of return for the three kinds of stocks/general

market are about the same.

Project III: Project for Statistical Inferences Based on Samples

Use the rates of return data presented in Table 12.29 to do the following:

1. Calculate the mean and the standard deviation for JNJ, Merck, and the

market.

2. Calculate the confidence intervals for rates of return of JNJ, Merck, and the

market.

3. Test whether the average rates of return of JNJ and Merck are significantly

different from the market rates of return.

4. Use the data of JNJ, Merck, and the market to perform the ANOVA test

and to write an analysis about the results.

5. Test whether market rates of return are normally distributed in accordance

with the w2 distribution.
6. Download monthly adjusted close price data of JNJ from Yahoo Finance

during the period from January 2005 to current month, calculate the rates

of return of JNJ, and redo 1–5.
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Appendix 1: ANOVA and Statistical Quality Control

In statistical quality control, we can use the ANOVA to measure the system

analysis, capability studies control chart set up.5 In this appendix, we will show

how the ANOVA can be used to do measurement system analysis.

Measurement variation can be broken down into two components:

1. Reproducibility variation due to the measurement system. It is the variation

observed when different operators measure different parts using the same device

repeatedly.

2. Repeatability variation due to the measuring device. It is the variation observed

when the same operator measures the same part with the same device repeatedly.

MINITAB provides a gage R&R (repeatability and reproducibility) study and a

gage run chart break for examining measurement variation.

Gage Run Chart

Before running a gage R&R study, you may want to look at your measurement data

on a plot. The gage run chart command plots of all the observed measurements for

each operator/part combination, letting you visualize the repeatability and repro-

ducibility components of the measurement variation.

Gage R&R Study

You can choose between two types of gage R&R studies—the ANOVA method

discussed in this chapter and the �X part and �Rmethod which have been discussed in

Chap. 10:

• The ANOVA method breaks down measurement system variation into repro-

ducibility and repeatability. It also goes one step further and breaks down

reproducibility into its operator and operator by part components.

– The operator component is the variation observed between different operators

measuring the same set of parts.

– The operator by part component is the interaction between operator and part, that

is, the variation among the average part sizes measured by each operator.

5 The basic information of this appendix is essentially based upon MINITAB Reference Manual
Release 11 June 1996, pp 10–1 through 10–28.
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For example, one operator may get more variation when measuring smaller

parts, whereas another operator may get more variation when measuring larger

parts.

• The �X and �R method also breaks down measurement system variation into

reproducibility and repeatability, but not reproducibility into its operator and

operator by part components. In this case, reproducibility equals operator.

The ANOVA method provides a more accurate assessment of the measurement

system than the �X and �R method because it accounts for the operator by part

interaction.

Components of Measurement System Variation

Variation due to gage Variation due to operators
Reproducibility

Repeatability Operator Operator by Part

Example 12.4 Gage R&R Study: The ANOVA Method. The U-bolts sample

measurement data for the auto supply company presented in Table 10.3 of Chap.

10 represent samples from 3 shifts. There are 8 h in each shift. Using the ANOVA

method, we can decompose the measurement variation into (1) variation between

shifts, (2) variation between hours, (3) variation due to interaction between shift and

hour, and (4) errors. The MINITAB output is shown in Fig. 12.6.

If we rearrange the data to represent outputs produced by three operators, each

operator produces eight different parts process as shown in Table 12.27

• The variation in terms of the data of Table 12.27 can be decomposed by the

ANOVA method into (1) variation between operators, (2) variation between

parts, (3) variation due to the interaction between operators and parts, and

(4) errors. The MINITAB output of this result is present in Fig. 12.6.

From Fig. 12.6, the F ratios for each source of variation are as follows:

Variation between operators
0:00058

0:00633
¼ 0:09

Variation between parts
0:01912

0:00633
¼ 3:02

Variation due to interaction
0:01104

0:00633
¼ 1:74
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From the critical values of F in Table A6, it can be concluded that only the

variation between parts is significantly different from zero at a ¼ .05

Fig. 12.6 MINITAB output of two-way analysis
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Fig. 12.6 (continued)
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Fig. 12.6 (continued)
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Part IV

Regression and Correlation: Relating
Two or More Variables

Part III of this book deals with statistical inference based on samples. This part

continues the discussion of inferential statistics but focuses on the relationship

between two or more variables, using regression and correlation analyses. Regres-

sion analysis is one of the analytical tools most frequently used in many areas of

business and economics. Chapters 13 and 14 focus on simple regression and

correlation analysis. Chapter 15 discusses regression analysis, and Chap. 16

explores the subject further.

Part IV includes applications and examples in accounting, economics, finance,

marketing, and other areas of business.

Chapter 13 Simple Linear Regression and the Correlation Coefficient

Chapter 14 Simple Linear Regression and Correlation: Analyses and Applications

Chapter 15 Multiple Linear Regression

Chapter 16 Other Topics in Applied Regression Analysis
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13.1 Introduction

In Sect. 6.9, we used correlation to provide a measure of the strength of any linear

relationship between a pair of random variables X and Y. The random variables are

treated perfectly symmetrically; that is, “the correlation between X and Y” is

equivalent to “the correlation between Y and X.” In this chapter, we first discuss

the linear relationship between a pair of variables without perfect symmetry. In

other words, we assume that Y is a dependent variable and X an independent

variable: Y depends on X. Then we discuss the bivariate normal relationship and

concepts related to the correlation coefficient.

Regression analysis is perhaps the statistical technique used most frequently to

analyze the relationship between two or more variables in business and economics.

This technique deals with the way one variable tends to change as one or more other

variables change. In this chapter and the next, we will consider a regression

relationship in which Y depends on only one variable X. Examples of this relation-

ship include how sales (Y) vary with advertising expenditures (X), how quantity

demanded (Y) varies with prices (X), and the relationship between corporate profit

(Y) and R&D spending (X). Because all these cases deal with the relationship

between two variables only, we call this kind of relationship a simple regression
analysis. In Chap. 15, we will extend regression analysis to cases where more than

two variables come into play, such as the relationship among sales, price, adverti-

sing expenditures, and perhaps even growth of gross national product. A regression

analysis that involves more than two variables is called a multiple regression
analysis. In Chap. 16, other important techniques and issues related to simple and

multiple regression are discussed in detail.

In this chapter, we first discuss the regression model and population parameters

and then distinguish the sample regression model from the population regression

model. The least-squares estimation of population parameters, standard assumptions

for linear regression, standard error of estimate, and coefficient of determination are

investigated. Finally, we explore the bivariate normal distribution and correlation

analysis. The relationships among simple regression, slope, and correlation coeffi-

cient are also discussed.

13.2 Population Parameters and the Regression Models

To study the relationship between two variables, we must distinguish between the

dependent variable, denoted by Y, and the independent variable, denoted by X. Here
the term dependent variable means that the values of an estimated variable depend

on the values of another variable. The dependent variable may also be known as

the response variable. The independent variable, which is also known as the
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explanatory variable, is used to explain the dependent variable.1 The value of an

explanatory variable normally offers at least a partial explanation of the behavior of

the dependent variable.

For example, in economic analysis when we investigate the relationship between

income and consumption of goods and services, consumption is the dependent

variable (Y) and income the independent variable (X). Consumption (consumer

spending) depends on, and is determined by, level of income. Let’s use regression

analysis to consider the relationship between height and weight in a group of

children. This set of common-sense data will be used in both Chaps. 13 and 14 to

demonstrate how simple regression analysis can be done intuitively. In Chap. 14,

business and economic applications of simple regression are also discussed.

13.2.1 Data Description

Suppose we have a group of children who are classified according to their height, as

shown in Table 13.1. The population consists of 30 pairs of observations: (55 in.,

91 lb), (55 in., 92 lb),. . ., (60 in., 117 lb). Figure 13.1 is a graph of these

observations. Note that these groups are formed according to fixed heights, such

as 55 in. and 56 in., and that each group, or subpopulation, has 5 pairs of

observations. There are 6 subpopulations corresponding to the fixed variable

heights (X). We shall say that we have a collection, or family, of subpopulations.

The average value of Y in each subpopulation is called the expected value for

a given height X. It is written E(Y|X) and is given in the last column of Table 13.1.

For example, the average value of Y for a height of 60 in. is

E YjX ¼ 60ð Þ ¼ 94þ 99þ 101þ 104þ 117

5
¼ 103 1b

Using a similar approach, we can calculate the subpopulation means of all the

other groups. They are graphed as the straight line ABC in Fig.13.1.

Table 13.1 Population

height and weight data for

children

x (inches) y (pounds) E(Y|X)

55 91 92 93 94 95 93

56 92 94 95 97 97 95

57 92 95 96 99 103 97

58 94 97 98 100 106 99

59 95 97 100 102 111 101

60 94 99 101 104 117 103

1 For instance, the equation y ¼ x + 3 is a linear model with x as the independent variable and y as
the dependent variable. The variable x is considered independent because it is predetermined. For

any given value of x, we can find a corresponding value of y, so the value of y is dependent on the
value of x. When x is equal to 4, y is equal to 7. Strictly speaking, the word independent implies

that the values of this variable are preassigned and that the values of the dependent variable follow,

at least in part, from this preassignment.
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13.2.2 Building the Population Regression Model

Let us now focus our attention on the subpopulation corresponding to X ¼ 57 in.

E YjX ¼ 57ð Þ ¼ 92þ 95þ 96þ 99þ 103

5
¼ 97

The y ¼ 103 lb in this subpopulation corresponding to x ¼ 57 in. deviates from

E(Y|X) by

y� E YjX ¼ 57ð Þ ¼ 103� 97 ¼ 6 Ib

Fig. 13.1 Linear relationship between weights and heights for 30 children
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We will express such deviations as e, so y ¼ 103 lb can be expressed as

y ¼ E YjX ¼ 57ð Þ þ e

where є is the error term, which is a random variable. This is a general expression

for individual Y-values of the X ¼ 57 subpopulation. That is, when e ¼ � 5,

y ¼ E YjX ¼ 57ð Þ þ e ¼ 97� 5 ¼ 92

When e ¼ �2, y ¼ 95; when є ¼ � 1, y ¼ 96; when e ¼ 2, y ¼ 99; and when

e ¼ 5, y ¼ 102.

The various y-values in each subpopulation can be expressed in a similar manner.

y1 ¼ E YjX1 ¼ 55ð Þ þ e1 ¼ 93þ e1
y2 ¼ E YjX2 ¼ 56ð Þ þ e2 ¼ 95þ e2

..

.

y30 ¼ E YjX30 ¼ 60ð Þ þ e30 ¼ 103þ e30

In general the ith value of Y is expressed as

Yi ¼ E YijXi ¼ xið Þ þ ei (13.1)

where E(Yi|Xi) represents the expected value of those Y for which X is equal to the

specific value xi, and ei is the error term associated with ith observation in the

population regression.

E(Yi|Xi ¼ xi) gives us a straight line, as shown in Fig. 13.1, so we can express E
(Yi|Xi ¼ xi) as

E YijXi ¼ xið Þ ¼ aþ bxi (13.2)

where a is the y-intercept, b is the slope, and xi is the ith independent variable. This
is called a linear function because the resulting curve is a straight line. Let

E YjX ¼ xð Þ ¼ mYx
¼ aþ bx (13.3)

This equation represents a linear relationship between E(Y|X ¼ X) and x for all
data, whereas Eq. 13.2 represents only the relationship for a specific pair of data.

In addition, Eq. 13.3 represents the conditional population mean as presented by

line ABC in Fig. 13.1.
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Equation 13.3 represents a straight line with slope b and intercept a. Then the

slope for line ABC can be interpreted as2

b ¼ 97� 93

57� 55
¼ 2

The parameter b, the slope, measures the change in Y resulting from a change in

X. It is calculated by dividing the change in Y by the change in X. One way of

interpreting a slope of 2 is to say that if the independent variable X is changed by

1 unit, the dependent variable changes by + 2 units. To obtain the y-intercept, we
shift the origin from (0, 0) to A (0, 93). In other words, we let the origin x ¼ 0 for

the height of 55 in.; then a ¼ 93. Hence, the straight line used to describe ABC is

myx ¼ 93 + 2x0. Substituting x0 ¼ 0, 1, 2, 3, 4, and 5 into myx, we obtain the results

indicated in Table 13.2. By combining Eqs. 13.1 and 13.2, we can express an

individual value of Y as

Yi ¼ aþ bxi þ ei (13.4)

where Yi and xi represent the ith value for Y and x, respectively.
Equations 13.1, 13.2, and 13.4 summarize all the data in the population and are

called the linear model (or regression model). Equation 13.3 is called the regression
function; it shows the relationship between the expected values of Y and the

independent values X. The y-intercept a and the slope b are called regression
coefficients (parameters).3

Using the population data listed in Table 13.2, we have our population regres-

sion line (Eq. 13.5) and our population regression model (Eq. 13.6) for describing

the relationship between weights and heights:

mYx ¼ 93þ 2x0i (13.5)

Yi ¼ 93þ 2x0i þ ei (13.6)

Table 13.2 Worksheet for

calculating myx
Heights, xi (inches) x’i ¼ xi – 55 myx
55 0 93

56 1 95

57 2 97

58 3 99

59 4 101

60 5 103

2 From DABD, the slope of ABC can be defined as b ¼ BD/AD ¼ (97�93)/(57�55) ¼ 2.
3 For an illustration of the meaning of the model, let x be the amount of advertising and Y be the

amount of sales. Equation 13.3 tells us that, given a certain amount of advertising, the expected

amount of sales is myx ¼ a + bx.
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Population regression, as indicated in Eq. 13.5, represents conditional mean

values. In Fig. 13.1 the population mean value for a height of 57 in. is seen to be

my,57 ¼ 97 lb. In other words, the average weight for all children with a height of

57 in. is 97 lb. The value is calculated by substituting x0 ¼ (57 – 55) ¼ 2 in. into the

population regression line as follows: my,57 ¼ 93 + 2(2) ¼ 97 lb.

In this section we have shown that in a simple regression analysis, two popula-

tion regression parameters are to be calculated. Our assumption that a and b are

known is, of course, an unrealistic one. Usually, a and b can only be estimated in

terms of sample data.

13.2.3 Sample Versus Population Regression Model

If we have a large amount of information from a population to analyze, it may not

be possible (or desirable) to obtain this specific information on each element in the

population. Under these circumstances we generally use a sample to estimate

the population parameters of the regression line in accordance with n pairs of

observations (x1, y1), (x2, y2),. . ., (xn, yn). In the case of simple regression analysis,

two population parameters, a and b, need to be estimated. Once we have estimates

of a and b, we can derive an estimate of myx for any specified value of X.
The sample regression line used to estimate a and b and to predict myx can be

defined as

y ¼ aþ bx (13.7)

where a and b are the intercept and slope to be estimated in terms of sample data.

Let us explore how this sample regression line is related to the population

regression line described by Eq. 13.3. The sample value of a is used to estimate

a, and the sample value of b is used to estimate b. The values of a and b, together
with a given value of X, yield an estimated value of Y that we can use to estimate the

population value myx defined in Eq. 13.3.

We can add the subscript i to these variables of Eq. 13.7 to indicate specific

values, just as we did for the population regression line. Thus, if xi is a specific value
of X, the equation for estimating a and b is

yi ¼ aþ bxi þ ei (13.8)

where a and b are intercept and slope in a sample regression with error term ei.
Equation 13.8 yields a sample regression line that can be used to estimate

parameters of the population regression line defined in Eq. 13.4. As we will see

in the next section, we take n pairs of sample observations to estimate a and b.
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13.3 The Least-Squares Estimation of a and b

In this section we discuss the scatter diagrams, method of least squares, and how

a and b are estimated.

13.3.1 Scatter Diagram

Using the hypothetical population we first met in Table 13.1, we select a random

sample, for simplicity choosing one pair from each subpopulation. The sample is

given in Table 13.3. Figure 13.2 is a graph of these observations that is called a

scatter diagram. We can estimate the model without a diagram, but the scatter

diagram gives us a preliminary idea of the shape of the regression function. For

these six observations, we observe from the scatter diagram that the relationship

Table 13.3 Sample height

and weight data for children
xi (inches) yi (pounds)

55 92

56 95

57 99

58 97

59 102

60 104

Fig. 13.2 Scatter diagram

622 13 Simple Linear Regression and the Correlation Coefficient



is linear. In addition, the scatter diagram enables us to make rough estimates

of a and b.
We would like to use a line to show the relationship between x and y in Fig. 13.2.

A simple method of drawing a line to describe the relationship between x and y is
the so-called free-hand drawing method, whereby we just draw a line in accordance

with our best judgment about the relationship between x and y. However, the free-
hand drawing method does not necessarily give systematic and objective estimates

for a and b. Furthermore, the free-hand method provides no way of measuring

sampling errors, which are always important in forming confidence intervals or

doing tests of hypotheses on population parameters. From Eq. 13.4,

ei ¼ Yi � a� bxi

where ei represents the error term for the ith observation in population regression.

In a similar manner, we can define the sample residual (error) term as

ei ¼ yi � a� bxi (13.9)

where ei is used to measure the distance from the point (xi, yi) to the line, as

indicated in Fig. 13.3.

What we need now is a mathematical procedure for determining the sample

regression line that best fits the data. The most reasonable approach is to find

the values of a and b such that the estimated values of dependent variable ŷ
(in the equation ŷ ¼ a + bx) are as close as possible to the observed values y.

Fig. 13.3 Measurement of ith residual term, ei ¼ yi � (a + bxi)
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13.3.2 The Method of Least Squares

A method of minimizing the sum of squared deviations is used as a criterion for

finding values of a and b. The smaller ei is, the closer ŷ is to the actual yi-value. Put
another way, the smaller ei is, the better the fit of the regression line is.

Because a small value for ei is desirable, we wish to find values for a and b that

will make ei as small as possible. In other words, we find the line of best fit in

regression analysis by determining the values of a and b that minimize the sum of
the squared residuals. This procedure is known as the method of least squares. It is
accomplished as follows:

Minimize
Xn
i¼1

e2i ¼
Xn
i¼1

yi � ŷið Þ2 (13.10)

The sample regression line determined by minimizing
Pn

i¼1 e2i is called the

least-squares regression line. Because ŷi ¼ a + bxi, minimizingXn
i¼1

e2i ¼
Xn
i¼1

yi � ŷið Þ2

is equivalent to minimizing

Xn
i¼1

ei
2 ¼

Xn
i¼1

yi � a� bxið Þ2 (13.11)

That is, we find a and b such that the sum of squared deviations
Pn

i¼1 e
2
i ;

taken over the sample values, is at a minimum. We estimate a and b by the two

normal equations. (The derivation of the normal equations is shown in

Appendix 1.)

Xn
i¼1

yi ¼ naþ b
Xn
i¼1

xi (13.12)

Xn
i¼1

xiyi ¼ a
Xn
i¼1

xi þ b
Xn
i¼1

x2i (13.13)

Equations 13.12 and 13.13 can be regarded as a two-equation simultaneous

equation system. The two unknowns are the estimates a and b (not y and x) because
we must choose a and b from among an infinite possible set of values, given the

sample of values of yi and xi.
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13.3.3 Estimation of Intercept and Slope

To estimate the intercept, we divide Eq. 13.12 by n and rearrange terms.

a ¼ �y� b�x ¼
Pn
i¼1

yi � b
Pn
i¼1

xi

� �
n

(13.14)

Equation 13.14 implies that the intercept of a simple regression is the mean of

y (�y) minus the slope (b) times the mean of x (�x). Here b is yet to be estimated.

To estimate the slope b, we substitute Eq. 13.14 into 13.13, and, letting Sn
i¼1xi ¼ n�x,

we obtain

b ¼
Pn
i¼1

xiyi � n �xy

Pn
i¼1

x2i � n�x2
¼

n
Pn
i¼1

xiyi �
Pn
i¼1

xi

� � Pn
i¼1

yi

� �

n
Pn
i¼1

x2i

� �
� Pn

i¼1

xi

� � (13.15)

Although the formulas given in Eqs. 13.14 and 13.15 are useful, in a practical

sense it is just as easy to use Eqs. 13.12 and 13.13 directly. These two equations

require only the solution of two equations (linear) in two unknowns.

Alternatively, we replace xi by its deviation from xi � �xð Þ in Eq. 13.13 and obtain
Xn
i¼1

xi � �xð Þyi ¼ a
Xn
i¼1

xi � �xð Þ þ b
Xn
i¼1

xi � �xð Þ2

Because the first term on the right-hand side of this equation is zero, the equation

immediately implies that4

b ¼
Pn
i¼1

xi � �xð Þ yi � �yð Þ
Pn
i¼1

xi � �xð Þ2
¼
Pn
i¼1

xi � �xð Þyi
Pn
i¼1

xi � �xð Þ2
¼ sxy

s2x

¼
Xn
i¼1

xi � �xð Þ yi � �yð Þ=n
Xn
i¼1

xi � �xð Þ2=n
,

(13.16)

4 The second equality of Eq. 13.16 holds because

Xn
i¼1

xi � �xð Þ yi � �yð Þ ¼
Xn
i¼1

xi � �xð Þyi � �y
Xn
i¼1

xi � �xð Þ

¼
Xn
i¼1

xi � �xð Þyi
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where sxy represents the sample covariance between x and y (as discussed in Sect.

6.9 of Chap. 6) and s2x represents the sample variance of x.

Example 13.1 Relationship Between Height and Weight. Using the sample data of

Table 13.3, we will illustrate how Eqs. 13.14 and 13.16 can be used to estimate the

least-squares regression line and its parameters.5 Columns (1) and (2) of Table 13.4

give the hypothetical data of heights and weights for 6 children.

The sums in columns (5) and (6) of Table 13.4 give us the information we need

to calculate b via Eq. 13.16.

b ¼
Pn
i¼1

xi � �xð Þ yi � �yð Þ
Pn
i¼1

xi � �xð Þ2

¼ 39:5

17:50
¼ 2:2571

This implies that each 1-in. increase in height spells a 2.2571-lb increase in

weight.

Using this value of b and the means of x and y shown in Table 13.4, we obtain the
following value of a:

a ¼ �y� b�x ¼ 98:1667� 2:2571ð Þ 57:5ð Þ ¼ �31:6166

Hence, the least-squares regression line for this example is

ŷi ¼ �31:6166þ 2:2571xi (13.17)

Table 13.4 Procedure for calculating a and b

(1) (2) (3) (4) (5) (6)

xi (inches) yi (pounds) xi � �xð Þ yi � �yð Þ xi � �xð Þ yi � �yð Þ xi � �xð Þ2
55 92 �2.5 �6.1667 15.4168 6.25

56 95 �1.5 �3.1667 4.7501 2.25

57 99 –.5 .8333 –.4167 .25

58 97 .5 �1.1667 –.5834 .25

59 102 1.5 3.8333 5.7499 2.25

60 104 2.5 5.8333 14.5833 6.25

Sum 345 589 0 0 39.5 17.50

Mean 57.5 98.1667

5 In general, a sample of 6 would not be sufficient. We use a small sample here for computational

ease only.
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where ŷi represents the estimated regression line, as indicated in Fig. 13.4.

Substituting xi ¼ 55, 56, 57, 58, 59, and 60 into Eq. 13.17, we obtain 6 estimated

values of ŷi(yi
0s).

ŷ1 ¼ �31:6166þ 2:2571ð Þ 55ð Þ ¼ 92:5239

ŷ2 ¼ �31:6166þ 2:2571ð Þ 56ð Þ ¼ 94:7810

ŷ3 ¼ �31:6166þ 2:2571ð Þ 57ð Þ ¼ 97:0381

ŷ4 ¼ �31:6166þ 2:2571ð Þ 58ð Þ ¼ 99:2952

ŷ5 ¼ �31:6166þ 2:2571ð Þ 59ð Þ ¼ 101:5523

ŷ6 ¼ �31:6166þ 2:2571ð Þ 60ð Þ ¼ 103:8094

The regression line of Fig. 13.4 was determined by the method of least squares,

so there is no other line that could be drawn such that the sum of squared residuals

between the points and the line (measured in a vertical direction) would be smaller

than this line. The residuals and the estimated values of yt for the 6 sample points

are summarized in Table 13.5.

Fig. 13.4 Scatter diagram and regression line

Table 13.5 Observations of

yi, ŷi, and ei
yi ŷi ei ¼ yi � ŷi

92 92.5239 –.5239

95 94.7810 .2190

97 99.2952 �2.2952

99 97.0381 1.9619

102 101.5523 .4477

104 103.8094 .1906
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Example 13.2 The Relationship Between the Price of Gasoline and the Price of
Crude Oil. The Organization of the Petroleum Exporting Countries (OPEC) has

tried to control the price of crude oil since 1973. From the mid-1980s to 1990s, the

price of a barrel of crude oil was generally under $25/barrel. However, the price of

crude oil rose dramatically in the 2000s. In 2008, the oil price reached the record

high price. As a result, motorists were confronted with a similar upward spiral of

gasoline prices. The following table presents a gallon of regular leaded gasoline and

a barrel of crude oil in terms of the average value at the point of production during

1990–2010 (data from U.S. Energy Information Administration, EIA).
Price of gasoline and crude oil

Year, i
Gasoline

y ($/gallon)
Crude oil

x ($/barrel)

1990 1.299 24.53

1991 1.098 21.54

1992 1.087 20.58

1993 1.067 18.43

1994 1.075 17.2

1995 1.111 18.43

1996 1.224 22.12

1997 1.199 20.61

1998 1.03 14.42

1999 1.136 19.34

2000 1.484 30.38

2001 1.42 25.98

2002 1.345 26.18

2003 1.561 31.08

2004 1.852 41.51

2005 2.27 56.64

2006 2.572 66.05

2007 2.796 72.34

2008 3.246 99.67

2009 2.353 61.95

2010 2.782 79.48

Source: http://www.eia.gov/

To investigate the relationship between the price of a gallon of gasoline and the

price of a barrel of crude oil, we estimate the following regressive line:

yi ¼ aþ bxi (13.18)

where yi and xi represent a gallon of gasoline and a barrel of crude oil in ith year,

respectively.

Based on the data listed in the table, we first obtain
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X20
i¼1

yi ¼ 35:032;
X20
i¼1

xi ¼ 788:46;
X20
i¼1

yi
2 ¼ 68:16171;

X20
i¼1

xi
2 ¼ 41; 825:53; and

X20
i¼1

xiyi ¼ 1; 658:53:

Substituting this information into Eqs. 13.15 and 13.14, we obtain slope and

intercept estimates as

b ¼ 20 1; 658:53ð Þ � 788:46ð Þ 35:032ð Þ
20 41; 825:53ð Þ � 788:46ð Þ2

¼ 0:025829

a ¼ 35:032

20
� 0:025829ð Þ 788:46ð Þ

20

¼ 0:7334

Substituting estimated a and b into Eq. 13.7, we obtain the estimated regression

line as ŷi ¼ 0:7334þ 0:02583xi.

13.4 Standard Assumptions for Linear Regression

To obtain some desirable properties for the estimators of a regression relationship,

we often make five standard assumptions for the standard population regression

Yi ¼ a + bxi + єi. We shall discuss first the assumptions and then their

implications.

Assumption A. Either xi are fixed numbers (set, e.g., by the experimenter) or they are

random variables that are statistically independent of the random variable єi
whose values have been observed (random).

Assumption B. The random variable єi is assumed to be normally distributed.

Assumption C. The random variable єi is assumed to have a mean of zero; that is,

E(єi) ¼ 0 for i ¼ 1.2,. . ., n. This assumption implies that the mean value of Y
given X, E(Y | X), is E(Y | X ¼ xi) ¼ a + bxi. This assumption implies that there

are no omitted variables associated with the population regression specification.

(The issue of specification error associated with regression analysis will be

discussed in Chap. 16.)

Assumption D. The random variables єi are assumed to be statistically independent

of one another so that E(єi єj) ¼ 0 for i 6¼ j. This assumption implies that no

correlation exists among errors. (If the errors are correlated over time for time-

series data, then we call these kinds of errors autocorrelated errors. This issue

will be discussed in Chap. 16.)

Assumption E. The random variables єi all have constant variance, say s2E ; so

E ei2ð Þ ¼ s2E ; for i ¼ 1,2,. . ., n. In other words, the population error variance is

constant over all values of xi.

13.4 Standard Assumptions for Linear Regression 629

http://dx.doi.org/10.1007/978-1-4614-5897-5_16
http://dx.doi.org/10.1007/978-1-4614-5897-5_16


Now let’s consider the implications of these five assumptions. Assumption A
holds if x consists of a fixed number because the covariance of a random variable

and a constant is always zero. In addition, it should be noted that the constant has no

variation from its fixed value. When xi is a random variable, this assumption may be

violated. If x, cannot be measured precisely, then there exists an error-invariable

problem; xi and єi are not independent of one another.
6

Assumptions B through E concern the error term (єi) in the regression equation.

Assumption B assumes that the difference between Yi and their conditional

expectations (a + bxi) is normally distributed. This assumption is needed only

when statistical tests of significance are conducted. Assumption C means that for

a given xi the difference between Yi and its conditional mean (a + bxi) is sometimes

positive and sometimes negative but on average is zero.

Assumption D means that the error of one point in the population cannot be

related systematically to the error of any other point in the population. In other

words, knowledge about the magnitude and sign of one or more errors does not help

us predict the magnitude and sign of any other error. This assumption is frequently

violated in time-series analysis, which is discussed in detail in Chap. 18.

Finally, Assumption E means that the random errors all have the same variance.

Figure 13.5 shows what the error terms should look like with a constant variance

and with one that varies.

In summary, assumptions B through E imply that the random variable єi is
normally, identically, and independently distributed with mean zero and variance

s2E . If all the assumptions are true, then the estimators of a and b as determined

by the least-squares method are best linear unbiased estimators (BLUE). Essen-
tially, BLUE means that the estimates of the parameters are best because the error

variances of least-squares estimators are smaller than those of any other unbiased

estimators. Linear means that the estimators are a linear function of the observed

values of the dependent variable Y. The estimators are said to be unbiased

because the expected value of each sample coefficient is equal to the population

parameter.

The implications of assumptions B, C, and E are apparent in Fig. 13.6, which

shows distributions of errors for three particular values of x: x1, x2, and x3. Note that
the relative frequency distributions of errors are normally distributed with mean

zero and constant variance s2e . The straight line, shown in Fig. 13.6, plots E(Yi |
Xi ¼ xi) as

EðYijXi ¼ xiÞ ¼ aþ bxi

6 For instance, if in economic or business research, current instead of permanent income is used as

the independent variable in estimating consumption function, then there are proxy errors

associated with income measurements, as discussed in Appendix 14A. If the regression equation

is part of interdependent equations, then xi and єi also are not independent of each other. However,
we will take Assumption A as given.
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13.5 The Standard Error of Estimate and the Coefficient

of Determination

Two alternative measures can be used to measure the goodness of fit for a regres-

sion. The standard error of residuals is a measure of the absolute fit of the sample

points of the sample regression line. The coefficient of determination is an index of

the relative goodness of fit of a sample regression line. To discuss these two

goodness of fit measures, we first need to present some of the components for

measuring the variability of yi in regression analysis.

Fig. 13.5 (a) Constant and (b) nonconstant residual variance
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13.5.1 Variance Decomposition

In regression analysis, two means are associated with the dependent variable y:

Overall mean (�y)
Conditional mean ŷi ¼ aþ bxið Þ

Based on these two different means, we can break down the total deviation

yi � �yð Þ into unexplained deviation yi � ŷið Þ and explained deviation yi � �y as

yi � �y ¼ ðyi � ŷiÞ þ ðŷi � �yÞ
Total Unexplained Explained

Deviation Deviation Deviation

(13.19)

Equation 13.19 implies that the deviation of yi from its overall mean �yð Þ can be

dissected into two components, yi � ŷið Þ and ŷi � �yð Þ. The deviation yi � ŷið Þ cannot
be explained (or accounted for) by the regression line because when xi changes,
both yi and ŷi change; hence, it is called the unexplained deviation. However, the

deviation ŷi � �yð Þ can be explained by the regression line because when xi changes,
�y remains constant; thus, it is called the explained deviation. The relationship is

illustrated in Fig. 13.7. By squaring each deviation and summing overall

observations of Eq. 13.19, it can be shown (see Appendix 2) that

Xn
i¼1

ðyi � �yÞ2 ¼
Xn
i¼1

ðyi � ŷiÞ2 þ
Xn
i¼1

ðŷi � �yÞ2 (13.20)

Fig. 13.6 The regression line and the probability distribution of ei
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This equation implies that the total variation of the dependent variable yi can be
dissected into unexplained variation and explained variation. Alternative: terms

used to describe these components follow.

Xn
i¼1

ðyi � �yÞ2 ¼ total variation; sum of squares total ðSSTÞ

Xn
i¼1

ðyi � ŷiÞ2 ¼ unexplained variation; sumof squares error ðSSEÞ

Xn
i¼1

ðŷi � �yÞ2 ¼ explained variation; sum of squares due to regression ðSSRÞ

In summary, we have

SST ¼ SSE þ SSR

Total Unexplained Explained

Variation Variation Variation

(13.21)

On the basis of Eqs. 13.20 and 13.21, we can define and discuss both the standard

error of residuals and the coefficient of determination. We now use our

height–weight example to calculate SST and SSE, as shown in Table 13.6. (Note

that Table 13.6 is an ANOVA table.)

If we divide both sides of Eq. 13.20 by (n – 1), we have

Pn
i¼1

ðyi � �yÞ2

n� 1
¼
Pn
i¼1

ðyi � ŷÞ2

n� 1
þ
Pn
i¼1

ðŷi � �yÞ2

n� 1
(13.22)

Fig. 13.7 Estimated regression line
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It can be shown that Eq. 13.22 can be rewritten as7

Pn
i¼1

ðyi��yÞ2

n�1
¼
Pn
i¼1

ðyi�ŷiÞ2

n�1
þ

b2
Pn
i¼1

ðxi��xÞ2

n�1

Total ¼ residual þ ðslopeÞ2ðvariance of
variance variance independent

variableÞ

(13.23)

The residual variance defined in Eq. 13.23 is not an unbiased estimate of the

population residual variance, which is discussed in the next section.

In Table 13.6, k represents the number of independent variables. In simple

regression analysis, k is equal to 1. In the upper portion of Table 13.6, columns

(1) and (2) represent the actual and estimated values listed in Table 13.5. Column

(3) represents the squared residuals, and column (4) represents the square of actual

observations deviated from the overall mean �y. The lower portion of Table 13.6

represents the results of dissecting the variation, a technique used to calculate the

standard error of residuals (estimates) and the coefficient of determination.

Table 13.6 Analysis

of variance
(1) (2) (3) (4)

Actual yi Estimate ŷi (yi – ŷi)
2 ¼ e2i (yi – �y)2

92 92.5239 .27447 38.0282

95 94.7810 .04796 10.0280

99 97.0381 3.84905 .6944

97 99.2952 5.26794 1.3612

102 101.5523 .20043 14.6942

104 103.8094 .03633 34.0274

Total SSE ¼ 9.67618 SST ¼ 98.8334

Sources

of variation Sum of squares

Degrees

of freedom Mean square

Due to

regression
SSR ¼Pn

i¼1

ŷi � �yð Þ2 k SSR/k

Residuals
SSE ¼Pn

i¼1

y
i
� ŷið Þ2 n–k–1 SSE/(n–k–1)

Total
SST ¼Pn

i¼1

yi � �yð Þ2 n–1 SST/(n–1)

Due to

regression

89.1572 1 89.1572

Residuals 9.6762 4 2.4191

Total 98.8334 5 19.7667

7 Because

Xn
i¼1

ðŷi � �yÞ2 ¼
Xn
i¼1

½aþ bxi � ðaþ b�xÞ�2 ¼ b2
Xn
i¼1

ðxi � �xÞ2
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13.5.2 Standard Error of Residuals (Estimate)

The first measure of goodness of fit in regression analysis is called the sample
standard deviation of error term (se).

se ¼
ffiffiffiffiffiffiffiffiffiffiffi
SSE

n� 2

r
(13.24)

whereSSE ¼ Sn
i¼1ðyi � ŷiÞ2. Here se is a sample statistic about the goodness of fit of

the sample regression line, and s2e represents an unbiased estimate of the variance of

the error terms s2e
� �

about the population regression line. From Chap. 9 we know

that an unbiased sample variance is calculated by dividing the sum of squared

deviations by the degrees of freedom, n–2.
Note that the number of elements that can be chosen freely is called the degrees

of freedom. In this case there are two sample statistics (a and b) that we must

calculate before we can compute the value of ŷ (because ŷ ¼ aþ bx). Therefore,
only (n–2) observations are free to vary if a and b are held constant.

From Table 13.6, se for our familiar example involving student height and

weight is calculated as follows:

se ¼
ffiffiffiffiffiffiffiffiffiffiffi
SSE

n� 2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:6762

4

r
¼ 1:5553

The value of se can be used to describe the distribution of ŷi in a manner similar to

that which we used in the standard deviation of y (i.e., sy) to describe the distribu-

tion of y. In addition, se can be used to describe the distributions of a and b. All these
concepts and their applications will be discussed in the next chapter.

13.5.3 The Coefficient of Determination

Alternatively, we can use either Eq. 13.20 or Eq. 13.21 to calculate a relative

measure of goodness of fit. If we divide both sides of Eq. 13.21 by SST, we obtain

SST

SST
¼ 1:0 ¼ SSE

SST
þ SSR

SST

Using this equation, we can derive the coefficient of determination (R2) as

R2 ¼ SSR

SST
¼ 1� SSE

SST
(13.25)

Because SSE is the unexplained variation in y, the ratio SSE/SST is the proportion

of the total variation of the dependent variable yi that cannot be explained by the
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regression relation. Similarly, the ratio SSR/SST is the proportion of the total varia-

tion that can be explained by the regression line. Equation 13.25 is used to explain the
relationship between SSR/SST and SSE/SST. In summary, R2 is used to measure the

explanatory power of the independent variable x. In our height and weight example,

R2 ¼ SSR

SST
¼ 89:1572

98:8334
¼ :9021

The R2 indicated in Eq. 13.25 does not adjust for the degrees of freedom. We

have already seen (Table 13.6) that in order to obtain the unbiased s2y and s
2
e, we must

divide SST and SSR by the degrees of freedom (n–1) and (n–k–1), respectively.

Using these concepts, we can define the adjusted coefficient of determination �R
2
as

�R
2 ¼ 1� SSE=ðn� k � 1Þ

SST=ðn� 1Þ (13.26)

For our example, n ¼ 6, k ¼ 1, SST ¼ 98.8334, and SSE ¼ 9.6762. The

adjusted coefficient of determination is

�R
2 ¼ 1� 9:6762=4

98:8334=5
¼ 1� 2:4191

19:7667

¼ :8776

The magnitude of �R
2
is always less than the magnitude of R2 because �R

2
has been

adjusted for the degrees of freedom.

A MINITAB solution using the height and weight data given in Table 13.4 is

shown in Fig. 13.8. This output contains nearly all the calculations performed so

far. In particular,

b ¼ 2:2571 SSE=ðn� k � 1Þ ¼ 2:419
a ¼ �31:62 se ¼ 1:555
SSR ¼ 89:157 R2 ¼ :902
SSE ¼ 9:676 R

2 ¼ :878
SSR=k ¼ 89:157

13.6 The Bivariate Normal Distribution and Correlation

Analysis

In correlation analysis, we assume a population where both X and Y vary jointly.

Correlation analysis doesn’t imply causality as regression analysis does.8 If both X
and Y are normally distributed, then we shall call this joint distribution a bivariate

8 Strictly speaking, regression implies causality only under some prediction cases.
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normal distribution.9 In Chap. 6 we discussed the relationship between two

variables in terms of covariance – for example, Cov(X,Y). Now we will explore

correlation analysis.

Both the covariance and the correlation coefficient are designed to measure the

degree of a linear relationship between a pair of variables. The covariance is an

absolute measure and the correlation coefficient a relative measure in determining

the relationship between two variables. The population relationship between two

variables can be defined as

sXY ¼ CovðX; YÞ ¼ E½ðX � mXÞðY � mYÞ� and (13.27)

r ¼ sXY=sXsY (13.28)

Fig. 13.8 MINITAB output of Table 13.4

9 The bivariate normal density function will be discussed in Appendix 3.
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where mx and mY are population means of X and Y, respectively, and sx and sy are
population standard deviations of X and Y, respectively. Cov(X,Y) was discussed in
Chap. 6. Equation 13.28 represents the population correlation coefficient r, which
is standardized by dividing Cov(X,Y) by the product of the population standard

deviation of X (that is, sx) and the population standard deviation of Y (i.e., sy).
Three values of the correlation coefficient r that can serve as benchmarks for

interpreting a correlation coefficient are r ¼ 1, r ¼ �1, and r ¼ 0. r ¼ 1 means

that two variables X and Y exist in a perfect positive linear relationship; r ¼ � 1

means that two variables X and Y exist in a perfect negative linear relationship; and

r ¼ 0 means that X and Y are not linearly related – that is, they are independent

random variables. The association between two variables increases as the magni-

tude of the correlation coefficient approaches 1. If the absolute value of r is less

than 1, then the larger (in absolute value) the correlation, the stronger the linear

association between two random variables.

13.6.1 The Sample Correlation Coefficient

Sample data of random variables X and Y are used to estimate the population

correlation coefficient r. The sample statistic associated with r is the sample

correlation coefficient; it is denoted by the letter r.

r ¼ sxy
sxsy

(13.29)

where

sxy ¼ 1

n� 1

Pn
i¼1

ðxi � �xÞðyi � �yÞ ¼ sample covariance

sx ¼ 1

n� 1

Pn
i¼1

ðxi � �xÞ2
� �1=2

¼ sample standard deviation of x

sy ¼ 1

n� 1

Pn
i¼1

ðyi � �yÞ2
� �1=2

¼ sample standard deviation of y

To illustrate the procedure for calculating the sample correlation coefficient, we

consider once again the data for our standard height and weight example. Following

Tables 13.4 and 13.6, we obtain

sxy ¼ ð39:5=5Þ ¼ 7:9

sx ¼ ð17:5Þ
5

� �1=2
¼ 1:8708

sy ¼ ð98:8334Þ
5

� �1=2
¼ 4:4460
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Substituting these numbers into Eq. 13.29 yields

r ¼ 7:9

ð1:8708Þð4:4460Þ ¼ :9498

13.6.2 The Relationship Between r and b

We can explore the relationship between the value of r and the value of the slope b
by comparing Eqs. 13.16 and 13.29, which are reproduced here.

b ¼ sxy=s
2
x (13.30)

r ¼ sxy=sxsy (13.31)

Equation 13.29 can be rewritten as

r ¼ ½ðsxyÞ=s2x �½ðsxÞ=sy� ¼ bðsx=syÞ (13.31a)

Because both sx and sy are always positive, the sign of r is identical to the sign of
b. In other words, a positive correlation must correspond to a regression line with

positive slope, and a negative r must correspond to a negative slope.

The magnitude of r is determined by the magnitudes of both b and sx/sy. In other
words, b ¼ 1 does not necessarily imply that r ¼ 1, unless sx/sy ¼ 1. Similarly,

r ¼ 1 does not necessarily imply that b ¼ 1, unless sy/sx ¼ 1.

13.6.3 The Relationship Between r and R2

The correlation coefficient (r) is used to measure the relationship between x and y,
and the coefficient of determination is used to measure the percentage of the

variation of y that is attributable to the variation of x. Hence, it is useful to

investigate the relationship between the correlation coefficient r and the coefficient
of determination R2. Squaring both sides of Eq. 13.31a, we have

Coefficient of determinationR2 ¼ SSR

SST
(13.32)

where

SST ¼
Xn
n¼1

ðyi � �yÞ2

SSR ¼
Xn
i¼1

ðŷi � �yÞ2
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It has been shown (footnote 7) that

SSR ¼ b2
Xn
i¼1

ðxi � �xÞ2 (13.33)

Substituting Eq. 13.33 and the definition of SST into Eq. 13.25, we obtain

R2 ¼ b2
Xn
i�1

ðxi � �xÞ2
.Xn

i¼1

ðyi � �yÞ2

¼ b2s2x=s
2
y

¼ r2 ð13:34Þ

From Eq. 13.34 we can conclude that R2 ¼ r2. In our example, R2 ¼ .9021 and

r2 ¼ (.9498)2 ¼ .9021.

From Eq. 13.33 and the definitions of SST, SSE, and se, we can rewrite

Eq. 13.24 as

se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSE=ðn� 2Þ

p
(13.35)

where

SSE ¼
Xn
i¼1

ðyi � �yÞ2 � b2
Xn
i¼1

ðxi � �xÞ2

¼
Xn
i¼1

y2i � n
Xn
i¼1

yi=n

 !2

� b2
Xn
i¼1

x2i � n
Xn
i¼1

xi=n

 !2
2
4

3
5

Example 13.3 The Effect of R&D Spending on a Company’s Value. Wallin and

Gilman (1986) use a simple linear regression analysis to investigate the effect of

research and development (R&D) spending on a company’s value.10 Data for the 20

largest R&D spenders in terms of the 1981–1982 averages are presented in

Table 13.7. In this table, y and x represent the price/earnings (P/E) ratio and R&D

expenditures/sales (R/S) ratio, respectively. Figure 13.9 illustrates the MINITAB

simple linear regression output in terms of the data in Table 13.7.

10 C. C. Wallin and J. J. Gilman (1986). “Determining the Optimum Level for R&D Spending,”

Research Management, Vol. 14, No. 5, Sept./Oct., 19–24.

640 13 Simple Linear Regression and the Correlation Coefficient



Table 13.7 P/E ratio and R/S

ratio for top 20 R&D spenders

(based on the 1981–1982

average)

Company

P/E ratio,

y
R/S ratio,

x

1 5.6 .003

2 7.2 .004

3 8.1 .009

4 9.9 .021

5 6.0 .023

6 8.2 .030

7 6.3 .035

8 10.0 .037

9 8.5 .044

10 13.2 .051

11 8.4 .058

12 11.1 .058

13 11.1 .067

14 13.2 .080

15 13.4 .080

16 11.5 .083

17 9.8 .091

18 16.1 .092

19 7.0 .064

20 5.9 .028

Source: Wallin, C.C., Gilman, J.J.: Determining the

Optimum Level for R&D Spending. Res. Manage.

14(5), 19–24 (1986) (adapted from Figure 1, p. 20)

Fig. 13.9 MINITAB output of regression y(C1)on x(C2)
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Fig. 13.9 (continued)
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Figure 13.9 can be divided into three parts. First, in the data input part, C1 and C2

represent y and x, respectively. Second, the output part includes (1) the correlation
coefficient between C1 and C2 ¼ .726, (2) a scatter diagram of plotting C1 and C2,

and (3) regressing C1 against C2.

From the estimate that r ¼ .726 and the pattern of the scatter diagram, we can

conclude that the P/E ratio is correlated highly with the R/S ratio. The estimated

regression line can be denned as

�y ¼ 5:98þ 74:1x

In sum, the MINITAB output for sample statistics that have been discussed in

this chapter is listed here.

b ¼ 74:07 a ¼ 5:9772 SSR ¼ 86:404
SSE ¼ 77:414 MSE ¼ 86:404 MSR ¼ 4:301
Se ¼ 2:074 R2 ¼ :527 �R

2 ¼ :501:

Other sample statistic outputs in Fig. 13.9 will be discussed in the next chapter.

Example 13.4 The Regression Relationship Between Number of Cars and Size of
Household. Say we have random samples of 10 households showing the numbers

of cars per household listed in Table 13.8. From Table 13.8, we can obtain the

following statistics:

�y ¼ 2:4 �x ¼ 3:6 Sxiyi ¼ 99 Sx2i ¼ 150

Sy2i ¼ 68
P10
i¼1

xi � �xð Þ yi � �yð Þ ¼ 12:6

P10
i¼1

xi � �xð Þ2 ¼ 20:4
P10
i¼1

yi � �yð Þ2 ¼ 10:4

Table 13.8 Numbers of cars

per household
Household Cars, y People, x

1 4 6

2 1 2

3 3 4

4 2 3

5 2 4

6 3 4

7 4 6

8 1 3

9 2 2

10 2 2

Total 24 36
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Following Eq. 13.15, we can estimate the regression slope as

b ¼
P10
i¼1

xi � �xð Þ yi � �yð Þ
P10
i¼1

xi � �xð Þ2
¼ 12:6

20:4
¼ :6176 ¼ :62

This implies that, on the average, the number of cars for each household

increases by approximately .62 when the number of people in the household

increases by 1. Equation 13.14 yields an estimate of the intercept.

a ¼ 24

10
� :62

36

10

� �
¼ :168

Fig. 13.10 MINITAB output for Example 13.4
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The estimated regression line is

ŷ ¼ :168þ :62x

From Eqs. 13.34 and 13.35, we can estimate R2 and se as

R2 ¼ :6176ð Þ2 20:4

10:4

� �
¼ :7482

se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½10:4 �ð:6176Þ2ð20:4Þ�

q
=8

¼ :5721

Other related statistical analysis will be done in Example 14.1.

The MINITAB output of Example 13.4 is presented in Fig. 13.10, which

displays most of the results we have calculated in this example. Some of the

estimates of this output will be investigated in the next chapter.

13.7 Summary

In this chapter, we discussed the basic concepts of simple linear regression and the

correlation coefficient. Both population and sample regression lines were defined.

The least-squares method of estimating the intercept and slope of a regression line

were also discussed. Coefficient of determination of a regression analysis was

defined. In the next chapter, the ideas and analyses introduced in this chapter will

be used for further analysis. And applications of simple regression in business and

economic decisions will be explored.

Questions and Problems

1. Discuss the standard assumptions for linear regression analysis.

2. A study by the New York/New Jersey Port Authority on the effects of train

ticket prices on the number of passengers produced the following results:

Ticket price Passengers/hour

$6.00 500

$6.50 490

$7.00 475

$7.50 450

$8.00 400

$8.50 350
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(a) Which variable should be the independent variable and which the depen-

dent variable?

(b) Plot the data.

(c) Use the method of least squares to estimate the slope and intercept.

3. A Department of Agriculture research team has investigated the relationship

between the wheat harvest and the amount of fertilizer used.

Pounds of fertilizer per acre 20 30 40 50 60

Bushels of wheat per acre 100 111 120 135 145

(a) Plot the data.

(b) Use the method of least squares to estimate the slope and intercept.

(c) Predict the number of bushels of wheat that will be grown if 35 lb of

fertilizer is used.

4. As vice president in charge of marketing, Bob Seller is interested in the

relationship between dollars spent on advertising and the number of widgets

his company sells. He has collected the following data on advertising dollars

and numbers of widgets sold:

Advertising dollars (thousands) 10 15 25 70 100

Widgets sold (thousands) 100 120 145 250 400

(a) Which variable should be the dependent variable and which the indepen-

dent variable?

(b) Plot the data.

(c) Use the method of least squares to estimate the slope and intercept.

(d) Predict the sale of widgets if $ 175,000 is spent on advertising.

5. Financial economists are often interested in measuring the relationship

between the return on an individual stock and the return on the S&P 500.

This model is usually referred to as the market model. Use the MINITAB

program and the following rates of return for Ford stock and the S&P 500 in the

table to:

(a) Plot the data. (Hint: Follow the procedure presented in Fig. 13.7.)

(b) Use the method of least squares to estimate the slope and intercept. (Hint:

Follow the procedures presented in Fig. 13.8.)

(c) Calculate the standard error of the estimates.

(d) Calculate the coefficient of determination.

Year Ford S&P 500

70 .4260 .0010

71 .2933 .1080

72 .1717 .1557

(continued)
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(continued)

Year Ford S&P 500

73 –.4512 –.1737

74 –.0968 –.2964

75 .3960 .3149

76 .4614 .1918

77 –.2067 –.1153

78 –.0026 .0105

79 –.1479 .1228

80 –.2938 .2586

81 –.1025 –.0994

82 1.3212 .1549

83 .1286 .1706

84 .0980 .0115

85 .3237 .2633

86 .0081 .1462

87 .3961 .0203

88 –.2995 .1240

89 –.0767 .2725

90 –.3209 –.0656

6. Explain whether you would expect a positive relationship, a negative relation-

ship, or no relationship to exist for the following pairs of data. If you think there

is a relationship, identify the dependent variable.

(a) The height of a mother and that of her son

(b) The income and age of female accountants

(c) The height and weight of a gorilla

(d) The cost of a car and the cost of insuring that car

(e) The time it takes a woman to run a marathon and the number of hours she

spends training

7. Mary Jones, a professor of statistics, has collected the following sample of

hours spent studying for her course and grades received on the midterm exam.

Sampled student 1 2 3 4 5 6 7 8 9

Hours of study 22 18 30 22 29 35 18 21 40

Exam grade 63 59 85 70 90 93 72 75 98

(a) Plot the data.

(b) Use the method of least squares to estimate a and b.
(c) Use the regression equation to predict the grade of a student who spent 25

hours studying.
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8. An English professor has estimated the following relationship between English

SAT scores (x) and score in the freshman English course (y).

ŷ ¼30þ :12x R2 ¼ :35

ð:79Þ ð:05Þ

where standard deviations are shown in parentheses. The average SAT score

for these students was 550.

(a) What is the students’ average score in this course?

(b) Use the regression equation to predict the English course score for a student

with an English SAT score of 400, 500, 600, 700, and 800.

(c) If there is a 50-point difference in the SAT scores of two students at this

school, what is the predicted difference in their course scores?

9. Elmore Truesdale, vice president in charge of strategic pricing, is trying to find

the relationship between the price of widgets and the quantity of widgets sold.

Mr. Truesdale has collected the following data:

Price $12.50 12.00 11.50

Widgets sold (thousands) 125 135 140

Price $11.00 10.50 10.00

Widgets sold (thousands) 148 170 185

(a) Plot the data.

(b) Use the method of least squares to estimate a and b.
(c) Use the regression model to predict how many widgets would be sold if the

price of widgets were $9.80.

10. The following table gives data on personal consumption C and disposable

income Yd in the United States. Use the MINITAB or SAS program to answer

the following.

Year C Yd

1976 1803.9 2001.0

1977 1883.8 2066.6

1978 1961.0 2167.4

1979 2004.4 2212.6

1980 2000.4 2214.3

1981 2024.2 2248.6

1982 2050.7 2261.5

1983 2145.9 2334.6

1984 2239.9 2468.4

(a) Plot the data, using C as the dependent variable.

(b) Use the method of least squares to calculate a and b.
(c) Interpret a and b.
(d) Calculate the standard error of the estimates.
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11. The following table shows the annual rates of return for several assets and the

rate of inflation.

Year Common stocks Corporate bonds Treasury bonds Rate of inflation

1967 24.0 % �5.0 % �9.2 % 3.0 %

1968 11.1 2.6 �.3 4.7

1969 �8.5 �8.1 �5.1 6.1

1970 4.0 18.4 12.1 5.5

1971 14.3 11.0 13.2 3.4

1972 19.0 7.3 5.7 3.4

1973 �14.7 1.1 �1.1 8.8

1974 �26.5 �3.1 4.4 12.2

1975 37.2 14.6 9.2 7.0

1976 23.8 18.6 16.8 4.8

1977 �7.2 1.7 �.7 6.8

1978 6.6 �.1 �1.2 9.0

1979 18.4 �4.2 �1.2 13.3

1980 32.4 �2.6 �4.0 12.4

1981 �4.9 �1.0 1.8 8.9

1982 21.4 43.8 40.3 3.9

1983 22.5 4.7 .7 3.8

1984 6.3 16.4 15.4 4.0

1985 32.2 30.9 31.0 3.8

1986 18.6 18.5 23.4 1.1

(a) Use the method of least squares to estimate the relationship between the

rate of return on common stocks and the rate of inflation by using the

MINITAB program.

(b) Do common stocks serve as a hedge against inflation?

(c) Repeat parts (a) and (b), using corporate bond returns.

(d) Repeat parts (a) and (b), using treasury bond returns.

12. Briefly explain the difference between a dependent variable and an independent

variable in regression analysis.

13. What is causality? What is correlation? What is the relationship among casu-

alty, correlation, and regression analysis?

14. Explain the difference between a population and a subpopulation.

15. What is a scatter diagram? Briefly explain the concept of a regression line in the

context of a scatter diagram.

16. The market model equation in finance is

Rj;t ¼ aj þ bjRm;t þ ej;t

where

Rji ¼ return on stock j in month t
Rm,t ¼ return on the S&P 500 in month t
ej,j ¼ error term
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(a) What is the independent variable?

(b) What is the dependent variable?

(c) What are the regression coefficients?

17. Suppose you collect data on household consumption and income in the United

States and estimate the regression equation C–500 + .8 Y, where C ¼ con-

sumption and K ¼ income.

(a) Plot the relationship between consumption and income that this equation

reflects.

(b) Explain the relationship between consumption and income.

18. Suppose you estimate the regression equation y ¼ 5 + .6x

(a) What is the dependent variable?

(b) What is the independent variable?

(c) What is the intercept?

(d) What is the slope?

19. What is a sample? What is a population? Briefly explain how a sample can be

used to estimate population parameters.

20. Briefly explain what we mean by the method of least squares.

21. You are given the following information on the heights and weights of

5 people:

Weight (pounds) Height (inches)

180 72

165 66

130 62

220 78

110 60

(a) If you are interested in finding the relationship between height and weight,

which variable should be the dependent variable?

(b) Use the method of least squares to estimate the slope and intercept.

22. Use the data given in question 21 and the results you got there to plot the regression

line. Calculate the estimated values of y and the error from the regression.

23. The consumption function can be estimated by regressing private consumption

on GNP. Use the data given in Table 2.2 and the MINITAB or SAS program to

estimate the consumption function.

24. What do we mean when we say that estimates of a and b determined by the

least-squares method are BLUE?

25. Briefly explain what we mean by a direct and by an inverse relationship.

26. The accompanying scatter diagram shows the numbers of hours several

students studied and their midterm scores.
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(a) Which is the dependent variable and which the independent variable?

(b) Is there a direct or an inverse relationship between hours studied and

midterm score?

(c) Explain how we use regression analysis to estimate the relationship

between hours studied and midterm score.

27. Suppose you are a safety consultant for the Department of Transportation. You

are interested in the relationship between the number of miles a trucker drives

per year and the number of accidents he or she has per year. You collect the

following information from 6 truckers.

Trucker Miles driven Accidents

1 90,000 3

2 119,000 4

3 87,000 2

4 135,000 6

5 150,000 5

6 92,000 3

(a) Draw a scatter diagram showing the relationship between miles driven and

number of accidents.

(b) Is there a direct or an inverse relationship between miles driven and number

of accidents?

28. Use the method of least squares to estimate the intercept and slope of the

regression line for the data given in question 27.

29. Use the data from question 27 and your results from question 28 to estimate the

number of accidents for each trucker. Also calculate the errors from the

regression line.

30. Suppose a labor economist at the Department of Labor estimates the following

relationship between years of experience and earnings of accountants.

Questions and Problems 651



Earnings ¼ 22,000 þ 3,200(years of experience)

Estimate the earnings for the following 5 accountants:

Accountant Years of experience

Bob 10.2

Mary 6.5

Sue 3.4

Ted 5.3

Anne 12.7

31. Now suppose the actual earnings of the 5 accountants in question 30 are as

follows. Calculate the error from the regression.

Accountant Actual earnings

Bob $63,000

Mary 37,000

Sue 32,000

Ted 41,000

Anne 71,000

32. In order to determine whether a company should encourage its employees to live

close to work, an efficiency expert collects data on the number of latenesses per

month and the number of miles an employee lives from work. The relationship is

given in the accompanying scatter diagram. From this scatter diagram, describe

the relationship between miles from work and number of latenesses. Will the use

of a regression line be helpful in estimating this relationship?
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33. The manager of the Tow Time Auto Club would like to know the relationship

between the age of a car and the number of service calls per year. He collects

the following information:

x
Car’s age (years)

y
Service calls per year

.5 0

1 2

2.5 1

3.5 5

4.2 8

5.6 7

(a) Draw a scatter diagram for these data.

(b) Use the method of least squares to estimate the parameters a and b.

34. Use the results from question 33 to predict the number of service calls for a car

that is 3 years old and for one that is 6 years old.

35. Explain what we mean by the goodness of fit for a regression. Give two

measures we can use to assess the goodness of fit.

36. Suppose you have the following information about number of dollars spent on

advertising, X, and amount of car sales, Y: Cov(X,Y) ¼ 500, Var(X) ¼ 250,

Var(Y) ¼ 1,000, mean of X ¼ 1,000, and mean of Y ¼ 2,500. Use this infor-

mation to estimate the parameters a and b.
37. Use the information given in question 36 to find the correlation between

advertising dollars and sales.

38. Briefly define total deviation, unexplained deviation, and explained deviation.

39. Use the data and results from question 21 to calculate SSE, SSR, SST, and the

coefficient of determination. Interpret what the coefficient tells us.

40. Use the data and results from question 21 to calculate the standard error of the

residuals.

41. Use the data and results of questions 30 and 31 to calculate SSE, SSR, SST, and

the coefficient of determination.

42. Calculate the standard error of the residual using the results from question 41.

43. Look at the scatter diagram given in question 32. Would you expect a regres-

sion on that data to produce a high or a low coefficient of determination?

44. Explain the difference between the coefficient of determination and the

adjusted coefficient of determination. Which do you believe provides a better

measure of the goodness of fit of a regression?

45. Briefly explain what the slope of a regression line tells us.

46. Look at the following graph and identify the explained error, the unexplained

error, and the total error.
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Use the MINITAB or SAS program to answer questions 47–51.

47. Use the data given in Table 2B.2 in Appendix B of Chap. 2 to estimate the

relationship between GM stock’s rate of return and the rate of return for the

S&P 500. Calculate a, b, and the coefficient of determination.

48. Redo question 47, but this time, estimate the relationship between the rates of

return for Ford and the S&P 500.

49. Use the data given in Table 2B.1 to estimate the regression for DPS regressed

on EPS for General Motors. Calculate the coefficient of determination.

50. Use the data given in Table 2B.1 to estimate the regression for PPS regressed

on EPS for Ford. Calculate the coefficient of determination.

51. Use the data given in Table 2B.1 to calculate the correlation coefficient

between Ford’s and GM’s EPS.

52. Suppose you are interested in finding the relationship between bond prices and

interest rates. You run a regression of bond prices against the prime lending rate

and find that the slope of the regression line is negative. What does this tell you

about the relationship between bond prices and interest rates? Is this relation-

ship consistent with standard financial theory?

53. What type of correlation (positive, negative, or zero) would you expect from

the following pairs of variables?

(a) A company’s earnings per share and its dividends per share

(b) A company’s earnings per share and its price per share

(c) GM’s EPS and the auto industry’s average EPS

(d) Education and salary of an employee

(e) Advertising dollars spent and volume of sales

(f) Bond prices and interest rates

(g) The price charged for bread and the quantity of bread sold

(h) The hem length of dresses in France and the value of the Dow Jones

Industrial Average
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54. What is the relationship between the correlation coefficient r and the coefficient
of determination R2?

55. Suppose you collect data for IBM’s sales and dollars spent on advertising and

then compute the following statistics:

Cov(sales, advertising $) ¼ 22

Var(sales) ¼ 10

Var(advertising $) ¼ 64

Mean sales ¼ 100

Mean advertising $ ¼ 20

(a) Compute the correlation coefficient between advertising dollars and sales.

(b) Calculate the coefficient of determination that would result from a regres-

sion of sales on advertising dollars.

(c) Calculate the regression parameters a and b.

56. Suppose you estimate a regression and compute SSE ¼ 17.57 and SSR ¼
102.76. Calculate SST, R2, and r by using this information.

57. The Department of Accounting at a university is interested in the relationship

between SAT score and graduating grade point average (GPA). The

accompanying table presents a summary of the data it has collected.

SAT, x GPA y xy

600 3.2 1920

420 2.5 1050

750 3.9 2925

650 3.6 2340

550 3.4 1870

680 3.7 2516

Sx ¼ 3650 Sy ¼ 20:3 Sxy ¼ 12621

x2 y2

360000 10.24

176400 6.25

562500 15.21

422500 12.96

302500 11.56

462400 13.69

Sx2 ¼ 2286300 ∑y2 ¼ 69.91

(a) Draw a scatter diagram for these data.

(b) Estimate the regression parameters a and b.

58. Use the data given in question 57 to calculate r and R2. Also use your regression

results to estimate the graduating GPA for someone who scores 620 on the

SAT.

59. The Department of Education at a university is interested in the relationship

between the number of years of education and a person’s salary. It collects the

following information:
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Person Education (years) Salary

1 8 $21,000

2 12 24,000

3 13 19,500

4 14 40,000

5 16 72,000

(a) Draw a scatter diagram for these data.

(b) Calculate the regression parameters a and b.

60. Use the data and your results from question 59 to estimate the earnings of

someone with 15 years of education. Also compute r and R2.

61. A market researcher is interested in who buys Fun Time Cereal. In order to

analyze this problem, she collects data on the age of the consumer and how

many boxes that person consumes each month.

Age Boxes per month

8 6

10 8

16 5

22 4

35 2

45 0

(a) Compute the correlation between age and number of boxes of cereal

consumed (and presumably purchased).

(b) Use the method of least squares to estimate a and b.

62. Use the information given in question 61 to calculate the standard error of the

residual. Briefly explain how we can use the standard error of the residual as a

measure of the goodness of fit.

Use the MINITAB or SAS program to answer questions 63–69.

63. Use the data given in question 23 of Chap. 2 to compute the correlation between

the dollar/pound exchange rate and the dollar/yen exchange rate.

64. Use the data given in question 24 of Chap. 2 to compute the correlation

coefficient between J&J’s current ratio and the industry’s.

65. Use the data given in question 24 of Chap. 2 to estimate the regression

coefficients for a regression of J&J’s current ratio on the pharmaceutical

industry’s current ratio.

66. Use your results from question 65 to compute the standard error of the estimate.

67. Repeat questions 64–66, using J&J’s inventory turnover.

68. Repeat questions 64–66, using J&J’s ROA.

69. Repeat questions 64–66, using J&J’s price–earnings ratio.
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70. You are given the following information on unemployment in the United States

and in New Jersey (data from New Jersey Economic Indicators, March 1990):

Number unemployed (in thousands)

Year United States New Jersey

1970 4,093 138

1971 5,016 172

1972 4,882 182

1973 4,365 180

1974 5,156 204

1975 7,929 334

1976 7,406 346

1977 6,991 317

1978 6,202 248

1979 6,137 247

1980 7,637 260

1981 8,273 263

1982 10,678 326

1983 10,717 288

1984 8,539 236

1985 8,312 217

1986 8,237 197

1987 7,425 160

1988 6,701 151

1989 6,528 163

If you are interested in the relationship between unemployment in the United

States and in New Jersey, which unemployment figure should be your indepen-

dent variable? Use the MINITAB program to estimate a model showing the

relationship between unemployment in the United States and in New Jersey.

71. Use the information and MINITAB results from question 70 to compute the

standard error of the estimate and the coefficient of determination.

72. Use the data given in question 70 and the MINITAB program to find the

correlation coefficient between unemployment in the United States and in

New Jersey for 1980–1989.

73. Consider the following table. Fill in the values missing from the table, using the

least-squares method.

x y xy x2 y2 ŷ e e2 y� �yð Þ2

x y

5 50

7 35

9 25

11 20

13 15

15 10
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74. Use your results in question 73 to find the coefficient of determination and the

standard error of the estimate.

75. Suppose you estimate a regression and compute SST ¼ 217.47 and SSR ¼
121.73. Use this information to calculate SSE, R2, and r.

76. Suppose you estimate a regression and compute SST ¼ 1017.17and SSE ¼
302.33. Use this information to calculate SSR, R2, and r.

77. Suppose you are interested in finding the relationship between the monthly

highest prices of a stock and risk-free interest rates. A regression of the highest

stock prices against the risk-free interest rates shows that the slope of the

regression line is positive. What does this tell you about the relationship

between the monthly highest prices and risk-free interest rates?

78. Compute the correlation coefficient and the R2 between the monthly highest

prices of a stock (y, unit: dollar) and risk-free interest rates (x, unit: %).

x y

1.70 12.5

1.74 12.1

1.75 11.9

1.91 17.4

2.17 24.8

2.06 19.3

2.04 19.5

1.93 18.2

1.88 17.6

1.92 19.6

1.90 25.2

1.91 31.3

79. Use the information given in Problem 78 to estimate the regression of the

monthly highest stock price on the risk-free interest rate.

80. Use the estimated regression equation from Problem 79. Interpret the results of
this regression.

81. Use the estimated regression equation from Problem 79. How much is the

highest stock price expected to increase or decrease if the risk-free interest rate

rises by 0.3?

Appendix 1: Derivation of Normal Equations and Optimal

Portfolio Weights

In this appendix, we derive the normal equations that are used to obtain the least-

squares estimates of population regression parameters. For convenience, we denote

the function to be minimized as

F ¼
Xn
i¼1

e2i ¼
Xn
i¼1

yi � a� bxið Þ2 (13.36)
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Because this function is to be minimized with respect to a and b, it is necessary
to take the partial derivatives of F with respect to these two variables. The partial

derivatives are

@F

@a
¼
Xn
i¼1

2 yi � a� bxið Þ �1ð Þ

@F

@b
¼
Xn
i¼1

2 yi � a� bxið Þ �xið Þ

Setting these partial derivatives equal to zero yields the following two normal

equations:

Xn
i¼1

yi ¼ naþ b
Xn
i¼1

xi

Xn
i¼1

xiyi ¼ a
Xn
i¼1

xi þ b
Xn
i¼1

x2i (13.37)

These are Eqs. 13.12 and 13.13 in the text. Note that setting the first partial equal

to zero is identical to requiring that the sum of the residuals be zero because the

term in parentheses is the residual ei ¼ (yi – a – bxi).
Now we use the technique of deriving Eq. 13.37 to derive the optimal weight of a

portfolio. Following Equation (6.29) in Chap. 6, the variance of rates of return for a

portfolio is defined as

Var Rpð Þ ¼W2
1s

2
1 þW2

2s
2
2 þ 2W1W2 s12

W1 þW2 ¼ 1ð Þ (13.38)

whereW1 andW2 represent percentage money invested in security 1 and security 2,

respectively;s21¼ variance of rates of return for security 1; s22 ¼ variance of rates of

return for security 2, and s12 ¼ covariance between the rates of return for security 1

and the rates of return for security 2.

If the objective of the investor is to minimize the variance of a portfolio, then the

optimal weights of a two-security portfolio can be obtained by taking partial

derivatives of Var(Rp) with respect to the variance of W1 and W2 ¼ 1 – W1 as:

@Var Rpð Þ
@W1

¼ 2W1s21 � 2 1�W1ð Þs22 þ 2 1�W1ð Þs12

Setting this partial derivative to zero and solving for W1, we obtain

W1 ¼ s22 � s12
s21 þ s22 � 2s12

(13.39)
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W2 ¼ 1�W1 ¼ s21 � s12
s21 þ s22 � 2s12

(13.40)

Substituting the data of Example 6.21 in Chap. 6 into these two equations, we

can estimate W1 and W2 as
11

W1 ¼ :008þ :00375

:00625þ :008þ 2 :00375ð Þ ¼ :5402

W2 ¼ 1� :542 ¼ :4598

Appendix 2: The Derivation of Equation 13.20

The left-hand side of Eq. 13.20 can be written as

Xn
i¼1

yi � �yð Þ2 ¼
Xn
i¼1

yi � ŷið Þ2 þ 2
Xn
i¼1

yi � ŷið Þ ŷi � �yð Þ þ
Xn
i¼1

ŷi � �yð Þ2 (13.41)

In addition, we know that

Xn
i¼1

yi � ŷið Þ ŷi � �yð Þ ¼
Xn
i¼1

aþ bxi � aþ b�xð Þ½ � yi � ŷi½ �

¼ b
Xn
i¼1

xi � �xð Þ yi � ŷið Þ

¼ �b�x
Xn
i¼1

yi � ŷð Þ þ b
Xn
i¼1

yi � ŷið Þ xið Þ

Because assumptions C and A discussed in Sect. 13.4 imply that

Xn
i¼1

yi � ŷð Þ ¼
Xn
i¼1

ei ¼ 0 and
Xn
i¼1

yi � ŷið Þ xið Þ ¼
Xn
i¼1

eixi ¼ 0

11 The weights obtained here do not consider the information of the expected rates of return for

both stock A and stock B. The formula of estimating the optimal weights in terms of both variances

and expected rates of return can be found in Chap. 8 of Cheng F. Lee et al. (1990), Security
Analysis and Portfolio Management (Glenview, Ill.: Scott Foresman/Little, Brown).
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Hence,

Xn
i¼1

yi � ŷið Þ ŷi � �yð Þ ¼ 0þ 0 ¼ 0 (13.42)

Substituting Eq. 13.42 into Eq. 13.41, we obtain Eq. 13.20.

Appendix 3: The Bivariate Normal Density Function

In correlation analysis, we assume a population where both X and Y vary jointly. It

is called a joint distribution of two variables. If both X and Y are normally

distributed, then we call this known distribution a bivariate normal distribution.
Following Appendix 1 of chap. 7, we can define the probability density function

(PDF) of the normally distributed random variables X and Y as

f ðXÞ ¼ 1

sX
ffiffiffiffiffiffi
2p

p exp
� X� mXð Þ2

2s2X

" #
;�1< X <1 (13.43)

f ðYÞ ¼ 1

sY
ffiffiffiffiffiffi
2p

p exp
� Y� mYð Þ

2s2Y

� �
;�1<Y<1 (13.44)

where mX and mY are population means for X and Y, respectively; sX and sY are

population standard deviations of X and Y, respectively; p ¼ 3.1416; and exp

represents the exponential function.

If r represents the population correlation between X and Y, then the PDF of the

bivariate normal distribution can be defined as

f X; Yð Þ ¼ 1

2psXsY
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p exp �q=2ð Þ;

�1< X< 1;�1 < Y < 1 (13.45)

where sX > 0, sY > 0, and �1 < r < 1,

q ¼ 1

1� r2
X � mX
sX

� �2

� 2r
X � mX
sX

� �
Y � mY
sY

� �
þ Y � mY

sY

� �2
 !" #
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It can be shown that the conditional mean of Y, given X, is linear in x and given by

E YjXð Þ ¼ mY þ r
sY
sX

	 

X � mXð Þ (13.46)

It is also clear that given X, we can define the conditional variance of Y as

s2 YjXð Þ ¼ s2Y 1� r2
� �

(13.47)

Equation 13.46 can be regarded as describing the population linear regression

line. For example, if we have a bivariate normal distribution of heights of brothers

and sisters, we can see that they vary together and there is no cause-and-effect

relationship. Accordingly, a linear regression in terms of the bivariate normal

distribution variable is treated as though there were a two-way relationship instead

of an existing causal relationship. It should be noted that regression implies a causal

relationship only under a prediction case.

Equation 13.45 represents a joint PDF for X and Y. If p ¼ 0, then Eq. 13.45

becomes

f X; Yð Þ ¼ f ðXÞf ðYÞ (13.48)

This implies that the joint PDF of X and Y is equal to the PDF of X times the PDF

of Y. We also know that both X and Y are normally distributed. Therefore, X is

independent of Y.

Example 13.5 Using a Mathematics Aptitude Test to Predict Grade in Statistics.
Let X and Y represent scores in a mathematics aptitude test and numerical grade in

elementary statistics, respectively. In addition, we assume that the parameters in

Eq. 13.45 are

mX ¼ 550 sX ¼ 40 mY ¼ 80 sY ¼ 4 r ¼ :7

Substituting this information into Equations 13.46 and 13.47, respectively, we

obtain

E YjXð Þ ¼ 80þ :7 4=40ð Þ X � 550ð Þ
¼ 41:5þ :07X

(13.49)

s2 YjXð Þ ¼ 16ð Þ 1� :49ð Þ ¼ 8:16 (13.50)
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If we know nothing about the aptitude test score of a particular student (say,

John), we have to use the distribution of Y to predict his elementary statistics grade.

95% interval ¼ 80� 1:96ð Þð4Þ ¼ 80� 7:84

That is, we predict with 95 % probability that John’s grade will fall between

87.84 and 72.16.

Alternatively, suppose we know that John’s mathematics aptitude score is 650.

In this case, we can use Eqs. 13.49 and 13.50 to predict John’s grade in elementary

statistics.

E YjX ¼ 650ð Þ ¼ 41:5þ :07ð Þ 650ð Þ ¼ 87

and

s2 YjX ¼ 650ð Þ ¼ 8:16

We can now base our interval on a normal probability distribution with a mean

of 87 and a standard deviation of 2.86.

95% interval ¼ 87� 1:96ð Þ 2:86ð Þ ¼ 87� 5:61

That is, we predict with 95 percent probability that John’s grade will fall

between 92.61 and 81.39.

Two things have happened to this interval. First, the center has shifted upward to

take into account the fact that John’s mathematics aptitude score is above average.

Second, the width of the interval has been narrowed from 87.84�72.16 ¼ 15.68

grade points to 92.61�81.39 ¼ 11.22 grade points. In this sense, the information

about John’s mathematics aptitude score has made us less uncertain about his grade

in statistics. This issue is discussed in further detail in Sect. 14.4 in the next chapter.

Appendix 4: American Call Option and the Bivariate

Normal CDF

The call option pricing model discussed in Appendix 2 of Chap. 6 and Appendices

2 and 3 of Chap. 7 is derived in terms of an option contract which can be exercised

only on the expiration date. This kind of option is called European call. If the
contract of a call option can be exercised at any time of the option’s contract period,

then this kind of call option is called American call.
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When a stock pays a dividend, the American call is more complex. The Ameri-
can call is with one known dividend payment. The valuation equation can be

defined as12

C S; T;Xð Þ ¼ Sx N1 b1ð Þ þ N2 a1;�b1;�
ffiffiffiffiffiffiffi
t=T

p� �h i
� Xe�rT N1 b2ð ÞerðT�tÞ þ N2 a2;�b2;�

ffiffiffiffiffiffiffi
t=T

p� �h i
þ De�rTN1 b2ð Þ (13.51)

where

a1 ¼
In Sx

X

� �þ r þ 1
2
s2

� �
T

s
ffiffiffi
T

p ; a2 ¼ a1 � s
ffiffiffi
T

p
(13.52)

b1 ¼
In Sx S= �

t

� �þ r þ 1
2
s2

� �
t

s
ffiffi
t

p ; b2 ¼ b1 � s
ffiffi
t

p
(13.53)

Sx ¼ S� De�rT (13.54)

SX represents the correct stock net price of the present value of the promised

dividend per share (D). t represents the time dividend to be paid.

S�t is the ex-dividend stock price for the American call option which

C S�t ; T � t;X
� � ¼ S�t þ D� X (13.55)

S, X, r, s2, T have been defined in Appendix 3 of Chap. 7.

Both N1(b1) and N1(b2) are cumulative univariate normal density function. N2 (a,
b; p) is the cumulative bivariate normal density function with upper integral limits,

a and b, and correlation coefficient, r ¼ � ffiffiffiffiffiffiffi
t=T

p
.

American call option on a non-dividend-paying stock will never optimally be

exercised prior to expiration. Therefore, if there exist no dividend payments,

Eqs. 13.51, 13.52, 13.53 will reduce to the valuation Equation of the European

Option with no dividend payment as defined in Eq. 7.35 of Appendix 2 of Chap. 7.

In Appendices 1 and 2 of Chap. 7, we have shown how the cumulative univariate

normal density function can be used to evaluate the European call option. In this

appendix, we found that if a common stock pays a discrete dividend during the

option’s life, the American call option valuation equation requires the evaluation of

a cumulative bivariate normal density function. While there are many available

12 This equation is based upon Whaley, Robert E. (1981), “On the Valuation of American Call

Options on Stocks With Known Dividends,” Journal of Financial Economics 9, 207–211.
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approximations for the cumulative bivariate normal distribution, the approximation

provided here relies on Gaussian quadratures. The approach is straightforward and

efficient, and its maximum absolute error is .00000055.

Following Eq. 13.45 in Appendix 3, the probability that x0 is less than a and that
y0 is less than b for the standardized cumulative bivariate normal distribution

P X0< a; Y0< bð Þ ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p ða
�1

ðb
�1

exp
2x02 � 2rx0y0 þ y02

2 1� r2ð Þ
� �

dx0dy0

where x 0 ¼ x�mX
sX

; y0 y�mY
sY

and r is the correlation between the random variables x0

and y0.
The first step in the approximation of the bivariate normal probability N2(a,b;r)

is as follows:

f a; b; rð Þ � :31830989
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p X5
i¼1

X5
j¼1

wiwj f x0i; x
0
j

� �
; (13.56)

where

f x0i; x
0
j

� �
¼ exp a1 2x0i � a1

� �þ b1 2x0j � b1

� �
þ 2r x0i � a1

� �
x0j � b1

� �h i
;

The pairs of weights (w) and corresponding abscissa values (x0) are13

i, j w x0

1 .24840615 .10024215

2 .39233107 .48281397

3 .21141819 1.0609498

4 .033246660 1.7797294

5 .00082485334 2.6697604

and the coefficients a1 and b1 are computed using

a1 ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� r2ð Þp and b1 ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1� r2ð Þp
The second step in the approximation involves computing the product abr.

13 This portion is based upon Appendix 13.1 of Hans R. Stoll and Robert E. Whaley (1993),

Futures and Options (South Western Publishing, Cincinnati).
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If abr � 0, compute the bivariate normal probability, N2 (a,b;r), using the

following rules:

1: If a� 0; b� 0; andr� 0; then N2 a;b;rð Þ ¼f a;b;rð Þ:
2: If a� 0; b� 0; and r>0; then N2 a;b;rð Þ ¼N1ðaÞ�f a;�b;�rð Þ:
3: If a� 0; b� 0; and r>0; then N2 a;b;rð Þ ¼N1ðbÞ�f �a;b;�rð Þ:
4: If a� 0; b� 0; and r� 0; then N2 a;b;rð Þ ¼N1ðaÞþN1ðbÞ� 1þf �a;�b;rð Þ:

(13.57)

If abr > 0, compute the bivariate normal probability, N2 (a,b; r), as

N2 a; b; rð Þ ¼ N2 a; 0; rabð Þ þ N2 b; 0; rbað Þ � d (13.58)

where the values of N2 (•) on the right-hand side are computed from the rules for

abr � 0,

rab ¼
ra� bð ÞSgnðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 2rabþ b2

p ; rba ¼
rb� að ÞSgnðbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 2rabþ b2

p
d ¼ 1� SgnðaÞ 	 SgnðbÞ

4

and

SgnðxÞ ¼ 1 x � 0

�1 x< 0

	

N1(d) is the cumulative univariate normal probability.

Example 13.6 Valuating American Option. An American call option whose exer-

cise price is $45 has an expiration time of 90 days. Assume the risk-free rate of

interest is 8 percent annually, the underlying price is $50, the standard deviation of

the rate of return of the stock is 20 percent, and the stock pays a dividend of $1.5 in

exactly 50 days, (a) what is the European call value? (b) Can the early exercise be

predicted? (c) What is the value of the American call?

(a) The current stock net price of the present value of the promised dividend is

sx ¼ 50� 1:5ð Þe�0:8 50
365ð Þ ¼ 48:516

Following Equation 7B.2, the European call value can be calculated as

C ¼ 48:516ð ÞN d1ð Þ � 45ð Þ e�0:8 90
365ð Þ� �

N d2ð Þ
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where

d1 ¼ ½Inð48:516=45Þ þ ð:08þ :5ð:20Þ2Þð90=365Þ�
:20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
90=365

p
¼ :075þ :025

:099

¼ 1:010

d2 ¼ 1:010� :099 ¼ :911

From Table A.l, we obtain

N 1:010ð Þ ¼ :5þ :3438 ¼ :8438

N :911ð Þ ¼ :5þ :3186 ¼ :8186

So the European call value is

C ¼ 48:516ð Þ :8438ð Þ � 45 :980ð Þ :8186ð Þ
¼ 4:8375

(b) The present value of the interest income that would be earned by deferring

exercise until expiration is

Xð1� e�rðT�tÞÞ ¼ ð45Þ½1� e�:08ð90-50Þ=365�
¼ 45½1� :991�
¼ :405

Since d ¼ 1.5 > .405, therefore, the early exercise is not precluded.

(c) The value of the American call is now calculated as

C ¼ 48:208ð Þ N1 b1ð Þ þ N2 a1;�b1;�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
50=90

p� �h i
� 45ð Þe�:08 90=365ð Þ N1 b2ð Þe:08 40=365ð Þ þ N2 a2;�b2;�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
50=90

p�h i
þ 2e�:08 50=365ð ÞN1 b2ð Þ (13.59)

since both b1 and b2 depend on the critical ex-dividend stock price S
�
t , which can be

determined by

C S�t ; 40=365; 45
� � ¼ S�t þ 1:5� 45

By using trial and error, we find that S�t ¼ 44:756. An Excel program used to

calculate this value is presented in Fig. 13.11.
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Caculation of St*(critical ex-dividend stock price)

Caculation of St*(critical ex-dividend stock price)

Caculation of St*(critical ex-dividend stock price)

44.7557142157122

45
0.08
0.2
=(90-50)/365
=(LN(C3/C4)+(C5+C6^2/2)*(C7))/(C6*SQRT(C7))
=(LN(C3/C4)+(C5-C6^2/2)*(C7))/(C6*SQRT(C7))

=(LN(B3/B4)+(B5+B6^2/2)*(B7))/(B6*SQRT(B7))
=(LN(B3/B4)+(B5-B6^2/2)*(B7))/(B6*SQRT(B7))
2

=C3*NORMSDIST(C8)-C4*EXP(-C5*C7)*NORMSDIST(C9)

=B3*NORMSDIST(B8)-B4*EXP(-B5*B7)*NORMSDIST(B9)

=C4*EXP(-C5*C7)*NORMSDIST(-C9)-C3*NORMSDIST(-C8)

=B4*EXP(-B5*B7)*NORMSDIST(-B9)-B3*NORMSDIST(-B8)

=C12-C3-C10+C4

=B12-B3-B10+B4

1.5

St*(critical ex-dividend stock price)=

St*(critical ex-dividend stock price)=

St*(critical ex-dividend stock price)=

X(exercise price of option)=

X(exercise price of option)=

X(exercise price of option)=

r(risk-free interest rate)=

r(risk-free interest rate)=

r(risk-free interest rate)=

T-t(expiration date - excise date)=

T-t(expiration date - excise date)=

T-t(expiration date - excise date)=

d1=
d2=

d1=
d2=

d1=
d2=

D(divident)=

D(divident)=

D(divident)=

c(value of European call option to buy one share)=

c(value of European call option to buy one share)=

c(value of European call option to buy one share)=

p(value of European put option to sell one share)=

p(value of European put option to sell one share)=

p(value of European put option to sell one share)=

c(St*,T-t;X)-St*-D+X=

c(St*,T-t;X)-St*-D+X=

c(St*,T-t;X)-St*-D+X=

σ(volatility of stock)=

σ(volatility of stock)=

σ(volatility of stock)=

$ 49.824 $ 44.756

$ 45.000
0.1 0.08
0.3 0.2

0.0822 0.1096
0.0977 0.0833
0.0117 0.0171

$   2.000 $   1.500

$    1.82 $    1.26
$    1.59 $    1.11

0

49.8244471377206

50
0.1
0.3
=(90-60)/365

0

$ 50.000

Fig. 13.11 Microsoft Excel program for calculating S�t
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Substituting Sx ¼ 48.208, X ¼ $45, and S�t into Eqs. 13.52 and 13.53, we can

calculate a1, a2, b1, and b2 as follows:

a1 ¼ d1 ¼ 1:010

a2 ¼ d2 ¼ :911

b1 ¼
In

48:516

44:756

� �
þ :08þ 1

2
:20ð Þ2

� �
50

365

� �
:20ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

50=365
p

¼ :0807þ :0137

:0740
1:2757

b2 ¼ 1:2757� :0740 ¼ 1:2017

In addition, we also know r ¼
ffiffiffiffi
50
90

q
¼ :7454.

From the above information, we now calculate the related normal probability as

follows:

Using Equation 7A.9 in Appendix 7A, we obtain

N1 b1ð Þ ¼ N1 1:2757ð Þ ¼ :8988

N1 b2ð Þ ¼ N 1:2017ð Þ ¼ :8851

Following Eq. 13.58, we now calculate the values of N2(1.010, �1.2757;

�.7454) and 7 N2(.911, �1.2017; �.7454) as follows:

Since abr > 0 for both cumulative bivariate normal density function, therefore,

we can use Eq. 13.58 to calculate the value of both N2(a,b,r) as follows:

rab ¼
�:7454ð Þ 1:010ð Þ þ 1:2757½ �ð1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:010ð Þ2 � 2 �:7454ð Þ 1:010ð Þ �1:2757ð Þ þ �1:2757ð Þ2
q ¼ :6133

rba ¼
�:7454ð Þ �1:2757ð Þ � 1:010½ � �1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:010ð Þ2 � 2 �:7454ð Þ 1:010ð Þ �1:2757ð Þ þ �1:2757ð Þ2
q ¼ :0693

d ¼ 1� ð1Þ �1ð Þ
4

¼ 1

2
:

N2 1:010;�1:2757;�:7454ð Þ ¼ N2 1:010; 0; :6133ð Þ þN2 �1:2757; 0; 0693ð Þ � :5

¼ N1 ð0Þ þN1 �1:2757ð Þ �f �1:010; 0;�:6133ð Þ �f �1:2757; 0;�:0693ð Þ � :5

¼ :5þ :1010� :0202� :0456� :5¼ :0352

Using Microsoft Excel programs presented in Figs. 13.12 and 13.13, we obtain
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Fig. 13.12 (continued)
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f �1:010; 0; :6133ð Þ ¼ :0202

f �1257; 0;�:0693ð Þ ¼ :0460

N2 1:010;�1:2757;�:7454ð Þ ¼ 0:0350

f �:911; 0;�:6559ð Þ ¼ :0218

f �1:2017; 0;�:0143ð Þ ¼ :0563

N2 :911;�1:2017;�:7454ð Þ ¼ 0:0368

Substituting the related information into Eq. 13.59, we obtain

C ¼ 48:208ð Þ :8988þ :0350½ �
� 45ð Þe�:08 90=365ð Þ :8851ð Þe�:08 40=365ð Þ þ :0368

h i
þ 2e�:08 50=365ð Þ :8851ð Þ

¼ $ 5:603

All related results are presented in column C of Fig. 13.13.14

Fig. 13.12 Microsoft Excel program for calculating function Phi (f)

14 Results of column B are a different set of data. It is good exercise for students to try them.
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Fig. 13.13 (continued)
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Fig. 13.13 (continued)
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Fig. 13.13 Microsoft Excel program for calculating two alternative American call options
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14.1 Introduction

This chapter clarifies and expands on the material presented in Chap. 13 by

providing calculations, analyses, and applications to business and economics.

First, statistics used to test the significance of the intercept (a), slope (b), and

simple correlation coefficient (r) are derived, and the use of these statistics is
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demonstrated. Second, confidence intervals for alternative prediction methods in

terms of simple regression are investigated. Third, applications of simple regression

in business are explored in some detail. Finally, an example is offered to show how

the statistical computer programs MINITAB and SAS can be used to do simple

regression analyses.

14.2 Tests of the Significance of a and b

Chapter 13 detailed basic concepts and estimation procedures for the linear regres-

sion line, regression parameters, and correlation coefficients. Now we will discuss

statistical tests involving regression parameters, intercept (a), and slope (b). (The
sample regression coefficients a and b are estimates of population regression

coefficients a and b, just as �x is the estimate of m.) In addition, these coefficients

have sampling distributions (just as �x has a sampling distribution). With the usual

regression assumptions, the sampling distributions of a and b have the following

properties:

1. a and b are unbiased estimates of a and b, that is,1 E(a) ¼ a and E(b) ¼ b. This
means that the expected value of a; is equal to the population parameter a and

that the expected value of b is b. On average, then, the value obtained from the

estimators is equal to the population parameters. Some estimates will be too low

and some will be too high, but there is no systematic bias.

2. The sampling distributions of a and b are normally distributed with means a and
b and variances S2a and S2b:

S2a ¼ S2e

Pn
i¼1

x2i

n
Pn
i¼1

ðxi � �xÞ2
(14.1)

S2b ¼
S2ePn

i¼1

ðxi � �xÞ2
(14.2)

where se is the estimate of the standard deviation of error terms for a regression, as
defined in Eq. 13.20. sa and sb are standard errors of estimate for a and b. The
sampling distribution of b is presented in Fig. 14.1.

1 If there are measurement errors or proxy errors associated with the independent variable, then b is
no longer an unbiased estimate for b. See Appendix 1.
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14.2.1 Hypothesis Testing and Confidence Interval for b and a

The slope b is the parameter of most interest to business, economic, and other

statisticians, because it can be used to measure the relationship between dependent

and independent variables. The slope bmeasures the change in y that results from a

1-unit change in x. If b is equal to 1
2
, then E(Y | X) changes by plus 1

2
unit when x is

increased by 1 unit.

For example, let the population regression function be

EðYjX ¼ xÞ ¼ mYjx ¼ aþ bx

where mYjx is the population mean of Y, given x. (Once again, assume x is height

and Y is weight.) Then b shows the increase in weight when there is a unit increase

(a 1-in. increase) in height. As another example, let Y be consumption and x be

income. Then b shows the increase in consumption when there is a unit increase

in income. If b is equal to 0.75, then consumption is expected to go up 75 cents

when income increases by 1 dollar.

In business and economic research, we need a guideline to help us determine

whether the independent variable X is useful in predicting the value of Y. Suppose
the population relationship is such that b ¼ 0. This means the population regression

Fig. 14.1 Sampling distribution of b
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line must be horizontal, that is, Ŷ¼ �Y: When b ¼ 0, the value of X is of no help in

predicting Y: no matter how much X changes, there is no change in Y (on the

average). Thus, determining whether b ¼ 0 often proves beneficial, but how is such

a determination made?

14.2.1.1 Two-Tailed z-Test Versus Two-Tailed t-Test for b

When researchers want to test whether the slope is different from zero, the alterna-

tive hypothesis (H1) is that the slope is different from zero; it does not matter

whether the slope is positive or negative. The null hypothesis (H0) in such cases is

that the slope is zero.

H0 : b ¼ 0

H1 : b 6¼ 0

If b is normally distributed with E(b) ¼ b and variance s2b (these were described
earlier in this section as the two properties of b), we can graph the sampling

distribution as shown in Fig. 14.1. We may use either the z statistic or the t statistic
to test whether the null hypothesis (H0: b ¼ 0) is true.

To perform this test, we will again use the sample data of heights and weights

from Chap. 13, restated now in Table 14.1.

The worksheet for calculating a and b for the data of Table 14.1 is given in

Table 14.2. From Table 14.2, we can obtain

s2x ¼
17:5

5
¼ 3:5

s2y ¼
98:8334

5
¼ 19:7667

sxy ¼ 39:5

5
¼ 7:9

r ¼ 7:9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3:5Þð19:7667Þp ¼ :9498

b ¼ sxy
s2x

¼ 7:9

3:5
¼ 2:2571

Table 14.1 Weight and

height data
Height, xi (in.) Weight, yi (pounds)

55 92

56 95

57 99

58 97

59 102

60 104
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The sample slope estimate (b) equals 2.2571 lb/in. To test E(b) ¼ b ¼ 0, we

follow the hypothesis-testing technique discussed in Chap. 11. If the sample size is

large, we can find the z statistic.

z ¼ ½b� EðbÞ�=Sb ¼ ðb� 0Þ=Sb ¼ b=Sb (14.3)

From Tables 13.6 and 14.2, we obtain s2e ¼ 9:67618=ð6� 2Þ ¼ 2:4191 andPn
i¼1 ðxi � �xÞ2 ¼ 17:5. Substituting these estimations into Eq. 14.2 yields

sb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:4191

17:5

r
¼ :3718

Then the z statistic becomes 2.2571/.37l8 ¼ 6.0707, which shows that b
¼ 2.2571 lb is 6.0707 standard deviations away from E(b) ¼ b ¼ 0. Under the

significance level a ¼ .05, from Table 3 of Appendix A, we have Z.05 ¼ 1.96.

Because 6.0707 > 1.96, we conclude that it is highly improbable that b ¼ 2.2571

lb/in. came from a population with b ¼ 0 and we reject H0. That is, we accept H1,

which is b 6¼ 0, and conclude that the independent variable is useful in predicting

the dependent variable.

It should be noted that when the sample size is as small as in this example, we

should use a t statistic instead of a z statistic because we are using the sample

estimate of sє – that is, se – to calculate sb. The value of sb is a measure of the

amount of sampling error in the regression coefficient b, just as sx was a measure of

the sampling error of �x. By using the t-test, we can redefine Eq. 14.3 as

tn�2 ¼ b� 0

sb
(14.4)

The t statistic, tn�2, which follows a t distribution with (n�2) degrees of

freedom, was discussed in Chap. 9. If the sample size is large, then the difference

between the t statistic and the z statistic indicated in Eq. 14.3 is small enough for us

to use the z statistic in testing the null hypothesis.

The t statistic associated with b in terms of Eq. 14.4 is

tn�2 ¼ 2:2571

:3718
¼ 6:0707

Table 14.2 Worksheet for calculation of the coefficients a and b

yi xi (yi – �y) (xi – �x) x2i (yi – �y)2 (xi – �x)2 (xi – �x)(yi – �y)

92 55 �6.1667 �2.5 3,025 38.0282 6.25 15.4168

95 56 �3.1667 �1.5 3,136 10.0280 2.25 4.7501

99 57 0.8333 �0.5 3,249 0.6944 0.25 –0.4167

97 58 �1.1667 0.5 3,364 1.3612 0.25 –0.5834

102 59 3.8333 1.5 3,481 14.6942 2.25 5.7499

104 60 5.8333 2.5 3,600 34.0274 6.25 14.5833

Sum 589 345 –0.0002 0 19,855 98.8334 17.50 39.50

Mean 98.1667 57.5 – – – – – –
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Using this information, we can perform a two-tailed t-test as follows:

H0 : b ¼ 0 versus H1 : b 6¼ 0

Before we perform the null hypothesis test, however, we must specify the

significance level a. We choose 0.01. Because a two-tailed test is used, the

regression region on the right tail and left tail has an area of .01/2 or 0.005. When

the degrees of freedom is n ¼ (n�2) ¼ 4, then t.01/2,4 ¼ t.005,4 ¼ 4.604. The

estimated tn�2 is 6.0707, which is larger than the absolute value of both � t.005,4
and t.005,4, as indicated in Fig. 14.2. Hence, we can conclude that the estimated

slope is significantly different from zero when a is equal to 1 % under the two-tailed

test. In other words, the regression line does improve our ability to estimate the

dependent variable, weight.

14.2.1.2 Two-Tailed t-Test for b

Similarly to the null hypothesis test for b, we can define the hypotheses in a t-test
for a as

H0 : a ¼ 0 versus H1 : a 6¼ 0

A t statistic to test whether the population intercept, a, is significantly different

from zero is

tn�2 ¼ a� 0

sa
; (14.5)

Fig. 14.2 Two-tailed test of estimated slope (b)
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where sa is the standard deviation of the sample intercept a. Using the data of

Table 14.2, we can estimate the intercept a and its standard error sa as follows:

a ¼ �y� b�x ¼ 98:1667� ð2:2571Þð57:5Þ ¼ �31:6166

sa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2:4191Þð19; 855Þ

ð6Þð17:5Þ

s

¼ 21:3879

To test whether the intercept, a, is equal to zero, we divide sa ¼ 21.3879 into

a ¼ �31.6166, obtaining

t ¼ �31:6166

21:3879
¼ �1:4782

Because �1.4782 is larger than �2.776 ¼ t.05/2,4 ¼ t.025,4 (from Table A4 in

Appendix A at the end of this book), we conclude that the estimated intercept, a, is
not significantly different from zero under a two-tailed t-test with a ¼ .05.

14.2.1.3 One-Tailed t-Test for b

A researcher sometimes uses a one-tailed hypothesis test where the alternative test

is that the slope is greater than zero or less than zero.

H0 : b ¼ 0 versus H1 : b> 0 or b< 0

For (n�2) ¼ 6�2 ¼ 4 degrees of freedom, the probability that t is larger than
6.0707 falls below .005 (see Table 4 in Appendix A). Thus, it is highly unlikely that

b ¼ 2.2571 will occur by chance when b ¼ 0 and we can reject H0 and accept H1.

For the one-tailed test, the critical values are t.005,4 ¼ 4.604 and t.01,4 ¼ 3.747.
Again, t4 ¼ 6.0707 is larger than both 3.747 and 4.604. Hence, we can also

conclude that the estimated slope is significantly different from zero when

a ¼ .5 % or a ¼ 1 % under a one-tailed test. Incidentally, using the nonnegative

one-tailed test makes more sense, because it is not reasonable to expect an inverse

relationship between height and weight.

Figure 14.3 shows the critical t-value for a ¼ .005 with 4 degrees of freedom.

Our estimated t-value is equal to 6.0707, and it is larger than 4.604, so it falls within
the rejection region when a ¼ .5 %.

14.2.1.4 Confidence Interval for b

On the basis of the confidence interval concepts discussed in Chap. 10, we obtain

the confidence interval for b as

b� tða=2; n� 2Þsb � b � bþ tða=2; n� 2Þsb (14.6)
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A 95 % confidence interval of a two-tailed test, given that n ¼ 6, t(.025, 4) ¼
2.776 and sb ¼ .3718, is

2:2571� ð2:776Þð:3718Þ � b � 2:2571þ ð2:776Þð:3718Þ
1:2250 � b � 3:2892

Thus, an increase in weight of between 1.2250 and 3.2892 lb for each 1-in.

increase in height can be expected. It should be noted that this result is based on

only 6 observations and that, all other things being equal, precision would be

greater if n were larger.

Similarly, the 99 % confidence interval of a two-tailed test, given n ¼ 6,

t0.005.4 ¼ 4.604, and sb ¼ .3718, is

2:2571� ð4:604Þð:3718Þ � b � 2:2571þ ð4:604Þð:3718Þ
:5433 � b � 3:9689

Figure 14.4 shows only the 99 % confidence intervals for the population regres-

sion slope, calculated from the height and weight data in Table 14.1. Note that the

99 % confidence interval is wider than the 95 % confidence interval.

14.2.2 The F-Test Versus the t-Test

Besides using the t statistic to test whether regression slope is significantly different
from zero, we can also use the F statistic to test whether the regression slope is

significantly different from zero. In this section we will discuss how the F statistic is

used to perform the test and how the F-test is related to the t-test.

Fig. 14.3 One-tailed test for regression slope
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14.2.2.1 Procedure for Using the F-Test

From Eq. 13.17 and Table 13.6 in the last chapter, we have

SST ¼ SSE þ SSR

Total Unexplained Explained

Variation Variation Variation

(14.7)

Recall that the degrees of freedom associated with SST and SSE are (n�1) and

(n�2), respectively. For convenience, we repeat Table 13.6 here as Table 14.3.

From Table 14.3, we know that the degrees of freedom for SST must equal the sum

of SSE and SSR; therefore, the number of degrees of freedom for SSR equals 1 (the

Fig. 14.4 Confidence interval for regression slope

Table 14.3 Analyses of

variance
Actual yi Estimated ŷi ðŷi � yiÞ2 ðyi � �yÞ2
92 92.5239 0.27447 38.0282

95 94.7810 0.04796 10.0280

99 97.0381 3.84905 0.6944

97 99.2952 5.26794 1.3612

102 101.5523 0.20043 14.6942

104 103.8094 0.03633 34.0274

Total 9.67618 98.8334

Sources of

variation Sum of squares

Degrees of

freedom Mean square

Regression
SSR ¼Pn

i¼1

ðŷi � �yÞ2 k SSR/k

Residual
SSE ¼Pn

i¼1

ðyi � ŷiÞ2 n � k � 1 SSE/

(n �k �1)

Total SST ¼Pn
i¼1 ðyi � �yÞ2 n �1 SST/(n �1)

Regression 89.1572 1 89.1572

Residual 9.6762 4 2.4191

Total 98.8334 5 19.7667
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number of independent variables). As we noted in Chaps. 12 and 13, a sum of

squares divided by its degrees of freedom is called a mean square. There are three

different mean squares for a regression analysis, as indicated in Table 14.3.

Table 14.3 shows that an ANOVA table can be constructed for both regression

analysis and analysis of variance. If the estimated slope b is not significantly

different from zero, then

ŷi ¼ aþ bxi

¼ �yþ bðxi � �xÞ
¼ �y ð14:8Þ

This implies that SSR ¼Pn
i¼1 ðŷi � �yÞ2 is small and that SST approaches SSE.

Therefore, we can use the ratio F of Eq. 14.9 to test whether the estimated slope b is
significantly different from zero:

Fð1;n�2Þ ¼ SSR=1

SSE=ðn� 2Þ ¼
MSR

MSE
(14.9)

where

MSR ¼ mean square regression (due to regression)

MSE ¼ s2e ¼ mean square error (residuals)

From Chaps. 9, 12, and 13, we know that the statistic F(1,n�2) is an F distribution

with 1 and (n�2) degrees of freedom. Using the empirical results of Table 14.3, we

calculate the F-value as

F ¼ 89:1572=1

9:6762=4
¼ 36:8563

To use this estimated F-value to test whether b ¼ 2.2571 is significantly differ-

ent from zero, we first choose a significance level of a and then use the F table,

Table A6 of Appendix A, to determine the critical value. If we choose a significance

level of a ¼ .01, the critical value is F1,4 ¼ 21.2.

As shown in Fig. 14.5, the decision rule is to reject H0 – that is, to accept the

hypothesis that the regression line does contribute to an explanation of the variation

of y – if the calculated value of F based on our height and weight example exceeds

21.2 (see Fig. 14.5). Because the sample value of F, 36.8563, is larger than the

critical value, 21.2, we reject the null hypothesis and conclude that the height does

indeed help explain the variation of weight.

14.2.2.2 The Relationship Between the F-Test and the t-Test

The F-test on the variation ratio between mean square regression (MSR) and mean

square error (MSE), as defined in Eq. 14.9, is comparable to the t-test on the
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significance of the slope: both test whether the slope is significantly different from

zero. Actually, the t-test and the F-test on the variance ratio between MSR andMSE

are equivalent tests for the significance of the linear relationship between two

variables x and y. This will be explained further in Appendix 2.

The advantage of using the F-test is that it can be generalized to test a set of

regression coefficients associated with multiple regression, which is discussed in

the next chapter. In addition, the F-test can also be used to investigate other

important topics in regression analysis (Chap. 16). However, the t-test, rather
than the F-test, is used to test whether b differs from a specific value other than zero.

14.3 Test of the Significance of r

So far in this chapter, we have used the z statistic and the t statistic to test H0: b ¼ 0.

There is also a t-test and a z-test to test H0: r ¼ 0. In other words, these tests are

used to determine whether r, the population correlation coefficient between two

variables, is statistically significantly different from zero.

Fig. 14.5 Critical value for F-test
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14.3.1 t-Test for Testing r ¼ 0

If x and y are bivariate normally distributed, then we can use the t-distributed
random variable tn�2 to test whether r is statistically significantly different from

zero.

tn�2 ¼ r
ffiffiffiffiffiffiffiffiffiffiffi
n� 2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p (14.10)

where r is the sample correlation coefficient between x and y and n represents the

number of observations. Using our example of children’s height and weight,

r ¼ .9498 and n ¼ 6, we find that

t4 ¼ :9498
ffiffiffiffiffiffiffiffiffiffiffi
6� 2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð:9498Þ2

q ¼ 1:8996

:3129
¼ 6:0709

Table A4 of Appendix A gives the critical values for 4 degrees of freedom, at

a ¼ .05 and a ¼ .025, as

t4;:05 ¼ 2:132 and t4;:025 ¼ 2:776

Therefore, the null hypothesis of no relationship between x and y can be rejected
against the alternative that the true correlation is positive at both 5 % and 2.5 %

significance levels. The height and weight data, then, contain fairly strong evidence

supporting the hypothesis of a positive (linear) association between students’

heights and weights.

The t-value for testing H0: r ¼ 0 is equal to that used for testing H0: b ¼ 0

unless there are rounding errors. That is, tn�2 ¼ b/sb.
2

2 From Eq. 13.26, we have

r ¼ b sx sy
�� �

and r2 ¼ b2 s2x s2y

.� �

Substituting these two equations into Eq. 14.10 and rearranging the terms, we obtain

tn�2

bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2y�b2s2x

ðn�2Þ s2xð Þ
r ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2e
Pn
i¼1

xi � �xð Þ2
�s ¼ b

sb

686 14 Simple Linear Regression and Correlation: Analyses and Applications

http://dx.doi.org/10.1007/978-1-4614-5897-5_13


14.3.2 z-Test for Testing r ¼ 0 or r ¼ Constant

The t-value of vindicated in Eq. 14.10 cannot be used for making confidence

statements about sample correlations. In addition, this approach is not suitable for

testing a null hypothesis other than r ¼ 0, such as r ¼ .20 or r1�r2 ¼ 0. A

convenient and sufficiently accurate solution of these problems was provided by

Fisher (1921), who derived a transformation from r to a quantity, h, distributed
almost normally with variance3

s2h ¼
1

h� 3
(14.11)

where

h ¼ 1

2
loge

1þ r

1� r

	 
� �
(14.12)

Note that the variance of h is independent of the value of the correlation in the

population from which the sample is drawn (in contrast to the variance of r, which is
dependent on the population). If r ¼ 0, then h ¼ 0; therefore, the null hypothesis of

testing that h ¼ 0 is identical to testing that r ¼ 0. In our example,

r ¼ :9498; h ¼ 1

2
loge

ð1þ :9498Þ
ð1� :9498Þ ¼ 1:8297

Using Eq. 14.11, we have

sh ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

6� 3

r
¼ :5773

Dividing .5773 into 1.8297, we obtain

z ¼ 1:8297=:5773 ¼ 3:1694

We are testing the hypothesis that r ¼ 0 against the alternative that r 6¼ 0. From

the t distribution table, Table A4 in Appendix A, we find the critical value is

t.005 ¼ 2.576, which corresponds to degrees of freedom (df) ¼ 1. Approximately

this value can also be taken from the normal distribution table, Table A3 of

Appendix A. These results imply that the correlation coefficient .9498 is signifi-

cantly different from zero at the a ¼ 1 % significance level. Finally, the method

employed in Eq. 14.6 can be used to obtain confidence intervals for h.

3 Fisher R.A.: On the probable error of a correlation coefficient deduced from a small sample.

Mentor 1, part 4, 3–32 (1921)
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A 99 % confidence interval for h, given that h ¼ 1.8297, z.005 ¼ 2.576, and

sh ¼ .5773, is

1:8297� ð2:576Þð:5773Þ � h � 1:8297þ ð2:576Þð:5773Þ

or

:3426 � h � 3:3168

Because this interval does not include h ¼ 0, it also does not include r ¼ 0.

Again, this implies that the correlation coefficient .9498 is significantly different

from zero at a ¼ 1 %.

14.4 Confidence Interval for the Mean Response and Prediction

Interval for the Individual Response

In this section, we discuss both point estimates and confidence intervals for the

mean response. We also consider point estimates and prediction intervals for the

individual response.

14.4.1 Point Estimates of the Mean Response and the Individual
Response

One of the important uses of a sample regression line is to obtain predictions (or
forecasts) for the dependent variable, conditional on an assumed value of the

independent variable. This kind of prediction is called a conditional prediction
(or conditional forecast). Suppose the independent variable is equal to some

specified value xn+1 and that the linear relationship between yt and xt continues to
hold.4 Then the corresponding value of the dependent variable Yn + 1 is

Ynþ1 ¼ aþ bxnþ1 þ enþ1 (14.13)

which, given xn+1, has the conditional expectation

EðYnþ1jxnþ1Þ ¼ aþ bxnþ1 (14.14)

4 xn+1 can be a given value or forecasted value. If a regression is used to describe a time-series

relationship, then xn+1 is a forecasted value. This issue will be discussed in detail later in this

chapter.
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Equation 14.14 can be used to estimate the conditional expectation E(Yn+1|xn+1)
when the independent variable is fixed at xn+1; Eq. 14.13 can be used to estimate the

actual value for a given independent variable xn+l. In other words, Eq. 14.14 is used
to estimate the mean response and Eq. 14.13 to estimate the individual response.
For both problems, we can obtain both the point estimate and the interval estimate.

To obtain the best point estimate, we should first estimate the sample regression

line

yi ¼ aþ bxi þ ei (14.15)

Then we can substitute the given value xn+1 into the estimated Eq. 14.15 and

obtain

ŷnþ1 ¼ aþ bxnþ1 (14.16)

This is the best point estimate for forecasts of both conditional expectation

(mean response) and actual value (individual response). The forecast of conditional

expectation value is equal to the forecast of actual expectation value. However, they

are interpreted differently. This different interpretation will become important

when we investigate the process of making interval estimates.

14.4.2 Interval Estimates of Forecasts under Three Cases
of Estimated Variance

To construct a confidence interval for forecasts, it is necessary to know the

distribution, the mean, and the variance of ŷnþ1. The distribution of ŷnþ1 is a normal
distribution. The variance associated with ŷnþ1 can be classified into three cases.

Let’s examine them individually.

Case 14.1 Conditional Expectation (Mean Response) with xnþ1 ¼ �x

From the definitions of the intercept of a regression and the sample regression

line, we have

ŷnþ1 ¼ �y� b�xþ bxnþ1 ¼ �yþ bðxnþ1 � �xÞ

If xnþ1 ¼ �x, then we have ŷnþ1 ¼ �y. Following Appendix 3, we obtain the

estimate of the variance for yn+l as

s2ðŷnþ1Þ ¼ s2ð�yÞ ¼ s2e=n (14.17)
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Case 14.2 Conditional Expectation (Mean Response) with xnþ1 ¼ x

In this case, the forecast value can be defined as

ŷnþ1 ¼ �yþ bðxnþ1 � �xÞ

Following Appendix 3, we obtain the estimate of the variance for yn+1 as

s2ðŷnþ1Þ ¼ s2½�yþ bðxnþ1 � �xÞ�

¼ s2e
1

n
þ ðxnþ1 � �xÞ2Pn

i¼1

ðxi � �xÞ2

2
664

3
775 ð14:18Þ

This is the variance for the estimated dependent variable ðŷnþ1Þ.

Case 14.3 Actual Value of yn+1,i (Individual Response)

In this case, we want to predict the actual value of yn+1. The procedure for

finding the variance is to find the variance of the difference ŷnþ1 � ynþ1;i – in

other words, the forecast error. The sample variance of residual (ŷnþ1 � ynþ1;i)

can be defined as

s2ðŷnþ1;iÞ ¼ s2ðŷnþ1 � ynþ1;iÞ ¼ s2e
1

n
þ ðxnþ1 � �xÞ2Pn

i¼1

ðxi � �xÞ2

0
BB@

1
CCAþ s2e

¼ s2e 1þ 1

n
þ ðxnþ1 � �xÞ2Pn

i¼1

ðxi � �xÞ2

0
BB@

1
CCA ð14:19Þ

Using Eqs. 14.17, 14.18, and 14.19, we can obtain a confidence interval for

the mean response and a prediction interval for the individual response as

follows. For case 1 of the mean response, the confidence interval is

ŷnþ1 � tn�2;a=2
seffiffiffi
n

p (14.20)

For case 2 of the mean response, the confidence interval is

(continued)
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Case 14.3 (continued)

ŷnþ1 � tn�2;a=2se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ ðxnþ1 � �xÞ2Pn

i¼1

ðxi � �xÞ2

vuuut (14.21)

For case 3, the individual response of actual value ynþ1;i, and the prediction

interval is

ŷnþ1;i � tn�2;a=2se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ ðxnþ1 � �xÞ2Pn

i¼1

ðxi � �xÞ2

vuuut (14.22)

To show how Eqs. 14.20, 14.21, and 14.22 can be applied, we will now use

the height and weight example to estimate the variances and the prediction

intervals.

14.4.3 Calculating Standard Errors

Table 14.4 is the worksheet for 3 alternative forecasts that we generate by using the

data of Table 14.1. From Table 14.2,

�x ¼ 57:5;
Xn
i¼1

ðxi � �xÞ2 ¼ 17:5

Let xn+1 ¼ 55, 56, 57, 58, 59, and 60. Substituting these data into Eq. 14.16, we

obtain ŷnþ1 as indicated in column (3) of Table 14.4. Substituting s2e ¼ 2.4191 and

n ¼ 6 into Eq. 14.17, we obtain s(�y) as indicated in column (5) of Table 14.4.

To calculate s2ðŷnþ1jxnþ1 6¼ �xÞ and s2ðŷnþ1;iÞ, we substitute related information

into Eqs. 14.21 and 14.22 as follows:

1. xnþ1 ¼ 55

s2ðŷnþ1Þ ¼ s2e
1

n
þ ðxnþ1 � �xÞ2Pn

i¼1

ðxi � �xÞ2

0
BB@

1
CCA

¼ ð2:4191Þ 1

6
þ ð55� 57:5Þ2

17:5

 !
¼ 1:2671
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s2ðŷnþ1;iÞ ¼ s2e 1þ 1

n
þ ðxnþ1 � �xÞ2Pn

i¼1

ðxi � �xÞ2

0
BB@

1
CCA

¼ 1:2671þ 2:4191 ¼ 3:6862

2. xnþ1 ¼ 56

s2ðŷnþ1Þ ¼ ð2:4191Þ 1

6
þ ð56� 57:5Þ2

17:5

 !
¼ :7144

s2ðŷnþ1;iÞ ¼ 2:4191þ :7144 ¼ 3:1335

3. xnþ1 ¼ 57

s2ðŷnþ1Þ ¼ ð2:4191Þ 1

6
þ ð57� 57:5Þ2

17:5

 !
¼ :4379

s2ðŷnþ1;iÞ ¼ 2:4191þ :4379 ¼ 2:8570

4. xnþ1 ¼ 58

s2ðŷnþ1Þ ¼ ð2:4191Þ 1

6
þ ð58� 57:5Þ2

17:5

 !
¼ :4379

s2ðŷnþ1;iÞ ¼ 2:4191þ :4379 ¼ 2:8570

5. xnþ1 ¼ 59

s2ðŷnþ1Þ ¼ ð2:4191Þ 1

6
þ ð59� 57:5Þ2

17:5

 !
¼ :7144

s2ðŷnþ1;iÞ ¼ 2:4191þ :7144 ¼ 3:1335

Table 14.4 Worksheet for

calculating three alternative

standard errors

(1)

x
(2)

y
(3)

ŷnþ1

(4)

s2e

(5)

sð�yÞ
(6)

sðynþ1Þ
(7)

sðŷnþ1;iÞ
55 92 92.5239 2.4191 0.6350 1.1257 1.9200

56 95 94.7810 2.4191 0.6350 0.8452 1.7702

57 99 97.0381 2.4191 0.6350 0.6617 1.6903

58 97 99.2952 2.4191 0.6350 0.6617 1.6903

59 102 101.5523 2.4191 0.6350 0.8452 1.7702

60 104 103.8094 2.4191 0.6350 1.1257 1.9200
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6. xnþ1 ¼ 60

s2ðŷnþ1Þ ¼ ð2:4191Þ 1

6
þ ð60� 57:5Þ2

17:5

 !
¼ 1:2671

s2ðŷnþ1;iÞ ¼ 2:4191þ 1:2671 ¼ 3:6862

Alternative estimates of sðŷnþ1Þ and sðŷnþ1;iÞ are listed in columns (6) and (7) of

Table 14.4, respectively.

14.4.4 Confidence Interval for the Mean Response and Prediction
Interval for the Individual Response

Let a ¼ .05, then t.025,4 ¼ 2.776. Substituting all related information into the

formulas for confidence interval and prediction interval as shown in Eqs. 14.20,

14.21, and 14.22, we can obtain 95 % confidence interval estimates for the mean

response and individual response as shown in the cases that follow.

Case 14.4 The Mean Response with xn+l ¼ �x

Because xn+1 ¼ �x ¼ 57.5 and

ŷnþ1 ¼ �31:6166þ ð2:2571Þð57:5Þ ¼ 98:1667

we can use se=
ffiffiffi
n

p ¼ :6350 as indicated in column (5) of Table 14.4 to define

the 95 % confidence interval in terms of Eq. 14.20 as

98:1667� ð2:776Þð:6350Þ<EðYnþ1j�xÞ<98:1667þ ð2:776Þð:6350Þ
96:4038<EðYnþ1j�xÞ<99:9295

How do we interpret this interval? We say that if 100 random samples of

size 6 are selected and the confidence intervals of Eq. 14.20 are constructed,

we should expect 95 % of those intervals to contain E(Yn+l| �x ¼ 57.5). The

confidence interval calculated here is one of the 100 such intervals. This

confidence interval is indicated in Fig. 14.6, where A and B represent the

lower bound and upper bound, respectively.
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Case 14.5 The Mean Response with xn+l ¼ x

In this case, the confidence intervals depend on the values of x and yn+1.
Using alternative standard errors as indicated in column (6) of Table 14.4, we

find that the 95 % confidence intervals for this case are

x ¼ 55 :

92:5239� ð2:776Þð1:1257Þ<EðYnþ1jxnþ1Þ<92:5239þ ð2:776Þð1:1257Þ

89:3990<EðYnþ1jxnþ1Þ<95:6488

x ¼ 56: 92:4347<EðYnþ1jxnþ1Þ<97:1273

x ¼ 57: 95:2012<EðYnþ1jxnþ1Þ<98:8750

(continued)

Fig. 14.6 Confidence interval for mean response with xn+l ¼ �x
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Case 14.5 (continued)

x ¼ 58: 97:4583<EðYnþ1jxnþ1Þ<101:1321

x ¼ 59: 99:2060<EðYnþ1jxnþ1Þ<103:8986

x ¼ 60: 100:6845<EðYnþ1jxnþ1Þ<106:9343

How are these intervals interpreted? If 100 samples of size 6 are selected

and 6 confidence intervals of Eq. 14.21 corresponding to x ¼ 55, 56, . . ., 60
are constructed, we should expect 95 of them to contain E(Yn+l | xn+1) for a
given x. Each interval estimate here is one of the 100 such intervals for a

given x. These confidence intervals are graphically presented in Fig. 14.7.

When we connect the points, we get a confidence belt that is symmetric in

width around the value Xn+1 = �x: Note that this confidence belt was

constructed in a single sample. Each time a new sample is selected, there is

a new confidence belt.

Case 14.6 The Individual Response

The standard error here is larger than that of Case 14.5 by an amount s2e.Using
the alternative standard errors indicated in column (7) of Table 14.4, we find

that the 95 % prediction intervals for this case are

x ¼ 55:

92:5239� ð2:776Þð1:1257Þ<EðYnþ1jxnþ1Þ<92:5239þ ð2:776Þð1:9200Þ

87:1940<EðYnþ1jxnþ1Þ<97:8538

x ¼ 56: 89:8669<EðYnþ1jxnþ1Þ<99:6951

x ¼ 57: 92:3458<EðYnþ1jxnþ1Þ<101:7304

x ¼ 58: 94:6029<EðYnþ1jxnþ1Þ<103:9875

x ¼ 59: 96:6382<EðYnþ1jxnþ1Þ<106:4664

x ¼ 60: 98:4795<EðYnþ1jxnþ1Þ<109:1393

(continued)

14.4 Confidence Interval for the Mean Response and Prediction Interval. . . 695



Case 14.6 (continued)

The interpretations of these prediction intervals are similar to those of the

confidence intervals of Case 14.5, but these intervals are wider. They are

shown in Fig. 14.8.

As in Fig. 14.7, we can construct a confidence belt by connecting the

points. The confidence belt of Case 14.6 is for the forecasts of the actual

values of the students’ weights. The confidence belt of Case 14.5 is for

the forecasts of the conditional expectation of the students’ weights. The

length of interval for the actual forecast is greater than that of the conditional

expectation given the same value of xnþ1, while the difference is not 2Se.
If xn+1 is equal to the previous sample mean �x, and if n is large, then the

standard deviation of actual value, ŷnþ1;i, as indicated in Eq. 14.19, approaches

the standard error of the estimate se. This result should not be too surprising,

for we know that the larger the sample, and the less a given value xnþ1

deviates from �x, the more faith we have in the sampling results and in the

subsequent forecast.

14.4.5 Using MINITAB to Calculate Confidence Interval
and Interval

MINITAB output of Table 14.4 is presented in Fig. 14.9. In Fig. 14.9, C1 ¼ x,

C2 ¼ y, fit ¼ ŷnþ1 , standard deviation fit ¼ sðŷnþ1Þ , and MS of error ¼ s2e . As
discussed previously,

sðŷnþ1;iÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2e þ s2ðŷnþ1Þ

q

Finally, for x ¼ 61, the fit, standard deviation fit, 95 % confidence interval (C.I.),

and 95 % prediction interval (P.I.) are presented in the last row of Fig. 14.9.

Example 14.1. Forecasting the Average Number of Cars in a Household of Three
People We return to the data on cars and people per household similar to Example

13.4 of Chap. 13 to forecast the average number of cars in a household of 3 people.

These data are given in Table 14.5.

From Table 14.5, we can obtain the following statistics:

�y ¼ 2:4 �x ¼ 3:8 Sxy ¼ 103 Sx2 ¼ 162 Sy2 ¼ 68a

Sðx� �xÞðy� �yÞ ¼ 11:8 S x� �xð Þ2 ¼ 17:6 S y� �yð Þ2 ¼ 10:4
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We estimate the intercept and slope as

b ¼ 11:8

17:6
¼ :67

a ¼ 2:4� ð:67Þð3:8Þ ¼ �:146

ŷ ¼ �:146þ :67x

Fig. 14.7 Confidence interval for mean response with xnþ1 ¼ �x
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The standard error of slope can be calculated as follows:

se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðy� ŷÞ2

n� 2

s
¼

ffiffiffiffiffiffiffiffiffiffiffi
2:489

8

r
¼ :5578

Standard error of b ¼ seffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðx� �xÞ2
q ¼ :5578ffiffiffiffiffiffiffiffiffi

17:6
p ¼ :1329

Fig. 14.8 Prediction interval for individual response
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Dividing .67 by .1329, we obtain the t statistic for b.

t ¼ :67

:1329
¼ 5:041

From Table A4 in Appendix A, we obtain t8,.025 ¼ 2.306. Because 5.041 is

larger than 2.306, we conclude that the estimated b is significantly different from

zero at the 95 % level of significance. A family of 3 people will have an average of

1.864 cars [�.146 + .67(3) ¼ 1.864]. The 95 % confidence interval for the average

Fig. 14.9 MINITAB output of Table 14.4
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number of cars in a family of 3 people is constructed in accordance with Eq. 14.21

as

ŷnþ1 � tn�1;a=2sðŷnþ1Þ

where

ŷnþ1 ¼ the mean value of y at the (n + l)th level of x

sðynþ1Þ ¼ se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ ðxnþ1 � �xÞ2P ðx� �xÞ2

s

¼ ð:5578Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

10
þ ð3� 3:8Þ2

17:6

s

¼ ð:5578Þð:3693Þ ¼ :2060

The 95 % confidence interval is

1:864� ð2:306Þð:2060Þ ¼ 1:864� :4750 ¼ 1:389 to 2:339

On the basis of sample data, we are 95 % confident that the average number of

cars in a household of 3 people will be in the interval of 1.389 cars to 2.339 cars.

14.5 Business Applications

In this section, we employ data on stock rates of return, auditing data, and other

business data to show how simple linear regression and correlation analyses can be

used in various real-world business applications.

Table 14.5 Numbers of

cars per household
Household Cars People

1 4 6

2 1 2

3 3 4

4 2 3

5 2 4

6 3 4

7 4 6

8 1 3

9 2 2

10 2 4

Total 24 38
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Application 14.1 The Relationship Between Layoff Rate and the Unemploy-

ment Compensation Subsidy Rate To test whether the unemployment compen-

sation subsidy causes firms to lay off more people than they would if they knew that

they would not receive an outside subsidy for layoffs, Tropel (1983) used the data of

unemployment compensation subsidy rate x (as a percentage of total revenues) and
the layoff rate y (number of workers per 1,000) to do regression analysis for 11

industries, as indicated in Table 14.6.

The model of regressing y against x can be denned as

yi ¼ aþ bxi þ ei

where yi and xi are subsidy rate and layoff rate for iit industries, respectively. The
MINITAB output of this regression is presented in Fig. 14.10. From Fig. 14.10, we

find that the estimated slope b ¼ .14468 and the t-value associated with this slope is
1.55. From Table A4 in Appendix A, we find t9,.025 ¼ 2.262, which is larger than

1.55. Hence, we conclude that the subsidy rate does not contribute information for

the prediction of the layoff rate at a ¼ .05.

Application 14.2 Market Model Estimation and Analysis In Chaps. 2 through 4,

annual rates of return for Johnson & Johnson and annual market rates of return

during 1990–2009 were analyzed in detail. Now let’s see how the market rates of

return are used to explain the variations in rates of return for JNJ. The regression

relationship can be defined as

Rg;t ¼ aþ bRm;t þ eg;t (14.23)

where

Rg,t ¼ annual rate of return for JNJ in period t
Rm,t ¼ market rate of return in period t

Table 14.6 Subsidy rate and

layoff rate for 11 industries
Industry Subsidy rate (%), x Layoff rate, y

Apparel 57 12.54

Chemicals 32 1.78

Construction 31 7.10

Electrical machinery 29 8.38

Fabricated metals 27 11.72

Food 36 5.10

Machinery 32 4.44

Misc. manufacturing 61 9.82

Primary metals 23 7.34

Retail 27 1.98

Wholesale trade 33 1.86

Source: Tropel, R.H.: On layoffs and unemployment insurance.

Am. Econ. Rev. 83, 541–559 (1983). Reprinted by permission of

the publisher

14.5 Business Applications 701

http://dx.doi.org/10.1007/978-1-4614-5897-5_2
http://dx.doi.org/10.1007/978-1-4614-5897-5_4


Equation 14.23 is called the market model in financial analysis. It is often used to
investigate the relationship between rates of return for individual securities and

market rates of return. Further implications of the market model will be discussed in

Chap. 21.

First we use data listed in columns (2) and (3) of Table 14.7 to estimate the

market model for JNJ. MINITAB output of the market model for JNJ is presented in

Fig. 14.11. From Fig. 14.11, we can define the estimated sample regression line as

Fig. 14.10 MINITAB regression output for Application 14.1
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R̂g;t ¼ :0273þ :639Rm;t (14.23a)

The positive value for b implies that rates of return for JNJ increase when market

rates of return increase. The b ¼ .639 means that a 1 % increase in market rates of

return, Rm,t, in 1 year is associated with an increase in the annual rate of return for

JNJ during the next year of about .639 %.

Table 14.7 Rates of return for JNJ and market rates of return (1990–2009)

Data display

Row JNJ S&P

1 0.230108 0.036396

2 0.616842 0.124301

3 �0.551293 0.105162

4 �0.091578 0.085799

5 0.244915 0.019960

6 0.584558 0.176578

7 �0.409758 0.237724

8 0.340804 0.302655

9 0.287688 0.242801

10 0.124207 0.222782

11 0.139719 0.075256

12 �0.431191 0.163282

13 �0.078010 0.167680

14 �0.021172 0.028885

15 0.248595 0.171379

16 �0.032496 0.067731

17 0.122480 0.085510

18 0.034602 0.127230

19 �0.076435 0.174081

20 0.108473 0.222935

Descriptive statistics: JNJ

Total

Variable Count Mean SE mean StDev Variance Minimum Q1 Median

JNJ 20 0.0696 0.0677 0.3028 0.0917 0.5513 0.0776 0.1155

Variable Q3 Maximum Skewness Kurtosis

JNJ 0.2477 0.6168 0.30 0.21

Descriptive statistics: S&P

Total

Variable Count Mean SE mean StDev Variance Minimum Q1 Median

S&P 20 0.0662 0.0338 0.1512 0.0229 0.2229 0.0167 0.0857

Variable Q3 Maximum Skewness Kurtosis

S&P 0.1753 0.3027 0.56 0.49
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The regression equation is
JNJ = 0.0273 + 0.639 S&P

Predictor      Coef    SE Coef     T       P      VIF
Constant   0.02726  0.07227  0.38  0.710
S&P          0.6386    0.4472    1.43   0.170  1.000

S = 0.294804   R-Sq = 10.2%   R-Sq(adj) = 5.2%

Analysis of Variance

Source             DF        SS          MS       F        P
Regression       1      0.17720  0.17720  2.04  0.170
Residual Error  18    1.56437  0.08691
Total                 19    1.74158

Obs  S&P      JNJ         Fit      SE Fit   Residual  St Resid

1   0.036   0.2301   0.0505  0.0673    0.1796      0.63

2   0.124   0.6168   0.1066  0.0709    0.5102      1.78

3   0.105  -0.5513   0.0944  0.0682   -0.6457     -2.25R
4   0.086  -0.0916   0.0821  0.0665   -0.1736     -0.60
5   0.020   0.2449   0.0400  0.0691    0.2049      0.71
6   0.177   0.5846   0.1400  0.0823    0.4445      1.57

7   0.238  -0.4098   0.1791  0.1011   -0.5888     -2.13R

8   0.303   0.3408   0.2205  0.1246    0.1203      0.45

9   0.243   0.2877   0.1823  0.1029    0.1054      0.38

10   0.223   0.1242   0.1695  0.0962   -0.0453     -0.16

11   0.075   0.1397   0.0753  0.0660    0.0644      0.22

12  -0.163  -0.4312  -0.0770  0.1220   -0.3542     -1.32

13  -0.168  -0.0780  -0.0798  0.1236    0.0018      0.01

14  -0.029  -0.0212   0.0088  0.0785   -0.0300     -0.11
15   0.171   0.2486   0.1367  0.0810    0.1119      0.39

Regression Analysis: JNJ versus S&P

16   0.068  -0.0325   0.0705  0.0659   -0.1030     -0.36
17   0.086   0.1225   0.0819  0.0665    0.0406      0.14
18   0.127   0.0346   0.1085  0.0713   -0.0739     -0.26
19  -0.174  -0.0764  -0.0839  0.1261    0.0075      0.03
20  -0.223   0.1085  -0.1151  0.1452    0.2236      0.87

R denotes an observation with a large standardized residual.

Durbin-Watson statistic = 2.51280
Predicted Values for New Observations

New

Obs     Fit       SE Fit        95% CI                   95% PI

1    0.0820  0.0665  (-0.0577, 0.2217)  (-0.5529, 0.7169)

Fig. 14.11 MINITAB output

of market model for JNJ
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To obtain the goodness-of-fit measures and other statistics, we need to calculate

the components of total variation for Rg,t. The analysis of variance in Fig. 14.11

reveals that the total variation in Rg,t is

SST ¼
X20
t¼1

ðRg;t � �RgÞ2 ¼ 1:74158

This SST can be decomposed as

Explained variation ðSSRÞ ¼
X20
t¼1

ðR̂g;t � �Rg;tÞ2

¼ :17720

and

Unexplained variation ðSSEÞ ¼
X20
t¼1

ðRg;t � R̂g;tÞ2 ¼
X20
t¼1

e2g;t

¼ 1:56437

Drawing on our information about SST, SSR, SSE, and the related degrees of

freedom, we construct the ANOVA table presented in Table 14.8.

Substituting information indicated in Tables 14.7 and 14.8 into Eqs. 13.20,

13.21, 14.2, 14.4, and 14.9, we obtain

se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
t¼1

e2g;t=n� 2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:56437=18

p
¼ :2948

R2 ¼ :17720

1:74158
¼ :102

sb ¼ se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX20
t¼1

Rm;t � �Rm

� �2
vuut,

¼ :2948=:6592 ¼ :4472

t18 ¼ :6386=:4472 ¼ 1:43

F1;18 ¼ SSR

SSE 18=
¼ :17720

:08691

¼ 2:04
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The standard error of residuals, se ¼ .2948, can be used to measure the absolute

goodness of fit for the estimated market model, R̂g;t . And the coefficient of

determination R2 ¼ .102 can be used to measure the relative goodness of fit for

Rg;t. The estimated R2 implies that 10.2 % of the variation in rates of return for JNJ

has been explained by the variation of market rates of return. t18 ¼ 1.43 can be used

to test the following null hypothesis:

H0 : b ¼ 0 versus H1 : b 6¼ 0

Using a significance level of a ¼ 5 %, we have t.025,18 ¼ 2.1010. Because

2.1010 > 1.43, we cannot reject the null hypothesis and conclude that there is a

linear relationship between rg,t and Rm,t at a ¼ 5 %.

Equation 14.23a can be used to forecast the rate of return for JNJ in 2010. If we

assume that Rm,n+1 ¼ .0857 for 2010, then the forecasted rate of return for JNJ in

2010 is

R̂g;2010 ¼ :0273þ ð:639Þð:0857Þ
¼ :0820

We use Eq. 14.19 to calculate the standard error prediction (sp).

s2r ¼ s2e 1þ 1

20
þ Rm;nþ1 � �Rm

� �2
P20
t¼1

Rm;t � �Rm

� �2
0
BBB@

1
CCCA

¼ ð:0869Þ 1þ 1

20
þ :0857� :0662ð Þ2

:4344

 !

¼ ð:0869Þð1:05087Þ ¼ :09132

where sp represents the standard error of the forecasted rate of return for JNJ in

2010. Using this information, we can estimate a 95 % forecast interval for the rate

Table 14.8 ANOVA for Eq. 14.23

Sources of variation Sum of squares Degrees of freedom Mean square

Regression 0.17720 1 0.17720

Error 1.56437 18 0.08691

Total 1.74158 19 0.09166
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of return for JNJ in 2010. From Table A4 in Appendix A, the value of t.025,18 is

2.1010. Using related information, we get the following 95 % interval estimate:

:0820� ð2:1010Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð:09132Þ

p
¼ :0820� :6349

¼ ð�:5529; :7169Þ

The numerical interval (�.5529, .7169) is not expected to include the true value

for 95% of the time. 95% only works for the situation prior to plug observed values

into intervals. This prediction interval is almost identical to that obtained via

MINITAB (Fig. 14.11).

Application 14.3 Relationship Between Audited and Book Inventory

Value Accountants often use the audit sampling approach to do statistical auditing.

Auditors use a simple regression model like that indicated in Eq. 14.24 to estimate

the relationship between client-reported account values and audited account values:

yi ¼ aþ bxi þ ei (14.24)

where

yi ¼ ith audited account value

xi ¼ ith reported account value

Using as an example the inventory valuation demonstration data indicated in

Table 14.9, we will show how regression analysis can be used to estimate the mean

per-unit audited account value of the client population (my) as defined in Eq. 14.25.

m̂y ¼ aþ bmx ¼ �yþ bðmx � �xÞ ¼ �y� b�xþ bmx (14.25)

where

�y ¼ mean of yi
�x ¼ mean of xi

mx ¼ mean per-unit reported account value (a population parameter)

The use of Eq. 14.25 is similar to the case of mean response with xn+l 6¼ �x in the

last section, constructing interval estimates of forecasts.

The 30 sample inventory accounts are randomly drawn from a population with

the following population information:

Number of accounts ¼ N ¼ 2,000

Reported aggregate account value ¼ ∑ X ¼ $400,000

Mean per-unit reported account value ¼ mx ¼ $200

From the data listed in Table 14.9, we obtain

b ¼ :9122 and se ¼ $8:8180
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Substituting b̂ ¼ .9122, �y ¼ $204.992, �x ¼ $199.076, and mx ¼ $200.00 into

Eq. 14.25, we have

m̂y ¼ $204:992þ ð:9122Þð$200:00� $199:076Þ
¼ $205:8349

Table 14.9 Inventory valuation demonstration data

(1) (2) (3) (4)

Sample item number, ni Account number Reported account value, xi Audited account value, yi

1 2545 $ 161.21 $ 168.69

2 3988 183.68 174.53

3 3825 246.80 255.70

4 2613 207.28 208.46

5 3071 169.52 180.12

6 2848 180.26 189.76

7 3207 221.28 227.55

8 2109 185.58 174.61

9 2299 236.34 243.62

10 3052 202.44 209.35

11 2486 184.76 198.66

12 2822 191.21 198.51

13 3818 198.86 219.76

14 3674 192.65 208.46

15 2304 210.83 214.12

16 3206 208.59 219.41

17 3659 205.98 215.83

18 3544 148.35 172.39

19 3666 197.77 192.84

20 3937 238.25 249.08

21 3187 244.85 231.89

22 2622 192.28 191.72

23 2530 179.93 172.80

24 2320 180.81 187.11

25 2943 194.53 192.32

26 3670 216.40 221.92

27 3506 201.34 219.25

28 2416 212.00 204.39

29 2135 190.21 201.51

30 3181 188.29 205.40

$5,972.28 $6,149.76

�x ¼ $199.076 �y ¼ $204.992

Source: Bailey A.D. Jr.: Statistical Auditing: Review, Concepts and Problems, pp. 124–125. San

Diego, Harcourt (1981). Copyright # 1981 by Harcourt Brace Jovanovich, Inc., reprinted by

permission of the publisher
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Following Eq. 14.21, we can construct the confidence interval associated with mY
as

m̂y � tða=2;n�2Þse
1

n
þ ðmx � �xÞ2Pn

i¼1

ðxi � �xÞ2

2
664

3
775
1=2

<mY

<m̂y þ tða=2;�2ÞSe
1

n
þ ðmx � �xÞ2Pn

i¼1

ðxi � �xÞ2

2
664

3
775
1=2

(14.26)

Let a ¼ .10, then t.05,28 ¼ 1.701. Substituting �Y; se; n; mx; �x;Sðxi � �xÞ2 and t.05,28
into Eq. 14.26, we have

$205:8349� ð1:701Þð1:6113Þ<mY<$205:8349þ ð1:701Þð1:6113Þ
$203:0941<mY<$208:5757

We are 90% confident that the interval determined will include the true value of

the per-unit audited inventory account value.

Application 14.4 Hamburger Sales: Predicting Profits. Healthy Hamburgers

has a chain of 12 stores in Northern Illinois.5 Sales figures and profits for the stores

are given in Table 14.10. Our task is to obtain a regression line for the data and,

assuming sales of $10 million, to predict profit for one store.

A worksheet for calculating regression coefficients is presented in Table 14.11.

Substituting data from Table 14.11 into Eqs. 13.12 and 13.11, we obtain slope and

intercept estimates.

b ¼ n
P

xiyið Þ � P
xið Þ P yið Þ

n
P

x2i
� �� P

xið Þ2 ¼ 12ð35:29Þ � 132ð2:7Þ
12ð1796Þ � 132ð Þ2 ¼ :01593

a ¼
P

yi � b
P

xið Þ
n

¼ 2:71� :01593ð132Þ
12

¼ :0506

Thus, the regression line can be defined as

ŷ ¼ :0506þ :01593x

5 This application is drawn from StevensonW.J.: Production/Operations Management, 2nd ed., pp.

137–141. Homewood, Irwin (1986). Reprinted by permission of Richard D. Irwin.
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For sales of x ¼ 10 (i.e., $10 million), estimated profit is

ŷnþ1 ¼ :0506þ :01593ð10Þ ¼ :2099; or $209; 900

Here we estimate standard error of the estimate in accordance with Eq. 13.35.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
y2i �

P
yið Þ2 n= � b2

P
x2i �

P
xið Þ2 n=

h i
n� 2

vuut

se ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:7159� ð2:71Þ2=12� :01593ð Þ2 ð1796Þ � 132ð Þ2

12

h i
12� 2

vuut
¼ :04074; or $40,740

The prediction interval of ŷn+1,i for the given value of x (i.e., xn+1,i) can be

obtained from Eq. 14.22.

If we substitute se ¼ .04074, n ¼ 12, xn+1 ¼ 10, Sx2 ¼ 1796, and Sx ¼ 132

into the standard error of Prediction (spred) portion of Eq. 14.22, we obtain

spred ¼ ð:04074Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

12
þ 10� 11ð Þ2
1796� 132ð Þ2 12=

s
¼ :04245

Table 14.10 Sales and profit

for 12 Healthy Hamburgers

stores

Sales, xi (millions) Profits, yi (millions)

$7 $0.15

2 0.10

6 0.13

4 0.15

14 0.25

15 0.27

16 0.24

12 0.20

14 0.27

20 0.44

15 0.34

7 0.17
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Because t12–2,.05/2 ¼ 2.23 (from Table A4 in Appendix A), a 95 % confidence

interval for predicted y, yn+1, is

ŷnþ1;i � tn�2;a=2ðspredÞ ¼ :2099� 2:23ð:04245Þ
¼ :2099� :0947

or

:1152 to :3046

That is, estimated profit on sales of $10 million is $209,900, and on the basis of

sample data, we are 95 % confident that actual profit will be in the range of

$115,200–$304,600.

Now we will test whether the estimated slope b ¼ .01593 is significantly

different from zero. We can estimate the standard deviation of b in accordance

with Eq. 14.2 as

sb ¼ se=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x2 �

X
x

� �2
n=

r

¼ ð:04074Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1796� 132ð Þ2 12=

s
¼ :0022

By dividing .0022 into .01593, we obtain the t-value for b.

Table 14.11 Worksheet for

calculating regression

coefficients for Healthy

Hamburgers

x y xy x2 y2

1 0.15 1.05 49 0.0225

2 0.10 0.20 4 0100

6 0.13 0.78 36 0.0169

4 0.15 0.60 16 0.0225

14 0.25 3.50 196 0.0625

15 0.27 4.05 225 0.0729

16 0.24 3.84 256 0.0576

12 0.20 2.40 144 0.0400

14 0.27 3.78 196 0.0729

20 0.44 8.80 400 0.1936

15 0.34 5.10 225 0.1156

7 0.17 1.19 49 0.0289

132 2.71 35.29 1796 0.7159
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t12�2 ¼ b

sb
¼ :01593

:0022
¼ 7:24

Table A4 in Appendix A reveals that t10,.025 ¼ 2.23. Because 7.24 is larger than

2.23, we can conclude that there is a strong relationship between the two variables

(profit and sales) for 12 Healthy Hamburgers stores.

Application 14.5 The Impact of Cable TV Penetration on Network Share TV

Revenues To investigate the effect of cable TV penetration on network share of

advertising revenue, Krugman and Rust (1987) used the data listed in Table 14.12

to do the following regression analysis:

yi ¼ aþ bxi þ ei

where

yt ¼ network share of TV advertising revenue in period t
xt ¼ the percentage of US TV households subscribing to cable TV in period t

The MINITAB regression output is presented in Fig. 14.12. From this output the

estimated simple linear regression can be written as

ŷi ¼ 106� :335xt

ð147:22Þ ð�14:18Þ

t-values are presented in the parentheses.

From Table A4 in Appendix A, we find that t4,.005 ¼ 4.604. This critical value of

t is smaller than both 147.22 and 14.18; hence, we can conclude that both the

estimated intercept and the slope are significantly different from 0 at a ¼ .01.

Finally, we find that the confidence interval for prediction is (85.885, 89.218)

and the prediction interval for x ¼ 54 is (85.544, 89.559).

Table 14.12 Percentage of US TV households (x) and network share of TV revenues (y) during
1980–1985

US cable TV households (%), x Network share of television revenues, y

1980 21.1 98.9

1981 23.7 97.9

1982 25.8 96.5

1983 30.0 95.2

1984 35.7 94.0

1985 41.1 91.9

Source: Krugman D.M., Rust R.T.: The impact of cable penetration on network viewing. J. Mark.

Res. 27(9), 9–12 Oct./Nov. 1987
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14.6 Using Computer Programs to Do Simple Regression

Analysis

In general, regression analysis is done on an electronic computer. Without the help

of a computer, the arithmetic involved would be very time-consuming.

Most modern computing facilities have available prewritten computer program

packages such as the MINITAB, the SAS, the SPSS, and the BMDP for carrying out

regression analysis. These packages are available for use with personal computers.

The user need only input the data and specify the model that is to be fitted for

empirical analyses. All these packages can produce all the information we

discussed in this chapter and in Chap. 13. In addition, these packages enable the

Fig. 14.12 MINITAB output for Application 14.5
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user to select options that produce much more numerical and graphical output. In

Chaps. 13 and 14, we have applied the MINITAB to run simple linear regression.

Now we show how the SAS program can be used to run simple linear regression.

Drawing on a set of sample market sales data called “Territory data for Click

ballpoint pens” (see Table 14.13), we will show how the SAS computer program

can be used to do the simple regression analysis discussed in this and the last

chapter. This set of data represents the annual territory sales of Click, a national

manufacturer of ball point pens, and other related variables. The company intends

to use this set of data to investigate the effectiveness of the firm’s marketing efforts.

The company uses regional wholesalers to distribute Click pens, and it supplements

their efforts with company sales representatives and spot TV advertising. The data

to be analyzed are sales (y), advertising (x1), number of sales representatives (x2),
and wholesaler efficiency index (x3), where 4 ¼ outstanding, 3 ¼ good, 2 ¼ aver-

age, and 1 ¼ poor.

First we input all data listed in Table 14.11 into the SAS regression program.

Then we specify the models to be analyzed.

yi ¼ a0 þ a1x1i þ ei; i ¼ 1; 2; . . . ; 40 (14.27)

yi ¼ b0 þ b1x2i þ ei; i ¼ 1; 2; . . . ; 40 (14.28)

yi ¼ c0 þ c1x3i þ ei; i ¼ 1; 2; . . . ; 40 (14.29)

After we specify these three simple regression models on the SAS regression

programs, we can have the SAS program do three simple regression analyses. Their

outputs are presented in Figs. 14.13 and 14.14. Figure 14.13 presents the scatter

diagrams; Fig. 14.14a, b present the regression outputs.

Figure 14.13a–c are scatter diagrams showing how (a) y and x1 (b) y and x2, and
(c) y and x3 are related. Figures 14.4a and 14.14b show the estimated regression

coefficients a1, b1, and c1 with t statistics 11.43, 11.524 and .012, respectively.

From Table A3 in Appendix A, using interpolation, we find that t38,.025 ¼ 2.025; we

can conclude that both a1 and b1 are significantly different from zero at a ¼ .05.

However, c1 is not significantly different from zero at a ¼ .05.

By using the output listed in Figs 14.13 and 14.14, we can do related analyses in

terms of the concepts and methodologies we learned in Chaps. 13 and 14.

14.7 Summary

In this chapter and Chap. 13, we used simple regression analysis and correlation

analysis to determine the relationship between two variables. In Chap. 13, we

discussed estimation of the intercept and slope. To determine whether the regres-

sion does a good job of explaining the dependent variable, we investigated in detail
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Table 14.13 Territory data for Click ballpoint pens

Territory

Sales, Y
(thousands)

Advertising, X1 (TV

spots per month)

Number of sales

representatives, X2

Wholesaler

efficiency index, X3

005 260.3 5 3 4

019 286.1 7 5 2

033 279.4 6 3 3

039 410.8 9 4 4

061 438.2 12 6 1

082 315.3 8 3 4

091 565.1 11 7 3

101 570.0 16 8 2

115 426.1 13 4 3

118 315.0 7 3 4

133 403.6 10 6 1

149 220.5 4 4 1

162 343.6 9 4 3

164 644.6 17 8 4

178 520.4 19 7 2

187 329.5 9 3 2

189 426.0 11 6 4

205 343.2 8 3 3

222 450.4 13 5 4

237 421.8 14 5 2

242 245.6 7 4 4

251 503.3 16 6 3

260 375.7 9 5 3

266 265.5 5 3 3

279 620.6 18 6 4

298 450.5 18 5 3

306 270.1 5 3 2

332 368.0 7 6 2

347 556.1 12 7 1

358 570.0 13 6 4

362 318.5 8 4 3

370 260.2 6 3 2

391 667.0 16 8 2

408 618.3 19 8 2

412 525.3 17 7 4

430 332.2 10 4 3

442 393.2 12 5 3

467 283.5 8 3 3

471 376.2 10 5 4

488 481.8 12 5 2

Source: C. A. Gilbert, in G. A. Churchill, Jr., Marketing Research: Methodological Foundations,
3rd ed., 1983, p. 563. Copyright # 1983 by the Dryden Press, reprinted by permission of the

publisher
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two goodness-of-fit measures: the standard error of residuals and the coefficient of

determination.

Another measure of association, the sample correlation coefficient, was

discussed in Chap. 13, along with the relationship between the correlation coeffi-

cient r and the slope estimate b and that between r and the coefficient of determi-

nation R2.

Chapter 14 showed how researchers can use the standard error and the parameter

value to construct a test to determine whether the parameter values are equal to 0.

Fig. 14.13 (continued)
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We also discussed the F-test and confidence intervals and point estimates for

forecasting. The MINITAB program is used to do this kind of analysis.

Applications of regression analysis drawn from finance, accounting, and marketing

rounded out the picture. Finally, we saw how SAS statistical computer programs

can be used to do simple regression analysis.

Questions and Problems

1. Here x is the number of units of a product produced during a certain period, and

y represents total variable costs incurred during the period.

x 0 1 2 3 4 5 6

y I 2 3 5 8 11 12

(a) Find the estimated equation for the regression of y on x.
(b) Find the predicted value of y given x ¼ 8.

(c) Find the standard error of estimate.

(d) Find the coefficient of determination r2.

2. Use again the data given for question 1.

(a) Find the standard deviation of the regression line’s slope sb.
(b) Find an interval that you can be 95 % confident will contain b, the slope of

the population regression line.

Fig. 14.13 (a) Scatter diagram showing the relationship between y and x1 (b) Scatter diagram

showing the relationship between y and x2 (c) Scatter diagram showing the relationship between y
and x3
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3. In a regression problem, n ¼ 30, Sxi- ¼ 15, Syi ¼ 30, Sxiyi ¼ 30, Sx2i ¼ 10,

and Sy2i ¼ 160.

(a) Find the regression line ŷ ¼ a + bx.

(b) Estimate the variance s2yx.
(c) Test H0: b ¼ 0 against H,: b 6¼ 0. Let a ¼ .05.

4. In a regression analysis, n ¼ 25, SXi ¼ 75, SYi ¼ 50,SX2
i ¼ 625, SXiYi ¼ 30,

and SY2
i ¼ 228.

(a) Find the regression equation.

(b) Find s2yx, s
2
a, and s2b.

(c) Test whether b ¼ 0. Let a ¼ .01. Use H1: b 6¼ 0.

(d) Find a 95 % confidence interval for a.

5. For each of the following sets of quantities, find the sample correlation coeffi-

cient. Test the hypothesis that r ¼ 0. Let a ¼ .05. Use H1: r 6¼ 0.

(a) n ¼ 11, Sy2 ¼ 400, S(x– �x)(y– �y) ¼ 400, Sx2 ¼ 625

(b) n ¼ 18, Sy2 ¼ 100, S(x– �x)(y– �y) ¼ 36, Sx2 ¼ 36

6. Find the sample correlation coefficient and test H0: r ¼ 0 for the data of

question 4. Use H1: r 6¼ 0 and a ¼ .05.

Fig. 14.14 (continued)
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7. Records were kept on the scores 14 job applicants got on a manual-dexterity

test and on their production output after a week on the job.

(a) Use the following data and MINITAB program to estimate the correlation

between test score and production output.

(b) Is there a significant correlation? Let a ¼ .05.

Fig. 14.14 (a) SAS output of yi ¼ a + b1x1i + ei (b) SAS Output of yi ¼ a + b2x2i + ei and
yi ¼ a + b3x3i + ei
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Score 112 72 61 50 48 117 13

Output 153 83 36 93 86 121 20

Score 19 13 43 84 31 124 66

Output 26 16 62 103 30 120 84

8. The managers of a weight-loss clinic wish to confirm their belief that there is a

relationship between the weight of a person entering the program and the

number of pounds lost. The table presents data for 8 of the clinic’s clients.

x (beginning weight) 142 306 261 177

y (weight loss) 15 146 73 50

x (beginning weight) 205 165 289 154

y (weight loss) 25 15 36 12

Use the following regression information for the relationship between begin-

ning weight and pounds lost to complete parts (a) and (b).

ŷ ¼ �67:78þ :54x

r2 ¼ :58 se ¼ 31:60 sb ¼ :186

Sx2 ¼ 28; 911:87 Sy2 ¼ 14; 362:00

Sxy ¼ 15; 557:48

(a) Test the hypothesis that there is no relationship between beginning weight

and pounds lost, using the t-test on the slope of the regression line. Let

a ¼ .05.

(b) Repeat the test in part (a), but use the t-test on r, the correlation coefficient.

9. A certain firm provides expense accounts for its executives. Using the follow-

ing data, the firm’s human resources department ran a regression analysis to

determine whether a relationship exists between annual salary and amount

claimed in expenses each year.

x (salary in $ 1,000 s) 40 38 22 25 30 35 40

y (expenses in $ 1,000 s) 0.8 1.6 0.6 0.9 1.2 2.2 1.1

The regression results were

ŷ ¼ :227þ :030x r ¼ :398

syjx ¼ :547 sb ¼ :0306X
y2 ¼ 1:78

X
x2 ¼ 320:86

X
xy ¼ 9:63
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(a) Test the hypothesis that there is no relationship between annual salary and

expenses claimed, using the t-test on the regression coefficient b. Use
a ¼ .05.

(b) Repeat the test of part (a), but use the t-test on r.

10. Briefly explain what we mean when we say that a and b are unbiased. Why is

unbiasedness an important property in an estimator?

11. Explain the purpose of constructing confidence intervals for the parameters a
and b.

12. What assumptions do we make about the distributions of a and b? Why is this

important in constructing confidence intervals?

13. When we are estimating the regression y ¼ a + bx, which parameter is of

greater interest, a or b? Why?

14. In testing the significance of the parameters, why do we sometimes use a two-

tailed test and sometimes use a one-tailed test?

15. In testing the significance of the parameters, why do we sometimes use a z-test
and sometimes use a t-test?

16. Compare the width of a 90 % confidence interval with that of a 99 % confidence

interval. Which is wider? Why?

17. Compare the standard error of the estimate discussed in Chap. 13 with the

standard error of the regression coefficient discussed in this chapter.

18. What null hypothesis do we generally use in testing the significance of the slope

coefficient b?
19. Ralph Farmer of the Department of Agriculture is interested in the relationship

between the amount of fertilizer used and the number of bushels of wheat

harvested. He collects the following information on six farmers.

x (pounds of fertilizer) y (bushels of wheat)

100 1,000

150 1,250

180 1,710

200 2,100

222 2,500

Use MINITAB to do the following:

(a) Draw a scatter diagram for the data.

(b) Estimate the regression parameters for a and b.
(c) Calculate the standard error of the estimate and the standard error of the

coefficient b.
(d) Calculate the t-value for the coefficient of b.
(e) If 210 lb of fertilizer is used, what amount of wheat can be expected to be

harvested? What is the 95 % confidence interval? (Hint: Follow the proce-

dure used in Fig. 14.10.)
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20. Use the MINITAB output from question 19 to construct a 95 % confidence

interval for b.Also construct a 90 % confidence interval for b.Which interval is

larger?

21. Using the MINITAB output given in question 19, compute SST, SSE, SSR, and

R2. Use an F test to test the significance of the regression.

22. A recent study of Departments of Labor in all 50 states indicates that the

amount (in thousands of dollars) spent on job placement for the unemployed

and the number of people employed has a slope of 1.7 and a standard error of

the regression coefficient of .43. Test the significance of the slope coefficient at

the 95 % confidence level.

Use the following data and the MINITAB program to answer questions 23–30.

The table gives monthly rates of return for 3-month treasury bills; the value-

weighted New York Stock Exchange Index; and Chrysler, Ford, and GM stock.

T-Bill NYSE Chrysler

Month Rf Rm R1

87.01 .004414 .12823 .29054

87.02 .004543 .04100 –.01309

87.03 .004543 .02469 .18037

87.04 .004583 –.01483 .03846

87.05 .004599 .00644 –.11111

87.06 004607 .04797 .01103

87.07 .004623 .04682 .19414

87.08 .004904 .03688 .09816

87.09 .005193 –.02085 –.06983

87.10 .004977 –.21643 –.35649

87.11 .004623 –.07547 –.23944

87.12 .004688 .06851 .10494

Ford, GM,

Month R2 R3

87.01 0.33378 0.14015

87.02 0.02689 0.00831

87.03 0.10475 0.04690

87.04 0.08741 0.15200

87.05 0.00137 –0.03889

87.06 0.08941 –0.03079

87.07 0.03.409 0.07564

87.08 0.06273 0.04923

87.09 0.09259 –0.09783

87.10 0.21939 –0.29518

87.11 0.05795 –0.01496

87.12 0.05975 0.08869
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23. In finance, we are often interested in how the return of one stock is related to

some market index such as the NYSE. The model we usually estimate to

understand this relationship is known as the market model and is given by

the equation

Rj;t ¼ aj þ bjRm;t þ ej;t

where

Rj,t ¼ return on stock j in month t
Rm,t ¼ return on some market index in month t
aj ¼ intercept of the regression line

bj ¼ slope of the regression line

ej,t ¼ a random error term

Use MINITAB to do the following:

(a) Draw a scatter diagram for Ford and the NYSE index.

(b) Estimate the parameters a and b.
(c) Compute SSE, SSR, SST, R2, and the standard error of the estimate for this

regression.

(d) Compute the standard error for b, and use a t-test to test the significance of
the slope of the regression.

24. In finance, we sometimes choose to estimate the capital asset pricing (CAPM)

version of the market model, which is given by the equation

Rj;t � Rf ;t ¼ aj þ bj Rm;t � Rf ;t

 �þ ej;t

where Rj,t is the return on a risk-free asset (such as T-bills) in month t. Repeat parts
(a)–(d) of question 23 for the CAPM version of the market model using the

MINITAB program. (The CAPM will be discussed in Chap. 21.)

25. Using R2 as the measure of goodness of fit, compare the market model

estimated in question 23 with the CAPM version estimated in question 24.

26. Find a 95 % confidence interval for the slope coefficients you calculated in

questions 23 and 24. Which estimate of b has the wider confidence interval?

27. Suppose we are interested in testing whether b is equal to 1. Then we would test

H0: b ¼ 1 against H1: b 6¼ 1. Using the model given in question 23, test this

hypothesis.

28. Repeat questions 23–27, using GM stock’s rates of return.

29. Repeat questions 23–27, using Chrysler stock’s rates of return.
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30. Suppose we are interested in the relationship between the return on the risk-free

asset (T-bills) and the return on the NYSE index.

(a) Estimate the intercept and the slope for a regression of Rm,t on Rf,t.
(b) Compute the standard error of the regression and use a t-test to test the

significance of b.
(c) Calculate a 99 % confidence interval for b.

31. When we are interested in the relationship between a dependent variable and

time, we sometimes use a time-trend regression. That is, we use a dependent

variable that consists only of the day, month, or year of our observations. A

time-trend regression is given by the equation

yt ¼ aþ btþ et

where t represents time, t ¼ 1,2,3, . . ., T. Suppose we are interested in how Johnson

& Johnson’s inventory turnover has changed over time. We collect data on J&J’s

inventory turnover for a 20-year period from 1969 to 1988. Use the MINITAB

program to answer the following:

(a) Draw a scatter diagram for these data.

(b) Estimate the regression coefficients a and b.
(c) Calculate SSR, SSE, SST, and R2, and the standard error of the estimate.

(d) Compute the standard error of b, and use a t-test to test the significance of b.

t J&J’s inventory turnover t J&J’s inventory turnover

1 3.19 11 2.71

2 3.02 12 2.70

3 2.96 13 2.78

4 3.10 14 2.38

5 2.92 15 2.28

6 2.28 16 2.37

7 2.77 17 2.45

8 2.76 18 2.33

9 2.84 19 2.27

10 2.76 20 2.32

32. Use the information and your calculations from question 31 to construct a 90 %

and a 99 % confidence interval for b.

724 14 Simple Linear Regression and Correlation: Analyses and Applications



33. When estimating the relationship between the price of a good and the quantity

of the good sold (the demand curve), economists sometimes choose to trans-

form the price and quantity data by taking the natural logarithm of both. When

this is done, the slope coefficient b can be interpreted as the price elasticity of

demand (the sensitivity of quantity to changes in price). Consider the following

information on the price and quantity of So-Good Candy Bars.

Price Quantity

$1.50 100

1.25 135

1.00 175

0.75 225

0.50 300

0.25 500

Use the MINITAB program to answer the following:

(a) Estimate the elasticity of demand for these data.

(b) Use a t-test to test the significance of b.
(c) Construct a 95 % confidence interval for the price elasticity.

34. The batting instructor of the Minnesota Twins is interested in the relationship

between number of hours of batting practice and batting average. He collects

the following data on 8 players:

Hours of batting Batting

practice per week Average

5 0.265

8 0.277

9 0.254

10 0.320

11 0.301

9 0.260

7 0.230

6 0.272

Use the MINITAB program to answer the following:

(a) Draw a scatter diagram for these data.

(b) Compute the regression parameters a and b.
(c) Compute the standard error of b, and use a t-test to test the significance of

the slope of the regression.

(d) Construct a 95 % confidence interval for b.
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35. Suppose you estimate a regression of y against x and find that b ¼ 1.3 and

sb ¼ .4 (population standard error of the regression, which is known).

(a) Construct a 90 % and a 99 % confidence interval for b.
(b) Now suppose sb is not known. How would this change the way you

construct your confidence interval for b? Assume that 15 observations

were used to estimate the regression.

36. Use the data from question 21 of Chap. 13 to compute the standard error of b.
Use a t-test to test the significance of b. Construct a 99 % confidence interval

for b.
37. Use the data from question 33 of Chap. 13 to compute the standard error of b.

Use a t-test to test whether b ¼ 1. Construct a 90 % confidence interval for b.
38. Use the data from question 27 of Chap. 13 to compute the standard errors of a

and b. Construct a 95 % confidence interval for both a and b.
39. Use the information given in question 57 of Chap. 13, and construct a 95 %

confidence interval for both a and b.
40. Investment advisors sometimes recommend holding gold as part of an

investor’s portfolio, because the value of gold appears to be negatively related

to that of the stock market. Thus, when the stock market goes down in value,

the value of gold goes up in value, and some of the investor’s losses in the

market are offset by gains in the value of her or his gold. The accompanying

table shows data on annual rates of return for a gold mutual fund and for the

S&P 500.

Year Gold mutual fund S&P 500

1979 151.30 18.16

1980 70.70 31.48

1981 �18.90 �4.85

1982 47.30 20.37

1983 8.20 22.30

1984 �25.30 5.97

1985 �11.00 31.05

1986 30.10 18.75

1987 51.50 5.24

1988 11.30 16.58

Use MINITAB to answer the following questions:

(a) Estimate the slope of the regression of the rates of return of the gold mutual

fund against those of the S&P 500.

(b) Use a t-test to test the hypothesis that b < 0.

(c) If you expect the rate of return to be 20 % next year (1989), what is the rate

of return of the gold mutual fund you expect next year? What is the 95 %

confidence interval for your expectation?
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41. Use the data from question 40 to construct a 95 % confidence interval for b. Is it
possible for the true b to be negative?

42. Briefly explain how we can use regression analysis to forecast values of y.
43. Explain why we often construct interval estimates of forecasts.

44. How is the size of the forecast interval affected when we use values of x that are
much greater or much less than the mean value of x for forecasting?

45. Use the data given in question 31 to forecast Johnson & Johnson’s inventory

turnover for 1989 and 1990. Construct a 95 % confidence interval for both of

these forecasts. Use Eq. 14.21.

46. Use the regression estimated in question 40 to forecast the return for the gold

mutual fund in 1989 and 1990. Assume that the best forecast for the return of

the S&P 500 in 1989 and 1990 is the mean of the S&P 500’s returns for the

previous 5 years. Construct a 99 % confidence interval for both of these

forecasts.

47. Use the data and the regression given in question 19 to forecast the number of

bushels of wheat that will be harvested if 250 lb of fertilizer are used. Construct

a 90 % and a 99 % confidence belt for the regression line. For which interval is

the confidence belt wider? Explain.

48. Use the regression results from questions 23 and 24 to forecast the return for

Ford in January 1988, using both the standard market model and the CAPM

version of the market model. Assume that the return for the NYSE is 12 % in

January 1988.

49. Construct a 95 % confidence interval for the forecasts produced in question 48.

Which model has the larger interval? Use Eq. 14.21.

50. What is proxy error? Give some examples of proxy error in economics,

accounting, and finance.

51. Briefly explain how proxy error of x affects the results from a standard linear

regression.

52. Use your results from the regression given in question 65 of Chap. 13 to test the

significance of b via a t-test. Also construct a 90 % confidence interval for b.
(Hint: Calculations from question 66 in Chap. 13 also may help.)

53. Again using your results from question 65 of Chap. 13, forecast the value of

J&J’s current ratio. Assume that the best forecast of the industry’s current ratio

is the mean of that ratio. Construct a 99 % confidence interval for this forecast.

(Hint: Your results from question 52 may be helpful.)

54. Redo questions 52 and 53, using J&J’s inventory turnover.

55. Redo questions 52 and 53, using J&J’s return on assets.

56. Redo questions 52 and 53, using J&J’s price/earnings ratio.

57. Suppose you estimate the following simple regression:
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ŷ ¼ 50þ 2:23x

SSE ¼ 22,300

n ¼ 23X
x� �xð Þ2 ¼ 2; 700

(a) On the basis of the information provided, test the significance of the slope

at the 99 % confidence level.

(b) Construct a 99 % confidence interval for the slope coefficient.

58. Suppose a researcher is interested in the relationship between the dollar volume

of sales and the number of miles customers live from the store. She collects data

on dollar volume of sales per customer (y) and the miles a customer lives from

the store (x) for 28 customers. The following relationship is then estimated:

ŷ ¼ 75� :85x

sb ¼ :32

n ¼ 28

(a) Interpret the meaning of the slope coefficient.

(b) Test whether the slope coefficient is significant at the 95 % level of

confidence.

59. Using the information from question 58, construct a 90 % confidence interval

for b.
60. In finance we are sometimes interested in hedging the risk associated with

future price changes by using futures contracts. A futures contract allows the

buyer of the contract to buy the commodity at a later date at a price that is

agreed upon now. By purchasing the correct number of contracts, an investor

can reduce or even eliminate his or her risk. The correct number of contracts to

purchase is known as the hedge ratio, and it can be estimated by regression

analysis. The regression to be estimated is

DS ¼ aþ bDf þ e

where

DS ¼ change in the spot price of the commodity

Df ¼ change in the futures price of the commodity

b ¼ hedge ratio (number of futures contracts used for hedging)

Suppose you collect 30 daily spot and future prices over a 1-year period and

estimate b to be 3.32 with a standard error of 1.12. Construct a 95 % confidence
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interval around the hedge ratio b. (See Appendix 2 of Chap. 19 for the

derivation of hedge ratio.)

61. Estimate a simple regression model, using the least-squares method and the

information given.

x y xy x2 y2 ŷ e e2 (y – �y)2

10 12.8

20 18.9

30 21

40 38

50 40

62. Estimate a simple regression model, using the least-squares method and the

information given.

x y xy x2 y2 y e e2 (y – �y)2

10 52

20 48

30 31

40 28

50 10

63. Evaluate the goodness of fit for the following graph:
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64. The following table summarizes the sales X and advertising expenditures Y
(both in millions) for Rivera Company.

X 10 20 30 40 50 60

Y 70 210 230 340 360 530

(a) Estimate the regression, using X as the explanatory variable.

(b) What will be the expected sales for next year if the company allocates $70

million to advertising?

(c) Perform a test to see whether advertising expenditures have a positive

impact on sales.

65. The table on page 649 lists the administrative and enrollment breakdowns for

the schools of each municipality in Middlesex County, New Jersey. Using total

enrollment as the independent variable and number of administrators as the

dependent variable, run a simple regression by using information from both

1982–1983 and 1990–1991. Use the MINITAB or SAS programs.

66. The table below shows the undergraduate GPA and quantitative scores on the

GRE of 10 students. Explain the MINITAB output on page 650.

Student GPA Quantitative scores on GRE

1 4.00 630

2 2.62 590

3 3.30 580

4 3.15 490

5 3.54 720

6 3.21 690

7 3.57 700

8 3.61 690

9 2.90 520

10 3.05 540
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Administrative and enrollment breakdown

District

1982–1983 total

enrollment

Number of

administrators

1990–1991 total

enrollment

Number of

administrators

Carteret 2,962 29 2,525 28

Cranbury Twp 266 1 312 2

Dunellen Boro 901 5 826 6

East Brunswick

Twp

7,652 36 6,657 43

Edison Twp 10,349 53 10,966 52

Highland Park

Boro

1,625 10 1,441 13

Jamesburg Boro 497 3 410 2

Metuchen Boro 1,879 17 1,590 22

Middlesex Bor. 2,151 13 1,720 14

Middlesex Co-Ed

Ser Comm

56 3 213 8

Middlesex City

Vocational

4,181 19 3,314 27

Milltown Boro 708 4 628 5

Monroe Twp 2,545 19 2,485 22

New Brunswick

City

4,286 33 4,086 32

North Brunswick

Twp

3,319 25 3,996 24

Old Bridge Twp 9,120 48 8,037 50

Perth Amboy City 5,774 32 6,274 42

Piscataway Twp 6,155 38 5,637 39

Sayreville Boro 4,391 26 4,245 24

South Amboy City 903 8 948 7

South Brunswick

Twp

3,125 20 3,871 37

South Plainfield

Boro

3,381 24 3,001 20

South River Boro 1,650 10 1,502 10

Spotswood Boro 1,689 17 1,385 13

Woodbridge Twp 11,726 83 10,724 82

Middlesex County 91,291 576 86,793 624

Franklin 4,330 38 4,155 37

Source: Home News, December 15, 1991. Reprinted with permission of the publisher
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67. You are given the following information for x and y:

Covðx; yÞ ¼ 6:3 Mean of y ¼ 75

VarðxÞ ¼ 4:2 Sðxi � �xÞ2 ¼ 42

VarðyÞ ¼ 2; 727:7 se ¼ 50

Mean of x ¼ 100 n ¼ 12

(a) Compute the least-squares estimates for the slope and intercept.

(b) Compute the t-value for b and construct a 99 % confidence interval for b.

68. Use the data from question 47 to compute the sample correlation coefficient r
between x and y. Use a t-test to test the significance of r.

69. Suppose x and y are bivariately normally distributed. Use a t-test to test the

significance of the sample correlation coefficient r if r ¼ .79 and n ¼ 12.

70. It is of interest to find the relationship between the monthly closing stock prices

of IBM (y; unit: $10) and the closing indices of Dow Jones Industrial Average

(x; unit 100).

Year/month IMB DJIA

2010/1 117.64 10,067.33

2010/2 122.77 10,325.26

2010/3 123.82 10,856.63

2010/4 124.54 11,008.61

2010/5 121.55 10,136.63

2010/6 119.83 9,774.02

2010/7 124.6 10,465.94

2010/8 120.08 10,014.72

2010/9 130.82 10,788.05

2010/10 140.04 11,118.40

2010/11 138.57 11,006.02

2010/12 143.76 11,577.51

2011/1 158.69 11,891.93

2011/2 159.2 12,226.34

2011/3 160.37 12,319.73

2011/4 167.75 12,810.54

2011/5 166.87 12,569.79

2011/6 169.46 12,414.34

2011/7 179.64 12,143.24

2011/8 170.56 11,613.53

2011/9 173.49 10,913.38

2011/10 183.18 11,955.01

2011/11 187.27 12,045.68

2011/12 183.17 12,217.56

Estimate the slope of the regression of the monthly closing prices of IBM

against those of DJIA

71. Using the data in Problem 70, do an F-test for the significance of the regression

at a ¼ .05.
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72. Using the data in Problem 70, test the hypothesis that b > 0 at a ¼ .05.

73. Using the data in Problem 70, construct a 95 % confidence interval for b. Is it
possible for the true b to be negative?

74. Suppose we expect the DJIA for 2012/1 to be 12600. Using the data in Problem

70, forecast the closing price for IBM and construct a 95 % prediction interval

for it.

Appendix 1: Impact of Measurement Error and Proxy Error

on Slope Estimates

The data collected for business and economics research are sometimes subject to

errors in measurement. Recall from Chap. 2 that there are two classifications of

data. Primary data are collected by the researcher specifically for a study. Second-

ary data are applicable to the study in question but were collected for some other

reason. Survey data collected by a researcher to determine voting preference in an

election are primary data. Stock prices appearing in the Wall Street Journal are
secondary data; they were not collected for a particular study. Both primary and

secondary data are subject to measurement error, such as computer programming

errors, errors resulting from inaccurate measuring equipment, and deviations from

sample statistics and population parameters. In addition to measurement error,

proxy error can occur when a researcher uses data that do not match their theoreti-

cal definition. In other words, proxy error is the error caused by using one measure-

ment in place of (as a proxy for) another measurement. For example, accounting

income from the income statement is frequently used as a proxy for economic

income to determine company value. However, accounting income is subject to

changing accounting methods, and this characteristic can affect the measurement of

the trends in a firm’s earning power. In economics, current income (GNP) is often

used as a proxy for permanent income in investigating the consumption function.

Permanent income, which equals current income adjusted for transitory income,

should be used instead.

If the independent variable of the regression, xi, is subject to either measurement

error or proxy error, then the observed xi can be defined as

x�i ¼ xi þ �i; (14.30)

where xi is the true value of the independent variable and x
�
i is the observed value of

ximeasured with errors. It is assumed that the measurement error, �i, is independent
of xi. That is, COV(�i, xi) ¼ 0 in this case, and the observed linear regression becomes

yi ¼ aþ bðxi þ �iÞ þ ðei � b�iÞ (14.31)

If we let ei � b�i ¼ e�i , then Eq. 14.31 can be rewritten as

yi ¼ aþ bx�i þ e�i (14.32)
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In Eq. 14.32, the independent variable, x�i , is no longer uncorrelated with the

residual e�i .
6

We can illustrate Eqs. 14.30 or 14.31 by using a simple version of Friedman’s

(1957) theory of consumption function. In this kind of consumption function, the

consumer’s income is assumed to consist of a permanent component and a transi-

tory component. The transitory component is that part of income that the consumer

considers accidental. The consumption decision is determined by the permanent

component. In Eq. 14.30, x�i represents current income, xi represents permanent

income, and (x�i – xi) represents transitory income. Hence, Eq. 14.30 represents a

current income of the consumption function.

Equation 14.32 violates one of the assumptions of standard linear regression

analysis: the error term is not independent of the observed independent variable, x�i .
Therefore, the estimated slope, b, is no longer an unbiased estimator for b. That is,

Eðb̂Þ ¼ b

1þ ðn�1Þs2�
ns2x

(14.33)

Equation 14.33 implies that if the independent variable, xi, is measured with

errors, then the ordinary least-squares estimate of b, which is b, will be a

downward-biased estimate of b. When s2� approaches zero, E(b) approaches b. If
s2�=s

2
x is known, then an unbiased estimate of b is

b0 ¼ 1þ n� 1

n

s2�
s2x

 !
b (14.34)

However, the ratio s2�=s
2
x is seldom known. For example, in business and

economics, we often use accounting income as a proxy for economic income in

regression analysis. Therefore, the problem of proxy or measurement error looms

large. For demonstration purposes, if n ¼ 10 and s2�=s
2
x ¼ 1=3, then

EðbÞ ¼ b
1þ ð9=10Þð1=3Þ ¼ :77b

This example shows how proxy error can make the slope estimate downward-

biased.

6

Cov x�i ; e
�
i

� � ¼ Cov xi þ �ið Þ; ei � b�ið Þ½ �
¼ Cov xi; eið Þ þ Cov xi;�b�ið Þ þ Cov �i; eið Þ þ Cov �i;�b�i

� �
¼ �b Var �ið Þ 6¼ 0
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Appendix 2: The Relationship Between the F-Test and the t-Test

As we saw in Sect. 9.3, the t distribution with u degrees of freedom (tu) can be

defined as

tu ¼ Zffiffiffiffiffiffiffiffiffi
U=u

p (14.35)

where Z is a standard normal variable, U is a chi-square random variable with u
degrees of freedom, and Z and U are independent.

From Eq. 14.35, we can obtain

t2u ¼
Z2

U=u

From Sect. 9.4, we know that Z2 is a chi-square distribution with 1degrees of

freedom. Hence t2u represents a ratio between two independent chi-square

distributions. From Sect. 9.5, we know that t2u represents an F distribution with 1

and u degrees of freedom. From this result, we can conclude that the calculated F-
value should always equal the square of the calculated tu-value. Here tu – 6.0707, so

t2u ¼ (6.0707)2 ¼ 36.8534, which differs from F ¼ 36.8555 only because of

rounding errors.

Appendix 3: Derivation of Variance for Alternative Forecasts

Derivation of Eq. 14.17

Var ŷnþ1

� � ¼ Var �yð Þ

¼ Var
Xn
i¼1

yi n=

 !

¼ 1

n2
Varðy1 þ � � � þ ynÞ

¼ 1

n2
s2e þ � � � þ s2e
 �

¼ s2e
n

If we use the sample estimate s2e for s
2
e , the estimate of Var (yn+1) becomes
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s2 ŷnþ1

� � ¼ s2e
n

(14.36)

Derivation of Eq. 14.18

Varðŷnþ1Þ ¼ Var½�yþ bðxi � �xÞ�
¼ Var �yð Þ þ Var b xi � �xð Þ½ �

¼ s2e
n
þ xi � �xð Þ2VarðbÞ

¼ s2e
n
þ xi � �xð Þ2 s2ePn

i¼1

xi � �xð Þ2

If we use the sample estimate s2e for s
2
e , the estimate of Var(yn+1) becomes

s2 ŷnþ1

� � ¼ s2e
1

n
þ xnþ1 � �xð ÞPn

i¼1

xi � �xð Þ

0
BB@

1
CCA (14.37)

Derivation of Eq. 14.19

Varðŷnþ1 � ynþ1;iÞ ¼ Varðŷnþ1Þ þ Varðynþ1;iÞ (14.38)

The sample estimate of Var(yn+1,i) can be defined as

ŝ2ðynþ1;iÞ ¼ s2e (14.39)

Using Eqs. 14.37 and 14.39, we obtain the sample estimate of Var (ŷn+1–yn+1,i)
as

s2 ŷnþ1 � ynþ1;i

� � ¼ s2e 1þ 1

n
þ xnþ1 � �xð Þ2Pn

i¼1

xi � �xð Þ2

0
BB@

1
CCA
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15.1 Introduction

Chapters 13 and 14 examined in detail the simple regression model with one indepen-

dent variable (such as amount of fertilizer) and one dependent variable (such as yield

of corn). In many cases, however, more than one factor can affect the outcome under

study. In addition to fertilizer, rainfall and temperature certainly influence the yield of

corn. In business, not only rates of return for the stock market at large affect the return

on General Motors or Ford stock. Other variables, such as leverage ratio, payout ratio,

and dividend yield also contribute. Therefore, regression analysis with more than one

independent variable is an important analytical tool.

The model that extends a simple regression to use with two or more independent

variables is called a multiple linear regression. Simple linear regression analysis (see

Chaps. 13 and 14) helps us determine the relationship between two variables or predict

the value of one variable fromour knowledge of another.Multiple regression analysis,
in contrast, is a technique for determining the relationship between a dependent

variable andmore than one independent variable. In addition, it can be used to employ

several independent variables to predict the value of a dependent variable.

In this chapter, we first discuss the assumptions of the multiple regression model.

Then we consider the method of least-squares estimation for a multiple regression

model, the standard error of the residual estimate, and the coefficient of determina-

tion. Tests on sets and individual regression coefficients and forecasts in terms of a

multiple regression are also investigated. Finally, we consider applications of the

multiple regression model in business and economics.

15.2 The Model and Its Assumptions

In this section, we first review the simple regression model and extend it to a

multiple regression model. Then we define and analyze the regression plane for two

independent variables. Finally, the important assumptions we must make to use the

multiple regression model are explored in some detail.

15.2.1 The Multiple Regression Model

In multiple regression, simple regression is extended by introducing more than one

independent variable. Recall from Chap. 13 that a simple linear regression model

can be defined as Yi¼ aþ bXiþ єi and its estimate as yi¼ aþ bxiþ ei. The sample

intercept a and the sample slope b are estimates for a and b, respectively.
The normal equations used to estimate unknown parameters a and b are

naþ b
Xn
i¼1

xi ¼
Xn
i¼1

yi
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and

a
Xn
i¼1

xi þ b
Xn
i¼1

x2i ¼
Xn
i¼1

xiyi

The foregoing equations from simple linear regression are the starting point for

our exploration of multiple regression in this chapter.

Suppose an individual’s annual salary (Y) depends on the number of years of

education (X1) and the number of years of work experience (X2) the individual has

had. The population regression model is

Yi ¼ aþ b1X1i þ b2X2i þ Ei (15.1)

and its estimate is

yi ¼ aþ b1x1i þ b2x2i þ ei (15.2)

where Eqs. 15.1 and 15.2 represent the multiple population regression line and the

multiple sample regression line, respectively. In Eq. 15.1, a is the intercept of the

regression; b1, is the slope that represents the conditional relationship between Y and

X1, assumingX2 is fixed; and b2 is the slope that represents the conditional relationship
between Y and X2, assuming X1 is fixed. If the model defined in Eq. 15.1 is linear, then

the relationship between Y and each of the independent variables can be described by a
straight line. In otherwords, the conditionalmeanof the dependent variable is given by
the following population regression equation:

EðYijX1 ¼ x1;X2 ¼ x2Þ ¼ aþ b1x1 þ b2x2

The coefficients b1 and b2 are called partial regression coefficients. They indicate
only the partial influence of each independent variable when the influence of all other

independent variables is held constant. Just as in simple regression, the multiple

sample regression line of Eq. 15.2 can be used to estimate the multiple population

regression line of Eq. 15.1.

15.2.2 The Regression Plane for Two Explanatory Variables

Let us say that the stock price per share (y) can be modeled as a function of both

dividend per share (x1) and retained earnings (x2) per share.
1

yi ¼ aþ b1x1i þ b2x2i þ ei

1 Practical examples based on Eq. 15.2 will be explored in the applications section of this chapter.
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where yi(Pi)¼ stock price per share for the ith firm, x1i(Di)¼ dividend per share for the

ith firm, and x2i(REi)¼ retained earnings per share for the ith firm. (Retained earnings

per share equals earnings per share minus dividend per share.) The first goal of the

analysis is to obtain the estimated multiple regression model

ŷi ¼ aþ b1x1i þ b2x2i (15.2a)

The value of b1 indicates that after the influence of the retained earnings per share
is taken into account, a $1 increase in the dividend per share (Di) will increase the

mean value of the price per share (Pi) by b1 other things being equal. Similarly, a $1

increase in retained earnings per share will increase the mean price per share by b2. If
there is only one explanatory variable, the estimated regression equation generates a

straight line, as we saw in Chap. 13. There are two explanatory variables in Eq. 15.2a,

so it represents a regression plane (three-dimensional regression graph). On this

three-variable regression plane, a combination of three observations (one for the value

of y, one for x1, and one for x2) represents a single point. These points can be depicted
on a three-dimensional scatter diagram. In Fig. 15.1, the best-fitted regression plane

would pass near the actual sample observation points indicated by the symbol �,

some falling above the plane and some below in such a way as to minimize L in

L ¼
Xn
i¼1

ðyi � ŷiÞ2 (15.3)

where yi and ŷi are as defined in Eqs. 15.2 and 15.2a, respectively.2

If there are k independent variables, then Eq. 15.1 can be generalized to

Yi ¼ aþ b1X1i þ b2X2i þ � � � þ bkXki þ Ei (15.4)

The following section explains how regression parameters are estimated via the

least-squares estimation method discussed in Chap. 13.

15.2.3 Assumptions for the Multiple Regression Model

As in simple regression analysis, we need five assumptions to perform a regression

analysis of the model defined in Eq. 15.4.

1. The error term єi is distributed with conditional mean zero and variance s2E for
i ¼ 1,2, . . ., n.

2. The error term єi is independent of each of the k independent variables x1, x2,. . .,
Xk. In other words, there are no measurement errors associated with any inde-

pendent variables (see Appendix 1 of Chap. 14).

2 Using Eq. 15.3 to estimate regression parameters will be discussed in Sect. 15.3.
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3. Any two errors єi and єj are not correlatedwith one another; that is, their covariance
is zero: Cov(єi, єj)¼ 0 for i 6¼ j. This assumption means that there is no autocorre-
lation (serial correlation) among residual terms. This issue is discussed further in

Chap. 16.

4. The independent variables are not perfectly related to each other in a linear

function. In other words, it is not possible to find a set of numbers d0, d1, d2, . . .,
dk such that

d0 þ d1X1i þ d2X2i þ � � � þ dkXki ¼ 0; i ¼ 1; 2; . . . ; n

In practice, the linear relationship among independent variables is usually not

perfect. When a perfect linear relationship occurs, a condition known as perfect
collinearity exists. Multicollinearity is the condition in which two variables are

highly correlated. This issue is discussed in greater detail in Chap. 16.

Fig. 15.1 Regression plane with yi(Pi) as dependent variable and with x1i(Di) and x2i(REi) as

independent variables
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15.3 Estimating Multiple Regression Parameters

To estimate the best-fitted regression plane, we use the least-squares method to

estimate the regression parameters. The principle of using the least-squares method

for estimating the parameters of one population regression model is demonstrated in

Eq. 15.3 and Fig. 15.1. Taking Eq. 15.2 as an example, we estimate the coefficients a,
b1, and b2 by minimizing

L ¼
Xn
i¼1

e2i ¼
Xn
i¼1

ðyi � a� b1x1i � b2x2iÞ2

Using the same principle and technique (Appendix 1 of Chap. 13), we can obtain

the normal equations for estimating a, b1, and b2.
3

naþ b1
Xn
i¼1

x1i þ b2
Xn
i¼1

x2i ¼
Xn
i¼1

yi

a
Xn
i¼1

x1i þ b1
Xn
i¼1

x21i þ b2
Xn
i¼1

x1ix2i ¼
Xn
i¼1

x1iyi

a
Xn
i¼1

x2i þ b1
Xn
i¼1

x1ix2i þ b2
Xn
i¼1

x22i ¼
Xn
i¼1

x2iyi (15.5)

If we substitute (x1i� �x1), (x2i� �x2) and (yi� �y ) for x1i, x2i, and yi, then the normal

equations reduce to4

b1
Xn
i¼1

x021i þ b2
Xn
i¼1

x01ix
0
2i ¼

Xn
i¼1

x01iy
0
i

b1
Xn
i¼1

x01ix
0
2i þ b2

Xn
i¼1

x022i ¼
Xn
i¼1

x02iy
0
i (15.6)

There are two equations and two unknowns, b1 and b2, associatedwith this equation
system. Hence, we can solve b1 and b2 uniquely by substitution.

3 Equation 15.5 is a three-equation simultaneous equation system with three unknowns. The values

of these three unknowns can be obtained by solving this system of simultaneous equations, by

using the formula derived in this section, or by using an appropriate computer package (see

Sect. 15.8).
4 In this new coordinate system, Sn

i¼1x1i;S
n
i¼1x2i; and Sn

i¼1yi become Sn
i¼iðx1i � �x1Þ ¼ 0; Sn

i¼1

ðx2i � �x2Þ ¼ 0, and Sn
i¼1ðyi � �yÞ ¼ 0. If we set x01i ¼ x1i � �x1; x

0
2i ¼ x2i � �x2 and y0i ¼ yi � �y;

then Eq. 15.5 reduce to Eq. 15.6.
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b1 ¼
Pn
i¼1

x01iy
0
i

� � Pn
i¼1

x022i

� �
� Pn

i¼1

x02iy
0
i

� � Pn
i¼1

x01ix
0
2i

� �
Pn
i¼1

x021i

� � Pn
i¼1

x022i

� �
� Pn

i¼1

x01ix
0
2i

� �2
(15.7)

b2 ¼
Pn
i¼1

x021i

� � Pn
i¼1

x02iy
0
t

� �
� Pn

i¼1

x01ix
0
2i

� � Pn
i¼1

x01iy
0
i

� �
Pn
i¼1

x021i

� � Pn
i¼1

x022i

� �
� Pn

i¼1

x01ix
0
2i

� �2
(15.8)

From the estimated b1 and b2, we obtain the estimated regression line

ŷ0i ¼ b1x
0
1i þ b2x

0
2i (15.9)

It can be shown that the intercept of Eq. 15.2 is estimated as5

a ¼ �y� b1�x1 � b2�x2 (15.10)

Example 15.1 Annual Salary, Years of Education, and Years of Work Experience.
Let us use the hypothetical data given in Table 15.1 to demonstrate the procedure

for estimating a multiple regression. In Table 15.1, y represents an individual’s

annual salary (in thousands of dollars), x1 represents that individual’s years of

education, and x2 represents her or his years of work experience.

From the data of Table 15.1, we estimate the regression line

ŷi ¼ aþ b1x1i þ b2x2i (15.11)

The worksheet for estimating this regression line is given in Table 15.2. (This

table is included to show how computers calculate mean, variance, and covariance.

You do not need to remember the procedure.)

Substituting information from Table 15.2 into Eqs. 15.7, 15.8, and 15.10, we

obtain

5Using the definitions of ŷ0i; x
0
1i; and x02i; we can rewrite Eq. 15.9 as

ðŷi � �yÞ ¼ b1ðx1i � �x1Þ þ b2ðx2i � �x2Þ

which becomes

ŷi ¼ ð�y� b1�x1 � b2�x2Þ þ b1x1i þ b2x2i (15.90 )
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b̂1 ¼ ð62:4Þð50Þ � ð36Þð�11Þ
ð59:2Þð50Þ � ð�11Þ2 ¼ 3516

2839
¼ 1:2385

b̂2 ¼ ð59:2Þð36Þ � ð�11Þð62:4Þ
ð59:2Þð50Þ � ð�11Þ2 ¼ 2817:6

2839
¼ :99246

â ¼ 21:8� ð1:2385Þð10:4Þ � ð:99246Þð8Þ ¼ :980

Hence, the regression line of Eq. 15.11 becomes

ŷi ¼ :980þ 1:2385x1i þ :9925x2i (15.12)

The next section shows how to compute standard errors of estimates and the

coefficients of determination.

Table 15.2 Worksheet for estimating a regression line (Example 15.1)

x1i x2i y a b c aa bb cc

5 7 15 �5.4 �1 �6.8 29.16 1 46.24

10 5 17 �.4 �3 �4.8 .16 9 23.04

9 14 26 �1.4 6 4.2 1.96 36 17.64

13 8 24 2.6 0 2.2 6.76 0 4.84

15 6 27 4.6 �2 5.2 21.16 4 27.04

Mean 10.4 8 21.8

Total 52 40 109 0 0 0 59.2 50 118.8

(x1i � �x1)(yi � �y) (x2i � �x2)(yi � �y) (x1i � �x1)(x2i � �x2)

ac bc ab

36.72 6.8 5.4

1.92 14.4 1.2

�5.88 25.2 �8.4

5.72 0 0

23.92 �10.4 �9.2

Total 62.4 36 �11

Table 15.1 Data for

Example 15.1
x1i x2i yi

5 7 15

10 5 17

9 14 26

13 8 24

15 6 27

Total 52 40 109.0

Mean 10.4 8 21.8
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15.4 The Residual Standard Error and the Coefficient

of Determination

As in the case of simple regression, the standard error of estimate can be used as an

absolute measure and the coefficient of determination as a relative measure of how

well the multiple regression equation fits the observed data. The interpretations of

these two goodness-of-fit measures are analogous to those discussed in Chap. 13.

15.4.1 The Residual Standard Error

Just like simple regression, multiple regression can be used to break down the total

variation of a dependent variable yi into unexplained variation and explained

variation.

Pn
i¼1

ðyi � �yÞ2 ¼ Pn
i¼1

ðyi � ŷiÞ2 þ Pn
i¼1

ðŷi � �yÞ2

Sum of Squares Sum of Squares Sum of Squares

Total Error due to Regression

ðSSTÞ ðSSEÞ ðSSRÞ

(15.13)

Equation 15.13 is identical to Eq. 13.16 except that the estimated dependent

variable ðŷiÞ of multiple regression is determined by two or more independent

variables. SSR and SSE are the explained and unexplained sums of squares,

respectively.

Using the definition of sum of squares error, we can define the estimate of the

standard deviation of error terms, sometimes called the residual standard error, as

se ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðyi � ŷiÞ2

n� 3

vuuut
(15.14)

Because there are three parameters—a, b1, and b2—for Eq. 15.2 that we must

estimate before calculating the residual, the number of degrees of freedom is (n � 3).

In other words, (n� 3) sample values are “free” to vary.More generally, the number of

degreesof freedom for estimating the residual standard error forEq. 15.4 is [n� (k+1)].

Example 15.2 Computing yi, ei, and e
2
i . Using the data presented in Example 15.1,

we can estimate yi, ei, and e2i as shown in Table 15.3.

Here ŷi is obtained by substituting x1i and x2i into Eq. 15.12. For example,

14.1198 ¼ .980 þ 1.2385(5) þ .9925(7); êi ¼ yi � ŷi.

15.4 The Residual Standard Error and the Coefficient of Determination 747

http://dx.doi.org/10.1007/978-1-4614-5897-5_13
http://dx.doi.org/10.1007/978-1-4614-5897-5_13


X5
i¼1

ðyi � ŷiÞ2 ¼ ð15 ¼ 14:1198Þ2 þ ð17� 18:3272Þ2 þ ð26� 26:0209Þ2

þ ð24� 25:0200Þ2 þ ð27� 25:5120Þ2 ¼ 5:7912

Hence,

se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:7912

5� 3

r
¼ 1:7016

se is one of the important components in determining the distribution of

estimated a, b1, and b2 and fitted dependent variable (ŷ).

15.4.2 The Coefficient of Determination

We can use Eq. 15.13 to calculate a relative measure of the goodness of fit for a

multiple regression.

R2 ¼
Pn
i¼1

ðŷi � �yÞ2

Pn
i¼1

ðyi � �yÞ2
¼ explained variation of y ðSSRÞ

total variation of y ðSSTÞ ¼ 1� SSE

SST
(15.15)

The coefficient of determinationR2 is the proportion of total variation in y(SST) that
is explained by the intercept and the independent variable x1 and x2. Note that both R

2

and Se can be used to measure the goodness of fit for a regression. However, R2 is a

relative measure and Se an absolute measure. Now we use the ANOVA table given in

Table 15.4 to calculate the relationship between R2 and Se for the general multiple

regression model in Eq. 15.4.

There are four columns in Table 15.4. Column (1) represents the sources of

variation, column (2) alternative sums of squares that are identical to those discussed

in Eq. 15.13, column (3) degrees of freedom associated with each source of variation,

and column (4) the mean squares. Note that alternative mean squares represent

alternative variance estimates. Mean square due to the regression is also called

Table 15.3 Actual values, predicted values, and residuals for annual salary regression

Actual value, yi Predicted value, ŷ1

Residuals

ei e2i
15 14.1198 .8802 .7748

17 18.3272 �1.3272 1.7615

26 26.0209 �.0209 .0004

24 25.0200 �1.0200 1.0404

27 25.5120 1.4880 2.2141

Total 109 – – 5.7912
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explained variance; mean square due to the residuals is also called unexplained

variance; and mean square due to the total variation can also be called variance of

the dependent variable.Using those estimates,we can obtain an adjusted (or corrected)

coefficient of determination �R
2
.

�R
2 ¼ 1� SSE=ðn� k � 1Þ

SST=ðn� 1Þ ¼ 1� ð1� R2Þ n� 1

n� k � 1
(15.16)

The difference between R2 and �R
2
is that �R

2
is adjusted for degrees of freedom for

both SSE and SST. �R
2
is always smaller than R2. If the sample size becomes large,

however, �R
2
approaches R2. �R

2
can generally help us avoid overestimating the

goodness of fit for a regression relationship by adding more independent variables

(relevant or not) to a regression equation. Note that the standard error of estimate

(Eq. 15.14) also has been adjusted for the degrees of freedom (n � k� 1).

If we divide components in Eq. 15.13 by their related degrees of freedom, then it

can be shown that

Pn
i¼1

ðyi��yÞ2

n�1
6¼

Pn
i¼1

ðyi�ŷiÞ2

n�k�1
þ

Pn
i¼1

ðŷi��yÞ2

k
Total Unexplained Explained

Variance Variance Variance

(15.17)

so the adjusted coefficient of determination can be redefined as

�R
2 ¼ 1� unexplained variance

total variance
(15.160 )

Using the example of the last section, we can calculate the analysis of variance

of Table 15.4 as shown in Table 15.5.

From Table 15.5, we can calculate R2 and �R
2
.

Table 15.4 Notation of analysis of variance table

(1)

Source of variation

(2)

Sum of squares

(3)

Degrees of freedom

(4)

Mean square

Due to regression
SSR ¼Pn

i¼1

ðŷi � �yÞ2 k SSR/k

Residual
SSE ¼Pn

i¼1

ðyi � ŷiÞ2 n � k � 1 SSE/(n � k � 1)

Total
SST ¼Pn

i¼1

ðyi � �yÞ2 n � 1 SST/(n � 1)
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R2 ¼ 113:0088=118:8 ¼ :95125

�R
2 ¼ 1� 2:8956

29:7
¼ 1� :09749 ¼ :90251

Both R2 and �R
2
imply that more than 90 % of the variation of annual salary can be

explained by years of education and years ofwork experience. However, �R
2
is 4.874%

smaller than that of R2.

15.5 Tests on Sets and Individual Regression Coefficients

After having estimated the regression model, we would like to know whether the

dependent variable is related to the independent variables. To find out, we can test

whether an individual regression coefficient or a set of regression coefficients is

significantly different from zero. As we saw in Chap. 14, the t statistic is to test an

individual coefficient and the F statistic to test linear restrictions on the parameters

or regression coefficients. For this purpose, we need to assume that ei is normally

distributed.

Logically, we perform the joint test first. If the joint test is not significant, then

there is no need for the individual tests, and we normally abandon or modify the

model. If the joint test is rejected, we must find out which regression coefficients are

significant, so we perform individual tests.

15.5.1 Test on Sets of Regression Coefficients

Until now, our discussion has been limited to point estimation of multiple regression

coefficients, the coefficient of determination, and the standard error of estimate. Now

wewill discuss how to use theF statistic to test whether all true population regression

(slope) coefficients equal zero. The F-test rather than the t-test is used. The null

hypothesis for our case is

H0 : b1 ¼ b2 ¼ � � � ¼ bk ¼ 0

H1 : At least one b is not zero: ð15:18Þ

Table 15.5 Analysis of variance results

Source of variation Sum of squares Degrees of freedom Mean square

Due to regression 113.0088 k ¼ 2 56.5044

Residual 5.7912 5 � 2 � 1 ¼ 2 2.8956

Total 118.8 5 � 1 ¼ 4 29.7
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If the null hypothesis is not true, then each ŷiwill differ from �y substantially, and the

explained variation
Pn

i¼1 ðŷi � �yÞ2 will be large relative to the unexplained residual

variation
Pn

i¼1 ðyi � ŷiÞ2. In other words, the R2 indicated in Eq. 15.15 is relatively

large. Thus, we can construct the F ratio as indicated in Eq. 15.19 to test whether the

null hypothesis can be rejected.

Fk;n�k�1 ¼
Pn
i¼1

ðŷi � �yÞ2=k
Pn
i¼1

ðyi � ŷiÞ2=ðn� k � 1Þ
(15.19)

The F ratio we have constructed is the ratio of twomean square errors, as we noted

in the last section, and they are two unbiased estimates of variances. Following the

definition of theF distribution established in Chaps. 9 and 14, we know that the F ratio

has anF distributionwith k and (n� k� 1) degrees of freedom. ThisF ratio enables us

to test whether at least one of the regression coefficients is significantly different from

zero.

Consider the case k ¼ 2. If there is no regression relationship (i.e., if b1¼ b2¼ 0)

and because

ŷi ¼ aþ b1x1i þ b2x2i

¼ �yþ b1ðx1i � �x1Þ þ b2ðx2i � �x2Þ

the ŷiwill be close or equal to �y, so the F-value will be smaller or close to zero. Thus,

we cannot reject the null hypothesis that ail regression coefficients are insignificantly

different from zero.

Substituting related data from Table 15.5 into Eq. 15.19, we obtain

F ¼ 113:0088=2

5:7912=2
¼ 56:5044

2:8956

¼ 19:514

From Table A6 of Appendix A, we find that the critical value for a significance

level of a ¼ .05 is F.05,2.2 ¼ 19.0, which is smaller than 19.514. Therefore, we can

conclude that at least one of the regression coefficients is significantly different from

zero. Thus, there is a regression relationship in the population, and the improvement

of explanatory power achieved by fitting a regression plane is not due to chance.

In other words, the null hypothesis that years of education and years of work

experience contribute nothing to an individual’s annual salary is rejected at a 5 %

level of significance.
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Finally, the relationship between the R2 indicated in Eq. 15.15 and the F statistic

in Eq. 15.19 can be shown to be6

Fk;n�k�1 ¼ n� k � 1

k
:

R2

1� R2

15.5.2 Hypothesis Tests for Individual Regression Coefficients

In the last section, we used the F statistic to do a joint test about a regression

relationship. Now we want to use the t statistic to test whether multiple regression

coefficients are significantly different from zero.

15.5.2.1 Hypothesis-Testing Specification

We follow the procedure of the last chapter to define the null hypothesis and

alternative hypothesis for testing individual multiple regression coefficients.

1. Two-tailed test

H0 : bj ¼ 0 ðj ¼ 1; 2; . . . ; kÞ
H1 : bj 6¼ 0 ð15:20Þ

2. One-tailed test

H0 : bj ¼ 0 ðj ¼ 1; 2; . . . ; kÞ
H1 : bj > 0 or bj < 0 ð15:21Þ

Let’s look at Eq. 15.12 as an example. For convenience, the estimated regression

line is repeated here.

ŷi ¼ :980þ 1:2385x1 þ :9925x2

6 Because R2 ¼ 1 – SSE/SST ¼ SSR/SST,

R2

1� R2
¼ SSR=SST

SSE=SST
¼ SSR

SSE
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In this equation, besides the estimated intercept (a) and slopes (b1 and b2), we
have estimated the standard error of estimate for ŷi as Se ¼ 1.7016. To perform the

null hypothesis test, we need to know the sample distribution of bj and the t statistic
as defined in the equation

tn�k�1 ¼ ðbj � 0Þ=sbj (15.22)

where tn � k � 1 represents a t statistic with (n � k � 1) degrees of freedom, k ¼ the

number of independent variables, and sbj represents the standard error associated

with bj. The concepts and procedure used to calculate sbj are similar to those used

for simple regression. However, sbj is quite tedious to calculate by hand; fortu-

nately, its value is readily available in the computer output of any standard

regression analysis program. Thus, in practice, we find t simply by finding the

ratio of the coefficient to its estimated standard error. When the calculated value of

t exceeds the critical value ta,n�k�1 indicated in the t distribution table, the null

hypothesis of no significance can be rejected. We conclude that the jth independent
variable xj does have an important influence on the dependent variable yi after the
influence of all other independent variables in the model is taken into account.

15.5.2.2 Performing the t-Test for Multiple Regression Slopes

To perform the t-test for multiple regression coefficients b1 and b2, we estimate the

sample variance of the coefficients b1 and b2 in accordance with Eqs. 15.23 and

15.247

Varðb1Þ ¼ s2b1 ¼
s2e

ð1� r2ÞPn
i¼1

ðx1i � �x1Þ2

¼
s2e
Pn
i¼1

x022i

� �
Pn
i¼1

x021i

� � Pn
i¼1

x022i

� �
� Pn

i¼1

x01ix
0
2i

� �2

(15.23)

Varðb2Þ ¼ s2b2 ¼
s2e

ð1� r2ÞPn
i¼1

ðx2i � �x2Þ2

¼
s2e
Pn
i¼1

x
02
1i

� �
Pn
i¼1

x
02
1i

� � Pn
i¼1

x
02
2i

� �
� Pn

i¼1

x
0
1ix

0
2i

� �2
(15.24)

7Derivations of Eqs. 15.23 and 15.24 can be found in Appendix 1. Note that these two equations

are generally estimated by computer packages (see Sect. 15.8). Manual approaches are presented

here to show how sample variances of multiple regression slopes are actually calculated.
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where r represents the correlation coefficient between x1i and x2i. If the magnitude

of r is great, a collinearity problem might exist. This issue will be discussed in detail

in the next chapter.

Substituting the required numerical values obtained from Tables 15.2 and 15.3,

we calculate sample variances of b1 and b2 for Eq. 15.16.

S2b1 ¼
ð2:8956Þð50Þ

ð59:2Þð50Þ � ð�11Þ2

¼ ð2:8956Þð50Þ
2839

¼ :05100

and

s2b2 ¼
ð2:8956Þð59:2Þ

2839

¼ :06038

Then Sb1 ¼ :2258 and Sb2 ¼ :2457. Dividing b1 and b2 by Sb1 and Sb2, we obtain
t-values for b1 and b2.

tb1 ¼
1:2385

:2258
¼ 5:4849

tb2 ¼
:9925

:2457
¼ 4:0395

Because n ¼ 5 and k ¼ 2, from Table A4 in Appendix, A the critical value for a

one-tailed test on either coefficient (at a significance level of a ¼ .05) is

ta;n�k�1 ¼ t:05;2 ¼ 2:920

We choose a one-tailed test because a priori theoretical propositions were that

both x1 and x2 were positively related to y. Comparing 5.4849 and 4.0395 with

2.920, we conclude that both years of education and years of work experience are

significantly related to an individual’s annual salary.

Figure 15.2 presents all the estimates and hypothesis-testing information we have

discussed in the last three sections. This example certainly proves that multiple

regression analysis can be more efficiently performed by using the MINITAB com-

puter program.
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Fig. 15.2 MINITAB output of multiple regression in terms of data given in Table 15.1
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15.6 Confidence Interval for the Mean Response and Prediction

Interval for the Individual Response

15.6.1 Point Estimates of the Mean and the Individual Responses

One of the important uses of the multiple regression line is to obtain predictions and

forecasts for the dependent variable, given an assumed set of values of the independent

variables. This kind of prediction is called the conditional prediction (forecast), just as
in simple regression (see Sect. 14.4, of which this model is an extension). Suppose the

independent variables are equal to some specified values x1,n+1 and x2,n+1, and that the
linear relationship among yn, x1,n, and x2,n continues to hold.

8 Then the corresponding

value of the dependent variable yn+1 is

Ynþ1;i ¼ aþ b1x1;nþ1;i þ b2x2;nþ1;i þ enþ1;i (15.25)

which, given x1,n þ 1 and x2,n þ 1, has expectation

EðYnþ1jx1;nþ1;x2;nþ1Þ ¼ aþ b1x1;nþ1 þ b2 x2;nþ1 (15.26)

Equation 15.26 yields the mean response E(Yn þ l|x1,n þ 1, x2,n þ 1) that we want

to estimate when the independent variables are fixed at x1,n þ 1 and x1,n þ 1.

Equation 15.25 yields the actual value (or individual response) that we want to

predict.

To obtain the best point estimate, we first estimate the sample regression line as

defined in Eq. 15.2. Then we substitute the given values x1,n þ 1 and x2,n þ 1 into the

estimated Eq. 15.12, obtaining

ŷnþ1 ¼ aþ b1x1;nþ1 þ b2x2;nþ1 (15.27)

This is the best point estimate for both conditional expectation and actual-value

forecasts. In other words, the forecast of conditional expectation value is equal to

the forecast of actual value. However, the forecasts are interpreted differently. The

importance of these different interpretations will emerge when we investigate the

process of making interval estimates.

15.6.2 Interval Estimates of Forecasts

To construct a confidence interval for forecasts, it is necessary to know the

distribution, mean, and variance of ŷnþ1: The distribution of ŷnþ1 is a normal
distribution. The variance associated with ŷnþ1 may be classified into three cases.

8 x1,n + 1 and x2,n + 1 can be either given values or forecasted values. When a regression is used to

describe a time-series relationship, they are forecasted values.

756 15 Multiple Linear Regression

http://dx.doi.org/10.1007/978-1-4614-5897-5_4


First, we deal with a case in which the conditional mean ( ŷnþ1 ) is equal to the

unconditional mean (�y). In the second and third cases, we deal with the conditional
mean. However, case 2 involves the mean response and case 3 the individual

response.

Case 15.1Conditional Expectation (Mean Response) withx1;nþ1 ¼ �x1 and �x2;nþ1 ¼ �x2

From the definitions of the intercept of a regression or the sample regression line,

we have

ŷnþ1 ¼ ð�y� b1�x1 � b2�x2Þ þ b1x1;nþ1 þ b2x2;nþ1

¼ �yþ b1ðx1;nþ1 � �x1Þ þ b2ðx2;nþ1 � �x2Þ

If x1;n ¼ �x1 and x2;n ¼ �x2; then ŷnþ1 ¼ �y: Following Appendix 3 of Chap. 14, we
obtain the estimate of the variance for yn + 1 as

s2ðŷnþ1Þ ¼ s2ð�yÞ ¼ s2e=n (15.28)

Case 15.2 Conditional Expectation (Mean Response) with x1;nþ1 6¼ �x1 or x2;nþ1 6¼ �x2

In this case, the forecast value can be defined as

ŷnþ1 ¼ �yþ b1ðx1;nþ1 � �x1Þ þ b2ðx2;nþ1 � �x2Þ (15.29)

Following Appendix 2, we obtain the estimate of the variance for ŷnþ1 in terms of

sample standard variance of estimates S2e as

s21 ¼ s2ðŷnþ1Þ

¼ s2e
1

n
þ ðx1;nþ1 � �x1Þ2

ð1� r2ÞC2
1

þ ðx2;nþ1 � �x2Þ2
ð1� r2ÞC2

2

� 2ðx1;nþ1 � �x1Þðx2;nþ1 � �x2Þr
ð1� r2ÞC1C2

" #

(15.30)

where C1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn
i¼1ðx1; j � �x1Þ2

q
;C2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn
i¼1ðx2;i � �x2Þ2

q
and r ¼ correlation coeffi-

cient between x1,i and x2,i.

Case 15.3 Actual Value (Individual Response) of ynþ1

After we have derived the sample variance for ŷnþ1; we derive the sample

variance for individual response (observation), ynþl,i (which deviates from ŷnþ1 by a

random error ei).

ynþ1;i ¼ ŷnþ1 þ ei
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The variance of an individual observation, yn+l,i, includes the variance of the

observation about the regression line s2e
� �

as well as s2ðŷnþ1;iÞ. Because ŷnþ1 and ei
are independent, s2ðynþ1; jÞ ¼ s2ðŷnþ1Þ þ s2e . More explicitly,

s2ðŷnþ1;iÞ ¼ s21 þ s2e ¼ s22 (15.31)

where s21 is defined in Eq. 15.30

Using Eqs. 15.28, 15.30, and 15.31, we can obtain a confidence interval for

prediction as follows:

1. For prediction of the conditional expectation with xl,n þ 1 ¼ �x1 and x2,n þ 1 ¼ �x2,
the confidence interval is

ŷnþ1�þtn�3;a=2
seffiffiffi
n

p (15.32)

2. For prediction of the conditional expectation with xl,n þ 1 6¼ �x2 or xl,n þ 1 6¼ �x2,
the confidence interval is

ŷnþ1�þðtn�3;a=2Þs1 (15.33)

where s1, is defined in Eq. 15.30.

3. For prediction of the actual value ynþ1,i the prediction interval is

ŷnþ1;i�þðtn�3;a=2Þs2 (15.34)

where s2 is defined in Eq. 15.31.

To show how Eq. 15.34 is applied in constructing the confidence interval for

forecasting the actual value of yn þ 1, let’s use the annual salary example

(Table 15.2) to find the 95 % prediction interval for annual salary, yn þ 1, when a

person has 6 years of education and 5 years of work experience. The predicted

annual salary can be computed from Eq. 15.12.

ŷnþ1;i ¼ :980þ ð1:2385Þð6Þ þ ð:9925Þð5Þ
¼ 13:3735 ðin thousands of dollarsÞ

From Table 15.2, we have

Xn
i¼1

ðx1i � �x1Þ2 ¼ 59:2;
Xn
i¼1

ðx2i � �x2Þ2 ¼ 50; n ¼ 5

Xn
i¼1

ðx1i � �xiÞðx2i � �x2Þ ¼ �11; �x1 ¼ 10:4; �x2 ¼ 8
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Using this information, we calculate

C1 ¼
ffiffiffiffiffiffiffiffiffi
59:2

p
¼ 7:6942; C2 ¼

ffiffiffiffiffi
50

p
¼ 7:0711

r ¼
Pn
i¼1

ðx1i � �x1Þðx2i � �x2ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðx1i � �x1Þ2
Pn
i¼1

ðx2i � �x2Þ2
s ¼ �11

ð7:6942Þð7:0711Þ

¼ �:2022; r2 ¼ :0409

ðx1;nþ1 � �x1Þ2 ¼ ð6� 10:4Þ2 ¼ 19:36

ðx2;nþ1 � �x2Þ2 ¼ ð5� 8Þ2 ¼ 9

From Table 15.3, we have S2e ¼ 5:7912=ð5� 3Þ ¼ 2:8956. Substituting this

information into Eq. 15.31 yields

s22 ¼ ð2:8956Þ 1þ 1

5
þ 19:36

ð1� :0409Þð59:2Þ þ
9

ð1� :0409Þð50Þ
�

� 2ð�:2022Þð�4:4Þð�3Þ
ð1� :0409Þð7:6942Þð7:0711Þ

�
¼ ð2:8956Þð1:83Þ ¼ 5:2989

Wewill use n¼ 5,s2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:2989

p ¼ 2:3019, and ŷnþ1;i¼ 13.3735. FromTableA4,

inAppendixA, we have t0.025,2¼ 4.303. Substituting this information into Eq. 15.34,

we find that the annual salary is predicted with 95 % confidence by the interval

13:3735� ð4:303Þð2:3019Þ ¼ 13:3735� 9:9051

3:4684 � ynþ1;i � 23:2786

When n is large, we can modify this expression by replacing t with the appropri-
ate normal deviate z.

MINITAB output showing prediction results of x1,n + 1,i ¼ 6 and x2,n + 1,i ¼ 5 is

presented in Fig. 15.3. The prediction interval shown in the last row of Fig. 15.3 is

(3.466, 23.280), which is similar to what we calculated before.

In the next two sections, we will explore applications of multiple regression in

business and economics. Section 15.8 explicitly treats the use of SAS and MINITAB

computer programs to do multiple regression analyses.

15.7 Business and Economic Applications

Multiple regression analysis has been widely used in decision making in business

and economics. Five examples are discussed in this section.
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Fig. 15.3 MINITAB output of yn+1,i
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Application 15.1 Overall Job-Worth of Performance for Certain Army Jobs.

Bobko and Donnelly (1988) employed multiple regression to estimate overall job-

worth to the army of certain army jobs from attributes of those jobs.9 Their final

regression prediction model is

yi ¼ b0 þ b1x1i þ b2x2i þ b3x3i þ b4x4i þ b5x5i þ b6x6i þ b7x7i þ ei

where

yi ¼ job-value judgments of overall worth for the ith individual

x1i ¼ performance level for the ith job

x2i ¼ combat probability for the ith job

x3i ¼ enlistment bonus for the ith job

x4i ¼ reenlistment bonus for the ith job

x5i ¼ aptitude required for entry into the ith job

x6i ¼ cost of error for the ith job

x7i ¼ job variety for the ith job

Bobko and Donnelly estimated this multiple regression model using data

obtained from interviews. Their regression results are presented in Table 15.6. As

would be expected, performance level was the single best predictor of 95 estimates

of judgments of overall worth. The other job-level correlates were combat proba-

bility, enlistment bonus, reenlistment bonus, aptitude, cost of error, and task

variety. The first six of these predictors had statistically significant regression

weights (coefficients), p-value < .05, indicating their unique contribution to the

prediction of overall worth estimates. However, task variety was not statistically

significant.

Application 15.2 The Relationship Between Individual Stock Rates of Return,

Payout Ratio, and Market Rates of Return. To demonstrate multiple regression

analysis, a time-series regression for 1970–2009 is run, the dependent variable

being the rate of return for the JNJ stock (Rj,t) and the independent variables being

the payout ratio (dividend per share/earnings per share) for JNJ (Pj,j) and the rates of

return on the S&P 500 Index, Rm,t. The results are as follows:

Rj;t ¼ aj þ gjPj;t þ bjRm;t þ Ej;t

Fortunately, the results do not have to be calculated by hand but can be obtained

by using MINITAB. The MINITAB results are presented in Table 15.7. The

parameter value for the market rates of return is 0.7329, which is called the beta

coefficient. A 1 % increase in the market rate of return will lead to a 0.7329 %

change in the rate of return of the JNJ stock, given the payout ratio—that is, the rate

of return of JNJ stock is less volatile than that of the market. The payout ratio has a

9 P. Bobko and L. Donnelly (1988), “Identifying Correlations of Job-Level, Overall Worth

Estimates: Application in a Public Sector Organization,” Human Performance 3, 187–204
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coefficient of �0.2133. This result implies that a 1 % increase in the payout ratio

will lead to a 0.2133 % decrease in the mean rate of return on JNJ stock, given the

market rate of return.

The independent variables are statistically significant at the 5 % level. The

t-value for the market is 2.0880, and the associated p-value is 0.0437, which

means that the lowest level of significance at which the null hypothesis can be

rejected is 4.37 %. This suggests that the population coefficient for the market is not

equal to zero. The t statistic for the payout ratio, which is calculated by dividing the
parameter value (�0.2133) by the standard error (0.5613), is�0.3800. Its p-value is
0.7061, thus the null hypothesis cannot be rejected.

R2 for the regression is 0.106. In other words, the independent variables explain

about 10.6 % of the variation in the rate of return on JNJ stock. The adjusted

R-square, �R
2
, which takes into account overfitting in the sample, is equal to 0.057.

The F-value, which tests the hypothesis that the population coefficients of the

independent variables are both zero against the alternative that they are not, is equal

to 2.184. The degrees of freedom associated with this F-value are v1 ¼ 2 and

v2 ¼ 37. From Table A6 in Appendix A, we find that the critical value for the F-test
is F.01,2,30 ¼ 5.39 and F.01,2,40 ¼ 5.18. Because the F-value for the regression is less
than the critical value 5.39, the null hypothesis cannot be rejected.

Table 15.6 Best subset regression of overall worth on job-level predictors

Source df Sum of squares F P

Regression 7 16.007 274.12 .0001

Error (residual) 87 .726

Variable Regression weight t-ratio p

Performance level .013 1666.22 .0001

Combat probability .039 21.19 .0001

Enlistment bonus .034 18.52 .0001

Reenlistment bonus .016 15.73 .0001

Aptitude .013 26.01 .0001

Cost of error .029 5.61 .0201

Task variety .016 2.51 .1166

Source: Bobko and Donnelly (1988), Human Performance
Note: Adjusted R2 ¼ .953; n ¼ 95 mean estimates of overall worth

Table 15.7 Rj,t ¼ aj + gjPj,t + bjRm,t + ej,t

Variable Coefficient Standard error t-value p-value

Constant 0.0777 0.2049 0.3793 0.7066

Payout ratio �0.2133 0.5613 �0.3800 0.7061

Market rate of return 0.7329 0.3510 2.0880 0.0437

R2 ¼ 0.106

�R
2 ¼ 0.057

F-value ¼ 2.184

Observations 40
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Application 15.3 Analyzing the Determination of Price per Share. To further

demonstratemultiple regression techniques, let us say that a cross-sectional regression
is run. In a cross-sectional regression, all data come from a single period. The

dependent variable in this regression is the price per share (Pj) of the 30 firms used

to compile the Dow Jones Industrial Average for the year 2009. The independent

variables are the dividend per share (DPSj) and the retained earnings per share (EPSj)
for the 30 firms. (Retained earnings per share is defined as earnings per share minus

dividend per share. Price per share is the close price of the end of year 2009; dividend

per share and retained earnings per share are based on 2009 annual balance sheet and

income statement.) The sample regression relationship is

Pj ¼ aþ b1DPSj þ b2EPSj þ ej ðj ¼ 1; 2; . . . ; 30Þ

Empirical results are presented in Table 15.8. The constant term is significant

with a t-value of 2.518. This result means that the intercept term is statistically

different from zero and the null hypothesis can be rejected at both a10 and a 5 %

level. The retained earnings per share variable is highly significant with a t-value of
4.478 and a p-value of 0.000. Thus, we can reject the null hypothesis that the

coefficient is equal to zero and accept the alternative hypothesis that it differs from

zero and makes a contribution to price per share. The coefficient for this variable is

0.978; mean price per share increases $0.978 when the retained earnings per share

increases by $1.00, given the dividend.

The coefficient for the dividend per share variable has a t-value of 2.756 and a

p-value of .010. This is the lowest level of significance at which the null hypothesis
can be rejected; thus the null hypothesis is rejected at both a 10 % and a 5 % level.

The coefficient for dividend per share is 12.836. When the dividend increases by

$1.00, the price per share tends to rise by $12.836.

The value of R2 is 0.724, which means that the model explains 72.4 % of the

observed fluctuations in the price per share. The adjusted R-square, �R
2
, is 0.703. The

F-value for the regression is 35.35. The number of degrees of freedom for the

regression and residual are 2 and 27, respectively. The critical value for F at a 1 %

level of significance is 5.49. Because the regression F-value is greater than the critical
value, the null hypothesis that the coefficients are equal to zero is rejected.

Application 15.4 Multiple Regression Approach to Evaluating Real Estate

Property. To show how the multiple regression technique can be used by real

estate appraisers, Andrews and Ferguson (1986) used the data in Table 15.9 to do

the multiple regression analysis.

yi ¼ b0 þ b1x1i þ b2x2i þ ei

where

yi ¼ sale price for ith house

x1i ¼ home size for ith house

x2i ¼ condition rating for ith house
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MINITAB regression outputs in terms of Table 15.9 are presented in Fig. 15.4.

From this output, the estimated regression is

ŷi ¼ 9:782þ 1:87094x1i þ 1:2781x2i

ð6:00Þ ð24:56Þ ð8:85Þ

t-values are in parenthesis.

From Table A4 in Appendix A, we find that t.025,7 ¼ 2.365. Because t-values for
3 regression parameters are larger than 2.365, all estimated parameters are signifi-

cantly different from 0 at a¼ .05. This estimated regression can be used to estimate

the sale price for a house. For example, if x1 ¼ 18 and x2 ¼ 5, the predicted sale

price is

ŷi ¼ 9:781þ ð1:87094Þð18Þ þ ð1:2781Þð5Þ
¼ 49:8484

Table 15.8 Pj ¼ a + b1DPSj + b2 EPSj + ej

Variable Coefficient Standard error t-value p-value

Constant 12.800 5.084 2.518 0.018

DPS 12.836 4.657 2.756 0.010

EPS 0.978 0.218 4.478 0.000

R2 ¼ 0.724

�R
2 ¼ 0.703

F-value ¼ 35.35

Observations 30

Table 15.9 Sale price, house size, and condition rating

Sale price, y
(thousands of dollars)

Home size, x1
(hundreds of sq. ft.)

Condition rating, x2
(1 to 10)

60.0 23 5

32.7 11 2

57.7 20 9

45.5 17 3

47.0 15 8

55.3 21 4

64.5 24 7

42.6 13 6

54.5 19 7

57.5 25 2

Source: R. L. Andrews and J. T. Ferguson, “Integrating Judgment with a Regression Appraisal.”

The Real Estate Appraiser and Analyst, Vol. 52, No. 2, Spring 1986 (Table 1)
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Fig. 15.4 MINITAB output for Table 15.9
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This implies that the estimated sale price is $49,848.4 if the home size is 18,000

square feet and the condition rating is 5.

Application 15.5 Multiple Regression Approach to Doing Cost Analysis. To

show how the multiple regression technique can be used to do cost analysis by

accountants, we look at Benston’s research. Benston (1966) used a set of sample

data (as shown in Table 15.10) from a firm’s accounting and production records to

provide cost information about the firm’s shipping department to do the multiple

regression analysis

yt ¼ b0 þ b1x1t þ b2x2t þ b3x3t þ et

where

yt ¼ hours of labor in tth week

x1t ¼ thousands of pounds shipped in tth week

x2t ¼ percentage of units shipped by truck in tth week

x3t ¼ average number of pounds per shipment in tth week

MINITAB regression output is presented in Fig. 15.5. From p-values indicated in
Fig. 15.5, we find that b0 and b3 are significantly different from 0 at a ¼ .01. Hence,

we can conclude that the only important variable in determining the hours of labor

required in the shipping department is the average number of pounds per shipment.

15.8 Using Computer Programs to Do Multiple Regression

Analyses

15.8.1 SAS Program for Multiple Regression Analysis

In an example taken from Churchill’s Marketing Research, data for the sales of

Click ballpoint pens (y), advertising (x1, measured in TV spots per month), number

of sales representatives (x2), and a wholesaler efficiency index (x3) were presented
in Table 14.10 of the last chapter.

In Sect. 14.6, we investigated only the relationship between two variables (y and
x1, y and x2, and y and x3). Now we will expand that analysis by using the following

three regression models:10

yi ¼ aþ b1x1i þ ei (15.a)

yi ¼ aþ b1x1i þ b2x2i þ ei (15.b)

yi ¼ aþ b1x1i þ b2x2i þ b3x3i þ et (15.c)

10 In these regressions, we hold the price of a ballpoint pen and the income of a consumer constant,

because this is a set of cross-sectional data.
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Equation 15.a can be used to investigate the relationship between y and x1, which
was discussed in Sect. 14.6.

Equation 15.b can be used to analyze whether the second explanatory variable,

x2, improves the equation’s power to explain the variation of sales. Equation 15.c

can be used to analyze whether the third explanatory variable, x3, further improves

that explanatory power. Part of the output of the SAS program for Eqs. 15.a, 15.b,

and 15.c is presented in Fig. 15.6a–c. Figure 15.6a shows the regression results of

Eq. 15.a, Fig. 15.6b the regression results of Eq. 15.b, and Fig. 15.6c the regression

results of Eq. 15.c. Using these results, we will review and summarize simple

regression and multiple regression results that have been discussed in Chaps. 13,

14, and 15.

Computer outputs of Fig. 15.6a–c present the following results of simple and

multiple regression.

1. Estimated intercept and slopes

2. F-values for the whole regression
3. t-values for individual regression coefficients

4. ANOVA of regression

5. R2 and �R
2

6. p-values

Table 15.10 Hours of labor and related factors cause costs to be incurred

Week

Hours of

labor, y
Thousands of

pounds shipped, x1

Percentage of units

shipped by truck, x2

Average number of pounds

per shipment, x3

1 100 5.1 90 20

2 85 3.8 99 22

3 108 5.3 58 19

4 116 7.5 16 15

5 92 4.5 54 20

6 63 3.3 42 26

7 79 5.3 12 25

8 101 5.9 32 21

9 88 4.0 56 24

10 71 4.2 64 29

11 122 6.8 78 10

12 85 3.9 90 30

13 50 3.8 74 28

14 114 7.5 89 14

15 104 4.5 90 21

16 111 6.0 40 20

17 110 8.1 55 16

18 100 2.9 64 19

19 82 4.0 35 23

20 85 4.8 58 25

Source: G. J. Benston (1966), “Multiple Regression Analysis of Cost Behavior,” Accounting
Review, Vol. 41, No. 4, 657–672 (Reprinted by permission of the publisher)
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Fig. 15.5 MINITAB output for Application 15.5
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Fig. 15.6 (continued)
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7. Durbin–Watson D and first-order autocorrelation (these two statistics are

discussed in Sect. 16.4 of Chap. 16)

8. Standard error of residual estimate (mean square of error)

9. RootMSE ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE error

p
. For example, for Eq. 15.b, rootMSE ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2039:85310
p

¼ 45:16473. The root MSE estimate can be used to measure the performance of

prediction. We will explore this in further detail in Chap. 18 when we discuss

time-series analysis.

These SAS regression outputs give us almost all the sample statistics we have

examined so far. Now let’s consider the practical implications of Eqs. 15.a, 15.b,

and 15.c. In Sect. 14.6 of the last chapter, we discussed the estimated regression of

Eq. 15.a.

Equation 15.b specifies a regression model in which sales are the dependent

variable and the independent variables are number of TV spots x1 and number of

sales representatives x2. The fitted regression equation is

ŷ ¼ 69:3 þ 14:2x1 þ 37:5x2 F ¼ 128:141
ð2:994Þ ð5:315Þ ð5:393Þ

Here t-values are indicated in parentheses.

Fig. 15.6 (a) SAS output for regression results of yi¼ a + b1x1i + ei. (b) SAS output for regression

results of yi ¼ a + b1x1i + b2x2i + ei. (c) SAS output for regression results of yi ¼ a + b1x1i + b2x2i +
b3x3i + ei
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This regression indicates that when the number of TV spots increases by 1 unit,

sales increase by $14.200 on average while the number of sales representatives stays

unchanged. When the number of sales representatives increases by 1 person, sales

increase by $37,500 on average while the number of TV spots stays unchanged.

The F-value for the regression of Eq. 15.b is 128.141. There are 40 observations
and two independent variables, so the number of degrees of freedom in the model is

40 � 2 � 1 ¼ 37. By interpolation, it can be shown that the critical value of

F.05,2,37 is 3.25 (Table A6 in Appendix A). Because the F-value for the regression
is greater than the critical value, the hypothesis that the coefficients are equal to

zero is rejected. From the t-values associated with estimated regression coefficients,

we find that the estimated intercept and slopes are significant at a ¼ .01.

Because the t-values of b2 are significantly different from zero, we conclude that

adding the number of sales representatives improves the equation’s power to

explain sales. This conclusion can also be drawn from the fact that �R
2
has increased

from .7687 to .8670.

The fitted regression of Eq. 15.c is

ŷ ¼ 31:1504þ 12:9682x1 þ 41:2456x2 þ 11:5243x3 F ¼ 89:051

ð:911Þ 5ð4:738Þ ð5:666Þ ð1:498Þ

Again, t-values are indicated in parentheses.

Following Sect. 15.5, we first test the whole set of regression coefficients in

terms of the F statistic. From Table A6 in Appendix A, by interpolation, we find that

F01.3,36 ¼ 2.88. F¼ 89.051 is much larger than 2.88. This implies that we reject the

following null hypothesis of our joint test:

H0 : b1 ¼ b2 ¼ b3 ¼ 0

Now we can use t statistics to test which individual coefficient is significantly

different from zero. From Table A4 in Appendix A, by interpolation, we find that

the critical value of t statistic is t.005,36¼ 2.72. By comparing this critical value with

4.738, 5.666, and 1.498, we conclude that b1 and b2 are significantly different from
zero and that b3 is not significantly different from zero at a ¼ .01. In other words,

the wholesaler efficiency index does not increase the explanatory power of Eq. 15.c.

15.8.2 MINITAB Program for Multiple Regression Prediction

MINITAB is used to run the regression defined in Fig. 15.6c and presented in

Fig. 15.7. Besides regression parameters, we also predict y by assuming x1 ¼ 13,

x2 ¼ 9, and x3 ¼ 5. The results are listed in the last row of Fig. 15.7. They are

1. ŷn+1, i ¼ 628.57

2. s(ŷn+l) ¼ 34.92

3. sðŷnþ1;iÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðŷnþ1 þ s2eÞ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð34:92Þ2 þ 1973

q
¼ 56:50
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4. 95 % confidence interval: (557.73, 699.40)

5. 95 % prediction interval: (513.94, 743.19)

15.8.3 Stepwise Regression Analysis

In this example, we want to use stepwise regression to establish a statistical model to

predict the sales of Click ballpoint pens (y). We are considering three possible

explanatory variables: advertising (x1) measured in TV spots per month, the number

of sales representatives (x2), and a wholesaler efficiency index (x3). The question is

what variables should be included in the statistical model to explain the sales.

The stepwise regression method suggests the following steps.

Step I:
Run simple regression on each explanatory variable, and choose the model that

explains the highest amount of variation in y. The regression results obtained are

presented in Fig. 14.14a, b. The R2-value in each computer report is used to determine

which variable enters the model first. Upon comparing R2-values for the three models,

we conclude that x2, which has the highest R2-value (.7775), should enter the

model first.

Independent variable R2 F-value

x1 .7747 130.644

x2 .7775 132.811

x3 .0000 .000

Step 2:
The second variable to enter should be the variable that, in conjunction with the

first variable, explains the greatest amount of variation in y.

Independent variables R2 F-value

x2 x1 .8738 128.141

x2 x3 .807 77.46

The R2-values and F-values in the foregoing table are obtained from Figs. 15.6b

to 15.8. The table shows the results when x1 and x3 are combined with x2 to explain
the variation in y. The combination of x1 and x2 clearly yields a higher R2 (.8738).

This suggests that x1 should be the second variable to enter.

Step 3:
In this step, we want to decide whether another variable should enter the model

to explain y. Note that every time an additional variable is included in a model, R2

increases. The question is whether the increase in R2 justifies inclusion of the

variable. We apply an F-test to answer this question.

F ¼ ðR2
f � R2

RÞðkf � kRÞ
ð1� R2

f Þ=ðN � kf � 1Þ
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Fig. 15.7 (continued)
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Fig. 15.7 (continued)
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where

R2
f ¼ R2 of the model with the new variable

R2
R ¼ R2 of the model without the new variable

kf ¼ number of the variables in the model with the new variable

kR ¼ number of the variables in the model without the new variable

To determine whether x3 should be included in the model, we need to compare

the R2 of the model with x3 and R2 of the model without x3.

Independent variables R2

x2 x1 .8738

x2 x1 x3 .8812

Using the foregoing formula, we compute

F ¼ ð:8812� :8738Þ=ð3� 2Þ
ð1� :8812Þ=ð40� 3� 1Þ ¼ 2:24 < F:05;1;36 ¼ 4:11

Fig. 15.7 MINITAB output of yi ¼ a + b1x1i + b2x2i + b3x3i + ei
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Because including x3 does not increase R
2 significantly, the null hypothesis that

x3 should not be included is not rejected in this case. Our conclusion from the

stepwise regression analysis is that the best model should include only x1 and x2 as
explanatory variables.

Some computer packages are programmed to perform the whole complicated

stepwise regression in response to one simple command. Figure 15.9 shows the

output of a stepwise regression analysis using MINITAB.

15.9 Summary

In this chapter, we examined multiple regression analysis, which describes the

relationship between a dependent variable and two or more independent variables.

Methods of estimating multiple regression (slope) coefficients and their standard

errors were discussed in depth. The residual standard error and the coefficient of

determination were also explored in some detail.

Fig. 15.8 MINITAB output of yi ¼ a + b1x2 + b3x3 + ei
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Both t-tests and F-tests for testing regression relationships were discussed in this
chapter. We investigated the confidence interval for the mean response and the

prediction interval for the individual response. And finally, we saw how multiple

regression analyses can be used in business and economics decision making.

Questions and Problems

1. Compare simple regression to multiple regression. When would you use simple

regression? When would you use multiple regression?

2. In simple regression, the geometric interpretation is to fit a line that best

describes the relationship between x and y. What is the geometric interpretation

of multiple regression when there are two independent variables?

Fig. 15.9 Stepwise regression analysis
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3. Discuss the differences between the assumptions of the simple and the multiple

linear regression models.

4. We can test the significance of a simple regression either by using a t-test to test
the slope coefficient or by using an F-test to test the significance of the model.

How does our approach differ when we are testing the significance of a multiple

regression?

5. Explain how the number of degrees of freedom available for estimating s2 of
the error term is related to the number of variables in the regression.

6. Briefly compare the concepts of simple correlation, partial correlation, and

multiple correlation.

7. Compare the ways the regression coefficients are interpreted in simple regres-

sion and in multiple regression.

8. What is a partial regression coefficient? How do we measure it?

9. What is multicollinearity? Why is it a problem in multiple regression?

10. Suppose an NFL scout is interested in what physical attributes make for a good

quarterback. He collects data on the height and weight of 8 quarterbacks and

their performance ratings for the year. The data are summarized in the follow-

ing table.

Performance rating, y Height (inches), x1 Weight (pounds), x2

94.3 73 210

83.3 69 185

92.3 77 225

72.4 75 215

69.5 71 190

65.8 70 180

101.2 76 212

77.4 73 195

Use the MINITAB program to answer the following questions.

(a) Estimate the regression coefficients a, b1, and b2 and interpret the results.

(b) Compute the t-values for the coefficients and test the significance of

b1 and b2.

11. Using the information given in question 10, compute SSR, SSE, SST, and R2.

Also use an F-test to test the significance of the model.

12. Using the results from question 10, forecast the performance rating for a

quarterback who is 6 ft 1 in. tall and weighs 200 lb. Construct a 95 %

confidence interval around this forecast.

13. The chairperson of the finance department at Rutgers University would like to

find the relationship between undergraduate grade point average (UGPA) and

GMAT scores on graduate grade point average (GGPA). She collects the

following data on six students.
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UGPA, x1 GMAT, x2 GGPA, y

3.45 485 3.62

3.10 500 3.75

3.00 525 3.81

2.95 560 3.88

3.11 575 3.85

2.87 625 3.95

(a) Calculate the regression parameters for a, b1, and b2.
(b) Compute the standard errors of the regression coefficients. Use a t-test to

test the significance of b1 and b2.

14. Suppose we were interested in testing the joint significance of b1 and b2 in

terms of data from question 13. That is, the null hypothesis is H0: b1 ¼ b2 ¼ 0.

(a) Explain how we would conduct such a test.

(b) Test the joint significance of b1 and b2.

15. Use the data and results from question 13 to construct 90 % confidence

intervals for b1 and b2.
16. Suppose a student has a 3.85 undergraduate GPA and a GMAT score of 575.

(a) Forecast this student’s graduate GPA.

(b) Construct a 90 % confidence interval for this forecast. Use Eqs. 15.30 and

15.33.

17. Suppose a labor economist is interested in the effect of experience and educa-

tion on income. He obtains the following regression.

^
INCOME ¼ 24; 000þ 1; 000ðEXPERÞ þ 500ðEDUCÞ

where

INCOME ¼ income measured in dollars

EXPER ¼ years of experience

EDUC ¼ years of education

Interpret the regression coefficients for EXPER and EDUC.

18. Suppose you calculate sb1 ¼ 325 and sb2 ¼ 285 , and you know that 50

observations were used to estimate the model. Test the significance of the

regression coefficients in question 17.

19. An agent for Decade 100 Real Estate Company is interested in developing a

model that explains the value of a piece of real estate. She collects data on the

following variables:
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Number of bedrooms Sales price

Number of bathrooms Age of house

Miles from main highway Size of lot

(a) Which variables should be the independent variables?

(b) Write down a multiple regression equation that might be of interest to this

realtor, and explain to her what signs to expect for the regression

coefficients and how to interpret the regression coefficients.

(c) Explain the usefulness of this model.

(d) Will employing confidence intervals for forecasted values be useful in this

analysis? Explain.

20. Suppose you estimate a regression using 20 observations and 16 independent

variables. You compute R2 to be .98. Explain why R2 may not be an appropriate

measure of the goodness of fit. Can you think of a better one?

21. Suppose a travel consultant is interested in the relationship between people’s

incomes and the amount of money they spend for vacations. He chooses to

estimate the regression

EðVACÞ ¼ aþ b1ðWSALÞ þ b2ðMSALÞ

where

VAC ¼ dollars spent on vacation

WSAL ¼ weekly salary

MSAL ¼ monthly salary

Do you think he will encounter any difficulties in estimating this model?

22. Thomas Chen, an education professor, is interested in the relationship among

final exam scores, midterm exam scores, and hours studied for the final. He

collects the following data.

Final exam score, y Midterm exam score, x1 Hours studied, x2

75 74 5

83 89 8

72 65 9

88 92 4

95 90 10

(a) Estimate the regression coefficients for a, b1, and b2.
(b) Compute the estimated R2 and of the adjusted R2.

23. Using the data and your results from question 22, test the individual signifi-

cance of b1 and b2. Also construct a 99 % confidence interval for b1 and b2.
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24. Using the data and your results from question 22, forecast the final exam score

for a student who scored 97 on the midterm and studied 61
2
h for the final.

Construct a 90 % confidence interval for this forecast.

25. In multiple regression, we can test the significance of the individual regression

coefficients by using a t-test, or we can test the joint significance of the

coefficients by using an F-test. Is it possible for the t-tests to be significant

while the F-test is insignificant? Explain.
26. An economist at the National Academy of Movie Theater Owners wants to

estimate the demand for movie tickets. He chooses to estimate the equation.

QTt ¼ aþ b1PTt þ b2ðGNPtÞ þ et

where

QTt ¼ quantity of movie tickets purchased in year t
PTt ¼ average price of movie tickets in year t
GNPt ¼ gross national product in year t (in billions of dollars)

What signs do you expect for the coefficients on price and GNP to have?

Use MINITAB to answer questions 27–33.

27. Suppose the economist of question 26 collects the following data.

Year QT PT GNP

1986 1,000 $7.00 1,000

1987 1,100 7.25 1,250

1988 1,200 6.75 1,175

1989 1,300 6.50 1,800

1990 1,400 6.50 2,000

1991 1,500 6.25 2,250

(a) Estimate the demand for movie tickets.

(b) Do the coefficients carry the correct signs?

(c) If you were going to use a t-test to test the significance of b1 and b2, should
you use a one-tailed or a two-tailed test?

(d) Use a t-test to test the significance of b1 and b2.

28. Use your results from question 27 to compute R2 and �R
2
. Also use an F-test to

test the joint significance of the regression.

29. Construct 95 % confidence intervals for the coefficients b1 and b2 from the

regression in question 27.

30. Suppose you have obtained the following 1992 and 1993 forecasts of GNP and

ticket prices.
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Year GNP (in billions of dollars) Prices

1992 2,572 7.25

1993 3,000 8.00

(a) Forecast the quantity of tickets sold for 1992 and 1993.

(b) Construct 90 % confidence intervals for these forecasts. What information

do these confidence intervals provide?

31. Suppose the economist in question 26 is interested in estimating the price and

income elasticity of demand for movie tickets. He can do this by taking the

natural logarithms of QT, PT, and GNP and reestimating the multiple regres-

sion. Using the data from question 27, estimate the price and income elasticity

for movie tickets and interpret your results.

32. Use a t-test to test the significance of the estimated elasticities.

33. Use an F-test to test the joint significance of the price and income elasticity.

Use MINITAB to answer questions 34–37.

34. An investment analyst is interested in developing an equation to forecast the

earnings per share of a company. He collects the following data for five

companies.

Company EPS Sales in $ Advertising expense in $ Cost in $

1 1.00 100 80 50

2 2.00 175 120 28

3 1.50 89 72 30

4 3.00 225 175 20

5 3.25 300 240 25

(a) Formulate a suitable regression model to explain EPS.

(b) Are there any variables you may want to omit from the regression? If so,

why?

35. Suppose the analyst of question 34 decides on the following regression:

EPS ¼ aþ b1ðSALESÞ þ b2ðCOSTÞ þ e

(a) Estimate the intercept and slope coefficients.

(b) Use an F-test to test the joint significance of the slope coefficients.

(c) Compute the standard error for a, b1, and b2, and use a t-test to test their

significance.

36. Construct 90 % confidence intervals for a, b1, and b2, using the results from

question 35.
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37. Forecast the EPS for a company with $400 in sales and a cost of $65. Construct

a 99 % confidence interval for this forecast. Use Eqs. 15.30 and 15.33.

38. You estimate a regression using a computer package that generates the follow-

ing output.

Coefficient Estimate Standard error

Intercept 12.53 6.54

X1 �9.37 5.25

X2 14.75 4.36

X3 .27 .09

(a) Compute the t-values for the coefficients.
(b) Say the sample used to estimate the regression consisted of 27

observations. Are the coefficients significant?

39. Use the foregoing information to construct 95 % confidence intervals for the

parameters.

40. Buford Lightfoot, a stock market analyst, is interested in finding a model to

describe the returns for different stocks. He estimates the following regression:

Rit ¼ aþ b1Rm;t þ b2Ii;t þ et

where

Rm,t ¼ return on the S&P 500 in month t
Ri,t ¼ return on stock i in month t
Ii,t ¼ index for stock i’s industry in month t

The results of this regression are

Coefficient Estimate Standard error

Intercept �3.45 2.32

Rm 1.32 .65

Ii �.32 .10

Interpret the results of the regression and compute the t-values for the

coefficients.

41. Construct a 90 % confidence interval for the parameter estimates from question

40. Assume n ¼ 30.

42. Say you know that the return on the S&P 500 will be 3 % next month and that

the industry index next month will be 2. Forecast stock i’s return.
43. Suppose you fit the model

y ¼ aþ b1x1 þ b2x2 þ b3x1x2 þ b4x
2
1 þ b5x

2
2 þ e
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using 35 data points and obtain SSE¼ .56 and R2¼ .85. Test the null hypothesis

that all bs are equal to zero against the alternative hypothesis that at least one of
the bs is nonzero. Conduct this test at the 95 % confidence level.

44. Again consider question 43. Examine SSE and R2, and explain whether the

model provides a good fit.

45. Suppose you estimate the model

z ¼ aþ b1x1 þ b2x2 þ e

using 25 observations and obtain

Sðzi � ẑiÞ2 ¼ 2:45 and Sðzi � �zÞ2 ¼ 3:65

Compute R2. Does the model provide a good fit?

46. Explain why, given the same independent variables, the confidence interval for

the mean value of y is always narrower than the corresponding confidence

interval for any other value of y.
47. You are given the following information:

Cov (y, x1) ¼ 65, Mean of y ¼ 80

Var (x1) ¼ 4.5 S(x1 � x1)
2 ¼ 40

Var (x2) ¼ 4.2 S(x2 � x2)
2 ¼ 35

Cov (x1, x2) ¼ 3.2 Se ¼ 48

Var (y) ¼ 2,500 n ¼ 30

Cov (y, x2) ¼ 3.8 Mean of x1 ¼ 7

Mean of x2 ¼ 6

(a) Compute the least-squares estimate for intercept and slopes

(b) Compute the t-values for slopes b1 and b2

48. Use the data from question 47 to compute

(a) R2

(b) Adjusted R2

(c) F statistics

49. Use the data of question 47 and the answers of questions 47 and 48 to predict

y if x1 ¼ 7.5 and x2 ¼ 6.5. In addition, please also calculate 95% confidence

interval and 95 % prediction interval.

50. The admissions officer at Poindexter U. would like to determine the effect of

high school GPA and SAT scores on undergraduate GPA. He collects the

following data on six students.
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HSGPA, x1 SAT, x2 UGPA, y

2.6 585 2.02

2.9 525 2.75

3.0 475 3.10

2.8 620 2.95

3.1 525 3.25

3.87 650 3.95

(a) Calculate the regression parameters for a, b1, and b2.
(b) Compute the standard errors of the regression coefficients. Use a t-test to

test the significance of b1 and b2.

51. Suppose we are interested in testing the joint significance of b1 and b2. That is,
the null hypothesis is H0: b1 ¼ b2 ¼ 0. Test the joint significance of b1 and b1.

52. Use the data and results from question 50 to construct 90 % confidence

intervals for b1 and b2.
53. Suppose a student with a 3.85 high school GPA and an SAT score of 555

applies for admission to Poindexter U.

(a) Forecast this student’s undergraduate GPA.

(b) Construct a 90 % confidence interval for this forecast.

54. You have been hired as an economist for the Federal Reserve Bank of New

York. Your job is to forecast future interest rates. Summarize the theory of the

interest rate, and formulate a mathematical model that can be used to forecast

the interest rate.

55. You have been hired as a consultant for AT&T. Formulate a mathematical

model that could be used to estimate the demand for telephone service.

56. You have been hired as an economist for the Public Utility Commission of

Wisconsin. The agency needs an estimate of the demand for electricity in order

to determine what rates the electric companies can charge. Formulate a mathe-

matical model that can be used to estimate the demand for electricity.

57. Researchers interested in determining the relationship between a firm’s annual

sales and its expenditures on research and development (x1), television adver-

tising (x2), and all other advertising (x3) run a regression analysis of 23 firms in

the same industry. The results are

ŷ ¼ �2:3þ 5:8x1 þ 4:2x2 þ 7:4x3

ð1:20Þ ð1:31Þ ð1:56Þ

The quantities in parentheses are the standard errors of the net regression

coefficients. The standard error of estimate Sy.123 is 124. The standard deviation
of the dependent variable Sy is 325.
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(a) Interpret the net regression coefficient b1.
(b) Test, at the 1 % level of significance, whether each of the net regression

coefficients is significantly different from zero.

(c) What is the expected effect when highly correlated independent variables

are included in a multiple regression equation?

(d) Calculate the coefficient of multiple correlation and the coefficient of

multiple determination.

(e) Estimate the average annual sales for a firm that has research and develop-

ment expenditures of $6 million, television advertising expenditures of $10

million, and all other advertising expenditures of $7 million.

58. A statistician is interested in using product price and the amount of advertising

to predict the sales of a product. Several combinations of price and advertising

are tried, with the following results. (Sales are given in ten thousands of dollars,

advertising in thousands of dollars.)

Sales, y (ten thousands of dollars) 12 8 9 14 6 11 10 8

Price, x1 4 4 5 5 6 6 7 7

Advertising, x2 (thousands of dollars) 3 0 5 7 3 8 6 8

Determine the estimated multiple regression line and the value of r2.
59. Use the following equation to answer parts (a) through (d).

ŷ ¼ �1:67þ 2:46x1 � 5:48x2

(a) What is the meaning of the numbers �1.67, 2.46, and �5.48?

(b) Graph the relationship between ŷ and x1 for x2 ¼ 10.

(c) Graph the relationship between ŷ and x1 for x2 ¼ 20.

(d) What is the difference between the lines you graphed in parts (b) and (c)?

60. An economist states that wages should be inversely related to the rate of

unemployment and should be positively related to prices. Test these claims at

the .10 Type I error level, using the following data in a multiple regression

specification. Report a p-value (the significance) for each coefficient.

Average dollar wage 266 255 235 220 207 189 175

Unemployment rate 9.7 7.6 7.1 5.8 6.1 7.1 7.7

Price index 289 272 246 217 195 181 170

Average dollar wage 163 154 145 136 127 120

Unemployment rate 8.5 5.6 4.9 5.6 5.9 4.9

Price index 161 147 133 125 121 116

61. How are simple and multiple regression similar? How are they different?

62. The closing prices of six stocks on the last day of last month seem to be quite

highly correlated with their latest reported earnings per share figures and with

the percentage of earnings growth they experienced in the past year. The figures

are given in the accompanying table. Use Eq. 13.6 or a computer to show that

the regression equation is ŷ ¼ .72 + 5.94x1 + 1.08x2.
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Closing price per share, y Latest earnings per share, x1 Percentage earnings growth, x2

$10 $1.50 3

18 2.00 10

22 2.00 8

30 2.50 6

30 3.00 10

40 7.00 �1

63. A regression equation was found to be ŷ ¼ 1.5 + .2x1 + 3.1x2. R
2 for this

equation was .95. The values of x1 ranged from �10 to 15 and those of x2 from
�20 to �50. Which of the following statements are true?

(a) Variable x2 is more strongly correlated with y than is x1 because its

regression coefficient is larger.

(b) When x1 ¼ 0 and x2 ¼ 0, the predicted value of y is 1.5, and this value has

legitimate physical meaning because the data values for x1 and x2 span

zero.

(c) A very high proportion of the squared error of prediction incurred by using

�y as the predictor can be eliminated by using the regression in making

predictions.

64. A regression equation was found to be ŷ ¼ 10 + 14x1 � 7x2. Which of the

following statements are true?

(a) A 1-unit increase in x1 causes y to increase by 14 units.

(b) Variable y is more highly correlated with x1 than with x2 because the

coefficient of x1 is positive.
(c) If the value of x2 is large enough, negative predictions of y will be obtained.

65. A regression analysis has two independent variables (x1 and x2).

(a) What does it mean if x1 and x2 are independent of each other? In that case,

what is the correlation between them?

(b) Is saying that x1 and x2 are independent variables the same as saying that

they are independent of each other? Explain.

Use the return information for 3-month T-bills, the NYSE Index, Chrysler,

Ford, and GM for the 3-year period from January 1985 through December 1987

on Chap. 18 (pages 960–962). Suppose of interest now is to establish the

relationship between NYSE Index and the other four variables based on the

result of the stepwise regression method. Problems 66 to 69 are based on the

following output from MINITAB.

Stepwise Regression:

NYSE Index versus T-Bill, Chrysler, Ford, GM

Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.15

Response is NYSE Index on 4 predictors, with N ¼ 36
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Step 1 2 3 4

Constant �0.0029835 �0.0003357 0.0028444 �0.0498685

Ford 0.526 0.307 0.216 0.243

T-value 9.10 3.43 2.03 2.29

P-value 0.000 0.002 0.051 0.029

Chrysler 0.207 0.178 0.150

T-value 3.02 2.54 2.11

P-value 0.005 0.016 0.043

GM 0.16 0.18

T-value 1.51 1.66

P-value 0.140 0.107

T-bill 10.1

T-value 1.48

P-value 0.149

S 0.0328 0.0295 0.0289 0.0284

R-Sq 70.89 77.17 78.70 80.10

R-Sq(adj) 70.03 75.79 76.70 77.54

Mallows Cp 13.4 5.6 5.2 5.0

66. (a) Which explanatory variable enters the model first? What is the

corresponding R2?

(b) Which explanatory variable enters the model last? What is the

corresponding C?
67. Write down the estimated regression equation and the adjusted R2 from the

results of Step 3 and 4, respectively.

68. At a ¼ .05, do an F-test for the significance of the regression at Step 3.

69. At a ¼ .05, do an F-test for the significance of the regression at Step 2.

70. For the return data with NYSE Index being explained by Ford and Chrysler,

suppose we expect the returns for Ford and Chrysler are 0.0229 and 0.0337,

respectively. Forecast the return for NYSE and construct a 95 % prediction

interval for it.

Appendix 1: Derivation of the Sampling Variance

of the Least-Squares Slope Estimations

Using the definition of the simple correlation coefficient given in Eq. 13.24 in Chap. 13,

we can obtain the correlation coefficient between x1 an x2 as

r ¼
Pn
i¼1

ðx1i � �x1Þðx2i � �x2Þ
C1C2

(15.35)

where
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C1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðx1i � �x1Þ2
s

(15.36a)

C2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðx2i � �x2Þ2
s

(15.36b)

Substituting 15A.1, 15A.2a, and 15A.2b into Eq. 15.7 yields

b1 ¼
C2
2

Pn
i¼1

ðx1i � �x1Þðy0iÞ
� �

� rC1C2

Pn
i¼1

ðx2i � �x2Þðy0iÞ
� �

C2
1C

2
2 � r2C2

1C
2
2

¼
Xn
i¼1

ðx1i � �x1Þðy0iÞ � ðrC1=C2Þðx2i � �x2Þðy0iÞ
ð1� r2ÞC2

1

� �

¼
Xn
i¼1

ðx1i � �x1Þ � ðrC1=C2Þðx2i � �x2Þ
ð1� r2ÞC2

1

� �
y0i ð15:37Þ

Substituting

Xn
i¼1

ðx1i � �x1Þy0i ¼
Xn
i¼1

ðx1i � �xiÞyi

and

Xn
i¼1

ðx2i � �x2Þy0i ¼
Xn
i¼1

ðx2i � �x2Þyi

into Eq. 15.37, and letting the coefficient of yi equal B1i, we obtain

b1 ¼
Xn
i¼1

B1iyi (15.38)

Similarly,

b2 ¼
Xn
i¼1

ðx2i � �x2Þ � rC2

C1
ðx1i � �xiÞ

ð1� r2ÞC2
2

 !
yi

¼
Xn
i¼1

B2iyi ð15:39Þ
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Substituting Eq. 15.2 into Eqs. 15.38 and 15.39, we get

b1 ¼ a
Xn
i¼1

B1i þ b1
Xn
i¼1

B1ix1i þ b2
Xn
i¼1

B1ix2i þ
Xn
i¼1

B1iei

and

b2 ¼ a
Xn
i¼1

B2i þ b1
Xn
i¼1

B2ix1i þ b2
Xn
i¼1

B2ix2i þ
Xn
i¼1

B2iei

It can easily be shown that Sn
i¼1B1i ¼ 0; Sn

i¼1B2i ¼ 0; Sn
i¼1B1ix1i ¼ 1;

Sn
i¼1B2ix2i ¼ 1; Sn

i¼1B2ix1i ¼ 0 , and Sn
i¼1B1ix2i ¼ 0 . Therefore, these two

equations imply that

b1 � Eðb1Þ ¼ b1 � b1 ¼
Xn
i¼1

B1iei (15.40)

and

b2 � Eðb2Þ ¼ b2 � b2 ¼
Xn
i¼1

B2iei (15.41)

From Eq. 15.40, we obtain

Varðb1Þ ¼ E
Xn
i¼1

B1iei

 !2
2
4

3
5� E

Xn
i¼1

B1iei

 !" #2

¼
Xn
j¼1

Xn
j¼1

B1iB1jEðeiejÞ �
Xn
i¼1

B1i

 !2

½EðeiÞ�2 ¼ s2e
Xn
i¼1

B2
1i ð15:42Þ

In Eq. 15.8, the last equality holds because E(ei) ¼ 0 and E(eiej) ¼ 0 when i 6¼ j.
From the definition of B1i in Eq. 15.38, we have

B2
1i ¼

ðx1i � �x1Þ2 þ r2C2
1=C

2
2ðx2i � �x2Þ2 � 2rðC1=C2Þðx1i � �x1Þðx2i � �x2Þ

ð1� r2Þ2C4
1

(15.43)

And from Eqs. 15.43, 15.35, 15.36a, and 15.36b,
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Xn
i¼1

B2
1i ¼

C2
i þ r2 C2

1=C
2
2

� �
C2
2

� �� 2r C1=C2ð Þ r1C1C2ð Þ
1� r2ð Þ2C4

1

¼ C2
1 1� 2r þ r2½ �
1� r2ð Þ2=C4

1

¼ 1

1� r2ð ÞC2
1

(15.44)

Substituting Eq. 15.44 into Eq. 15.42 yields

Varðb1Þ ¼ s2e

ð1� r2ÞPn
i¼1

ðx1i � �x1Þ2
: (15.45)

Similarly, it can be proved that

Varðb2Þ ¼ s2e

ð1� r2ÞPn
i¼1

ðx2i � �x2Þ2
: (15.46)

Equations 15.45 and 15.46 are Eqs. 15.23 and 15.24, respectively.

If the correlation coefficient between x1 and x2—that is, r is equal to zero, then

Var(b1) and Var(b2) reduce to

Varðb1Þ ¼ s2ePn
i¼1

ðx1i � �x1Þ2
and Varðb2Þ ¼ s2ePn

i¼1

ðx2i � �x2Þ2

This implies that the sample variance of multiple regression slopes reduces to a

simple regression case, as indicated in Eqs. 14.1 and 14.2.

Appendix 2: Derivation of Equation 15.30

From Eq. 15.27, we have

ŷnþ1 ¼ aþ b1x1;nþ1 þ b2x2;nþ1

¼ �yþ b1ðx1;nþ1 � �x1Þ þ b2ðx2;nþ1 � �x2Þ ð15:47Þ
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Hence, we obtain

Varðŷnþ1Þ ¼ Var½�yþ b1ðx1;nþ1 � �x1Þ þ b2ðx2;nþ1 � �x2Þ�
¼ Varð�yÞ þ Var½b1ðx1;nþ1 � �x1Þ þ Var½b2ðx2;nþ1 � �x2Þ�
þ 2Cov½b1ðx1;nþ1 � �x1Þ; b2ðx1;nþ1 � �x2Þ�

¼ s22
n
þ ðx1;nþ1 � �x1Þ2Varðb1Þ þ ðx2;nþ1 � �x2Þ2Varðb2Þ

þ 2ðx1;nþ1 � �x1Þðx2;nþ1 � �x2ÞCovðb1;b2Þ ð15:48Þ

From Eqs. 15.40 and 15.41 in Appendix 1, we can show that є

Covðb1; b2Þ ¼ Eðb1 � b1Þðb2 � b2Þ

¼
Xn
i¼1

Xn
j¼1

B1iB2jEðeiejÞ ð15:49Þ

Because E(eiej) ¼ 0 when i 6¼ j, Eq. 15.49 reduces to

Covðb1; b2Þ ¼ s2e
Xn
j¼1

B1iB2i (15.50)

where B1i and B2i are defined in Eqs. 15.38 and 15.39. It can be shown that

Xn
i¼1

B1iB2i ¼ �r

ð1� r2ÞC1C2

(15.51)

and substituting Eq. 15.51 into Eq. 15.50 yields

Covðb1; b2Þ ¼ �rs2e

ð1� r2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðx1;i � �x1Þ2
Pn
i¼1

ðx2;i� �x2Þ2
s (15.52)

Substituting Eqs. 15.40, 15.44, and 15.51 into Eq. 15.48, we have

Varðynþ1Þ ¼ 1

n
þ ðx1;nþ1 � �x1Þ2

ð1� r2ÞPn
i¼1

ðx1;i � �x2Þ2
þ ðx2;nþ1 � �x2Þ2

ð1� r2ÞPn
i¼1

ðx2;i � �x2Þ2

0
BB@

� 2ðx1;nþ1 � �x1Þðx2;nþ1 � �x2Þr

ð1� r2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðx1;i � �x1Þ2
Pn
i¼1

ðx2;i � �x2Þ2
s

1
CCCCA

(15.53)

This is Eq. 15.30.
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16.1 Introduction

In Chaps. 13, 14, and 15, we discussed in some detail the technique of regression

analysis and its applications. The main objectives in fitting a regression equation are

(1) to estimate the regression coefficients and related parameters and (2) to predict the

value of the dependent variable in terms of that of the independent variable (or

variables). Several alternative specifications are possible in this kind of applied

regression analysis, and a number of problems may occur.

In this chapter, we examine some of the problems associated with applying the

multiple regression model. We also explore such related topics as lagged dependent

variables and nonlinear regressions. Problems with the error term—specifically,

violations of the assumptions of the regression model that were cited in Chaps. 14

and 15—can arise when we are running a regression. In this chapter, we discuss the

detection of these problems, which include errors that are correlated and errors whose

means and variance are not constant. Another problem we may encounter is a high

correlation between independent variables. This problem can increase the value of

standard errors and reduce the t statistics of the parameters, leading to incorrect

inferences in hypothesis testing.

Other topics we address in this chapter include specification bias and model

building. We also show how a nonlinear functional form can be transformed into a

linear regression analysis. In some cases, for example, both independent and depen-

dent variables can be transformed by using logarithms, and the nonlinear relationship

then becomes a linear relationship. Furthermore, a regression can have a lagged

dependent variable as one of the independent variables when there is a relationship

between previous observations in a time series and the value in the present period.

In addition, regression with dummy and interaction variables is discussed in detail.

Finally, the effect of alternative business strategies is investigated.

16.2 Multicollinearity

16.2.1 Definition and Effect

The termmulticollinearity refers to the effect, on the precision of regression parameter

estimates, of two or more of the independent variables being highly correlated.

For example, multicollinearity would be a problem if we were studying the cross-

sectional relationship by regressing price per share against dividend per share and

retained earnings per share, as discussed in Application 15.3 in Chap. 15. Because

dividend per share and retained earnings per share are highly correlated, the precision

of the least-squares estimated regression coefficient might be affected.

If a set of independent variables is perfectly correlated, the least-squares approach

cannot be used to estimate the regression coefficients: the normal equations are not

solvable. If independent variables move together, it is impossible to distinguish the

separate effects of these variables on y. Perfect multicollinearity would occur,
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for example, if the following independent variables were specified to model the

expenditures on food for a cross section of individuals.

x1 ¼ average income in dollars

x2 ¼ average income in cents

The variables x1 and x2 are perfectly correlated because x2¼ 100 times x1 for each
of the individuals in the data set. If both of these variableswere included in a regression

model, least-squares results would not be obtainable because the two variables

measure the same thing. Remember that the regression coefficient of x2 is a slope

term thatmeasures the change in the dependent variable that is associatedwith a 1-unit

change in x2, other variables being held constant. But here it is impossible to keep the

rest of the variables constant, because x1 changes in the same direction and with the

same magnitude as x2. The solution? Simply delete one of the variables and run

the regression again.

Unfortunately, most of the problems researchers face are not so easy to detect.

Observations are more likely to be highly correlated than perfectly correlated. In such
cases, least-squares estimates can be obtained but are difficult to interpret.

For example, suppose national income in period t, yt is modeled with independent

variables x1t¼ output of manufactured goods in period t and x2t¼ output of durable

goods in period t as defined in Eq. 16.1:

yt ¼ aþ b1x1t þ b2x2t þ et (16.1)

If the simple correlation r between x1t and x2t is .90, it can be concluded that the

explanatory values of the two variables overlap considerably, probably because

they are highly correlated and tend to measure the same thing.

In Eq. 16.1, the first coefficient of two highly correlated variables is the slope term

b1, which measures the change in the national income that is due to a 1-unit change in

the output of manufactured goods, the output of durable goods being held constant.

When one of the correlated variables changes, the other is likely to change in the same

direction and with approximately the samemagnitude. However, the standard error of

the coefficient will tend to be great, leading to lower t-values for the coefficient.1 This
increase in the standard error results from the fact that estimates are sensitive to any

changes in observations or model specification.

From Eqs. 15.23 and 15.24, the sample variances of b1 and b2 (S
2
b1

and S2b2 ) of

Eq. 16.1 can be defined as

1 If x1 and x2 are highly correlated, then the regression can give weight to either x1 or x2, and it

won’t matter. Sampling idiosyncracies determine the choice. Hence, the large sampling error

occurs.
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S2b1 ¼
S2e

ð1� r2ÞPn
t¼1

ðx1t � �x1Þ2
(16.2)

S2b2 ¼
S2e

ð1� r2ÞPn
t¼1

ðx2t � �x2Þ2
(16.3)

where S2e is equal to sample variance of et; x1 and x2 are means of x1t and x2t,
respectively; and r is the correlation coefficient between x1t and x2t. In Eqs. 16.2 and

16.3, the factor (1 � r2) can be used to measure the impact of collinearity on S2b1 and

S2b2 . If x1t and x2t are uncorrelated, then (1 � r2) ¼ 1. If x1t and x2t are perfectly

correlated (r2¼ 1), then (1� r2)¼ 0. In this case, the denominators of bothS2b1 andS
2
b2

vanish, and both S2b1 and S
2
b2
equal infinity. In our national-income example, r2 ¼ .81

and (1� r2)¼ .19. Therefore, the precision of estimatedS2b1 andS
2
b2
is greatly affected

by the collinearity between x1t and x2t.

16.2.2 Rules of Thumb in Determining the Degree of Collinearity

Several rules of thumb are helpful when we are testing for multicollinearity. These

rules involve inspection of the correlation between the independent variables. First,

multicollinearity is a problem if the correlation coefficient between any two indepen-

dent variables is greater than .80 or .90. If there are more than two independent

variables in a regression, as indicated in Eq. 16.4, then the simple correlation coeffi-

cient between any two independent variables is not sufficient to detect the existence of

multicollinearity of a regression:

yi ¼ aþ b1x1i þ b2x2i þ b3x3i þ 2i (16.4)

Wemust also consider that simple correlation coefficients generally fail to take into

account the possible correlation between any one independent variable and all others

taken as a group.Therefore, it is customary to regress each of the independent variables

against all others and to note whether any of the resulting R2-values are near 1. Using

Eq. 16.4 as an example, we can define three multiple regressions in terms of x1i, x2i,
and x3i:

x1i ¼ a0 þ a1x2i þ a2x3i (16.5a)

x2i ¼ b0 þ b1x1i þ b2x3i (16.5b)

x3i ¼ c0 þ c1x1i þ c2x2i (16.5c)
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R2
i ði ¼ 1; 2; 3Þof these three regressions represents the coefficient of determination for

the ith independent variable. It can be used to determine whether multicollinearity

plagues Eq. 16.4.

In sum, to check formulticollinearity, we first calculate the three simple correlation

coefficients between x1 and x2 (r12), between x1 and x3 (r13), and between x2 and x3
(r23). Then we find R2 associated with Eqs. 16.5a, 16.5b, and 16.5c. In a sense,

these two methods are similar, but the first is easier to understand. This estimated

information can be used to determine the existence of multicollinearity.

One way to measure collinearity is to use the measurements of (1 � R2) indicated

in Eq. 16.2 or 16.3 to construct a variance inflationary factor (VIF) for each

explanatory variable in Eq. 16.4:

VIFi ¼ 1

1� R2
i

(16.6)

where R2
i is as defined in Eqs. 16.5a, b, and c. If there are only two independent

variables, Ri is merely the correlation coefficient. If a set of independent variables is

uncorrelated, then VIFi is equal to 1. If R2
i approaches 1, both VIF and the standard

deviations of the slopes (S2b1 and S
2
b2
) approach infinity. Researchers have used VIFi¼

10 as a critical-value rule of thumb to determine whether too much correlation exists

between the ith independent variable and other independent variables.2 The

corresponding Ri values of VIFi at least 10 is now illustrated. Thus, 1/(1 � R2
i ) � 10

implies 1� R2
i � .1. This implies that .95� Ri � 1 or�1� Ri � �.95.

Example 16.1 Analyzing the Determination of Price per Share. Data on dividend

per share (DPS), retained earnings (RE) per share, and price per share (PPS) from2007

to 2009 for the 30 firms employed to compile the Dow Jones Industrial Average are

used to estimate Eq. 16.7. Regression results are shown in Table 16.1

PPSi;t ¼ aþ bðREi;tÞ þ cðDPSi;tÞ þ ei;t (16.7)

where PPSi,t, DPSi,t, and REi,t represent price per share, dividends per share, and

retained earnings per share for the ith firm in the tth year, respectively. This cross-

sectional model states that the price per share is a function of dividends per share and

retained earnings per share. The results of the regressions seem to be satisfactory with

all of the independent variables and appear significant at the 5% level (F.05,2,27¼ 3.35,

fromTable A6). However, we must examine the correlations between DPSi,t and REi,t

to determine whether multicollinearity may be a problem.

The 2009 regression results indicated in column (4) of Table 16.1 are used to

determine the degree of multicollinearity. To do this analysis, we assemble the

2 See Marquardt, D.W.: You should standardize the prediction variables in your regression models,

discussion of A Critique of Some Ridge Regression Methods, by G. Smith and F. Campbell, J. Am.

Stat. Assoc. 75, 87–91 (l980).
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correlation coefficients among PPS, DPS, and RE in Table 16.2. We note from the

correlation matrix that each variable is perfectly correlated with itself; hence, we

find three entries equal to 1.000 along the diagonal of the table. It is the red-colored

entry that is of crucial importance. Substituting r1,2¼ .6351 into Eq. 16.6, we obtain

VIF1 ¼ 1/[1 � (.6351)2] ¼ 1.67603. Because 1.67603 is much smaller than 10, we

conclude that the degree of collinearity for this regression is relatively unimportant.

16.3 Heteroscedasticity

16.3.1 Definition and Concept

Heteroscedasticity arises when the variances of the error terms of a regression model

are not constant over different sample observations. For example, heteroscedasticity

would be a problem in a study of sales for a cross section of firms in an industry,

because the error terms for large firms would be likely to have larger variances than

those for small firms. In other words, the high volatility in sales for larger firms might

pose problems for the researcher. The probable error terms are shown in Fig. 16.1. This

figure indicates that the magnitude of error terms is a function of firm size.

For example, it may be the case that s2i<s2j<s2k .
Another commonly cited example of heteroscedasticity is the relationship

between family expenditures and income. High-income families are likely to exhibit

a higher variance in spending than lower-income families. Figure 16.2 shows a

reasonable plot of level of income versus level of expenditures. This figure indicates

that expenditures for consumers with lower income have smaller error terms.

Heteroscedasticity poses a problem when we are estimating parameters in the

regression model, because the least-squares estimation procedure places more weight

Table 16.1 Regression

results of Eq. 16.7
(1) (2)

2007

(3)

2008

(4)

2009

Constant 19.413 14.536 10.465

(3.46) (3.26) (2.23)

RE 8.14 6.389 7.605

(6.20) (7.79) (5.57)

DPS 5.47 2.208 10.581

(1.15) (0.61) (2.45)

R2 .70 .77 .77

F-statistic 31.33 44.46 45.53

The t-values are indicated in parentheses

Table 16.2 A simple

correlation matrix
Variable PPS, y RE, x1 DPS, x2

PPS, y ry,y ¼ 1.000 ry,1 ¼ .8488 ry,2 ¼ .7132

RE, x1 — r1,1 ¼ 1.000 r1,2 ¼ .6351

DPS, x2 — — r2,2 ¼ 1.000
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Fig. 16.1 A possible relationship between sales and firm size

Fig. 16.2 Cross-sectional relationship between expenditure and income
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on observations that have large errors and variances. Thus, the regression line is

adjusted to give a good fit for the large-variance portion of the observations but largely

ignores the small-variance part of the data. The result is that the variances of the

estimates do not have a minimum variance.

16.3.2 Evaluating the Existence of Heteroscedasticity

The easiest way to check for heteroscedasticity is to look at a plot of the residuals

against the independent variables or the expected values. To estimate the error term,

we first compute the predicted dependent value by the regression model

ŷi ¼ aþ b1x1i þ b2x2i þ . . .þ bkxki (16.8)

Then, we calculate the error term by taking the actual value for yi and subtracting

the predicted value: ei ¼ yi � ŷi. In practice, we generally plot the residuals range ei
against independent variables on a series of graphs or examine the predicted values ŷi.
If the residuals appear to be random and the width of the scatter diagram seems

constant throughout the data—that is, if no pattern is apparent—then no heterosce-

dasticity is present.

A somewhat more involved evaluation for the existence of heteroscedasticity

consists of the following steps:

1. Run a standard regression.

2. Calculate the residuals, ei ¼ ŷi � yi.
3. Run a regression using the square of the residuals as the dependent variable and

the estimated dependent variable ŷi as the independent variable.
4. Estimate nR2, where n is the sample size andR2 is the coefficient of determination.

5. Use the w2 statistic with 1 degree of freedom to test whether nR2 is significantly

different from zero.

The use of this method to analyze the existence of heteroscedasticity is

illustrated in the following example.

Example 16.2 Residual Heteroscedasticity Analysis for Price per Share. The

regression results for Eq. 16.7 were run for the 30 Dow Jones industrials for

2007, 2008, and 2009. These results appear in Table 16.1.

To check for heteroscedasticity, we calculate the residuals of the regression and

plot them against the predicted values ŷi,t. Residuals (e) and predicted PPS values (ŷ)
for all three years are listed in Table 16.3. Figure 16.3 shows the plots of residuals

from the least-squares regression against ŷi,t for 2007. Similar plots for 2008 and

2009 are given in Figs. 16.4 and 16.5. As can be seen in all three plots, there are

patterns in the residuals. The pattern for 2007 is stronger than those for 2008 and

2009. We might conclude that the residuals plotted against predicted values are not

random and do violate the standard assumptions of the regression model.
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In addition to making this visual inspection of residuals, we must run a regression

with the squared error terms as the dependent variable and ŷi as the independent

variable. Let’s look at the results for 2009:

e2i;t ¼ cþ f ŷi;t þ residuals (16.9)

Using e2i,t and ŷi,t for 2009 as presented in Table 16.4, we estimate Eq. 16.9 and

obtain

e2i;2009 ¼ �39:1519þ 4:0942ŷi;2009 R2 ¼ :1758

ðt ¼ 2:44Þ

Table 16.3 Residuals (e) and predicted PPS values (ŷ) for 30 Dow Jones Industrials

Year 2007 2008 2009

Observations ŷ e ŷ e ŷ e

1 47.38 �10.83 47.38 �10.83 4.84 11.28

2 50.77 1.25 50.77 1.25 29.87 10.65

3 43.87 �0.18 43.87 �0.18 39.90 �6.77

4 70.69 16.77 70.69 16.77 42.62 11.51

5 71.79 0.77 71.79 0.77 39.27 17.72

6 63.99 �20.34 63.99 �20.34 33.19 8.48

7 103.62 �10.29 103.62 �10.29 78.61 �1.62

8 47.93 13.44 47.93 13.44 50.25 6.75

9 40.07 �5.68 40.07 �5.68 27.71 �0.25

10 54.17 �10.08 54.17 �10.08 42.50 �8.83

11 86.80 6.89 86.80 6.89 58.37 9.82

12 43.52 �6.45 43.52 �6.45 26.98 �11.85

13 43.62 8.06 43.62 8.06 38.26 9.20

14 45.89 �5.15 45.89 �5.15 22.40 �2.00

15 31.64 �4.98 31.64 �4.98 110.18 20.72

16 87.18 20.92 87.18 20.92 64.73 �0.32

17 58.14 8.56 58.14 8.56 63.87 �1.43

18 43.57 15.34 43.57 15.34 69.67 �33.13

19 37.93 20.18 37.93 20.18 66.73 15.94

20 76.30 8.02 76.30 8.02 8.68 6.38

21 59.80 �18.54 59.80 �18.54 28.28 �10.09

22 35.44 �12.71 35.44 �12.71 56.41 �5.31

23 52.62 8.57 52.62 8.57 43.94 �15.91

24 43.05 �1.49 43.05 �1.49 58.47 10.94

25 61.45 15.09 61.45 15.09 28.15 �4.38

26 45.92 1.77 45.92 1.77 18.45 3.56

27 33.26 �3.79 33.26 �3.79 72.00 �22.14

28 29.26 �0.35 29.26 �0.35 38.25 �11.07

29 82.88 �29.08 82.88 �29.08 46.07 1.05

30 38.34 �5.71 38.34 �5.71 30.41 �8.88
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Because there are n ¼ 30 sets of observations, the test is based on nR2 ¼ (30)

(.1758) ¼ 5.2740. From Table A5 in Appendix A, we find that for a test at the 5 %

level, w21,0.05¼3.84. Therefore, we can conclude that the residuals in the regression

of price per share on dividends per share and retained earnings per share do not have

the same variance, and the null hypothesis should be rejected. One way to deal with

this problem is to use a two-stage procedure to estimate the parameters of regression

models. In the first stage, we estimate the parameters of Eq. 16.7 and the predicted

value ŷi,t of the dependent variable. Predicted values of yi,t for 2009 are listed in

Table 16.4. In the second stage, we estimate a transformed Eq. 16.7:

Fig. 16.3 Plots of residuals against the predicted PPS values, ŷ (2007)

Fig. 16.4 Plots of residuals against the predicted PPS values, ŷ (2008)
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Fig. 16.5 Plots of residuals against the predicted PPS values, ŷ (2009)

Table 16.4 e2i,t and ŷi,t for a
test of heteroscedasticity for

Eq. 16.7 in terms of 2009 data

ŷi,2009 ei,2009 e2i,2009

4.84 11.28 127.3021

29.87 10.65 113.3852

39.90 �6.77 45.88082

42.62 11.51 132.5925

39.27 17.72 314.0423

33.19 8.48 71.99254

78.61 �1.62 2.638521

50.25 6.75 45.51427

27.71 �0.25 0.060564

42.50 �8.83 77.9001

58.37 9.82 96.33882

26.98 �11.85 140.305

38.26 9.20 84.5601

22.40 �2.00 3.99501

110.18 20.72 429.3093

64.73 �0.32 0.102427

63.87 �1.43 2.045569

69.67 �33.13 1097.628

66.73 15.94 254.0671

8.68 6.38 40.66668

28.28 �10.09 101.8989

56.41 �5.31 28.23771

43.94 �15.91 253.1638

58.47 10.94 119.5953

28.15 �4.38 19.20552

18.45 3.56 12.66711

72.00 �22.14 490.2615

38.25 �11.07 122.6317

46.07 1.05 1.100324

30.41 �8.88 78.80692
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yi;t
ŷi;t

¼ a
1

ŷi;t
þ b

x1i;t
ŷi;t

þ c
x2i;t
ŷi;t

þ e0i;t (16.70)

where e0i;t is an error term that approximates constant variance. Using 2009 data,

we estimate Eq. 16.70 and its results:

yi;2
^
009

ŷi;2009
¼ 17:333

1

ŷi;2009

 !
þ 4:553

x1i;2009
ŷi;2009

þ 10:316
x2i;2009
ŷi;2009

ð9:87Þ ð4:15Þ ð2:92Þ

From the t-values indicated in parentheses, we find that the t-values for second-
stage estimates are more efficient than those for the one-stage estimates indicated in

Table 16.1.

16.4 Autocorrelation

16.4.1 Basic Concept

One of the assumptions of the regression model is that the errors are uncorrelated; in

other words, the correlation between error terms is equal to zero.We are quite likely to

encounter only uncorrelated errors when dealing with cross-sectional data. However,

autocorrelation—the correlation of an error term and a lagged version of itself—is

likely to occurwith time-series data because errorsmade in a particular time period are

readily carried over to future time periods. For example, an underestimate of the GDP

in one year can generate more underestimates in future time periods.

Figure 16.6 shows examples of autocorrelation. The error in period t is graphed
on the y axis, the error in period t � 1 on the x axis. If no autocorrelation exists, the

plot has no trend, as shown in Fig. 16.6a. The upward slope of the diagram in

Figure 16.6b signals positive autocorrelation. This implies that a large error in

period t � 1 will be associated with a large error in period t. Negative

Fig. 16.6 (a) No autocorrelation (b) Positive autocorrelation (c) Negative autocorrelation
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autocorrelation is apparent in Fig. 16.6c, where high errors in the previous period

tend to result in low errors in the next period. Again, if plotting reveals a pattern, the

regression assumption that the errors are random and not correlated through time

has been violated.

16.4.2 The Durbin–Watson Statistic

Detecting autocorrelation by inspecting errors is difficult; thus, the Durbin–Watson
statistic (DW) is generally used to detect first-order autocorrelation. First-order
autocorrelation occurs when correlation between errors is separated by one period.
Here, we will discuss both first-order autocorrelation and the Durbin–Watson (DW)

statistic in detail.

If et and et�1 are residual terms in periods t and t� 1, respectively, then first-order

correlation r1 for these error terms is defined as follows:

r1 ¼
Pn
t¼2

et � �eð Þ et�1 � �eð Þ
Pn
t¼1

et � �eð Þ2
(16.10)

where �e ¼Pn
t¼1

et=n.

The DW statistic can be used to test the null hypothesis that no first-order

autocorrelation exists among the residuals of a regression. The statistic, calculated

from the residuals, is

DW ¼
Pn
t¼2

ðet � et�1Þ2

Pn
t¼1

e2t

(16.11)

where et and et�1 are error terms in periods t and t� 1, respectively. This statistic is

calculated by summing the difference in the error terms separated by one period

and dividing by the squared error term. Figure 16.7 shows that the DW statistic falls

between zero and 4. If no autocorrelation exists, DW equals 2, because the difference

in the error terms is directly proportional to the error term in period t.

Fig. 16.7 Critical values of the Durbin–Watson statistic
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Positive autocorrelation exists if DW is low, because the difference between the

error term in period t and in period t� 1 tends to be very small. Negatively correlated

errors are closer to 4 because the difference in the error terms tends to be large.

We can use the DW statistics listed in the Table A9 of Appendix A to determine

whether the null hypothesis is accepted or rejected. These tables give two values, dL
and dU, for different sample sizes n and number of independent variables k. If theDW
statistic falls between dU and 4� dU, the null hypothesis that the correlation between
lagged errors is equal to zero is accepted. If the statistic is less than dL, that null
hypothesis is rejected in favor of positive autocorrelation. Negative autocorrelation

exists if the DW is greater than 4� dL. Did you notice that there is an indeterminate

zone in which no judgment can be made? This zone is between dL and dU or 4� dU
and 4� dL. (The probability level of dU, dL depends on whether we are performing a

one- or a two-tailed test.)

Example 16.3 How to Detect First-Order Autocorrelation. Annual rates of return

for both JNJ and MRK and market rates of return during 1990 to 2009, which can be

found in Table 4.15 in Chap. 4, are used to estimate the market model of Eq. 16.12 for

JNJ and MRK:

Ri;t ¼ ai þ biRm;t þ ei;t (16.12)

where Ri,t is the rate of return for the ith firm in period t, Rm,t is the market rate of

return, ai and bi are regression parameters, and ei,t is the error term.

MINITAB outputs of the estimated market models for JNJ andMRK are presented

in Figs. 16.8 and 16.9. These two outputs indicate that the beta coefficients bi for JNJ
and MRK are .639 and .7886, respectively. In addition, we see that the DW statistics

for JNJ and MRK are 2.5128 and 2.45845. Remember, this test determines whether

there is evidence of autocorrelation among the residuals. In this example, there are

one independent variable and 20 observations. Looking these values up in Table A9 of

Regression Analysis: JNJ versus S&P

The regression equation is

JNJ = 0.0273 + 0.639 S&P

Predictor     Coef SE Coef     T     P    VIF

Constant   0.02726  0.07227 0.38  0.710

S&P         0.6386   0.4472  1.43  0.170  1.000

S = 0.294804   R-Sq = 10.2%   R-Sq(adj) = 5.2%

Analysis of Variance

Fig. 16.8 MINITAB output of market model for JNJ

806 16 Other Topics in Applied Regression Analysis

http://dx.doi.org/10.1007/978-1-4614-5897-5_4


Appendix A for a level of significance of 5 % (under a two-tailed test, a ¼ 10 %), we

find that dL is 1.20 and dU is 1.41. Because both DW values are greater than dU and

less than 4 �dU, we conclude that there is no evidence of autocorrelation in either

regression.

Dividend per share (DPSt) and earnings per share (EPSt) for both JNJ and MRK

during 1990–2009 (presented in Table 2.3 in Chap. 2) are used to estimate the

regression specified in Eq. 16.13:

Source     DF       SS      MS     F     P

Regression     1 0.17720  0.17720  2.04  0.170

Residual Error 18  1.56437  0.08691

Total     19  1.74158

Obs S&P JNJ Fit SE Fit Residual St Resid

1   0.036  0.2301 0.0505 0.0673 0.1796     0.63

2 0.124 0.6168 0.1066 0.0709   0.5102  1.78

3 0.105 -0.5513   0.0944 0.0682   -0.6457  -2.25R

4 0.086  -0.0916   0.0821  0.0665   -0.1736     -0.60

5 0.020 0.2449 0.0400 0.0691  0.2049  0.71

6   0.177   0.5846 0.1400 0.0823 0.4445   1.57

7   0.238  -0.4098  0.1791  0.1011  -0.5888    -2.13R

8   0.303   0.3408   0.2205  0.1246 0.1203   0.45

9   0.243   0.2877   0.1823  0.1029  0.1054   0.38

10  0.223   0.1242 0.1695 0.0962 -0.0453  -0.16

11   0.075   0.1397   0.0753 0.0660 0.0644     0.22

12  -0.163  -0.4312  -0.0770 0.1220  -0.3542   -1.32

13  -0.168  -0.0780  -0.0798 0.1236 0.0018  0.01

14  -0.029  -0.0212   0.0088 0.0785  -0.0300    -0.11

15   0.171  0.2486   0.1367 0.0810 0.1119 0.39

16   0.068 -0.0325   0.0705 0.0659 -0.1030   -0.36

17   0.086  0.1225   0.0819 0.0665    0.0406   0.14

18 0.127 0.0346 0.1085  0.0713 -0.0739   -0.26

19 -0.174  -0.0764 -0.0839 0.1261 0.0075 0.03

20 -0.223 0.1085 -0.1151 0.1452 0.2236 0.87

R denotes an observation with a large standardized residual.

Durbin-Watson statistic = 2.51280

Fig. 16.8 (continued)
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Regression Analysis: MRK versus S&P 

The regression equation is

MRK = 0.035 + 0.789 S&P

Predictor     Coef   SE Coef   T        P       VIF

Constant   0.0348   0.1027  0.34  0.738

S&P          0.7886   0.6353  1.24  0.230  1.000

S = 0.418787   R-Sq = 7.9%   R-Sq(adj) = 2.8%

Analysis of Variance

Source              DF     SS        MS       F        P

Regression         1   0.2702  0.2702  1.54  0.230

Residual Error   18  3.1569  0.1754

Total                  19  3.4271

Obs  S&P      MRK        Fit      SE Fit   Residual  St Resid

1   0.036   0.1854   0.0635  0.0955    0.1219      0.30

2   0.124   0.8786   0.1328  0.1007    0.7458      1.83

3   0.105  -0.7338   0.1178  0.0969   -0.8516     -2.09R

4   0.086  -0.1830   0.1025  0.0945   -0.2855     -0.70

5   0.020   0.1424   0.0506  0.0981    0.0919      0.23

6   0.177    0.7539    0.1741  0.1170    0.5798      1.44

7   0.238   0.2353   0.2223  0.1437    0.0130      0.03

8   0.303   0.3525   0.2735  0.1770     0.0791      0.21

9   0.243   0.4097   0.2263  0.1461    0.1834      0.47

10   0.223   -0.5371   0.2105  0.1366   -0.7476     -1.89

11   0.075   0.4119   0.0942  0.0938    0.3177      0.78

Fig. 16.9 MINITAB output market model for MRK
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DPSi;t ¼ ai þ biEPSi;t þ ei;t (16.13)

where DPSi,t and EPSi,t are dividend per share and earnings per share for the ith firm
in period t.

MINITAB output for estimated Eq. 16.13 is presented in Figs. 16.10 and 16.11.

From Figs. 16.10 and 16.11, we know that DPS is highly correlated with EPS for

both JNJ and MRK. And the DW statistics are 1.77395 and 1.06240, respectively.

In a two-tailed test, we look up in the Durbin–Watson table critical values for a

5 % level of significance, the number of observations 20, and the number of

independent variables 1. The critical values are 1.20 and 1.41. Remember that if

the DW falls between the two values, the test is inconclusive. If it is less than 1.20,

positive autocorrelation is a problem. The DW of JNJ is larger than 1.20, and the

DW of MRK is below that value, so we conclude that positive autocorrelation exists

among the residuals in the regression model of Eq. 16.13 for MRK.

When results of Eq. 16.13 for MRK, as indicated in Eq. 16.11, imply that the

residuals of regressionmight be autocorrelated, least-squares estimates and inferences

based on them can be very unreliable. Under these circumstances, a modifiedmodel of

Eq. 16.13 can be used to adjust for the autocorrelation:

DPSi;t � r̂DPSi;t�1 ¼ aið1� r̂Þ þ biðEPSi;t � r̂EPSi;t�1Þ þ e0i;t (16.13a)

where e0i;t ¼ ei,t � r̂ ei,t�1, r̂ ¼ r1 ¼ 1� DW/2 ¼ estimated first-order autocorrela-

tion. MINITAB output in terms of Eq. 16.13a for MRK is presented in Fig. 16.12.

From this figure, we find that

12  -0.163  -0.3574  -0.0939  0.1733   -0.2635     -0.69

13  -0.168  -0.0133  -0.0974  0.1756     0.0841      0.22

14  -0.029  -0.1583   0.0120  0.1114   -0.1703     -0.42

15    0.171 -0.2720   0.1700  0.1150   -0.4419     -1.10

16   0.068   0.0369   0.0882  0.0936   -0.0513     -0.13

17   0.086   0.4183   0.1023  0.0944     0.3161      0.77

18   0.127   0.3674   0.1352  0.1013    0.2323      0.57

19  -0.174  -0.4508  -0.1025  0.1791   -0.3483     -0.92

20  -0.223    0.2541 -0.1410  0.2062    0.3950      1.08

R denotes an observation with a large standardized residual.

Durbin-Watson statistic = 2.45845

Fig. 16.9 (continued)
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DPSi;t � r̂DPSi;t�1 ¼ :387þ :233ðEPSi;t � r̂EPSi;t�1Þ
ðt ¼ 5:26Þ DW ¼ 1:39

This result implies that the DW statistic has improved substantially.

16.5 Model Specification and Specification Bias (Optional)

A specification error is the error associated with either omitting a relevant variable

from a regression model or including an irrelevant variable in it. When specifying a

regression model (i.e., when determining which variables should be included in the

model), we must make two decisions: which variables to include and what functional
form—a log form, a squared term, or a lagged term—to use.

DData Display 

Row  EPS(JNJ)  lagEPS(JNJ)  DPS(JNJ)  lagDPS(JNJ)

1      3.38         3.19      1.29         1.10

2      4.30         3.38      1.51         1.29

3      1.54         4.30      0.88         1.51

4      2.71         1.54      1.00     0.88

5      3.08         2.71      1.12         1.00

6      3.65         3.08      1.25         1.12

7      2.12         3.65      0.72         1.25

8      2.41         2.12      0.83         0.72

9      2.23         2.41      0.95         0.83

10      2.94         2.23      1.04         0.95

11      3.39         2.94      1.22         1.04

12      1.83         3.39      0.66         1.22

13      2.16         1.83      0.78         0.66

14      2.39         2.16      0.91         0.78

15 2.83         2.39      1.08         0.91

16      3.46         2.83      1.26         1.08

17      3.73         3.46      1.44         1.26

18      3.63         3.73      1.60         1.44

19      4.57         3.63      1.77         1.60

20      4.40         4.57      1.91         1.77

Fig. 16.10 MINITAB output of Eq. 16.13 for JNJ
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There is often a theoretical basis for selecting the independent variables for a

regression model. For example, economic theory states that the demand for a product

is a function of price, cost of substitute goods, income, and consumer tastes.

In practice, of course, it may be impossible for the researcher to obtain information

on all of these items, so proxies for the variables are used instead. Because it may be

difficult to obtain data on the price of related goods, for example, some type of price

index can be used as a proxy.

Model building is more of an art than science. The researcher tries to include all

the variables that affect the outcome of the dependent variable, but no specification

can perfectly determine the movements and attributes of the variable in question.

The best the researcher can do is search for variables that seem consistent with

underlying theory, practice, and common sense. Model specification is of great

importance: if significant explanatory variables are left out, the model’s worth is

RRegression Analysis: DPS(JNJ) versus EPS(JNJ) 

The regression equation is

DPS(JNJ) = 0.019 + 0.376 EPS(JNJ)

Predictor     Coef  SE Coef      T      P    VIF

Constant    0.0186   0.1025   0.18  0.858

EPS(JNJ)   0.37612  0.03251  11.57  0.000  1.000   

S = 0.123214   R-Sq = 88.1%   R-Sq(adj) = 87.5%

Analysis of Variance

Source          DF      SS      MS       F      P

Regression       1  2.0320  2.0320  133.84  0.000

Residual Error  18  0.2733  0.0152

Total         19  2.3052

Unusual Observations

Obs  EPS(JNJ)  DPS(JNJ)     Fit  SE Fit  Residual  St Resid

3      1.54    0.8769  0.5978  0.0559    0.2791      2.54R

20      4.40    1.9099  1.6735  0.0522    0.2364      2.12R

R denotes an observation with a large standardized residual.

Durbin-Watson statistic = 1.77395

Fig. 16.10 (continued)
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compromised even though least-squares estimates of the parameters are obtained.

Here again, good judgment and reliance on theory must guide the researcher.

Example 16.4 Impact of the Omission of Variables on Estimated Regression
Coefficients. Suppose we omit retained earnings (RE) from Eq. 16.7 in Example

16.1 for the year 2009. The equation becomes

DData Display 

Row  EPS(MRK)  lagEPS(MRK)  DPS(MRK)  lagDPS(MRK)

1      4.51         3.74      2.00         1.70

2      5.39         4.51      2.34         2.00

3      1.70         5.39      0.95         2.34

4      1.86         1.70      1.06         0.95

5      2.35         1.86      1.15         1.06

6      2.63         2.35      1.24         1.15   

7      3.12         2.63      1.44         1.24

8      3.74         3.12      1.70         1.44

9      4.30         3.74      1.93         1.70

10      2.45         4.30      1.09         1.93

11      2.90         2.45      1.23         1.09

12      3.14         2.90      1.36         1.23

13      3.14         3.14      1.41         1.36

14      3.03         3.14      1.45         1.41

15      2.61         3.03      1.50         1.45

16      2.10         2.61      1.52         1.50

17      2.03         2.10      1.52         1.52

18      1.49         2.03      1.51         1.52

19      3.64         1.49      1.52         1.51

20      5.68         3.64      1.58         1.52

Regression Analysis: DPS(MRK) versus EPS(MRK) 

The regression equation is

DPS(MRK) = 0.821 + 0.211 EPS(MRK)

Fig. 16.11 MINITAB output of Eq. 16.13 for MRK
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PPSi ¼ a0 þ b0DPSi þ e0i (16.70)

where

b0 ¼ CovðPPS;DPSÞ
VarðDPSÞ ¼ 12:3582

0:47814
¼ 25:8462

a0 ¼ PPS� b̂0DPS ¼ 44:6360� ð25:8462Þð1:2145Þ ¼ 13:2458

By regressing REi on DPSi, we obtain the auxiliary regression:

REi ¼ b0 þ b1DPSi (16.14)

Predictor     Coef  SE Coef     T      P    VIF

Constant    0.8209   0.1509  5.44  0.000

EPS(MRK)   0.21133  0.04585  4.61  0.000  1.000

S = 0.232678   R-Sq = 54.1%   R-Sq(adj) = 51.6%

Analysis of Variance

Source          DF      SS      MS      F      P

Regression       1  1.1503  1.1503  21.25  0.000

Residual Error  18  0.9745  0.0541

Total           19  2.1248

Unusual Observations

Obs  EPS(MRK)  DPS(MRK)     Fit  SE Fit  Residual  St Resid

20      5.68    1.5836  2.0213  0.1296    -0.4377        -2.27RX        

R denotes an observation with a large standardized residual.

X denotes an observation whose X value gives it large leverage.

Durbin-Watson statistic = 1.06240

Fig. 16.11 (continued)
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DData Display 

Row  EPS(MRK)  DPS(MRK)  LolagEPS(MRK)  LolagDPS(MRK)  dif(EPS_MRK))

1      4.51      2.00        1.75130        0.79812        2.75870

2      5.39      2.34        2.11560        0.93606        3.27440

3      1.70      0.95        2.52771        1.09641       -0.82771

4      1.86      1.06        0.79565        0.44386        1.06435

5      2.35      1.15        0.87109        0.49824        1.47891

6      2.63      1.24        1.10092        0.53746        1.52908

7      3.12      1.44        1.23162        0.58272        1.88838

8      3.74      1.70        1.46125        0.67519        2.27875

9      4.30      1.93      1.75192        0.79537        2.54808

10      2.45      1.09        2.01569        0.90372        0.43431

11      2.90      1.23        1.14841        0.51261        1.75159

12      3.14      1.36        1.35901        0.57887        1.78099

13      3.14      1.41        1.46997        0.63712        1.67003

14      3.03      1.45        1.47197        0.65970        1.55803

15      2.61      1.50        1.42130        0.67928        1.18870

16      2.10      1.52        1.22409        0.70099        0.87591

17      2.03      1.52        0.98671        0.71132        1.04329

18      1.49      1.51        0.95011        0.71116        0.53989

19      3.64      1.52        0.70022        0.70776        2.93978

20      5.68      1.58        1.70632        0.71029        3.97368

Row  dif(DPS_MRK)

1       1.19859

2       1.40270

3      -0.14961

4       0.61893

5       0.64821

6       0.70555

7       0.85753

8       1.02142

9 1.13237

10       0.18972

11       0.72218

Fig. 16.12 MINITAB output of Eq. 16.13a for MRK
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RRegression Analysis: dif(DPS_MRK) versus s dif(EPS_MRK))

The regression equation is

dif(DPS_MRK) = 0.387 + 0.233 dif(EPS_MRK))

Predictor         Coef  SE Coef     T      P    VIF

Constant       0.38673  0.08842  4.37  0.000

dif(EPS_MRK))  0.23318  0.04433  5.26  0.000  1.000

S = 0.210802   R-Sq= 60.6%   R-Sq(adj) = 58.4%

Analysis of Variance

Source          DF      SS      MS      F      P
Regression       1  1.2296  1.2296  27.67  0.000
Residual Error  18  0.7999  0.0444

Total           19  2.0295

12       0.78017

13       0.77008

14       0.78928

15       0.81600

16       0.81633

17       0.80566

18       0.79858

19       0.80736

20       0.87329

Unusual Observations

Obs  dif(EPS_MRK))  dif(DPS_MRK)     Fit  SE Fit  Residual  St Resid

3          -0.83       -0.1496  0.1937  0.1210   -0.3433     -1.99 X

20           3.97        0.8733  1.3133  0.1118   -0.4400     -2.46R

R denotes an observation with a large standardized residual.

X denotes an observation whose X value gives it large leverage.

Durbin-Watson statistic = 1.39124

Fig. 16.12 (continued)
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where

b1 ¼ CovðRE;DPSÞ
VarðDPSÞ ¼ 0:9597

0:47814
¼ 2:0072

b ¼ RE� bDPS ¼ 2:8033� ð2:0072Þð1:2145Þ ¼ 0:3656

From the specification analysis of Theil (1971),3 the relationship among b, b0, c,
and b1 can be defined as

b0 ¼ cþ b1b (16.15)

where b0 and b1 are estimated in accordance with Eqs. 16.70 and 16.14, respectively,
and b and c are estimated by using Eq. 16.7. Substituting into the foregoing

equation the estimated b and c (from Table 16.1), b1 ¼ 2.0072, and b0 ¼ 25.8462,

we obtain

25:8462 ffi 10:581þ ð2:0072Þð7:605Þ ¼ 25:8454

This implies that the misspecification error when REi is omitted from Eq. 16.7 is

15.2644 (25.8454–10.581) for b.

16.6 Nonlinear Models (Optional)

Thus far, we have assumed that there is a linear relationship between the dependent

variable and a set of independent variables. This assumption yields a convenient

approximation of the phenomena being modeled. However, there are times when

other functional forms of the independent variable provide a better depiction of reality.

In this section, we discuss nonlinearmodels, including quadratic and log-linearmodels.

We will continue to use the same regression concepts, such as hypothesis testing and

confidence intervals, in our analysis.

16.6.1 The Quadratic Model

A quadratic model takes the form

yi ¼ a0 þ a1xi þ a2x
2
i þ ei (16.16)

3 Theil, H.: Principles of Econometrics, Wiley, New York (1971).
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The only difference between this model and the models previously specified is the

squared term in thismodel. The square of the variable is calculated and used as another

independent variable, and a regression on the data is run. The quadratic term traces a

parabola, as shown in Fig. 16.13. If the parameter for the squared term has a positive

value, the parabola opens upward. A negative parameter implies a downward-opening

parabola. The linearmodel uses only the part of the data that is available to fit the curve.

An example is shown in Fig. 16.14. Here, only the upward-sloping part is used by the

linear model to fit the data.

Again, we must exercise judgment and common sense to determine whether a

quadratic term is needed in the model. We may have some idea how the dependent

variable will react to changes in the independent variable, and graphs of the data

may give us more information to help us specify the model. A quadratic model

might be of interest in a production function where output of a product is the

dependent variable and an input is the independent variable. The law of diminishing
returns states that after a certain point, the marginal product of the variable inputs

declines when additional units of a variable input are added to fixed inputs. In

agriculture, for example, doubling the fertilizer doubles the output of corn at low

levels of fertilizer use. However, further increases in fertilizer increase the output

only marginally. If a regression were to be run, the sign of the quadratic term would

be negative, reflecting the fact that the output increases at a decreasing rate. It

should be noted that having x and x2 in the regression introduces a certain degree of
collinearity.

Fig. 16.13 Two different types of nonlinear curve

16.6 Nonlinear Models (Optional) 817



Example 16.5 A Nonlinear Market Model. Suppose the following regression model

is run:

Ri;t ¼ aþ b1Rm;t þ b2R
2
m;t þ ei;t (16.17)

where Ri,t is the rate of return on Johnson & Johnson stock during 1970 to 2009 and

Rm,t is the rate of return on the market index (the S&P 500). The estimated results

we get when we add a quadratic term for Rm,t are

R̂i;t ¼ :0233þ 0:865Rm;t � 1:928R2
m;t; R2 ¼ :124

ð0:34Þ ð2:29Þ ð�0:93Þ

where t-values are in parentheses. From Table A4 in Appendix A, by interpolation,

we find that t.025,38 ¼ 2.025. Because only 2.29 is larger than 2.025, we conclude

that estimated b1 is significantly different from 0 at a ¼ .05, but estimated b2 is

insignificant. These results imply that R2
m;t should not be included in the regression

because the t-value associated with this quadratic term is statistically insignificant

at a ¼ .05.

Fig. 16.14 Linear curve versus nonlinear curve
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16.6.2 The Log-Linear and the Log–Log-Linear Model

A common transformed linear model involves the e-based logarithmic transformation

of variables such as the one shown in Eq. 16.184:

logeYi ¼ aþ b1ðlogex1iÞ þ b2ðlogex2iÞ þ � � � þ bnðlogexniÞ þ Ei (16.18)

The log–log linear model is a linear model with logarithmic transformation

made on both dependent and independent variables. If only the dependent variable

is being lognormally transformed, then we call this linear model a log-linear model.
As in the quadratic case, a visual inspection of the data may help determine whether

a model should be specified in a log form.

The coefficients of a log–log-linear model are elasticity coefficients, which give

the percentage change in the dependent variable that is due to a 1 % change in the

independent variable. For example, suppose the demand relationship

Q ¼ aPb
1X

cPd
2

has been specified, where Q is quantity purchased, P1 is price, X is income, P2 is the

price of a competing good, and a, b, c, and d are parameters. Then b, c, and d are

elasticities of P1, X, and P2, respectively.
5

Example 16.6 The Relationship Between Cylinder Volume and Miles per Gallon.
To study the relationship between cylinder volume and miles per gallon, we use the

1986 EPA mileage guide which gives the engine size and estimated city miles per

gallon ratings for 11 gasoline-fueled subcompact and compact cars. That data, as given

in Table 16.5, was used to estimate the following regression relationships:

yi ¼ aþ bxi þ ei (16.19a)

logeyi ¼ a0 þ b0logexi þ e0i (16.19b)

4 Equation 16.18 is obtained by taking the logarithmic transformation of a model of the equation

Yi ¼ a0x
b1
1t x

b2
2t � � � xbnnt and letting a ¼ log a0.

5 For example, the elasticity coefficient, ep, is defined as (dQ/dP1)(P1/Q). The first derivative is

dQ=dP1 ¼ abPb�1
1 XcPd

2

Substituting Q and this equation into the definition of ep, we obtain

ep ¼ abPb�1
1 XcPd

2

P1

aPb
1X

cPd
2

� �
¼ b
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where

yi ¼ miles per gallon for ith kind of car

Xi ¼ cylinder volume for ith kind of car

Equation 16.19a is a linear model, and Eq. 16.19b is a log–log-linear model that

is similar to Eq. 16.18. MINITAB regression outputs for Eqs. 16.19a and 16.19b are

presented in Figs. 16.15 and 16.16, respectively. From these outputs, the estimates

regression lines are

ŷi ¼ 37:677� :07241xi R2 ¼ :634
ð12:95Þ ð�3:95Þ

log ŷi ¼ 6:2020� :60133 log xi R2 ¼ :841
ð14:61Þ ð�6:90Þ

t-values are in parentheses.

FromTableA4 inAppendixA,wefind t.005,9¼ 3.250.Because all absolute t-values
are larger than 3.250, all estimated parameters are significantly different from 0 at a¼
.01. The bottom portion of Fig. 16.15 presents the scatter diagram of residuals against

the independent variable x, which shows that there are some patterns and, therefore,

heteroscedasticity in the residuals. The scatter diagrampresented in the bottomportion

of Fig. 16.16, however, shows that there is no heteroscedasticity in the residuals of

log–log-linear regression. These results indicate that the logarithmic transformation

will alleviate the heteroscedasticity among residuals. Also note that the R2 of the

log–log-linear model is .841, which is larger than that of the linear model (.634).

Finally, b̂0 ¼ �.60133 implies that with a 1 % increase in cylinder volume, miles per

gallon will decrease by .60133 %.

Table 16.5 Cylinder volume and miles per gallon for 11 different kinds of cars

Car Cylinder volume, x Miles per gallon, y

VW Golf 97 37

Chevy cavalier 173 19

Plymouth horizon 97 31

Pontiac firebird 151 23

Corvette 350 17

Honda accord 119 27

Dodge omni 97 31

Renault alliance 85 35

Olds firenza 173 19

Nissan sentra 97 31

Ford escort 114 32

Source: 1986 Gas Mileage Guide, EPA Fuel Economy Estimates, U.S. Dept. of Energy. Wards

Automotive Yearbook (1986)
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Fig. 16.15 (continued)
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16.7 Lagged Dependent Variables (Optional)

In all the models we have discussed, the dependent variable was a function of

independent variables in period t. However, for time-series data, we often want to

lag the dependent variable by one period to estimate the effect on the variable from a

previous period. The model is

Yt ¼ aþ b1X1t þ b2X2t þ � � � þ bkXkt þ gYt�1 þ Et (16.20)

Here, the dependent variable is a function of the X’s and of the dependent variable
lagged one period.

A regression can be run on the data to estimate the coefficients of Eq. 16.20.

However, our interpretation of these estimated coefficients must be modified to take

into account the long-run effect. The short-run (current) effect is that a 1-unit increase

in Xk leads to a bk-unit increase in Y. This is the usual interpretation of regression

coefficients. The long-run effect of regression coefficients is

bLi ¼ bi
1�g ; i ¼ 1; 2; . . . ; k (16.21)

where bLi represents the long-run coefficient that takes the lagged effect into account
and g is the coefficient associated with the lagged dependent variable as defined in

Eq. 16.20. In a moment, we will offer two examples to show how Eq. 16.21 is

calculated.

Fig. 16.15 MINITAB output of Eq. 16.19a
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Fig. 16.16 MINITAB Output of Eq. 16.19b
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When a lagged dependent variable is used in the regression, the Durbin–Watson

statistic is not a reliable indicator of autocorrelation. Another statistic—the Durbin
H—is used instead. This statistic is

DH ¼ ð1� d=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

1� nV̂ðĝÞ
r

(16.22)

where d is the Durbin–Watson statistic defined in Eq. 16.11 and V̂ðĝÞ is the least-

squares estimate of the variance of the coefficient of the lagged variable.Under the null

hypothesis,H is normally distributed with mean zero and variance 1. Therefore, the Z
statistic of normal distribution can be used to do the test.

Example 16.7 The Relationship Between Dividend per Share and Earnings per
Share. MINITAB outputs of two regressions of Eq. 16.23 for JNJ and MRK for

period 1990–2009 are presented in Figs. 16.17 and 16.18, respectively:

DPSi;t ¼ aþ bEPSi;t þ gDPSi;t�1 þ Ei;t (16.23)

Equation 16.23 is obtained by adding a variable for lagged dividend per share

(DPSt�1) to the right-hand side of Eq. 16.13.

The results shown in Figs. 16.17 and 16.18 indicate that t statistics of the

g coefficient for JNJ and MRK are 3.60 and 0.90, respectively. Therefore, lagged

Fig. 16.16 (continued)
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Regression Analysis: DPS(JNJ) versus EPS(JNJ), lagDPS(JNJ)

The regression equation is
DPS(JNJ) = -0.161 + 0.323 EPS(JNJ) + 0.304 lagDPS(JNJ)

Predictor        Coef  SE     Coef          T         P        VIF
Constant        -0.16118   0.09389    -1.72   0.104
EPS(JNJ)        0.32326   0.02918   11.08   0.000   1.340
lagDPS(JNJ)   0.30374   0.08443     3.60   0.002   1.340

S = 0.0955327   R-Sq = 93.3%   R-Sq(adj) = 92.5%

Analysis of Variance

Source               DF      SS          MS          F           P
Regression          2    2.1501    1.0750   117.79   0.000
Residual Error   17    0.1552    0.0091
Total                  19    2.3052

Source            DF   Seq SS
EPS(JNJ)         1     2.0320
lagDPS(JNJ)    1     0.1181

Obs    EPS(JNJ)    DPS(JNJ)     Fit        SE Fit    Residual   St Resid
  1           3.38          1.2877     1.2653    0.0240     0.0223       0.24
  2           4.30          1.5084     1.6199    0.0386    -0.1116      -1.28
  3           1.54          0.8769     0.7948    0.0698     0.0821       1.26 X
  4           2.71          1.0003     0.9812    0.0278     0.0191       0.21
  5           3.08          1.1155     1.1383    0.0239   -0.0227       -0.25
  6           3.65          1.2546     1.3575    0.0280   -0.1030       -1.13
  7           2.12          0.7157     0.9052    0.0401   -0.1895       -2.19R
  8           2.41          0.8300     0.8352    0.0365   -0.0053       -0.06
  9           2.23          0.9514     0.8118    0.0321    0.1397        1.55
10           2.94          1.0429     1.0782    0.0250   -0.0353       -0.38
11           3.39          1.2163     1.2514    0.0259   -0.0351      -0.38
12           1.83          0.6605     0.7998    0.0453   -0.1394      -1.66
13           2.16          0.7796     0.7377    0.0402    0.0419        0.48 
14           2.39          0.9129     0.8482    0.0331    0.0647       0.72
15           2.83          1.0824     1.0309    0.0263    0.0515       0.56
16           3.46          1.2591     1.2861    0.0257   -0.0270      -0.29
17           3.73          1.4411     1.4270    0.0276    0.0141       0.15
18           3.63          1.6044     1.4500    0.0319    0.1545       1.72
19           4.57          1.7718     1.8034    0.0478   -0.0317      -0.38
20           4.40          1.9099     1.7993    0.0535    0.1106       1.40

R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large leverage.
Durbin-Watson statistic = 1.85326

Fig. 16.17 MINITAB output of Eq. 16.23 for JNJ
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Regression Analysis: DPS(MRK) versus EPS(MRK), lagDPS(MRK)

The regression equation is
DPS(MRK) = 0.630 + 0.203 EPS(MRK) + 0.146 lagDPS(MRK)

Predictor             Coef     SE Coef      T         P        VIF
Constant           0.6297     0.2605     2.42   0.027
EPS(MRK)        0.20315   0.04696   4.33   0.000   1.039
lagDPS(MRK)   0.1463     0.1620     0.90   0.379   1.039

S = 0.233882   R-Sq = 56.2%   R-Sq(adj) = 51.1%

Analysis of Variance

Source               DF      SS           MS          F          P
Regression          2   1.19487   0.59743   10.92   0.001
Residual Error   17   0.92991   0.05470
Total                  19   2.12478

Source            DF   Seq SS
EPS(MRK)        1   1.15028
lagDPS(MRK)   1   0.04459

Obs  EPS(MRK)  DPS(MRK)       Fit        SE Fit   Residual   St Resid
  1         4.51           1.9967       1.7950    0.0869     0.2018       0.93
  2         5.39           2.3388       2.0168    0.1339     0.3220       1.68
  3         1.70           0.9468       1.3172    0.1728    -0.3704      -2.35RX
  4         1.86           1.0628       1.1461    0.1078    -0.0833      -0.40
  5         2.35           1.1465       1.2626    0.0872    -0.1161      -0.54
  6         2.63           1.2430       1.3317    0.0753    -0.0887      -0.40
  7         3.12           1.4403       1.4454    0.0650    -0.0051      -0.02
  8         3.74           1.6966       1.6002    0.0615     0.0964       0.43
  9         4.30           1.9277       1.7514    0.0802     0.1763       0.80
10         2.45           1.0934       1.4094    0.0987    -0.3160      -1.49
11         2.90           1.2348       1.3788    0.0808    -0.1440      -0.66
12         3.14           1.3590       1.4482    0.0660    -0.0892      -0.40
13         3.14           1.4072       1.4664    0.0561    -0.0592      -0.26
14         3.03           1.4490       1.4511    0.0536    -0.0021      -0.01
15         2.61           1.4953       1.3719    0.0568     0.1234       0.54
16         2.10           1.5173       1.2750    0.0704     0.2423       1.09
17         2.03           1.5170       1.2640    0.0733     0.2529       1.14
18         1.49           1.5097       1.1543    0.0927     0.3554       1.66
19         3.64           1.5151       1.5900    0.0581    -0.0749      -0.33
20         5.68           1.5836       2.0052    0.1315    -0.4217      -2.18R

R denotes an observation with a large standardized residual.

X denotes an observation whose X value gives it large leverage.

Durbin-Watson statistic = 1.31920

Fig. 16.18 MINITAB output of Eq. 16.23 for MRK
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dividend per share is important in explaining dividend per share in period t for
only JNJ.

Long-run coefficients (accumulated effect over all future periods) associated

with EPS in terms of Eq. 16.21 are calculated as follows:

:323

1� :304
¼ :4641 long-run coefficient for JNJ

:203

1� :146
¼ :2377 long-run coefficient for MRK

These long-run coefficients imply that a $1.00 increase in EPS will spell a total

increase of $.4641 and $.2377 in DPS for JNJ and MRK, respectively. Total dividend

increases aremuch higher than short-run (current) increases of $.323 and $.203 for JNJ

and MRK.

Example 16.8 Time Aggregation and the Estimation of the Market Model. In

application 14.2 of Chap. 14, we use market model to investigate the relationship

between rates of return for individual securities and market rates of return. The

coefficient of market rates of return in market model is called Beta coefficient,

which is used to determine the degree of nondiversifiable risk of a firm. Cartwright

and Lee (1987)6 used data for heavily and lightly traded firms to evaluate the effects of

temporal aggregation on beta estimates. They indicated the importance of price

adjustment delays in the trading process and found that temporal aggregation has

important effects on the market model. A regression of Eq. 16.24 is used to find the

impact coefficient of temporal aggregation:

Ri;t ¼ ai þ bi1Ri;t�1 þ bi2Rm;t þ Et (16.24)

where Ri,t is the rate of return for the ith firm in period t, Ri,t�1 is the lagged rate of

return for the ith firm,Rm,t is themarket rate of return, and ei,t is the error term. TheBeta
coefficientbi2 is the traditional riskmeasure, and bi2/(1-bi1) is the long-run coefficient
to represent the impact of temporal aggregation on systematic risk measure.

Here, we use the annual rates of return in 1970–2009 for Johnson & Johnson and

Merck as the examples. MINITAB outputs of two regressions of Eq. 16.24 for JNJ

and MRK are presented in Figs. 16.19 and 16.20, respectively.

The results shown in Figs. 16.19 and 16.20 indicate that t statistics of bi1
coefficient for JNJ and MRK are �3.38 and �2.19, respectively. Therefore, lagged

rate of return is important in explaining rate of return in period t for both JNJ

and MRK.

6 See Cartwright, Lee.: Time aggregation and the estimation of the market model: Empirical

evidence. J. Bus. Econ. Stat. 5(1), 131–143 (1987)
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Long-run coefficients associated with annual market rates of return in terms of

Eq. 16.24 are calculated as follows:

:9433

1� ð�0:4514Þ ¼ :6499 long-run coefficient for JNJ

:9542

1� ð�0:3228Þ ¼ :7213 long-run coefficient for MRK

Data Display

Row   Year         JNJ              MRK             S&P         JNJ(lag)     MRK(lag)
  1      1970    -0.681455     -0.105661    -0.149428    0.698039    0.278422
  2      1971     0.735557      0.274854     0.181086    -0.681455   -0.105661
  3      1972     0.329385     -0.272215     0.110998     0.735557    0.274854
  4      1973    -0.132041     -0.080191    -0.016209    0.329385   -0.272215
  5      1974    -0.276278     -0.160629    -0.228800   -0.132041   -0.080191
  6      1975     0.120214      0.064286     0.039952   -0.276278   -0.160629
  7      1976    -0.119259      0.004346     0.183960    0.120214    0.064286
  8      1977     0.001873     -0.162669    -0.037349   -0.119259    0.004346
  9      1978    -0.017184      0.249828    -0.022200    0.001873   -0.162669
10      1979     0.101555      0.097778     0.072797   -0.017184    0.249828
11      1980     0.286313      0.205990     0.153092    0.101555    0.097778
12      1981    -0.619442      0.031377     0.078043    0.286313    0.205990
13      1982     0.362091      0.031582    -0.065131   -0.619442    0.031377
14      1983    -0.155059      0.101627     0.339988    0.362091    0.031582
15      1984    -0.087818      0.074488     0.000312   -0.155059    0.101627
16      1985     0.491250      0.493088     0.164402   -0.087818    0.074488
17      1986     0.272454     -0.080899     0.264933    0.491250    0.493088
18      1987     0.165022     0.300894     0.213633    0.272454    -0.080899
19      1988     0.162139    -0.627023    -0.073354    0.165022     0.300894
20      1989    -0.289582     0.371471     0.214643    0.162139   -0.627023
21      1990     0.230108     0.185441     0.036396   -0.289582    0.371471
22      1991     0.616842     0.878595     0.124301    0.230108    0.185441
23      1992    -0.551293    -0.733803     0.105162    0.616842    0.878595
24      1993    -0.091578    -0.182990     0.085799   -0.551293   -0.733803
25      1994     0.244915     0.142442     0.019960   -0.091578   -0.182990
26      1995     0.584558     0.753915     0.176578    0.244915    0.142442
27      1996    -0.409758     0.235280     0.237724    0.584558    0.753915
28      1997     0.340804     0.352548     0.302655   -0.409758   0.235280
29      1998     0.287688     0.409696     0.242801    0.340804    0.352548
30      1999     0.124207    -0.537078     0.222782    0.287688    0.409696
31      2000     0.139719     0.411867     0.075256    0.124207   -0.537078
32      2001    -0.431191    -0.357447    -0.163282    0.139719    0.411867
33      2002    -0.078010    -0.013313   -0.167680   -0.431191   -0.357447
34      2003    -0.021172    -0.158294   -0.028885   -0.078010   -0.013313
35      2004     0.248595    -0.271964     0.171379   -0.021172   -0.158294
36      2005    -0.032496     0.036942     0.067731    0.248595   -0.271964
37      2006     0.122480     0.418327     0.085510   -0.032496    0.036942
38      2007     0.034602     0.367425     0.127230    0.122480    0.418327
39      2008    -0.076435    -0.450781   -0.174081    0.034602    0.367425
40      2009     0.108473     0.254065    -0.222935   -0.076435   -0.450781

Fig. 16.19 MINITAB output of Eq. 16.24 for JNJ
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Regression Analysis: JNJ versus JNJ(lag), S&P

The regression equation is
JNJ = 0.0159 - 0.451 JNJ(lag) + 0.943 S&P

Predictor      Coef       SE Coef      T         P
Constant    0.01585    0.04818    0.33   0.744
JNJ(lag)    -0.4514     0.1334     -3.38   0.002
S&P           0.9433      0.3078      3.06   0.004

S = 0.274393   R-Sq = 31.4%   R-Sq(adj) = 27.7%

Analysis of Variance

Source               DF        SS           MS         F         P
Regression          2     1.27688   0.63844   8.48   0.001
Residual Error    37    2.78578   0.07529
Total                   39    4.06267

Source     DF    Seq SS
JNJ(lag)    1     0.56965
S&P          1     0.70723
 
Obs   JNJ(lag)      JNJ           Fit        SE Fit     Residual   St Resid
  1       0.698     -0.6815    -0.4402    0.1270      -0.2413      -0.99
  2      -0.681      0.7356     0.4943    0.1208       0.2413       0.98
  3       0.736      0.3294    -0.2115    0.0975       0.5408       2.11R
  4       0.329     -0.1320    -0.1481    0.0650       0.0161       0.06
  5      -0.132     -0.2763    -0.1404    0.0992      -0.1359      -0.53
  6      -0.276      0.1202     0.1782    0.0621      -0.0580      -0.22
  7       0.120     -0.1193     0.1351    0.0554      -0.2544      -0.95
  8      -0.119      0.0019     0.0345    0.0564      -0.0326      -0.12
  9       0.002     -0.0172    -0.0059    0.0513      -0.0113      -0.04
10      -0.017      0.1016     0.0923    0.0449       0.0093       0.03
11       0.102      0.2863     0.1144    0.0502       0.1719       0.64
12       0.286     -0.6194    -0.0398    0.0521     -0.5797      -2.15R
13      -0.619      0.3621     0.2340    0.1010      0.1281       0.50
14       0.362     -0.1551     0.1731    0.0943     -0.3282      -1.27
15      -0.155     -0.0878     0.0861    0.0539     -0.1740      -0.65
16      -0.088      0.4912     0.2106    0.0587      0.2807       1.05
17       0.491      0.2725     0.0440    0.0847      0.2284       0.88
18       0.272      0.1650     0.0944    0.0637      0.0706       0.26
19       0.165      0.1621    -0.1278    0.0651     0.2900        1.09
20       0.162     -0.2896     0.1451    0.0616    -0.4347       -1.63
21      -0.290      0.2301     0.1809    0.0633     0.0492        0.18
22       0.230      0.6168     0.0292    0.0498     0.5876        2.18R
23       0.617     -0.5513    -0.1634    0.0839    -0.3879      -1.48
24      -0.551     -0.0916     0.3456    0.0943    -0.4372      -1.70
25      -0.092      0.2449     0.0760    0.0490     0.1689       0.63
26       0.245      0.5846     0.0719    0.0565     0.5127       1.91
27       0.585     -0.4098    -0.0238    0.0878    -0.3860     -1.48
28      -0.410      0.3408     0.4863    0.1149    -0.1455     -0.58

Fig. 19.19 (continued)
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These long-run coefficients imply that a one-unit change increase in annual

market rates of return will spell a total change increase of .6499 and .7213 in annual

rates of return for JNJ and MRK, respectively.

Example 16.9 Consumption Function Analysis. In this example, a consumption

function is specified with a lagged dependent variable. A consumption function

measures the change in consumption that is attributable to a 1-unit change in income.

If the slope term in the regression for income is .75, for example, individuals tend to

spend 75 cents out of every additional dollar earned. (The slope term is called the

marginal propensity to consume, or MPC.) A regression of Eq. 16.25 is run with

personal consumption (Ct) in the United States from 1962 to 2009 as the dependent

variable and with disposable income (DIt) and personal consumption lagged one

period as the independent variables:

Ct ¼ aþ b1DIt þ b2Ct�1 þ Et (16.25)

The data used to run this regression are listed in Table 16.6, and the results are

presented in Table 16.7. The critical t-value used to do the test is t.005,40 ¼ 2.704.

With a t-value of�2.72, the constant is statistically different from zero. Disposable

income has a coefficient of .487. This implies that individuals will consume about 48.7

cents out of every additional dollar in income. At 5.71, the t statistic is significant at
every level of significance. The lagged consumption variable is also highly significant;

it has a coefficient of .501. If disposable income increases by 1 unit in the current

period, the expected increase in consumption is .487 in the current period, is

.487 � .501¼ .244 the next year, is (.501)2 � .487¼ .122 two years later, and so on.

The total increase onall future consumption in termsofEq. 16.21 is .487/(1–.501)¼ .976.

Note that the long-run coefficient, .976, is much larger than the short-run

coefficient, .487.

29       0.341      0.2877     0.0911    0.0720     0.1966      0.74
30       0.288      0.1242     0.0962    0.0660     0.0281      0.11
31       0.124      0.1397     0.0308    0.0440     0.1089      0.40
32       0.140     -0.4312   -0.2012     0.0861   -0.2300     -0.88
33      -0.431     -0.0780    0.0523     0.0967   -0.1303     -0.51
34      -0.078     -0.0212    0.0238     0.0537   -0.0450     -0.17
35      -0.021      0.2486    0.1871     0.0564    0.0615      0.23
36       0.249     -0.0325   -0.0325     0.0498   -0.0000     -0.00
37      -0.032      0.1225    0.1112     0.0460    0.0113      0.04
38       0.122      0.0346    0.0806     0.0469   -0.0460     -0.17
39       0.035     -0.0764   -0.1640    0.0857     0.0875      0.34
40      -0.076      0.1085   -0.1599    0.0975     0.2684      1.05

R denotes an observation with a large standardized residual.
Durbin-Watson statistic = 2.16451  

Fig. 16.19 (continued)
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Substituting n¼ 48,d¼ .632, andV(b̂2)¼ (.090)2¼ .0081 intoEq. 16.22,weobtain

DH ¼ 1� :632

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48

1� 48ð:0081Þ

s
¼ 6:0616

Regression Analysis: MRK versus MRK(lag), S&P

The regression equation is
MRK = 0.0190 -0.323 MRK(lag) + 0.954 S&P

Predictor      Coef     SE Coef     T        P
Constant    0.01904  0.05497   0.35  0.731
MRK(lag)    -0.3228    0.1475  -2.19  0.035
S&P             0.9542    0.3473    2.75  0.009

S = 0.312749   R-Sq = 22.1%   R-Sq(adj) = 17.8%

Analysis of Variance

Source                DF       SS           MS         F         P
Regression           2    1.02389   0.51195   5.23   0.010
Residual Error    37    3.61904   0.09781
Total                   39    4.64293

Source      DF   Seq SS
MRK(lag)   1    0.28568
S&P           1    0.73822

Obs  MRK(lag)    MRK          Fit       SE Fit   Residual  St Resid
 1        0.278     -0.1057   -0.2134   0.1004     0.1078      0.36
 2       -0.106      0.2749    0.2259   0.0704     0.0489      0.16
 3        0.275     -0.2722    0.0362   0.0588    -0.3084     -1.00
 4       -0.272     -0.0802    0.0914   0.0724    -0.1716     -0.56
 5       -0.080     -0.1606   -0.1734   0.1130     0.0128      0.04
 6       -0.161      0.0643    0.1090   0.0594    -0.0447     -0.15
 7        0.064      0.0043    0.1738   0.0636    -0.1695     -0.55
 8        0.004     -0.1627   -0.0180   0.0613    -0.1447     -0.47
 9       -0.163      0.2498    0.0504   0.0646     0.1995      0.65
10       0.250      0.0978    0.0078   0.0564     0.0899      0.29
11       0.098      0.2060    0.1336   0.0572     0.0724      0.24
12       0.206      0.0314    0.0270   0.0535     0.0044      0.01
13       0.031      0.0316   -0.0532   0.0674     0.0848      0.28
14       0.032      0.1016    0.3333   0.1073    -0.2316     -0.79
15       0.102      0.0745   -0.0135   0.0556     0.0880      0.29
16       0.074      0.4931    0.1519   0.0594     0.3412      1.11
17       0.493     -0.0809    0.1127   0.0974    -0.1936     -0.65
18      -0.081      0.3009    0.2490   0.0764     0.0519      0.17
19       0.301     -0.6270   -0.1481   0.0821    -0.4789    -1.59

Fig. 16.20 MINITAB output of Eq. 16.24 for MRK
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Using Table A3 in Appendix A, we find that DWH ¼ 6.0616 is larger than z¼ 3

(a ¼ .0013). Hence, there is autocorrelation associated with this consumption

function.

To adjust for the impact of autocorrelation, we can use a modified regression

model to estimate the consumption function. It is

Ct � r̂Ct�1 ¼ a 1� r̂ð Þ þ b1 DIt � r̂DIt�1ð Þ þ b2 Ct�1 � r̂Ct�2ð Þ þ E0t (16.25a)

where E0t ¼ Et � r̂Et�1

Plugging the data listed in Table 16.6 and r̂¼ .684 into Eq. 16.25a yields the results

presented in Table 16.8. These results are more appropriate for null hypothesis

testing than are those indicated in Table 16.7.

16.8 Dummy Variables

So far, we have used data that could take on any number of values. In this section,

we will examine an independent variable that can take on either of just two values:

1 and 0. This binary variable is called a dummy variable, and it enables us to

include information that is not quantitative. For example, a regression that models

individuals’ income might include a dummy variable for sex of the worker.

The independent dummy variable for sex could take on the value 1 for a male worker

20      -0.627      0.3715    0.4263   0.1317    -0.0548    -0.19
21       0.371      0.1854   -0.0662   0.0694     0.2516      0.83
22       0.185      0.8786    0.0778   0.0549     0.8008      2.60R
23       0.879     -0.7338   -0.1643   0.1283    -0.5695    -2.00
24      -0.734     -0.1830    0.3378   0.1289    -0.5208    -1.83
25      -0.183      0.1424    0.0972   0.0619     0.0453      0.15
26       0.142      0.7539    0.1415   0.0618     0.6124      2.00
27       0.754      0.2353    0.0025   0.1184     0.2328      0.80
28       0.235      0.3525    0.2319   0.0945     0.1207      0.40
29       0.353      0.4097    0.1369   0.0834     0.2728      0.90
30       0.410     -0.5371    0.0994   0.0830    -0.6364    -2.11R
31      -0.537      0.4119    0.2642   0.1020     0.1476      0.50
32       0.412     -0.3574   -0.2697   0.1144    -0.0877     -0.30
33      -0.357     -0.0133   -0.0256   0.1057     0.0123      0.04
34      -0.013     -0.1583   -0.0042   0.0599    -0.1541     -0.50 
35      -0.158     -0.2720    0.2337   0.0723    -0.5056     -1.66
36      -0.272      0.0369    0.1715   0.0700    -0.1345     -0.44
37       0.037      0.4183    0.0887   0.0500     0.3296       1.07
38       0.418      0.3674    0.0054   0.0721     0.3620       1.19
39       0.367     -0.4508   -0.2657   0.1138    -0.1851     -0.64
40      -0.451      0.2541   -0.0482   0.1250     0.3022       1.05

R denotes an observation with a large standardized residual.
Durbin-Watson statistic = 1.95251

Fig. 16.20 (continued)
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Table 16.6 Personal

consumption and disposable

income (in billions of 2005

dollars)

Year Ct DIt Ct–1

1961 1,821.2 2,030.8 1,784.4

1962 1,911.2 2,129.6 1,821.2

1963 1,989.9 2,209.5 1,911.2

1964 2,108.4 2,368.7 1,989.9

1965 2,241.8 2,514.7 2,108.4

1966 2,369.0 2,647.3 2,241.8

1967 2,440.0 2,763.5 2,369.0

1968 2,580.7 2,889.2 2,440.0

1969 2,677.4 2,981.4 2,580.7

1970 2,740.2 3,108.8 2,677.4

1971 2,844.6 3,249.1 2,740.2

1972 3,019.5 3,406.6 2,844.6

1973 3,169.1 3,638.2 3,019.5

1974 3,142.8 3,610.2 3,169.1

1975 3,214.1 3,691.3 3,142.8

1976 3,393.1 3,838.3 3,214.1

1977 3,535.9 3,970.7 3,393.1

1978 3,691.8 4,156.5 3,535.9

1979 3,779.5 4,253.8 3,691.8

1980 3,766.2 4,295.6 3,779.5

1981 3,823.3 4,410.0 3,766.2

1982 3,876.7 4,506.5 3,823.3

1983 4,098.3 4,655.7 3,876.7

1984 4,315.6 4,989.1 4,098.3

1985 4,540.4 5,144.8 4,315.6

1986 4,724.5 5,315.0 4,540.4

1987 4,870.3 5,402.4 4,724.5

1988 5,066.6 5,635.6 4,870.3

1989 5,209.9 5,785.1 5,066.6

1990 5,316.2 5,896.3 5,209.9

1991 5,324.2 5,945.9 5,316.2

1992 5,505.7 6,155.3 5,324.2

1993 5,701.2 6,258.2 5,505.7

1994 5,918.9 6,459.0 5,701.2

1995 6,079.0 6,651.6 5,918.9

1996 6,291.2 6,870.9 6,079.0

1997 6,523.4 7,113.5 6,291.2

1998 6,865.5 7,538.8 6,523.4

1999 7,240.9 7,766.7 6,865.5

2000 7,608.1 8,161.5 7,240.9

2001 7,813.9 8,360.1 7,608.1

2002 8,021.9 8,637.1 7,813.9

2003 8,247.6 8,853.9 8,021.9

2004 8,532.7 9,155.1 8,247.6

2005 8,819.0 9,277.3 8,532.7

2006 9,073.5 9,650.7 8,819.0

2007 9,313.9 9,860.6 9,073.5

2008 9,290.9 9,911.3 9,313.9

2009 9,237.3 10,035.3 9,290.9
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Table 16.7 Results of

regression of Eq. 16.24
Variable Coefficient Standard error t-value p-value

Constant �109.10 40.10 �2.72 .009

Dlt .487 .085 5.71 .0000

Ct–1 .501 .090 5.54 .0000

R2 ¼ .9991

�R
2 ¼ .9991

Observations 48

First-order autocorrelation (r̂) ¼ .684

DW ¼ .632

Table 16.8 Results of

regression of Eq. 16.25a
Variable Coefficient Standard error t-value p-value

Constant �48.87 22.18 �2.20 .033

DIt .638 .088 7.28 .358

Ct–1 .337 .092 3.67 .001

R2 ¼ .9956

�R
2 ¼ .9954

Observations 48

DW ¼ 1.627

Fig. 16.21 The relationship between salary and years of experience
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and the value 0 for a female worker. (The assignment of dummy variables is arbitrary;

we could—and in this day and age probably should—have reversed the assignment:

1 for female, 0 for male.) The regression is

Yi ¼ aþ b1X1i þ b2X2i þ � � � þ bkXki þ gD1i þ Ei (16.26)

where the betas (b1, b2, . . ., bk) are the coefficients for the quantitative variables

and g is the parameter for the dummy variable:

D1 ¼ 1 if the worker is a male

D1 ¼ 0 if the worker is a female

Dummy variables indicate whether a shift in the intercept term is attributable to the

characteristic of the dummy. The dummy variable having a statistically significant

coefficient of 1,214, for example, would indicate that the intercept for males is $1,214

higher than the intercept for females. Figure 16.21 plots salary and years of experience.

The female intercept is given by a. If the intercept for the dummy were negative, the

male interceptwould be lower than the female. The dummy variable in Eq. 16.26 deals

with the intercept term, not the slope term, so the dummy indicates only a shift in

the intercept term. In other words, a positive and statistically significant coefficient for

the dummy variable indicates that even though the salaries for males and females are

affected by the same factors in the same way—that is, they have the same slope

coefficients—males begin with a higher level of earnings and maintain that difference

across all values for years of experience.

Example 16.10 Analysis of the Money Supply. In October 1979, the Federal

Reserve’s Board of Governors switched from targeting interest rates to targeting the

money supply. Before this period, the Fed adhered to a policy of increasing the money

supply by an amount that would keep interest rates stable; hence, it “targeted” interest

rates. After October 1979, the Fed focused on increasing the money supply at a fixed

rate and let interest rates seek their own equilibrium level:

M3t ¼ aþ b1GNPt þ b2PRIMEt þ gDUMt þ Et (16.27)

In this model, we investigate whether the Fed’s policy change had an effect on the

money supply. M3 is the money supply, GNP is the gross national product, PRIME is

the prime interest rate, and DUM is a dummy variable in which 1 equals the years

1979–1990 and 0 the years 1959–1978. A significant positive sign would indicate that

themoney supply was greater after the change. A negative signwould indicate that the

money supply was less.

The regression of Eq. 16.27 is run using the annual data for 1959–1990 presented

in Table 16.9. The regression results appear in Table 16.10.

The relationship between GNP and the money supply is extremely strong. There

is a negative relationship between the money supply and the prime interest rate.
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Table 16.10 Results of

regression of Eq. 16.26
Coefficient t-value p-value

Constant �212.74 �4.84 .000

GNP .2356 13.57 .000

PRIME �19.066 �6.23 .000

DUM 198.41 6.60 .000

R2 ¼ .924 F ¼ 176.1 DW ¼ .17

Table 16.9 GNP,

prime rate, and M3

(1959–1990)

Data Display

Row YEAR GNP PRIMERt DUMMY GNPPRIME M3

MTB > PRINT C1–C6

1 59 1629.1 4.48 1 7298.4 140.0

2 60 1665.3 4.82 1 8026.7 140.7

3 61 �1706.7 4.50 1 7689.2 145.2

4 62 1799.4 4.50 1 8097.3 147.9

5 63 1873.3 4.50 1 8429.9 153.4

6 64 1973.3 4.50 1 8879.9 160.4

7 65 2087.6 4.54 1 9477.7 167.9

8 66 2208.3 5.63 1 12432.7 172.1

9 67 2271.4 5.61 1 12742.6 183.3

10 68 2365.6 6.30 1 14903.3 197.5

11 69 2423.3 7.96 1 19289.5 204.0

12 70 2416.2 7.91 1 19112.1 214.5

13 71 2484.8 5.72 1 14213.1 228.4

14 72 2608.5 5.25 1 13694.6 249.3

15 73 2744.1 8.03 1 22035.1 262.9

16 74 2729.3 10.81 1 29503.7 274.4

17 75 2695.0 7.86 1 21182.7 287.6

18 76 2826.7 6.84 1 19334.6 306.4

19 77 2958.6 6.83 1 20207.2 331.3

20 78 3115.2 9.06 1 28223.7 358.5

21 79 3192.4 12.67 0 40447.7 382.9

22 80 3187.1 15.27 0 48667.0 408.9

23 81 3248.8 18.87 0 61304.9 436.5

24 82 3166.0 14.86 0 47046.8 474.5

25 83 3279.1 10.79 0 35381.5 521.2

26 84 3501.4 12.04 0 42156.9 552.1

27 85 3618.7 9.93 0 35933.7 620.1

28 86 3717.9 8.33 0 30970.1 724.7

29 87 3845.3 8.22 0 31608.4 750.4

30 88 4016.9 9.32 0 37437.5 787.5

31 89 4117.7 10.87 0 44759.4 794.8

32 90 4155.8 10.01 0 41599.6 825.5
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In addition, the dummy variable has a significant t-value at a¼ 1 %, indicating that

the money supply did increase after the Federal Reserve Board changed its policy.

16.9 Regression with Interaction Variables

The regression models specified thus far assume that there is no interaction between

the independent variables. This assumption is not always realistic. In many situations,

the relationship between one of the independent variables and the dependent variable

is dependent on the value of another independent variable. This situation reflects

interaction.
For example, suppose the following multiple regression model is specified:

CROPt ¼ aþ b1RAINt þ b2FERTt þ Et (16.28)

In this model, the amount of corn a farmer produces (CROPt) is a function of the

amount of rain received in a growing season (RAINt) and the amount of fertilizer

used (FERTt). Note that there is no interaction in this model; the fertilizer affects

the output of corn, but this effect doesn’t depend on how much rain fell (see

Fig. 16.22). In Fig. 16.22, fertilizer is graphed on the x axis, crop production on

the y axis. The rate of increase in crop production is constant for any change in the

amount of rain.

However, interaction results if more rain makes the fertilizer more productive

and increases corn production. We can model this interaction between the two

variables by adding an interaction term:

CORNt ¼ aþ b1RAINt þ b2FERTt þ b3ðFERTt � RAINtÞ þ Et (16.29)

Fig. 16.22 Impact of

fertilizer on output without

interaction effect
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To create an interaction term, we multiply the two observations whose interac-

tion we wish to investigate. This term measures whether additional rain makes

fertilizer more productive. In the model shown in Eq. 16.28, the change in the corn

production that results from a change in the amount of fertilizer is given by the

slope term b2. A 1-unit change in the amount of fertilizer is associated with a b2-
unit change in crop production. In the interaction model of Eq. 16.29, the change in

the corn production that is associated with a 1-unit change in the amount of fertilizer

is equal to (b2 + b3RAINt). If the interaction term has a positive sign, then the rain

makes the fertilizer more effective. This effectiveness is shown in Fig. 16.23, where

the dependent variable is graphed on the y axis and fertilizer on the x axis. As the
amount of rain increases, the slope of the line increases, indicating that fertilizer has

a greater impact when more rain is present. In general, the interaction term tests

whether the slope parameter for one variable changes as a function of the other

variable. The t statistic is used to determine the statistical significance of the

coefficient associated with the interaction term.

Example 16.11 Analysis of the Money Supply, with Interaction. Equation 16.27

with interaction can be written as

M3t ¼ aþ b1GNPt þ b2PRIMEt þ b3ðGNPtÞðPRIMEtÞ þ gDUMt þ Et (16.30)

MINITABresults for this equation are presented inFig. 16.24. This output indicates

that the t statistic associated with the interaction terra is 3.08 and that the p-value
associated with the interaction term is .005. Hence, the coefficient associated with the

interaction term is significantly different from 0 at a ¼ 1 %.

Fig. 16.23 Impact of

fertilizer on output with

interaction effect
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Fig. 16.24 MINITAB output for Eq. 16.30
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16.10 Regression Approach to Investigating the Effect

of Alternative Business Strategies

Johnson et al. (1989) usedmultiple regressionwith dummy variables to investigate the

relationship between business strategy and wages within the context of a significant

environmental change, deregulation of the airline industry (1978–1984).7 Their

regression results were

loge
dWages ¼ 4:5848��� þ :003 PROFITS� :000 DEBT

62:19ð Þ 1:18ð Þ �:19ð Þ

þ :1348 PERCENT UNION� � :1250 LOAD FACTORþ :0000 SALES

2:38ð Þ �:78ð Þ 1:24ð Þ

� :1650 FUEL COST� :9040 COST� � :1271 FOCUS�

�1:75ð Þ �1:88ð Þ �1:84ð Þ

� :0952 STUCK�

�2:28ð Þ
(16.31)

Equation 16.31 is a log-linear model discussed in Sect. 16.6. In this estimated

multiple regression, t-values appear in parentheses beneath the coefficients, R2 ¼
.18, n ¼ 92. *** means p < .001; ** means p < .01; * means p < .05, based on one-

sided test.

In this equation, cost, focus, and stuck are business strategic variables as defined

in Table 16.11. Table 16.11 presents four alternative business strategies. They are

(1) the cost leadership strategy (cost), to maintain the lowest position in the

industry; (2) the product differentiation strategy (Diff.), to create a unique product

or industry-wide service through brand image (Coca-Cola is a good example),

customer service, technology (Polaroid cameras), or other distinguishing features;

(3) the focus business strategy (focus), to cater to a narrow strategic target with the

aim of being more effective or efficient than those that are competing on a national

basis; and (4) the stuck-in-the-middle (stuck) strategy, where no clearly defined

strategic position exists.

Results of Eq. 16.31 indicate that estimated coefficients associated with cost,

focus, and stuck are all significant at p ¼ .05; therefore, we can conclude that

different business strategies did affect wages in the airline industry during the

years 1978–1984.

7 This section is essentially based on Johnson, N.B., et al.: Deregulation, business strategy and

wages in the airline industry. Ind. Relations 28(3), 419–430 (1989)
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16.11 Summary

In this chapter, we extended the concepts and issues of simple and multiple regression

that were discussed in Chaps. 13, 14, and 15. Specifically, we investigated other topics

in regression analysis, such as multicollinearity, heteroscedasticity, autocorrelation,

and misspecification. We also examined nonlinear regression, regression with lagged

dependent variables, dummy variables, and interaction variables. Related economics

and business examples were used to demonstrate how the newmodels and techniques

presented in this chapter can be used to analyze data.

Questions and Problems

1. Consider the hypothesis that poverty is a function of race and sex. Sample data on

the subject are collected and coded using the three dummy variables P, R, and S.
The P dummy represents poverty (P ¼ 1 for poverty), the R dummy represents

race (R ¼ 1 for black), and the S dummy represents sex (S ¼ 1 for female).

Suppose the following multiple regression equation is estimated:

Table 16.11 Strategic classification and mean wages by regulating period

Regulation Deregulation

Airline
Deflated
average wage Strategy Airline

Deflated
average wage Strategy

US Air 14,099 Focus National 12,345 Cost

Delta 12,133 Cost US Air 11,911 Diff.

Ozark 12,094 Focus American 11,797 Diff.

Frontier 11,959 Focus Delta 11,400 Costa

Texas Air 11,827 Focus TWA 11,397 Diff.

American 11,711 Diff. United 11,240 Diff.

National 11,643 Cost Western 11,199 Stuck

Eastern 11,374 Stuck Northwest 11,085 Cost

Piedmont 11,332 Focus Braniff 11,019 Stuck

TWA 11,201 Diff. Pan Am 11,017 Stuck

Western 11,104 Stuck Ozark 11,014 Focus

United 11,010 Diff. Pacific SW 10,842 Focus

Continental 10,911 Focus Frontier 10,808 Focus

Pan Am 10,831 Focus Eastern 10,785 Stuck

Northwest 10,722 Cost Texas Air 10,423 Cost

Braniff 10,696 Focus Republic 10,098 Focus

Continental 9,799 Stuck/Costb

Piedmont 9,706 Focus

Southwest 8,902 Focus

People 4,105 Cost

Source: Based on deregulation, business strategy and wages in the airline industry. Ind. Relations

28(3), 419–430, reprinted with permission from Basil Blackwell Ltd.
aDelta was coded as a Differentiator in alternative regressions
bContinental was coded as Stuck in 1978–1982 and as Cost in 1983–1984
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P̂ ¼ :05þ :23Rþ :45S

(a) Interpret the coefficients of R and S.
(b) Is there any problem associated with this interpretation of the equation?

In other words, is there a violation of the assumptions of linear probability

models?

2. The relationship between drug abuse and crime has been described by the

regression

ŷ ¼ a0 þ a1x1 þ a2x2 þ a3x3

where

x1 ¼ per-gram retail price of heroin

x2 ¼ average temperature

x3 ¼ time trend

y ¼ crime

Say the results for crime are a0 ¼ 51.66, a1 ¼ 1.45 (2.89), a2 ¼ .04 (.22), and

a3 ¼ .05 (.07). The values in parentheses are the t-values. R2 ¼ .523.

(a) Interpret the multiple regression equation.

(b) What problems may be associated with the interpretation of this equation?

Explain.

3. Protski, Inc., an audit firm, wants to develop a multiple regression model that

can explain the value of a house Y, measured in thousands of dollars, by the age

of the house X1, its square footage X2, the number of bathrooms X3, the absence

(0) or presence (1) of an attached garage D1, and the absence (0) or presence (1)

of a view D2. A random sample of 20 houses is used to gather observations.

Here are the results (standard errors are in parentheses):

Ŷ ¼ 63:53� :5827X1 þ :00956X2 þ :81X3

ð38:12Þ ð:4907Þ ð:01967Þ ð11:75Þ
�4:98D1 þ 13:07D2

ð19:01Þ ð17:69Þ

The error sum of squares is 7,892; the total sum of squares is 9,665.

(a) Comment on the significance of the regression coefficients.

(b) Comment on the overall significance of this regression.

4. (a) Define autocorrelation. State which assumptions of the regression model

are violated when autocorrelation exists.

(b) What is the difference between positive and negative autocorrelation?

(c) Describe a technique used to detect autocorrelation.
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5. A firm with a nationwide system of bus facilities wants to develop a regression

model that can explain its profitY, measured in thousands of dollars per year, by its

annual sales of bus repair and maintenance services (X1), its annual sales of bus

equipment (X2), and its annual sales of bus advertising panels (X3). A random

sample of 12 of its facilities yields these results (standard errors are in

parentheses):

Ŷ ¼ �2:29� :0279X1 þ :0885X2 þ 3:753X3

ð13:65Þ ð:1439Þ ð:0161Þ ð2:402Þ

The error sum of squares is 879.5; the total sum of squares is 5,981.3.

(a) Comment on the significance of the regression coefficients.

(b) Comment on the overall significance of this regression.

(c) Do you see evidence of a possible violation of crucial assumptions?

6. Dividends per share (DPS), price per share (PPS), and retained earnings (RE)

for the 30 Dow Jones industrials for 1984 give us the following multiple

regression model:

^
PPSi ¼ 11:336þ 12:434DPSi þ 3:0875REi

ð2:33Þ ð4:41Þ ð2:39Þ
R2 ¼ :70 F ¼ 31:44

Correlation matrix

Variables PPSi, Y DPSi, X1 REi, X2

PPSi,Y 1 .79761 .69761

DPSi, X1 — 1 .62539

REi, X2 — — 1

(a) Interpret the multiple regression equation.

(b) Interpret the correlation matrix.

7. From Table 16.1, we can define the empirical relationship among PPSi, DPSi,

and REi as

^
PPSi ¼ 11:336þ 12:434DPSi þ 3:0875REi

ða1Þ ðb1Þ ðb2Þ

We also have

Cov(PPS,DPS) ¼ 20.174

Cov(RE,DPS) ¼ 1.6529

Var(DPS) ¼ 1.2120
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PPS ¼ 40:958 DPS ¼ 1:8862 RE ¼ 1:9930

(a) Calculate the coefficients of the new equation PPSi ¼ a01 þ b01 DPSi.
(b) Regress REi on DPSi and obtain the equation REi¼ b0 + b1 DPSi. Calculate

b0 and b1.

(c) Relate b01 to b1 b1 and b2, and estimate the specification bias associated

with b01.

8. What is multicollinearity? What problems does it cause? How can we detect

multicollinearity? When we detect multicollinearity, what should we do?

9. What is autocorrelation? What problems does autocorrelation cause? How can

we detect autocorrelation?

10. What is heteroscedasticity? What problems does it cause? How can we detect

heteroscedasticity?

11. What is specification bias? What problems does specification bias lead to? How

can we avoid specification bias?

12. What is a nonlinear regression model? Why do we sometimes choose to

estimate a nonlinear model?

13. What is a lagged dependent variable? Why do we use lagged dependent

variables in a regression?

14. What is a dummy variable? What does the coefficient on the dummy variable

measure? Give some examples drawn from economics, finance, and accounting

of times when we would want to use a dummy variable in a regression.

15. Suppose we are interested in measuring the differences in earnings among

whites, blacks, Hispanics, and Asians. How many dummy variables should we

use in our regression?

16. What are interaction variables? When would we choose to use interaction

variables? What does the coefficient of the interaction variable tell us?

17. Suppose you have a sample of 40 observations and 3 explanatory variables and

you want to test for autocorrelation. What can you say about autocorrelation if

you have the following Durbin–Watson statistics?

(a) d ¼ 1.30 (b) d ¼ 1.00 (c) d ¼ 2.25

(d) d ¼ 1.95 (e) d ¼ 3.55

18. When we use a lagged dependent variable in our regression, R2 is generally

much higher than when such a variable is not included. Can you think of any

reasons why?

19. Suppose you are interested in how stock returns differ in different months of the

year. You decide to use dummy variables to examine this difference. If you

choose to use 12 dummy variables, what problem will you encounter? What is

the solution to this problem?

20. Look at the following scatter diagrams and explain whether heteroscedasticity

appears to be a problem in either of them.
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21. When heteroscedasticity is detected, we sometimes use a weighted regression in

which the dependent and independent variables are weighted by the variances

of their error terms. Thus, the estimated regression becomes yi/se ¼ b1x1/se þ
b2x2/se þ ei/se, where se is the standard error of residuals. Explain intuitively why
this may produce better regression results.

22. What assumptions concerning the slope coefficient b must we make when we

use dummy variables in a regression?

23. You are interested in the relationship between y and three possible explanatory
variables x1, x2, and x3. You are given the following correlation matrix:

y x1 x2 x3

y 1.00 .85 .86 .99

x1 1.00 .32 .85

x2 1.00 .50

x3 1.00

Given this information, do you think multicollinearity will be a problem? If so,

between which variables?

24. Suppose you have been hired by a lawyer who is interested in showing that a

company discriminates against women in the wages it pays. You estimate the

regression

^
WAGEi

¼ 20; 000þ 5; 000EXPERi þ 200EDUCi � 3; 000SEXi

where

WAGEi ¼ wage for person i

EXPERi ¼ years of experience for person i

EDUCi ¼ years of education for person i

SEXi ¼ dummy variable (1 for female, 0 for male)

(a) Interpret the coefficients for experience and education.

(b) Interpret the coefficient for sex. Does discrimination exist?

25. Suppose you also calculated the standard errors for the coefficients for experience,

education, and sex as 2,000, 85, and 2,500, respectively. Howwould your answer

to part (b) of question 24 change?

26. In order to forecast the value of a variable, we sometimes use a nonlinear trend

regression such as

ŷt ¼ aþ b1tþ b2t
2 þ et (A)

where t ¼ time. Briefly explain why this model may be better than a model

such as

ŷt ¼ aþ b1tþ et (B)
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27. Suppose you are given the following data for Abbott Laboratories sales.

Year Sales Year Sales

1968 351.0 1978 1467.6

1969 403.9 1978 1683.2

1970 457.5 1980 2038.2

1971 458.1 1981 2342.5

1972 521.8 1982 2602.4

1973 620.4 1983 2927.9

1974 765.4 1984 3104.0

1975 940.6 1985 3360.3

1976 1084.8 1986 3870.7

1977 1244.9 1987 4387.9

Use MINITAB to do the following:

(a) Use model A from question 26 to estimate the relationship between sales

and time (t).
(b) Use model B from question 26 to estimate the relationship among sales,

time (t), and the square of time (t2).

28. Use MINITAB and the data given in question 27 and the equations given in

question 26.

(a) Draw a graph showing the actual amount of sales and the estimate of sales

based on equation A.

(b) Draw a graph showing the actual amount of sales and the estimate of sales

based on equation B.

(c) Referring to the graphs you drew in parts (a) and (b), compare the two

models used for forecasting. Which model does a better job?

29. Redo question 28, this time using only data from 1978 to 1987. Does your

answer to part (c) change? If so, account for this result.

30. The following are error terms from a regression, where n ¼ 23 and k ¼ 2.

Year e Year e

1970 1.2 1982 �.50

1971 �.3 1983 �.20

1972 2.4 1984 1.10

1973 �1.0 1985 2.10

1974 .4 1986 �1.50

1975 �.5 1987 2.20

1976 �.4 1988 .50

1977 2.3 1989 �3.10

1978 �2.7 1990 4.20

1979 .1 1991 �1.10

1980 �3.00 1992 1.80

1981 2.40

Compute the Durbin–Watson d statistic. Does autocorrelation appear to be a

problem?
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31. A biologist is interested in the effect of temperature and humidity on cell

growth. She collects the following information from 8 samples:

Sample Temperature (	) Humidity (%) Number of cells

1 50 20 100

2 55 30 125

3 60 40 175

4 60 50 200

5 70 45 218

6 75 70 235

7 80 65 220

8 85 80 250

Use the MINITAB program to estimate the relationship among number of cells,

temperature, and humidity. Use an interaction variable to estimate the interac-

tion effect of temperature and humidity on cell growth. Interpret your results.

32. Use a t test to test the significance of the coefficient on the interaction variable

in question 31. Construct a 90 % confidence interval for this coefficient.

33. A popular belief in some financial circles is that most of the movement of the

stock market takes place in January. Suppose you are interested in testing this

“January effect” on General Motors stock. Explain how you could do this by

using a dummy variable.

34. A college admissions officer is interested in knowing whether there is a

difference between males’ and females’ math SAT scores. She collects the

following information on the math SAT score, high school grade point average,

and sex of 6 students:

Student Y Math SAT score X High school GPA Sex

1 620 3.10 M

2 525 3.85 F

3 650 3.25 M

4 550 3.89 F

5 700 3.60 M

6 675 4.00 F

Use a dummy variable to test whether there is a difference between the math

SAT scores of males and females. Be sure to interpret the results.

35. The batting instructor of the Toronto Blue Jays would like to see whether

playing ball in the winter (winter ball) has any effect on a player’s season

batting average. He collects the following information on 6 players:

Player Y Season batting average X Hours of batting practice Played winter ball

1 .300 12 yes

2 .275 11 no

3 .250 8 no

4 .325 20 yes

5 .265 8 yes

6 .350 25 yes
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Use a dummy variable to test whether playing winter ball improves a player’s

regular-season batting average.

36. Suppose you estimate a multiple regression and find the t statistics on the

coefficients to be insignificant, whereas the F-statistic indicates that the

coefficients are jointly significant.What problemhaveyou probably encountered?

37. Suppose a labor economist is interested in seeing whether there is a difference

in earnings and education between people in the northeast and people in other

parts of the country. He estimates the following regression:

^
EARNi ¼ 18; 500þ 2; 325EDUCi þ 1; 725DUMi

where DUMi is a dummy variable equal to 1 if the person is from the northeast

and equal to 0 zero if the person is from anywhere else.

Interpret the foregoing regression. Do people from the northeast earn more than

people from other parts of the country?

38. A financial analyst is interested in the relationship between dividend per share

(DPS) and earnings per share (EPS). He collects information on these two

variables and estimates the regression

DPSi ¼ aþ bEPSi þ ei

From this regression, he computes the error from the regression for each company.

Company EPS e

1 1.00 .05

2 2.10 .35

3 1.20 .10

4 3.00 .72

5 1.25 .25

6 5.20 1.21

7 8.00 2.12

Does heteroscedasticity appear to be a problem in this regression? (Hint: First

use MINITAB to plot et against EPS.)
39. You are interested in examining the relationship between consumption and

income (the consumption function) during two different periods: the period

before the Vietnam War and the period during and after the Vietnam War.

Explain how you would do this.

40. The following scatter diagram shows the relationship between average total

cost and quantity of output. Suggest a multiple regression model to describe

this relationship.
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41. You are given the following error terms, which are the result of a regression of

sales versus advertising expenditures for the Huessy Corporation over a 20-year

period:

Year et Year et

1 .075 11 .065

2 .080 12 .180

3 �.100 13 �.120

4 �.070 14 �.070

5 .500 15 .050

6 �.230 16 �.230

7 �.007 17 �.107

8 .088 18 .288

9 �.101 19 �.131

10 �.007 20 �.007

(a) Compute the Durbin–Watson statistic.

(b) Does autocorrelation exist?

Year Chrys. Ford GM Indus.

Debt/equity ratio

69 1.23 .76 .45 .74

70 1.23 .81 .44 .79

71 1.20 .89 .69 .91

72 1.21 .95 .56 .89

73 1.24 1.02 .62 .92

74 1.53 1.27 .63 1.09

75 1.60 1.21 .66 1.10

76 1.51 1.22 .70 1.08

(continued)

850 16 Other Topics in Applied Regression Analysis



(continued)

Year Chrys. Ford GM Indus.

77 1.62 1.28 .69 1.12

78 1.39 1.28 .74 1.14

79 2.65 1.26 .68 1.23

80 13.41 1.84 .94 2.42

81 7.04 2.13 1.20 2.07

82 5.32 2.61 1.26 7.03

83 3.96 2.16 1.20 2.14

84 1.74 1.79 1.15 1.66

85 1.99 1.58 1.16 2.57

86 1.71 1.55 1.37 2.07

87 2.07 1.43 1.63 1.90

88 5.41 5.66 3.60 4.61

Return on assets

69 .02 .06 .11 .08

70 .00 .05 .04 .04

71 .02 .06 .11 .07

72 .04 .07 .12 .09

73 .04 .07 .12 .09

74 �.01 .03 .05 .03

75 �.03 .02 .06 .03

76 .05 .06 .12 .08

77 .02 .09 .12 .09

78 �.03 .07 .11 .07

79 �.17 .05 .09 .05

80 �.26 �.06 �.02 �.05

81 �.08 �.05 .01 �.02

82 �.02 �.03 .02 �.01

83 .04 .08 .08 .07

84 .16 .11 .09 .10

85 .13 .08 .06 .07

86 .10 .09 .04 .06

87 .06 .10 .04 .06

88 .02 .04 .03 .03

Use MINITAB and the following information to answer questions 42–54. To

find out whether there is a relationship between the amount of financial

leverage a firm uses and the return on the firm’s assets, you collect information

on the debt/equity ratio and return on assets for the “big three” automakers and

the average for the auto industry.

42. Estimate the regression of Chrysler’s return on assets against its debt/equity

ratio. Compute the Durbin–Watson statistic. Does autocorrelation exist?

43. Redo question 42 using the data for Ford.

44. Redo question 42 using the data for GM.

45. Redo question 42 using the data for the auto industry.
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46. Using Chrysler’s data, compute r1, the correlation coefficient between et and
et�1, for the error terms computed in Chrysler’s regression model.

47. Redo question 46 using the data for Ford.

48. Redo question 46 using the data for GM.

49. Redo question 46 using the data for the auto industry.

50. Compare your computations from questions 46–49 with the Durbin–Watson

statistics you calculated in questions 42–45.

51. Suppose you believe that in addition to there being a relationship between the

return on assets and the debt/equity ratio, the return on assets in the previous

period may also play an important part in determining the return on assets in the

current period. You estimate the equation:

ROAt ¼ aþ bDEt þ ROAt�1 þ ei

(a) Use the data for Chrysler to estimate the foregoing equation.

(b) Compare your results to the simple regressions you computed in question

42.

52. Redo question 51 using the data for Ford.

53. Redo question 51 using the data for GM.

54. Redo question 51 using the data for the auto industry.

55. Suppose you have a sample of 50 observations and 4 explanatory variables and

you want to test for autocorrelation. What can you say about autocorrelation if

you have the following Durbin–Watson statistics?

(a) d ¼ 1.90 (b) d ¼ .90 (c) d ¼ 2.55

(d) d ¼ 1.75 (e) d ¼ 3.45

56. A financial analyst is interested in the relationship between earnings per share

(EPS) and sales. She collects information on these two variables. Then she

estimates the regression

EPSi ¼ aþ bSALESi þ ei

and, from it, computes the error from the regression for each company.

Company Sales e

1 1,200 400.05

2 2,210 500.35

3 3,201 � 50.10

4 3,400 �200.72

5 4,525 300.25

6 5,320 �100.21

7 6,001 �87.25

Does heteroscedasticity appear to be a problem in this regression?
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57. Suppose we have the following two versions of the market model, which shows

the relationship between the rate of return on a stock and the rate of return on

some market index:

Standard market model: Ri,t ¼ a + bRm,t + ei,t
Quadratic market model: Ri,t ¼ a + bRm,t + gR2

m;t + ei,t

(a) Suppose the quadratic market model is the correct form to estimate but we

estimate the standard market model instead. What is the effect on our

parameter estimates?

(b) Suppose the standard market model is the correct form to estimate but we

estimate the quadratic market model instead. What is the effect on our

parameter estimates?

58. An economist estimates the equation:

Ĉt ¼ 1; 000þ :75Yt þ :10Ct�1

where

Ct ¼ consumption in time period t
Yt ¼ income in time period t
Ct � 1 ¼ consumption in time period t � 1

Interpret the coefficients of the regression model.

59. A farmer is interested in measuring the relationship among the number of

bushels of corn grown, the amount of rainfall, and the amount of fertilizer

used. Give two different equations that he could use to find this relationship.

60. Suppose the farmer in question 59 collects the following data:

Bushels of corn Rainfall (inches) Fertilizer (pounds)

1,000 4 10

1,211 5 9

1,600 7 12

900 2 4

2,000 9 15

(a) Estimate the models you suggested in question 59.

(b) Compare the results of the two models. Which model do you believe is

better? Explain.

61. A marketing manager believes that advertising expenditures are effective in

increasing sales only to a certain extent. He discovers that when the advertising

expenditures exceed a certain level, sales respond accordingly. Propose two

mathematical models that can be used to describe this type of data.

62. An economist wants to study the factors that determine the hourly wage rate.

He comes up with the regression
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ŷ ¼ aþ bx1 þ cx2 þ dx3þe

where

y ¼ hourly wage rate

x1 ¼ age of the employee

x2 ¼ years of experience

x3 ¼ years of schooling

What problem might the economist encounter in estimating this model?

63. An economist conducts research on the relationship between household spend-

ing and income. She collects data on 60 households’ spending and income

during 1986. After using regression analysis, she obtains the following results:

^
CONSUMPTION ¼ 4:906þ :756� INCOME

R2 ¼ :58 DW ¼ :32

The researcher claims that there is a serial correlation problem because of the

low DW statistic. Do you believe this conclusion is correct?

64. Which of the following models is nonlinear in parameters where y and x are

variables and a, b, and c are parameters?

(a) y ¼ axb1x
c
2

(c) y ¼ a þ bx þ cx2

(b) y ¼ a þ bxc (d) y ¼ a þ b(1/x)

Use the following information to answer questions 65–70. What determines the

voting behavior in a presidential election? An economist believes that people

“vote their pockets.” He argues that economic condition is the greatest concern

of voters. Therefore, the percentage of votes the incumbent gets depends on

macroeconomic variables such as the inflation rate (IR), the unemployment rate

(UR), and the growth rate of disposable income (DI). The following table

contains these data:

y DI UR IR

45 1.2 8.3 3.5

48 1.8 7.4 3.8

49.5 2.0 7.1 3.9

48.8 1.9 6.5 4.2

50.4 2.2 6.2 4.6

51.3 2.4 5.9 4.9

52.4 2.7 5.7 5.0

47.6 1.9 7.0 3.4

54.1 3.0 5.1 5.1

50.0 2.3 6.1 3.4
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In the regression, we are interested in what percentage of votes the incumbent

receives. We decide to use the following model:

y ¼ aþ b1DIþ b2URþ b3IRþe

where

y ¼ percentage of votes the incumbent receives

DI ¼ rate of increase in disposable income

UR ¼ unemployment rate

IR ¼ inflation rate

65. What are the hypothesized signs of b1, b2, and b3?
66. Estimate the model using regression analysis. Conduct a test to see whether the

coefficients of UR and IR are significant at the 5 % level.

67. Use an F test to test the hypothesis that b2 ¼ b3 ¼ 0 at the 5 % level.

68. When Jimmy Carter was a candidate for the presidency, he coined a new term,

the Misery Index, where Misery Index ¼ UR + IR. Run a regression with only

DI and the Misery Index. Conduct a test at the 5 % level to see whether the

coefficient on the misery index is significant in explaining y.
69. Are you convinced that DI is the only significant variable that affects y in our

model? Before you run the regression, do you expect to obtain a low or a highR2?

70. A political scientist wants to add an important variable to the equation associated

with question 64 to catch the effect of war on voting behavior. He argues that as a

result of patriotism, the incumbent receives a higher percentage of votes during a

war than during peacetime. Suggest a way to specify the new model in order to

catch the patriotism effect.

71. A financial analyst is interested in the relationship between earnings per share

(EPS) and sales for Addison Company. He collects information on these two

variables for a 10-year period. He estimates the regression

EPSi ¼ aþ bSALESi þ ei

and from it computes the error from the regression for each company.

Year et Year et

1 130.05 6 �10.11

2 �540.35 7 83.35

3 150.10 8 �90.30

4 � 240.32 9 34.04

5 100.24 10 �127.20

Does autocorrelation appear to be a problem in this regression?

72. Based on the correlations among the returns for T-Bill, Chrysler, Ford, GM, and

NYSE Index in the following output, is there a problem about multicollinearity?
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T-Bill Chrysler Ford GM

Chrysler 0.066

Ford �0.098 0.814

GM �0.089 0.767 0.835

NYSE Index 0.084 0.831 0.842 0.806

73. The Durbin–Watson statistic computed from fitting a regression on Ford using

NYSI Index and Chrysler as predictors is 1.9904. Is there a problem of

autocorrelation?

74. (Problem 73 continued.) From the following result, is there a “January effect”

on returns of Ford even if NYSI Index and Chrysler are included as predictors?

Predictor Coef SE Coef

Constant 0.009900 0.008017

NYSE index 0.7207 0.2364

Chrysler 0.3027 0.1107

Jan 0.07460 0.02872

75. (Problem 74 continued.) Write down the estimated regression equations for

January and non-January, respectively.

76. (Problem 75 continued.) Since the January effect is significant, do we need to

consider the interaction between the January effect and the returns of NYSE

Index and Chrysler?

77. Add an interaction term (GNP) (Dummy) to Eq. 16.26. The MINITAB outputs

are presented as follows. Please compare these results with those presented in

Table 16.10.

MTB > BRIEF 3

MTB > REGRESS ‘M3’ 4 ‘GNP’ ‘PRIMERt’ ‘DUMMY’ ‘GNPDUMMY’;

SUBC> DW.

Regression Analysis
The regression equation is
M3 ¼ � 693 + 0.383 GNP � 6.47 PRIMERt + 565 DUMMY � 0.218
GNPDUMMY

Predictor Coef StDev T P

Constant �693.0 122.1 �5.67 0.000

GNP 0.38348 0.02719 14.11 0.000

PRIMERt �6.468 2.924 �2.21 0.036

DUMMY 565.3 128.7 4.39 0.000

GNPDUMMY �0.21835 0.03634 �6.01 0.000

S ¼ 26.84 R-Sq ¼ 98.7% R-Sq(adj) ¼ 98.5%
Analysis of Variance
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Source DF SS MS F P

Regression 4 1507410 376853 523.03 0.000

Error 27 19454 721

Total 31 1526864

Source DF Seq SS

GNP 1 1391385

PRIMERt 1 19320

DUMMY 1 70686

GNPDUMMY 1 26019

Obs GNP M3 Fit StDev Fit Residual St Resid

1 1629 140.00 112.34 11.36 27.56 1.14

2 1665 140.70 116.12 11.03 24.58 1.00

3 1709 145.20 125.35 10.40 19.85 0.80

4 1799 147.90 140.33 9.41 7.57 0.30

5 1873 153.40 152.53 8.71 0.87 0.03

6 1973 160.40 169.05 7.97 �8.65 �0.34

7 2088 167.90 187.66 7.43 �19.76 �0.77

8 2208 172.10 200.54 6.28 �28.44 �1.09

9 2271 183.30 211.09 6.22 �27.79 �1.06

10 2366 197.50 222.19 6.03 �24.69 �0.94

11 2423 204.00 220.98 7.35 �16.98 �0.66

12 2416 214.50 220.13 7.29 �5.63 �0.22

13 2485 228.40 245.62 7.07 �17.22 �0.67

14 2608 249.30 269.09 9.04 �19.79 �0.78

15 2744 262.90 273.50 8.36 �10.60 �0.42

16 2729 274.40 253.07 12.55 21.33 0.90

17 2695 287.60 266.49 7.91 21.11 0.82

18 2827 306.40 294.83 9.54 11.57 0.46

19 2959 331.30 316.68 11.29 14.62 0.60

20 3115 358.50 328.11 12.34 30.39 1.27

21 3192 382.90 449.32 12.13 �66.42 �2.77R

22 3187 408.90 430.47 12.05 �21.57 �0.90

23 3249 436.50 430.84 18.42 5.66 0.29X

24 3166 474.50 425.03 12.02 49.47 2.06R

25 3279 521.20 494.72 12.96 26.48 1.13

26 3501 552.10 571.89 7.99 �19.79 �0.77

27 3619 620.10 630.52 9.16 �10.42 �0.41

28 3718 724.70 678.91 11.37 45.79 1.88

29 3845 750.40 728.48 11.25 21.92 0.90

30 4017 787.50 787.17 12.00 0.33 0.01

31 4118 794.80 815.80 15.10 �21.00 �0.95

32 4156 825.50 835.97 15.06 �10.47 �0.47

R denotes an observation with a large standardized
residual
X denotes an observation whose X value gives it large
influence
Durbin–Watson statistic ¼ 1.23
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78. Add an interaction term (GNP) (Dummy) to Eq. 16.29. TheMINITAB output is

presented as follows. Please compare these results with those presented in

Fig. 16.22.

MTB > BRIEF 3

MTB > REGRESS ‘M3’ 5 ‘GNP’ ‘PRIMERt’ ‘DUMMY’ ‘GNPPRIME’ ‘GNPDUMMY’

SUBC> DW

Regression Analysis
The regression equation is
M3 ¼ � 754 + 0.403 GNP + 0.1 PRIMERt + 598 DUMMY � 0.00210
GNPPRIME

� 0.230 GNPDUMMY

Predictor Coef StDev T P

Constant �753.6 228.8 �3.29 0.003

GNP 0.40312 0.06807 5.92 0.000

PRIMERt 0.09 20.98 0.00 0.997

DUMMY 598.5 167.9 3.56 0.001

GNPPRIME �0.002097 0.006644 �0.32 0.755

GNPDUMMY �0.23016 0.05259 �4.38 0.000

S ¼ 27.30 R-Sq ¼ 98.7% R-Sq(adj) ¼ 98.5%
Analysis of Variance

Source DF SS MS F P

Regression 5 1507485 301497 404.49 0.000

Error 26 19380 745

Total 31 1526864

Source DF Seq SS

GNP 1 1391385

PRIMERt 1 19320

DUMMY 1 70686

GNPPRIME 1 11815

GNPDUMMY 1 14278

Obs GNP M3 Fit StDev Fit Residual St Resid

1 1629 140.00 111.70 11.73 28.30 1.15

2 1665 140.70 116.46 11.27 24.24 0.97

3 1709 145.20 124.65 10.82 20.55 0.82

4 1799 147.90 139.48 9.95 8.42 0.33

5 1873 153.40 151.56 9.38 1.84 0.07

6 1973 160.40 167.91 8.87 �7.51 �0.29

7 2088 167.90 186.43 8.51 �18.53 �0.71

8 2208 172.10 201.20 6.72 �29.10 �1.10

9 2271 183.30 211.47 6.44 �28.17 �1.06

10 2366 197.50 223.29 7.06 �25.79 �0.98

(continued)
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(continued)

11 2423 204.00 224.21 12.69 �20.21 �0.84

12 2416 214.50 223.35 12.63 �8.85 �0.37

13 2485 228.40 245.30 7.26 �16.90 �0.64

14 2608 249.30 267.74 10.14 �18.44 �0.73

15 2744 262.90 273.95 8.62 �11.05 �0.43

16 2729 274.40 255.97 15.72 18.43 0.83

17 2695 287.60 267.23 8.38 20.37 0.78

18 2827 306.40 293.79 10.25 12.61 0.50

19 2959 331.30 314.77 12.98 16.53 0.69

20 3115 358.50 325.24 15.50 33.26 1.48

21 3192 382.90 449.58 12.36 �66.68 �2.74R

22 3187 408.90 430.44 12.25 �21.54 �0.88

23 3249 436.50 429.12 19.51 7.38 0.39

24 3166 474.50 425.29 12.26 49.21 2.02R

25 3279 521.20 494.99 13.21 26.21 1.10

26 3501 552.10 570.51 9.23 �18.41 �0.72

27 3619 620.10 630.66 9.33 �10.56 �0.41

28 3718 724.70 680.92 13.20 43.78 1.83

29 3845 750.40 730.93 13.83 19.47 0.83

30 4017 787.50 787.98 12.47 �0.48 �0.02

31 4118 794.80 813.39 17.15 �18.59 �0.88

32 4156 825.50 835.30 15.47 �9.80 �0.44

R denotes an observation with a large standardized
residual
Durbin-Watson statistic ¼ 1.22

Project IV: Project for Regression and Correlation Analyses

UsePPS, EPS, andDPS for theDow Jones’ 30 firms presented inTables IV.1A,

IV.1B, IV.1C, and IV.1D to do the following:

1. Calculate the annual rate of return for all 30 firms, and calculate all statistics

presented in Table 9.1.

2. Use both the annual rates of return for the 30 firms obtained in (1) and the

annual market rates of return presented in Table 2.4 to estimate market

models for all 30 firms.

3. (a) Estimate the following regression in accordance with estimates

obtained in (1) and (2) where �Ri and bi are average rates of return

and the estimated beta coefficient respectively: �Ri ¼ a þ bbi þ ei.
(b) Use Eq. 14.36 to adjust for the estimate of b.

(continued)
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Project IV: (continued)

4. Use the data presented in Tables IV.1A, IV.1B, IV.1C, and IV.1D to

estimate Eq. 16.13 for all 30 firms.

5. Use the data presented in Tables IV.1A, IV.1B, IV.1C, and IV.1D to

estimate Eq. 16.13a for all 30 firms

Download monthly adjusted close price data of JNJ and S&P 500 index

from Yahoo Finance during the period from January 2005 to current month to

do the following:

6. Calculate the monthly rates of return for JNJ and S&P 500 index, and

calculate all statistics presented in Table 9.1.

7. Use both monthly rates of return for JNJ and S&P 500 to estimate market

model.
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Appendix 1: Dynamic Ratio Analysis

In the Appendices, we discuss how the industry average of financial ratio can be

used to do dynamic financial ratio analysis. To do the dynamic financial ratio

analysis, the individual financial ratio is related to the industry average over time

by a regression such as8

yi;t ¼ a0 þ a1xt�1 þ a2yi;t�1 þ et (16.32)

where

yi,t ¼ a financial ratio for ith firm in period t
xt�1 ¼ industry average for a financial ration in period t � 1

yi, t�1 ¼ a financial ratio for ith firm in period t – 1

Use the current ratio data of both Johnson & Johnson and Merck in Table 3.9 of

Chap. 3 and its industry average data during 1990–2009. Using the Microsoft Excel

Fig. 16.25 Current ratio regression for JNJ

8 See Lee, Cheng F., Finnerty, Joe E.: Corporate Finance. Harcourt Brace Javanovich, San Diego

(1990)
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program, we obtain regression results in terms of Eq. 16.32 as presented in

Figs. 16.25 and 16.26. From the values of R2 and t statistics associated with

regression coefficients a1 and a2, we can conclude that the current ratio regression

for both Johnson & Johnson and Merck are suitable to be used to forecast future

current ratio.

Using the current ratio of 2009 for JNJ (1.82) and industry average (2.18401), we

can forecast the current ratio for JNJ in 2010 as follows:

CR2010ðJNJÞ ¼ 1:9421� 0:1189ð2:18401Þ þ 0:037ð1:82Þ
¼ 1:7498

Appendix 2: Term Structure of Interest Rate

The structure of interest rates is typically described by the yield curve. Typical yield

curve diagram used to describe the relationship between yield to maturity and time

to maturity term for Treasury securities. It can be shown that the following multiple

regression model can be used to describe this relationship9:

Fig. 16.26 Current ratio regression for MRK

9 See Lee, Cheng F., Finnerty, Joseph E., Wort, Donald H.: Security Analysis and Portfolio

Management. Glenview. I11, Scott, Foresman (1990), Chap. 5.
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Table 16.14 Yield, time to maturity, and coupon rates for Treasury bonds and notes as of

February 16, 2011

(1) (2) (3) (1) (2) (3) (1) (2) (3)

Rt t x Rt t x Rt t x

0.0618 0.117808 0.875 0.5159 1.369863 0.625 1.083 2.523288 4.25

0.043 0.117808 4.75 0.5034 1.369863 4.875 1.088 2.567123 3.125

0.1088 0.2 0.875 0.5273 1.410959 1.5 1.1674 2.608219 0.75

0.1194 0.2 4.875 0.5574 1.454795 0.625 1.157 2.649315 3.125

0.1154 0.284932 0.875 0.5595 1.454795 4.625 1.2163 2.690411 0.5

0.1096 0.284932 4.875 0.5931 1.49589 1.75 1.2179 2.734247 2.75

0.1355 0.367123 1.125 0.5662 1.49589 4.375 1.2563 2.731507 0.5

0.1353 0.367123 5.125 0.6087 1.539726 0.375 1.1699 2.731507 4.25

0.1458 0.452055 1 0.5916 1.539726 4.125 1.2661 2.772603 2

0.1381 0.452055 4.875 0.6444 1.580822 1.375 1.2953 2.813699 0.75

0.1461 0.493151 5 0.6574 1.621918 0.375 1.3104 2.857534 1.5

0.167 0.536986 1 0.6369 1.621918 4.25 1.3434 2.89863 1

0.1725 0.536986 4.625 0.7001 1.663014 1.375 1.3384 2.942466 1.75

0.1866 0.619178 1 0.711 1.706849 0.375 1.3997 2.983562 1.25

0.1914 0.619178 4.5 0.6779 1.706849 3.875 1.3096 2.983562 4

0.2108 0.70411 1 0.7456 1.747945 1.375 1.3889 3.019178 1.875

0.2038 0.70411 4.625 0.7099 1.747945 4 1.4282 3.10411 1.75

0.2229 0.745205 1.75 0.7496 1.789041 0.5 1.4757 3.186301 1.875

0.2453 0.786301 0.75 0.7088 1.789041 3.375 1.5079 3.271233 2.25

0.2423 0.786301 4.5 0.7942 1.830137 1.125 1.5515 3.353425 2.625

0.2656 0.827397 1.125 0.8023 1.873973 0.625 1.5977 3.438356 2.625

0.287 0.871233 1 0.7645 1.873973 3.625 1.5634 3.479452 4.25

0.2927 0.871233 4.625 0.8251 1.915068 1.375 1.6612 3.523288 2.375

0.3065 0.912329 1.125 0.8392 1.958904 0.625 1.6947 3.605479 2.375

0.3162 0.956164 0.875 0.7789 1.958904 2.875 1.7417 3.690411 2.375

0.3211 0.956164 4.75 0.7933 2 3.875 1.6727 3.731507 4.25

0.3354 0.99726 1.375 0.8481 2.063014 2.75 1.7794 3.772603 2.125

0.3423 0.99726 4.875 0.8981 2.10411 1.375 1.8158 3.857534 2.625

0.3504 1.035616 0.875 0.8785 2.147945 2.5 1.8648 3.942466 2.25

0.3486 1.035616 4.625 0.9392 2.189041 1.75 1.8246 3.983562 4

0.3626 1.076712 1.375 0.9126 2.230137 3.125 1.778 3.983562 11.25

0.3956 1.120548 1 0.9895 2.271233 1.375 1.9036 4.060274 2.375

0.409 1.161644 1.375 0.9264 2.271233 3.625 1.9303 4.145205 2.5

0.4309 1.20274 1 0.9576 2.315068 3.5 1.9814 4.227397 2.5

0.4157 1.20274 4.5 1.0293 2.356164 1.125 1.9563 4.268493 4.125

0.4516 1.243836 1.375 1.011 2.39726 3.375 2.0309 4.312329 2.125

0.4717 1.287671 0.75 1.0691 2.438356 1 2.0703 4.394521 1.875

0.469 1.287671 4.75 1.0369 2.482192 3.375 2.112 4.479452 1.75

0.4969 1.328767 1.875 1.113 2.523288 0.75 2.0764 4.520548 4.25

1.9998 4.520548 10.625 3.2892 8.273973 3.125 4.644 27.26849 4.5

2.1709 4.564384 1.25 3.3314 8.526027 3.625 4.6873 28.00548 3.5

2.2055 4.646575 1.25 3.1969 8.526027 8.125 4.6714 28.24932 4.25

2.2467 4.731507 1.25 3.3943 8.778082 3.375 4.6665 28.24932 4.5

2.3681 5.063014 2.625 3.4429 9.030137 3.625 4.6747 28.50137 4.375

(continued)
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lnðyitÞ ¼ a0 þ a1x1t þ a2x2t þ a3x3t þ et (16.33)

Where

yit ¼ yield to maturity for ith bond to be mature in period t
x1t ¼ time to maturity for ith bond

x2t ¼ 1/xit
x3t ¼ coupon rate for ith bond

Table 16.14 (continued)

(1) (2) (3) (1) (2) (3) (1) (2) (3)

Rt t x Rt t x Rt t x

2.409 5.147945 2.375 3.3005 9.030137 8.5 4.6685 29.00822 4.625

2.4363 5.230137 2.625 3.4965 9.276712 3.5 4.6793 29.26027 4.375

2.3992 5.271233 5.125 3.3523 9.276712 8.75 4.687 29.51233 3.875

2.3637 5.271233 7.25 3.5763 9.528767 2.625 4.6832 29.76438 4.25

2.4581 5.315068 3.25 3.4047 9.528767 8.75 4.6702 30.01644 4.75

2.4865 5.39726 3.25 3.616 9.780822 2.625

2.5263 5.482192 3.25 3.6193 10.03288 3.625

2.488 5.523288 4.875 3.4958 10.03288 7.875

2.5655 5.567123 3 3.5484 10.27671 8.125

2.5921 5.649315 3 3.5904 10.52603 8.125

2.6241 5.734247 3.125 3.6425 10.77808 8

2.5895 5.775342 4.625 3.7672 11.52603 7.25

2.5587 5.775342 7.5 3.7995 12.27397 7.625

2.666 5.816438 2.75 3.856 12.52603 7.125

2.6863 5.90137 3.25 3.9425 13.02192 6.25

2.7073 5.986301 3.125 4.035 14.27671 7.5

2.6763 6.027397 4.625 4.0571 14.52877 7.625

2.734 6.063014 3 4.1296 15.02466 6.875

2.7579 6.147945 3.25 4.2027 15.52877 6

2.793 6.230137 3.125 4.2129 15.52055 6.75

2.7655 6.271233 4.5 4.2404 15.76986 6.5

2.6806 6.271233 8.75 4.2513 16.02192 6.625

2.8329 6.315068 2.75 4.2889 16.51781 6.375

2.8672 6.39726 2.5 4.3119 16.76986 6.125

3.0019 6.90137 2.75 4.3724 17.52055 5.5

3.0288 6.986301 2.625 4.3924 17.7726 5.25

3.0062 7.027397 3.5 4.3993 18.02466 5.25

3.0511 7.271233 3.875 4.3882 18.52055 6.125

2.9049 7.271233 9.125 4.4112 19.26575 6.25

3.1047 7.523288 4 4.4605 20.02192 5.375

3.1662 7.775342 3.75 4.6037 25.02466 4.5

2.9979 7.775342 9 4.6089 26.0274 4.75

3.2507 8.027397 2.75 4.6023 26.27397 5

3.0691 8.027397 8.875 4.6436 27.02466 4.375
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Using the data of Treasury bonds and notes as reported in The Wall Street
Journal of February 16, 2011, in Table 16.14, Lee et al. estimated Eq. 16.33 and

the result is presented in Table 16.12.

Using the information in Table 16.12, the estimated yield of a two-year, 3.875 %

compound rate is 126.3 % as presented in Table 16.13

Table 16.12 Regression results for Eq. 16.33

Regression output: lnð1þ RtÞ ¼ a0 þ a1ðtÞ þ a2ð1=tÞ þ a3ðxÞ þ et
Constant (a0) 0.673866

Standard error of Y estimate 0.034919

R2 0.76818

Number of observations 223

Degrees of freedom 219

a1 a2 a3
X coefficient(s) 0.042615 �0.17833 0.03791

Standard error of coefficients 0.002674 0.017143 0.007759

Table 16.13 Estimated yield

of a two-year, 3.875 %

coupon note

ln (1 þ Rt) ¼ 0.673688 þ 0.042615 (2) – 0.17833 (1/2)

þ 0.03791(3.875)

¼ 0.8168

To transform ln (1 þ Rt) into the yield to maturity, take the

exponential of both sides of the equation:

Rt ¼ exp [0.8168]-1

¼ 1.2632 or 126.32 %
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Part V

Selected Topics in Statistical Analysis for
Business and Economics

In the previous 16 chapters of this book, we have studied descriptive statistics,

probability and important distributions, statistical inference based on samples, and

regression and correlation analyses. In this last part of the book, we discuss the

application of selected statistical methods in business and economics. These

methods include nonparametric statistics, time-series analysis and forecasting,

index numbers and stock market indexes, sampling surveys, and statistical decision

theory.
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17.1 Introduction

In previous chapters, we discussed alternative tests of hypotheses. These tests were

generally concerned with statistical measures such as the mean, variance, or

proportion of a population. A mean, variance, or proportion is referred to as a

parameter in statistics. To test these parameters, we generally assume that the

sample observations were drawn from a normally distributed population. The

assumption of normality is especially critical when the sample size is small. Tests

such as the Z, t, and F tests discussed in Chap. 11 depend on assumptions about the

parameters of the population, so all these tests are parametric tests or classical tests.
A parametric test is generally a test based on a parametric model.

Recently, a number of useful hypothesis-testing techniques that do not make

restrictive distribution assumptions about the parameters of the population have

been developed. Such testing procedures are referred to as nonparametric tests or
distribution-free tests. Distribution-free tests are valid over a wide range of

distributions of populations. (However, these nonparametric tests do require certain

assumptions, such as independent sample observations.) For example, a sample is

taken to test the effectiveness of a new toothpaste in reducing plaque. Samples of 10

people using a new brand and 10 people using the leading brand are compared. If

the distribution of plaque reduction is skewed, a test based on the assumption of

normality is no longer appropriate, and a nonparametric approach is necessary.

Furthermore, the nonparametric test can be used to reduce the effect of outliers.

The main advantage nonparametric tests offer is that they do not require us to

assume that the sample observations were drawn from a normal distribution. In

addition, nonparametric tests are easier than parametric tests to conduct and to

understand. The main disadvantages of nonparametric tests are that they ignore a

certain amount of information and that they are not so efficient as parametric tests.

The main purpose of this chapter is to introduce some additional nonparametric
statistics and explore their applications in testing hypotheses. Actually, in Chap. 12,
we discussed two nonparametric methods for hypothesis testing: the chi-square test

for goodness of fit and the chi-square test for independence.1 This chapter focuses

on the development and use of six more nonparametric tests:

1. The matched-pairs sign test

2. The Wilcoxon matched-pairs signed-rank test

3. The Mann–Whitney U test (rank-sum test)

4. The Kruskal–Wallis test

5. The Spearman rank correlation test

6. The number-of-runs test

After discussing these nonparametric methods, we will examine five examples

of the use of nonparametric statistical methods in business decision making.

1 The first test is concerned with how well a set of data fits a hypothesized probability distribution.

The second seeks to determine whether a relationship exists between two variables. These two

tests are generally large-sample tests.
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17.2 The Matched-Pairs Sign Test

We begin our discussion of nonparametric tests with one of the easiest to employ,

the matched-pairs sign test. The sign test is used to test the central tendency of a

population distribution and is most frequently employed in analyzing matched-

pairs data. A sign test uses the sign of the difference between two numbers rather

than the actual quantitative measurements.

We will illustrate the matched-pairs sign test in terms of data obtained from a

sample survey. Table 17.1 shows some of the data derived from a survey that sought

to determine whether economists believed a Democratic president or a Republican

president would have a more positive effect on the economy. Prior to a presidential

election, 55 economists were surveyed and asked to rank, on a scale from 1 to 10,

the likelihood that either a Democratic or a Republican president would have a

positive impact on the economy.

Columns (2) and (3) in the table show the economists’ rankings of the potential

for a chief executive from each of the political parties having a positive impact on

the economy; 10 represents the greatest positive impact. The last column indicates

only the sign of the difference, either + or –. If there is no difference between the

rankings, a 0 is displayed. A plus sign means a higher numerical score was assigned

to the Democratic presidential candidate than to the Republican candidate, a minus

sign means the reverse, and a zero denotes a tie score.

The null hypothesis of our test is that there is no tendency to prefer one political

party over the other in assessing the president’s potential impact on the economy.

To implement this hypothesis test, we compare only the numbers for economists

who have a preference for one political party. Hence, we do not include, in our test,

data for economists who predicted that both political parties would do equally well.

Among the 55 economists surveyed, 33 stated that a president from the Demo-

cratic Party would have the greater positive impact on the economy, 17 stated that a

Table 17.1 Assessing political party preferences

(1)

Economist

(2)

Score for Democrat

(3)

Score for Republican

(4)

Sign of difference

1 8 6 +

2 9 4 +

3 9 6 +

4 4 5 �
5 7 8 �
6 9 3 +

7 8 5 +

8 9 6 +

9 7 7 0

10 9 8 +

. . . .

�� �� �� ��
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Republican president would have the greater impact, and 5 stated that the two

parties would do equally well. Because tied cases are excluded in a sign test, our

analysis will include 33 plus signs and 17 minus signs.

We want to test the null hypothesis of no difference in the impact on the

economy by the political parties in question; that is, we want to test the hypothesis

that plus and minus signs are equally likely to occur. We would expect an equal

number of plus and minus signs if the null hypothesis were true. On the other hand,

either too many pluses or too many minuses will be grounds for rejection of the null

hypothesis. If we use p* to denote the probability of obtaining a plus sign, we can

state the hypotheses as:

H0: There are no differences in the parties’ impact on the economy. (p* ¼ .50)

H1: There are differences in the parties’ impact on the economy. (p* 6¼ .50)

We use the large-sample method of the normal approximation to the binomial

distribution (see Chap. 7). If the observed proportion of plus signs is p̂, then the

mean and standard deviation of the sampling distribution of p̂ are

mp̂ ¼ p�

sp̂ ¼
ffiffiffiffiffiffiffiffiffi
p�q�

n

r
(17.1)

Our sample consists of 33 plus signs and 17 minus signs, so we substitute n¼ 50

into Eq. 17.1. This yields

p� ¼ :5

and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�q�=n

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð:5Þð:5Þ=50

p
¼ :071

Because our sample consists of 50 observations and the observed proportion of

plus signs is p̂¼ 33/50¼ .66, our test statistic, Z, can be approximated by a standard

normal distribution.

Z ¼ p̂� p�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�q�=n

p ¼ :66� :50

:071
¼ 2:254

Hence, assuming that we test the hypothesis at the 5 percent level of significance,

we would reject the null hypothesis if Z < � 1.96 or Z > 1.96. Accordingly, our

results dictate that we reject the null hypothesis that plus and minus signs are

equally likely to occur. That is, because the number of plus signs is greater than

the number of minus signs, we conclude that the economists in the sample believe

that a president from the Democratic Party is more likely than a Republican

president to have a positive influence on the economy.
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As we noted in Chap. 11, the critical interval estimate for p* (the true proportion
of positive signs), rather than the Z-value, can be used to do the null hypothesis test.
The critical interval estimates for p* are

p̂þ 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�q�=n

p
¼ :66þ ð1:96Þð:071Þ ¼ :521

p̂� 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�q�=n

p
¼ :66� ð1:96Þð:071Þ ¼ :799

That is, .521 < p < .799. This interval does not contain p* ¼ .5, so we reject the

null hypothesis.

17.3 The Wilcoxon Matched-Pairs Signed-Rank Test

The Wilcoxon matched-pairs signed-rank test is preferable when the differences

between the matched pairs can be quantitatively determined, rather than merely

assigned signs. In other words, the Wilcoxon test provides a method of

incorporating information about the relative size of the differences between the

matched pairs in terms of ranks.
To illustrate how to employ the Wilcoxon matched-pairs signed-rank test, we

will use a sample of net income figures for Lawrence Inc., which we assume to be

emerging from a major corporate reorganization (see Table 17.2). Data are given

for the 10 market regions in which Lawrence sells its product. Columns (2) and (3)

of Table 17.2 show the net income figures (in millions of dollars) for each region for

the year before corporate restructuring and the year after, respectively.

As in the sign test we conducted in Sect. 17.2, we calculate the difference in net

income for each region before and after the reorganization. This difference is entered

in column (4). Next, we determine the absolute values of the differences for each

region and rank the regions accordingly from 1 to n, where n is the number of regions

in our example. The smallest absolute difference is assigned the rank 1. When the

difference within a particular region is 0, no ranking is assigned. Hence, in our

example, the data for region 5 are no longer included in our test. When absolute

differences are tied, the mean rank value is assigned to those differences. In our

example, because regions 6 and 10 are tied for the rank of 2, both are assigned the

rank of 2.5, which is the average of 2 and 3. These ranks are entered in column (6) or

column (7), depending on their sign (+ or –) in column (4). Positive-signed ranks are

listed in column (6), negative-signed ranks in column (7). Again, because the

difference from region 5 is 0, only 9 samples need be included in our test.

Our table also displays the sum of the ranks in columns (6) and (7). These sums

are critical to our null hypothesis, which is2

2 Technically, this is not a null hypothesis, because it is stated in sample—not population—terms.
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H0 : Sum of plus ranks ¼ sum of minus ranks

Sigma rankðþÞ ¼ S rankð�Þ (17.2)

In other words, the null hypothesis implies that the population of positive and

negative differences is distributed around the mean of zero. The test statistic,

referred to as Wilcoxon’s W statistic, is the smaller of the sum of the plus ranks

(W+) and the sum of the negative ranks (W–):

Wþ ¼
Xn
i¼1

Rþ
i

W� ¼
Xn
i¼1

R�
i (17.3)

For samples of n � 20, we use Table A11 in Appendix A to obtain the critical

values of the test statistic W. Note that Table A11 represents the maximum value

that W can have and still be considered significant at various levels of significance.

In our example, because one observation of the difference is 0, the effective

sample size n¼ 10 � 1¼ 9. From Table 17.2, we obtainWþ ¼ 37.5 andW� ¼ 7.5.

The two-tailed value in Table A11 corresponding to n ¼ 9 and a ¼ .05 is 6.

Consequently, we are to accept H0 if W
� � 6. Because the value of W� is larger

than 6, we cannot reject H0 and must conclude that the net income levels before and

after corporate reorganization do not differ significantly.

Kruskal andWallis have shown that when n is large (at least 25),W is approximately

normally distributed with mean mw and standard deviation sw defined as follows3:

mW ¼ nðnþ 1Þ=4

Table 17.2 Net income figures for Lawrence Inc.

(1)

Market

region

(2)

Net income before

reorganization

(3)

Net income after

reorganization

(4)

Difference,

d ¼ (3) – (2)

(5)

Rank of

| d |

(6)

Signed +

(7)

Signed –

1 41 62 21 7 7

2 34 49 15 6 6

3 43 39 �4 4 4

4 29 28 �1 1 1

5 55 55 0

6 63 66 3 2.5 2.5

7 35 47 12 5 5

8 42 72 30 9 9

9 57 84 27 8 8

10 45 42 �3 2.5 �37.5 2.5 7.5

3 See Kruskal W.H., Wallis W.A.: Use of ranks in one-criterion variance analysis. J. Am. Stat.

Assoc. 47(152), 583–621 (1952)
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Fig. 17.1 MINITAB output of Table 17.2
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sW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þð2nþ 1Þ=24

p
(17.4)

This implies that we can compute Z ¼ (W–mW)/sw and perform the standard

Z test, which we examined in detail in Chap. 11. Note that the power of the

signed-rank test discussed in this section is higher than that of the sign test

discussed in the last section. The efficiency of the matched-pairs sign test

compares to that of the Wilcoxon matched-pairs signed-rank test as 3/p to 2/p.
Finally, note that the t test rather than the Z test is appropriate when the sample

size is smaller than 25.

The MINITAB output of Table 17.2 is shown in Fig. 17.1. To discuss the four

tests presented in Fig. 17.1, we will rewrite the null hypothesis of Eq. 17.2 as

H0 : The population differences are centered at d0: (17.2 0)

The first test is to test d0 ¼ 0, and its p-value is .086. Thus, it is not significant at
a ¼ .05, which is identical to what we found before. Both the second and third tests

are one-tailed tests. Their alternative tests are dQ> 1 and d0< 1, respectively. From

p ¼ .984 and p ¼ .022, we conclude that only the third test is significant at a ¼ .05.

The fourth test is to test d0 ¼ 1. It is significant at a¼ .05. From the third and fourth

tests, we conclude that the net income increases by at least one million after the

company is reorganized.

17.4 Mann–Whitney U Test (Wilcoxon Rank-Sum Test)

We will now consider another nonparametric technique that involves comparing

data from two samples. TheMann–Whitney U test, also referred to as theWilcoxon
rank-sum test, tests whether two independent samples have been drawn from two

populations that have the same relative frequency distribution. Unlike a sign test,

the Mann–Whitney U test directly considers the rankings of the observations in

each sample.

To illustrate the procedure for the Mann–Whitney U test, we will refer to

Table 17.3, which shows the research and development expenditures of

15 companies in each of two major industries, A and B.

The first step in performing the Mann–Whitney U test is to combine the two

samples. In Table 17.4, we rank the firms according to the dollar value of the

expenditures, 1 representing least R&D expenditure and 30 representing greatest

R&D expenditure. Note that firms continue to be designated by industry in

Table 17.4. The next step is to sum the ranks of the sample observations listed

in Table 17.4.

Referring to the data for industry A as sample 1, we can calculate the sum of

ranks of items in sample 1, designated R1 ¼ 166, as shown in the second column of

Table 17.3. We designate the sum of ranks of items in sample 2 (the data for
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industry B) as R2. Accordingly, R2 ¼ 299, as indicated in the last column of

Table 17.3. In general, if several variables are tied, then we assign each the average

of the ranks.

If the null hypothesis is true—in other words, if the samples from the two

industries were drawn from the same population—then we would expect that the

totals of these two ranks (R1 and R2) would be approximately equal. In order to test

this hypothesis, we calculate a U statistic. The U statistic is a test statistic that

depends on the number of observations in the samples as well as on the total of the

ranks for one of the samples—in this case, R1:

U1 ¼ n1n2 þ n1ðn1 þ 1Þ
2

� R1 (17.5)

where n1 is the number of observations in sample 1 and n2 is the number of

observations in sample 2. This test statistic could also be stated in terms of R2:

U2 ¼ n1n2 þ n2 n2 þ 1ð Þ
2

� R2 (17.6)

The U statistic measures the difference between the ranked observations of the

two samples and provides evidence on the difference between their population

distributions. Either very small or very large U values provide evidence of the

separation of the matched observations of the two samples.

Table 17.3 R&D

expenditures of two major

industries (in millions of

dollars)

Rank for Rank for

Industry A Industry A Industry B Industry B

40 1 54 8

41 2 52 6

43 3 69 15

46 4 70 16

47 5 71 17

53 7 72 18

55 9 73 19

56 10 76 20

61 11 77 21

63 12 78 22

64 13 82 25

68 14 83 26

79 23 84 27

80 24 88 29

85 28 89 30

166 299
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It can be shown that the sample distribution of U has the following mean and

standard deviation:

mU ¼ n1n2
2

(17.7)

sU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2ðn1 þ n2 þ 1Þ

12

r
(17.8)

Moreover, when the numbers of observations in both samples n1 and n2 are in

excess of approximately 10 observations, the sampling distributions of ranking

dollar value of expenditure approach a normal distribution.

Table 17.4 Ranking by

dollar value of expenditure
Rank R&D expenditure Industry

1 40 A

2 41 A

3 43 A

4 46 A

5 47 A

6 52 A

7 53 B

8 54 A

9 55 A

10 56 A

11 61 B

12 63 A

13 64 A

14 68 A

15 69 B

16 70 B

17 71 B

18 72 B

19 73 B

20 76 B

21 77 B

22 78 B

23 79 A

24 80 A

25 82 B

26 83 B

27 84 B

28 85 A

29 88 B

30 89 B
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For our example, the U statistic, the mean, and the standard deviation are

calculated as follows:

U ¼ ð15Þð15Þ þ 15ð15þ 1Þ
2

� 166 ¼ 179

mU ¼ ð15Þð15Þ
2

¼ 112:5

sU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð15Þð15Þð15þ 15þ 1Þ

12

r
¼ 24:11

Using this information, we can calculate the standardized normal variate:

Z ¼ U � mU
sU

¼ 179� 112:5

24:11
¼ 2:76

Again, assuming a two-tailed test at the 5 percent level of significance, we find

from Table A3 in Appendix A that the critical value for Z is 1.96. Because our

calculated Z-value exceeds the critical value, we can reject the null hypothesis that

the sample observations were drawn from the same population.

A MINITAB solution for this example is shown in Fig. 17.2. The

Mann–Whitney statistic is denoted as W, which is the same as the first sample

ranks. R2 is obtained by using the identity

R1 þ R2 ¼ nðnþ 1Þ
2

where n ¼ n1 + n2. The values of U1 and U2 are then easily calculated. The p-value
of .0062 in Fig. 17.2 indicates that we should reject the null hypothesis that the two

samples are equal at a ¼ .05.

When samples n1 and n2 are both� 10, Table A12 in Appendix Amay be used to

obtain the critical values of test statistic R1 for both one- and two-tailed tests at

various levels of significance. The producer commodity price indexes for January

1985 and January 1986 for 6 product categories listed in the table are used to show

how the Wilcoxon rank-sum test can be performed (data from Standard & Poor’s
Statistical Service, Current Statistics, Jan. 1987, pp. 12–13). Combined ranks are

shown in parentheses.

Product category January 1985 January 1986

Processed poultry 198.8 (4) 192.4 (3)

Concrete ingredients 331.0 (8) 339.0 (9)

Lumber 343.0 (10) 329.6 (7)

Gas fuels 1,073.0 (12) 1,034.3 (11)

Drugs and pharmaceuticals 247.4 (5) 265.9 (6)

Synthetic fibers 157.6 (2) 151.1 (1)
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From the combined ranks information in the table, we find

R1 ¼ 4þ 8þ 10þ 12þ 5þ 2 ¼ 41

R2 ¼ 3þ 9þ 7þ 11þ 6þ 1 ¼ 37

As a check on the ranking procedure, by substituting R1¼ 41, R2¼ 37, and n¼ 12

into the identity discussed previously, we obtain

41þ 37 ¼ 12ð12þ 1Þ
2

¼ 78

Because both n1 and n2 � 10, Table A12 is used to obtain the critical value R1

statistic. With n1 ¼ 6 and n2 ¼ 6, we observe (Table A12) that at the .05 level of

significance, the lower and upper critical values for the two-tailed test are, respec-

tively, 26 and 52. Because the observed value of the test statistic R1 ¼ 41 falls

between the critical values, the null hypothesis cannot be rejected. In other words,

the probability distribution of economic indexes did not change during the period of

January 1985 and January 1986.

Fig. 17.2 MINITAB output of Table 17.3
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17.5 Kruskal–Wallis Test for m Independent Samples

The Kruskal–Wallis test is a one-factor analysis of variance by ranks. It is

a nonparametric test that represents a generalization of the two-sample

Mann–Whitney U rank-sum test to situations where more than two

populations are involved. Unlike one-factor analyses of variance (see Chap.

12), the Kruskal–Wallis test makes no assumptions about the population

distribution.

This test is based on a test statistic calculated from ranks established by pooling

the observations from c independent simple random samples (where c > 2). The

null hypothesis is that the populations are identically distributed or, alternatively,

that the samples were drawn from c identical populations. Let’s follow the proce-

dure through an example.

Assume that simple samples of executive vice presidents in a certain industry

were drawn from firms classified into three size categories (large, medium, and

small). After being assured of the confidentiality of their replies, the 20 executives

were asked to rate the overall quality of their board of directors’ performance in

setting general corporate policy during the past 3-year period on a scale from 0 to

100, with 0 denoting the lowest rating and 100 the highest. The scores, classified

by size of firm, and the rankings of the pooled sample scores are shown in

Table 17.5.

The result was the following pooled ranking, with the lowest score that was

actually given represented by 1 and the highest by 20.

Score 51 61 62 63 66 69 71 73 74 76 78 79

Rank 1 2 3 4 5 6 7 8 9 10 11 12

Score 81 83 85 86 88 91 94 96

Rank 13 14 15 16 17 18 19 20

Table 17.5 Calculations for

the Kruskal–Wallis test scores

and ranks classified by size

of firm

Large Medium Small

Score Rank Score Rank Score Rank

79 12 69 6 83 14

96 20 78 11 66 5

86 16 85 15 51 1

88 17 62 3 94 19

76 10 63 4 71 7

91 18 73 8 61 2

81 13 74 9

n1 ¼ 7 n2 ¼ 6 n 3 ¼ 7

R1 ¼ 106 R2 ¼ 47 R 3 ¼ 57
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The Kruskal–Wallis test statistic, K, compares the variations of the ranks of the

sample groups:

K ¼ 12

nðnþ 1Þ
Xc

i¼1

R2
i

ni
� 3ðnþ 1Þ (17.9)

where

ni ¼ number of observations in the ith sample

n ¼ n1 þ n2 þ. . . þ nc ¼ total number of observations in the c samples

Ri ¼ sum of the ranks for the ith sample

Table 17.5 gives the sample sizes and rank sums for each sample group.

Substituting into the foregoing formula, we compute the K statistic in the present

example:

K ¼ 12

20ð20þ 1Þ
1062

7
þ 472

6
þ 572

7

� �
� 3ð20þ 1Þ ¼ 6:64

As a check on calculations at this point, make sure the ranks sum to n(nþ 1)/2¼
(20)(21)/2 ¼ 210; here, 106 þ 47 þ 57 ¼ 210.

It can be shown that the sampling distribution of K is approximately the same as

the chi-square distribution with v¼ c�1 degrees of freedom (where c is the number

of sample groups). In this example, where there are 3 sample groups, the number

of degrees of freedom is v ¼ c�1 ¼ 3�1 ¼ 2. Testing the null hypothesis at the

5 percent level of significance (a ¼ .05) and using Table A5 of Appendix A, we

find the critical value of w2 to be w22; 0:05 ¼ 5.991. Hence, our rule for the one-tailed

test is as follows:

If K > 5.991, reject the null hypothesis.

If K � 5.991, do not reject the null hypothesis.

Because K ¼ 6.64 is greater than the critical value of 5.991, we reject the null

hypothesis of identically distributed populations. Therefore, we conclude that there

are significant differences by size of firm in the scores assigned by these 3 samples

of executive vice presidents.

MINITAB output of the Kruskal–Wallis statistics of Table 17.5 is presented in

Fig. 17.3. Note that the board of directors’ performance scores are stored in C1,
whereas column C2 contains the sample number of each observation (1, 2, or 3).

The value of the Kruskal–Wallis statistic is called H and agrees with the previous

result. The p-value associated with H is .037.
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17.6 Spearman Rank Correlation Test

The Spearman rank correlation test is a nonparametric method of correlation

designed to measure the strength of association between two sets of ranked data.

As we have learned, nonparametric procedures can be useful in correlation analysis

where the basic data are not available in the form of numerical magnitudes but

where rankings can be assigned. If two variables of interest can be ranked in

separate ordered series, a rank correlation coefficient can be computed. We will

consider two different cases, the first representing perfect direct correlation

between two series and the second, perfect inverse correlation.

Fig. 17.3 MINITAB output of Table 17.5
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Table 17.6 displays data on the rankings of a simple random sample of 10 students

according to learning abilities in mathematics and physics. Clearly, this represents a

case in which it would be almost impossible to obtain precise quantitative measures

of these abilities but in which rankings may be feasible. In rank correlation analysis,

the rankings may be assigned in order from high to low, with 1 representing the

highest rating, 2 the next highest, and so on, or from low to high, with 1 representing

the lowest rank, 2 the next lowest, and so on. The computed rank correlation

coefficient is the same regardless of the rank ordering used.

The rank correlation coefficient (rs) is computed by the formula

rs ¼ 1� 6S d2

nðn2 � 1Þ (17.10)

where

d ¼ difference between the ranks for the paired observations

n ¼ number of paired observations

The calculations of the rank correlation coefficients for the two extreme cases

are shown in Tables 17.6 and 17.7. In the first table, there is a perfect direct

correlation in the rankings; that is, the student who ranks highest in mathematics

ability is also best in physics. In the second table, there is perfect inverse correla-

tion; that is, the student who ranks highest in mathematics is worst in physics.

In the case of perfect correlation between the ranks, rs ¼ 1; in perfect inverse

correlation, rs ¼ �1. An rs-value of zero indicates no correlation between rankings.
Tied ranks are handled in the calculations by averaging. Substituting ∑d2 ¼ 0 and

∑d2 ¼ 330 into Eq. 17.10, we obtain

rs ¼ 1� 6S d2

nðn2 � 1Þ ¼ 1� 6ð0Þ
10ð102 � 1Þ ¼ 1

Table 17.6 Rank correlation of mathematics learning ability with physics learning ability (perfect

direct correlation)

Student

Rank in mathematics

ability, X
Rank in physics

ability, Y
Difference in ranks,

d ¼ X–Y d2 ¼ (X–Y)2

A 1 1 0 0

B 2 2 0 0

C 3 3 0 0

D 4 4 0 0

E 5 5 0 0

F 6 6 0 0

G 7 7 0 0

H 8 8 0 0

I 9 9 0 0

J 10 10 0 0
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rs ¼ 1� 6S d2

nðn2 � 1Þ ¼ 1� 6ð330Þ
10ð102 � 1Þ ¼ �1

The significance of rank correlation is tested in the same way as for the sample

correlation coefficient r. We compute the statistic

t ¼ rsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� r2s Þ=ðn� 2Þp (17.11)

which has a t distribution with (n�2) degrees of freedom. If rs ¼ .90, then

t ¼ :90ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� :81Þ=ð10� 2Þp ¼ 5:84

Assuming we are using a two-tailed test of the null hypothesis of zero

correlation in the ranked data of the population, the critical t at a 5 percent

level of significance with 8 degrees of freedom is equal to 2.306, as indicated in

Fig. 17.4. We reject the hypothesis of no rank correlation and conclude that a

positive linear relationship exists between rank in mathematics learning ability

and in physics learning ability.

17.7 The Number-of-Runs Test

In economics and finance, we are often interested in examining the randomness of

series of data. For example, if the movements of stock prices are random over time,

it is impossible to forecast future stock prices accurately. Hence, it is not possible to

earn abnormal profits by using data on past stock prices. This hypothesis has come

Table 17.7 Rank correlation of mathematics learning ability with physics learning ability (perfect

inverse correlation)

Student

Rank in mathematics

ability, X
Rank in physics

ability, Y
Difference in ranks

d ¼ X–Y d2 ¼ (X–Y)2

A I 10 �9 81

B 2 9 �7 49

C 3 8 �5 25

D 4 7 �3 9

E 5 6 �1 1

F 6 5 1 1

G 7 4 3 9

H 8 3 5 25

I 9 2 7 49

J 10 1 9 81

330
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to be known in finance as the efficient market hypothesis. In this section, we discuss
a nonparametric procedure known as a runs test that can be used to examine the

randomness of a series.

To test whether the collected sample data are random, we can use a nonparamet-

ric test statistic known as the number of runs to perform statistical inference. A run
is a sequence of identical occurrences preceded and followed by different

occurrences or by none at all. For example, suppose you toss a coin 15 times,

recording each appearance of heads (H) or tails (T), and get

HHHHTTTTHHHHTTT

In this sequence, there are four runs: two runs of heads and two runs of tails.

To illustrate how a number-of-runs test works, let’s consider a series of

observations generated by the tossing of a coin. The probability of tossing a head

or a tail is 1
2
, or 50 percent, so if we tossed the coin enough times, we would expect

about half of the tosses to be heads and about half to be tails. However, even

though this series is random, the sequence in which the head and tails appear

could be HTHTHTHTHTHTHTHTHTHTHTHTHTHTHTHTHTHTHTHTH or

HHHTHTTHTTTHHTTTHTHH or any of many others. The first series consists

of 41 observations and 41 runs, the second of 20 observations but only 11 runs. The

runs test looks at the number of runs and answers this question: Are there too many

or too few runs for the series to be considered random? The hypotheses we are

interested in, then, are as follows:

H0: The series of observations are random.

H1: The series of observations are not random.

The methods we use to do this hypothesis testing depend on whether the number

of observations is smaller than 40 or, on the other hand, equal to or larger than 40. If

the sample is smaller than 40, we use the Wald–Wolfowitz two-sample runs test

presented in Table A10 in Appendix A.

Fig. 17.4 Sampling distribution of rank correlation with a ¼ .05 and 8 degrees of freedom
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If the number of observations is large enough (40 or more), the distribution is

approximately normal, and we can use the normally distributed random variable

Z defined in Eq. 17.12:

Z ¼ R� mR
sR

(17.12)

where

R ¼ number of runs in our series

mR ¼ mean value of R ¼ 2n1 n2/n + 1

sR ¼ standard deviation of R; sR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1n2ð2n1n2�nÞ

n2ðn�1Þ
q

n1 ¼ number of times we observe the first value

n2 ¼ number of times we observe the second value

n ¼ n1 + n2

To illustrate how the number-of-runs test works, let’s return to our previous

example. Here, we generated two series of observations, by tossing a coin 41 times

and 20 times, respectively:

Series 1

H T H T H T H T H T H T H T H T H T H T

H T H T H T H T H T H T H T H T H T H T H

This series consists of 41 observations and 41 runs:

Series 2

HHH T H TT H TTT HH TTT H T HH

This series consists of 20 observations and 11 runs.

We can use Eq. 17.12 to test the randomness of the first series because n > 40.
R ¼ 41, n1 ¼ 21, n2 ¼ 20,

mR ¼ 2ð21Þð20Þ=ð21þ 20Þ þ 1

¼ 21:49

and

sR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð21Þð20Þ½2ð21Þð20Þ � 41�

ð41Þ2ð41� 1Þ

s

¼ 3:16

so Z, our test statistic, is Z¼ 41�21.49/3.16¼ 6.17. From Table A3 in Appendix A,

we find Z.025 ¼ 1.96. Because our Z-value is 6.17, we are able to reject the null

hypothesis of randomness of the series at the a ¼ .05 level.

17.7 The Number-of-Runs Test 895



Because n < 40 for the second series, we should use Table A10 in Appendix

A to perform the test. Parts 1 and 2 of Table A10 present the critical values of

the runs test at the .05 level of significance for the second series n1 ¼ 10, n2 ¼
10, and R ¼ 11. From Table A10 in Appendix A, we find that we would reject

the null hypothesis at the .05 level if R � 16 or if R � 6 for the two-tailed test.

Because the observed number of runs is 11, we cannot reject the null hypothesis

that the series is random.

Finally, we compare the efficiency of some nonparametric tests discussed in this

chapter with parametric tests as shown in the following table.

Application Parametric test Nonparametric test

Efficiency of nonparametric

test with normal population

Two dependent

samples

t test or z test Sign test .63

Wilcoxon

signed-ranks

.95

Two independent

samples

t test or z test Wilcoxon rank-sum .95

Several independent

samples

Analysis of variance

(F test)

Kruskal–Wallis test .95

Correlation Linear correlation Rank correlation .91

Randomness No parametric test Runs test No basis for comparison

From this table, we know that the efficiency of nonparametric tests is always

lower than that of parametric tests if the population is distributed normally. The

range of efficiency is from .63 to .95.

17.8 Business Applications

In this section, we present five applications that show how nonparametric statistics

can be used in business decision making.

Application 17.1 Testing Randomness of Stock Rates of Return. The number-

of-runs test can be applied to a series of stock rates of return to see whether the stock

rates of return are random or exhibit a pattern that could be exploited for earning

abnormal profits.

The annual data on stock rates of return for Johnson & Johnson, Merck, and the

market for the period 1990–2009 are listed in Table 17.8. The numbers of runs are

presented to the right of each variable. Table 17.8 indicates that the numbers of runs

for rates of return for Johnson & Johnson, rates of return for Merck, and market

rates of return are 11, 9, and 4, respectively.
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If we assume that n1 and n2 represent “number of minus signs” and “number of

plus signs,” respectively, then n1 and n2 for all three variables are as follows:

Ri,t Ri,t Rm,t

(J&J) (MRK) (S&P 500)

n1 8 8 5

n2 12 12 15

To do the test, we need to find the critical values from Table A10 in Appendix A

of this book. At a 5 percent level of significance for a two-tailed test, the critical

value for n1 ¼ 8 and n2 ¼ 12 is either R � 16 or R � 6; the critical value for n1 ¼ 5

and n2 ¼ 15 is R� 4. The calculated numbers of runs for Ri,t (J&J), Ri,t (MRK), and

the market (S&P 500) rates of return are 11, 9, and 4, respectively, so we cannot

reject the null hypothesis that rates of return for J&J and MRK are random.

However, we can reject the hypothesis that the market (S&P 500) rate of return is

random.

MINITAB output in terms of data in Table 17.8 is shown in Fig. 17.5, which

indicates that all three series of data are random at a ¼ .05. In this MINITAB

output, K represents the mean of each series. For example, the mean of the rate of

return for J&J is .070. Based on the mean, we find that there are 11 observations

above K and 9 observations below K. From this information, we find that there are

Table 17.8 Rates of return

for J&J, MRK, and S&P 500

(1990–2009) Observations

J&J MRK S&P 500

Ri,t Run Ri,t Run Rm,t Run

1 0.230 0.185 0.036

2 0.617 1 0.879 1 0.124

3 �0.551 �0.734 0.105

4 �0.092 2 �0.183 2 0.086

5 0.245 0.142 0.020

6 0.585 3 0.754 0.177

7 �0.410 4 0.235 0.238

8 0.341 0.353 0.303

9 0.288 0.410 3 0.243

10 0.124 �0.537 4 0.223

11 0.140 5 0.412 5 0.075 1

12 �0.431 �0.357 �0.163

13 �0.078 �0.013 �0.168

14 �0.021 6 �0.158 �0.029 2

15 0.249 7 �0.272 6 0.171

16 �0.032 8 0.037 0.068

17 0.122 0.418 0.086

18 0.035 9 0.367 7 0.127 3

19 �0.076 10 �0.451 8 �0.174

20 0.108 11 0.254 9 �0.223 4
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11 runs associated with the rate of return of J&J. Similarly, we can calculate related

information for the rates of return of MRK and S&P 500.

If we assume that n1 and n2 represent the “number of observations above the

mean” and the “number of observations below the mean,” respectively, the n1 and
n2 for all three variables are as follows:

Data Display

Row       JNJ           MRK          S&P

   1     0.230108   0.185441   0.036396

   2     0.616842   0.878595   0.124301

   3    -0.551293  -0.733803   0.105162

   4    -0.091578  -0.182990   0.085799

   5     0.244915   0.142442   0.019960

   6     0.584558   0.753915   0.176578

   7    -0.409758   0.235280   0.237724

   8     0.340804   0.352548   0.302655

   9     0.287688   0.409696   0.242801

  10    0.124207  -0.537078   0.222782

  11    0.139719   0.411867   0.075256

  12   -0.431191  -0.357447  -0.163282

  13   -0.078010  -0.013313  -0.167680

  14   -0.021172  -0.158294  -0.028885

  15    0.248595  -0.271964   0.171379

  16   -0.032496   0.036942   0.067731

  17    0.122480   0.418327   0.085510

  18    0.034602   0.367425   0.127230

  19   -0.076435  -0.450781  -0.174081

  20    0.108473   0.254065  -0.222935

Runs Test: JNJ

Runs test for JNJ

Runs above and below K = 0.0695528

The observed number of runs = 11

The expected number of runs = 10.9

11 observations above K, 9 below

* N is small, so the following approximation may be invalid.

P-value = 0.963

Fig. 17.5 MINITAB output of Table 17.8
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Ri,t Ri,t Rm,t

(J&J) (MRK) (S&P 500)

n1 11 11 13

n2 9 9 7

At a 5 percent level of significance for a two-tailed test, the critical values for all

three variables from Table A10 are as follows:

Lower tail Upper tail

(a ¼ .025) (a ¼ .025)

Ri,t (J&J) 6 16

Ri,t (MRK) 6 16

Rm,t (S&P 500) 5 15

Figure 17.5 indicates that the observed number of runs for Ri,t (J&J), Ri,t (MRK),

and Rm,t (S&P 500) are 11, 9, and 7, respectively. Because all these runs are larger

than lower tail and smaller than upper tail, we cannot reject the hypothesis that all

three kinds of returns are random. This conclusion is consistent with that of the

MINITAB output.

Application 17.2 Comparing Errors in Earnings Forecasts by Firm Size:

Management Forecasts Versus Analysts’ Forecasts. Here, we investigate the

Runs Test: MRK

Runs test for MRK

Runs above and below K = 0.0870437

The observed number of runs = 9
The expected number of runs = 10.9
11 observations above K, 9 below
* N is small, so the following approximation may be invalid.
P-value = 0.378

Runs Test: S&P

Runs test for S&P
Runs above and below K = 0.0662201
The observed number of runs = 7
The expected number of runs = 10.1
13 observations above K, 7 below
* N is small, so the following approximation may be invalid.
P-value = 0.116

Fig. 17.5 (continued)
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accuracy of management forecasts relative to analysts’1 forecasts. Jaggi (1980)4

used sample data from 1971 to 1974 in terms of either five industries (Table 17.9) or

six different firm sizes (Table 17.10). Using the Wilcoxon matched-pairs signed-

rank test we discussed in Sect. 17.3, Jaggi tested the statistical differences between

management forecasts and analysts’ forecasts by using either Z-values or Wilcoxon

t-values as indicated in both Tables 17.9 and 17.10.

The formula for calculating these two testing statistics is presented in Eq. 17.4.

Jaggi used Z-values or t-values when the sample size is larger (or smaller) than 30.

Note that t-values are Wilcoxon’s W statistics defined in Eq. 17.3. In these two

tables, the mean absolute relative prediction error (MARPE)5 is defined as

Table 17.9 Comparison of forecast errors by industry

Industry

Number of

forecasts

Mean absolute

relative prediction

error (percentage)

Wilcoxon

matched-pairs

signed-rank test
Level of

significance

(two-tailed)Management Analyst Z-value t-value

Banking and finance 12 21.8 23.0 38 .15

Utilities 22 24.8 33.3 68 .09

Manufacturing 82 30.4 29.8 �.021 .45

Chemicals 22 25.0 35.8 32 .01

Services (transportation

and recreation)

18 21.8 23.0 20 .01

Source: Adapted from Jaggi, B.: Further evidence on the accuracy of management forecasts vis-à-

vis analysts’ forecasts. Account. Rev. 55, 96–101 (1980)

Table 17.10 Comparison of forecast errors by firm size

Firm size (revenue in

millions of dollars)

Number of

firms

Mean absolute relative

prediction error

(percentage)

Wilcoxon matched-

pairs signed-rank

Test significance Level of

(two-tailed)Management Analyst z-value t-value

0–99 8 43.2 37.9 9 .12

100–299 39 32.2 37.0 �2.02 .02

300–499 22 14.7 20.6 51 .02

500–999 37 27.4 28.0 1.45 .07

1000–1999 28 23.1 23.3 �1.98 .02

2000–above 22 28.2 29.8 117 .14

Source: Adapted from Jaggi, B.: Further evidence on the accuracy of management forecasts vis-à-

vis analysts’ forecasts. Account. Rev. 55, 96–101 (1980)

4 This example is adapted from results given by Jaggi, B.: Further evidence on the accuracy of

management forecasts vis-à-vis analysts’ forecasts. Account. Rev. 55, 96–101 (1980)
5 Other methods of comparing the predicted and observed values will be discussed in the next

chapter.
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MARPE ¼ jÊt � Etj
Et

(17.13)

where Êt represents the forecast for time period t and E
t
represents actual reported

earnings for time period t.

Using a 5 percent level of significance, Jaggi found that only chemicals and

services industries and subgroups 2, 3, and 5 are statistically significant. In other

words, only in two industries and in firms of these three sizes are management

forecasts statistically different from analysts’ forecasts.

Application 17.3 Studying the Relationship Between Respondent and Nonre-

spondent in Mail Surveys. Finn et al. applied the Spearman rank correlation test

to the relationship between respondent and nonrespondent in mail surveys about

consumer willingness to buy products made in ten different countries (see

Table 17.11).6 Respondent rank order is obtained by averaging 387 respondent

random sampling results in mail surveys. Nonrespondent rank order is obtained by a

telephone interview with 10 randomly selected mail nonrespondents.

Substituting information from Table 17.11 into Eq. 17.10, we obtain the corre-

lation coefficient:

rs ¼ 1� 6S d2

nðn2 � 1Þ ¼ 1� 6ð2Þ
10ð102 � 1Þ ¼ :988

Table 17.11 Ranking of consumer willingness to buy products made in indicated countries

Country

Ordera for

respondent (x)
Rank order for

nonrespondent (y)
Difference in ranks,

d ¼ x–y d2 ¼ (x–y)2

United Kingdom 1 1 0 0

Japan 2 3 �1 1

France 3 2 1 1

Taiwan 4 4 0 0

Brazil 5 5 0 0

India 6 6 0 0

Iran 7 7 0 0

Angola 8 8 0 0

USSR 9 9 0 0

Cuba 10 10 0 0

2

Source: Finn, D.W., et al.: An examination of the effects of sample composition bias in a mail

survey. J. Mark. Res. 25(Oct), 331–338 (1983) (Reprinted by permission of the American

Marketing Association)
aData collected in spring 1977

6 Finn, D.W., Wang, C.K., Lamb, C.W.: An examination of the effects of sample composition bias

in a mail survey. J. Mark. Res. 25(Oct), 331–338 (1983).
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Then, substituting rs ¼ .988 into Eq. 17.11, we obtain the t-value:

t ¼ rsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� r2s Þ=ðn� 2Þp ¼ :988ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1� ð:988Þ2Þ�=ð10� 2Þ

q ¼ 18:09

From Table A4 in Appendix A, we find t.005,8 ¼ 3.3550. Because 18.09 is much

larger than 3.3550, we conclude that rank order for respondent and rank order for

nonrespondent are highly correlated. In other words, the opinions elicited from the

two groups are almost identical.

MINITAB output of Table 17.11 is presented in Fig. 17.6. The correlation

coefficient it shows is .988, which is identical to previous results.

Application 17.4 Testing the Randomness of the Pattern Exhibited by Quality

Control Data over Time. If the process is in control, the distribution of sample

values should be randomly distributed above and below the center line of a control

chart, as we noted in Sect. 10.9 of Chap. 10. To test whether the pattern of, say, 10

sample observations over time appears to be random, we can use a two-tailed

hypothesis test:

H0: The sequence of sample values is random.

H1: The sequence of sample values is not random.

Figure 17.7 shows a run of 3 consecutive points down and another run of 7

consecutive points up. Hence, there are two runs with n1 ¼ 3 and n2 ¼ 7. The total

Fig. 17.6 MINITAB output

of Table 17.11
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number of observations, n, is smaller than 40, so this is a small-sample case, and we

can use the Wald–Wolfowitz two-sample runs-test table to do the test. Table A10

indicates that the critical value of R for n1 ¼ 3 and n2 ¼ 7 is equal to 2. The number

of runs for the data presented in Fig. 17.7 is also 2. Therefore, we can reject the null

hypothesis of randomness at a ¼ 5 percent. In other words, we conclude that the

production process is not random and is out of control.

Application 17.5 Comparing Cash Compensation for 3 Different Groups of

Corporate Executives. In Application 12.1 in Chap. 12, we used the analysis

of variance approach to test whether there is a difference among 3 different groups of

corporate executives’ cash compensation. This set of data is repeated in Table 17.12.

Now, we use the Kruskal–Wallis test instead of the analysis of variance test to

determine whether there is any difference in the 1986 total cash compensation for

the 3 groups of corporate executives.

The MINITAB output of the Kruskal–Wallis statistic is shown in Fig. 17.8. The

K statistic (H) as denned in Eq. 17.9 equals 7.80, which is significant at a ¼ .020.

Fig. 17.7 A control chart with 10 sample observations

Table 17.12 1986 total cash compensation for 3 groups of executives

Banks and bank

holding companies Utilities

Office equipment

and computers

$ 755 $520 $438

712 295 828

845 553 622

985 950 453

1.300 930 562

1,143 428 348

733 510 405

1.189 864 938

Source: Executive compensation scoreboard, Business Week, May 4, 1987,59–94, by special

permission, copyright # 87 by McGraw-Hill, Inc
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Fig. 17.8 MINITAB output

of Application 17.5
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17.9 Summary

In this chapter, we discussed six nonparametric statistical tests that do not require

the assumption of normality in the distribution of the population. We also gave

examples of the use, in business and economic decision making, of the matched-

pairs sign test, the Wilcoxon matched-pairs signed-rank test, the Mann–Whitney

U test, the Kruskal–Wallis test, the Spearman rank correlation test, and the number-

of-runs test.

Questions and Problems

1. Mr. John is a central New Jersey real estate salesman. He claims that the

median selling price of houses in the area is about $ 100,000. To check this

claim, you randomly select 10 houses that were recently sold in this area and

record the following prices (in thousands of dollars).

120 115 100 113 103 97 90 111 95 88

Using the sign test, determine whether the salesman’s claim is reasonable.

(Test at the .05 level of significance.)

2. Use the sign test to test, at the 5 percent level, whether the following data come

from a population with median 10. Use H1: median 6¼ 10.

13.7 8.1 15.9 12.3 3.4 17.2 13.1 17.2

12.0 25.9 17.5 12.9 13.6 11.5 7.7 16.1

9.4 11.2 12.7 10.8

3. Use the number-of-runs test to determine at the 5 percent level of significance

whether it can be concluded that these binary sequences are not random:

(a) 0 0 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 0 1 1 1

(b) 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 0 1 0 1 0

(c) 1 0 1 1 1 0 1 0 1 1 1 0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 0 0

4. The following sequence indicates whether a manufacturer’s daily production of

videocassette recorders (VCRs) was above (X) or below (Y) the long-term

median number of defective VCRs.

XYYXXXYYXYYXXXYYXYXXY Y X

(a) Does this series suggest a departure from randomness? (Test at a ¼ .05.)

(b) Why would the production manager care whether this series suggested

randomness?
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5. The following sequence indicates whether an accident occurred at a given

intersection during the rush “hour” (7:00 A.M. to 9:30 A.M). (Y indicates an

accident, N no accident.)

N Y N N Y Y N N N Y N Y Y N N N Y N Y Y N N

(a) Is there an indication of departure from randomness at the .05 Type I error level?

(b) Why would a transportation official be concerned about the nonrandom

occurrence of accidents?

6. At the 5 percent level of significance, can we conclude that this sequence of

symbols is a random series?

+ � � + + + � + + � + � + � � – + + � � + + + � � +

7. Find the Spearman rank correlation for the scores for friendliness and response

time given to brand Y computers by 7 users. Test for significance, assuming

that the critical value for rs when n ¼ 7 is � .893.

User Friendliness Response time

1 66 79

2 75 69

3 71 84

4 61 78

5 48 65

6 90 82

7 80 90

8. In a rank correlation problem with n ¼ 50 observations, the sum of the squared

differences between the rank observations is S d2 ¼ 12,500. Calculate r.
9. The ratings assigned by a personnel manager and his assistant to several job

applicants are given in the accompanying table. Use Spearman rank correlation

measure r to show whether the personnel manager and his assistant disagree on

how they rank the applicants. Let a ¼ .05.

Applicant

1 2 3 4 5 6 7 8 9 10 11

Manager 9 11 10 5 3 8 2 1 4 3 2

Assistant manager 7 6 5 8 9 11 10 4 6 1 7

10. A company wishes to compare typing accuracy on two kinds of computer

keyboards. Fifteen experienced typists type the same 600 words. Keyboard

X1 is used 7 times and keyboard X2 is used 8 times, with the following results:

Number of errors

Board X1 13 9 16 15 10 11 12

Board X2 15 9 18 12 14 17 20 19

Compute the Mann–Whitney U statistic, and state the assumption for a U test.

What does a large calculated U-value indicate?
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11. The owner of a convenience store has noticed that the register shortages are

higher at the eastside store than at the westside store. The following dollar

shortages were reported for 10 randomly selected days:

Eastside store

8.40 16.00 4.50 20.35 12.45

10.35 7.55 11.30 3.50 7.20

Westside store

2.75 9.00 7.00 15.55 13.00

4.75 10.80 12.00 1.90 30.00

Compute the Mann–Whitney U statistic, and state the assumption for a U test.

Use a 5 percent significance level.

12. The manufacturer of a new shaving cream tests 3 new advertising campaigns in

a total of 21 markets. Sales in the third week after introduction are given in the

accompanying table.

Shaving cream sales (cases per thousand of population)

A B C

38 26 40

42 30 36

27 18 32

60 42 37

36 24 42

54 30 46

40 26 38

Use the Kruskal–Wallis test to determine whether the median sales levels for

the 3 campaigns are different at the 5 percent level of significance.

13. Compare parametric tests to nonparametric tests. What are the assumptions of

each type of test? Give some examples of each type of test.

14. The “weak form” of the efficient market hypothesis says that historical stock

prices cannot be used to earn abnormal profits—that is, stock prices move

randomly. Go to the library, collect 30 days of indexes from the Dow Jones

Industrial Average, and use a number-of-runs test to test whether these indexes

move randomly at a 10 percent level of significance.

15. Toss a coin 50 times and use a number-of-runs test to see whether the outcome

of tossing a coin is random at a 5 percent level of significance.

Use the following information to answer questions 16–19. A psychologist

conducting research on the differences in aptitude between males and females

found 10 pairs of twins wherein one of the twins was male and the other

female. Results of the tests on their math and verbal skills are shown in the

table.
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Twin

Male Female

Math score Verbal score Math score Verbal score

1 93 87 83 91

2 80 75 92 87

3 75 75 82 65

4 65 55 62 78

5 87 67 79 95

6 98 87 90 90

7 85 86 72 83

8 90 95 99 96

9 85 83 78 82

10 95 98 87 90

16. Use a Wilcoxon matched-pairs signed-rank test to test the hypothesis that there

is a difference between the scores for males and those for females on the math

portion of the test. Do a 5 percent test.

17. Use a Wilcoxon matched-pairs signed-rank test to test the hypothesis that there

is a difference between the scores of males and those of females on the verbal

portion of the test. Use the MINITAB program. (Hint: Follow the procedures

presented in Fig. 17.1.) Do a 5 percent test.

18. Use a Wilcoxon matched-pairs signed-rank test to test the hypothesis that there

is a difference between the math and verbal scores for the male twins. Do a 5

percent test.

19. Use a Wilcoxon matched-pairs signed-rank test to test the hypothesis that there

is a difference between the math and verbal scores for the female twins. Use the

MINITAB program. (Hint: Refer to Fig. 17.1.) Do a 5 percent test.

20. A statistics professor is interested in whether there is any difference between

the scores in the first-period statistics class and those in her third-period

statistics class. She collects the information shown in the accompanying

table. Use a rank-sum test to test at a 10 percent level whether the scores in

the first-period class and those in the third-period class are different. Use the

MINITAB program. (Hint: Refer to Fig. 17.2.)

Period 1 Period 3 Period 1 Period 3

85 84 88 95

72 93 90 88

93 87 95 64

65 80 86 63

88 55 92 68

90 95 98 70

55 75 62 71

82 72 70 67

75 76 71 85

89 88 65 90

62 80 73 72

60 75 55 77

(continued)
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(continued)

Period 1 Period 3 Period 1 Period 3

80 62 46 86

54 60 69 88

63 90 70 90

21. The prices for ABC Company’s stock over a 12-day period follow. Test, at the

a ¼ .05 level, whether changes in the stock price are random.

83.20 79.21 89.82

81.15 78.30 90.10

79.32 79.65 89.75

80.10 80.27 92.25

22. The following array shows price changes for silver. A + denotes an increase in

price from the previous day; a – denotes a decrease in price from the previous day.

+ + + + + � � – + � + + + � � � � + � � + � + � + � �
Test, at the 10 percent level of significance, whether changes in the price of

silver are random.

23. Suppose we want to test whether the number of times black or red comes up on

a roulette wheel is random. In 100 spins of the wheel, we find that black comes

up 48 times and red comes up 52 times. The number of runs in this sample is 48.

Test, at the 1 percent level of significance, whether the appearance of red or

black is random.

24. Suppose you toss a coin 50 times and receive 22 heads and 28 tails with 25 runs.

Is the tossing of a head or tail random? Test this hypothesis at the 5 percent

level of significance.

25. You are given the following 4 samples of price changes for a stock. Count the

number of runs in each sample.

(a) + + + � � + (c) + + + + + �
(b) + � + + � � (d) – – + + � �

26. Suppose you collect the following information on salaries for two groups of

college professors: professors in the sciences and professors in the humanities.

Science professor Humanities professors

$52,500 $29,200

$68,270 $42,700

$55,000 $51,000

$48,900 $37,000

$75,000 $41,000

(a) Compute the ranks for each group.

(b) Do we lose information by converting numerical information into ranks?

(c) Are means and variances of ranks meaningful?
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27. In a TV newsroom, 30 economists were asked one by one whether each was

optimistic about the future of the economy. The answers (in order) were

+ + + + � � – – – – + + � � + � + + + � – – + + + + � � – +

The alert TV audience suspects that when the economists answered the ques-

tion, each was influenced by the answer of the economist who responded right

before him or her. Do a test to see whether this suspicion can be verified. Use a

5 percent test.

28. A personnel manager is considering keeping 2 out of 10 summer interns on, in a

regular job, after the summer is over. Before this personnel manager accepts the

subjective evaluation of the candidates, she wants to see some consensus

between two evaluators. The rankings of the candidates by two different senior

managers who work with them are summarized here. Do you think there is

some kind of consensus between the two managers? Do a 5 percent test.

Candidate A B C D E F G H I J

Ranking by first manager 1 3 5 7 9 2 4 6 8 10

Ranking by second manager 2 4 6 8 10 1 3 5 7 9

29. Two senior managers were asked to score the performance of 10 job candidates

in question 28. The scores assigned are believed to reflect the subjective

judgments of the two senior managers, and they are believed not to follow a

normal distribution. The scores obtained by the 10 candidates were as follows:

Candidate A B C D E F G H I J

Score by first manager 72 76 77 78 79 89 90 87 88 82

Score by second manager 71 74 83 84 85 73 92 86 73 95

Would you say the second manager is tougher in scoring? Do a 5 percent test.

30. A consumer organization wants to know whether you get what you pay for

when you buy a stereo system. Its crew ranked 10 stereo systems and listed

their ranks and prices in the accompanying table. Do the data support the

alternative hypothesis that you get what you pay for? Do a 5 percent test.

Rank Price

1 200

2 220

3 230

4 190

5 170

6 250

7 280

8 240

9 300

10 350
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31. Two kinds of emission controls were installed and tested in 30 cars of the same

make. The following table shows the test results, in the unit of emission. Can

you argue that the two kinds of emission controls have a different effect? Do a

10 percent test. Assume that the data do not come from a normal distribution.

Emission control A Emission control B

16 17 15 18 17 16

17 15 12 19 20 11

22 21 11 18 22 9

23 22 11 19 25 27

10 10 26 11 14 12

32. The following data are the win–loss record of a professional baseball team

during the last 34 games. Do you think the team is “streaky”? Do a 5 percent

test. The + sign represents a win, the – a loss.

+ + � � + + � � + � + + + + � � – – + + + + � + � + + � + + + � + +

33. A market analyst stopped people in the local shop ping mall and asked them to

rate two kinds of shampoo on a scale of 1–4, 1 being the lowest. The ratings of

the two different brands of shampoo are listed here. Do a test to determine

whether brand B is better than brand A. Use 5 percent.

Brand Brand Brand Brand

A B A B A B A B

1 4 2 4 2 3 3 4

1 2 2 4 2 1 2 4

2 2 1 2 2 2 3 4

2 1 2 3 4 4 3 4

4 2 2 3 3 4 2 3

3 2 2 4 1 3 1 2

3 2 2 4 4 2 3 4

2 2 1 4

Use the following information to answer questions 34–37. It is believed that

American League pitchers should have higher earned-run averages because of

the designated hitter rule. A baseball analyst collected 10 pitchers’ earned-run

averages from each of the 4 divisions in the major leagues and ranked them in

the following table. (A smaller rank means a smaller earned-run average.)

National league American league

East West East West

1 3 4 5

2 40 39 38

6 7 9 18

16 13 21 22

24 20 27 28

33 34 37 35

(continued)
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(continued)

National league American league

East West East West

8 10 11 12

15 14 17 19

23 25 26 29

30 31 32 36

34. Do a test to determine whether the American League pitchers have higher

earned-run averages. Use 10 percent.

35. Do a test to determine whether the 4 different divisions have the same earned-

run average. Use 10 percent.

36. Do a test to determine whether the two divisions in the National League are

equal in earned-run average. Use 10 percent.

37. Do a test to determine whether the American League West has a higher earned-

run average than the National League West. Use 10 percent.

38. “Pitching wins the pennant” is one of the important theories in baseball. A

statistician wants to know whether this is true. He used last year’s results,

which are given in the accompanying table, as the sample. From the perfor-

mance of these 12 teams, can he argue that winning percentage and earned-run

average are negatively correlated? Do a test at a 10 percent level of acceptance,

assuming that the data do not follow a normal distribution.

Winning percentage Earned-run average

.634 3.24

.611 3.35

.598 3.36

.573 3.21

.531 3.87

.521 3.69

.479 3.98

.469 4.23

.427 4.59

.402 4.21

.389 3.72

.366 3.98

Use MINITAB and the following information to answer questions 39–42. A

new production manager who believes that music can improve productivity

arranges for music to be played on two out of three assembly lines. The first

assembly line has no music. The second assembly line hears classical music.

The third assembly line hears “easy-listening” music. The productivity in the

10 working days after the experiment began is summarized in the following

table. The data are believed not to follow a normal distribution.
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Assembly lines

1 2 3

110 114 130

157 159 139

121 120 96

103 160 140

149 142 116

123 130 142

142 112 99

134 119 133

124 127 111

118 116 105

39. Can the production manager say that playing music (of whatever type) is better

than not playing music? Do a 5 percent test. (Hint: Refer to Fig. 17.2.)

40. Is playing classical music better than playing easy -listening music? Do a 5

percent test. (Hint: Refer to Fig. 17.2.)

41. Some people say it makes no difference whether music is played. Can you

refute this argument? Do a 5 percent test. (Hint: Refer to Fig. 17.2.)

42. Is playing classical music better than not playing any music? Do a 5 percent

test. (Hint: Refer to Fig. 17.2.)

43. Assume that the rank (quality) and price of 5 stereos are as shown in the

following table. Show that the Spearman rank correlation coefficients are 1

and – 1, respectively.

Price Quality Price Quality

1 1 1 5

2 2 2 4

3 3 3 3

4 4 4 2

5 5 5 1

44. Is seniority related to hourly wage? A personnel manager collects data on the

10 employees’ hourly wages and their seniority and ranks them in the following

table. The rankings are created by assigning large ranks to higher numbers.

Hourly wage Seniority Hourly wage Seniority

1 2 6 5

2 3 7 6

3 1 8 9

4 4 9 10

5 7 10 8

Do the data support the alternative hypothesis that hourly wage and seniority

are related? Do a 10 percent test.
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45. Can money buy a championship? A baseball writer is interested in knowing

whether high salaries can produce good performance. He collected the average

salaries of 12 teams and their winning percentages. The data are ranked in the

accompanying table.

Ranking of winning percentage Ranking of average salaries

1 3

2 2

3 4

4 1

5 5

6 6

7 9

8 10

9 11

10 12

11 8

12 7

Do the data support the argument that winning takes money? Do a 5 percent

test.

46. The debt/equity ratio is computed by dividing total debt by total assets. It is used

to measure how much leverage a firm uses. A financial analyst feels that the

debt/equity ratio in industry A is higher than that in industry B. He randomly

selected 20 firms from industries A and B, obtaining the following numbers.

A B A B

.76 .23 .78 .67

.92 .78 .34 .23

.54 .76 .73 .24

.74 .32 .54 .34

.75 .13 .43 .22

Do a 5 percent test to decide whether industry A’s debt/equity ratio is higher.

Assume the data do not follow a normal distribution.

47. The New Land Food Corporation is considering retiring 10 machines. For

replacement, it can order some machines of the same model or it can switch

to the new model. The company has decided to try out one of the new machines

before it makes a large investment in many of them. The daily productivity

figures for the new machine and an old machine for the last 12 working days are

recorded in the following table. Do a test to determine whether the new

machine is better. Use 5 percent.

Day 1 2 3 4 5 6 7 8 9 10 11 12

New 23 21 34 24 34 33 22 32 21 15 34 33

Old 21 17 32 23 24 29 34 33 23 23 34 23
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48. The dean of a business school believes that a good knowledge of economics

helps business students do well in other business courses. He randomly pulled

out 15 students’ grades in economics and related business courses and ranked

them in the accompanying table.

Economics Business Economics Business

7 1 8 10

3 6 13 11

2 3 9 8

4 5 1 2

15 14 11 15

5 4 12 12

10 9 6 7

14 13

Do a test to determine whether economics grade and grades in other business

courses are related. Use 5 percent.

Use the following information to answer questions 49–53. The personnel

manager wants to know whether employees strictly follow the rule for their

lunch break. He suspects that those who are more senior in the company tend to

take a longer lunch. He classifies the employees into three categories according

to their seniority in the company. The amounts of lunch time (in minutes) are

summarized in the following table. Assume these data do not follow a normal

distribution.

Time with the company

Group 1, less than 1 month Group 2, between 1 and 6 months Group 3, more than 6 months

43 50 63

39 55 66

42 54 59

49 49 55

50 51 57

39 60 62

47 57 53

48 55 59

39 42 56

47 38 78

49. Do the data support the hypothesis that the three different groups of employees

do not spend the same amount of time at lunch? Do a 10 percent test.

50. Do the data support the hypothesis that group 1 spends less time at lunch than

group 2. Do a 5 percent test.

51. Do the data support the hypothesis that group 2 spends less time at lunch than

group 3. Do a 5 percent test.

52. Now assume that the data for the three different groups are actually data for the

same group of individuals being observed at different seniority levels in the
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company. That is, group 1 represents a sample of employees who have worked

for less than 1 month; group 2 represents these same employees when they have

worked for the company between 1 and 6 months. Under these circumstances,

will you change the way you did questions 50 and 51?

53. Using the same assumption about the data, do a test to determine whether a

person who uses more time for lunch during his first month of work will spend

more time at lunch during the next 5 months at work. Use 5 percent.

54. Two experts in the insurance field rank 10 insurance companies in terms of

their financial soundness. The rankings of the two experts are recorded here.

Company A B C D E F G H I J

Analyst I 2 3 5 7 10 1 6 4 8 9

Analyst II 3 4 7 6 8 2 10 1 5 9

Do the data support the hypothesis that there is some kind of consensus

between A and B? Do a 5 percent test.

Use the following information to answer questions 55–58. A movie theater

opens 3 ticket windows operated by 3 ticket sellers. If the sellers are equally

effective, they should sell about the same numbers of tickets. The table gives

the ticket sales of the ticket sellers for the last 10 shows. Assume the data do not

follow a normal distribution.

Show

Seller

A B C

1 340 330 350

2 310 320 301

3 300 279 295

4 234 245 235

5 257 256 273

6 297 296 313

7 316 317 354

8 277 232 243

9 241 250 253

10 281 271 248

55. Consider sellers A and B. Compute the rank correlation between their

sales.

56. Do a test to determine whether sellers A, B, and C are equally effective in

selling tickets. Use 5 percent.

57. Do a test to determine whether sellers A and B are equally effective in selling

tickets. Use 5 percent.

58. Do a test to determine whether sellers B and C are equally effective in selling

tickets. Use 10 percent.

59. The plant manager in a manufacturing company wants to know whether the

morning productivity is higher than the afternoon productivity. He collected the

productivity numbers for 10 workers on a certain day and summarized them in
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the following table. Assume that the productivity numbers do not follow a

normal distribution. Do a test to determine whether morning productivity is

higher. Use 5 percent.

Morning productivity Afternoon productivity

34 35

32 33

29 31

30 36

42 41

45 33

44 42

43 39

32 31

45 40

(a) Do the test assuming that each of the 10 pairs of numbers belongs to a

certain worker.

(b) Do the test assuming that we do not know to whom the 10 numbers in the

morning and the 10 numbers in the afternoon belong.

60. A basketball player shot 32 times in a game, and her coach recorded the results

of the 32 shots:

+ � + + � + + + + � � – – + � � – – + + + + + + � � – + � + + �
where + means “score” and � indicates “miss.” The coach says that the

player is “streaky.” Do the data support what the coach says? Do a 5 percent

test.

61. A college professor believes that those students who do well on the midterm

exam tend to do well on the final. He ranked the midterm and final exams of 30

students in his class.

Midterm Final Midterm Final

1 1 16 18

2 4 17 17

3 5 18 16

4 3 19 19

5 2 20 20

6 6 21 22

7 14 22 21

8 7 23 23

9 13 24 27

10 8 25 24

11 12 26 25

12 9 27 26

13 11 28 28

14 10 29 29

15 15 30 30
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Do a test to see whether you can verify the professor’s theory. Use 5 percent.

62. Movie critics are generally thought to be very subjective. At the end of the year,

two critics rank 20 films as shown in the table.

Critic A Critic B Critic A Critic B

1 5 11 11

2 3 12 10

3 1 13 12

4 6 14 14

5 2 15 18

6 7 16 19

7 8 17 15

8 4 18 20

9 9 19 17

10 13 20 16

Can you say that the two movie critics have different views? Do a 5 percent

test.

63. Use MINITAB to do question 70 in Chap. 12, assuming that the data do not

follow a normal distribution. Use 5 percent.

Use the following information to answer questions 64–66. As a result of the

rising costs in health insurance, an insurance company decides to help its

clients improve their health and cut down their bills. Thirty large companies

that bought the group health insurance were picked to institute a “quit smok-

ing” program and/or an exercise program. The amounts by which insurance

claims were reduced are ranked in the following table.

“Quit smoking” program Exercise program Both programs

1 3 5

4 2 6

12 10 7

16 14 8

17 15 9

18 19 11

24 21 13

27 25 20

28 26 22

29 30 23

64. Can you argue that the three different groups are equally effective in reducing

insurance claims? Do a 5 percent test.

65. Do a 5 percent test to determine whether the group that implemented both

programs is more effective than the group that used only the “stop smoking”

program.

66. Do a 5 percent test to determine whether the group using both programs is more

effective than the group using only the exercise program.
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67. An advertising agency tries to show the effect of a successful advertising

campaign. It talked to a food company that is producing a new product,

spaghetti sauce. The arrangement is to market the product in three different

ways: no frills, a low-budget campaign, and a big-budget campaign. The three

spaghetti sauces have the same ingredients and are sold side by side in different

packages. The sales in 10 supermarkets during the first month are recorded in

the following table.

No frills Low budget High budget

301 402 423

326 355 364

337 348 359

362 351 340

383 372 389

321 356 354

362 375 378

357 358 356

334 335 338

310 312 332

(a) Do a 5 percent test to determine whether the three approaches result in

different sales. Assume the sales do not follow a normal distribution.

(b) Do a 5 percent test to determine whether the high-budget campaign is better

than the low-budget campaign.

68. A statistician wants to compare the prices of beef in New York and Los

Angeles. He collected beef prices from 10 supermarkets in each city and

recorded the prices.

Beef price (in dollars per pound)

New York Los Angeles New York Los Angeles

3.05 2.95 4.21 4.09

4.35 3.33 3.72 3.85

3.37 3.45 3.29 3.65

3.42 3.50 3.95 3.89

4.05 4.32 4.95 3.76

Can you argue that beef prices are different in the two cities? Do a 5 percent

test.

69. The Better Business Bureau suspects that High-Cost Gas Station is consistently

charging higher prices for repairs than other garages. The BBB sent 10 cars to

High-Cost for an estimate of repair costs. Then, it sent the same 10 cars to

Expressway Gas Station. The results are reported here.

Car High-Cost Expressway

1 $678 $579

2 784 321

(continued)
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(continued)

Car High-Cost Expressway

3 653 654

4 673 642

5 732 738

6 758 721

7 632 621

8 654 311

9 521 411

10 432 421

Can you argue that High-Cost Gas Station is charging higher prices than

Expressway? Do a 10 percent test.

70. A statistics instructor is curious about whether a relationship exists between the

scores of students who purchased the student workbook and those of students

who did not. Because he did not require students to buy the workbook, some

bought it and others didn’t. The grades are recorded here and are believed not to

follow a normal distribution.

Bought workbook Did not buy workbook

75 73

74 65

80 64

81 63

82 62

77 78

76 79

72 71

70 69

67 68

83 87

84

85

86

Do a test to see whether buying the workbook improved the grades. Use 5

percent. Assume that the data do not follow a normal distribution.

Use the following information to answer questions 71 and 72. A national

survey was conducted to study the increase in the cost of personal health

insurance. Forty people from 3 regions were asked about the increase in the

table year. The results are compiled in the following table; the data do not

follow a normal distribution.

Northeast West Coast Southeast

$320 $232 $254

279 257 231

283 264 242

(continued)
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Northeast West Coast Southeast

281 232 220

273 243 253

274 221 223

267 215 210

279 275 263

292 262 275

284 211 227

273 267 262

275 268 231

258 291

252 250

71. Do a test at the 5 percent level of significance to determine whether the average

increases in the 3 regions are the same.

72. Do a test at the 5 percent level of significance to determine whether the average

increase in the Northeast is higher than that on the West Coast.

73. The Dow Jones Industrial Averages from 1961 to 1986 are recorded in the

following table (data from Dow Jones Investor’s Handbook (1986), Wall Street
Journal, January 2, 1987). Do a 5 percent test to determine whether the Dow

Jones Industrial Average is a random series of data.

Year DJIA Year DJIA

1961 731 1974 759

1962 652 1975 802

1963 763 1976 975

1964 874 1977 835

1965 969 1978 805

1966 786 1979 839

1967 905 1980 964

1968 944 1981 899

1969 800 1982 1,047

1970 839 1983 1,259

1971 885 1984 1,212

1972 951 1985 1,547

1973 924 1986 1,896

Use the following information to answer questions 74–76. Ron Moy has taught

corporate finance for years, but this is the first year he has included the use of

the computer to his course. Actually, one class did not use the computer. A

second class had to use the computer. The third class was introduced to the

computer but had the option not to use it. The test results that follow are grades

on standardized tests and are believed not to follow a normal distribution.
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Class 1 Class 2 Class 3

76 78 79

72 75 73

69 63 68

71 81 88

33 87 62

67 65 86

62 77 66

60 80 70

59 65 78

58 69 65

74. Do a test to determine whether the classes have different averages. Use 5

percent.

75. Perhaps not surprisingly, a colleague from the computer science department

strongly argues for using the computer. Can you prove for him that class 2 is

better than class 1? Do a 5 percent test.

76. A psychology professor argues that we should not impose any restrictions on

the students. Not all students benefit from using the computer. He suggests that

the best method is giving the students freedom of choice. Do a 5 percent test

comparing class 3 with class 2. Do the data support the psychology professor’s

viewpoint?

77. A supervisor in the local factory feels that productivity during overtime is

lower than productivity during normal working time. In order to verify his

belief, he collected data on productivity per hour during both normal time and

overtime. The productivity rates, in units per hour, are recorded in the table.

Overtime Normal time

249 253 257 250 251 255

252 254 256 260 259 258

261 262 265 264 266 267

263 268 269 273 274 275

270 271 272 278 277 276

Do a 5 percent test to determine whether normal-time productivity is higher

than overtime productivity.

78. A psychologist believes that a person who watches the evening news one day is

more likely than others to watch it the next day. To show that this is true, he

kept track of his wife’s TV viewing pattern without letting her know about the

experiment. After 35 days of observation, he recorded the following TV

viewing pattern:

WWOOOWWWWWOOOWWWWO WWWWOOOOOWWWWWWWW

where W means “watch” and O means “miss.” Do the data support the

psychologist’s theory? Do a 5 percent test.
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79. A company produces 3 kinds of fruit baskets that are sold at the same price. The

fruit baskets are displayed in 9 supermarkets in the local area. The sales are

recorded in the following table.

Supermarket

Baskets

A B C

1 40 43 45

2 44 41 47

3 42 48 61

4 74 60 63

5 73 59 64

6 72 75 58

7 69 70 57

8 68 54 67

9 49 52 53

Do a 5 percent test to determine whether the 3 different baskets are equally

popular. Assume the data do not follow a normal distribution.

80. An old proverb in baseball is “pitching wins pennants.” Seven teams’ pitching,

in terms of earned-run average (ERA), and their standing in the American

League West are given in the following table (data from Associated Press, June
17, 1990).

Team Standing ERA

Oakland 1 2.94

Chicago 2 3.01

Minnesota 3 4.16

California 4 3.49

Seattle 5 3.90

Texas 6 4.32

Kansas City 7 4.01

Do a 5 percent test to determine whether there is a relationship between ERA

and team standing.

81. Use the Spearman rank correlation test to investigate the relationship between

market rates of return, in terms of the S&P 500, and the annual rate of return on

3-month Treasury bills during 1970–1990, which are indicated in the following

table.

Year

Rate of return

3-month T-bill S&P 500

1970 6.46 .0010

1971 4.35 .1080

1972 4.07 .1557

1973 7.04 �.1737

1974 7.89 �.2964

(continued)
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(continued)

Year

Rate of return

3-month T-bill S&P 500

1975 5.84 .3149

1976 4.99 .1918

1977 5.27 �.1153

1978 7.22 .0105

1979 10.04 .1228

1980 11.51 .2586

1981 14.03 �.0994

1982 10.69 .1549

1983 8.63 .1706

1984 9.58 .0115

1985 7.48 .2633

1986 5.98 .1462

1987 5.82 .0203

1988 6.69 .1240

1989 8.12 .2725

1990 7.51 �.0656

82. Money magazine (Money, March 2003) reports percentage returns and expense

ratios for top bond funds under 4 categories: US government (G), high-yield

corporate (H), tax-exempt (T), and world bond funds (W). Can we conclude

that there is significant difference in the expense ratio among the 4 types of

bond funds? Do a Kruskal–Wallis test at 5 percent.

G H T W

5.0 9.7 5.6 4.5

4.9 8.8 5.1 4.2

4.5 7.6 4.5 7.4

3.6 7.1 3.0 8.8

3.9 7.1 4.5 3.4

4.4 8.0 3.6 4.0

4.5 9.7 5.0 4.4

4.9 8.4 4.2 3.7

83. A random sample consists 10 young and 10 old investors. Their earnings in

investment in thousand dollars are as follows:

Young 30 37 41 41 42

Old 45 48 50 52 52

Young 43 45 48 48 49

Old 54 55 58 61 64

Use Mann–Whitney U test to decide whether the young investors earn signifi-

cantly different from the old investors for a ¼ 0.05.
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84. Two financial analysts rated 10 mutual funds from 1 to 100 according to funds’

recent performances. The higher the rating is, the better the efficacy. The

results of their ratings are as follows:

A B C D E F G H I J

Analyst 1 60 40 90 10 20 70 30 80 50 85

Analyst 2 50 60 95 20 30 80 10 70 40 90

Calculate the Spearman rank correlation.

85. (Problem 84 continued.) Is there a positive rank correlation between the

rankings of them? a ¼ 0.05.

86. (Problem 84 continued.) Use a Wilcoxon signed-rank test to test the hypothesis

that there is a difference between the ratings of analyst 1 and those of analyst 2.
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18.1 Introduction

In the first 17 chapters of this book, we used both time-series and cross-sectional

data to show how statistical analysis techniques can be used in economic and

business decision making.

Time-series data are any set of data from a quantifiable (or qualitative) event that

are recorded over time. For example, we read newspapers every day and can obtain

the Dow Jones Industrial Average (DJIA) index over time. The series of DJIA index

values, ordered through time, constitutes time-series data. Other types of time-

series data are based on the rate of inflation, the consumer price index, the balance

of trade, and the annual profit of a firm.

Cross-sectional data are observations made on individuals, groups of

individuals, objects, or geographic areas at a particular time. For example, price

per share for N firms in 1991 is a set of cross-sectional data. On the other hand,

price per share for General Motors over time, Pt (t ¼ 1, 2,. . ., T), is a set of

time-series data.

The purpose of this chapter is to describe components of time-series analyses and

to discuss alternative methods of economic and business forecasting in terms of

time-series data. First, a classical description of three time-series components is

offered. Then the moving average and seasonally adjusted time series are explored.

Time trend regression, exponential smoothing and forecasting, and the Holt–Winters

forecasting model for nonseasonal series are investigated in detail. Finally, the

autoregressive forecasting model is discussed in some detail. Appendix 1 addresses

the Holt–Winters forecasting model for seasonal series.

18.2 The Classical Time-Series Component Model

Several factors result in the interdependence of time-series data over time; these

factors are trend, seasonal, and business cycle factors. For example, the current

earnings of a growing company tend to be greater than its earnings in the period just

ended, and, of course, the expected earnings in the next period will be greater than

the current earnings. Therefore, the correlation between any adjacent earnings is

positive, and this is due to the trend factor. Seasonal factors also contribute to the

interdependence of time-series data. Retail sales in the fourth quarter account for a

major portion of total annual sales of department stores. This seasonal factor

ensures that the sales volume in the fourth quarter of each year is highly correlated

with the fourth-quarter sales volume of any other year. The business cycle is

another cause of inderdependency in a time-series model. In short, it is traditionally

assumed that the total variation in a time series is composed of four basic

components: a trend component, a seasonal component, a cyclical component,
and an irregular component. We will now discuss these four components in

some detail.
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18.2.1 The Trend Component

A trend is a pattern that exhibits a tendency either to grow or to decrease fairly

steadily over time. For example, the earnings per share (EPS) of Johnson & Johnson

exhibit two separate trends (or a quadratic trend) over time (see Table 18.1 and

Fig. 18.1). One of the trends is from 2001 to 2007, the other from 2008 to 2010.

18.2.2 The Seasonal Component

The phenomenon of seasonality is common in the business world. Retailers can rely

on greater sales volume in December than in any other month; stock returns are

typically higher in January than in most other months—the “January effect.”

Table 18.2 and Fig. 18.2 show earnings per share of IBM Corporation over a

period of 44 quarters (first quarter 2000 to fourth quarter 2010). The table offers

evidence of seasonal behavior for all quarters. The fourth-quarter figures tend to be

relatively high, whereas those in the first quarter are relatively low. This seasonal

behavior is quite clear in Fig. 18.2, where an obvious pattern almost repeats itself

each year.

18.2.3 The Cyclical Component and Business Cycles

Cyclical patterns are long-term oscillatory patterns that are unrelated to seasonal

behavior. They are not necessarily regular but instead follow rather smooth patterns

of upswings and downswings, each swing lasting more than 2 or 3 years. Figure 18.3

demonstrates the cyclical pattern of the S&P 500 Composite Index during the

period of 2000–2010, which will be discussed in detail in the next chapter.

Table 18.1 Earnings per

share of Johnson & Johnson
Year EPS

2001 1.87

2002 2.2

2003 2.42

2004 2.87

2005 3.5

2006 3.76

2007 3.67

2008 4.62

2009 4.45

2010 4.85
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Figure 18.4 shows the cyclical patterns of monthly data of 3-month interest rates of

return on eurodollar deposits, US certificates of deposit (CDs), and Treasury bills

during the period of 2000 to 2010.1

The National Bureau of Economic Research (NBER) and the US Department of

Commerce have specified a number of time series as statistical business indicators

of cyclical revivals and recessions. These time series have been classified into three

groups.2 The first group is the so-called leading indicators, such as the S&P index

of the prices of 500 common stocks. These series have usually reached their cyclical

turning points prior to the analogous turns in economic activity. The second group

Fig. 18.1 Earnings per share of Johnson & Johnson

Table 18.2 Quarterly

earnings per share of IBM

Corporation Year

Quarter

1 2 3 4

2000 0.85 1.95 3.06 4.58

2001 1.02 2.22 3.21 4.69

2002 0.75 1.01 2.01 3.13

2003 0.8 1.8 2.84 4.42

2004 0.81 1.84 2.77 4.48

2005 0.86 2.02 2.97 4.99

2006 1.09 2.4 3.87 6.15

2007 1.23 2.8 4.5 7.32

2008 1.67 3.67 5.79 9.07

2009 1.71 4.04 6.47 10.12

2010 2 4.64 7.49 11.69

1A eurodollar is any dollar on deposit outside the United States. In the bottom portion of Fig. 18.4,

“spreads” are the differences between two different kinds of interest rates. For example, the

eurodollar rate is 0.40 % higher than the US CD rate (0.27 %) and T-bill rate (0.14 %) in November

2010.
2 Index numbers are essential elements for these business indicators. Therefore, we discuss these

business indicators after we discuss index numbers and stock market indexes in the next chapter.
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Fig. 18.3 S&P 500 Composite Index, January 2000 to December 2010

Fig. 18.2 Quarterly earnings per share of IBM
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is the coincident indicators, such as unemployment rate, the index of industrial

production, and GNP in current dollars. The third group is the lagging indicators,
such as index of labor cost per unit of output in manufacturing, business

expenditures, and new plant and equipment. A particular indicator series is consid-

ered a leading, a coinciding, or a lagging indicator of overall economic activity,

depending on whether the cyclical component of the series exhibits a tendency to

precede, match, or follow the cyclical behavior of the economy at large.

18.2.4 The Irregular Component

The last component of the variation in a time series is the irregular element introduced

by the unexpected event. For example, the announcement of a takeover bid may cause

the price of the target company’s stock to jump up 20% or more in a single day. Fears

of an outbreak of war in the Middle East and concerns about trade deficits and

antitakeover legislation contributed to a spectacular decline in the stock market on

October 19, 1987. And Iraq’s invasion of Kuwait on August 3, 1990, caused

worldwide stock markets to drop more than 10 % within a week. These irregular

elements arise suddenly and have a temporary impact on time-series behavior.

Example 18.1 Graphical Presentation of Time-Series Components. In Fig. 18.5,

Levenbach and Cleary show how a set of time-series data can be broken down into

three components. Figure 18.5a is a plot of the original series of data. Figure 18.5b

presents the trend component (long-term trend plus cyclical effects) of the series.

Fig. 18.4 Three-month rates on eurodollar deposits, US CDs, and US T-bills, 2000–2010

(monthly data)
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The data obviously exhibit an upward trend. Figure 18.5c presents the seasonal

component of the data, and the irregular component appears in Fig. 18.5d.

Overall, a set of time-series data, xt, can be described by using the additive model

of Eq. 18.1 or the multiplicative model of Eq. 18.2:

xt ¼ Tt þ Ct þ St þ It (18.1)

Fig. 18.5 Time-series decomposition (Source: Levenback, H., Cleary, J.P.: The modem fore-
caster, p. 50. Lifetime Learning Publications, New York (1984))
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xt ¼ TtStCtIt (18.2)

where

Tt ¼ trend component

Ct ¼ cyclical component

St ¼ seasonal component

It ¼ irregular component

For long-term planning and decision making in terms of time-series components,

business executives concentrate primarily on forecasting the trend movement. For

intermediate-term planning—say, from about 2 to about 5 years—fluctuations in

the business cycle are of critical importance too. For short-term planning, and for

purposes of operational decisions and control, seasonal variations must also be

taken into account. In the next four sections of this chapter, we will analyze these

time-series factors (components), and see how they can be forecasted.

18.3 Moving Average and Seasonally Adjusted Time Series

In this section, we explain how the moving-average method is used to smooth time-

series data. We also discuss how moving average and related techniques can be

used to obtain seasonally adjusted time-series data.

18.3.1 Moving Averages

Moving averages are usually associated with data smoothing. Smoothing a time

series reduces the effects of seasonality and irregularity. As a result, the smoothed

data reveal more information about seasonal trends and business cycles. The most

common moving-average method is the unweighted moving average, in which each

value of the data carries the same weight in the smoothing process. For a time series

x1, . . ., xn, the formula for doing a 3-term unweighted moving average is

zt ¼ 1

3

� �X2
i¼0

xt�i ðt ¼ 3; . . . ; nÞ (18.3)

Similarly, the k-term unweighted moving average is written

zt ¼ ð1=kÞ
Xk�1

i¼0

xt�i ðt ¼ k; . . . ; nÞ (18.4)

Alternatively, the weighted moving average can be used to replace the

unweighted moving average. A k-term weighted moving average can be defined as

934 18 Time Series: Analysis, Model, and Forecasting



zt ¼
Xk�1

i¼0

wt�ixt�i ðt ¼ k; . . . ; nÞ (18.5)

where
Pk�1

i¼0 wt�i ¼ 1

The wt–i’s are known as weights and they sum to unity. If the wt–i’s do not sum to

unity, they can be normalized with a new set of weights (w*t–i) that sum to unity.

The unweighted moving average is a special case of the weighted moving average

with wi ¼ 1/k for all i. An example of a weighted-average calculation appears in

Table 18.3. Here, columns (1) and (2) represent observation value (xt–i) and weight

(wi), respectively. Column (3) represents xt–iwt–i. From Table 18.3, we obtain

zt ¼
X3
i¼0

xt�iwt�i ¼ :0501

One of the important applications of moving averages is to deseasonalize

seasonal time-series data which will be discussed in the next section.

18.3.2 Seasonal Index and Seasonally Adjusted Time Series

In Sect. 18.2, we noted that many business and economic time series contain a

strong seasonal component. This component generally needs to be removed for

either monthly or quarterly data. This section demonstrates how the moving-

average procedure is used to remove the seasonal component and to do related

analysis.

Suppose we have a quarterly time series, xt, with a seasonal component. Then,

we can apply Eq. 18.6, which is obtained by letting k¼ 4 in Eq. 18.4, to remove the

seasonal component:

zi ¼ 1

4

� �X3
i¼0

xt�i ðt ¼ 4; . . . ; nÞ (18.6)

Table 18.3 Weighted average

(1)

Observation value, xt–i

(2)

Weight, wt–i

(3)

xt–iwt–i

.035 .10 .0035

.002 .30 .0006

.100 .25 .0250

.060 .35 .0210

1.00 .0501 (weighted average)
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Example 18.2 Seasonally Adjusted Quarterly Earnings per Share of Johnson &
Johnson. For the data on quarterly earnings per share of J&J Corporation during

the period of first quarter 2000 to fourth quarter 2010 given in Table 18.4, the first

number in the series of the 4-quarter moving average is

:86þ 1:8þ 2:68þ 3:3

4
¼ 2:16

and the second number is

1:8þ 2:68þ 3:3þ 1:0

4
¼ 2:195

The complete series appears in column (3) of Table 18.4.

This 4-quarter moving-average time series is free from seasonally because it is

always based on values such that each “season” is represented in each single

observation of the new series (see Fig. 18.6). However, the location in time of the

members of the series of moving averages does not correspond precisely with that

of the members of the original series. Actually, the first 4-quarter moving average

would be centered midway between the second-quarter and third-quarter dates.

Hence, the 4-quarter moving-average series indicated in Eq. 18.6 should be

rewritten either as

zt�:5 ¼ 1

4

� �X�1

i¼2

xt�i ðt ¼ 3; 4; . . . ; n� 2Þ (18.7)

or

ztþ:5 ¼ 1

4

� � X2
i¼�1

xtþi ðt ¼ 2; 3; . . . ; n� 2Þ (18.7a)

Then the location-adjusted (centered) moving-average series can be written as

z�i ¼
zt�:5 þ ztþ:5

2
ðt ¼ 3; 4; . . . ; n� 2Þ (18.8)

When

t ¼ 3; z�3 ¼
z2:5 þ z3:5

2
¼ x1 þ 2x2 þ 2x3 þ 2x4 þ x5

8

The location-adjusted moving averages,z�t , are given in column (4) of Table 18.4.

Both xt and z�t are presented in Fig. 18.6.

We can use the location-adjusted moving-average data obtained from Eq. 18.8 to

calculate seasonally adjusted series if we assume that the seasonal pattern through

time is very stable. To do this, we need first to divide original data (xt) by the

location-adjusted moving averages (z�t ) to obtain the percentage of moving average.
That is,
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Table 18.4 Actual (xt) and centered 4-point moving average (z�t ) earnings per share of Johnson &
Johnson from first quarter 2000 to fourth quarter 2010

(1)

t
(2)

Earnings per share, xt

(3)

4-point moving average, zt

(4)

Centered 4-point moving average, z�t
1 0.86

2 1.8 2.16

3 2.68 2.195 2.1775

4 3.3 1.995 2.095

5 1.0 1.7025 1.84875

6 1.0 1.345 1.52375

7 1.51 1.245 1.295

8 1.87 1.2825 1.26375

9 0.6 1.3375 1.31

10 1.15 1.42 1.37875

11 1.73 1.445 1.4325

12 2.2 1.43 1.4375

13 0.7 1.4475 1.43875

14 1.09 1.5025 1.475

15 1.8 1.5375 1.52

16 2.42 1.6825 1.61

17 0.84 1.8475 1.765

18 1.67 1.96 1.90375

19 2.46 1.99 1.975

20 2.87 2.03 2.01

21 0.96 2.085 2.0575

22 1.83 2.2125 2.14875

23 2.68 2.25 2.23125

24 3.38 2.31 2.28

25 1.11 2.3925 2.35125

26 2.07 2.4875 2.44

27 3.01 2.4325 2.46

28 3.76 2.4025 2.4175

29 0.89 2.36 2.38125

30 1.95 2.3375 2.34875

31 2.84 2.4325 2.385

32 3.67 2.5575 2.495

33 1.27 2.7575 2.6575

34 2.45 2.995 2.87625

35 3.64 2.995 2.995

36 4.62 2.99 2.9925

37 1.27 2.99 2.99

38 2.43 2.9475 2.96875

39 3.64 3.04 2.99375

40 4.45 3.155 3.0975

41 1.64 3.28 3.2175

42 2.89 3.38 3.33

43 4.14

44 4.85
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Percentage of moving average ðPMAÞ ¼ 100
xt
z�t

� �
(18.9)

The PMA of earnings per share for Johnson & Johnson is presented in column

(4) of Table 18.5.

In our case, the first observation of PMA is

100
x3
z�3

� �
¼ 100

2:68

2:1775

� �
¼ 123:0769

We assume that for any given quarter, in each year, the effect of seasonality is to

raise or lower the observation by a constant proportionate amount (seasonal index)
compared with what it would have been in the absence of seasonal influences. Then

we use the so-called seasonal index method lo remove the seasonal component.

Let’s explore the logic of and procedure for calculating the seasonal index listed

in column (5) of Table 18.5. By dividing z�t into xt, we can explicitly write the

percentage of moving average as

100
xt
z�t

� �
¼ 100TtCtStIt

TtCt
¼ 100StIt (18.10)

The 100StIt series for earnings per share of Johnson & Johnson is presented in

Fig. 18.7. This series contains both seasonal and irregular components. The next

step is to remove the effect of irregular movements from 100(xt/z
�
t ). We do this by

taking the median of the percentage of moving-average figures for the same quarter

as indicated in Table 18.6. The medians for the first through the fourth quarters are

47.400, 84.122, 121.152, and 149.278, respectively. The total of these medians is

401.953. It is desirable that the total of the 4 indexes be 400, in order that they

Fig. 18.6 Earnings per share versus moving-_average EPS for Johnson & Johnson

938 18 Time Series: Analysis, Model, and Forecasting



Table 18.5 Seasonal adjustment of earnings per share of Johnson & Johnson by the Seasonal

Index Method from first quarter 2000 to fourth quarter 2010

(1)

Date

(2)

EPS, xt

(3)

z�t
(4)

100(xt/z
�
t )

(5)

Seasonal index

(6)

Adjusted EPS

[Col. (2) � Col. (5)] � 100

2000.1 0.86 47.1702 1.823185

2 1.8 83.71375 2.150184

3 2.68 2.1775 123.0769 120.5633 2.2229

4 3.3 2.095 157.5179 148.5528 2.221432

2001.1 1 1.84875 54.0906 47.1702 2.119983

2 1 1.52375 65.62756 83.71375 1.194547

3 1.51 1.295 116.6023 120.5633 1.252455

4 1.87 1.26375 147.9723 148.5528 1.258812

2002.1 0.6 1.31 45.80153 47.1702 1.27199

2 1.15 1.37875 83.40888 83.71375 1.373729

3 1.73 1.4325 120.7679 120.5633 1.434931

4 2.2 1.4375 153.0435 148.5528 1.480955

2003.1 0.7 1.43875 48.65334 47.1702 1.483988

2 1.09 1.475 73.89831 83.71375 1.302056

3 1.8 1.52 118.4211 120.5633 1.492992

4 2.42 1.61 150.3106 148.5528 1.62905

2004.1 0.84 1.765 47.59207 47.1702 1.780785

2 1.67 1.90375 87.7216 83.71375 1.994893

3 2.46 1.975 124.557 120.5633 2.040423

4 2.87 2.01 142.7861 148.5528 1.931973

2005.1 0.96 2.0575 46.65857 47.1702 2.035183

2 1.83 2.14875 85.16579 83.71375 2.186021

3 2.68 2.23125 120.112 120.5633 2.2229

4 3.38 2.28 148.2456 148.5528 2.275285

2006.1 1.11 2.35125 47.20893 47.1702 2.353181

2 2.07 2.44 84.83607 83.71375 2.472712

3 3.01 2.46 122.3577 120.5633 2.496615

4 3.76 2.4175 155.5326 148.5528 2.531087

2007.1 0.89 2.38125 37.37533 47.1702 1.886785

2 1.95 2.34875 83.02288 83.71375 2.329366

3 2.84 2.385 119.0776 120.5633 2.35561

4 3.67 2.495 147.0942 148.5528 2.470502

2008.1 1.27 2.6575 47.78928 47.1702 2.692378

2 2.45 2.87625 85.18036 83.71375 2.92664

3 3.64 2.995 121.5359 120.5633 3.019162

4 4.62 2.9925 154.386 148.5528 3.110005

2009.1 1.27 2.99 42.47492 47.1702 2.692378

2 2.43 2.96875 81.85263 83.71375 2.902749

3 3.64 2.99375 121.5866 120.5633 3.019162

4 4.45 3.0975 143.6642 148.5528 2.995568

2010.1 1.64 3.2175 50.97125 47.1702 3.476772

2 2.89 3.33 86.78679 83.71375 3.45224

3 4.14 120.5633 3.433882

4 4.85 148.5528 3.264833
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average 100 %, so we multiply each of them by an adjustment factor (400/401.953)

to make the sum of the 4-quarter seasonal indexes equal 400. The seasonal index is

presented in column (5) of Table 18.5.3 Dividing the seasonal index into the

original quarterly data and multiplying the result by 100, we obtain the adjusted

series presented in column (6) of Table 18.5 and in Fig. 18.8.

This seasonal index method of seasonal adjustment shows us one possible and

simple way to solve the problem of eliminating the seasonal component. In practice,

however, it generally can be solved by computer. Important government monthly

and quarterly economic data such as consumer price indexes and employment and

unemployment rates have strong seasonal components, and government agencies

generally publish these data in both unadjusted and adjusted forms. The seasonal

Fig. 18.7 Trend of 100(xt/z
�
t ) ratio for Johnson & Johnson

Table 18.6 Calculation of

seasonal indexes of EPS for

Johnson & Johnson

Corporation

Year

Quarter

1 2 3 4 Sums

2000 123.077 157.518

2001 54.091 65.628 116.602 147.972

2002 45.802 83.409 120.768 153.043

2003 48.653 73.898 118.421 150.311

2004 47.592 87.722 124.557 142.786

2005 46.659 85.166 120.112 148.246

2006 47.209 84.836 122.358 155.533

2007 37.375 83.023 119.078 147.094

2008 47.789 85.180 121.536 154.386

2009 42.475 81.853 121.587 143.664

2010 50.971 86.787

Median 47.400 84.122 121.152 149.278 401.953

Seasonal index 47.170 83.714 120.563 148.553 400.000

3 The mean instead of the median can also be used to calculate the seasonal index.
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adjustment procedure used in official United States government publications is the

Census X-11 method which is based upon the moving-average method.4 In the next

section, we will look at time trend regression.

18.4 Linear and Log-Linear Time Trend Regressions

If a time series is expected to change linearly overtime, the simple linear regression

model defined in Eq. 18.11 can be used to relate the time series, xt, to time t, and the
least-squares line is used to forecast future values of xt:

xt ¼ aþ btþ et (18.11)

If the relationship between xt and t is multiplicative instead of additive, then

transforming xt by taking the natural logarithm enables us to make the relationship

linear. For example, let x0 and xt be the sales of a firm in the base year and in year t,
respectively. Then the underlying relationship is

xt ¼ x0e
gt

where x0 is the base-year sales figure, g is the growth rate, and t is the length of time

in terms of number of periods. Then, via the natural logarithm transformation, we

obtain

logext ¼ logeðx0egtÞ
¼ logex0 þ gt (18.12)

Fig. 18.8 Adjusted Earnings per Share (EPS) of Johnson & Johnson

4 The X-11 model for decomposing time series components can be found in Appendix 24.A of the

book entitled “Financial Analysis, Planning and Forecasting: Theory and Application” by Lee,

A. C, J. C. Lee and C. F. Lee., 2nd ed. Singapore: World Scientific Publishing Company, 2009.
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where loge is the natural logarithm operator. Equation 18.12 can be defined as a

log-linear regression model5:

logext ¼ a0 þ b0tþ e0t (18.13)

where

a0 ¼ loge x0
b0 ¼ g ¼ growth rate of a firm’s sales

JNJ’s annual sales data (1980–2010), presented in Table 18.7, are used to show

how Eq. 18.12 can be employed to forecast JNJ’s future sales, and Eq. 18.13 to

estimate the growth rate of JNJ’s historical sales.

Example 18.3 Forecasting Sales and Estimating Growth Rate. Suppose Johnson &

Johnson Company is interested in forecasting its sales revenues for each of the next

6 years. The sales manager of the company would also like to estimate the historical

growth rate of sales revenue.

To make forecasts and assess their reliability, we must construct a time-series

model for the sales revenue data listed in Table 18.7. A plot of the data (Fig. 18.9)

reveals a linearly increasing trend. Therefore, the linear time trend regression

defined in Eq. 18.11 can be used to do forecasting. By the method of least squares

(see Sect. 13.3), we obtain the least-squares model in terms of sales (xt) and time

intervals (t) as

x̂t ¼ âþ b̂t ¼ �7965:026þ 2089:257t

With R2 ¼ .903.

This least-squares line is shown in Fig. 18.9, and the result of straight-line model

is given in Fig. 18.10. We can now forecast sales for years 2011–2016 by log-linear

regression model defined in Eq. 18.13. The forecasts of sales by log-linear regres-

sion model and the corresponding 95 % prediction intervals are shown in

Fig. 18.11. Although it is not easily perceptible in the figure, the prediction interval

widens as we attempt to forecast further into the future. This agrees with the

intuitive notion that short-term forecasts should be more reliable than long-term

forecasts.

To estimate the growth rate for JNJ’s sales during the period 1980–2010, we use

data listed in Table 18.7 to fit the log-linear regression of Eq. 18.13 and obtain

logex̂t ¼ â0 þ b̂0t ¼ 8:3005þ :0944t

ð0:027Þ ð0:001Þ R2 ¼ :993

5 In this regression, we implicitly assume that xt is lognormally distributed and that loge xt is
normally distributed. The relationship between the normal and lognormal distributions was

discussed in Sect. 7.4 of Chap. 7.
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Figures in parentheses are standard errors. This result implies that the estimated

growth rate g ¼ b̂0 ¼ 9.44 %. In other words, the annual growth rate of JNJ’s sales

was 9.44 % during the period 1980–2010.

18.5 Exponential Smoothing and Forecasting

18.5.1 Simple Exponential Smoothing and Forecasting

Smoothing techniques are often used to forecast future values of a time series. One

problem that arises in using a moving average to forecast time series is that values at

the ends of the series are lost, as shown in Sect. 18.3. Therefore, we must

Table 18.7 Johnson &

Johnson’s annual sales
Year Sales, xt (in millions) t

1980 $4,837.38 1

1981 $5,399.00 2

1982 $5,760.87 3

1983 $5,972.87 4

1984 $6,124.50 5

1985 $6,421.30 6

1986 $7,002.90 7

1987 $8,012.00 8

1988 $9,000.00 9

1989 $9,757.00 10

1990 $11,232.00 11

1991 $12,447.00 12

1992 $13,753.00 13

1993 $14,138.00 14

1994 $15,734.00 15

1995 $18,842.00 16

1996 $21,620.00 17

1997 $22,629.00 18

1998 $23,657.00 19

1999 $27,471.00 20

2000 $29,139.00 21

2001 $33,004.00 22

2002 $36,298.00 23

2003 $41,862.00 24

2004 $47,348.00 25

2005 $50,434.00 26

2006 $53,194.00 27

2007 $61,035.00 28

2008 $63,747.00 29

2009 $61,897.00 30

2010 $61,587.00 31
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subjectively extend the graph of the moving average into the future. No exact

calculation of a forecast is available, because generating the moving average at a

future time period t requires that we know one or more future values of the series. A

technique that leads to forecasts that can be explicitly calculated is called exponen-
tial smoothing. To use the exponential smoothing technique in forecasting, we need

only past and current values of the time series.

To obtain an exponentially smoothed series, we first need to choose a weight a
between 0 and 1 called the exponential smoothing constant. The exponentially

smoothed series, denoted st, is then calculated as follows:

Fig. 18.10 Least-squares fit (straight-line method) to xt ¼ Sales

Fig. 18.9 J&J’s annual sales (1980–2010) and the linear trend regression
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s1 ¼ x1

s2 ¼ ax2 þ ð1� aÞs1
s3 ¼ ax3 þ ð1� aÞs2
..
. ..

.

si ¼ axt þ ð1� aÞst�1 (18.14)

We can see that the exponentially smoothed value at time t is simply a weighted

average of the current time-series value xt and the exponentially smoothed value at

the previous time period, St–1. Then we can use st to do forecasting as follows:

x̂tþ1 ¼ st ¼ axt þ ð1� aÞst�1 (18.15)

where x̂tþ1 is the next period’s forecast value. In other words, x̂tþ1 is expressed in

terms of the smoothing constant times xt plus (1–a) times st–1.
If the manager of a company in 1990 (t ¼ 1) knows only that current sales of his

or her company equal x1 ¼ 5,000 units and that current sales have been forecasted

as s0 ¼ 5,100 units, then he or she can use Eq. 18.15 to forecast 1991 sales. If we

choose a ¼ .30 as a smoothing constant, then the sales for 1991 are forecasted in

terms of Eq. 18.15 as

x̂2 ¼ s1 ¼ ð:30Þð5; 000Þ þ ð1� :30Þð5; 100Þ ¼ 5; 070units

Rewriting Eq. 18.15 as

x̂tþ1 ¼ st ¼ st�1 þ aðxt � st�1Þ (18.16)

implies that simple exponential smoothing is the weighted average of st–1 and the

forecast error (xt – st–1) with weights of 1 and a, respectively. The term exponential

Fig. 18.11 Observed (years 1980–2010) and forecast (years 2011–2016) sales using log-linear

regression model
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smoothing refers to the fact that st can be expressed as a weighted average with

exponentially decreasing weights, as we now illustrate.

We substitute the expressions for st–1 and st–2 into the expression for st as denned
in Eq. 18.15 and obtain

st�1 ¼ axt�1 þ ð1� aÞst�2

st�2 ¼ axt�2 þ ð1� aÞst�3

Repeatedly substituting st–2 and st–1 into Eq. 18.15 reveals that

st ¼ axt þ ð1� aÞst�1

¼ axt þ að1� aÞxt�1 þ ð1þ aÞ2st�2

¼ axt þ að1� aÞxt�1 þ að1� aÞ2xt�2 þ ð1� aÞ3st�3

Continuous substitution for st–k, where k ¼ 2, 3,. . ., t, yields

st ¼ a
Xt�1

k¼0

ð1� aÞkxt�k

" #
þ ð1� aÞts0 ð0< a< 1Þ (18.17)

where s0 is an initial estimate of the smoothed value.

The sum of weights approaches unity as t approaches infinity; hence, we use the
term average.6 The weights decrease geometrically with increasing k, so the most

recent values of xt are assigned the greatest weight. Ail the previous values of xt are
included in the expression for st. Because a is less than unity, the most remote

values of xt are associated with the smallest weights. The selection of a depends on

the sensitivity of the response required by the model. For example, a small a is used
to represent the small sensitivity of the response, and it implies that a single change

won’t affect the moving average much. The smaller the value of a, the slower the
response. Note that the method discussed in this section is good only for short-term

forecasting.

In the next example, we draw on annual earnings per share (EPS) data for both

Johnson & Johnson (J&J) and International Business Machines (IBM) to show how

the simple exponential smoothing method defined in Eq. 18.15 can be used to do

data analysis.

6 Let 0 < a � 1, as t � 1, (1– a)t � 0. Let

y ¼ aþ að1� aÞ þ að1� aÞ2 þ � � � þ að1� aÞt�1
(A)

ð1� aÞy ¼ að1� aÞ þ að1� aÞ2 þ � � � þ að1� aÞt þ � � � (B)
Subtracting Equation B from Equation A yields y¼ 1 – (1 – a)t. Because a< 1, y approaches 1 if

t approaches infinity. This implies that a + a(1– a) + a(1– a)2 + . . . ¼ 1.
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Example 18.4 Simple Exponential Smoothing of EPS for Both J&J and IBM.
Consider the EPS for both J&J and IBM from 2000 to 2010 as shown in the second

column of Table 18.8. Using a¼ .3, we calculate the exponentially smoothed series

presented in the third column of Table 18.8 as follows:

IBM JNJ

s00 ¼ x00 ¼ 4:58 s00 ¼ x00 ¼ 3:45
s01 ¼ :3ð4:45Þ þ :7ð4:58Þ ¼ 4:541 s01 ¼ :3ð1:87Þ þ :7ð3:45Þ ¼ 2:976

..

. ..
.

s10 ¼ :3ð11:69Þ þ :7ð7:734566Þ s10 ¼ :3ð4:85Þ þ :7ð3:939735Þ
¼ 8:921196 ¼ 4:212814

We see from the table that the most recent estimates of smoothed EPS for J&J

and IBM are

sn ¼ s10 ¼ 8:921196 ðIBMÞ
sn ¼ s10 ¼ 4:212814 ðJ&JÞ

These values are then used as the forecast of EPS for both J&J and IBM for

future years. The observed series and these forecasts for J&J and IBM are graphed

in Figs. 18.12 and 18.13, respectively.

Finally, note that the choice of the smoothing constant (a) affects the precision of
the forecast. In practice, we can try several different values to see which would have

been most successful in predicting historical movement in the time series. For

example, we might compute the smoothed series for values of a of .3, .4, .5, and .7

and calculate the forecast mean squared error (MSE) for these four different

a-values:

MSE ¼
Pn
t¼1

ðxt � x̂tÞ2

n
(18.18)

where xt and x̂t are actual value and forecast value, respectively. The value of a for

which this MSE is smallest is then used in the prediction of future values.

18.5.2 The Holt–Winters Forecasting Model for Nonseasonal
Series

The simple exponential smoothing technique discussed in the previous section does

not recognize the trend in the time series. In this section, we will generalize the
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Table 18.8 Simple

exponential smoothing

(a ¼ .3) of EPS for J&J

and lBM

t xt st

IBM

2000 4.58 4.58

2001 4.45 4.541

2002 2.1 3.8087

2003 4.4 3.98609

2004 5.03 4.299263

2005 4.96 4.497484

2006 6.2 5.008239

2007 7.32 5.701767

2008 9.07 6.712237

2009 10.12 7.734566

2010 11.69 8.921196

J&J

2000 3.45 3.45

2001 1.87 2.976

2002 2.2 2.7432

2003 2.42 2.64624

2004 2.87 2.713368

2005 3.5 2.949358

2006 3.76 3.19255

2007 3.67 3.335785

2008 4.62 3.72105

2009 4.45 3.939735

2010 4.85 4.212814

Fig. 18.12 Annual earnings per share of J&J (simple exponential smoothing)
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simple exponential smoothing model defined in Eq. 18.15 by explicitly recognizing

the trend in a time series. The Holt–Winters forecasting model7 consists of both an

exponentially smoothed component (st) and a trend component (Tt). The trend

component is used in calculating the exponentially smoothed value. Here, st and
Tt can be written as

st ¼ axt þ ð1� aÞðst�1 þ Tt�1Þ (18.19a)

Tt ¼ bðst � st�1Þ þ ð1� bÞTt�1 (18.19b)

where a and b are two smoothing constants, each of which is between 0 and 1. We

estimate the trend component of the series by using a weighted average of the most

recent change in the smoothed component [represented by (st – st–1)] and the time

trend estimate (represented by Tt–1) from the previous period. The procedure for

calculating the Holt–Winters components is as follows:

1. Choose an exponential smoothing constant a between 0 and 1. Small values of

a give less weight to the current values of the time series and more weight to the

past. Large values of a give more weight to the current values of the series.

2. Choose a trend smoothing constant b between 0 and 1. Small values of b give

less weight to the current changes in the level of the series and more weight to

the past trend. Larger choices assign more weight to the most recent trend of the

series.

3. Estimate the first observation of trend T1 by one of the following two alternative
methods.

Fig. 18.13 Annual earnings per share of IBM (simple exponential smoothing)

7 The Holt–Winters forecasting model for seasonal series will be discussed in Appendix 1 of

Chap. 18.

18.5 Exponential Smoothing and Forecasting 949



Method I:
Let T1 ¼ 0. If there are a large number of observations in the time series, this

method provides an adequate initial estimate for the trend.

Method 2:
Use the first 5 (or so) observations to estimate the initial trend by following the

linear time trend regression line

xt ¼ aþ btþ et

Then use the estimated slope b̂ as the first trend observation; that is, T1, ¼ b̂.
4. Calculate the components st and T1 from the time series as follows:

s1 ¼ x1
T1 ¼ 0 or b̂
s2 ¼ ax2 þ ð1� aÞðs1 þ T1Þ
T2 ¼ bðs2 � s1Þ þ ð1� bÞTt
..
.

st ¼ axt þ ð1� aÞðst�1 þ Tt�1Þ
Tt ¼ bðst � st�1Þ þ ð1� bÞTt�1

The data on earnings per share of J&J and IBM listed in Table 18.8 show how the

forecasting model defined in Eqs. 18.19a and 18.19b can be used to do data

analysis.

Example 18.5 Using the Holt–Winters Model to Estimate the EPS of J&J and
IBM. Now let’s use the Holt–Winters model to do the exponential smoothing for

the EPS data for both J&J and IBM listed in Table 18.9. We begin by using the first

five observations to estimate the first term of the trend component. The estimated

slopes for the EPS of J&J and IBM are 0 and 1.275, respectively. Let a¼ .3 and b¼
.2. Following the formula for the Holt–Winters components listed in step 4, we

calculate

J&J IBM

s1 ¼ x1 ¼ 3:45 s1 ¼ x1 ¼ 4:58
T1 ¼ 0 zT1 ¼ 0:085
s2 ¼ :3ð1:87Þ þ :7ð3:45þ 0Þ s2 ¼ :3ð4:45Þ þ :7ð4:58þ 0:085Þ

¼ 2:976 ¼ 4:6005
T2 ¼ :2ð2:976� 3:45Þ þ :8ð0Þ T2 ¼ :2ð4:6005� 4:58Þ þ :8ð0:085Þ

¼ �0:0948 ¼ 0:0721
..
...

.

The remaining calculations are carried out in precisely the same way. All st- and
T1-values for both J&J and IBM are given in Table 18.9.

How are these estimates of EPS level and trend used to forecast future observations?

Given a series x1, x2,. . ., xn, the most recent EPS level and trend estimates are
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sn and Tn, respectively. To do forecasting, we assume that the latest trend will continue

from the most recent level. In general, standing at time n and looking m time periods

into the future, we define the prediction for the m period ahead as

x̂tþm ¼ st þ mTt (18.20)

If Tt ¼ 0, then this prediction reduces to the simple exponential smoothing

prediction discussed in Example 18.3. On the basis of this formula and the infor-

mation given in Table 18.9, we calculate the future predictions for both J&J and

IBM as

J&J IBM

s2011 ¼ 4:382105þ :215458 ¼ 4:597563 s2011 ¼ 9:725179þ :788816 ¼ 10:514
s2012 ¼ 4:382105þ ð2Þð:215458Þ s2012 ¼ 9:725179þ ð2Þð:788816Þ

¼ 4:813021 ¼ 11:30281
s2013 ¼ 4:382105þ ð3Þð:215458Þ s2013 ¼ 9:725179þ ð3Þð:788816Þ

¼ 5:028479 ¼ 12:09163

Figures 18.14 and 18.15 show the data series and three forecasts for J&J and

IBM, respectively.

Finally, note that the choice of smoothing constants (a and b) affects the

precision of a forecast. In practice, we can try several different values of a and b
to see which would have been most successful in predicting historical movement in

Table 18.9 EPS for IBM and

J&J and their smoothed series

in terms of the Holt–Winters

forecasting model

t xt st Tt

IBM

2000 4.58 4.58 0.085

2001 4.45 4.6005 0.0721

2002 2.1 3.90082 �0.08226

2003 4.4 3.992995 �0.04737

2004 5.03 4.270937 0.017693

2005 4.96 4.490041 0.057975

2006 6.2 5.043611 0.157094

2007 7.32 5.836494 0.284252

2008 9.07 7.005522 0.461207

2009 10.12 8.26271 0.620403

2010 11.69 9.725179 0.788816

J&J

2000 3.45 3.45 0

2001 1.87 2.976 �0.0948

2002 2.2 2.67684 �0.13567

2003 2.42 2.504818 �0.14294

2004 2.87 2.514313 �0.11245

2005 3.5 2.731301 �0.04657

2006 3.76 3.007314 0.01795

2007 3.67 3.218685 0.056634

2008 4.62 3.678723 0.137315

2009 4.45 4.006227 0.175353

2010 4.85 4.382105 0.215458
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the time series. Again, the forecast mean squared error as defined in Eq. 18.18 can

be used as a benchmark in deciding what values of a and b are appropriate for

forecasting future observations.

18.6 Autoregressive Forecasting Model

A time-series analysis always reveals some degree of correlation between elements.

For example, a certain firm’s current sales may be correlated with sales in the

previous period and even with sales in several prior periods. Under these

Fig. 18.14 Annual earnings per share of J&J with forecasts based on the Holt–Winters Model

Fig. 18.15 Annual earnings per share of lBM with forecasts based on the Holt–Winters Model
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circumstances, we can regress the time series xt on some combination of its past

values to derive a forecasting equation.

Suppose we attempt to predict the value of xt by using previous observation. The
prediction equation is

x̂t ¼ a0 þ a1xt�1 (18.21)

where a0 and a1 are the least-squares regression estimates. This is called a first-

order autoregressive forecasting model8, AR(1). If the current value of a time series

depends on the two most recent observations, we can use the model

x̂t ¼ a0 þ a1xt�1 þ a2xt�2 (18.22)

where a0, a1, and a2 are least-squares regression estimates. This is called a second-

order autoregressive model, AR(2). Generally, the autoregressive model of order p,
AR(P), can be expressed as

x̂t ¼ a0 þ a1xt�1 þ a2xt�2 þ � � � þ apxt�p (18.23)

where a0, a1, a2,. . ., ap are least-squares regression estimates.

In the next example, quarterly data on Johnson & Johnson’s sales are employed

to show how the autoregressive model can be used in forecasting.

Example 18.6 Sales Forecast for Johnson & Johnson. Quarterly sales data for

Johnson & Johnson from first quarter 2000 through fourth quarter 2010 are

presented in Table 18.10 and Fig. 18.16.

Using the data in Table 18.10, we run the AR(1), AR(2), and AR(3) models:

ARð1Þ : Salest ¼ 552:7913þ 0:9703 salest�1

ð0:026Þ
R2 ¼ :9719

(18.24)

ARð2Þ : Salest ¼ 586:6586þ :9106 salest�1 þ :0580 salest�2

ð:1623Þ ð:1590Þ
R2 ¼ :9702

(18.25)

ARð3Þ : Salest ¼ 737:5405þ :8987 salest�1 � :1082 salest�2

ð:1616Þ ð:2220Þ
þ:1697 salest�3

ð:1603Þ
R2 ¼ :9698

(18.26)

8 It should be noted that the exponential smoothing model of section 18.5 of the autoregressive

models described herein are all special cases of autoregressive integrated moving average
(ARIMA) models developed by Box and Jenkins. The Box-Jenkins approach, however, is beyond

the scope of this text.
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Table 18.10 Quarterly sales data for Johnson & Johnson (first quarter 2000 to fourth quarter

2010)

Quarter St St–1 St–2 St–3

2000Q1 7440

2000Q2 7670 7440

2000Q3 7438 7670 7440

2000Q4 7298 7438 7670 7440

2001Q1 7855 7298 7438 7670

2001Q2 8179 7855 7298 7438

2001Q3 8058 8179 7855 7298

2001Q4 8225 8058 8179 7855

2002Q1 8743 8225 8058 8179

2002Q2 9073 8743 8225 8058

2002Q3 9079 9073 8743 8225

2002Q4 9403 9079 9073 8743

2003Q1 9821 9403 9079 9073

2003Q2 10333 9821 9403 9079

2003Q3 10454 10333 9821 9403

2003Q4 11254 10454 10333 9821

2004Q1 11559 11254 10454 10333

2004Q2 11484 11559 11254 10454

2004Q3 11553 11484 11559 11254

2004Q4 12752 11553 11484 11559

2005Q1 12832 12752 11553 11484

2005Q2 12762 12832 12752 11553

2005Q3 12230 12762 12832 12752

2005Q4 12610 12230 12762 12832

2006Q1 12992 12610 12230 12762

2006Q2 13363 12992 12610 12230

2006Q3 13157 13363 12992 12610

2006Q4 13682 13157 13363 12992

2007Q1 15037 13682 13157 13363

2007Q2 15131 15037 13682 13157

2007Q3 14910 15131 15037 13682

2007Q4 15957 14910 15131 15037

2008Q1 16194 15957 14910 15131

2008Q2 16450 16194 15957 14910

2008Q3 15921 16450 16194 15957

2008Q4 15182 15921 16450 16194

2009Q1 15026 15182 15921 16450

2009Q2 15239 15026 15182 15921

2009Q3 15081 15239 15026 15182

2009Q4 16551 15081 15239 15026

2010Q1 15631 16551 15081 15239

2010Q2 15330 15631 16551 15081

2010Q3 14982 15330 15631 16551

2010Q4 15644 14982 15330 15631
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In Eqs. 18.24, 18.25, and 18.26, figures in parentheses under the coefficients are

standard errors.

Table 18.10 makes it clear that the observations used to run AR(1), AR(2), and

AR(3) are 43, 42, and 41, respectively. Therefore, by the central limit theorem, the

parameter estimators divided by their standard errors approximate standard normal

distributions.

From the standard error indicated in the parentheses and the parameter estimator,

we can calculate the Z statistic for each regression slope. Looking up these

Z statistics in Table A3 of Appendix A reveals that coefficients of salest–1 in the

AR(1), AR(2), and AR(3) model are significantly different from zero at the signifi-

cance level of a¼ .05. Hence, we conclude that the autoregressive processes can be

used to forecast quarterly sales of Johnson & Johnson.

Substituting related quarterly sales data into the AR(1), AR(2), and AR(3) models,

we obtain the following three alternative forecasted sales for the first quarter of 2011.

Substituting salest–1 ¼ 15,644 into Eq. 18.24, we obtain the AR(1) forecast:

Sales2011Q1 ¼ 552:7913þ 0:9703ð15644Þ
¼ 15732

Substituting salest–1 ¼ 15,644 and salest–2 ¼ 14,982 into Eq. 18.25, we obtain

the AR(2) forecast:

Sales2011Q1 ¼ 586:6586þ :9106ð15644Þ þ :0580ð14982Þ
¼ 15700:72

Substituting salest–1 ¼ 15,644, salest–2 ¼ 14,982, and salest–3 ¼ 15,330 into

Eq. 18.26, we obtain the AR(3) forecast:

Sales2011Q1 ¼ 737:5405þ :8987ð15644Þ � :1082ð14982Þ þ :1697ð15330Þ
¼ 15777:44

Fig. 18.16 Quarterly sales data for Johnson & Johnson
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To determine which model we should choose, we can use the mean absolute

relative prediction error (MARPE) defined in Eq. 17.13 in Chap. 17 to see which

one gives us the smallest error. Eq. 17.13 is

MARPE ¼ jŜt � Stj
St

(17.13)

where Ŝt represents the sales forecast for time period t and St represents actual

reported sales for time period t.

18.7 Summary

In this chapter, we examined time-series component analysis and several methods of

forecasting. The major components of a time series are the trend, cyclical, seasonal,

and irregular components. To analyze these time-series components, we used the

moving-average method to obtain seasonally adjusted time series. After investigating

the analysis of time-series components, we discussed several forecasting models in

detail. These forecasting models are linear time trend regression, simple exponential

smoothing, the Holt–Winters forecasting model without seasonality, the Holt–

Winters forecasting model with seasonality, and autoregressive forecasting.

Many factors determine the power of any forecasting model. They include the

time horizon of the forecast, the stability of variance of data, and the presence of a

trend, seasonal, or cyclical component.

Questions and Problems

1. Consider a time series whose first value was recorded in December 1945. The

last period for which there are records is June 1984.

(a) How many full months of data are available?

(b) How many full quarters of data are available?

(c) How many full years of data are available?

2. Give an example of a time series you think may have

(a) A moderately increasing linear trend

(b) A decreasing linear trend

(c) A curvilinear trend

3. The accompanying data indicate the number of mergers (xt) that took place in a
certain industry over a 15-year period.

Year xt Year xt Year xt

1970 15 1975 41 1980 148

1971 17 1976 85 1981 203

1972 24 1977 90 1982 249

1973 26 1978 110 1983 280

1974 30 1979 125 1984 307
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(a) Plot these data on a frequency polygon.

(b) What type of trend (linear or nonlinear)might best be fitted to this time series?

(c) Is there evidence of seasonal variation in this series?

4. When a 5-month moving average is found for a time series, how many months

do not have averages associated with them (a) at the beginning of the time

series and (b) at the end of the time series?

5. Find the 3-year moving-average values for the merger time series described in

question 3.

6. Find a 4-year moving-average series for the merger data given in question 3.

Center the average on the years.

7. Use MINITAB to fit a least-squares trend line to the merger data given in

question 3. Let t ¼ 1 for 1970.

8. The following quarterly data show the number of cameras (in hundreds)

returned to a particular manufacturer for warranty service over the past 5 years.

Year

Quarter

I II III IV

5 .6 .4 .3 .6

4 .9 .6 .5 .8

3 1.6 1.8 1.8 1.6

2 1.3 1.1 1.0 1.3

1 1.5 1.3 1.1 1.5

Use MINITAB to answer the following questions:

(a) Plot this time series with time on the horizontal axis. Let t ¼ 1 be the first

quarter 5 years ago.

(b) Find the equation of the least-squares linear trend line that fits this time

series. Let t ¼ 1 be the first quarter 5 years ago.

(c) What would be the trend line for the second quarter of the current year—

that is, 2 periods beyond the end of the actual date?

9. Determine the quarterly seasonal indexes for the warranty service time series

described in question 8.

10. A cab company has supplied the accompanying data, which show the number

of accidents involving its cabs over the past 5 years.

Year Winter Spring Summer Fall

5 years ago 7 5 4 6

4 years ago 7 7 5 7

3-years ago 11 10 6 9

2 years ago 22 11 7 10

Last year 16 12 9 12

Find the four seasonal indexes for accidents.
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11. Actual billings for the Weygant Corporation were $135,478 in March, and the

March seasonal index for this corporation’s billings is 104. What is the season-

ally adjusted March billing figure? What would be the expected annual billings

based on the March figure?

12. The accompanying time series represents the number of patients received in a

clinic emergency room. The seasonal indexes for each quarter are also given.

Find the seasonally adjusted figures for the time series. Do these seasonal

indexes tell the emergency room manager how many staff members to have

on hand and what supplies to order for each quarter?

Quarter

I II III IV

Patient Visits 8,220 6,150 5,316 6,834

Seasonal index 115 73 85 110

13. What are time-series data? Why would we ever be interested in looking at time-

series data? Give some examples of time-series data.

14. What is a seasonal factor? Why is seasonality sometimes a problem in

modeling time-series data? Give some examples of seasonal effects.

15. Why do we sometimes need special techniques to analyze time-series data?

16. What is a business cycle?Whymust businesses be able to forecast business cycles?

17. Define the four components of a time series.

18. Explain why it is easier to forecast when the time series contains seasonal

effects rather than a cyclical effect?

19. Which of the components would you expect to exist in each of the following

time series?

(a) The quarterly earnings of Ford for the years 1981 through 1990

(b) The monthly sales of Sears for 1990

(c) The US unemployment rate for each year from 1981 through 1990

(d) The US unemployment rate for each month in 1990

20. What are the advantages and disadvantages of using a simple moving-average

technique for forecasting?

21. What are the advantages and disadvantages of using a linear trend for forecasting?

22. What are the advantages and disadvantages of using a nonlinear trend for

forecasting?

23. What is exponential smoothing? What are the advantages and disadvantages of

using exponential smoothing for forecasting?

24. What is an autoregressive process? What are the advantages and disadvantages

of using an autoregressive process for forecasting?

25. What is the X-11 model? What is it used for? Briefly explain how the X-11

model is used in forecasting.

26. If you were asked to forecast the population of your town over the next 5 years,

how would you do it? What information would you ask for?

27. Three time-series graphs follow. Try to identify the components of each time series.
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28. Look at Fig. 18.1. What are the components of this time series? If you were

asked to forecast this time series, what method would you use?

29. Look at Fig. 18.2. What are the components of this time series? If you were

asked to forecast this time series, what method would you use?

30. Look at Fig. 18.3. What are the components of this time series? If you were

asked to forecast the S&P 500 index, what method would you use?

31. If you were asked to forecast the size of the entering class at a college, how

would you do this? What information would be useful in conducting your

forecast?

32. You are told that the number of sales per month for a store follows an AR(1)

process of the form

xt ¼ 125þ :6xt�1 þ et

where et is normally distributed with zero mean and constant variance. Say x30¼
1,000, x31¼ 1,125, and x32 ¼ 1,227. Forecast sales for the following time periods:

(a) x33, x34, and x35 at t ¼ 31

(b) x34 and x35 at t ¼ 30

33. You are told that the number of sales per month for a store follows an AR(2)

process of the form

xt ¼ 15þ :6xt�1 � :2xt�2 þ et

where et has a mean of zero and E[etet’] ¼ 0 when t 6¼ t’. The values for the last
three periods are x101 ¼ 823, x102 ¼ 927, and x103 ¼ 992. Forecast sales for the

next three periods t ¼ 104, 105, and 106.

Use the following information to answer questions 34–42. You are given the

following return information for 3-month T-bills, the NYSE Index, Chrysler,

Ford, and GM for the 3-year period from January 1985 through December

1987.

Month

T-Bill

Rf

NYSE Index

Rm

Chrysler

Rt

85.01 .006280 .07950 .03906

85.02 .006687 .01661 .00376

85.03 .006886 �.00037 .05243

85.04 .006432 �.00277 �.00358

85.05 .006057 .05872 .02518

85.06 .005634 .01719 .03158

85.07 .005737 �.00351 �.00685

85.08 .005785 �.00463 .02414

85.09 .005753 �.03667 �.03030

85.10 .005801 .04462 .11189

85.11 .005865 .06884 .07233

(continued)
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(continued)

Month

T-Bill

Rf

NYSE Index

Rm

Chrysler

Rt

85.12 .005753 .04554 .09971

86.01 .005729 .00737 �.01072

86.02 .005721 .07375 .23035

86.03 .005321 .05560 .19273

86.04 .004920 �.01322 �.19220

86.05 .004993 .05147 .02759

86.06 .005041 .01509 .03020

86.07 .004736 �.05480 �.06229

86.08 .004495 .07312 .08392

86.09 .004237 �.07957 �.06193

86.10 .004213 .05402 .06944

86.11 .004350 .01857 .02273

86.12 .004495 �.02677 �.05143

87.01 .004414 .12823 .29054

87.02 .004543 .04100 �.01309

87.03 .004543 .02469 .18037

87.04 .004583 �.01483 .03846

87.05 .004599 .00644 �.11111

87.06 .004607 .04797 .01103

87.07 .004623 .04682 .19414

87.08 .004904 .03688 .09816

87.09 .005193 �.02085 �.06983

87.10 .004977 �.21643 �.35649

87.11 .004623 �.07547 �.23944

87.12 .004688 .06851 .10494

Month

Ford

R2

GM

R3

85.01 .07945 .06061

85.02 �.08461 �.02857

85.03 �.05042 �.08176

85.04 �.02124 �.07363

85.05 .06422 .07763

85.06 .03736 .00524

85.07 .00222 �.01736

85.08 �.01401 �.03003

85.09 .00568 �.00557

85.10 .06667 �.00373

85.11 .16129 .06929

85.12 .07407 .03084

86.01 .09181 .05151

86.02 .14571 .06757

86.03 .14111 .10932

86.04 �.06626 �.07246

86.05 .06446 .01250

86.06 .02717 �.02665

(continued)
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(continued)

Month

Ford

R2

GM

R3

86.07 �.01950 �.12238

86.08 .11682 .07523

86.09 �.11297 �.05903

86.10 .09481 .04981

86.11 .01961 .04218

86.12 �.03846 �.09434

87.01 .33378 .14015

87.02 .02689 .00831

87.03 .10475 .04690

87.04 .08741 .15200

87.05 �.00137 �.03889

87.06 .08941 �.03079

87.07 .03409 .07564

87.08 .06273 .04923

87.09 �.09259 �.09783

87.10 �.21939 �.29518

87.11 �.05795 �.01496

87.12 .05975 .08869

34. Use MINITAB to plot the return data for T-bills against time. (Let t ¼ 1 be the

first month.) Can you identify any of the components of the time series?

35. Compute a simple 3-period moving average for the return on T-bills. Forecast

the value for January 1988 using this method.

36. With the MINITAB program, use an AR(1) model to describe the time-series

behavior of T-bills. Forecast the value for January 1988 using the AR(1)

procedure.

37. Using only data from January 1985 through November 1987, forecast the value

for December 1987, using both the 3-period moving average and the AR(1)

model. Compare your results. Which model forecasts better?

38. Repeat question 37 using the data for the NYSE index.

39. Repeat question 37 using the data for Chrysler.

40. Repeat question 37 using the data for Ford.

41. Repeat question 37 using the data for GM.

42. Compare the two methods you used for forecasting in questions 34–41. Is one

method superior to the other in all cases?

43. Suppose you are an investment analyst and are interested in estimating the

future dividend for Hamby Corp. You know that Hamby’s dividends grow at an

exponential rate—that is,

Dt ¼ D0ð1þ gÞt

whereDt is the dividend in year t,D0 is the dividend this year, and g is the growth
rate of dividends (assumed to be constant). Is there any way to transform this

model into a linear regression?
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44. Suppose you are given the following dividend information for Hamby Corp.

Forecast the dividend for years 6, 7, 8, 9, and 10, using the method you

proposed in question 43.

Year D

0 1.25

1 1.32

2 1.37

3 1.45

4 1.53

5 1.60

45. Again use the data given in question 44, but this time apply a linear time trend.

Plot the estimates from this regression and from your results in question 44.

46. Suppose you have the following information about a company’s EPS. What

would be the best method for modeling this company’s EPS? Forecast the EPS

for years 6, 7, 8, 9, and 10.

Year EPS

0 $3.25

1 3.65

2 4.03

3 4.45

4 4.87

5 5.09

47. Explain why we use t as an explanatory variable in a linear time trend model

when it is not time that causes the dependent variable to change.

48. Suppose you are given the following sales information for Julian Corp. Esti-

mate the growth rate of sales for Julian Crop. Use this information to forecast

the company’s sales for year 10.

Year Sales

0 1,250,625

1 1,321,001

2 1,372,435

3 1,458,020

4 1,531,035

5 1,600,995

49. Evaluate the following statement: “Because sales have increased at a steady

rate over the last 10 years, the best way to forecast future sales is to use a linear

time trend.”
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50. Go to the library and obtain the earnings per share for General Motors for the

years 1979 through 1988. Use the data for earnings in 1979 through 1988 to

obtain a forecasting equation.

51. Indicate which component of a time series will be affected by each of the

following events:

(a) A hurricane that results in the postponement of consumer purchases

(b) A downturn in business activity

(c) The annual Columbus Day sale at a department store

(d) A flood at a wholesale warehouse that results in a delay in the shipment of

clothing to a local department store

(e) A general increase in the demand for video cameras

52. You are given the following sales information (in millions of dollars) on Acme

Widget Company:

Year Sales ($) Year Sales ($)

1985 3.2 1989 4.8

1986 4.5 1990 5.1

1987 3.9 1991 5.6

1988 4.2

(a) Use a line chart to graph sales.

(b) Estimate the relationship between sales and time, using a time trend

regression.

Use the following information on total nonfarm payrolls in New Jersey from

1965 to 1989, which is taken from New Jersey Economic Indicators, March

1990, to answer questions 53–57.

Year

Total nonfarm

Payrolls Year

Total nonfarm

Payrolls

1965 2,257.8 1978 2,961.9

1966 2,359.1 1979 3,027.2

1967 2,421.5 1980 3,060.4

1968 2,485.2 1980 3,060.4

1969 2,569.6 1981 3,089.9

1970 2,606.2 1982 3,092.7

1971 2,607.6 1983 3,165.1

1972 2,674.4 1984 3,329.3

1973 2,760.8 1985 3,414.1

1974 2,783.4 1986 3,489.9

1975 2,699.9 1987 3,581.6

1976 2,753.7 1988 3,659.5

1977 2,836.9 1989 3,709.8
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53. Use the MINITAB program to plot the data for nonfarm income, and identify

the components of the time series.

54. Compute the 3-year moving average for nonfarm income. Use this information

to forecast nonfarm income in 1990 and in 1991.

55. Use the MINITAB program to do a time trend regression to forecast nonfarm

income in 1990 and in 1991.

56. Use a first-order autoregressive process to forecast nonfarm income in 1990

and in 1991.

57. Compare the different forecasts of nonfarm income that you made in questions

54–56.

Use the following employment data (in thousands) for the United States and for

New Jersey to answer questions 58–65.

Year

Employment

United States New Jersey

1970 78,678 2,859

1971 79,367 2,840

1972 82,153 2,935

1973 85,064 3,011

1974 86,794 3,023

1975 85,846 2,929

1976 88,752 2,973

1977 92,017 3,065

1978 96,048 3,209

1979 98,824 3,323

1980 99,303 3,334

1981 100,397 3,330

1982 99,526 3,306

1983 100,834 3,385

1984 105,005 3,589

1985 107,150 3,621

1986 109,597 3,712

1987 112,440 3,806

1988 114,968 3,824

1989 117,342 3,826

58. Graph the employment for the United States, and try to identify the components

of the time series.

59. Compute the 4-year moving average for employment in the United States. Use

this information to forecast employment in the United States in 1990.

60. Use a time trend regression to forecast employment in the United States in

1990, 1991, and 1992.

61. Use a first-order autoregressive model to forecast employment in the United

States in 1990, 1991, and 1992.

62. Do you think the first-order AR(1) is a good model to use to explain the data?
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63. Compare the different forecasts generated for 1990 by the methods you used in

questions 59–62. Which method do you think is best? Why?

64. Plot the New Jersey employment data. Do you think the linear trend model

provides a good approximation of the data? Use the data to forecast the

employment in 1990.

65. Compare your forecasts for New Jersey with your forecasts for the United

States. Which set of data is harder to forecast? Why?

Use the following data on the labor force in thousands of people in the United

States and in New Jersey to answer questions 66–70.

Year

Labor Force
United States New Jersey

1970 82,771 2,996

1971 84,382 3,012

1972 87,034 3,117

1973 89,429 3,190

1974 91,949 3,226

1975 93,775 3,264

1976 96,158 3,318

1977 99,009 3,383

1978 102,251 3,457

1979 104,962 3,570

1980 106,940 3,594

1981 108,670 3,593

1982 110,204 3,632

1983 111,550 3,673

1984 113,544 3,825

1985 115,461 3,839

1986 117,834 3,908

1987 119,865 3,966

1988 121,669 3,975

1989 123,869 3,989

66. Plot the labor force in the United States and in New Jersey, and try to identify

the components of the time series. Which labor force data appear to be more

stable?

67. Compute the 5-year moving averages for the labor force in the United States

and in New Jersey.

68. Use a linear time trend regression to estimate the labor force in the United

States and in New Jersey in 1990, 1991, and 1992.

69. Use an exponential trend model to forecast the labor force in the United States

and in New Jersey for 1990–1993.

70. What are the growth rates of the United States and New Jersey labor forces?

Does the linear model or the exponential trend model give a faster growth

estimate?

71. Suppose you generate the following data by tossing a coin 50 times. Let the

initial value be $50. If you toss a head, increase the value by $.50. If you toss a
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tail, decrease the value by $.50. Graph the data. Does this series of data exhibit

any time-series pattern? What time-series pattern would you expect it to

exhibit?

72. Can you use any regression or time-series method to forecast the values in

periods 50, 51, and 52 in question 71?

73. What is the best forecast for the value at period 51?

74. Suppose you adjusted the data generated in question 71 by adding $.25 to every

fourth coin toss. Graph these data. Does this new series exhibit any time-series

pattern? What time-series pattern would you expect it to exhibit?

75. What is the best forecast for the time series generated in question 74?

76. Johnson & Johnson’s quarterly sales, in millions of dollars, from first quarter

1990 to first quarter 1991 are

First quarter 1990 2,809

Second quarter 1990 2,825

Third quarter 1990 2,775

Fourth quarter 1990 2,794

First quarter 1991 3,149

Use this set of data and the data in Table 18.10 to run an autoregression model

with 1, 2, and 3 lags from first quarter 1980 to fourth quarter 1990. Use

MINITAB. Then use actual sales data for first quarter 1991 to calculate the

prediction error as defined in Eq. 17.13.

77. The contents in the last column of Table 18.5 are the adjusted EPS of Johnson

& Johnson by the Seasonal Index from first quarter 2000 to fourth quarter 2010.

Denote them as xt
*.

(a) Determine the linear trend between xt
* and t.

(b) Determine the quadratic trend between xt
* and t.

(c) Determine the cubic trend between xt
* and t.

78. (Problem 77 continued.) Forecast the adjusted or deseasonalized EPS of the

Johnson & Johnson from the first quarter 2011 to fourth quarter 2011 by using

the linear trend estimates, quadratic trend estimates, and cubic trend estimates,

respectively.

79. (Problem 78 continued.) Find the forecasts of EPS of the Johnson & Johnson

from the first quarter 2011 to fourth quarter 2011.

80. Use a fourth-order autoregressive model to forecast EPS of the Johnson &

Johnson for the first quarter of 2011.

81. Use the exponential smoothing method, with the smoothing constant a being

0.1, and 0.9, respectively, to forecast the return of NYSE Index. Which

smoothing constant has smaller MSE?
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Appendix 1: The Holt–Winters Forecasting Model

for Seasonal Series

In this appendix, we will generalize the Holt–Winters forecasting model discussed

in Sect. 18.5 to take into account the existence of seasonality. As in the nonseasonal

case, we will use xt, st, and Tt to denote, respectively, the observed value and the

level and trend estimates at time t. Ft is used to denote the seasonal factor, so if the

time series contains L periods per year, the seasonal factor for the corresponding

period in the previous period will be Ft–L. The Holt–Winters method for seasonal

series can be expressed by the following three equations:

st ¼ a
xt

Ft�L

� �
þ ð1� aÞðst�1 þ Tt�1Þ (18.27)

Tt ¼ bðst � st�1Þ þ ð1� bÞTt�1 (18.28)

Ft ¼ g
xt
st

� �
þ ð1� gÞFt�L: (18.29)

where a, b, and g are smoothing constants whose values are set between 0 and 1.

In Eq. 18.27, the term st–1 + T t–1 represents an estimate of the level at time t,
formed 1 time period earlier. This estimate is updated when the new observation xt
becomes available. However, here it is necessary to remove the influence of

seasonality from that observation by deflating it by the latest available estimate,

Ft–L, of the seasonal factor for that period. The updating equation for trend,

Eq. 18.28, is identical to that used previously, Eq. 18.19b, in the text.

Finally, the seasonal factor is estimated by Eq. 18.29. The most recent estimate

of the factor, available from the previous year, is Ft–L. However, dividing the new

observation xt by the level estimate st suggests a seasonal factor xt/st. The new

estimate of the seasonal factor is then a weighted average of these two quantities.

The procedure for forecasting via the Holt–Winters forecasting model for

seasonal series is similar to that for nonseasonal series. Here, the forecast for a

particular month includes the effect of all three smoothing equations. The forecast

for m periods ahead is

x̂tþm ¼ ðst þ mTtÞðFtþm�LÞ (18.30)

If no seasonality exists—that is, if Ft+m–L ¼ 1—then this equation reduces to

Eq. 18.20 in the text.

We will use quarterly data listed in Table 18.4 in the text for Johnson & Johnson

(J&J) during the period first quarter 2000 through fourth quarter 2010 to demon-

strate how Eqs. 18.27, 18.28, 18.29, and 18.30 are used to do exponential smoothing

and forecasting.
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Example 18.7 The Holt–Winters Forecasting Model for J&J’s Quarterly EPS.
Table 18.4 and Fig. 18.6 in the text make it clear that Johnson & Johnson’s quarterly

EPS in the period 2000–2010 exhibited significant seasonality. The fourth-quarter

EPS especially appeared to be considerably higher than those for the other three

quarters.

The Holt–Winters forecasting model with seasonality is used to determine the

smoothed value, st, and the predicted value, x̂; for each time period. The smoothing

constants are a ¼ .2, b ¼ .3, and g ¼ .3.

First, we use the first three years of data to determine the seasonal indexes.

Working with Eq. 18.9, we present the percentage of moving average (PMA) in

terms of the first three years’ data in column (4) of Table 18.11. Table 18.12 shows

the procedure for calculating the seasonal index in terms of the first three years’

data. These indexes are

Quarter 1 ¼ 0:503 Quarter 2 ¼ 0:751
Quarter 3 ¼ 1:207 Quarter 4 ¼ 1:539

and these are the four values of Ft in 1999.

The data from the first three years were seasonally adjusted to obtain dt; see
column (6) of Table 18.11. Drawing a least-squares line through these 12 values by

means of simple time trend linear regression produces

Table 18.11 Seasonal Index and seasonally adjusted EPS for J&J in terms of the first 12 quarters’

data

(1)

Date

(2)

xt

(3)

z�t
(4)

xt/z
�

(5)

Seasonal index

(6)

Seasonally adjusted EPS, dt

2000.1 0.86 0.503173 1.709154

2 1.8 0.750721 2.397696

3 2.68 2.1775 1.230769 1.207303 2.219824

4 3.3 2.095 1.575179 1.538804 2.144523

2001.1 1 1.84875 0.540906 0.503173 1.987389

2 1 1.52375 0.656276 0.750721 1.332053

3 1.51 1.295 1.166023 1.207303 1.250722

4 1.87 1.26375 1.479723 1.538804 1.21523

2002.1 0.6 1.31 0.458015 0.503173 1.192433

2 1.15 1.37875 0.834089 0.750721 1.531861

3 1.73 1.207303 1.432946

4 2.2 1.538804 1.429682

Table 18.12 Calculation

of seasonal indexes of EPS

for J&J Year

Quarter

1 2 3 4 Sums

2000 1.231 1.575

2001 0.541 0.656 1.166 1.480

2002 0.458 0.834

Median 0.499 0.745 1.198 1.527 3.970

Seasonal Index 0.503 0.751 1.207 1.539 4.000
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d̂t ¼ 2:192966� :08298t

The value b̂¼ .08298 becomes the initial trend estimate of T0. Finally, the initial
smoothed value for fourth quarter 1999 is

s0 ¼ ½aþ bð0Þ	ðinitial seasonal index for fourth quarterÞ
¼ ð2:192996Þð1:539Þ ¼ 3:374543

This estimate of s0 becomes the forecast value for each of the quarters in 2000, as

indicated in column (6) of Table 18.13.

The calculation of Table 18.13 in terms of t ¼ 10 is shown as follows:

1. x10 ¼ 1.15

2. Substituting related information into Eq. 18.27 yields

s10 ¼ :2
x10

F10�4

� �
þ :8ðs9 þ T9Þ

¼ :2
x10
F6

� �
þ :8ðs9 þ T9Þ

¼ :2
1:15

0:678411

� �
þ :8ð1:042416� :22779Þ

¼ :99073

3. Substituting related information into Eq. 18.28 yields

T10 ¼ :3ðs10 � s9Þ þ :7T9

¼ :3ð:99073� 1:042416Þ þ :7ð�0:22779Þ
¼ �0:17496

4. Substituting related information into Eq. 18.29 yields

F10 ¼ :3
x10
s10

� �
þ :7F6

¼ :3
1:15

:99073

� �
þ :7ð:678411Þ

¼ :823116

Similarly, we can calculate all other values of st, Tt, and Ft, which are listed in

columns (5), (3), and (4), respectively. Figure 18.17 presents actual data and

smoothed data st.
Using Eq. 18.30, we estimate x̂tþ1 (t ¼ 5,6,. . .,44); it is shown in column (6) of

Table 18.13. For example,

970 18 Time Series: Analysis, Model, and Forecasting



Table 18.13 Solution using Holt–Winters model with seasonality (a ¼ .2, b ¼ .3, g ¼ .3)

t xt Tt Ft st x̂t xt – x̂t

0.503173

0.750721

1.207303

�0.08298 1.538804 3.374543

1 0.86 �0.17792 0.438941 2.975085 1.656227 �0.79623

2 1.8 �0.20189 0.724233 2.717271 2.09989 �0.29989

3 2.68 �0.21962 1.172438 2.456271 3.03683 �0.35683

4 3.3 �0.22515 1.523465 2.218224 3.441764 �0.14176

5 1 �0.20804 0.453593 2.050102 0.874843 0.125157

6 1 �0.23572 0.678411 1.749802 1.334081 �0.33408

7 1.51 �0.24929 1.129111 1.46885 1.775169 �0.26517

8 1.87 �0.24881 1.525832 1.221142 1.857959 0.012041

9 0.6 �0.22779 0.490191 1.042416 0.441041 0.158959

10 1.15 �0.17496 0.823116 0.99073 0.552653 0.597347

11 1.73 �0.13197 1.331536 0.959054 0.921098 0.808902

12 2.2 �0.09509 1.762796 0.950032 1.261986 0.938014

13 0.7 �0.0607 0.559727 0.969558 0.419086 0.280914

14 1.09 �0.03578 0.905841 0.991931 0.748093 0.341907

15 1.8 �0.01204 1.453671 1.035285 1.273149 0.526851

16 2.42 0.008934 1.898087 1.09316 1.803772 0.616228

17 0.84 0.032852 0.605039 1.181821 0.616872 0.223128

18 1.67 0.070587 1.007842 1.340457 1.100301 0.569699

19 2.46 0.087461 1.520538 1.467289 2.051194 0.408806

20 2.87 0.084899 1.885506 1.54621 2.951051 �0.08105

21 0.96 0.082233 0.601062 1.622222 0.986885 �0.02688

22 1.83 0.088911 1.023434 1.726716 1.717821 0.112179

23 2.68 0.085726 1.509804 1.805008 2.760729 �0.08073

24 3.38 0.079839 1.861778 1.871112 3.564991 �0.18499

25 1.11 0.073586 0.593272 1.930107 1.172642 �0.06264

26 2.07 0.07472 1.025748 2.007475 2.050647 0.019353

27 3.01 0.069407 1.49426 2.064483 3.143705 �0.13371

28 3.76 0.062548 1.837582 2.111027 3.97283 �0.21283

29 0.89 0.022143 0.546244 2.038891 1.289522 �0.39952

30 1.95 0.012544 1.006337 2.029037 2.1141 �0.1641

31 2.84 0.004085 1.46915 2.013386 3.050653 �0.21065

32 3.67 0.002868 1.833139 2.013415 3.707269 �0.03727

33 1.27 0.021389 0.565719 2.07802 1.101383 0.168617

34 2.45 0.041499 1.043702 2.166442 2.112714 0.337286

35 3.64 0.05768 1.51119 2.261878 3.243796 0.396204

36 4.62 0.069723 1.870561 2.359699 4.252072 0.367928

37 1.27 0.058653 0.555249 2.392524 1.374369 �0.10437

38 2.43 0.051278 1.031013 2.426592 2.558299 �0.1283

39 3.64 0.047127 1.501008 2.464035 3.744531 �0.10453

40 4.45 0.039196 1.846676 2.484723 4.697282 �0.24728

41 1.64 0.064978 0.57719 2.609861 1.401404 0.238596

42 2.89 0.072672 1.042762 2.700485 2.757794 0.132206

43 4.14 0.071771 1.499056 2.770155 4.162532 �0.02253

44 4.85 0.058836 1.812537 2.798809 5.248116 �0.39812
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x̂11 ¼ ðs10 þ T10ÞðF7Þ ¼ ð:99073� :17496Þð:678411Þ
¼ :921098

Figure 18.18 presents actual data and forecasted data (x̂t). If we let m � 1, then

we can forecast future observations. For example, to forecast the EPS of J&J in the

third quarter of 2002, we let m ¼ 1. Finally, in the last column of Table 18.13, we

present the residual in period t, (xt – x̂t).

Fig. 18.17 Quarterly earnings per share of J&J (actual and smoothed EPS)

Fig. 18.18 Quarterly earnings per share of J&J (actual and forecasted EPS)
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19.1 Introduction

Business executives and government officials often make judgments that involve

summarizing how business, economic, and financial variables change with time or

place. Examples of variation over time include variation in gross national produc-

tion, variation in the price of consumer goods, and variation in stock market prices,

As an example of variation with changes in place, consider a company that wishes

to transfer an executive from Chicago to San Francisco. What should be the

executive’s minimum salary increase to compensate for the higher cost of living

in San Francisco?

In all these cases, we need to have a single composite figure to summarize the

average difference between two time periods or between the two cities. Index

numbers can be used to answer questions of this type. An index number is a

summary measure that compares related items over time or place. In other words,

index numbers enable us to express the level of an activity or phenomenon in

relation to its level at another time or place.

In this chapter we will investigate how alternative index numbers are compiled

and used in business, economics, and finance analyses. First, a discussion of price

indexes, quantity indexes, and value indexes lays the foundation for an understand-

ing of economic and financial indexes. Then we develop several types of stock

market indexes and examine the major indexes provided in the daily financial news.

Finally, applications of index numbers in business and economics are discussed.

19.2 Price Indexes

In this section we first develop a simple aggregative price index based on a single

good and then expand the concept to a combination of several goods. We also

address some of the problems associated with price indexes and explore techniques

that have been developed to deal with these problems.

19.2.1 Simple Aggregative Price Index

In its simplest form, an index number is nothing more than a percentage figure that

expresses the relationship between two numbers, one of the numbers being used as

the base. For example, in a time series of prices of a particular commodity, we can

express the prices as percentages by dividing each figure by the price in the base

period. These percentages are referred to as price relatives.
An understanding of the simple aggregative price index can perhaps best be

facilitated through the use of an example of price relatives. Assume that the price of

eggs has risen over three consecutive years as follows:
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1989: P0 ¼ $1.00

1990: P1 ¼ $1.20

1991: P2 ¼ $1.50

To illustrate the change in prices, we calculate the ratio of prices with respect to

a base year, the year from which the future price changes are measured. The

appropriate base year depends on relevant economic factors. The base years of

US government indexes are shifted forward approximately every decade to reflect

changes in economic conditions over time. In our example, the base year is 1989.

1989: P0/P0 ¼ 1.00/1.00 ¼ 1.00 ¼ I0
1990: P1/P0 ¼ 1.20/1.00 ¼ 1.20 ¼ I1
1991: P2/P0 ¼ 1.50/1.00 ¼ 1.50 ¼ I2

I1 ¼ 1.20 means that the price of eggs increased 20 % between 1989 and 1990.

Likewise, I2 ¼ 1.50 means that between 1989 and 1991 there was a 50 % increase

in the price of eggs. Because 1989 is the base year, I0 must equal 1.00.

Government price indexes are usually expressed on a basis of 100, and to be

consistent with this practice, we will multiply each of the foregoing indexes by 100.

Hence, the price indexes for eggs from 1989 to 1991 are

I0: 1.00 � 100 ¼ 100

I1: 1.20 � 100 ¼ 120

I2: 1.50 � 100 ¼ 150

Each price of eggs is a price relative – the ratio of the price in a given year to the

price in the base year.

The previous example of a price index was expressed in terms of only one

commodity, eggs. A more realistic approach would be to include a group of

commodities, as does the consumer price index (CPI). The CPI measures the cost

of a market basket of some 2,000 consumer goods and services purchased by a

“typical” urban family. The composition of this basket is food, clothing, housing,

fuels, transportation, and medical care. For the sake of simplicity and ease of

understanding, our market basket will consist of just four commodities:

One dozen eggs One pound of butter

One gallon of milk One loaf of bread

We will also assume that the same amount of each good was purchased in each

of our three consecutive years. Table 19.1 illustrates the prices, for the years

1989–1991, of the individual goods that make up our market basket.

The table indicates that the same market basket of commodities cost $4.00 in

1989, $5.00 in 1990, and $6.00 in 1991. However, because we are interested in

determining the price index of the market basket for the various years, we simply

calculate the price relatives (ratios of prices between two different periods) of the

group of commodities, using 1989 as the base year. The price indexes for

1989–1991 are
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1989: 4.00/4.00 � 100 ¼ 100

1990: 5.00/4.00 � 100 ¼ 125

1991: 6.00/4.00 � 100 ¼ 150

The indexes indicate that the cost of this specific list of goods increased 25 %

between 1989 and 1990 and 50 % between 1989 and 1991.

Formally, we can write the simple price index as follows:

It ¼
P4
i¼1

Pti

P4
i¼1

P0i

� 100 (19.1)

where

It ¼ price index for the year t
Pti ¼ price of the ith commodity in the year t
P0i ¼ price of the ith commodity in the base year 0

Note that the quantity for the ith good can be regarded as Q0i ¼ 1 for all i.

19.2.2 Simple Average of Price Relatives

Two disadvantages of the simple aggregate price index give rise to a need for the

simple average of relatives. These two disadvantages are:

1. The units used to state the prices of the commodities affect the price index. For

example, if the price of eggs were stated in half dozens rather than in dozens,

then the price indexes would be

1989: 3.50/3.50 � 100 ¼ 100

1990: 4.40/3.50 � 100 ¼ 125.7

1991: 5.25/3.50 � 100 ¼ 150

These indexes are not identical to those calculated from the price of eggs per

dozen.

Table 19.1 Price and

quantity for four

commodities, 1989–1991
Commodity Quantity

1989 1990 1991

P0 P1 P2

Eggs One dozen 1.00 1.20 1.50

Milk One gallon 1.50 1.75 2.00

Butter One pound 1.10 1.35 1.60

Bread One loaf 0.40 0.70 0.90

4.00 5.00 6.00
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2. The index does not consider the relative importance of the commodities, and it is

unduly influenced by the price variation of high-priced commodities. For exam-

ple, if our market basket were enlarged to include a shirt that cost $16 in 1989,

$20 in 1990, and $10 in 1991, calculating our price indexes in terms of Eq. 19.1

would yield

I89 ¼ (4.00 + 16.00)/(4.00 + 16.00) � 100 ¼ 20/20 � 100 ¼ 100

I90 ¼ (5.00 + 20.00)/(4.00 + 16.00) � 100 ¼ 25/20 � 100 ¼ 125

I91 ¼ (6.00 + 10.00)/(4.00 + 16.00) � 100 ¼ 16/20 � 100 ¼ 80

The shirt makes up a majority of the index. The decrease in the price of a shirt

makes the index decrease by 20 %, even though that shirt is not the most important

item for consumers.

Because of these limitations, we need an index that removes the bias due to the

difference in measurement and takes the relative importance of the commodity into

account. We can improve on our index by taking an average of the price relatives.

Using the data from Table 19.2, we can calculate the simple relative price index
in period t as follows:

It ¼
Pn
i¼1

Pti=P0i � 100ð Þ
n

(19.2)

Hence, the averages of the price relatives for 1990 and 1991 are 660/5, or 132,

and 716/5, or 143.2, respectively.

Each item in the index is weighted by 1/P0, which makes all items equally

important. Thus, we have removed the influence of different units of measurement

for the various commodities. However, this kind of index still doesn’t take the

relative importance of the commodity into account.

19.2.3 Weighted Relative Price Index

One major disadvantage of the simple relative price index is that it treats all

commodities as equal. An index should reflect the value of some commodities in

Table 19.2 Calculation of the simple average of price relatives

Commodity

1989 1990 1991

P0/P0 P1/P0 P2/P0

Eggs 100 1.20/1.00 � 100 ¼ 120 1.50/1.00 � 100 ¼ 150

Milk 100 1.75/1.5 � 100 ¼ 117 2.00/1.50 � 100 ¼ 133

Butter 100 1.35/1.10 � 100 ¼ 123 1.60/1.10 � 100 ¼ 145

Bread 100 0.70/0.40 � 100 ¼ 175 0.90/0.40 � 100 ¼ 225

Shirt 100 20.00/16.00 � 100 ¼ 125 10.00/16.00 � 100 ¼ 63

500 % 660 % 716 %
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relation to the value of others. We need a weighted relative price index – one that

takes into consideration the weights, or worth, of various commodities. We base the

value of commodity weights on the quantity purchased. In other words, the total

dollars spent on the commodities determine their weight in the index.

Suppose the following are the amounts spent on our market basket, V0i, and the

related prices and quantities of those commodities, in 1989.

Commodity V0i P0i Q0i

Eggs $150 $1.00 150

Milk 450 1.50 300

Butter 220 1.10 200

Bread 440 0.40 1,100

Shirts 160 16.00 10

$1,420

That is, the value of the ith commodity purchased in 1989 is

V0i ¼ P0i � Q0i (19.3)

Hence, Q0i is the quantity of eggs purchased in the base year (1989).

Accordingly, the purpose of the weighted relative price index is to show how

much we need to spend in subsequent years to buy the same amount of commodities

as we bought in the base year.

Formally, we derive the weighted relative for the ith commodity in period t as
follows:

Pti

P0i

� �
V0i ¼ Pti

P0i

� �
P0i � Q0i ¼ Pti � Q0i (19.4)

Summing this for the five commodities in our market basket gives us the price

index in period t, It, as

It ¼
P5
i¼1

Pti=P0ið ÞV0i

P5
i¼1

V0i

� 100 (19.5)

Table 19.3 shows the individual weighted price relatives for 1989–1991. Thus,

the weighted relative price indexes are

1989: (1,420/1,420)(100) ¼ 100

1990: (1,948/1,420)(100) ¼ 137

1991: (2,234/1,420)(100) ¼ 157
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This weighted relative price index is higher than the simple relative price index

because bread has a high importance rating (that is now taken into account) and

because bread underwent a substantial price increase.

19.2.4 Weighted Aggregative Price Index

In this section we discuss three weighted aggregative price indexes: the Laspeyres

price index, the Paasche price index, and Fisher’s ideal price index.

19.2.4.1 The Laspeyres Price Index

We can rewrite the weighted price index given in Eq. 19.5 by using Eq. 19.4.

It ¼
P5
i¼1

Pti

P0i

� �
V0i

P5
i¼1

V0i

� 100

¼ Pt1=P01ð Þ P01Q01ð Þ þ � � � þ Pt5=P05ð Þ P05Q05ð Þ
P01 � Q01 þ � � � þ P05 � Q05

� 100

¼ Pt1 � Q01 þ � � � þ Pt5 � Q05

P01 � Q01 þ � � � þ P05 � Q05

� 100

¼
P5
i¼1

PtiQ0i

P5
i¼1

P0iQ0i

� 100 ð19:6Þ

Through this derivation, we see that this index is the same index as in Eq. 19.5.

That is, this price index is weighted on the basis of the base-year quantities. In other

words, the numerator is the value of the expenditures in year t that are necessary to

Table 19.3 Calculation of individual weighted price relatives for 1989–1991

Commodity Weight (P0i/P0i) V0i (P1i/P0i) V0i (P2i/P0i) V0i

Eggs 150 150 (1.2)150 ¼ 180 (1.5)350 ¼ 225

Milk 450 450 (1.17)450 ¼ 527 (1.33)450 ¼ 599

Butter 220 220 (1.23)220 ¼ 271 (1.45)220 ¼ 319

Bread 440 440 (1.75)440 ¼ 770 (2.25)440 ¼ 990

Shirts 160 160 (1.25)160 ¼ 200 (0.63)160 ¼ 101

1,420 1,420 1,948 2,234
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buy the same quantity of the commodities as was purchased in the base year. This

greatly simplifies updating the index, particularly in that most aggregate business

indexes contain a large number of items. The denominator is the value of the

expenditures required to buy a given amount in the base year. This formula is

referred to as the Laspeyres price index. The CPI is a Laspeyres index.1 The

disadvantage of this index is that it tends to give more weight to those items that

show a dramatic price increase. A sharp increase in a particular commodity’s price

is typically accompanied by a decrease in the demand (measured by Q) for this item
(consumers may be substituting another item). The Laspeyres index fails to adjust

for this situation, but even so, its advantages outweigh its disadvantages.

From the data listed in Tables 19.1, 19.2, and 19.3, and from assumptions, we

have the price and quantity information listed in Table 19.4.

Substituting data from Table 19.4 into Eq. 19.6, we obtain the price indexes for

1990 and 1991:

I90 ¼ 180þ 525þ 270þ 770þ 200

150þ 450þ 220þ 440þ 160
¼ 1; 945

1; 420
¼ 137

I91 ¼ 225þ 600þ 320þ 990þ 100

1; 420
¼ 2; 235

1; 420
¼ 157

These figures imply that the weighted aggregative price indexes estimated from

five commodities for 1990 and 1991 are 37 % and 57 % higher than those of 1989,

respectively.

19.2.4.2 The Paasche Price Index

The only difference between a Paasche price index and a Laspeyres index is that a

Paasche index employs the current-year quantities (Qt) rather than the base-year

quantities (Q0). Formally,

It ¼
Pn
i¼1

PtiQti

Pn
i¼1

P0iQti

� 100 (19.7)

In other words, the numerator determines the amount of money necessary to

purchase a given amount of commodities in the current year at current-year prices.

Accordingly, the denominator determines the amount of money required to buy the

current-year quantities at base-year prices. The gross national product (GNP)

1Application of CPI in determining inflation rate and interest rate will be discussed in Application

19.3.
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deflator is a Paasche index. This GNP deflator is broader than the CPI because it

includes not only consumer goods and services but also investment goods, goods

and services purchased by government, and goods and services that enter into world

trade.

The complexity of updating the reference-year quantities for a Paasche index

makes it difficult (and often impossible) to apply. Furthermore, because it reflects

changes in both price and quantity, we cannot use it to reflect price changes between

two periods. In addition, it tends to understate price increases and to overstate price

decreases because it simultaneously reflects the quantity changes in the demand

(Q). Its obvious advantage is that it uses current-year quantities, which provide a

realistic and up-to-date estimate of total expense.

Substituting related data from Table 19.4 into Eq. 19.7, we obtain the Paasche

indexes for 1990 and 1991:

I90 ¼ 192þ 437:5þ 243þ 700þ 300

160þ 375þ 198þ 400þ 240
¼ 1; 872:5

1; 373
¼ 136

I91 ¼ 270þ 600þ 400þ 945þ 200

180þ 450þ 275þ 420þ 320
¼ 2; 415

1; 645
¼ 147

19.2.4.3 Fisher’s Ideal Price Index

Fisher’s ideal price index offers a compromise between the Laspeyres price index

and the Paasche price index. This index is found by multiplying the square root of

the Laspeyres index by the Paasche price index. Using Eqs. 19.6 and 19.7, we

obtain Fisher’s ideal price index (FI):

FIt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

PtiQti

Pn
i¼1

P0iQti

0
BB@

1
CCA

Pn
i¼1

PtiQ0i

Pn
i¼1

P0iQ0i

0
BB@

1
CCA

vuuuuut (19.8)

Table 19.4 Price and quantity for five commodities, 1989–1991

1989 1990 1991

Commodity Price Quantity Price Quantity Price Quantity

Eggs 1.00 150 1.20 160 1.50 180

Milk 1.50 300 1.75 250 2.00 300

Butter 1.10 200 1.35 180 1.60 250

Bread 0.40 1,100 0.70 1,000 0.90 1,050

Shirts 16.00 10 20.00 15 10.00 20
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Hence, Fisher’s ideal price index lies between the Laspeyres price index and the

Paasche price index.

By substituting related information from this section, we find that

FI90 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð136Þð137Þ

p
¼ 136

FI91 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð147Þð157Þ

p
¼ 152

As we expected, the Fisher index is larger than the Paasche index and smaller

than the Laspeyres index.

19.3 Quantity Indexes

A quantity index measures a change in quantity from a base year to a particular

year; such quantities include the volume of industrial production, the physical

volume of imports and exports, quantities of goods and services consumed, and

the volume of stock transactions. In this section we will discuss two major kinds of

quantity indexes – weighted aggregative quantity indexes and weighted relative

quantity indexes.

19.3.1 Laspeyres Quantity Index

The Laspeyres quantity index is derived by simply interchanging the P’s and Q’s in
the Laspeyres price index:

It ¼
Pn
i¼1

QtiP0i

Pn
i¼1

Q0iP0i

� 100 (19.9)

This index represents the total cost of the quantities in the year in question at

base-year prices as a percentage of the total cost of the base-year quantities.

Because prices are kept constant, any change in the index is due to the change in

quantities between the base year and the year in question.

From the data in Table 19.5, we can compute the Laspeyres quantity indexes for

1989–1991:

I89 ¼ 57,000/57,000 � 100 ¼ 100

I90 ¼ 74,000/57,000 � 100 ¼ 130

I91 ¼ 91,000/57,000 � 100 ¼ 160
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Hence, the indexes for 1990 and 1991 indicate that the cost of the three

commodities increased 30 % and 60 %, respectively. The price has been held

constant, so the change in the index is due to changes in the quantities of the

commodities for the period in question. In other words, the 1990 and 1991 indexes

show that the quantities of the goods increased 30 % and 60 %, respectively, from

the 1989 base year.

19.3.2 Paasche Quantity Index

The same relationship that exists between the Laspeyres price and quantity indexes

also exists between the Paasche price and quantity indexes. Interchanging the P’s
and Q’s in the Paasche price index creates the Paasche quantity index:

It ¼
Pn
i¼1

QtiPti

Pn
i¼1

Q0iPti

� 100 (19.10)

In other words, the Paasche quantity index represents the total cost of the

purchased quantities in a given year as a percentage of what the base-year quantities

would have cost had they been purchased during that year.

From the data in Table 19.6, we can calculate the Paasche quantity indexes for

1989–1991:

I89 ¼ 100,500/100,500 � 100 ¼ 100

I90 ¼ 135,000/105,000 � 100 ¼ 129

I9I ¼ 191,000/124,000 � 100 ¼ 154

Prices are held fixed in the equation, so a change between numerator and

denominator reflects a change in the quantities between the 2 years. In other

words, 1990 and 1990 saw a 23 % and a 54 % increase in quantity, respectively,

over the 1989 quantity.

Table 19.5 Worksheet for calculating the Laspeyres quantity index

Commodity

1989 1990 1991

Q0i P0i Q1i Q2i Q0iP0i Q1iP0i Q2iP0i

Automobiles 40 1,000 50 60 40,000 50,000 60.000

Computers 30 500 40 50 15,000 20,000 25,000

Televisions 10 200 20 30 2,000 4,000 6,000

57,000 74,000 91,000
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19.3.3 Fisher’s Ideal Quantity Index

As you may have guessed, there is a compromise between the Laspeyres quantity

index and the Paasche quantity index. This compromise is called Fisher’s ideal
quantity index (FIQ). It is computed as follows:

FIQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLaspeyres quantity indexÞðPaasche quantity indexÞ

p
(19.11)

Like Fisher’s price index, Fisher’s quantity index lies between the corresponding

Laspeyres and Paasche indexes.

Substituting related information into Eq. 19.11 yields

FIQ90 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð130Þð129Þ

p
¼ 129

FIQ91 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð160Þð154Þ

p
¼ 157

19.3.4 FRB Index of Industrial Production

Probably the most widely used and best-known quantity index in the United States

is the Federal Reserve Board (FRB) index of industrial production. This index

measures changes in the physical volume of output of manufacturing, mining, and

utilities. The FRB index of industrial production is closely watched by business

executives, economists, and financial analysts as a major indicator of the physical

output of the economy. It is one of the roughly coincident indicators used by the

National Bureau of Economic Research as a cyclical indicator.2

The FRB index of industrial production is the weighted arithmetic mean of the

quantity relatives as defined as

It ¼
Pn
i¼1

Qti

Q0i
� 100

� �
Q0iP0i

Pn
i¼1

Q0iP0i

where Qti/Q0i is the quantity relative and Q0iP0i is the weight. From the proof of

Eq. 19.6, we know this equation is identical to Eq. 19.9.

Numerous problems plague the use of both quantity relative (Qti/Q0i) and value

weights (Q0i/Q0i). Because many industries cannot easily provide physical output

data for the quantity relatives, such related data as shipments and employee hours

2 See Application 19.2 in Sect. 19.6.
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worked that tend to move parallel to output are sometimes used instead. Value-

added data instead of final product data are also used as weights to avoid the

problem of double counting. For example, if the value of the final product were

used for a tire company that sells its tires to an automobile company and the value

of the final product of the automobile company were also used, the tires that went

into making the automobile would be counted twice. A firm’s value added is

conceptually equivalent to the total of its factor-of-production payments: rent,

interest, wages, and profits.

19.4 Value Index

A value index measures the total cost of the purchased quantities in a given year at

the prices prevailing during that year compared to the cost of the purchased

quantities in the base period at base-year prices. The value index is

It ¼
Pn
i¼1

QtiPti

Pn
i¼1

Q0iP0i

ð100Þ (19.12)

Thus, the value index reflects simultaneous changes in quantities and prices for

the period in question.

From the data in Table 19.7, we can compute year-to-year changes in the value

index:

For 1989–1990,

I ¼ 129; 000=57; 000ð Þ 100ð Þ ¼ 226

For 1990–1991,

I ¼ 191; 000=129; 000ð Þ 100ð Þ ¼ 148

Again, the value index reflects changes from year to year that are due to changes

both in prices and in quantities.

19.5 Stock Market Indexes

A stock market index is a statistical measure that shows how the prices of a group of

stocks change over time.3 A stock market index encompasses either all or only a

portion of stocks in its market. Stock market indexes employ different weighting

3 Stock index options and futures will be discussed in Appendices 1 and 2, respectively.
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schemes, so we can use this basis to categorize the indexes by type. The three most

common types of stock market indexes are market-value-weighted indexes, price-

weighted indexes, and equally weighted indexes. Price per share in current period

(P0), price per share in next period (P1), number of shares outstanding in current

period (Q0), and number of shares outstanding in next period (Q1) are listed in

Table 19.8. These data are used to illustrate the various weighting schemes and to

provide information about the weights applied to the major stock market indexes.

19.5.1 Market-Value-Weighted Index

The market-value-weighted index is similar to the value index given in Eq. 19.12

and discussed in Sect. 19.4. We compute the index by taking the ratio of the market

value of the outstanding shares at time t to their market value at the initial period.

From Table 19.8, we calculate the market-value-weighted index as follows:

I ¼
P3
i¼1

QtiPti

P3
i¼1

Q0iP0i

¼ 55ð100Þ þ 100ð60Þ þ 300ð40Þ
60ð100Þ þ 90ð50Þ þ 250ð20Þ ð100Þ

¼ 23; 500

15; 500
ð100Þ ¼ 152

This figure implies that the market-value-weigh ted index increased by 52 %

from the base period to the current period.

Standard & Poor’s 500 Composite Index is an example of a market-value-

weighted index. The S&P 500 index comprises industrial firms, utilities, transpor-

tation firms, and financial firms. Changes in the index are based on changes in the

firms’ total market value with respect to a base year. Currently, the base period

(1941 � 1943 ¼ 10) for the S&P 500 index is stated formally as follows:

Table 19.7 Worksheet for

calculating the value index
1989 1990 1991

Commodity P0iQ0i P1iQ1i P2iQ2i

Automobiles 40,000 100,000 150,000

Computers 15,000 24,000 35,000

Televisions 2,000 5,000 6,000

57,000 129,000 191,000
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S&P 500 index ¼
P500
i¼1

PtiQti

P500
i¼1

P0iQ0i

ð10Þ (19.13)

where

P0i ¼ per share stock price at base year 0

Pti ¼ per share stock price at index data t
Q0i ¼ number of shares for firm i at base year 0
Qti ¼ number of shares for firm i at index year t

The index is multiplied by an index set equal to 10. The specification of this

index is identical to that of the value index indicated in Eq. 19.12. The fluctuation of

the S&P 500 index during 1980–2011 is presented in Fig. 19.1.

The New York Stock Exchange (NYSE) also publishes a market index, which

differs in only two respects from the S&P 500 index. First, the NYSE index

includes the stocks of all firms listed on the NYSE, whereas the S&P 500

index includes only a portion of the firms on the exchange. In addition, the NYSE

index uses a base index of 50 (as opposed to 10), which was chosen to represent an

approximate price of an average share in December 1965.

19.5.2 Price-Weighted Index

The price-weighted index shows the change in the average price of the stocks that

are included in the index. Using the data from Table 19.8, we can compute the

price-weighted index as follows:

I ¼ ð100þ 60þ 40Þ=3
ð100þ 50þ 20Þ=3 ð100Þ

¼ 200=3

170=3
ð100Þ

¼ 117:65

The closest thing to a true price-weighted stock market index is the Dow Jones
Industrial Average (DJIA). Simply stated, the DJIA is an arithmetic average of the

stock prices that make up the index. The DJIA originally assumed a single share of

Table 19.8 Price per share

and outstanding shares for

stocks, A, B, and C

Stock P0 P1 Q0 Q1

A 100 100 60 55

B 50 60 90 100

C 20 40 250 300
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each stock in the index, and the total of the stock prices was divided by the number

of stocks that made up the index4:

DJIAt ¼

P30
i¼1

Pti

30P30
i¼1

P0i

30

(19.14)

Today the index is adjusted for stock splits and the issuance of stock dividends:

DJIAt ¼
P30
i¼1

Pti

ADt

P30
i¼1

P0i

(19.14a)

where Pit ¼ the closing price of stock i on day t and AD ¼ the adjusted divisor on

day t. This index is similar to the simple price index given in Eq. 19.1 except for the

stock splits adjusted over time. The adjustment process is illustrated in Table 19.9.

Fig. 19.1 The S&P 500, January 1980–November 2011 (monthly averages: 1941–1943 ¼ 10;

shaded areas represent periods of business recessions) (Source: National Bureau of Economic

Research http://www.nber.org/ and Yahoo Finance)

4 There are 30 blue-chip firms included in this index. Their names appear in Table 9.1.
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Alternatively, the average after split can be calculated as

Average ¼ 30� 2þ 30þ 20þ 10

4
¼ 30

This average is identical to that obtained by using the adjusted-divisor approach.

As Table 19.9 shows, the adjustment process is designed to keep the index value

the same as it would have been if the split had not occurred. Similar adjustments

have been made when it has been found necessary to replace one of the component

stocks with the stock of another company, thus preserving the consistency and

comparability of index values at different points in time.

Nevertheless, the adjustment process used for the DJIA has its share of critics.

Because price weighting itself causes high-priced stocks to dominate the series, the

same effect can cause a shift in this balance when rapidly growing firms split their

stock. For example, a 20 % increase in the price of stock A in Table 19.9 would in

itself have caused a 10 % increase in the value of the sample index before the split,

whereas a 20 % increase in the price of stock B would have caused only a 5 %

increase in the index value. After the 2-for-1 split of stock A, a 20 % increase in

either stock A or stock B would have the same effect on the index value (a 6.7 %

increase); a downward shift in the importance of stock A relative to that of the other

stocks in the sample has occurred. This effect could relegate the stock of the fastest-

growing companies to a position of least importance in determining index values.

19.5.3 Equally Weighted Index

The equally weighted index is based on the supposition that an equal amount is

invested in each of the stocks included in the index. Hence, in computing the index,

we will assume that $1,000 is invested in each of the three stocks. Using the price

Table 19.9 Adjustment of

DJIA divisor to allow for a

stock split

Before split After 2-for-l stock split by stock A

Stock Price Price

A 60 30

B 30 30

C 20 20

D 10 10

120 90

Average before split ¼ 120

4
¼ 30

Adjusted divisor ¼ Sum of prices after the split

Average before split
¼ 90

30
¼ 3

Average after split ¼ 90

3
¼ 30

Before� split divisor ¼ 4 After� split divisor ¼ 3
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information listed in Table 19.8, we find the following numbers of shares purchased

in the initial period.

Stock Number of shares at initial period

A 10(1,000/100)

B 20(1,000/50)

C 50(1,000/20)

Using this information and the price information listed in Table 19.8, we can

calculate the equally weighted index:

I ¼ 10ð100Þ þ 20ð60Þ þ 50ð40Þ
10ð100Þ þ 20ð50Þ þ 50ð20Þ ð100Þ

¼ 4; 200

3; 000
ð100Þ ¼ 140

The equally weighted index is based on the changes in the price of the individual

stocks, given that an equal amount of money is initially invested in each stock. In

other words, the index keeps the number of shares constant while providing for

changes in the pre-share price. This is similar to the Laspeyres price index

(Eq. 19.6), except that the initial quantity should be determined by the equal-

amount-net-investment assumption. One of the two Wilshire 5000 equity indexes

is an equally weighted index. The market-value-weighted Wilshire 5000 equity

index is discussed in the next section.

19.5.4 Wilshire 5000 Equity Index

The Wilshire 5000 equity index, which includes 5,000 stocks, is compiled by both

market-value-weighted and equally weighted approaches. The market-value-

weighted approach is identical to the value index given in Eq. 19.12. The equally

weighted approach is identical to that discussed in the last section. This index is

being used increasingly, because it contains most equity securities available for

investment, including all NYSE and AMEX issues and the most active stocks

traded on the over-the-counter (OTC) market.

The following formula is used to compute the market-value-weighted Wilshire

5000 equity index:

It ¼ It�1

PN
j¼1

ðSjtÞPjt

PN
j¼1

ðSjt�1ÞPjt�1

2
6664

3
7775 (19.15)
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where

It ¼ index value for the tth period

N ¼ number of stocks in the index

Pjt ¼ price of the jth security for the tth period

Sjt ¼ shares outstanding of the jth security for the tth period

Pjt � 1 ¼ price of the jth security for the (t � l)th period

Sjt � 1 ¼ shares outstanding of the jth security for the (t � l)th period

In the event that Pjt is not available for a given security, that security is dropped

from the summations. If Pjt � 1 is not available but Pjt is – that is, if a security has

just resumed trading – the last available price is substituted for Pjt � 1.

As an example, we present in Table 19.10 monthly equity values for theWilshire

5000 equity index from January 1989 to January 1992. In this table, only the value-

weighted index appears. Figure 19.2 is a graph of the Wilshire 5000 equity index

from January 1970 to December 1991. The monthly Wilshire equity index

(Table 19.10) can be used to calculate the market rates of return by the method

discussed in Appendix 2 in Chap. 2. Monthly rates of return calculated from the

data of Table 19.10 in terms of the value-weighted index are presented in

Table 19.11. In Table 19.11, price appreciation represents the percentage change

of index, and the total return is equal to price appreciation plus the dividend yield.

Note that the Wilshire index can be used in place of the S&P 500 as an NBER

leading economic indicator, a topic discussed in Sect. 19.6 of this chapter.

Table 19.10 Value-weighted

Wilshire 5000 equity index
Date Wilshire indexa Date Wilshire indexa

1/31/1989 2,917.261 8/31/1990 3,053.601

2/28/1989 2,857.863 9/28/1990 2,879.335

3/31/1989 2,915.072 10/31/1990 2,833.986

4/28/1989 3,053.132 11/30/1990 3,015.022

5/31/1989 3,162.609 12/31/1990 3,101.355

6/30/1989 3,137.008 1/31/1991 3,245.346

7/31/1989 3,377.403 2/28/1991 3,484.851

8/31/1989 3,440.843 3/28/1991 3,583.671

9/29/1989 3,426.656 4/30/1991 3,587.924

10/31/1989 3,320.354 5/31/1991 3,719.297

11/30/1989 3,367.637 6/28/1991 3,545.470

12/29/1989 3,419.879 7/31/1991 3,705.893

1/31/1990 3,163.301 8/30/1991 3,795.043

2/28/1990 3,201.205 9/30/1991 3,743.976

3/30/1990 3,273.458 10/31/1991 3,807.081

4/30/1990 3,172.327 11/29/1991 3,649.992

5/31/1990 3,448.484 12/31/1991 4,041.102

6/29/1990 3,424.366 01/31/1992 4,027.770

7/31/1990 3,384.365
a2/30/1980 base ¼ 1,404.596
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19.6 Business and Economic Applications

Application 19.1 Deflation of Value Series by Price Indexes. Corporate

executives and economists are often interested in dividing time series data

expressed in monetary terms into two components – a “real,” or quantity, compo-

nent and a price component. Together, these two components express a value series

in terms of price � quantity. Hence, if we are interested only in the quantity

component of a time series, we can find it simply by dividing the value series by

price. Often we use a price index as a deflator. With the available information, it is

important to use an index that is relevant to the time series in question. For example,

one might use the consumer price index (CPI) to calculate real weekly wage and

then use the GDP deflator to calculate real GDP.

If we want to calculate the real weekly wage for 2007–2009, we can use the

consumer price index to deflate the nominal weekly wage and obtain the real wage

rate as indicated in Table 19.12.

Table 19.13 shows nominal GDP and the implicit price deflator for GDP and real

GDP for the period 2000–2009. Figure 19.3 plots both nominal and real GDP data.

Calculating real GDP gives insight into the “real” growth in the economy. We do

not want to be misled by the trend of GDP when prices generally increase at a rate

Fig. 19.2 The Wilshire 5000, January 1971–October 1990 (Source: Wilshire 5000 Equity Index,

Wilshire 5000® a registered Service Mark of Wilshire Associates Incorporated, Santa Monica,

California)
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greater than zero. A price component (price deflator) provides information about

changes in the nominal component of output. Formally, we compute real GDP as

follows:

Real GDP ¼ Nominal GDP

GDP deflator=100
(19.16)

Table 19.11 Monthly returns for value-weighted Wilshire 5000 equity index

Month ending Price appreciation (%)a Dividends yield (%) Total return (%)

1/31/1989 6.531 0.281 6.812

2/28/1989 �2.036 0.368 �1.668

3/31/1989 2.002 0.272 2.274

4/28/1989 4.736 0.180 4.916

5/31/1989 3.586 0.475 4.061

6/30/1989 �0.810 0.233 �0.577

7/31/1989 7.663 0.213 7.876

8/31/1989 1.878 0.394 2.272

9/29/1989 �0.412 0.239 �0.173

10/31/1989 �3.102 0.182 �2.920

11/30/1989 1.424 0.342 1.766

12/29/1989 1.551 0.265 1.816

1/31/1990 �7.503 0.163 �7.340

2/28/1990 1.198 0.390 1.588

3/30/1990 2.257 0.242 2.499

4/30/1990 �3.090 0.210 �2.880

5/31/1990 8.705 0.426 9.131

6/29/1990 �0.699 0.216 �0.483

7/31/1990 �1.168 0.202 �0.966

8/31/1990 �9.773 0.363 �9.410

9/28/1990 �5.707 0.213 �5.494

10/31/1990 �1.575 0.235 �1.340

11/30/1990 6.388 0.429 6.817

12/31/1990 2.863 0.311 3.1 74

1/31/1991 4.643 0.215 4.858

2/28/1991 7.380 0.400 7.780

3/28/1991 2.836 0.210 3.046

4/30/1991 0.119 0.198 0.317

5/31/1991 3.662 0.348 4.010

6/28/1991 �4.674 0.209 �4.465

7/31/1991 4.525 0.171 4.696

8/30/1991 2.406 0.356 2.762

9/30/1991 �1.346 0.198 �1.148

10/31/1991 1.686 0.151 1.837

11/29/1991 �4.126 0.307 �3.819

12/31/1991 10.715 0.265 10.980

01/31/1992 �0.330 0.132 �0.198
aRepresents monthly percentage change in Wilshire 5000 equity index
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Equation 19.16 is used to calculate real GDP for the period 2000–2009; the results

are presented in the last column of Table 19.13.

To calculate the growth rate for nominal GDP (Xt), GDP deflator (Yt), and real

GDP (Zt) from the data listed in Table 19.13, we run the following regressions:

Table 19.12 Calculation of real weekly wages, 2007–2009

(1) (2) (3) (4)

Year

Average weekly

wage ($)

Consumer price index

(1982 � 1984 ¼ 100)

Real weekly

wage ($)

2007 590.04 207.3 284.58

2008 607.99 215.3 282.46

2009 616.37 214.5 287.29

Source: Economic Report of the President, January 2010

Table 19.13 Nominal GDP,

GDP deflators, and real GDP

(2000–2009)

Year Nominal GDP GDP deflators Real GDP

2000 9,951.51 88.647 11,226.00

2001 10,286.24 90.650 11,347.20

2002 10,642.39 92.118 11,553.00

2003 11,142.10 94.100 11,840.70

2004 11,867.68 96.770 12,263.80

2005 12,638.40 100.000 12,638.40

2006 13,398.83 103.257 12,976.20

2007 14,077.71 106.214 13,254.10

2008 14,441.47 108.483 13,312.20

2009 14,258.61 109.777 12,988.70

Fig. 19.3 Nominal versus real GDP, 2000–2009
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logeXt ¼ a0 þ a1tþ e1t (19.17a)

logeYt ¼ b0 þ b1tþ e2t (19.17b)

logeZt ¼ c0 þ c1tþ e3t (19.17c)

The justification for using these equations to estimate growth rate appears in

Eq. 18.13 of the last chapter. MINITAB results of Eqs. 19.17a, 19.17b, and

19.17c are presented in Figs. 19.4, 19.5, and 19.6, respectively.

From Figs. 19.4, 19.5, and 19.6, we obtain the following estimated slopes:

â1 ¼ 561 b̂1 ¼ 2:52 ĉ1 ¼ 254

ð34:27Þ ð0:0922Þ ð26:83Þ

Regression Analysis: log(nominal GDP) versus Year

The regression equation is

log(nominal GDP) = -83.2 + 0.0462 Year 

Predictor      Coef   SE Coef       T      P
Constant    -83.248     5.613  -14.83  0.000
Year       0.046223  0.002800   16.51  0.000

S = 0.0254361   R-Sq = 97.1%   R-Sq(adj) = 96.8%

Analysis of Variance

Source          DF       SS       MS       F      P
Regression       1  0.17627  0.17627  272.44  0.000
Residual Error   8  0.00518  0.00065
Total            9  0.18144

          log(nominal
Obs  Year      GDP)       Fit   SE Fit  Residual   St Resid
  1  2000    9.20548  9.19794  0.01495   0.00754      0.37
  2  2001    9.23856  9.24416  0.01268  -0.00560     -0.25
  3  2002    9.27260  9.29039  0.01066  -0.01779     -0.77
  4  2003    9.31849  9.33661  0.00907  -0.01812     -0.76
  5  2004    9.38157  9.38283  0.00816  -0.00126     -0.05
  6  2005    9.44450  9.42906  0.00816   0.01544      0.64
  7  2006    9.50292  9.47528  0.00907   0.02764      1.16
  8  2007    9.55235  9.52150  0.01066   0.03085      1.34
  9  2008    9.57786  9.56772  0.01268   0.01014      0.46
 10  2009    9.56512  9.61395  0.01495  -0.04883     -2.37R

R denotes an observation with a large standardized residual.
Durbin-Watson statistic = 0.956295

Fig. 19.4 MINITAB output of Eq. 19.17a
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The standard errors are listed under the estimates. Note that â1, b̂1; and ĉ1, are
growth rate estimates.

From these estimates, we know that the growth rate for nominal GDP is

approximately equal to the growth rate of the GDP deflator plus the growth rate

of real GDP.

Application 19.2 Using Business and Economic Index Numbers to Predict

Business Cycles. The National Bureau of Economic Analysis publishes a series

of 26 categories of economic data reflecting movements in the business cycle (see

Table 19.14). These are called indicators of economic activity. Of the 26 indicators,

12 make up an index of leading indicators. A leading indicator’s “lead” must be

greater than 3 months, and a lagging indicator follows economic activity by more

than 3 months. Indicators of economic activity that lead or lag economic activity by

3 months or less are called coincident indicators.

The 12 components of the index of leading indicators are:

Regression Analysis: log(GDP Deflators) versus Year

The regression equation is
log( GDP Deflators) = -46.5 + 0.0255 Year

Predictor       Coef    SE Coef       T      P
Constant     -46.487      1.699  -27.35  0.000
Year       0.0254822  0.0008478   30.06  0.000

S = 0.00770053   R-Sq = 99.1%   R-Sq(adj) = 99.0%

Analysis of Variance

Source          DF        SS        MS       F      P
Regression       1  0.053571  0.053571  903.41  0.000
Residual Error   8  0.000474  0.000059
Total            9  0.054045

            log(GDP
Obs  Year  Deflators)     Fit   SE Fit  Residual  St Resid
  1  2000    4.48466  4.47776  0.00453   0.00690      1.11
  2  2001    4.50701  4.50324  0.00384   0.00376      0.56
  3  2002    4.52307  4.52873  0.00323  -0.00566     -0.81
  4  2003    4.54436  4.55421  0.00275  -0.00985     -1.37
  5  2004    4.57234  4.57969  0.00247  -0.00735     -1.01
  6  2005    4.60517  4.60517  0.00247  -0.00000     -0.00
  7  2006    4.63722  4.63066  0.00275   0.00657      0.91
  8  2007    4.66546  4.65614  0.00323   0.00932      1.33
  9  2008    4.68659  4.68162  0.00384   0.00497      0.74
 10  2009    4.69845  4.70710  0.00453  -0.00865     -1.39

Durbin-Watson statistic = 0.909893

Fig. 19.5 MINITAB output of Eq. 19.17b
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1. Average weekly hours of manufacturing workers

2. Average weekly initial claims for unemployment insurance

3. The real value of manufacturers’ new orders for consumer goods and materials

4. The index of new business formations

5. The index of 500 common stock prices

6. Contracts and orders for plant and equipment in 1972 dollars

7. The index of new private housing starts authorized by local building permits

8. The ratio of price to unit labor cost, manufacturing

Regression Analysis: log( GDP Deflators) versus Year

The regression equation is
log(Real GDP) = -32.2 + 0.0207 Year

Predictor      Coef   SE Coef      T      P
Constant    -32.156     4.364  -7.37  0.000
Year       0.020741  0.002177   9.53  0.000

S = 0.0197743   R-Sq = 91.9%   R-Sq(adj) = 90.9%

Analysis of Variance

Source          DF        SS        MS      F      P
Regression       1  0.035490  0.035490  90.76  0.000
Residual Error   8  0.003128  0.000391
Total            9  0.038618

           log(Real
Obs  Year      GDP)      Fit   SE Fit  Residual  St Resid
  1  2000   9.32599  9.32535  0.01162   0.00064      0.04
  2  2001   9.33673  9.34609  0.00986  -0.00936     -0.55
  3  2002   9.35470  9.36683  0.00829  -0.01213     -0.68
  4  2003   9.37930  9.38757  0.00705  -0.00827     -0.45
  5  2004   9.41441  9.40831  0.00635   0.00610      0.33
  6  2005   9.44450  9.42905  0.00635   0.01544      0.82
  7  2006   9.47087  9.44979  0.00705   0.02108      1.14
  8  2007   9.49206  9.47053  0.00829   0.02153      1.20
  9  2008   9.49644  9.49127  0.00986   0.00516      0.30
 10  2009   9.47184  9.51202  0.01162  -0.04018     -2.51R

R denotes an observation with a large standardized residual.
Durbin-Watson statistic = 0.886178

Fig. 19.6 MINITAB output of Eq. 19.17c
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9. The net change in inventories on hand and on order in 1972 dollars

10. The change in sensitive materials prices

11. The change in total consumer and business credit outstanding

12. Corporate profits after taxes (quarterly)

Table 19.15 presents information on the dates and durations of business cycles as

determined by the National Bureau of Economic Research (NBER). It is particu-

larly interesting to compare the dates and durations of business cycles to

movements in the stock market. Comparing the graphs of the S&P 500

(Fig. 19.1) and the Wilshire 5000 stock indexes (Fig. 19.2) to the business cycle

information reported in Table 19.15 reveals the relationship between the business

cycle and stock market movements. For example, from February 1961 to December

1969, the United States sustained 106 months of economic growth (largely due to

government expenditures on the Vietnam War). Figure 19.1 shows that over the

Table 19.14 Cyclical indicators: short list of the National Bureau of Economic Research

Leading indicators

Average hourly workweek, production workers, manufacturing

Average weekly initial claims, state unemployment insurance

Index of net business formation

New orders, durable-goods industries

Contracts and orders, plant and equipment

Index of new building permits, private housing units

Change in book value, manufacturing, and trade inventories

Index of industrial materials prices

Index of stock prices, 500 common stocks

Corporate profits after taxes (quarterly)

Index: ratio of price to unit labor cost, manufacturing

Change in consumer installment debt

Roughly coincident indicators

GNP in current dollars

GNP in 1958 dollars

Index of industrial production

Personal income

Manufacturing and trade sales

Sales of retail stores

Employees on nonagricultural payrolls

Unemployment rate, total

Lagging indicators

Unemployment rate, persons unemployed 15 weeks or over

Business expenditures, new plant, and equipment

Book value, manufacturing, and trade inventories

Index of labor cost per unit of output in manufacturing

Commercial and industrial loans outstanding in large commercial banks

Banks rates on short-term business loans

Source: U.S. Department of Commerce
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same period, the S&P 500 index moved higher, indicating a direct link between

economic growth and stock market movements. That is, when the economy is

growing, stock prices tend to increase. When the economy is in recession, stock

prices decline. In general, stock price movements lead changes in economic

condition. Therefore, the stock market is one of the leading indicators of the

business cycle.

In the business section of the Home News on June 1, 1991, a headline read,

“Leading Indicators Up Again.” In support of this headline, the newspaper

Table 19.15 NBER business cycle reference dates and durations

Trough Peak Contractions Expansions Trough to trough Peak to peak

December 1854 June 1857 NA 30 NA NA

December 1858 October 1860 18 22 48 40

June 1861 April 1865 8 46 30 54

December 1867 June 1869 32 18 78 50

December 1870 October 1873 18 34 36 52

March 1879 March 1882 65 36 99 101

May 1885 March 1887 38 22 74 60

April 1888 July 1890 13 27 35 40

May 1891 January 1893 10 20 37 30

June 1894 December 1895 17 18 37 35

June 1897 June 1899 18 24 36 42

December 1900 September 1902 18 21 42 39

August 1904 May 1907 23 33 44 56

June 1908 January 1910 13 19 46 32

January 1912 January 1913 24 12 43 36

December 1914 August 1918 23 44 35 67

March 1919 January 1920 7 10 51 17

July 1921 May 1923 18 22 28 40

July 1924 October 1926 14 27 36 41

November 1927 August 1929 13 21 40 34

March 1933 May 1937 43 50 64 93

June 1938 February 1945 13 80 63 93

October 1945 November 1948 8 37 88 45

October 1949 July 1953 11 45 48 56

May 1954 August 1957 10 39 55 49

April 1958 April 1960 8 24 47 32

February 1961 December 1969 10 106 34 116

November 1970 November 1973 11 36 117 47

March 1975 January 1980 16 58 52 74

July 1980 July 1981 6 12 64 18

November 1982 July 1990 16 80a 28 96a

March 1991 ? NA NA 89a NA
aThe 80-month duration of the last expansion, the 96-month duration of the last peak-to-peak

cycle, and the 89-month duration of the last trough-to-trough cycle are conservative estimates.

They assume a peak in July 1989 and, for the last of these, a trough 9 months later. Wartime

expansions and cycles containing wartime expansions are underlined
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identified the 12 statistics listed in Fig. 19.7 as “statistics that forecast the econ-

omy.” Of these 12 statistics, 8 increased, 1 experienced no change, and 3 decreased.

This example essentially shows that the cyclical indicators in Table 19.14 can be

used to forecast economic activities.

Application 19.3 CP1, Inflation Rate, and Interest Rate. The consumer price

index (CPI) defined in Sect. 19.2 of this chapter can be used to calculate the inflation

rate. For example, using the CPI index presented in Table 2.1 of Chap. 2, we can

calculate the inflation for 2010 (I2010) as

I2010 ¼ ln
CPI2010
CPI2009

� �
¼ ln

218:1

214:5

� �
¼ 1:66%

To try to protect themselves from a loss of purchasing power, investors will demand

a return that reflects inflation expectations. This return is called the nominal risk-

free interest rate; it represents the observed or published return on a risk-free asset.

Figure 19.7 Statistics that forecast the economy (Source: Home News, March 30, 1991.

Reprinted by permission of Knight-Ridder Tribune News)
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The interest rate on 1-year or 3-month Treasury bill is generally used by many

financial analysts to approximate the nominal risk-free rate.5 The 3-month Treasury

bill rate can be found in Table 2.1.

The relationship between the nominal risk-free rate and expected inflation can be

defined as

Nominal risk� free interest rate ¼ ð1þ real risk� free rateÞ
� ð1þ expected inflation rateÞ � 1

This equation is known as the Fisher effect. For example, the real risk-free interest

rate of 4 % and lender expectations of 6 % inflation over the next year produce a

nominal risk-free rate of

ð1þ 0:04Þð1þ 0:06Þ � 1 ¼ 10:24%

To summarize, the CPI index can be used to calculate the inflation rate, and this can

be used to determine the nominal risk-free rate. It is well known that the nominal

risk-free rate (Treasury bill rate) is generally used to determine mortgage rate or

other lending rate.

19.7 Summary

In this chapter, we examined different index numbers. Price, quantity, and value

indexes were explored. Then stock market indexes and applications of index numbers

to calculate real wage income and real GNP were discussed in detail. Finally, we

demonstrated how theNBEReconomic indicators are used to forecast business cycles.

Questions and Problems

1. Find the following sales indexes for the accompanying retail sales volume (in

thousands of dollars) with the base year indicated.

Year Sates ($) Year Sales ($)

1984 85,390 1987 92,289

1985 86,745 1988 97,725

1986 88,452

(a) 1984

(b) 1988

5 See Lee, C.F., et al.: Foundation of Financial Management. West Publishing Company,

Minneapolis/St. Paul (1997), Chap. 3 for detail.
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2. An alloy is made up of 27 % metal A, 34 % metal B, and 39 %metal C. During

the past year, prices of the metals have changed as shown in the table. Find the

simple aggregative index for the cost of the alloy.

Price per pound

Metal 1988 1989

A 2.08 3.48

B 7.61 7.78

C 4.49 3.80

3. Find the simple aggregative index number for the following data.

1972 1989

Item Unit price Unit sold Unit price Unit sold

A $2.50 400 $4.00 650

B 16.00 150 19.50 175

C 9.50 250 16.00 350

(a) Find the Laspeyres index number.

(b) Find the Paasche index number.

(c) Find the ideal index number.

(d) Find a physical volume index for 1989, weighting quantities with 1972

base-year prices.

4. Use the data in question 2.

(a) Find the weighted aggregative index for the cost of the alloy.

(b) How can you explain the values of these index numbers in view of the fact

that only 2 out of 3 constituent metal prices rose?

5. Say you earned $10,725 in 1975 when the CPI in your city was 150 and earned

$29,500 in 1989 when your city’s CPI hit 358. Express your 1989 purchasing

power as a percentage of your 1975 purchasing power.

6. Assume the CPI for your city had the following values.

Year 1982 1983 1984 1985 1986

Value 210 238 265 300 335

(a) Find the purchasing power of the dollar in each of these years as a

proportion of the 1986 dollar.

(b) Explain the meaning of these figures (Hint: What percentage of 1986 goods

could you buy in these years?)
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7. Suppose you have a stock market indicator made up of five common stocks

selling at the prices per share indicated in the following table.

Stock Price per share

A $106.00

B 87.75

C 49.50

D 32.75

E 23.50

(a) Find the market average.

(b) Suppose stock A split 2 for 1 and stock D split 3 for 1. Find the new

denominator for your average.

(c) After the splits, the prices settled to the values shown in the following table.

Find the indicator’s new value.

Stock Price per share

A $54.00

B 90.75

C 53.25

D 11.75

E 23.25

8. For the accompanying data for the retail price of selected appliances, find the

Laspeyres retail price index for each year, using 1967 as the base.

Average unit price Thousands of units sold

Appliance 1967 1978 1991 1967

A 255 268 310 5,930

B 310 327 323 1,950

C 223 250 265 2,010

D 37 39 42 890

9. Which of the following index numbers could be found by using the data in

question 8?

(a) Simple aggregative index

(b) Laspeyres index

(c) Fisher’s ideal index

(d) Weighted aggregative index

(e) Paasche index

10. What is an index number? Give some examples of index numbers. Why are

they useful?

11. What is the difference between an index constructed with simple averages and

an index constructed with weighted averages? If we construct an index of stock
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prices in which all the companies are small and approximately the same size, is

there any difference between a weighted-average index and a simple-average

index? What if we construct an index using companies of many different sizes?

12. What is the difference between the ways the Paasche and Laspeyres price

indexes are computed?

13. Under what conditions would you expect Paasche and Laspeyres indexes to be

significantly different?

14. What is Fisher’s ideal price index? Why might it be better to use than a Paasche

or Laspeyres index?

15. One commonly reported index in business is the index of leading economic

indicators. What is the purpose of this index? If you were asked to construct

your own index of leading economic indicators, what information would you

use? How would you construct it?

16. Explain how a price-weighted stock index must be adjusted to reflect the stock

split of a company.

17. Some people argue that price indexes do not reflect the improvements in quality

of the products we buy. Would this limitation cause estimates of inflation to be

too high or too low?

18. What is a base year? What is the value of the index in the base year?

19. What is the consumer price index? What does it measure? How is it

constructed?

20. Use the data in Tables 19.5 and 19.6 to compute the Laspeyres index and

compare the result to the Paasche index. Also compute Fisher’s ideal quantity

index.

21. What is a real component? What is a price component? How are the two

related?

22. What is the Wilshire 5000 equity index? What securities are included in this

index? How is it computed?

23. You are given the following information on prices and quantities for widgets.

Year Price Quantity

1985 $1.00 1,000

1986 1.25 1,800

1987 1.31 2,000

1988 1.44 2,222

1989 1.51 2,325

1990 1.85 3,100

Using 1987 as the base year, compute the Laspeyres price index for widgets.

24. Drawing on the data given in question 23, compute the Paasche price index,

again using 1987 as the base year.

25. Using your calculations in questions 23 and 24, compute Fisher’s ideal price

index.
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26. On the Island of Crusoe, there are only two goods: coconuts and fish. Suppose

you have the following information on the prices and quantities of fish and

coconuts.

Fish Coconuts

Year Q P Q P

1987 100 $3.00 75 $1.00

1988 110 2.90 80 1.02

1989 99 3.12 79 1.05

1990 121 3.45 88 1.15

Using 1988 as the base year, compute the Paasche price index.

27. Using the data from question 26, compute the Laspeyres price index.

28. Using the data from questions 26 and 27, compute Fisher’s ideal price index.

29. Using the Laspeyres, Paasche, and Fisher’s indexes you computed in questions

26–28, compute the percentage change in price for each year (inflation rate),

and compare the results for the three indexes. Which one gives the highest rate?

Which one the lowest?

30. Three commonly reported measures of price level are the consumer price

index, the producer price index, and the GNP deflator. Explain why these

measures may yield different inflation rates.

31. Here are some price indexes for four different types of collectibles.

Collectible 1980 1985 1990

Baseball cards 100 210 275

Paintings 100 195 325

Jewelry 100 250 245

Gold coins 100 199 201

(a) What is the base year?

(b) Which of the collectibles increased the most in price from 1980 to 1990?

(c) Which of the collectibles increased the most in price from 1985 to 1990?

(d) Which of the collectibles increased the most in price from 1980 to 1985?

32. Consider the following price and market-value information for five stocks in

1990.

Stock Price ($) Market value ($)

A 100 1,000,000

B 50 3,000,000

C 72 500,000

D 35 1,250,000

E 27 300,000
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Compute an equally weighted price average and a value-weighted price aver-

age. Explain why the two indexes differ.

33. Now suppose you have the following price and market-value information for

the same stocks of question 32 in 1991.

Stock Price ($) Market value ($)

A 105 1,500,000

B 30 2,000,000

C 72 800,000

D 25 1,850,000

E 57 900,000

Compute an equally weighted and a value-weighted relative price index.

34. Suppose you are given the following information about wages and prices for

5 years.

Year Average hourly wage ($) Consumer price index

1986 8.22 100

1987 9.37 110

1988 10.01 108

1989 11.27 135

1990 15.43 200

(a) Compute real wages for all years between 1986and 1987.

(b) Are workers any better off in 1987 than they were in 1986?

35. Use the data given in question 34 to compute the change in real wages between

1986 and 1990. Are workers any better off?

36. You are given the following cost indexes for three categories of consumer

expenditures.

Year Housing Food Transportation

1980 127.2 129.3 151.2

1985 145.6 141.2 170.6

1990 166.7 171.2 200.3

Compute the percentage change in housing, food, and transportation costs

between 1980 and 1985. Which expenditure underwent the greatest price

increase?

37. Repeat question 36 for the period 1985–1990 and the period 1980–1990.

38. Agricultural economists have data on the price per bushel of wheat, corn,

barley, and hops for the last 20 years. They want to obtain a measure for the

aggregative price movements of grain over this period. In deciding how to

produce this price index, what factors should they take into consideration?
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39. The following table shows the price of hamburger over the last 10 years.

Year Price per pound ($)

1 1.82

2 1.95

3 1.86

4 2.10

5 2.45

6 3.10

7 2.60

8 2.45

9 2.75

10 2.58

(a) Form a price index, using year 1 as the base.

(b) Form a price index, using year 6 as the base.

40. The following table shows the price of gold over the last 10 weeks.

Week Price per ounce ($)

1 $410.82

2 401.95

3 391.56

4 382.10

5 392.45

6 403.10

7 412.60

8 392.45

9 399.75

10 402.58

(a) Form a price index, using week 1 as the base.

(b) Form a price index, using week 5 as the base.

41. The following table shows the average price, taken monthly, of Widget Com-

pany stock over the last year.

Month Price Month Price

1 41 3
8

7 50 1
4

2 42 1
4

8 49 3
4

3 43 1
8

9 52 7
8

4 45 3
4

10 53 5
8

5 47 1
2

11 54 1
8

6 49 3
8

12 51 5
8
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(a) Form a price index, using week 1 as the base.

(b) Form a price index, using week 7 as the base.

42. The following table shows the price and volume of shares (in thousands) traded

for ABC Company and XYZ Company in the first 10 weeks of 1991.

ABC Company XYZ Company

Week Price Volume Price Volume

1 12 2
8

3.8 25 1
8

6.4

2 11 3
8

2.9 24 1
4

7.1

3 13 5
8

3.2 24 7
8

6.9

4 12 7
8

3.1 26 5
8

7.4

5 13 1
8

3.5 26 5
8

7.7

6 14 2
8

4.1 25 3
8

6.9

7 13 7
8

3.9 27 1
8

7.4

8 14 1
8

4.4 27 3
8

6.8

9 14 7
8

4.1 28 7
8

7.2

10 13 7
8

4.3 29 1
8

7.4

Compute the market-value-weighted index using week 1 as the base.

43. Use the data given in question 42, and use week 1 as the base, to compute:

(a) The Laspeyres aggregative quantity index

(b) The Paasche aggregative quantity index

(c) Fisher’s ideal quantity index

44. Redo question 43, this time using week 5 as the base. Compare the results to

your results in question 43.

45. The following table shows the price per pound and the volume (in thousands of

pounds) for chicken and beef at Eat More Grocery Store.

Beef Chicken

Week Price ($) Volume Price ($) Volume

1 1.25 15 1.86 11

2 1.35 14 1.99 12

3 1.19 17 2.10 11

4 1.45 18 2.05 11

5 1.29 19 1.79 15

6 1.39 22 2.09 18

7 1.45 15 2.29 15

8 1.09 25 2.39 14

9 1.39 19 2.45 13

10 1.49 15 2.89 9
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Use week 1 as the base to:

(a) Compute the Laspeyres aggregative price index.

(b) Compute the Paasche aggregative price index.

(c) Compute Fisher’s ideal price index.

46. Use the data in question 45, and use week 1 as the base, to compute:

(a) The Laspeyres aggregative quantity index

(b) The Paasche aggregative quantity index

(c) Fisher’s ideal quantity index

47. Use the week 10 data in question 46 to show that the ratio of the Laspeyres

price index to the Laspeyres quantity index is equal to the ratio of the Paasche

price index to the Paasche quantity index.

48. Show that the ratio of the Laspeyres price index to the Laspeyres quantity index

is equal to the ratio of the Paasche price index to the Paasche quantity index.

49. Briefly explain the differences between aggregative price indexes and aggrega-

tive quantity indexes.

50. The following table shows the price and volume (in thousands) for shirts and

pants at Snappy Dresser Department Store.

Shirts Pants

Month Price Volume Price Volume

1 $27.00 50 $62.00 35

2 23.27 61 54.25 37

3 28.95 49 57.00 38

4 32.45 42 48.27 54

5 22.45 50 49.75 60

6 19.95 75 52.20 55

7 21.23 62 47.50 58

8 27.22 55 45.10 62

9 22.95 57 40.00 75

10 19.90 70 35.00 77

11 24.95 62 44.21 63

12 22.95 66 48.95 64

Compute the value indexes using week 12 as the base.

51. Use the data in question 50, and use week 1 as the base, to compute the value

indexes.

52. Redo question 51, this time using month 6 as the base.

53. Using the business section of any newspaper, find the current value of the S&P

500 index. What stocks are included in the S&P 500? How is the index

computed? Is the S&P 500 index a better or a worse measure of stock market

activity than the Wilshire 5000?

54. Using the business section of any newspaper, find the most recent value of the

Dow Jones Industrial Average (DJIA). What stocks are included in the DJIA?
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Compare the DJIA to the Wilshire 5000 and the S&P 500 as a measure of stock

market activity.

55. Explain the problems that would arise from comparing price indexes for

computers over the last three decades.

56. The consumer price index (CPI) and the producer price index (PPI) are often

reported as measures of the inflation rate. What problems appear using these

indexes to measure the inflation rate? Do these two measures really indicate the

“true” cost of living?

57. You are given the following information on prices and quantities for Knick-

Knacks.

Year Price Quantity

1985 $21.00 12,300

1986 18.25 13,000

1987 19.31 21,300

1988 22.44 20,212

1989 23.51 24,345

1990 21.85 32,300

Using 1985 as the base year, compute the value price index for Knick-Knacks.

58. Using the data from question 57, compute the Paasche price index, again using

1985 as the base year.

59. Using your calculations from 57 to 58, compute the Laspeyres index. Why are

you getting the same answer as in question 58?

60. For the data in question 57, are the Laspeyres quantity index and the Paasche

quantity index equal? Why?

61. Suppose you are given the following information about wages and prices for

5 years.

Year Annual salary Consumer price index

1987 $38,202 95

1988 39,837 100

1989 41,001 108

1990 41,327 125

1991 55,943 200

(a) Compute the change in real salaries between 1988 and 1989.

(b) Are workers any better off in 1989 than they were in 1988?

62. Use the data given in question 61 to compute the change in real wages between

1987 and 1991. Are workers any better off?

63. Use the data presented in the following table to calculate the growth rate for

nominal GNP, GNP deflator, and real GNP using MINITAB (Hint: Refer to
Eqs. 19.17a, 19.17b, and 19.17c.)
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Year Nominal GNP GNP deflators Real GNP

1976 1,676.2 59.3 2,826.7

1977 1,991.1 67.3 2,958.6

1978 2,249.2 72.2 3.115.2

1979 2,509.2 78.6 3,192.4

1980 2,731.3 85.7 3,187.1

1981 3,053.9 94.0 3,248.8

1982 3,166.0 100.0 3,166.0

1983 3,407.0 103.9 3,279.1

1984 3,771.0 107.7 3,501.4

1985 4,013.1 110.9 3,618.7

1986 4,231.0 113.8 3,717.9

1987 4,514.4 117.4 3,845.3

1988 4,872.5 121.3 4,016.9

1989 5,200.7 126.3 4,117.7

1990 5,464.9 131.5 4,155.8

64. A quantity index measures a change in quantity from a base year to a particular

year is the physical volume of production levels of industrial goods over time.

Which of the following one is the most widely used and best-known quantity

index in the United States?

(a) Laspeyres quantity index

(b) Producers index

(c) FRB Index of Industrial Production

(d) Paasche quantity index

65. The Laspeyres index is a weighted aggregate price index where the weight for

each item is its

(a) Base-year price

(b) Base-year quantity

(c) Current-year price

(d) Current-year quantity

66. The Paasche index is a weighted aggregate price index where the weight for

each item is its

(a) Base-year price

(b) Base-year quantity

(c) Current-year price

(d) Current-year quantity

67. What is the disadvantage of the CPI?

(a) It tends to give less weight to those items that show a dramatic price

increase.

(b) It tends to give more weight to those items that show a dramatic price

increase.
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(c) It tends to give more weight to those items that show a dramatic price

decrease.

(d) It tends to give the same weight to those items that show a dramatic price

decrease.

68. Use the data in the following table to calculate GNP deflator, the growth rate

for nominal GNP, GNP deflator, and real GNP.

Year/quarter Real GNP ($) Nominal GNP ($)

2005 Q1 10,941.90 12,468.70

2005 Q2 11,014.70 12,596.20

2005 Q3 11,151.20 12,835.70

2005 Q4 11,151.10 12,979.80

2006 Q1 11,294.00 13,242.00

2006 Q2 11,362.50 13,406.00

2006 Q3 11,375.90 13,494.70

2006 Q4 11,447.80 13,655.90

2007 Q1 11,466.70 13,828.80

2007 Q2 11,580.00 14,056.30

2007 Q3 11,744.60 14,270.90

2007 Q4 11,799.10 14,451.80

Appendix 1: Options on Stock Indices and Currencies6

Index Options

Index option is the option on stock index instead of individual stocks as discussed in

Appendix 2 of Chap. 6, Appendices 2 and 3 of Chap. 7, and Appendix 4 of

Chap. 13. Many different index options currently trade in the United States. The

most popular contracts are those on the S&P 500 Index and the S&P 100 Index

(CBOE).

Index options may be European or American. For example, the contract on the

S&P 500 is European, whereas that on the S&P 100 is American. One CBOE

contract is to buy or sell 100 times the index at the specified strike price of 280. If it

is exercised when the value of the index is 292, the writer of the contract pays the

holder (292 � 280) � 100 ¼ $1,200. This cash payment is based on the index

value at the end of the day in which the exercise instructions are issued. Not

surprisingly, investors usually wait until the end of a day before issuing these

instructions.

6 See Hall, J.C.: Introduction to Futures and Options Markets, 3rd edn. Prentice-Hall, New Jersey

(1998), Chap. 12 for further discussion on this topic.
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In valuing index, assume that it could be treated as a security paying a known

dividend yield. Therefore, the European style of index call options can be evaluated

in terms of the European style of stock call option formula defined as

C ¼ S0Nðd1Þ � Xe�rTNðd2Þ (19.18)

where S0 ¼ Se�qT, q ¼ dividend yield and S ¼ value of index.

d1 ¼
ln S=Xð Þ þ r � qþ 1

2
s2

� �
T

	 

s

ffiffiffi
T

p

d2 ¼ d1 � s
ffiffiffi
T

p

See Eq. 7.35 in Appendix 2 of Chap. 7 for the definitions of all other variables.

Example 19.1 Index Option Valuation. Consider a European call option on the

S&P 500 that is 2 months from maturity. The current value of the index is 950, the

exercise price is 900, the risk-free interest rate is 6 % per annum, and the volatility

of the index is 15 per annum. Dividend yields of 0.2 % and 0.3 % are expected in the

first month and the second month, respectively. In this case S ¼ 950, X ¼ 900,

r ¼ 0.06, s ¼ 0.15, and T ¼ 2/12. The total dividend yield during the option’s life

is 0.2 + 0.3 ¼ 0.5 %. This is 3 % per annum. Hence, q ¼ 0.03 and

d1 ¼
ln 950=900ð Þ þ 0:06� 0:03þ 0:15ð Þ2 0:5ð Þ

h i
2
12

� �
0:15ð Þ

ffiffiffiffi
2
12

q
¼ 0:054þ 0:007

0:061
¼ 1

d2 ¼ 1� 0:15ð Þ
ffiffiffiffiffi
2

12

r
¼ 0:93

From Table A.3, we obtained that

Nðd1Þ ¼ 0:8413 Nðd2Þ ¼ 0:8238

so that the call price, C, is given by Eq. 19.18

C ¼ 950ð0:8413Þe�0:03�2=12 � 900ð:8238Þe�0:006�2=12 ¼ 795:24� 734:01
¼ 61:23

One contract would cost $61.23 � 100 ¼ $6123.

If the absolute amount of the dividend that will be paid on the stocks underlying

the index (rather than the dividend yield) is assumed to be known, the basic
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Black–Scholes formula can be used with the initial stock price reduced by the

present value of the dividends. This is the approach recommended in Appendix 4 of

Chap. 13 for a stock paying known dividend.

Currency Option

Currency option is option on spot exchange rate instead of either individual stock or

stock index. An exchange rate is the price of one currency in terms of another

currency. For example the exchange rate between the Japanese yen and US dollar is

130.77 on December 15, 1997.

The valuation model for the European type of currency call option can be

defined as

C ¼ S�rf TNðd1Þ � Xe�rTNðd2Þ (19.19)

where

S ¼ spot exchange rare, r ¼ domestic risk-free rate, T= term to maturity in years

rf ¼ foreign risk-free rate, X ¼ exercise price

s ¼ standard deviation of spot exchange rate

d1 ¼
ln S

X

� �þ r � rf þ s2
2

� �
T

h i
s

ffiffiffi
T

p

d2 ¼ d1 � s
ffiffiffi
T

p

By comparing Eq. 19.19 with Eq. 19.18, it is found that Eq. 19.19 can be

obtained by replacing q by rf.

Example 19.2 Valuation of Currency Option. Consider a 4-month European call

option on the Japanese yen. Suppose that the current exchange rate is 130, the

exercise price is 125, the risk-free rate in the United States is 6 % per annum, and

the risk-free rate in Japan is 2 % per annum. The volatility of foreign exchange rate

is 15 %.

Substituting S ¼ 130, X ¼ 125, r ¼ 0.06, rf ¼ 0.02, s ¼ .15, and T ¼ 4/12

into Eq. 19.19, we obtain

d1 ¼
ln

130

125

� �
þ 0:06� 0:02þ ð0:15Þ2

2

� �h i 4

12

� �

ð0:15Þ
ffiffiffiffi
4
12

q ¼ 0:0392þ 0:0171

0:0866
¼ 0:6501
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d2 ¼ 0:6501� ð0:15Þ
ffiffiffiffiffi
4

12

r
¼ 0:5635

From Table A.3, we obtain

Nð0:65Þ ¼ 0:7422; Nð0:56Þ ¼ 0:7123

Substituting all related information into Eq. 19.19, we obtain

C ¼ð130Þe�
0:02
3 ð0:7422Þ � ð125Þe�

0:06
3 ð0:7123Þ

¼ 95:8395� 87:2746

¼ 8:5649

Appendix 2: Index Futures and Hedge Ratio

The most exciting financial innovation of the 1980s might be the introduction of

stock index futures contracts. These contracts, written on the value of various stock

index portfolios as defined in the text of this chapter, provide important benefits to

stock portfolio managers.

The first stock index futures contract was introduced in February 1982 by the

Kansas City Board of Trade. This Value Line futures contract is written on the

Value Line Composite Index, a stock index that consists of approximately 1,700

stocks from the New York, American, and OTC stock markets. The Chicago

Mercantile Exchange quickly followed suit in April 1982 with a futures contract

on the S&P 500 stock index, and then the Chicago Board of Trade in July 1984

followed with a futures contract on the Major Market Index.

Most recently, the Chicago Board of Trade introduce Dow Jones Index Futures

in October 1997.

Stock portfolio manager can use index futures to hedge his (or her) portfolio.

Now, we discuss how the minimum variance type of hedge ratio can be derived in

accordance with method used to derive the optimal weights of a portfolio which has

been discussed in Appendix 1 of Chap. 13. We first define

DS: Change in spot price, S, during a period of time equal to the life of the hedge

DF: Change in futures price, F, during a period of time equal to the life of the hedge

sS: Standard deviation of DS
sF: Standard deviation of DF
r: Coefficient of correlation between DS and DF
h: Hedge ratio
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When the hedger is long for the asset and short futures, the change in the value of

the hedger’s position during the life of the hedge is

DS� hDF

For a long hedge, it is

hDF� DS

In either case the variance, s, of the change in value of the hedged position is

given by

s ¼ s2S þ h2s2F � 2hrsSsF

so that

@s
@h

¼ 2hs2F � 2rsSsF

Setting this equal to zero and noting that ∂2s/∂h2 is positive, we see that the

value of h which minimizes the variance is

h ¼ r
sS
sF

(19.20)

The optimal hedge ratio is therefore the product of the coefficient of correlation

between DS and DF and the ratio of the standard deviation of DS to the standard

deviation of DF.
If r ¼ 1 and sF ¼ sS, the optimal hedge ratio, h, is 1.0. This is to be expected

since in this case the futures price mirrors the spot price perfectly. If r ¼ 1 and

sF ¼ 2sS, h is 0.5. This result is also expected since in this case the futures price

always changes by twice as much as the spot price.

The optimal hedge ratio, h, defined in Eq. 19.20 can be estimated by using the

following regression

DSt ¼ a0 þ a1DFt þ et (19.21)

where DSt ¼ change in spot price in period t
DFt ¼ change in futures price in period t

a0 and a1 are the intercept and slope of a regression, respectively. The estimated

a1 is the estimated hedge ratio, h. Application of Eq. 19.21 has been shown in

Problem 60 of Chap. 14.
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20.1 Introduction

In statistics, we are interested in information about a population. For example, we

might be interested in how the residents of a community feel about the construction

of a new high school. There are two ways to obtain information about how the

residents feel about this issue. We could take a census and simply ask each and
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every resident about his or her attitude toward such a project. Or we could take a

smaller sample of the residents and try to draw inferences about the community’s

feelings from the feelings that members of this sample express.

In Part III of this book, we investigated sampling in terms of only simple random

sampling, in which each potential sample of N members has an equal chance of

being chosen. However, survey sampling is more likely to require elaborate sam-

pling designs for the selection of sample members; these designs are discussed in

Sects. 20.3 and 20.5. We also focus in this chapter on the problem confronting

researchers who want to discover something about a population that is not very

large. (In previous chapters, we generally assumed that the number of population

members was very large compared with the number of sample members.) And we

discuss the advantages and disadvantages of sampling and show how sampling is

applied to decision making in business and economics.

As we noted earlier, there are four reasons why sampling may be preferred to

taking a census. First, sampling is more economical. Second, it is preferable when

information needs to be gathered quickly. A third reason for using a sample instead

of a census is that the population of interest may be very large. A fourth reason is

quality control, which we discussed in detail in Sects. 10.8 and 10.9 of Chap. 10.

This chapter discusses techniques for designing a sampling experiment, and it

adds examples and applications to our earlier (Chap. 1) discussion of sampling.

First, the basic sampling methods of simple random sampling and stratified sam-

pling are explained. Then we address determining the sample size and discuss

sampling and nonsampling errors. Two-stage cluster sampling is also investigated,

and we compare ratio estimation and regression estimation. Finally, applications of

sampling methods are demonstrated. Appendix 1 shows how the jackknife method

is used to remove the bias of a sample estimator.

20.2 Sampling and Nonsampling Errors

There are several advantages of sampling over taking a census. However, working

with a sample taken from a population does not enable us to determine the precise

value of the population parameter, such as population mean or variance. This kind

of error is due to sampling error. Sampling error is the difference between the

sample estimate and its population parameter that is due entirely to the fact that

sample instead of census data are used to estimate the parameter. For instance, say

we were interested in determining the mean income of lawyers in a particular law

firm. Had we used a simple random sample consisting of 50 lawyers, the difference

between the mean income of this sample and population mean income would be the

sampling error.1 If by chance our sample consisted entirely of partners in the law

firm, our resulting error would be quite large. Now although it is unlikely that a

1We will return to this example in Example 20.3 in the next section of this chapter.
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random sample of 50 lawyers from a law firm consisting of 475 associates and 50

partners would result in the selection of only partners, it is theoretically possible.

And if it happened, our inferences about the mean income of this law firm would be

based on the income of the partners alone – and hence would be greatly overstated.

Parts of the errors in estimating the population parameters that result from “the luck

of the draw” are not sampling errors anymore.

Errors that are unconnected with the pure random sampling procedure used fall

into the category of nonsampling errors. Selection of the wrong population is one

example of nonsampling error. For example, a researcher who tries to draw

inferences about the views of Americans on gun control would fall victim to

nonsampling error if he chose to sample only members of the National Rifle

Association. This kind of nonsampling error is called sample selection bias.
Another source of nonsampling error is response bias. Poorly worded

questionnaires and improper interviewing techniques may distort the responses of

individuals so much that they do not accurately reflect the respondents’ true

opinions. Furthermore, respondents may have an incentive to distort the truth –

say, to exaggerate their incomes if they think their friends will have access to the

survey or to understand their incomes if they think the IRS will find out. This kind

of error is called measurement error.
A third possible source of nonsampling error is nonresponses. Individuals who

choose not to respond to a survey may have very different views from those who do

respond. For example, automobile owners who are dissatisfied with their cars may

be more likely than satisfied customers to respond to a questionnaire on customer

satisfaction. This kind of bias is called self-selection bias.
Because nonsampling errors can have a great impact on the results of a survey,

the researcher must design the study carefully to minimize these errors. In a study

on the obtaining of periodic market information on small business for four large

cities, Keon and Assael (1982) found that most of the time, nonsampling errors

count for more than 90 % of the total errors!2

20.3 Simple and Stratified Random Sampling

20.3.1 Designing the Sampling Study

The first step in sampling is to design a study that will yield the information the

researcher needs. Designing the study involves determining what questions to

address and identifying the population that will make possible achievement of the

study’s goals. Poor planning may add to the costs of the study or even invalidate

the results.

2 J. K.eon and H. Assael (982), “Nonsampling vs. Sampling Errors in Survey Research” Journal of
Marketing, Spring 1982, 114–123.
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There are six main steps in survey sampling:

1. Determine what information is required for the study.

2. Construct a population list to be used for the sampling survey.

3. Decide what method to use in selecting the sample.

4. Determine the sample size.

5. Decide by what method to infer population parameters from sample data.

6. Draw appropriate conclusions from the sample information.

We will discuss the last four of these steps.

20.3.2 Statistical Inferences in Terms of Simple Random
Sampling

Once the researcher has determined the questions to be addressed and the popula-

tion to be studied, the data collection process begins. The issue now is how the

sample members should be selected from the population.

The easiest sampling technique is simple random sampling, in which each

member of a population has an equal and independent chance of being chosen.

For example, suppose a population consists of 100 balls, numbered from 1 to 100,

that represent households to be surveyed for their annual income. If we were

interested in a random sample of 10 balls from this population, we could simply

place all 100 balls in a bag, mix the balls thoroughly, and draw 10 of them.

Alternatively, as noted in Sect. 8.2, we could use a table of random numbers to

achieve the same objective more efficiently.

20.3.2.1 Random Number Tables

Random numbers were discussed in detail in Chap. 8. We now consider random
number tables. There are several random number tables, but we chose to reproduce,

as Table A8 in Appendix A, part of the Rand Corporation table, which has one

million digits.

Let us illustrate the use of random number tables with an example. Suppose there

are 800 students at the Rutgers University School of Business, and we wish to select

a random sample of 15 students to estimate their average grade. A list of students is

compiled, and each is assigned a serial number from 001 to 800.

Because 800 is a 3-digit number, we should list only 3 digits of the random

numbers. The procedure is started at some arbitrary point on Table A8 – say, the top

of the third column – and the last 3 digits of the random numbers are read off. Thus,

the first 20 are
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769 463 779 850

630 179 596 562

240 238 742 384

610 061 976 951

127 201 033 221

Hence, we select the following 15 numbers for our sample:

769 463 779

630 179 596

240 238 742

610 061 033

127 201 562

As you have noticed, only numbers less than 800 were selected. If we needed to

choose 50 students, we would continuously choose numbers smaller than 800 until

50 students had been selected. During the selection procedure, we didn’t replace

any number that had already been chosen. This is known as sampling without

replacement. Sampling with replacement, which allows the possibility of an indi-

vidual being included in the sample more than once, will not be discussed here.

After selecting the random numbers from the table, we could make them all
usable by subtracting 800 from those greater than 800. Hence, for the random

number 976, the 976–800 ¼ 176th student is selected.

20.3.2.2 Confidence Interval for Population Mean

We will use mean and standard deviation statistics and the central limit theorem

(introduced in Chap. 8) to draw inferences about the total population on the basis of

information gathered from a random sample. To use the central limit theorem, we

must assume that the sample is sufficiently large. However, when the population

size N is finite, we use an adjustment factor to obtain the unbiased estimator.

Let x1, x2,. . ., xn denote the values observed from a simple random sample of size n
taken from a population of N numbers with mean m. Then estimating the population

mean involves the following steps:

1. Calculate the sample mean �x :

�x ¼ 1

n

Xn
i¼1

xi (20.1)

�x is an unbiased estimator of the population mean m if E(xi) ¼ m for all i.

2. Calculate the variance of �x :

s2 ¼ 1

n� 1

Xn
i¼1

xi � �xð Þ2 (20.2)
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The sample variance s2 is a biased estimator of the population variance s2 when
the sample size is finite. Hence, the unbiased estimated variance for the sample

mean is3

ŝ2x ¼
s2

n
� N � nð Þ
N � 1

(20.3)

where N and n are population size and sample size, respectively. N�n
N�1

is called the

finite sample adjustment factor. s�x is the standard deviation of �x. If N is large, then

the adjustment factor approximately equals 1.

3. Because we have taken a sample of n from the population consisting of N
members, we cannot be certain of the true population mean. However, if the

sample is large enough to permit use of the central limit theorem, we can

construct a 100(1 � a) percent confidence interval for the population mean.

The confidence interval will be

�x� Za=2ŝ�x < m< �xþ Za=2ŝ�x (20.4)

where Za/2 is the number for which

P Z> Za=2
� � ¼ a=2

and the random variable Z follows a standard normal distribution.

In other words, Eq. 20.4 enables us to construct an interval estimate for the true

mean of the population, as illustrated in Fig. 20.1.

Example 20.1 Simple Random Sampling to Determine Household Income. Suppose

an investment adviser is trying to decide whether a small retirement community

consisting of 1,000 residents represents a promising source of potential clients. To

determine the potential business, the investment adviser decides to analyze the size of

the residents’ investment portfolios. A random sample of 75 residents, who were able

to respond anonymously, produces a sample mean of $375,000 with a sample

standard deviation of $120,000.

We can use this information to construct a 95 % confidence interval for the mean

value of the investment portfolio:

3 This result is obtained under the assumption thats2 ¼PN
i¼1

xi � mð Þ2 N= : Ifs2 ¼PN
i¼1

xi � mð Þ2 N � 1;=

then the finite sample adjustment factorwill be (N – n)/N.This kindof finite sampling adjustment factor

will be used in both stratified random sampling and two-staged cluster sampling.
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N ¼ 1;000

n ¼ 75

�x ¼ $375;000

s ¼ $120;000

First, we need to produce an unbiased estimate of the standard deviation of the

sample mean from Eq. 20.3:

ŝ2x ¼
s2

n
� N � n

N � 1

¼ 120;000ð Þ
75

2

� 1000� 75

1000

¼ 177;772;800

ŝ�x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
177;772;800

p
¼ 13;333:15

A 95 % confidence interval can be constructed as follows:

�x� Z:025ŝ�x < m< �xþ Z:025ŝ�x

The value for Z.025 can be found in Table A3 of Appendix A. It is Zo:, ¼ 1.96, so

the 95 % confidence interval for the mean value of the investment portfolio for this

population is

Fig. 20.1 Confidence interval estimate for population mean
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375,000 � (1.96)(13,333.15) < m < 375,000 þ (1.96)($13,333.15)

or

$348;867:03< m< $401;132:97

Given the information from the sample, we may expect, with 95 % confidence,

that the true population mean m falls between $348,867.03 and $401,132.97.

20.3.2.3 Confidence Interval for Population Proportion

The same approach we used to calculate a confidence interval for a random sample

with mean x can be applied to sample proportions. Again, we follow these three

steps:

1. Compute the sample proportion p̂; which is an unbiased estimator of the

population proportion p.
2. Compute an unbiased estimator for the variance of the estimator:

ŝ2p̂ ¼
p̂ 1� p̂ð Þ

n
� N � n

N � 1
(20.5)

3. If the sample is large enough, use the central limit theorem to construct

a 100(1 � a) percent confidence interval:

p̂� Za=2ŝp̂< p̂þ Za=2ŝp̂ (20.6)

Equation 20.6 can be interpreted to mean we may expect, with 100(1 � a)
percent confidence, that the population proportion p falls within this interval.

Example 20.2 Simple Random Sampling to Determine the Proportion of College-
Bound High School Seniors. Suppose we want to determine the proportion of

college-bound high school seniors in a class of 500. A survey of 30 randomly

selected students reveals that 19 will be attending college. Given this information,

we want to estimate the population proportion p:

N ¼ 500

n ¼ 30

P̂ ¼ 19

30
¼ :6333

To estimate our confidence interval, we need to calculate an unbiased estimate of

the variance of the population proportion:
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ŝ2p̂ ¼
p̂ 1� p̂ð Þ

n
� N � n

N � 1

¼ :6333 1� :6333ð Þ
30

� 500� 30

500� 1

¼ :00729

ŝp̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:00729

p
¼ :0854

The 100(1 � a) percent confidence interval in terms of Eq. 20.6 is

p̂� Za=2ŝp̂ < p< p̂þ Za=2ŝp̂

To construct a 90 % confidence interval, we use the Z.05-value given in Table A3
of Appendix A. It is Z.05 ¼ 1.645, so the 90 % confidence interval can be given as

:6333� 1:645ð Þ :0854ð Þ< p< :6333þ 1:645ð Þ :0854ð Þ
:4928< p< :7738

This implies that we may expect, with 90 % confidence, that the true proportion of

high school seniors who will be attending college falls between 49.28 % and 77.38%.

20.3.3 Stratified Random Sampling

There are times when simple random sampling is not the best sampling method. In

some cases, it may be more appropriate to divide the population into groups or

strata. Stratified random sampling is the selection of independent simple random

samples from each stratum of the population.

A stratified random sample may be preferable to a simple random sample when

there is reason to believe that different groups within the population have markedly

different views. For example, suppose a researcher at Johnson & Johnson is inter-

ested in employees’ opinions on a child care program. He believes that the views of

female employees are important and that their views may be quite different from

those of male employees. If the company has a high percentage of male employees, a

simple random sample may not guarantee that the sample percentage of female

employees is the same as the population percentage. In this instance, a stratified

random sampling is called for, wherein the population is first divided into male and

female subgroups, or strata, and a simple random sample is taken from each stratum.

To conduct a stratified random sampling survey, we begin by dividing the total

population of N members into H mutually exclusive and collectively exhaustive

groups. Each of these H strata contains its own population consisting of Nl, N2, . . . ,
NHmembers. Because the strata are mutually exclusive and collectively exhaustive,

we know that
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N1 þ N2 þ . . .þ NH ¼ N

Our approach in stratified random sampling is to treat each stratum as a separate

population, and our sampling survey consists of sampling each stratum separately.

Using this technique, we will take a sample of n1, n2, . . ., nH from each stratum. The

samples taken from the strata do not have to be the same size. The total sample

taken is the sum of all these samples; that is,

n ¼ n1 þ n2 þ . . .þ nH

The techniques for stratified random sampling can be used to

1. Produce an unbiased estimator for the population mean m.
2. Produce an unbiased estimator for the variance of the sample mean.

3. Construct a 100(1 – a) percent confidence interval for the population mean.

To produce an unbiased estimator for the population mean, we take a weighted

average of the sample means in the individual strata:

�xst ¼
XH
j¼1

Wj�xj (20.7)

where

�xst ¼ sample mean for the overall population from stratified sampling

Wj ¼ Nj

N ¼ proportion of the jth stratum

�xj ¼ sample mean for the jth stratum

Next we need to find an unbiased estimator of the variance of the sample mean.

An unbiased estimator of the variance of the sample mean for the jth stratum is

ŝ2�xj ¼
s2j
nj
� Nj � nj

Nj

where s2j is the sample variance for the jth stratum. Note that this formula is identical

to the estimator we used in simple random sampling. Because each stratum is

treated as a separate population, the variance for each is calculated in the same

way as in simple random sampling.

To find an unbiased estimator of the variance of the estimator m, we again take a
weighted average of the variances of the individual strata4:

4 �xst ¼
PH

J¼1 Wj�xj; where Wj ¼ Nj/Nj. Because the samples Nj are selected by random sampling

and are independent of each other, Eq. 20.8 holds.
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ŝ2�xst ¼
XH
j¼1

W2
j ŝ

2
�xj

(20.8)

To construct confidence intervals for the population mean, we again need a

sample size large enough for us to assume normality. The confidence interval is

�x� Za=2ŝxst < m< �xþ Za=2ŝxst

Example 20.3 Stratified Random Sampling to Determine the Mean Income of
Lawyers. Suppose a researcher is interested in determining the mean income of

lawyers at a large New York City law firm. The firm consists of 525 lawyers, 475

associates, and 50 partners. Because there are relatively few partners in the popula-

tion, the researcher believes a simple random sample might understate the earnings

of the partners. He decides to undertake a stratified random sample of 75 lawyers:

50 associates and 25 partners. The sample means and standard deviations are

Associates Partners

�x1 ¼ $62,750 �x2 ¼ $271,860

S1 ¼ $11,620 S1 ¼ $80,210

n1 ¼ 50 n2 ¼ 25

N1 ¼ 475 N2 ¼ 50

An unbiased estimator for the population mean income can be calculated as

�x ¼
X2
j¼1

Wj�xj

where

Wj ¼ Nj

N

�x ¼ 475

525
62;750ð Þ þ 50

525
271;860ð Þ

¼ $82; 665

To produce an unbiased estimator of the variance of the estimator for m, we first
need to produce unbiased variance estimators for all the strata.
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s2�x1 ¼ 11;620ð Þ2
50

:
475� 50

475

¼ 2;416;226

s2�x2 ¼ 80;210ð Þ2
25

:
50� 25

50

¼ 128;672;882

ŝ2�x ¼
X2
j¼1

W2
j ŝ�xj

2

¼ 475

525

� �2

2;416;226ð Þ þ 50

525

� �2

128;672;882ð Þ

¼ 3;145;009

ŝ�x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:145:009

p
¼ 1:773

For a 95 % confidence interval, we use the Z.025-value from Table A3 in

Appendix A. It is Z.025 ¼ 1.96, so the 95 % confidence interval for the income of

lawyers at this law firm is

82;665� 1:96ð Þ 1;773ð Þ< m< 82;665þ 1:96ð Þ 1:773ð Þ
$79;190< m< $86;140

We can say with 95 % confidence that the population mean m falls between

$79,190 and $86,140.

20.4 Determining the Sample Size

We have discussed the advantages of sampling overtaking a census, and we have

looked at two important sampling methods. One fundamental question remains

unanswered: How large should the sample be?

20.4.1 Sample Size for Simple Random Sampling

For simple random sampling, the sample size n can be found via Eq. 20.3, the

formula for finding the variance of the estimator �x :

s2�x ¼
s2

n
:
N � n

N � 1ð Þ

By solving for n, we determine the sample size. We then multiply both sides of

the equation by (N � 1)n:
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N � 1ð Þns2x ¼ Ns2 � ns2

Next we add ns2 to both sides of the equation and rearrange:

N � 1ð Þs2x þ s2
� �

n ¼ Ns2

Dividing both sides by the bracketed term yields

n ¼ Ns2

N � 1ð Þs2
X
þ s2

(20.9)

If the population variance s2 is known, Eq. 20.9 can be used to determine the

sample size necessary to achieve any specified value for the level of precision �x; s2�x :
Eq. 20.9 makes apparent the inverse relationship between s2�x and n; that is, the
smaller the variance of the estimator that we desire, the larger our sample needs to

be.

Example 20.4 Sample Size for Accounts Receivable, Case I. Crow Company’s

accountant decides that the best way to determine the company’s mean accounts

receivable is to take a simple random sample of the 1,025 accounts. Assume that the

population variance s2 is $2,425. What size sample should the accountant take if

she would like to have a level of precision, as measured by s2�x , of $75?

n ¼ Ns2

N � 1ð Þs2x þ s2

¼ 1025 2;425ð Þ
1025� 1ð Þ 75ð Þ þ 2;425

¼ 31:37

That is, a simple random sample of 32 accounts receivable will produce the

desired result. Note that we rounded the sample size up to the nearest whole

number.

Example 20.5 Sample Size for Accounts Receivable, Case 2. Use the information

from Example 20.4 but assume the accountant would like s2�x ¼ $50:

1;025 2;425ð Þ
1;025� 1ð Þ 50ð Þ þ 2;425

¼ 46:35

The accountant must increase the sample size to 47 if she wishes to reduce s2�x
to $50 or—what is the same thing—to improve her precision from $75 to $50.

Example 20.6 Sample Size for Accounts Receivable, Case 3. Suppose our accoun-

tant is not sure what value for s2�x would be appropriate. However, she would like to
produce a sample in which the 95 % confidence interval extends $10 on each side of
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the sample mean. She can do this by noting that Za/2 · s�x ¼ length of the confidence

interval on each side of the sample mean. Thus, for a 95 % confidence interval

extending $10 on each side of the mean, 1.96 s�x ¼ $10. Solving for s�x; we get

sx ¼ 10

1:96
¼ 5:10

s2x ¼ 5:10ð Þ2 ¼ 26:01

so

n ¼ 1025 2;425ð Þ
1025� 1ð Þ 26:01ð Þ þ 2;425

¼ 85:54

In this instance, the accountant randomly samples 86 accounts receivable.

If we define the absolute value of the difference between sample mean �x and

population mean m (d ¼ | �x � m|) as a precision measure, then it can be shown that

the relationship among precision, the level of reliability (the Z-value of a normal

distribution), and standard error s�x is d ¼ z s�x . From this relationship, it can be

shown that the sample size can be defined as

n ¼ zsð Þ2
d2

(20.10a)

n ¼ N zsð Þ2
N � 1ð Þd2 þ zsð Þ2 (20.10b)

where Eqs. 20.10a and 20.10b are for sampling with replacement and without

replacement, respectively.

Using Eq. 20.10b, we can calculate the sample size for Example 20.6 as

n ¼ 1025ð Þ 1:96ð Þ2 2425ð Þ
1025� 1ð Þ 10ð Þ2 þ 1:96ð Þ2 2425ð Þ ¼ 85:47

The sample size calculated from Eq. 20.10b is almost identical to that of

Example 20.6.

Now let’s consider simple random sampling for estimating the population

proportion p. Let p̂ be the random variable that represents the sample proportion.

Then, from Eq. 20.5, we can solve this equation for sample size. We obtain

n ¼ Np̂ 1� p̂ð Þ
N � 1ð Þs2p̂ þ p̂ 1� p̂ð Þ (20.11)
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The sample size obtained from Eq. 20.11 does not connect with the desired

degree of precision. To directly relate the desired precision with the estimate of

sample size, we first let d represent a “margin of error” in estimating sample

proportion p̂ . Then we also let a represent the risk that actual error is larger

than d. In other words,

P jp̂� pj � dð Þ ¼ a

The formula for a sample size that uses the information of d is derived as

follows: First, we let

d2 ¼ z2
p̂ 1� p̂ð Þ

n
:
N � n

N � 1

where z is the abscissa of the normal curve that cuts off an area a at the tails. Solving
for n yields

n ¼ Nz2p̂ 1� p̂ð Þ
N � 1ð Þd2 þ z2p̂ 1� p̂ð Þ ð20:120Þ

Both Eqs. 20.11 and 20.12 involve the unknown population proportion p whose

estimation is the objective of the study. A conservative estimate of n is obtained by

choosing for p the value nearest to 1
2
in the range in which p is thought likely to lie.

Example 20.7 Nielson Survey About the Evening News on NBC. Suppose the

Nielson organization is planning to make a simple random sampling to estimate

what percentage of American TV viewers watch the 6:30 evening news on NBC.

What is the sample size needed for d ¼ .04?

The potential number of TV watchers, N, is very large, so Eq. 20.11 can be

approximated by

n0 ¼ z2p̂ 1� p̂ð Þ½ �=d2
1þ 1=N z2p̂ 1�p̂ð Þ

d2 � 1
� � ¼ z2p̂ 1� p̂ð Þ

d2
(20.12’)

Substituting d ¼ .04, p̂ ¼ .5, and z ¼ 1.96 into Eq. 20.120, we obtain

n0 ¼ 1:96ð Þ :5ð Þ :5ð Þ
:04ð Þ2 ¼ 600:25

A simple random sample of 601 will suffice.
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20.4.2 Sample Size for Stratified Random Sampling

We can also derive a formula for the sample size needed in stratified random

sampling. As in the case of simple random sampling, our required sample size

depends on the variance of the population and the desired level of precision.

However, the size of the sample in stratified random sampling also depends on

one other factor: how we allocate the total sample among the strata. There are two

possible approaches:

1. Proportional allocation. In cases where the sampling will be distributed propor-

tionally, the proportions are determined by the relative sizes of the strata. For

example, if the total population is 1,000 and the total population of the first

stratum is 400, 40 % of the total sample is assigned to the first stratum:

nj ¼ Nj

N
n

For a proportional allocation from a stratified sample, the sample size n can be

determined by the formula5

n ¼

PH
j¼1

Njs
2
j

Ns2xst þ
1

N

XH
j¼1

Njs
2
j

(20.13)

where s2�xst is the desired variance and s2j is the sample variance in the jth stratum.

From Eq. 20.13, we can see that there is an inverse relationship between the sample

size n and the degree of precision we desire, as measured by s2�x .
2. Optimal allocation with similar variable cost in each stratum. Sometimes, the

sample size for each stratum is dictated not by the relative size of the strata but

by the allocation that yields the most precise estimates in the sense that standard

errors of point estimates are minimal. In other words, in a sampling survey, we

generally have allocated a fixed budget. This fixed budget includes fixed costs

and variable costs that are similar for each stratum. Given a fixed budget, C, we
want to select a sample of size n among different strata in such a way as to

minimize the variance of the sample estimate. This kind of allocation of sample

size is called optimal allocation of sample.

5 The derivation of the sample size for proportional allocation defined in Eq. 20.13 and that of the

sample size for optimal allocation with similar variable cost in each stratum, defined in Eq. 20.15,

can be found in T. Yamane (1967), Elementary Sampling Theory, (Englewood Cliffs, NJ.: Prentice
Hall), Chapter 6.
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The optimal proportion of the sample that should be given to the jth stratum is

nj ¼ NjsjPH
j¼1

Nisj

� n (20.14)

where Sj is the sample standard deviation for the jth stratum. For an optimal

allocation of a stratified sample, the total sample n is given by the formula

n ¼
1=N

PH
j¼1

Njsi

 !2

Ns2�xst þ 1=N
PH
j¼1

Njs2j

(20.15)

where s2�xst is the desired variance for the sample mean.

Example 20.8 Sample Size for Stratified Random Sampling. Let’s return to our

hypothetical New York City law firm and use the information given in Example

20.3 to determine the sample size when the desired sample standard deviation, s�xst,

is $1,900.

Substituting N1 ¼ 475;N2 ¼ 50;N ¼ 525; and sxst ¼ 1; 900 into Eq. 20.13, we

can determine the sample size for a proportional allocation as

n ¼ 475 11;620ð Þ2 þ 50 80;210ð Þ2

525 1;900ð Þ2 þ 1
525

475 11;620ð Þ2 þ 50 80;210ð Þ2
h i

¼ 146:69

For the degree of precision we desire, we should sample 147 of the lawyers in the

firm if we plan to use a proportional allocation in our stratified sampling.

For an optimal allocation, the sample size is

n ¼
1
525

475 11;620ð Þ þ 50 80;210ð Þ½ �2

525 1;900ð Þ2 þ 1
525

475 11;620ð Þ2 þ 50 80;210ð Þ2
h i

¼ 65:77

Obviously, using an optimal allocation in our stratified random sampling greatly

reduces the size of our sample—from 147 to 66.
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20.5 Two-Stage Cluster Sampling

When a researcher is interested in surveying a population that is dispersed through-

out a large geographic region, neither simple nor stratified random sampling may be

the best method for constructing the survey. Although a simple or stratified random

sample still produces good estimates for determining population parameters, the

expense of sampling across a large geographic region often dictates the need for

alternative sampling techniques. Under these conditions, and also the cost when

there are no reliable elements in the population to construct a sampling list, cluster

sampling is preferred. This is because two-stage cluster sampling treats each cluster
as a sampling unit.

In cluster sampling, we divide the population into clusters – geographically

compact units such as congressional districts at the state level or political wards

within a city. After dividing our population into clusters, we take a simple random

sample of clusters and conduct a census in each of the sampled clusters. In other

words, every individual in each of the sampled clusters is contacted. The advantage

of cluster sampling over simple or stratified random sampling should be obvious. In

conducting a census on a random sample of clusters, we can greatly reduce our

costs by sampling in geographically compact areas. However, it should be noted

that cluster sampling increases the sampling variance.

The technique used for cluster sampling parallels the approaches used in other

sampling methods. To conduct a survey using the two-stage cluster sampling

approach, we take the following steps6:

1. Divide the population into M clusters. For example, New York City might be

divided into M voting districts.

2. Take a simple random sample of m sample clusters. Then take a simple random

sample from each cluster. In the first stage, a random sample ofm voting districts

is selected. In other words, instead of selecting families one at a time, we have

selected m groups of families, and, in our present case, each group of families

lives in the same voting district. Then, in the second stage, random samples of

n1, n2, . . . , nm families are selected from each of the m districts’ mth population
observations, N1, N2, . . . , Nm. Thus, our sample size n ¼ n1 þ n2 þ . . . . ,þ nm.

3. Compute an unbiased estimator of the population total:

X̂ ¼ M

m

Xm
i¼1

Nt

ni

Xni
i¼1

xij

¼ M

m

Xm
i¼1

X̂i ð20:16Þ

6 See T. Yamane (1967), Elementary Sampling Theory, Chap. 8.

1036 20 Sampling Surveys: Methods and Applications



where

xij ¼ the observation in the jth sample with sample size ni and the ith cluster with
sample size m

m ¼ number of sampled clusters

Ni ¼ number of population members in cluster i
Mi ¼ number of population clusters

4. By dividing N into Eq. 20.16, obtain the estimated population mean m̂ as

m̂ ¼
Pm
i¼1

Ni�xi

N
	 
ðmÞ (20.17)

where

�xi ¼

Pni
j¼1

xij

ni

�N ¼ N

M

It can be shown that the variance associated with m̂ is

s2m̂ ¼ Var m̂ð Þ ¼ M � mð Þ
Mm �N

2

Pm
i¼1

n2i �xi � �xð Þ2

m� 1

þ 1

Mm �N
2

Xm
i¼1

N2
i

Ni � nið Þ
Ni

Pn
j¼1

xij � �xi
	 
2
ni � 1ð Þ (20.18)

where

�x ¼
Pm
i¼1

�xi

m

If ni ¼ Ni, then Eq. 20.18 reduces to

s2m̂ ¼ Var m̂ð Þ ¼ M � mð Þ
Mm �N

2

Pm
i¼1

N2
i �xi � �xð Þ

2

m� 1ð Þ (20.19)

If �N is not available, we can use �n ¼Pm
i¼1 ni=m to substitute for �N in both

Eqs. 20.17 and 20.19.
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5. Again, if the sample size is large, construct a 100(1 � a) percent confidence
interval:

m̂� za=2sm̂ < m<m̂þ za=2sm̂ (20.20)

Example 20.9 Population Mean Estimate for Average Family Income. A simple

random sample of 25 voting districts is taken from a city with a total of 300 voting

districts. Each family in the sample voting districts is surveyed to obtain informa-

tion about family income. The sample data are listed in Table 20.1.

From the data of Table 20.1, we havem ¼ 25 andM ¼ 300. The total number of

families in the sample is

Xm
i¼1

Ni ¼ 30þ 25þ . . .þ 42 ¼ 860

Table 20.1 Sample family income data

Sample voting

district, i
Mean income

(thousands of dollars), �xi

Number of

families, Ni (A) Ni �xi (B) N2
i ð�xi � �xÞ2

1 30.62 30 918.6 89,956.80518

2 28.96 25 724 84,937.2736

3 21.56 28 603.68 284,742.6203

4 25.18 32 805.76 244,039.1616

5 33.56 27 906.12 36,311.28424

6 26.89 39 1,048.71 286,627.8896

7 24.56 40 982.4 412,554.4284

8 29.67 38 1,127.46 173,063.3216

9 40.12 31 1,243.72 237.9491353

10 53.16 33 1,754.28 171,312.5477

11 42.56 35 1,489.6 4,621.824256

12 56.37 37 2,085.69 339,701.0667

13 29.45 29 854.05 104,885.5586

14 50.66 40 2,026.4 161,359.6764

15 48.29 45 2,173.05 119,203.0865

16 42.39 43 1,822.77 5,808.451854

17 56.17 37 2,078.29 331,129.8125

18 45.89 29 1,330.81 23,378.28768

19 53.84 27 1,453.68 127,452.4272

20 49.26 28 1,379.28 58,557.80496

21 39.45 32 1,262.4 1,396.008714

22 42.57 45 1,915.65 7,719.028164

23 51.38 39 2,003.82 176,176.2949

24 55.66 29 1,614.14 190,296.2639

25 31.59 42 1,326.78 143,761.6989

Sum 1,009.8 860 34,931.14 3,579,230.573

�x ¼ 40.617604
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To obtain estimated average family income, we also need

Xm
i¼1

Ni�xi ¼ 918:6þ 724:0þ . . .þ 1; 326:87 ¼ 34;931:14

Substituting these figures into Eq. 20.17, we obtain

m̂ ¼
Pm
i¼1

Ni�xi

Nm
¼ 34;931:14

860
¼ 40:6176

On the basis of the sample data, we estimate that annual family income is

$40,617.6.

In order to obtain an interval estimate, we need

N ¼
Pm
i¼1

Nt

m
¼ 860

25
¼ 34:4

Also,

Pm
i¼1

N2
i �xi � �xð Þ2

m� 1
¼ 30ð Þ2 30:62� 40:62ð Þ2 þ . . .þ 31:59ð Þ2 31:59� 40:62ð Þ2

24

¼ 149;134:607

so

Var m̂ð Þ ¼ 275ð Þ 149;134:607ð Þ
300ð Þ 25ð Þ 34:4ð Þ2

¼ 4:6210

Taking square roots, we obtain sm̂ ¼ 2.1497. For a 95 % confidence interval,

za/2 z.025 ¼ 1.96, so a 95 % confidence interval for the population mean is

40:6176� 1:96ð Þ 2:1497ð Þ< m< 40:6176þ 1:96ð Þ 2:1497ð Þ

or

36:4042< m< 44:8310
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20.6 Ratio Estimates Versus Regression Estimates

So far in this chapter, we have been interested in making inferences about a

population that are based on samples from that population. In this section, we

consider two methods – the ratio method and the regression method – that can be

used in conjunction with sampling to improve the parameter estimates based on

sample data. (We discuss only the simple random sampling case, but both methods

can also be used with stratified random sampling.) Note that the ratio method,

which is easier than the regression method, is often used in sampling surveys.

20.6.1 Ratio Method

In the ratio method, an auxiliary variate yi which is correlated with xi is obtained for
each unit in the sample. The population total Y of the yi must be known. The value

of yi can be highly correlated with xi (as are, say, sales and earnings), or yi can be the
value of xi at some previous time when a complete census was taken.

To use the ratio method to estimate X, the population total of the xi, we need to

know Y, the population total of the yi. The estimate of X, X̂r; is

X̂r ¼ x

y
Y ¼ �x

�y
Y (20.21)

where

y ¼ sample total of yi
x ¼ sample total of xi
�y ¼ sample mean of yi ¼ y/n

�x ¼ sample mean of xi ¼ x/n

Y ¼ population total of yi

If y is the value of xi at some previous period, in the ratio method, we use the

sample to estimate the relative change during the time interval.

Example 20.10 Ratio Estimate of Sales Prediction. Suppose a sales manager at

Bono Corporation is interested in estimating the 1991 total sales at the company’s

100 stores. To do this, he collects information for 1990 and 1991 sales from a

simple random sample of 30 stores. The results of this sampling are presented in

Table 20.2.

An estimate of 1991 sales can be produced in two ways. To use the ratio method,

the sales manager needs to know overall Y (total sales in 1990). If 1990 total sales

were $14.3 million, then the ratio method yields the following prediction of 1991

sales:
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X̂r ¼ �x=�yð ÞY
¼ 159:28

149:70
$14;300;000ð Þ

¼ $15;215;124

The second approach to estimating X is to use the sample mean per store to get

the population total:

X̂r ¼ N �x

¼ 100 159:28ð Þ ¼ $15;928;000

Table 20.2 Sales for 1990

and 1991 (thousands of

dollars)

Store 1990 sales 1991 sales

1 100.2 107.4

2 74.3 82.5

3 88.6 75.6

4 210.7 223.4

5 109.5 125.6

6 110.6 111.5

7 62.4 53.5

8 88.3 89.6

9 237.6 245.3

10 196.4 188.7

11 147.6 168.9

12 185.6 200.7

13 95.7 95.8

14 100.3 98.6

15 127.6 135.4

16 130.2 170.6

17 210.3 221.4

18 213.6 262.1

19 220.5 275.3

20 250.6 248.5

21 275.8 300.3

22 125.6 121.2

23 130.5 131.7

24 180.7 191.8

25 89.3 94.2

26 75.6 78.3

27 185.5 191.2

28 184.3 190.2

29 150.6 165.3

30 132.4 133.7

Mean 149.6966 159.2766

Ratio 1.063996
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This method doesn’t utilize the 1990 sample information; hence, it is not as

precise as the estimate that uses the 1990 sample information. This method,

however, can be useful when 1990 sample information is not available.

20.6.2 Regression Method

A second approach to increasing the precision of estimates of population

parameters based on sampling is the regression method. As we saw in Chaps. 13

and 14, simple linear regression enables us to relate two variables that are correlated

with one another.

Suppose we are interested in mx, the population mean of x. To produce an

estimate of mx, we use our knowledge of the fact that an auxiliary variable yi is
correlated with xi. Again, we can employ simple random samples of yi and xi to
produce �y and �x; the sample means of y and x. In the regression method, the estimate

of the population mean mx is

m̂x ¼ �xþ b my � �y
	 


(20.22)

where

�y ¼ sample mean of y
my ¼ population mean of y (known)

Example 20.11 Regression Estimate of Sales Prediction. To illustrate the regres-

sion method, we will use the data given in Table 20.2. A simple linear regression of

yi (sales in 1991) and xi (sales in 1990) is run. The results are

xi ¼ �7:45þ 1:11yi

To use the regression method, we simply substitute the slope estimate b ¼ 1.11

and my ¼ 14,300,000/100 ¼ 143,000 into Eq. 20.22:

m̂x ¼ �xþ b my � �y
	 


¼ 159:28þ 1:11 143� 149:70ð Þ
¼ 151:84

Again, we could produce an estimate of the population total as

X ¼ Nm̂x
¼ 100 151:84ð Þ
¼ $15;184;000
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20.6.3 Comparison of the Ratio and Regression Methods

You may have noticed some similarities between the regression method and the

ratio method. Both methods use an auxiliary variate yi, which is correlated with xi.
In fact, the ratio method is a special case of the regression method. These two

methods are identical when the regression line passes through the origin.

Example 20.12 Labor Force Sampling. One important economic application of

sampling is in determining structural changes in the labor force. The federal

government conducts a census at the start of each decade. However, the Commerce

Department’s Bureau of the Census uses sampling to update census figures contin-

ually and to provide economists and other policy makers with labor force statistics

such as the unemployment rate, employee wages, and the age, sex, and race of the

labor force. The issue is how best to produce the labor force estimates.

The most widely used survey on the structure of the labor force is the current

population survey (CPS). The CPS is a monthly survey that deals primarily with

labor force data for the noninstitutional civilian population. Questions related to

labor force participation are asked of each member in every sample household. In

addition, supplementary questions regarding monetary income and work experi-

ence for the previous year are asked every March.

The present CPS sample was selected from the 1980 census files and consists of

60,000 occupied households. All 50 states and the District of Columbia are

represented in the current CPS sample’s 729 areas, which include 1,973 countries,

independent cities, and minor civil divisions.

The estimates that the samples yield of the total noninstitutional civilian popu-

lation of the United States by age, sex, and race are used to update census

information. Through stratified sampling or two-stage cluster sampling and a

technique such as the ratio method or the regression method, the Bureau of the

Census is able to provide monthly estimates about the labor force.

20.7 Business and Economic Applications

Application 20.1 Sampling in an IRS Audit. We have discussed several ways of

taking samples from a population. In this section, we apply these techniques to the

accounting problem of auditing accounts receivable.

Suppose an Internal Revenue Service auditor is interested in determining

whether the number of accounts receivable reported on LeClair Company’s tax

return is correct. Because LeClair has a total of 1,675 accounts receivable, the

auditor has decided to sample the accounts receivable rather than to conduct

a census.

Using a simple random sampling of 100 accounts receivable, the auditor finds a

sample mean of $127.84 and a sample standard deviation of $42.62. LeClair has
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reported that the mean value of its accounts receivable is $94.25. Should the auditor

suspect that the company is underreporting its accounts receivable?

Because the auditor has information only on the sample mean, he decides to

construct a 95 % confidence interval for the mean value of accounts receivable. If

the mean value of accounts receivable reported by LeClair Company falls outside

this interval, the auditor will consider this reason to investigate the company’s tax

return further.

To construct a 95 % confidence interval for the mean m, the auditor uses

N ¼ 1,675, n ¼ 100, �x ¼ $127.84, and s ¼ $42.62. He needs unbiased estimators

for the population mean and the variance of �x:The sample mean �x can be used as an

unbiased estimator of the mean m, and ŝ2�x can be calculated as follows:

ŝ2x ¼
s2

n
:
N � n

N � 1

¼ 42:62ð Þ2
100

:
1;675� 100

1;674

¼ 17:09

ŝ�x ¼
ffiffiffiffiffiffiffiffiffiffiffi
17:09

p
¼ 4:13

The 95 % confidence interval is

�x� Za=2ŝ�x< m< �xþ Za=2ŝ�x

The value for Za/2 can be found in Table A3 in Appendix A. It is Za/2 ¼ Z.025
¼ 1.96, so

127:84� 1:96ð Þ 4:13ð Þ< m< 127:84þ 1:96ð Þ 4:13ð Þ
119:74< m< 135:93

Because the mean value of accounts receivable falls outside the 95 % confidence

interval, the auditor’s suspicions are aroused, prompting an investigation of LeClair

Company’s tax returns.

Application 20.2 Sampling Survey for 1977 Generic Drug Substitution Law in

Wisconsin. In 1977, the state of Wisconsin passed a law that permitted the

substitution of generic drugs for brand-name drugs when prescriptions were being

filled.7 Consumers had simply to request the substitution, and the pharmacist was

legally bound to make it. The legislation was designed to save customers’ money on

their prescriptions. Thus, it proved disconcerting to the Department of Health and

7 This application is drawn from G. A. Churchill, Jr. (1983),Marketing Research: Methodological
Foundations, 3d ed., (Chicago: Dryden), pp. 441–442. Copyright# 1983 by The Dryden Press,

reprinted by permission of the publisher.
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Social Services when, some two and a half years after its passage, few customers

were taking advantage of the law by asking for generic drugs.

Several hypotheses were advanced to explain why this was happening, including

suggestions that the law had not been well publicized, that consumers were not

aware of its existence, that consumers had unfavorable attitudes toward generic

drugs, and that a number of personal and situational factors (such as age, income,

household size, and education) were affecting customers’ use of the law. It was

decided that the best way to collect the needed information was through self-

administered questionnaires. Because of the difficulty of obtaining an accurate

mailing list, the questionnaires were to be delivered by hand but returned by

mail. Further, investigators decided to determine the feasibility of the data collec-

tion and sampling plans by initially confining the study to Madison, the state

capital, and to the main campus of the University of Wisconsin. They realized, of

course, that restricting the original investigation in this manner would probably

introduce some bias into the results because of a number of demographic

differences between Madison and the remainder of the state.

The 1,000 households to be surveyed were selected in the following manner:

First, detailed maps were used to divide the city into aldermanic districts. To ensure

even geographic representation, samples were drawn from each aldermanic district.

This was done by randomly choosing city blocks within each aldermanic district

and then randomly selecting 10 households in each of the selected blocks to receive

questionnaires.

Consider aldermanic district 11, for example, which was located on the city’s

west side. The study was to be limited to residents of Madison who were over 18.

The total adult population in district 11 was 5,115, and the total adult population in

the city was 122,016. The proportion of the total sample that was to come from

aldermanic district 11 was thus 5,115/122.016 ¼ .0419. This meant that 42

households [1,000(.0419) ¼ 42] were to be included in the district 11 sample.

The 42 households were selected from 5 blocks within the district as follows: All

blocks within the district were numbered. Then 5 blocks were randomly selected

from this larger set of blocks. On each of the first 4 blocks that were selected, 10

households were interviewed, and 2 households were interviewed on the fifth block.

The households were selected by first going around the block to count the number

of dwelling units. Each field worker was to begin the count at the southwest corner,

following the detailed instructions that were provided. Suppose, for example, that

there were 50 dwelling units in a selected block. The field worker was then

instructed to generate a random start between 1 and 5, using the table of random

numbers each carried. If the number was, say, 2, the field worker was to drop off

questionnaires at the second, seventh, and twelfth households, and so on in the

initial numbering scheme.

Application 20.3 Acceptance Quality Sampling for Quality Inspection. The

acceptance sampling used in inspection which has been discussed in Chaps. 10 and

11 can use either simple or stratified random sampling technique to select the

sample.
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Suppose a lot consists of 44,000 items from four different machines:

Machine Lot size (strata size) Size

1 20,000 250

2 6,000 70

3 8,000 85

4 10,000 150

44,000 555

The acceptance or rejection decision could be based on the entire lot of 44,000 units

using a single sample of 555 units drawn randomly from the entire lot.

By stratifying the items and basing the acceptance or rejection decision on the

quality of the lot from each machine, better information is obtained since the

number produced by each machine varies significantly. If quality differences

exist between machines, stratified sampling can be used to discover this fact.

20.8 Summary

In this chapter, we explained why sampling surveys are needed for analyzing

business and economic data. Then, we looked at three sampling methods: simple

random sampling, stratified random sampling, and two-stage cluster sampling. Next

we investigated how ratio and regression methods are used to estimate the total

value and the mean value of a population on the basis of sample information.

Finally, we explored some applications of sampling surveys.

Questions and Problems

1. Under what conditions might stratified random sampling or cluster sampling be

preferable to simple random sampling? Explain.

2. Suppose we are interested in the proportion of college seniors in a class of 900

who will be attending graduate school. A survey of 50 seniors reveals that 15

will be attending graduate school. We want to estimate the population propor-

tion p, given this information: N ¼ 900, n ¼ 50, a ¼ 10 %.

3. Suppose you are a financial consultant trying to determine whether a group of

1,500 country clubmembers represents a good source of potential clients for a real

estate firm in New Jersey. To determine the potential business, you decide to

analyze the size of the clubmembers’ purchases of homes.A randomsample of 90

members produces a sample mean of $280,000 with a sample standard deviation

of $75,000. Using this information, construct a 95 % confidence interval for the

mean purchases N ¼ 1,500, n ¼ 90, �X ¼ $280,000, and s ¼ $75,000.

4. If X is a normal variable with known variance equal to 650, how large a sample

must we take to be 90 % confident that the sample mean will not differ from the

true mean by more than � 5 units?
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5. If a normal population is known to have s equal to 10, how large a sample

should we take in order to be 90 % confident that the sample mean will not

differ from the population mean by more than � .75 units?

6. A sales manager wants to know what proportion of her accounts are inactive.

How many accounts should she examine if she wants her confidence interval to

be no more than w ¼ .08 (w being the desired maximum width of the confi-

dence interval) with 95 % confidence.

7. A company manager wishes to estimate the mean length of time m it takes

company crews to do certain jobs. She wants to estimate mwithin � 7 min with

95 % confidence. Because the value of s, the population standard duration, is

unknown, she took a preliminary sample of n ¼ 20 jobs and found that the 20

job completion times had a standard deviation of s ¼ 18 min. How much larger

should she make her sample to obtain the desired confidence interval?

8. The claims manager for an insurance company would like to know the mean

amount of automobile insurance repair claims paid by his company. He took a

sample of n ¼ 25 claims and found �x¼ $950 and s ¼ $280. How much larger

should his sample be if he wants to estimate the mean payment to within � 50

with 90 % confidence?

9. A marketing manager is interested in the number of trips per month that people

take to a nearby shopping center. Denote the number of trips per month by X.
The manager feels that the variance of X is 16 for women and 9 for men. He

decides to stratify by sex, and there are 100 males and 200 females in the

population of interest. He takes a random sample of 10 males and another

random sample of 15 females and gets the following results:

Males 4 2 1 1 4 7 10 5 7 3

Females 6 9 12 4 2 10 9 7 5 8 16 14 10 8 13

(a) Estimate the mean of each of the two strata and the mean of the entire

population by pooling the samples.

(b) Determine the variance of the pooled samples.

10. Is the plan in question 9 stratified sampling with proportional allocation? When

might proportional allocation not be the best form of allocation in a stratified

sampling plan?

11. The number of cars licensed in a particular state last year was 4.8 million; the

number of cars licensed in a neighboring state was 3.9 million. For the current

year, the officials of the neighboring state estimate that there will be 4.65

million cars registered. Can you use this information to estimate the number

of cars that will be registered in the first state in the current year?

12. In questions 9, suppose the marketing manager is interested in the total number

of trips to the shopping center in a given month, not in the average number of

trips per person for the month.
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(a) Estimate the population totals for the two strata, and determine the sample

variance of estimation in each case.

(b) Estimate the total for the entire population of males and females, and

determine the variance of estimation.

13. Outline the basic steps used in designing a sampling study. What problems may

you encounter if your study is poorly planned?

14. What is simple random sampling? What are the advantages and disadvantages

of this technique compared to other sampling techniques?

15. What is sampling error? What is a nonsampling error? Give some examples of

each.

16. What is two-stage cluster sampling? What are the benefits and disadvantages of

this technique compared to other sampling techniques?

17. Suppose you are working for a political consulting firm that is trying to forecast

the outcome of a presidential election. Because of the time and cost involved in

conducting a simple random sample across all 50 states, you’ve been asked to

devise a sampling strategy to predict the outcome of the election. Given the

time and money constraints, what sampling technique will you propose?

18. Use the information given in Example 20.1 to determine the size of the sample

if you want a level of precision of ŝ�x ¼ $12,000.

19. Again using the data from Example 20.1 and question 18, construct a 95 %

confidence interval.

20. Use the data in Example 20.2 to determine the size of the sample you need if

you want a level of precision of .05.

21. Suppose you have decided to conduct a sampling survey on the salaries of

baseball players. There are essentially two types of players, those not eligible

for free agency and those eligible for free agency. If you believe that the

salaries of players who are eligible for free agency will differ from those of

players who are not, what type of sampling method should you use?

22. Explain how we can use the ratio method to improve the parameter estimates

based on sample data.

23. Explain how we can use the regression method to improve the parameter

estimates based on sample data.

24. What is the jackknife method? What advantages does it offer? Briefly explain

how we use the jackknife method.

25. Suppose you have decided to conduct a study to determine whether accounting

majors should be required to take statistics. Briefly explain how you would set

up this study. What problems might you encounter? How would you deal with

these problems?

26. Using the business section of the Wall Street Journal or the New York Times,
obtain a list of all stocks traded on the American Stock Exchange. Use a

random sample of 15 stocks to compute the mean percentage increase in the

prices of these stocks over the last month. Compare your result to the actual

change in the AMEX index over that period.
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27. The citizens for Fair Taxes are interested in the average property tax paid by the

2,000 residents of their city. A random sample of 50 of these households had a

mean property tax of $1,472 with a standard deviation of $311

(a) Find an estimate of the variance of the sample mean.

(b) Find a 95 % confidence interval for the population.

28. The Mom and Pop Grocery Store has 115 employees. In a random sample of 30

of these employees, the mean number of days that an employee was late each

year was 14 days, and the sample standard deviation was 3.4 days. Find a 99 %

confidence interval for the mean number of days late each year.

29. The academic advisor to the football team of Rah Rah University is interested

in the mean number of hours that players spend studying during the football

season. Of the 100 members of the football team, 35 were randomly sampled

and found to study an average of 22.5 h per week with a standard deviation of

8.1 h. Find a 90 % confidence interval for the mean number of hours that the

football players study.

30. Suppose a quality control expert is interested in drawing a random sample of

100 light bulbs from a case of 10,000. Explain how a table of random numbers

could be used to do this.

31. Suppose the quality control expert of question 30 knows from past experience

that the number of defective light bulbs in a case of 10,000 has a population

standard deviation of 221. She would like to compute a 99 % confidence

interval for the population mean with a precision of 50. How many light

bulbs should she sample?

32. A city is required to report to the state the mean property tax of its citizens.

From previous years, officials know that the population standard deviation is

likely to be $975. A 99 % confidence interval is desired with a precision of

$500. How many of the city’s 1,800 households should be sampled?

33. An advertising executive is interested in how viewers looked upon a television

ad by McDonald’s in New York City (either favorably or unfavorably). Briefly

explain how the executive could analyze this question by using sampling. Is

one method of sampling preferable to another?

34. In order to correctly assess property taxes in the state, New Jersey has decided

to require that all municipalities report the average home price in their districts.

From past years, one municipality estimates that the population standard

deviation for its 2.500 homes is $51,721. If the town would like to produce a

95 % confidence interval with a level of precision of $10,000, how many homes

should be sampled?

35. The Students for an Affordable Education have asked you to estimate the

average amount of money spent per semester on textbooks. To produce this

estimate, you have decided to randomly sample 25 members of your Introduc-

tion to Economics course. Are there any problems associated with this sample?

What other sampling techniques might you use?

36. An auditor would like to estimate the total value of a corporation’s accounts

receivable. From previous years, the auditor has found the population standard
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deviation to be $125 for the 1,000 accounts receivable. If the auditor would like

to have a level of precision of $100, with a 95 % confidence interval, how large

a sample should he select?

37. Suppose the auditor in question 36 decides to divide the accounts receivable

into strata. He would like a desired standard deviation of $10. Determine the

total number of sample observations under (a) proportional allocation and (b)

optimal allocation.

Stratum Population size Estimated standard deviation

1 250 $85

2 325 $125

3 225 $50

4 200 $100

38. A first-year chemistry class consists of 150 students. A random sample of 50 of

these students reveals that 31 are majoring in engineering. Find a 95 %

confidence interval for the proportion of students in this class who are majoring

in engineering.

39. Explain whether the confidence interval gets wider or narrower when

(a) The confidence interval is 99 % instead of 95 %.

(b) The number of observations in the sample decreases from 100 to 50.

(c) The population standard deviation is smaller.

40. The student government of your school has asked you to survey students in

order to determine how many hours the library should be open. You have

decided to conduct a stratified sample by class year: first-year, sophomore, etc.

What factors must you account for in determining the number of sample

observations in each stratum?

41. A movie studio executive wants to poll a sample of movie goers to determine

how viewers will react to a new movie. Briefly explain how the sample should

be designed.

42. A quality control engineer at the National Bullet Company wants to test for

the number of defective bullets (duds) in a case of 1,000. From past experi-

ence, he knows that population standard deviation per box is 20 bullets.

If he would like to estimate the mean number of duds with a level of precision

of 5 bullets, with a 95 % confidence interval, how large a sample should

he take?

43. Suppose you want to estimate a population mean m. From your sample, you find

that the sample mean is 200, the sample standard deviation is 30, the total

population is 500, and the sample drawn is 30. Find a 90 % confidence interval

for the population mean.

44. Suppose you want to estimate a population proportion p. The total population
consists of 1,000, your population consists of 100, and the sample proportion is

.42. Find a 95 % confidence interval for the population proportion.

1050 20 Sampling Surveys: Methods and Applications



45. A survey based on a stratified sample produced the following information:

Stratum

1 2 3 4

N 1,000 2,000 2,200 3,200

n 40 50 42 75

�x X 27.6 30.4 18.7 32.5

s2 4.2 7.1 6.4 2.8

p̂ P .5 .6 .3 .6

where �x, s2, and p̂are the sample mean, sample variance, and sample proportion,

respectively.

(a) Find a 90 % confidence interval for the population mean.

(b) Find a 95 % confidence interval for the population proportion.

46. The results of a sample survey based on cluster sampling follow:

Cluster

1 2 3 4 5

n 3 7 8 2 9

xi 6.2 8.3 5.4 7.3 9.1

M ¼ 2,500 and N ¼ 100

Find a 90 % confidence interval for the population mean.

47. A survey based on a stratified sample produced the following information:

Stratum

1 2 3 4 5

N 1,900 3,000 3.500 4,200 4,100

n 30 51 72 65 83

�x X 22.6 40.5 28.7 22.5 25.4

s2 5.2 4.1 7.4 3.8 5.1

p̂ p 0.3 0.1 0.2 0.3 0.4

where �x, s2, and p̂are the sample mean, sample variance, and sample proportion,

respectively.

(a) Find a 90 % confidence interval for the population mean.

(b) Find a 95 % confidence interval for the population proportion.

48. The results of a sample survey based on cluster sampling follow:

Cluster

1 2 3 4 5

n 2 5 7 3 8

xi 4.2 2.3 8.4 5.3 6.1

M ¼ 5,500 and N ¼ 300

Find a 95 % confidence interval for the population mean.
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49. A supermarket manager wants to know what type of people purchases health

foods and wishes to determine why segments of the population resist buying

these products. Discuss how you would go about setting up a study to provide

this information. What difficulties might you encounter?

50. A real estate developer wants to determine which features of a house have been

most influential in determining its selling price. Describe how you would set up

a study to provide this information. What difficulties might you encounter?

51. Suppose the American Economic Review is interested in knowing whether

student subscribers and regular subscribers differ in their viewpoints on the

articles offered in the journal. Explain how you would set up such a study.

52. A city consists of a total of two million residents and is divided into three

boroughs that have 750,000, 900,000 and 350,000 residents, respectively. The

city council is considering building a new baseball stadium. If the project is

undertaken, it will be financed by an increase in taxes. In order to determine

how the city feels about the new stadium, independent random sampler of 500

adults from each borough were taken. The numbers in favor of the stadium

were found to be 325, 201, and 400, respectively.

(a) Using an unbiased estimation procedure, find an estimate of all adults in the

city who favor the stadium.

(b) Find a 90 % confidence interval for this population proportion.

53. Suppose a large Wall Street law firm has 500 lawyers of whom 95 are partners

and 405 are associates. A random sample of 15 partners finds that 11 own their

own homes, and a random sample of 25 associates finds that 15 own their own

homes.

(a) Find an estimate of the proportion of all lawyers in this firm who own their

own homes, using an unbiased estimation procedure.

(b) Find a 95 % confidence interval for all lawyers in this firm who own their

own homes.

54. Refer to question 53. Suppose a random sample of the 12 partners reveals that 6

of them graduated from Ivy League schools and a random sample of 20

associates finds that 14 graduated from Ivy League schools:

(a) Find an estimate of the proportion of all lawyers in this firm who graduated

from Ivy League schools.

(b) Construct a 99 % confidence interval for all lawyers in this firm who

graduated from Ivy League schools.

55. The president of a local union is interested in the mean value of bonuses

awarded to a company’s employees. The company has 35 divisions, and a

simple random sample of 5 of these is taken. The following table gives the

results of this sample:
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Division sampled Number of employees Mean bonus

1 55 $ 70

2 97 101

3 60 40

4 35 89

5 72 56

(a) Find a point estimate of the population mean bonus per employee.

(b) Find a 90 % confidence interval for the population mean.

56. A personnel manager is interested in the average age of the company’s 872

employees. Suppose he takes a simple random sample of 35 of these employees

and finds the sample standard deviation of their ages to be 12.3 years. The

personnel manager wants to obtain a 95 % confidence interval for the popula-

tion mean age with a level of precision of 2.4 years on each side of the sample

mean. How many sample observations must he take?

57. A company has a fleet of 322 automobiles. A random sample of 35 of the cars

finds that the sample standard deviation of annual repair costs is $272. Com-

pany planners want to construct, for the overall mean of annual repair costs, a

90 % confidence interval that extends $100 on either side of the sample mean.

How many additional sample observations must they take?

58. Mention some situations in which two-stage cluster sampling should be used.

59. A clothing store has an inventory of 920 different items. In order to estimate the

total dollar value of inventories, an auditor takes a simple random sample of the

items. On the basis of last year’s data, the population standard deviation is

estimated to be $97. The auditor would like to produce, for the population total,

a 95 % confidence interval that extends $16.30 on each side of the sample

estimate. How large a sample size is necessary to meet this requirement?

60. Suppose a corporation is interested in the proportion of employees who favor a

new child care program. The corporation has 750 employees from which it

wants to take a simple random sample. The planners would like to make the

sample large enough so that they can produce a 90 % confidence interval that

extends no more than 7 % on each side of the sample proportion in favor of the

new program. How large a sample should they take? Assume that the sample

standard deviation is .24.

61. A movie theater chain has 35 theaters in California, 50 in New York, and 45 in

Pennsylvania. Management is considering adding a new snack item to its

concession stands. In order to determine whether this new snack will be a

success, management tested the product in 10 theaters in California, 12 in New

York, and 9 in Pennsylvania for 1 month. The sample means and standard

deviations for the numbers of purchases are shown here.
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California New York Pennsylvania

Mean 100.4 98.2 77.6

Standard deviation 40.3 21.7 45.1

(a) Use an unbiased estimation procedure to find an estimate of the mean

number of purchases per movie theater in a month for all 130 movie

theaters.

(b) Find an estimate of the variance of the estimator in part (a), using an

unbiased estimation procedure.

(c) Find a 90 % confidence interval for the population mean number of

purchases per theater.

62. Suppose that in question 61 we are interested in knowing how large a sample to

take for:

(a) A proportional allocation.

(b) An optimal allocation, assuming the stratum population standard

deviations are the same as the corresponding sample values.

63. A delivery company has a fleet of 502 trucks. A random sample of 35 of these

trucks finds that the sample standard deviation of annual repair costs is $753. If

you would like to construct, for the overall mean of annual repair costs, a 95 %

confidence interval that extends $250 on either side of the sample mean, how

many additional sample observations must you take?

64. A fast-food chain has 25 restaurants in Alabama (Ala.), 20 in Louisiana (La.),

25 in Texas (Tex.), and 32 in Arkansas (Ark.). Management is considering

adding a hamburger item to its menu. In order to determine whether this burger

will be a success, management tested the product in 15 restaurants in Alabama,

11 in Louisiana, 18 in Texas, and 5 in Arkansas for 1 week. The sample means

and standard deviations for the numbers of purchases are shown here.

Ala. La. Tex. Ark.

�x 127.5 221.3 99.7 127.6

s 83.3 43.8 27.6 70.2

where �x and s are the mean and standard deviation, respectively.

(a) Use an unbiased estimation procedure to find an estimate of the mean

number of purchases of the burgers for all 102 restaurants

(b) Find an estimate of the variance of the estimator in part (a), using an

unbiased estimation procedure.

(c) Find a 99 % confidence interval for the population mean number of burgers

sold per restaurant.

65. Suppose that in question 64, a sample of 35 restaurants is to be taken. Deter-

mine how the sample should be allocated among the three states for
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(a) A proportional allocation.

(b) An optimal allocation, assuming the stratum population standard

deviations are the same as the corresponding sample values.

66. A company that operates three different types of factories is interested in the

number of defective products produced. The following table gives the results of

a sampling study done on the number of defective parts:

Number of defective parts in factories of

Type 1 Type 2 Type 3

Ni 75 90 100

ni 10 15 20

�xi 12.3 11.5 16.4

si 4.7 7.5 3.4

(a) Find an estimate of the total number of defective parts, using an unbiased

estimation procedure.

(b) Find a 95 % confidence interval for this total.

67. Use the information given in question 66 to find an estimate of the mean

number of defective parts, using an unbiased estimation procedure. Also find

a 99 % confidence interval for this value.

68. Refer to question 66. Suppose a sample of 30 factories is to be taken. Determine

how many factories of each type the company should select when it is using

(a) A proportional allocation.

(b) An optimal allocation, assuming the stratum population standard

deviations are identical to the corresponding sample values.

69. An auditor is interested in estimating the population mean value for Aloha

Company’s accounts receivable. The population has been divided into three

strata. The accompanying table gives information on the strata and the

estimated standard deviations.

Stratum Population size Estimated standard deviation

A 600 $175

B 1,005 220

C 700 195

s�x¼ 12.75. Assume you would like a 95 % confidence interval to extend $25 on

each side of the estimate.

(a) Determine the total sample size for a proportional allocation.

(b) Determine the sample size for an optimal allocation.
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70. A company is interested in estimating the value of accounts receivable for its

75 stores. To do this, the company collects information on 1990 and 1991

accounts receivable from a simple random sample of 10 stores. The results of

this sampling study are given in the table.

Store 1990 accounts receivable 1991 accounts receivable

1 $15,600 $16,200

2 9,510 8,900

3 27,000 29,000

4 18,000 19,200

5 32,000 32,500

6 22,200 19,000

7 25,200 28,500

8 15,000 17,000

9 19,600 24,000

10 9,900 11,100

Suppose 1990 accounts receivable were $ 1.4 million. Use the ratio method to

estimate the accounts receivable for 1991.

71. Refer to question 70. Use the MINITAB program in terms of the regression

approach to forecast accounts receivable in 1991. Compare your results to

those you got with the ratio method in question 70.

72. A company is interested in estimating sales for its 200 stores. To do this, the

company collects information on 1990 and 1991 sales from a simple random

sample of 12 stores. The results of this sampling study are given in the table.

Store 1990 sales 1991 sales

1 $155,600 $160,200

2 89,540 98,900

3 275,400 282,000

4 180,900 190,200

5 325,000 320,500

6 222,200 199,900

7 250,400 278,400

8 151,000 178,000

9 190,600 240,000

10 99,900 115,100

11 311,000 354,000

12 272,500 295,000

Suppose 1990 sales were $27 million. Use the ratio method to estimate the sales

for 1991.

73. Refer to question 72. Use the MINITAB program in terms of the regression

approach to forecast sales in 1991. Compare your results to those you got with

the ratio method in question 70.
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74. An auditor is interested in estimating a company’s bad accounts. He collects

information on bad accounts for the company’s 200 stores using a random

sample of 25 stores. The results are given in the table.

1990 bad accounts 1991 bad accounts

Mean $127,000 $135,000

The total amount of bad accounts in 1990 was $24 million. Use the ratio

method to forecast the bad accounts in 1991.

75. Refer to question 70. Suppose the company would like to construct a 90 %

confidence interval for the increase in accounts receivable. Use the jackknife

method to construct this confidence interval.

76. Refer to question 72. Use the jackknife method to construct a 95 % confidence

interval for the increase in sales.

77. Suppose a corporation is interested in the proportion of employees who favor a

new “flex time” work schedule. The corporation has 420 employees from

which the planners wish to take a simple random sample. The planners would

like to make the sample large enough so that they can produce a 95 %

confidence interval that extends no more than 5 % on each side of the sample

proportion in favor of the new program. How large a sample should they take?

78. A company operating three factories that use different types of production is

interested in the number of defective products produced. The following table

gives the results of a sampling study done on the number of defective parts.

Number of defective parts in production of

Type 1 Type 2 Type 3

Ni 55 150

ni 12 9 40

xi 22.3 35.4 26.3

si 10.7 9.5 13.4

(a) Find an estimate of the total number of defective parts. Using an unbiased

estimation procedure.

(b) Find a 90 % confidence interval for this total.

79. Use the information given in question 78 to find an estimate of the mean

number of defective parts, using an unbiased estimation procedure. Also find

a 99 % confidence interval for this value.

80. Refer to question 78. Suppose a sample of 50 factories is to be taken. Determine

how many factories of each type the company should select when it is using

(a) A proportional allocation

(b) An optimal allocation, assuming the stratum population standard

deviations are identical to the corresponding sample values
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81. A quality control engineer at the Brite Lite Light Bulb Company wants to test

for the number of defective light bulbs in a case of 1,200. From past experience,

he knows that the population standard deviation per box is 25 bulbs. He would

like to estimate the mean number of defective bulbs with a standard deviation

of 8 bulbs. How large a sample should he take?

82. A market research group takes a random sample of 5 of a city’s 41 voting

districts. Each household in each sampled district is questioned on the number

of hours its members watch television per day. The results of the sample

follow:

District Number of households Mean number of hours of TV per day

1 53 3

2 31 5

3 17 6

4 28 4

5 41 7

Find a 90 % confidence interval for the population mean number of hours of

television watched.

83. Suppose you want to estimate the proportion of a population of voters. A

random sample reveals that the sample proportion is .42; N ¼ 2,500 and

n ¼ 500. Find a 99 % confidence interval for the population proportion.

84. The results of a sample survey based on cluster sampling are

Cluster

1 2 3 4 5

n 3 2 8 9 6

xi 50.2 42.3 38.4 51.3 36.1

M¼ 4,000 and N ¼ 250

Find a 90 % confidence interval for the population mean.

85. You have been hired to design a sampling procedure for testing a new antiacne

drug. One hundred people will be used in the study: half will receive the new

drug, and half will receive the standard acne drug. Explain how you would

decide which people get which drug. Be specific.

86. Professor Anderson needs a sample of students from his university with 13,200

students. He uses a table of random numbers to select 130 numbers between

1 and 13.200. His sample is a.

(a) Simple random sample

(b) Systematic sample

(c) Stratified sample

(d) Cluster sample

87. Professor Anderson’s university has 13,200 students, of which are 7,020 are

undergraduates, 4,200 are master students, and 1,800 are Ph.D. students.
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He decides to randomly select 70 undergraduates, 42 master students, and 18

Ph.D. students. His sample is a.

(a) Simple random sample

(b) Convenient sample

(c) Stratified sample

(d) Cluster sampling

88. The president of Prof. Anderson’s university is interested in the proportion of

students favoring the new campus bus system.

(a) Since there are 13,200 students and the president would like to have a 95 %

confidence interval to extend 3 % on each side of the mean proportion, how

many students should be surveyed?

(b) Suppose a sample with the sample size being determined by (a) and 516 of

them favoring the new campus bus system. Construct a 95 % confidence

interval for the population proportion.

89. Prof. Anderson would like to estimate the monthly expenditure on mobile

phone communication. If he would like a level of precision of $5, determine

the total number of sample observations under a proportional allocation.

Stratum Students Estimated standard deviation

Undergraduate 7,200 $35

Master 4,200 $25

Ph.D. 1,800 $15

90. Use the data in Problem 89 to determine the appropriate sample sized under an

optimal allocation rule.

Appendix 1: The Jackknife Method for Removing Bias

from a Sample Estimate

In this appendix, we discuss the jackknife method, which can be used in conjunc-

tion with sampling to remove the bias of an estimator and to produce confidence

intervals.

The jackknife is a general technique that can be applied to any linear estimator. It

works by using the original sample to create a new set of “pseudovalues.” The

jackknife procedure involves the following steps:

1. The n sample values are divided into m subsets, and m is set equal to n in many

applications. For example, removing one piece of data at a time leaves m ¼ n
subsets of data with (n � 1) observations in each set.

2. An estimate based on all the data is calculated. Call this value xAll.
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3. An estimate based on all the data except the data from the first of the m subsets is

calculated; call it x�1. Estimates of x�2, x�3, . . . , x�m are also calculated.

4. The “pseudovalue” x1 is calculated as

x1 ¼ xAll þ m� 1ð Þ xAll � x�1ð Þ (20.23)

Likewise, we can calculate x2, x3,. . ., xm. These pseudovalues will constitute a

“pseudosample” that acts like a random sample. Alternatively, Eq. 20.23 can be

rewritten as

x1 ¼ mxAll � m� 1ð Þx�1 (20.24)

5. The mean �x and the standard deviation s of the pseudosample can now be

calculated and used to produce confidence intervals. For example, a 90 %

confidence interval for the population mean m can be defined as

m ¼ �x� t:05
sffiffiffiffi
m

p (20.25)

where t.05 is the t statistic with the significance level a ¼ .05.

It may not be clear from an introduction of the jackknife technique why this

procedure is preferable to a simple or a stratified random sample. It has been shown

that when the original estimate is biased but is asymptotically unbiased – that is,

unbiased in large samples – jackknifing often eliminates the bias. Also, the jack-

knife procedure makes it possible to compute confidence intervals for the popula-

tion parameters when the samples taken are small and the population standard

deviation is unknown.

Example 20.13 Removing the Bias of Accounts Receivable Estimates. Suppose an

auditor is interested in determining the mean growth rate of uncollectible accounts

receivable. This figure will help the auditor find out whether a store has an

abnormally high increase in uncollectibles.

To obtain these estimates, the auditor randomly samples the uncollectibles of six

department stores in 1989 and 1990. The results of this sample are given in

Table 20.3. The auditor is interested in constructing a 95 % confidence interval

for the ratio in uncollectibles. In Table 20.4, we present the ratio in uncollectibles,

u, where

u ¼ 1990 uncollectibles

1989 uncollectibles

The issue now before us is how we compute a confidence interval for u by using
the jackknife method.
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The first step in the jackknife procedure is to calculate xAll the observation based
on all the data. From our example, this is the ratio of total uncollectibles in 1990 to

total uncollectibles in 1989.

xAll ¼ 914;500

825;000
¼ 1:108

Next we compute x�1, using all the data except the data of AAA Company.

x�1 ¼ 914;500� 225;000

825;000� 200;000
¼ 689;500

625;000
¼ 1:103

Similarly, we compute x�2 by deleting the data of BBB Company, x�3, by

deleting the data of CCC Company, and so on.

x�2 ¼ 914;500� 92;000

825;000� 84;000
¼ 1:110

x�3 ¼ 914;500� 152;000

325;000� 127;000
¼ 1:092

x�4 ¼ 914;500� 13;500

825;000� 12;000
¼ 1:108

x�5 ¼ 914;500� 390;000

825;000� 375;000
¼ 1:166

x�6 ¼ 914;500� 42;000

825;000� 27;000
¼ 1:093

Table 20.3 Random sample

of uncollectibles for six stores
Store 1989 uncollectibles 1990 uncollectibles

AAA $200,000 $225,000

BBB $84,000 $92,000

CCC $127,000 $152,000

DDD $12,000 $13,500

EEE $375,000 $390,000

FFF $27.000 $42,000

Total $825,000 $914,500

Table 20.4 U Ratios for six

different stores
Store U

AAA 1.125

BBB 1.095

CCC 1.197

DDD 1.125

EEE 1.040

FFF 1.556
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Using this information, we calculate our pseudovalues x1, x2, . . ., x6 in accor-

dance with Eq. 20.23.

x1 ¼ xAll þ m� 1ð Þ xAll � x�1ð Þ
¼ 1:108þ 5 1:108� 1:103ð Þ
¼ 1:133

x2 ¼ 1:108þ 5 1:108� 1:110ð Þ
¼ 1:098

x3 ¼ 1:108þ 5 1:108� 1:092ð Þ
¼ 1:188

x4 ¼ 1:108þ 5 1:108� 1:108ð Þ
¼ 1:108

x5 ¼ 1:108þ 5 1:108� 1:166ð Þ
¼ :818

x6 ¼ 1:108þ 5 1:108� 1:093ð Þ
¼ 1:183

We can now use these pseudovalues, x1,. . ., x6, as our pseudosample to construct

our confidence interval. First, we compute the sample mean �x of the pseudosample.

Then we compute the sample standard deviation s of the pseudosample. Finally, we

construct a confidence interval, using Student’s t distribution (it is given in Table A4
of Appendix A).

x ¼ x1 þ x2 þ x3 þ x4 þ x5 þ x6
6

¼ 6:528

6

¼ 1:088

s ¼ 1

n� 1
ðx1 � �xÞ2 þ ðx2 � �xÞ2 þ � � � þ ðx6 � �xÞ2

�� 1=2

¼ 1

5
½ð1:133� 1:088Þ2 þ ð1:098� 1:088Þ2 þ ð1:188� 1:088Þ2

�

þ ð1:108� 1:088Þ2 þ ð:818� 1:088Þ2 þ ð1:183� 1:088Þ2�
�1=2

¼ :137

For a 95 % confidence interval, we use t.025 with 5 degrees of freedom.

t:025:5 ¼ 2:57
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Then the 95 % confidence interval in terms of Eq. 20.25 can be computed as

�x� t:025
sffiffiffi
n

p < m< �xþ t:025
sffiffiffi
n

p

1:088� 2:57ð:137=
ffiffiffi
6

p
Þ< m< 1:088þ 2:57ð:137=

ffiffiffi
6

p
Þ

:944< m< 1:232

The 95 % confidence interval for the increase in uncollectibles is the interval

between 0.944 and 1.232.
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Minimax regret criterion Market risk

Capital market line Market portfolio

Sharpe investment performance measure Lending portfolio

Borrowing portfolio

Capital asset pricing model Market risk premium

Treynor investment performance measure Present value

Net present value

Statistical distribution method Jensen investment performance measure

21.1 Introduction

In business, decision making is at the heart of management. Using statistics as a

guide, this chapter introduces and examines decision making in business and eco-

nomics in terms of statistical decision theory. The branch of statistics called statistical
decision theory is sometimes termed Bayesian decision statistics, in honor of research
presented over 200 years ago by the English philosopher the Reverend Thomas Bayes

(1702–1761). Nevertheless, statistical decision theory is a new branch of statistics.

Propelled by research by Howard Raiffa, John Pratt, and Leonard Savage (among

others), it developed rapidly in the 1950s, and it now occupies an important place in

statistical literature. In contrast to classical statistics, where the focus is on estimation,

constructing intervals, and hypothesis testing, statistical decision theory focuses on

the process of making a decision. In other words, it is concerned with the situation in

which an individual, group, or corporation has several feasible alternative courses of

action in an uncertain environment.

This chapter discusses methods for selecting the best management alternatives

by using statistical decision theory. Here are a few examples of statistical decision

problems associated with business decision making:

1. Manufacturers must decide what products to produce.

2. Portfolio managers must decide what investments to purchase while maintaining

a portfolio consistent with investors’ risk–return preference.

3. Oil company managers must determine, with the help of geologists, where to

drill.

4. Corporate managers must choose from among alternative investment projects

under conditions of uncertainty.

In this final chapter of the book, we will discuss a variety of statistical methods,

collectively referred to as decision theory, for dealing with such decision-making

problems. First, we present the four key elements of making a decision on the basis

of extreme values, expected monetary value, and utility analysis. Then we explore

Bayes’ strategies and decision trees of expected monetary values in terms of

statistical concepts and methodology. We also propose a mean and variance

trade-off analysis to replace the expected utility analysis in business decision

making. Finally, the mean and variance method is applied in the context of a capital
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budgeting decision. Appendix 1 discusses how the spreadsheet can be used to do

decision-tree analysis. Appendix 2 presents the graphical derivation of the capital

market line; Appendix 3 discusses present value and the net present value (NPV)

decision rule; and the derivation of standard deviation for NPV is presented in

Appendix 4.

21.2 Four Key Elements of a Decision

Four elements are needed to analyze a decision-making problem: actions, states of

nature, outcomes, and probabilities.

1. The choices available to the decision maker are called actions (or sometimes

alternatives). For instance, in a person’s decision whether to carry an umbrella,

the possible actions are to carry the umbrella and not to carry the umbrella.

Although our approach assumes that the decision maker can specify a finite

number of mutually exclusive and exhaustive actions, it is also possible to

analyze problems with an infinite number of outcomes.

2. The uncertain elements in a problem are referred to as states of nature. The states
of nature are simply events. Like actions, states of nature can be either finite or

infinite. The states of nature (events) in our umbrella decision are rain and no rain.

3. An outcome is a consequence for each combination of an action and an event (state

of nature). The possible outcomes in our umbrella decision are stay dry, be

burdened unnecessarily, get wet, and be dry and free. The reward or penalty

attached to each outcome is termed the payoff, which in business decisions is

usually expressed in monetary terms. The relationship among the actions, events,

and outcomes involved in a decision process can be presented in a decision tree

(see Fig. 21.1).1

4. Probability, which we discussed in Chap. 5, is the chance that an event will

occur. The probability of each event may be set by referring to historical data,

expert opinion, or any other factor (including personal judgment) the decision

maker wishes to use. These probabilities are initial probabilities, so they are

called prior probabilities. (Revised probabilities based on the prior probabilities
are called posterior probabilities. They will be discussed in detail in Sect. 21.5)

In our umbrella example, the probability is the chance of rain as assigned in

accordance with the weather forecast.

Armed with all the foregoing information, the decision maker can decide whether

to carry an umbrella.

In the next section, we first discuss alternative business decision rules without

probabilities and then introduce the probability variable into the decision process.

1 Decision trees were introduced in Sect. 5.3 of Chap. 5. They will be discussed in terms of

expected monetary values in Sect. 21.6.
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21.3 Decisions Based on Extreme Values

Most of the decision rules discussed in this chapter require the specification of

probabilities for the states of nature. However, two strategies do not. The maximin

criterion maximizes the minimum payoff; the minimax regret criterion minimizes

the difference between the optimal payoff and the actual outcome.

21.3.1 Maximin Criterion

Using this criterion, we first consider the worst possible outcome for each action

and then choose the highest of the minimum payoffs (hence “maximin”). The worst
outcome is simply the smallest payoff that could conceivably result whatever state

of nature happens. Thus, the maximin criterion is a decision rule for born

pessimists. Pessimists tend to assume nature is against them no matter what activity

they choose. (Some even go so far as to be convinced that they can guarantee sunny

weather by carrying an umbrella!)

Example 21.1 Applying the Maximin Criterion to Different Possible Economic
Conditions. Suppose a firm can produce any one of four products, 1, 2, 3, and 4.

The four products, then, are the possible actions. The state of nature (which in this

case is the state of the economy) has three possibilities: recession, flat, and boom.

The payoff, or the outcome, is whatever profits result. This information is presented

in Table 21.1.

In this example, the minimum payoff is �$10 for product 1,�$15 for product 2,

�$7 for product 3, and �$3 for product 4. Product 4 has the lowest negative payoff

in terms of the maximin criterion. Therefore, if it subscribes to the maximin

criterion, this pessimistic firm will choose to produce product 4.

Fig. 21.1 Decision tree for the umbrella decision

Table 21.1 Data for

Example 21.1
State of nature

Product Recession Flat Boom Minimum payoff

1 �$10 �$5 $20 �$10

2 �$15 0 $15 �$15

3 �$7 �$1 $25 �$7

4 �$3 $2 $17 �$3
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Example 21.2 Applying the Maximin Criterion in Rock Music Promotion. Suppose

a rock music promoter has the option of booking a major group at the local indoor

stadium, which has a seating capacity of 17,000, or at a 100,000-seat outdoor

stadium. Obviously, rain is a major concern for the promoter. The possible actions

are holding the concert indoors and holding it outdoors; the states of nature are rain

and no rain. The payoffs are the profits. These factors are summarized in Table 21.2.

By the maximin criterion, the concert should be held indoors because the minimum

profits for that strategy are $100,000, whereas they are 0 for holding it outdoors.

The main problem with the maximin criterion is that it does not take into account

the probabilities of the states of nature. In the concert example, suppose the concert

is to be held in Arizona, where the likelihood of rainfall is quite low. Because the

probability of rain is small, it may be better to hold the concert outside.

Another problem with this method is that it does not take other alternatives into

consideration. For example, assume that an investor must choose between two

stocks and that the states of nature are a recession, a flat economy, and a boom

(see Table 21.3). Rates of return are the payoffs. The maximin criterion would

dictate choosing stock B, because its minimum payoff is 2 %. However, although

stock A has lower rates of return (�5%) for the recession, its rates of return are much

higher when the economy is flat or booming. Of course, the chances of recession, flat

economy, and boom are not necessarily equal. Hence, the decisionmethod described

in Table 21.3 is relatively restrictive. Later in this chapter, we will explicitly take

into account the probability of occurrence of different states of nature.

21.3.2 Minimax Regret Criterion

In the minimax regret criterion, the best action is the one that minimizes the

maximum regrets for each decision. When the decision maker aims to maximize

the benefit, the regret equals the difference between the optimal payoff and the actual

payoff. In Example 21.1, the best outcome in the recession is a loss of $3 for product

4, so the regret for product 1 if a recession occurs is �$3 � (�$10) ¼ $7, and for

Table 21.2 Data for

Example 21.2
State of nature

Rain No rain Minimum payoff

Indoors $100,000 $100,000 $100,000

Outdoors 0 $100,000,000 0

Table 21.3 Choice of two stocks in terms of rates of return by the maximin criterion

State of nature

Stock Recession (%) Flat (%) Boom (%) Minimum payoff (%)

A (growth type) �5 8 15 �5

B (income type) 2 4 7 2
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product 2 the regret is �$3� (�$15) ¼ $12. In the flat state of nature, the regret for

product 1 is $2� (�$5)¼ $7, and in the boom state of nature, the regret for product 1

is $25 � $20 ¼ $5. The regrets for all four products under the three economic

conditions are presented in Table 21.4.

The best product under this criterion is the one that minimizes the maximum

regret (hence “minimax”). Thus, product 3 is the best choice because its regret, 4, is

the smallest.

Example 21.3 Applying the Minimax Regret Criterion. The following table gives

the regrets for the concert example:

State of nature

Rain No rain Maximum regret

Indoor 0 900,000 900,000

Outdoor 100,000 0 100,000

By this criterion the best choice is the outdoor concert, because it has the

minimum regret ($100,000). Different methods, it seems, can lead to different

answers.

The methods presented in this chapter are only aids in decision making. The

decision maker must rely partly on personal judgment when making decisions. In

our concert example, for instance, the promoter must also take into consideration

such factors as the probability of rain, the expected attendance, and ticket prices.

In the following sections, we will discuss adding probability information to

statistical decision theory.

21.4 Expected Monetary Value and Utility Analysis

In this section, we discuss both the expected monetary value criterion and utility

analysis through probability information. We also examine the application of these

techniques in decision making.

Table 21.4 Regret table

State of nature

Product Recession Flat Boom Maximum regret

1 7 7 5 7

2 12 2 10 12

3 4 3 0 4

4 0 0 8 8
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21.4.1 The Expected Monetary Value Criterion

The monetary value at a particular state of nature is calculated by multiplying the

probability of the action by the payoff of that particular action. If a decision maker

has H possible actions, A1, A2, . . ., AH, and is faced withM states of nature, then the

expected monetary value associated with the ith action, EMV(Ai), can be obtained

by summing the monetary value over all states of nature:

EMVðAiÞ ¼
XM
j¼1

PjMij i ¼ 1; 2; . . . ; Hð Þ (21.1)

where

Pj ¼ probability associated with state of nature j with
PM

j¼1 Pj ¼ 1

Mij ¼ payoff corresponding to the ith action and the jth state of nature

For example, suppose economists estimate the probability of a recession to be .2,
that of a flat economy to be .5, and that of a boom to be .3, as shown in Table 21.5.

The payoff (profit) and EMV related to each product listed in the last column of

Table 21.5 can be calculated as

EMV1 ¼ :2ð Þ �20ð Þ þ :5ð Þð0Þ þ :3ð Þ 15ð Þ ¼ $:5

EMV2 ¼ :2ð Þ �5ð Þ þ :5ð Þ �2ð Þ þ :3ð Þð5Þ ¼ �$:5

EMV3 ¼ :2ð Þ �10ð Þ þ :5ð Þð1Þ þ :3ð Þ 25ð Þ ¼ $6:0

EMV4 ¼ :2ð Þ �1ð Þ þ :5ð Þð5Þ þ :3ð Þð0Þ ¼ $2:3

The best alternative is the one that maximizes the EMV. In this example, the

product with the highest EMV is product 3, with an EMV of $6.0.

Example 21.4 Applying the EMV Criterion to Pricing a New Product. Amarketing

manager who is responsible for pricing a new product must decide which of the

following three alternative pricing strategies to use:

A1 (Skim-pricing strategy) $15.50/unit

A2 (Intermediate price) $12.00/unit

A3 (Penetration strategy) $.50/unit

Table 21.5 State of economy

and payoff
State of nature

Recession Flat Boom EMV

Probability of occurring .2 .5 .3

Product 1 �$20 $0 $15 $.5

Product 2 �$5 �$2 $5 �$.5

Product 3 �$10 $1 $25 $6.0

Product 4 �$1 $5 $0 $2.3

21.4 Expected Monetary Value and Utility Analysis 1071



The payoff results given in Table 21.6 are total net income associated with each

state of nature. In addition, the probability that each state of nature will occur is

given at the bottom of the table.

The payoff (net income) is calculated as follows:

EMVðA1Þ ¼ :7ð Þ 100ð Þ þ :2ð Þ 60ð Þ þ :1ð Þ �60ð Þ ¼ $76

EMVðA2Þ ¼ :7ð Þ 60ð Þ þ :2ð Þ 110ð Þ þ :1ð Þ �30ð Þ ¼ $61

EMVðA3Þ ¼ :7ð Þ �50ð Þ þ :2ð Þð0Þ þ :1ð Þ 90ð Þ ¼ �$26

Alternative A1 offers the highest EMV. It is the best choice if the decision maker’s

goal is to maximize expected return. However, if the decision maker wants to

minimize potential loss, then alternative A2, with a maximum loss of $30, is the

best choice. In Sect. 21.6, after we discuss Bayes’ strategies, this example will be

extended to allow sample information.

Example 21.5 Applying the EMV Criterion to Selecting a Stock. A portfolio

manager predicts the following probabilities (Pj) for the rates of return on four

different stocks associated with three different economic conditions. The rates of

return for the jth stock (i ¼ 1, 2, 3, 4) are the payoffs.

Using Eq. 21.1, we can calculate the EMV for each stock; all are listed in the last

column of Table 21.7. By the EMV criterion, the best choice is stock 4, with a rate

of return of

:3ð Þ :20ð Þ þ :5ð Þ :03ð Þ þ :2ð Þ �:25ð Þ ¼ 2:5%

The problem with the EMV criterion is that it does not take the element of risk

into consideration. The following example illustrates this. Assume that a coin is

flipped. In game 1, a head pays $2 and a tail pays $0. In game 2, a head pays $1

million and a tail pays �$750,000:

State of nature

Game Heads Tails EMV

1 $2 0 $1

2 $1 million �$750,000 $125,000

In the first game, the EMV is ($2)(.5) þ (0)(.5) ¼ $1; in the second game, it is

($l,000,000)(.5) þ (�$750,000)(.5) ¼ $125,000. By the EMV criterion, the best

choice is game 2. However, a very high degree of risk is associated with game 2:

Table 21.6 State of nature and payoff (thousands of dollars)

State of nature

Alternative Light demand, S1 Moderate demand, S2 Heavy demand, S3

A1 100 60 �60

A2 60 110 �30

A3 �50 0 90

Probability of occurring .70 .20 .10
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$750,000 will be lost if a tail results. In contrast, there is no possibility of loss in

game 1. Anyone who chooses game 2 must be prepared to accept a negative

expected payoff as the price for the chance of earning a large payoff. In doing so,

he is expressing a preference for risk. By contrast, anyone who chooses game 1

accepts a lower expected payoff in order to eliminate the chance of experiencing a

large loss—and thus expresses an aversion to risk. The next section shows how we

can employ utility analysis to take individual attitude toward risk into account. In

Sect. 21.7, we will use mean and variance trade-off analysis to take this kind of

investigation further.

21.4.2 Utility Analysis

In all the decisions we have looked at, the decision criterion of choice was the

maximization of expected monetary value. That is, an individual or corporation

believes that the action offering the highest expected monetary value is the pre-

ferred course. However, this kind of decision rule does not allow for risk. For

example, investors who, in spreading their investments over a portfolio of stocks,

accept a lower expected return in order to reduce the chance of a large loss are

expressing an aversion to risk. Hence, the investors’ or the managers’ attitudes

toward risk are important in their decision making.

Utility analysis gives us information on the decision makers’ attitude toward

risk. Utility measures the satisfaction a consumer or decision maker derives from

consumption or the income associated with investment. For example, Table 21.8

gives the utility function for a consumer who consumes ice cream. In this case, the

utility function relates the scoops of ice cream consumed to the utility generated

from this consumption.

Table 21.7 States of market

and payoffs
State of nature

Boom Flat Recession EMV

Pj .3 .5 .2

R1 10 % 0 % �5 % 2 %

R2 15 % �2 % �10 % 1.5 %

R3 7 % 2 % �5 % 2.1 %

R4 20 % 3 % �25 % 2.5 %

Table 21.8 Utility function Scoops Utility Marginal utility

1 10 10

2 14 4

3 17 3

4 19 2

5 20 1

6 20.5 .5
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It does not matter what units are used to measure utility. The total utility for the

first scoop of ice cream for this consumer could be 100, 140 for the second, and so

on. The total utility increases as the scoops increase; however, this total utility

increases at a decreasing rate. This implies that marginal utility decreases as the

number of scoops of ice cream increases. That is, as a person eats more and more ice

cream, the extra satisfaction received from each additional scoop decreases. In

Table 21.8 the marginal utility of any row is equal to the difference of the utility

of that row and the utility of the previous row, for example, 4 ¼ 14�10.

Utility functions can also be used to do utility analysis in business decisions. In

this case the utility function, a curve relating utility to payoff, can be used to

determine whether an investor is risk-averse, risk-neutral, or a risk lover. Various

types of utility functions are described in Fig. 21.2. Here the payoff presented on the

horizontal axis can originate from either positive or negative value. A risk-averse
investor has a utility function wherein utility increases at a decreasing rate as payoff

increases. In other words, a risk avoider prefers a small but certain monetary gain to

a gamble that has a higher expected monetary value but may involve a large but

unlikely gain or a large but unlikely loss. A risk-neutral investor has a utility

function wherein utility increases at a constant rate. For an individual neutral to

Fig. 21.2 Various types of utility functions
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risk, every increase of, say, $100 has an associated constant increase in utility. This

type of individual uses the criterion of maximizing expected monetary value in

decision making, because doing so maximizes expected utility. A risk lover’s utility
function has utility increasing at an increasing rate. This type of person willingly

accepts gambles having a smaller expected monetary value than an alternative

payoff that is a “sure thing.”

We will use the following example to analyze how the utility function operates

within the decision-making process and how it affects the decision.

Suppose an investor faces investment opportunities with the payoffs �$100,

$200, and $50, as indicated in Table 21.9. We are interested in the investor’s utility

level for each situation. The different utility levels the investor can reach lead to

different decisions. For simplicity, we attach a utility of 0 to the payoff of �$100

and a utility of 1 to the $200 payoff, leaving us with the utility for the $50 payoff. In

order to link the utility for the $50 payoff with the information on the decision

maker’s preference for risk, we then ask, “Would the investor prefer to receive $50

with certainty or to gamble, possibly gaining $200 but just as likely to lose $100?”

Drawing the information given in Table 21.9, we can calculate the expected

utility of the payoff as

:5U �$100ð Þ þ :5U $200ð Þ ¼ :5ð0Þ þ :5ð1Þ ¼ :5

Case I: Risk-averse

U $50ð Þ>:5

Case II: Risk-neutral

U $50ð Þ ¼ :5

Case III: Risk lover

U $50ð Þ<:5

Thus, we know that if the utility for the $50 payoff is greater than .5, the investor

is risk-averse. By similar reasoning, if the utility for the $50 payoff is less than

(equal to) .5, the investor is a risk lover (is risk-neutral). We graph these three

alternative utility curves in Fig. 21.3, which is a more detailed version of Fig. 21.2.

Table 21.9 Alternative

investment payoffs
Investment opportunities Payoffs Probability Utility

Risky �$100 . 5 0

$200 .5 1

Risk-free $50 1.0 ?
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The expected monetary value (EMV) for risky investment opportunities with

two possible uncertain investment payoffs as indicated in Table 21.9 is

�$100ð Þ :5ð Þ þ $200ð Þ :5ð Þ ¼ $50

If we use the EMV approach to analyze this problem, we implicitly assume that

the investor is risk-neutral. If we employ utility analysis, we consider not only the

risk-neutral case but also the cases of both the risk avoider and the risk lover. In

short, the EMV approach uses expected objective dollar utility as the decision

criterion, and utility analysis uses expected subjective utility.
The process we went through in this example tells us several things:

1. The utility function affects the decision-making process.

2. If the utility of the expected payoff is greater than, equal to, or less than the

expected utility of the payoff, the decision maker will be risk-averse, risk-

neutral, or risk-loving, respectively.2

Fig. 21.3 Alternative utility curves

2 In our case, the expected utility of the payoff is 0.5. The utility of the expected payoff for a risk-

averse investor is larger than .5; the utility of the expected payoff for a risk-neutral investor is .5;

and the utility of the expected payoff for a risk lover is smaller than .5.
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3. If the utility function is strictly concave, linear, or convex, the decision maker

will be risk-averse, risk-neutral, or risk-loving, respectively.

4. If marginal utility is decreasing, constant, or increasing, the decision maker will

be risk-averse, risk-neutral, or risk-loving, respectively.

Let’s look at another example of the use of utility analysis in decision making.

Example 21.6 Different Attitudes Toward Risk. Assume that an investor’s utility

function can be defined byUðxÞ ¼ ffiffiffi
x

p
; where x¼ return (payoff). Now, he faces the

choice of x ¼ 14.5 with certainty or x ¼ 25 with probability .5 and x ¼ 4 with

probability .5. We want to determine whether this is a risk-averse person.

From the foregoing example, we know that if the investor’s utility of the expected

payoff is greater than the expected utility of the payoff, if the utility function is strictly

concave, or if the marginal utility is diminishing, then the investor is said to be risk-

averse. In fact, the last two criteria are the same. To determine whether this individual

is risk-averse, we simply take the ordinary derivatives of U(x) with respect to x two
times; then we can mathematically show that the individual is risk-averse if x is larger
than zero.3 Such an investor will take the certain payoff of x ¼ 14.5.

Another approach to determining an individual’s risk preference is to calculate

the expected utility of the payoff and the utility of the expected payoff as indicated

in Table 21.10. In the table,U(x), the utility given x, is calculated by substituting the

values for x of 4 and 25, respectively, into the utility function UðxÞ ¼ ffiffiffi
x

p
. E[U(x)],

the expected utility given x, is equal to pU(x). Finally, E(x), the expected value of x,
and U [E(x)], the utility from the expected value of x, are calculated as follows:

EðxÞ ¼ :5ð Þð4Þ þ :5ð Þ 25ð Þ ¼ 14:5

U EðxÞð Þ½ � ¼
ffiffiffiffiffiffiffiffiffi
14:5

p
¼ 3:808

From this example, we can see that the utility of the expected payoff, 3.808, is

greater than the expected utility of the payoff, 3.5 (1 + 2.5). Again, we can see that

the investor is risk-averse; the utility received from the expected value of x is

greater than the expected value of the utility of x. What this means is that the

investor will get greater utility from receiving the expected value of xwith certainty
than he’d get if he took the gamble.

3

dUðxÞ
dx

¼ dðxÞ1=2
dx

¼ 1
2
x�1=2

d2UðxÞ
dx2

¼ dð1
2
x�1=2Þ
dx

¼ �1
4
x�3=2

If x > 0, then we know the second derivative of the utility function is negative. This condition

represents the curve as concave, as shown in Fig. 21.3a.
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An investor is risk-averse if he prefers a safe investment over a risky investment

with a higher expected value. For example, if an investor prefers to invest in risk-

free Treasury bills rather than investing in a stock with a higher expected value, he

is considered risk-averse.

Having determined the appropriate utilities, we need only solve the decision-

making problem by finding that course of action with the highest expected utility.
Employing utility analysis concepts, we can modify the expected monetary value

criterion defined in Eq. 21.1 to be the expected utility criterion:

E U Aið Þ½ � ¼
Xm
j¼1

PjUij i ¼ 1; 2; . . . ; nð Þ (21.2)

where

E[U(Ai)] ¼ expected utility of action i
Pj ¼ probability associated with state of nature j
Uij ¼ utility corresponding to the ith action and the jth state of nature

In Eq. 21.2, we also assume that
Pm

j¼1 Pj ¼ 1. If the decision maker is risk-

neutral (indifferent to risk), the expected utility criterion and the expected monetary

value criterion are equivalent.

21.5 Bayes’ Strategies

We studied Bayes’ theorem in Chap. 5. This theorem enables us to work out the

probability for one event that is conditional on another event. Bayesian analysis can

be used in the decision-making process. The difference between Bayes analysis, the

maximin criterion, and the minimax regret criterion is that in Bayes analysis,

probabilities of the states of nature must be specified.

Recall Bayes’ theorem:

P E2jE1ð Þ ¼ P E1jE2ð ÞP E2ð Þ
P E1ð Þ (21.3)

where P(E2|E1) and P(E1|E2) are, respectively, conditional probabilities of event

2 (E2) given event 1 (E1) and of E1 given E2. P(E1) and P(E2) are unconditional

probabilities of E1 and E2, respectively. In terms of Bayesian statistic, P(E2) is the

Table 21.10 Expected utility

of the payoff and utility of the

excepted payoff

x U(x) ¼ ffiffiffi
x

p
P E[U(x)] E(x) U[E(x)]

4 2 .5 1 2

25 5 .5 2.5 12.5

– – 1.0 3.5 14.5 3.808
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initial or prior probability of E2 and is modified to the posterior probability, p(E2|E1),

given the sample information that event E1 has occurred. We can incorporate

different states of nature into Eq. 21.3 to obtain the generalized Bayes model defined

in Eq. 21.4:

P SijIð Þ ¼ P I \ Sið Þ
PðIÞ ¼ P IjSið ÞP Sið ÞPm

i¼1

P IjSið Þ P Sið Þ
(21.4)

where P(Si|I) is the probability of state of nature Si given sample information I.
P(Si) is the probability of state of nature Si not incorporating sample information

I, and it is called a prior probability of Si. We also assume that there exist

m states of nature.

Example 21.7 Bayesian Approach in Forecasting Interest Rates. Suppose that

macroeconomists are hired to predict interest rates. Past results for economic

prognostications are presented in the following table.

Interest rate outcome

Belief Up Down

Strong credit market .60 .30

Weak credit market .40 .70

When economists believed that credit markets would be strong, interest rates

went up and went down with 60 % and 30 % chances, respectively. Thus,

P strong market=upð Þ ¼ :60

P strong market=downð Þ ¼ :30

Now suppose the economists believe that the probability that rates will rise is .7

and that the probability of lower rates is .3.

P upð Þ ¼ :7 P downð Þ ¼ :3

Following Eq. 21.4, we find that in the case of two states of nature, the

probability that interest rates will rise, given a strong credit market assessment by

economists, is

P upjstrong marketð Þ

¼ P strong marketjupð ÞP upð Þ
P strong marketjupð Þ½P upð Þ� þ P strong marketjdownð Þ½P downð Þ�

¼ :60 :70ð Þ
:6 :7ð Þ þ :3 :3ð Þ ¼

:42

:51
¼ :82

The probability that interest rates will rise, given a weak credit market assess-

ment, is
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P up=weak marketð Þ ¼ :4 :7ð Þ
:4ð Þ :7ð Þ þ :7ð Þ :3ð Þ ¼ :57

Corporate executives can use these probabilities to assess future interest rates.

21.6 Decision Trees and Expected Monetary Values

In this section we use the expected monetary value (EMV) criterion in decision-tree

form to select the best alternative in business decision making. As a general

approach to structuring complex decisions, a decision tree helps direct the user to

a solution. It is a graphical tool that describes the types of actions available to the

decision maker and the resulting events.

The decision-tree approach to capital budget decision making is used to analyze

investment opportunities involving a sequence of investment decisions over time.

To best illustrate the use of the decision tree, we will develop a problem involving

numerous decisions.

First, we must enumerate some of the basic rules for implementing this method.

The decision maker should try to include only important decisions or events. The

decision-tree model requires the decision maker to make subjective estimates when

assessing probabilities. And it is important to develop the tree in chronological

order to ensure the proper sequence of events and decisions.

A decision point, or decision node, is represented by a box. The available

alternatives are represented by branches out of this node. A circle represents an

event node, and branches from this type of node represent possible events.

The expected monetary value (EMV) is calculated for each event node by

multiplying probabilities by conditional profits and summing them. The EMV is

then placed in the event node and represents the expected value of all branches

arising from that node.

A decision tree is shown in Fig. 21.4. The states of nature are high, medium, and

low levels of GNP, and their probabilities are .2, .5, and .3, respectively. For

product l, the expected value is (.2 � 100) þ (.5 � 5) þ (.3 � �30) ¼ 13.5.

The highest EMV (14) is that of product 3.

Each square on the decision tree denotes a decision that must be made. The

circles indicate the states of nature. The square represents the decision to produce

product 1, 2, or 3. As we have said, the states of nature that can occur are high,

medium, and low levels of economic performance. Now let’s look at two examples

of how decision trees using objective (dollar payoff) utility instead of subjective

utility are employed in business decision making.

Example 21.8 A Decision Tree for Testing a Drilling Site. An oil company is trying

to decide whether to test for the presence of oil or to drill for oil (see Fig. 21.5). If oil

is struck, the revenues are $1 million, with a cost of $100,000 to drill. The firm has

to decide whether to test first for the presence of oil. Without testing, the probability

of striking oil is .1. Thus, the firm’s expected value without testing is 0 ($1 million
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times .1, less drilling fees of $100,000). The cost of the oil test is $50,000. If the test

is positive, there is a .6 probability that oil will be struck; if the test is negative, the

probability of striking oil is .05.

Fig. 21.4 Decision tree for determining expected profit

Fig. 21.5 Decision tree for Example 21.8
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The expected gain for a negative test result is .05(1,000,000) � 100,000 �
50,000 ¼ �$100,000. If the test is positive, the expected profit is (1,000,000)(.6) �
100,000 � 50,000 ¼ $450,000. If the firm’s test is negative, the firm should not

drill; however, if the test is positive, it should drill. This analysis makes it clear that

the test should be done. In Appendix 1 we show how the spreadsheet can be used for

decision-tree analysis for drilling oil.

Example 21.9 A Decision Tree for Capital Budgeting. A firm currently sells paper

and paperboard packaging materials. Company planners predict that, with the advent

of plastic shrink-film packaging, their line of products may be obsolete within a

decade. They must quickly decide on a short-term plan of action from among four

alternatives: (1) do nothing, (2) establish a tie-in with a machinery company that

manufactures plastic packaging, (3) acquire such a company, or (4) take on the

research and development of plastic packaging. These four alternatives are the first

four branches arising out of the event node in Fig. 21.6. If the company planners do

nothing, the firm’s short-term profits will be about the same as in the previous year. If

they decide to establish a tie-in with another firm, they foresee one of two events

occurring; there is a 90 % chance of successful introduction of their new plastics line

and a 10 % possibility of failure. If they decide on acquisition, they foresee a 10 %

chance of problems with antitrust laws, a 30 % possibility of an unsuccessful

introduction of the plastics line, and a 60 % chance of success. If they decide to

manufacture a whole plastics line on their own, they foresee many more problems.

They anticipate a 10 % chance of having trouble developing their own machines, a

10 % chance of having problems with suppliers in developing a total packaging

system for their customers, a 30 % chance that customers will not purchase their

systems, and a 50 % chance of success in the development and introduction of the

plastics line.

Conditional profit is the amount of profit the firm can expect to make by adopting

each of the preceding sets of alternatives and consequent events.

In Fig. 21.6 the expected monetary values are shown in the event nodes. The

firm’s financial planner can use EMV to decide which action to take, selecting the

decision node with the highest EMV (in this case, establishing a tie-in, which has an

EMV of 76.5). The slash marks indicate elimination of nonoptimal decision

branches from consideration. If the probabilities associated with events change,

then the EMVs associated with the alternatives may change—and with them the

selection of the optimal alternative.

For Example 21.9, we greatly simplified the number of possible alternatives and

events. In fact, decision trees are more useful for more complex problems—that is,

for problems containing more possibilities or problems in which management must

make a sequence of decisions rather than a single decision.

Example 21.10 Utilizing Sample Information to Improve the Determination of
Pricing Policy. In Example 21.4 we determined the price of a new product without
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using sample information.4 Such sample information as test market results, how-

ever, can be very helpful. Suppose past product performances can give some

indication about the relationship between test market results and product perfor-

mance nationally. Let

Fig. 21.6 Decision tree for Example 21.9 (Source: Cheng F. Lee and Joseph E. Finnerty (1990),

Corporate Finance, Theory, Method, and Application (San Diego: Harcourt Brace Jovanovich))

4 This example is similar to an example given in Gilbert A. Churchill, Jr. (1983),Market Research:
Methodological Foundations, 3d ed. (Chicago: Dryden) pp. 37–42.
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Z1 ¼ disappointing or only slightly successful test market

Z2 ¼ moderately successful market

Z3 ¼ highly successful market

By using Bayes’ theorem (Eq. 21.4) and supposing that past experiences provided

the estimate of conditional probabilities given in Table 21.11, we find the revised

prior probabilities P(S1)¼ .7, P(S2)¼ .2, and P(S3)¼ .1, as presented in Table 21.12.

Conditional probabilities from Table 21.11 are presented in column (4) of

Table 21.12. Using Eq. 21.4, we calculate the posterior probabilities P(Sj|Zk)
presented in column (6) of Table 21.12. Using the information on states of nature

and payoffs listed in Table 21.6 and the posterior probability information listed in

Table 21.12, we find the expected value of each alternative, given each research

outcome (see Table 21.13).

The probability of obtaining each test market result—that is, the probability of

each Zk—is given as

P Zkð Þ ¼
Xn
j¼1

P Sj
� �

P ZkjSj
� �

and for k—1, for example, the probability is

Table 21.11 Conditional probabilities of each test market result, given each state of nature

State of nature

Test market result Light demand S1 Moderate demand S2 Heavy demand S3

Z1 .5 .2 .2

Z2 .3 .7 .6

Z3 .2 .1 .2

1.0 1.0 1.0

Table 21.12 Revision of prior probabilities in light of possible test market result

(1)

j
(2) State of

nature Sj

(3) Prior

probability

P(Sj)

(4) Conditional

probability

P(Zk|Sj)

(5) ¼ (3) � (4)

Joint probability

P(Sj)P(Zk|Sj)

(6) ¼ (5) � sum of (5)

Posterior probability

P(Sj|Zk)

Z1 S1 .7 .5 .35 .854

S2 .2 .2 .04 .097

S3 .1 .2 .02 .049

.41 1.000

Z2 S1 .7 .3 .21 .512

S2 .2 .7 .14 .342

S3 .1 .6 .06 .146

.41 1.000

Z3 S1 .7 .2 .14 .778

S2 .2 .1 .02 .111

S3 .1 .2 .02 .111

.18 1.000
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P Z1ð Þ ¼P S1ð ÞP Z1jS1ð Þ þ P S2ð ÞP Z1jS2ð Þ þ P S3ð ÞP Z1jS3ð Þ
¼ :7ð Þ :5ð Þ þ :2ð Þ :2ð Þ þ :1ð Þ :2ð Þ
¼ :41

The probability is given as the sum of the elements in column (5) of Table 21.12.

Table 21.12 thus indicates that the probabilities associated with these test markets

are P(Z1) ¼ .41, P(Z2) ¼ .41,and P(Z3) ¼ .18. (The probabilities sum to 1, as they

should, because one of the three test market outcomes must result.) The expected

value of the test-marketing procedure is found by weighting each expected value of

the optimal action in Table 21.13, given each research result, by the probability of

receiving that expected value. The expected value of the proposed research is thus

found to be

EV researchð Þ ¼ 88:28ð Þ :41ð Þ þ 63:96ð Þ :41ð Þ þ 77:80ð Þ :18ð Þ
¼ 76:42

This value is $0.42 over the expected value of the optimal action without

research, which, as indicated in Example 21.4, is $76. Hence, the market research

should be undertaken if the research cost is less than $0.42.

21.7 Mean and Variance Trade-Off Analysis

21.7.1 The Mean–Variance Rule and the Dominance Principle

The expected utility rule we discussed in Sect. 21.4 is theoretically the best criterion

available, but sometimes it is very hard to implement. We frequently do not know the

investor’s utility function, and furthermore, the decision maker, as in the case of a

manager, must act on behalf of many stockholders with different utility functions.

Table 21.13 Expected value of each alternative, given each research outcome

Z1, disappointing or only slightly successful test market

EV(A1) ¼ (100)(.854) þ (60)(.097) þ (�60)(.049) ¼ 88.28

EV(A2) ¼ (60)(.854) þ (110)(.097) þ (�30)(.049) ¼ 60.44

EV(A3) ¼ (�50)(.854) þ (0)(.097) þ (90)(.049) ¼ �38.29

Z2, moderately successful test market

EV(A1) ¼ (100)(.512) þ (60)(.342) þ (�60)(.146) ¼ 62.96

EV(A2) ¼ (60)(.512) þ (110)(.342) þ (�30)(.146) ¼ 63.96

EV(A3) ¼ (�50)(.512) þ (0)(.342) þ (90)(.146) ¼ �12.46

Z3, highly successful test market

EV(A1) ¼ (100)(.778) þ (60)(.111) þ (�60)(.111) ¼ 77.80

EV(A2) ¼ (60)(.778) þ (110)(.111) þ (�30)(.111) ¼ 55.56

EV(A3) ¼ (�50)(.778) þ (0)(.111) þ (90)(.111) ¼ �28.91
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Hence, the expected utility rule is often replaced by a more practical mean–variance

decision criterion that assumes that the decision maker has a risk-aversion utility

function.

According to the mean–variance rule, the expected return (mean) measures an

investment’s profitability, whereas the variance (or standard deviation) of returns

measures its risk. Consider the following four alternative projects, with the means �x
and standard deviations sx specified.

Investment project �x sx
A $9 $90

B 8 90

C 8 100

D 10 120

To discuss the implications of the trade-off between risk and return and of the

dominance principle, we plot this set of data in Fig. 21.7. A pairwise comparison of

the investment projects shows that project A dominates projects B and C; it has the

highest return, and its risk is equal to that of project B and lower than that of project

C. However, there is no clear-cut decision between projects A and D, projects B and

D, or projects C and D. Here the investor needs to consider the trade-off between

profit and risk in terms of his or her attitude toward risk.

In the analysis of stock investments, average rates of return and their variance

(or standard deviation) are used to represent investments’ profitability and risk,

respectively. The variance of rates of return can be decomposed into two

components by the market model5 defined in Eq. 21.5.

Fig. 21.7 Trade-off between

mean and standard deviation

for investment projects

5We discussed the market model in Chap. 14 and elsewhere.
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Ri;t ¼ ai þ biRm;t þ ei;t (21.5)

where Ri,t and Rm,t are rates of return for the ith security (portfolio) and market rates

of return, respectively.

Following Eq. 13.19 of Chap. 13,

s2i ¼ b2i s
2
m þ s2ei (21.6)

where

s2i ¼ variance of Ri,t

s2m ¼ variance of market rates of return

s2ei ¼ residual variance of rates of return for the ith security

In investment analysis, we define s2i , b
2
i s

2
m, and s

2
ei as total risk, systematic risk,

and unsystematic risk, respectively.

Systematic risk is the part of total risk that results from the basic variability of

stock prices. It accounts for the tendency of stock prices to move together with the

general market. The other portion of total risk is unsystematic risk, which is the

result of variations peculiar to the firm or industry—for example, a labor strike or

resource shortage.

Systematic risk, also referred to as market risk, reflects the fluctuations and

changes in general market conditions. Some stocks and portfolios are very sensitive

to movements in the market; others exhibit more independence and stability. A

measure of a stock’s or a portfolio’s relative sensitivity to the market, assigned on

the basis of its past record, is designated by the upper-case Greek letter beta (b).

Example 21.11 Market Model and Risk Decomposition for JNJ. The annual rate of

return for JNJ and the market rate of return for 1990–2009 are used to estimate the

market model in accordance with Eq. 21.5 and in terms of MINITAB. The results

are shown in Fig. 21.8. From Fig. 21.8, we find that the beta coefficient for the

market model is .639. From the analysis of variance data in Fig. 21.8, we obtain the

total risk (s2i ), systematic risk (b2i s
2
m), and unsystematic risk (s2ei) as follows:

s2i ¼
1:74158

19
¼ :09166

b2i s
2
m ¼ :17720

19
¼ :00933

s2ei ¼
1:56437

19
¼ :08234

b2i s
2
m þ s2ei ¼:00933þ :08234 ¼ :09167 _¼:09166
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Data Display 
Row      JNJ            S&P

1     0.230108   0.036396

2     0.616842   0.124301

3    -0.551293   0.105162

4    -0.091578   0.085799

5     0.244915   0.019960

6     0.584558   0.176578

7    -0.409758   0.237724

8     0.340804   0.302655

9     0.287688   0.242801

10    0.124207   0.222782

11    0.139719   0.075256

12   -0.431191  -0.163282

13   -0.078010  -0.167680

14   -0.021172  -0.028885

15    0.248595   0.171379

16   -0.032496   0.067731

17    0.122480   0.085510

18    0.034602   0.127230

19   -0.076435  -0.174081

20    0.108473  -0.222935

Regression Analysis: JNJ versus S&P 

The regression equation is

JNJ = 0.0273 + 0.639 S&P

Predictor      Coef      SE Coef       T          P

Constant    0.02726    0.07227    0.38    0.710

S&P             0.6386      0.4472    1.43    0.170

S = 0.294804   R-Sq = 10.2%   R-Sq(adj) = 5.2%

Analysis of Variance

Source               DF      SS           MS         F         P

Regression          1   0.17720   0.17720   2.04   0.170

Residual Error   18   1.56437   0.08691

Total                  19   1.74158

Durbin-Watson statistic = 2.51280

Fig. 21.8 MINITAB output

of the market model for JNJ
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21.7.2 The Capital Market Line

From the rates of return and alternative measurements of risk, we can derive either the

trade-off between expected return and total risk or the trade-off between expected

return and systematic risk. In these cases, the utility function used to measure a

decision maker’s attitude toward risk is the von Neumann and Morgenstern (VNM)

type. The use of the term utility in the VNM type of utility function differs from its use

by traditional economists. The VNM type of utility function is applied in situations

where money payoffs are inappropriate as a measuring device. In traditional econom-

ics, utility reflects the inherent satisfaction delivered by a commodity and is measured

in terms of psychic gains and losses. Von Neumann and Morgenstern, on the other

hand, conceived of utility as a measure of value that provides a basis for making

choices in the assessment of situations involving risk. This approach integrates the

EMV and the utility analyses discussed in Sect. 21.4.6

The capital market line used to describe the trade-off between expected return

and total risk is7

E Rið Þ ¼ Rf þ EðRmÞ � Rf

� � si
sm

(21.7)

where

Rf ¼ risk-free rate

E(Rm) ¼ expected return on the market portfolio

E(RP) ¼ expected return on the ith portfolio

si, sm ¼ standard deviations of the portfolio and the market, respectively

The capital market line (CML) defined in Eq. 21.7 implies that the expected rates

of return for portfolio i equal the risk-free rate plus total market risk,

EðRmð Þ � Rf

� �
si

sm
:

The total portfolio risk premium is equal to price per market risk,

E Rmð Þ � Rf

sm
;

6 In other words, the utility function can be defined as U½EðRÞ;s�, where E(R) and s represent

expected rates of return and the standard deviation of rates of return, respectively. By assuming

that the investors are risk avoiders, we have [∂ U/∂ E(R)] > 0 and (∂ U/∂ s) < 0. In other words,

investors prefer return and dislike risk.
7 The graphical derivation of this mode appears in Appendix 2.
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times total risk associated with portfolio i—that is, si. By using the concept of

CML, we can define the Sharpe investment performance measure for the ith
portfolio as

SMi ¼
�Ri � Rf

si
(21.8)

Example 21.12 Using the Sharpe Investment Performance Measure to Determine
Investment Performance. An investor is considering investing in either mutual

fund A or mutual fund B. For past performance, he calculates for both funds the

average returns and variances listed in Table 21.14. It is assumed that the T-bill rate

is 8 %, which the firm uses as the risk-free rate.

The Sharpe performance measure, then, gives

SMA ¼ :20� :08

:08
¼ 1:5

SMB ¼ :15� :08

:05
¼ 1:4

These calculations reveal that mutual fund A will give a slightly better perfor-

mance and thus is the better alternative of the two investments.

21.7.3 The Capital Asset Pricing Model

The capital market line (Eq. 21.7) is used to describe the trade-off between expected

rate of return and total risk. The trade-off between expected rate of return and

systematic risk defined in Eq. 21.9 is called the capital asset pricing model
(CAPM):

E Rið Þ ¼ Rf þ bi E Rmð Þ � Rf

� �
(21.9)

where

E(Ri) ¼ expected rate of return for asset i
Rf ¼ risk-free rate

bi ¼ measure of systematic risk (beta) for asset i
E(Rm) ¼ expected return on the market portfolio

Table 21.14 Return and standard deviation for mutual funds

Mutual fund A (%) Mutual fund B (%)

Average return, �Ri 20 15

Standard deviation, si 8 5
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Equation 21.9 implies that bi is the systematic risk for determining the price of

the individual asset and the portfolio. Figure 21.9 illustrates graphically the rela-

tionship between E(Ri) and bi that is defined in Eq. 21.9. Professor William Sharpe

won the Nobel Prize in Economics mainly because he derived this model.

The reason why the CAPM can be regarded as part of decision theory is that it is

based on a utility function in terms of expected rates of return and the standard

deviation of rates of return. Expected rates of return and the standard deviation of

rates of return are essentially based on the monetary value of the investment. In

Sect. 21.4, we used expected monetary values and utility analysis to make

decisions. Here we treat risk (the standard deviation of rates of return) as an explicit

factor, whereas in Sect. 21.4 we treated it as an implicit factor in determining the

value of an investment.

With the capital asset pricing model, we must assume that all utility-maximizing

investors will attempt to position themselves somewhere along the CML and will

attempt to put some portion of their wealth into the market portfolio of risky assets.

The CAPM implies that the market portfolio is the only relevant portfolio of

risky assets. Hence, the relevant risk measurement of any individual security is

its covariance with the market portfolio—that is, the systematic risk of the

security.

The relationship between the capital market line (CML) and the CAPM can be

shown by starting with the definition of the beta coefficient:

bi ¼
CovðRi;RmÞ
VarðRmÞ ¼ ri;msism

s2m
¼ ri;msi

sm

Fig. 21.9 The capital asset

pricing model (CAPM)
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where

si ¼ standard deviation of the ith security’s rate of return

sm ¼ standard deviation of the market rate of return

ri,m ¼ correlation coefficient of Ri and Rm

If ri,m ¼ 1, then Eq. 21.9 reduces to

EðRiÞ ¼ Rf þ si
sm

E Rmð Þ � Rf

� �� �
(21.10)

If ri,m ¼ 1, then this implies that the portfolio in question is the efficient portfolio,

or, for an individual security, it implies that the returns and risks associated with the

asset are similar to those associated with the market as a whole. The implications of

this comparison, in turn, are that

1. Equation 21.9 is a generalized case of Eq. 21.10, because Eq. 21.9 includes the

correlation coefficient, whereas Eq. 21.10 assumes that the correlation coeffi-

cient is equal to 1.

2. The capital asset pricing model (CAPM) instead of the capital market line

(CML) should be used to price an individual security or an inefficient portfolio.

To use the CML to price an inefficient portfolio would be to price unsystematic

risk.

3. The CML prices the risk premium in terms of total risk, and the security market

line (SML) prices the risk premium in terms of systematic risk.

In order to apply the CAPM, we need to estimate the beta coefficient, the

risk-free rate, and the market risk premium. Estimates of these quantities can

be obtained from time-series data as shown in Example 21.11 (see also

Chap. 14).

The capital asset pricing model (CAPM) defined in Eq. 21.9 implies that rates of

return for the ith security (or portfolio) equal the risk-free rate plus the security’s (or
portfolio’s) risk premium [E(Rm)—Rf bi. This risk premium is equal to systematic

risk bi times the expected market risk premium, E(Rm—Rf). By using the concept of
CAPM, we can define the Treynor investment performance measure8 for the ith
security (or portfolio) as follows:

TMi ¼
�Ri � Rf

bi
(21.11)

If in Eq. 21.12 we also know that the beta coefficients for mutual funds A and B

are bA ¼ 1.8 and bB ¼ 1.2, respectively, then the Treynor investment measures for

these two mutual funds are

8 The derivation and justification of this investment performance measure can be found in

J. Treynor (1965), “How to Rate Management of Investment Fund,” Harvard, Business Review
43, 63–75.
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TMA ¼ :20� :08

1:8
¼ :0667

TMB ¼ :15� :08

1:2
¼ :0583

Like the Sharpe performance measure, the Treynor measure indicates that

mutual fund A is the better alternative of the two investments.

By using the specification of Eq. 21.9, we can define the CAPM version of

market model as

Ri;t � Rf ;t ¼ ai þ bi Rm;t � Rf ;t

� �þ ei;t (21.12)

where Ri,t are the rates of return for ith security (or portfolio) in period t; Rm,t are

market rates of return in period t; and Rf,t is the return on a risk-free asset (such as

T-bills rate) in period t. Jensen (1968) has shown that ai can be used to evaluate the
investment performance for either security or portfolio.9

Therefore, it is called the Jensen investment performance measure which can be

explicitly defined as

JMi ¼ Ri � Rf þ bi Rm � Rf

� ���
(21.13)

where �Ri, �Rm, and �Rf represent the average rates of return for ith security (portfolio),
market rates of return, and risk-free rate, respectively.

Regression results in terms of Eq. 21.12 for both JNJ and MRK are presented in

Fig. 21.10. From the estimated ai, we conclude that JNJ perform worse than MRK

during the period of 1990–2009 since the JM of JNJ is smaller than that of MRK.

Interrelationship Among Three Performance Measures. It should be noted that

all three performance measures are interrelated. For instance, if rim¼ sim/sism¼ 1,

then the Jensen measure divided by si becomes equivalent to the Sharpe measure.

Since

bi ¼ sim=s2m and rim ¼ sim=sism

the Jensen measure (JM) must be multiplied by 1/si in order to derive the equivalent
Sharpe measure:

9 The derivation and justification of Jensen investment performance measure can be found in

Michael C. Jensen (1968), “The Performance of Mutual Fund in the Period 1945–1964,” Journal
of Finance 23, 389–416.
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Data Display

T-Bill

Row     JNJ           MRK           S&P       rate

1    0.230108   0.185441   0.036396  0.0749

2    0.616842   0.878595   0.124301  0.0538

3   -0.551293  -0.733803   0.105162  0.0343

4   -0.091578  -0.182990   0.085799  0.0300

5    0.244915   0.142442   0.019960  0.0425

6    0.584558   0.753915   0.176578  0.0549

7   -0.409758   0.235280   0.237724  0.0501

8    0.340804   0.352548   0.302655  0.0506

9    0.287688   0.409696   0.242801  0.0478

10   0.124207  -0.537078   0.222782  0.0464

11   0.139719   0.411867   0.075256  0.0582

12  -0.431191  -0.357447  -0.163282  0.0339

13  -0.078010  -0.013313  -0.167680  0.0160

14  -0.021172  -0.158294  -0.028885  0.0101

15   0.248595  -0.271964   0.171379  0.0137

16  -0.032496   0.036942   0.067731  0.0315

17   0.122480   0.418327   0.085510  0.0473

18   0.034602   0.367425   0.127230  0.0435

19  -0.076435  -0.450781  -0.174081  0.0137

20   0.108473   0.254065  -0.222935  0.0015

Regression Analysis: JNJ-TBill versus S&P-TBill

The regression equation is

JNJ-TBill = 0.0155 + 0.574 S&P-TBill

Predictor      Coef      SE Coef      T          P

Constant    0.01547   0.06708    0.23    0.820

S&P-TBill     0.5739     0.4788    1.20    0.246

S = 0.293711   R-Sq = 7.4%   R-Sq(adj) = 2.2%

Fig. 21.10 Regression results of Eq. 21.12 for JNJ and MRK
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Regression Analysis: MRK-TBill versus S&P-TBillRegression Analysis: MRK-TBill versus S&P-TBill

The regression equation is
MRK-TBill = 0.0309 + 0.646 S&P-TBill

Predictor       Coef     SE Coef     T         P

Constant    0.03092   0.09522   0.32   0.749

S&P-TBill     0.6457     0.6797   0.95   0.355

S = 0.416938   R-Sq = 4.8%   R-Sq(adj) = 0.0%

Analysis of Variance

Source               DF      SS         MS        F         P
Regression          1    0.1569   0.1569   0.90   0.355

Residual Error   18    3.1291   0.1738
Total                  19    3.2859

Unusual Observations

Obs   S&P-TBill   MRK-TBill     Fit        SE Fit   Residual   St Resid

3         0.071        -0.7681    0.0767   0.0976   -0.8448     -2.08R

R denotes an observation with a large standardized residual.

Durbin-Watson statistic = 2.47470

Analysis of Variance

Source                DF     SS          MS         F       P

Regression           1  0.12390   0.12390  1.44  0.246

Residual Error    18  1.55279   0.08627

Total                   19  1.67670

Unusual Observations

Obs   S&P-TBill   JNJ-TBill      Fit        SE Fit    Residual   St Resid

3         0.071       -0.5856    0.0561    0.0687    -0.6417     -2.25R

7         0.188       -0.4599    0.1231    0.1006    -0.5830     -2.11R

R denotes an observation with a large standardized residual.

Durbin-Watson statistic = 2.52893

Fig. 21.10 (continued)
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JMi

si
¼

�Ri � Rf

� �
si

� Rm � Rf

� �
sm

simð Þ
smsi

¼
�Ri � Rf

� �
si

� Rm � Rf

� �
sm

ðcommon constantÞ
¼ SMi � SMm ðcommon constantÞ

If the Jensen measure (JM) is divided by bi, it is equivalent to the Treynor

measure (TM) plus some constant common to all portfolios:

JMi

bi
¼

�Ri � Rf

� �
bi

� Rm � Rf

� �
bi

bi
¼ TMi � Rm � Rf

� �

21.8 The Mean and Variance Method for Capital Budgeting

Decisions

The capital budgeting decision is the manager’s decision to undertake a certain

project instead of other projects.10

Capital budgeting frequently incorporates the concept of probability theory.

Consider two projects (project X and project Y) and three states of the economy

for any given time (prosperity, normal, and recession). For each of these states, a

probability of occurrence can be calculated and an estimate made of its return, see

Table 21.15. We can calculate the expected returns �R for projects X and Y as follows:

Table 21.15 Means and

standard deviation State of economy

Probability,

Pi

Return

Ri (%) RiPi (%)

Project X

Prosperity .25 25 6.25

Normal .50 15 7.50

Recession .25 5 1.25

1.00 15.00

Standard deviation ¼ sX ¼ 7.07 %

Project Y

Prosperity .25 40 10

Normal .50 15 7.5

Recession .25 �10 �2.5

1.00 15.00

Standard deviation ¼ sY ¼ 17.68 %

10 This section discussed how can we use statistical distribution method to make capital budgeting

under uncertainty. Other methods to perform capital budgeting under uncertainty can be found in

Lee, A. C, J. C. Lee, and C. F. Lee. Financial Analysis, Planning and Forecasting: Theory and
Application, 2nd ed. Singapore: World Scientific Publishing Company, 2009.
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�R ¼
Xm
i¼1

RiPi (21.14)

where Ri is the return for the ith state of nature and Pi is the probability associated

with the ith state of nature. Substituting the information given in Table 21.15 into

Eq. 21.13, we obtain

�RX ¼ 6:25%þ 7:50%þ 1:25% ¼ 15:00%

�RY ¼ 10%þ 7:50%� 2:50% ¼ 15:00%

The standard deviation for these returns can be found by using

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Ri � �Rð Þ2pi
s

(21.15)

Substituting into Eq. 21.14 the information from Table 21.15, �Rx ¼ .15 and �RY ¼
0.15, we obtain

sX ¼ :25� :15ð Þ2 :25ð Þ þ :15� :15ð Þ2 :50ð Þ þ :05� :15ð Þ2 :25ð Þ
h i1=2

¼ 7:07%

sY ¼ :40� :15ð Þ2 :25ð Þ þ :15� :15ð Þ2 :50ð Þ þ �:10� :15ð Þ2 :25ð Þ
h i1=2

¼ 17:68%

The data given in Table 21.15 can be used to draw histograms of both projects

(see Fig. 21.11a). If we assume that rates of return R are continuously and normally

distributed, then Fig. 21.10a can be drawn approximately as Fig. 21.11b.

The concept of statistical probability distribution can be combined with capital

budgeting to derive the statistical distribution method for selecting risky investment

projects. The expected return for both projects is 15 %, but because project Y has a

normal distribution with a wider range of values, it is the riskier project. Project X

has a normal distribution with a larger collection of values closer to the 15 %

expected rate of return and is therefore more stable.

21.8.1 Statistical Distribution of Cash Flow

Accounting concepts make it possible to define the net cash flows (Ct) as

Ct ¼ CFt � dt � Itð Þ 1� tcð Þ þ dt (21.16)
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where

CFt ¼ Qt(Pt � Vt)

(CFt—dt—It)(1—tt) ¼ net income

Q ¼ quantity produced and sold

P ¼ price per unit

V ¼ variable costs per unit

dt ¼ depreciation

tc ¼ tax rate

It ¼ interest expense

For this equation, net cash flow is a random number because Q, P, and V are not

known with certainty. We can assume that Net Ct has a normal distribution with

mean �Ct and variance s2t , which was similar to that defined in Eq. 7.17.

If two projects have the same expected cash flow, or return, as determined by the

expected value defined in Eq. 21.14, we might be indifferent between the projects if

we were tomake our choice on the basis of return alone. If, however, we also take risk

(variance) into account, we will get a more accurate picture of what type of cash flow

or return distribution to expect.

With the introduction of risk, a firm is not necessarily indifferent between two

investment proposals that are equal in net present value (NPV).11 We should estimate

Fig. 21.11 Histograms and

probability distributions of

projects X and Y

11 See Appendix 3 for the definition of NPV.
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both NPV and its standard deviation sNPV when we perform capital budgeting

analysis under uncertainty. Net present value under uncertainty can be defined as

NPV ¼
XN
t¼1

~Ct

1þ Rf

� �t þ St

1þ Rf

� �N � I0 (21.17)

where

~Ct ¼ uncertain net cash flow in period t

Rf ¼ risk-free discount rate

St ¼ salvage value of facilities

Io ¼ initial outlay (investment)

The mean of the NPV distribution and its standard deviation can be defined as

follows for mutually independent cash flows:

NPV ¼
XN
t¼1

�Ct

1þ Rf

� �t þ St

1þ Rf

� �N � I0 (21.18)

sNPV ¼
Xn
t¼1

s2t
1þ Rf

� �2t
 !1=2

(21.19)

The generalized case for Eq. 21.19 is explored in Appendix 4.

Example 21.13 The Mean and Variance Approach for Capital Budgeting
Decisions. A firm is considering the introduction of two new product lines, A

and B, that have the same life and have the cash flows, standard deviations of cash

flows, and salvage values shown in Table 21.16. Assume a discount rate of 10 %.

Both projects have the same expected NPV:

NPVA ¼NPVB ¼
X5
t¼1

�Ct

1þ Rf

� �t
¼ 20 PVIF10%;1

� �þ 20 PVIF10%;2

� �þ 20 PVIF10%;3

� �
þ 20 PVIF10%;4

� �þ 20 PVIF10%;5

� �� 60þ 5 :6209ð Þ
¼ 20 :9091ð Þ þ 20 :8264ð Þ þ 20 :7513ð Þ þ 20 :6830ð Þ

þ 20 :6209ð Þ � 60þ 5 :6209ð Þ
¼ 18:90

where PVIF is the present value interest factor (see Appendix 3 for the calculation).

However, because the standard deviation of A’s cash flows is greater than that of

B’s, project A is riskier than project B. This difference can be explicitly evaluated
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only by using the statistical distribution method. To compare the riskiness of the

two projects, we calculate the standard deviation of their NPVs. We will assume

that cash flows between different periods are perfectly positively correlated. The

sNPV can then be defined (see Appendix 4) as

sNPV ¼
XN
t¼1

st
ð1þ Rf Þt

(21.20)

sNPVA
¼ $4ð Þ PVIF10%;1

� �þ $4ð Þ PVIF10%;2

� �þ � � � þ $4ð Þ PVIF10%;5

� �
¼ð4Þ :9091ð Þ þ ð4Þ :8264ð Þ þ :7513ð Þ4þ 4 :6830ð Þ þ 4 :6209ð Þ
¼ 15:16; or $15; 160

sNPVB
¼ $2ð Þ PVIF10%;1

� �þ $2ð Þ PVIF10%;2

� �þ � � � þ $2ð Þ PVIF10%;5

� �
¼ð2Þ :9091ð Þ þ ð2Þ :8264ð Þ þ ð2Þ :7513ð Þ þ ð2Þ :6230ð Þ þ ð2Þ :6209ð Þ
¼ 7:58; or $7; 580

With the same NPV, project B’s cash flows would fluctuate $7,580 per year, and

project A’s $15,160. Therefore, B is to be preferred given the same returns, because

it is less risky.

21.9 Summary

In this chapter, we examined the concepts and applications of statistical decision

theory and saw that it is different from the classical statistics we have worked with

in the last 20 chapters. In the context of statistical decision theory, we discussed

elements of decision making under uncertainty. Decisions based on extreme values,

expected monetary values and utility measurement, Bayes’ strategies, and decision

trees were explored. In addition, we developed the Von Neumann and Morgenstern

Table 21.16 Data for

Example 21.10 (in thousands)
Project A Project B

Initial investment $60 $60

Cash flows

Year 1 $20 $20

Standard deviation $4 $2

Year 2 $20 $20

Standard deviation $4 $2

Year 3 $20 $20

Standard deviation $4 $2

Year 4 $20 $20

Standard deviation $4 $2

Year 5 $20 $20

Standard deviation $4 $2

Salvage value $5 $5
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utility and risk-aversion concepts in order to discuss trade-offs between risk and

return. The capital asset pricing model and the statistical distribution method for

project selection were also investigated.

Questions and Problems

1. What are the basic elements of decision making? Define those elements

separately. If we don’t know the probabilities for the states of nature, can we

still make a decision?

2. John faces the following decision problem:

Study hours per day High confidence Average confidence Low confidence

0 60 40 30

5 80 60 50

10 90 80 60

With 5 h of study per day, John estimates that there are three different numbers

of points he can get on the midterm: 80 with high confidence, 60 with average

confidence, and 50 with low confidence. He also has two other possible actions:

studying 0 h per day and studying 10 h per day. Estimate the points he can get

on the midterm in each of the three states: high, average, and low. Try to use the

maximin criterion to choose the best action and specify the most points he can

get on the midterm.

3. In question 2, rebuild the table by using the minimax criterion and specify the

best action and the best points. Is the best action the same as that of question 2?

If yes, is this by chance or is it always true?

4. Reconsider the table in question 2 in the following way:

Study hours per day High Average Low

0 .2 .5 .3

5 .2 .6 .2

10 .4 .5 .1

If John studies 5 h per day, then he estimates the probabilities in three

confidence levels as .2 for high, .6 for average, and .2 for low. The same

interpretations apply to the other two levels.

(a) What are the probabilities for the high level, given 0, 5, and 10 studying

hours per day?

(b) Suppose the probability for each action is 1
3
. What are the probabilities for

0, 5, and 10 h of study per day, given the high level?

5. (a) Using the expected monetary value (EMV) criterion, try to construct a table

to determine which action is best.

(b) 5b. Does applying the EMV criterion yield the same best action as applying

the maximin criterion or applying minimax regret criterion?
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6. Assume the following utilities for the different midterm points in question 2.

The point scores 30, 40, 50, 60, 80, and 90 have utilities of 2, 5, 7.5, 9.5, 11,

and 12 units, respectively. Is this a risk-averse, risk-neutral, or risk-loving

type of utility function? (The implications of this assessment are worth

pondering!)

7. Define the terms risk-averse, risk-neutral, and risk-taking.
8. (a) Reconstruct an expected utility table by using the table in question 4 and

the assumption for utility units in question 6. If John makes his decision in

accordance with the criterion of largest expected utility, which action will

he choose?

(b) Redefine risk-averse, risk-neutral, and risk-taking in terms of the expected

utility concept.

9. Given the utility function U(W) ¼ 10W1/2, wherein W ¼ payoff,

(a) Graph the function.

(b) Does the function exhibit risk aversion? What is your criterion?

(c) How will changing the constant term 10 to an arbitrary number a affect the
answer to parts (a) and (b)? (i.e., by assuming that a is greater or less than 0,
what different result will we get?)

10. Mr. Clark has $100 and would like to try his luck in an Atlantic City casino.

Suppose he is faced with a 60/40 chance of losing $20 or winning $15. Further

suppose that for a fee of $10, he can buy insurance that completely removes the

risk.

(a) If Mr. Clark’s utility function is logarithmic for U(W) ¼ In W, is he a risk-
averse person? How do you know?

(b) Will Mr. Clark buy the insurance or take the gamble?

(c) Say the risk increases to a 70/30 chance of losing $20 or winning $15. How

much of a premium will Mr. Clark now pay for insurance to remove the risk

completely (assuming he remains risk-averse)?

(d) Say Mr. Clark’s initial wealth increases to $150. What change does this

bring about in the risk premium he pays to remove the risk completely

(assuming he remains risk-averse)?

11. Lottery A offers a 70 % chance of winning $45 and a 30 % chance of

losing $100. Lottery B offers a 60 % chance of winning $55 and a 40 %

chance of losing $85. Lottery C offers an 80 % chance of winning $30 and

a 20 % chance of losing $110. Without knowing any additional informa-

tion, such as the utility function, which lottery will you choose? By what

criterion?

12. Use the MINITAB and the Ri and Rm information given in the table to calculate

systematic risk, which was defined in Eq. 21.5 in the text.
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Quarterly rates of return for IBM (R,) and market rates (Rm), second quarter 1981 to second

quarter 1991

Market return IBM return

1981

2 �.03522 �.05835

3 �.11454 �.04993

4 .054828 .066697

1982 1 �.08641 .065670

2 �.02098 .029037

3 .098622 .224494

4 .167912 .323475

1983 1 .087599 .066077

2 .099045 .191154

3 �.01213 .062993

4 �.00686 �.03093

1984 1 �.03486 �.05778

2 �.03769 �.06403

3 .084345 .185342

4 .006863 �.00020

1985 1 .080243 .040406

2 .061939 �.01692

3 �.05092 .009898

4 .160369 .264177

1986 1 .130726 �.01864

2 .049979 �.02574

3 �.07781 �.07440

4 .046904 �.09962

1987 1 .204525 .260208

2 .042166 .089758

3 .058651 �.06553

4 �.23232 �.22653

1988 1 .047883 �.05865

2 .056433 .193728

3 �.00581 �.08557

4 .021367 .065872

1989 1 .061752 �.09558

2 .078373 .036288

3 .098025 �.01264

4 .012172 �.12736

1990 1 �.03808 .140345

2 .053185 .118586

3 �.14515 �.08438

4 .078974 .073654

1991 1 .136272 .018451

2 �.01082 �.13646
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13. (a) Given Rf ¼ 5 % and E(Rm) ¼ 10 %, plot the security market line (SML)

(write the equation).

(b) If bi ¼ 2 and E(Rj) ¼ 12 %, will a wise investor purchase stock i? Why or

why not?

14. Discuss some of the different methods of decision making, and explain when

you would use each one.

15. Describe why knowing which outcome you prefer is not adequate for making a

choice under uncertainty.

16. Describe why good decisions sometimes result in bad outcomes.

17. What is the maximin criterion? When is it best to use the maximin criterion?

18. What is the minimax regret criterion? When is using this criterion best?

19. Using Example 21.10 in the text as an example, explain how Bayesian analysis

can be applied in decision making.

20. What is the expected monetary value (EMV) criterion? Briefly explain how this

criterion is applied.

21. Suppose you are interested in evaluating a stock’s price. You have analyzed the

probability that the stock will go up on any given day as 1/3, the probability that

the stock will go down on any given day as 1/3, and the probability that the

stock’s price will not change on any given day as 1/3. Use a decision tree to

show the possible stock price movements for 3 days.

22. Briefly explain what the dominance principle is and how it can be used in risk-

and-return analysis.

23. Draw the capital market line. Write down the equation for the capital market

line. Explain what the capital market line tells us.

24. What is the capital asset pricing model (CAPM)? What are the assumptions of

this model? What does it tell us?

25. What is the CML? What is the SML? How are they similar? How are they

different?

26. An investor wants to choose among three investment alternatives: a passbook

savings account, a government bond fund, and a growth stock fund. The

payoffs for a $20,000 investment are given in the following table.

Investment

State of nature

Low growth Normal growth High growth

Savings account $1,000 $1,000 $1,000

Bond fund $1,500 $1,000 $800

Stock fund $500 $1,200 $1,500

(a) Which investment does applying the minimax regret criterion instruct us to

choose?

(b) Which investment does applying the maximin criterion instruct us to

choose?
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27. Now suppose the investor in question 26 assigns probabilities of .3 to low

growth, .4 to normal growth, and .3 to high growth. Use the expected monetary

value criterion to determine which investment should be chosen.

28. You are given the following information on the market and on XYZ

Company’s stock.

Return on market ¼ 10 %

Risk-free interest rate ¼ 6 %

Beta for XYZ stock ¼1.5

Compute the expected return on XYZ’s stock.

29. You are trying to decide whether you should study a lot or a little for your

statistics midterm. You construct the following grade-payoff table.

Action

State of nature

Easy test Hard test

Study a lot 98 95

Don’t study 90 55

(a) Use the minimax regret criterion to determine how much to study.

(b) Use the maximin criterion to determine how much to study.

30. A studio that has just produced a newmovie must decide when to release it. The

possible actions are

A1: release the movie in the spring

A2: release the movie in the fall

A3: release the movie at Christmas time

A4: release the movie in the summer

The possible states of nature are

S1: low movie attendance

S2: average movie attendance

S3: high movie attendance

The payoff table is

State of nature

Action S1 S2 S3

A1 �20 10 20

A2 10 10 10

A3 25 35 45

A4 20 19 40
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(a) Which of these actions will the studio choose if it uses the minimax

criterion?

(b) Which of these actions will the studio choose if it uses the maximin

criterion?

31. Suppose that in question 30, you have assigned the probabilities of .2 to low

movie attendance, .5 to average movie attendance, and .3 to high movie atten-

dance. Use the expected monetary value criterion to determine when the studio

should release the movie.

32. What is a decision tree? Briefly explain how a decision tree can be used in

decision theory.

33. Consider the following payoff table, where the cell entries are in dollars.

Outcome

Alternative

A B C D

1 5 7 5 4

2 3 2 2 7

3 9 8 7 5

4 7 10 6 4

Can any alternatives be eliminated by using dominance?

34. Use an example to show the similarities and differences between the Sharpe

and the Treynor investment performance measures.

35. A local deli prepares fresh potato salad for its customers every day. The unsold

salad has to be thrown away. The demand for potato salad can be classified as

low (100 lb), medium (200 lb), or high (300 lb). The production runs being

considered are 100, 200, and 300 lb. The payoffs for all combinations of

production and demand are shown here.

Production

Demand

100 200 300

100 400 300 �100

200 �400 600 700

300 �800 �300 1,500

(a) What is the maximin solution of this problem?

(b) What is the expected monetary value of each action if the probabilities of

demand being low, medium, and high are .3, .3, and .4, respectively?

Use the following information to answer questions 36–40. A manufacturer is

planning its production for the next 6 months. It has to decide how much of an

important ingredient to keep in inventory. The demand for the ingredient may

be low, medium, or high. The manufacturer is considering holding either a low

or a high amount of inventory. The possible payoffs for all the combinations of

inventory holding and demand are shown here.
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Inventory holding

Demand

Low S1 Medium S2 High S3

Low A1 200 300 300

High A2 100 200 500

Probability .3 .2 .5

36. What is the minimax regret solution to this problem?

37. What is the expected payoff of each action?

38. An economics consultant predicts that the demand for the ingredient will be

low in the next 6 months. In the past few years, this economist has provided

forecasting about the demand for the ingredient. The track record of the

consultant is summarized by the following conditional probability distribution:

pðHjS1Þ ¼ :6 pðHjS2Þ ¼ :4 pðHjS3Þ ¼ :1
pðMjS1Þ ¼ :2 pðMjS2Þ ¼ :2 pðMjS3Þ ¼ :1
pðLjS1Þ ¼ :2 pðLjS2Þ ¼ :5 pðLjS3Þ ¼ :8

Assume that this time, the economist predicts a low demand for the future. Find

the posterior distribution of S1, of S2, and of S3.
39. Use the foregoing information to evaluate the action of accumulating a high

inventory. (Obtain the expected monetary value by using posterior probability.)

40. Write out the decision tree for this question.

Use the following information to answer questions 41–45. A company is consid-

ering what size copying machine it should lease. The copier comes in three

different sizes: small, medium, and large. A larger machine can handle more

work, but it also costs more. The demand for the machine in the next year is

uncertain. The cost of leasing a smaller machine is lower than the cost of leasing a

larger one. However, at those times when the small machine could not handle the

high demand, the company would have to lease a second machine and pay a

significantly higher cost than if it had leased a larger machine in the first place.

The possible costs of leasing the three different copiers under conditions of low

and high demand are presented in the following table.

Size of copier

Future demand

Low (S1) High(S2)

Small 400 800

Medium 500 900

Large 600 600

Pr(S) .4 .6

41. Find the maximin solution.

42. Find the minimax regret solution.

43. Would you lease a medium-sized machine under any circumstances? Why or

why not?

44. What are the expected costs of leasing a large machine?
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45. An economic consultant predicts that the demand for the machine will be high the

next year and suggests that the company should therefore lease a large machine.

Assume that the consultant has the following track record of predicting demand.

PrðI1jS1Þ ¼ :8 PrðI2jS1Þ ¼ :2

PrðI1jS2Þ ¼ :2 PrðI2jS2Þ ¼ :8

where I1 indicates that the consultant predicts S1 and I2 indicates that the consultant
predicts S2. Do you agree with the consultant’s advice?

46. A limousine chauffeur is going to take a guest from the hotel to the airport. To

catch the flight, the chauffeur has to arrive at the airport in 30 min. There are

two routes to the airport: a local route and the highway. The chauffeur has

found that it always takes him 25 min to get to the airport when he takes the

local route. When he takes the highway, the time consumed depends on the

traffic. When the highway is jammed, it takes him 36 min to get to the airport.

When the highway is clear, the trip takes only 10 min. There is a.10 probability

that the highway will be jammed.

(a) Which route should the chauffeur take on the way to the airport?

(b) Which way should the chauffeur take when he is coming back to the hotel?

47. Does the risk-averse decision maker ever take any risk?

Use the following information to answer questions 48–50. Assume an investor

has the utility function W1/3, where W is wealth. The state government issues a

lottery ticket that pays the winner $300. The lottery ticket costs $1. The chance

of winning the lottery is 1/200. The investor has $270 in original wealth.

48. What is the expected value of this lottery? What is the investor’s expected

utility if he buys the lottery?

49. Use the lottery case to show that the investor is risk-averse.

50. Will the investor buy the lottery ticket if his utility function is W3?

51. The owner of a personal computer company is considering whether to install a

large or a small new assembly line. The possible payoffs (in thousands of dollars)

depend on the state of the economy and are presented in the following table.

Size of assembly line

State

Boom Recession

Large 20 5

Small 10 8

Probability .3 .7

(a) Find the minimax regret solution.

(b) Find the expected payoff of installing a large assembly line when the proba-

bility of boom and the probability of recession are .3 and .7, respectively.

(c) If the beginning wealth of the company is 20 and the utility function of the

owner is W1/2, what is the expected utility of the two options?
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52. Mr. Montero is deciding how to invest the money for his son’s tuition, which is

due 2 months from today. He can put the money in a 2-month certificate of

deposit (CD) earning a 10 % annual rate of interest, or he can put the money in a

1-month CD now and earn 9 %. If he puts the money in the 1-month CD, then a

month later he will have to invest it in another 1-month CD. The rate 1 month

from today is uncertain. Both CDs are protected by FDIC insurance. Assume

that Mr. Montero knows the 1-month rate in the next month follows a normal

distribution with a mean of 11 % and a standard deviation of 2 %. What will be

his choice if he is a risk averter? What will be his choice if he is risk-neutral?

Use the following information to answer questions 53–55. Ms. Jones is thinking

of investing in a new project that will cost $1,000 to start. There are two ways to

raise this $1,000. She can take out $1,000 from her own pocket or take out $500

and invite a friend to share the investment. The investment will generate the

following revenues, depending on the outcome of the investment.

State 1 State 2 State 3

Revenue $800 $1,000 $1,500

The revenue will be equally split between Ms. Jones and her friend if they share

the project. It is estimated that the probabilities of states 1, 2, and 3 are 1/3, 1/3,

and 1/3, respectively.

53. (a) What is the expected net gain of the project if Ms. Jones undertakes the

investment alone?

(b) What is the expected net gain of the project for Ms. Jones if the investment

is shared?

54. Ms. Jones hired Dr. Lee, an economics consultant, to evaluate the probabilities

of states 1, 2, and 3. Suppose this consultant has the following track record.

Actuality, P(Ii | Si)

S1 S2 S3

I1 .8 .2 .2

I2 .1 .6 .2

I3 .1 .2 .6

(a) Obtain the posterior distribution when Dr. Lee predicts I1.
(b) Evaluate the expected payoff for Ms. Jones of sharing the project.

55. Ms. Jones has the utility function U ¼ f(W) ¼ W1/2, and her initial wealth is

$1,000. Should she invest in the project? If so, should she invest alone? Use the

original probability function to answer this question.

56. The owner of the New Land Food Corporation is considering a new project that

has the following possible payoffs (in thousands of dollars).

Profits Probability Profits Probability

200 .1 0 .15

1,000 .25 �5,000 .2

5,000 .2 �1,000 .1
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The owner’s current assets are worth about $5,000. His utility function is.

U ¼ W1/2.

(a) What is the expected value of this project?

(b) What is the expected utility of this project?

57. The owner of North American toy company is considering enlarging its produc-

tion capacity to meet increasing future demand. The company can either expand

its old plant or establish a new plant. The possible payoffs of these two actions

are related to the increase in future demand and are shown in the following table.

Demand (in thousands of dollars)

Action Low Medium High

Expansion 150 250 250

New plant 0 250 500

Probability 1/3 1/3 1/3

(a) Write out the decision tree, and determine which action the owner should

take if he uses the minimax regret approach.

(b) Assume the net worth of the firm at this stage is $500 thousands. The utility

function of the owner is U(W) ¼ 400 � 4000/W1/2. Which action will

generate the higher expected utility?

58. Ace Corporation is sending a shipment of crystal balls from North Carolina to

California. There is a chance that the shipment may be damaged, so Ace

Corporation is thinking of buying insurance to cover the shipment. The possible

costs that buying and not buying insurance may entail are presented in the

following table.

Shipment wrecked Shipment safe

Buying $100 $100

Not buying $5,000 0

Probability .01 .99

What is the expected value of the insurance policy? If the insurance policy is

not worth the cost of insurance ($100), why do people buy it?

59. An ice cream stand at the beach wants to order some ice cream for the coming

weekend. The demand for ice cream depends on the weather. The ice cream has

to be ordered in 50-gallon units.

The profits that selling ice cream yield under different combinations of state,

and ice cream order are presented here.

Bad weather S1 Good weather S2

50 gallons $500 $500

100 gallons $300 $900
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Historically, the probabilities of S1 and S2 during this time of the year are about

.4 and .6, respectively.

(a) Find the minimax regret solution.

(b) Find the highest-expected-value solution.

(c) Compare the utility of ordering 50 gallons versus 100 gallons if the ice

cream stand owner’s utility function is

U ¼ f ðE; SÞ ¼ 50E� 25S

where E is the expected wealth and S is the standard deviation of wealth.

Use the following information to answer questions 60–63. A new company is

formed to invest in a new project. This company is going to raise the needed

capital, $100,000, by issuing $50,000 bonds and $50,000 stock. The bondholder

is guaranteed a 10 % interest rate regardless of the performance of the company.

The stockholder will receive whatever is left after bondholders are paid. An

investor is thinking of investing $40,000 in the company for 1 year. A year

later, she will pull out of the investment. She can put the money in any combina-

tion of bonds and stock. The possible payoffs of the project (in thousands of

dollars) are recorded here.

Recession S1 Stable economy S2 Boom S3

Earnings before interest 5 10 20

Interest 5 5 5

Earnings after interest 0 5 15

Value of all stocks 50 55 65

Probability .4 .3 .3

60. The investor can choose to put all of her $40,000 in either bonds or stock. What

is the expected value for each of these two options at the end of the year? What

is the standard deviation of these two options?

61. Assume that the investor puts her $40,000 in a portfolio consisting x percent of
bonds and (1� x) percent of stock. What is the expected value of this portfolio?

62. Assume that the investor’s initial wealth is $40,000 and that her utility function is

U ¼ W1/2. What is the expected utility of the portfolio described in question 61?

63. A stock analyst has just released a report saying that the economy will be good

in the coming year. His track record is

Pr(good|S1) ¼ .2 Pr(bad|S1) ¼ .8

Pr(good|S2) ¼ .5 Pr(bad|S2) ¼ .5

Pr(good|S3) ¼ .8 Pr(bad|S3) ¼ .2

Evaluate the portfolio made up entirely of stock and that made up entirely of

bonds.
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64. President Reagan was interested in establishing a “defensive wall” to blunt the

threat of a nuclear missile attack against this country. The plan was commonly

known as “Star Wars.” Assume a defense contractor comes up with two

defense systems. System A will destroy 60 % of the missiles launched against

this country, but 40 % of the missiles will get through. System B has a 60 %

probability of destroying all the missiles launched but a 40 % chance of letting

all the missiles get through. Should you use the expected value approach to

choose which system to support? Make your choice using common sense.

65. Peter Campbell plans to invest in real estate income property. He plans to hold

that property for 7 years. He is considering two income properties, A and B.

Their initial investment, cash flows, standard deviations of cash flows, and

resale values are as follows.

Property A (in thousands of dollars)

Year Cash Flow Standard deviation

0 �60 0

1 18 1

2 18 1.1

3 18 1.3

4 18 1.4

5 18 1.5

6 18 1.7

7 18 1.9

7 400 (resale value) 0

Property B (in thousands of dollars)

Year Cash Flow Standard deviation

0 �60 0

1 18 .9

2 18 1.1

3 18 1.4

4 18 1.5

5 18 1.6

6 18 1.8

7 18 1.9

7 400 (resale value) 0

Use Microsoft Excel to calculate the NPV and sNPV of each property. (Assume a

discount rate of 12%.)According to the results,which property shouldPeter choose?

66. The MINITAB output on pages 1113–1114 is a market model for Ford stock

return. Please explain the result in accordance with Eqs. 21.5 and 21.6. (Hint:

Refer to Example 21.11.)

67. Assuming that 2 conditions in Table 21.17 change as follows: (1) test cost

changes to $25,000, and (2) under the condition that the test is positive, the

probability of successful drilling is .7 (failure is .3), use the methods introduced

in Appendix 1 to analyze the oil drilling problem again.

1112 21 Statistical Decision Theory: Methods and Applications



68. Sandy is going to make investment for the $10,000 which she deposited for the

past 2 year. Her financial advisor presented the following tables which show (1)

expected profits (in $10,000’s) for various states of nature and their probabilities

and (2) the advisor’s prediction ability about the state of nature.

State of nature

Recession S1 Flat S2 Boom S3

Probability of nature 0.2 0.5 0.3 EMV

Bonds �5.0 1.0 10.0 2.5

Stocks �30.0 3.0 20.0 1.5

State of nature

Recession S1 Flat S2 Boom S3

Advisor’s Recession Z1 0.7 0.2 0.1

Prediction Flat Z2 0.2 0.6 0.1

Boom Z3 0.1 0.2 0.8

Revise the prior probabilities in light of advisor’s prediction ability.

69. (Problem 68 continued.) If the financial advisor predicts a boom state, what is

the EMV of the investing bond, using the revised probability?

70. (Problem 68 continued.) If the advisor predicts a recession state, what is the

EMV of the investing bond, using the revised probability?

71. (Problem 68 continued.) If the advisor predicts a flat state, what is the EMV of

investing bond, using the revised probability?

72. (Problem 68 continued.) Compute the EMV of investing stock, using the

revised probability under each predicted state.

73. (Problem 68 continued.) What is the optimal investment plan based on the

advisor’s prediction state?

MINITAB Output of Market Model for Ford (for Question 66)
MTB > PRINT C2-C4
Data Display

ROW Year Ford Market

1 70 0.4260 0.0010

2 71 0.2933 0.1080

3 72 0.1717 0.1557

4 73 �0.4512 �0.1737

5 74 �0.0968 �0.2964

6 75 0.3960 0.3149

7 76 0.4614 0.1913

8 77 �0.2067 �0.1153

9 78 �0.0026 0.0105

10 75 �0.1479 0.1223

11 80 �0.2938 0.2586

12 81 �0.1025 �0.0994

(continued)
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ROW Year Ford Market

13 82 1.3212 0.1549

14 S3 0.1286 0.1706

15 34 0.0980 0.0115

16 35 0.3237 0.2633

17 86 0.0081 0.1462

18 37 0.3961 0.0203

19 38 �0.2995 0.1240

20 89 �0.0767 0.2725

21 90 �0.3209 �0.0656

MTB > BRIEF 2
MTB > REGRESS C3 1 C4;
SUBC> DW.
Regression Analysis
The regression equation is
Ford ¼ 0.0306 + 0.878 Market

Predictor Coef StDev T P

Constant 0.03057 0.09090 0.34 0.740

Market 0.8777 0.5234 1.66 0.110

S ¼ 0.3756 R-Sq ¼ 12.9% R-Sq(adj) ¼ 8.3%
Analysis of Variance
Source DF SS MS F P
Regression 1 0.3968 0.3968 2.81 0.110
Residual Error 19 2.6309 0.1411
Total 20 3.0777
Unusual Observations
Obs Market Ford Fit StDev Fit Residual St Resid
5 -0.296 -0.0968 -0.2296 0.2110 0.1328 0.43 X
13 0.155 1.3212 0.1665 0.0920 1.1547 3.17R
R denotes an observation with a large standardized
residual
X denotes an observation whose X value gives it large
influence.
Durbin–Watson statistic ¼ 1.30
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Project V: Project for Selected Topics in Statistical Analysis

1. Test the randomness of the annual rates of return for the Dow Jones’ 30

firms which have been calculated in Project IV.

2. Use Microsoft Excel and the Holt-Winters Model to forecast the annual

EPS and DPS for JNJ, IBM and AT&T in accordance with the data in

Project IV.

3. Use the data obtained in Project IV and the annual 3-month T-Bill rate

presented in Table 2.1 to estimate the Jensen investment performance for

all the Dow Jones’ 30 firms.

4. Use the data in Project IV to estimate both Sharpe and Treynor Investment

Performance measures for Dow Jones’ 30 firms.

5. Draw implications from the estimate of Jensen, Treynor and Sharpe

performance measures.

6. Use the statistical results obtained in Projects I-V to write a summary

executive report for your boss.

Download monthly adjusted close price data of JNJ and S&P 500 index

from Yahoo Finance during the period from January 2005 to current month to

do the following:

7. Calculate the monthly rates of return for JNJ and S&P 500 index and test

the randomness of the monthly rates of return for JNJ.

8. Go to St. Louis Federal Reserve Bank website as the link below to download

the monthly data of 3-month T-Bill rate: http://research.stlouisfed.org/fred2/

data/TB3MS.txt and estimate Jensen investment performance for JNJ.

(Remark: the format of the downloaded data is annual rate, therefore the

monthly 3-month T-bill rate is the original data divided by 12)

9. Use the monthly rates of return and 3-month T-bill rate data to estimate

both Sharpe and Treynor Investment Performance measures for JNJ.
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Appendix 1: Using the Spreadsheet in Decision-Tree Analysis

J. M. Jones (1986, European Journal of Operation Research, pp. 385–400) showed
how the Lotus 1-2-3 spreadsheet package can be used to construct an entire decision

tree. Using the information presented in Fig. 21.5, we use Lotus 1-2-3 to construct

the decision tree in Fig. 21.12. In this figure, D represents the decision node and C

represents the event (chance) node, which correspond to □ and ○ in Fig. 21.5,

respectively. Figure 21.12 illustrates all the information we have discussed so far in

a more systematic fashion.

There are three steps in applying a spreadsheet to decision-tree analysis. Data

from Example 21.8 is used to show how these three steps can be executed.

1. Building the Decision Tree on the Spreadsheet (Lotus 1-2-3)

In the Lotus 1-2-3 spreadsheet, we know that the cells contain either numbers or

labels; we can build the tree on spreadsheet by adopting the following

conventions:

(a) Denote decision nodes by D.

(b) Denote chance nodes by #.

(c) Denote the decision emanating from decision nodes and chance outcomes

emanating from chance nodes by appropriate labels.

(d) Provide a connective structure for the tree using vertical and horizontal

dashed line segments.

2. Solving the Tree

The two main tasks involved in solving the decision tree are averaging out and

folding back. Because the Lotus 1-2-3 spreadsheet has excellent computational

abilities, these two tasks can be done easily. The process is as follows:

(a) Create a “master table” within the spreadsheet that incorporates all of the

values used as input in the process of developing the tree (see Table 21.17)

(b) Calculate all yields in the tips of the tree from the master table values. (These

yields are the net of all costs involved.)

(c) Calculate all probabilities needed in the tree from the corresponding values

in the master table and put them in the appropriate places of the tree.

(d) Use the built-in calculating capabilities of the spreadsheet program to

perform the averaging out and folding back process.

3. Sensitive Analysis

The input values in the master table may be subject to change. We can change

the values in the master table and then get results under different situations. For

example, if we change the drilling cost from $100,000 to $50,000, the overall

yield changes from $200,000 to $225,000. The new decision tree is shown in

Fig. 21.13.
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Fig. 21.12 Decision tree with drilling cost of $ 100,000
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Fig. 21.13 Decision tree with drilling cost of $50,000
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Appendix 2: Graphical Derivation of the Capital Market Line

The term risk-free assets in general refers to government securities such as Treasury

bills (T-bills). These assets are backed by the federal government and are default-

free. In other words, T-bills are riskless; the cash flow from them is certain. An

investor’s portfolio can be composed of different sets of portfolio opportunities,

which may include risk-free assets with a return of Rf, shown on the vertical axis of

the risk and return space in Fig. 21.14.

Fig. 21.14 The capital market line

Table 21.17 Numbers for

the oil drilling problems
Test cost $50,000

Drilling cost $100,000

Payoff for successful drilling $1,000,000

Probability for test results

Positive .5

Negative .5

Probability for drilling results

Test positive No test

Success .6 Success .1

Fail .4 Fail .9

Test negative

Success .05

Fail .95
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The opportunity to invest in risk-free assets that yield a return of Rf frees the

investor to create portfolio combinations that include some risky assets. The investor

is able to achieve any combination of risk and return that lies along the line

connecting Rf and a point tangent to Mp, the market portfolio. All the portfolios

along the line RfMPC are preferred to the risky portfolio opportunities on the curve

AMpB, because they all have higher expected returns and some risk. Therefore, the

points of the line RfMpC represent the best attainable combinations of risk and return.

At point Rf, an investor has all available funds invested in the riskless asset and

expects to receive the return of Rf. The portfolios along the line RfMP contain

combinations of investments in the risk-free asset and investments in a portfolio of

risky assets, Mp. In a sense, the investors who hold these portfolios lend the

government money at the risk-free rate Rf —hence the name lending portfolio.
At point Mp, the investor holds only risky assets, having put all her wealth into

the risky asset, or market, portfolio. AtMp, investors receive a rate of return Rm and

undertake risk sm.
If it is assumed that investors can borrow money at the risk-free rate Rf and invest

this money in the risky portfolio Mp, they will be able to construct portfolios with

higher rates of return but higher risks along the line extending beyondMp. The extent

of movement along the lineMPC is regulated by the margin requirements imposed by

the various branches of government. The margin requirements stipulate the minimum

amount of money investors must pay to buy stock. The higher the margin require-

ment, the shorter the lineMPC. The amount of money that investors can borrow may

also be limited by the creditworthiness of the borrowers. The portfolios along

segment MPC are called borrowing portfolios, because the investor must borrow

funds in order to achieve these combinations of risk and return. The new efficient

frontier becomes RfMpC and is referred to as the capital market line (CML). The

capital market line describes the relationship between expected return and total risk.

Equation 21.7 can be derived geometrically. An investor has three choices in

terms of investments. She may invest in Rf, the riskless asset; in the market portfolio

Mp; or in any other efficient portfolio along the efficient frontier, such as portfolio

P in Fig. 21.14.

If the investor puts her money into the riskless asset, she can receive a return of Rf.
If she invests in the market portfolio, she can expect an average return of Rm and risk

of sm. If she invests in portfolio P, she can expect an average return of Rpwith risk of

sp. The difference between Rm and Rf (Rm � Rf) is called the market risk premium.
The investor in portfolio P takes on a risk of sP; her risk premium is (Rp � Rf),

which is less than the risk of an investor who holds portfolio Mp.
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By geometric theory, triangles RfPE and RfMpD are similar—that is, they are

directly proportional. Therefore,12

E Rp

� �� Rf ¼ E Rmð Þ � Rf

� � sp
sm

(21.21)

Appendix 3: Present Value and Net Present Value

In this appendix, we review the concepts of present value and net present value.

Present Value

Because many investment projects will generate returns for several years into the

future, it is important to assess the present (current) value of future payments.

Suppose a payment is to be received in t years’ time and the risk-free annual interest

rate for a period of t years is rt. We know that the future value at the end of t years is
(1þ rt)

t per dollar. Conversely, it follows that the present value of a dollar received

at the end of t years is

Present value per dollar PVIFðrt; tÞ ¼ 1

1þ rtð Þt (21.22)

For example, say $1,000 is to be received in 4 years’ time. At an annual interest

rate of 8 %, the present value of this future receipt is

1; 000

1:08ð Þ4 ¼ $735:03

12 Because DPRjE � DMpRfD it follows that

EðRpÞ � Rf

EðRmÞ � Rf
¼ sp

sm

from this equation, we obtain Eq. 21.21.
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Net Present Value

More generally, we can consider a stream of annual receipts, which may be positive

or negative. Suppose that, in dollars, we are to receive C0 now, C1 in 1 year’s time,

C2 in 2 years’ time, and so on, until finally we receive CN in year N. Again, let rt
denote the annual rate of interest for a period of t years. Then, to find the net present
value of this stream of receipts, we simply add the individual present values,

obtaining

NPV ¼ C0 þ C1

1þ r1ð Þ1 þ
C2

1þ r2ð Þ2 þ � � � þ CN

1þ rNð ÞN ¼
PN
t¼0

Ct

1þ rtð Þt ð21:23Þ

Typically, the rate of interest rt depends on the period t.When a constant rate, r,
is assumed for each period, the net present value formula, Eq. 21.23, simplifies to

NPV ¼
XN
t¼0

Ct

1þ rð Þt (21.24)

Example 21.14 NPV Criteria for Capital Budgeting Decisions. A corporation must

choose between two projects. Each project requires an immediate investment, and

additional costs will be incurred in the next year. The returns from these projects

will be spread over a period of 4 years. The following table shows the dollar

amounts involved:

Year 0 Year 1 Year 2 Year 3 Year 4

Project A Costs 80,000 20,000 0 0 0

Returns 0 20,000 30,000 50,000 50,000

Project B Costs 50,000 50,000 0 0 0

Returns 0 40,000 60,000 30,000 10,000

At first glance, these data might suggest that for project A total returns exceed total

costs by $50,000, whereas the amount of this excess for project B is only $40,000,

signaling a preference for project A. However, such an argument neglects the timing

of the returns. See what happens when we calculate the present values of the net

receipts for each project, assuming an annual interest rate of 8 % over the period:

Year 0 Year 1 Year 2 Year 3 Year 4

Project A Net returns �80,000 0 30,000 50,000 50,000

Present values �80,000 0 25,720 39,692 36,751

Project B Net returns �50,000 �10,000 60,000 30,000 10,000

Present values �50,000 �9,259 51,440 23,815 7,350

We must compare the sums of these present values when evaluating the projects.

For project A, substituting r ¼ .08 into Eq. 21.24 yields
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NPV ¼� 80;000þ 0

1:08ð Þ1 þ
30;000

1:08ð Þ2 þ
50;000

1:08ð Þ3 þ
50;000

1:08ð Þ4
¼ � 80;000þ 0þ 25;720þ 39;692þ 36;751

¼ $22;163

Similarly, for project B,

NPV ¼� 50;000� 10;000

1:08ð Þ1 þ
60;000

1:08ð Þ2 þ
30;000

1:08ð Þ3 þ
10;000

1:08ð Þ4
¼� 50;000� 9;259þ 51;440þ 23;815þ 7;350

¼ $23;346

It emerges, then, that if future returns are discounted at an annual rate of 8 %, the

net present value is higher for project B than for project A. Project B is preferable

because it provides the firm with larger cash flows in the early years, giving the firm

a greater opportunity to reinvest the funds.

Appendix 4: Derivation of Standard Deviation for NPV

In Sect. 21.8 we discussed calculation of the standard deviation of NPV where cash

flows are perfectly positively correlated or where they are independent of each

other. Now we develop a general formula for the standard deviation of NPV for use

in all cash flow relationships.

The general equation for the standard deviation of NPV, sNPV, with a mean of

NPV ¼
XN
t¼1

�Ct

1þ Rf

� �t þ �St

1þ Rf

� �N � I0

is

sNPV ¼
XN
t¼1

s2t
1þ Rf

� �2t þX
N

t¼1

XN
t¼1

WtWtCov Ct;Ctð Þ
 !1=2

; t 6¼ t (21.25)

where

s2t ¼ variance of cash flows in the tth period

Wt, Wt ¼ discount factor for the tth and the tth period, respectively; that is,

Wt ¼ 1

1þ Rf

� �t and Wt ¼ 1

1þ Rf

� �t
Cov Ct;Ctð Þ ¼ covariability between cash flows Ct and Ct
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Cash flows between periods t and t are generally related. Therefore, Cov(Ct, Ct)
is an important factor in the estimation of sNPV. The magnitude, sign, and degree of

the relationships of these cash flows depend on the economic operating conditions

and on the nature of the product or service being produced. If there are only three

periods, then all terms within the parentheses in Eq. 21.25 can be presented as in

Table 21.18. The summation of the diagonal elements W2
1s

2
1; W

2
2s

2
2; W

2
3s

2
3

� �
of

Table 21.18 results in the first part of Eq. 21.25, or

XN
t¼1

s2t
1þ Rf

� �2t

The summation of all other elements in Table 21.18 gives the second portion of

Eq. 21.25, or

XN
t¼1

XN
t¼1

WtWtCov Ct;Ctð Þ; t 6¼ t

Equation 21.25 is the general equation for sNPV. Both Eq. 21.20 for sNPV under

perfectly positively correlated cash flow and Eq. 21.19 for independent cash flows

are special cases derived from the general Eq. 21.25. If rl2 ¼ r13 ¼ r23 ¼ l, then

Cov(C1,C2) ¼ s1s2, Cov(C1,C2) ¼ s1s3, and Cov(C2,C3) ¼ s1s3. Therefore,
Eq. 21.25 reduces to

sNPV ¼ s21
1þ Rf

� �2 þ s22
1þ Rf

� �4 þ s23
1þ Rf

� �6 þ 2s1s2
1þ Rf

� �3 þ 2s1s3
1þ Rf

� �4
 

þ 2s2s3

1þ Rf

� �5
!1=2

¼
X3
t¼1

st
1þ Rtð Þt

which is Eq. 21.20.

Table 21.18 Variance–

Covariance Matrix
W2

1s
2
1

W1W2Cov(C1,C2) W1W3Cov(C1,C3)

W2W1Cov(C2,C1) W2
2s

2
2

W1W3Cov(C2,C3)

W3W1Cov(C3,C1) W2W3Cov(C2,C3) W2
3s

2
3
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Appendix A

Table A.1 Probability function of the binomial distribution

The table shows the probability of x successes in n independent trials, each with probability of

success p. For example, the probability of 4 successes in 8 independent trials, each with

probability of success .35, is .1875

n x p

.05 .10 .15 .20 .25 .30 .35 .40 .45 .50

1 0 .9500 .9000 .8500 .8000 .7500 .7000 .6500 .6000 .5500 .5000

1 .0500 .1000 .1500 .2000 .2500 .3000 .3500 .4000 .4500 .5000

2 0 .9025 .8100 .7225 .6400 .5625 .4900 .4225 .3600 .3025 .2500

1 .0950 .1800 .2550 .3200 .3750 .4200 .4550 .4800 .4950 .5000

2 .0025 .0100 .0225 .0400 .0625 .0900 .1225 .1600 .2025 .2500

3 0 .8574 .7290 .6141 .5120 .4219 .3430 .2746 .2160 .1664 .1250

1 .1354 .2430 .3251 .3840 .4219 .4410 .4436 .4320 .4084 .3750

2 .0071 .0270 .0574 .0960 .1406 .1890 .2389 .2880 .3341 .3750

3 .0001 .0010 .0034 .0080 .0156 .0270 .0429 .0640 .0911 .1250

4 0 .8145 .6561 .5220 .4096 .3164 .2401 .1785 .1296 .0915 .0625

1 .1715 .2916 .3685 .4096 .4219 .4116 .3845 .3456 .2995 .2500

2 .0135 .0486 .0975 .1536 .2109 .2646 .3105 .3456 .3675 .3750

3 .0005 .0036 .0115 .0256 .0469 .0756 .1115 .1536 .2005 .2500

4 .0000 .0001 .0005 .0016 .0039 .0081 .0150 .0256 .0410 .0625

5 0 .7738 .5905 .4437 .3277 .2373 .1681 .1160 .0778 .0503 .0312

1 .2036 .3280 .3915 .4096 .3955 .3602 .3124 .2592 .2059 .1562

2 .0214 .0729 .1382 .2048 .2637 .3087 .3364 .3456 .3369 .3125

3 .0011 .0081 .0244 .0512 .0879 .1323 .1811 .2304 .2757 .3125

4 .0000 .0004 .0022 .0064 .0146 .0284 .0488 .0768 .1128 .1562

5 .0000 .0000 .0001 .0003 .0010 .0024 .0053 .0102 .0185 .0312

6 0 .7351 .5314 .3771 .2621 .1780 .1176 .0754 .0467 .0277 .0156

1 .2321 .3543 .3993 .3932 .3560 .3025 .2437 .1866 .1359 .0938

2 .0305 .0984 .1762 .2458 .2966 .3241 .3280 .3110 .2780 .2344

3 .0021 .0146 .0415 .0819 .1318 .1852 .2355 .2765 .3032 .3125

(continued)
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Table A.1 (continued)

4 .0001 .0012 .0055 .0154 .0330 .0595 .0951 .1382 .1861 .2344

5 .0000 .0001 .0004 .0015 .0044 .0102 .0205 .0369 .0609 .0938

6 .0000 .0000 .0000 .0001 .0002 .0007 .0018 .0041 .0083 .0156

7 0 .6983 .4783 .3206 .2097 .1335 .0824 .0490 .0280 .0152 .0078

1 .2573 .3720 .3960 .3670 .3115 .2471 .1848 .1306 .0872 .0547

2 .0406 .1240 .2097 .2753 .3115 .3177 .2985 .2613 .2140 .1641

3 .0036 .0230 .0617 .1147 .1730 .2269 .2679 .2903 .2918 .2734

4 .0002 .0026 .0109 .0287 .0577 .0972 .1442 .1935 .2388 .2734

5 .0000 .0002 .0012 .0043 .0115 .0250 .0466 .0774 .1172 .1641

6 .0000 .0000 .0001 .0004 .0013 .0036 .0084 .0172 .0320 .0547

7 .0000 .0000 .0000 .0000 .0001 .0002 .0006 .0016 .0037 .0078

8 0 .6634 .4305 .2725 .1678 .1001 .0576 .0319 .0168 .0084 .0039

1 .2793 .3826 .3847 .3355 .2670 .1977 .1373 .0896 .0548 .0312

2 .0515 .1488 .2376 .2936 .3115 .2965 .2587 .2090 .1569 .1094

3 .0054 .0331 .0839 .1468 .2076 .2541 .2786 .2787 .2568 .2188

4 .0004 .0046 .0815 .0459 .0865 .1361 .1875 .2322 .2627 .2734

5 .0000 .0004 .0026 .0092 .0231 .0467 .0808 .1239 .1719 .2188

6 .0000 .0000 .0002 .0011 .0038 .0100 .0217 .0413 .0703 .1094

7 .0000 .0000 .0000 .0001 .0004 .0012 .0033 .0079 .0164 .0312

8 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0007 .0017 .0039

9 0 .6302 .3874 .2316 .1342 .0751 .0404 .0207 .0101 .0046 .0020

1 .2985 .3874 .3679 .3020 .2253 .1556 .1004 .0605 .0339 .0176

2 .0629 .1722 .2597 .3020 .3003 .2668 .2162 .1612 .1110 .0703

3 .0077 .0446 .1069 .1762 .2336 .2668 .2716 .2508 .2119 .1641

4 .0006 .0074 .0283 .0661 .1168 .1715 .2194 .2508 .2600 .2461

5 .0000 .0008 .0050 .0165 .0389 .0735 .1181 .1672 .2128 .2461

6 .0000 .0001 .0006 .0028 .0087 .0210 .0424 .0743 .1160 .1641

7 .0000 .0000 .0000 .0003 .0012 .0039 .0098 .0212 .0407 .0703

8 .0000 .0000 .0000 .0000 .0001 .0004 .0013 .0035 .0083 .0176

9 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0008 .0020

10 0 .5987 .3487 .1969 .1074 .0563 .0282 .0135 .0060 .0025 .0010

1 .3151 .3874 .3474 .2684 .1877 .1211 .0725 .0403 .0207 .0098

2 .0746 .1937 .2759 .3020 .2816 .2335 .1757 .1209 .0763 .0439

3 .0105 .0574 .1298 .2013 .2503 .2668 .2522 .2150 .1665 .1172

4 .0010 .0112 .0401 .0881 .1460 .2001 .2377 .2508 .2384 .2051

5 .0001 .0015 .0085 .0264 .0584 .1029 .1536 .2007 .2340 .2461

6 .0000 .0001 .0012 .0055 .0162 .0368 .0689 .1115 .1596 .2051

7 .0000 .0000 .0001 .0008 .0031 .0090 .0212 .0425 .0746 .1172

8 .0000 .0000 .0000 .0001 .0004 .0014 .0043 .0106 .0229 .0439

9 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0016 .0042 .0098

10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010

11 0 .5688 .3138 .1673 .0859 .0422 .0198 .0088 .0036 .0014 .0005

1 .3293 .3835 .3248 .2362 .1549 .0932 .0518 .0266 .0125 .0054

2 .0867 .2131 .2866 .2953 .2581 .1998 .1395 .0887 .0513 .0269

3 .0137 .0710 .1517 .2215 .2581 .2568 .2254 .1774 .1259 .0806

4 .0014 .0158 .0536 .1107 .1721 .2201 .2428 .2365 .2060 .1611

5 .0001 .0025 .0132 .0388 .0803 .1321 .1830 .2207 .2360 .2256

6 .0000 .0003 .0023 .0097 .0268 .0566 .0985 .1471 .1931 .2256

(continued)
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Table A.1 (continued)

7 .0000 .0000 .0003 .0017 .0064 .0173 .0379 .0701 .1128 .1611

8 .0000 .0000 .0000 .0002 .0011 .0037 .0102 .0234 .0462 .0806

9 .0000 .0000 .0000 .0000 .0001 .0005 .0018 .0052 .0126 .0269

10 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0007 .0021 .0054

11 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0005

12 0 .5404 .2824 .1422 .0687 .0317 .0138 .0057 .0022 .0008 .0002

1 .3413 .3766 .3012 .2062 .1267 .0712 .0368 .0174 .0075 .0029

2 .0988 .2301 .2924 .2835 .2323 .1678 .1088 .0639 .0339 .0161

3 .0173 .0852 .1720 .2362 .2581 .2397 .1954 .1419 .0923 .0537

4 .0021 .0213 .0683 .1329 .1936 .2311 .2367 .2128 .1700 .1208

5 .0002 .0038 .0193 .0532 .1032 .1585 .2039 .2270 .2225 .1934

6 .0000 .0005 .0040 .0155 .0401 .0792 .1281 .1766 .2124 .2256

7 .0000 .0000 .0006 .0033 .0115 .0291 .0591 .1009 .1489 .1934

8 .0000 .0000 .0001 .0005 .0024 .0078 .0199 .0420 .0762 .1208

9 .0000 .0000 .0000 .0001 .0004 .0015 .0048 .0125 .0277 .0537

10 .0000 .0000 .0000 .0000 .0000 .0002 .0008 .0025 .0068 .0161

11 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010 .0029

12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002

13 0 .5133 .2542 .1209 .0550 .0238 .0097 .0037 .0013 .0004 .0001

1 .3512 .3672 .2774 .1787 .1029 .0540 .0259 .0113 .0045 .0016

2 .1109 .2448 .2937 .2680 .2059 .1388 .0836 .0453 .0220 .0095

3 .0214 .0997 .1900 .2457 .2517 .2181 .1651 .1107 .0660 .0349

4 .0028 .0277 .0838 .1535 .2097 .2337 .2222 .1845 .1350 .0873

5 .0003 .0055 .0266 .0691 .1258 .1803 .2154 .2214 .1989 .1571

6 .0000 .0008 .0063 .0230 .0559 .1030 .1546 .1968 .2169 .2095

7 .0000 .0001 .0011 .0058 .0186 .0442 .0833 .1312 .1775 .2095

8 .0000 .0000 .0001 .0011 .0047 .0142 .0336 .0656 .1089 .1571

9 .0000 .0000 .0000 .0001 .0009 .0034 .0101 .0243 .0495 .0873

10 .0000 .0000 .0000 .0000 .0001 .0006 .0022 .0065 .0162 .0349

11 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0012 .0036 .0095

12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0016

13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

14 0 .4877 .2288 .1028 .0440 .0178 .0068 .0024 .0008 .0002 .0001

1 .3593 .3559 .2539 .1539 .0832 .0407 .0181 .0073 .0027 .0009

2 .1229 .2570 .2912 .2501 .1802 .1134 .0634 .0317 .0141 .0056

3 .0259 .1142 .2056 .2501 .2402 .1943 .1366 .0845 .0462 .0222

4 .0037 .0348 .0998 .1720 .2202 .2290 .2022 .1549 .1040 .0611

5 .0004 .0078 .0352 .0860 .1468 .1963 .2178 .2066 .1701 .1222

6 .0000 .0013 .0093 .0322 .0734 .1262 .1759 .2066 .2088 .1833

7 .0000 .0002 .0019 .0092 .0280 .0618 .1082 .1574 .1952 .2095

8 .0000 .0000 .0003 .0020 .0082 .0232 .0510 .0918 .1398 .1833

9 .0000 .0000 .0000 .0003 .0018 .0066 .0183 .0408 .0762 .1222

10 .0000 .0000 .0000 .0000 .0003 .0014 .0049 .0136 .0312 .0611

11 .0000 .0000 .0000 .0000 .0000 .0002 .0010 .0033 .0093 .0222

12 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0019 .0056

13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0009

14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

(continued)
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Table A.1 (continued)

15 0 .4633 .2059 .0874 .0352 .0134 .0047 .0016 .0005 .0001 .0000

1 .3658 .3432 .2312 .1319 .0668 .0305 .0126 .0047 .0016 .0005

2 .1348 .2669 .2856 .2309 .1559 .0916 .0476 .0219 .0090 .0032

3 .0307 .1285 .2184 .2501 .2252 .1700 .1110 .0634 .0318 .0139

4 .0049 .0428 .1156 .1876 .2252 .2186 .1792 .1268 .0780 .0417

5 .0006 .0105 .0449 .1032 .1651 .2061 .2123 .1859 .1404 .0916

6 .0000 .0019 .0132 .0430 .0917 .1472 .1906 .2066 .1914 .1527

7 .0000 .0003 .0030 .0138 .0393 .0811 .1319 .1771 .2013 .1964

8 .0000 .0000 .0005 .0035 .0131 .0348 .0710 .1181 .1647 .1964

9 .0000 .0000 .0001 .0007 .0034 .0116 .0298 .0612 .1048 .1527

10 .0000 .0000 .0000 .0001 .0007 .0030 .0096 .0245 .0515 .0916

11 .0000 .0000 .0000 .0000 .0001 .0006 .0024 .0074 .0191 .0417

12 .0000 .0000 .0000 .0000 .0000 .0001 .0004 .0016 .0052 .0139

13 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010 .0032

14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

16 0 .4401 .1853 .0743 .0281 .0100 .0033 .0010 .0003 .0001 .0000

1 .3706 .3294 .2097 .1126 .0535 .0228 .0087 .0030 .0009 .0002

2 .1463 .2745 .2775 .2111 .1336 .0732 .0353 .0150 .0056 .0018

3 .0359 .1423 .2285 .2463 .2079 .1465 .0888 .0468 .0215 .0085

4 .0061 .0514 .1311 .2001 .2252 .2040 .1553 .1014 .0572 .0278

5 .0008 .0137 .0555 .1201 .1802 .2099 .2008 .1623 .1123 .0667

6 .0001 .0028 .0180 .0550 .1101 .1649 .1982 .1983 .1684 .1222

7 .0000 .0004 .0045 .0197 .0524 .1010 .1524 .1889 .1969 .1746

8 .0000 .0001 .0009 .0055 .0197 .0487 .0923 .1417 .1812 .1964

9 .0000 .0000 .0001 .0012 .0058 .0185 .0442 .0840 .1318 .1746

10 .0000 .0000 .0000 .0002 .0014 .0056 .0167 .0392 .0755 .1222

11 .0000 .0000 .0000 .0000 .0002 .0013 .0049 .0142 .0337 .0667

12 .0000 .0000 .0000 .0000 .0000 .0002 .0011 .0040 .0115 .0278

13 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0008 .0029 .0085

14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0018

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002

16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

17 0 .4181 .1668 .0631 .0225 .0075 .0023 .0007 .0002 .0000 .0000

1 .3741 .3150 .1893 .0957 .0426 .0169 .0060 .0019 .0005 .0001

2 .1575 .2800 .2673 .1914 .1136 .0581 .0260 .0102 .0035 .0010

3 .0415 .1556 .2359 .2393 .1893 .1245 .0701 .0341 .0144 .0052

4 .0076 .0605 .1457 .2093 .2209 .1868 .1320 .0796 .0411 .0182

5 .0010 .0175 .0668 .1361 .1914 .2081 .1849 .1379 .0875 .0472

6 .0001 .0039 .0236 .0680 .1276 .1784 .1991 .1839 .1432 .0944

7 .0000 .0007 .0065 .0267 .0668 .1201 .1685 .1927 .1841 .1484

8 .0000 .0001 .0014 .0084 .0279 .0644 .1134 .1606 .1883 .1855

9 .0000 .0000 .0003 .0021 .0093 .0276 .0611 .1070 .1540 .1855

10 .0000 .0000 .0000 .0004 .0025 .0095 .0263 .0571 .1008 .1484

11 .0000 .0000 .0000 .0001 .0005 .0026 .0090 .0242 .0525 .0944

12 .0000 .0000 .0000 .0000 .0001 .0006 .0024 .0081 .0215 .0472

13 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0021 .0068 .0182

(continued)
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Table A.1 (continued)

14 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0004 .0016 .0052

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010

16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

18 0 .3972 .1501 .0536 .0180 .0056 .0016 .0004 .0001 .0000 .0000

1 .3763 .3002 .1704 .0811 .0338 .0126 .0042 0012 .0003 .0001

2 .1683 .2835 .2556 .1723 .0958 .0458 .0190 .0069 .0022 .0006

3 .0473 .1680 .2406 .2297 .1704 .1046 .0547 .0246 .0095 .0031

4 .0093 .0700 .1592 .2153 .2130 .1681 .1104 .0614 .0291 .0117

5 .0014 .0218 .0787 .1507 .1988 .2017 .1664 .1146 .0666 .0327

6 .0002 .0052 .0301 .0816 .1436 .1873 .1941 .1655 .1181 .0708

7 .0000 .0010 .0091 .0350 .0820 .1376 .1792 .1892 .1657 .1214

8 .0000 .0002 .0022 .0120 .0376 .0811 .1327 .1734 .1864 .1669

9 .0000 .0000 .0004 .0033 .0139 .0386 .0794 .1284 .1694 .1855

10 .0000 .0000 .0001 .0008 .0042 .0149 .0385 .0771 .1248 .1669

11 .0000 .0000 .0000 .0001 .0010 .0046 .0151 .0374 .0742 .1214

12 .0000 .0000 .0000 .0000 .0002 .0012 .0047 .0145 .0354 .0708

13 .0000 .0000 .0000 .0000 .0000 .0002 .0012 .0044 .0134 .0327

14 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0011 .0039 .0117

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0009 .0031

16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0006

17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

19 0 .3774 .1351 .0456 .0144 .0042 .0011 .0003 .0001 .0000 .0000

1 .3774 .2852 .1529 .0685 .0268 .0093 .0029 .0008 .0002 .0000

2 .1787 .2852 .2428 .1540 .0803 .0358 .0138 .0046 .0013 .0003

3 .0533 .1796 .2428 .2182 .1517 .0869 .0422 .0175 .0062 .0018

4 .0112 .0798 .1714 .2182 .2023 .1491 .0909 .0467 .0203 .0074

5 .0018 .0266 .0907 .1636 .2023 .1916 .1468 .0933 .0497 .0222

6 .0002 .0069 .0374 .0955 .1574 .1916 .1844 .1451 .0949 .0518

7 .0000 .0014 .0122 .0443 .0974 .1525 .1844 .1797 .1443 .0961

8 .0000 .0002 .0032 .0166 .0487 .0981 .1489 .1797 .1771 .1442

9 .0000 .0000 .0007 .0051 .0198 .0514 .0980 .1464 .1771 .1762

10 .0000 .0000 .0001 .0013 .0066 .0220 .0528 .0976 .1449 .1762

11 .0000 .0000 .0000 .0003 .0018 .0077 .0233 .0532 .0970 .1442

12 .0000 .0000 .0000 .0000 .0004 .0022 .0083 .0237 .0529 .0961

13 .0000 .0000 .0000 .0000 .0001 .0005 .0024 .0085 .0233 .0518

14 .0000 .0000 .0000 .0000 .0000 .0001 .0006 .0024 .0082 .0222

15 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0022 .0074

16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0018

17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003

18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

20 0 .3585 .1216 .0388 .0115 .0032 .0008 .0002 .0000 .0000 .0000

1 .3774 .2702 .1368 .0576 .0211 .0068 .0020 .0005 .0001 .0000

2 .1887 .2852 .2293 .1369 .0669 .0278 .0100 .0031 .0008 .0002

3 .0596 .1901 .2428 .2054 .1339 .0716 .0323 .0123 .0040 .0011

(continued)
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Table A.1 (continued)

4 .0133 .0898 .1821 .2182 .1897 .1304 .0738 .0350 .0139 .0046

5 .0022 .0319 .1028 .1746 .2023 .1789 .1272 .0746 .0365 .0148

6 .0003 .0089 .0454 .1091 .1686 .1916 .1712 .1244 .0746 .0370

7 .0000 .0020 .0160 .0545 .1124 .1643 .1844 .1659 .1221 .0739

8 .0000 .0004 .0046 .0222 .0609 .1144 .1614 .1797 .1623 .1201

9 .0000 .0001 .0011 .0074 .0271 .0654 .1158 .1597 .1771 .1602

10 .0000 .0000 .0002 .0020 .0099 .0308 .0686 .1171 .1593 .1762

11 .0000 .0000 .0000 .0005 .0030 .0120 .0336 .0710 .1185 .1602

12 .0000 .0000 .0000 .0001 .0008 .0039 .0136 .0355 .0727 .1201

13 .0000 .0000 .0000 .0000 .0002 .0010 .0045 .0146 .0366 .0739

14 .0000 .0000 .0000 .0000 .0000 .0002 .0012 .0049 .0150 .0370

15 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0013 .0049 .0148

16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0013 .0046

17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0011

18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002

19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

20 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

Source: Reprinted from Tables of the Binomial Probability Distribution (1950), courtesy of the

National Institute of Standards and Technology, Technology Administration, U.S. Department of

Commerce

Table A.2 Poisson probabilities

For a given value of λ, entry indicates the probability of obtaining, a specified value of X

λ
X .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

0 .9048 .8187 .7408 .6703 .6065 .5488 .4966 .4493 .4066 .3679

1 .0905 .1637 .2222 .2681 .3033 .3293 .3476 .3595 .3659 .3679

2 .0045 .0164 .0333 .0536 .0758 .0988 .1217 .1438 .1647 .1839

3 .0002 .0011 .0033 .0072 .0126 .0198 .0284 .0383 .0494 .0613

4 .0000 .0001 .0003 .0007 .0016 .0030 .0050 .0077 .0111 .0153

5 .0000 .0000 .0000 .0001 .0002 .0004 .0007 .0012 .0020 .0031

6 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0003 .0005

7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

λ
X 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0 .3329 .3012 .2725 .2466 .2231 .2019 .1827 .1653 .1496 .1353

1 .3662 .3614 .3543 .3452 .3347 .3230 .3106 .2975 .2842 .2707

2 .2014 .2169 .2303 .2417 .2510 .2584 .2640 .2678 .2700 .2707

3 .0738 .0867 .0998 .1128 .1255 .1378 .1496 .1607 .1710 .1804

4 .0203 .0260 .0324 .0395 .0471 .0551 .0636 .0723 .0812 .0902

5 .0045 .0062 .0084 .0111 .0141 .0176 .0216 .0260 .0309 .0361

6 .0008 .0012 .0018 .0026 .0035 .0047 .0061 .0078 .0098 .0120

7 .0001 .0002 .0003 .0005 .0008 .0011 .0015 .0020 .0027 .0034

8 .0000 .0000 .0001 .0001 .0001 .0002 .0003 .0005 .0006 .0009

9 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002
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Table A.2 (continued)

λ
X 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

0 .1225 .1108 .1003 .0907 .0821 .0743 .0672 .0608 .0550 .0498

1 .2572 .2438 .2306 .2177 .2052 .1931 .1815 .1703 .1596 .1494

2 .2700 .2681 .2652 .2613 .2565 .2510 .2450 .2384 .2314 .2240

3 .1890 .1966 .2033 .2090 .2138 .2176 .2205 .2225 .2237 .2240

4 .0992 .1082 .1169 .1254 .1336 .1414 .1488 .1557 .1622 .1680

5 .0417 .0476 .0538 .0602 .0668 .0735 .0804 .0872 .0940 .1008

6 .0146 .0174 .0206 .0241 .0278 .0319 .0362 .0407 .0455 .0504

7 .0044 .0055 .0068 .0083 .0099 .0118 .0139 .0163 .0188 .0216

8 .0011 .0015 .0019 .0025 .0031 .0038 .0047 .0057 .0068 .0081

9 .0003 .0004 .0005 .0007 .0009 .0011 .0014 .0018 .0022 .0027

10 .0001 .0001 .0001 .0002 .0002 .0003 .0004 .0005 .0006 .0008

11 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002 .0002

12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

λ
X 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

0 .0450 .0408 .0369 .0334 .0302 .0273 .0247 .0224 .0202 .0183

1 .1397 .1304 .1217 .1135 .1057 .0984 .0915 .0850 .0789 .0733

2 .2165 .2087 .2008 .1929 .1850 .1771 .1692 .1615 .1539 .1465

3 .2237 .2226 .2209 .2180 .2158 .2125 .2087 .2046 .2001 .1954

4 .1734 .1781 .1823 .1858 .1888 .1912 .1931 .1944 .1951 .1954

5 .1075 .1140 .1203 .1264 .1322 .1377 .1429 .1477 .1522 .1563

6 .0555 .0608 .0662 .0716 .0771 .0826 .0881 .0936 .0989 .1042

7 .0246 .2078 .0312 .0348 .0385 .0425 .0466 .0508 .0551 .0595

8 .0095 .0111 .0129 .0148 .0169 .0191 .0215 .0241 .0269 .0298

9 .0033 .0040 .0047 .0056 .0066 .0076 .0089 .0102 .0116 .0132

10 .0010 .0013 .0016 .0019 .0023 .0028 .0033 .0039 .0045 .0053

11 .0003 .0004 .0005 .0006 .0007 .0009 .0011 .0013 .0016 .0019

12 .0001 .0001 .0001 .0002 .0002 .0003 .0003 .0004 .0005 .0006

13 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0002 .0002

14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

λ
X 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

0 .0166 .0150 .0136 .0123 .0111 .0101 .0091 .0082 .0074 .0067

1 .0679 .0630 .0583 .0540 .0500 .0462 .0427 .0395 .0365 .0337

2 .1393 .1323 .1254 .1188 .1125 .1063 .1005 .0948 .0894 .0842

3 .1904 .1852 .1798 .1743 .1687 .1631 .1574 .1517 .1460 .1404

4 .1951 .1944 .1933 .1917 .1898 .1875 .1849 .1820 .1789 .1755

5 .1600 .1633 .1662 .1687 .1708 .1725 .1738 .1747 .1753 .1755

6 .1093 .1143 .1191 .1237 .1281 .1323 .1362 .1398 .1432 .1462

7 .0640 .0686 .0732 .0778 .0824 .0869 .0914 .0959 .1002 .1044

8 .0328 .0360 .0393 .0428 .0463 .0500 .0537 .0575 .0614 .0653

9 .0150 .0168 .0188 .0209 .0232 .0255 .0280 .0307 .0334 .0363

10 .0061 .0071 .0081 .0092 .0104 .0118 .0132 .0147 .0164 .0181

11 .0023 .0027 .0032 .0037 .0043 .0049 .0056 .0064 .0073 .0082

12 .0008 .0009 .0011 .0014 .0016 .0019 .0022 .0026 .0030 .0034

(continued)

Appendix A 1131



Table A.2 (continued)

13 .0002 .0003 .0004 .0005 .0006 .0007 .0008 .0009 .0011 .0013

14 .0001 .0001 .0001 .0001 .0002 .0002 .0003 .0003 .0004 .0005

15 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0001 .0002

λ
X 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0

0 .0061 .0055 .0050 .0045 .0041 .0037 .0033 .0030 .0027 .0025

1 .0311 .0287 .0265 .0244 .0225 .0207 .0191 .0176 .0162 .0149

2 .0793 .0746 .0701 .0659 .0618 .0580 .0544 .0509 .0477 .0446

3 .1348 .1293 .1239 .1185 .1133 .1082 .1033 .0985 .0938 .0892

4 .1719 .1681 .1641 .1600 .1558 .1515 .1472 .1428 .1383 .1339

5 .1753 .1748 .1740 .1728 .1714 .1697 .1678 .1656 .1632 .1606

6 .1490 .1515 .1537 .1555 .1571 .1584 .1594 .1601 .1605 .1606

7 .1086 .1125 .1163 .1200 .1234 .1267 .1298 .1326 .1353 .1377

8 .0692 .0731 .0771 .0810 .0849 .0887 .0925 .0962 .0998 .1033

9 .0392 .0423 .0454 .0486 .0519 .0552 .0586 .0620 .0654 .0688

10 .0200 .0220 .0241 .0262 .0285 .0309 .0334 .0359 .0386 .0413

11 .0093 .0104 .0116 .0129 .0143 .0157 .0173 .0190 .0207 .0225

12 .0039 .0045 .0051 .0058 .0065 .0073 .0082 .0092 .0102 .0113

13 .0015 .0018 .0021 .0024 .0028 .0032 .0036 .0041 .0046 .0052

14 .0006 .0007 .0008 .0009 .0011 .0013 .0015 .0017 .0019 .0022

15 .0002 .0002 .0003 .0003 .0004 .0005 .0006 .0007 .0008 .0009

16 .0001 .0001 .0001 .0001 .0001 .0002 .0002 .0002 .0003 .0003

17 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001

λ
X 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0

0 .0022 .0020 .0018 .0017 .0015 .0014 .0012 .0011 .0010 .0009

1 .0137 .0126 .0116 .0106 .0098 .0090 .0082 .0076 .0070 .0064

2 .0417 .0390 .0364 .0340 .0318 .0296 .0276 .0258 0240 .0223

3 .0848 .0806 .0765 .0726 .0688 .0652 .0617 .0584 .0552 .0521

4 .1294 .1249 .1205 .1162 .1118 .1076 .1034 .0992 .0952 .0912

5 .1579 .1549 .1519 .1487 .1454 .1420 .1385 .1349 .1314 .1277

6 .1605 .1601 .1595 .1586 .1575 .1562 .1546 .1529 .1511 .1490

7 .1399 .1418 .1435 .1450 .1462 .1472 .1480 .1486 .1489 .1490

8 .1066 .1099 .1130 .1160 .1188 .1215 .1240 .1263 .1284 .1304

9 .0723 .0757 .0791 .0825 .0858 .0891 .0923 .0954 .0985 .1014

10 .0441 .0469 .0498 .0528 .0558 .0588 .0618 .0649 .0679 .0710

11 .0245 .0265 .0285 .0307 .0330 .0353 .0377 .0401 .0426 .0452

12 .0124 .0137 .0150 .0164 .0179 .0194 .0210 .0227 .0245 .0264

13 .0058 .0065 .0073 .0081 .0089 .0098 .0108 .0119 .0130 .0142

14 .0025 .0029 .0033 .0037 .0041 .0046 .0052 .0058 .0064 .0071

15 .0010 .0012 .0014 .0016 .0018 .0020 .0023 .0026 .0029 .0033

16 .0004 .0005 .0005 .0006 .0007 .0008 .0010 .0011 .0013 .0014

17 .0001 .0002 .0002 .0002 .0003 .0003 .0004 .0004 .0005 .0006

18 .0000 .0001 .0001 .0001 .0001 .0001 .0001 .0002 .0002 .0002

19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001

(continued)

1132 Appendix A



Table A.2 (continued)

λ
X 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0

0 .0008 .0007 .0007 .0006 .0006 .0005 .0005 .0004 .0004 .0003

1 .0059 .0054 .0049 .0045 .0041 .0038 .0035 .0032 .0029 .0027

2 .0208 .0194 .0180 .0167 .0156 .0145 .0134 .0125 .0116 .0107

3 .0492 .0464 .0438 .0413 .0389 .0366 .0345 .0324 .0305 .0286

4 .0874 .0836 .0799 .0764 .0729 .0696 .0663 .0632 .0602 .0573

5 .1241 .1204 .1167 .1130 .1094 .1057 .1021 .0986 .0951 .0916

6 .1468 .1445 .1420 .1394 .1367 .1339 .1311 .1282 .1252 .1221

7 .1489 .1486 .1481 .1474 .1465 .1454 .1442 .1428 .1413 .1396

8 .1321 .1337 .1351 .1363 .1373 .1382 .1388 .1392 .1395 .1396

9 .1042 .1070 .1096 .1121 .1144 .1167 .1187 .1207 .1224 .1241

10 .0740 .0770 .0800 .0829 .0858 .0887 .0914 .0941 .0967 .0993

11 .0478 .0504 .0531 .0558 .0585 .0613 .0640 .0667 .0695 .0722

12 .0283 .0303 .0323 .0344 .0366 .0388 .0411 .0434 .0457 .0481

13 .0154 .0168 .0181 .0196 .0211 .0227 .0243 .0260 .0278 .0296

14 .0078 .0086 .0095 .0104 .0113 .0123 .0134 .0145 .0157 .0169

15 .0037 .0041 .0046 .0051 .0057 .0062 .0069 .0075 .0083 .0090

16 .0016 .0019 .0021 .0024 .0026 .0030 .0033 .0037 .0041 .0045

17 .0007 .0008 .0009 .0010 .0012 .0013 .0015 .0017 .0019 .0021

18 .0003 .0003 .0004 .0004 .0005 .0006 .0006 .0007 .0008 .0009

19 .0001 .0001 .0001 .0002 .0002 .0002 .0003 .0003 .0003 .0004

20 .0000 .0000 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0002

21 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001

λ
X 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0

0 .0003 .0003 .0002 .0002 .0002 .0002 .0002 .0002 .0001 .0001

1 .0025 .0023 .0021 .0019 .0017 .0016 .0014 .0013 .0012 .0011

2 .0100 .0092 .0086 .0079 .0074 .0068 .0063 .0058 .0054 .0050

3 .0269 .0252 .0237 .0222 .0208 .0195 .0183 .0171 .0160 .0150

4 .0544 .0517 .0491 .0466 .0443 .0420 .0398 .0377 .0357 .0337

5 .0882 .0849 .0816 .0784 .0752 .0722 .0692 .0663 .0635 .0607

6 .1191 .1160 .1128 .1097 .1066 .1034 .1003 .0972 .0941 .0911

7 .1378 .1358 .1338 .1317 .1294 .1271 .1247 .1222 .1197 .1171

8 .1395 .1392 .1388 .1382 .1375 .1366 .1356 .1344 .1332 .1318

9 .1256 .1269 .1280 .1290 .1299 .1306 .1311 .1315 .1317 .1318

10 .1017 .1040 .1063 .1084 .1104 .1123 .1140 .1157 .1172 .1186

11 .0749 .0776 .0802 .0828 .0853 .0878 .0902 .0925 .0948 .0970

12 .0505 .0530 .0555 .0579 .0604 .0629 .0654 .0679 .0703 .0728

13 .0315 .0334 .0354 .0374 .0395 .0416 .0438 .0459 .0481 .0504

14 .0182 .0196 .0210 .0225 .0240 .0256 .0272 .0289 .0306 .0324

15 .0098 .0107 .0116 .0126 .0136 .0147 .0158 .0169 .0182 .0194

16 .0050 .0055 .0060 .0066 .0072 .0079 .0086 .0093 .0101 .0109

17 .0024 .0026 .0029 .0033 .0036 .0040 .0044 .0048 .0053 .0058

18 .0011 .0012 .0014 .0015 .0017 .0019 .0021 .0024 .0026 .0029

19 .0005 .0005 .0006 .0007 .0008 .0009 .0010 .0011 .0012 .0014

20 .0002 .0002 .0002 .0003 .0003 .0004 .0004 .0005 .0005 .0006
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Table A.2 (continued)

21 .0001 .0001 .0001 .0001 .0001 .0002 .0002 .0002 .0002 .0003

22 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0001 .0001

λ
X 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10

0 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0000

1 .0010 .0009 .0009 .0008 .0007 .0007 .0006 .0005 .0005 .0005

2 .0046 .0043 .0040 .0037 .0034 .0031 .0029 .0027 .0025 .0023

3 .0140 .0131 .0123 .0115 .0107 .0100 .0093 .0087 .0081 .0076

4 .0319 .0302 .0285 .0269 .0254 .0240 .0226 .0213 .0201 .0189

5 .0581 .0555 .0530 .0506 .0483 .0460 .0439 .0418 .0398 .0378

6 .0881 .0851 .0822 .0793 .0764 .0736 .0709 .0682 .0656 .0631

7 .1145 .1118 .1091 .1064 .1037 .1010 .0982 .0955 .0928 .0901

8 .1302 .1286 .1269 .1251 .1232 .1212 .1191 .1170 .1148 .1126

9 .1317 .1315 .1311 .1306 .1300 .1293 .1284 .1274 .1263 .1251

10 .1198 .1210 .1219 .1228 .1235 .1241 .1245 .1249 .1250 .1251

11 .0991 .1012 .1031 .1049 .1067 .1083 .1098 .1112 .1125 .1137

12 .0752 .0776 .0799 .0822 .0844 .0866 .0888 .0908 .0928 .0948

13 .0526 .0549 .0572 .0594 .0617 .0640 .0662 .0685 .0707 .0729

14 .0342 .0361 .0380 .0399 .0419 .0439 .0459 .0479 .0500 .0521

15 .0208 .0221 .0235 .0250 .0265 .0281 .0297 .0313 .0330 .0347

16 .0118 .0127 .0137 .0147 .0157 .0168 .0180 .0192 .0204 .0217

17 .0063 .0069 .0075 .0081 .0088 .0095 .0103 .0111 .0119 .0128

18 .0032 .0035 .0039 .0042 .0046 .0051 .0055 .0060 .0065 .0071

19 .0015 .0017 .0019 .0021 .0023 .0026 .0028 .0031 .0034 .0037

20 .0007 .0008 .0009 .0010 .0011 .0012 .0014 .0015 .0017 .0019

21 .0003 .0003 .0004 .0004 .0005 .0006 .0006 .0007 .0008 .0009

22 .0001 .0001 .0002 .0002 .0002 .0002 .0003 .0003 .0004 .0004

23 .0000 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0002 .0002

24 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001

λ
X 11 12 13 14 15 16 17 18 19 20

0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

1 .0002 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

2 .0010 .0004 .0002 .0001 .0000 .0000 .0000 .0000 .0000 .0000

3 .0037 .0018 .0008 .0004 .0002 .0001 .0000 .0000 .0000 .0000

4 .0102 .0053 .0027 .0013 .0006 .0003 .0001 .0001 .0000 .0000

5 .0224 .0127 .0070 .0037 .0019 .0010 .0005 .0002 .0001 .0001

6 .0411 .0255 .0152 .0087 .0048 .0026 .0014 .0007 .0004 .0002

7 .0646 .0437 .0281 .0174 .0104 .0060 .0034 .0018 .0010 .0005

8 .0888 .0655 .0457 .0304 .0194 .0120 .0072 .0042 .0024 .0013

9 .1085 .0874 .0661 .0473 .0324 .0213 .0135 .0083 .0050 .0029

10 .1194 .1048 .0859 .0663 .0486 .0341 .0230 .0150 .0095 .0058

11 .1194 .1144 .1015 .0844 .0663 .0496 .0355 .0245 .0164 .0106

12 .1094 .1144 .1099 .0984 .0829 .0661 .0504 .0368 .0259 .0176

13 .0926 .1056 .1099 .1060 .0956 .0814 .0658 .0509 .0378 .0271

14 .0728 .0905 .1021 .1060 .1024 .0930 .0800 .0655 .0514 .0387

15 .0534 .0724 .0885 .0989 .1024 .0992 .0906 .0786 .0650 .0516
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Table A.2 (continued)

16 .0367 .0543 .0719 .0866 .0960 .0992 .0963 .0884 .0772 .0646

17 .0237 .0383 .0550 .0713 .0847 .0934 .0963 .0936 .0863 .0760

18 .0145 .0256 .0397 .0554 .0706 .0830 .0909 .0936 .0911 .0844

19 .0084 .0161 .0272 .0409 .0557 .0699 .0814 .0887 .0911 .0888

20 .0046 .0097 .0177 .0286 .0418 .0559 .0692 .0798 .0866 .0888

21 .0024 .0055 .0109 .0191 .0299 .0426 .0560 .0684 .0783 .0846

22 .0012 .0030 .0065 .0121 .0204 .0310 .0433 .0560 .0676 .0769

23 .0006 .0016 .0037 .0074 .0133 .0216 .0320 .0438 .0559 .0669

24 .0003 .0008 .0020 .0043 .0083 .0144 .0226 .0328 .0442 .0557

25 .0001 .0004 .0010 .0024 .0050 .0092 .0154 .0237 .0336 .0446

26 .0000 .0002 .0005 .0013 .0029 .0057 .0101 .0164 .0246 .0343

27 .0000 .0001 .0002 .0007 .0016 .0034 .0063 .0109 .0173 .0254

28 .0000 .0000 .0001 .0003 .0009 .0019 .0038 .0070 .0117 .0181

29 .0000 .0000 .0001 .0002 .0004 .0011 .0023 .0044 .0077 .0125

30 .0000 .0000 .0000 .0001 .0002 .0006 .0013 .0026 .0049 .0083

31 .0000 .0000 .0000 .0000 .0001 .0003 .0007 .0015 .0030 .0054

32 .0000 .0000 .0000 .0000 .0001 .0001 .0004 .0009 .0018 .0034

33 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0005 .0010 .0020

34 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0006 .0012

35 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0007

36 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0004

37 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002

38 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

39 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

Source: Extracted from William H. Beyer, ed., CRC Basic Statistical Tables (Cleveland, Ohio:
The Chemical Rubber Co., 1971)

Table A.3 The standardized normal distribution

The entries in this table are the probabilities that a standard normal random variable is between

0 and z (the shaded area)

Second decimal place in z

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359

.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753

.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141

.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517

.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879
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Table A.3 (continued)

.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224

.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549

.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852

.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133

.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389

1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621

1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830

1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015

1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177

1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319

1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441

1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545

1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633

1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706

1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767

2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817

2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857

2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890

2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916

2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936

2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952

2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964

2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974

2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981

2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986

3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990

3.1 .4990 .4991 .4991 .4991 .4992 .4992 .4992 .4992 .4993 .4993

3.2 .4993 .4993 .4994 .4994 .4994 .4994 .4994 .4995 .4995 .4995

3.3 .4995 .4995 .4995 .4996 .4996 .4996 .4996 .4996 .4996 .4997

3.4 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4998

3.5 .4998

4.0 .49997

4.5 .499997

5.0 .4999997

Source: Reprinted from Standard Mathematical Tables, 15th ed.,# CRC Press, Inc., Boca Raton,

FL
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Table A.4 Critical values of t

Degrees of freedom ν t.100 t.050 t.025 t.010 t.005

1 3.078 6.314 12.706 31.821 63.657

2 1.886 2.920 4.303 6.965 9.925

3 1.638 2.353 3.182 4.541 5.841

4 1.533 2.132 2.776 3.747 4.604

5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707

7 1.415 1.895 2.365 2.998 3.499

8 1.397 1.860 2.306 2.896 3.355

9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106

12 1.356 1.782 2.179 2.681 3.055

13 1.350 1.771 2.160 2.650 3.012

14 1.345 1.761 2.145 2.624 2.977

15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921

17 1.333 1.740 2.110 2.567 2.898

18 1.330 1.734 2.101 2.552 2.878

19 1.328 1.729 2.093 2.539 2.861

20 1.325 1.725 2.086 2.528 2.845

21 1.323 1.721 2.080 2.518 2.831

22 1.321 1.717 2.074 2.508 2.819

23 1.319 1.714 2.069 2.500 2.808

24 1.318 1.711 2.064 2.492 2.797

25 1.316 1.708 2.060 2.485 2.787

26 1.315 1.706 2.056 2.479 2.779

27 1.314 1.703 2.052 2.473 2.771

28 1.313 1.701 2.048 2.467 2.763

29 1.311 1.699 2.045 2.462 2.756

30 1.310 1.697 2.042 2.457 2.750

40 1.303 1.684 2.021 2.423 2.704

60 1.296 1.671 2.000 2.390 2.660

120 1.289 1.658 1.980 2.358 2.617

1 1.282 1.645 1.960 2.326 2.576

Source: From M. Merrington, “Table of Percentage Points of the t-Distribution,” Biometrika,
1941, 32,300. Reproduced by permission of the Biometrika trustees
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Table A.5 Critical values of χ2

Degrees of freedom ν χ2:995 χ2:990 χ2:975 χ2:950 χ2:900

1 .0000393 .0001571 .0009821 .0039321 .0157908

2 .0100251 .0201007 .0506356 .102587 .210720

3 .0717212 .114832 .215795 .351846 .584375

4 .206990 .297110 .484419 .710721 1.063623

5 .411740 .554300 .831211 1.145476 1.61031

6 .675727 .872085 1.237347 1.63539 2.20413

7 .989265 1.239043 1.68987 2.16735 2.83311

8 1.344419 1.646482 2.17973 2.73264 3.48954

9 1.734926 2.087912 2.70039 3.32511 4.16816

10 2.15585 2.55821 3.24697 3.94030 4.86518

11 2.60321 3.05347 3.81575 4.57481 5.57779

12 3.07382 3.57056 4.40379 5.22603 6.30380

13 3.56503 4.10691 5.00874 5.89186 7.04150

14 4.07468 4.66043 5.62872 6.57063 7.78953

15 4.60094 5.22935 6.26214 7.26094 8.54675

16 5.14224 5.81221 6.90766 7.96164 9.31223

17 5.69724 6.40776 7.56418 8.67176 10.0852

18 6.26481 7.01491 8.23075 9.39046 10.8649

19 6.84398 7.63273 8.90655 10.1170 11.6509

20 7.43386 8.26040 9.59083 10.8508 12.4426

21 8.03366 8.89720 10.28293 11.5913 13.2396

22 8.64272 9.54249 10.9823 12.3380 14.0415

23 9.26042 10.19567 11.6885 13.0905 14.8479

24 9.88623 10.8564 12.4011 13.8484 15.6587

25 10.5197 11.5240 13.1197 14.6114 16.4734

26 11.1603 12.1981 13.8439 15.3791 17.2919

27 11.8076 12.8786 14.5733 16.1513 18.1138

28 12.4613 13.5648 15.3079 16.9279 18.9392

29 13.1211 14.2565 16.0471 17.7083 19.7677

30 13.7867 14.9535 16.7908 18.4926 20.5992

40 20.7065 22.1643 24.4331 26.5093 29.0505

50 27.9907 29.7067 32.3574 34.7642 37.6886

60 35.5346 37.4848 40.4817 43.1879 46.4589

70 43.2752 45.4418 48.7576 51.7393 55.3290

80 51.1720 53.5400 57.1532 60.3915 64.2778

90 59.1963 61.7541 65.6466 69.1260 73.2912

100 67.3276 70.0648 74.2219 77.9295 82.3581

(continued)
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Table A.5 (continued)

Degrees of freedom ν χ2:100 χ2:050 χ2:025 χ2:010 χ2:005

1 2.70554 3.84146 5.02389 6.63490 7.87944

2 4.60517 5.99147 7.37776 9.21034 10.5966

3 6.25139 7.81473 9.34840 11.3449 12.8381

4 7.77944 9.48773 11.1433 13.2767 14.8602

5 9.23635 11.0705 12.8325 15.0863 16.7496

6 10.6446 12.5916 14.4494 16.8119 18.5476

7 12.0170 14.0671 16.0128 18.4753 20.2777

8 13.3616 15.5073 17.5346 20.0902 21.9550

9 14.6837 16.9190 19.0228 21.6660 23.5893

10 15.9871 18.3070 20.4831 23.2093 25.1882

11 17.2750 19.6751 21.9200 24.7250 26.7569

12 18.5494 21.0261 23.3367 26.2170 28.2995

13 19.8119 22.3621 24.7356 27.6883 29.8194

14 21.0642 23.6848 26.1190 29.1413 31.3193

15 22.3072 24.9958 27.4884 30.5779 32.8013

16 23.5418 26.2962 28.8454 31.9999 34.2672

17 24.7690 27.5871 30.1910 33.4087 35.7185

18 25.9894 28.8693 31.5264 34.8053 37.1564

19 27.2036 30.1435 32.8523 36.1908 38.5822

20 28.4120 31.4104 34.1696 37.5662 39.9968

21 29.6151 32.6705 35.4789 38.9321 41.4010

22 30.8133 33.9244 36.7807 40.2894 42.7956

23 32.0069 35.1725 38.0757 41.6384 44.1813

24 33.1963 36.4151 39.3641 42.9798 45.5585

25 34.3816 37.6525 40.6465 44.3141 46.9278

26 35.5631 38.8852 41.9232 45.6417 48.2899

27 36.7412 40.1133 43.1944 46.9630 49.6449

28 37.9159 41.3372 44.4607 48.2782 50.9933

29 39.0875 42.5569 45.7222 49.5879 52.3356

30 40.2560 43.7729 46.9792 50.8922 53.6720

40 51.8050 55.7585 59.3417 63.6907 66.7659

50 63.1671 67.5048 71.4202 76.1539 79.4900

60 74.3970 79.0819 83.2976 88.3794 91.9517

70 85.5271 90.5312 95.0231 100.425 104.215

80 96.5782 101.879 106.629 112.329 116.321

90 107.565 113.145 118.136 124.116 128.229

100 118.498 124.342 129.561 135.807 140.169

Source: From C. M. Thompson, “Tables of the Percentage Points of the χ2-Distribution,”
Biometrika, 1941, 32, 188–189. Reproduced by permission of the Biometrika trustees
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Table A.7 Exponential function

c e�c c e�c c e�c

.00 1.000000 2.35 .095369 4.70 .009095

.05 .951229 2.40 .090718 4.75 .008652

.10 .904837 2.45 .086294 4.80 .008230

.15 .860708 2.50 .082085 4.85 .007828

.20 .818731 2.55 .078082 4.90 .007447

.25 .778801 2.60 .074274 4.95 .007083

.30 .740818 2.65 .070651 5.00 .006738

.35 .704688 2.70 .067206 5.05 .006409

.40 .670320 2.75 .063928 5.10 .006097

.45 .637628 2.80 .060810 5.15 .005799

.50 .606531 2.85 .057844 5.20 .005517

.55 .576950 2.90 .055023 5.25 .005248

.60 .548812 2.95 .052340 5.30 .004992

.65 .522046 3.00 .049787 5.35 .004748

.70 .496585 3.05 .047359 5.40 .004517

.75 .472367 3.10 .045049 5.45 .004296

.80 .449329 3.15 .042852 5.50 .004087

.85 .427415 3.20 .040762 5.55 .003887

.90 .406570 3.25 .038774 5.60 .003698

.95 .386741 3.30 .036883 5.65 .003518

1.00 .367879 3.35 .035084 5.70 .003346

1.05 .349938 3.40 .033373 5.75 .003183

1.10 .332871 3.45 .031746 5.80 .003028

1.15 .316637 3.50 .030197 5.85 .002880

1.20 .301194 3.55 .028725 5.90 .002739

1.25 .286505 3.60 .027324 5.95 .002606

1.30 .272532 3.65 .025991 6.00 .002479

1.35 .259240 3.70 .024724 6.05 .002358

1.40 .246597 3.75 .023518 6.10 .002243

1.45 .234570 3.80 .022371 6.15 .002133

1.50 .223130 3.85 .021280 6.20 .002029

1.55 .212248 3.90 .020242 6.25 .001930

1.60 .201897 3.95 .019255 6.30 .001836

1.65 .192050 4.00 .018316 6.35 .001747

1.70 .182684 4.05 .017422 6.40 .001661

1.75 .173774 4.10 .016573 6.45 .001581

1.80 .165299 4.15 .015764 6.50 .001503

1.85 .157237 4.20 .014996 6.55 .001430

1.90 .149569 4.25 .014264 6.60 .001360

1.95 .142274 4.30 .013569 6.65 .001294

2.00 .135335 4.35 .012907 6.70 .001231

2.05 .128735 4.40 .012277 6.75 .001171

2.10 .122456 4.45 .011679 6.80 .001114

2.15 .116484 4.50 .011109 6.85 .001059

2.20 .110803 4.55 .010567 6.90 .001008

2.25 .105399 4.60 .010052 6.95 .000959

(continued)
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Table A.7 (continued)

c e�c c e�c c e�c

2.30 .100259 4.65 .009562 7.00 .000912

7.05 .000867 8.05 .000319 9.05 .000117

7.10 .000825 8.10 .000304 9.10 .000112

7.15 .000785 8.15 .000289 9.15 .000106

7.20 .000747 8.20 .000275 9.20 .000101

7.25 .000710 8.25 .000261 9.25 .000096

7.30 .000676 8.30 .000249 9.30 .000091

7.35 .000643 8.35 .000236 9.35 .000087

7.40 .000611 8.40 .000225 9.40 .000083

7.45 .000581 8.45 .000214 9.45 .000079

7.50 .000553 8.50 .000204 9.50 .000075

7.55 .000526 8.55 .000194 9.55 .000071

7.60 .000501 8.60 .000184 9.60 .000068

7.65 .000476 8.65 .000175 9.65 .000064

7.70 .000453 8.70 .000167 9.70 .000061

7.75 .000431 8.75 .000158 9.75 .000058

7.80 .000410 8.80 .000151 9.80 .000056

7.85 .000390 8.85 .000143 9.85 .000053

7.90 .000371 8.90 .000136 9.90 .000050

7.95 .000353 8.95 .000130 9.95 .000048

8.00 .000336 9.00 .000123 10.00 .000045

Table A.8 Random numbers

12651 61646 11769 75109 86996 97669 25757 32535 07122 76763

81769 74436 02630 72310 45049 18029 07469 42341 98173 79260

36737 98863 77240 76251 00654 64688 09343 70278 67331 98729

82861 54371 76610 94934 72748 44124 05610 53750 95938 01485

21325 15732 24127 37431 09723 63529 73977 95218 96074 42138

74146 47887 62463 23045 41490 07954 22597 60012 98866 90959

90759 64410 54179 66075 61051 75385 51378 08360 95946 95547

55683 98078 02238 91540 21219 17720 87817 41705 95785 12563

79686 17969 76061 83748 55920 83612 41540 86492 06447 60568

70333 00201 86201 69716 78185 62154 77930 67663 29529 75116

14042 53536 07779 04157 41172 36473 42123 43929 50533 33437

59911 08256 06596 48416 69770 68797 56080 14223 59199 30162

62368 62623 62742 14891 39247 52242 98832 69533 91174 57979

57529 97751 54976 48957 74599 08759 78494 52785 68526 64618

15469 90574 78033 66885 13936 42117 71831 22961 94225 31816

18625 23674 53850 32827 81647 80820 00420 63555 74489 80141

74626 68394 88562 70745 23701 45630 65891 58220 35442 60414

11119 16519 27384 90199 79210 76965 99546 30323 31664 22845

41101 17336 48951 53674 17880 45260 08575 49321 36191 17095

(continued)
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Table A.8 (continued)

32123 91576 84221 78902 82010 30847 62329 63898 23268 74283

26091 68409 69704 82267 14751 13151 93115 01437 56945 89661

67680 79790 48462 59278 44185 29616 76531 19589 83139 28454

15184 19260 14073 07026 25264 08388 27182 22557 61501 67481

58010 45039 57181 10238 36874 28546 37444 80824 63981 39942

56425 53996 86245 32623 78858 08143 60377 42925 42815 11159

82630 84066 13592 60642 17904 99718 63432 88642 37858 25431

14927 40909 23900 48761 44860 92467 31742 87142 03607 32059

23740 22505 07489 85986 74420 21744 97711 36648 35620 97949

32990 97446 03711 63824 07953 85965 87089 11687 92414 67257

05310 24058 91946 78437 34365 82469 12430 84754 19354 72745

21839 39937 27534 88913 49055 19218 47712 67677 51889 70926

08833 42549 93981 94051 28382 83725 72643 64233 97252 17133

58336 11139 47479 00931 91560 95372 97642 33856 54825 55680

62032 91144 75478 47431 52726 30289 42411 91886 51818 78292

45171 30557 53116 04118 58301 24375 65609 85810 18620 49198

91611 62656 60128 35609 63698 78356 50682 22505 01692 36291

55472 63819 86314 49174 93582 73604 78614 78849 23096 72825

18573 09729 74091 53994 10970 86557 65661 41854 26037 53296

60866 02955 90288 82136 83644 94455 06560 78029 98768 71296

45043 55608 82767 60890 74646 79485 13619 98868 40857 19415

17831 09737 79473 75945 28394 79334 70577 38048 03607 06932

40137 03981 07585 18128 11178 32601 27994 05641 22600 86064

77776 31343 14576 97706 16039 47517 43300 59080 80392 63189

69605 44104 40103 95635 05635 81673 68657 09559 23510 95875

19916 52934 26499 09821 97331 80993 61299 36979 73599 35055

02606 58552 07678 56619 65325 30705 99582 53390 46357 13244

65183 73160 87131 35530 47946 09854 18080 02321 05809 04893

10740 98914 44916 11322 89717 88189 30143 52687 19420 60061

98642 89822 71691 51573 83666 61642 46683 33761 47542 23551

60139 25601 93663 25547 02654 94829 48672 28736 84994 13071

Source: From A Million Random Digits with 100,000 Normal Deviates, RAND (New York: The

Fress Press) Copyright 1955 and 1983 by RAND. Used by permission

Table A.9 Cutoff points for the distribution of the Durbin-Watson test statistics

k = 1 k = 2 k = 3 k = 4 k = 5

n dL dU dL dU dL dU dL dU dL dU

α = .05

15 1.08 1.36 .95 1.54 .82 1.75 .69 1.97 .56 2.21

16 1.10 1.37 .98 1.54 .86 1.73 .74 1.93 .62 2.15

17 1.13 1.38 1.02 1.54 .90 l.71 .78 1.90 .67 2.10

18 1.16 1.39 1.05 1.53 .93 1.69 .82 1.87 .71 2.06

19 1.18 1.40 1.08 1.53 .97 1.68 .86 1.85 .75 2.02

20 1.20 1.41 1.10 1.54 1.00 1.68 .90 1.83 .79 1.99

21 1.22 1.42 1.13 1.54 1.03 1.67 .93 1.81 .83 1.96

(continued)
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Table A.9 (continued)

k = 1 k = 2 k = 3 k = 4 k = 5

n dL dU dL dU dL dU dL dU dL dU

22 1.24 1.43 1.15 1.54 1.05 1.66 .96 1.80 .86 1.94

23 1.26 1.44 1.17 1.54 1.08 1.66 .99 1.79 .90 1.92

24 1.27 1.45 1.19 1.55 1.10 1.66 1.01 1.78 .93 1.90

25 1.29 1.45 1.21 1.55 1.12 1.66 1.04 1.77 .95 1.89

26 1.30 1.46 1.22 1.55 1.14 1.65 1.06 1.76 .98 1.88

27 1.32 1.47 1.24 1.56 1.16 1.65 1.08 1.76 1.01 1.86

28 1.33 1.48 1.26 1.56 1.18 1.65 1.10 1.75 1.03 1.85

29 1.34 1.48 1.27 1.56 1.20 1.65 1.12 1.74 1.05 1.84

30 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83

31 1.36 1.50 1.30 1.57 1.23 1.65 1.16 1.74 1.09 1.83

32 1.37 1.50 1.31 1.57 1.24 1.65 1.18 1.73 1.11 1.82

33 1.38 1.51 1.32 1.58 1.26 1.65 1.19 1.73 1.13 1.81

34 1.39 1.51 1.33 1.58 1.27 1.65 1.21 1.73 1.15 1.81

35 1.40 1.52 1.34 1.58 1.28 1.65 1.22 1.73 1.16 1.80

36 1.41 1.52 1.35 1.59 1.29 1.65 1.24 1.73 1.18 1.80

37 1.42 1.53 1.36 1.59 1.31 1.66 1.25 1.72 1.19 1.80

38 1.43 1.54 1.37 1.59 1.32 1.66 1.26 1.72 1.21 1.79

39 1.43 1.54 1.38 1.60 1.33 1.66 1.27 1.72 1.22 1.79

40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79

45 1.48 1.57 1.43 1.62 1.38 1.67 1.34 1.72 1.29 1.78

50 1.50 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77

55 1.53 1.60 1.49 1.64 1.45 1.68 1.41 1.72 1.38 1.77

60 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.73 1.41 1.77

65 1.57 1.63 1.54 1.66 1.50 1.70 1.47 1.73 1.44 1.77

70 1.58 1.64 1.55 1.67 1.52 1.70 1.49 1.74 1.46 1.77

75 1.60 1.65 1.57 1.68 1.54 1.71 1.51 1.74 1.49 1.77

80 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77

85 1.62 1.67 1.60 1.70 1.57 1.72 1.55 1.75 1.52 1.77

90 1.63 1.68 1.61 1.70 1.59 1.73 1.57 1.75 1.54 1.78

95 1.64 1.69 1.62 1.71 1.60 1.73 1.58 1.75 1.56 1.78

100 1.65 1.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78

k = 1 k = 2 k = 3 k = 4 k = 5

n dL dU dL dU dL dU dL dU dL dU

α = .01

15 .81 1.07 .70 1.25 .59 1.46 .49 1.70 .39 1.96

16 .84 1.09 .74 1.25 .63 1.44 .53 1.66 .44 1.90

17 .87 1.10 .77 1.25 .67 1.43 .57 1.63 .48 1.85

18 .90 1.12 .80 1.26 .71 1.42 .61 1.60 .52 1.80

19 .93 1.13 .83 1.26 .74 1.41 .65 1.58 .56 1.77

20 .95 1.15 .86 1.27 .77 1.41 .68 1.57 .60 1.74

21 .97 1.16 .89 1.27 .80 1.41 .72 1.55 .63 1.71

22 1.00 1.17 .91 1.28 .83 1.40 .75 1.54 .66 1.69

23 1.02 1.19 .94 1.29 .86 1.40 .77 1.53 .70 1.67

24 1.04 1.20 .96 1.30 .88 1.41 .80 1.53 .72 1.66

(continued)
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Table A.9 (continued)

k = 1 k = 2 k = 3 k = 4 k = 5

n dL dU dL dU dL dU dL dU dL dU

25 1.05 1.21 .98 1.30 .90 1.41 .83 1.52 .75 1.65

26 1.07 1.22 1.00 1.31 .93 1.41 .85 1.52 .78 1.64

27 1.09 1.23 1.02 1.32 .95 .141 .88 1.51 .81 1.63

28 1.10 1.24 1.04 1.32 .97 1.41 .90 1.51 .83 1.62

29 1.12 1.25 1.05 1.33 .99 1.42 .92 1.51 .85 1.61

30 1.13 1.26 1.07 1.34 1.01 1.42 .94 1.51 .88 1.61

31 1.15 1.27 1.08 1.34 1.02 1.42 .96 1.51 .90 1.60

32 1.16 1.28 1.10 1.35 1.04 1.43 .98 1.51 .92 1.60

33 1.17 1.29 1.11 1.36 1.05 1.43 1.00 1.51 .94 1.59

34 1.18 1.30 1.13 1.36 1.07 1.43 1.01 1.51 .95 1.59

35 1.19 1.31 1.14 1.37 1.08 1.44 1.03 1.51 .97 1.59

36 1.21 1.32 1.15 1.38 1.10 1.44 1.04 1.51 .99 1.59

37 1.22 1.32 1.16 1.38 1.11 1.45 1.06 1.51 1.00 1.59

38 1.23 1.33 1.18 1.39 1.12 1.45 1.07 1.52 1.02 1.58

39 1.24 1.34 1.19 1.39 1.14 1.45 1.09 1.52 1.03 1.58

40 1.25 1.34 1.20 1.40 1.15 1.46 1.10 1.52 1.05 1.58

45 1.29 1.38 1.24 1.42 1.20 1.48 1.16 1.53 1.11 1.58

50 1.32 1.40 1.28 1.45 1.24 1.49 1.20 1.54 1.16 1.59

55 1.36 1.43 1.32 1.47 1.28 1.51 1.25 1.55 1.21 1.59

60 1.38 1.45 1.35 1.48 1.32 1.52 1.28 1.56 1.25 1.60

65 1.41 1.47 1.38 1.50 1.35 1.53 1.31 1.57 1.28 1.61

70 1.43 1.49 1.40 1.52 1.37 1.55 1.34 1.58 1.31 1.61

75 1.45 1.50 1.42 1.53 1.39 1.56 1.37 1.59 1.34 1.62

80 1.47 1.52 1.44 1.54 1.42 1.57 1.39 1.60 1.36 1.62

85 1.48 1.53 1.46 1.55 1.43 1.58 1.41 1.60 1.39 1.63

90 1.50 1.54 1.47 1.56 1.45 1.59 1.43 1.61 1.41 1.64

95 1.51 1.55 1.49 1.57 1.47 1.60 1.45 1.62 1.42 1.64

100 1.52 1.56 1.50 1.58 1.48 1.60 1.46 1.63 1.44 1.65

Source: From J. Durbin and G. S. Watson, “Testing for Serial Correlation in Least Squares

Regression, II,” Biometrika, 1951, 30, 159–178. Reproduced by permission of the Biometrika
trustees
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Table A.10 Lower and upper critical values R for the runs test

n2

n1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Lower tail (α .025)

2 2 2 2 2 2 2 2 2 2

3 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3

4 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4

5 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5

6 2 2 3 3 3 3 4 4 4 4 5 5 5 5 5 5 6 6

7 2 2 3 3 3 4 4 5 5 5 5 5 6 6 6 6 6 6

8 2 3 3 3 4 4 5 5 5 6 6 6 6 6 7 7 7 7

9 2 3 3 4 4 5 5 5 6 6 6 7 7 7 7 8 8 8

10 2 3 3 4 5 5 5 6 6 7 7 7 7 8 8 8 8 9

11 2 3 4 4 5 5 6 6 7 7 7 8 8 8 9 9 9 9

12 2 2 3 4 4 5 6 6 7 7 7 8 8 8 9 9 9 10 10

13 2 2 3 4 5 5 6 6 7 7 8 8 9 9 9 10 10 10 10

14 2 2 3 4 5 5 6 7 7 8 8 9 9 9 10 10 10 11 11

15 2 3 3 4 5 6 6 7 7 8 8 9 9 10 10 11 11 11 12

16 2 3 4 4 5 6 6 7 8 8 9 9 10 10 11 11 11 12 12

17 2 3 4 4 5 6 7 7 8 9 9 10 10 11 11 11 12 12 13

18 2 3 4 5 5 6 7 8 8 9 9 10 10 11 11 12 12 13 13

19 2 3 4 5 6 6 7 8 8 9 10 10 11 11 12 12 13 13 13

20 2 3 4 5 6 6 7 8 9 9 10 10 11 12 12 13 13 13 14

Upper tail (α = .025)

2

3

4 9 9

5 9 10 10 11 11

6 9 10 11 12 12 13 13 13 13

7 11 12 13 13 14 14 14 14 15 15 15

8 11 12 13 14 14 15 15 16 16 16 16 17 17 17 17 17

9 13 14 14 15 16 16 16 17 17 18 18 18 18 18 18

10 13 14 15 16 16 17 17 18 18 18 19 19 19 20 20

11 13 14 15 16 17 17 18 19 19 19 20 20 20 21 21

12 13 14 16 16 17 18 19 19 20 20 21 21 21 22 22

13 15 16 17 18 19 19 20 20 21 21 22 22 23 23

14 15 16 17 18 19 20 20 21 22 22 23 23 23 24

15 15 16 18 18 19 20 21 22 22 23 23 24 24 25

16 17 18 19 20 21 21 22 23 23 24 25 25 25

17 17 18 19 20 21 22 23 23 24 25 25 26 26

18 17 18 19 20 21 22 23 24 25 25 26 26 27

19 17 18 20 21 22 23 23 24 25 26 26 27 27

20 17 18 20 21 22 23 24 25 25 26 27 27 28

Source: Adapted from F. S. Swed and C. Eisenhart, Ann. Math. Statist., 14, 1943, 83–86
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Table A.11 Critical values of W in the Wilcoxon Matched-Pairs Signed-Rank test

For sample size n, the table shows, for selected probabilities, α, the numbersWα, such that P(W �
Wα) = α, where the distribution of the random variable W is that of the Wilcoxon test statistic

under the null hypothesis

α
n .005 .010 .025 .050 .100

4 0 0 0 0 1

5 0 0 0 1 3

6 0 0 1 3 4

7 0 1 3 4 6

8 1 2 4 6 9

9 2 4 6 9 11

10 4 6 9 11 15

11 6 8 11 14 18

12 8 10 14 18 22

13 10 13 18 22 27

14 13 16 22 26 32

15 16 20 26 31 37

16 20 24 30 36 43

17 24 28 35 42 49

18 28 33 41 48 56

19 33 38 47 54 63

20 38 44 53 61 70

Source: From R. L. McCornack, “Extended Tables of the Wilcoxon Matched Pairs Signed Rank

Statistics,” Journal of the American Statistical Association, 60(1965). Reprinted with permission

from the Journal of the American Statistical Association. Copyright 1965 by the American

Statistical Association. All rights reserved

Table A.12 Lower and upper critical values Rn1 and Rn2 of the Wilcoxon Rank-Sum test

α n1

n2 One-tailed Two-tailed 4 5 6 7 8 9 10

4 .05 .10 11.25

.025 .05 10.26

.01 .02 —.—

.005 .01 —.—

5 .05 .10 12.28 19.36

.025 .05 11.29 17.38

.01 .02 10.30 16.39

.005 .01 —.— 15.40

6 .05 .10 13.31 20.40 28.50

.025 .05 12.32 18.42 26.52

.01 .02 11.33 17.43 24.54

.005 .01 10.34 16.44 23.55

(continued)

Appendix A 1153



Table A.12 (continued)

α n1

n2 One-tailed Two-tailed 4 5 6 7 8 9 10

7 .05 .10 14.34 21.44 29.55 39.66

.025 .05 13.35 20.45 27.57 36.69

.01 .02 11.37 18.47 25.59 34.71

.005 .01 10.38 16.49 24.60 32.73

8 .05 .10 15.37 23.47 31.59 41.71 51,85

.025 .05 14.38 21.49 29.61 38.74 49.87

.01 .02 12.40 19.51 27.63 35.77 45.91

.005 .01 11.41 17.53 25.65 34.78 43.93

9 .05 .10 16.40 24.51 33.63 43.76 54.90 66,105

.025 .05 14.42 22.53 31.65 40.79 51.93 62,109

.01 .02 13.43 20.55 28.68 37.82 47.97 59,112

.005 .01 11.45 18.57 26.70 35.84 45.99 56,115

10 .05 .10 17.43 26.54 35.67 45.81 56.96 69,111 82,128

.025 .05 15.45 23.57 32.70 42.84 53.99 65,115 78,132

.01 .02 13.47 21.59 29.73 39.87 49,103 61,119 74,136

.005 .01 12.48 19.61 27.75 37.89 47,105 58,122 71,139

Source: Adapted from Table 1 of F. Wilcoxon and R. A. Wilcox, Some Rapid Approximate
Statistical Procedures. Copyright # 1949. 1964 Lederle Laboratories, Division of American

Cyanamid Company. All rights reserved. Reprinted with permission

Table A.13 Factors for control chart

�X-charts S-charts R-charts

n A A2 A3 c4 B3 B4 B5 B6 d2 d3 D1 D2 D3 D4

2 2.121 1.880 2.659 .7979 0 3.267 0 2.606 1.128 .853 0 3.686 0 3.267

3 1.732 1.023 1.954 .8862 0 2.568 0 2.276 1.693 .888 0 4.358 0 2.574

4 1.500 .729 1.628 .9213 0 2.266 0 2.088 2.059 .880 0 4.698 0 2.282

5 1.342 .577 1.427 .9400 0 2.089 0 1.964 2.326 .864 0 4.918 0 2.114

6 1.225 .483 1.287 .9515 .030 1.970 .029 1.874 2.534 .848 0 5.078 0 2.004

7 1.134 .419 1.182 .9594 .118 1.882 .113 1.806 2.704 .833 .204 5.204 .076 1.924

8 1.061 .373 1.099 .9650 .185 1.815 .179 1.751 2.847 .820 .388 5.306 .136 1.864

9 1.000 .337 1.032 .9693 .239 1.761 .232 1.707 2.970 .808 .547 5.393 .184 1.816

10 .949 .308 .975 .9727 .284 1.716 .276 1.669 3.078 .797 .687 5.469 .223 1.777

11 .905 .285 .927 .9754 .321 1.679 .313 1.637 3.173 .787 .811 5.535 .256 1.744

12 .866 .266 .886 .9776 .354 1.646 .346 1.610 3.258 .778 .922 5.594 .283 1.717

13 .832 .249 .850 .9794 .382 1.618 .374 1.585 3.336 .770 1.025 5.647 .307 1.693

14 .802 .235 .817 .9810 .406 1.594 399 1.563 3.407 .763 1.118 5.696 .328 1.672

15 .775 .223 .789 .9823 .428 1.572 .421 1.544 3.472 .756 1.203 5.741 .347 1.653

16 .750 .212 .763 .9835 .448 1.552 .440 1.526 3.532 .750 1.282 5.782 .363 1.637

17 .728 .203 .739 .9845 .466 1.534 .458 1.511 3.588 .744 1.356 5.820 .378 1.622

18 .707 .194 .718 .9854 .482 1.518 .475 1.496 3.640 .739 1.424 5.856 .391 1.608

19 .688 .187 .698 .9862 .497 1.503 .490 1.483 3.689 .734 1.487 5.891 .403 1.597

20 .671 .180 .680 .9869 .510 1.490 .504 1.470 3.735 .729 1.549 5.921 .415 1.585

21 .655 .173 .663 .9876 .523 1.477 .516 1.459 3.778 .724 1.605 5.951 .425 1.575

22 .640 .167 .647 .9882 .534 1.466 .528 1.448 3.819 .720 1.659 5.979 .434 1.566

23 .626 .162 .633 .9887 .545 1.455 .539 1.438 3.858 .716 1.710 6.006 .443 1.557

24 .612 .157 .619 .9892 .555 1.445 .549 1.429 3.895 .712 1.759 6.031 .451 1.548

25 .600 .153 .606 .9896 .565 1.435 .559 1.420 3.931 .708 1.806 6.056 .459 4.541

Source: Copyright American Society for Testing and Materials. Reprinted with permission
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Appendix B

Description of Data Sets

The following nine data sets used in the text are available on an IBM-compatible

floppy disk, for instructors who request it. In addition, the data sets will be updated

on disk each year.

Annual Macroeconomic Data (1960–2009)

The macroeconomic data included in this data set are GDP (gross domestic

product), CPI (consumer price index), yield of 3-month T-bills, prime rate, private

consumption, private investment, net exports, and government expenditures. The

data set is also given in Table 2.2 in the text.

Financial Ratios for Two Pharmaceutical Companies

(1990–2009)

The two pharmaceutical companies are Johnson & Johnson and Merck. The

financial ratios included are the current ratio, inventory turnover, debt ratio (total

debt/total assets), profit margin (net income/sales), return on assets (net income/

total assets), P/E ratio, and payout ratio [dividend per share (DPS)/earnings per

share (EPS)]. This data set is also given in Table 2.8 in the text. These data are also

used in Appendix 3 of Chaps. 2 and 4 in the text.

C.-F. Lee et al., Statistics for Business and Financial Economics,
DOI 10.1007/978-1-4614-5897-5, # Springer Science+Business Media New York 2013
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EPS, DPS, PPS, and Rates of Return for Johnson & Johnson

and Merck (1988–2009)

The data included in the first part of this data set are earnings per share (EPS),

dividend per share (DPS), and price per share (PPS). At the far right of the data set

is the S&P 500 Index. In the second part of the data set are the annual rates of return

for JNJ, Merck, and the market. This information can also be found in Appendix

2 of Chap. 2 and Tables 2.3 and 2.4.

Annual JNJ Sales Data (1980–2010)

The set gives annual sales data for Johnson & Johnson from 1980 to 2010. The data

are also presented in Table 18.7 in the text.

Quarterly EPS and Sales Data for Johnson & Johnson

and IBM (2000–2010)

Included are quarterly EPS and sales data for Johnson & Johnson and IBM from the

first quarter of 2000 to the fourth quarter of 2010. The EPS data for IBM can be

found in Table 18.2. The EPS and sales data for Johnson & Johnson can also be

found in Tables 18.5 and 18.10, respectively, in the text.

Monthly Rates of Return for Dow Jones 30 Companies

(January 1990–December 2009)

This data set includes the monthly rates of return for the Dow Jones 30 and the S&P

500. The information is also given in Sect. 9.8 of the text.

The names of these 30 companies are:

3M Co. Intel

Alcoa Inc. IBM

American Express Johnson & Johnson

AT&T JP Morgan Chase & Co.

Bank of America Kraft Foods

Boeing McDonald’s

Caterpillar Inc Merck

Chevron Microsoft

Cisco Pfizer

(continued)
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Coca-Cola Procter & Gamble

E.I. du Pont de Nemours Traveler’s Companies Inc

Exxon United Technologies Group

General Electric Verizon

Hewlett-Packard Walmart

Home Depot Walt Disney

PPS, EPS, and DPS for Dow Jones 30 Companies (1990–2009)

This data set includes the annual PPS, EPS, and DPS data for Dow Jones 30

Companies. The annual S&P 500 Index is also included in this data set. The data

can be found in Tables IV.1A–IV.1D of Project IV (Chap. 16).

Monthly Wilshire 5000 Equity Index

(January 1989–January 1991)

The information given here is the value-weighted monthly Wilshire 5000 Equity

Index. It can also be found in Table 19.10 in the text.

Monthly Rates of Return for the Value-Weighted Wilshire

5000 Equity Index (January 1989–January 1991)

Included are the percentage change in the price appreciation, dividend yield, and

total rates of return of the value-weighted Wilshire 5000 Equity Index. The data are

also given in Table 19.11 in the text.
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Appendix C

Introduction to MINITAB 16

MINITAB 16 is a user-friendly statistics package. Students who are beginners in

statistics will find that the application of MINITAB 16 in their statistics course will

assist them in grasping statistics without greatly increasing their study load.

This appendix provides a brief description of the basic functions of MINITAB

16. With this basic knowledge, students can start to work with MINITAB 16.

General Description

MINITAB 16 is both a menu-driven and command-driven statistics package with

more than 200 commands available. In this appendix, we will briefly look at the

MINITAB 16 commands. Data are stored and processed in a worksheet, a table with

rows and columns.

MINITAB 16 will accept words typed in upper- or lowercase letters or a

combination of the two.

To enable MINITAB 16 commands, go the Editor menu and select the Enable

Commands menu item.
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Doing this will show the MINITAB macro prompt in the Session windows. This

is shown below.

Data Input

For MINITAB 16 to perform statistical computations, data must first be inputted.

Data for each variable in your data set are stored in columns. There are two ways to

enter data: READ and SET commands.

READ Commands

The form of the command is
READ C1

where C1 represents column 1. After typing this line, press ENTER. Then type

the data, one number per line. The computer will prompt you after each entered

line with
DATA>

When all the data have been input, type
END

For example, suppose you have the following four observations: 25, 33, 41, and

58. These data can be entered as follows:
MTB > read c1
DATA> 25
DATA> 31
DATA> 41
DATA> 58
DATA> end

If two or more groups of data (or variables) are to be read, you could type
READ C1 C2
or
READ C1 C2 C3
or
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READ C1-C3

For example, suppose you have four observations for three variables:
variable 1: 13 17 21 11
variable 2: 23 27 32 20
variable 3: 35 31 42 47

The data can be entered as follows:
MTB > read c1-c3
DATA> 13 23 35
DATA> 17 27 31
DATA> 21 32 42
DATA> 11 20 37
DATA> end

SET Command

This command allows you to enter numbers consecutively on one or more lines

for each variable. For instance, in the first example of the READ command, the data

can be entered as follows:
MTB > set c1
DATA> 25 33 41 58
DATA> end

The second example of READ command can be entered as follows:
MTB > set c1
DATA> 13 17 21 11
DATA> end
MTB > set c2
DATA> 23 27 32 20
DATA> end
MTB > set c3
DATA> 35 31 42 37
DATA> end

Data Corrections

Suppose that after entering the data you find an error. The following three

instructions allow you to correct errors:

1. The LET command enables you to replace an erroneous enter. For example,

LET C2(3) ¼ 7

2. The DELETE command simply erases the data you specify. For example,

DELETE 3:6 C3

3. The INSERT command lets you add new material. For example,

INSERT BETWEEN ROWS 4 AND 5 OF COLUMN C2 AND C3
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DATA> 13 17
DATA>END

Insert a new row of data between rows 4 and 5. The new data are 13 and 17.

Output

To check to see if entered data have been inputted correctly on the screen, type
PRINT C1
or
PRINT C1 C2 C3
or
PRINT C1-C3

To print out the results of your statistical operations on paper, type PAPER

before you enter the print commands. To stop printing, type NOPAPER after you

get your printout.

Savings Data

To save a data set, type SAVE ‘a:filename’. Once the data set has been saved, you

can retrieve it at any time with the following command:
RETRIEVE ‘a:filename’

Other Commands

To create new variables from existing ones, use the LET command. For example,
LET C4¼C2+C3

It creates a variable that is the sum of the values stored in the second and third

columns, and that variable is stored in column 4.

The MINITAB symbols for common arithmetic operations are
+ add
-subtract
* multiply
/ divide
** exponent (raise to a power)
To erase entire columns, type
ERASE C1 C2 C3

or
ERASE C1-C3

When you have completed your work in MINITAB, type
STOP
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Appendix D

Introduction to SAS: Microcomputer Version

SAS is a powerful statistics package for manipulating data and performing varied

statistical analyses. It is designed for larger data bases.

This appendix will provide a brief description of the basic functions of SAS.

With this basic knowledge, students can easily understand SAS programs written

by others and start to write SAS programs themselves.

General Description

SAS is normally run in batch mode, rather than interactively as MINITAB is.

Therefore, we first put all the command statements into a file (or program) and then

submit the entire file to SAS for processing. SAS will perform the requested analyses

and return two files: a log of the program (the SAS log), with notes and errormessages,

and a list of the results from the analyses. The SAS log is a record of everything that

you do in your SAS program. Original program statements are identified by line

numbers. Interspersed with SAS statements are messages from SAS. These messages

might begin with the words NOTE, INFO,WARNING, ERROR, or an error number,

and they might refer to a SAS statement by its line number in the log. Note that every
statement in the SAS program must end with a semicolon. SAS will accept words

typed in upper- or lowercase letters or a combination of the two.

Data Input

For SAS to perform statistical computations, data must first be inputted. The first

command in any SAS program is the DATA command. For example, the command

DATA SALES;
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will create a data set called “SALES.” To read in the data, we then use the INPUT

command, which tells SAS how the data values are arranged on the data lines and

what the variable names are. An example of an INPUT command is

INPUT SALES REGION $:

This command informs SAS that you are going to read in two variables, called

SALES and REGION. The listing of variable names in the INPUT statement tells

SAS that the data are arranged on the data lines in the order listed, with at least one

space between values. The dollar sign after REGION tells SAS that the variable

region contains alphabetic characters.

After the INPUT command comes the CARDS statement, which tells SAS

where to start reading, followed by the data to be read. For example, we may

have sales and cost data for several regions listed as follows:

Region Cost Sales

East 4,325 5,647

West 5,941 7,103

South 2,387 3,492

North 3,762 4,481

Our entire data input will be as follows:
DATA SALES;
INPUT SALES COST REGION $;
CARDS;
5647 4325 EAST
7103 5941 WEST
3492 2387 SOUTH
4481 3762 NORTH

Data Modifying

To create new variables from existing ones, simply specify the appropriate formula,

using the following symbols for the standard arithmetic operations:

+ add
� subtract
*multiply
/ divide
** raise to a power

Here are some examples:
PROFIT ¼ SALES � COST;
MARGIN ¼ (SALES � COST)/COST;
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Analyzing the Data

SAS procedures (nicknamed PROCs) are used to process data in SAS data sets.

There are procedures for all kinds of analyses from printing the input data to simple

statistics to more complicated statistical analyses. The SAS procedures are written

after the data lines. The following will introduce three SAS procedures: PROC

PRINT, PROC ANOVA, and PROC REG.

PROC PRINT

The PROC PRINT statement asks SAS to print out the data values in the data set

just created. The word PROC signals the beginning of a PROC step, a series of

statements that describes the analysis to be performed. The word print names the

SAS procedure we want to use.

PROC ANOVA

This procedure statement must be followed by a statement identifying the treatment

variable and the model. Two examples are follows:

Completely Randomized Design
DATA EXAMPLE1;
INPUT X T;
CARDS;
25 1
27 1
31 1
32 2
35 2
30 2
27 3
32 3
48 3
18 4
23 4
29 4
;
PROC ANOVA;
CLASS T;
MODEL X ¼ T;
RUN;
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Randomized Block Design
DATA EXAMPLE2;
INPUT X T B;
CARDS;
25 1 1
27 1 2
31 1 3
32 2 1
35 2 2
30 2 3
27 3 1
32 3 2
48 3 3
18 4 1
23 4 2
29 4 3
;
PROC ANOVA;
CLASS T B;
MODEL X ¼ T B;
RUN;

PROC REG

The REG procedure is used to perform both simple and multiple regressions. The

procedure statement is followed by the MODEL statement, which specifies the

dependent and independent variables. For example, the commands and data input

for the multiple regression for Table 14.13 are as follows:

DATA TAB1413;
INPUT Y X1 X2 X3;
CARDS;
260.3 5 3 4
286.1 7 5 2
279.4 6 3 3
410.8 9 4 4
438.2 12 6 1
315.3 8 3 4
565.1 11 7 3
570.0 16 8 2
426.1 13 4 3
315.0 7 3 4
403.6 10 6 1
220.5 4 4 1

1168 Appendix D

http://dx.doi.org/10.1007/978-1-4614-5897-5_14


343.6 9 4 3
644.6 17 8 4
520.4 19 7 2
329.5 9 3 2
426.0 11 6 4
343.2 8 3 3
450.4 13 5 4
421.8 14 5 2
245.6 7 4 4
503.3 16 6 3
375.7 9 5 3
265.5 5 3 3
620.6 18 6 4
450.5 18 5 3
270.1 5 3 2
368.0 7 6 2
556.1 12 7 1
570.0 13 6 4
318.5 8 4 3
260.2 6 3 2
667.0 16 8 2
618.3 19 8 2
525.3 17 7 4
332.2 10 4 3
393.2 12 5 3
283.5 8 3 3
376.2 10 5 4
481.8 12 5 2
;
PROC REG;
MODEL Y ¼ X1 X2 X3/DW;
RUN;

The regression results are as follows:

The SAS System 06:20 Monday, July 12, 2012

The REG Procedure

Model: MODEL1

Dependent Variable: Y

Analysis of Variance

Source DF Sum of squares Mean square F value Pr > F

Model 3 527209 175736 89.05 <.0001

Error 36 71044 1973.44286

Corrected Total 39 598253
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Root MSE 44.42345 R-Square 0.8812

Dependent Mean 411.28750 Adj R-Sq 0.8714

Coeff Var 10.80107

Parameter Estimates

Variable DF Parameter estimate Standard error t value Pr > |t|

Intercept 1 31.15039 34.17505 0.91 0.3681

X1 1 12.96816 2.73723 4.74 <.0001

X2 1 41.24562 7.28011 5.67 <.0001

X3 1 11.52425 7.69118 1.50 0.1428

Durbin-Watson D 2.104

Number of Observations 40

First Order Autocorrelation �0.083
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Appendix E

Useful Formulas in Statistics

Chapter 4

A. Measures of central tendency:

1. Sample arithmetic mean:

�x ¼
Pn
i¼1

xi

n
(4.1)

2. Sample geometric mean:

�xg ¼ ðx1 � x2 � x3 � . . .� xnÞ1 n=
(4.3)

3. Grouped mean:

�x ¼
Pk
i¼1

fimi

Pk
i¼1

fi

(4.17)

4. Median:

m ¼ Lþ ðN 2= � FÞ
f

ðU � LÞ (4.18)
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B. Measures of dispersion:

1. Population variance:

σ2 ¼
PN
i¼1

ðxi � μÞ2

N
(4.5)

2. Sample variance:

S2 ¼
Pn
i¼1

ðxi � �xÞ2

n� 1
(4.7)

3. Sample mean absolute deviation:

MAD ¼
Pn
i¼1

jxi � �xj
n

or

Pn
i¼1

ðxi �MdsÞ
n

(4.9)

4. Coefficient of variation:

CVx ¼ S

�x
(4.12)

5. Population standard deviation:

σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � μÞ2

N

vuuut
(4.6)

6. Sample standard deviation:

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � �xÞ2

n� 1

vuuut
(4.8)

7. Population variance for frequency distribution:

σ2 ¼
Pk
i¼1

fiðmi � μÞ2

N
(4.19)
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8. Sample variance for frequency distribution:

S2 ¼
Pk
i¼1

fiðmi � �xÞ2

n� 1
(4.21)

C. Population measures of skewness:

1. Skewness:

μ3 ¼
PN
i¼1

ðxi � μÞ3

N
(4.15)

2. Population coefficient of skewness:

CS ¼ μ3
σ3

(4.16)

Chapter 5

1. Probability of Event A:

PrðAÞ ¼ Number favourable outcomes

Total number of outcomes
(5.1)

2. Union of Events A and B:

PrðA [ BÞ ¼ PrðAÞ þ PrðBÞ � PrðA \ BÞ (5.5)

3. Intersection of Events A and B:

PrðA \ BÞ ¼ PrðAÞ þ PrðBÞ � PrðA [ BÞ (5.6)

4. Probability of Complements:

PrðE [ �EÞ ¼ PrðEÞ þ Prð �EÞ ¼ 1 (5.9)

5. Conditional Probability:

PrðBjAÞ ¼ PrðB \ AÞ
PrðAÞ (5.13)
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6. Bayes’ Theorem:

PrðBjAÞ ¼ PrðA \ BÞ
PrðAÞ ¼ PrðAjBÞPrðBÞ

PrðAÞ (5.19)

7. Number of Permutations of n-things taken r at a time

nPr ¼ n!

ðn� rÞ! (5A.4)

8. Number of Combinations r objects can be selected from n

n

r

 !
¼ n!

r!ðn� rÞ! (5.12)

Chapter 6

A. Binomial distribution:

Prðx sucess jn trialsÞ ¼ n!

x!ðn� xÞ! p
xð1� pÞn�x; x ¼ 0; 1; . . . ; n (6.9)

μx ¼ np (6.11)

σ2x ¼ npð1� pÞ (6.12)

B. Hypergeometric distribution:

Prðx success j n trialsÞ ¼ Ch
xC

N�h
n�x

CN
n

(6.13)

μx ¼ n
h

N

� �
(6.14)

σ2x ¼
N � n

N � 1

� �
n

h

N

� �
1� h

N

� �� �
(6.15)

C. Poisson distribution:

PrðX ¼ xÞ ¼ e�λ λ
x

x!
for x ¼ 0; 1; 2; 3 and λ> 0 (6.16)
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μx ¼ λ (6.17a)

σ2x ¼ λ (6.17b)

D. Expected value for a discrete random variable:

μ ¼ EðXÞ ¼
XN
i¼1

xiPðxiÞ (6.3)

E. Variance for a discrete random variable:

σ2 ¼ E½xi � μ�2 ¼
XN
i¼1

ðxi � μÞ2PðxiÞ (6.4)

F. Covariance for two discrete random variables:

CovðX; YÞ � σX;Y ¼
XN
i¼1

ðxi � μxÞðyi � μyÞPiðXi; YiÞ (6.25)

G. Correlation coefficient for two discrete random variables:

ρX;Y ¼ σX;Y
σXσY

(6.27)

H. Marginal probability:

1.

PðxiÞ ¼
Xm
j¼1

Pðxi; yjÞ i ¼ 1; . . . ; n (6.20)

2.

PðyjÞ ¼
Xn
i¼1

Pðxi; yjÞ i ¼ 1; . . . ; n (6.21)

I. Conditional probability:

PðxjyÞ ¼ Pðx; yÞ
PðyÞ (6.22)
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Chapter 7

1. Standard normal variable:

z ¼ x� μx
σx

(7.4)

2. Normal approximation of binomial:

z ¼ x� npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞp (7.10)

3. Normal approximation of Poisson:

z ¼ x� λffiffiffi
λ

p (7.14)

4. Probability that x lies between a and b:

(a) Discrete random variable

Pða � x � bÞ ¼
Xb
i¼1

PðxiÞ �
Xa
i¼1

PðxiÞ (7.1)

(b) Continuous variable

PðaÞ ¼
Zb
a

f ðxÞdx (7A.2)

5. Mean of lognormal distribution:

μX ¼ eμþσ2=2 (7.6)

6. Variance of lognormal distribution:

σ2X ¼ e2μþσ2ðeσ2�1Þ (7.7)
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Chapter 8

1. Sample mean:

�X ¼ 1

n

Xn
i¼1

Xi (8.1)

2. Sample variance:

s2x ¼
1

n� 1

X
ðXi � �XÞ2 (footnote 2)

3. Standard deviation of the sample mean:

σ�x ¼ σxffiffiffi
n

p (8.4)

4. Mean for a sample proportion:

np̂ ¼ np

n
¼ p (8.9)

5. Standard deviation of a sample proportion:

σp̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n

r
(8.10)

Chapter 9

1. Uniform probability density function:

f ðxÞ ¼ 1=ðb� aÞ if a � x � b

0 otherwise

(
(9.1)

2. Uniform cumulative distribution function:

PðX � xÞ ¼ FðxÞ ¼
0 if x � a

ðx� aÞ=ðb� aÞ if a � x � b

1 if x> b

8><
>: (9.2)
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3. Mean and variance for uniform distribution:

μx ¼
aþ b

2
; σ2x ¼

b� affiffiffiffiffi
12

p (9.3)

4. Exponential probability density function:

f ðtÞ ¼
λe�λt if t � 0;

λ> 0

0 if t< 0

8<
: (9.16)

5. Exponential cumulative distribution function:

FðtÞ ¼ 1� e�λt; t � 0

¼ 0 t< 0
(9.17)

6. Mean and variance for exponential distribution:

EðTÞ ¼ 1

λ
; varðTÞ ¼ 1

λ2
(9.18)

7. t statistic:

t ¼ �x� μ

sx
ffiffiffi
n

p
=

(9.4)

8. Chi-square distribution:

ðn� 1ÞS2x
σ2x

¼
P ðxi � �xÞ2

σ2x
� χ2n (9.8)

9. F distribution:

s2x σ2x
�

s2y σ2y

. ¼ F (9.14)

Chapter 10

1. Unbiasedness : Eðθ̂Þ ¼ θ (10.1)

2. Relative Efficiency ¼ Vðθ2Þ
Vðθ1Þ (10.2)
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3. Confidence intervals for the mean:

(a) Variance known:

1� α ¼ Pr
�X � Zα 2=

σXffiffiffi
n

p
� �

<μ< �X þ Zα 2=
σXffiffiffi
n

p
� �� �

(10.7)

(b) Variance unknown:

1� α ¼ Pr
�X � tn�1;α 2=

SXffiffiffi
n

p
� �

<μ< �X þ tn�1;α 2=
SXffiffiffi
n

p
� �� �

(10.9)

4. Confidence interval for a proportion:

1� α ¼ Pr P̂x � Zα 2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂xð1� P̂xÞ

n

s
<P̂x þ Zα 2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂xð1� P̂xÞ

n

s2
4

3
5 (10.11)

5. Confidence interval for the variance:

1� α ¼ Pr
ðn� 1Þs2X
χ2v;α=2

<σ2X<
ðn� 1Þs2X
χ2v;1�α=2

" #
(10.13)

Chapter 11

1. Testing one mean-known variance:

�x� μ0
σxffiffi
n

p ¼ z (11.3)

2. Testing one mean-unknown variance with large sample:

�x� μ0
sxffiffi
n

p ¼ z

3. Testing one mean-unknown variance with small sample:

�x� μ0
sxffiffi
n

p ¼ tn�1 (10.8)
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4. Testing a proportion:

p̂� pffiffiffiffiffiffiffiffiffiffiffi
pð1�pÞ

n

q ¼ z (10.10)

5. Testing the difference between two means — small sample:

ð�x1 � �x2Þ � ðμ1 � μ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1�1Þs2

1
þðn2�1Þs2

2

ðn1þn2�2Þ
1
n1
þ 1

n2

� 	r ¼ t (11.12)

df ¼ n1 þ n2 � 2 (11.13)

6. Testing the difference between two means — large sample:

ð�x1 � �x2Þ � ðμ1 � μ2Þffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
1

n1
þ σ2

1

n2

q ¼ z (11.5)

Chapter 12

A. Testing the equality of three or more means:

1. F ¼ SST=ðm� 1Þ
SSW=ðn� mÞ ¼

MST

MSW
(12.7)

2. SST ¼
Xm
j

njð�xj � �xÞ2 (12.4)

3. SSW ¼
Xm
j¼1

Xnj
i¼1

ðxij � �xjÞ2 (12.5)

B. Two-way ANOVA:

1. Treatment effect:

SST=ðJ � 1Þ
SSE=ðI � 1ÞðJ � 1Þ � FðJ�1Þ;ðI�1ÞðJ�1Þ
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SSB ¼
XI
i¼1

JKð�xi:: � �xÞ2 (12.11)

SST ¼
XJ
j¼1

IKð�x:j: � �xÞ2 (12.12)

SSE ¼ TSS-SST-SSB (12.13)

2. Block effect:

SSB ðI � 1Þ=

SSE ðI � 1ÞðJ � 1Þ=
� FðI�1Þ;ðI�1ÞðJ�1Þ

3. Interaction effect:

SSI ðJ � 1ÞðI � 1Þ=

SSE IJðK � 1Þ=

SSI ¼ K
X
i

X
j

ð�xij: � �x:j: � �xi:: þ �xÞ2

SSE ¼
X
i

X
j

X
k

ð�xijk � �xij:Þ2 (12.15)

4. Goodness of fit test:

x2k�1 ¼
Xk
i¼1

ðf 0i � f ei Þ2
f ei

(12.17)

Chapter 13

1. Single regression equation:

yi ¼ aþ bxi þ ei (13.6)

2. Least squares estimates:

(a) a ¼ �y� b�x (13.11)
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(b) b ¼
Pn
i¼1

ðxi � �xÞðyi � �yÞ
Pn
i¼1

ðxi � �xÞ2
(13.13)

.

3: Total variation ¼ unexplained variationþ explained variation (13.17)

4. Coefficient of determination:

R2 ¼ SSR

SST
¼ 1� SSE

SST
(13.21)

5. Adjusted coefficient of determination:

�R
2 ¼ 1� SSE ðn� k � 1Þ=

SST ðn� 1Þ=
(13.22)

6. Standard error of the residual:

se ¼
ffiffiffiffiffiffiffiffiffiffiffi
SSE

n� 2

r
(13.20)

7. The population correlation coefficient:

ρ ¼ Covðx; yÞ
σxσy

(13.23)

8. The sample correlation coefficient:

r ¼ Sxy
SxSy

(13.24)

Chapter 14

1. Significance test for b ¼ 0:

tn�2 ¼ b� b0
Sb

(14.4)

S2b ¼
S2ePn

i¼1

xi � �xð Þ2
(14.2)
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2. Significance test for a 6¼ 0:

tn�2 ¼ a� 0

Sa
(14.5)

S2a ¼ S2e

Pn
i¼1

x2i

n
Pn
i¼1

xi � �xð Þ2
(14.1)

3. F-test for the significance of b:

F1;n�2 ¼ SSR=1

SSE= n� 2ð Þ ¼
MSR

MSE
(14.9)

4. Significance test for r:

tn�2 ¼ r
ffiffiffiffiffiffiffiffiffiffiffi
n� 2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p (14.10)

5. Conditional expectation interval:

ŷnþ1 	 tα=2:n�2 Se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ xnþ1 � �xð Þ2Pn

i¼1

xi � �xð Þ2

vuuut (14.21)

6. Prediction interval:

ŷnþ1 	 tα=2:n�2 Se

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ xnþ1 � �xð Þ2Pn

i¼1

xi � �xð Þ2

vuuut (14.22)

Chapter 15

1. Multiple regression model:

yi ¼ aþ bx1i þ b2x2i þ ei (15.2)
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2. Regression coefficients with two independent variables:

b1 ¼
Pn
i¼1

x2
i2
� n�x22

� � Pn
i¼1

xi1yi � n�x1�y

� �
�

�Pn
i¼1

xi1xi2 � n�x1�x2

��Pn
i¼1

xi2yi � n�x2�y

�� �
Pn
i¼1

x2i1 � n�x21

� �
� Pn

i¼1

xi2 � n�x22

� �
� Pn

i¼1

xi1xi2 � n�x1�x2

� �2

(15.7)

b2 ¼
Xn
i¼1

x2i1 � n�x21

 ! Xn
i¼1

xi2yi � n�x2�y

 !
�Pn

i¼1

xi1xi2 � n�x1�x2

��Pn
i¼1

xi1yi � n�x1�y

�� �
Pn
i¼1

x2i1 � n�x21

� �
� Pn

i¼1

xi2 � n�x22

� �
� Pn

i¼1

xi1xi2 � n�x1�x2

� �2

(15.8)

a ¼ �y� b1�x1 � b2�x2 (15.10)

3. Coefficient of determination:

R2 ¼ 1� SSE

SST
¼
Pn
i¼1

ŷi � �yð Þ2

Pn
i¼1

yi � �yð Þ2
(15.15)

4. Adjusted coefficient of determination:

�R
2 ¼ 1� SSE=ðn� k � 1Þ

SST=ðn� 1Þ ¼ 1� ð1� R2Þ ðn� 1Þ
n� k � 1

(15.16)

F-ratio:

Fk;n�k�t ¼
Pn
i¼1

ðŷi � �yÞ2

Pn
i¼1

ðyi � ŷiÞ2

0
BB@

1
CCA n� k � 1

k

� �
(15.19)

Chapter 16

1. Variance inflationary factor (VIF):

VIF ¼ 1

1� R2
i

(16.6)
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2. Durbin-Watson statistics:

DW ¼
Pn
t¼2

ðet � et�1Þ2

Pn
t¼1

e2t

(16.11)

3. Durbin’s H:

H ¼ 1� d

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

1� nVðγÞ
r

(16.22)

4. Quadratic regression model:

yi ¼ αþ b1X1 þ b2X
2
1 þ ei (16.16)

5. Lagged dependent variable model:

yt ¼ αþ β1X1t þ β2X2t þ . . .þ βkXkt þ γyt�1 þ ei (16.20)

6. Dummy variable model:

yi ¼ αþ β1X1i þ β2X2i þ . . .þ βkXki þ γD1i þ ei (16.25)

7. Interaction variable model:

yt ¼ αþ β1X1t þ β2X2t þ β3ðX1t � X2tÞ þ ei (16.28)

Chapter 17

1. Mann-Whitney U test:

U1 ¼ n1n2 þ n1ðn1 � 1Þ
2

� R1 (17.5)

U2 ¼ n1n2 þ n2ðn2 þ 1Þ
2

� R1 (17.6)

2. Kruskal-Wallis test:

K
12

nðnþ 1Þ
� �

Σ
c

i¼1

R2
i

ni

� �
� 3ðnþ 1Þ (17.9)
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3. Spearman’s rank correlation:

rs ¼ 1�
6
Pn
i¼1

d2i

nðn2 � 1Þ (17.10)

4. t-statistic for rank correlation:

t ¼ rsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� r2s Þ=ðn� 2Þp (17.11)

5. Runs test:

Zt ¼ R� μR
σR

(17.12)

where μR ¼ 2n1n2
n1n2

þ 1

σ2R ¼ 2n1n2ð2n1n2 � nÞ
n2ðn� 1Þ

Chapter 18

1. Additive model for time-series component:

Xt ¼ Tt þ Ct þ St þ It (18.1)

2. Multiplicative model for time-series component:

Xt ¼ TtStCtIt (18.2)

3. k-term moving average:

Zt ¼ 1

k

Xk�1

i¼0

xt�i; t ¼ k; . . . ; nð Þ (18.4)

4. Exponential smoothing:

Stþ1 ¼ αXt þ 1� αð ÞSt (18.15)
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5. Linear time trend:

Xt ¼ αþ βtþ εt (18.11)

6. Mean square error (MSE):

MSE ¼
Pn
t¼1

xt � x̂tð Þ
2

n

7. The Holt-Winters Forecasting Model:

st ¼ αxt þ 1� αð Þ st�1 þ Tt�1ð Þ (18.19a)

Tt ¼ β st � st�1ð Þ þ 1� βð ÞTt�1 (18.19b)

8. p-th order autoregressive process:

x̂t ¼ a0 þ a1xt�1 þ a2xt�2 þ . . .þ apxt�p (18.23)

Chapter 19

A. Price index Formula Comments

1. Simple

aggregate

price index
It ¼

Pn
i¼1

PtiPn
i¼1

P0i

� 100 19:1ð Þ
Does not consider the relative

importance of each

component

Unit can affect the index value

2. Simple relative

price index It ¼
Pn
i¼1

Pti=Pt0ð Þ
n �100 19:2ð Þ

All commodities are treated

equally

The index does not reflect the

importance of individual

commodities

3. Laspeyres

index It ¼
Pn
i¼1

PtiQ0i Pn
i¼1

P0iQ0i � 100 19:6ð Þ
Tends to give more weight to

those items that show a

dramatic price increase

(continued)
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A. Price index Formula Comments

4. Paasche index

It ¼
Pn
i¼1

PtiQtiPn
i¼1

P0iQti

� 100 19:7ð Þ
Provides a more up-to-date

estimate of total expenses

than the Laspeyres

Complicated to update because

it uses reference year

quantities

Tends to understate a price

increase and overstate a

price decrease

5. Fisher’s ideal

price index FIt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

PtiQtiP
P0iQti

P
PtiQ0iP
P0iQ0i

r
� 100 19:8ð Þ Compromise between

Laspeyres and Paasche

B.

Quantity

indexes Formula Comments

1. Laspeyres

(LQ) It ¼
Pn
i¼1

QtiP0iPn
i¼1

Q0iP0i

� 100 19:9ð Þ
Gives more weight to those commodities that

show a dramatic quantity increase

2. Paasche

(PQ) It ¼
Pn
i¼1

QtiPtiPn
i¼1

Q0iPti

� 100 19:10ð Þ
More up to date than Laspeyres

3. Fisher’s

quantity

index

FIt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LQð Þ PQð Þp

19:11ð Þ Compromise between Laspeyres and

Paasche

4. Value

indexes It ¼
Pn
i¼1

QtiPtiPn
i¼1

Q0iP0i

� 100 19:12ð Þ

Chapter 20

A. Simple random sampling:

1. Sample mean:

�X ¼ 1

n

Xn
i¼1

Xi (20.1)

2. Sample variance:

s2 ¼ 1

n� 1

Xn
i¼1

Xi � �Xð Þ
2

(20.2)
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3. Estimated variance for population mean:

σ2x ¼
s2

n
� N � n

N
(20.3)

4. Confidence interval:

�X � zα=2σ̂�x<μ< �X þ zα=2σ̂X (20.4)

B. Simple random sampling for proportions:

1. Estimated variance for population mean:

σ̂2p ¼
p̂ 1� p̂ð Þ
n� 1

� N � n

N
(20.5)

2. Confidence interval:

p̂� zα=2σ̂p̂ < p< p̂þ zα=2σ̂p̂ (20.6)

C. Stratified random sampling:

1. Unbiased estimate for population mean:

�Xst ¼
XH
j¼1

Wj
�Xj (20.7)

2. Estimated variance for population mean:

σ̂2x ¼
Xn
j¼1

W2
j σ̂

2
Xj

(20.8)

D. Sample size:

1. Sample size for simple random sampling:

n ¼ Nσ2

N � 1ð Þσ2
X
þ σ2

(20.9)
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2. Sample size for stratified random sampling:

n ¼

PH
j¼1

NjS
2
j

Nσ2xst þ
1

N

XH
j¼1

NjS
2
j

(20.13)

3. Optimal proportion for jth strata:

nj ¼ NjσjPK
j¼1

NjSj


 n (20.14)

4. Optimal allocation for total sample:

n ¼

1

N

XK
j¼1

Njσj

 !2

Nσ2x þ 1
N

PK
j¼1

NjS2j

(20.15)

E. Cluster sampling:

1. Estimated population mean:

μ̂ ¼
Pm
i¼1

Ni�xi

�Nð ÞðmÞ (20.17)

2. Estimated variance for:

σ2μ̂ ¼
M � m

Mm �N
2

� �
�
Pm
i¼1

N2
i Xi � �Xð Þ2

m� 1
(20.19)

3. Confidence interval:

�X � zα=2σ
2
μ̂<μ< �X þ zα=2σ

2
μ̂ (20.20)

F. Ratio method:

x̂r ¼ �x

�y
Y (20.21)

1190 Appendix E



G. Regression method:

μ̂x ¼ �xþ b μy � �y

 �

(20.22)

Chapter 21

1. Expected monetary value:

EMV Aið Þ ¼
XM
j¼1

PjMij i ¼ 1; 2; . . . ;Hð Þ (12.1)

2. Expected utility:

E U Aið Þ½ � ¼
Xm
j¼1

PjUij i ¼ 1; 2; . . . ; nð Þ (12.2)

3. Generalized Bayes model:

P SijIð Þ ¼ P IjSið ÞP Sið ÞP
P IjSið ÞP Sið Þ (21.3)
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Appendix F

Important Finance and Accounting Topics

A. Financial Ratio Analysis

1. Static analysis: Appendix 3 of Chap. 2, Example 3.5, Appendix 3 of Chap. 4,

and Application 12.3

2. Dynamic analysis: Appendix 1 of Chap. 16

B. Interest Rate, Inflation Rate, and Term Structure of Interest Rate

1. Interest rate: Example 2.2, Example 3.3, Example 4.17, Application 4.3,

Application 5.1, and Application 7.4

2. Inflation rate: Example 4.10 and Application 19.3

3. Term structure of interest rate: Appendix 2 of Chap. 16

C. Stock Rates of Return and Portfolio Analysis

1. Stock rates of return: Application 2.1, Appendix 2 of Chap. 2, Example 3.5,

Example 4.2, Example 4.3, Example 4.4, Example 4.11, Example 4.14,

Example 4.15, Application 4.2, Example 6.22, Application 7.1.

Section 9.8, Application 12.4, and Application 17.1

2. Portfolio analysis: Example 6.21 and Appendix 1 of Chap. 13

D. Market Model and Capital Asset Pricing Model

1. Market model: Application 14.2 and Example 21.11

2. Capital asset pricing model: Sect. 21.7 and Appendix 2 of Chap. 21

E. Utility Analysis: Sect 21.4
F. Capital Budgeting Decision: Application 7.3, Example 21.9, Sect. 21.8,

and Appendix 4 of Chap. 21

G. Option Pricing Models: Appendix 2 of Chap. 6, Appendices 2 and 3 of Chap. 7,
Appendix 5 of Chap. 9, Appendix 4 of Chap. 13, and Appendix 1 of Chap. 19

H. Stock Market Indexes and Hedge Ratios: Example 1.14, Sect. 19.6, and

Appendix 2 of Chap. 19

I. Dividend Behavior Model: Example 16.7

C.-F. Lee et al., Statistics for Business and Financial Economics,
DOI 10.1007/978-1-4614-5897-5, # Springer Science+Business Media New York 2013

1193

http://dx.doi.org/10.1007/978-1-4614-5897-5_2
http://dx.doi.org/10.1007/978-1-4614-5897-5_3
http://dx.doi.org/10.1007/978-1-4614-5897-5_4
http://dx.doi.org/10.1007/978-1-4614-5897-5_12
http://dx.doi.org/10.1007/978-1-4614-5897-5_16
http://dx.doi.org/10.1007/978-1-4614-5897-5_2
http://dx.doi.org/10.1007/978-1-4614-5897-5_3
http://dx.doi.org/10.1007/978-1-4614-5897-5_4
http://dx.doi.org/10.1007/978-1-4614-5897-5_4
http://dx.doi.org/10.1007/978-1-4614-5897-5_5
http://dx.doi.org/10.1007/978-1-4614-5897-5_7
http://dx.doi.org/10.1007/978-1-4614-5897-5_4
http://dx.doi.org/10.1007/978-1-4614-5897-5_19
http://dx.doi.org/10.1007/978-1-4614-5897-5_16
http://dx.doi.org/10.1007/978-1-4614-5897-5_2
http://dx.doi.org/10.1007/978-1-4614-5897-5_3
http://dx.doi.org/10.1007/978-1-4614-5897-5_4
http://dx.doi.org/10.1007/978-1-4614-5897-5_4
http://dx.doi.org/10.1007/978-1-4614-5897-5_4
http://dx.doi.org/10.1007/978-1-4614-5897-5_4
http://dx.doi.org/10.1007/978-1-4614-5897-5_4
http://dx.doi.org/10.1007/978-1-4614-5897-5_4
http://dx.doi.org/10.1007/978-1-4614-5897-5_4
http://dx.doi.org/10.1007/978-1-4614-5897-5_6
http://dx.doi.org/10.1007/978-1-4614-5897-5_7
http://dx.doi.org/10.1007/978-1-4614-5897-5_9
http://dx.doi.org/10.1007/978-1-4614-5897-5_12
http://dx.doi.org/10.1007/978-1-4614-5897-5_17
http://dx.doi.org/10.1007/978-1-4614-5897-5_6
http://dx.doi.org/10.1007/978-1-4614-5897-5_13
http://dx.doi.org/10.1007/978-1-4614-5897-5_14
http://dx.doi.org/10.1007/978-1-4614-5897-5_21
http://dx.doi.org/10.1007/978-1-4614-5897-5_21
http://dx.doi.org/10.1007/978-1-4614-5897-5_21
http://dx.doi.org/10.1007/978-1-4614-5897-5_21
http://dx.doi.org/10.1007/978-1-4614-5897-5_7
http://dx.doi.org/10.1007/978-1-4614-5897-5_21
http://dx.doi.org/10.1007/978-1-4614-5897-5_21
http://dx.doi.org/10.1007/978-1-4614-5897-5_21
http://dx.doi.org/10.1007/978-1-4614-5897-5_6
http://dx.doi.org/10.1007/978-1-4614-5897-5_7
http://dx.doi.org/10.1007/978-1-4614-5897-5_9
http://dx.doi.org/10.1007/978-1-4614-5897-5_13
http://dx.doi.org/10.1007/978-1-4614-5897-5_19
http://dx.doi.org/10.1007/978-1-4614-5897-5_1
http://dx.doi.org/10.1007/978-1-4614-5897-5_19
http://dx.doi.org/10.1007/978-1-4614-5897-5_19
http://dx.doi.org/10.1007/978-1-4614-5897-5_16


J. Cash Management Model: Appendix 1 of Chap. 10

K. Cost–Volume–Profit Analysis: Application 7.2

L. Investment Performance Measure: Sect. 21.7
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Index

A

α and β, tests of significance of, 676–685
Absolute inequality, 84

Acceptable quality level (AQL), 539

Acceptance region, 491

Acceptance sampling, 450–452, 539

Actions, 1065

Activity ratios, 59–60

Actual value, 756

Addition rule, 168

Aitchison, J., 286, 418

Allen, T.C., 420

Alternative hypothesis, 489

Alternatives. See Actions
American Call, 663–667

Analysis of variance (ANOVA), 544

business applications of, 574–582

one-way, 544–554

two-way, 544

with more than one observation

in each cell, 563–568

with one observation

in each cell, randomized

blocks, 557–563

Andrews, R.L., 763

ANOVA. See Analysis of variance
A priori probability, 161

ARIMA model, 953

Arithmetic mean, 97–98

Assael, H., 1021

Assets, 51

Audit sampling, 357–359

Autocorrelated residuals, 629

Autocorrelation, 743

basic concept of, 804–805

first-order, 770, 793, 805, 806, 809, 834

Autoregressive forecasting model, 953

B

Balance sheets, 51

review of, 51–56

Banking industry, financial health of, 26

Bar charts, 21

Base year, 975

Basic event, 159

Basic outcomes, 158

Bayes, Thomas, 1066

Bayesian decision statistics, 1066

Bayes strategies, 1078–1080

Bayes’ theorem, 183–185

Benston, G. J., 766

Bernoulli process, 221–222

Best linear unbiased estimators (BLUE), 630

Between and residual sum of squares, 558–560

Between-groups variability, 548

Between-treatments mean square, 551

Between-treatments sum of squares, 558–560

Between variance, 560–561

Bias, 429–430

response, 1021

sample selection, 1021

self-selection, 1021

Binomial distribution, 222–223

applications of, to evaluate call options,

260–269

mean and variance of, 259

normal distribution

as approximation to, 290–291

Poisson approximation to, 236–237

Binomial probability

distribution, 221–227

function, 224–226

Bivariate normal density function, 661–663

Bivariate normal distribution, 636–637, 661

and correlation analysis, 636–645
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Blattberg, R. C., 386

Blocking variable, 557

Bobko, D. J., 576

Bobko, P., 576, 761

Borrowing portfolios, 1120

Box and whisker plot, 111–112

Britto, M., 464–466

Brown, J. A. C., 286, 418

C

Cable TV penetration, impact of,

on network share TV

revenues, 712–713

Capital asset pricing model, 1090–1098

Capital budgeting decisions, mean and

variance method for, 1099–1102

Capital market line, 1089–1090

graphical derivation of, 1119

Cash compensation, comparing,

for different groups

of corporate executives,

574–576, 904

Census, 17, 332

Central limit theorem, 354–353

Central tendency, measures of, 96–102

CEV type of OPM, 422

Charts, for data presentation, 19–22

Chi-square distribution, 388–393

and distribution of sample variance,

388–393

Chi-square tests, 568

business applications of, 574–582

of goodness of fit, 568–572

of independence, 572–574

of variance of normal

distribution, 516–517

Churchill, G. A., Jr., 579, 715

Classical tests. See Parametric tests

Cleary, J. P., 932

Clopton, S. W., 511

Coefficient(s)

Gini, 84

partial regression, 741

Pearson, 114–115

regression, 620

tests, on sets and individual, 750–755

Coefficient of correlation, 243

and covariance for sum of two

random variables, 242–244

sample, 638–639

Coefficient of determination, 631–632, 797

residual standard error and, 747–749

Coefficient of kurtosis, 401

kurtosis and, 401

Coefficient of skewness, 114, 399

third moment and, 399–400

Coefficient of variation, 107–109, 293,

398–399

second moment and, 398–399

Coincident indicators, 932

Combinations

number of, 206

permutations and, 204–210

Combinatorial mathematics, 173

using, to determine number

of simple events, 173–174

Complement, 171

probability of, 172–173

Component-parts

line chart, 21

line graph, 21

Composite event, 166

Composite hypothesis, 493

Compound event, 166

Conditional mean, 741

Conditional prediction, 688, 756

Conditional probability, 174

basic concept of, 174–176

distribution, 239–240

function, 239

Confidence belt, 695

Confidence interval(s), 359, 434

and hypothesis testing, 506–507

for mean response, 688–700, 756–759

for μ when σ2 is unknown, 440–445
for population proportion, 445–447

for sample mean, 1023–1026

for sample proportion, 1026–1027

simple and simultaneous, 554–557

for variance, 447–449

Confidence level, 434

Consistency, 431–432

Consumer price index, 975

Consumer’s risk, 539

Contingency table, 573

Continuous probability density function,

areas under, 315–318

Continuous random variable(s), 212–213, 272
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and business cycles, 929–932

D

Data, 3

collection, 16–19
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Degrees of freedom, 385, 635

Dependent event, 182–183

Dependent variable(s), 616

lagged, 822–832
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Explained variation, 633

Explanatory variable, 617

Exponential density function, derivation

of,415–417

Exponential distribution, 396–397

Exponential smoothing, 944

and forecasting, 943–954

Exponential smoothing constant, 94

F

Factor, 544

F distribution, 393–395

Ferguson, J. T., 763
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Gilman, J. J., 640

Gini coefficient, 84

Global mean, 547

GNP, 127–129

GNP deflator, 981

Gonedes, N. J., 386

Goodness-of-fit tests, 568

chi-square as, 568–572

Gosset, W. S., 385

Grant, E. L., 449

Graphs

for data presentation, 19–24

for presentation of frequency distributions,

72–82

using Microsoft Excel to draw, 45–47

Griffith, G. K., 449

Grouped data, 66

Guffey, H. L., 467

Gulf Resolution, vote of Congress on, 27

H

Hall, J. C., 328

Harris, J. R., 467

Hedge ratio, 1016–1017

Heteroscedasticity

definition and concept of, 798–800

evaluating existence of, 800–804

Hilliard, J. E., 295

Hillier, F. S., 298

Histograms, 72–76

Holt–Winters forecasting model, 947–952

for seasonal series, 968–972

Hypergeometric distribution, 229–232

Hypergeometric formula, 230–231

Hypergeometric random variable, 230

Hypothesis(es)
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exhaustive, 489

mutually exclusive, 489
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trade-off analysis, 1085–1096

for uniform distribution, 413–415

Mean absolute deviation, 105–107

Mean absolute relative prediction error, 900,

956

Mean response, 689

confidence interval for, 688–700, 756–759

point estimates of, 688–689, 756
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Multiple regression parameters estimating,

744–746
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hypothesis testing for, 513–516

Positive skewness coefficient, 115

Posterior probability, 183, 1067, 1079
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payout ratio, and market, 761–762

for retail firms, analysis of, 521–522

Ratio method(s), 1040–1042
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�R-chart, 457

Real estate property, multiple regression

approach to evaluating, 763–766

Regression(s)

approach to investigating effect of

alternative business strategies,

840–841

with interaction variables, 837

linear and log-linear time trend, 941–943

Regression analysis. See Multiple regression

analysis; Simple regression analysis

Regression coefficients, 650

hypothesis tests for individual, 752–755

test on sets of, 750–752

Regression method(s), 1040, 1042
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Scheffé’s multiple comparison, 556–557

Seasonal component, 929, 933

Seasonal index, 935–941

Seasonal index method, 940

Seasonal series, Holt–Winters forecasting

model for, 968–972

Secondary data, 16–18
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