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Preface 

This book brings together a collection of invited interdisciplinary perspec-
tives on the recent topic of Object-based Image Analysis (OBIA). Its con-
tent is based on select papers from the 1st OBIA International Conference 
held in Salzburg in July 2006, and is enriched by several invited chapters. 
All submissions have passed through a blind peer-review process resulting 
in what we believe is a timely volume of the highest scientific, theoretical 
and technical standards.  

oriented image analysis’. However, it is widely agreed that OBIA builds 
on older segmentation, edge-detection and classification concepts that have 
been used in remote sensing image analysis for several decades. Neverthe-
less, its emergence has provided a new critical bridge to spatial concepts 
applied in multiscale landscape analysis, Geographic Information Systems 
(GIS) and the synergy between image-objects and their radiometric charac-
teristics and analyses in Earth Observation data (EO).  

Over the last year, a critical online discussion within this evolving mul-
tidisciplinary community – especially, among the editors – has also arisen 
concerning whether or not Geographic space should be included in the 
name of this concept. Hay and Castilla argue (in chapter 1.4) that it should 
be called “Geographic Object-Based Image Analysis” (GEOBIA), as only 
then will it be clear that it represents a sub-discipline of GIScience. Indeed, 
the term OBIA may be too broad; for it goes without saying for Remote 
Sensing scientists, GIS specialist and many ‘environmental’ based disci-
plines, that ‘their’ image data represents portions of the Earth’s surface. 
However, such an association may not be taken for granted by scientists in 
disciplines such as Computer Vision, Material Sciences or Biomedical Im-
aging that also conduct OBIA. Because this name debate remains ongoing, 
we have chosen for this book to build on key OBIA concepts so as to lay 
out generic foundations for the continued evolution of this diverse com-
munity of practice. Furthermore, by incorporating a GEOBIA chapter in 

The concept of OBIA first gained widespread interest within the 
GIScience (Geographic Information Science) community circa 2000, with 
the advent of the first commercial software for what was then termed ‘object-
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this volume, we pave the road ahead for the GEOBIA 2008 conference at 
the University of Calgary, Alberta, Canada. 

Our primary goal in this book is to unveil the concept of OBIA as ap-
plied within a broad range of remote sensing applications. Consequently, 
the first five chapters focus on fundamental and conceptual issues, fol-
lowed by nine chapters on multiscale representation and object-based clas-
sification. These nine chapters include specific aspects such as the incorpo-
ration of image-texture, key pre-processing steps and quality assessment 
issues. The latter being a hot research topic that is repeatedly tackled 
within the application centric contributions, as well as in the last section on 
research questions. Since most members of this community are already ac-
tively engaged either in OBIA method development or operationalization, 
we only briefly address the theoretical scientific discourse regarding 
whether or not OBIA should be considered a paradigm shift according to 
Kuhn’s definition.  

The contributions in the first two sections explore and guide application 
driven development by explaining this new technological and user driven 
evolution in remote sensing image analysis as it moves from pixels to ob-
jects, and the software and infrastructure required to generate and exploit 
them. Notwithstanding this message, we suggest that the ultimate aim of 
OBIA should not be to focus on building better segmentation methods, but 
rather to incorporate and develop geographic-based intelligence i.e., ap-
propriate information within a geographical context, and all that this im-
plies to achieve it. 

Another critical topic is the automation of image processing. Strongly 
related to the advent of high-resolution imagery, papers in these sections 
discuss automatic object delineation. Automated object-recognition is cer-
tainly an end goal. Realistically, it is at the moment mainly achieved step-
wise, either with strongly interlinked procedures building workflows or 
with clear breaks in these workflows. In both cases the steps involve ad-
dressing various multiscale instances of related objects within a single im-
age (e.g., individual tree crowns, tree clusters, stands, and forests). Several 
contributions also deal with object- and feature recognition and feature ex-
traction which, though intrinsically tied to OBIA – in the majority of ap-
plications – are not an end in itself.  

The 18 chapters of Sections 3, 4, 5 and 6 are dedicated to automated 
classification, mapping and updating. This wide range of applications is 
structured through four main fields, namely (i) forest, (ii) environmental 
resource management and agriculture, (iii) land use / land cover, and (iv) 
urban applications. The final two sections are more technical / methodo-
logical. The seven chapters of Section 7 cover developments of new 
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methodologies while the book closes with another four chapters on critical 
research questions, research needs and an outlook to the future.  

This volume was planned as a coherent whole. The selection of submit-
ted contributions was based on their quality, as well as on the overall de-
sign and story we wanted to present. Of course, due to the rapidly evolving 
nature of OBIA, this tome cannot be considered truly ‘complete’. While 
there are certainly technical and methodological issues as well as applica-
tion fields which have not been addressed, this book does represent the 
first comprehensive attempt to synthesize OBIA from an international and 
interdisciplinary perspective without bias to a specific type of image-
processing software or EO data type.  

Finally, this book covers an extremely challenging topic: the Earth’s 
surface. This complex system can be represented by numerous multiscale 
image-objects extracted from a plethora of different Earth Observation 
data types, and yet such remote sensing imagery only indirectly provides 
clues to its underlying patterns and processes, each of which change with 
different scales of perception. Yet this linking – between imagery, patterns, 

policy support. Only when the complex fabric of our planet can be seg-
mented ‘appropriately’ and in a transparent and repeatable way, will we 
achieve ‘geo-intelligence’. This latter term is currently dismissed widely 
outside North America since it is associated with the (U.S.A) homeland 
security concept. However ‘geographic intelligence’ is a potential term to 
describe what OBIA really aims for: using Earth Observation data to de-
lineate and explore the multiscale spatial relationships of appropriately de-
fined image-objects and related ancillary information as they model real-
world geographic objects, and provide us new insight to better understand 
this planet and its function.  

 
 

process and scale — is exactly what is needed for effective environmental 
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Section 1 
Why object-based image analysis 



Chapter 1.1 

Object-based image analysis for remote sensing 
applications: modeling reality – dealing with 
complexity 

S. Lang 1 

1 Centre for Geoinformatics (Z_GIS), Paris-Lodron University Salzburg, 
Schillerstr. 30, 5020 Salzburg, Austria; stefan.lang@sbg.ac.at 

KEYWORDS: GMES, monitoring, geon, class modeling, cognition 
networks, object assessment  

ABSTRACT: The advancement of feature recognition and advanced 
image analysis techniques facilitates the extraction of thematic informa-
tion, for policy making support and informed decisions. As a strong driver, 
the availability of VHSR data and the ever increasing use of geo-
information for all kinds of spatially relevant management issues have 
catalyzed the development of new methods to exploit image information 
more ‘intelligently’. This chapter highlights some of the recent develop-
ments from both technology and policy and poses a synthetic view on an 
upcoming paradigm in image analysis and the extraction of geo-spatial in-
formation. It starts from a review of requirements from international initia-
tives like GMES (Global Monitoring of Environment and Security), fol-
lowed by a discussion the possible answers from OBIA including a 
detailed portrait of the methodological framework of class modeling. The 
chapter closes with a short reflection on the required adaptation of standard 
methods of accuracy assessment and change detection, as well as on the 
evaluation of delineated and classified objects against the ultimate bench-
mark, our human perception. 
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1 Monitoring needs in a dynamic world 

There is an ever increasing demand for regularly updated geo-spatial in-
formation combined with techniques for rapid extraction and targeted pro-
vision of relevant information. The need for timely and accurate geo-
spatial information is steadily increasing, trying to keep pace with the 
changing requirements of the society at a global dimension. International 
initiatives strive for standardized solutions, as examples like cooperative 
effort of Global Earth Observation System of Systems (GEOSS) or the 
European initiative Global Monitoring for Environment and Security 
(GMES) impressively show. These initiatives strive to provide holistic, yet 
operational answers to global conventions or trans-national directives and 
agendas to halt uncontrollable change of physical parameters or loss of 
lives both potentially human-induced by unlimited growth (e.g. UN 
Framework Convention on Climate Change, FCCC or the UN Convention 
on Biological Diversity, CBD or the UN Convention to Combat Desertifi-
cation, CCD1; EC Water Framework Directive, WFD or the EC Flora-
Fauna-Habitat-Directive, FFH).  

GMES: various applications – one approach 

Beyond these more environmental aspects, the EC-ESA conjoint initiative 
GMES2 follows the idea, that environmental integrity and societal stability 
both play together and may reinforce each other under certain conditions. 
The ‘S’ stands for security, and – next to environmental risks or potential 
hazards – the scope of observed treaties and conventions also comprises 
terrorism, critical infrastructure, refugees and weapons of mass destruc-
tion, to name just a few topics. Both GEOSS and GMES rely on remote 
sensing (RS) technology as a powerful and ubiquitous data provider, and 
both initiatives promote the integration of RS with in-situ data technology 
for the development of operational monitoring systems and integrated ser-
vices, based on earth observation (EO) data. The scope is wide covering 
areas ranging from environmental integrity to human security, and the idea 
of serving this range of applications with a profound, ubiquitous set of 
pooled data and adaptive methods is compelling. And more than this, the 
approach is concept-wise sustainable, both in terms of its scientific 
strength and its operational capability. Operational services, delivered as 

                                                      
1 http://www.unccd.int/ 
2 www.gmes.info 
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fast-track core services (FTCS)3 and such in preparation4 provide status ob-
servations of highly complex systems with relevance to treaties and politi-
cal agreements of different kinds. However, dealing with such advanced 
integrated tasks may no longer keep valid the monitoring of single com-
partments, but an integrated high-level approach (see 2). 

Monitoring systems as required in the GMES context (Zeil et al., in 
press; Blaschke et al., 2007; Tiede & Lang; 2007) need to be capable of 
transforming complex scene content into ready-to-use information. The 
advancement in feature recognition and advanced image analysis tech-
niques facilitates the extraction of thematic information, for policy making 
support and informed decisions, irrespective of particular application 
fields. The availability of such data and the increasing use of geo-
information for sustainable economic development and protection of the 
environment have catalyzed the development of new methods to exploit 
image information more efficiently and target-oriented. Global commit-
ments, directives and policies with their pronounced demand for timely, 
accurate and conditioned geo-spatial information, ask for an effective an-
swer to an ever increasing load of data collected from various monitoring 
systems. It is obvious, yet maybe not consciously thought of, that – along 
with ever improved sensor technology – a technically and spatially literate 
user community asks for ever more advanced geo-spatial products, and ex-
presses their needs accordingly. With an increased level of consciousness 
of prevailing problems the need for targeted information is rising double, it 
seems. The remote sensing community has to react and must deliver. 
When industry primarily highlights achievements in sensor developments, 
the efforts taken to analyze these data and to generate added value from 
these can hardly be underlined too much. 

The upcoming paradigm of object-based image analysis (OBIA) has 
high potential to integrate different techniques of processing, retrieval and 
analyzing multi-resolution data from various sensors. By bridging techni-
cal and sector-oriented domains from remote sensing and geoinformatics 
we may significantly enhance the efficiency of data provision for policy 
making and decision support.  

New data and increasing complexity: OBIA as the answer?  

Recent years’ advances in sensor technology and digital imaging tech-
niques, along with ever increasing spatial detail, have challenged the re-

                                                      
3 FTCS on land, sea, and emergency 
4 Pre-operational services on security and atmosphere 
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mote sensing community to strive for new methods of exploiting imaged 
information more intelligently. The word ‘intelligence’ in this context has 
several facets: (1) an advanced way of supervised delineation and categori-
zation of spatial units, (2) the way of how implicit knowledge or experi-
ence is integrated, and (3) the degree, in which the output (results) are con-
tributing to an increase of knowledge and better understanding of complex 
scene contents.  

New earth observation (EO) techniques and concepts from GIScience 
have led to the emerging field of OBIA5. The main purpose of OBIA in the 
context of remote sensing applications is to provide adequate and auto-
mated methods for the analysis of very high spatial resolution (VHSR) im-
agery by describing the imaged reality using spectral, textural, spatial and 
topological characteristics. OBIA offers a methodological framework for 
machine-based interpretation of complex classes, defined by spectral, spa-
tial and structural as well as hierarchical properties (Benz et al., 2004; 
Burnett & Blaschke, 2003; Schöpfer et al., in press; Niemeyer & Canty, 
2001; Hay et al., 2003). OBIA has been pushed by the introduction of fine 
resolution image data that for a broad range of application domains pro-
vides an h-res situation (Strahler et al., 1986). In h-res situations, the pixel 
size is significantly smaller than the average size of the object of interest. 
In this constellation, segmentation as a means of regionalization is an effi-
cient means of aggregation the high level of detail and producing usable 
objects. Therefore, segmentation is a crucial methodological element in 
OBIA, but not an exclusive or isolated one (see 3). 

VHRS satellite imagery is widely available now and gained popularity 
in research, administration and private use. If not the ‘real’ data, so at least 
the ‘natural color’ products can be easily accessed through web-based vir-
tual globes like Google Earth, NASA World Wind, MS Virtual Earth and 
the like. Globes have penetrated daily life information exchanges, and sat-
ellite data in a ‘this-is-my-house-resolution’ have become the staple diet to 
feed people’s greed for immediate contextual spatial information6.  

From a scientific point of view satellite-mounted sensors and air-borne 
scanners have now reached the level of detail of classical aerial photogra-
phy. For decades, fine-scaled (i.e. larger than 1:10,000) environmental as 
well as security-related applications were relying on aerial photography 
and visual inspection as a primary means to extract relevant information. 

                                                      
5 The scientific community discusses to use the term GEOBIA to emphasize (1) 

the strong contribution of GIScience concepts and (2) the focus on space re-
lated applications (see Castilla & Hay in this volume). 

6 See Tiede & Lang (2007) for a discussion how the presence of familiar spatial 
context can be utilizing for communicating complex analytical contents. 
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On the other hand, medium to low resolution satellite sensors were mainly 
used for coarse-scaled mapping and multi-spectral classification, with a 
probabilistic, yet limited set of classes being targeted at (Lang, 2005). This 
quite dichotomous gap has been separating two application domains and 
the respective methods applied, e.g. in landscape-related studies which had 
to choose between either of them (Groom et al, 2004).  

Closing this gap, but embarking on another class of problem: with the 
advent of digital data from airborne and satellite-borne sensors we return 
to the very challenge of air-photo interpretation: how do we deal with the 
enormous detail? Looking back to several decades of computer technology 
we trust in automated methods for analysis and interpretation, even of 
complex imaged contents. While a several problems remain a challenge, a 
range of tangible solutions have been developed by successfully combin-
ing GIS and remote sensing techniques for reaching closer at the photo-
interpreter’s capacity. 

As briefly mentioned before, the need for highly accurate and regularly 
updated geo-spatial information cannot be met by advancements of sensor 
technology alone. New sensors and new kinds of data may do provide a 
wealth of information, but this ‘information overload’ needs to be condi-
tioned, in order to fit the communication channels of the addressees.  Thus, 
advanced methods are required to integrate single information packages. It 
is necessary to both synchronize technologies and harmonize approaches. 
The first is related to the acquisition, pre-processing, and retrieval of multi-
sensor, multi-spectral, multi-resolution data from various sensors. The sec-
ond deals with the integration of spatial analysis techniques into image 
processing procedures for addressing complex classes in a transparent, 
transferable and flexible manner.  

The guiding principle of OBIA is likewise clear as it is ambitious: to 
represent complex scene content in such a way that the imaged reality is 
best described and a maximum of the respective content is understood, ex-
tracted and conveyed to users (including researchers). The realization, 
therefore, is not trivial, as the ultimate benchmark of OBIA is human per-
ception (see 3.3). This, our visual sense of the environment is a common 
experience, easy to share yet difficult to express in words or even rule sets. 
Indeed, the challenge is to make explicit the way how we deal with imaged 
information in various scales, how we manage to relate recognized objects 
to each other with ease, how we understand complex scene contents read-
ily. To this end, OBIA utilizes concepts from spatial thinking, which again 
is influenced by cognitive psychology. 
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2 A plurality of solutions – conditioned information and 
geons 

An increasing detail of data and complex analysis tasks opens the door for 
a plurality of solutions. Often, there is no longer a single valid choice of 
e.g. a distinct land cover class. Rather, there is a user-driven set of classes; 
not necessarily restricted to extractable features, but expressed according 
to the very demand. Fine-scaled representations of complex real world 
phenomena require means for modeling the underlying complexity, for 
mapping the dynamics and constant changes. Automated techniques mak-
ing effective use of advanced analysis methods help understanding com-
plex scene contents and try to match the information extraction with our 
world view.  

But OBIA is more than feature extraction (see chapter 3). It provides a 
unifying framework with implications for policy-oriented delivery of con-
ditioned information. By this, it also enables monitoring of system-driven 
meta-indicators like vulnerability or stability.  

 

 
Fig. 1. High-level indicators for monitoring 

 
From this point of view, a broad concept of manageable units makes 

sense. The author proposes the term geon (Lang & Tiede, 2007) to de-
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scribe generic spatial objects that are derived by regionalization and ho-
mogenous in terms of a varying spatial phenomenon under the influence 
of, and partly controlled by, policy actions. A geon7 (from Greek gé = 
Earth and on = part, unit) can be defined as a homogenous geo-spatial ref-
erencing unit, specifically designed for policy-related spatial decisions. 
The geon concept (see figure 2) can be seen as a framework for the region-
alization of continuous spatial information according to defined parameters 
of homogeneity. It is flexible in terms of a certain perception of a problem 
(policy relevance/scope). It employs a comprehensive pool of techniques, 
tools and methods for (1) geon generation (i.e. transformation of continu-
ous spatial information into discrete objects by algorithms for interpola-
tion, segmentation, regionalization, generalization); (2) analyzing the spa-
tial arrangement, which leads to emergent properties and specific spatial 
qualities; and (3) monitoring of modifications and changes and evaluation 
of state development. The latter, characterizing spatio-temporal variability 
require appropriate means to distinguish noise or slight modifications from 
real changes. In addition, there is the possibility of recovering objects in 
the presence of ‘occlusions8’ (i.e. data errors, measure failures, lack of 
data, mismatch of data due to bad referencing). 

 

                                                      
7 The term geon (for geometric ions) was initially used by Biederman (1987), who 

hypothizes that cognitive objects can be decomposed into basic shapes or com-
ponents. Geons in Biederman’s view are basic volumetric bodies such as cubes, 
spheres, cylinders, and wedges. The concept used here is related, but not identi-
cal to this view. 

8 This term, again, is borrowed from Biederman (1987) 
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Fig. 2. The Geon Concept 

 
Within the spatial extent in which a certain policy applies (policy scope, 

PS), a group of geons makes up a spatially exhaustive set (geon set). PS 
comprises the spatio-temporal extent in which a certain policy is valid. 
This extent usually coincides with administrative units, but not necessarily 
does: in the context of the EC Water Framework Directive, catchments 
function as reference units. In cases when PS is defined by legal bounda-
ries, the spatial limit of the geon set, as derived functionally, may not fully 
coincide with PS. As policies address various scale domains and their im-
plications apply to particular domains, a geon set is scale-specific and 
adapted to the respective policy level. Several geon sets may exist, alto-
gether forming in a spatial hierarchy. Using geons, we are capable of trans-
forming singular pieces of information on specific systemic components to 
policy-relevant, conditioned information. Geons are of dynamic nature. 
Monitoring the spatio-temporal development of geons is critical for assess-
ing the impact of policies and the compliance with obligations or commit-
ments attached to those. The ‘fate’ of a geon is monitored using the fair 
state concept, which takes into account the natural dynamics (improvement 
or deterioration in regard to an optimum or average state). Management ac-
tions have to be taken, when a certain threshold is reached.  
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Irrespective of the very concept applied for naming delineated units, and 
irrespective of the different fields of use, OBIA aims at the delineation and 
the classification of relevant spatial units. The way to perform this task is 
an integrated, cyclic one, and in the following section this will be dis-
cussed, under the heading ‘class modeling’. 

3 Class modeling 

From a methodological point of view, one may observe a convergence of 
various techniques from formerly distinct GIS and remote sensing em-
bankments; aiming at the aforementioned purpose, OBIA is trying to 
bridge these. OBIA rests upon two interrelated methodological pillars, i.e. 
(1) segmentation / regionalization for nested, scaled representations; (2) 
rule-based classifiers for making explicit the required spectral and geomet-
rical properties as well as spatial relationships for advanced class model-
ing. We speak of ‘image analysis’ and not merely of ‘image classification’, 
since the process of OBIA is iterative rather than a linear and strict subse-
quent one. The process of OBIA is a cyclic one. It is usually not enough to 
think of (a) delineation and (b) labeling9. By its iterative nature, the process 
is highly adaptive and open for accommodating different categories of tar-
get classes, from specific domains, with different semantics, etc. Class 
modeling (Tiede et al., 2006; Tiede & Hoffmann, 2006) enables operators 
to tailoring transformation of scene contents into ready-to-use information 
according to user requirements. It supports data integration and the utiliza-
tion of geo-spatial data other than images (e.g. continuous data like altitude 
or data representing administrative units).  
  

                                                      
9 To underline this, Baatz et al. (this volume) propose the term “object-oriented” to 

be used instead of “object-based”, because the former is more target-oriented, 
teleological, whereas the latter may be misleading and implying a more static 
concept. However, since the term “object-oriented” is strongly occupied by 
computer scientists, the author stays with “object-based”. 
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Fig. 3. Class modeling: the symbology marks the move from distinct realms of 
segmentation and classification towards an interlinked concept 

 
Class modeling (as for example realized by the modular programming 

language CNL, cognition network language), provides flexibility in pro-
viding problem-oriented solutions for advanced analysis tasks. Examples 
are scene-specific high-level segmentation and region-specific multi-scale 
modeling (Tiede et al., this volume) or the composition of structurally de-
fined classes as proposed by Lang & Langanke (2006). The latter was suc-
cessfully realized in a study on semi-automated delineating biotope com-
plexes (Schumacher et al., 2007, see figure 9a).  

 

 
Fig. 4. Class modeling – a cyclic process. The example of modeling biotope com-
plexes  
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From pixels (via image regions) to image objects 

In object-based image analysis, the ‘image object’ is the central methodo-
logical element and as an object of investigation, it resides somewhere be-
tween application-driven plausibility and technology-driven detectability. 
To this end, we conjoin image segmentation with knowledge-based classi-
fication. Image segmentation decreases the level of detail, reduces image 
complexity, and makes image content graspable. Segmentation produces 
image regions, and these regions, once they are considered ‘meaningful’, 
become image objects; in other words an image object is a ‘peer reviewed’ 
image region; refereed by a human expert. A pixel as a technically defined 
unit can be interpreted in terms of its spectral behavior, in terms of the ag-
gregation of spectral end-members, or in terms of its neighborhood. A 
pixel cannot be assigned a valid corresponding real-world object, but an 
image object can. Overcoming the pixel view and providing image objects 
that ‘make sense’ opens a new dimension in rule-based automated image 
analysis; image objects can be labeled directly using a range of characteris-
tics, including spatial ones, or they can be used for modeling complex 
classes based on their spatial relationships. Coupled with e.g. a rule-based 
production system we can make expert knowledge explicit by the use of 
rules (see below).  

Hierarchical, multi-scale segmentation  

Multi-scale segmentation has often been linked with hierarchy theory 
(Lang, 2002). This is an appealing concept, and the comparison seems ob-
vious as both hierarchy theory and multi-scale segmentation deal with hi-
erarchical organization. Still we need to be careful: hierarchy theory pro-
poses the decomposability of complex systems (Simon, 1973), but imagery 
is just a representation of such systems. An imaged representation is in 
several aspects reductionism: it is a plane picture only revealing reflection 
values. So hierarchy theory forms a strong conceptual framework, rather 
than a methodological term for multiple segmentation cycles. What we de-
lineate, needs to be assigned a function first (image regions – image ob-
jects – (geons) – classes, see above). We should be aware that hierarchical 
segmentation at first hand produces regions of increasing average size (or 
number of pixels, respectively). But hierarchy theory is not about size, it 
deals with increasing degree of organization (Laszlo, 1972; Szaramovicz, 
2004). What makes a strong link to hierarchy theory is not multiple seg-
mentation alone, but the way we approach complexity, how we model and 
decompose it, and how we integrate our knowledge about it.  
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When fitting image complexity into hierarchical levels, it does not hap-
pen independently from human perception (Lang 2005). Allen & Starr 
(1982) point out that “discrete levels need to be recognized as conven-
ience, not truth” and levels would emerge “as device of the observer” 
(ibid.). While drastically expressed, we should be aware that instead of 
questioning the ontological truth of scaled representations, we should 
rather focus on their epistemological relevance for target objects. Human 
perception is a complex matter of filtering relevant signals from noise, a 
selective processing of detailed information and, of course, experience. To 
improve automated object extraction we therefore seek for mimicking the 
way how human perception works (see 3.3 and Corcoran & Winstanley, 
this volume). 

Is there one single set of multiple segmentations applicable ‘horizon-
tally’ over the entire scene? The multi-scale option does not always lead to 
satisfying results. This applies in scenes, where multiple scales occur in 
different domains. Tiede et al. (this volume) discuss an application of re-
gionalized segmentation (Lang, 2002). 

Nested scaled representations need to consider scale. While this state-
ment is somewhat tautologically, there is no single solution to this and dif-
ferent approaches exist to address this. One, aiming at a strict hierarchical 
representation, performs multi-scale segmentation with coinciding bounda-
ries. In other words: a super-object gets assigned exactly n sub-objects 
(Baatz & Schäpe, 2000). The advantage is a clear 1:n relationship between 
super- and sub-object. On the other hand, since boundaries are ‘cloned’ up 
the scaling ladder (Wu, 1999), boundaries will not be generalized. It is 
scale-adapted, but not scale-specific. On the other hand, scaled representa-
tions are scale-specific, if there is – as in visual interpretation – a match 
between average size and generalization of boundaries. This is for example 
realized in the software SCRM (Castilla, 2004). The drawback is, how-
ever, boundaries do not coincide and cannot be used for ‘direct’ modeling 
(but see Schöpfer et al., Weinke et al., this volume). 

Knowledge representation and cognition networks 

Knowledge plays a key role in the interpretation-focused, value-adding 
part of the remote sensing process chain (Campbell, 2002). We have at our 
disposal a huge store of implicit knowledge and a substantial part of it is 
used in image interpretation (ibid.). By training we subsequently comple-
ment implicit knowledge with a more formalized knowledge obtained 
through formal learning situations (e.g. the specific spectral behavior of 
stressed vegetation) and experience. From an artificial intelligence (AI) 
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perspective two components of knowledge can be distinguished, proce-
dural and structural knowledge. Procedural knowledge is concerned with 
the specific computational functions and is therefore represented by a set 
of rules. Structural knowledge implies the way of how concepts of e.g. a 
certain application domain are interrelated: in our case that means, in how 
far links between image objects and ‘real world’ geographical features is 
established. Structural knowledge is characterized by high semantic con-
tents and it is difficult to tackle with. A way to organize structural knowl-
edge is the use of knowledge organizing systems (KOS), either realized by 
graphic notations such as semantic networks (Ibrahim, 2000; Pinz, 1994; 
Liedtke et al., 1997; Sowa, 1999) or and more mathematical theories like 
formal concept analysis (FCA, Ganter & Wille, 1996). Within image 
analysis semantic nets and frames (Pinz, 1994) provide a formal frame-
work for semantic knowledge representation using an inheritance concept 
(is part of, is more specific than, is instance of). As semantic nets need to 
be built manually, they allow for controlling each and every existing con-
nection once being established. With increasing complexity the transpar-
ency and operability will reach a limit. Bayesian networks are manually 
built, but the weighting of the connections can be trained, though it has to 
be trained for every connection. 

 

 
Fig. 5. Colour, form and arrangement evoke certain parts of our knowledge and 
experience (from Lang, 2005) 
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Over several decades techniques were developed to group pixels into 
spectrally similar areas and link spectral classes – if possible – to informa-
tion classes. The pixel based approach is considered intrinsically limited 
(Blaschke & Strobl, 2001; Benz et al., 2004; Schöpfer et al., in press), 
since only spectral properties of (geographic) features are taken into ac-
count. The ‘picture element’ as a technical driven smallest unit integrates 
signals but does not reflect spatial behavior in a sufficient manner. Even if 
direct neighborhood is considered by applying kernel-based techniques, 
the ‘environment’ remains a square or any other predefined regular geo-
metric shape. Modeling in this case is confined to spectral characteristics 
and related statistical behavior (texture, etc.). Spatial explicit characteris-
tics are left aside.  

The process of OBIA is supported by the use of so-called cognition 
networks (Binnig et al., 2002) or related concepts of KOS that provides the 
framework for modeling user-oriented target classes and their composition 
by spatial components. A cognition network controls the system of target 
classes and the class definitions as well as the mode of representation (e.g. 
regionalized segmentation or one-level vs. multi-level representation, see 
Tiede et al., this volume; Weinke et al., this volume). It provides the basis 
for a rule-based production system, which is controllable and transferable, 
as well transparent to both operators and users. Even if there are means 
and techniques to formalize knowledge and to encapsulate it into rule 
bases, the vast intuitive knowledge of a skilled interpreter operative for 
many years is hard to encapsulate in a rule system. Transferring existing 
experience effectively into procedural and structural knowledge remains a 
challenge of AI systems, especially taking into consideration the user-
oriented plurality of solution, as discussed above. Cognition Network Lan-
guage (CNL, Baatz et al., this volume), the meta-language to set up rule 
sets in Definiens software10 offers a range of tools and algorithms to even 
address complex target classes. Establishing a rule set is often time-, labor- 
and therefore cost-intensive. But once a system is set up, and proved to be 
transferable, the effort pays off. The application of it to like scenes does 
not imply linear effort, as visual interpretation does. Therefore, in terms of 
operability one needs to distinguish between establishing a cognition net-
work, and its, mostly scene-depending, parameterization. 

OBIA can play a key role for image understanding (Lang & Blaschke, 
2006). The entire process of image analysis is characterized by the trans-
formation of knowledge. Finally, a scene description representing the im-
age content should meet the conceptual reality of an interpreter or user. By 
establishing a body plan for the classes targeted at, knowledge is stepwise 

                                                      
10 See www.definiens-imaging.com 
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adapted through progressive interpretation and class modeling. By this, 
knowledge is enriched through analyzing unknown scenes and transferring 
knowledge will incorporate or stimulate new rules. A particularity with 
spatial characteristics is related to the notion that parameters for spatial 
characteristics are difficult to determine. Whereas spectral reflectance can 
be measured directly by spectrometers on the ground, spatial or hierarchi-
cal properties are often ill-defined, less explicit and therefore difficult to be 
used as distinctive rules. Fuzzification of ranges (e.g. “rather small in size” 
or “rather compact”) is one way to tackle this problem, but it is often not 
the range as such that is ambiguous, but the very spatial property itself. 

Pro-active classification  

Operators applying methods of object-based image analysis must be ready 
for taking over responsibilities. Isn’t that contradictory? In most publica-
tions we read about ‘automated’ or at least ‘semi-automated’ analysis. 
Automation, of course, is the overall aim of using this approach – like with 
any other computer-based technique. However, with increasing complexity 
of the scenes and the classes or features to extract, we need to carefully 
feed the system with our experience, in a usable form. The approach to-
wards this goal must be interdisciplinary: modeling complex target classes 
using spatial and structural characteristics not only requires computational 
skills, but also a wealth of knowledge about the area and the composition 
of the imaged setting.  

Maybe it sounds provokingly, but it may be stated that a standard super-
vised multi-spectral classification is mechanistic. The machine is fed with 
samples, which we assume to be correct, and then provides a correspond-
ing result. The process involves a certain level of probability but highly 
controllable. Class modeling, in contrast, is not mechanistic, but systemic. 
It not only requires ‘supervision’, but pro-active engagement from the op-
erator. The combination of existing techniques incorporate know-how and 
existing experience in the different areas: (1) the modeling stage of the 
classes relies on expert knowledge that can build upon manual interpreta-
tion skills; (2) users that practice pixel-based statistical approaches can 
utilize their understanding in machine based classifications; (3) experi-
ences in semi-automatically detecting and delineating features on high 
resolution data can be used for the classification process as such. Therefore 
object-based methods will integrate the existing remote sensing know how 
rather than replacing prevailing classification practices.  
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Fig. 6.  OBIA as an integrated approach (from Lang, 2005, modified) 

4 Object assessment and evaluation  

Introducing new ways of image analysis is not free of challenges in terms 
of adapting both core and complementary methods (Lang & Blaschke, 
2006). Among others, this applies for object-based accuracy assessment 
and object-based change detection. ‘Object-based’ in this case means that  
accuracy or changes are assessed in such a way that spatial properties are 
unambiguously reflected.  Both spatial-explicit assessment techniques are 
facing similar challenge of comparing data sets according to criteria, which 
are hardly reducible to binary decisions of true or false. Possible solutions 
are discussed in this volume and preceding studies under different aspects 
(Schöpfer et al, this volume; Schöpfer & Lang, 2006; Lang et al., in press; 
Castilla & Hay, 2006; Weinke et al; this volume; Weinke & Lang, 2006). 
Thus, in the following two sections only key aspects are summarized. 

Then, touching briefly at the strands of cognitive psychology, the chap-
ter concludes with a note on object evaluation, for our results need to be 
proven at the ultimate benchmark, our human perception.  
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Object-based accuracy assessment 

Quantitative site-specific accuracy assessment (Congalton & Green, 1999) 
using error matrices and specific assessment values (such as error of com-
mission, error of omission, kappa ^) is widely used for evaluating the 
probability of correct class assignments and the overall quality or reliabil-
ity of a classification result. Within OBIA, point-based accuracy assess-
ment only gives indication on thematic aspects (labeling). Thematic as-
sessment can be checked by generating random points within objects and 
comparing the labels against a ground truth layer. Alternatively, a set of 
objects can be selected in advance and be used as reference information. 
The decision of being thematically correct may not be a binary one: in 
fuzzy-based systems, the assessment of class membership is rather quali-
fied by a confidence interval. Still, thematic accuracy assessment may be 
dubbed ‘1-dimensional’: there is one specific label, i.e. the most likely 
classification result, to be checked on one specific site. Note that also 
checking an entire object in terms of its label is a point-based approach11. 
Spatial accuracy instead requires different ways of assessment. There are 
at least two aspects to be considered: (1) the appropriateness of an object’s 
delineation (match of extend and shape with real situation) and (2) the pre-
cision of boundary delineation (match with scale applied). 

In smaller test areas with a limited number of larger objects, every sin-
gle object may be assessed individually: classified image objects can be 
visually checked against manual delineation (e.g. Koch et al., 2003). Still, 
a quantitative assessment requires at least some basic GIS overlay tech-
niques. But performing hard intersections implies operational problems of 
producing sliver polygons and the like. A solution of ‘virtual overlay’ has 
been proposed by Schöpfer & Lang (2006) (see also Schöpfer et al., this 
volume), looking at specific object fate. This comprises object transition 
(fate in time) and object representation (fate in terms of different ways of 
delineation). Generally speaking, we encounter difficulties in performing 
object-based accuracy assessment, which satisfies the needs as being dis-
cussed by Congalton & Green (1999): (1) a 100% geometrical fit between 
reference and evaluation data is usually not given due to the issue of scale 
and the different ways of delineation; (2) the thematic classes are not mu-
tually exclusive when using fuzzified rule bases. In other words, the accu-
racy is also a matter of geometrical and semantic agreement (Lang, 2005).  

                                                      
11 This can be considered a special case of ecological fallacy (Openshaw, 1984), or 

better: individualistic fallacy, as we assume correctness for an entire area based 
on point-based observation. See also the discussion about polygon heterogene-
ity Castilla & Hay, 2006. 
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Object-based change detection and analysis 

Monitoring is about detecting, quantifying and evaluating changes. With-
out proper change assessment, any decision making process is vague, and 
any management measure to be taken is ill-posed. Changing objects (or 
geons, see the discussion about fair state above) do not only change in 
terms of label, but also – and usually more often – in terms of their spatial 
properties. A habitat under observation may not have changed its class 
over time, given that is was measured on a specific point located e.g. in the 
centre of the habitat area, where there have no changes occurred. On the 
other hand, it may have been substantially shrinked through activities 
around it. So its function of providing living space for certain organisms 
may not be further fulfilled. In terms of its spatial component, object-based 
change detection faces a similar class of problems as object-based accu-
racy assessment. Common image-to-image or map-to-map comparisons 
(Singh, 1989) are site-, but not object-specific, i.e. they refer to pixels. Any 
aggregated measure based on this, becomes spatially implicit. Object-
based change analysis needs to specifically compare corresponding ob-
jects. Methodological frameworks have been discussed by Blaschke, 2005; 
Niemeyer & Canty, 2001; Straub & Heipke, 2004; Schöpfer & Lang, 
2006; Schöpfer et al., this volume. Like with object-based accuracy as-
sessment, vector overlays (intersections) produce very complex geometry, 
which is later on difficult to handle and critical in terms of post-processing. 
Visual inspection is subjective and time-intensive and therefore of limited 
operational use.  

In GIScience there are generic concepts available to describe the spatial 
relationships among spatial objects (e.g. Mark, 1999 or Hornsby and 
Egenhofer, 2000) which are built upon sets of spatial relationships. The re-
lationships among spatial objects are built on basic topological principles 
like containment, overlap, and proximity. In addition to topology, the in-
crease or decrease in size are two further qualities describing temporal dy-
namics, with presence or absence of objects form the extremes. While 
these basic categories for describing mutual spatial relationships are con-
ceptually clearly distinguishable, in reality a combination or any kind of 
transition may occur. The problem is usually reinforced by the effects of 
generalization. Spatial changes may get completely averaged by applying 
smaller scales of representations (figure 7). 
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Fig. 7. Substantial changes that may only occur in fine-scaled representation. Left: 
Habitat next to a road in state t0. Right: state t1b - the habitat is split by a small 
road that (1) is not reflected in coarser scale and (2) only slightly decreases habitat 
area; state t1b: the habitat has been influenced in terms of its boundaries; functional 
properties have changed substantially (the core area, indicated in white, has 
shrinked), but area has remained the same.  

Object evaluation – the ultimate benchmark  

It is recommendable, in the entire process of OBIA, not to forget the ulti-
mate benchmark, i.e. our (visual) perception. The machine is supportive – 
it reacts on parameters, though the expert has to decide (figure 8). 
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Fig. 8. Object delineation: the expert filter and the orchard problem (from Lang, 
2005; Lang & Langanke, 2006, modified) 

 
Region-based segmentation algorithms, like the name indicates, produce 

regions according to a certain criterion of homogeneity (spectral similarity, 
compactness, etc.). Due to their bottom-up nature, they are limited in pro-
viding delineations of aggregates that consists of high contrast, but regu-
larly appearing (sub-)objects. These kinds of structural arrangements, such 
as an orchard (Lang & Langanke, 2006) or a mire complex with pools and 
hummocks (Burnett et al., 2003), are readily delineated by humans, though 
hard to grasp by a machine. This is a different kind of homogeneity: regu-
larity in structure (repetitive patterns) or conformity (i.e. constancy) in 
change.  

The orchard problem and related problems (Lang & Langanke, 2006) 
arises when addressing geographical features that exhibit conceptual 
boundaries rather than ‘real’ ones. Consider an orchard, which is deline-
ated on an aerial-photograph with ease, because of the specific arrange-
ment of fruit trees in a matrix of grass. Even, if the orchard is situated next 
to a meadow with the same spectral behavior as the matrix, humans would 
draw the boundary line somewhere in between. Reasons for that can be 
found in the human way to deal with heterogeneity according to the gestalt 
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laws (Wertheimer, 1925) and other principles of human vision. Both the 
factor of good gestalt and the factor of proximity and continuation explain 
why humans would delineate an object on a higher level. As found out by 
Navon (1977), a scene is rather decomposed than built-up: if segmentation 
routine start from pixels, it can hardly mimic the way of visual processing, 
namely to start from a global analysis of the overall pattern and then to 
proceed subsequently to finer structures.  

The limitations as pointed out above may require coping strategies like 
the introduction of hybrid techniques. This means in this context the com-
plementary usage of machine-based automated delineation of basic units 
and high-level aggregation by a human interpreter (see figure 9).  

 

 

 
Fig. 9.  Delineation of habitat complexes: full automated class modeling vs. hy-
brid approach.   

 
Recent advances in visual intelligence research have found further ex-

planatory rules for the interpretation of geometrical (or spatial) structures 
(Hofman, 1998), and some of these provide valuable hints for the short-
comings of the difficulties we are facing when trying to automate the in-
terpretation of complex scenes. There are rules concerning the way how 
something is interpreted in a constructive way, e.g. how lines in 2D are in-
terpreted in 3D (straight lines, coinciding lines, collinear lines). But when 
dealing with satellite image data or air-photos these rules are less impor-
tant, since the perspective is always vertical and requires abstraction, any-
way. Others make us favor constellations which likely exist, and neglect 
theoretical, unlikely ones. This implies utilizing certain ‘world views’, e.g. 
the rule of regular views, which excludes some constellations to be very 
unlikely, is based on the concept of regularity; and this is a matter of ex-
perience. The Gestalt law of symmetry, though being powerful in explain-
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ing this phenomenon in part, is not capable to cover all cases (ibid.). But 
subjectively perceived structures based on constructed boundaries can be 
very complex. 

6 Conclusion 

This chapter has highlighted ‘drivers’ for object-based image analysis as 
well as some of the ‘responses’ as they became key characteristics of 
OBIA. The aim of the opening chapter for the first book section asking 
“Why object-based image analysis?” was to put forward profound ideas 
and basic concepts of this new approach, as it was to discuss the tasks 
challenging it. Both motivation and requirements for OBIA were presented 
in the light of a world of increasing complexity to be addressed by multiple 
solutions for global monitoring issues. Conceptual elements of this new 
approach were discussed considering spatial as well as perceptual aspects. 
Drawing from those, methodological implications have been pointed out in 
terms of adaptations and further development of traditional methods, em-
powered by a successful integration of GIS and remote sensing techniques. 
The subsequent chapters of this section will complement these views with 
many additional aspects presented from various angles and backgrounds.  
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ABSTRACT: This research describes an advanced workflow of an ob-
ject-based image analysis approach. In comparison to the existing two-
staged workflow where typically a segmentation step is followed by a clas-
sification step, a new workflow is illustrated where the objects themselves 
are altered constantly in order to move from object primitives in an early 
stage towards objects of interest in a final stage of the analysis. Conse-
quently, this workflow can be called “object-oriented,” due to the fact that 
the objects are not only used as information carriers but are modelled with 
the continuous extraction and accumulation of expert knowledge. For bet-
ter demonstration, an existing study on single tree detection using laser 
scanning data is exploited to demonstrate the theoretical approach in an au-
thentic environment. 

1 Introduction 

Recent developments in remote sensing made it possible to obtain data of a 
very high spatial resolution which allows extraction, evaluation, and moni-
toring of a broad range of possible target features. At the same time, the 
demand to automate image analysis in operational environments is con-
stantly growing. However, the variety and number of different features to 
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be extracted, add challenges specifically in terms of modelling and auto-
adaptive procedures. 

The advantage of a spatial resolution with pixel sizes significantly 
smaller than the average size of the object of interest comes with the dis-
advantage of an abundance of spatial detail and the accordingly huge 
amount of data to be processed. To overcome this drawback, the object-
based image analysis approach has proven to be an alternative to the pixel-
based image analysis and a large number of publications suggest that better 
results can be expected (Baatz and Schäpe 2000, Willhauck et al. 2000, 
Hay et al. 2005, Kamagata et al. 2005, Manakos et al. 2000, Whiteside et 
al.2005, Yan et al. 2006). 

The object-based approach suggests a two-staged approach. In the first 
step pixels are merged to object clusters, possibly in a multi-level object 
hierarchy, which then will be analysed and classified in the second step. 
This means that, the created objects influence the classification result to a 
large extent although they might not represent the final objects of interest 
(i.e. single buildings, trees, etc.) already. Because the objects remain un-
changed once they are created, and subsequently serve as basis for the ac-
tual analysis, this workflow can be called “object-based image analysis”. A 
successful object-based image analysis results in the correct labelling / 
classification of regions rather than extracting final objects of interest for 
instance like trees, acres, buildings or roads in their final shape. 

In comparison to the “object-based” workflow, this paper describes an 
alternative, more advanced workflow which not only uses object clusters 
as the basis for a classification analysis but brings the objects themselves 
and the shaping of the objects in the focus of the analysis.  

This alternative workflow starts with creating object clusters and aims to 
produce desired objects of interest with correct shape and correct labelling. 
Why is this required? The accuracy and the significance of the final meas-
urements, numbers, and statistics directly and actually critically depend on 
the quality of segmentation. Relevant information such as numbers, shapes 
or other statistics per unit is only accessible if trees are not only correctly 
labelled as “tree area” but also are correctly extracted tree by tree as “tree 
objects” or ”tree units”. 

Typically, the correct extraction and shaping of objects of interest re-
quires more advanced models, domain knowledge and semantics, in order 
to cope with the specific characteristics of the structure and to sort out am-
biguities that often occur. The more or less simple and knowledge-free 
segmentation procedures used to produce object clusters or object primi-
tives almost never succeeds in extracting objects of interest in a robust and 
reliable manner. Furthermore, different types of target objects also need 
different strategies for their extraction. In order to support this, decisions 
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need to be made throughout the process that classifies different regions and 
thus make them accessible to different extraction approaches. 

2 Methodology 

2.1 Object-oriented image analysis workflow 

The workflow described here starts with object primitives as well. How-
ever, in contrast to the object-based workflow, it uses these objects not 
only as information carriers but also as building blocks for any further 
shape modification, merging, or segmentation procedures. In a whole se-
quence of processing steps, where segmentation steps alternate with 
evaluation and classification steps, these object primitives are constantly 
altered until they become the desired objects of interest. Because this strat-
egy aims for correct shaping and classification of objects, and objects are 
also used at every step during the procedure as the central processing unit, 
serving both as information provider and as building blocks, this workflow 
consequently can be called “object-oriented image analysis”. 

This approach can be realised by using Cognition Network Technology 
(CNT), distributed by Definiens AG, with its included modular program-
ming language CNL (Cognition Network Language). Amongst typical 
programming tasks like branching, looping and variable definition, CNL 
enables to build and perform specific analysis tasks based on hierarchical 
networks of objects and essentially supports an object-oriented image 
analysis workflow. 

This workflow can be described best with a spiral and is illustrated in 
Fig. 1. The entire process is iterative and starts in the first step with the 
creation of object primitives using any (knowledge-free) segmentation al-
gorithm. The next step uses the object primitives in order to perform a first 
evaluation and classification, thus introducing semantics. Building on this 
result, the subsequent step allows refinement or improvement of the seg-
mentation locally for a specific class. Thus, the whole process alternates it-
eratively between local object modification on the one hand and local ob-
ject evaluation and classification on the other. By using such an iterative 
approach, different object classes can be addressed with different object 
modification strategies. 

During this process, the objects are altered from stage to stage until they 
represent the final target objects. Only the combination of correct shaping 
and correct classification characterizes the target objects; otherwise the re-
sults will be insufficient. The spiral in Figure 1 represents this alternation 
between segmentation and classification in the object-oriented approach. 
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As the analysis progresses, classification detail and accuracy are growing 
together with segmentation detail and accuracy. Whereas the process starts 
with rather simple and knowledge-free segmentation steps, more and more 
expert and domain knowledge is introduced and used in later steps. The 
more closely the process approximates the final target objects, the higher is 
the abstraction from the original image information. 

Fig. 1. Object-oriented image analysis: the generic procedure 

2.2 The Object Domain 

A central concept in the object-oriented workflow is the Object Domain. It 
defines for each algorithm the specific subset of objects to which the algo-
rithm—independent if segmentation or classification—will be applied. It 
therefore enables implementation of locally specific strategies.  

The Object Domain characterizes a subset of objects in the object hier-
archy through the hierarchical object level, the classification of objects 
and/or specific attributes of objects. 
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The concept can be further differentiated. Starting with objects of a spe-
cific Object Domain, subdomains can be defined operating over the net-
worked neighbourhood. In a hierarchical object network, subdomains of an 
object can for instance be neighbour objects, subobjects or a superobject in 
a defined distance, with a specific classification and/or with specific attrib-
utes.  

In the continuously alternating object-oriented image analysis workflow, 
the Object Domain is the essential link between segmentation and classifi-
cation.  

2.3 Evaluation and classification aspects 

During the course of the image analysis, localized evaluation and classifi-
cation is essential. Before objects can be distinguished into different types 
by classification, object attributes must be evaluated. These attributes can 
be intrinsic to the object—such as shape, size or spectral characteristics—
or they can be derived from operations over the networked context of an 
object. Contrasts, embedding, relative location, and composition are good 
examples.  

Independent of the individual classification method it always can be ap-
plied to a specific subset of objects defined through an Object Domain. 
Thus very specific measurements and decisions can be performed locally. 

If the evaluation is more complex, intermediate results can be stored in 
variables. Whereas object variables hold information specific to an indi-
vidual object global variables hold information specific to the whole scene. 

Making decisions that relate to measurements stored in variables is an 
important tool for auto-adaptive strategies which play a crucial role in 
making solutions robust over any expected variability of object character-
istics. As mentioned before, the attributes derived from objects and used 
for classification critically depend on the way the object has been proc-
essed. 

2.4 Segmentation aspects 

The term “Segmentation” is used here as the summary of all procedures 
that build, modify, grow, merge, cut or shrink objects. In principal, seg-
mentation techniques can be distinguished depending on if they are used to 
produce initial object primitives starting with pixels (A) or if they further 
process already existing objects (B). Typically, an object oriented image 
analysis process starts with (A) and performs all further object modifica-
tion with (B). 
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Independent of the specific algorithm the modification (B) can be ap-
plied to a specific subset of objects defined through an Object Domain. 
Thus locally very specific modifications can be performed.  

A number of segmentation methods are working with seed objects as a 
starting point and candidate objects in the networked neighbourhood which 
are used to modify (merge, grow, shrink, cut) the seed unit. In these cases, 
both types – seeds and candidates – can be defined through different Ob-
ject Domains in order to constrain the algorithm and make it more selec-
tive. 

2.5 Fractal structure of the workflow 

The described workflow of alternating segmentation and classification 
steps is inherently fractal.  

In many cases, a specific segmentation step needs preparation in form of 
an evaluation and a classification of objects which shall be modified or 
which contribute to a specific modification. A good example for this is the 
object-oriented watershed algorithm described in the case study below. 

Symmetrically, image objects are not always directly in the appropriate 
state to provide the relevant information needed to do a certain decision. In 
theses cases preparation is needed through an adequate segmentation of 
objects. For instance, if the size of water bodies matters and at the current 
state of processing water bodies are represented through correctly classi-
fied object primitives then merging those primitives into complete water 
body units allows to access the needed information. 

Fig. 2 illustrates how subprocesses themselves show the alternation of 
segmentation and classification.  

 
Fig. 2. Fractal approach of the object-oriented image analysis workflow 
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2.6 Modular Structure 

Typically, an overall analysis procedure consists of a number of sub mod-
ules that each addresses a certain target class. Each individual module is an 
encapsulated object-oriented image analysis task. Fig. 3 shows an example 
for a sequential modular approach.  

 

roads housesgeneral 
landuse

© by M. Baatz

roads housesgeneral 
landuse

© by M. Baatz  
Fig. 3. Modular Structure of the object-oriented image analysis workflow 

3 Case study – single tree detection 

Individual object-based tree detection has been discussed in a number of 
publications as well as the use of the local maxima approach (Pitkänen et 
al. 2001, Pitkänen et al. 2004, Tiede et al. 2004, Tiede et al. 2005). 

The following case study exemplarily demonstrates an object-oriented 
image analysis workflow. It is a solution for single tree detection using air-
borne laser scanning data and was carried out by Tiede and Hoffmann 
(2006). 

Starting with object primitives the objects are constantly evaluated and 
altered until the target objects in form of tree units are found. The ap-
proach used can be called an object-oriented and knowledge-based water-
shed algorithm.  

Fig. 4 gives an overview over the workflow as described in detail in the 
following chapters.  
 



36      M. Baatz, C. Hoffmann, G. Willhauck 

Fig. 4. Single tree detection workflow in the context of object-oriented image 
analysis. The tree growing algorithm consists of a number of iterations itself 

3.1 Used data 

Fig. 5 shows the used data derived from a digital surface model (DSM) of 
an airborne laser scanning dataset with a ground resolution of 0.5 meters.  

Fig. 5. Crown Model from airborne laser scanning. In this small subset, eight trees 
can be seen represented by high (bright) values. Tiede & Hoffmann (2006), edited 
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3.2 Tree / non-tree area 

The first step is to distinguish the background from the tree area. It turns 
out that object primitives best suited to provide information for this deci-
sion can be created with Multiresolution Segmentation. Theses primitives 
might each cover a number of trees but they are small enough to reliably 
separate tree area from background.  

The subsequent classification step distinguishes areas which are ele-
vated and, thus, potentially represent tree crowns from the background. All 
further processing steps will build on this basic decision and use the tree 
area as the Object Domain. 

Fig. 6. Step 1: Multiresolution Segmentation and Classification of tree / non tree 
area. Tiede and Hoffmann (2006), edited 

3.3 Local maxima 

The model assumes that using a digital surface model a tree can be ex-
tracted starting with its tree top working as a seed point.  

The currently available object primitives are by far too large to support 
this analysis. In order to achieve the needed fine granularity all objects in 
the Object Domain “tree area” are cut down to single pixels using a Chess-
board segmentation. Thus, the region “tree area” remains unchanged; how-
ever, it now consists of small pixel-sized object primitives. 
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Now all object primitives that represent a local elevation maximum are 
classified within the tree area. A classification step operating on the Object 
Domain “tree area” compares the elevation of each object with that of its 
neighbours in a certain distance and if it is higher than all others it classi-
fies the object as local maximum (Fig. 7). 

Fig. 7. Step 2: Domain-based break-down of tree area into pixel-sized objects and 
application of local maxima algorithm. Each maximum represents the highest 
point of a single tree. Tiede and Hoffmann (2006), edited 

3.4 Tree building algorithm 

Fig. 8 shows one step within the growing process of the single trees. This 
growing process is done by a simultaneous merging procedure of the 
neighbour objects of the already existing tree tops which work as “seeds”. 

Each tree is grown by using contextual information (similar height) to 
decide whether the neighbourhood objects are belonging to the currently 
growing tree. Stop criteria are used to prevent the trees from growing ex-
cessively or in an unwanted direction. Since the growing of the trees is 
done for all trees simultaneously, the trees can only grow until they reach 
another tree.  
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Fig. 8. Step 3: Growing algorithm around tree seeds by similarity. If surrounding 
objects are matching, they are merged. The growing algorithm itself consists of 
iterations until the final tree objects are found. Tiede and Hoffmann (2006), edited 

 
The tree growing loop is an example for a sub-procedure which as well can 
be thought of as a spiral. In each iteration of the loop, there is a classifica-
tion and a merging step. First, all appropriate neighbour objects are classi-
fied as candidates whom are going to be merged with the current tree ob-
ject. In the second step, these classified objects are then merged with the 
currently processed tree object to form one large tree object. 

Since the number of iterations is defined by a stop criteria and the grow-
ing of other trees, the number of iterations is not fixed. It will continue as 
long as candidate objects exist which can be merged with the growing tree 
objects. 

3.5 Result of the growing procedure 

After the tree growing loop, single tree objects exist which are almost rep-
resenting the desired objects of interest. Fig. 9 shows the result of the tree 
growing loop. Because of data inconsistency of the laser scanning data, in-
dividual pixels can be found with no data or values that are not fitting. 
These pixels can be removed in a last refinement step, where context in-
formation is used again to remove these data errors.  

It is important to approximate the tree objects as good as possible to the 
shape of naturally looking trees because in a potential analysis of the trees 
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in a later stage, parameters like the tree crown diameter might be important 
for any analysis. 

Fig. 9. Result after the tree growing algorithm is finished. Holes due to data 
inconsistency are still existing. Tiede and Hoffmann (2006), edited 

3.6 Remove data inconsistencies 

Fig. 10 shows the result after removing data inconsistencies. According to 
the theoretical workflow shown in Fig. 1, at the end of the alternating seg-
mentation and classification steps, the final objects of interest are modelled 
in terms of their shape as well as their classification. 

Fig. 10. Final result for single tree detection. Holes were removed by the use of 
context information. Tiede and Hoffmann (2006), edited 
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4 Discussion 

Considering the complexity and often ambiguities of image analysis prob-
lems it is clear, that in most cases more complex models and semantics are 
needed. The spiral process turns out to be a very efficient paradigm for 
supporting more complex analysis problems which include modelling, se-
mantics or deal with ambiguities. The object-oriented workflow has 
proven in many applications (both in Earth and Life Sciences) to be useful 
to extract objects of interest in an automated manner which is not sup-
ported by the object-based approach. Not only if objects of interest are to 
be extracted but also if only a correct labelling of regions is requested a 
pure object-based approach is often limited.  

In the spiral which defines the object-oriented approach, each step 
builds on the results of the previous. There is a mutual dependency be-
tween segmentation and classification: the attributes and the quality of at-
tributes used to evaluate and classify image objects directly depend on the 
objects and how they were formed before. The precise formation of objects 
on the other hand needs specific semantics, models or knowledge how to 
sort out ambiguities. Since local classification and local segmentation in-
teract and mutually depend on each other in manifold ways through this 
process, they can be described in a colloquial sense as the Yin and Yang of 
object-oriented image analysis. 

In other words, the object-oriented image analysis workflow overcomes 
a commonly known problem which can be called the “hen and egg prob-
lem” in image segmentation: for a successful classification of a certain fea-
ture class, the object-primitives need to exist already in a form at least very 
near, sometimes even identical to the final target objects. On the other 
hand, in order to achieve such objects, local evaluation and semantics pro-
vided by classification are needed during the segmentation process itself. 
For that reason, the workflow suggests a step-wise approximation from ob-
ject primitives with a coarser classification and shape in an early stage to 
objects of interest and the according detailed classification in the final 
stage.  
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ABSTRACT: Cellular automata (CA) are individual-based spatial 
models increasingly used to simulate the dynamics of natural and human 
systems and forecast their evolution. Despite their simplicity, they can 
exhibit extraordinary rich behavior and are remarkably effective at 
generating realistic simulations of land-use patterns and other spatial 
structures. However, recent studies have demonstrated that the standard 
raster-based CA models are sensitive to spatial scale, more specifically to 
the cell size and neighborhood configuration used for the simulation. To 
mitigate cell size dependency, a novel object-based CA model has been 
developed where space is represented using a vector structure in which the 
polygons correspond to meaningful geographical entities composing the 
landscape under study. In addition, the proposed object-based CA model 
allows the geometric transformation of each polygon, expressed as a 
change of state in part or in totality of its surface, based on the influence of 
its respective neighbors. The implementation and testing of this model on 
real data reveals that it generates spatial configurations of landscape 
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patches that are more realistic than the conventional raster-based CA 
model. 

1 Introduction 

Scale dependency is inherent to the study of any geographical phenomena 
and refers to the sensitivity of the results to the spatial units used to 
conduct such studies. While it has been largely documented in social and 
natural sciences over the last five decades, it still remains a challenge in 
most scientific investigations involving the use of spatial units for analysis 
and modeling of geographical/environmental phenomena. With the 
proliferation of spatial data acquisition and analysis technologies, such as 
remote sensing and geographic information systems (GIS) as well as 
environmental models, the issue of scale dependency became more acute 
and scientists started to explore potential solutions to mitigate the problem. 
Among the proposed solutions are scale sensitivity analyses, multi-scale 
analyses, and vector- or object-based approaches.  

This paper focuses on scale dependency that manifests itself in the 
context of a relatively new environmental modeling approach called 
cellular automata (CA). Cellular automata are individual-based spatial 
models increasingly used to simulate the dynamics of natural and human 
systems and forecast their evolution. In CA models, space is represented as 
a matrix of regular cells having a state value that evolves based on 
transition rules applied at each time step of the simulation. These rules 
dictate how each cell might change state based on the state configuration 
present in its neighborhood. Despite their simplicity, CA models can 
exhibit extraordinary rich behavior and are remarkably effective at 
generating realistic simulations of land-use patterns and other spatial 
structures. However, recent studies have demonstrated that raster-based 
CA models are sensitive to spatial scale, more specifically to the cell size 
and neighborhood configuration used for the simulation. 

The main objective of this paper is to describe a novel vector-based 
geographic CA model (VecGCA) that has been developed to mitigate scale 
dependency. With VecGCA, space is represented using a vector structure 
in which the polygons correspond to meaningful geographical entities 
composing the landscape under study. In addition, the proposed object-
based CA model allows the geometric transformation of each polygon, 
expressed as a change of state in part or in totality of its surface, based on 
the influence of its respective neighbors. The implementation and testing 
of this model on real data reveals that it generates spatial configurations of 
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landscape patches that are more realistic than the conventional raster-based 
CA model, while eliminating the necessity of conducting a sensitivity 
analysis to identify the appropriate cell size for the modeling of the 
landscape.  

The remaining of the paper is organized into two main sections. Section 
2 presents an overview of the numerous studies conducted over the last 
five decades addressing the issue of scale dependency in a variety of 
geographical contexts, with a description of solutions that have been 
proposed to mitigate the problem. In Section 3, the vector-based CA model 
is fully described with its application for land-use modeling of two 
landscapes of various complexity. The simulation results are compared 
with those obtained with a raster-based CA model. The conclusion 
highlights the advantage of an object-based approach over the 
conventional raster-based approach in CA modeling as well as some 
challenges that remain to be addressed.   

2 Scale dependency in spatial analysis and modeling 

Scale dependency, and more specifically spatial scale dependency, refers 
to the fact that data collected from spatial units and by extension analysis 
results derived from those data are dependent upon these spatial units. It is 
an inherent property of geographic phenomena; if a geographic 
phenomenon under study varies with scale, it is considered scale-
dependent (Cao and Lam, 1997). Scale dependency has been largely 
investigated in the social and natural sciences over more than half a 
century with the pioneer studies of Gehlke and Biehl (1934), Yule and 
Kendall (1950), McCarthy et al. (1956), Kershaw (1957), Usher (1969), 
Clarke and Avery (1976), and the seminal work of Openshaw (1977, 1978, 
1984) on the Modifiable Areal Unit Problem (MAUP) (see Marceau, 1999 
for an exhaustive review). In social sciences, these early studies illustrated 
the sensitivity of traditional statistical analysis to scale and were followed 
by a series of others also demonstrating the severity of the scale 
dependency in location-allocation modeling (Bach, 1981), spatial 
interaction modeling (Putman and Chung, 1989), multivariate analysis 
(Fotheringham and Wong, 1991), and principal axis factor analysis (Hunt 
and Boots, 1996). In natural sciences, the studies first focused on 
acknowledging the existence of natural scales at which ecological 
processes and physical attributes occur within the landscape. Later, 
scientists conducted numerous studies to investigate the impact of scale on 
the analysis of landscape (Meetemeyer and Box, 1987; Turner et al. 1989; 
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Bian and Walsh, 1993; Moody and Woodcock, 1995, Benson and 
McKenzie, 1995; Qi and Wu, 1996; Kok and Veldkamp, 2001; Wu, 2004). 
This work gave rise to the concepts of domain of scale and scale threshold 
(Meetemeyer, 1989; Wiens, 1989), scaling (Jarvis, 1995), and the 
application of hierarchy theory (Allen and Star, 1982; O’Neill et al., 1986) 
and the hierarchical patch dynamics paradigm (Wu and Loucks, 1995) as 
frameworks to describe how spatio-temporal heterogeneity, scale and 
hierarchical organization influence the structure and dynamics of 
ecological systems.  

Spatial scale dependency also became largely manifest with the 
proliferation of remote sensing images at various resolutions and spatial 
analytical tools offered by GIS (Geographic Information Systems). A 
series of studies conducted to assess the effects of spatial resolution on the 
ability to classify land-cover/land-use types using digital remote sensing 
techniques demonstrated that a change in spatial resolution could 
significantly affect classification accuracies (Sadowski et al., 1977; Latty 
and Hoffer, 1981; Markham and Townshend, 1981; Ahern et al., 1983; 
Irons et al., 1985; Cushnie, 1987). In 1992, Marceau undertook a review 
encompassing two decades of thematic mapping studies involving 
remotely-sensed imagery, and revealed that within a given classification 
scheme of several land-cover/land-use types, considerable inconsistencies 
in the results obtained from one class to another were typically displayed. 
Searching for an explanation, Marceau hypothesized that a parallel exists 
between such inconsistency in the classification results and the use of 
arbitrarily-defined spatial areal data known as the MAUP (Openshaw, 
1984). In a latter study, Marceau et al. (1994) conducted an empirical 
investigation to verify the impact of spatial resolution and aggregation 
level on classification accuracy of remotely-sensed data. Their results 
indicated that per-class accuracies were considerably affected by changing 
scale and aggregation level, which led to the conclusion that remote 
sensing data are not independent of the sampling grid used for their 
acquisition. They also noted that there is no unique spatial resolution 
appropriate for the detection and discrimination of all geographical entities 
composing a complex natural scene, and advocated that classification 
based on the use of a unique spatial resolution should be replaced by a 
multi-scale approach (Marceau and Hay, 1999). 

Further investigations were conducted to evaluate how sensor spatial 
resolution and data scale used when performing GIS spatial analysis affect 
the relationship between land surface attributes. As an example, studies 
have illustrated that the derivation of certain terrain attributes such as slope 
and aspect was greatly affected by the spatial resolution of the digital 
elevation model (DEM) used to extract these attributes (Chang and Tsai, 
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1991; Gao, 1997). Other studies have established the scale dependency of 
the relationship between various land characteristics such as vegetation 
biomass and topography (Bian and Walsh, 1993), vegetation index, cover 
types and elevation (Walsh et al., 1997), vegetation index, leaf area index 
and the fraction of absorbed photosynthetically-active radiation (Friedl, 
1997), and of several land surface attributes required for hydrological 
modeling (Band and Moore, 1995).  

The proliferation of environmental models over the last fifteen years 
also raised the issue of scale dependency. Bruneau et al. (1995) 
demonstrated the sensitivity of a hydrological model to both the spatial and 
temporal scales at which the model was run. Turner et al. (1996) showed 
significant differences in the outputs of a spatially distributed 
biogeochemical model (Forest-BGC) with the change of scale. Similarly, 
McNulty et al. (1997) investigated the impact of data aggregation on a 
forest-process model at three scales and found considerable differences in 
the performance of the model. Friedl (1997) reported a series of studies 
designed to examine how a change of spatial resolution of remotely-sensed 
data used as inputs into biophysical models can affect the model outputs 
and found that a change of scale may introduce significant bias to modeled 
land surface fluxes. 

These studies have largely contributed to the recognition of a series of 
fundamental characteristics of human and ecological systems. It is now 
acknowledged that ecosystems are spatially heterogeneous and composed 
of different processes that operate dominantly at different scales and that 
are often non-linear. Therefore, relationships established at one scale might 
not be applicable at another. Processes operating at different scales affect 
each other. As described by hierarchy theory, processes operating at small 
and fast scales are constrained by those operating at slow and large scales, 
which in turn are constructed by the interactions of a large number of small 
fast processes. These interactions create feedback mechanisms. In addition, 
ecosystems are dynamic. Some processes can abruptly re-organize 
themselves through time in response to external stimuli, while emergent 
properties can arise from the local spatial interactions of small-scale 
components (Zhang et al., 2004). One of the greatest challenges in 
environmental modeling today is to identify the dominant scales at which 
various processes operate and find appropriate scaling methods to transfer 
information from one scale to another. It is somehow surprising that 
despite the clarity of the statements made sixty years ago and the 
considerable numbers of studies that have been since conducted on the 
subject, scientists dealing with spatial data analysis and modeling are still 
struggling with the scale dependence issue in almost its entirety. 
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2.1 Scale dependency in cellular automata modeling 

Recently, a new class of environmental models, known as cellular 
automata (CA) (Wolfram, 1984), has considerably attracted the attention 
of the scientific community. A cellular automaton is a dynamic model in 
which space is represented as a matrix made of a regular arrangement of 
cells having the same dimension and shape. Each cell has a state value and 
evolves in time through simulation characterized by discrete time steps. 
Transition rules, applied at each time step, dictate how the different cell 
states will react to state configurations present in their neighborhood. They 
are often applied uniformly and synchronously to all cells, but can also be 
applied non-uniformly to reflect the heterogeneity of the territory, and they 
may incorporate a distance-based weighting function. The neighborhood 
can be local but extended neighborhoods are also commonly used to take 
into account regions of influence of different sizes. Finally, in some CA, 
the dynamics of the system is constrained by imposed requirements that 
specify the number of cells allowed to change state at each time step of the 
simulation (Torrens and O’Sullivan 2001; Straatman et al. 2004).  

Primarily over the last 10 years, geographers and other environmental 
scientists have become increasingly aware of the potential offered by CA 
models to study the spatio-temporal dynamics of natural and human 
systems and to forecast their evolution in the context of management 
decision (see Benenson and Torrens 2004 for an excellent review). They 
have been used to simulate a wide range of phenomena including fire 
propagation (Favier et al., 2004), vegetal succession (Rietkerk et al., 
2004), and rangeland degradation (Li and Reynolds, 1997). The dominant 
field of application however is land-use/cover change and urban 
development (Batty et al. 1999; White et al. 2000; Li and Yeh 2002; Wu, 
2002; Almeida et al., 2003; Lau and Kam, 2005; Dietzel and Clarke, 2006; 
Ménard and Marceau, 2007). These studies have demonstrated that CA 
models are remarkably effective at generating realistic simulations of land-
use patterns and other spatial structures. They are dynamic and can 
explicitly represent spatial processes; they are rule-based, highly adaptable 
and can capture a wide range of processes; they are simple and 
computationally efficient, and despite their simplicity, they can exhibit 
extraordinary rich behavior. Recently, their potential has been recognized 
in impact assessment, land-use planning, and social policy, and several CA 
models have been designed as prototypes of spatial decision-support 
systems for urban and regional planning (White and Engelen 2000). CA 
models are progressively seen not only as a framework for dynamic spatial 
modeling, but as a paradigm for thinking about complex spatio-temporal 
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phenomena and an experimental laboratory for testing ideas (Li and Yeh, 
2000). 

So far, the vast majority of these applications have been done using a 
discrete space representation and a regular tessellation of cells of same size 
and shape similar to the GIS raster model. However, recent studies have 
demonstrated that such raster-based CA models are sensitive to spatial 
scale. Chen and Mynett (2003) revealed that the choice of a particular cell 
size and neighborhood configuration has a clear effect on the resulting 
spatial patterns in their CA based prey-predator model. Jeanerette and Wu 
(2001) tested two cell sizes in their CA model developed to simulate the 
urbanization process in Phoenix, Arizona. They obtained reliable results 
with the coarser resolution, but poor results with the finer resolution. Jantz 
and Goetz (2005) showed the influence of cell size on the SLEUTH urban 
growth model; their results demonstrated that the model is able to capture 
the rate of growth reliably across different cell sizes, but differences in the 
ability to simulate growth patterns were substantial. In an exhaustive study 
undertaken to assess the spatial scale sensitivity in a land-use change CA 
model, Ménard and Marceau (2005) also revealed that the choice of cell 
size and neighborhood configuration has a considerable impact on the 
simulation results in terms of land-cover area and spatial patterns. Kocabas 
and Dragicevic (2006) reached similar conclusions when evaluating the 
sensitivity of an urban growth CA model to neighborhood size and 
configuration.    

2.2 Solutions to mitigate scale dependency 

With the increasing awareness of the importance of scale dependency in a 
large variety of contexts, solutions have been proposed and are currently 
implemented in attempts to mitigate its impact. The first one is scale 
sensitivity analysis, which consists in systematically assessing the effect of 
spatial scale on analysis and modeling results. Such an approach, quite 
potentially tedious, is easy to implement and represents a simple attempt at 
identifying the spatial units that best capture the essential characteristics of 
the geographical phenomenon under investigation. It might reveal the 
range of scales at which results do not significantly vary as well as critical 
thresholds indicating abrupt changes in the relationships between variables 
or in the modeling results. An excellent example of such an approach is 
provided by Bruneau et al. (1995) who performed a sensitivity analysis to 
space and time resolution of a hydrological model. They clearly identified 
a domain of spatial and temporal scale where the efficiency of the model 
was fairly constant and thresholds at which a strong decrease of modeling 
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efficiency was observable. Similarly, Ménard and Marceau (2005) were 
able to identify combinations of cell size and neighborhood configurations 
in a CA model that produced similar simulation results, while the use of 
different combinations resulted in significantly decreased model efficiency 
at generating realistic land-use patterns.  

The major drawback of scale sensitivity analysis is that it is often 
practically impossible to test all the combinations of scale components that 
are relevant in the study. Therefore, an arbitrary selection of a set of 
discrete spatial scales or resolutions is often made, and critical values 
corresponding to meaningful patterns and processes are often missed in the 
process. This observation led to the development of a more sophisticated 
approach that attempts to capture the key entities or dominant patterns in a 
landscape as they emerge as their characteristic scale. This is known as the 
multi-scale approach. 

Multi-scale refers to the multiple spatial dimensions at which entities, 
patterns and processes can be observed and measured (Hay et al., 2005). 
The rationale behind multi-scale analysis lies in the acknowledgement that 
landscapes exhibit distinctive spatial patterns associated to processes at a 
continuum of spatial scales and in the necessity of capturing adequate and 
complete information about this vertical structure of landscapes (Hay and 
Marceau, 2004). Numerous computational techniques have been developed 
over the years to generate multi-scale representation, including fractals 
(Mandelbrot, 1967), quadtrees (Klinger, 1971), spectral analysis (Platt and 
Denman, 1975), pyramids (Klinger and Dyer, 1976), wavelets 
(Daubechies, 1988), beamlets (Donoho and Huo, 2000) and scale space 
(Lindeberg, 1994). Illustrations of recent applications of such techniques 
are provided by Durieux et al. (2006) who applied a wavelet multi-
resolution technique to improve continental scale land cover mapping from 
remote sensing imagery and by Hay et al. (2002) who used scale space to 
generate a multi-scale representation of a landscape using remote sensing 
data.   

A third solution to mitigate scale dependency, as suggested several 
years ago by Fotheringham (1989) and Visvalingam (1991), is the use of 
meaningful geographical entities rather than arbitrary selected areal units 
in geographic investigations. This provides a solution to the MAUP since 
the product of aggregation within the spatial units relates directly to the 
objects of interest at the scale at which they can be observed and 
measured. This approach is known as entity-, or object-, or vector-based, 
depending on the context of its application. 

In GIS, it has been shown that the object-oriented framework offers a 
richer semantics compared to the relational data model and permits a more 
direct intuitive representation of complex real-world entities and 
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phenomena in a way that simulates the human knowledge construction 
process (Makin et al., 1997; Wachowicz, 1999; Frihida et al., 2002; Shi et 
al., 2003). In remote sensing, object-based image analysis is increasingly 
recognized as the most valuable approach to get rid of the arbitrariness of 
pixel size when aiming at detecting significant entities and patterns from 
the images (Hay and Castilla, 2006; Kim and Madden, 2006). When 
combined to multi-scale analysis, it offers a powerful conceptual and 
methodological framework to automatically detect entities and patterns as 
they emerge at their characteristic scales (Hall and Hay, 2003; Hay et al., 
2005). Object-based models, in which ecosystems are represented at fine 
scale as a collection of interacting components, are recognized as the 
obvious method to reproduce the complexity of such systems (Parrott and 
Kok, 2000). This conception has led to the proliferation of new classes of 
environmental models known as individual-based models (Grimm, 1999), 
multi-agent systems (Marceau, 2007) and cellular automata models 
(Benenson and Torrens, 2004).   

2.3 The object-based approach in CA modeling 

While CA models are considered individual-based models, they 
traditionally rely on a rather arbitrarily selected grid of cells to represent 
the landscape under investigation and therefore suffer from scale 
dependency. A solution to address the problem is the implementation of an 
object-based CA model.  

The idea of using a vector tessellation to define space in CA modeling is 
not totally new. Recently, some researchers have begun to implement 
irregular space through the use of Voronoi polygons (Shi and Pang, 2000; 
Flache and Hegselmann, 2001). However, this space definition is 
automatically generated by the model and does not necessarily correspond 
to real-world entities. In other studies, the GIS vector format is used to 
define space, where each polygon represents a real-world entity (Hu and 
Li, 2004; Stevens et al., 2007). In the first model, the neighborhood is still 
represented using Voronoi boundaries, which does not allow the explicit 
definition of the neighborhood relationships. In the second model (Stevens 
et al., 2007), both space and neighborhood are composed of a collection of 
irregular cadastral land parcels and the transition rules dictate the level of 
development of a parcel. However, all these models present a common 
drawback: they do not allow the change of shape of the objects, only their 
change of state. This is an important limitation since changes of size and 
shape continuously occur in the real world and should be taken into 
account.  
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To overcome this limitation and mitigate scale dependency, a novel 
vector-based cellular automata model, called VecGCA, has been recently 
developed (Moreno et al., 2007; Moreno and Marceau, 2007). In this 
model, space is defined as a collection of irregular geographic objects 
corresponding to meaningful entities composing a landscape. Each object 
has a geometric representation (a polygon) that evolves through time 
according to a transition function that depends on the influence of its 
neighbors. A geometric transformation procedure allows the change of 
shape and size of a geographic object to more realistically reflect how 
land-use changes occur in a landscape. The detailed description of 
VecGCA and its implementation with real data is provided in the 
following section.      

3 The Vector-based Geographic Cellular Automata Model 
(VecGCA) 

VecGCA is an extension of the classical CA model, where the space, the 
neighborhood and the transition rules are redefined in order to represent 
objects of irregular shape that evolve through time, corresponding to real 
entities composing a study area. 

3.1 Space, neighborhood and transition function definition 

Space is defined as a collection of geo-referenced geographic objects of 
irregular shape. A geographic object is the representation of an entity of 
the real world, such as a lake, an urban land parcel, a forested patch, or a 
city. It is defined by its state and its geometry, which is associated to an 
irregular polygon that can change state and shape due to the influence of 
its neighbors. Each geographic object has its proper behavior and can 
define its neighborhood and evolution through time. It is connected to 
others through adjacent sides composing the whole geographic space 
corresponding to the study area. 

VecGCA defines the neighborhood as a region of influence around each 
geographic object, implemented as an external buffer (Fig. 1). All the 
geographic objects inside this region are considered neighbors of a specific 
geographic object. According to this definition, non-adjacent objects can 
be neighbors. The size of this region of influence is expressed in length 
units and selected by the user. 
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Fig. 1. Neighborhood as defined in VecGCA. For a, the neighborhood delineated 
by r includes the objects b, d and g 

 
Each neighbor exerts an influence on the geographic object and can 

produce a change of shape executed through a geometric transformation 
procedure. This influence is calculated for each neighbor according to a 
continuous function limited between 0 and 1, where 0 indicates no 
influence and 1 the highest influence (Eq. 3.1). The parameters of this 
function represent factors that are considered responsible for increasing or 
decreasing the influence value and can vary with the landscape under 
investigation.  

 

( )ababaab dPtAgg ,,)( →=           (3.1) 
where 

gab is the influence of the neighbor a on the object b, 
A(t)a is the area of the neighbor a within the neighborhood of the 
object b at time t, 
Pb→a is the transition probability to change from the state of the 
object b to the state of the object a,  
dab is the distance between the centroid of the neighbor a and the 
centroid of the object b. 

 
The transition function is used to calculate the area of the geographic 

object that changes state for the state of its neighbor when this neighbor 
exerts an influence whose value is higher than a threshold value 
corresponding to its resistance to change. This function is limited between 
0, when there is no area to change, and the total area of the geographic 
object when the whole object changes state.  
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This function is specific to the study area and depends on the neighbor’s 
area within the neighborhood and its influence. It is given by Eq. 3.2:   

( )abab gtAftf ,)()1( =+             (3.2) 
where 
 fb is the transition function of object b. 
The transition function is evaluated for each neighbor, which indicates 

that each neighbor can take a portion of the area of a geographic object. 
How and where a portion of the geographic object is removed and added to 
a neighbor is described in the geometric transformation procedure. 

3.2 Geometric transformation procedure 

This procedure executes the change of shape on a geographic object. For 
each neighbor, which influence is higher than a threshold value (Fig. 2a), 
this procedure is called and a portion (defined in the transition function) is 
removed from the geographic object and added to its neighbor. The area is 
removed from the nearest region to the corresponding neighbor. The 
procedure consists in building an adjustable external buffer around the 
neighbor, which is intersected with the geographic object (Fig. 2b). When 
the intersection area is approximately the area calculated in the transition 
function (at least 90%), this intersection area is removed from the 
geographic object and added to the neighbor (Fig. 2c).  

 

 

Fig. 2. (a) Buffer around i to calculate the influence of each neighbor. (b) The 
influence of j on i is higher than the threshold value; an external buffer around j is 
built and intersected with i. (c) The intersection area is removed from i and joined 
to j. 
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This procedure is called n times, one for each neighbor, and the order of 
execution is descendant from the neighbor with the highest influence to the 
neighbor with the lowest influence. 

3.3 Modeling land-use/land-cover changes 

VecGCA was tested using real data to simulate land-use/land-cover 
changes in two regions of different complexity in Canada. The first study 
area is the Maskoutains region located in Southern Quebec that covers an 
extent of 1312 km2. In this region, two predominant land use/land covers 
can be observed: agriculture and forest. The landscape is characterized by 
small forested patches within a large agriculture matrix. Two land-
use/land-cover maps originating from Landsat Thematic Mapper images, 
acquired at a spatial resolution of 30 m in 1999 and 2002 (Soucy-Gonthier 
et al. 2003), were used in this study.  

The second study area is the Elbow river watershed in Southwest 
Alberta, which covers approximately 1238 km2. A greater variety of land 
uses/land covers can be observed in this region, such as forest, agriculture, 
vegetated land (shrubs and other vegetation different from agricultural 
land), construction and open area, urban land, a portion of the Alberta's 
Rocky Mountains, a portion of the Tsuu Tina Nation reserve, and others. 
Data used for the study include two land-use maps generated from Landsat 
Thematic Mapper images acquired in the summer of 1996 and 2001, at 30 
m spatial resolution.  

The original land use/land cover maps (for both regions) were 
transformed into a vector format using the function Raster to Polygons of 
ArcMap (ESRI 2005).  

3.3.1 Components of the land use/land cover VecGCA model 

Several components must be defined in VecGCA: the space, including the 
set of states, the neighborhood size and influence function, and the 
transition function.  In addition, the transition probabilities and threshold 
values must be calculated. 

For both study areas, space is defined as a collection of patches of 
different land uses/land covers. Each patch corresponds to a polygon in the 
vector land-use/land-cover map of the study area. The vector land use/land 
cover maps for 1999 and 1996 were used as initial conditions for the 
Maskoutains region and the Elbow river watershed, respectively. In the 
Maskoutains region, there are four possible states for each object: forest, 
agriculture, water and road. Only two changes of states are considered, 
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namely forest to agriculture and agriculture to forest. The dynamics in the 
Elbow river watershed is more complex; there are nine possible states 
(forest, agriculture, vegetation, park/golf, urban land, forest and Tsu Tina 
reserve, developed land in Tsu Tina reserve, undeveloped land in Tsu Tina 
reserve and other), and 36 possible changes of state.  

Transition probabilities were calculated from the comparison between 
the two land-use maps of different dates according to Eq. 3.3.  

∑
=

→

→
→ = 4

1i
iX

YX
YX

A

AP

          (3.3) 
where  

PX→Y is the transition probability from state X to state Y 
AX→Y is the total area that changes from state X to state Y 

 
The influence function was defined using Eq. 3.4, the variables being 

the same as in Equation 1. The influence value is proportional to the 
neighbor’s area within the neighborhood, and inversely proportional to the 
distance between the centroids of the objects.  
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The transition function that determines the area of change of each 

geographic object is given by Eq. 3.5.  
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where λab is a threshold value that represents the resistance of the 

geographic object b to change its state for the state of its neighbor a. This 
value can be defined as the probability that a geographic object does not 
change its state from the state X to the state Y although all its neighbors are 
in state Y. The same transition function was applied to define the dynamics 
of both study areas. 

 3.3.2 Definition of the raster-based CA model 

A stochastic raster-based CA model was implemented for each study area 
to compare its results with the simulation outcomes of the VecGCA 
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models. For the Maskoutains region, space was defined as a regular 
rectangular grid of 409 columns and 508 rows and a cell size of 100 m. 
This size was chosen based on the results previously obtained in a scale 
sensitivity analysis conducted by Ménard and Marceau (2005), which 
indicates that 100 m is the cell size that best captures the dynamics of the 
study area. For the Elbow river watershed, the grid defining space has 
2450 columns and 1864 rows and a cell size of 30 m (corresponding to the 
original resolution of the land-use data). The initial conditions correspond 
to the 1999 and the 1996 raster-land use maps for the Maskoutains region 
and the Elbow river watershed, respectively.  

For both models, a Moore neighborhood was chosen to represent the 
influence of the adjacent cells on a central cell. Probabilistic rules were 
calculated from the comparison between two land-use maps (1999 and 
2002 for the Maskoutains region, and 1996 and 2001 for the Elbow river 
watershed), according to the procedure described in Ménard and Marceau 
(2005), where a cell in the state X that has n cells in the state Y in its 
neighborhood has a probability of changing to the state Y equal to the 
number of cells in the state X with n neighbors in the state Y that have 
changed to the state Y between t1 and t2, divided by the total number of 
cells in the state X with the same neighborhood in t1. 

To account for a temporal resolution of one year, the probabilistic rules 
were adjusted using the exponential method presented by Yeh and Li 
(2006) where the transition probability P calculated for a time step t is 
substituted by Pn  for a time step T where T = n*t. 

3.3.3 Model simulations 

While it is hypothesized that the use of polygons to define space rather 
than cells of arbitrary sizes will mitigate the cell size sensitivity when 
using VecGCA, the potential sensitivity of the model to the neighborhood 
configuration remains. To address this issue, four simulations, from 1999 
to 2002, were performed for the Maskoutains region and four others, from 
1996 to 2001 were conducted for the Elbow river watershed. Each 
simulation was associated to a different neighborhood size: 10 m, 30 m, 60 
m and 120 m. The results were compared to the land-use/land-cover maps 
of 2002 and 2001 for the Maskoutains region and the Elbow river 
watershed, respectively.  

To compare the simulation outcomes produced by the VecGCA models 
and the raster-based CA models, a landscape analysis using Fragstats 3.3. 
(McGarigal et al. 1995) was done on the raster-based CA results. The 
number of patches for each land use was calculated on the raster map 
generated by the raster-based CA model and compared to the number of 
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polygons produced in the VecGCA model for each study area. In addition, 
for the Maskoutains region, an overlay of the 2002 vector and 100 m raster 
land-use/land-cover maps with the simulation outcomes of VecGCA and 
the raster-based CA models, respectively, was performed to determine the 
correspondence between the results of the models and the real state of the 
study area. The same procedure was executed for the Elbow river 
watershed using the 2001 vector and 30 m raster land-use/land-cover maps 
and the corresponding simulation outcomes. 

3.4 Simulation results 

The results obtained with VecGCA (using a neighborhood size of 30 m) 
for both regions were compared with the results obtained with a raster-
based CA model applied for each study area. This comparison revealed 
that for both models the proportions of land use in the Maskoutains region 
are very similar to the proportions observed in the 2002 original land-use 
map (Table 1). A decrease of the total number of patches/polygons was 
observed in both models due to the disappearance of forested patches 
absorbed by large agricultural patches. In the raster-based CA model, this 
behavior is associated to the high transition probabilities from forest to 
agriculture when the number of agricultural neighbors is higher than 5. In 
the VecGCA, the disappearance of forested patches absorbed by large 
agricultural patches is explained by the high pressure that receives a 
forested object with an agricultural neighbor that covers its entire 
neighborhood. The raster-based CA model generates good simulation 
results because the cell size used (100 m) was determined from a previous 
sensitivity analysis. In comparison, the results of VecGCA were obtained 
from the original spatial distribution of the land-use map.  
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Table 1. Proportion of land-use and number of patches/polygons in the outcomes 
of the VecGCA model, the raster-based CA model and the 2002 raster land-use 
map in the Maskoutains region 

 Initial condition 
Land-use map 1999 

Land-use map 
2002 

Simulation 
outcomes for 2002 

 Vector 
format 

Raster 
format 

Vector 
format 

Raster 
format VecGCA 

Raster-
based 
CA 

Forest[%] 16.57 16.58 14.83 14.86 14.92 14.86 
Agriculture 
[%] 80.70 80.70 82.45 82.41 82.35 82.41 

Total number 
of patches / 
polygons 

5247 3118 5702 1371 4666 1569 

 
A spatial overlay analysis shows that the land-use distribution generated 

by VecGCA for 2002 coincides as an average in 99% with the 2002 land-
use map, whereas the distribution produced by the raster-based CA 
coincides in 89%, although an appropriate cell size has been used (Table 
2). 100 % of the forest polygons produced by VecGCA coincide with the 
real forested patches in the study area, in comparison to only 77% 
generated by the 100 m raster-based CA model. These results can by 
explained by the capacity of VecGCA to reproduce the evolution of the 
objects by a change of shape, whereas the patches produced by the raster-
based CA model are created by the agglomeration of individual cells 
changing state. In addition, when looking closely at the simulation maps, 
one can observe that the landscape generated by VecGCA is characterized 
by large patches of well-defined boundaries, in comparison to the diffuse 
boundaries and the high level of landscape fragmentation produced by the 
raster-based CA model (Fig. 3).   

Table 2. Proportion of simulated area that coincides with the state of the system in 
2002 for each land use in the Maskoutains region 

Proportion of simulated land uses [%] Land uses 
VecGCA Raster-based CA 

Forest 100.00  77.47  
Agriculture 99.00  93.04  

Other 98.54  97.86  
Average 99.18  89.45  
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Fig. 3. Detail on the polygons’ boundaries produced by the VecGCA model and 
the raster-based CA model in the Maskoutains region 

 
Different results were obtained for the Elbow river watershed. In this 

case, VecGCA generated a land-use distribution that is more similar to the 
2001 land-use map in comparison to the results produced by the raster-
based CA (Table 3; Fig. 4). The proportions of the land-use classes 
vegetation, park/golf and developed land in the Tsu Tina Reserve are 

Raster land-use map 2002 
(resolution 30 m)

VecGCA result in 2002 
(neighborhood 30 m) 

Raster-based CA result in 2002 
(cell size 100 m) 
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underestimated by the raster CA model, while other classes such as urban 
and undeveloped land in the Tsu Tina Reserve are overestimated.  

Table 3. Proportion of land-use and number of patches/polygons in the outcomes 
of the VecGCA model, the raster-based CA model and the 2001 raster land-use 
map in the Elbow river watershed 

 Initial condition 
Land-use map 

1996 

Land-use map 
2001 

Simulation 
outcomes for 2001 

 Vector 
format 

Raster 
format 

Vector 
format 

Raster 
format 

VecGC
A 

Raster-
based 
CA 

Forest [%] 44.45 44.45 44.34 44.31 45.57 44.21 
Agriculture [%] 15.39 15.39 13.47 13.43 15.29 15.02 
Vegetation [%] 1.98 1.98 1.68 1.71 1.82 0.28 
Park/golf [%] 0.87 0.87 0.82 0.83 0.54 0.23 
Urban [%] 1.56 1.56 2.30 2.29 2.09 3.81 
Forest in Tsu Tina 
Reserve [%] 6.80 6.80 5.87 5.87 6.99 5.90 

Developed land in 
Tsu Tina Reserve 
[%] 

3.04 3.04 3.22 3.23 3.11 1.40 

Undeveloped land 
in Tsu Tina 
Reserve [%] 

2.88 2.88 3.52 3.51 2.79 5.42 

Total number of 
patches/polygons 7195 5837 8306 6686 2986 4321 

 
A spatial overlay analysis of the land-use maps generated by VecGCA 

and the raster-based CA model with the 2001 land-use maps in vector and 
raster format reveals that the results obtained with VecGCA highly 
coincide with the land-use spatial distribution in the study area, whereas 
the results obtained with the raster-based CA model largely differ for most 
land-use classes (Table 4). The cell size used for the raster-based CA 
model was 30 m, which is the same as the resolution of the original land-
use data. In that case, no previous sensitivity analysis was done to 
determine the best cell size to be used, and we might hypothesize that it is 
not the most appropriate cell size for this study area either. 
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Fig. 4. Sub region of the Elbow river watershed showing the land-use spatial 
distribution generated by the two models 

Table 4. Proportion of simulated area that coincides with the state of the system in 
2001 for each land use in the Elbow river watershed 

Proportion of simulated land uses [%] Land uses 
VecGCA Raster-based CA 

Forest 93.79  88.96  
Agriculture 98.67  85.67  
Vegetation 83.13  21.19  
Park/golf 100.00  60.93  

Urban 80.80  54.45  
Forest in Tsu Tina 

Reserve 92.69  87.33  
Developed land in Tsu 

Tina Reserve 96.45  73.90  
Undeveloped land in Tsu 

Tina Reserve 100.00  60.42  
Average 91.34  66.60  

 

Raster-based CA result in 2001 (cell size 30 m)

VecGCA result in 2001  
(neighborhood 30 m) 

Raster land-use map 2001  
(resolution 30 m)
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When varying the neighborhood size in VecGCA, the results for the 
Maskoutains region reveal that for the neighborhood sizes of 10 m and 30 
m, the simulated proportion of forested and agricultural land for 2002 
differs in less than 2% of the proportion calculated from the 2002 land-use 
map; for the neighborhoods of 60 m and 120 m, the difference might 
exceed 8% (Table 5). However, for the Elbow river watershed the 
variation of the neighborhood size does not produce significant variation in 
the simulation outcomes (Table 6). These results can be explained by the 
fact that the influence function (Equation 4) and the transition function 
(Equation 5) are directly proportional to the neighbors’ area within the 
neighborhood and this area varies with the neighborhood size and the 
landscape configuration. In the Maskoutains region, the majority of the 
objects are small forested patches having only one agricultural neighbor 
(Fig. 5a). The influence of this neighbor and the area to change from forest 
to agriculture increase when the neighborhood size increases. In the Elbow 
river watershed, the geographic objects have several neighbors of different 
states (Fig. 5b). In this case, an increase of the neighborhood size produces 
a small increase of the neighbors’ area within the neighborhood in 
comparison to the objects that have only one neighbor. In addition, when 
the neighborhood increases, new neighbors appear which influence and 
area to change are not significant because they are distant geographic 
objects separated by other objects. Therefore, in this landscape 
configuration the simulation outcomes are less sensitive to the 
neighborhood size. 

Table 5. Proportion of land-use/land-cover (%) in the Maskoutains region using 
different neighborhood sizes 

Land uses Neighborhood 1999 2000 2001 2002 a 

10 m 16.57 16.38 16.30 16.22 1.40 
30 m 16.57 16.03 15.44 14.59 0.23 
60 m 16.57 16.02 14.90 12.16 2.66 

120 m 16.57 12.40 9.43 6.37 8.46 
Forest[%] 

Original 16.57 - - 14.83 - 
10 m 80.70 80.89 80.98 81.05 1.40 
30 m 80.70 81.25 81.84 82.68 0.24 
60 m 80.70 81.25 82.38 85.11 2.67 

120 m 80.70 84.88 87.84 90.91 8.46 
Agriculture[%] 

Original 80.70 - - 82.45 - 
a Variation between the simulation outcomes and the 2002 land-use/land-cover 
map in the Maskoutains region 
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Fig. 5 (a) Schematic representation of the landscape configuration of the 
Maskoutains region where the objects have only one neighbor for different 
neighborhood sizes. (b) Schematic representation of the Elbow river landscape 
configuration where the objects have several neighbors; when the neighborhood 
size increases the number of neighbors and the neighbors’ area within the 
neighborhood also increase 

 

Table 6. Proportion of land-use/land-cover (%) in the Elbow river watershed 
using different neighborhood sizes 

 Neighborhood 1996 1997 1998 1999 2000 2001 a 

10 m 44.45 44.62 44.58 44.44 44.42 44.39 0.04 
30 m 44.45 44.49 44.36 44.15 44.11 43.46 0.89 
60 m 44.45 44.97 44.84 44.72 43.62 43.58 0.77 
120 m 44.45 45.53 45.35 45.08 44.86 43.53 0.82 Fo

re
st

 

Original 44.45     44.35  
10 m 15.39 15.33 15.28 15.26 15.24 15.21 1.73 
30 m 15.39 15.41 15.30 15.40 15.36 15.35 1.87 
60 m 15.39 15.58 15.51 15.40 15.35 15.32 1.84 
120 m 15.39 15.74 15.77 15.60 15.56 15.56 2.09 

A
gr

ic
ul

tu
re

 

Original 15.39     13.48  
10 m 1.98 1.85 1.82 1.82 1.80 1.79 0.11 
30 m 1.98 1.61 1.48 1.45 1.43 1.54 0.14 
60 m 1.98 1.32 1.19 1.18 1.39 1.36 0.32 
120 m 1.98 0.82 0.48 0.28 0.25 0.33 1.35 

V
eg

et
at

io
n 

Original 1.98     1.68  
10 m 0.87 0.81 0.78 0.75 0.73 0.74 0.08 
30 m 0.87 0.74 0.67 0.62 0.61 0.60 0.23 
60 m 0.87 0.72 0.67 0.66 0.64 0.56 0.27 

120 m 0.87 0.71 0.66 0.62 0.62 0.61 0.22 Pa
rk

rs
 

Original 0.87     0.82  

a 

b 

c 

d 

(a) 

a 
b 

c 

d 
e 

f 

g 
h 

i 

j k 
m 

l 

n 

p 

o 

(b) 
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10 m 1.56 1.60 1.61 1.63 1.63 1.67 0.63 
30 m 1.56 1.66 1.69 1.71 1.72 1.72 0.58 
60 m 1.56 1.67 1.69 1.69 1.70 1.75 0.55 
120 m 1.56 1.66 1.68 1.70 1.70 1.70 0.60 U

rb
an

 

Original 1.56     2.30  
10 m 6.80 6.78 6.75 6.74 6.72 6.73 0.86 
30 m 6.80 6.79 6.66 6.61 6.60 6.59 0.72 
60 m 6.80 6.79 6.71 6.64 6.63 6.62 0.75 
120 m 6.80 6.81 6.77 6.72 6.50 6.46 0.59 Fo

re
st

 in
 

TT
N

R
b  

Original 6.80     5.87  
10 m 3.04 3.03 3.01 2.99 2.99 2.97 0.25 
30 m 3.04 3.01 3.07 3.07 3.06 3.05 0.17 
60 m 3.04 3.03 2.95 2.97 2.96 2.97 0.26 
120 m 3.04 3.00 2.94 2.94 2.78 2.64 0.58 D

ev
el

op
ed

 
la

nd
 in

 
TT

N
R

b

Original 3.04     3.22  
10 m 2.88 2.92 2.96 2.99 3.01 3.05 0.47 
30 m 2.88 2.92 3.00 3.05 3.07 3.09 0.43 
60 m 2.88 2.91 3.07 3.11 3.13 3.14 0.38 
120 m 2.88 2.92 3.01 3.07 3.44 3.63 0.11 

U
nd

ev
el

op
ed

 
la

nd
 in

 
TT

N
R

b

Original 2.88     3.52  
a Variation between the simulation outcomes and the 2002 land-use/land-cover 
map in the Elbow river watershed 
b TTNR: Tsu Tina Nation Reserve 

4. Conclusion 

Despite the numerous studies conducted on the subject over the last five 
decades, scale dependency remains a critical issue in spatial analysis and 
modeling. Lately, scientists have recognized its manifestation in the 
context of a new class of environmental models, known as cellular 
automata, which are increasingly used to simulate the dynamics of natural 
and human systems and forecast their evolution. This scale sensitivity is 
due to the arbitrary selection of a regular grid of cells to represent space 
and the neighborhood in CA modeling. In attempts to overcome this 
problem, a vector-based CA model (VecGCA) has been developed and 
compared to a raster-based model to simulate land-use changes in two 
study areas of varying complexity. VecGCA offers two main advantages 
over the conventional raster model. First, space is defined as a collection 
of irregular geographic objects using polygons that correspond to 
meaningful entities composing the landscape. Second, the model allows a 
change of shape and size of the polygons in addition to a change of state. 
The results reveal that VecGCA generates a more realistic representation 
of the evolution of the landscape compared to the conventional raster 
model. However, while VecGCA mitigates the sensitivity to cell size, it 
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remains sensitive to the neighborhood delineation, which is done using a 
buffer of arbitrary size. Work is currently in progress to implement the 
concept of dynamic neighborhood based on semantic relationships 
between the geographic objects composing the landscape. 
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“If you do not know where you are going, any road will take you there.” 
 

Sterling Holloway (1905 - 1992) 

 

ABSTRACT: What is Geographic Object-Based Image Analysis 
(GEOBIA)? To answer this we provide a formal definition of GEOBIA, 
present a brief account of its coining, and propose a key objective for this 
new discipline. We then, conduct a SWOT1 analysis of its potential, and 
discuss its main tenets and plausible future. Much still remains to be ac-
complished. 

1 Introduction 

Like the ‘famous’ singer whom after 20 years of hard work - ‘overnight’ - 
becomes an international success, a relatively recent paradigm2 shift in re-
mote sensing image analysis has been stealthy taking place over the last 
two decades that promises to change the way we think about, analyze and 
use remote sensing imagery. With it we will have moved from more than 

                                                      
1 Strengths, Weaknesses, Opportunities and Threats (SWOT) 
2 Paradigm refers to the generally accepted perspective of a particular discipline at 

a given time. 
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20 years of a predominantly pixel-spectra based model3 to a dynamic mul-
tiscale object-based contextual model that attempts to emulate the way 
humans interpret images. However, along this new path from pixels, to ob-
jects, to intelligence and the consolidation of this new paradigm, there are 
numerous challenges still to be addressed. We suggest - using the termi-
nology of Thomas Kuhn (1962) - that this shift corresponds to a scientific 
revolution (in this context it is more appropriately – an evolution), that is 
due to a change in the basic assumptions within the ruling theory, resulting 
in new ideas becoming prevalent. We observe this state now, as this new 
technological and user driven evolution in remote sensing image analysis 
moves from pixels to objects and the necessary infrastructure required to 
generate and exploit them. To hasten a consolidation of this new paradigm, 
an ontology4 needs to be created with a common language and understand-
ing. By building upon previous work (Hay and Castilla, 2006), we for-
mally propose Geographic Object-Based Image Analysis (GEOBIA - pro-
nounced ge-o-be-uh) as the name of this new paradigm. We further 
propose that a worldwide GEOBIA community needs to be fostered so as 
to rapidly facilitate the scrutiny and dissemination of new and evolving re-
lated principles, methods, tools and opportunities.  

The proceeding sections provide a GEOBIA definition and a brief ac-
count of the coining of this term, along with a recommendation for a key 
discipline objective. This is followed by a SWOT5 analysis of GEOBIA’s 
potential, and a discussion regarding its main tenets and plausible future. 
We note that this is but a start towards developing GEOBIA as a robust in-
ternational community of practice which like the UKGEOforum6 and 
newly initiated NAGeoForum7 we envision as being vendor and software 
neutral. Much remains to be done. 

                                                      
3 Here the term model refers to the principles, methods and tools behind traditional 

(i.e., prior to object-based) digital remote sensing image analysis. 
4 Here we draw upon the definition of (computer science) ontology which repre-

sents a rigorous and exhaustive organization of some knowledge domain that is 
usually hierarchical and contains all the relevant entities and their relations. 

5 Strengths, Weaknesses, Opportunities and Threats (SWOT) 
6 http://www.ukgeoforum.org.uk/   
7 North American GeoForum – 1st Meeting Sept, 2007. This is not a policy and 

advocacy group, but rather a structure to increase awareness, share information, 
improve communication and promote all that is geospatial without getting in-
volved in national/state policies or legislation (per.com M.Madden, 2007 Presi-
dent Elect of the ASPRS). 
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 2 What is GEOBIA? A definition 

In simple terms, GEOBIA is object-based analysis of Earth remote sensing 
imagery. More specifically,  

 
Geographic Object-Based Image Analysis (GEOBIA) is a sub-
discipline of Geographic Information Science (GIScience) devoted 
to developing automated methods to partition remote sensing im-
agery into meaningful image-objects, and assessing their charac-
teristics through spatial, spectral and temporal scales, so as to gen-
erate new geographic information in GIS-ready format.  

 
Here, GIScience refers to the science behind Geographic Information 

technology8. Since GEOBIA relies on RS (remote sensing) data, and gen-
erates GIS (Geographic Information Systems) ready output, it represents a 
critical bridge9 between the (often disparate) raster domain of RS, and the 
(predominantly) vector domain of GIS. The ‘bridge’ linking both sides of 
these domains is the generation of polygons (i.e., classified image-objects) 
representing geographic objects. See Castilla and Hay (this book) for a de-
tailed account of geo-objects and image-objects.  

At its most fundamental level, GEOBIA requires image segmentation, 
attribution, classification and the ability to query and link individual ob-
jects in space and time. In order to achieve this, GEOBIA incorporates 
knowledge and methods from a vast array of disciplines involved in the 
generation and use of geographic information (GI). Indeed, it is this unique 
emphasis and dependency on RS and GI – and the challenges that accom-
pany them10 - that distinguishes GEOBIA from object-based image analy-
sis (OBIA) as used in related disciplines such as Computer Vision and 
Biomedical Imaging, where outstanding research exists that may signifi-
cantly contribute to GEOBIA.  

                                                      
8 GIScience - http://www.ncgia.ucsb.edu/giscc/units/u002/  
9 A good example is the recent news that Definiens – the developer of the first 
commercial object-oriented image analysis software for remote sensing imagery 
(circa 2002) – has joined with ESRI – the undisputed leader in GIS software – to 
developed its Definiens Extension for ArcGIS, to better integrate both GIS and RS 
data and information (Definiens, 2007). 
10 This is due (in part) to the inherent complexity of RS imagery resulting from 
differences in sensor platforms, geometry, and resolution along with a host of 
physical based characteristics ranging from shadow, and atmosphere to target and 
look-angle variability, among others. 
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3 Why GEOBIA instead of OBIA? 

Now that a new name and definition have been proposed, where and why 
did they originate? During July 4-5, 2006 the first international OBIA con-
ference was held at the University of Salzburg, Austria. In total, 175 au-
thors contributed to the conference from 24 different countries (Blaschke 
and Lang, 2006). As an active researcher in this topic, Dr G.J.Hay was in-
vited as a guest speaker. While preparing his topic, he realized that there 
were numerous important unanswered questions that needed to be ad-
dressed. For example:  

 In 2006, if you Googled the word OBIA, your top three matches 
would be: (1) Offshore Biologically Important Area (2) Ontario 
Brain Injury Association and (3) Oregon Building Industry Asso-
ciation. What then is OBIA? Do we have a formal definition, a set 
of objectives, an ontology to follow, a road map to the future? 

 Why is OBIA? Object-based image research has been going on 
for several decades in labs throughout the world, but why now do 
we have the first international conference? What are the drivers 
behind this? 

 Is there an OBIA community? If so who are we, where are we, 
what are we working on, how are we related to other communi-
ties, and how can we collaborate and build upon the strengths and 
experience of others? 

In an effort to raise these concerns and to provide answers to these and 
other questions, Hay and Castilla (2006) presented a formal definition of 
OBIA and conducted a SWOT Analysis. They also committed to create a 
Wiki to facilitate further international discussion and development. A Wiki 
is a kind of ‘open’ website that allows users to add, remove, or edit all con-
tent very quickly and easily (Wikipedia, 2007). Within five days of the 
conference concluding (July 12, 2007) an OBIA Wiki11 was created and 
‘open for business’. Since this time, there have been more than 6000 views 
of this page. 

During several months of early interactive wiki discussions, a key con-
cern was expressed. Specifically, the problem was that the term OBIA en-
compassed techniques used in many different disciplines, i.e., Biomedical 
Imaging, Astronomy, Microscopy, Computer Vision and others, yet our 
main interest – the majority of conference participants - focused on Re-
mote Sensing and Geographic Information Systems. On July 18, 2006 in 
the OBIA Wiki Discussion section a user (Prashanth) suggested that by 

                                                      
11 http://wiki.ucalgary.ca/page/OBIA  (last accessed September 03, 2007) 
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separating the application specific components of OBIA into RS/GIS, we 
could create our own identity. He then proposed GOBIA (Geo-Object- 
Based Image Analysis) as the name for this new field. A number of alter-
native names were also suggested by others, including OARS (Object-
based Analysis of Remote Sensing images), GIOA (Geographic Image-
Object Analysis) and OBARSI (Object-Based Analysis of Remotely 
Sensed Imagery). After debating these and other names, on Oct 27, 2006 
G.J.Hay posted to the wiki the name GEOBIA as an acronym for this dis-
cipline, as it builds upon OBIA roots (see Lang and Blaschke, 2006 for a 
brief history), while also placing – with the GEO pseudo prefix- an empha-
sis on the Geographic components this community is involved in. The 
more Hay and Castilla considered this name and discussed it with col-
leagues, the more they became convinced that it was an appropriate title 
for this community’s identity, even if – like the other proposed acronyms - 
it already had an alternative meaning12.  

Hay and Castilla’s argument for this new name was relatively straight 
forward: If the name of a discipline is intended to identify a specific com-
munity and define what they do, GEOBIA does this for our community, 
whereas OBIA does not. Specifically, it is unreasonable to claim the ge-
neric OBIA name only for RS/GIS applications, since there are many other 
communities of practice with very different objectives, data and applica-
tion domains that use these techniques. To facilitate this discrimination, 
the term ‘geographic’ has been adopted as a qualifier, because it simply 
and elegantly distinguishes RS/GIS OBIA from these different areas. Fur-
thermore, as a sub-discipline of GIScience (Hay and Castilla, 2006), this 
area of research and application requires its own unique name. Thus, based 
on these arguments, the acronym GEOBIA was selected as the heir to the 
successful OBIA ’06 international conference: GEOBIA, 2008 – Pixels, 
Objects, Intelligence. GEOgraphic Object-Based Image Analysis for the 
21st Century13. 

4 GEOBIA: A key objective 

Though much of the current OBIA literature describes the use of new and 
or improved segmentation algorithms (see other chapters in this book), we 
suggest that the primary objective of GEOBIA is not that of tool building, 

                                                      
12 Geobia is a genus of predator land planarians. The other proposed acronyms 

also had existing meanings, e.g., Gobia is a city in Ivory Coast, oars are used to 
propel a water craft and obarsi means ‘origin’ in Romanian. 

13 http://www.ucalgary.ca/GEOBIA/  



80      G. J. Hay, G. Castilla 

but rather the generation of geographic information (from remote sensing 
imagery), from which intelligence can be obtained. Here, intelligence re-
fers to geographic information that enables users to effectively perceive, 
interpret and respond to some specific issue14, such as global climate 
change, natural resource management, Landuse/Landcover mapping, and 
others. 

Building on these ideas, we propose that the primary objective of 
GEOBIA as a discipline is to develop theory, methods and tools sufficient 
to replicate (and/or exceed experienced) human interpretation of RS im-
ages in automated/semi-automated ways. This will result in more accurate 
and repeatable information, less subjectivity, and reduced labor and time 
costs. In return, we envision that new opportunities will be developed 
within emerging GI markets. For example, Wade Roush (2007) describes 
how virtual and mirror worlds (such as Second Life and Google Earth, re-
spectively) will merge into what is being called the Metaverse, which will 
look like the real earth and will ….[function] as the agora, laboratory, and 
gateway for almost every type of information-based pursuit. In order to 
perform multiscale analysis and queries of geographical features and 
places – which are part of the fabric of this Metaverse - GEOBIA will cer-
tainly find its way here as it delineates and partitions RS images of the 
planet based on predefined criteria. This will be especially relevant for 
generating (new) temporally sensitive geographic information/intelligence. 
Essentially, GEOBIA provides a way to move from simply collecting im-
ages of our planet, to creating geo-intelligence15 (as defined above).  

5 Why is GEOBIA? 

Now that a definition and key objective have been proposed, let’s step 
back and examine possible reasons for its emergence? Hindsight reveals 
that GEOBIA exists in response to a series of drivers that have appeared 
over the last two decades. These include, but are not limited to:  

 
 A change in US space policy in the early 1990’s and more recently 

(2003) with an emphasis on fostering commercial remote sensing 
policy (Hitchings, 2003). This has lead to a dramatic increase in 
commercially available high-spatial resolution remote sensing imagery 

                                                      
14 That is, ‘…geoinformation within a specific user context.’ 
15 We note that as defined here, this concept is not explicitly related to geointelli-

gence as specified for security purposes, though it can be used as such. 
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(< 5.0 m) and the need to develop new value-added markets from these 
multi-billion dollar investments.  

 The daily generation of Terabytes of Earth Observation (EO) data, 
together with post September 11/2001 security issues, have provided 
an impetus for new (automated and semi-automated) tools to 
analyze/mine such voluminous data. 

 An ever-growing sophistication of user needs and expectations 
regarding GI products. 

 Recognition of limitations with pixel-based image approaches (i.e., 
that current remote sensing image analysis largely neglects the spatial 
photointerpretive elements (i.e., texture, context, shape, etc), and that 
increased variability implicit within high-spatial resolution imagery 
confuses traditional pixel-based classifiers resulting in lower classifi-
cation accuracies). 

 Increasingly affordable, available and powerful computing tools.  
 Increasing awareness that object-based methods can make better use of 

neglected spatial information implicit within RS images, and provide 
greater integration with vector based GIS.  

 Recognition of the need for multiscale approaches in the monitoring, 
modeling and management of our environment, for which object-based 
methods are especially suited. 

 Recognition that object-based approaches, represent viable solutions to 
mitigate the modifiable areal unit problem (MAUP, Openshaw, 1984), 
since they focus analysis on meaningful geographical objects rather 
than arbitrary defined spatial units i.e., individual pixels. 

 GEOBIA concepts and tools also have the potential to be used in the 
operationalization of existing ecological theories (Burnett and 
Blaschke, 2003) such as the Hierarchical Patch Dynamics Paradigm 
(HPDP, Wu, 1999), which provides a conceptual framework for guid-
ing and explaining the hierarchical/multiscale structure of landscapes.  

6 GEOBIA SWOT 

In this section we undertake a SWOT analysis to provide insight into the 
current state of GEOBIA, and to outline potential strategies to achieve the 
stated key objective (see Section 4). A SWOT Analysis is (one of many 
possible strategic planning tools) used to evaluate the Strengths, Weakness, 
Opportunities and Threats involved in a project, or any other situation re-
quiring a decision. Our objective here is to apply this method of planning 
early in the discipline-life cycle of GEOBIA, so that concepts described 
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here can be used to strengthen and guide this emerging paradigm. In prac-
tice, once an objective has been established, a multidisciplinary team rep-
resenting a broad range of experiences and perspectives should carry out a 
SWOT analysis; which is typically presented in the form of a matrix (see-
Table. 1). Thus, we invite interested individuals to share their comments 
by participating in the recently developed GEOBIA Wiki16, so as to further 
facilitate this discussion. 
 

 
 

S.W.O.T 

 
Helpful 

to achieving 
the objective 

 
Harmful 

to achieving 
the objective 

 
Internal 

(attributes of 
the organisation) 

 
 

Strengths 

 
 

Weaknesses 

 
External 

(attributes of 
the environment) 

 
 

Opportunities 

 
 

Threats 

 
Table 1.  SWOT matrix  

 
SWOT’s are defined based on the following criteria: 
 

 Strengths are internal attributes of the organization that are 
helpful to the achievement of the objective. 

 Weaknesses are internal attributes of the organization that are 
harmful to the achievement of the objective. 

 Opportunities are external conditions that are helpful to the 
achievement of the objective. 

 Threats are external conditions that are harmful to the 
achievement of the objective. 

 

                                                      
16 The GEOBIA wiki (http://wiki.ucalgary.ca/page/GEOBIA) was created on Feb-

ruary 03, 2007, and has received over 2000 page views (since September, 30, 
2007). 
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In theory, SWOTs are used as inputs to the creative generation of possi-
ble strategies, by asking and answering the following four questions nu-
merous times: 

 
 How can we Use each Strength? 
 How can we Stop each Weakness? 
 How can we Exploit each Opportunity? 
 How can we Defend against each Threat? 

 
To reap the full benefits of a SWOT analysis it is important to use this 

tool correctly. In particular, it is most beneficial to look at the strengths 
and weaknesses originating within (i.e., internal to) the discipline or or-
ganization. For example, what do we do better than anyone else, 
what/where could we improve, what are others likely to see as weakness? 
Conversely, opportunities and threats should be externally focused i.e., 
what trends could you take advantage of, how can you turn your strengths 
into opportunities, what trends could do you harm? (MindTools, 2006). 

The following sections represent a number of SWOTs identified as we 
considered the past, present and future of GEOBIA. They are by no means 
the only possible items, and in several cases – depending on one’s perspec-
tive – individual items could exist in more than one category. 

6.1 GEOBIA Strengths 

 Partitioning an image into objects is akin to the way humans 
conceptually organize the landscape to comprehend it. 

 Using image-objects as basic units reduces computational classifier 
loads by orders of magnitude, and at the same time enables the user to 
take advantage of more complex techniques. 

 Image-objects exhibit useful features (e.g., shape, texture, contextual 
relations with other objects) that single pixels lack. 

 Image-objects are less sensitive to MAUP than units that do not keep a 
correspondence with the structure of the phenomenon under study. 

 Image-objects can be more readily integrated into a vector GIS than 
pixel-wise classified raster maps. 

 The number of both free and commercially available GEOBIA 
software is increasing steadily (see Neubert et al., – this book). 
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6.2 GEOBIA Weaknesses 

 Under the guise of ‘flexibility’ some commercial object-based 
software provides overly complicated options, resulting in time-
consuming analyst ‘tweaking’. 

 There are numerous challenges involved in processing very large 
datasets. Even if GEOBIA is more efficient than pixel-based 
approaches, segmenting a multispectral image of hundreds or 
thousands of mega-pixels is a formidable task, thus efficient 
tiling/multiprocessing solutions are necessary. 

 Segmentation is an ill-posed problem, in the sense that it has no unique 
solution, e.g., (i) changing the bit depth of your heterogeneity measure 
can lead to different segmentations. (ii) Even human photo-interpreters 
will not delineate exactly the same things.  

 There is a lack of consensus and research on the conceptual 
foundations of this new paradigm, i.e., on the relationship between 
image-objects (segments) and landscape-objects (patches). For 
example, (i) what is the basis to believe that segmentation-derived 
objects are fine representations of landscape structural-functional 
units? (ii) How do you know when your segmentation is good? (iii) Is 
there a formally stated and accepted conceptual foundation? 

 There exists a poor understanding of scale and hierarchical relations 
among objects derived at different resolutions. Do segments at coarse 
resolutions really ‘emerge’ or ‘evolve’ from the ones at finer 
resolutions? Should boundaries perfectly overlap (coincide) through 
scale? Operationally it’s very appealing, but what is (if any) the 
ecological basis for this, and is such a basis necessary?  

6.3 GEOBIA Opportunities 

 Object-Oriented (OO) concepts and methods have been successfully 
applied to many different problem domains, not only computer 
languages, and they can be beneficially adapted to GEOBIA. This 
integration not only includes OO programming, but all the corpus of 
methods and techniques customarily used in biomedical imaging and 
computer vision (among others) that remain unknown to most of the 
remote sensing community. 

 There are new information technology tools (e.g., Wikis) that may 
accelerate consensus and cohesion of a GEOBIA community. 

 There is a steadily growing community of RS/GIS practitioners that 
currently use image segmentation for different GI applications. Thus, 
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as GEOBIA matures, new commercial/research opportunities will 
emerge to tailor object-based solutions for specific user needs i.e., 
forestry, habitat and urban mapping, mineral exploration, 
transportation, security, etc.  

 Symmetric multiprocessing, parallel processing and grid computing 
are recent technologies that GEOBIA methods may build upon to 
tackle problems related to the analysis of large datasets. 

 Adopting existing open GIS programming standards like Open Source 
GIS17, and guidelines and methods from the Open Geospatial 
Consortium18 along with provisioning to include Semantic Web19 
standards within current and new GEOBIA tools, will allow for re-use 
and integration between different platforms and data types, and 
opportunities for a web-wide dissemination and evaluation of image-
object semantics. This in return will provide value-added opportunities 
for the sharing and generation of new GI, and the ability to build on 
expertise from different user communities throughout the globe.  

6.4 GEOBIA Threats 

 The visual appeal of image-objects, their easy GIS-integration and 
their enhanced classification possibilities and information potential 
have attracted the attention of major RS image processing vendors, 
who are increasingly incorporating new segmentation tools into their 
packages. This provides a wider choice for practitioners, but promotes 
confusion (among different packages, options, syntax, etc) and makes 
it more difficult to develop a cohesive GEOBIA community. Will a 
lack of protocols, formats, and standards lead to a segmentation of the 
field rather than a consolidation? Castilla and Hay (this book) refer to 
this critical GEOBIA threat as The Tower of Babel problem - where 
every user group develops different terminology than every other 
group for the same meaning, or the same term with different meanings 

                                                      
17 http://opensourcegis.org/ 
18 http://www.opengeospatial.org/ 
19 At its core, Tim Berners-Lee’s Semantic Web comprises a philosophy, a set of 

design principles, collaborative working groups, and a variety of enabling tech-
nologies. Some elements of the semantic web are expressed as prospective fu-
ture possibilities that have yet to be implemented or realized.  
(http://en.wikipedia.org/wiki/Semantic_Web) 
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resulting in confusion, isolation, a fighting over standards, and a 
negative or flat progression of the discipline20.  

 Trying to make distinct GEOBIA from other OO concepts and 
methods (e.g., by using terms such as ‘object-based’ instead of ‘object-
oriented’) may contribute to insulation (of users in an esoteric world of 
‘objects’) and isolation (of the concept) rather than to consolidation.  

 GEOBIA is far from being an established paradigm, yet many users of 
commercial segmentation software do not recognize this fundamental 
fact. GEOBIA is not one specific research or commercial software. 
Much still remains to be solved and discovered.  

7 GEOBIA Tenets 

Based on these SWOT items, we offer the following GEOBIA tenets as 
fundamental components of what we currently see this discipline as, and as 
guides to what it could become.  
 
GEOBIA is… 

 
 Earth centric – its data sources originate from the surface of this 

planet. 
 Multi-source capable – its methods provide for the inclusion of 

multiple different digital data types/sources within a common geo-
graphic referent and for the flow of information and intelligence 
from pixel-based RS data to GIS ready polygons. 

 Object-based – meaningful image-object delineation is a pre-
requisite of this approach, from which relevant intelligence can be 
generated.  

 Multiscale – a scene is often composed of objects of different size, 
shape and spatial location, thus multiscale analysis both within a hi-
erarchical level and between levels is essential. Because GEOBIA is 
multiscale, potential exists to model alternative ‘multiscale’ realities 
based on selective user defined aggregations of fine scale segments 
and or their attributes.  

 Contextual – it has the ability to incorporate or integrate ‘surround-
ing’ information and attributes. When processing RS data, this in-

                                                      
20 Tim Berners-Lee’s development of the Semantic web represents a significant ef-

fort to resolve this kind of issue at a global level, but at a local level, semantic 
and ontological standards need to be developed, shared, and agreed upon within 
specific application domains, and tied to semantic web formats. 
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cludes mechanisms to quantify an object's photointerpretive ele-
ments i.e., colour (hyperspectral), tone, size, shape, pattern, loca-
tion, and texture. By adding time (multitemporal imagery), as well 
as other attributes such as height (Lidar) and heat (Thermal) into the 
‘contextual pool’, there will be a greater information potential for 
each image-object than ever possible for individual pixels. 

 Adaptive – it allows for the inclusion of human semantics and hier-
archical networks – whether through experts systems, or expert in-
terpreters, so that analysis may be tailored to specific user needs.  
However, to be fully adaptive, GEOBIA tools need to build on ex-
isting Open GIS standards and provide mechanisms to integrate user 
and domain specific ontologies into a semantic web so as to globally 
facilitate improved sharing, integration and generation of new syn-
ergistic GI and the development of their associated markets. For ex-
ample, given a multispectral image, one user may derive a general 
Landuse classification. This information may then be shared/sold 
across the web to another who builds upon this information to sin-
gle-out patches of Amazon Acai palm trees for lumber and thatch-
ing materials. This new GI layer may then be shared or sold to an-
other user in a different part of the world, and when combined with 
their expertise and knowledge could provide opportunities to har-
vest Acai berries and explore them as a ground-breaking leukemia 
cure (based on a true scenario). In this case, one initial dataset, 
combined with a sharing of semantic information results in myriad 
different GI products and markets. 

8. Conclusion 

GEOBIA is a sub-discipline of GIScience devoted to developing auto-
mated methods to partition remote sensing imagery (of our planets surface) 
into meaningful image-objects, and assessing their characteristics through 
scale. Its primary objective is the generation of geographic information (in 
GIS-ready format) from which new intelligence can be obtained.  

In this paper we have formally defined Geographic Object-Based Image 
Analysis (GEOBIA); provided a justification for this new name; outlined a 
key objective of this new discipline; identified a number of Strengths, 
Weakness, Opportunities and Threats (SWOT) that GEOBIA faces; and 
proposed a number of GEOBIA tenets. It is important to note that a key is-
sue faced by this new discipline is to ensure that an integrative, well un-
derstood, and easily defined ontology is developed and incorporated within 
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the research and commercial software that is currently being built and 
used. A way to construct and promulgate such ontology is by creating a 
living document – a GEOBIA guide book - to which practitioners can con-
tribute and turn to for understanding and direction. This could further be 
facilitated by adopting established Open GIS standards and semantic web 
protocols, so that geoinformation could be shared and integrated more eas-
ily. While this tome on OBIA represents a positive beginning, we propose 
that the existing GEOBIA Wiki – with its world wide accessibility - is an 
ideal vehicle to develop such a guide, and cordially invite all interested 
parties to participate in building a stronger GEOBIA community of prac-
tice.  
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Image objects and geographic objects 
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"A map is not the territory it represents, but if correct, it has a similar structure 
to the territory, which accounts for its usefulness" 

 
Alfred Korzybski, Science and Sanity (1933) 

 

ABSTRACT: Object-Based Image Analysis (OBIA) has gained con-
siderable impetus over the last decade. However, despite the many newly 
developed methods and the numerous successful case studies, little effort 
has been directed towards building the conceptual foundations underlying 
it. In particular, there are at least two questions that need a clear answer be-
fore OBIA can be considered a discipline: i) What is the definition and on-
tological status of both image objects and geographic objects? And ii) How 
do they relate to each other? This chapter provides the authors' tentative 
response to these questions. 

1 Introduction 

The inability of traditional pixel-based methods to cope with recent very 
high resolution satellite imagery (VHR, < 5 m pixel size) is fostering the 
widespread adoption of OBIA methods. This trend may be interpreted as a 
paradigm shift (Khun 1962) that can be explained by placing it within a 
historical perspective. Civilian spaceborne remote sensing (RS) of land-
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scapes1 began in 1972 with the launch by NASA of the ERTS-1 (Earth Re-
sources Technology Satellite, later renamed Landsat-1). The spatial resolu-
tion (80 m) provided by the Multi Spectral Scanner (four bands) on board 
this satellite, though a technological milestone, was insufficient to indi-
vidually resolve the recurrent elements (such as trees or buildings) charac-
terizing common landcover classes2. The way to circumvent this was to as-
sume that different landcover classes behaved like distinct surface 
materials capable of being analyzed with a spectrometric approach3. Thus 
it was natural to treat each pixel as a sample introduced in a desktop spec-
trometer, and as a result, the individual pixel was enshrined as the basic 
unit of analysis. Several digital classification methods (e.g., the maximum 
likelihood classifier) were developed based on this approach and soon after 
became the accepted paradigm in the analysis of RS imagery. The fact that 
pixels do not come isolated but knitted into an image full of spatial pat-
terns was left out of the paradigm, since the spatial structure of the image 
could only be exploited manually by human interpreters. Despite this 
shortcoming, the pixel-based paradigm remained unchallenged for almost 
three decades, until a critical question was finally posed: why are we so fo-
cused on the statistical analysis of single pixels, rather than on the spatial 
patterns they create? (Blaschke and Strobl 2001).  

There were two triggers to questioning the pixel-based paradigm (Lang 
and Blaschke 2006), namely the advent of VHR civilian satellites, and the 
debut in 2000 of the eCognition software (see Benz et al. 2004). The avail-
ability of this first commercial OBIA software provided worldwide access 
to tools that previously existed only in research labs. On the other hand, in 
VHR imagery, individual pixels are too small to be representative of the 
settings to which common landcover classes refer. That is, pixel-based 
classification requires a pixel footprint large enough to encompass a repre-
sentative number of the recurring elements defining each class (Woodcock 
and Strahler 1987). Since this requirement cannot be satisfied for most 
classes using VHR imagery, a different approach is required. OBIA has 
emerged as an alternative to the traditional pixel-based paradigm, and is 

                                                      
1 In this paper the term landscape is used exclusively to refer to a portion of solid 

Earth surface on the order of 1 to 1000s of km², and not to the view of that area. 
This distinction is important for reasons that will be explained in section 4. 

2 Note that a higher spatial resolution would have implied vast data volumes and 
faster downlinks, better optics and electronics, and improved platform control, 
which were not then feasible (Landgrebe 1999). 

3 Where the digital numbers (DNs) of each pixel in each band form a profile or 
spectral signature that is classified according to its similarity to the typical sig-
natures (joint reflectance profile from representative areas) of the classes of in-
terest. 
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based on the idea that by shifting the basic units from pixels to image ob-
jects, we can emulate (or exceed) visual interpretation, making better use 
of spatial information implicit within RS images while also providing 
greater integration with vector based GIS (Hay and Castilla 2006). 

OBIA assumes that we can identify entities in remote sensing images 
that can be related to real entities in the landscape. A first step in this kind 
of analysis is segmentation, the partitioning of an image into a set of 
jointly exhaustive, mutually disjoint regions that are more uniform within 
themselves than when compared to adjacent regions. These regions (a.k.a. 
segments) are later related to geographic objects (such as forests and lakes) 
through some object-based classification. During the last decade, OBIA 
techniques for grey-level images have significantly improved as a result of 
research efforts in the fields of Computer Vision and Biomedical Image 
Analysis (Kartikeyan et al. 1998). However, these results have only par-
tially been transferred to remote sensing, mainly due to the lack of typical 
shape (and even crisp boundaries) of the objects of interest, and to the 
multi-band and multi-scale nature of the images (Schiewe et al. 2001). 
These special characteristics, and the particular portion of reality towards 
which the analysis is oriented (i.e., the geographical domain), make neces-
sary to draw a distinction between OBIA for biomedical imagery and 
OBIA for RS imagery. Hence we recommend the acronym GEOBIA 
(Geographic Object-Based Image Analysis) as the name of this field of ex-
pertise (Hay and Castilla, this volume), which we note has already been 
adopted for the 2nd International Conference4 on this subject. Despite this 
recommendation, we will continue to use the ‘old’ acronym here, so as to 
keep consistency with the other chapters of this book. 

OBIA has recently been conceptualized as a new sub-discipline of GIS-
cience that uses as basic units computer-delineated regions derived from 
remote sensing imagery (Hay and Castilla 2006). As such, OBIA faces 
what Barry Smith (2003) calls the Tower of Babel problem. Being a bur-
geoning field, there are many groups in the world that actively work on 
OBIA. Each group may be using different terms than other groups for the 
same meaning, or the same term with different meanings. As ever more 
diverse groups are involved in OBIA, the problems of consolidating this 
field into a single system increase exponentially (Smith 2003). Conse-
quently, the sooner a consensus is reached on key terms, their meaning and 
their relationships (between each other and with the world), the easier this 
problem can be tackled. In order words, we urgently need to build an 
OBIA ontology.  

                                                      
4 Calgary, Alberta, 6-8 August 2008 (www.ucalgary.ca/GEOBIA) 



94      G. Castilla, G. J. Hay 

The goal of this chapter is to recommend a definition of two key terms 
within OBIA, namely image-object and geographic-object (or geo-object), 
and to investigate their relationship with one each other and with the real 
world. They are the basic units of this approach, one belonging to the im-
age domain and the other to the geographic domain. As such, they must be 
operationally defined in order for OBIA to be considered a discipline.  

2 Image-objects 

We tentatively define ‘image-object’ as a discrete region of a digital im-
age that is internally coherent and different from its surroundings. We 
note that image-objects have being defined by the developers of eCogni-
tion as ‘contiguous regions in an image’ (Benz et al. 2004). The latter 
definition has the merit of simplicity. However, it grants the status of im-
age-object to arbitrary regions that keep no correspondence with the spatial 
structure of the image. For example, the pieces of a jigsaw puzzle, being 
contiguous regions in a picture, would qualify as image-objects. Such pos-
sibility is at odds with what an image-object should intuitively be, i.e., a 
portion of an image that could be seen as a distinct entity if delineated. 
Therefore, a more sound definition has to include some perceptual con-
straints. More specifically, there are three traits that a region must possess 
in order to qualify as an image-object: (1) discreteness; (2) (internal) co-
herency; and (3) (external) contrast, which are discussed in the next sub-
sections. 

2.1 Discreteness 

An image-object requires explicitly defined limits in order for a computer 
to be able to manipulate it. This might not be required for cases where the 
membership of a pixel to an image-object is fuzzified. However we 
strongly discourage such treatment for reasons explained in section 3.2, 
and hence will not consider it. In a raster environment, discreteness im-
plies that a new image has to be created out of the original one, where each 
new pixel has as digital number (DN) the numeric identifier of the image-
object within which it is included. Since in the new image all the pixels 
within an image-object have the same DN, the data volume required to 
represent this partition can be considerably reduced by converting it to 
(polygon) vector format. In fact, one of the advantages of OBIA is that it 
facilitates the integration of the result of RS image analysis into vector 
GIS. 



Image objects and geographic objects      95 

Note that an image-object may contain in its interior some smaller im-
age-objects. This would be the case of a 1 m resolution image representing 
a plan view of an orchard surrounded by a corn field. In this image, there 
would be two large image-objects, one corresponding to the corn field and 
another to the orchard soil. In addition, there would be as many small im-
age-objects as there are trees in the orchard. In this case, it is preferable to 
conceptualize the small image-objects as gaps or holes rather than parts of 
the larger (soil) image-object. The reason is that image-objects are percep-
tual entities that have no meaning attached until they are classified. Hence 
the smaller and larger image-objects cannot be considered part of the same 
semantic unit (orchard) until they have been classified respectively as (rep-
resentations of) trees and soil. 

Finally, a related question is whether the region corresponding to an im-
age-object has to be unitary, i.e., can the region consist of several disjoint 
parts? Or contrariwise, do all the pixels belonging to it have to be con-
nected? In principle, the region has to be unitary to be considered an im-
age-object. However, in a multiscale framework, adjacency and connect-
edness are scale-dependent, so this condition can be relaxed. 

2.2 Coherency 

Coherency means that for a region to qualify as an image-object, the pixels 
inside it have to perceptually stick together. Note that this does not neces-
sarily imply homogeneity (low variance). A region that shows coarse tex-
ture or some geometric pattern may contain high variance and yet be co-
herent, providing the texture or pattern is uniform throughout its extent. 
These recurrent patterns can be encoded into a structural signature (Lang 
and Laganke 2006), i.e., a set of attributes and formal relations characteriz-
ing spatial patterns observable at certain scales that can be used in con-
junction with spectral signatures (typically, the mean in each band of the 
pixels within an image-object) to discriminate between different classes of 
objects.  

2.3 Contrast 

Not only should there be some sense of uniformity within the region corre-
sponding to an image-object, but there also should be some contrast with 
the surroundings so that the region can be perceived as a distinct entity. 
Contrast may be produced by a difference in color, tone or texture between 
the interior of the region and its exterior, or, when the latter has the same 
appearance, by the existence of an edge separating the region. Such would 
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be the case of an image-object representing an agricultural parcel having 
the same crop as the adjacent parcels, but that is separated from them by a 
thin strip of barren soil.  

2.4 Image-segments as image-objects 

Since OBIA aims to emulate human interpretation of RS images through 
computer means, the term image-object has to be explicitly related to the 
output of some digital procedure. Since image segmentation is the custom-
ary technique used to derive initial units within OBIA, a possible solution 
is to equate image segments to image-objects. Indeed, segments can be 
considered candidate image-objects, at least from the point of view of the 
segmentation algorithm: they are discrete; they are internally coherent 
since they have passed the homogeneity criteria of the algorithm; and they 
are different to some degree with their surroundings, otherwise they would 
have being merged with some neighbor. However, a human observer may 
judge their coherency and contrast differently, and not just because per-
ceived chromatic differences are not isometric to the usual metrics em-
ployed as dissimilarity measures5.  

There is a two-sided problem in image segmentation that describes these 
judgmental differences. Specifically, (1) Oversegmentation (Fig. 1a) refers 
to a situation where, in the opinion of the perceiver, the contrast between 
some adjacent segments is insufficient and should be merged into a single 
image-object. (2) Undersegmentation (Fig. 1.b) refers to the existence of 
segments that in the opinion of the perceiver lack coherency and should be 
split into separate image-objects.  In general, oversegmentation is less se-
rious a problem than undersegmentation, since aggregating segments a 
posteriori is easier than splitting them. Also, since there is no straightfor-
ward relationship between similarity in the image and semantic similarity, 
it is preferable to err on the side of oversegmentation and relax the external 
contrast requirement. In short, a good segmentation is one that shows little 
oversegmentation and no undersegmentation, and a good segmentation al-
gorithm is one that enables the user to derive a good segmentation without 
excessive fine tuning of input parameters. Thus, informally, image-objects 

                                                      
5 The lack of isometry is due, on the one hand, to the varying sensitivity of the 

human eye to different wavelengths within the visible part of the spectrum; and 
on the other hand, to the different contrast enhancements that may be applied to 
display the image. In the case of multi-band images, there will also be differ-
ences in judgment between the interpreter and the algorithm, since the former 
can only visualize three bands at a time. However, this can be partially circum-
vented by visualizing different band combinations. 



Image objects and geographic objects      97 

could be redefined as the segments derived from a good segmentation al-
gorithm. The goodness of such algorithms has to be established on the ba-
sis of expert consensus. In this respect, we note there is already an initia-
tive devoted to create such a basis (Neubert et al. 2007, this volume). 

 

2.5 Do image-objects exist independent of the viewer? 

Regarding the ontological status of image-objects, it has to be noted that 
they do not exist autonomously within digital images. Rather, they are cre-
ated during the segmentation as we will see. A digital image is an array of 
numbers that, when mapped to a planar display device such as a computer 
monitor, produces a visual phenomenon consisting of spatial patterns of 
various colors or tones and shapes. These patterns can in turn be mapped 
back to the array so as to establish the location, in terms of 2D coordinates 
(columns and rows in the array), of the pixels yielding each pattern. This 
can indeed be viewed as the goal of segmentation. If a given segment cor-
responds to a pattern that is distinct and unitary, then it can be considered 
an image-object. However, each demarcated image-object is dependent on 
the particular process used to single it out, so it owes its existence to an ex-
ternal decision made by a human or by a machine programmed by a hu-

 
Fig. 1. A 1 m resolution satellite image representing an urban area with two 
segmentation levels overlaid: left (Fig. 1a), finer; and right (Fig.1b), coarser. 
The soccer field (F) has been oversegmented in A and undersegmented in B 
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man. In other words, image-objects are fiat objects (Smith 2001), they are 
created by human cognition. Strong evidence in support of this view is the 
multiplicity of ‘good-looking’ partitions that can be derived from the same 
image using different segmentation algorithms or even using the same al-
gorithm and slightly different parameters. 

2.6 Is information extracted or produced from images? 

It is important to note that the result of the segmentation is the imposi-
tion of a simpler, hopefully meaningful structure upon the intricate array of 
numbers, i.e., a formal representation (a model) of the spatial structure of 
the image. This model is dependent not only on the data alone, but also on 
the chosen similarity criteria and on the intended level of detail (which can 
be encapsulated by the size distribution of segments) of the representation. 
Different choices during the segmentation will yield different representa-
tions (and hence different information) from the same data set. So informa-
tion is not extracted from the image, as the common misconception states, 
but produced during the analysis (Castilla 2003). Actually the word infor-
mation comes from the Latin verb informare (‘to give form’), which im-
plies the realization of structure upon some material. Thus, the image can 
be seen as the raw material upon which the model is carved out. The final 
form of the model is dependent not only on the material, but also on the 
analyst, be it human or machine. However, this creative freedom is by no 
means unrestricted. The model has to resemble the piece of reality it refers 
to. That is, the partition has to capture the spatial structure of the image 
displayed on the monitor. Indeed it is this correspondence which accounts 
for the usefulness of the resulting segments. We note that this is a separate 
issue from the correspondence between the image and the imaged land-
scape, which will be treated in section 4.1. 

3 Geo-objects 

Intuitively, a geographic object, or geo-object, is an object of a certain 
minimum size (as to allow representation in a map) on or near the surface 
of the Earth, such as a city, a forest, a lake, a mountain, an agricultural 
field, a vegetation patch and so on (Smith and Mark 1998). Here, the term 
‘object’ refers to a discrete spatial entity that has many permanent proper-
ties which endow it with an enduring identity and which differ in some 
way or another from the properties of its surroundings. If we embrace real-
ism (i.e., there exists a single physical reality which can be truthfully ob-
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served via our sensorium or other artificial apparatus, and whose existence 
is independent of human cognition), we have to agree that the interiors of 
these objects are ‘autonomous portions of autonomous reality’ (Smith 
2001). However, many of these objects are delimited, at least in some por-
tions of their perimeter, by boundaries that exist only in virtue of human 
fiat and that may not correspond to any observable discontinuity on the 
ground. Therefore we will consider that most geo-objects are again fiat-
objects sensu Smith (2001). 

Imagine we are mapping the distribution of landcover in a rural area that 
includes a forest surrounded by an agricultural field to the East, while its 
eastern end gives way to sparse woodland. There would be little dispute 
about where the boundary between the forest and the field should be 
placed. However, in the eastern part, the boundary will not be self-evident 
and will depend on how we define ‘forest’ and ‘sparse woodland’. Not-
withstanding, if the final boundary of the forest has been delineated in an 
agreeable way, there would be a consensus that, given the definition of 
‘forest’ and the local configuration of the landscape in that area, the region 
enclosed by that boundary is a proper instance of the type of object ‘for-
est’.  

Thus, a ‘geo-object’ can be better defined within OBIA as a bounded 
geographic region that can be identified for a period of time as the refer-
ent6 of a geographic term (Castilla 2003). The latter is a noun or expres-
sion that refers to anything that can be represented in a map, such as ‘gla-
cier’ or ‘mineral extraction site’. The adjective ‘geographic’ implies that 
the map necessarily represents a portion of the earth surface. Under this 
view, typical geographic terms are those included in map legends, such as 
‘forest’, ‘sparse woodland’, and ‘lake’, which are more conformant to what 
a geographer would consider a geographic object. However, terms in-
cluded in the definition of some entry of the legend may also be considered 
geographic terms, providing they can be mapped at a finer scale, even if 
their referents will not be represented individually in that particular map.  

For example, the term ‘tree’ is included in the definition of both ‘sparse 
woodland’ (e.g., an area covered by shrubs and scattered trees) and ‘for-
est’ (e.g., an area densely covered by trees). Since a tree crown can indeed 
be mapped at fine scales, ‘tree’ qualifies as a geographic term under our 
definition, and therefore trees are also geo-objects. We acknowledge that 

                                                      
6 In semiotics, a referent is the ‘real world’ object to which a word or sign refers, 

i.e., an instance of a type of object. We prefer using ‘referent’ instead of ‘in-
stance’ because the former makes clearer the distinction between a real object 
(a geo-object of a certain type) and its representation (the image-object classi-
fied as a representational instance of this type of geo-object, see section 4).  
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from a geographer’s standpoint, it is arguable whether these smaller ob-
jects can be considered geographic objects, as in general they do not have 
location as an ontological mark. However, within OBIA, we need to ac-
count for them, as (1) they are ‘visible’ in VHR imagery; and (2) in order 
to identify a large image-object as a (representational) instance of e.g. the 
class ‘orchard’, we need first to identify a number of smaller image-objects 
as (representational) instances of a type of sub-object called ‘tree’. A sub-
object in this context is a referent of a term that is part of the definition of a 
type of geo-object listed in the map legend, where this term (e.g., ‘tree’) is 
itself not present in the legend as a separate entry. 

 Turning back to the definition of geo-object, it is important to note that 
the expression ‘for a period of time’ is included not only to stress that as 
the landscape evolves, the region to which the term refers may change; but 
also to convey the idea that the region and the object are not the same 
thing. That is, a forest can change its shape, shrink or even disappear, but a 
geographic region necessarily has the shape and size it has (Casati et al. 
1998). This temporal bound also accounts for mobile objects such as cars 
and ships, which for a period of time (at least during the image acquisition 
time) occupy a given region of geographic space, and in this sense they are 
also geo-objects.  

Tangible objects such as cars, trees and buildings differ from conven-
tional geographic objects not only in size, but also in the fact that they are 
bona fide objects, i.e., they have boundaries that are independent of human 
cognition, and hence they are ontologically autonomous entities (Smith 
2001). In contrast, larger geographic objects such as forests and cities have 
boundaries that contribute as much to their ontological make-up as do the 
constituents composing their interior (Smith and Mark 1998). Therefore 
their existence as objects is dependent on the cognitive activity of demar-
cating their boundaries. Notwithstanding, this relative mind-dependence 
does not entail a serious ontological problem. To put it plainly, the fact that 
your hometown is a fiat object does not entail that your life is a sort of 
Truman show7. From an epistemological perspective, it neither diminishes 
at all their usefulness. On the contrary, it is far more economical thinking 
in terms of separate wholes (objects) with distinct enduring properties 
rather than in a continuum of connected plots or raster cells whose content 
has to be determined cell by cell every time (Frank 2001). 

                                                      
7 This 1998 movie (directed by Peter Weir, written by Andrew Niccol, and starring 

Jim Carrey) accounts the life of a man who does not know that his entire life is 
a constructed reality designed for the purpose of a television show. 
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3.1 Geo-objects and the hierarchical structure of landscapes 

Geo-objects can serve as nested structural units to model a complex system 
such as the landscape. Under this view, the latter can be represented as a 
nested hierarchical system having both vertical structure –composed of 
several discrete levels of detail8 (LOD); and horizontal structure –given by 
the different geo-objects existing at each LOD. Note that the vertical de-
composability is limited by size, since depending on the cartographic scale 
(selected for representing of the finest LOD), objects below a certain ex-
tent cannot qualify as geo-objects even if they are on the Earth surface. 
However this threshold is application dependent, being smaller e.g. for ar-
cheologists than for geographers. Thus the term ‘geo-object’ is subject to 
what Bennett (2001) called sorites vagueness9. It should also be noted that 
the idea of considering the landscape as a nested hierarchical system is by 
no means new (Woodcock and Harward 1992; Wu and Loucks 1995). 
However we envision that OBIA can provide a powerful framework to 
make this idea operational, as some have already attempted (Burnett and 
Blaschke 2003). 

There are two primitive relations that can be used to construct such hier-
archical models: (1) the part_of relation, which operates in the geographi-
cal domain and creates a partonomy providing encapsulation (where sub-
objects belonging to a finer LOD are hidden); and (2) the kind_of relation, 
which operates in the categorical domain and creates a taxonomy, provid-
ing inheritance (where subclasses inherit the features of their parent class). 
The partonomy is constructed by identifying regions of the geographic 
space that can be seen as referents of the terms included in the taxonomy, 
or stated in the reverse direction (from mind to world), it is built by pro-
jecting these terms onto the landscape.  

We note that both taxonomies and partonomies are granular partitions 
(Smith and Brogaard 2002), where the adjective ‘granular’ refers to the 

                                                      
8 We prefer the term ‘level of detail’ to ‘hierarchical level’ because the former in-

cludes both semantic and cartographic (representational) aspects, and therefore 
conveys better the fact pointed out by Wiens (1995) that hierarchies are human 
constructs. The passage from one level to the next involves complex operations 
of both semantic and cartographic generalization, which are beyond the scope 
of this chapter. 

9 Referring to the sorites (from soros, ‘heap’ in greek) paradox, also known as lit-
tle by little arguments. It was one of a series of puzzles attributed to Eubulides 
of Miletus (IV B.C.): Would you describe a single grain of wheat as a heap? 
No. And two? No. And three? No... You must admit the presence of a heap 
sooner or later, so where do you draw the line? For a detailed treatment of this 
problem in context with GIS, see Fisher (2000). 
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possibility of identifying objects without having to recognize all their con-
stituent parts. Granular partitions are cognitive devices in the form of 
rooted graphs without cycles and without upward (in the direction from 
leaves to root) bifurcations within which the objects of interest are nested. 
They help us to capture in a synthetic way landscape complexity by divid-
ing it into meaningful ‘chunks’ that we call geo-objects. Since pattern 
(structure) and process (function) are intimately related, these chunks also 
provide a key to understanding landscape dynamics. In particular, their 
boundaries can be seen as phase transitions in a physical system, since they 
are deemed to be the places where the qualities of the landscape change in 
some relevant respect. Consequently, these boundaries also act as filters, 
changing the intensity and/or frequency of the interactions between the dif-
ferent agents dwelling at each side of them. 

3.2 The problems of demarcating geo-objects: boundary 
indeterminacy and vagueness of geographic terms 

In order to make operational our definition of geo-object, we need to be 
able to demarcate regions of the territory that can be seen as referents of 
some geographic terms. However this is problematic, mainly for two rea-
sons. (1) The landscape, especially in natural areas, is structured into con-
tinuously varying patterns that often defy crisp boundary placement at a 
fixed scale (Burnett and Blaschke 2003). That is to say that the width of 
the transition zone between two neighboring landscape settings for which 
we have a name (e.g., ‘forest’ and ‘sparse woodland’) is often several 
times greater than the width (at 1:1 scale) of the cartographic line that 
separate the objects representing the two settings10. (2) The terms them-
selves are vague, and this vagueness gives way to a multiplicity of candi-
date regions that could stand as the legitimate referent of say the term ‘for-
est’ in that area. 

 With regard to this, we strongly recommend that OBIA methods adopt 
Varzi’s (2001) view of vagueness as de dicto (‘belonging to the words’), 
and consequently reject the de re (‘belonging to the things’) view of fuzzy11 

                                                      
10 Note that a line drawn in a map cannot be infinitely thin, so it will have a certain 

width when transferred to the ground. 
11 Fuzzy set theory (Zadeh 1965) permits the gradual assessment of the member-

ship of elements in relation to a set with the aid of a membership function that 
maps the degree of belonging onto the interval [0,1]. Note that our recommen-
dation applies only to geographic space. That is to say, categorical space may 
well be modeled using fuzzy membership functions between attributes and ob-
ject classes.  
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methods. That is to say, vagueness should be treated not as an inherent 
property of geographic objects but as a property of the terms we use to re-
fer to them. Vagueness, rather than a defect of language, is both an eco-
nomic  and epistemic need. On the one hand, economy of language facili-
tates communication without cumbersome additions required to achieve 
precision. On the other hand, ‘precision decreases the certainty of proposi-
tions’12, so a certain amount of vagueness is required in order to ensure the 
truth of our statements about the world. The reason for choosing the de 
dicto view is that the other (de re) requires further ontological commit-
ments on the nature of fuzzy objects, complicating their topological rela-
tions. Besides, the computation of membership functions for each cell of a 
grid representing the territory is an overly intensive task, and leads to 
statements (e.g., ‘this point of the Himalayas is 40% part of Mount Ever-
est, 35% Mount Lhotse and 25% part of the valley’) that are at odds with 
our entity view of geographical phenomena (Bittner and Smith 2001). 

The way to tackle the first problem (indeterminacy of boundaries) is to 
embed the analysis in a multiscale framework. On the one hand, there is no 
unique spatial resolution appropriate for the discrimination of all geo-
graphical entities composing a landscape (Marceau et al. 1994); and on the 
other, boundary saliency is scale dependent (Hay et al. 1997). By observ-
ing the landscape at several scales, some areas where the phenomenon of 
interest (e.g., vegetation) does not show a distinct pattern at a given scale 
may become apparent at finer or coarser scales. In addition, this approach 
allows for the modeling of hierarchical relationships between nested ob-
jects, e.g., a tree that is part of an urban park that is part of a city. In order 
to identify the geo-object ‘urban park’, we not only have to identify a large 
number of trees in its interior, but we also have to realize that the object is 
surrounded by clusters of buildings. Since the typical size of tree crowns 
and building roofs differs considerably, their correct identification clearly 
requires different observational scales.  

In order to tackle the second problem (de dicto vagueness), the defini-
tion of each geographic term included in the map legend needs to be more 
precise than the one from the dictionary. In this way the multiple candidate 
regions that could stand as suitable referents of each term in a given area 
will be more coincident than when using a broader definition. In other 
words, the penumbra cast by the projection of a given term (i.e., the annu-
lar region that encompasses the area of intersection between all reasonable 
instantiations of a particular geo-object that can be described using this 

                                                      
12 This is known as Duhem’s Law of Cognitive Complementarity (Duhem 1906). 
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term) would be reduced. If we take the egg-yolk representation13 (Cohn 
and Gotts 1996) as the framework to describe the indeterminacy of 
boundaries, then what we are saying is that using precise definitions of the 
items in the map legend leads to a shrinkage of the white of the egg that 
encompasses all suitable delineations of a given geo-object. 

4 Linking image-objects to geo-objects  

Having defined both image-objects and geo-objects, we can investigate 
how they relate to each other. The first thing that must be noted is that this 
relationship is not one of identity. Image-objects are at best representations 
of geo-objects. However we usually neglect this, because we tend to reify 
the image, i.e., we equate it to a window opened in the floor of a balloon 
gondola from which we contemplate the real scene, and therefore we as-
sume that what we see in the image are real objects instead of representa-
tions of real objects. This delusion was masterly captured some eighty 
years ago by Belgian surrealist artist René Magritte in his painting The 
Treachery Of Images (Fig. 2). As Magritte himself commented: "Just try 
to stuff it with tobacco! If I were to have had written on my picture 'This is 
a pipe' I would have been lying". This distinction has an important implica-
tion. To analyze literally means ‘to break down into the constituent parts’. 
Since geo-objects are not constituent parts of remote sensing images, you 
cannot base their analysis on them; at most you can orient (i.e., direct) the 
analysis towards obtaining representations of them. Therefore, it is impor-
tant to note that the new acronym GEOBIA refers to GEographic OBIA 
(where ‘geographic’ is a qualifier restricting the discipline to the geo-
graphic domain) rather than to GEo-Object-Based Image Analysis. Fur-
thermore, the name OBIA presupposes that image-objects ‘exist’ within 
images. As we have seen, this is only true if we are talking of (‘good’) 
segmented images. Therefore, strictly speaking, segmentation would be a 
pre-processing step within OBIA, with the analysis taking place immedi-
ately after it. A more correct name, that would include segmentation as 
part of the analysis, would be Object Oriented Image Analysis (OOIA), but 
because of the likely confusion with computer Object Oriented Program-

                                                      
13 A formal representation of regions with indeterminate boundaries where each 

region has two concentric boundaries, an outer one representing the maximum 
possible extent of the region, and an inner one with the minimum possible ex-
tent of the region. This representation is akin to a fried egg, where the egg 
white is the region encompassed by these two boundaries. Any acceptable ‘pre-
cise’ version (crisping) of the region must lie within the white of the egg. 
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ming paradigm, the previous name is preferable, providing users are aware 
of the implications. 

 

4.1 Meaningful image-objects 

Having clarified what the relationship between these two kinds of ob-
jects is not, we can now proceed to describe it. We deal with two domains, 
the image and the geographic, which have to be linked. Fortunately, there 
is an isomorphism14 between the image and the imaged landscape that en-
ables us to link them. Not only is there a conspicuous resemblance be-
tween the spatial patterns that we perceive when the image is displayed on 
a monitor and the ones that we would get if we observed the same scene 
from a balloon suspended at an equivalent altitude. If the image has been 
ortho-rectified, the topological relations are also accurately preserved, as 
the cartographic transformation used to represent the earth surface is an 
exact function. For example, if we sequentially record the map-coordinates 
of the pixels defining the boundary of an image-object representing a lake 
in a 10 m resolution ortho-rectified image, store them as waypoints in a 
GPS, and reproduce the path on the ground, we can reasonably expect to 
be walking along the shore of the lake. Therefore, if the image is parti-
tioned into perceptually coherent pieces, there is some basis to believe that 

                                                      
14 Strictly speaking, this is a mathematical term for an exact correspondence be-

tween both the elements of two sets and the relations defined by operations on 
these elements. Obviously here the correspondence refers only to the elements 
of the landscape that are observable at the spatial resolution of the image.  

 
Fig. 2. René Magritte’s The Treachery Of Images (© René Magritte Es-
tate/Artists Rights Society (ARS), New York/ADAGP, Paris) 
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the counterparts of these pieces on the ground may also be semantically 
coherent. In other words, image-objects have the potential to correspond 
on the ground to some entity for which we have a name.  When an image-
object can be seen as a proper representation of an instance of some type of 
geo-object, then we can say it is a meaningful image-object, that is, a rep-
resentation of a geo-object. However, in practice, most initial image-
objects (i.e., segments) will not qualify as ‘meaningful image-objects’, as 
explained in the next section. Therefore ‘meaningful image-object’ should 
be considered a different term than just ‘image-object’, the former describ-
ing a semantic unit and the latter a perceptual unit. Although this may lead 
to some confusion, we have preferred to avoid coining completely new 
terms. 

4.2. Object-based classification 

The goal of OBIA is to partition RS images into meaningful image-
objects as defined above. Since some degree of oversegmentation is desir-
able (see below), most meaningful image-objects will consist of aggregates 
of segments, formed via object-based classification. The latter is the proc-
ess of associating initial image-objects (segments) to geo-object classes, 
based on both the internal features of the objects and their mutual relation-
ships. Ideally, there should be a one-to-one correspondence between im-
age-segments and meaningful image-objects. However, this is hardly at-
tainable, since a semantic model (i.e., a classification scheme) of the 
landscape cannot be projected with complete success onto regions (seg-
ments) that have been derived from a data-driven process (segmentation)15. 
There are at least two reasons for this shortcoming. 

 The first reason is that the relationship between radiometric similarity 
and semantic similarity is not straightforward. For example, there can be 
conspicuous differences in the image, such as those created by shadows, 
which have no meaning or no importance within the classification scheme, 
or conversely, the legend may include classes whose instances can barely 
be differentiated from each other in the image. In other cases, the way in 
which humans perceptually compose objects in the image, especially when 

                                                      
15 This statement refers to conventional segmentation algorithms. There are of 

coarse some automated procedures, such as template matching or cellular 
automata,which use external information to partition the image (and therefore 
are not data-driven). Integrating such model-driven techniques into OBIA 
should constitute a priority line of research. 
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some Gestalt principles16 intervene, may be too complex to be captured by 
a conventional dissimilarity metric. Therefore the possibility exists that the 
boundaries of the classified (aggregates of) image-objects do not lead to an 
agreeable representation of geo-objects. This implies that there will be 
some classified image-objects that need to be split or reshaped in part of 
their perimeter. The less clear the relation between the two similarities, the 
more likely this possibility. A way to tackle this problem is to stop the 
segmentation at a stage where these errors are less frequent or easier to fix. 
This is why some degree of oversegmentation is desirable. In any case, the 
process of endowing image-objects with meaning is a complex one, likely 
requiring several cycles of mutual interaction between segmentation and 
classification (Benz et al. 2004), regardless of what segmentation method 
is used. 

The second reason, which has already been implicitly suggested, is that 
given a segmentation derived from an image of a certain spatial resolution, 
and even assuming that each segment corresponds to some recognizable 
entity, it is highly unlikely that all delineated objects belong to the same 
hierarchical level. For example, in a segmented 1 m resolution image, 
there can be segments that correspond to individual trees and cars, but also 
to whole meadows and lakes. While ‘meadow’ and ‘lake’ may have been 
included as separate classes in the legend, trees and cars are probably sub-
objects of some class like ‘urban park’ and ‘parking lot’. Therefore, some 
aggregation of image-objects according to semantic rules will be required. 

 In addition, for reasons explained in section 3.2, it might be necessary 
to upscale the image and segment it at a coarser resolution, since some 
geo-objects (e.g., a city) have boundaries that are indistinguishable at fine 
scales. The latter operation involves a further complication: the linkage of 
image-objects derived at different resolutions, since in general they will 
not nest seamlessly. At the moment there is no consensus on how to make 
this linkage. However, we note that a related problem has been addressed 
in Computer Vision regarding the tracking of moving objects across video 
frames, referred to as the correspondence problem (Cox 1993). This is 
akin to matching ambiguities between image-objects in successive images 
of increasingly larger pixel size. 

                                                      
16 Basic principles describing the composing capability of our senses, particularly 

with respect to the visual recognition of objects and whole forms instead of just 
a collection of individual patterns (Wertheimer 1923). 
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5 Summary 

OBIA is a relatively new approach to the analysis of RS images where the 
basic units, instead of being individual pixels, are image-objects. An im-
age-object is a discrete region of a digital image that is internally coherent 
and different from their surroundings, and that potentially represents –
alone or in assemblage with other neighbors- a geo-object. The latter is a 
bounded geographic region that can be identified for a period of time as 
the referent of a geographic term such as those used in map legends. 
Within OBIA, image-objects are initially derived from a segmentation al-
gorithm and then classified using both their internal features  and their mu-
tual relationships. Image-objects are devoid of meaning until they are for-
mally recognized as representational instances of either constituents parts 
of geo-objects or of whole geo-objects. Recognition involves the projec-
tion of a semantic model (taxonomy) onto a representation (the segmented 
image) of the landscape, where the result is a partonomy, i.e., a partition 
into meaningful image-objects (which mostly are aggregates of segments, 
i.e., the initial image-objects), each representing a single geo-object. The 
instantiation of image-objects as (representations of) geo-objects is a com-
plex process for which we need to develop, and agree upon a comprehen-
sive ontology. Here we have proposed definitions and relationships for two 
basic terms of it: ‘image-object’ and ‘geo-object’.  

Acknowledgements 

This research and Dr Castilla postdoctoral fellowship have been gener-
ously supported in grants to Dr Hay from the University of Calgary, the 
Alberta Ingenuity Fund, and the Natural Sciences and Engineering Re-
search Council (NSERC). The opinions expressed here are those of the 
Authors, and do not necessarily reflect the views of their funding agencies. 
We also thank an anonymous reviewer for helpful comments. 

References 

Bennett B (2001) What is a Forest? on the vagueness of certain geographic con-
cepts. Topoi 20:189-201 

Benz UC, Hofmann P, Willhauck G, Lingenfelder I, Heynen M (2004) Multi-
resolution, object-oriented fuzzy analysis of remote sensing data for GIS-



Image objects and geographic objects      109 

ready information. ISPRS Journal of Photogrammetry and Remote Sensing 
58: 239-258 

Bittner T, Smith B (2001b) Vagueness and Granular Partitions. In: Welty C, Smith 
B (eds) Formal Ontology and Information Systems. ACM Press, New York, 
pp 309-321 

Blaschke T, Strobl J (2001) What’s wrong with pixels? Some recent developments 
interfacing remote sensing and GIS. GeoBIT/GIS 6:12-17 

Burnett C, Blaschke T (2003) A multi-scale segmentation/object relationship 
modelling methodology for landscape analysis. Ecological Modelling 168(3): 
233-249 

Casati R, Smith B, Varzi A (1998) Ontological Tools for Geographic Representa-
tion. In: Guarino N (ed) Formal Ontology in Information Systems, IOS Press, 
pp 77-85  

Castilla G (2003) Object-oriented Analysis of Remote Sensing Images for Land 
Cover Mapping: Conceptual Foundations and a Segmentation Method to De-
rive a Baseline Partition for Classification. PhD Thesis, Polytechnic Univer-
sity of Madrid, URL: 

 http://oa.upm.es/133/01/07200302_castilla_castellano.pdf 
Cohn AG, Gotts NM (1996) The 'Egg-Yolk' Representation of Regions with Inde-

terminate Boundaries. In: Burrough PA, Frank, AU (eds) Geographic Objects 
with Indeterminate Boundaries. Taylor and Francis, pp 171-188 

Cox IJ (1993) A Review of Statistical Data Association Techniques for Motion 
Correspondence. International Journal of Computer Vision 10(1):53-66 

Duhem P (1906) La theorie physique: son objet, et sa structure. Chevalier and 
Riviere, Paris. Translated by Philip P. Wiener, The Aim and Structure of 
Physical Theory (Princeton University Press, 1954) 

Fisher P (2000) Sorites paradox and vague geographies. Fuzzy Sets and Systems 
113 (1):7-18 

Frank AU (2001) Tiers of ontology and consistency constraints in geographic in-
formation systems. Int. J Geographical Information Science 15(7):667-678 

Hay GJ, Castilla G (2007) Geographic Object-Based Image Analysis (GEOBIA). 
In: Blaschke T, Lang S, Hay GJ (eds) Object-Based Image Analysis - Spatial 
concepts for knowledge-driven remote sensing applications. Springer-Verlag, 
Berlin 

Hay GJ, Castilla G (2006) Object-Based Image Analysis: Strengths, Weaknesses, 
Opportunities and Threats (SWOT). In: International Archives of Photo-
grammetry, Remote Sensing and Spatial Information Sciences, Vol. No. 
XXXVI-4/C42, Salzburg 

Hay GJ, Niemann KO, Goodenough DG (1997) Spatial Thresholds, Image-
Objects and Upscaling: A Multiscale Evaluation. Remote Sensing of Envi-
ronment 62:1-19 

Kartikeyan B, Sarkar A, Majumder KL (1998) A Segmentation Approach to Clas-
sification of Remote Sensing Imagery. International Journal of Remote Sens-
ing  19(9):1695-1709 



110      G. Castilla, G. J. Hay 

Korzybski A (1933) Science and Sanity. An Introduction to Non-Aristotelian Sys-
tems and General Semantics. International Non-Aristotelian Library Publish-
ing Co., Lancaster 

Kuhn TS (1962) The Structure of Scientific Revolutions. The Chicago University 
Press, Chicago 

Lang S, Blaschke T (2006) Bridging remote sensing and GIS – what are the main 
supporting pillars? International Archives of Photogrammetry, Remote Sens-
ing and Spatial Information Sciences vol. XXXVI-4/C42 

Lang S, Langanke T (2006) Object-based mapping and object-relationship model-
ing for land use classes and habitats. PFG - Photogrammetrie, Fernerkundung, 
Geoinformatik  1:5-18 

Landgrebe D (1999) Information Extraction Principles and Methods for Multis-
pectral and Hyperspectral Image Data. In: Chen CH (ed) Information Process-
ing for Remote Sensing. The World Scientific Publishing Co, New Jersey 

Marceau DJ, Howarth PJ, Gratton DJ (1994) Remote Sensing and the Measure-
ment of Geographical Entities in a Forested Environment. Part 1: The Scale 
and Spatial Aggregation Problem. Remote Sensing of Environment 49(2):93-
104 

Neubert M, Herold H, Meinel G (2007) Evaluation of remote sensing image seg-
mentation quality. In: Blaschke T, Lang S, Hay GJ (eds) Object-Based Image 
Analysis - Spatial concepts for knowledge-driven remote sensing applications. 
Springer-Verlag, Berlin 

Schiewe J, Tufte L, Ehlers M (2001) Potential and problems of multi-scale seg-
mentation methods in remote sensing. Geographische Informationssysteme 6: 
34-39 

Smith B (2003) Ontology. In: Luciano Floridi (ed), Blackwell Guide to the Phi-
losophy of Computing and Information. Blackwell, Oxford, pp 155-166 

Smith B (2001) Fiat Objects. Topoi 20:131-148 
Smith B, Brogaard B (2002) Quantum Mereotopology. Annals of Mathematics 

and Artificial Intelligence 35:153-175 
Smith B, Mark DM (1998) Ontology and Geographic Kinds.  Proc. 8th Int. Symp. 

on Spatial Data Handling (SDH'98), pp 308-320 
Varzi A (2001) Vagueness in Geography. Philosophy and Geography 4(1): 49-65 
Wertheimer M (1923) Laws of Organization in Perceptual Forms. Translation 

published in Ellis, W. (1938). A source book of Gestalt psychology (pp 71-
88). Routledge, London 

Wiens JA (1995) Landscape mosaics and ecological theory. In: Hansson L, Fahrig 
L, Merriam G (eds) Mosaic Landscapes and Ecological Processes (pp 1-26). 
Chapman and Hall, London  

Woodcock CE, Strahler AH (1987) The factor of scale in remote sensing. Remote 
Sensing of Environment 21:311-332 

Woodcock CE, Harward VJ (1992) Nested-hierarchical scene models and image 
segmentation. International Journal of Remote Sensing 13:3167-3187 

Wu J, Loucks OL (1995) From balance-of-nature to hierarchical patch dynamics: 
a paradigm shift in ecology.  Quarterly Review of Biology 70: 439-466 

Zadeh L (1965) Fuzzy sets. Information and Control 8(3):338-353 



Section 2 
Multiscale representation and  
object-based classification 



Chapter 2.1 

Using texture to tackle the problem of scale in 
land-cover classification 

P. Corcoran, A. Winstanley 

National Centre for Geocomputation & Department of Computer Science, 
National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland. 
padraigc@cs.nuim.ie 

KEYWORDS: visual perception, watershed segmentation, feature fusion 

ABSTRACT: Object-Based Image Analysis (OBIA) is a form of re-
mote sensing which attempts to model the ability of the human visual sys-
tem (HVS) to interpret aerial imagery. We argue that in many of its current 
implementations, OBIA is not an accurate model of this system. Drawing 
from current theories in cognitive psychology, we propose a new concep-
tual model which we believe more accurately represents how the HVS per-
forms aerial image interpretation. The first step in this conceptual model is 
the generation of image segmentation where each area of uniform visual 
properties is represented correctly. The goal of this work is to implement 
this first step. To achieve this we extract a novel complementary set of in-
tensity and texture gradients which offer increased discrimination strength 
over existing competing gradient sets. These gradients are then fused using 
a strategy which accounts for spatial uncertainty in boundary localization. 
Finally segmentation is performed using the watershed segmentation algo-
rithm. Results achieved are very accurate and outperform the popular 
Canny gradient operator. 

1 Introduction 

To overcome the failings of classic pixel-based classification techniques 
at providing accurate land-use classification, many researchers are devel-
oping a new form of remote sensing known as OBIA (Benz et al. 2004). 
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OBIA attempts to model the HVS which can interpret aerial imagery quite 
easily. The OBIA strategy can be divided loosely into two stages. The first 
is image segmentation of the given scene into a set of objects. These ob-
jects then serve as input to a supervised classifier which utilizes spatial 
properties such as shape and object context to classify land-use (Blaschke 
2003). Although OBIA outperforms traditional pixel-based remote sensing 
techniques, it does not offer the same level of accuracy as the HVS. We 
believe one of the reasons for this is due to many OBIA implementations 
being based upon an inaccurate conceptual model of the HVS. 

The data used in this research consists of scanned aerial photography 
with a 0.25 m ground sample distance of Southampton city which is lo-
cated on the south coast of England. This data was obtained from the Ord-
nance Survey of Great Britain. The imagery was initially in RGB format 
but was converted to grey-scale before any analysis was performed. This 
conversion was performed using the Matlab function rgb2grey (Gonzalez 
et al. 2003). Fig. 1 displays an example of the original RGB data following 
the conversion to greyscale. From this example it is obvious that the visual 
system can still accurately interpret aerial imagery even when colour in-
formation has been removed. Greyscale imagery contains only one channel 
compared to three for colour imagery. This reduces the computational 
complexity in terms of both feature extraction and fusion, and was one of 
the reasons for the conversion. Modelling how the HVS interprets colour 
information is much more complex in terms of theory than modelling how 
it interprets greyscale information (Palmer 1999) (p. 94). This was also a 
major factor which influenced the conversion to greyscale. 

 

 
Fig. 1 The original RGB image is converted to greyscale before any analysis is 
performed. Ordnance Survey Crown Copyright. All rights reserved 

 
The remainder of this chapter is organized as follows. First we propose 

an alternative conceptual model of the HVS which we believe agrees more 
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with current theories of visual perception than the current model underly-
ing many OBIA implementations. This is followed in section 3 by details 
of how the first step in this model may be implemented. Results are pre-
sented in the final part of this section. Finally section 4 discusses our con-
clusions from this work and possible future research directions. 

2 A conceptual model of aerial photo interpretation  

It is generally accepted that the HVS is in some form object-based. Watt 
(1995) argues that this provides an alternative to computing a full repre-
sentation of point based spatial relationships and allows the utilization of 
spatial properties such as shape. Many of the current implementations of 
OBIA attempt to define objects using segmentation by utilizing solely the 
visual cue of intensity/colour (Baatz and Schape 2000). This would be an 
appropriate strategy if each object of interest was of uniform inten-
sity/colour, but this is not the case. Most will contain small scale texture 
which is another valuable cue used by the HVS to detect boundaries. At-
tempting to generate segmentation using exclusively intensity/colour based 
features in the presence of texture will lead to over- and under-
segmentation. In an attempt to lessen such deficiencies some OBIA im-
plementations run intensity/colour segmentation at multiple scales in the 
hope that each of the required objects will be defined correctly at some 
scale (Benz et al. 2004). All segmentation scales are then merged to gener-
ate the object-hierarchy. This procedure of running intensity/colour based 
segmentation at multiple scales followed by integrating to generate the ob-
ject-hierarchy, we believe is not an accurate model of the HVS as it does 
not concur with current theories in visual perception. Therefore we now at-
tempt to define a more accurate conceptual model of the processes in-
volved in the human interpretation of aerial imagery. 

In this research we define primitive-objects as connected regions of uni-
form visual properties, which in turn we define as areas of uniform inten-
sity or texture. We argue that the initial step in an accurate conceptual 
model of the HVS is the segmentation of a given scene into a set of primi-
tive-objects. This would be a single segmentation where each individual 
primitive-object is represented correctly. The following theories of visual 
perception support this view. 

Perceptual organization is defined as how all the bits and pieces of vis-
ual information are structured into the larger units of perceived objects and 
their interrelations (Palmer 1999) (p. 255). The principle of uniform con-
nectedness states that connected regions of uniform visual properties tend 
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to be perceived initially as single objects and correspond to entry level 
units of perceptual organization (Palmer and Rock 1994). Julesz renowned 
for his work on the visual perception of texture seems to support the prin-
ciple of uniform connectedness stating that “the aperture of attention 
changes its spatial scale according to the size of the feature being sought” 
(Julesz 1983). Therefore when an area of uniform visual properties is 
viewed our aperture is adjusted to view it correctly as a single primitive-
object. In theories of object recognition such as Biederman’s recognition-
by-components (Biederman 1987), complex objects are described by the 
spatial arrangement of basic component parts. The first step in this object 
recognition process is the segmentation of the given scene into areas of 
uniform visual properties. These segments are then matched against a col-
lection of primitive-components called Geons which represent the individ-
ual parts of the object to be recognized. Theories of visual attention, which 
are generally considered to be object-based on some level, also argue that 
areas of uniform visual properties are initially represented as single ob-
jects. In Treisman feature integration theory of visual attention (Treisman 
and Gelade 1980), before visual attention is focused, the visual system 
generates separate representations of each visual stimulus. These separate 
features are then conjoined to form a single segmentation of the scene 
where each primitive-object is represented correctly. Drawing from the 
above theories, a corresponding implementation of early vision segmenta-
tion would be a segmentation algorithm which segments each area of uni-
form visual properties correctly within a single segmentation. If segmenta-
tion is defined exclusively using raw intensity/colour features no such 
segmentation can be achieved. 

According to the principle of uniform connectedness, an early vision 
segmentation process defines primitive-objects upon which grouping and 
parsing operate to generate different levels or scales in the object-hierarchy 
(Palmer 1999) (p. 268). Grouping is the process of aggregating individual 
primitive-objects to form segmentation at a larger scale. On the other hand, 
parsing involves dividing primitive-objects into separate parts to form seg-
mentation at a smaller scale. An important distinction in the processing of 
visual information is its metaphorical ‘direction’ of bottom-up or top-down 
(Palmer 1999) (p. 84). Top-down processing, also called hypothesis-driven 
or expectation-driven processing, is influenced by our prior knowledge, 
desires and expectations. On the other hand, bottom-up processing is unaf-
fected by these influences and is purely driven from knowledge extracted 
from the scene. In all the above theories which we have drawn from, the 
early vision segmentation which defines primitive-objects is a bottom-up 
process. The Gestalt laws of perceptual organization are based on the as-
sumption that the grouping and parsing of these primitive-objects to form 
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the object-hierarchy is also a bottom-up process (Palmer 1999) (p. 257). 
Vecera and Farah (1997) showed this not to be the case, and that in fact 
this merging and parsing of primitive-objects in the HVS to produce the 
object-hierarchy is a top-down process. Pylyshyn (1999) supports this 
claim arguing that such top-down influences play a major role in visual 
perception. An example of where such top-down influences are present 
could be for example in the aggregation of two primitive-objects corre-
sponding to building roof and chimney to form a single building object. 
Although these two primitive-objects may have considerable different vis-
ual properties, our prior knowledge informs us that they should be aggre-
gated at a larger scale in the object-hierarchy. In many current OBIA im-
plementations such top-down influences are not considered. The object-
hierarchy is generated in a completely bottom-up manner by simply run-
ning intensity/colour segmentation at multiple scales (Baatz and Schape 
2000; Benz et al. 2004). 

For the reasons just discussed we believe many current implementations 
of the OBIA paradigm to be founded on an imprecise conceptual model of 
the HVS. We therefore propose a new conceptual model for the human in-
terpretation of aerial imagery which we feel agrees more with current theo-
ries in visual perception. This conceptual model contains the following 
three stages: 

1. First a single segmentation where each primitive-object is seg-
mented correctly is performed. This segmentation is a bottom-up 
process. 

2. Primitive-objects are then merged and parsed to form the object-
hierarchy. This process is both influenced by top-down and bottom-
up factors. Both individual object properties and context relation-
ships between objects play a major role in this step. 

3. Finally land-use classification of the object-hierarchy is performed. 
This is very top-down driven process. 

Most theorists believe that the early stages of human visual processing 
are strictly bottom-up. The point at which top-down processes begins to 
augment bottom-up process is a controversial issue. Some believe this 
point occurs early in visual processing while others believe it occurs later 
(Palmer 1999) (p. 85). In our conceptual model the point at which top-
down processes begin to augment bottom-up processes is after the defini-
tion of primitive-objects. This choice was motivated by the principle of 
uniform connectedness which is believed to be a bottom-up process.  

The HVS is extremely sophisticated and we do not claim our conceptual 
model to be entirely accurate. Nevertheless we deem it to be a more accu-
rate conceptual model than the one underlying many current implementa-
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tions of the OBIA paradigm. The next section in this chapter presents de-
tails of how the first step in this conceptual model may be implemented. 

3 Methodology 

Remotely sensed images contain both texture and intensity boundaries 
which must be exploited effectively if accurate primitive-object segmenta-
tion is to be realized. Most segmentation strategies can be classified as a 
region or boundary based approach. In region based methods grouping of 
homogenous areas is performed to produce segmentation. In contrast, 
boundary based methods attempt to extract the boundaries between these 
homogenous areas. The watershed transform combines both region and 
boundary based techniques (Soille 2002). Pixels are grouped around the 
regional minima of a gradient image and boundaries are located along the 
crest lines of this image. In order to achieve accurate segmentation using 
the watershed transform an accurate boundary gradient image must first be 
extracted. This section presents a strategy for computing such a gradient 
image accurately. 

Gradients extracted from raw texture and intensity features are inaccu-
rate and do not harmonize with each other. A gradient operator applied to a 
raw intensity image will not only respond to intensity boundaries but also 
the intensity variation due to object texture resulting in a significant num-
ber of false positives.  

Texture being a spatial property can only be described by features calcu-
lated within a neighbourhood. This process of integrating information over 
a neighbourhood leads to what we refer to as the texture boundary-
response problem, where an unique response is observed at primitive-
object boundaries (Corcoran and Winstanley 2007). This response is due to 
features being extracted from a mixture of textures and/or an intensity 
boundary between primitive-objects. Segmentation performed using these 
raw texture features will result in the generation of unwanted classes along 
object boundaries. Also a gradient operator applied to such feature images 
will not give an accurate gauge of the texture boundary magnitude. Two 
measures of primitive-object to boundary-response gradient will result not 
the desired single measure of primitive-object to primitive-object gradient. 

For the above reasons a sophisticated strategy needs to be employed to 
fuse the visual properties of texture and intensity. Most current segmenta-
tion methods which attempt to fuse texture and intensity feature gradients 
are based on a competing gradient set. These strategies are founded on the 
assumption that each primitive-object boundary is predominately a inten-
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sity or texture boundary, and only the corresponding feature gradient 
should be used to define that boundary. The authors in (Malik et al. 2001; 
Chaji and Ghassemian 2006) use a measure of texturedness to modulate 
both texture and intensity gradients. Intensity gradients in the presence of 
texture are inhibited reducing the number of gradient false positives due to 
texture intensity variation. While texture gradients in the absence of tex-
ture are suppressed removing gradient false positives due to boundary-
responses at pure intensity boundaries. O’Callaghan and Bull (2005) only 
modulate the intensity gradients and remove texture boundary responses 
by separable median filtering of the texture feature images.  

Most boundaries in remotely sensed images consist of both an intensity 
and texture boundary. Therefore since boundary strength is only measured 
in terms of a single visual cue, either texture or intensity, all the above 
competing gradient strategies suffer reduced discrimination strength. To 
curb this shortcoming we propose to use a complementary gradient set. 
This allows the calculation of a more accurate boundary gradient in terms 
of a sum of individual texture and intensity gradients. This is achieved by 
performing post-processing of both raw texture and intensity feature im-
ages removing all gradients except those due to primitive-object bounda-
ries. Our paper also reports a novel fusion strategy for such gradient im-
ages which offers a number of benefits over existing strategies. We 
describe our early vision segmentation algorithm under the following 
headings: 

1. Complementary intensity gradient extraction. 
2. Complementary texture gradient extraction. 
3. Fusion of gradient images and segmentation. 

3.1 Complementary intensity gradient extraction 

A schematic of the complementary intensity gradient extraction process is 
displayed in Fig. 2. 

 

 
Fig. 2 Schematic of complementary intensity gradient extraction strategy 

Raw Intensity Image 

Locally Adaptive Diffusion 

Gradient Operator 

Complementary Intensity Gradient Image 
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Removing intensity gradients due to texture while maintaining those due 
to primitive-object intensity boundaries can be achieved using a smoothing 
process (Deng and Liu 2003). Smoothing an image using a linear or non-
linear diffusion process will cause each primitive-object to approach its 
average intensity value; this is known as the property of grey level invari-
ance (Deng and Liu 2003). If every primitive-object in a given scene has a 
significant different average intensity value then accurate primitive-object 
segmentation, while maintaining accurate boundary localization, can be 
achieved using the diffused image. 

Linear diffusion or Gaussian smoothing although probably the most 
common smoothing technique used, has a number of drawbacks. Namely it 
blurs boundaries giving mixed classes, suffers from a loss of boundary lo-
calization and applies equal smoothing to all locations. Non-linear diffu-
sion was first introduced in (Perona and Malik 1990) to overcome the 
weaknesses of linear diffusion. In this strategy the amount of diffusion per-
formed at any location is controlled by the use of an edge-stopping func-
tion of gradient magnitude. Black et al. (1998) introduced a diffusion proc-
ess known as robust anisotropic diffusion which preserves sharper 
boundaries than previous formulations and improves termination of the 
diffusion. This diffusion process applied to image I is given by: 

( ) ( )[ ]IIgdiv
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where I∇  is the gradient magnitude and g is a decreasing edge stopping 
function. Within robust anisotropic diffusion, Tukey’s biweight function is 
used for g: 
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where σ   is the diffusion scale parameter. Following a finite number of it-
erations of the diffusion process, all edges with a gradient magnitude of 
less than σ  will be completely smoothed while all others will remain. 

Using a single diffusion scale parameter for all spatial locations is unde-
sirable. If an edge of a given gradient has a large percentage of neighbour-
ing edges with similar gradients then the edge in question is probably the 
result of texture intensity variation. On the other hand if an edge with a 
given gradient does not have a large percentage of neighbouring edges 
with similar gradients then this edge is probably the result of an intensity 
primitive-object boundary. Therefore an edge with a specific gradient in 
one location should be classified as an edge due to texture intensity varia-
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tion while in a different location should be classified as an edge due to a 
primitive-object boundary. This effect is shown graphically in Fig. 3. 

 

 
Fig. 3 The gradient of edge A is significantly greater than the median of its 
neighbouring gradients. Therefore this edge represents a boundary and will be pre-
served by the diffusion process. The gradient of edge B, although greater than that 
of A, is not significantly greater than the median of its neighbouring gradients. As 
a result this edge will not be preserved by the diffusion process 

 
To accommodate this spatially varying property, (Black and Sapiro 

1999) proposed to calculate a spatially varying diffusion scale parameter. 
In the original paper, Black and Sapiro used the Median Absolute Devia-
tion (MAD) of local gradient values as a measure of local diffusion scale, 
where MAD is a robust measure of variance. It is important to use a quan-
tification from the area of robust statistics. The neighbourhood of an edge 
resulting from a primitive-object intensity boundary will contain a certain 
percentage of edges of similar gradient magnitude resulting from the same 
boundary. The statistic used must therefore be robust to such outliers. Us-
ing a measure of variance such as MAD does not encapsulate information 
regarding the actual magnitude of neighbouring gradients. Therefore we 
propose to use the median of gradient values within a neighbourhood mul-
tiplied by a user specified parameter as a local measure of diffusion scale. 
Fig. 4 displays the result of this diffusion process applied to a remotely 
sensed image. The proposed complementary intensity gradients are ex-
tracted from this image using a Sobel gradient operator (Gonzalez et al. 
2003). 
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(a) (b) 

Fig. 4 The locally adaptive diffusion process is applied to image (a) with the result 
shown in (b). Significant intensity variation due to texture is removed while primi-
tive-object intensity boundaries remain. Each primitive-object approaches its av-
erage grey value. The building roof and tree located just below in (a) have differ-
ent textures but similar average intensity values. The diffused image in (b) 
displays little or no intensity boundary between these two primitive-objects. 
Therefore this boundary must be defined using primitive-object texture gradients. 
Ordnance Survey Crown Copyright. All rights reserved 

3.2 Complementary texture gradient extraction 

A schematic of the complementary texture gradient extraction process is 
displayed in Fig. 5. 
 

 
Fig. 5 Schematic of complementary texture gradient extraction strategy 
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When working with intensity based images, a large number of neighbour-
ing primitive-objects will have similar average intensity values. Following 
the application of a diffusion process these will have a very similar ap-
pearance leading to under-segmentation. Therefore when attempting to de-
rive accurate segmentation of intensity images it is important to model the 
texture within these images and integrate with intensity features in an intel-
ligent manner. This will allow boundaries between primitive-objects hav-
ing similar average intensity values but different textures to be detected. 
An example of such a primitive-object boundary can be seen in Fig. 4. 

A bank of Gabor filters are utilized for texture feature extraction. Gabor 
filters are an attractive form of texture feature extraction because they have 
been shown to model the simple cells in the primary visual cortex quite ac-
curately and minimize the uncertainty principle (Clausi and Jernigan 
2000). Spatially, a Gabor function is a Gaussian modulated sinusoid. An 
example of a Gabor feature image is displayed in Fig. 6. 

 

  
(a) (b) 

Fig. 6 Gabor features of a low spatial frequency extracted from (a) are shown in 
(b). Ordnance Survey Crown Copyright. All rights reserved 

Clausi and Jernigan (2000) demonstrated the need for smoothing of the 
raw Gabor filter outputs to counter an effect known as leakage which re-
sults in over-segmentation. Following feature extraction all feature images 
are smoothed using the non-linear locally adaptive diffusion process dis-
cussed in the previous section. 

To overcome the issues introduced by texture boundary responses post 
processing of feature images must be performed to remove these responses 
before a segmentation algorithm can be applied. A practical boundary re-
sponse removal technique should have the following properties: 

− It should prevent the generation of boundary classes. 
− Post application of a gradient operator should give an accurate gauge 

of texture boundary magnitude. 
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In a recent paper we proposed such a technique which composes sepa-
rable median filtering followed by smoothing with a relatively small Gaus-
sian (Corcoran and Winstanley 2007). Following this gradient are then cal-
culated with a Sobel gradient operator. This strategy will extract boundary 
gradients with both of the above required properties and are localized ac-
curately to a spatial scale equal to half that of the corresponding feature ex-
traction used. Fig. 7 shows an example result of the proposed complemen-
tary texture gradient extraction strategy. 

 

  
(a) (b) 

Fig. 7 The result of applying a diffusion process followed by texture boundary re-
sponse removal to Fig. 6 (b) is shown in (a). Texture gradients are then extracted 
from (a). Those above a certain threshold are represented by white and superim-
posed on the original image in (b). These boundaries are localized to half the scale 
of feature extraction and therefore in some cases are not positioned entirely cor-
rectly. Ordnance Survey Crown Copyright. All rights reserved 

3.3 Fusion of gradient images and segmentation 

Given the resulting complementary texture and intensity gradient images, 
these must be fused to form a single gradient image before application of 
the watershed transform. A schematic of proposed fusion process is dis-
played in Fig. 8. 
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Fig. 8 Schematic of the complementary texture and intensity gradient image fu-
sion process 

 
Intensity is a point property therefore using a non-linear diffusion proc-

ess which preserves boundary localization we can locate intensity bounda-
ries accurately to the pixel scale. Texture on the other hand is a spatial 
property and therefore any features used to describe it must be calculated 
within a neighbourhood. This makes it difficult to accurately localize tex-
ture boundaries. In fact the approach we employed will only localize tex-
ture boundaries accurately to half the spatial scale of the corresponding 
feature extraction used. In Fig. 7 (b) we can see that some building texture 
boundaries are not located entirely correctly (Corcoran and Winstanley 
2007). 

Simply performing a summation of texture and intensity gradient im-
ages as is standard in previous approaches without taking this uncertainty 
into account introduces two drawbacks (O'Callaghan and Bull 2005; Chaji 
and Ghassemian 2006). If corresponding boundaries are located in differ-
ent positions, a sum of their gradient values will give a double peaked ef-
fect, with neither peak being a true measure of the actual boundary gradi-
ent. This double peak effect will also result in the segmentation algorithm 
returning a false boundary object. These effects are demonstrated in Fig. 9.  
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(a) (b) 

  
(c) (d) 

Fig. 9 A primitive-object boundary has both an intensity and texture gradient re-
sponse shown in (a) and (b) respectively. Although both gradients correspond to 
the same boundary they are located in different positions. Simply performing a 
summation will result in a double peaked effect in the resulting gradient image as 
shown in (c). Neither peak is a true measure of actual boundary gradient. Also 
segmentation will return a false boundary object. We propose to dilate the texture 
gradient before summation with the result of this summation shown in (d). The 
peak of (d) is an accurate value of boundary gradient magnitude. The watershed 
segmentation algorithm will locate the boundary at this peak which is the location 
of the intensity boundary therefore minimizing spatial uncertainty 

 
To overcome these downfalls we add a requirement of texture gradients 

which are later fused with intensity gradients in this manner. This require-
ment states: the boundary response should be uniform over a scale greater 
than the scale of localization. To achieve this we dilate the texture gradient 
images using a disk shaped structuring element (Soille 2002). The structur-
ing element used has a radius equal to the boundary localization scale of 
the original gradients. Our original texture gradient extraction algorithm 
extracts gradients accurate to half the scale of the feature extraction per-
formed therefore we dilate with a similar scale structuring element. This 
increases the area over which the gradient operator responds to a texture 
boundary fulfilling the above requirement. Fig. 9 displays visually the re-
sult of applying this strategy. 

Before a summation of individual gradient images is performed, each 
must be normalized to weigh its contribution. Shao and Forstner (1994) 
proposes to normalize by variance or maximum filter response. O'Cal-
laghan and Bull (2005) normalizes by maximum filter response followed 



Using texture to tackle the problem of scale in land-cover classification      127 

by normalization by the sum of filter response. There is no strong evidence 
to suggest one normalization technique is superior so we choose to normal-
ize each gradient magnitude image by its maximum response. This scales 
each image to the range [0 1]. We then sum the individual texture gradient 
images and normalize this again by the maximum value giving a single 
texture gradient image. We then divide the intensity gradient image by 
four times its median value and the texture gradient image by its median 
value. This step aligns the noise floor of each function (O'Callaghan and 
Bull 2005). Finally the single intensity and texture gradient images are 
summed to form a final gradient image. All further segmentation analysis 
is performed on solely this image. Example complementary intensity, 
complementary texture and fused complementary intensity/texture gradient 
images are displayed in Fig. 10 (a), (b) and (c) respectively. 

 

 
(a) 

  
(b) (c)  

Fig. 10 Intensity and texture gradient images for Fig. 3 (a) are displayed in (a) and 
(b) respectively. These are fused in (c) to form a single gradient image 

 
To perform segmentation we use the marker-controlled watershed trans-

form (Soille 2002). In practice, direct computation of the watershed algo-
rithm results in over-segmentation due to the presence of spurious minima. 
To overcome this, the gradient image is first filtered using a marker func-
tion, in this case the H-minima transform, to remove all irrelevant minima 
(Soille 2002). Intensity being a point property is not affected by the uncer-
tainty principle and therefore offers superior boundary localization com-
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pared to texture. If a boundary has both an intensity and texture boundary, 
the crest of the gradient magnitude image will be located at the intensity 
boundary. The watershed algorithm will therefore locate boundaries using 
an intensity boundary as opposed to a texture boundary where possible and 
minimize spatial uncertainty. This effect is illustrated in Fig. 9. 

3.4 Segmentation evaluation 

Primitive-object segmentation evaluation using ground-truth captured by 
human interpretation is difficult. This is owing to the fact that when hu-
mans are asked to generate the required ground-truth, they return segmen-
tation at a larger scale than required with a large percentage of individual 
primitive-objects merged. This point is illustrated in a forthcoming publi-
cation where a cognitive experiment was performed on a number of sub-
jects. Each subject was asked to generate the corresponding ground-truth 
for a number of remotely sensed images. All ground-truths returned where 
of a larger scale than required with significant merging of primitive-
objects evident. Capturing of ground truth where each primitive-object is 
represented would require a great effort on the interpreter’s part and may 
not be even possible. This is due to the fact that we as humans tend to 
merge primitive-objects unconsciously even though this merging a top-
down process. It is well known that top-down factors can influence visual 
processes without us being conscious of it. For example, it turns out that 
how people identify letters depends strongly on whether those letters are 
part of known words or meaningless letter strings. For this to happen, there 
must be top-down influences from some higher-level representation of 
known words acting on a lower-level representation of letters (Palmer 
1999) (p. 85). Therefore a comparison against ground-truth is pointless due 
to the fact that any ground-truth captured would be inaccurate. Due to this 
inability of humans to capture ground-truth at the required scale, segmen-
tation evaluation is performed in a qualitative manner using visual inspec-
tion and a quantitative manner using an accurate unsupervised segmenta-
tion performance metric which does not require ground-truth. 

Some segmentation results are displayed in Fig. 11. These results are 
close to the scale we desire where each primitive-object, for example trees 
and building roofs, is segmented correctly. From these images we see that 
primitive-object boundaries which have both an intensity and texture 
boundary are localized very accurately. This demonstrates the ability of 
our algorithm to minimize spatial uncertainty in boundary localization. 
Examples of this include road and building boundaries. For boundaries 
which do not have a strong intensity boundary, for example some bounda-
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ries between tree tops, localization is not so accurate. Some over- and un-
der-segmentation is also evident in highly textured regions. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 11 Segmentation results obtained from the segmentation procedure described. 
Primitive-object boundaries are represented by the colour white. Ordnance Survey 
Crown Copyright. All rights reserved 

 
We performed quantitative performance evaluation in an unsupervised 

manner, which does not require ground-truth, using an unsupervised per-
formance metric know as the SU metric (in forthcoming publication). 
Evaluation of remotely sensed data segmentation has been performed in 
such an unsupervised manner in the past (Pal and Mitra 2002; Mitra et al. 
2004). The SU metric calculates a ratio of the individual segments texture 
and intensity feature separation to cohesion, with higher values indicating 
better segmentation performance. This metric has been shown to be an ac-
curate performance metric having a high correlation with an accurate su-
pervised metric on a synthetic dataset, containing noisy uniform and tex-
tured regions, where accurate ground-truth is known. This correlation is 
significantly greater than previous attempts to establish a relationship be-
tween supervised and unsupervised metrics on the same data (in forthcom-
ing publication). We evaluated our segmentation algorithm against the 
marker-controlled watershed transform applied to gradients extracted using 
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the Canny gradient detector (Canny 1986). These gradients were calcu-
lated by smoothing with a Gaussian of sigma 1.5 followed by application 
of the Sobel gradient operator. A set of 60 images of size 256x256 pixels 
was used for evaluation. This set was divided into 20 training images to 
optimize the segmentation scale parameter H for each algorithm and 40 
test images. Our proposed segmentation algorithm achieved an average SU 
metric value of 0.43 on the test data set. This result outperformed the 
marker-controlled watershed transform applied to the Canny gradients 
which accomplished an average SU metric value of 0.38 on the same data. 

4 Conclusions and Future Work 

Generating accurate land-use classification in urban areas from remotely 
sensed imagery is a challenging problem. The ultimate goal of OBIA is to 
model the HVS, which can perform this task quite easily. We argue that 
some previous implementations of the OBIA paradigm are based on an in-
accurate conceptual model of the HVS. We therefore proposed a new con-
ceptual model which we feel overcomes this weakness and will hopefully 
lead to more accurate land-use classification systems in the future. 

We attempted to implement the first step in this conceptual model by 
performing segmentation where each area of uniform visual properties is 
segmented correctly. To achieve this we proposed a segmentation algo-
rithm which involves the computation and fusion of a novel complemen-
tary texture and intensity gradient set. The segmentation results achieved 
are visually very accurate, although some over- and under-segmentation is 
evident. Using an unsupervised performance metric we showed that the 
proposed algorithm quantitatively outperforms the marker-controlled wa-
tershed transform applied to gradients extracted using the popular Canny 
gradient operator.  

The slight over- and under-segmentation evident in the results may be 
due to gradient images being based on a local measure of difference which 
does not encode information regarding the difference between the interior 
of regions (O'Callaghan and Bull 2005). A potential solution may be post-
processing of the segmentation in which regions are merged based on their 
interior region properties. Some primitive-object boundaries suffer from 
poor localization. This is due to texture gradients only being localized to 
the spatial scale of feature extraction. Future work will attempt to localize 
these gradients to a finer spatial scale. 
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ABSTRACT: As a synthesis of a series of studies carried out by the au-
thors this chapter discusses domain-specific class modelling which utilizes 
a priori knowledge on the specific scale domains of the target features ad-
dressed. Two near-natural forest settings served as testing environment for 
a combined use of airborne laser scanning (ALS) and optical image data to 
perform automated tree-crown delineation. The primary methodological 
aim was to represent the entire image data product in a single, spatially 
contiguous, set of scale-specific objects (one-level-representation, OLR). 
First, by high-level (broad-scale) segmentation an initial set of image re-
gions was created. The regions, characterised by homogenous spectral be-
haviour and uniform ALS-based height information, represented different 
image object domains (in this case: areas of specific forest characteristics). 
The regions were then treated independently to perform domain-specific 
class modelling (i.e. the characteristics of each region controlled the gen-
eration of lower level objects). The class modelling was undertaken using 
Cognition Network Language (CNL), which allows for addressing single 
objects and enables supervising the object generation process through the 
provision of programming functions like branching and looping. Alto-
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gether, the single processes of segmentation and classification were cou-
pled in a cyclic approach.  Finally, representing the entire scene content in 
a scale finer than the initial regional level, has accomplished OLR. Build-
ing upon the preceding papers, we endeavoured to improve the algorithms 
for tree crown delineation and also extended the underlying workflow. The 
transferability of our approach was evaluated by (1) shifting the geo-
graphical setting from a hilly study area (National Park Bavarian Forest, 
South-Eastern Germany) to a mountainous site (Montafon area, Western 
Austria); and (2) by applying it to different data sets, wherein the latter dif-
fer from the initial ones in terms of spectral resolution (line scanner RGBI 
data vs. false colour infrared orthophotos) and spatial resolution (0.5 m vs. 
0.25 m), as well as ALS point density, which was ten times higher in the 
original setting. Only minor adaptations had to be done. Additional steps, 
however, were necessary targeting the data sets of different resolution. In 
terms of accuracy, in both study areas 90 % of the evaluated trees were 
correctly detected (concerning the location of trees). The following classi-
fication of tree types reached an accuracy of 75 % in the first study area. It 
was not evaluated for the second study area which was nearly exclusively 
covered by coniferous trees. 

1 Introduction  

Very high spatial resolution (VHSR) optical sensors and airborne laser 
scanning (ALS) technology, especially in combination, provide informa-
tion on a broad range of possible target features in human-related scale 
domains. Increased spatial resolution along with additional continuous in-
formation (such as derived from ALS) serves to improve our ability to de-
tect individual features. But the rich information content of the ‘H-res’ 
situation (Strahler et al., 1986), where many pixels make up each object, 
an excess of spatial detail must be dealt with (as in Lang, chapter1.1, 
Hoffmann et al., chapter 1.2, Castilla and Hay, chapter 1.5). Region-based 
segmentation techniques are an intuitive, yet empirically improvable 
means for re-aggregating this detailed information and thus reducing scene 
complexity. Multi-scale segmentation (Baatz and Schäpe, 2000) in general 
provides a hierarchical set of scaled representations, adaptable to the re-
quired level of detail. In forest applications we usually aim at scaled repre-
sentations of the entire scene content, and not at solely feature extraction 
(i.e. Tiede et al. 2004a). However, for a full representation of the scene 
content, one single adapted layer produced through segmentation may be 
desired as an inappropriate trade-off between over- and under-
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segmentation. As presented in Lang (2002), specific structural arrange-
ments of target features may require class- (or domain-)specific multi-scale 
segmentation. Assessing relevant scales may be conducted in an analytical 
way, such as by performing scale-space analysis and deriving characteris-
tics on object behaviour while moving through scale (e.g. Hay et al., 
2005). The approach discussed in this chapter is complementary and 
knowledge-driven: we discuss a supervised approach for the process of 
segmentation and object generation utilizing human a priori knowledge on 
the specific scale domain of the target features.  

A key premise of our approach is that the result should capture the en-
tire scene content in a spatially contiguous one-level representation (OLR, 
Lang and Langanke, 2006). In addition, the approach should be transfer-
able to different geographical settings and to data sets with different spatial 
or spectral resolution. We therefore selected two different study areas, 
transferred the workflow, and applied the approach with only minor adap-
tations.  

2 Study Areas and Data sets 

Study areas 

The first study area is located in the National Park Bavarian Forest (NPBF) 
in South-Eastern Germany along the border with the Czech Republic (Fig. 
1). The NPBF study area covers almost 270 hectares (ha) of near-natural 
forest, with an elevation between 780 and 1,020 meters above sea level 
(ASL) and slopes up to 25 degrees. Different forest structures occur with 
both open and closed forests, and multiple tree canopy layers with varying 
tree species, ages and sizes. In the 1990s, mountain spruce stands faced se-
vere attacks from spruce bark beetle (Ips typograficus) especially, mainly 
triggered by major storm events. 

The second study site is situated in the Montafon area in the federal 
state of Vorarlberg in Western Austria (see Fig. 1). The study area in the 
Montafon area is characterized by west-facing slopes ranging from 1,400 
to 1,800 meters ASL with slopes ranging between 25 and 40 degrees. 22 
ha (460 m x 480 m) in size, the area is dominated by old spruce stands 
partly thinned out due to windfall caused by heavy storms in the year 
1990. Tree patterns typical for mountain forests occur, such as clusters or 
smaller groups of trees and gaps in between (in German: Rotten). This 
study site also includes a spruce-pole stand in the north-western part of the 
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area. Forest coverage on this slope helps prevent hotels and houses in the 
valley below from damages caused by rock-fall or avalanches. Automati-
cally derived forest structure parameters from both ALS and optical data 
support a forest rehabilitation project carried out in this area to preserve 
the protection function on a long-term basis (Maier 2005). 
 

 
Fig. 1. Study areas in South-Eastern Germany (National Park Bavarian Forest) 
and Western Austria (Montafon area) 

Data sets and pre-processing 

For the NPBF study area data from the Toposys Falcon system (cf. Wehr 
and Lohr, 1999, Schnadt and Katzenbeisser, 2004) was available. Survey-
ing of the study area was done at three different dates: two leaf-off flight 
campaigns in March 2002 and May 2002, and a leaf-on campaign in Sep-
tember 2002. Both first and last returns were collected during the flights 
with a pulse repetition rate of 83 kHz, a wavelength of 1560 nm and an av-
erage point density of 10 pts per m² in common. An average flight height 
around 850 m and a maximum scan angle of 14.3 degrees resulted in a 
swath width of about 210 m and a high overlap due to the three different 
flights. 

The resulting data sets were pre-processed by Toposys using TopPit 
(TopoSys Processing and Imaging Tool) software. The derived surface 
model (DSM) and terrain model (DTM) were subtracted from each other 
to create a normalised crown model (nCM) with 1 m ground sample dis-
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tance (GSD). The nCM served as a basis for the single tree-crown delinea-
tion. Simultaneously to the ALS measurements, image data were recorded 
using the line scanner camera of TopoSys. The camera provides four bands 
(RGBI) at a GSD of 0.5 m: blue (440-490 nm), green (500-580 nm), red 
(580-660 nm), and NIR (770-890 nm). 

For the study area in Montafon ALS data were acquired in December 
2002 under leaf-off canopy conditions by TopScan (Germany) on request 
from the Vorarlberg government. The Optech Airborne Laser Terrain 
Mapper (ALTM 1225) was used to collect first and last returns. The pulse 
repetition rate was 25 kHz with a wavelength of around 1000 nm and an 
average point density on ground of 0.9 points per m². The mean flying 
height was 1000 m and the maximum scan angle 20 degrees. As a result 
the swath width was about 725 m and the overlap between flight lines was 
425 m (Wagner et al. 2004, Hollaus et al. 2006). The raw data were proc-
essed at the Institute of Photogrammetry and Remote Sensing (IPF, TU 
Vienna). Again, both DTM and a DSM with 1 m GSD were produced. The 
software package SCOP++ developed by IPF was used, based on the hier-
archic robust filtering approach (Kraus and Pfeiffer, 1998). An nCM with 
1 m GSD was derived. In addition, a set of false colour infrared (FCIR) ae-
rial photos from 2001, recorded separately with a GSD of 0.25 m, were 
available.  

In both study areas visual interpretation was used for validation pur-
poses. 

3 Methodology 

The approach was realised by developing rule sets in Cognition Network 
Language (CNL) within the Definiens Developer Environment. CNL, 
similar to a modular programming language, supports programming tasks 
like branching, looping, and defining of variables. More specifically, it en-
ables addressing single objects and supports manipulating and supervising 
the process of generating scaled objects in a region-specific manner (cf. 
Tiede and Hoffmann 2006). By this, the process steps of segmentation and 
classification can be coupled in a cyclic process; this we call class model-
ling. It provides flexibility in designing a transferable workflow from 
scene-specific high-level segmentation and classification to region-specific 
multi-scale modelling – in this case of single tree crowns. 
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High-level segmentation and classification generating a priori 
information 

For initial segmentation (high-level segmentation), we used a region-
based, local mutual best fitting segmentation approach (Baatz and Schäpe, 
2000). The ‘scale parameter’ (which controls the average size of generated 
objects) in the two study areas was different due to differences in spatial 
resolution (see Tab. 1). In the NPBF study, the initial segmentation was 
built upon the five available dimensions of the input data layers (optical 
and nCM data). In the Montafon study the segmentation was based only on 
optical information. This step resulted in a rough delineation of domains 
with different forest characteristics (see below), and likewise non-
vegetated areas (such as roads, larger clearance areas, etc.). The initial re-
gions are characterised by homogeneous spectral behaviour and uniform 
height information. Accordingly they were assigned to image object do-
mains, and provided ‘a priori’ information for the subsequent delineation 
of single trees. 

Table 1. High-level segmentation settings (L = Level, SP = scale parameter, SW = 
shape weighting, CPW = compactness weighting) 

Study area L SP SW CPW Remarks 
NPBF 1 100 0.5 0.5 nCM was weighted three 

times higher than RGBI 
Montafon 1 300 0.5 0.5 only FCIR were deployed 
 

The Normalized Difference Vegetation Index (NDVI) was used for 
separating coniferous, deciduous, dead trees, and non-vegetated areas (cf, 
Lillesand et al., 2004, Wulder 1998). The standard deviation of the nCM 
data per object served as indicator for the respective forest structure. In the 
NPBF study we distinguished between five domains: a. coniferous open, b. 
coniferous closed, c. deciduous open, d. deciduous closed, and e. mixed 
forest. The coniferous and deciduous classes were further differentiated 
based on nCM values, introducing two more sub-categories, namely for-
ests below 20 m height and forest above 20 m height. Note that we use the 
terms ‘open’ and ‘closed’ not in a strict methodological sense; we utilize 
nCM standard deviation per object as a proxy to differentiate roughly be-
tween open and closed forested areas to control the algorithms in the fol-
lowing single tree crown delineation. 

In the Montafon study only two different domains were identified: a. 
coniferous open and b. coniferous closed. Reasons are the prevailing natu-
ral conditions which only allows for limited occurrence of deciduous trees. 
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Bare ground caused by wind throw, gaps or outcrop formed an additional, 
merged class. Figure 2 shows the results in subsets of both study areas. 

 

 
Fig. 2. High-level segmentation and initial classification of different domains in 
subsets of the study areas in the NPBF (left) and the Montafon area (right). Bright 
values indicate domains with a higher percentage of deciduous trees, dark values 
are indicative of predominant coniferous trees. Results are regions for supervised 
multi-scale class modelling. 

Optimized multi-scale class modelling - object generation in a 
domain specific hierarchy 

Segmentation algorithms based on homogeneity criteria, like the one used 
for the initial high-level segmentation, were found not suitable for deline-
ating complex and heterogeneous canopy representations in VHSR optical 
data or ALS data (cf. Tiede et al. 2004b, Burnett et al. 2003). New devel-
opments help overcome these limitations through the use of scalable seg-
mentation algorithms. These specific object generation algorithms can be 
adapted to the prevailing scale domains or even to the actual object. Object 
delineation is therefore controlled by user-specified parameters. The do-
mains and their spatial instances, the regions, provide a priori information 
for the domain-specific embedded scalable algorithms, and they set the 
spatial constraints for its application. By this, we accomplish an optimized 
multi-resolution segmentation for single tree delineation. 

One crucial element of this approach is to again break down the regions 
into pixels (‘pixel-sized objects’) within a region’s boundary. These pixel-
objects are used to generate objects in a supervised manner. Specific rule-
sets used were developed for single tree crown delineation on ALS data by 
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Tiede and Hoffmann (2006) and have now been adapted to the specific 
conditions in the study areas and the data sets used. In the underlying rule 
sets a region growing segmentation algorithm is programmed using a con-
tinuity constraint starting from tree tops (local maximum) as seed points. 

Table 2 gives an overview of the parameterisation controlled by the pre-
classified domains. According to Tiede et al. (2006) the following region-
specific parameters were controlled: (1) The search radius for the local 
maximum method needs to be adapted for each region depending on the 
assigned domain: taller deciduous trees require a bigger search radius to 
avoid detecting false positives due to the flat and wide crown structure; 
dense coniferous stands require a smaller search radius to detect close 
standing tree tops. Therefore the search radius varies between 1 m and 4 m 
(cf. Wulder et al. 2000). (2) The stopping criterion for the region-growing 
process depends on the underlying nCM data. Candidate objects are taken 
into account, as long as differences in height between the respective ob-
jects not exceed a certain limit. The limits are variable in terms of different 
tree height and tree types, ranging between 2 m and 9 m height difference. 
(3) A maximum crown width is used for preventing uncontrolled growth of 
tree crown objects and merging with other potential tree crowns. This may 
happen, if a local maximum was not recognized correctly, for example in 
dense deciduous stands due to fairly planar tree surface or missing tree top 
representations in the ALS data. In comparison to Tiede et al. (2006) this 
criterion was further adapted by introducing a crown width parameter. In 
addition to the a priori information being used, this parameter is now di-
rectly linked to the individual tree height value derived from the ALS data 
(cf. Pitkänen et al., 2004; Kini and Popescu, 2004; Koch et al., 2006). 
Crown width limits range from 4 to 17 m for coniferous trees and 5 to 20 
m for deciduous trees, corresponding to the crown width of open grown 
trees in Austria dependent of tree heights according to Hasenauer (1997). 
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Table 2. Overview of domain-specific controlled differences in object generation 
processes. Plus (+) and minus (-) indicate higher or lower values, LMR = Local 
maximum search radius; SENS = Sensitivity of the stopping criterion value based 
on the nCM data (continuity criterion); CWL = Crown width limit influenced by 
the initial region and the local maximum height; further details see text above.  

Parameter Finer scale – smaller trees Coarser scale –larger trees 
LMR - (to detect tree tops in closed 

stands) 
+  (to avoid false positives)  

SENS +   (small coniferous trees) 
++ (for small deciduous trees) 

-- (large coniferous trees) 
- (large deciduous trees) 

CWL -- (small coniferous trees) 
- (small deciduous trees)  

+    (large coniferous trees) 
++  (large deciduous trees) 

 
The objects resulting from this procedure are expected to correspond 

with single tree crowns. However, in both study areas smaller holes occur 
between the delineated tree crown objects. Causes for this are mainly due 
to limitations of the available ALS data with only 1 m GSD. Therefore we 
applied an additional algorithm, which uses object neighbourhood infor-
mation to fill these holes up to a certain size with the respective surround-
ing object. 

Figure 3 shows the complete workflow. Note that for the Montafon 
study area it was extended. Because of the given resampling method of the 
data sets used and the different spatial resolutions, the local maximum 
method was biased. To overcome this problem, the two major steps of the 
process, i.e. (1) high-level segmentation and (2) region-specific tree crown 
delineation were separated in two different project settings. The a priori 
information was integrated by importing the information as a thematic 
layer to be addressed via cognition network language in the new project 
setting. That means, re-loading FCIR data was not necessary in this step of 
the workflow. 
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Fig. 3. Workflow after Tiede and Hoffmann 2006, extended: (1) High-level seg-
mentation and classification of domains with different forest characteristics in an 
initial phase. The arrow and the dotted line around it indicate an extension of the 
workflow in the Montafon case. Export and re-import of regions are only neces-
sary when multispectral and ALS data have different spatial resolution. (2) Break-
down of imported pre-classified forest type domains to small objects (here: pixel 
objects) and extraction of local maxima. Generation of domain-specific objects us-
ing a region growing algorithm (local maxima taken as seed points). (3) Extracted 
single tree crowns (holes mainly caused by limitations of available ALS data); 
cleaning up single tree crown objects using neighborhood information.  

 
For the final classification of single tree objects we used NDVI values 

and nCM height values. In the NPBF study five classes were differenti-
ated: coniferous trees, deciduous trees, dead trees, non-vegetated area and 
understorey. The latter comprises objects which could not be allocated to a 
tree crown according to the defined stopping criteria but which still show 
values indicating vegetated areas. In the spruce dominated Montafon study 
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area we only differentiated between coniferous trees (i.e. spruce), non-
vegetated area, and understorey. Reasons for the use of these classes are 
different requirements in the study areas: In NPBF there is a need for dif-
ferentiation between coniferous trees (mainly spruce), deciduous trees and 
dead tress, mainly to quantify and predict spruce bark beetle attacks (Ochs 
et al., 2003). In the Montafon area the main concern is the protection func-
tion of the forest. Therefore location, density and height of trees are impor-
tant (Maier, 2005). 

The validation of the classification process was conducted visually by 
on-screen digitizing of tree-tops and comparing the results with the auto-
matically derived tree crown polygons (i.e. point in polygon analysis). 
Ground truth data were only available for the Montafon area but the small 
subset of measured trees did not contain a representative amount. There-
fore we relied on visual interpretation carried out in top-view by experts. 
Visual inspection was considered more suited and more effective for 
evaluating this approach than any other quantitative method; reason being 
the required quality control not only of the class assignment but also the 
way of delineation. For the delineation of tree crowns from the given ALS 
data with a GSD of 1 m, a minimum tree crown size of several pixels is re-
quired (cf. Coops et al., 2004). According to Maltamo et al., (2004) and 
Pitkänen (2001) the local maxima method is mainly suited to find domi-
nant trees (dominant tree layer according to Assmann, 1970). Due to the 
open conditions of the old Montafon spruce stands, we considered trees 
higher than 5 m above the shrub layer (Schieler and Hauk, 2001) for vali-
dation. In NPBF trees of the dominant layer and the middle layer were 
validated. Because of the more closed forest conditions, understorey (trees 
smaller than 10 m) was not taken into consideration. ‘Understorey’ was 
used according to Schieler and Hauk (2001) and IUFRO (1958), who de-
fined understorey as the lowest third of the forest total top height or domi-
nant height (h100 =  average height of the 100 thickest trees per ha, herein 
replaced by the 100 highest trees per ha (see Assman, 1970, Zingg, 1999 
and Hasenauer, 1997)).  

4 Results and Discussion 

In the NPBF study altogether more than 73,600 trees were extracted and 
tree crowns delineated, out of which 75 % were classified as coniferous 
trees, 19 % as deciduous trees and 6 % as dead trees. 

In the Montafon study 2,344 single trees were detected in total, for al-
most all of which crowns were delineated, even in the dense pole forest in 
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the north-western part of the study area. Screenshots of the delineated tree 
crowns are shown in Figure 4. 

 

  
Fig. 4. Result of the single tree delineation for two subsets in the study areas. Out-
line of tree crowns are underlain with RGBI data (left, NPBF area) and FCIR data 
(right, Montafon area). 

 
In both study areas a few local maxima were detected without subse-

quently delineating a tree crown (NPBF: 0.7 %; Montafon Area; 2 %). 
Reasons are mainly the occurrences of small trees or dead trees, where the 
given point density of the ALS data fails to represent the whole crown.   

Due to the size of the NPBF study area a reference data set was created 
by digitizing dominant trees in 20 randomly selected 50 m x 50 m cells 
(see Figure 5). Three different types of trees were distinguished ending up 
in a point data set representing 847 coniferous trees, 302 deciduous and 
138 dead trees. Table 3 shows the results of the validation: 730 coniferous 
trees, 132 deciduous trees and 109 dead trees were classified correctly. 
Taking into account all detected trees, this results in an accuracy of ap-
proximately 75 %, ranging between 86 % for coniferous and 79 % for dead 
trees, but dropping to 44 % for deciduous trees. Taking into account trees 
which were detected but not classified correctly, the detection rate for de-
lineated trees increases to 90 %.  
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Table 3. Results of the validation for 20 randomly selected cells in the NPBF stu-
dy area 
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Number  (#) of manually digitized 
trees 

847 302 138 1287 

# of automatically detected trees 1017 206 142 1365 
# of correctly detected trees 
(including misclassified trees 
belonging to other classes) 

878 
 

147 138 1163 

# of correctly classified trees  730 132 109 971 
% of correctly classified trees  ~86 % ~44 % ~79 % ~75 % 
# of misclassified but detected trees 148 15 29 192 
# of false positives 139    59 4 202 
% of false positives ~16% ~19.5% ~3% ~16% 
 
 

 
Fig. 5. Left: randomly selected cells (50 m x 50 m) for validation purpose in 
NPBF; right: digitized tree tops for the Montafon study area, 100 m x 100 m cells 
are overlain for statistical analysis.  

 
In the Montafon study site the visual validation was conducted for the 

entire area. Altogether, 1,908 tree-tops were digitized, almost all of them 
coniferous trees. For a spatially disaggregated result the automatically de-
tected tree-tops and the digitized ones were summarized in regular 100 x 
100 m raster cells (see Figure 5, above, and Figure 6). The point-in-
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polygon analysis revealed the results shown in Table 4. 1,721 trees were 
detected correctly, corresponding to an accuracy of approximately 90 %.  

Table 4. Results of visual validation in the Montafon study area 

# of manually digitized trees 1908 
# of automatically classified trees  1721 
% of automatically classified trees  ~90 % 
# of false positives 630 
% of false positives ~33 % 

 
In both study areas a high overestimation (i.e. high number of false posi-

tives) was recorded: 202 trees in NPBF and 630 trees in Montafon were 
detected by the algorithm, but were not be detected visually. Reasons for 
that are known limitations for the local maxima method to find tree tops as 
seed points for crown delineation (cf. Maltamo et al., 2004; Wulder et al. 
2000; Tiede and Hoffmann, 2006): Especially in dense and highly struc-
tured forest different problems appear. Next to the fact that the laser scan-
ner might have missed the highest point and that only nCM data of 1 m 
GSD were available, these problems are also related to the specific shape 
and structure of the trees:  (1) crowns (especially deciduous tree crowns) 
with more than one local maximum because of a flat, rather than conical 
shape; (2) understorey trees which are only partly visible or double crowns 
(especially the Rotten structure in the Montafon area) are complicating the 
identification of only one local maximum per tree crown. 

In the Montafon study another fact accounts for the higher number of 
automatically delineated trees, which – in this case – may be rather consid-
ered to visual underestimation: the shadowed conditions of the aerial pho-
tographs hampered visual detection. Consequently, most overestimated ar-
eas occurred in the steepest and most shady south-eastern part of the study 
site. Figure 6 shows a per-cell comparison of manually and automatically 
extracted tree tops. The diagram shows high congruence (correlation coef-
ficient: 0.95), even in the denser pole forest in the North-western part of 
the area (cells #2 and #6). 
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Fig. 6. Cell-by-cell comparison of manually and automatically extracted tree tops 
in the Montafon study area 

5 Conclusions 

The idea of domain-specific hierarchical representations discussed in this 
paper is based on the notion of hierarchically scaled compositions of the 
classes to be addressed (Lang, 2002). Domains exhibit similar hierarchical 
characteristics in their spatial instances, the regions. We have delineated 
these regions by a coarse segmentation, which integrates the underlying 
forest specific heterogeneity. Then, these classified regions control do-
main-specific segmentation. The initial segmentation and classification of 
different domains is crucial for the effectiveness of the single tree algo-
rithms. Especially in heterogeneous mixed forests it is difficult to delineate 
initial regions representing more or less even-scaled areas. In this case a 
certain level of generalisation is required for successfully applying the al-
gorithms tailored to a specific scale. This is where expert knowledge and 
user demand meet, and this is why we consider it a supervised approach. 
Object generation utilizes a priori knowledge about the specific scale do-
main of the target features. Considering transferability of the workflow, we 
have demonstrated that only minor adaptations were required to accom-
plish satisfying results. An improvement of the workflow compared to its 
initial version was accomplished for addressing data sets of different reso-
lution. For future applications this adaptation is strengthening the utility 
and transferability of the workflow and enables higher flexibility with re-
gard to different resolutions (spatial and spectral) of remotely sensed data.  
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Looking more generally at the transferability of rule-sets this approach 
provides a step towards operability by controlling linked algorithms 
through an initial high-level segmentation and classification. This facili-
tates development of an algorithm library for scale-specific target features, 
different scenes or even different data sets. High-level classification de-
termines which features may be expected within the specific region, which 
then aids in determining which algorithms fit best in terms of data sets and 
features present. 

In both studies we applied site-specific accuracy assessment (Congalton 
and Green, 1999), modified to a point-in-polygon analysis for usage in an 
object-based environment. By comparing with visually interpreted trees we 
assessed both the thematic correctness of the class assignment and the 
identification of the trees. In this respect we went one step further as com-
pared to classical map-to-map comparison, since also the tree detection as 
such has been assessed. But object-specific accuracy assessment, as the 
name indicates, would even go beyond that (Lang and Langanke, 2006). In 
general, assessing the accuracy of polygonal features using point samples 
is a kind of reductionism within the object-based approach (Schöpfer and 
Lang, 2006). In this specific case we did not assessed, in how far the tree-
crown delineation was appropriate. Generally stated: when dealing with 
spatial objects, the geometric accuracy of an object boundary also needs to 
be assessed – beyond assessing the locational and thematic agreement. 
This, however, implies consideration of scale: whatever method we apply 
for object delineation, be it automated, visually interpreted or surveyed on 
the ground, we produce representations which related to a particular scale. 
Issues and approaches for performing object-based accuracy assessment 
considering the issue of scaled representations is further discussed by 
Schöpfer et al., this volume. 
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ABSTRACT: The collection of object-specific geospatial features, such 
as roads and buildings, from high-resolution earth imagery is a time-
consuming and expensive problem in the maintenance cycle of a Geo-
graphic Information System (GIS). Traditional collection methods, such as 
hand-digitizing, are slow, tedious and cannot keep up with the ever-
increasing volume of imagery assets. In this paper we describe the meth-
odology underlying the Feature Analyst automated feature extraction 
(AFE) software, which addresses this core problem in GIS technology. 
Feature Analyst, a leading, commercial AFE software system, provides a 
suite of machine learning algorithms that learn on-the-fly how to classify 
object-specific features specified by an analyst. The software uses spatial 
context when extracting features, and provides a natural, hierarchical 
learning approach that iteratively improves extraction accuracy. An adap-
tive user interface hides the complexity of the underlying machine learning 
system while providing a comprehensive set of tools for feature extraction, 
editing and attribution. Finally, the system will automatically generate 
scripts that allow batch-processing of AFE models on additional sets of 
images to support large-volume, geospatial, data-production requirements. 
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1 Introduction 

High-resolution satellite imaging of the earth and its environment repre-
sents an important new technology for the creation and maintenance of 
geographic information systems (GIS) databases. Geographic features such 
as road networks, building footprints, vegetation, etc. form the backbone 
of GIS mapping services for military intelligence, telecommunications, ag-
riculture, land-use planning, and many other vertical market applications. 
Keeping geographic features current and up-to-date, however, represents a 
major bottleneck in the exploitation of high-resolution satellite imagery. 
The Feature Analyst software provides users with a powerful toolset for 
extracting object-specific, geographic features from high-resolution pan-
chromatic and multi-spectral imagery. The result is a tremendous cost sav-
ings in labor and a new workflow process for maintaining the temporal 
currency of geographic data.  

Until recently there were two approaches for identifying and extracting 
objects of interest in remotely sensed images: manual and task-specific 
automated. The manual approach involves the use of trained image ana-
lysts, who manually identify features of interest using various image-
analysis and digitizing tools. Features are hand-digitized, attributed and 
validated during geospatial, data-production workflows. Although this is 
still the predominant approach, it falls short of meeting government and 
commercial sector needs for three key reasons: (1) the lack of available 
trained analysts; (2) the laborious, time-consuming nature of manual fea-
ture collection; and (3) the high-labor costs involved in manual production 
methods. 

Given these drawbacks, researchers since the 1970s have been attempt-
ing to automate the object recognition and feature extraction process. This 
was commonly effected by writing a task-specific computer program 
(McKeown 1993; Nixon and Aguado 2002). However, these programs 
take an exceedingly long time to develop, requiring expert programmers to 
spend weeks or months explaining, in computer code, visual clues that are 
often trivially obvious to the human eye. In addition, the resulting hand-
crafted programs are typically large, slow and complex. Most importantly, 
they are operational only for the specific task for which they were de-
signed; typically failing when given a slightly different problem such as a 
change in spatial resolution, image type, surface material, geographic area, 
or season. Developing such programs is complicated by the fact that user 
interest varies significantly. While some task-specific automated ap-
proaches have been successful, it is virtually impossible to create fully 
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automated programs that will address all user needs for every possible fu-
ture situation. 

The Feature Analyst approach to object-recognition and feature extrac-
tion overcomes these shortcomings by using inductive learning algorithms 
(Mitchell 1997, Quinlan 1993, Rumelhart et al 1986) and techniques to 
model the object-recognition process. Using Feature Analyst, the user pro-
vides the system (computer program) with several examples of desired fea-
tures from the image. The system then automatically develops a model that 
correlates known data (such as spectral or spatial signatures) with targeted 
outputs (i.e., the features or objects of interest). The resulting learned 
model classifies and extracts the remaining targets or objects in the image. 
Feature models can be cached in a repository, known as the Feature Model 
Library, for later use.  The accompanying workflow and metadata (infor-
mation on spectral bandwidth, date and time stamp, etc.) can be used to 
quickly compose new models for changing target conditions such as geo-
graphic location or hour of day. 

2 Learning Applied to Image Analysis 

An inductive learner is a system that learns from a set of labeled examples. 
A teacher provides the output for each example, and the set of labeled ex-
amples given to a learner is called a training set. The task of inductive 
learning is to generate from the training set a concept description that cor-
rectly predicts the output of all future examples, not just those from the 
training set. Many inductive-learning algorithms have been previously 
studied (Quinlan 1993; Rumelhart 1986). These algorithms differ both in 
their concept-representation language, and in their method (or bias) of 
constructing a concept within this language. These differences are impor-
tant because they determine the concepts that a classifier induces. 

Nearly all modern vision systems rely on hand-crafted determinations of 
which operators work best for an image and what parameter settings work 
best for those operators (Maloof 1998; McKeown 1996). Such operators 
not only vary across the desired object to be recognized, but also across 
resolutions of the same image. Learning in object recognition tasks works 
by (a) acquiring task-specific knowledge by watching a user perform the 
tasks and (b) then refining the existing knowledge based on feedback pro-
vided by the user. In this approach, the parameters for these objects are 
tuned by the learning algorithm “on-the-fly” during the deployment of the 
algorithm. It is not surprising, therefore, that visual learning (Evangelia 
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2000; Nayar and Poggio 1996) can greatly increase the accuracy of a vis-
ual system (Burl 1998; Kokiopoulou and Frossard 2006). 

In addition to increasing overall accuracy, visual learning can yield ob-
ject-recognition systems that are much easier and faster to develop for a 
particular problem and resolution (Opitz and Blundell 1999). A model can 
be trained for one task, and then used to “seed” the development of a simi-
lar problem. This supports the immediate deployment of a new problem 
with the ability to fine-tune and improve itself though experience. By hav-
ing a learning system at the core of the object recognition task, one can 
easily transfer pertinent knowledge from one problem to another, even 
though that knowledge may be far from perfect. This approach overcomes 
prior research on visual learning that primarily consisted of hard-coded, 
problem-specific programs. 

3 Feature Analyst 

In 2001 Visual Learning Systems, Inc. (VLS) developed Feature Analyst 
as a commercial off-the-shelf (COTS) feature extraction extension for 
ESRI’s ArcGIS™ software in response to the geospatial market’s need for 
automating the production of geospatial features from earth imagery. Fea-
ture Analyst is based on an inductive learning approach to object recogni-
tion and feature extraction. Feature Analyst was developed as a plug-in 
toolset for established GIS and remote sensing software packages (Ar-
cGIS, IMAGINE, SOCET SET, GeoMedia, and RemoteView) in order to 
integrate the AFE workflow into traditional map production environments. 
In the Feature Analyst system, the image analyst creates feature extraction 
models by simply classifying on the computer screen the objects of interest 
in a small subset of the image or images (Opitz and Blundell, 1999). This 
approach leverages the natural ability of humans to recognize complex ob-
jects in an image. Users with little computational knowledge can effec-
tively create object-oriented AFE models for the tasks under consideration. 
In addition, users can focus on different features of interest, with the sys-
tem dynamically learning these features. 

Feature Analyst provides a paradigm shift to AFE and distinguishes it-
self from other learning and AFE approaches in that it: (a) incorporates 
advanced machine learning techniques to provide unparalleled levels of 
accuracy, (b) utilizes spectral, spatial, temporal, and ancillary information 
to model the feature extraction process, (c) provides the ability to remove 
clutter, (d) provides an exceedingly simple interface for feature extraction, 
(e) automatically generates scripts of each interactive learning process, 
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which can be applied to a large set of images, and (f) provides a set of 
clean-up and attribution tools to provide end-to-end workflows for geospa-
tial data production. 

3.1 Feature Analyst Learning Approach 

Feature Analyst does not employ a single learning algorithm, but rather 
uses several different learning approaches depending on the data.  The base 
learning algorithms for Feature Analyst are variants of artificial neural 
networks (Rumelhart 1986), decision trees (Quinlan 1993), Bayesian 
learning (Mitchell 1997), and K-nearest neighbor (Mitchell 1997); how-
ever, the power of Feature Analyst is believed to be largely due to the 
power of ensemble learning (Opitz 1999). 

Research on ensembles has shown that ensembles generally produce 
more accurate predictions than the individual predictors within the ensem-
ble (Dietterich 2002; Opitz and Maclin 1999).  A sample ensemble ap-
proach for neural networks is shown in Fig 1, though any classification 
method can be substituted in place of a neural network (as is the case with 
Feature Analyst). Each network in the ensemble (networks 1 through N) is 
trained using the training instances for that network. Then, the predicted 
output of each of these networks is combined to produce the output of the 
ensemble (Ô in Fig. 1). Both theoretical research (Opitz and Shavlik 1999; 
Dietterich 2002) and empirical work (Opitz and Maclin 1999; Opitz and 
Shavlik 1996) have shown that a good ensemble is one in which (1) the in-
dividual networks are accurate, and (2) any errors that these individual 
networks make occur in different parts of the ensemble’s input space.  

Much ensemble research has focused on how to generate an accurate, 
yet diverse, set of predictors. Creating such an ensemble is the focus of 
Feature Analyst ensemble algorithm. Feature Analyst searches for an ef-
fective ensemble by using genetic algorithms to generate a set of classifiers 
that are accurate and diverse in their predictions (Opitz 1999). The Feature 
Analyst approach has proven to be more accurate on most domains than 
other current state-of-the-art learning algorithms (including Bagging and 
Boosting) and works particularly well on problems with numerous diverse 
inputs, such as high-resolution, multi-spectral and hyperspectral images 
(Opitz 1999). 
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Fig. 1. Predictor ensemble for classifying data 

3.2 Spatial and Ancillary Information in Learning 

When classifying objects in imagery, there are only a few attributes ac-
cessible to human interpreters.  For any single set of imagery these object 
recognition attributes include: shape, size, color, texture, pattern, shadow, 
and association. Traditional image processing techniques incorporate only 
color (spectral signature) and perhaps texture or pattern into an involved 
expert workflow process; Feature Analyst incorporates all these attributes, 
behind the scenes, with its learning agents.  The most common (and in-
tended) approach is to provide the learning algorithm with a local window 
of pixels from the image. The prediction task for the learner is to deter-
mine whether or not the center pixel is a member of the current feature 
theme being extracted. Fig. 2 demonstrates this approach. The center pixel 
for which the prediction is being made is represented in black.  In this 
case, 80 surrounding pixels are also given to the learning algorithm (i.e., 
there is a 9x9 pixel window). The learner’s task is to develop a model be-
tween the 81 inputs and the one output (whether or not the center pixel is 
part of the feature).  This approach has distinct advantages:  It works well; 
it is general purpose and applies to any object-recognition task; and it can 
easily accommodate any image transformation (e.g., edge detection) by 
simply supplying the pixels of the transformed image.  The main draw-
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backs to this approach are (1) its inability to take into account the spatial 
context of the larger image space, which can lead to false classifications, 
and (2) the large amount of information (i.e., pixels) to be processed, 
which taxes computer memory and slows down processing.  

 As a result of these drawbacks, Feature Analyst offers various input 
representations based upon the concept of “foveal” vision (Opitz and Bain 
1999), shown in Fig. 3. With a foveal representation, a learning algorithm 
is given a region of the image with high spatial resolution at the center 
(where the prediction is being made) and lower spatial resolution away 
from the center. Such an approach mimics the visual process of most bio-
logical species, including humans (i.e., peripheral vision). Foveal represen-
tation provides contextual spatial information to the learning algorithm 
while not overwhelming it when making a local decision (e.g., Is the center 
pixel part of an armored vehicle?).   

 

 
Fig. 2.  Traditional Representation            Fig. 3.  Foveal Representation 

 
In Fig 3, foveal representation provides only 17 inputs to the learner 

when considering a 9x9 pixel region.  Each outer 3x3 region gives the av-
erage of the 9 pixels as one input to the learning algorithm. The analyst can 
widen the range of foveal vision by making the next outer layer an average 
of a 9x9 region and so on. Thus a 27x27 region would provide only 25 in-
puts to the learner.  Having the Learner concentrate on the center pixels, 
while taking into account the gist of the outer pixels, represents a great 
strength in using spatial context for object-recognition tasks. Foveal and 
other analogous input representations provided by Feature Analyst (such as 
Bullseye) are making a major breakthrough in automated feature extrac-
tion, as they greatly reduce the amount of data given to the Learner— es-
pecially important when extracting targets from cluttered scenes.  
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Figs. 4-6 show the value of using object-recognition attributes and spa-
tial context in feature extraction tasks. Fig. 4 is the sample image. Here the 
object is to extract white lines on airport runways. Using only spectral in-
formation, the best an analyst can do is shown in Fig. 5; the results show 
all materials with similar “white” reflectance extracted. Fig. 6 shows the 
Feature Analyst results for extracting white lines using both spectral values 
and spatial parameters. In this case, the knowledge of the adjacent pave-
ment or grass pixels is included when extracting the white line. This ex-
ample illustrates the need to take into account spatial information when 
conducting object-recognition tasks with imagery. 

 

 
Fig. 4. Original image:  the objective is to extract only the thin white lines on the 
runway 
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Fig. 5. Extraction results without the use of spatial attributes 

 

 
Fig. 6. Feature Analyst classification using spatial attributes to extract only the tar-
geted white lines on the runway 
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3.3 Hierarchical Learning 

The Feature Analyst hierarchical workflow consists of the following steps: 

1.  User digitizes a few examples of the target. Note that in the previous 
extraction example, the user only had to digitize 3 or 4 small examples 
for the learning algorithm to extract all of the features correctly. 

2.  User selects the feature type from the graphical user interface automati-
cally setting all of the learning parameters behind the scenes. 

3.  User extracts features using a One-Button approach. 
4.  User examines results and, if required, provides positive and negative 

examples to remove clutter using Hierarchical Learning. 
5.  User refines the first-pass predictions, removing clutter with another 

pass of learning (or removing shape characteristics using the Feature 
Analyst, Remove Clutter by Shape tool). 

6.  The user repeats steps 4 and 5 as necessary. 

Clutter is the most common form of error in feature extraction. The ob-
jective of clutter mitigation is to remove false positives. Thus, the learning 
task is to distinguish between false positives and correctly identified posi-
tives. The user generates a training set by labeling the positive features 
from the previous classification as either positive or negative. The trained 
learner then classifies only the positive instances from the previous pass. 
The negative instances are considered correct in clutter mitigation and are 
thus masked out.   

Hierarchical learning is necessary for learning complex targets in high-
resolution imagery. The overall process iteratively narrows the classifica-
tion task into sub-problems that are more specific and well defined. The 
user begins the hierarchical process the same as any baseline inductive 
learning classification, i.e., select labeled examples for the feature being 
extracted, train the learner, and then classify every pixel in the image based 
on the learner’s prediction. At this point, if not satisfied with the results, 
the user can apply a hierarchy of learners to improve the classification. The 
classification is improved in passes where each new pass is designed to 
remove one form of error from the results of the previous pass. 

3.4 Automation of Feature Extraction Tasks 

Automated feature extraction has been the long-term goal of geospatial 
data production workflows for the past 30 years. The challenge is develop-
ing a flexible approach for transferring domain knowledge of a feature ex-
traction model from image-to-image that is capable of adapting to chang-
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ing conditions (image resolution, pixel radiometric values, landscape sea-
sonal changes, and the complexity of feature representation). In 2006, VLS 
introduced the Feature Modeler and the Feature Model Library (FML) 
tools. These additions to Feature Analyst serve to automate the feature ex-
traction workflow process. Feature Modeler provides users with a compre-
hensive set of tools for examining and refining feature models created with 
Feature Analyst (Fig. 7). Feature models, designated as AFE models, com-
prise the parameter settings for a classifier to extract particular features, in-
cluding setting for spatial context and hierarchical learning passes. Bene-
fits of this approach include the following: 

• Analysts can create, edit and refine the inner workings of an AFE 
model, including pixels used for classification of a feature with spatial 
processing, priority of input bands, rule extraction from a complex 
learned model and the parameter settings for a learning algorithm. 

• Technicians can access AFE models to run in an interactive mode or in 
a silent batch mode. In interactive mode, the technician does not need to 
be concerned with creating the proper workflow or setting parameters 
for the learning algorithm; but rather, need only provide a labeled set of 
examples. In batch mode the process is completely automated. A single 
AFE model, or multiple AFE models, can be run against a single image 
or a directory of images. 

 

 
Fig. 7. A simple AFE model showing the five steps used in processing 

 
The Feature Model Library resides within a relational database and is 

used for storing AFE models to support enterprise-wide geospatial proc-
essing. Analysts can search and retrieve AFE models for use in batch-
mode processing to extract features from imagery without any training 
sets. The Feature Modeler application allows users to import AFE models, 
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examine and adjust parameter settings, or deploy a learning model in a 
batch-processing mode. 

3.5 Cleanup and Attribution Tools 

Object-recognition and feature extraction represent steps in a chain of 
process used in geospatial data production to collect features for a GIS da-
tabase. Other steps in the process after feature extraction include feature 
editing (clean-up), feature generalization, feature attribution, quality con-
trol checks and then storage in the GIS database. In almost every instance 
of feature collection, the designated object needs to be stored as a vector 
feature to support GIS mapping and spatial analyses. Vector features, 
commonly stored in Shapefile format, can be stored as points, lines, poly-
gons or TINs.  One of the defining characteristics of geospatial vector fea-
ture data is the ability to define topology, store feature attributes and retain 
geopositional information.   

Feature Analyst provides tools for the majority of these tasks, with an 
emphasis on semi-automated and automated vector clean-up tools and fea-
ture attribution. Feature representation of a road network requires that the 
road feature be collected as either a polygon or line feature or both. In ei-
ther case, tools are required to adjust extracted vector features to account 
for gaps due to occlusion from overhanging trees, to eliminate dangles or 
overshoots into driveways, to fix intersections and to assist with a host of 
other tasks. As object-recognition systems evolve there is an ever-
increasing expectation on the part of the user for a complete solution to the 
feature extraction problem.    

5 Conclusions 

Feature Analyst provides a comprehensive machine learning based system 
for assisted and automated feature extraction using earth imagery in com-
mercial GIS, image processing and photogrammetry software. The AFE 
workflow, integrated with the supporting application tools and capabilities, 
provides a more holistic solution for geospatial data production tasks. The 
Feature Analyst user interface supports a simple feature extraction work-
flow whereby the user provides the system with a set of labeled examples 
(training set) and then corrects the predicted features of the learning algo-
rithm during the clutter removal process (hierarchical learning). Benefits 
of this design include: 
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• Significant time-savings in the extraction of 2-D and 3-D geo-
spatial features from imagery. O’Brien (2003) from the National 
Geospatial-Intelligence Agency (NGA) conducted a detailed study 
that indicated Feature Analyst is 5 to 10 times faster than manual 
extraction methods and more accurate than hand-digitizing on 
most features (Fig. 8). 

 

 
Fig. 8. NGA AFE test & evaluation program timing comparisons (O’Brien, 2003) 

 
• Significant increases in accuracy. Feature Analyst has been 

shown to be more accurate than previous AFE methods and more 
accurate than hand digitizing on numerous datasets (Brewer et al 
2005, O’Brien 2003). 

• Workflow extension capabilities to established software.  Ana-
lysts can leverage Feature Analyst within their preferred workflow 
on their existing ArcGIS, ERDAS IMAGINE, SOCET SET and 
soon Remote View systems, increasing operator efficiency and 
output. 

• A simple One-Button approach for extracting features using the 
Feature Model Library, as well as advanced tools for creation of 
geospecific features from high resolution MSI, radar, LiDAR and 
hyperspectral data. 

• Open and standards-based software architecture allowing 
third-party developers to incorporate innovative feature extraction 
algorithms and tools directly into Feature Analyst. 
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• Interoperability amongst users on different platforms. Expert 
analysts can create and store AFE models in the Feature Model 
Library, while other analyst can use these models for easy one-
button extractions. 

• A simple workflow and user interface hides the complexity of 
the AFE approaches. 

• High accuracy with state-of-the-art learning algorithms for object 
recognition and feature extraction. 

• Post-processing cleanup tools for editing and generalizing fea-
tures, to providing an end-to-end solution for geospatial data pro-
duction. 

• AFE modeling tools for capturing workflows and automating fea-
ture collection tasks. 
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ABSTRACT: A human observer can easily categorize an image into 
classes of interest but it is generally difficult to reproduce the same result 
using a computer. The emerging object-based methodology for image clas-
sification appears to be a better way to mimic the human thought process. 
Unlike pixel-based techniques which only use the layer pixel values, the 
object-based techniques can also use shape and context information of a 
scene texture. These extra degrees of freedom provided by the objects will 
aid the identification (or classification) of visible textures. However, the 
concept of image-objects brings with it a large number of object features 
and thus a lot of information is associated with the objects. In this article, 
we present a procedure for object-based classification which effectively 
utilizes the huge information associated with the objects and automatically 
generates classification rules. The solution of automation depends on how 
we solve the problem of identifying the features that characterize the 
classes of interest and then finding the final distribution of the classes in 
the identified feature space. We try to illustrate the procedure applied for a 
two-class case and then suggest possible ways to extend the method for 
multiple classes.  
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1 Introduction 

Object-based image classification is a promising methodology as it is close 
to human perception. A typical object-based classification system starts 
with segmenting the image into smaller homogeneous regions (or image 
objects). These objects correspond to approximations of real-world objects 
(Benz et al. 2004, Baatz et al. 2004). Every object is characterized by sev-
eral features defined based on layer values, texture, shape and context of 
the object. Generally, the objects are classified using a defined rule base 
(Benz et al. 2004). This is where the possibility to automate the classifica-
tion process becomes difficult. With a few input samples for every class 
and using the enormous object feature-space to our advantage, it is possi-
ble to automatically generate a rule base. However, the pre-condition ob-
viously is a good segmentation result. We used the “Multi-resolution seg-
mentation” of Definiens Professional1 software in the present work.   

The essential issue is to manage the huge information given by the col-
or, shape, texture and context of the object. Only a few object features 
characterize a class and as the degrees of freedom increase, it gets increas-
ingly difficult to identify the optimum features among the huge number of 
available features. In this article we summarize a few issues related to the 
object feature-space and thus make an attempt to provide a solution to-
wards automation in object-based classification. It is possible to identify 
the optimum features based on a separability measure which quantifies the 
distance between the two random distributions and a simple Bayes’ rule 
identifies the threshold of separation (Bhattacharya 1943, Nussbaum et al. 
2005, Richards and Jia 1999). 

An automatic classification procedure is prepared in this effect to mini-
mize human involvement in classification steps. Such a procedure speeds 
up the process of classification when huge data is to be dealt with, how-
ever at the expense of accuracy.  We first used this procedure to make al-
gorithms for extracting morphology of geological faults using remote sens-
ing data and in identifying fission tracks in microscopic images. In both 
the cases, there were only two classes i.e., class of interest and back-
ground. We then brief some possibilities of extending the methodology to 
the case of multiple classes. It is also interesting to see how the notion of 
the object helps in the post-classification analysis of objects. 

                                                      
1 http://www.definiens.com 
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2 Theoretical background 

2.1 Distance between random distributions 

A popular measure of distance between two random distributions is the 
Bhattacharya distance measure (B). For two random distributions given by 
probability density functions p1(x), p2(x), B can be given as (Bhattacharya 
1943, Richards and Jia, 1999): 

( )∫−= dxxpxpB )()(ln 21  .           (1) 

For a discrete case, we can approximate Eq. 1 as 
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xi refers to the discrete points and ∆x refers to the sampling interval or 
typically the width of the bins in the histogram. The discrete probability 
density function is obtained by normalizing the histogram with respect to 
the total area under the histogram.  

If we assume that the classes are normally distributed, then for classes 
C1, C2 of size n1, n2 with means m1, m2 and standard deviations σ1, σ2,  
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The range of B falls in half-closed interval [0,∞). This range is trans-

formed into the closed interval [0, 2] by using a simple transformation 
leading to so called Jeffries - Matusita distance measure (J),  

 
)1(2 BeJ −−= .                (4) 

 
J = 0 implies that the two distributions are completely correlated and J = 

2 implies that the distributions are completely uncorrelated. For every fea-
ture, we can calculate the separability between the two classes using J. The 
features which have very high J value are the optimum features which 
characterize the classes.  



172      P.R. Marpu, I. Niemeyer, S. Nussbaum, R. Gloaguen  

2.2 Threshold of separation 

We can distinguish between two random distributions by using a threshold 
of separation. For two classes C1 and C2 and an observation jx , using the 
Bayes’ rule we get,  

( ) ( ) ( )
( )j

j
j xp

CpCxp
xCp 11

1 = ,   (5) 

and similarly for C2. We then have 

( ) ( ) 121 =+ jj xCpxCp .   (6) 

These are the only possibilities and the total probability should be equal 
to 1. The best decision threshold then is given by the relation 

( ) ( )jj xCpxCp 21 = .    (7) 

On rearranging the terms using the above equations, we have 

( ) ( ) ( ) ( )2211 CpCxpCpCxp jj = .   (8) 

For discrete functions, we can find the threshold as 

( ) ( ) ( ) ( ) 02211 ≈− CpCxpCpCxp jj .  (9) 

For the case of normally distributed classes as mentioned in Sec. 2.1, we 
have the threshold, T as:  
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The degree of misclassification depends on the separability. However, 
we can overcome this limitation to some extent by carefully shifting the 
threshold as will be discussed in Sec 3.1. 
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3 Towards automation 

The solution towards automation in object-based classification depends on 
how we extract the necessary information from the huge information asso-
ciated with the objects.  

3.1 The procedure 

The method for classifying the objects of a class of interest in an image is 
illustrated in Fig. 1. 

 

 
Fig. 1. The procedure for automatic object-based classification 

 
The goal of pre-processing is to increase the homogeneity of the subse-

quently extracted objects. Different image scenarios will require different 
pre-processing steps. Sometimes the pre-processing step can be crucial be-
cause the basic step of object-based classification is to first generate ap-
proximate real world objects and it requires that these object regions in the 
image are homogeneous. 

After segmenting the image into primitive objects, few samples are col-
lected. This can be done by selecting samples in the image based on hu-
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man interpretation or by selecting specific regions in the concerned image 
histograms. For example if the objects of class of interest are characterized 
by bright regions compared to other objects in the image, then 2-5% of the 
objects in the image histogram which have high mean values are taken as 
samples of class of interest and 2-5% of image objects which have low 
mean values are assigned as samples to the background class. 

When we have samples of the classes, we can automatically identify the 
optimal features using the distance, J defined in the eqn. (4). Since the 
samples cannot give the information about what kind of probability distri-
bution the class has, we first assume that the distribution is Gaussian. 
However in the next step we try to get an approximate distribution of the 
classes and thus reassess the feature space. The optimum features will have 
high J value. 

We now try to identify the approximate probability distributions of the 
classes and try to validate if the features we identified in the previous step 
are the best features defining that class. From the samples and features ob-
tained in the earlier stages we cluster the objects into two classes. This will 
give the approximate distribution of the classes. Any clustering technique 
such as minimum distance, Fuzzy clustering, etc., can be used. However, 
to represent all the features on a common scale (in this case [0,1]), the fea-
ture values are normalized before clustering. For every object feature value 
F of a particular feature,  

 
min1 FFF −=       

 

max1

1'

F
FF =       (11) 

Fmin is the minimum value of the object feature values of that feature; 
F1max is the maximum of values F1 obtained in first step. F´ is the trans-
formed feature value of F. Again, any clustering algorithm can be used at 
this stage and some non-linear clustering schemes might not require that 
the data is normalized. 

After clustering, we again check for the separability of features and 
hence find the threshold of separation for the features having high J value. 

The thresholds are found based on the Bayes’ rule defined in eqn (8). 
However there will be some misclassifications if we just classify the ob-
jects based on these thresholds. We can sometimes solve this problem by 
moving the threshold away from the mean of the class of interest (see Fig. 
2).  
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Fig. 2. Finding the threshold 

 
This can be achieved by defining a simple criterion using the separabil-

ity measure. If J < 0.5, the feature is ignored.  
Otherwise, 

2
' mT = ,  for 0.5 ≤ J ≤1.25 

( ) 2'
2mTT += , for 1.25 < J < 1.75 

TT =' ,  for J ≥ 1.25.    (12) 

T' is the modified value of the threshold T and m2 is the mean of the 
background class. 

The above empirical criterion is based on observations using random 
data. It has been observed that this criterion is suitable when more features 
with a better J value exist.  

The objects are finally classified using these thresholds. The classifica-
tion is based on an ‘AND’ operation which is equivalent to sequentially 
eliminating the background objects from the class of interest using the op-
timum features. 

3.2 Extending it to the multiple classes 

We can extend the procedure defined in the previous section to the case of 
multiple classes in several ways. To give some examples the following 
methods can be employed. 
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1. We can identify the optimum features and use any clustering algo-
rithm.  

2. We can sequentially extract one class at a time using the procedure 
defined in section 3.1. But this can lead to objects with multiple 
classifications. We can reclassify the objects with multiple classi-
fications using the minimum distance to the distributions. 

3. We can use a fuzzy rule base to classify the objects. This method 
can efficiently minimize the number of multiple classifications. 

4. A neural network classifier can be designed based on the samples 
and the optimum features. 

The identification of the optimum features characterizing the classes is 
thus an important step. 

4 Case studies 

4.1 Extracting the morphology of normal faults 

4.1.1 Background 

Normal faults are formed in the rifts. A rift is a region where the Earth’s 
crust and lithosphere are under extensional strain, hence forming a series 
of Horst and Graben segments. The fractures generated in this process of 
rifting are normal faults. Fig. 3 shows the geometry in a rift. The faults 
grow in time and form a network of faults which is fractal. 

 
Fig. 3. The fault geometry in a rift 

 
A DEM can be used for identification of the faults as the faults are char-

acterized by steep slopes. In this context an algorithm is prepared using the 
defined procedure to process the DEM and automatically classify the faults 
in the region described by the image. The algorithm is applied on the data 
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of Lake Magadi area in South Kenya. This area is chosen as it is an active 
fault zone. Such a fault map is essential to analyze the deformation of the 
region. For example, studying the fault statistics to calculate the fractal 
dimension gives an indirect measure to quantify the deformation of the re-
gion. The concept of the object thus helps in determining the statistics im-
mediately after classifying as the resulting map contains objects of faults. 

4.1.2 Algorithm and results 

In the pre-processing step two different approximations of the gradient 
(Sobel gradient, slope) of a DEM are used as image layers. This is done to 
emphasize the faults while segmenting the image. Faults are characterized 
by high derivative values in the DEM. For the same resolution in the im-
ages, the segmentation parameters will be the same. In the present case we 
used a scale parameter of 30, shape factor of 0.2 and compactness of 0.5.  

Samples are then selected from the concerned histograms of the means 
of the objects. Fig. 4 shows the derivative of the DEM from Lake Magadi 
region in south Kenya. Fig. 5 shows the result of automatically classifying 
the DEM. 

 

 
Fig. 4. Derivative of the DEM near Lake Magadi, South Kenya 
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Fig. 5. Faults in the DEM (unwanted areas like volcanoes are masked) 

As mentioned earlier, the notion of the object helps in the image analy-
sis after the classification. After the classification every real world fault is 
a fault object in the image. So, it is easy to estimate the statistics of the 
faults using the faults objects in the image. The shape of the object can be 
used to find the approximate width and length of the faults. This statistics 
help in determining the fractal dimension of the faults in that region, which 
has many applications in geosciences (Turcotte 1997). Fig. 6 shows the 
length distribution and the corresponding fractal dimension calculated us-
ing that information. The linearity of the curve in the log-log plot of the 
cumulative histogram of lengths of faults also validates the method used in 
the present work. Such post- classification applications of objects make the 
object-based methodology a powerful tool in image analysis.  
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Fig. 6 The histogram of the faults lengths and the corresponding cumulative histo-
gram curve in logarithmic scale to find fractal dimension. 

4.2 Identifying fission-tracks in microscopic images 

4.2.1 Background 

The fission-track dating method is now commonly used in geological re-
search but hindered by time consuming track counts and length measure-
ments. Attempts at automation using conventional image analysis tech-
niques on digital data have hitherto proved of limited practical use 
(Morgan et al, 2003). To automate the process of counting the tracks, we 
try to mimic human thinking procedures. We first identify all the tracks in 
the image and then count the number of tracks by accounting for the num-
ber of intersections. The first step in doing that is to automatically classify 
the tracks and define tracks objects. When the tracks are identified, then 
we can work on identifying algorithms to count the individual tracks by 
counting the intersections. We used the procedure described in this article 
to develop an algorithm for first identifying the tracks objects in the image. 
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4.2.2 Algorithm and results 

The pre-processing step involves image enhancement and morphological 
closing to generate homogeneous regions of tracks. It has been observed in 
several of the acquired images that the standard deviation of the pixel val-
ues of the fission-tracks pixels is very high compared to that of the back-
ground. It is therefore the objective of the pre-processing step to generate 
homogeneous areas by reducing the standard deviation of the fission-tracks 
pixels. The following transformation is applied to the image 

22
max1 III −=      (13) 

Imax, is the maximum value in the image I. The image I1 is then inverted 
so as to represent the tracks pixels in dark as the above transformation in-
verts the image histogram by compressing the lower part of the histogram. 
Then, on the resulting image, morphological closing operation is per-
formed so as to generate homogeneous regions. Fig. 7b shows the result of 
processing the image shown in Fig. 7a using the described method.  

 

 
Fig. 7. (a) A microscopic image showing tracks to be identified (b) Processed im-
age using image enhancement and morphological closing 

 
Fig. 8. A comparison using a close-up. It can be observed that the tracks are more 
homogeneous 
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The rest of the algorithm is the same as in the case of faults. The same 
distance measure is used to find the optimal features. The segmentation pa-
rameters are to be identified separately for different images based on lens 
magnifications. For a set of images acquired with the same camera on the 
same microscope using the same lens magnification, the same set of seg-
mentation parameters will apply. So, it is necessary to fist define standards 
for image acquisition so as to use the same segmentation parameters. In the 
present case we used a scale parameter of 20, shape factor of 0.2 and com-
pactness of 0.5. 

 

 
Fig. 9. (a) Classified Tracks (b) Zooming the regions 1,2,3,4 in the classified im-
age 

 
Tracks are characterized with low pixel values in the image. So, objects 

at the lower end of the histogram of the object means are selected as sam-
ples for object class of interest i.e., tracks. And, the objects at the higher 
end of the histogram are taken as samples of background objects class. In 
the present case a microscopic image acquired with a lens magnification of 
20 is used. The result of classification is shown in Fig. 9. The object-based 
classification extracts the shape of the tracks with a good overall accuracy 
based on manual verification of five images. The classified objects are 
then ready for the next stage where the shape of the object is analyzed to 
detect the intersections so as to count the exact number of tracks in the im-
age. The concept of using objects for classification thus helps in using the 
object information directly in the next stages where the tracks are counted.  

4.3 Classifying Multiple Classes 

We provide a simple example to give an idea of the potential of the pro-
posed procedure in a multiple class problem. A small part of pan-
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sharpened high resolution image of 61 cm resolution (acquired by Quick-
bird satellite in 2003) of Esfahan nuclear facility, Iran (Fig. 10a) is used to 
classify for various classes such as buildings, shadows, roads and back-
ground. A scale parameter of 100 and shape factor of 0.2 was used for 
segmentation. We tried to extract the classes based on the features identi-
fied as best features using the separability measure when one class is com-
pared with all the other classes. Fig. 10 shows the graphical user interface 
(GUI) which displays the separability (i.e., Jeffries-Matusita distance, J) 
and the threshold of separation between pairs of classes for all the features.  

 

 

Fig. 10. The GUI for displaying separability and thresholds 

 
The features which have high separability and are prominent for major-

ity of the classes are selected as optimum features for classification. 
Fig.11b shows the result of classifying Fig.11a using a minimum-distance 
clustering method after identifying the suitable features. The best feature 
for every class combination is used in this example. 
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Fig. 11. (a) A part of the Esfahan Nuclear facility, Iran. (b) Classification result 
using minimum distance clustering 

 
However, different classes are to be extracted at different scales and it is 

difficult to identify at which scale we have to extract each of the classes. 
This is a classical problem in object-based image analysis which can be 
partly overcome using a multi-resolution analysis. In the present example, 
most of the buildings and roads are classified properly for the segmenta-
tion parameters used here. We intend to extend the present work to classify 
an image into multiple classes by trying to identify the level of extraction 
for different classes. A semi-automatic method in the same lines has al-
ready been implemented successfully by Nussbaum et al (Nussbaum et al. 
2005). 

5. CONCLUSION 

Object-based classification comes close to human perception. However, 
the huge information associated with the objects, hinders the proper utili-
zation of the strength of image-objects. We have shown that the optimum 
features which characterize a class can be identified. This separates the 
relevant information from the feature space. We then demonstrated how 
we can step towards a solution for automatic image classification using 
image objects.  
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ABSTRACT: For the detection of changes, several statistical 
techniques exist. When adopted to high-resolution imagery, the results of 
traditional pixel-based algorithms are often limited. We propose an 
unsupervised change detection and classification procedure based on 
object features. Following the automatic pre-processing of the image data, 
image objects and their object features are extracted. Change detection is 
performed by the multivariate alteration detection (MAD), accompanied 
by the maximum autocorrelation factor (MAF) transformation. The change 
objects are then classified using the fuzzy maximum likelihood estimation 
(FMLE). Finally the classification of changes is improved by probabilistic 
label relaxation. 

1 Introduction 

Change detection is the process of identifying and quantifying temporal 
differences in the state of an object or phenomenon (Singh 1989). When 
using remotely sensed imagery from two acquisition times, each image 
pixel or object from the first time can be compared with the corresponding 
pixel or object from the second time in order to derive the degree of 
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change between the two times. Most commonly, differences in pixels’ 
values, such as reflected radiance or spectral reflectance, have been taken 
as the measure of change in pixel-based change detection studies.  

A variety of digital change detection techniques has been developed in 
the past three decades. Basically, the various algorithms can be grouped 
into the following categories: algebra (differencing, rationing, and 
regression), change vector analysis, transformation (e.g. principal 
component analysis, multivariate alteration detection, and Chi-square 
transformation), classification (e.g. multi-temporal clustering, post-
classification comparison, expectation maximization algorithm, and neural 
networks) and hybrid methods. When applied on the image pixel level, 
these statistical techniques use the changes of the spectral, texture or 
transformed values, or transitions of the class membership (see Figure 1) 
as the measure of change. 

Reviews on the most commonly used techniques are given by i.e. Singh 
1989, Lunetta and Elvidge 1999, Coppin et al. 2004, Lu et al. 2004. Many 
of the algorithms used for analyzing temporal changes are indeed not 
restricted to change detection. In summary, there is a wide variety of 
techniques with varying degrees of robustness, flexibility and significance, 
and only a few studies provided a comparison of change detection methods 
for different applications (Mas 1999, Liu and Zhou 2004, Liu et al. 2004). 

However, the results of the pixel-based approaches are often limited 
when used with very high spatial (VHR) imagery. Due to the increased 
information density of the VHR image data (Benz et al. 2004), too many 
changes are detected which may not be of interest for the particular 
application. This problem is also known as the “salt and pepper” effect 
when applying pixel-based classifiers to VHR imagery. Many 
contributions in this book demonstrate the advantages of object-based 
procedures for image classification. Also, with regard to change detection, 
object-based approaches could be more suitable than the pixel-based ones. 
Object-based procedures can employ change measures described above, 
and also exploit the changes of shape values, such as border length or size, 
or changes of object relations (see Figure 2). Hence, thematic, geometric 
and topologic changes of objects could be analyzed. 

Some interesting object-based approaches have been introduced in the 
last years: McDermid et al. (2003) compared an object-oriented approach 
to change labelling with a more traditional pixel-based routine using the 
enhanced wetness difference index derived from a multi-temporal 
sequence of Landsat TM/ETM+ data. Hall and Hay (2003) presented an 
object-specific multiscale digital change detection approach that 
incorporates multi-temporal SPOT panchromatic data, object-specific 
analysis, object-specific up-scaling, marker-controlled watershed 
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segmentation and image differencing change detection. Desclée et al. 
(2006) combined the advantages of image segmentation, image 
differencing and stochastic analysis of the multispectral signal. Based on a 
chi-square test of hypothesis, abnormal values of reflectance differences 
statistics were identified and the corresponding objects were labelled as 
change. Niemeyer and Nussbaum (2006) used a combination of pixel- and 
object-based approaches by firstly pinpointing the significant change 
pixels by statistical change detection, object extraction and subsequently 
post-classifying the changes based on a semantic model of object features. 

Im et al. (2007) introduced change detection based on 
object/neighbourhood correlation image analysis and image segmentation 
techniques. Gamanya et al. (2007) adopted a hierarchical image 
segmentation approach and applied a standardized, object-oriented 
automatic classification method. 

 

 

Fig. 1. Change measures used in pixel-based approaches 

 

 

Fig. 2. Change measures used in object-based approaches 
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In this study, we propose an object-based unsupervised procedure for 
detecting and classifying infrastructure changes by VHR imagery. In the 
following part of this chapter the approach will be elaborated and 
illustrated by a case study on nuclear facilities. 

2 Methodology 

We propose an object-based unsupervised procedure for detecting and 
classifying infrastructure changes by VHR imagery. The proposed change 
analysis procedure consists of different steps: pre-processing, including 
pan-sharpening, geometric and radiometric correction, object extraction 
and feature extraction, statistical change/no-change detection, and a final 
change analysis by clustering changed objects. Figure 3 presents the 
workflow of the procedure that will be explained in the following.  

A bi-temporal set of QuickBird images acquired over a nuclear facility 
was used for demonstration. QuickBird is a VHR commercial earth 
observation satellite, owned by DigitalGlobe and launched in 2001, which 
collects panchromatic (black & white) imagery at 60-70 centimeter 
resolution and multispectral (color) imagery at 2.4- and 2.8-meter 
resolutions.  

 

Fig. 3. Workflow of the change analysis procedure 
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2.1 Image pre-processing 

This study mainly emphasized the detection and analysis of changed 
objects, but it is necessary to address which image preprocessing methods 
were utilized. 

First of all, the two QuickBird scenes were pan-sharpened by wavelet 
transformation (Ranchin and Wald 2000). Pan-sharpening provides the 
fusion of the four color bands of the two QuickBird scenes with the 
respective panchromatic band. The pan-sharpened color bands with a 
spatial resolution of 0.6m do not involve additional information but have 
proved to be advantageous in the subsequent segmentation step compared 
to multispectral and panchromatic bands in their original spatial resolution. 

Moreover, the aim of pre-processing is to correct temporal changes 
caused by variations in solar illumination, atmospheric conditions and 
sensor performance, and geometric distortion at the two image acquisition 
times. For geometric rectification, we performed the image-to-image 
registration by image correlation (Lehner 1986). Radiometric variations 
were finally reduced by means of radiometric normalization using no-
change pixels (Canty et al. 2004).  

For high-resolution imagery, the sensor’s off-nadir viewing requires 
also an orthorectifying procedure to remove sensor and terrain-related 
distortions. Unfortunately no high-resolution digital elevation model was 
available within the study, thus orthorectification was not possible. The 
procedure continues with the extraction of objects primitives by 
segmentation.  

2.2 Object and feature extraction  

For image data taken at two different acquisition times, the image 
segmentation could be performed in three different ways, depending on the 
input data (Figure 4): 

a) On the basis of the bi-temporal data set, i.e. using a data stack that 
consists of both scenes; 

b) based on the image data of one acquisition time; the generated object 
boundaries are then simply assigned to the image data of the second 
acquisition time without segmentation; 

c) separately for the two times, i.e. the two data sets are segmented 
independently. 
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a) b) c) 

Fig. 4. Object extraction of image data taken at two different acquisition times 
using different input data: (a) data stack consisting of both scenes, (b) image data 
of one time, (c) separately for the two times. Please see text for more information 

 
When using a segmentation as suggested in (a) and (b), the produced 

image objects have the same geometric properties at the two times. With 
regard to change detection, the image objects have attribute values, which 
are either time-invariant, such as shape and size, or could vary in time, i.e. 
the layer values. Thus, changes of objects between the two image data sets 
could only be detected based on a limited number of the available object 
features.  

In case (c) segmentations are independently performed for the two 
scenes. Consequently, the image object geometry will vary in time. In this 
case, all available object features could be used for object change 
detection.  

An object-based change detection analysis requires a segmentation 
technique that similarly extracts objects that have not changed their shape 
and size between the two acquisition times. The multiresolution 
segmentation technique, implemented in Definiens Professional Version 
5.0 (Baatz and Schaepe, 2000, Definiens, 2006), uses homogeneity criteria 
based on color and shape, and a scale parameter in combination with local 
and global optimization techniques. Thus, applying the same segmentation 
parameters to both scenes hardly produces similar objects in image regions 
with no or negligible changes (no-change objects), if other parts of the 
image have changed significantly. In fact, only for two identical images 
(i.e. a scene as a copy of the other one), the results of image segmentations 
would be the same. Discrepancies in the extraction of no-change objects 
due to overall alterations could probably be feasible. However, further 
methodological developments are needed with regard to the segmentation 
of multi-temporal objects. The variation of objects shape features is in any 
case an important indicator for real object changes and needs to be taken 
into account for object-based change detection. 
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In the study, object changes could be identified based on of the layer 
features, such as mean or standard deviation of the single image bands, 
shape and texture features. In an unsupervised approach presented here, 
class-related object features, such as the border of an image object shared 
with neighboring objects of a defined class or the existence of an image 
object assigned to a defined class in a certain perimeter around the image 
object concerned, were not considered. Also scene-related features, like the 
existence of a defined image layer, the number of image objects, or the 
minimum pixel value of a selected layer, were ignored so far. The methods 
of change detection and analysis will be outlined now.  

2.3 Change detection and analysis  

The Multivariate Alteration Detection (MAD) transformation (Nielsen 
2007) was used for change detection. This method has been originally 
developed for change detection within the multispectral feature space of 
image pixels and was applied to this object-based change analysis study 
within the multidimensional and multivariate feature space of the objects. 
The MAD procedure is based on a classical statistical transformation 
referred to as canonical correlation analysis to enhance the change 
information in the difference images. The procedure is briefly described as 
follows:  

If multispectral images of a scene acquired at times t1 and t2 are 
represented by random vectors X and Y, which are assumed to be 
multivariate normally distributed, the difference D between the two images 
is calculated by  

YbXa TT - D =                (1) 

In analogy to a principal component transformation, the vectors a and b 
are sought subject to the condition that the variance of D is maximized and 
subject to the constraints that var(aTX)= var(bTY)=1.  

As a consequence, the difference image D contains the maximum spread 
in its pixel intensities and, provided that this spread is due to real changes 
between t1 and t2, therefore maximum change information. Determining the 
vectors a and b in this way is a standard statistical procedure which 
considers a generalized Eigenvalue problem. For a given number of bands 
N, the procedure returns N Eigenvalues, N pairs of eigenvectors and N 
orthogonal (uncorrelated) difference images, referred to as to the MAD 
components. If the eigenvectors are ordered according to their decreasing 
Eigenvalues, the MAD components will be sorted in accordance with 
increasing variance.  
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The MAD components represent different categories of changes. Since 
relevant changes of man-made structures will generally be uncorrelated 
with seasonal vegetation changes or statistic image noise, they expectedly 
concentrate in different MAD components. If the components are sorted 
according to the increasing variance, higher order MAD components 
represent the small-scale changes whereas lower order components contain 
the overall or wide-area changes. Furthermore, the calculations of the 
MAD components are invariant under affine transformation of the original 
image data. For this reason, the MAD transformation can be qualified as a 
robust change detection technique.  

The sum of squares of standardized variates  
 
 

(2) 
 
 

is approximately chi-square distributed with N degrees of freedom. 
Supposing that no-change pixels have a chi-square distribution with N 
degrees of freedom, N being the number of MAD components, the change-
probability can be derived for each pixel or object.  

In order to improve the spatial coherence of the change components, a 
maximum autocorrelation factor (MAF) transformation was applied to the 
MAD components (Nielsen et al. 1998). Assuming that image noise is 
estimated as difference between intensities of neighboring pixels, the MAF 
transformation is equivalent to a minimum noise fraction (MNF) 
transformation, which generates image components with maximum signal 
to noise ratio (Canty and Nielsen 2006).  

Decision thresholds for change pixels could be set manually by standard 
deviations of the mean for each MAD or MAF/MAD components, i.e. by 
defining that all pixels in a MAD component with intensities within 
±2σMAD are no-change pixels. Besides, the thresholds could be 
automatically estimated using a Bayesian procedure proposed by Bruzzone 
and Prieto (2000). This method is based on an Expectation-Maximization 
algorithm, which automatically determines probability density functions 
for change and no-change pixels given by the MAD or MAF/MAD 
components and iteratively calculates optimal decision thresholds for 
discriminating change and no-change pixels.  

The MAD transformation based on N image layers results in N MAD 
components, as mentioned earlier. If 20 different feature layers are used as 
input data, the change detection has 20 MAD components as output. 
However, only change information included in three MAD or MAF/MAD 
components can be displayed at one time. Comprehensive visualization 
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and labeling of change objects becomes difficult. For this reason, a 
clustering procedure was subsequently applied to the change objects 
described in the next section.  

2.4 Unsupervised classification of changes  

Canty and Nielsen (2006) and Canty (2006) suggested to cluster the 
change pixels provided by the MAD components. Thus, any number of 
MAD or MAF/MAD components could be analyzed simultaneously, and 
the number of change categories could be fixed by the number of clusters. 
We adopted this approach in the study for subsclustering change objects 
given by the MAD components. 

Canty and Nielsen (2006) recommended the use of the fuzzy maximum 
likelihood estimation (FMLE) introduced by Gath and Geva (1989), for 
clustering change pixels. The FMLE was also used in this study for 
classifying the change objects. Unlike conventional clustering algorithms, 
FMLE takes an advantages of forming also elongated clusters and clusters 
with widely varying memberships, which applies for change clusters in the 
MAD or MAF/MAD feature space. The fuzzy cluster membership of an 
object calculated in FMLE is the a-posteriori probability p(C|f) of an 
object (change) class C, given the object feature f.  

According to Richards and Jia (1999), misclassifications of an image 
pixel can be corrected by taking the spatial information into account. 
Canty and Nielsen (2006) adapted a method presented by Richards and Jia 
(1999) known as probabilistic label relaxation. This approach could also be 
applied to image objects. In the study, we evaluated the membership 
probabilities of an object with the following post-classification processing.  

2.5 Post-classification processing  

Using a neighborhood function Qm(k) for objects m, the technique 
examines for each object the membership probabilities of neighboring 
objects and corrects its membership probability  
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The modified membership probabilities can then be used for generating 
an improved classification. Moreover, analyzing the correlation between 
the MAD components and the original object features can help in the 
physically/spectrally founded labeling of the change clusters.  

3 Case study 

The proposed procedure will be illustrated and discussed for a bi-temporal, 
high-resolution satellite imagery. As an example we monitor a nuclear site 
in Iran. At the time when the images were taken some of the facilities of 
the site were still under construction, in operation or shut down.  

Both Definiens Professional 5.0 for segmentation and feature extracting 
and ENVI4.3/6.3 including the ENVI extensions for pre-processing, 
change detection and classification1, provided by Canty (2006) were used.  

Two geo-referenced QuickBird scenes2, acquired over the Esfahan 
Nuclear Technology Centre, Iran, at July 24, 2002 and July 9, 2003, were 
used in the study. The two image images contain a number of changes with 
different spatial and spectral dimensions, as the visual comparison of 
Figure 5 and 6 shows. Following section 2.1, a pan-sharpening method 
based on wavelet transformation was employed to create color bands with 
the spatial resolution of the higher resolution panchromatic band. Then, the 
2003 scene was registered and radiometrically normalized to the 2002 
scene using no-change pixels. Figure 5 and 6 show the pre-processed data 
for an image extract of 3500 pixels and 3000 lines, i.e. for an area of 2.1 
km by 1.8 km. 

Object extraction was conducted in Definiens Professional according to 
Figure 4c) by applying the same segmentation parameters to both scenes at 
three different scales. The image objects in the third segmentation level, 
generated with an identical scale parameter (200) and identical 
homogeneity criterions (color=0.5, compactness=1) were chosen for the 
subsequent change detection and classification steps. Figures 7 and 8 
indicate 1229 objects for the 2002 scene and 1368 objects for the 2003 
scene in the third level. The difference in the object’s number could either 
be due to real object changes, the missing orthorectification or the quality 
of the segmentation procedure. 

                                                      
1 http://www.fz-juelich.de/ste/remote sensing 
2 Both images were available in the context of the EU FP6 Global Monitoring for 

Security and Stability (GMOSS) Network of Excellence, 2004-2008. Credit: 
Digital Globe. 
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Since Definiens Professional neither supplies tools for the statistical 
change detection nor enables users to implement additional procedures in 
terms of computer programming, all object features needed to be exported 
and analyzed within the ENVI/IDL environment for change detection.  

 

 
Fig. 5. Pan-sharpened QuickBird image acquired in July 2002 over the study site 

 

 
Fig. 6. Pan-sharpened and radiometrically normalized QuickBird image acquired 
in July 2003 over the same site 
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Fig. 7. 1229 objects in segmentation level 3 for the 2002 scene 

 

 
Fig. 8. 1368 objects in segmentation level 3 for 2003 scene 

 
Two categories of object features were considered: layer features, in 

particular brightness and the mean values of the four multispectral bands, 
and shape features, i.e. border index, roundness, compactness, shape index 
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and length/width. Theoretically, other layer, shape or texture features 
could also have been included.  

For detecting the object’s changes, a MAD transformation was carried 
out based performed both on the layer and shape features, followed by a 
MAF transformation on the processed MAD components. The computed 
MAF/MAD components were ordered according to the increasing signal-
to-noise-ratio.  

Figures 9 and 10 show the MAF/MAD variates 3, 4 and 5 for the layer 
and the shape features with automatically determined thresholds, the 
medium grey displays the range between the lower and the upper 
threshold, i.e. no-change. Different categories of changes are represented 
by different colors. As expected, the shape features differ significantly due 
to the different segmentations results, as described in section 2.2.  

Whether these changes are related to real changes, due to the missing 
orthorectification or caused by process of the segmentation itself, needs to 
be examined.  

The visual comparison of Figure 6 and Figure 7 yields some indications: 
The changes indicated by one of the MAF/MAD components are mainly 
connected to segmentation variation of the sandy, non-vegetation surface. 

The classification of the change objects was only performed for the 
layer features. A FMLE procedure was applied to the MAD components in 
order to group the change information in five clusters. A probabilistic label 
relaxation, described in section 2.5, was used to optimize the membership 
probabilities of the objects.  

Final classification results are given in Figure 11. Classes 1 and 2 
indicate no-change classes. Class 3 involves all changes related to high 
color variations, i.e. completion of the street, different shadow formation 
and others. Class 4 presents (among other changes) the roof covering of 
two buildings until 2003 in the upper part of the site, whereas class 5 
highlights changes of the roof color of individual buildings due to different 
illumination conditions.  
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no change 

no change 

 

 
 
 
 

Fig. 9. Changes of layer features, given in the MAF/MAD components 3, 4 and 5 

 

 

 
 
 
 

Fig. 10. Changes of shape features, given in the MAF/MAD components 3,4 and 5 
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Class 1: no change 
Class 2: no change 
Class 3: change 
Class 4: change 
Class 5: change 

 

 

Fig. 11. Final FMLE Clustering of the MAD change information on the layer 
features 

4. Conclusions and future work 

This chapter introduces an unsupervised approach to statistically analyze 
changes on the basis of various object features. Preliminary results show 
some promises. However, the procedure still needs notable improvement. 
Future work has particularly to meet the following challenges:  

1. Assessing changes on the basis of shape features presumes a 
segmentation algorithm that is able to similarly extract no change 
objects, i.e. objects with unvarying shapes. The multiresolution 
segmentation provided with the Definiens software does not fulfill this 
condition, as it considers spectral information at least for the first 
segmentation level and applies global optimization techniques. Even if 
the initial random seed is being fixed for the two (or more) co-registered 
image data sets, the object boundaries will differ also for objects with 
constant shape.  

2. The accuracy of the change analysis may be improved by applying the 
procedure only to the change pixels. As suggested by Canty and Nielsen 
(2006) the chi-square distribution calculated during the MAD 
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transformation could be used to estimate the change-probability for each 
pixel.  

3. Analyzing (small-scale) three-dimensional objects, such as buildings, 
using high resolution imagery requires an accurate orthorectification of 
the data. Otherwise, different parallaxes due to varying off-nadir views 
will cause false alarms in the change detection process.  

4. Finally, the inclusion of other object features and the integrated analysis 
needs to be investigated and evaluated.  
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ABSTRACT: Remote sensing and geoinformation systems (GIS) play 
an important role in biodiversity research and management, strengthened 
by the increasing availability of very high resolution (VHR) satellite im-
agery. The interdisciplinary research project BIOTA East Africa has ac-
quired five QuickBird scenes of early 2005 covering Kakamega Forest 
(western Kenya) and surrounding farmland. Pre-processing steps applied 
to the imagery included the correction of atmospheric and orographic in-
fluences as well as a mosaicing procedure. This study demonstrates the 
benefits to object-based image analysis: after a thorough pre-processing, a) 
objects of the same kind have more consistent characteristics, b) segments 
do not orientate themselves to the join of adjacent image swaths. A rule-
based multi-resolution classification scheme is presented for deriving land-
scape structures in the agricultural matrix surrounding the forest. The high 
complexity of the farmland, with extremely small structured parcels, de-
mands analysis strategies that make use of image derivates obtained from 
cadastral maps as well as ground truth information. Finally, the classifica-
tion result is compared to one based on the unprocessed imagery, empha-
sizing implications of pre-processing for object-based image analysis. 
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1 Introduction 

Biodiversity conservation can not only be considered an essential part of 
ecology but “a common concern of humankind”, as stated in the Conven-
tion on Biological Diversity (Secretariat of the Convention on Biological 
Diversity 2000 p 8), which was agreed on the Earth Summit in Rio de Ja-
neiro in 1992. Remote sensing and geoinformation systems (GIS) play an 
important role in supporting the convention’s aims with regard to the spa-
tial context of biodiversity research and management (Schaab et al. 2002). 
For example, spatially explicit modelling of planning scenarios for the 
farmland can help to determine the potential for additional uses thus mini-
mizing the pressure on forests (e.g. the collection of fire wood). Satellite 
imagery, especially such of very high resolution (VHR), offers a funda-
mental base for deriving the current situation of landscape patterns (e.g. 
Ivits et al. 2005).  

Users usually obtain satellite imagery without much pre-processing ap-
plied by the data vendors. In order to improve image segmentation quality 
and to diminish differences in object characteristics, caused by illumina-
tion and atmospheric conditions, a thorough pre-processing should be ap-
plied. This is particularly needed if the imagery covering the study area is 
not taken in one overflight, but split between different swaths. Whilst pre-
processing steps have been applied prior to classification in various studies 
(e.g. Lewinski 2006, Niemeyer et al. 2005, Hofmann 2001), their impacts 
on segmentation and classification seem not to have been investigated on 
their own.  

For the interdisciplinary research project BIOTA East Africa, funded by 
the German Federal Ministry of Education and Research (BMBF), Quick-
Bird satellite data were acquired by sub-project E02 in early 2005 (for in-
formation on E02 see e.g. Schaab et al. 2004). These offer four multi-
spectral (MS) and one panchromatic band with a spatial resolution of 2.4 
and 0.6 m, respectively. With a total area of 631 km² the imagery covers 
Kakamega Forest and surrounding farmland in western Kenya (Fig. 1). 
Due to the required size, five QuickBird scenes were recorded during two 
overflights on February 21st (eastern swath) and March 6th 2005 (western 
swath). Hence, varying geometrical recording conditions, different atmos-
pheric conditions, as well as minor changes in vegetation cover have to be 
accepted.  

Kakamega Forest is situated in the moist western part of Kenya (40 km 
north-east of Kisumu on Lake Victoria) and is known for its unique biodi-
versity (Mutangah et al. 1992). Gold exploitation in the 1930s and severe 
logging activities until the 1980s, however, has led to significant changes 
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in forest structure and diversity (Mitchell 2004). With a population density 
of about 600 persons/km² (Blackett 1994) the surrounding farmland, char-
acterised by small-scale subsistence farming, is one of the most densely 
populated rural areas on earth. Jätzold and Schmidt (1982) state that farms 
are typically between 1 and 7 ha in size. 

This work aims to derive farmland landscape elements through object-
based image analysis of the acquired QuickBird imagery. This will help to 
provide a typology of the complex-structured farmland surrounding 
Kakamega Forest as a basis for land use planning. Here, we concentrate on 
the benefits of pre-processing (not including fusion methods or spectral 
transformations) for subsequent image analysis and a first classification 
strategy. 

2 The pre-processing applied 

QuickBird imagery obtained as ‘standard’ product is already processed 
with regard to radiometric, geometric and sensor corrections (DigitalGlobe 
2004). However, certain additional pre-processing steps should be applied 
prior to image classification (see e.g. Schmidt 2003). Therefore, and in or-
der to achieve better comparability between the scenes, as well as a homo-
geneous image mosaic, corrections of atmospheric and orographic influ-
ences were performed. 

A correction of atmospheric influences is especially valuable if multi-
temporal series are compared, e.g. for retrieving land use/cover changes, or 
if imagery from different sensors is compared (Richter 1996). When 
scenes from several swaths are used, as in the case of the available im-
agery, absolute calibration becomes less important than in the above stated 
applications, but still greatly enhances image quality and classification re-
sults. Within a single scene, corrections of orographic influences are of 
higher importance where reflection values of slopes being differently illu-
minated are adjusted. The resulting images were visually more appealing 
and pre-processing proved beneficial for mere visual interpretations. 

‘Atmospheric Correction’ (ATCOR, see Richter 1996) presents the only 
available tool for an interactive atmospheric correction of VHR imagery 
(Neubert 2006). Implemented as version 3 in ERDAS Imagine it includes 
orographic correction. For counteracting atmospheric influences, the re-
quired input parameters are either taken from the recording conditions (e.g. 
sun and satellite angles, date, mean terrain height) or estimated by the im-
plemented tool Spectra (atmosphere type, aerosol type, scene visibility). 
Orographic effects are modelled using a digital elevation model (DEM) 
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and its derivatives, slope and aspect. Set in relation to the sun’s position 
they lead to local illumination angles. Additionally, a correction of effects 
described by the bidirectional reflectance distribution function is included 
(see Lübker 2005 for the settings of BRDF correction considering off-
nadir and relative azimuth angles). Values for scene visibility were indi-
vidually approximated for the two swaths in a test series. Although it may 
be questioned if real reflectance values could be obtained (Lübker 2005), it 
has been concluded that the atmospheric and orographic correction carried 
out with ATCOR 3 greatly enhanced the image quality and comparability 
between the two swaths (Lübker and Schaab submitted). Orographic ef-
fects in particular could be minimized (Fig. 2).  

Adjacent image swaths were joined together in order to represent the 
large area under investigation as a coherent mosaic, i.e. without a distinctly 
visible join line. Whilst the mosaicing of scenes originating from the same 
swath was straight forward, difficulties were encountered when joining the 
two swaths. Due to the lack of high quality reference data, the georeferenc-
ing as performed and delivered by the vendor had to be accepted. This re-
sulted in a mean horizontal aberration of approx. 5 m (or 8 pixels in the 
panchromatic band) for the two swaths relative to each other. For mo-
saicing, the geometrical adjustment of the two swaths was performed 
within a narrow band on either side of the join. Since the aberration was 
not linear, a procedure was especially elaborated for this purpose by mak-
ing use of ERDAS Imagine 8.7, Leica Photogrammetry Suite, and Excel 
(for a detailed description of the procedure and the difficulties encountered 
see Lübker and Schaab submitted).  

The final mosaic obtained was convincing. However, differences due to 
recording in two image swaths were still present. Here, differences that 
cannot be counteracted, like shadow lengths (see Lübker and Schaab 2006) 
and variations caused by different vegetation stages or differences in 
ground use, have to be distinguished from those where major enhance-
ments have been made. However, differences in haziness as well as in re-
flectance behaviours caused by varying recording angles still exist. Also 
geometrical inaccuracies could not be improved due to the lack of ade-
quate reference data. Nevertheless, the thorough pre-processing was worth 
the effort as shown in the next chapter. 

3 Benefits of pre-processing 

Two test areas were chosen to investigate the benefits of in-depth pre-
processing of large-area VHR QuickBird imagery for object-based image 
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analyses. Using Definiens eCognition 4 software, improvements on seg-
mentation and classification quality through a) the mosaicing in the stitch-
ing area of the two swaths and b) the correction of terrain shading are 
demonstrated. Effects of the atmospheric correction are not investigated on 
their own; they are included in the test results for the two study areas. 

Test site A is situated north of Kakamega Forest towards Malava Forest 
(see Fig. 1) in the overlapping area of the two swaths. For comparison with 
the result of the in-depth pre-processing, the swaths were also mosaiced 
without any further treatment as well as with just a histogram matching 
applied. The latter method simulates thus a common methodology (e.g. 
Repaka et al. 2004). Fig. 3 shows the results of segmentation making use 
of the three different mosaicing approaches. In the simply stitched image 
(left) a large difference in spectral values between the eastern and the 
western part of the image can be observed. Here, segments strongly orien-
tate themselves to the join which divides the subset. For the mosaic with 
an applied histogram matching (middle) the difference has become less 
apparent, but many segments still orientate themselves to the join. In the 
sophisticatedly processed mosaic (right) spectral differences have become 
inconspicuous. Segments only seldomly show an affinity towards the join. 
When looking at the spectral object characteristics (in the NIR-Red-Green 
composite segments are half-transparently coloured according to their 
mean spectral values) it becomes evident that a classification of the simply 
mosaiced image is very likely to lead to major errors. 

Test site B is situated north-east of Kakamega Forest (see Fig. 1) cover-
ing parts of Kambiri Hill, a small edge of Kisere Forest and farmland in-
cluding riverine vegetation and hedges. Fig. 2 visualizes the effects of oro-
graphic correction. In the original image (left) the western slope is 
noticeably shadowed while the eastern slope is brightened. In the proc-
essed image (right) the hill appears more uniform. However, it reveals that 
the two slopes of Kambiri Hill are not exactly equal in their vegetation 
cover. As shown in the processed image, the western slope is covered by 
denser shrub vegetation in the north and exhibits burning activities towards 
the south. The central part of the eastern slope is partly used for agricul-
ture.  

In order to evaluate the impact of the orographic correction on object-
based image analysis, segmentation was accomplished for the atmospheri-
cally and orographically corrected example as well as the original image 
subset of test area B. For each side of the hill, image segments of similar 
vegetation (grassy land cover with sparse shrubs) were selected by means 
of visual interpretation. A comparison of their object properties reveals 
that the objects have very similar characteristics in the processed image. 
When drawn in two-dimensional feature space plots, the object’s spectral 
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properties for mean Red, NIR and Soil Adjusted Vegetation Index (SAVI) 
overlap or group in close vicinity (Fig. 4, right). In the graph, black circles 
represent the vegetation on the eastern slope while the white circles repre-
sent vegetation on the western slope. In the original image the object char-
acteristics of the selected vegetation type vary notably. Here, in the feature 
space plot, the object’s spectral properties form two separate clusters ac-
cording to the slopes (Fig. 4, left). Objects on the eastern slope (black cir-
cles) show higher values in the NIR band and slightly higher values in the 
Red band. This comparison points out that orographic influences are trans-
ferred from the imagery to the characteristics of image objects obtained 
through segmentation. In order to restrain the influences from affecting 
classification results, the original image should be orographically cor-
rected.  

4 Deriving landscape patterns in the agricultural matrix 

As a first approach towards a farmland typology of the agricultural matrix 
surrounding Kakamega Forest, a classification scheme was elaborated em-
ploying a 1.6 km² test area (site C, see Fig. 1). This site is located near 
Isecheno forest station and covers farmland, forest, and the so-called ‘tea 
belt’ along the forest edge. In comparison to Jätzold and Schmidt (1982, 
see Introduction) the farms in this study area tend to be even smaller with a 
mean size of 0.8 ha, ranging from 0.1 to 4.7 ha, as delineated from cadas-
tral maps. Farms are further subdivided into fields for growing tea, napier 
grass, sugar cane, mixed cultivations of maize and beans, bananas, cas-
sava, sweet potatoes, other vegetables, and others, sometimes covering 
only a few hundred square meters. Parcel edges are particularly hard to 
distinguish when next to shrub and tree vegetation or when between fields 
cultivated with the same crop or of a similar preparation stage. Due to the 
complexity of the landscape, i.e. very different to the often industrialised 
farms in Western Europe and North America, comparable results to classi-
fications as achieved e.g. for a Bavarian test site (Fockelmann 2001) are 
unlikely to be achieved.  

As an additional input for segmentation cadastral maps in form of diazo 
copies (approximate scale: 1 : 2,500, dating from 1973/74 with in parts 
updates up to 2005) are available for major parts of test area C. The map 
sheets were scanned, georeferenced to the QuickBird imagery, offering the 
best positional accuracy available, and digitised adjusting the lines towards 
structures visible in the image. Subsequently a rasterisation was carried out 
and used as an input layer in the segmentation process to allow for deriva-
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tions from the fictional sharp lines. In test area C, ancillary ground truthing 
information for the time of recording was collected by BIOTA-E14 project 
partners serving as evidence for land cover and subdivisions of parcels. In 
addition, serving as an image derivate (cf. Wezyk and de Kok 2005) an 
edge image was deduced from the panchromatic image using a Prewitt fil-
ter as well as the soil adjusted vegetation index (SAVI) from the multi-
spectral image. Finally, a rule-based classification was carried out with 
Definiens Developer 6. Within the process tree three main cycles were de-
veloped applying multi-resolution and classification-based segmentation. 

In the first cycle (segmentation level 3: scale factor 240, shape/com-
pactness 0.7/0.7, only MS channels, no weighting) a rough separation into 
the basic land cover types of forest, agriculture, and tea was made (Fig. 5, 
top; urban settlement would be a fourth type but is not present in the test 
area). Classification was primarily based on mean values and standard de-
viations of the MS channels and the SAVI. In order to aggregate segments 
to large homogeneous regions further, rules were set up by means of the 
class-related features ‘relative border to’ and ‘relative area of’. Conditions 
were then combined with logical terms. In this way tea plantations as well 
as larger tree lots on parcels could be assigned to the land cover type ‘agri-
culture’. A smaller forest patch in the southern central part of the test area 
was undesirably classified ‘agriculture’. 

The second cycle (segmentation level 1: scale factor 70, shape/com-
pactness 0.5/0.7, all available layers, adjusted weighting) aims at extract-
ing the structure elements roads, houses/huts, trees/shrubs, and shadows of 
trees/shrubs within the main land cover type ‘agriculture’ (Fig. 5, middle; 
rivers would be a further element but are not present in the test area). 
Hence, segments classified as ‘agriculture’ in the first cycle were merged 
together and segmentation was only applied to this region. The rule set in 
this cycle is more complex, e.g. for the class ‘houses/huts’ three groups of 
membership functions are combined in the logical term ‘and (min)’: be-
sides the generic shape feature ‘length/width’ (< 2.3) two further shape 
features, ‘area’ (< 290 m²) and ‘border length’ (< 90 m) combined with 
‘mean (arithm.)’, as well as spectral characteristics of mean MS 4, mean 
SAVI, and standard derivation of MS 1 combined with ‘and (min)’ build 
the class description. While trees/shrubs and their shadows could be classi-
fied to full satisfaction within these preliminary tests, further refinement of 
segmentation quality and classification rules would be needed for detecting 
also narrow lanes and for distinguishing single huts and groups of 
houses/huts more clearly. 

In the third cycle (segmentation level 2: scale factor 90, shape/com-
pactness 0.75/0.85, all available layers, adjusted weighting) the remaining 
agricultural land not classified in cycle two and representing the actual 
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fields was further investigated concerning a distinction of its cover. During 
classification-based segmentation high values for the shape factor and 
compactness were chosen in compliance with the field structure. In layer 
weighting, the cadastral boundary layer and the SAVI image play an im-
portant role. Rule sets are based on spectral characteristics, namely mean 
values for MS 3, MS 4 and SAVI. In the classification only few distinc-
tions in land cover/use could be made: tea, fields recently prepared for 
planting, fields at an intermediate stage or with young plants, and fields 
harvested and not yet prepared for planting (Fig. 5, bottom; sugar cane 
would be a further land cover but is not present in the test area). This can 
be ascribed to the fact that image recording had fallen within the period 
shortly before the start of the rainy season, usually around the end of 
March (Jätzold and Schmidt 1982) with the planting period being due to 
start (see Fig. 6). As can be seen when comparing the imagery of the two 
swaths in the overlapping area, soil digging activities took place within the 
two weeks that fall between the recordings, due to rainfall after a period of 
three weeks without any rain. A recording at a more advanced planting 
stage would have been advantageous for identifying real agricultural land 
use. But then higher humidity, or actual clouds, would certainly have re-
sulted in poorer image quality.  

In order to assess the influence of pre-processing on the above described 
object-based classification, the classification was additionally carried out 
on the imagery that was not pre-processed, apart from histogram matching 
to the pre-processed imagery. Border values for most of the membership 
functions had to be adjusted manually using the feature view tool so that 
similar objects to those in the original classification could be selected.  

A comparison of the two classification results (Fig. 7) shows that the 
first cycle provides very similar results, even if the tea zone extends into 
the forest. But the more detailed classification contains large differences. 
Trees and shrubs as well as their shadows are underestimated in the west-
ern part and overestimated in the eastern part of the classification when not 
having undergone thorough pre-processing. This can be ascribed to the 
large difference in brightness of the MS channels. Roads are detected less 
well throughout the test area while houses and huts could be detected al-
most as precisely. Also the field/parcel classification differs significantly. 
In the unprocessed image segments are clearly orientated according to the 
join line. 

The complex picture of structural elements making up the agricultural 
landscape next to Kakamega Forest, although not the agricultural land use 
per field, could be delineated by the method described (based on the pre-
processed imagery). A further refinement of the approach is nevertheless 
needed. The retrieval of all the current hedges and fences along field 
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boundaries will serve as background for estimates on the potential for ad-
ditional cultivations when also making use of field boundaries. In this con-
text, it would be desirable to also extract information on land ownership. 
Due to the complex structure of the farmland, however, it seems that the 
grouping of fields per owner directly from the imagery is difficult to 
achieve, if not impossible. Here, knowledge obtained from areas with ca-
dastral maps available in conjunction with a house/hut classification will 
hopefully enable an extrapolation to areas where cadastral maps are not at 
hand. 

5 Summary and outlook 

It was demonstrated that thorough pre-processing of large-area VHR satel-
lite imagery is beneficial not only for more appealing visual results, but 
also for subsequent object-based image analyses. Corrections of influences 
caused by the orography and atmospheric conditions should be applied in 
order for objects of the same kind to have consistent characteristics. Elabo-
rative mosaicing methods prevent segments from orientating themselves to 
imagery join lines and are thus preferable to the methods commonly ap-
plied. 

The described classification scheme shows promising results as a first 
test in the development of a farmland typology for the Kakamega area. 
Multi-resolution segmentation based on classification results allows the 
user during the object-based classification to focus on the parts of the im-
age relevant to the task, i.e. the farmland. Although complex membership 
rules have been set up for the agricultural fields, only a few classes could 
be separated due to the season and thus the planting stage at which the im-
agery was recorded. Overall, segmentation and classification was compli-
cated by the intricate and small-structured composition of the agricultural 
matrix. 

For a further refinement of the approach, the role of the available cadas-
tral boundaries for segmentation needs to be examined. The potential of 
the edge detecting Canny filter (Canny 1986) should be tested with regards 
to field boundary delineation from the panchromatic imagery. An en-
hancement concerning segment boundaries is hoped for via a field-based 
classification as proposed by Türker and Kok (2006). Tests will show if 
this approach is beneficial for such complex structural elements.  

As soon as the current structure of the agricultural landscape surround-
ing Kakamega Forest is obtained through object-based image analysis, 
scenarios of rural livelihood as demanded by Diwani and Becker (2005) 
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will be modelled in close cooperation with other BIOTA East sub-projects. 
Agronomists and land management planners in collaboration with biolo-
gists will provide landscape planning recommendations considering socio-
economic impacts on land use and landscape elements affecting biodiver-
sity. The scenarios will be spatially explicit and simulate possible future 
landscapes (alternative futures, see Baker et al. 2004). The results will 
form an important contribution in support of biodiversity research in East-
ern Africa. 

Note 

All satellite imagery used in the figures: © 2005 by Digital Globe TM, 
USA (distributed by Eurimage, Italy). 
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Fig. 1. Location of Kakamega Forest and its associated forest fragments with cov-
erage of the acquired QuickBird scenes and location of the three test sites as re-
ferred to in this paper 
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Fig. 2. Effects of orographic correction at Kambiri Hill (test site B): Original im-
age (left) as compared to the processed image (right). Images are pan-sharpened 
and displayed as NIR-Red-Green composites (same to Fig 3 in Lübker and Schaab 
2006) 
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Fig. 3. Influence of different mosaicing approaches on segmentation results (test 
site A): simply stitched image (left) mosaic with just a histogram matching applied 
(middle), and mosaic based on a thorough pre-processing (right). Segments are 
half-transparently coloured according to their mean spectral values in the NIR-
Red-Green composite 

 

   
Fig. 4. Two-dimensional feature space plots demonstrating object characteristics 
for similar vegetation (grassy land cover with sparse shrubs) on the western slope 
(white circles) and eastern slope (black circles) of Kambiri Hill. Graphs relate to 
test site B before (left) and after pre-processing (right) 
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Fig. 5. Classification results of a rule-based multi-resolution classification for test 
site C near Isecheno forest station 
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Fig. 6. Monthly (1982–2002, top) and daily (January–April 2005, bottom) precipi-
tation [mm] at Isecheno forest station (compiled by E11, E02) in comparison to 
the two recording dates (21st of February, 6th of March) explaining differences in 
soil reflectances (SAVI) 

 

   
Fig. 7: Classification results with (left, see Fig. 5 bottom) and without (right) pre-
processing applied to the imagery. For a legend see Fig. 5 
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ABSTRACT: The objective of this research was the design and devel-
opment of a region-based multi-scale segmentation algorithm with the in-
tegration of complex texture features, in order to provide a low level proc-
essing tool for object-oriented image analysis. The implemented algorithm 
is called Texture-based MSEG and can be described as a region merging 
procedure. The first object representation is the single pixel of the image. 
Through iterative pair-wise object fusions, which are made at several itera-
tions, called passes, the final segmentation is achieved. The criterion for 
object merging is a homogeneity cost measure, defined as object heteroge-
neity, and computed based on spectral and shape features for each possible 
object merge. An integration of texture features to the region merging 
segmentation procedure was implemented through an Advanced Texture 
Heuristics module. Towards this texture-enhanced segmentation method, 
complex statistical measures of texture had to be computed based on ob-
jects, however, and not on rectangular image regions. The approach was to 
compute grey level co-occurrence matrices for each image object and then 
to compute object-based statistical features. The Advanced Texture Heu-
ristics module, integrated new heuristics in the decision for object merg-
ing, involving similarity measures of adjacent image objects, based on the 
computed texture features. The algorithm was implemented in C++ and 
was tested on remotely sensed images of different sensors, resolutions and 
complexity levels. The results were satisfactory since the produced primi-
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tive objects, were comparable to those of other segmentation algorithms. A 
comparison between the simple algorithm and the texture-based algorithm 
results showed that in addition to spectral and shape features, texture fea-
tures did provide good segmentation results.  

1 Introduction 

1.1 Recent developments in Remote Sensing 

Recently, remote sensing has achieved great progress both in sensor reso-
lution and image analysis algorithms. Due to very high resolution imagery, 
such as IKONOS and Quick Bird, traditional classification methods, have 
become less effective given the magnitude of heterogeneity appearing in 
the spectral feature space of such imagery. The spectral heterogeneity of 
imaging data has increased rapidly, and the traditional methods tend to 
produce “salt and pepper” classification results. Such problems occur also 
to medium resolution satellite data, such as Landsat TM, SPOT etc. 

Another disadvantage of traditional classification methods is that they 
do not use information related to shape, site and spatial relation (context) 
of the objects of the scene. Context information is a key element to photo-
interpretation, and a key feature used by all photo-interpreters because it 
encapsulates expert knowledge about the image objects (Argialas and Har-
low 1990). Such knowledge is not explicit and needs to be represented and 
used for image analysis purposes. Shape and texture features are used ex-
tensively as context descriptors in photo-interpretation. 

1.2 Texture-based Image Segmentation and Object-based 
Image Analysis 

Texture initially was computed as standard deviation and variance. 
Haralick proposed texture features computed from co-occurrence matrices 
(Haralick et al. 1973, Haralick 1979). These second order texture features 
were used in image classification of remote sensing imagery with good re-
sults (Materka and Strzelecki 1998). Recently, even more complex texture 
models were used for classification and segmentation, such as Hidden 
Markov Models, Wavelets and Gabor filters (Materka and Strzelecki 1998) 
with very good results in remote sensing and medical applications. Several 
methods were proposed for texture-based image segmentation, taking ad-
vantage of the latest texture modeling methods (Liapis et al. 1998, Hav-
licek and Tay 2001, Chen et al. 2002, Fauzi and Lewis 2003). At the same 
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time, image classification moved towards artificial intelligence methods 
(Sukissian et al. 1994, Benz et al. 2004). 

During the last few years, a new approach, called Object-Oriented Im-
age Analysis, integrated low level image analysis methods, such as seg-
mentation procedures and algorithms (Baatz & Schäpe 2000), with high 
level methods, such as Artificial Intelligence (fuzzy knowledge-based sys-
tems) and Pattern Recognition methods. Within this approach, the low 
level image analysis produces primitive image objects, while the high level 
processing classifies these primitives into meaningful domain objects 
(Benz et al. 2004). 

In order to extract primitive objects from a digital image, a segmentation 
algorithm can be applied. Various segmentation algorithms and methods 
have been proposed over the last decades, with promising results (Pal and 
Pal 1993, Sonka et al. 1998). In remote sensing, a multi-scale image seg-
mentation algorithm is aiming not to the extraction of semantic objects, but 
to the extraction of image primitives (Baatz & Schäpe 2000). 

1.3 Research Objectives 

The main objective of this research was the integration of complex texture 
features into an object-oriented image segmentation algorithm (Tzotsos 
and Argialas 2006) to be used as a low level processing part of an object-
oriented image analysis system so that to be applied at multiple image 
resolutions and to produce objects of multiple scales (sizes), according to 
user-customizable parameters.  

Another objective was the ability of the produced algorithm to be ge-
neric and produce satisfying and classification-ready results to as many 
remote sensing data as possible. Remote sensing data with complex texture 
and spectral information are, in general, difficult to process. Therefore, 
there was a need for the algorithm to be able to handle texture information 
and context features in order to produce better segmentation results.  

This research aimed to further develop recent technologies and provide 
integration of new features to object-based image analysis methodology. 

Motivation for this research is to provide an Object-Based Image Analy-
sis system in the form of Free and Open-Source Software. 
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2 Methodology 

2.1 MSEG algorithm overview 

The MSEG algorithm (Tzotsos and Argialas 2006) was designed to be a 
region merging technique, since region merging techniques are fast, ge-
neric and can be fully automated (without the need of seed points) (Pal and 
Pal 1993, Sonka et al. 1998). Given that commercial Object-Oriented Im-
age Analysis system (eCognition User Guide 2005) has used such methods 
was also a strong argument for the effectiveness of the region merging 
techniques. 

Like all algorithms of this kind, MSEG is based on several local or 
global criteria and heuristics, in order to merge objects in an iterative pro-
cedure, until no other merges can occur (Sonka et al. 1998). In most cases, 
a feature of some kind (mean spectral values, texture, entropy, mean 
square errors, shape indices etc.) or combination of such features computes 
the overall “energy” of each object. Then, the merging algorithm uses heu-
ristics and “trial and error” methods in order to minimize the overall en-
ergy of the segmentation that is produced. In other words, it is typical to 
select a cost function, to define how good and stable an object is after a 
merging procedure, or even to make the decision regarding that merge.  

Various definitions of homogeneity (energy minimization measures 
within an object) have been defined (Pal and Pal 1993, Sonka et al. 1998). 
Recently, a very successful segmentation algorithm, embedded in the Ob-
ject Oriented Image Analysis Software eCognition (Baatz & Schäpe 2000), 
implemented such measures of spectral and spatial homogeneity, for mak-
ing the merging decision between neighboring objects, with very good re-
sults. In the proposed segmentation algorithm, similar homogeneity meas-
ures were used, and then complex texture features were implemented in 
later stages. 

The proposed algorithm was initialized through the application of an 
image partitioning method to the dataset resulting into rectangular regions 
of variable dimensions, called macroblocks. Image partitioning was ap-
plied for computation of local statistics and starting points. It should be 
pointed that starting points were not used as seed points (as in region 
growing techniques) but were used to keep track of the order in which all 
pixels were processed initially. Having this order computed and stored for 
each macroblock, the whole segmentation algorithm can be reproduced ac-
curately and provide 100% identical results for the same parameters and 
image. 

There are two basic methods implemented within MSEG for starting 
point estimation (Tzotsos and Argialas 2006). The first is a statistical 
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method, producing one starting point per macroblock. The second method 
was based on dithering algorithms, transforming the original image into a 
binary image through statistical procedures (Ulichney 1987). The binary 
image was used to determine the starting points within each macroblock. 

In order for the MSEG algorithm to provide primitive objects, several 
steps of region merging (passes) were followed. The initial objects of the 
image are the single pixels. The purpose of a first segmentation pass was 
to initialize the image objects and to provide the first over-segmentation, in 
order for the algorithm to be able to begin region merging at following 
stages. During first pass, the algorithm merged single pixels-objects pair 
wise. The criterion for object merging was a homogeneity cost measure, 
defined as object heterogeneity, and computed based on spectral and shape 
features for each possible object merge. The heterogeneity was then com-
pared to a user defined threshold, called scale parameter, in order for the 
decision of the merge to be determined. 

For the following pass of the algorithm, the objects created by the pre-
vious pass were used in a new pair wise merging procedure. The merging 
strategy included finding the best match for each object, and then checking 
if there was a mutual best match in order to merge the two objects (Tzotsos 
and Argialas 2006). Passes were executed iteratively until the algorithm 
converged. The algorithm was considered finished, when during the last 
pass no more merges occurred. Then, the objects were exported and 
marked as final primitives.  

In order to extend the basic elements of the region merging segmenta-
tion procedure, a multi-scale algorithm was designed to give to the MSEG 
algorithm the capability to create multiple instances of segmentations for 
an image, each with different scale parameters. The problem when dealing 
with multiple segmentations is the compatibility between scales, in order 
to combine information and objects. One simple way to deal with this 
problem is to create a multi-level representation, and incorporate the mul-
tiple segmentations within this representation, hierarchically. A single-
level hierarchy is not flexible, when dealing with remote sensing classifi-
cation problems (Argialas and Tzotsos 2004). A multi-level hierarchy ap-
proach or a branch-based hierarchy model can represent more complex 
spatial relations. Thus, in the present multi-scale algorithm, every new 
level depends only from the nearest (scale-wise) super-level or the nearest 
sub-level, or both. More details on MSEG implementation can be found in 
(Tzotsos and Argialas 2006).  
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2.2 Advanced Texture Heuristics 

The basic objective of the Advanced Texture Heuristic module was to 
build upon MSEG algorithm, in order to improve segmentation results. 
Since texture is a key photo-interpretation element, it was decided to use 
more complex texture features, than standard deviation (used in eCogni-
tion), variance, or other first order texture features. 

Since second order texture features have been used as good and practi-
cal classification features (Haralick et al. 1973, Materka and Strzelecki 
1998), there was a need to test those measures for segmentation purposes 
and specifically as an add-on to the region merging multi-scale algorithm 
that was previously developed. 

The basic idea was that when making a merging decision between adja-
cent image objects, there should be a texture similarity measure, provided 
by complex texture computations that could help this decision. This way, 
primitive objects with similar texture could be merged, even if color or 
shape criteria are not in favor of this merge.  

Given that MSEG is a region merging algorithm, not all state of the art 
methods for modeling texture are compatible for a hybrid segmentation so-
lution. The recent literature has shown that Markov Random Fields, wave-
lets and Gabor filters, have great potential for texture analysis (Materka 
and Strzelecki 1998). Their disadvantage is that they are very complex and 
time consuming to use with a merging procedure, computing thousands of 
virtual merges during a full object merging search. At the same time, 
wavelets and Gabor filters are computationally inefficient to be used lo-
cally, within the boundaries of a single – and sometimes very small - 
primitive object. Markov Random Fields are easier to adopt for region-
based texture segmentation, but they were found incompatible with the 
current merging search method, since they are based on Bayesian reason-
ing. 

A traditional method for modeling texture, which was proved to be very 
good for practical purposes in supervised classification (Haralick et al. 
1973, Schroder and Dimai 1998), is based on the Grey Level Co-
occurrence Matrix (GLCM) features. GLCM is a two dimensional histo-
gram of grey levels for a pair of pixels that are separated by a fix spatial re-
lationship. The Grey Level Co-occurrence Matrix approximates the joint 
probability distribution of this pair of pixels. This is an insufficient ap-
proximation for small windows and a large number of grey levels. There-
fore the image data have to be pre-scaled to reduce the number of grey lev-
els in the image. Directional invariance can be obtained by summing over 
pairs of pixels with different orientations (Schroder and Dimai 1998). 
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From the GLCM, several texture measures can be obtained, such as ho-
mogeneity, entropy, angular second moment, variance, contrast etc 
(Haralick et al. 1973). To compute the GLCM, several optimization meth-
ods have been introduced. Most applications of GLCM for remote sensing 
images, at pixel-level, included computation of the co-occurrence matrix 
less often for the whole image, and more often for a predefined image slid-
ing window of fixed size. 

On a pixel-based texture analysis with the use of GLCM, for each direc-
tion (0, 45, 90, 135 degrees) a different co-occurrence matrix is formed by 
adding co-occurrences to the grey level pair position (Figure 1). If Ng is 
the number of grey levels after the grey level reduction, then each co-
occurrence matrix will be of size Ng x Ng. 

 

 
Fig. 1. Left: An example of GLCM computation at 0 degree angle for a 4x4 win-
dow. The empty GLCM gets filled by adding co-occurrences symmetrically. 
Right: A 3-dimensional representation of the Co-occurrence matrices that have to 
be computed for a given orientation. Ng is the number of grey levels and N is the 
total number of primitive image objects 

 
In order to use the second order texture features into MSEG, four 

GLCMs should be computed for each primitive image object, during the 
merging procedure. The computation of so many GLCMs can be ex-
tremely intensive, and would significantly slow down the performance of 
the region merging algorithm. Furthermore, as multiple virtual merges oc-
cur, before an object merge could be decided, the GLCM computations can 
actually be much more than theoretically expected. Thus, a decision was 
made to optimize the use of GLCM features only for the initial objects and 
not for the virtual merged objects, so that to limit the co-occurrence matrix 
computation to a maximum of 4N (where N is the number of objects). 

The Advanced Texture Heuristic module aimed to implement texture 
similarity measures in order to contribute to object merging search. 
Haralick states as good texture similarity measures, the Homogeneity 
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(Equation 1) and the Angular Second Moment (Equation 2) features 
(Haralick 1979). Both were implemented in the module. 
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When an object was treated from the MSEG algorithm during a pass, 
the texture features were computed and the mutual best match search pro-
cedure compared neighbor objects to the selected one. Before the color and 
shape heterogeneity criteria were computed and involved to the scale pa-
rameter comparison, texture heterogeneity was computed, as the difference 
of the values of the texture similarity features. These values, one for each 
direction, were then compared with a threshold called texture parameter 
which is defined by the user. If the two objects were compatible by the tex-
ture parameter, then the computation of the spectral and shape heterogene-
ity took place, in order to fulfill the mutual best match criterion, and the 
merge to occur. 

The described heuristic, uses the texture parameter, to reduce the het-
erogeneity computations. This means that, when activated, the Advanced 
Texture Heuristic module has greater priority than the scale parameter, but 
cannot perform any merging, without color and shape compatibility of im-
age objects. If one wishes to perform segmentation using only texture fea-
tures, the scale parameter can be set to a very large value, so not to con-
strain the merging by the color and shape criteria. 

In the following section, an optimization procedure for the GLCM com-
putation is described. 

2.3 Implementation 

Having to compute thousands of co-occurrence matrices, during a region 
merging segmentation procedure can be computationally intense. Optimi-
zation algorithms for the computation of GLCMs have been proposed in 
literature (Argenti et al. 1990) but only for the pixel-based case. In order to 
tackle this problem, the GLCM computation should be optimized to be 
used with objects, rather than pixels. A modification to the traditional 
methods was performed, so that to make the procedure faster but still accu-
rate. 
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At first, image band selection took place. If the computation of the 
GLCM was to be performed for each band separately, the whole segmenta-
tion process would not be optimal for performance. So, instead of using all 
bands, the Advanced Texture Heuristic module can use the intensity band 
of the HSI colorspace, or the Y band of the YCbCr colorspace (used as de-
fault), or a principal component band of the image, or finally a single im-
age band. After the band selection, a grey level reduction was performed at 
the selected band. The final number of grey levels can be selected by the 
user, with a quantizer parameter. The default value, as used by many other 
GLCM implementations, was set to 32 grey levels. 

It was determined that the optimal procedure to compute the GLCMs 
was to perform some kind of global initialization, so that to speed up the 
inter-object GLCM computation. For each of the image pixels, a direction 
search was performed, to evaluate the grey level pair co-occurrences. For 
the 4 different directions, a vector was designed to hold the overall co-
occurrence information and was used in a way similar to a database index. 
Thus, no direction search was performed twice during the pass stages. 
Each time an object co-occurrence matrix had to be used, it was computed 
very fast within the object boundaries. 

This procedure was not tested for algorithmic complexity, but was com-
pared to a simple GLCM implementation and was found more stable and 
faster. The implementation of the Advanced Texture Heuristic module was 
performed in C++. The modified version of the algorithm was called Tex-
ture-based MSEG. 

3 Discussion of Results 

The implemented version of the MSEG algorithm was tested on a variety 
of image data, in order to assess the quality of the results, its generalization 
and speed. Evaluating the results of a segmentation algorithm does not de-
pend on the delivery of semantic objects, but rather on the generation of 
good object primitives useful to further classification steps.  

The algorithm was designed to provide (a) over-segmentation so that 
merging of segments, towards the final image semantics, to be achieved by 
a follow up classification procedure (Tzotsos and Argialas 2007) and (b) 
boundary distinction and full-scene segmentation. Since eCognition (eC-
ognition User Guide 2005) is greatly used for object oriented image analy-
sis purposes, the evaluation of results was mainly based on comparison 
with outputs from eCognition. Also, a comparison was made to results of 
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simple MSEG, to show how the texture features perform with region 
merging segmentation. 

For the evaluation of the algorithms a Landsat TM image was used. For 
all tests, the color criterion was used with a weight of 0.7 and the shape 
criterion with weight 0.3.The eCognition software was used to provide 
segmentation with scale parameter 10. Then, the simple MSEG was used 
to provide segmentation with scale parameter 400 (through trial and error) 
to simulate the mean object size of eCognition’s results. It should be noted 
that scale parameters are implementation dependent. The results are shown 
in Figure 2. In Figure 3 the results from the texture-based MSEG for scale 
parameter 400 are shown.  

 

 
Fig. 2. Segmentation result as provided by eCognition for scale parameter 10 (left) 
and MSEG for scale parameter 400 (right)  

 
Comparing results between Figures 2 and 3, shows that similar sized ob-

ject can be obtained by all 3 segmentation algorithms. For the scale pa-
rameter of 400, the MSEG seems to be more sensitive to spectral hetero-
geneity than the eCognition results with scale parameter 10. Both 
algorithms keep good alignment with the image edges and both provide 
usable over-segmentations of the initial image (Tzotsos and Argialas 
2007). The texture-based MSEG also provides good segmentation of the 
image, improving the simple MSEG result by creating texturally homoge-
nous regions, but at the same time, working against the shape criterion, 
providing less compact or smooth boundaries for objects. 

Further to its better vectorization, eCognition has better shaped bounda-
ries, which is a clue that the shape weights of this algorithm are valued un-
equally or that additional embedded heuristics are involved. In both sys-
tems, MSEG (with or without texture) and eCognition, the thematic cate-
gory boundaries are well respected by the segmentations. 
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Fig. 3. Segmentation result as provided by texture-based MSEG for scale parame-
ter 400 and texture parameter 2.0 (left) and for scale parameter 400 and texture pa-
rameter 1.0 (right) 

 
In a further step of evaluation (Figure 4), the result of eCognition for the 

scale value of 20 is comparable to the result provided by the texture-based 
MSEG when a very large (2500) scale parameter was used (so that the 
scale parameter would not significantly interfere with the final mean object 
size) and the texture parameter was set to 3.0. The texture-based MSEG re-
sult is very good especially inside the urban areas, where there are com-
plex texture patterns. There, it merged the object primitives in such a way, 
so that to provide larger homogenous objects in comparison to eCognition 
or the simple MSEG. 

 

 
Fig. 4. Segmentation result by eCognition for scale parameter 20 (left) and tex-
ture-based MSEG for scale parameter 2500 and texture parameter 3.0 (right) 

 
Also, in Figure 3, the difference of segmentation results is shown, when 

only the texture parameter is changed. Smaller texture parameter provides 
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smaller primitive objects. It should be noticed that texture free objects, like 
the very bright white areas in the image, don’t get affected by the texture 
parameter change, as expected. 

A final step of evaluation included testing the segmentation algorithms 
with a very high resolution remotely sensed image. A digital multispectral 
image from an aerial scanner (Toposys GmbH) with resolution of 0.5m 
was used. This image was selected because outperforms in resolution all 
commercial satellite data available today.  

In Figure 5, the results of the eCognition algorithm with scale parame-
ters 15 and 25 are presented. These results are very good, especially across 
the road outlines. The areas of interest in this test were those with complex 
texture, e.g. the mixed grasslands. The results of eCognition for these areas 
are the most over-segmented. 

 

  
Fig. 5. Segmentation result by eCognition for scale parameters 15 (left) and 25 
(right) 

 
In Figure 6, the simple MSEG results are shown for scale parameters 

400 and 700. As before, the results are good especially across the building 
and road edges. Scale parameter 400 provides very over-segmented result 
and seems to be the most sensitive to color heterogeneity. For scale pa-
rameter 700 the result is better, especially in the complex texture areas, but 
eCognition has better results on road edges. It can be concluded after ex-
tensive testing of both algorithms, that the color and shape criteria are not 
optimized in the same way, thus many differences occur in the shapes of 
primitive objects. 
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Fig. 6. Segmentation result by simple MSEG for scale parameters 400 (left) and 
700 (right) 

 

  
Fig. 7. Segmentation result by Texture-based MSEG for scale parameters 400 
(left) and 2500 (right) 

 
In Figure 7, the Texture-based MSEG results are shown for scale pa-

rameters of 400 and 2500. For the scale parameter 400 test, a strict texture 
parameter of 1.0 was used, so that to demonstrate the capability of the al-
gorithm to locate even the smallest differences in texture. This can be ob-
served in the left-center area of the image, where there is a mixture of bare 
land with grassland. Thus a small texture parameter provides significant 
over-segmentation of the region. For the scale parameter 2500 test, this 
high value was used in order to provide freedom to the algorithm to reach 
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to a result that was based only to texture parameter (3.0). The results were 
better than those of eCognition and of the simple MSEG in the complex 
textured areas. Again, the eCognition segmentation algorithm outperforms 
MSEG on the road edges, but results are very close. 

Table 1.  Segmentation Parameters 

 Algorithm Scale 
Parameter

Color Compact-
ness 

Smooth-
ness 

Texture 
Parameter 

Fig.2 eCognition 10 0.7 0.6 0.4 - 
 MSEG 400 0.7 0.6 0.4 - 
Fig.3 Tex.MSEG 400 0.7 0.6 0.4 2.0 
 Tex.MSEG 400 0.7 0.6 0.4 1.0 
Fig.4 eCognition 20 0.7 0.6 0.4 - 
 Tex.MSEG 2500 0.7 0.6 0.4 3.0 
Fig.5 eCognition 15 0.7 0.6 0.4 - 
 eCognition 25 0.7 0.6 0.4 - 
Fig.6 MSEG 400 0.7 0.6 0.4 - 
 MSEG 700 0.7 0.6 0.4 - 
Fig.7 Tex.MSEG 400 0.7 0.6 0.4 1.0 
 Tex.MSEG 2500 0.7 0.6 0.4 3.0 

4 Conclusions and future work 

Overall, the designed image segmentation algorithm, gave very promising 
segmentation results for remote sensing imagery. With the addition of the 
Advanced Texture Heuristic module, it was shown to be a good and ge-
neric segmentation solution for remote sensing imagery. The boundaries of 
the primitive objects extracted in each case were compatible with those of 
the semantic objects. Thus, for object oriented image analysis, the texture-
based MSEG is qualified as a successful low level processing algorithm. 

MSEG has however some disadvantages that have to be further investi-
gated. Its shape heterogeneity criteria are not quite effective and must be 
further tested and optimized to provide better results.  

Future developments for the MSEG include integration of the algorithm 
with higher level artificial intelligence and pattern recognition methods for 
classification. Part of this integration with Support Vector Machines is pre-
sented in (Tzotsos and Argialas 2007). 
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ABSTRACT: Stand delineation is one of the cornerstones of forest in-
ventory mapping and a key element to spatial aspects in forest manage-
ment decision making. Stands are forest management units with similarity 
in attributes such as species composition, density, closure, height and age. 
Stand boundaries are traditionally estimated through subjective visual air 
photo interpretation. In this paper, an automatic stand delineation method 
is presented integrating wavelet analysis into the image segmentation 
process. The new method was developed using simulated forest stands and 
was subsequently applied to real imagery: scanned aerial photographs of a 
forest site in Belgium and ADS40 aerial digital data of an olive grove site 
in Les Beaux de Provence, France. The presented method was qualitatively 
and quantitatively compared with traditional spectral based segmentation, 
by assessing its ability to support the creation of pure forest stands and to 
improve classification performance. A parcel/stand purity index was de-
veloped to evaluate stand purity and the expected mapping accuracy was 
estimated by defining a potential mapping accuracy measure. Results 
showed that wavelet based image segmentation outperformed traditional 
segmentation. Multi-level wavelet analysis proved to be a valuable tool for 
characterizing local variability in image texture and therefore allowed for 
the discrimination between stands. In addition, the proposed evaluation 
measures were found appropriate as segmentation evaluation criteria. 
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1 Introduction 

Forest stands are the basic units of management and are generally defined 
as spatially continuous units of uniform species composition, stem density, 
crown closure, height and age (Leckie et al. 2003). Correct tree species 
identification for example is essential for forest management and in appli-
cations such as species-specific growth models. The calculation of timber 
volumes is also usually species specific. Traditionally stand boundaries 
have been estimated through air photo interpretation. Visual interpretation 
however is subjective and can be ameliorated by numerical interpretation 
through automated image processing (Haara and Haarala 2002, Wulder et 
al. 2007). New mapping techniques are subject of research in terms of im-
proved speed, consistency, accuracy, level of detail and overall effective-
ness (Leckie et al. 2003). Several techniques have been developed but 
most of them are designed for automated tree isolation e.g. Gougeon 
(1995a,b), Culvenor (2002), Larsen (1997) and Warner et al. (1998). Sub-
sequent stand delineation based on individually outlined trees is less de-
veloped but has been extensively studied by Leckie et al. (2003). Another 
possibility is the automatic delineation of stands based on image segmenta-
tion. Hay et al. (2005) introduced MOSS (Multiscale Object-specific Seg-
mentation) and showed that it can be used to automatically delineate a 
range of objects from individual tree crowns to forest stands.  

This chapter presents a method aiming at forest stand1 delineation by 
wavelet based image segmentation. In its development stage, the method 
uses artificially simulated images representing forest stands that differ in 
species composition, stem density, crown closure, height and age class. 
The proposed method addresses tree stand delineation and not the extrac-
tion of other stand attributes. The method is applied to ADS40 digital ae-
rial photographs with a spatial resolution of 50cm and to scanned color-
infrared aerial photographs with a resolution of 1m. 

2 Artificial imagery 

The use of simulated remotely sensed imagery derived from artificially 
generated tree stands offers several advantages. First, artificially generated 
stands serve as initial test cases with complete freedom of design in terms 

                                                      
1  Throughout this paper, the term stand will be used to identify an ensemble of 

trees, independent of the stand type. A stand thus represents as much a (semi) 
natural forest stand as a homogeneous area covered by olive or fruit trees. 
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of species composition, stem density, crown closure, height and age. Sec-
ondly, the need for validation data is alleviated since stand attributes are 
known in advance. Thirdly, there is total control over illumination condi-
tions, viewing geometry and spatial resolution. Finally, the resulting im-
ages are not disturbed by atmospheric or sensor noise. As a consequence, 
keeping spatial resolution, illumination conditions and viewing geometry 
constant, errors in stand delineation are exclusively due to algorithm per-
formance.  

The generation of artificial remote sensing data is a two step process. 
First, a three dimensional artificial forest is generated. Afterwards this 3D 
model is illuminated using a ray-tracing model, and the sensor response is 
determined. The basic units of artificial forests or stands are artificial trees. 
Trees are characterized by a number of randomly distributed variables. Ta-
ble 1 and Fig. 2.1 provide an overview of the random variables that control 
artificial tree generation. Crown projections are modeled as composed 
quarters of ellipses, and the crown itself is constructed by rotating an arbi-
trary function connecting the crown projection envelop with the tree top 
around the central axis of the tree.  

2.1 Generation of artificial stands 

Before stand generation starts, a number of artificial tree types are defined 
by choosing specific values for the parameters of the random distributions 
and the crown shapes shown in Table 1 and Fig. 2.1. A half-ellipsoid (di-
lated sphere) was used to model a generic broadleaf tree type, and a semi-
cone was applied to model a generic conifer tree type. Additionally, it is 
necessary to define the allowed overlap or intersection between trees. In 
this study, the admitted overlap is a fixed fraction of the area of intersec-
tion between two crown projections. This parameter controls crown cover 
and, together with the crown radii, determines stand density (number of 
trees/ha). 
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Table 1. Overview of the random variables and the associated probability distribu-
tions that control artificial tree generation 

Variable Distribution Symbol in Fig. 2.1  
Stem height normal Hs 
Crown height normal Hc 

Stem diameter normal Ds 

Crown shape half sphere / semi-conical  
Crown radii normal d1, d2, d3, d4 
Stem position uniform (x,y) 
Orientation uniform a 
Spectral characteristics normal  

 

 
Fig. 2.1 Right: crown shapes used to model artificial tree types. Left: the artificial 
tree model 

 
Once the artificial tree types are defined, a random grid is generated. 

Every cell in the grid is assigned a random value, corresponding to one of 
the generated artificial tree types. This grid is used to spatially constrain 
the uniformly distributed stem position of the trees. Stand/forest generation 
starts by randomly selecting an artificial tree type. A random candidate 
tree is then drawn from the probability distributions defined by the random 
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tree type (Table 1). If the position of the random tree is within one of the 
grid cells corresponding to the selected tree type, it is checked whether the 
candidate tree satisfies the overlap constraint by calculating the area of 
crown projection overlap with every tree already in the forest. If no over-
lap constraints are violated, the tree is added to the artificial stand/forest. 
This process continues until a fixed number of consecutive candidate trees 
fails to meet the positional or overlap constraints. 

2.2 Illumination of artificial stands 

Once an artificial forest is generated, it needs to be converted to a simu-
lated remotely sensed image. This is achieved by using a naïve ray-tracing 
method. The sun’s position is set to its position on June 15, at 11h30 (azi-
muth=145°, elevation=59°) in Brussels, Belgium. The sensor’s viewing 
angle is fixed at 20.5°. The image is then processed using the POV-Ray 
Persistence of Vision Pty. Ltd. (2004) software. The spectral characteris-
tics are chosen in such a way that the rendered RGB images correspond to 
respectively the near-infrared, red and green band of an IKONOS image. 
Spectral characteristics are derived from ex-situ measurements of Pinus 
nigra. Even though the generated scenes are assumed to contain both 
broadleaves and conifers, all trees are assigned the Pinus nigra spectral 
profile. This way, artificial tree types can only be distinguished based on 
structural characteristics. 

3 Wavelets transforms 

Wavelets have been used in a variety of remote sensing applications rang-
ing from image fusion (Park and Kang 2004), over noise and speckle re-
duction (Sgrenzaroli et al. 2004), data compression (Zeng and Cumming 
2001), sub-pixel mapping/sharpening (Mertens et al. 2004) to the analysis 
of image texture (Dekker 2003, Li 2004, Kandaswamy et al. 2005). Wave-
let transforms reconstruct or decompose signals (i.e. images) by using a 
superposition of translated, dilated and scaled versions of certain basis 
functions (Mallat 1999). Although there exist a large number of wavelet 
functions, in this study wavelets from the Daubechies family (Daubechies 
2004) are used. The fast discrete wavelet transform presented by Mallat 
(1999) is implemented. In the algorithm, a discrete signal is decomposed in 
a lower scale approximation signal A and detail signal D. Extending this 
one-dimensional case to two dimensions (by considering rows and col-
umns consecutively), four new images are obtained: a single approxima-
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tion image and a horizontal, vertical and diagonal detail image, all at 
coarser scales. The applied wavelet transform is described in detail in Ver-
beke et al. (2006). For a comprehensive discussion of wavelet analysis, the 
reader is referred to Daubechies (2004) and Mallat (1999). 

The fundamental idea behind wavelets is to analyze according to scale. 
As multi-resolution wavelet transforms decompose an image into a set of 
approximation and detail images at coarser scales, they are able to charac-
terize local variability within an image at different spatial resolutions. In-
tuitively, stand boundaries are expected to be “highlighted” in several 
coarser detail images as they represent high local variability. Using this lo-
cal variability, represented by the wavelet coefficients as a basis for image 
segmentation, wavelet analysis is expected to allow for discrimination be-
tween forest stands. 

4 Materials 

The wavelet based segmentation method was developed using artificial 
forest stands generated as described in Section 2. Several artificial forests 
were rendered with a spatial resolution of 20cm. Both grid sizes and artifi-
cial tree types varied. Small 3x1 grids (containing 3 grid cells) were used, 
as well as large 10x10 grids (comprising 100 grid cells). The number of ar-
tificial tree types varied, according to the grid size, from 3 to 10.  

Next the method was applied to real imagery. The first dataset consists 
of a digital aerial image acquired by the ADS40 Airborne Digital Sensor of 
an olive grove site in Les Baux de Provence, France. A patchy landscape 
of olive tree stands and wineyards typifies this area. The ADS40 captures 
imagery seamlessly along the flown strip, eliminating tedious mosaicing of 
numerous individual images. The ADS40 dataset comprises panchromatic 
and multispectral (blue/green/red/near-infrared) data at a spatial resolution 
of 50cm. The second image dataset covers a forest site in Flanders, Bel-
gium. The site is characterized by a mixture of soft- and hardwood stands. 
Seven color-infrared aerial photographs (scale 1:5000, acquisition date: 
October 1987) were scanned, ortho-rectified and mosaiced yielding an im-
age dataset with a very high spatial resolution of 20cm. The dataset was 
degraded to a spatial resolution of 1m to cut down computational time. 
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5 Method 

5.1 Wavelet based image segmentation 

The new method is an image segmentation procedure consisting of a seg-
mentation and a merging step. The method starts with a three-level wavelet 
decomposition (using the Daubechies 4 wavelet) of the three-band artifi-
cial input image, for each spectral band resulting in four new images (a 
single approximation and three detail images) at three different scale levels 
(2, 4 and 8, corresponding to spatial resolutions of resp. 40, 80 and 120cm) 
(Fig 5.1).  

 

 
Fig. 5.1 Visual impression of the derived layers from the wavelet transformation 
of the first band (B1) of an artificial RGB image (with a spatial resolution of 
20cm). The 3-level wavelet decomposition results in approximation (A) images, 
horizontal (H), vertical (V) and diagonal (D) detail coefficients at spatial resolu-
tions of resp. 40, 80 and 120cm 

 
Based on 9 (3 bands x 3 scale levels) approximations and 27 (3 bands x 

3 details x 3 scale levels) detail coefficients, an image segmentation is per-
formed. The applied segmentation algorithm is the one introduced by 
Baatz and Schäpe (2000), which is implemented in the eCognition soft-
ware tool (eCognition 2000). It is a bottom-up region merging technique 
and is therefore regarded as a region-based algorithm. The algorithm starts 
by considering each pixel as a separate object. Subsequently, pairs of ob-
jects are merged to form larger segments. Throughout this pairwise cluster-
ing process, the underlying optimization procedure minimizes the 
weighted heterogeneity nh  of resulting image objects, where n  is the size 
of a segment and h  an arbitrary definition of heterogeneity. In each step, 
the pair of adjacent image objects which stands for the smallest growth of 
the defined heterogeneity is merged. If the smallest growth exceeds a user-
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defined threshold (the so-called scale parameter s ), the process stops. The 
procedure simulates an even and simultaneous growth of the segments 
over a scene in each step and the algorithm guarantees a regular spatial dis-
tribution of the treated image objects. In this segmentation step, the algo-
rithm utilizes spectral and shape information to extract spatially continu-
ous, independent and homogeneous regions or image objects. The overall 
heterogeneity h  is computed based on the spectral heterogeneity colorh  and 
the shape heterogeneity shapeh  as follows  

 ( )   ·   1 -  · color shapeh w h w h= +  (5.1) 

where w  is the user defined weight for color (against shape) with 
0 1.w≥ ≥  Spectral heterogeneity is defined as 

( )( )1 2
1 2

  
c
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where cw  are the weights attributed to each channel and cσ  are the stan-
dard deviations of the spectral values in each channel. The standard devia-
tions themselves are weighted by the object sizes n .  

Shape heterogeneity consists of two subcriteria for smoothness and 
compactness  

( )1shape cmpct cmpct cmpct smoothh w h w h= ⋅ + − ⋅  (5.3) 

Change in shape heterogeneity caused by a merge m  is evaluated by 
calculating the difference between the situation after and before the merge, 
with 
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(5.5) 

For segmentation, w  is initially set to 0.8, cmpctw  receives a value of 
0.1. All 36 input channels are weighted equally by setting each individual 
layer weight cw  to a value of 1. The scale parameter s  is set to a rather 
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small value resulting in an over-segmentation (the ensuing segments are 
referred to as sub-objects). The idea is to create homogeneous objects in 
terms of color and shape (the latter by reduction of the deviation from a 
compact or smooth shape).  

Next, merging operations are performed. In this step, sub-objects are 
merged into larger image objects based on the defined heterogeneity crite-
rion. This time only color information is included by setting w  to a value 
of 1. Based on wavelet approximation and detail images at three scale lev-
els (2, 4 and 8), sub-objects are merged gradually resulting in image seg-
ments corresponding to different forest stands. 

5.2 Evaluation 

The presented method is qualitatively and quantitatively evaluated against 
traditional image segmentation i.e. segmentation based on the images’ 
spectral information. Segmentation parameters were optimized for both 
approaches (wavelet based versus spectral based) enabling a qualitative 
and quantitative evaluation of the methods’ best results. Qualitative 
evaluation consists of visual inspection, whereas a quantitative assessment 
is performed using two segmentation evaluation measures: the Purity In-
dex (PI) and the Potential Mapping Accuracy (PMA). Both measures are 
introduced below. 

Stand Purity Index 

As stand delineation is the objective, image segments should be smaller or 
equal to stands. Segments should not exceed parcel2 boundaries as they 
then contain information of neighboring stands. A simple measure to as-
sess stand purity is therefore introduced and is called the Purity Index (PI). 
Pure parcels feature a PI of 1, impure parcels have a PI close to 0. The pu-
rity of a parcel p is defined as: 

2

1 . .

( )
S

ip

i i p

a
PI p

a a=

=
×∑  

(6.1) 

                                                      
2  A parcel is a unit of land under unified ownership. The Purity Index is intro-

duced to measure the purity of parcels in general. When a parcel contains trees, 
PI evaluates the stand purity. 
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with S  the number of segments, ipa  the area of segment i  intersecting 

parcel p , .ia  the total area of segment i , and . pa  the total parcel area. An 
example of purity calculation is given in Fig. 6.1. 

 

 
Fig. 5.2 An example of PI calculation. Both segments 1 and 2 intersect parcel I. 
Suppose parcel I, segments 1 and 2 consist of respectively 10, 5 and 10 pixels. 
According to Eq. 6.1, the purity index of parcel I equals 0.75, representing a rather 
impure parcel 

Potential Mapping Accuracy 

Subsequent to segmentation, image segments are typically classified into 
categorical maps, representing forest/non-forest cover, forest type or, if 
possible, tree species composition. Apart from supporting the delineation 
of pure forest stands, it is also important that segmentation facilitates or 
corroborates future image classification. To evaluate and quantify the 
value of a segmentation result for future classification, the Potential Map-
ping Accuracy (PMA) is introduced. This measure assesses the highest 
feasible overall classification accuracy using a reference dataset:  

T
CPMA max=  

(7.1) 

with T the total number of reference pixels and 
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6 Results and discussion 

6.1 Artificial imagery 

Qualitative evaluation 

Fig. 6.1 (left) shows the expected stand delineation for a 10x10 grid filled 
with 6 artificial tree types. Note that the squared tree stands cut through 
existing tree crowns which is directly related to the tree stand generating 
process described in Section 2.1.  Artificial trees are added to a grid cell 
based on their stem positions and taking into account the crown overlap 
constraints. As a consequence tree crowns may overlap the squared stand 
boundaries. On the right, the result of the developed method is depicted. 
The wavelet layers used in the segmentation process are visualized in Fig. 
5.1. Wavelet based segmentation first produces a huge amount of sub-
objects that are subsequently merged, forming homogeneous objects corre-
sponding to the desired forest stands, as outlined by the predefined grid. 
Fig. 6.2 shows the discrimination between 4 artificial forest stands in more 
detail.  

Running the segmentation process based on spectral information instead 
of wavelet texture leads to poor stand delineation results (Fig. 6.3). As all 
artificial trees were assigned the spectral profile of Pinus nigra, all artifi-
cial forest stands had similar spectral characteristics and could therefore 
only be distinguished based on structural features. By incorporating wave-
let analysis into the segmentation method, the high local variability repre-
sented by stand boundaries is fully exploited at different spatial resolutions 
(wavelet scale levels). Even when the artificial forest stands are not spec-
trally discernable, wavelet based image segmentation leads to a (at least 
visually) satisfactory stand delineation. 

Quantitative evaluation 

To evaluate the segmentation results quantitatively, the stand purity index 
PI was calculated for all 66 artificial stands. Mean PIs for all segments, per 
segmentation level, were computed and the results are shown in Fig. 6.4. It 
is concluded that segmentation based on the wavelet coefficients produces 
on average purer forest stands compared to segmentation established with 
the image’s spectral characteristics. 
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Fig. 6.1. Left: part of an artificially generated forest comprising 66 stands (10x10 
grid) of 6 different artificial tree types. The white grid represents the expected 
stand delineation. Right: wavelet based image segmentation resulting in 64 artifi-
cial forest stands 

 

 
Fig. 6.2. Detail of stand delineation. Left: expected result, right: obtained result 

 

 
Fig. 6.3. Left: part of the artificially generated forest. The white grid represents 
the expected stand delineation. Right: segmentation based on image bands’ spec-
tral information 

In its initial stage, the method results in a large amount of sub-objects, 
which are further merged through several consecutive merging steps. As 



Semi-automated forest stand delineation using wavelet based segmentation      249 

initial sub-objects are small and do not cross forest stand boundaries, both 
wavelet and spectral based stand purities are high. However, as merging 
proceeds (and the number of segments decreases), wavelet based stand pu-
rities are markedly higher than spectral based PIs. In other words, through-
out the merging steps, wavelet based image segments keep within forest 
stands without exceeding stands boundaries too much. Consequently, re-
sultant segments respect the stand edges, tending to purer forest stands. 

Next to supporting pure forest stands, the segmentation method is evalu-
ated on its ability to induce high classification performances. Does the un-
derlying segmentation represent the ideal starting situation for classifying 
all segments into 6 forest stand types? Potential Mapping Accuracies 
(PMA) are therefore computed reflecting the highest feasible overall clas-
sification accuracy. Fig. 6.5 (left) shows that wavelet based segmentation 
results in higher potential mapping accuracies compared to spectral based 
segmentation, especially when merging proceeds, that is, when the number 
of segments decreases.  
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Fig. 6.4 Average stand purity index in function of the number of image segments 
for wavelet and spectral based segmentations of the artificial imagery 
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Fig. 6.5 Left: Potential Mapping Accuracy as function of the number of segments. 
Right: Mean overall accuracies for subsequent merging steps 
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To check whether this holds for actual classifications, the artificial scene 
(10x10 grid) is classified using a feed-forward backpropagation neural 
network. Segments are classified based on the per segment mean and stan-
dard deviations of the spectral input bands (green, red and near-infrared). 
In total 6 artificial tree/stand types are discriminated. Hence, the applied 
network features a three-layered architecture with 6 input neurons, 10 hid-
den units and 6 output neurons. A hyperbolic tangent activation function is 
used. As network initialization is a critical issue and influences network 
performance, neural network classification is repeated 20 times. Mean 
overall accuracies are computed on a per pixel basis. Fig. 6.5 (right) shows 
the overall accuracies for wavelet based and spectral based classifications. 

From comparison of the left and right graphs of Fig. 6.5, it is obvious 
that mean overall accuracies are lower than PMAs, both for the wavelet 
and spectral based approaches. The PMAs reflect the highest feasible 
mapping accuracy. As stated in section 2 all trees were assigned the Pinus 
nigra spectral profile. Consequently, the artificial tree types can only be 
distinguished based on structural characteristics, and therefore mean over-
all accuracies are expectedly low. The right side of Fig. 6.5 shows that, 
throughout the merging process, the wavelet based mean overall accura-
cies are roughly higher than the spectral based mean accuracies. However, 
when merging proceeds and results in only tens of rather large segments, 
the number of training samples drastically drops beyond a critical level and 
the neural network classifier is unable to learn the problem. At that point, 
the mean overall accuracy is low for both the wavelet and spectral based 
approaches. 
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Fig. 6.6 The relation between the difference (wavelet based vs. spectral based) in 
PMA and the difference in mean overall accuracy for the artificial image 

 
Classifier performance is affected by several processes: the accuracy is a 

function of the training set size, the quality of the segmentation and the 
separability of the dataset. So we do not expect the mean overall accuracy 
to behave exactly as the potential mapping accuracy that only depends on 
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the segmentation quality. Still, the accuracy curves are expected to move 
away from each other. Ignoring the utmost right point, this trend is roughly 
discernable. The tendency however is not very clear because of the diffi-
culty of the classification problem. This is illustrated in the scatter plot 
shown in Fig. 6.6. It is assumed that the relation between the difference in 
PMA and the observed difference in overall accuracy will be stronger for 
easier classification problems. 

6.2 Real Imagery 

The method reported above is applied to two real datasets: one covers an 
olive grove site in Les Baux de Provence, France, the second dataset ad-
dresses a forest site in Flanders, Belgium. 

Qualitative evaluation 

Although trees in both image datasets are spectrally different, the 
(sub)meter resolution induces stands with high and sometimes similar 
spectral heterogeneity. Because of the plant distance of olive trees (which 
is higher than the image spatial resolution), olive tree stands feature espe-
cially high spectral heterogeneity. Spectral based segmentation of such im-
agery is likely to fail and leads to branched segments with a irregularly-
shaped borderline traversing several stands (Fig. 6.7 top). In such cases 
multi-level wavelet decomposition is advantageous (Fig. 6.7 bottom) since 
variability is characterized locally.  

Quantitative evaluation 

Fig. 6.8 clearly shows that wavelets are well-suited for approximating data 
with sharp discontinuities like stand boundaries. For both real datasets, re-
sultant segments consequently respect more the stand edges tending to 
purer stands. 

Both spectral and wavelet based segmentation methods are evaluated on 
their power to guarantee high classification performances. Because of the 
lack of reference data for the forest site in Belgium, potential mapping ac-
curacies are only computed for the olive grove site in France. Fig. 6.9 (left) 
shows that wavelet based segmentation results in higher potential mapping 
accuracies compared to spectral based segmentation. The quality of the 
wavelet based segmentation is therefore assessed higher. 
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Fig. 6.7 Top: detail of spectral based segmentation of the olive grove site (left) 
and the forest site (right). Bottom: detail of wavelet based segmentation of the 
same sites 
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Fig. 6.8 Average purity indexes for the olive grove site (left) and the forest site 
(right) 
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Fig. 6.9 Potential mapping accuracy and mean overall classification accuracy 

 
To test whether PMA can be used to predict actual classification accu-

racy, 20 neural networks are trained to classify the scene into olive/non-
olive parcels. This time the networks have 6 inputs, 10 hidden units and 2 
output neurons. In Fig. 6.9, it can be observed that the mean overall accu-
racies are generally lower than PMAs, both for the wavelet and spectral 
based approaches. Hence, the PMAs can be interpreted as reflecting the 
highest possible mapping accuracy. Again the mean overall accuracy 
curves are expected to move away from each other. Here this trend is 
clearer than in the case of the artificial imagery, as indicated by the scatter 
plot shown in Fig. 6.10. It is assumed that this is due to the less compli-
cated classification problem. 
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Fig. 6.10 The relation between the difference in PMA and the difference in mean 
overall accuracy for the olive grove site 

7 Conclusion  

This paper presents a new segmentation method to delineate stands from 
very high resolution optical imagery. The method was developed using ar-
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tificially generated forest stands and was applied in a later stage to real im-
agery. The proposed method starts with multi-level wavelet decomposi-
tion. Based on the wavelet approximation and detail images, a segmenta-
tion is performed. The results indicated that wavelet based image 
segmentation outperforms traditional segmentation, i.e. segmentation 
based on spectral properties, when forest stands are similar in terms of 
spectral characteristics, but different in terms of textural properties. Multi-
level wavelet analysis proved to be a valuable tool for characterizing local 
variability in image texture and therefore allows for the discrimination be-
tween stands. To evaluate the segmentation results, two measures were de-
veloped. The stand purity index was introduced to evaluate whether the 
segmentation method supports pure stands. The potential mapping accu-
racy, on the other hand, was presented to evaluate the segmentation 
method on its power to guarantee high classification performances. Both 
measures were found to be appropriate as segmentation evaluation criteria. 
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Quality assessment of segmentation results 
devoted to object-based classification 
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ABSTRACT: Object-based image analysis often uses image segmenta-
tion as a preliminary step to enhance classification. Object-based classifi-
cation therefore relies on the quality of the segmentation output. This study 
evaluates the relevance of quantitative segmentation quality indices to ob-
ject-based classification. Image segmentation is expected to improve the 
thematic accuracy of classification but the counterpart is an increased 
chance of boundary artefacts. Goodness indices were used to assess the 
former while discrepancy indices evaluated boundary quality. Inter-class 
Bhattacharyya distance was used to test the relevance of the goodness in-
dices. The results showed that the use of global goodness indices, which 
did not require a priori information about the study area, was relevant in 
the case of object-based classification. In this context, the goodness index 
based on intra-class standard deviation was more useful than the one based 
on mean object size. On the other hand, it was shown that object size im-
proved class discrimination but this could deteriorate the boundary quality. 
The use of complementary discrepancy indices is therefore required in the 
case of frequent under-segmentation.  

1 Introduction 

Image segmentation is a major low level task in the context of object-
based image analysis (Soille 2000; Marr 1982). The complementary high 
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level tasks are either object recognition or object-based image classifica-
tion. In the former, the algorithm identifies groups of pixels belonging to 
specific objects (e.g. Inglada 2005; Leckie et al. 2003). In the latter, mean-
ingful groups of pixels are generated in the entire image with the aim of 
classifying images beyond pixel-based classification (e.g. Wang 2002).  

Previous studies on object-based image classification highlighted the 
key advantages of this approach compared with pixel-based classification 
(e.g. Almeida-Filho and Shimabukuro 2002; Lobo et al. 1998). First, it 
avoids the salt-and-pepper effect likely to occur in classifications of tex-
tured images (Wulder et al. 2004). Second, it improves the classification 
results thanks to more robust descriptors (e.g. mean of spectral values and 
texture indices) (e.g. Pekkarinen 2002). Third, it suits object reasoning and 
the use of new characteristics such as shape, topology and context (e.g. 
Hay et al. 2003). However, image segmentation is an additional step which 
has its drawbacks (Munoz et al. 2003): Object boundaries can be irregular 
or incorrectly located, and one group of pixels may envelop different land 
cover due to under-segmentation.  

Considering the large number of existing segmentation algorithms and 
their versatility (e.g. Guigues et al. 2006; Baatz and Schäpe 2000; Jung 
2007; Hay et al. 2003; Pal and Pal 1993; Zhang 1997), the choice of an ap-
propriate segmentation algorithm must rely on objective methods to assess 
segmentation quality. The performance of segmentation comparison meth-
ods was evaluated by Zhang (1996) in the context of object recognition. 
He identified three types of quality assessment methods, namely analytical 
comparison, empirical goodness and empirical discrepancy, and concluded 
that empirical discrepancy indices were the most effective. In remote sens-
ing, recent studies assessed object recognition applications (building or 
field detection) using object-based indices instead of pixel based (Zhan et 
al. 2005; Möller et al. 2007). Möller et al. (2007) used over- and under-
segmentation indices to find an optimal segmentation parameter. Over- 
and under-segmentation indices were also used to assess image segmenta-
tion results in the context of object-based classification of land cover maps 
(Carleer et al. 2005), but the relevancy of the metrics was not assessed in 
this case.     

This paper assesses quantitative indices for the comparison of segmenta-
tion results in the context of object-based classification. According to the 
advantages and the disadvantages of object-based classification, one group 
of indices is used to evaluate how much the classification could be im-
proved thanks to segmentation and a second group assessed the positional 
quality of the boundaries of the delineated land cover classes. The method 
was illustrated on real segmentation of a Quickbird image using a combi-
nation of three parameters of the same segmentation algorithm.  
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2 Segmentation quality indices  

Section 2.1 aims at quantifying how much the segmentation step could en-
hance a standard classification (e.g. maximum likelihood, kNN) compared 
with pixel-based approaches. Global indices are proposed because com-
prehensive reference data is not available in practice for mapping applica-
tion. The sensitivity of these indices to segmentation parameters is evalu-
ated and their reliability as indicator of class discrimination is tested thanks 
to a pair wise class distance metric using a priori information. On the other 
hand, complementary indices are proposed in section 2.2. Those are dis-
crepancy indices that estimate the errors along the edges.  

2.1 Quality of object characteristics 

In object-based classification studies, it is expected from object character-
istics to be more reliable than pixel characteristics. Indeed, it has been 
shown that replacing the values of pixels belonging to the same cluster by 
their means reduced the variance of the complete set of pixels (See Huy-
gens’ theorem in Edwards and Cavalli-Sforza 1965). In other words, large 
groups of pixels in an image contribute to the reduction of the variance. 
Assuming that small intra-class variance improves parametric classifica-
tion, indices based on the mean object size, already used to assess over- 
and under- segmentation in object recognition studies, are good candidates 
for object-based classification. The Inverse of the Number of Object (INO) 
was used as a first quantitative goodness index.  

The second global goodness index was based on the same assumption 
but was a direct measure of the class uniformity. The Normalized Post 
Segmentation Standard deviation (NPSS) was computed after replacing 
each pixel value by the mean values of its parent object and normalized by 
the pixel-based standard deviation (equation 1) in order to be bounded by 
zero (single object) and one (pixel level).  
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where ix   is the object mean, no the number of objects and in  the number 
of pixels included in the ith object. 

As a matter of fact, the reduction of the global variance does not guaran-
tee the success of a classification. Actually, global variance reduction does 
not impel a variance reduction in all classes. The global NPSS was there-
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fore compared with class based NPSS. Moreover, the assumption that a 
small intra-class variance improves the classification result is not always 
verified: large variance difference between two classes (for instance, bi-
modal versus unimodal distributions) can improve classification, and a 
shift of the mean class values may reduce their separability. A dissimilarity 
metric, the Bhattacharyya Distance (BD), was used in this study together 
with a comprehensive reference dataset to test the relevance of the pro-
posed goodness indices. Bhattacharyya Distance was chosen because it can 
give a bound on classification errors (Webb 2002) and has a term able to 
compare the covariance matrices. Furthermore, it can be used with any 
number of characteristics and takes the correlation between each character-
istic into account. Assuming the normal distribution of the variables (equa-
tion 2), it is interesting to note that it simplifies to exactly 1/8 of the Maha-
lanobis distance when the covariance matrices are equal: 

( ) ( )

⎥
⎦

⎤
⎢
⎣

⎡
ΣΣ⎟

⎠
⎞

⎜
⎝
⎛ Σ+Σ

+

−⎟
⎠
⎞

⎜
⎝
⎛ Σ+Σ

−=
−

||||/
2

||||log2
1

28
1

21
21

21

1
21

21 μμμμ TBD
 

(2) 

where iμ is the vector of mean values for class I and iΣ  the correspond-
ing covariance matrix, both estimated after weighting each object charac-
teristics by the object size in the class i, like in the case of NPSS. The 
Normalized Bhattacharyya Distance (NBD) was computed by dividing 
BDobject  by BDpixel .  

2.2 Quality of object boundaries 

The main drawbacks of segmentation algorithms are the artifact along the 
boundaries and the missing boundaries. These artifacts along the bounda-
ries were quantified using discrepancy indices in order to assess the final 
map precision. The positional quality of the edges was evaluated based on 
the concepts of accuracy and precision as described in Mowrer and 
Congalton (2000). Accuracy and precision were estimated respectively by 
the bias and the mean range of the distribution of boundary errors. Based 
on the method presented in Radoux and Defourny (2005), these values 
were derived after intersecting the image objects with the visually updated 
vector reference dataset from the NGI (fig.1). The area of the non-
matching polygons was counted as negative when it induced an underesti-
mate of the reference object area (omission error) and as positive in the 
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other case (commission error). The bias was calculated by adding the 
signed areas for each interface type in order to identify systematic com-
mission or omission errors. The mean range was defined as the sum of the 
unsigned area, minus the absolute value of the bias, to measure the occur-
rence and the size of deviations around the biased boundary location.  

 

Fig. 1. Errors along the edges of a segmentation output. Black polygons are omis-
sions (-) and  white polygons are commissions (+) with respect to class 1 

 
These two estimators were normalized by the total interface length in 

order to be expressed in map unit (i.e. meters) and to be independent of ob-
ject area and boundary length. Each bias and mean range was estimated 
from more than 3 000 polygons, giving a high reliability.    

3 Case study 

The sensitivity and the robustness of the quantitative indices were tested 
on 60 image segmentation results. The raw data was a Quickbird image 
which was segmented using combinations of three parameters of the multi-
resolution segmentation algorithm implemented in Definiens.       

3.1 Data and study area 

A study area located in Southern Belgium has been chosen for its frag-
mented landscape. It is a rural area including patches of crop fields, pas-
tures, sparsely urbanized areas and forests. This landscape is also charac-
terized by the presence of hedges and isolated trees.  

The 16 km² test site was covered by a cloud free multi-spectral Quick-
bird image of July 2006 and by a reference 1/10 000 vector database from 
the Belgian National Geographic Institute (NGI) updated on the field in 
2004. The Quickbird “Basic” image was orthorectified with ENVI soft-

Class 1 

Class 2
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ware. This was based on 13 ground control points from the NGI vector da-
tabase and on a digital elevation model built with 5 m contour lines. The 
root mean square error of the model was 2.4 m and the image was resam-
pled at 2.56 m using a cubic convolution.  

In order to have a reference land cover database that matches the image 
everywhere, NGI boundaries were visually updated on image boundaries 
using a geographic information system software. A constant scale of 
1/2 500 was used at this purpose. Furthermore, a new “shadow” class 
(Fig. 2) was added to the existing classes, which were “deciduous forest”, 
“mixed forest”, “coniferous forest”, “arable lands, meadows and pasture”, 
“lake” and “impervious area”. Finally, arable lands that were not covered 
by vegetation on the acquisition date were classified separately and a 
“miscellaneous” class was created to include all elements that did not be-
long to any of the above listed classes. The updated reference database was 
thus composed of 9 categories, and included 586 polygons leaving out the 
“miscellaneous”. Each object was labeled in one of these 9 classes using a 
majority rule according to the updated reference database.  

Shadow

Forest

Arable land

 
Fig. 2. Manually delineated shadow illustrated on a subset of the Quickbird im-
age. The dashed line corresponds to the NGI database 

3.2 Segmentation  

The segmentation algorithm implemented in Definiens® software (Baatz 
and Schäpe 2000) was used to illustrate the proposed quality indices. It 
uses 3 parameters that allow users to tune the segmentation outputs. This 
algorithm is based on region merging. Each pixel is first considered as a 
separate object. The merging decision is based on the weighted sum of lo-
cal color and shape homogeneity criteria: the pairs of objects with the 
smallest increase in heterogeneity are merged iteratively. The process ends 
when the smallest increase is above a user-defined threshold (scale pa-
rameter). The weight given to the shape constraint in the heterogeneity cri-
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terion is called shape parameter. A third parameter, the compactness pa-
rameter, constrains segments’ shape to be compact when it is large and 
smooth when it is small. 

Sixty combinations of the 3 parameters (scale = {10, 20, 30, 40, 50, 60}, 
shape = {0, 0.2, 0.4, 0.6} and compactness = {0, 0.5, 1}) were used for the 
segmentation of the multi-spectral image, including near-infrared, red and 
green bands. Obviously, a null shape parameter disabled the choice for a 
compactness parameter. Beside this, scale parameter values over 60 were 
tested in preliminary study but were not assessed because the under-
segmentation was too large. For each segmentation results, the mean re-
flectance values in the three spectral bands were computed. 

4 Results 

All reported below were computed for the entire dataset excepting the mis-
cellaneous class. The number of polygons produced by image segmenta-
tion ranged between 900 and 44 000, so that the ratio between the number 
of regions in the segmented image and the number of objects in the refer-
ence was between 0.65 and 0.01. The largest number of polygon corre-
sponded to the smallest scale and shape parameters. Section 4.1 displays 
the quality of object boundaries and section 4.2 includes the details about 
object characteristics. The models tested were limited to second order 
polynomials of multiple linear regression. 

4.1 Goodness indices 

The two goodness indices provided meaningful information about the 
segmentation results. However, global NPSS was more correlated than 
INO with the average of NBD on all the pairs of classes (R² = 0.97 against 
0.87). As shown in figure 3, the ranking between two segmentation results 
was only affected in the case of small differences in the case of global 
NPSS. These good results could be explained because the mean class val-
ues were not modified by the segmentation, except for water bodies due to 
the inclusion of small islands.    

The global NPSS index was sensitive on the segmentation parameters. 
As expected, object size was the major parameter: it explained more than 
80 % of the variance. The shape parameter also strongly contributed to the 
reduction of class variance. A multi-linear regression model (R² > 0.93), 
was built based on shape parameter, scale parameter and the product of 
these two parameters (figure 4). On the other hand, the type of shape con-
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straint had no significant influence (t-test, α = 0.05) in the main range of 
scale and shape parameters.  
 

0 0.5 1 1.5 2

x 10-3

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Global INO

M
ea

n 
N

B
D

0.8 0.85 0.9 0.95 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

Global NGU index
M

ea
n 

N
B

D

 
Fig. 3. Relationship between the goodness indices and the average NBD. Global 
INO (left) shows larger dispersion than global NPSS (right) 
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Fig. 4. Effect of scale and shape parameters on the global normalized post seg-
mentation standard deviation (NPSS) illustrated with the near-infrared 

 
Compared with the class based NPSS, the global NPSS proved to be ro-

bust with R² from 0.95 to 0.99 except in the case of water bodies and im-
pervious surface were it was close to 0.6. On the other hand, the effect of 

N
PSS index 
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segmentation on the per class NPSS could vary (figure 5), which shows a 
sensitivity of the segmentation algorithm to the land cover class.   
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Fig. 5. Impact of land cover type on the evolution of NPSS in the near-infrared. 

 
The results for BD between the main classes are illustrated together with 

the corresponding NBD (figure 6). This highlight some advantages of the 
segmentation that cannot be seen with NPSS: hardly separable classes 
achieve the best improvement compared with pixel-based classification, 
and this improvement was observable even for small scale parameters. 
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Fig. 6. Evolution of normalized (left) and absolute (right) Bhattacharyya distances 
illustrated for three pairs of land cover classes 

4.2 Quality of object boundaries 

The absolute boundary error was sensitive to the under-segmentation that 
mainly occurred for large scale parameters. The absolute boundary error 
index was also able to detect artifacts along the class boundaries. This re-
sulted in a high correlation (R² > 0.94) between the shape parameter and 
the absolute boundary error but there was no significant effect of the shape 
parameter. On the other hand, compactness parameter did not lead to linear 
effect, but it can be seen on table 1 that compactness induced on average a 
small reduction of the absolute errors. In fact, as could also be seen by vis-
ual assessment, the compactness parameter was only effective for large 
shape parameters. 

Table 1. Average of absolute errors (in meters) on boundary position between de-
ciduous and coniferous forests, for combination of segmentation parameters, i.e. 
scale parameter between 10 and 60 and compactness, illustrated for forest/arable 
land interfaces. 

Scale 10 20 30 40 50 60 Mean 
Smooth 2.3 3.4 4.1 4.7 5.3 5.7 4.3 
Mixed 2.2 3.2 3.8 4.3 4.8 5.3 3.9 
Compact 2.1 3.0 3.7 4.2 4.7 5.1 3.8 
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In any case, there was a strong effect of the class boundary type on the 
indices, as illustrated for two types of class boundaries in figure 7. A sig-
nificant bias in the delineated edge position was also highlighted. This bias 
was always below the pixel size but its contribution to the absolute errors 
was up to 30% in the case of large scale parameters. 

 

Fig. 7. Boundary errors for two types of boundaries with respect to scale parame-
ter. Deciduous/coniferous are on the left and forest/arable land on the right. The 
sums of bias and mean range correspond to the absolute error 

5 Discussion  

Global NPSS was more relevant than INO for the assessment of segmenta-
tion results. The high correlation between NPSS and BD indices corrobo-
rates the robustness of the former despites its simple formulation. How-
ever, global NPSS should be used in an appropriate frame to keep its 
relevance. Actually, it was designed to globally assess segmentation results 
used for multi-class classification of land cover/land use maps or the like. 
The effect of the segmentation on uniformity is different for each class.  
For instance, there is a small variance inside crop fields but there are dif-
ferent phenological states between fields, so that the reduction of intra-
class variance thanks to the segmentation is limited. On contrary, conifer-
ous forests are heterogeneous but the stands are similar across the all study 
area. For the main classes, the ranking between segmentation results is not 
affected by these differences. However, when looking at a specific class 
covering a small percentage of the entire study area, e.g. water bodies, or 
composed of objects close to the spatial resolution of the image, e.g. build-
ings, the indices developed for object recognition assessment (e.g. Zhan 
2005) are more appropriate. Another restriction on the use of global indi-
ces alone is the presence of large delineation errors (i.e. missing or irregu-
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lar boundaries). In this case, the use of a complementary discrepancy index 
is necessary. 

The proposed boundary quality indices measured the discrepancy along 
the border and were sensitive to under-segmentation. It was normalized in 
order to be expressed in mapping units and therefore allowed diverse seg-
mentation results to be compared on different images of the same spatial 
resolution. Again, it was designed for large objects and object-based dis-
crepancy indices are more appropriate when the objects are composed of 
few pixels. Furthermore, it is important to consider the natural uncertainty 
of some inter-class boundaries when interpreting the boundary quality in-
dices. Some boundaries, such as ecotones, are indeed inherently less pre-
cise than other (Hay et al. 2001) or biased due to their definition. For in-
stance, forest boundaries are drawn as straight lines at trunk location on the 
NGI reference map while the satellite captures the uneven crown bounda-
ries. While boundary quality should be a major concern in object-based 
image analysis, the degree of line generalization of these boundaries 
should thus be considered during the quality control.  

The quality of object boundaries and object characteristics were often 
negatively correlated: a) The scale parameter had a strong positive effect 
on object characteristics but decreased the boundary at the same time, b) 
the shape parameter did not affect the boundary quality and helped to im-
prove the discrimination between classes, c) and the compactness was not 
significant although compactness had a major impact on boundary quality 
and class discrimination for large scale and shape parameters (figure 8). 
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Fig. 8. Evolution of the NBD between the coniferous and the deciduous classes 
for a scale parameter of 60. The effect of the compactness parameter is only sig-
nificant for the largest shape parameter 
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 In any case, large scale mapping is limited to a given boundary quality 
(e.g. USGS standard). This boundary constraint has led to several post-
processing methods to enhance the final edge quality (Munoz et al 2003). 
On the other hand, figure 6 suggests that discrimination between two close 
classes can be improved even with a small scale parameter, keeping good 
boundary quality. Moreover, object-based classification algorithms often 
use object characteristics (e.g. shape, context…) unavailable to segmenta-
tion algorithms. Classification/segmentation cycles could thus help to dis-
criminate between classes whilst keeping small boundary errors. 

Conclusion 

The quality indices used in this study proved to be relevant to assess seg-
mentation results devoted to object-based classification. The best goodness 
index was the normalized post segmentation standard deviation (NPSS). It 
was sensitive to the segmentation parameters and provided coherent rank-
ings of the segmentation results. Furthermore, NPSS is easy to calculate as 
it does not require a priori information and it assists the comparison be-
tween object-based and pixel-based classification performance. However, 
it did not account for under-segmentation and positional errors along the 
boundaries. The use of a complementary boundary discrepancy index was 
therefore necessary to assess map precision. 
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Object-based classification of QuickBird data 
using ancillary information for the detection of 
forest types and NATURA 2000 habitats 
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ABSTRACT: The detection of forest types and habitats is of major im-
portance for silvicultural management as well as for the monitoring of bio-
diversity in the context of NATURA 2000. For these purposes, the pre-
sented study applies an object-based classification method using VHR 
QuickBird data at a test site in the pre-alpine area of Bavaria (southern 
Germany). Additional geo-data and derived parameters, such as altitude, 
aspect, slope, or soil type, are combined with information about forest de-
velopment and integrated into the classification using a fuzzy knowledge-
base. Natural site conditions and silvicultural site conditions are consid-
ered in this rule-base.  

The results of the presented approach show higher classification accu-
racy for the classification of forest types using ancillary information than 
can be reached without additional data. Moreover, for forest types with 
very distinctly defined ecological niches (e. g. alluvial types of forest), a 
better characterisation and integration of rules is possible than for habitats 
with very wide ecological niches. Hence, classification accuracies are sig-
nificantly higher when these rules are applied. In a second step NATURA 
2000 habitat types and selected habitat qualities are derived from the clas-
sified forest types. However, the share of habitat qualities varies with an 
altering scale. This difficulty should be addressed in further research of 
NATURA 2000 monitoring. 
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1 Introduction 

With the development of a standardised and pan-European geo-data-
infrastructure (Craglia et al. 2005), remote-sensing applications which in-
tegrate GIS information will become increasingly important. Therefore, 
various studies of combining additional data and knowledge into classifi-
cation processes (Maselli et al. 1995; Stolz 1998) were undertaken. How-
ever, the integration of additional geo-data into very high spatial resolution 
(VHSR) imagery remains a challenging task. 

Fig. 1 shows an exemplary overview of multi-scale segmentation for 
different forest scales with the corresponding levels of ancillary data and 
knowledge. Additional information can be differentiated into two catego-
ries (see Fig. 1). Firstly, spatially explicit knowledge is available. For for-
estry applications a broad range of this kind of data sources can be used, 
namely the simulation of geo-data (e.g. Disney et al. 2006; Verbeke et al. 
2005), the usage of altitude information, especially with LIDAR tech-
niques (e.g. Diedershagen et al. 2004), and the integration of silvicultural 
maps (e.g. Förster et al. 2005b) as well as soil and hydrology maps into 
classification procedures.  

 

 
Fig. 1. Exemplary overview of multi-scale dependence of object-based informa-
tion and ancillary GIS-Data and knowledge for a forestry application 
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Complementary knowledge about processes of the forested landscapes 
is abundantly available and recorded, i.e. individual tree growth by meas-
urement of crown diameter. Information about the land-use history, silvi-
cultural practices (Pretzsch 2002), and the potential natural vegetation 
(Walentowski et al. 2004) is of high relevance.  

Moreover, similar to delineated objects of satellite information (Burnett 
and Blaschke 2003), ancillary information can be grouped in different 
scales, which depend on the landscape level the data was assessed or ob-
served. While some information is available on a site-specific scale other 
knowledge exists only as interpolated data for larger landscape patches.  

The objective of this study is to develop a method of integrating differ-
ent types of geo-data into an object-based classification process. The pre-
sented approach combines spectral and textural information of a QuickBird 
scene with ancillary data for the identification of forest structures and habi-
tats. Because the knowledge of woodland development is often on purpose 
expressed ambiguously, a fuzzy-logic-based rule set is applied. This ex-
ample is especially suitable to show chances and challenges of data-
integration techniques, because long-term information about silvicultural 
practices and ecological woodland development in the study area (Bavaria, 
Germany) are available.  

2 Data and Methods 

For the presented study the satellite data are processed with a multi-scale 
segmentation method (Benz et al. 2004) by using an object-oriented ap-
proach with the software eCognition (Baatz and Schäpe 2000). The seg-
mentation levels of different resolution are delineated and assigned to hier-
archically organised groups of objects, such as forest habitats, crown 
combinations and crown types of single-tree species.  

The segments are classified as different forest types with and without 
ancillary information and the results subsequently compared. Additional 
sources of information are combined using a fuzzy knowledge-base (Stolz 
and Mauser 1996). Since expert knowledge of the test area is partly avail-
able as verbal description, which often contains cognitive uncertainties and 
is imprecise, fuzzy logic represents a possibility to express these vague 
statements in a mathematical framework as a degree of membership to a 
fuzzy set (Zadeh 1983).  

In order to show the practical applicability of the classification, the re-
sults are employed to derive NATURA 2000 forest habitat types and quali-
ties. NATURA 2000 is a European directive designed to protect the most 
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seriously threatened habitats and species. The NATURA 2000 network 
consists of more than 20,000 sites and covers almost a fifth of the EU terri-
tory. The directive requires a standardised monitoring of the habitat types 
and a reporting every six years. From the German point of view, standards 
for mapping NATURA 2000 forest sites have been developed (Burkhardt 
et al. 2004). 

2.1 Study Site 

As test area the forested NATURA 2000 site “Angelberger Forst” in the 
pre-alpine area of Bavaria, Germany, was chosen. It covers approximately 
650 ha. The test site was selected because a terrestrial mapping of 
NATURA 2000 sites had been completed. Moreover, a broad variety of 
different semi-natural mixed forest types exists.  

Relatively large areas of this submontane forest are vegetated with 
Beech, mainly with two special habitats, named Luzulo-Fagetum (17.9 %) 
and Asperulo-Fagetum (3.5 %). Periodically moist locations can be cov-
ered by Stellario-Carpinetum (1.3 %) but with less frequent occurrence. 
Very moist habitats, mostly along streams, are also vegetated with Alluvial 
forests with Alnus and Fraxinus (Alder and Ash; 2.0 %). Additionally, 
small sites are covered with Larch and Sycamore. However, the influence 
of silvicultural practices can be estimated a high proportion of coniferous 
forest (mainly Spruce) in parts of the area. 

The natural allocation mostly depends on soil moisture and acidity, but 
can equally rely on the relief or anthropogenic influences. 

2.2 Data 

For the presented investigation a QuickBird scene was acquired at 11th 
August of 2005. The sensors panchromatic band collects data with a 61 cm 
resolution at nadir while the multispectral (visible and near infrared) 
ground sampling distance is 2.44 m at nadir (DigitalGlobe 2006).  

A selection of geo-data was supplied by the Bavarian State Institute of 
Forestry (see table 1). A Digital Terrain Model (DTM 5 and DTM 25) is 
used for relief information. The parameters slope, aspect, curvature, and al-
titude are derived from this data source. Furthermore, a Conceptual Soil 
Map is used. This map is generated by the Bavarian State Institute of Ge-
ology from available data sources (e.g. geological map) and mapped soil 
samples. The Conceptual Soil Map is available for large parts of Bavaria. 
In spite the detailed spatial specification (scale of 1 : 25,000), the attributes 
for the soil types are often summarised and imprecise (an example of a 
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class is: “soil complex of gleys and valley sediments”). As a further impor-
tant data source a Forest Site Map is utilised. This map contains very de-
tailed information about forest soils and is often used for silvicultural pur-
poses.  

For training of the classes and validation of the results a Silvicultural 
Map is used. This map is used for forest inventory and management. It 
consists of information about main tree types and tree-type mixtures per 
forest stand. As training sites a set of 527 sample polygons is selected in 
non-mixed forest stands with a stratified order for occurring tree types. 
The sites are allocated randomly within the areas of specific forest stands. 
The chosen samples are confirmed using current (2003) true colour aerial 
photographs. In a few indistinct cases, samples are terrestrially mapped to-
gether with local forest experts. The knowledge base to build up rule sets 
for potential forest types was available from a previous project in coopera-
tion with the Bavarian State Institute of Forestry (Kleinschmit et al. 2006). 
These rules are complemented by silvicultural rules attained from local 
forest rangers and silvicultural literature (Walentowski et al. 2004). 

Table 1. List of existing spatial data and derived parameters of the study site 

Type of geo-data 
Relevant attributes and 

derived parameter  
Scale / Availability 

Digital Terrain Model Slope 
Aspect 
Curvature 
Altitude 

DTM 5 and DTM 25 / 
parts of Germany 

Conceptual Soil Map Soil type 1 : 25,000 / parts of the 
federal state Bavaria 

Forest Site Map Availability of nutrients 
Availability of water 
Soil substrate 

1 : 5,000 / digital for state 
forests 

Silvicultural Site Map 
(for training and valida-
tion purposes) 

Main tree type per stand 
Tree mixture per stand 
Age 
Usage 

1 : 5,000 / digital for state 
forests 

Terrestrial Map of Habi-
tat Types (for validation 
purposes) 

NATURA 2000 type 
Conservation status 

1 : 1,000 to 1 : 5,000 / for 
large parts of NATURA 
2000 areas 
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True colour aerial pho-
tographs (for training) 

 1 : 12,400  

2.3 Segmentation and Classification 

After a geometric correction and the pan-sharpening of the original data to 
a resolution of 0.61 m with the algorithm of Zhang (2002), all spectral 
bands of the QuickBird scene are segmented at three landscape scales. 
These levels are named Single Tree / Small Tree Group Level or level 1 
(Scale Parameter1 (SP) 15, shape factor 0.1, compactness 0.5), Tree Group 
Patch Level or level 2 (SP 40, shape factor 0.1, compactness 0.5), and 
Combined Patch Level Structure or level 3 (SP 150, shape factor 0.1, com-
pactness 0.5). The segmentation of all levels is mainly (to 90 %) based on 
the spectral values of the satellite scene because in heterogeneous struc-
tured mixed forests the shape of objects can be obscured by neighbouring 
trees. The scale parameter of level 1 is chosen to define objects of the size 
of a tree diameter (mean size of objects: 10.5 m²), while level 2 is selected 
to characterise patches of tree groups (mean size of objects: 27.7 m²). The 
scale of level 3 is generated to delineate forest habitats similar in size to 
terrestrially mapped NATURA 2000 areas (mean size of objects: 
103.7 m²). 

Previous to the forest classification non-forest land uses, such as agri-
culture or urban area are masked, based on thresholds for shape, texture 
and spectral mean value of these classes. The classification of the forest 
types Beech (two age classes), Black Alder, Larch, Spruce (two age 
classes), Sycamore, and the forest-related objects Clearances and Affore-
station is performed on single tree / small tree-group level (1) as nearest 
neighbour classification of the mean spectral values of the segments. A 
30 per cent share of different tree types is defined as mixed forest within 
an object. Therefore, the results of level 1 were aggregated to the tree-
group patch level (2), where an object is assigned to a single species class 
if 70 per cent of the sub-objects are classified by one species. Mixed stands 
are assigned to a newly introduced group “Mixed deciduous” and 
“Mixed”. The third level (Combined Patch Level) is used to improve the 
classifications of the sub-levels and to derive potential NATURA 2000 

                                                      
1 The named specifications are parameters of the multiresolution segmentation 

method of eCognition. The Scale Parameter determines the maximum allowed 
heterogeneity within an object. The shape factor defines the textural homogene-
ity of the objects. Compactness of objects is one of the parameters (the other is 
smoothness) for the shape factor (Definiens 2006). 
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habitat types, such as Beech habitats, Alluvial forest habitats, or Stellario-
Carpinetum habitats.  

Shadowed areas are separately classified using a NDVI-threshold. To 
reduce the share of segments classified as shadow the class is differenti-
ated. A second NDVI threshold is introduced, indicating shadowed vegeta-
tion. Then the shadowed segment is assigned to the class of the neighbour-
ing forest object with the longest shared border. 

2.4 Integration of Class Rules via Fuzzy Logic 

The occurrence of different forest habitats depends on specific ecological 
and anthropogenic influences. These conditions allow or prevent species 
and habitats to exist. In the following these factors are referred to as silvi-
cultural site conditions and natural site conditions. They can be related to 
geo-factors, which describe and attribute the ecological quality of a spe-
cific location (see tab. 1). The probability of assignment for each object 
(values from 0 to 1) classified with the nearest neighbour (see 2.3) is com-
bined with a fuzzy knowledge-base, which consists of silvicultural and 
natural site conditions. 

According to the fuzzy logic theory, a fuzzy set for each class concern-
ing each geo-factor is defined, containing input and output membership 
function. For each parameter a set of possible verbal descriptions (linguis-
tic terms) such as “very steep” or “flat” for the variable “slope” have to be 
defined and formalised by fuzzy input membership functions. Subse-
quently, linguistic variables for all possible forest type classes are defined 
via membership output functions (e.g. “possible occurrence” or “limited 
occurrence” for the class “Sycamore”). Furthermore, fuzzy rules have been 
developed describing the relationship between each linguistic term of each 
variable and the degree of possibility of the class. As a result of this proc-
ess, defuzzicated membership functions are derived for the geo-factors. 

 
 



282      M. Förster, B. Kleinschmit 

 
Fig. 2. Schematic application of a fuzzy class decision with spectral classification 
and geo-factor possibilities 

 
In combining the fuzzy sets and the hierarchical classification results the 

approach uses the minimum (AND-) rule, which specifies that the most 
unacceptable factor is the critical value for the forest type to occur. In a 
next step the minimum possibility of each possible class will be compared. 
The class with the highest membership will be assigned to the object 
(maximum – OR – rule, see Fig. 2). Consequently, the lowest membership 
and the class assignment can be defined solely by a geo-factor. 

2.4.1 Natural Site Conditions 

For habitat types which can possibly exist in the study area the list of geo-
factors is used, consisting of slope, aspect, curvature, and altitude, soil type 
from a Conceptual Soil Map, and available water, soil substrate, and avail-
ability of nutrients from a Forest Site Map (see tab. 1). For all main tree 
types the natural site conditions are developed based on knowledge of lo-
cal experts and literature about natural forest associations in Bavaria 
(Walentowski et al. 2004; Walentowski et al. 2005). Especially for this 
kind of information the integration via fuzzy logic is useful, because there 
are often no sharp thresholds. The statements of local experts and literature 
sources are made in linguistic terms, such as: “Sycamore can be found in 
higher pre-alpine regions, especially at very steep slopes”.  

As schematically shown in Fig. 2, each classified object consists of at 
least three different classification outputs. Normally, the class with the 
highest probability will be assigned to the object. The extended fuzzy-
classification includes the possibility of occurrence of forest types within 
certain natural conditions into this classification process. An example for 
this classification procedure is an object which is classified as Beech “with 
a high probability”. However, there is still a smaller probability to be as-
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signed to Alder or Sycamore. These probabilities are combined with the 
natural site conditions. If the slope of the object is very steep, it is very 
unlikely for Beech and Alder to exist with these natural site conditions. In 
contrast, Sycamore is adapted to these factors and has a high possibility to 
exist. Of all compared classification probabilities and possibilities of natu-
ral site conditions, the lowest value (on a scale from 0 to 1) is assigned to 
the possibility of existence for the class, because the most unacceptable 
factor is the critical value for the forest type to occur. In the case of a very 
steep object it is likely that the possibility of existence for Beech forest is 
lower after including ancillary data than the spectral probability of Syca-
more and therefore the latter forest type is assigned to the object. Because 
the natural site conditions give very explicit information about species 
with narrow ecological niches, which cannot be distinguished by spectral 
values, these forest types are better recognisable with ancillary data. 

2.4.2 Silvicultural Site Conditions 

To include forestry practices, two approaches are used. Firstly, silvicul-
tural preferred mixture types of forest stands in Germany were taken from 
literature (Jansen et al. 2002) and extracted from Silvicultural Maps (e.g. 
65 % Spruce, 25 % Beech, 5 % Sycamore, 5 % Birch). Statistics of classi-
fied tree-type compositions are taken at segmentation level 3 (e.g. 60 % 
Spruce; 30 % Beech; 10 % Beech - young). If the dominant species and the 
second dominant species of such a classified mixture type differ not more 
than 5 % to a silvicultural preferred mixture type, the sub-level (level 2) 
included these possibilities for the tree species of the mixture as one ancil-
lary layer (e.g. possibility Spruce = 0.6, possibility Beech = 0.3) and in-
cluded it in the minimum (AND) decision. 

Another approach was undertaken to improve the classification accuracy 
of Elder Spruce (from 120 years) stands. In classification level 1 small 
clearances are classified with the nearest neighbour approach. The exis-
tence of clearances is used in level 2. If an amount of more than 10 % of 
the classes clearance and old Spruce was detected in the sub-object, the 
possibility to assign the class to “old Spruce”. Vice versa, if “old Spruce” 
is detected in level 2, the possibility of clearances in level 1 rises. 

3 Results 

For validation 121 objects of level 1, which cover 1.5 ha (0.23 %) of the 
study site, are chosen in a random-stratified order of occurring classes. 
These segments are compared to the Silvicultural Map. This is done on 
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pixel basis (0.6 m resolution), because the classified object can possibly in-
tersect with validation polygons. The Silvicultural Map is additionally 
compared to recent (2003) true colour aerial photographs, in case of occur-
ring errors in this map. Level 2 includes two additional summarised classes 
(“Mixed” and “Deciduous Mixed”), which cover 12 % of the area. Be-
cause the process of taking samples is carried out in level 1, these classes 
are assessed in a separate evaluation realised by visually interpreting aerial 
photographs. 

Firstly, in this chapter the results of the forest type classification of 
level 1 and level 2 are presented (3.1). In a second step it is shown that 
NATURA 2000 habitat types and the habitat qualities can be derived from 
the classified forest types (level 3). 

3.1 Classification of Forest Types 

The results of the accuracy assessment are shown in table 2. Significantly 
higher classification accuracies can be reached with instead of without ad-
ditional data. Especially the detection of species with a small ecological 
niche is improved. With a multispectral-based classification, a forest type 
such as Black Alder is not distinguishable from other deciduous forest 
while showing the highest classification accuracy with ancillary data. This 
is due to the influence of the natural site conditions, especially the geo-data 
and rules for the available water from the Forest Site Map and the curva-
ture derived by the DTM. Other decisive factors can be the substrate 
(Larch) and the slope (Sycamore). Between level 1 and level 2 there is no 
advance in classification accuracy due to the introduction of mixture 
classes. As shown in the separate evaluation of these classes in table 2, a 
better overall classification result could be expected, if level 2 were as-
sessed collectively for all classes, especially for mixed forest. 

Table 2. Accuracy assessment for forest types (level 1 and level 2) 

Forest Type 
Multispectral Classifca-
tion with Ancillary Data

Purely Multispectral-Based  
Classification 

 Level 1 Level 2 Level 1 Level 2 

Beech 0.81 0.68 0.75 0.76 

Beech – young 0.32 0.14 0.15 0.14 

Spruce 0.74 0.97 0.74 0.81 
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Spruce – old 0.42 0.65 0.32 0.61 

Black Alder 0.98 0.89 0.17 0.69 

Afforestation 0.97 0.85 0.95 0.82 

Larch 0.96 0.68 0.59 0.68 

Sycamore 0.88 0.72 0.68 0.70 

Overall Accuracy 0.77 0.75 0.64 0.70 

Mixed Forest - 0.90 - 0.85 

Deciduous Mixed F. - 0.55 - 0.45 

 
Between the multispectral classification and the classification with an-

cillary information 18.6 % of the objects changed the class assignment in 
level 1. The decisive possibility of class assignment changed for 36.4 % of 
the objects when additional data are applied. Therefore, it can be assumed 
that for the classification with ancillary data an amount between 18.6 % 
and 36.4 % of the objects are based on the factors of the natural site condi-
tions. However, the interaction of classification results and the rule-base 
are complex as first tests of evaluating the influence of single natural site 
conditions have shown. 

A further improvement could be made without differentiation of age 
levels (e.g. Beech – young). Natural site conditions are not suited for sepa-
ration of the same species. Therefore, rule sets for silvicultural site condi-
tions and age classes, similar to the usage of clearances, could be used. 

3.2 Derivation of NATURA 2000 Habitat Types 

For the classification levels 2 and 3 the attempt to obtain and assess 
NATURA 2000 habitat types and their qualities was undertaken. At the 
moment, this information is terrestrial mapped by field survey and com-
bined to forestry management plans. For mapping forest habitat types, ob-
jective mapping guides with defined rules are available in Germany 
(Burkhardt et al. 2004). Within these rules parameters of habitat structures, 
such as number of forest development phases, number of biotope trees per 
ha, number of dead wood per ha, or percentage of natural forest types are 
available for different habitat qualities. For the percentage of natural forest 
types the habitats are identified for: 
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• excellent quality (A) ≥ 90 % natural forest types, 

• good quality (B) ≥ 80 % natural forest types, and 

• medium quality (C) ≥ 70 % natural forest types. 
 

 

 
Fig. 3. Derivation of different habitat type qualities for level 3 (upper figure) and 
level 2 (lower figure) for the special Beech habitat type Asperulo-Fagetum 
(NATURA 2000 nomenclature: 9130) 
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Fig. 3 shows the result of this approach exemplary for one type of Beech 
forest. Unfortunately it is only possible to a limited degree to derive habitat 
types automatically, due to parameters which cannot be detected by remote 
sensing (e.g. understorey vegetation), local knowledge of mapping, and 
political decisions (Förster et al. 2005a).  

Moreover, the so-called orchard problem (Lang and Langanke 2006) 
arises. Because of different segmentation scales, altered mixtures of areas 
and qualities for the habitats are available. Smaller scale parameters tend to 
define more fragmented areas of a good and excellent quality, while with a 
scale parameter of 150 larger and coherent areas of good and medium 
quality will occur.  

Both the results and the segmentation levels shown in fig. 3 have certain 
advantages and disadvantages, but the approach shows that the mapping 
guide for German forest disregards the need for a spatial reference unit 
such as landscape levels or a minimum mapping unit. An analysis of the 
correlation between terrestrial mapped habitat types and different land-
scape levels could be helpful to formulate a more exact definition of habi-
tat-type quality. 

4 Discussion and Outlook 

The presented study shows that the classification accuracy of the investi-
gated forest types is higher with ancillary information integrated by fuzzy 
logic than with a pure multispectral classification. In comparing the results 
with and without additional data an average increase of 13 % of the overall 
accuracy is detected. Especially the identification of forest types with nar-
row ecological niches, such as Black Alder, is significantly increased. 
However, forest types with wide ecological niches, such as Spruce or 
Beech, are classified with similar result (difference of not more than 
10 %), when comparing the methods. Moreover, silvicultural site condi-
tions are integrated into the classification process. However, two tested 
approaches have only a limited influence on the classification success (less 
than 1 % of the objects are classified differently). It can therefore be stated 
that natural site conditions are more relevant for the classification success 
than silvicultural site conditions.  

In a second step, NATURA 2000 habitat types and the habitat quality 
“share of natural forest types” are derived from the forest-type classifica-
tion. It is shown that the share of habitat qualities varies with an altering 
scale. For the two segmentation scales used in this study (level 2 and 
level 3) the fine scale defines smaller objects of a higher habitat quality, 
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while the coarse scale defines larger areas of a medium habitat quality. At 
present there is no standard defining a spatial reference size (e.g. minimum 
mapping units) for the quality of biodiversity. This question should be ad-
dressed to ecologists and included in mapping guidelines. If a certain habi-
tat requires a coherent large area a larger segmentation scale should be ap-
plied, while small-sized habitats should be classified with a finer object 
size.  

Performing a classification using additional GIS-data provokes the ques-
tion for consistent availability of these data. Within the nationally owned 
forests of Germany a good data basis already exists, especially with the in-
formation from the Forest Site Map. However, in private forests in Ger-
many, geo-data is often not even available as analogous map.  

A further improvement of this study can be obtained by a careful analy-
sis of the dependence of accuracy on natural site conditions, integration of 
other additional data (such as LIDAR data), and a more efficient usage of 
silvicultural site conditions, e.g. by incorporating stand-density data. The 
presented method has to be transferred to forest types and habitat types of 
other areas, such as north-east Germany, to validate the reliability of the 
technique and become more generally applicable. Moreover, a comparison 
of different techniques of integrating geo-data into classifications, such as 
neural networks, could be useful for a quality assessment of integration 
techniques (Baltsavias 2004).  
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ABSTRACT: The determination of segments that represents an optimal 
image object size is very challenging in object-based image analysis 
(OBIA). This research employs local variance and spatial autocorrelation 
to estimate the optimal size of image objects for segmenting forest stands. 
Segmented images are visually compared to a manually interpreted forest 
stand database to examine the quality of forest stand segmentation in terms 
of the average size and number of image objects. Average local variances 
are then graphed against segmentation scale in an attempt to determine the 
appropriate scale for optimally derived segments. In addition, an analysis 
of spatial autocorrelation is performed to investigate how between-object 
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correlation changes with segmentation scale in terms of over-, optimal, and 
under-segmentation. 
 
1 Introduction 

Conventional pixel-based classification approaches have limitations that 
should be considered when applied to very high spatial resolution (VHR) 
imagery (Fisher 1997; Townshend et al. 2000; Ehlers et al. 2003; 
Brandtberg and Warner 2006). The increased within-class spectral varia-
tion of VHR images decreases classification accuracy when used with the 
traditional pixel-based approaches (Shiewe et al. 2001). Object-based im-
age analysis (OBIA), which became an area of increasing research interest 
in the late 1990s, is a contextual segmentation and classification approach 
that may offer an effective method for overcoming some of the limitations 
inherent to traditional pixel-based classification of VHR images. Particu-
larly, the OBIA can overcome within-class spectral variation inherent to 
VHR imagery (Yu et al. 2006). In addition, it can be used to emulate a 
human interpreter’s ability in image interpretation (Blaschke and Strobl 
2001; Blaschke 2003; Benz et al. 2004; Meinel and Neubert 2004).  

Although the OBIA scheme seems to hold promise for solving classifi-
cation problems associated with VHR imagery, it also has an important re-
lated challenge, namely, the estimation of the desired size of image objects 
that should be obtained in an image segmentation procedure. Unfortu-
nately, there is currently no objective method for deciding the optimal 
scale of segmentation, so the segmentation process is often highly depend-
ent on trial-and-error methods (Meinel and Neubert 2004). Yet, the size of 
image objects is one of the most important and critical issues which di-
rectly influences the quality of the segmentation, and thus the accuracy of 
the classification (Blaschke 2003; Dorrren et al. 2003; Meinel and Neubert 
2004).  

In this paper, we employ a case study that builds on the results of Kim 
and Madden (2006) to investigate agreement between a manual interpreta-
tion and image segmentation at a variety of scales, and the pattern of seg-
ment variance and autocorrelation associated with those segmentation 
scales. Kim and Madden (2006) performed a research to examine the rela-
tionship between segmentation scale of general forest types (i.e., decidu-
ous, evergreen, and mixed forests) and classification. For this follow-on 
study, we examine if an understanding of changes associated with segment 
variance and autocorrelation might provide image analysts with a method 
of determining optimal size of image objects in image segmentation for 
forest stand mapping. 



Estimation of optimal image object size for segmentation of forest stands      293 

2 Local variance, spatial autocorrelation and image 
objects associated with forest stand map 

A number of previous studies have investigated how image properties 
change with pixel resolution (Cao and Lam 1997). One common method 
for understanding how image spatial structure changes with pixel size is 
the graph of average local variance, used by Woodcock and Strahler 
(1987). This approach has been used to determine the optimal spatial reso-
lution for identifying thematic information of interest in the context of 
pixel-based image classification. In Woodcock and Strahler’s (1987) ap-
proach, the image is degraded to a range of pixel size. Variance in spectral 
reflectance or brightness is then computed a 3×3 moving window, and then 
the average for the entire scene is graphed as a function of the associated 
pixel size. Woodcock and Strahler (1987) found that the local variance was 
low if the spatial resolution was considerably finer than objects on an im-
age. When the pixel size was approximately one half to three quarters of 
the size of the objects in the image, the local variance was found to reach a 
maximum. On the other hand, if the pixel size was larger than the objects 
in the image, the local variance decreases once again. Thus, the graph of 
local variance against pixel size is one method that can be helpful for un-
derstanding spectral heterogeneity and the scale of the objects in the im-
age. 

Building on this idea of linking variance and scale, we hypothesize that 
the average variance of image objects, graphed as a function of image seg-
ment size, may provide insight as to the optimal scale of image objects for 
image segmentation. We define the optimal scale as one that is not over-
segmented, with an excessive number of segments that are on average too 
small, and also not under-segmented, with too few segments that are on 
average too large. 

This definition of an optimal scale is useful for considering the relation-
ship between image object variance and scale. As the segmentation be-
comes coarser, each segment will tend to incorporate a wider range of im-
age brightness values. Therefore, a general trend of increasing average 
variance of the segments is expected with coarser scale (and decreasing 
number of segments). However, we hypothesize that with mixed forest 
stands, as the segments become too large (i.e., reach a stage of under-
segmentation) each segment will tend to include more pixels from pure 
forest stands. This inclusion would lower the variance of image objects 
corresponding to mixed forest stands. Therefore, we suggest that the opti-
mal segmentation actually would occur at the scale just before a flattening 
of the graph. Our second hypothesis is that the optimal scale generates the 
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least positive, and potentially even negative, autocorrelation between the 
average brightness values of the segments. In other words, we assume that 
an optimal scale most clearly brings out contrasting average brightness 
values in the segmentation. 

This autocorrelation hypothesis draws in part on the concept that ideal 
image enhancement should maximize autocorrelation at the pixel level 
(Warner 1999). Likewise, image enhancements (Warner and Shank 1997) 
and classifications (Warner et al. 1999) can be ranked based on their in-
formation content as indicated by autocorrelation at the pixel level. How-
ever, for segmentation, we suggest that the optimal pattern is obtained 
when the adjacent segments are the least similar in brightness values. In an 
over-segmented image, we would expect that the adjacent segments are on 
average somewhat similar, and thus the segments will tend to be autocorre-
lated. On the other hand, in an under-segmented image, the segments are 
too large, and lose their spectral homogeneity. In this instance, the average 
brightness of the adjacent segment will tend to converge on relatively simi-
lar mixtures, and once again the autocorrelation of the segments is rela-
tively high. Therefore, we suggest that in a graph of scale versus autocor-
relation of the segments, the optimal scale should be indicated by the scale 
associated with the least autocorrelation between segments. 

3 Study area and data sources 

The study area for the case research is the Guilford Courthouse National 
Military Park (GUCO) located in Greensboro, North Carolina, U.S.A. 
(Fig.1). The 1-km2 park lies in one of the most rapidly developing portions 
of the city and provides increasingly important green space for recreational 
activities and wildlife refuge (Hiatt 2003).  

The park was initially mapped by the Center for Remote Sensing and 
Mapping Science (CRMS), Department of Geography at the University of 
Georgia, in conjunction with the National Park Service (NPS) and Nature-
Serve, as part of the NPS/U.S. Geological Survey (USGS) National Vege-
tation Mapping Program (Welch et al. 2002; Madden et al. 2004). The 
mapping of the park was based on manual interpretation of 1:12,000-scale 
leaf-on color-infrared (CIR) aerial photographs using the National Vegeta-
tion Classification System (NVCS) (Grossmann et al. 1998). Fig.1 illus-
trates the manually-interpreted association-level forest stands in GUCO. 

In our study, we assume that the manually produced GUCO vegetation 
database/map can be used as a reference for determining the optimal scale 
of the segmentation. Although the manual map does not necessarily repre-
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sent an objective optimal scale and classification of forest stands, it repre-
sents vegetation communities of the type, level of detail and scale that the 
resource managers require for management decisions. Furthermore, human 
interpreters bring to bear extensive local (i.e., field-based data) and expert 
knowledge of forest stands and associated remote sensing signatures. 
GUCO was visited several times throughout the course of the project by 
CRMS and NatureServe botanists to collect plot-level data of overstory 
and understory tree species, as well as numerous quick plots to identify the 
NVCS class of observation points geolocated with GPS (Madden et al. 
2004). An independent accuracy assessment of the completed association-
level vegetation and forest stand database conducted by NatureServe re-
sulted in an overall accuracy of 83 % and a Kappa of 0.81 (NatureServe 
2007). Therefore, we can assume that the manually interpreted database 
represents the best approximation of the optimal scale and classification of 
GUCO forest stands. 

A multispectral IKONOS image of 4-m pixel resolution acquired on 
July 6, 2002 by Space Imaging, Inc. (now GeoEye, Inc.) was used for this 
research with special attention to the near infrared band (NIR) that is cru-
cial to vegetation studies. The image was georeferenced and co-registered 
to a scanned CIR aerial photograph that was acquired October 20, 2000 at 
1:12,000 scale and rectified based on horizontal control from a 1998 
USGS Digital Orthophoto Quarter Quadrangle (DOQQ). The study area 
has a very flat terrain, so the co-registration of the CIR aerial photograph 
and IKONOS image could be achieved to a root-mean-square-error of ±3 
m with this process. The GUCO park includes non-forest areas such as 
open pasture, roads, cemeteries and homesites. These non-forest areas 
were masked out before image segmentation of forest stands. 

4 Methodology 

Multiresolution Segmentation, implemented in Definiens Professional Ver-
sion 5.0 (formerly eCognition), was utilized for the OBIA. The segmenta-
tion is based on a region growing technique which places seed pixels over 
an entire image and groups surrounding pixels to the local seeds, if they 
meet specific criteria. The size and homogeneity of image objects are im-
portant parameters in the segmentation. The scale parameter, i.e., segmen-
tation scale, controls the average size of the image objects (Definiens 
2004). The homogeneity criterion determines the importance or weight of 
three heterogeneity attributes: color, smoothness and compactness. The 
color criterion minimizes the standard deviation of spectral values within 
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image objects and also considers the shape of image objects. The shape 
criterion itself is comprised of a smoothness criterion defined as how 
smooth the boundary of each image object is in a segmented image and a 
compactness criterion minimizing the deviation from the ideal compact 
form (Definiens 2004). 

For this study, a series of segmentations was conducted using the 
IKONOS image with the segmentation scale varying from 2 to 30 in steps 
of 1 to examine the segmentation quality of image objects representing 
more detailed (association-level) forest stands. These values were chosen 
so as to encompass a range of scales that were observed to extend from 
over-segmentation to under-segmentation. In addition, the scale step of 1 
was made possible by the relatively small size of the park (1 km2) and 
therefore minimal time for processing iterations. An additional analysis 
was conducted to assess the repeatability of segmentation processes. The 
entire range of segmentation scales from 2 to 30 was repeated 5 times each 
and the resulting segments were visually compared. This thorough analysis 
of this size range of segmentation scale was needed to determine the opti-
mal object size for object-based forest stands segmentation.  

The color and shape ratios are inversely proportional to each other in the 
homogeneity criterion. The shape of each image object approaches that of 
a circle as the shape value approaches a value of 1.0. Therefore, if the 
segmentation scale is consistent (e.g., 18) and the color to shape ratio de-
creases, forest segment boundaries became less complex and segment sizes 
became more uniform (see Fig.2) when compared to forest stands in the 
manually interpreted CRMS database (see Fig.1). Since a value of 0.9 for 
this ratio was found to produce a pattern most like that of the manual map, 
this value was used for the entire subsequent analysis. All segmentation 
procedures were performed using only brightness values of the four spec-
tral bands.  

Segmented images across entire segmentation scales were exported to 
polygon vector files of ArcView Shapefile format to compute average lo-
cal variance and Moran’s I indices. The standard deviations of image ob-
jects’ spectral reflectance and an average for all the segments were com-
puted from the brightness values of NIR band. These average variances 
were then graphed as a function of segmentation scale. Moran’s I indices 
were computed from the mean values of NIR band of the segmented im-
ages in order to examine between-object spatial autocorrelation at each 
scale. The contiguity matrix, used for computing the Moran’s I, was calcu-
lated from the squared inverse Euclidean distance between segment cen-
troids.  



Estimation of optimal image object size for segmentation of forest stands      297 

5 Results and discussion 

The image segmentation was performed across the range of segmentation 
scales (2 to 30). This produced a range of sizes and numbers of image ob-
jects (Table 3.2.1). The segmentation across the entire range of scales (2 to 
30) was repeated 5 times, with no discernable difference in the number and 
average size of segments, as well as the calculation of local variance and 
Moran’s I autocorrelation.  

Table 1. Average sizes and numbers of image object produced by the image seg-
mentation 

Scale Average 
size [m2] 

No. of 
image objects Scale Average 

size [m2] 
No. of 

image objects 
2 50 13,182 17 6,207 107 

3 125 5,321 18 6,991 96 

4 228 2,907 19 8,407 79 

5 378 1,756 20 9,488 70 

6 565 1,175 21 9,767 68 

7 829 801 22 11,451 58 

8 1,094 607 23 12,299 55 

9 1,466 453 24 13,023 51 

10 1,965 339 25 13,283 50 

11 2,424 274 26 13,283 50 

12 2,913 228 27 15,095 45 

13 3,477 191 28 15,445 43 

14 3,907 170 29 16,199 41 

15 4,677 142 30 16,604 40 

16 5,535 120    

The average sizes of image objects across the range of scales were then 
compared to the average size of association-level forest stands derived 
from the manual interpretation to identify scales associated with under- 
and over-segmentation (Fig.3). Since the average size of the CRMS forest 
stands was 7002 m2 and the number of forest stands was 94, it can be in-
ferred that the segmentation scale of 18 produced segmentation results 
most closely resembling manually interpreted forest stands in shape, size 
and location. 
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We visually assessed segmentation quality associated with over-, opti-

mal, and under-segmentation in comparison with manually interpreted for-
est stands. Fig.4a and Fig.4b indicate over-segmentation of association-
level forest stands compared with manual interpretation. At a scale of 6, 
the study area is clearly segmented to excess with over 5 times the desired 
number of segments. At the other extreme, small stands of pure evergreen 
forest, indicated by dashed circles on Fig.4a, do not appear in the under-
segmented image as shown in Fig.4c. It is important to note, however, that 
even at the apparently optimal scale of 18 (Fig.4d), some small areas of 
disagreement do exist between the manual and automated segmentations. 
Forest stands, shown in the dashed-circle areas in Fig.4d, were divided into 
several image objects that do not match the manual forest stands. 

Two different analyses of object local variance and spatial autocorrela-
tion provided evidence of 18 and 19 being strong candidates for the opti-
mal segmentation scales in this study. The graph of average local variance 
of image objects over the range of segmentation scale is shown in Fig.5. 
Average local variance increases from a low value of 2.0 at the minimum 
scale of 2, and levels off at the scale of 20. As discussed earlier, we antici-
pated that the under-segmentation would occur at the scale where the 
graph of local variance began to level off and the optimal scale would ac-
tually come just before this point. Therefore, Fig.5 supports a scale of 19 
being optimal for forest objects. Additional support for determining the op-
timal segmentation scale comes from Table 3.2.1. This table indicates the 
number and average size of image objects is most similar to those of the 
manually produced forest stands map at the segmentation scale of 18. The 
graph of spatial autocorrelation, as calculated by Moran’s I, versus seg-
mentation scale also shows a distinct overall bowl shape with minima at 
scale of 14 and 18 (Fig.6). The lowest minimum at scale 18 coincides with 
the scale that produced the segmentation most similar to the manually pro-
duced map. It should also be noted that between the scale of 14 and 21, the 
autocorrelation is negative, indicating dissimilarity between adjacent val-
ues. The graph confirms the expectation that excessive over- and under-
segmentation is associated with positive autocorrelation, while an optimal 
segmentation should be associated with the lowest autocorrelation.  

6 Summary and conclusion 

In summary, object-based forest stand segmentation was performed using 
a 4-m multispectral IKONOS image. Visual comparison was made be-
tween a vegetation database compiled by manual interpretation and seg-
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mented images to examine segmentation quality associated with over-, op-
timal, and under- segmentation. Local variance and spatial autocorrelation 
were utilized in an attempt to estimate the optimal scales related to sizes of 
image objects for forest stand segmentation. 

Average local variance was graphed as a function of segmentation 
scales. The average variance was found to increase with the magnitude of 
the segmentation scale, leveling off at the scale of 20 and therefore, indi-
cating an optimal scale of 19. We also expected that the optimal segmenta-
tion scale would result in image objects similar in number and size to those 
of the manual forest stands before the scale where the graph leveled off. 
This expectation was validated at a scale of 18 which produced the num-
ber/size of image objects closet to those of the manual interpretation. The 
average size and number of image objects at the scale of 18 (6,991 m2 and 
96, respectively) were very close to those of manually interpreted associa-
tion-level forest stands in the park (7,002 m2 and 94, respectively). 

The analysis of spatial autocorrelation indicated that there was high 
positive correlation between segmentation scales and Moran’s I indices 
calculated for image objects with excessive over- and under-segmentation. 
In contrast, between-object autocorrelation was lowest, and indeed nega-
tive, when the scale was 18. This supports the scale at which the average 
size and number of segmented image objects were similar to those of 
manually interpreted forest stands. 

In conclusion, three types of analyses (i.e., number/average size of ob-
jects, local variance, and spatial autocorrelation) all confirmed that seg-
mentation scales of 18 to 19 are optimal for obtaining segmented image 
objects that most closely resemble those of manual interpretation of forest 
stands by vegetation experts. Although the analyses did not agree on the 
exact same optimal segmentation scale, they narrowed the wide range of 
possible segmentation scales to 18 or 19. Indeed, users often do not know 
the order of magnitude to begin for the determination of segmentation 
scale (e.g., 10 or 100). By 1) comparing segmentation results to objects in 
a dataset of known accuracy completeness, and 2) analyzing measures of 
image variance heterogeneity and spatial autocorrelation vs. segmentation 
scale, it is now possible to propose an image analysis methodology that 
may be useful for identifying optimal segmentation scales. Researchers, 
for example, could perform a rough cut of segmentation at a few scales be-
tween a wide range of (e.g., 5, 10, 15, 20) and then graph local variance 
and Moran’s I. The shapes of these graphs will reveal scale ranges most 
likely to be associated with optimal image object sizes. The local variance 
graph will level off and Moran’s I will dip to negative values. OBIA re-
searchers can then target specific scales (e.g., 10-15) and avoid wasting 
time for segmentation at non-optimal scales. It is hoped that these results 
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will lead to more automated procedures of segmentation for the extraction 
of high quality features from very high resolution digital images. 
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Fig. 1. Forest stands of GUCO park from University of Georgia CRMS-NPS 
vegetation database produced by the manual interpretation of aerial photographs  
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Fig. 2. Different shapes of image objects with a constant segmentation scale of 18, 
but decreasing ratios of color to shape. Image objects derived from the color crite-
rion of 0.9 (a), 0.5 (b) and 0.1 (c) 
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Fig. 3. Average sized image objects resulting from a range of segmentation scales 
to determine under- and over-segmentation of image objects in comparison to the 
manually produced map (7002 m2) 
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Fig. 4. Segmentation quality compared with manual interpretation: (a) manually 
produced vegetation associations map of GUCO, (b) over-segmentation at the 
scale of 6, (c) under-segmentation at the scale of 25, (d) optimal segmentation at 
the scale of 18 
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Fig. 5. Graph of local variance as a function of segmentation scale 

 

Fig. 6. Moran’s I indices as a function of segmentation scale 
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ABSTRACT: The possibility to extract forest areas according to the 
criteria included in a legal forest definition was evaluated, in a mountain-
ous area in the Northern-central part of Greece, following an object-based 
image analysis approach. While a lot of studies have focused on the esti-
mation of forest cover at regional scale, no particular emphasis has been 
given so far to the delineation of forest boundary line at local scale.  

The study area presents heterogeneity and it is occupied by deciduous 
and evergreen forest species, shrublands and grasslands. One level of fine 
scale objects was generated through the Fractal Net Evolution Approach 
(FNEA) from Quickbird data. Logistic regression statistical analysis was 
used to predict the existence or not of tree canopy for each image object. 
The classified objects were subject to a second classification process using 
class and hierarchy related information to quantify the criteria of the Greek 
Forest law. In addition, the usefulness of a fusion procedure of the multis-
pectral with the panchromatic component of the Quickbird image was 
evaluated for the delineation of forest cover maps. 

Logistic regression classification of the original multispectral image 
proved to be the best method in terms of absolute accuracy reaching 
around 85% but the comparison of the accuracy results based on the Z sta-
tistic indicated that the difference between the original and the fused image 
was non-significant. 
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Overall the object-based classification approach followed in our study, 
seems to be promising in order to discriminate in a more operational man-
ner and with decreased subjectivity the extent of forest areas according to 
forest legal definitions. 

1 Introduction 

In the recent decades, an appreciation of the multi-functional role that for-
est ecosystems can serve raised the need for their protection, both from 
global organizations and national authorities. These goals can be achieved 
by introducing and enforcing measures and legislation rules which will at 
least ensure the conservation of the status and the area extent of forest re-
sources. Therefore, there is more than ever a need to obtain information on 
various scales, regarding forest ecosystems to guide the decisions of policy 
makers (Franklin and Wulder 2003).  

The relatively recent availability of data coming from very high resolu-
tion (VHR) spatial sensors (Tanaka 2001) has enabled the extraction of de-
tailed information about forest ecosystems, which is helpful for local and 
national authorities and managers. Most of all, accurate knowledge of area 
designated as forest within each nation, apart from reporting to interna-
tional conventions and mechanisms, is necessary in order to support envi-
ronmental and development planning of its own and mapping of forest in-
ventory measures and forest biophysical parameters. 
Several research efforts have been made regarding the compliance of forest 
cover maps, mostly at regional scale, using low or medium resolution im-
agery. Kennedy and Bertolo (2002) using low resolution satellite data de-
rived forest-non forest maps of the European Union and Haapanen et al. 
(2004) used a kNN classifier forest/nonforest stratification in developing 
forest area estimates for the USDA Forest Service's Forest Inventory and 
Analysis (FIA). McRoberts (2006) developed a logistic regression model 
using forest inventory plot data and Landsat TM imagery, to predict the 
probability of forest for several study areas in USA.  
Trias-Sanz and Boldo (2005), developed a method for discriminating for-
est areas in high resolution aerial images, using a single level of regions 
and classifiers based on distances on probability distributions and whole-
region probabilities. Also, Thiel et al. (2006), generated forest cover maps 
using radar remote sensing data and one level of segments produced with 
the commercial software eCognition. 

However, delineating the extent of forest areas at local scales using re-
mote sensing imagery is a more complex task, because most of the legal 
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definitions of forest worldwide usually include thresholds for such things 
as minimum area, percentage of tree canopy cover, tree height, and strip 
width, and it will specify any exclusion (Lund 2002). Therefore, the incor-
poration of criteria related to form, the size and the context of forest areas 
in the classification process, is necessary for a result to be consistent with 
legislation specifications. 

The Greek forest law in particular, contains certain criteria for the char-
acterization of land either as “forest” or “woodland”. These criteria con-
cern the canopy cover, the vertical structure of the forest canopy and the 
shape of the area.  

Specifically, in order for an area to be initially characterized as “forest” 
or “woodland”, its size should exceed 0.3 hectares or if not, it should be at 
least 30 meters wide or in close interdependence and interaction with other 
“forest” areas. Furthermore, the forest canopy cover has to exceed 30 per-
cent of the area.  

A further distinction between the two categories is based on criteria re-
lated to the existence of strata of forest canopy and the canopy cover of 
each layer. In general, woodlands are characterised mainly by areas cov-
ered with a discontinuous tree layer, shrubs and herbaceous vegetation. 

So far, this discrimination has been made on the basis of manual photo 
interpretation of aerial photographs on a scale of 1:30000. However, visual 
interpretation presents deficiencies because it is affected by the skills of 
the interpreter based on their education, training, perceptual ability and ex-
perience (Hoffman et al. 2001). Also, manual delineation and interpreta-
tion of forest entities is considered as a labor-intensive and costly process 
(Wulder et al. in press).  

Therefore, there is an obvious need to introduce new, more objective 
approaches in order to delineate forest areas, especially in land under pres-
sure for residential expansion. 

Object-based analysis of remotely sensed data which has been success-
fully applied in the past (Woodcock and Harward 1992, Gitas et al. 2004, 
Hay et al. 2005, Chubey et al. 2006) for forest characterization and map-
ping, could be a viable solution for forest cover maps generation at local 
scales. 

Moreover, Kosaka et al. (2005), indicated that object-based analysis of a 
pan-sharpened Quickbird image (despite the already rich spatial informa-
tion available in the multispectral component of a VHR satellite imagery) 
for forest types classification, raised considerably the overall as well as the 
individual class accuracies compared with the use of the original multis-
pectral image. Image fusion has been extensively used in remote sensing 
studies related to vegetation, land-use and urban studies (Ranchin and 
Wald 2000). There is a number of potential benefits resulting from the fu-
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sion procedure (Pohl and Genderen 1998), one of these might be the im-
provement in the classification accuracy, both in case of very high (López-
Galoca et al. 2004) or medium spatial resolution data (Lu and Weng 2005).  

The aim of this work was to develop a semi-operational approach, in or-
der to accurately discriminate forest from natural non-forest areas (wood-
lands, shrublands and grasslands) following legal definition criteria. The 
study was part of a research programme which aimed to address the opera-
tional application of remote sensing in order to develop a National Forest 
GeoDatabase.  

The specific objectives of the study were: 

− To develop a methodology for discriminating forest areas on a basis of 
legal definition, with the use of very high spatial resolution Quickbird 
data. 

− To assess the utility of a fusion procedure in order to improve the classi-
fication result. 

2 Study area 

The 280 hectares study site is part of the Aristotle University’s Forest in 
Northern Greece (Fig. 1). The altitude of the University Forest ranges from 
320 to 1200 meters. The most abundant forest species are oak (Quercus 
conferta), pine (Pinus nigra) and beech (Fagus moesiaca). 

 
Fig. 1. Location of the study area 
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The study site was selected because it presents the maximum variability 
in terms of the anaglyph as well as in terms of species composition and 
stand mixture conditions. Closed forest stands, intermingled with patches 
of shrublands and grasslands, indicate a significantly fragmented land-
scape. 

3 Materials and methodology 

The overall methodology followed in the study is presented in Fig. 2.  
 

 
Fig. 2. The flowchart of the methodology 

3.1 Data acquisition and pre-processing 

A Quickbird satellite image was acquired on June 2004. A Digital Eleva-
tion Model of the area was extracted from existing stereo pairs of air pho-
tos and several ground control points were identified to support the 
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orthorectification process. The total RMS error did not exceed 1.1 meters. 
Small agricultural fields were masked out of the data, since the National 
Forest GeoDatabase will be a continuum of a currently developing Na-
tional Cadastre system upon which accurate delineated geographic limits 
between natural and non-natural areas will be available.  

3.2 Spatial and spectral enhancement  

The Gram-Schmidt method of image fusion (Laben and Brower 2000), in-
cluded in the commercial software package RSI ENVI 4.3, was used for 
the fusion of the multispectral with the panchromatic image, in order to 
enhance the spatial information present in the former one. Consideration of 
the additional spatial detail in an object-based classification process, could 
presumably affect both delineation of the limits as well as the internal 
structure (texture) of objects.  
The fusion method adopted in this study proved to be more suitable for the 
specific forest scene (Mallinis 2006) considering spectral and spatial qual-
ity indicators (Wald 1997, Zhou et al. 1998), in comparison to the modi-
fied IHS (Bretschneider and Kao 2000), the PCA and the wavelet based 
(King and Wand 2001) methods of fusion.  

Also, in order to overcome the limited spectral resolution of the original 
imagery (Key et al. 2001), the IHS transformation was applied and the 
Normalized Difference Vegetation Index (NDVI) was calculated and 
evaluated as means to aid the spectral discrimination process (Goetz et al. 
2003). 

3.3 Segmentation 

The segmentation algorithm followed in this work is part of the FNEA 
concept (Baatz and Shape 2000), embedded within the commercial soft-
ware Definiens Professional (eCognition ver. 4). It supports a multi resolu-
tion segmentation of an image producing different segmentation levels 
where each one is focused on different scale, leading to an arbitrary devel-
oped semantic hierarchy (Hay et al. 2003). Therefore, prior to the segmen-
tation of a scene following the FNEA concept, the user has to consider 
four important issues: 

• What are the processes observed in the scene under work? 
• What is the operational scale of the objects of interest?  
• Which scales/segmentation levels have to be produced and linked in or-

der to produce the desired output objects? 
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• Is it feasible to construct this hierarchical network of linked objects 
given the resolution and the extent of the available imagery? 

Clarifying the above issues is necessary in order to avoid the develop-
ment of complex hierarchies which would create confusion in the informa-
tion extraction process.  

In our study, having already overcome the problem of segregating non-
natural areas, all the candidate segmentation levels should presumably re-
late to phenomena and objects found within natural areas. Based on the 
findings of a field survey it was determined that pixel’s size in the original 
image was larger than the 1/2 to 3/4 of the mean canopy size (Woodcock 
and Strahler 1987), making thus individual tree crown recognition not fea-
sible. 

Consequently, the scale of the segmentation was adjusted in order to ex-
tract clumps of crowns and/or very large individual trees (deciduous). The 
development of a second level of segments was not considered to be nec-
essary, because no other forest situations were recognized to operate 
within the extent of the scene under investigation.  

3.4 Classification 

Within eCognition, various features are available for providing informa-
tion about the spectral, shape, textural and class membership attributes of 
derived objects. 

Multiple logistic regression modeling can be used to select the most ap-
propriate explanatory variables for predicting a binary dichotomous re-
sponse (Hosmer and Lemeshow 1989).  

In terms of the probabilities for either of the two outcomes of the event, 
the equation for the logistic regression model can be expressed as: 
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where the parameters α and βg (g= 1,2,3..m) of the xg variables, are usu-
ally computed using the maximum likelihood method. 

The significance of a logistic regression model is indicated by a statisti-
cal significant reduction in the log likelihood value (-2LL), while the 
goodness of fit is assessed by statistical measures such as the Hosmer and 
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Lemeshow’s value, the classification matrices and the Nagelkerke measure 
(Hair et al. 1998). 

For the implementation of this method, the segments delineated were 
exported to a GIS software environment. Samples were selected through 
photo-interpretation for the two categories of interest (453 segments cov-
ered by tree canopy and 402 segments with no tree canopy). Due to the 
fine scale segmentation adopted no intermediate situations were observed 
(segments half-covered with canopy). The most appropriate variables were 
selected following a forward stepwise procedure based on the likelihood 
ratio statistic. Following the implementation of the logistic models, the re-
sulted probabilities images (for the original and the fused Quickbird im-
agery) were converted to binary images adopting a cut-off threshold value. 
The appropriate thresholds were determined in order to maximize the ob-
served overall proportion of correct classifications. These values were se-
lected by considering the so called specificity which equals the proportion 
of correct classifications for the subset of data with y=0 and sensitivity, 
which represents the proportion of correct classifications for the subset of 
data with y=1 (Hadjicostas 2006). 

The classified segments were subject to an object fusion procedure. This 
process aimed to unify adjacent segments which were parts of the same 
semantic entity (Definiens 2004). The output of the classification based fu-
sion was a new level of objects located above the original one in the hier-
archy.  

The newly derived objects were classified considering the logistic-based 
classification of the first level (class of sub-objects) and the inclusion and 
exclusion criteria specified in the legal forest definition. Different fuzzy 
rules (membership functions) were formulated for each class to express the 
form, the size and the vicinity of each object with other classification cate-
gories.  

3.5 Accuracy assessment 

In order to assess the classification results of both the original and the 
fused image, manual photo interpretation procedures were followed using 
both air photos of the study area and the satellite imagery. 

Two independent operational photo-interpreters digitized manually the 
forest and non-forest polygons within the study area. Based on these maps, 
600 random points were selected automatically and used for the accuracy 
assessment procedure. Furthermore, an overlay procedure was followed to 
compare the results. 
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Finally, a pairwise test statistic was also performed, based on the Khat 
coefficient of agreement, in order to statistically compare the classification 
results of the two images (Cohen 1960):  

2121 varKhatvarKhat/KhatKhatZ +−=  (2) 

where Khat1 and Khat2, denote the estimates of the kappa statistic and 
VarKhat1 and VarKhat2, the corresponding estimates of their variance. 

At the 95% confidence level, the critical value for determining if two er-
ror matrices are significantly different, is 1,96. 

4 Results and discussion  

4.1 Segmentation 

Based on a “trial and error” procedure, the red band of the original image 
as well as the hue and saturation bands were used to segment the image 
(Fig. 3), whilst the scale parameter was set to 70 and no shape heterogene-
ity was considered. The positive contribution made by the former two 
bands can be explained by the fact that they are the principal containers of 
the original spectral information during the IHS transformation (Koutsias 
et al. 2000). 

 

 
Fig. 3. Segmentation results for a portion of the original image (left) and the fused 
image (right) 

 
Respectively, for the fused image, its red and near-infrared bands were 

used and the scale parameter was set to 40. The resulted segments (Fig. 3) 

An object-based approach for the implementation of forest legislation 



318      G. Mallinis, D. Karamanolis, M. Karteris, I. Gitas 

had an overall smoother appearance in comparison to the ones resulted 
from the original image. 

4.2 Classification 

Both spectral and textural features were considered to be potential vari-
ables for enhancing the discrimination among the categories.  

In the case of the original image, the mean segment value (calculated 
from the pixels contained in each segment) for the green, blue and red 
bands of the imagery, the ratio of Qb4 as well as the mean segment value 
for the saturation band were selected. 

The mean and ratio features of band Qb4, as well as the mean and stan-
dard deviation features of saturation band were included in the logistic 
model constructed for the segments of the fused image. 

Table 1. Statistical measures for assessing overall fit of the logistic models. 

Logistic model/  
original image 

 Logistic model/ 
fused image 

Measure Value Signif. Value Signif. 
Hosmer and Lemeshow’s χ2  8.601 0.377 7.198 0.515 
-2LL 124.528  62.121  
Cox & Snell R Square 0.672  0.712  
Nagelkerke R Square 0.897  

 

0.951  
 
Goodness of fit for the logistic models proved to be satisfactory (Table 

1) since both of them resulted in small values of -2LL.  
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Fig. 4. Subset of the original image (left) the probabilities image (middle) and the 
classification result (right) of the second level. The lower right image depicts the 
class hierarchy. Lighter tones in the probabilities image indicate greater probabil-
ity for a segment to be assigned to the category tree canopy 

 
The Hosmer and Lemeshow’s statistical measure indicated a good model 
fit considering the non-significant chi-square values obtained. Further-
more, the Negelkerke value was 0.897 for the original image and 0.951 for 
the fused image. This measure has a range of 0 to 1 with higher values in-
dicating better fit. Also, the high values of the Cox and Snell asserted the 
satisfactory fit of the models. 

Following the implementation of the logistic models, two images (Fig. 
4-middle image) were derived respectively predicting the existence of tree 
canopy. The value that coincided with the intersection of the correspond-
ing curves of sensitivity and specificity was 0.6 for both images (Fig. 5).  
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Fig. 5. Specification of the cut off values, adopted to convert the probabilities im-
ages for the original (left) and the fused data (right) to binary images.  

 
The classification based fusion generated a second level of the objects 

and classification categories of this level were described using fuzzy rules 
in accordance to the criteria of the forest law (Table 2 and Fig. 4).  

Table 2. Classification scheme of the second level according to the criteria of the 
legal forest definition. 

Class name Class description 

forest 1 Objects with sub-objects classified as «tree canopy», with area 
exceeding 0.3 hectares 

forest 2 Objects with sub-objects classified as “tree canopy” but with area 
smaller than 0.3 hectares 

 forest 2.1 Objects wide or with interdependence with category forest 1 

 forest 2.2 Objects without close interdependence with category  forest 1 
(therefore characterized as NonForest) 

forest 3  

Objects with sub-objects classified as “tree canopy”, with area 
smaller than 0.3 hectares, surrounded from objects belonging to 
class non forest 2, which are encompassed from objects classified 
as forest 1 

non forest 1 Objects with sub-objects classified as “no tree canopy” 

non forest 2 
Objects with sub-objects classified as “no tree canopy”, with 
small area and elongated shape surrounded by forest 1 (therefore 
characterized as Forest) 

 
One important point of the approach was the specification of threshold 

values for the features used. Specifically, setting the threshold for the mini-
mum patch to be characterized as forest was a straightforward process 
since it is specified in the legal definition (0.3 hectares). On the other hand, 
setting the distance i.e. denoting interdependence between adjacent forest 
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patches, was a subjective decision based on the expert knowledge of local 
forest managers. Since this distance is related not only to the forest species 
present but also to the overall landscape configuration, it is likely that 
transfer of the classification approach to other areas within the same coun-
try would require minor adjustments of the corresponding thresholds 

After classifying this second level of objects, the final classification-
based fusion took place, in which objects or parts of objects belonging to 
the same semantic entity (forest or no forest) were merged (Fig. 6).  

 

 
Fig. 6. Final classification map of the original image 

 
The logistic regression based classification of the original image proved 

to be the most accurate (Table 3) in terms of overall accuracy, according to 
both photo-interpreters. According to the results of the pairwise test (Table 
3), none of the matrices were found to be significantly different.  

It appears that the use of the fused Quickbird image did not improve the 
classification result. A possible explanation could be the non-existence in 
the area of trees having a canopy small enough in the area to be properly 
segmented in the image.  
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Table 3. Overall accuracy for the three classification approaches 

  Original Fused Z value 

Overall accuracy 85.67 81.00  
1st photointerpreter 

Khat 0.639 0.589 0.489 

Overall accuracy 84.17 82.33  
2nd photointerpreter 

Khat 0.656 0.629 0.578 

 
The developed classification approach allowed quantification of the le-

gal definition criteria with semantic knowledge. Development of a semi 
automated operational method, is advantageous, in a sense that, future 
modifications in definition of forest in the frame of a worldwide or Euro-
pean Union “harmonization”, could be easily integrated to such a model. 
The adoption of this approach operationally seems promising, but accuracy 
should be further improved beforehand. 

A potential solution might be the coupling of the current approach with 
individual tree delineation methods, an approach similar to that found in 
Burnett and Blaschke (2003). However, the implementation of automated 
methods for individual tree crown recognition seems to be complicated in 
areas covered with deciduous forest species (Wulder 1998). Probably the 
most hopeful approach in an operational context seems to be the incorpora-
tion of satellite remotely sensed data providing information about the ver-
tical structure of the forest stands into the classification process.  

5 Conclusions 

An object-based methodology for forest areas discrimination in Greece has 
been developed in this work. Overall, the results obtained indicate that the 
developed approach has the potential to be adopted for forest cover as-
sessment at local scale according to criteria contained in legal forest defini-
tion. Development of a set of rules applied to objects could minimize the 
discrepancies resulting from the judgment of different photo interpreters. 
Finally the fusion of the multispectral with the panchromatic component of 
the Quickbird image proved to be of no use for the classification result, 
considering also the additional processing time needed.  
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Object-based classification of SAR data for the 
delineation of forest cover maps and the 
detection of deforestation – A viable procedure 
and its application in GSE Forest Monitoring 
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ABSTRACT: In this chapter forest cover and forest cover change map-
ping basing on image objects is discussed. Change relates to recent com-
plete harvesting and reestablishment, degradation or thinning is not con-
sidered. For the change maps two different strategies are proposed. The 
first one derives the changes by means of previously classified images of a 
multitemporal dataset and is thus referred to as “post-classification change 
detection”. For increasing the accuracy of the change maps a knowledge 
based change detection approach is introduced. The second strategy con-
siders all scenes of the multitemporal dataset simultaneously. This method 
is referred to as “multidate classification”. 

Generally any kind of Earth Observation (EO) data allowing the grey 
value based separation of forest and non-forest can be applied with both 
strategies. In this study, JERS-1 (Japanese Earth Resource Satellite) SAR 
data are used for method development. The feasibility assessment of both 
object-based mapping strategies is performed at five test sites: Germany 
(Thuringia), UK (Kielder), Sweden (Remningstorp and Brattåker) and 
Russia (Chunsky). Due to the specific data requirements (broad multitem-
poral dataset) the first approach could only be successfully implemented at 
the Thuringia site. It was also tested at Kielder, but with deficient results. 
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The chapter concludes with the successful realisation of the approach at 
the Russian service case of GSE FM. Because of the given time frame 
(1990-recent) other EO data sources had to be implemented. As historical 
EO data source LANDSAT TM was selected, recent information is derived 
from ASAR APP. 

1 Introduction 

1.1 General Instructions 

The potential of Synthetic Aperture Radar (SAR) data for forestry applica-
tions is substantiated by a huge number of publications. SAR data is 
widely used for forest cover mapping (Leckie & Ranson 1998, Schmullius 
et at. 2001), forest disturbance mapping (e.g. logging, forest fire, and wind 
damage) (Kasischke et al. 1992, Yatabe & Leckie 1995, Rignot et al. 
1997) and forest biomass assessment (Dobson et al. 1992, Israelsson et al. 
1994, Santoro et al. 2006). Lower radar frequencies proved to be of par-
ticular adequacy. Whereas current spaceborne SAR missions of the Euro-
pean Space Agency (ESA) are operating at C-band, the Japan Aerospace 
Exploration Agency (JAXA) provides L-band data (JERS-1, PALSAR). 
Despite the Japanese Earth Resource Satellite (JERS: 1,275 GHz, HH, 35° 
off nadir angle, 12,5 x 12,5 m² pixel spacing) program and NASA Shuttle 
Imaging Radar (SIR) missions, the experience with L-band applications 
especially in Europe is not as well developed as for C-band. Thus, the first 
issue of this chapter is to illustrate the capabilities of JERS SAR data for 
the forest cover mapping and the detection of clear-cutting. 

The second issue of this chapter deals with the development of a reliable 
and above all reasonable approach for operational large area forest cover 
and clear-cut mapping with high accuracy. Degradation or thinning is not 
considered. For the generation of those maps two different object-based 
classification strategies were developed. The first one maps changes with 
(previously classified) images of a multitemporal dataset and is thus re-
ferred to as “post-classification change detection”. The second strategy 
considers all scenes of the multitemporal dataset simultaneously and is re-
ferred to as “multidate classification”. Although this chapter is rather dedi-
cated to SAR data it can be stated, that generally any kind of EO data al-
lowing the spectral separation of forest and non-forest can be applied.  

Eventually the approach is implemented at a real service case of GSE 
FM (GMES Service Element Forest Monitoring). At that point the whole 
procedure had to reach operational level as the delivery of standardised 
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high quality products is core of GSE FM. The provided products of this 
service case include a forest area map, a clear-cut/burned area map and a 
forest area change map considering a minimum mapping unit of 1 ha. The 
acceptability threshold of the thematic mapping accuracy is 90% for non-
change maps and 85% for change maps, respectively. 

1.2 GSE Forest Monitoring – Intension and Accomplishment 

GSE FM is one element of the GMES (Global Monitoring for Environ-
mental and Security, see Lang in this book) initiative of the ESA Earth-
watch Programmes. GSE FM stage 2 started in 2005 with three year dura-
tion. The extending international consortium is led by GAF AG and started 
with 18 Service Providers and 25 End User. Main goal is to deliver cus-
tomised and policy-relevant and information mainly based on EO data in 
ready-to-use packages in the field of Climate Change, Sustainable Forest 
Management as well as in Environmental Issues and Natural Protection. 
The supplied products and services are validated and standardised to sup-
port decision-making and improved policies that enable cost effective sus-
tainable forest management in various countries. To guarantee the GSE 
FM standards all products including their specifications and instructions 
for production are collected within the Service Portfolio Specifications. 

2 JERS Test sites and data 

To identify suitable test sites, the following criteria were adopted: Cover-
age of different vegetation zones, access to a JERS-1 SAR data time-series 
and the availability of ground data. Hence, the following sites were chosen 
(Fig. 1): Kielder, Thuringia, Brattåker, Remningstorp, and Chunsky. 
Tab. 1 summarises the available JERS SAR and reference data. 

Kielder forest is located in northern England and is managed by the state 
funded Forest Enterprise agency. This hilly area covers about 86 km², of 
which more than 50% is forested. Productive coniferous species are pre-
dominant in these forests and a harvesting yield of some 400,000 tonnes of 
timber per year is sustained. The main tree species are Sitka spruce (75%), 
Norway spruce (12%) and Lodgepole pine (9%). 

The Thuringia test site is part of the Thuringian Forest. The relief causes 
significant variations in backscattering intensity. The test site covers 
1,000 km² and 58% of the area is tree covered. Tree species are 86% 
spruce, 7.5% pine, 3.1% beech and 3.5% others. Clear-cutting is generally 
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not practised; thinning is the more common logging technique. However, 
disturbances as bark beetle attacks and wind damage occur. 

Brattåker is a forest research site (60 km²) managed by the Swedish for-
est company. The prevailing tree species are Norway spruce and Scots 
pine, but some deciduous tree species, e.g., birch, are also present. This 
test site represents rather intensively managed boreal forest, compared with 
other areas in the northern part of Sweden. The other Swedish site, Remn-
ingstorp, comprehends about 12 km² forested land. About 10% of the area 
is forested peatland. The main tree species are Norway spruce, Scots pine 
and birch. A few stands are dominated by oak and beech. 

The Chunsky forest territory covers almost 400 km² and includes more 
than 1,200 forest compartments, of which about 90% can be denoted as 
natural stands. Birch and aspen are the major broad-leaved species, while 
pine and larch are the dominant coniferous species. 

 

 
Fig. 1. Location of JERS test sites and Irkutsk Oblast 

 
Table 1. Compendium of available EO and reference data 

Test site JERS scenes (Path, Row) Reference data 
Kielder  11.07.1993 (P325, R2492) 

16.07.1996 (P326, R2492) 
02.08.1998 (P325, R2492) 

Forest cover map 
Clear cutting between 1996-1998 

Thuringia 19.12.1992 (P308, R215) 
18.03.1993 (P298, R2588) 
05.03.1994 (P309, R215) 
07.01.1995 (P309, R215) 
11.01.1998 (P298, R2588) 

Comprehensive forest inventory 
data 

Brattåker 06.06.1993 (P290, R2312) 
24.07.1996 (P307, R192) 

Location of clear cuts (dateless) 
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15.05.1998 (P290, R2312) 
Remning-
storp 

30.04.1993 (P297, R2432) 
14.07.1994 (P297, R2432) 
22.05.1998 (P297, R2432) 

Forest inventory data for a small 
subsections of the site 
Location of clear cuts (partly 
dateless) 

Chunsky 16.01.1996 (P157, R203) 
27.06.1997 (P157, R203) 
28.07.1998 (P157, R203) 

Forest inventory data 
Location of clear cuts (dateless) 

3 Methodology 

The SAR data pre-processing involved, besides calibration to σ0 and 
orthorectification, the removal of the typical topography induced distor-
tions of backscattering intensity using the SAR processing algorithms for 
relief calibration and angular backscatter correction by Stussi et al. (1995).  

Man-made clear-cutting is characterised by regular geometric patterns 
(see Wulder et al. in this book). Due to their dissimilar scattering behav-
iour forested and deforested areas can typically be distinguished with SAR 
data. Segmentation procedures are capable to recognise and frame the bor-
ders of adjoining areas with differing backscatter. Hence, the regular geo-
metric patterns of clear-cuts can be transformed into image segments 
which can be used for classification purposes. This principle is of particu-
lar interest for SAR data classification as the disturbing statistical effects 
of speckle is diminished - only the average backscatter of each segment is 
considered by the classifier. Thus, the data analysis and classification are 
based on image objects (segments), where segments are identified using a 
multiresolution segmentation algorithm (Baatz & Schäpe 2000, Benz et al. 
2004). The borders of the segments do not necessarily represent the forest 
compartments, but in general identify homogeneous patches of land. The 
segment size is determined by a scale parameter and can range from single 
pixels to the entire scene. An adequate choice of the segment size must 
amongst others account for the desired minimum mapping unit (1 ha is 
feasible using JERS). 

Fig. 2 shows an example of a segmented image. Bright segments are 
forested and dark segments unforested. Clear-cuts or young forest stands 
are evident within the forested area (middle grey). The borders of differing 
adjoining forest partitions are clearly framed. For the segmentation the 
whole JERS time series was always embedded (multi-image segmenta-
tion). Thus, the segments are the same in all images. 

For the creation of forest cover maps and the detection of forest cover 
changes, two different approaches were considered. The first approach dis-

Object-based classification of SAR data  



332      Ch. Thiel, Ca. Thiel, T. Riedel, C. Schmullius 

cussed here is referred to “post-classification change detection”. Thresh-
olds on segmented σ0 values are used to divide each scene into forest and 
non-forest (Fig. 3.). This threshold varies between acquisitions as a result 
of altered tree properties, weather conditions and acquisition system pa-
rameters, and it must be adapted for each scene individually to achieve op-
timum classification. GIS based forest stand information was used for 
sample selection and thus threshold definition. 

 

 
Fig. 2. Example for segmented JERS SAR-image (Kielder) 

 

  
Fig. 3. Left: Original σ0 image. Right: Example of forest cover map derived by 
threshold based classification (part of Thuringia test site, subset size ca. 7 x 8 km) 

 
Time series of classified images are used to delineate forest cover 

changes. The delineation was executed with GIS procedures. Each image 
segment was analysed temporally with respect to its membership to forest 
or non-forest respectively. To reduce the impact of misclassifications for 
each particular time of recording expert knowledge was integrated into the 
change analysis. E.g. if the classification result of one image object was 
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fluctuating over the whole time series like 1992: forest, 1993: non-forest, 
1994: non-forest, 1996: forest, 1998: non-forest etc. it is not interpreted as 
change, but as ambiguous (for manual review). This is basing on the fact, 
that it takes a much longer time span to grow and to harvest a forest. A 
variation of the classification of one image object was interpreted as 
change, if it was assigned stable to one class for the consecutive years be-
fore the change (e.g. 1992: forest, 1993: forest, 1994: forest) and to the 
opposing class past the change (1995: non-forest, 1998: non-forest). Based 
on such semantics the time series of classified images was translated into a 
forest cover change map. It is important to state that the statistical sound-
ness of this translation and thus the quality of the change product is de-
pending on the number of classified images. If there are less then two im-
ages before and after the actual forest stand specific change, this 
knowledge based translation method can not substantiate this change. 

The second approach considers all the scenes simultaneously. The clas-
sification incorporates forest, non-forest and forest change classes. This 
method is referred to as “multidate classification” (Fig. 4). At the 
multitemporal composite (Fig. 4, left) permanent forested (tree covered) 
areas appear in bright grey, permanent non-forested areas in dark grey and 
changes within the forested area in medium shades of grey. The change 
map (Fig. 4, right) is based on a supervised (nearest neighbour) classifica-
tion of σ0 values. To create class signatures, an appropriate set of training 
samples is created for each class. During the classification process each 
image segment is then assigned to the appropriate class signature. By 
means of this classification result forest cover maps for each year of the 
time series can be derived. 

 

  
Fig. 4. Left: Multitemporal (1998/1996/1993) σ0 composite (7 x 8 km subsection 
of Kielder site). Right: Change map: black: non-forest, white: forest, dark grey: 
clear-cuts 1993-1996, light grey: clear-cuts 1996-1998 
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4 Results 

4.1 Kielder (UK) 

At the Kielder site both mapping strategies were tested. The results ob-
tained with the “multidate classification” are presented here and are com-
pared with the “post-classification change detection” results in section 5. 
Three suitable JERS SAR images were available. In accordance with the 
existing ground data, the validation of the clear-cut map was carried out 
only for the 1996-1998 period. 

To estimate the separability of the classes a signature plot for the train-
ing sample set was created (Fig. 5). For the second and the third acquisi-
tion the clear-cut segments experienced a decrease in backscatter. Al-
though the σ0 values of the clear-cuts lie in the range of the standard 
deviation of forest, most of the clear-cuts could be detected (see Fig. 6). 
The apparent temporal variability in overall backscatter was investigated in 
another study (Thiel et al. 2004) and was related to JERS calibration prob-
lems and Faraday rotation (Freeman & Saatchi 2004). 

 

 
Fig. 5. Signature plot for Kielder site: Note the decrease of σ0 with clear-cutting 
(clear cut (93-96) means, clear-cut was established between 1993 and 1996) 

 
The spatial and temporal correspondence of the SAR and GIS data be-

tween 1996 and 1998 allows direct comparison of the results. Out of the 42 
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clear-cuts within the test site 37 could be recognised. A clear-cut was con-
sidered correctly detected if the centres of the SAR polygons were located 
within the ground data GIS polygon, even if the borders were somewhat 
different. In some cases discrepancies can be attributed to the different 
geometric properties (e.g. vector vs. raster, geometric errors, impact of 
speckle on segmentation). Seven “SAR-detected” clear-cuts could not be 
confirmed by the GIS data, which might be even due to incomplete clear-
cut information in the ground data. In a few cases it could also be a conse-
quence of wind damage, which in the case of Kielder Forest is a frequent 
occurrence that is not embodied in the clear-cut GIS data. 

Fig.6 shows that SAR data analysis severalfold underestimates the clear-
cut areas. Five of the clear-cuts are not detected. One reason could be that 
the felling data may include areas of cleared shrubs, dead forest, or failed 
(unestablished) forest in addition to mature forest that has been cleared in 
preparation for replanting. The change from these “forest types” to clear-
cut is hardly detectable with JERS SAR data. Moreover those changes are 
regularly not treated as deforestation (IPCC 2003). 

 

 
Fig. 6. Logging at Kielder site (1996-1998); Light grey:  forest, white:  non-forest, 
dark grey: SAR detected logging, polygons: in-situ logging GIS data 
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4.2 Thuringia (Germany) 

For the creation of the forest cover change map of Thuringia the “post-
classification change detection” approach was implemented. Five JERS 
SAR scenes were incorporated. The forest cover maps were formed by 
thresholding σ0 for each particular SAR image. A sample of the classifica-
tion for 1992 is given in Fig. 7. To estimate the separability of the classes, 
signature plots were generated as above (Fig. 5). The class means and the 
standard deviations of the training areas indicate a distinct separability of 
forest and non-forest. 

The entire area of the 1992 SAR based forest cover map was compared 
(pixel wise overlay) to the inventory data. The overall accuracy of the de-
lineated forest cover map is 90%. Image segments where forest was incor-
rectly detected amount to 7.5% (of total area). These misclassifications 
mainly occur at small settlements and some agricultural areas with high 
biomass crops such as maize. Both these land cover types can produce 
very high backscatter that extends into the range of the forest signatures 
(see discussion section). Converse misclassifications (detection of non-
forest instead of forest) amount to 2.7% of total area and occur mainly for 
young forest stands with low backscatter. An inventory based verification 
of the SAR based forest cover maps for acquisitions after 1992 was not 
possible because of the lack of forest inventory, however similar accuracy 
would be expected for these maps. 

 

 
Fig. 7. Forest cover map Thuringia (1992); grey: forest, white: non-forest, poly-
gons: forest stands taken from forest inventory data 

The SAR-based forest cover change map combines the information from 
the temporal sequence of forest cover maps as described above. Even 
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though clear-cutting is not officially exercised in Thuringia, deforestation 
is evident in Fig. 8. Clear-cutting may be applied as an exception to re-
move diseased (e.g. bark beetle) or damaged (e.g. storm damage) forest, 
but such activities cannot be inferred from the inventory data. 

 

 
Fig. 8. Subset of forest cover change map for Thuringia; light grey: forest, white: 
non-forest, hatched: logging, dotted: replanting, dark grey: ambiguous 

4.3 Remningstorp, Brattåker, and Chunsky 

For the remaining sites only the “multidate classification” was applied, as 
the SAR data set was not appropriate for the other approach (short time 
span, only three good quality images). Unfortunately for Remningstorp, 
Brattåker, and Chunsky the in situ information was not adequate for thor-
ough accuracy assessment. Thus this task was conducted using the SAR 
images and the confusion matrix method as proposed by IPCC (2003). 
Forest cover changes were detected by means of a visual interpretation of 
all considered SAR images. Validation areas for each class were selected 
basing on the visual analysis. These areas are taken as the actual “truth” 
data in the confusion matrix. For each class, the numbers of correctly clas-
sified pixels and confused pixels resulted in an overall accuracy of ca. 90% 
for the three sites which is comparable to Kielder and Thuringia. 
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5 Discussion of JERS Results and Methodology 

The results demonstrate that JERS SAR data in combination with an object- 
based classification approach can be used to create reasonably accurate 
forest cover and forest cover change maps. The overall accuracy of the (by 
thresholding) derived forest cover maps is ~90% by area. Moreover, ~90% 
of the clear-cuts could be detected (multidate classification). 

For the detection of forest cover changes and the delineation of forest 
maps, two differing methods were applied. The “multidate classification” 
uses a multi-parameter set of SAR data and delivers more precise results 
compared to the “post-classification change detection”. For practical rea-
sons a supervised classification algorithm such as “Nearest Neighbour” is 
preferable (against simple thresholding) to cope with the classification. 

“Post-classification change detection” is a simple method for separating 
forest from non-forest by thresholding. It is more transparent and thus as-
sumed rather transferable to other sites (preconditions: sound sensor cali-
bration and comparable environmental conditions) and only one SAR im-
age is required. On the other hand, change analysis requires more than one 
image and the classification errors in each individual forest cover map 
propagate into the forest cover change map. These errors can be minimised 
by integrating knowledge based rules, e.g. detecting fluctuations in classi-
fication during the time-series which cannot occur in real forests. How-
ever, the accuracy of “post-classification change detection” was found to 
be far below the “multidate classification” approach at the Kielder test site. 
Only 65% of the detected clear-cuts agree with the in situ data (65% of the 
centres of the SAR polygons were found within the in-situ GIS polygons). 
In addition, the number and area of felled forest stands was overestimated. 
The reason for these results can be explained by the limited number of 
available SAR images (see methodology section). Thus, the available data 
set (3 scenes) does not allow for a proper knowledge rule based “post-
classification change detection”. 

For operational purposes the choice between both approaches is re-
quired to take account for practical issues such as data availability and in-
vestigation objectives. Typically the life span of one sensor such as 
JERS-1 SAR is short compared to the study period of a change detection 
survey (e.g. GSE FM Russia). That fact prevents optimal data conditions 
and thus can complicate the application of the “multidate classification” 
approach. Occasionally no EO data is available and the only source of his-
torical information is a thematic map. Thus, e.g. Kyoto or GSE FM appli-
cations are concentrating on “post-classification change detection”. 
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6 Implementation of the Object-Based Classification 
Approach at the Russian Service case of GSE FM 

6.1 Irkutsk Oblast – The Russian Service Case 

The Russian Service Case relates to the Irkutsk Oblast (Fig. 1). The Ser-
vice Case is based on agreement with the Forest Agency of Irkutsk General 
Survey of Natural Resources (FA of GSNR) of Russian Ministry of Natu-
ral Resources (MNR). Current forest monitoring is accomplished by the 
conduction of periodical forest inventories, generally every 10 to 15 years. 
Due to frequent forest fires as well as intensive human activities such as 
clear-cutting and cultivation the Irkutsk territory is characterised by large 
area changes of forests. Therefore, management and monitoring issues bet-
ter oblige an annual inventory cycle. Without the use of EO data this chal-
lenge is almost impossible to solve as the conduction of ground inventories 
within this region is rather complicated due to the large size of the region, 
insufficient infrastructure, and inaccessibility of many areas. Moreover, 
ground based forest inventory is costly and time consuming. 

The Oblast is located in central Siberia (52°-64° N, 96°-118° E) and 
comprises 739,000 km². The Middle Siberian Plateau in the southern part 
of the territory is characterised by hills up to 1,700 m. The northern part is 
plain with heights up to 500 m. Taiga forests (birch, aspen, pine, larch etc.) 
dominate the Irkutsk Oblast and cover about 82% of the region. 

6.2 Implementation of the Object-Based Classification 

The GSE FM service case in Russia has a large influence on effective for-
est monitoring and inventory at regional scale. Recent information on for-
est extent and changes therein are currently generated using high-
resolution ENVISAT ASAR APP IS7 (HV/HH) (5.331 GHz, 43,8° off na-
dir angle, 12.5 x 12.5 m² pixel spacing) data because of their availability 
and qualification (forest/non-forest sufficiently separable). 

The provided products of this service case include a forest area map, a 
clear-cut/burned area map and a forest area change map. The forest area 
map is derived from recently acquired ASAR data. Analysis of backscatter 
intensities of a one-year time series have resulted in a preferred image ac-
quisition during the thawing season around April (Thiel et al. 2007). For 
the generation of the other maps archived LANDSAT TM data around 
year 1990 are utilised. Specifications of the products require a geometric 
accuracy of an RMS < 30 m and a minimum mapping unit of 1 ha. Both 
requirements can be fulfilled. The acceptability threshold of the thematic 
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mapping accuracy is 90% for non-change maps and 85% for change maps, 
respectively. All products will be implemented into the forest inventory of 
the FAI of GSNR and are produced within three years for regions of rapid 
change in the Irkutsk Oblast, comprising a total area of 200,000 km². In the 
first year an area of about 50,000 km² has already been processed, the ser-
vice area will be extended by ~20% each year. 

The methodology chain comprises pre-processing (calibration, orthorec-
tification, topographic normalisation, and ratio computation), classifica-
tion, post-classification refinement, manual separation of clear-cuts and 
burned areas with the forest area map as origin and change map produc-
tion. For the creation of forest cover maps the principle of the above dis-
cussed “multidate classification” has been applied. It only differs by the 
fact, that not multidate, but multipolarisation data sets were used. One sin-
gle ASAR scene (three channels: HH/HV/ratio[HH/HV]) provides the in-
put for detecting forest and non-forest areas, whereas non-forest areas form 
a mixed class consisting of clear-cuts and fire scars. Several samples (15-
25, depending on size of forest enterprise and site characteristics) for each 
class are identified before conducting the supervised classification (nearest 
neighbour) based on σ0 in dB. Manual post-classification refinement is 
necessary to fulfil the requested mapping accuracy. Basing on the forest 
area map which comprises the mixed class “clear-cuts and burned areas” 
clear-cut and burned area maps are produced. The separation is based on 
the object shapes, which differ for fire scars (irregular, rather large) and 
clear-cuts (squared, rather small) as well as on fire event data. For the pro-
duction of forest area change maps archived LANDSAT TM scenes from 
years around 1990 are classified using the same procedure as described 
above. The classification results are then combined with the forest area 
maps to create the forest area change maps (Fig. 9). 

The quality assessment of the GSE FM products is performed by the 
Service Provider (SP) and by the End User (thus by FAI of GSNR in that 
case), whereby the End User is not expected to compute quality measures 
but to check the product consistency and to carry out some real field com-
parisons. The mapping accuracy (by SP) was found to be 92.2% (prod. 
acc. 94.1%, users acc. 90.3%) in average for the non-change maps and 
86.1% (prod. acc. 86.9%, users acc. 85.3%) for the change maps. For this 
assessment high resolution optical and forest inventory data were applied 
and the stratified random sampling strategy was chosen. All products and 
specifications have been approved by the End User. 
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Fig. 9. Left: Forest area map (2006); grey: forest, black: non-forest. Right: Forest 
area change map (1990-2006); grey: forest, white: regrowth, black: new clear-
cuts, dark grey: non-forest (subset size ca. 10 x 11 km) 

7 Conclusions and Outlook 

Two differing object-based classification and change detection strategies 
proved being appropriate image analysis approaches for forest cover and 
forest cover change mapping. In summary, JERS SAR images provide suf-
ficient information for the detection of clear-cutting. Due to the limited 
time span of seven years, JERS data permitted neither the detection of af-
forestation nor reforestation (in the sense of the Kyoto Protocol, see IPCC 
2003). However, some forest stands with recently planted trees are appar-
ent at most of the JERS test sites. As their backscatter lies close to the 
threshold that separates forest from non-forest, these stands cannot be 
clearly assigned to either class (forest/non-forest). The usage of polarimet-
ric L-band SAR data is expected to remedy this deficiency (Israelsson et 
al. 1994, Rignot et al. 1997). Hence, the effect of this data type has to be 
investigated in further studies. Cross checks of both classification strate-
gies shall be provided in these investigations. 

One of the developed object-based classification and change detection 
strategies could be successfully realised at the Russian service case of GSE 
Forest Monitoring. Amongst others GSE FM aims at the operationalisation 
of Earth Observation data based services and is already characterised by a 
high operational level. The object-based classification strategy fits well in 
this intention. The product list of the Russian service case includes a forest 
area map, a clear-cut/burned area map and a forest area change map. Re-
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cent forest area maps are created using ASAR APP IS 7 (HV/HH) data. To 
generate historical maps LANDSAT TM data from the 1990s were used. 
Some manual correction had to be accomplished to meet the demanded 
mapping accuracy. This in particular refers to the classification of the 
ASAR data. Recent L-band data such as provided by PALSAR will mini-
mise the manual intervention effort and will be implemented at phase 3 of 
GSE FM. Products derived from PALSAR can be expected to be even 
more accurate than those from JERS. This is primarily because of the 
availability of multiple polarisations and multiple incidence angles. Addi-
tionally, the improved geometric resolution allows the detection of 
smaller-scale forestry activities. 
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ABSTRACT: Forest monitoring information needs span a range of spa-
tial, spectral and temporal scales. Forest management and monitoring are 
typically enabled through the collection and interpretation of air photos, 
upon which spatial units are manually delineated representing areas that 
are homogeneous in attribution and sufficiently distinct from neighboring 
units. The process of acquiring, processing, and interpreting air photos is 
well established, understood, and relatively cost effective. As a result, the 
integration of other data sources or methods into this work-flow must be 
shown to be of value to those using forest inventory data. For example, 
new data sources or techniques must provide information that is currently 
not available from existing data and/or methods, or it must enable cost ef-
ficiencies. Traditional forest inventories may be augmented using digital 
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remote sensing and automated approaches to provide timely information 
within the inventory cycle, such as disturbance or update information. In 
particular, image segmentation provides meaningful generalizations of im-
age data to assist in isolating within and between stand conditions, for ex-
trapolating sampled information over landscapes, and to reduce the impact 
of local radiometric and geometric variability when implementing change 
detection with high spatial resolution imagery. In this Chapter, we present 
application examples demonstrating the utility of segmentation for produc-
ing forest inventory relevant information from remotely sensed data. 

Introduction 

Information needs for forest characterization span across a range of spatial 
scales - both in terms of areal coverage and level of detail required - and 
across information needs, ranging from resource management and conser-
vation, through to land use planning. The areal extent over which informa-
tion are required varies from tens to millions of hectares. Remotely sensed 
data is often seen as a practical and cost effective means to represent forest 
conditions. An ever expanding suite of air- and space-borne sensors are 
available that collect data across a wide range of spatial and spectral reso-
lutions. High spatial resolution data may be selected for fine scale charac-
terizations. Alternately for wide-area studies, lower spatial resolution data 
may be utilized to provide a more generalized perspective. The image ex-
tent is typically tied to a given spatial resolution, with smaller pixels form-
ing images with smaller extents (or footprints). For example, Landsat-5 
Thematic Mapper (TM) and Landsat-7 Enhanced Thematic Mapper Plus 
(ETM+) data have a 185 by 185 km image footprint with six 30 m (multis-
pectral; MS) bands and one 15 m (panchromatic; PAN) band; IKONOS 
has up to a 10 x 10 km footprint with four 4 m (MS) bands and one 1 m 
(PAN) band. The reader is referred to Franklin et al. (2002) for a more de-
tailed discussion of the relationship between image extent, spatial resolu-
tion, and data cost. Trade-offs are typically required between image spatial 
and temporal resolution that have implications for data selection. Gener-
ally, medium resolution satellites such as Landsat, will revisit the same lo-
cation once every 16 days, while high spatial resolution imagery such as 
IKONOS and QuickBird have longer revisit period (144 days for Ikonos 
for true nadir), albeit it can be shortened to 1 to ≈4 days due to the off-
nadir acquisition capabilities (up to 30°) of these satellites (Coops et al. 
2006).  
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Forest characterization will often require generalization of detailed 
large-scale data to produce maps that depict large areas for management 
purposes. Air photo interpretation involves the delineation of polygons 
representing areas homogenous in terms of the relevant forest attributes, 
and is the most common approach for initially generating a forest inven-
tory. The ability to develop meaningful units for management from mid-
scale (1:25,000 to 1:50,000) photography provides a cost effective and es-
tablished means for spatial data generation. Forest inventory is supported 
by field data collection and calibration of the units and attributes inter-
preted from the photos. Shortcomings in this interpretive approach include 
inconsistencies in the interpretation process (both object delineation and 
attribution), time to produce products, and update cycle. For example, in 
1:10,000 to 1:20,000 scale photography, accuracies are generally 70–85% 
for main species in a stand, but can be lower (Leckie et al. 2003). In addi-
tion, inventory data volumes are often enormous, with manual interpreta-
tion typically completing 5–15 photos per day. This represents approxi-
mately one photo per hour, or 400 new hectares and 10–15 stands per hour 
(Leckie et al. 1998; data of Leckie and Gillis 1995), with similar numbers 
for mid-scale photography. Shortcomings notwithstanding, no other cur-
rently available data source can provide the same combination of afforda-
bility and level of detail. 

Development of digital remote sensing techniques that are supportive 
and complementary to current operational forest inventory approaches are 
desired. For instance, remotely sensed data can provide information that 
augments the forest inventory with attributes of interest, produces update 
(change) information, or enables increased automation of expensive and 
inconsistent elements of the forest inventory production process. Image 
segmentation is one such technique capable of supporting forest inventory.  

Image segmentation is the partitioning of a digital image into a set of 
jointly exhaustive and mutually disjoint regions that are more uniform 
within themselves than when compared to adjacent regions (uniformity be-
ing evaluated by a dissimilarity measure with which the partition itself is 
constructed). There are hundreds of image segmentation algorithms that 
have been developed, not only for remote sensing applications, but also for 
computer vision and biomedical imaging. The techniques are so varied that 
there is no up-to-date review in the literature; the last comprehensive at-
tempt was made more than a decade ago (Pal and Pal 1993). However, in 
the context of forest inventory, only a few methods have been applied, 
which are mostly based on region merging (e.g. Hagner 1990; Woodcock 
and Harward 1992; Baatz and Schape 2000; Pekkarinen 2002). This proc-
ess consists of the sequential aggregation of adjacent regions according to 
their similarity until a stop criterion is reached, which can be based on ei-
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ther a similarity or a size threshold. So far, only one of these methods, the 
multi-resolution segmentation of Baatz and Schape (2000), has been im-
plemented into commercial software (eCognition; Definiens Imaging 
GmbH 2002). The segmentations produced with eCognition are typically 
visually appealing; although, a disadvantage is the need for users to itera-
tively deduce useful segmentation levels through trial and error (Hay et al. 
2003). Further, the algorithms employed in eCognition are proprietary, and 
are described only thematically. Feature Analyst is an additional com-
monly used commercially available software package for image segmenta-
tion; it too has some subjective and iterative training requirements1. A 
more recently developed algorithm, Size-Constrained Region Merging 
(SCRM), enables the user to explicitly control the size of the output re-
gions and the complexity of their boundaries (Castilla et al. In Press).  

The objective of this Chapter is to demonstrate the utility of image seg-
mentation within a forest inventory context. Consequently, in this Chapter, 
we present examples of applications where image segmentation routines 
have been applied to aid in the generalization and attribution of remotely 
sensed forest data. A comparison of the strengths and weaknesses of dif-
fering algorithms is beyond the scope of this communication. Applications 
include estimating time since forest disturbance, extending a sample of 
Light Detection and Ranging Data (LIDAR) data across a broader area for 
the purposes of forest inventory height update, and a segment based com-
parison of forest change over time. Segmentation ‘opportunities’ and ‘is-
sues’ related to individual tree level change detection are also presented, 
followed by potential uses of segmentation as part of the forest inventory 
process. Finally, we summarize our findings and indicate future directions 
and opportunities for segmentation to aid in meeting forest characterization 
information needs.  

Applications 

Lidar and spectral data fusion to enable extension of forest 
inventory attributes 

Optical remotely sensed imagery is well suited for capturing horizontally 
distributed conditions, structures, and changes (Wulder 1998), while 
LIDAR data are more appropriate for capturing vertically distributed ele-
ments of forest structure and change (Lefsky 2002). The integration of op-
tical remotely sensed imagery and LIDAR data provides improved oppor-

                                                      
1 http://www.featureanalyst.com 
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tunities to fully characterize forest canopy attributes and dynamics. Me-
dium resolution remotely sensed data such as Landsat is relatively inex-
pensive to acquire over large areas (Franklin and Wulder 2002), whereas 
LIDAR covers small areas, at a high cost per unit area (Lim et al. 2002). 
As a result, these two data types may be combined to generate estimates of 
stand height over large areas at a reasonable cost (Hudak et al. 2002).  

Forest inventories in Canada are typically updated on a 10 year cycle 
(Gillis and Leckie 1993). Applications requiring up-to-date estimates of 
height must often use growth and yield modeling to predict changes to 
height over time, based on a number of other inventory attributes. Wulder 
and Seemann (2003) presented an approach where image segments gener-
ated from large-extent Landsat-5 Thematic Mapper (TM) data were used to 
extend height estimates from samples of LIDAR data collected with the 
Scanning LIDAR Image of Canopies by Echo Recovery (SLICER) instru-
ment. SLICER records data on canopy height, vertical structure, and 
ground elevation, collecting 5 full waveform footprints, typically resulting 
in a narrow-transect (< 50 m). Image segments were generated 
from Landsat-5 TM bands 1 to 5 and 7 using eCognition’s segmentation 
algorithm (Definiens Imaging GmbH 2002). 

Initially, Wulder and Seemann (2003) examined the empirical relation-
ship between LIDAR height estimates and the height attribute of the corre-
sponding forest inventory polygon. This method used the mean height of 
all the LIDAR hits within each forest inventory polygon and resulted in a 
regression model with an R2 of 0.23 and a standard error of 4.15 m. Subse-
quently, Wulder and Seemann (2003) decomposed the image-based seg-
ments generated from the Landsat-5 TM data to the forest inventory poly-
gons (Wulder and Franklin 2001). The result was that each forest 
inventory polygon was partitioned into spectrally homogenous sub-units, 
similar to the examples provided in Figure 1. The mean LIDAR height 
within each of these polygon sub-units was determined, and then an area-
weighted mean height was generated for each forest inventory polygon. A 
regression model built using this area weighted mean LIDAR height, cal-
culated from the within stand image segments, resulted in a R2 of 0.61 and 
a standard error of 3.15 m. 80% of the forest inventory polygons had 
LIDAR height estimates within ± 6 m of the existing inventory height. In-
dependent validation data was used to subsequently test the model, gener-
ating a R2 of 0.67 and a standard error of 3.30 m. In this application, re-
motely sensed imagery, LIDAR, and forest inventory were combined to 
estimate stand height over a 7000 km2 area, based on a 0.48% LIDAR 
sample that covered 33.9 km2. The image-based segments were critical for 
developing an appropriate regression model, and in turn, for extrapolating 
the LIDAR estimates across the larger area. 
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Time since disturbance estimation 

Modeling of forest carbon dynamics requires precise information regard-
ing when a disturbance occurred and the age of the subsequent regenerated 
forest. As mentioned earlier, forest inventory data is not always up-to-date. 
In order to provide information required for modeling purposes, Wulder et 
al. (2004a) used Landsat-7 ETM+ data and derived tasseled cap transfor-
mation (TCT) (Crist and Cicone 1984) values to estimate the age of lodge-
pole pine (Pinus contorta) stands from approximate time of disturbance to 
20 years of regeneration. Image segmentation was employed to aid the re-
moval of pixels representative of residual forest and other non-
characteristic stand conditions within forest inventory polygons, thereby 
improving the relationship between Landsat spectral values and the age of 
the forest stand. 

Forest inventory polygons capture a homogenous assemblage of forest 
attributes (Gillis and Leckie 1993); however, the spectral response within 
any given forest inventory polygon is highly variable (Wulder 1998) and 
the disparity in the relationships between spectral values and forest inven-
tory attributes has been demonstrated (Wulder et al. 1999). Thus, when the 
Landsat-7 ETM+ imagery is segmented, groups of pixels with similar 
spectral values are generated; when these groups are then combined with 
the forest inventory polygons using polygon decomposition, the inventory 
polygons are stratified into sub-units representing the variability in the dis-
tribution of trees within the inventory polygon. For example, a stand, as 
represented by a forest inventory polygon, may have been harvested; how-
ever, some residual forest may have been left behind to serve a specified 
management function (e.g. a wildlife tree patch). This patch of residual 
forest will likely have spectral properties different from the harvested area 
surrounding it, and as a result would be segmented into a separate sub-unit 
within the inventory polygon. In a study by Wulder et al. (2004a), a total 
of 1305 segments were created, 65% more than the number of polygons in 
the inventory (809). Examples of four inventory polygons and their associ-
ated segments are provided in Figure 1. The thicker vectors in Figure 1 in-
dicate the boundary of the original forest inventory polygon, while the 
thinner vectors represent the polygon segments.  
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Fig. 1. Illustrative examples of polygon segmentation for four forest inventory 
polygons. The Landsat ETM+ image used to generate the spectrally homogenous 
segments is shown in the background 

Wulder et al. (2004a) then applied a set of rules to determine which of 
the polygon sub-units actually represent harvest conditions, and which rep-
resent residual stand structure or were not indicative of post-harvest condi-
tions. Landsat bands 3, 4, 5 and 7, along with TCT components brightness, 
greenness, and wetness were used as independent variables (for back-
ground, see Healey et al. 2005, 2006). Stand age, as estimated in the forest 
inventory, was used as the dependent variable.  

For comparative purposes, age estimates were generated using two dif-
ferent approaches. In the first approach, estimates of stand age were based 
on the mean spectral value of all the pixels in the polygon, including any 
residual forest and roads or landings within the polygons. In the second 
approach, the image pixels representing these features and other non-
characteristic stand conditions were removed and the mean value of only 
the remaining segments was used to represent the age of the stand; a seg-
ment-based area weighted estimate of age was then generated for the re-
maining segments in each polygon. In Figure 1, only those segments 
marked with an ‘x’ would have been used in height estimation. 
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The inventory stand age was found to be negatively correlated with 
Landsat-7 ETM+ spectral response. The strongest correlation to stand age 
was found using the TCT wetness component (R = 0.56 for the inventory 
polygons and R = 0.78 for the segments within the polygons). The use of 
the polygon segments was more successful at generating an estimate of 
stand age, as indicated by the larger correlation coefficient values and the 
univariate and multivariate regression models: a step-wise multivariate re-
gression procedure resulted in a R2 of 0.68 with a standard error of 2.39 
years. By comparison, the regression model generated using just the forest 
inventory polygons had a R2 of 0.46 with a standard error of 2.83 years. 
From a carbon modeling perspective, the ability to estimate stand age to 
within 3 years, where no other current age information is available, pro-
vides a useful option for model input. In this application, the image seg-
ments served to stratify the forest inventory polygons and improved the re-
lationships between Landsat-7 ETM+ spectral response and inventory age. 
This experiment adds a new segment- or object-based dimension to the lit-
erature which confirms the validity of empirical modeling, or regression 
based approaches, to estimate stand age. 

Capture of large area forest dynamics 

Forest dynamics are characterized by both continuous (i.e., growth) and 
discontinuous (i.e., disturbance) changes. Wulder et al. (2007) used a com-
bination of LIDAR and remotely sensed imagery to characterize both the 
horizontal and vertical forest structure over a large area in the boreal forest 
of Canada. Their study uses two SLICER LIDAR transects, each approxi-
mately 600 km in length. The first transect was collected in 1997 and the 
second transect was collected in 2002. Image segments were generated 
from Landsat-7 ETM+ imagery using the same procedure as Wulder and 
Seemann (2003). The image segments provided a spatial framework within 
which the attributes and temporal dynamics of the forest canopy were es-
timated and compared.  

The detection and mapping of forest disturbance (discontinuous), espe-
cially stand replacing disturbances such as fire and harvesting, are opera-
tionally and reliably captured with optical remote sensing systems (Cohen 
and Goward 2004). Conversely, continuous change, such as growth, is 
more difficult to detect with optical imagery. The use of LIDAR presents 
opportunities for capture and characterization of this subtle continuous 
change. Two different approaches for estimating changes in forest attrib-
utes were used. The first one was a global approach that emphasized the 
overall trend in forest change along the entire transect. It was found that 
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globally, the key canopy attributes, including average canopy height, can-
opy profile area, and standing stock, were stable, indicating that transect 
characteristics following the five-year period did not differ. A two-sample 
t-test confirmed the inseparability of the 1997 and 2002 canopy height (p = 
0.08).  

The local analysis approach examined segment-based changes in canopy 
attributes, providing spatially explicit indications of forest growth and de-
pletion. As expected, the difference in the magnitude of the changes was 
greater for depletions than it was for growth, but was less spatially exten-
sive; 84% of segments intercepted by both LIDAR transects either had no 
change or a very small average decrease in canopy height. While growth 
tends to occur incrementally over broad areas (Figure 2), depletions are 
typically dramatic and spatially constrained (Figure 3). The fact that deple-
tions occurred over a smaller spatial extent, but with a greater magnitude 
than growth, nullified the detection of positive growth that occurred in 
smaller increments over a much larger area. As a result, the conclusion 
reached with the global approach - that no change occurred between 1997 
and 2002 - is misleading. This result suggests that a local approach is pref-
erable for characterizing change from LIDAR transects, particularly given 
the complexity and natural variability inherent in most forest ecosystems. 

In this application, segments were used as a proxy for homogenous 
vegetation units (Wulder et al. 2007) and facilitated the reporting and com-
parison of forestry canopy attributes derived from the LIDAR transects. 
Figures 2 and 3 represent examples of canopy height profiles of segments 
experiencing forest growth and forest depletion, respectively. If forest in-
ventory polygons are available, they can serve as the spatial unit; however, 
for this study, the inventory was not readily available, and in many parts of 
northern Canada, no spatially extensive forest inventory has ever been 
conducted.  
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Fig. 2. Segment-based canopy height comparison (growth case) (scene: 4119, 
segment: 111786; greatest between-transect distance: 60 m) 

The image-based segments provided a spatial context to account for the 
disparity in the transect flight paths, which were not exactly coincident. 
Furthermore, the segments facilitated the investigation of the spatial prop-
erties of the changes in forest attributes, which is critical for determining 
the scale of the changes, and for inferring the processes that cause the 
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changes. The segments are therefore essential for capturing the variability 
in change events along the LIDAR transects. 
 

 
Fig. 3. Segment-based canopy height comparison (depletion case) (scene: 4222, 
segment: 80081; greatest between-transect distance: 100m) 
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Discussion 

The applications presented demonstrate the utility of image segmentation 
for providing spatial context, which in turn facilitates analysis of the spa-
tial properties of forest attributes and change over time. Segments can be 
used to stratify image data into spectrally homogenous units, which are 
subsequently used as surrogates for forest polygons, on the assumption that 
they will also be relatively homogeneous in terms of the relevant attrib-
utes. The findings presented in this communication suggest that in the ab-
sence of better alternatives, segments derived from optical imagery may be 
used to constrain analysis, reduce data variability, and aid in extrapolating 
relationships across larger areas.  

There are two other potential areas where segmentation could prove use-
ful. The first is in the context of high spatial resolution change detection 
(see also Hall and Hay 2003). Since high spatial resolution space-borne 
sensors have only been in commercial operation since 1999, the uncom-
mon activity of acquiring a satellite-based high spatial resolution temporal 
sequence has seldom been possible due to limited archiving, cloud cover, 
and high cost. Furthermore, due to the occurrence of a large number of 
small objects all creating high contrast in a high spatial resolution satellite 
image (i.e., trees and shadows), as well as off-nadir look angles increasing 
horizontal distortions (buildings, bridges), traditional pixel-based change 
metrics fail to operate successfully (Im and Jensen  2005; Niemeyer and 
Canty 2003). This is especially true in forests, as automated crown delinea-
tion using either high spatial resolution satellite imagery (Johansen and 
Phinn 2006) or small-format aerial photography (Key et al. 2001) has been 
met with limited success with the exception of very high spatial resolution 
(<30cm) images (Pouliot et al. 2002). Figure 4 illustrates the impact that 
different viewing azimuths can have on forest image-objects. Here, 
QuickBird scenes collected over the same area of mature lodgepole pine 
forest in four consecutive years, each exhibits a unique satellite acquisition 
viewing geometry As a result, trying to identify the same “tree object” 
from these four dates of imagery is a non-trivial, if not impossible task. 

Figure 5 demonstrates how image segmentation could provide a poten-
tial solution to the problem of high spatial resolution change detection. In 
this figure, we see how the multispectral bands of QuickBird can be used 
to derive a robust (e.g. meaningful in a vegetation context) image segmen-
tation. These segments can then be overlaid onto the higher spatial resolu-
tion panchromatic QuickBird band, and local maxima filtering can be used 
to identify individual trees (Wulder et al. 2004b) within each segment. 
While difficulties are found in tracking individual tree crowns over time, 
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the organization of the tree-crown objects within upper-level segments 
provides a means for generalization and monitoring.  

 

 
Fig. 4. Four dates of QuickBird imagery collected with different satellite azimuth 
angles: A. 2003, 51°; B. 2004, 44°; C. 2005, 129°; D. 2006, 353° 
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Fig. 5. Multispectral QuickBird imagery (representing 2003 conditions) is seg-
mented, the segments (illustrated here) are transferred to the panchromatic images, 
with local maxima filtering used to identify individual trees 

 
The second potential use of segmentation is in the context of delineation 

for forest inventory. As mentioned earlier in this Chapter, air photo de-
lineation and interpretation are the foundation of forest inventory. This 
process is largely manual and is labor-intensive. There is an opportunity 
for automated segmentation to augment manual interpretation methods and 
provide more timely, consistent, and accurate delineations (Hay et al. 
2005). Table 1 generalizes some of the advantages and disadvantages of 
manual and automated methods. Figure 6 illustrates an example of an 
IKONOS image which has been segmented using the SCRM algorithm 
mentioned earlier. The polygon in the centre (A) is an example of an effec-
tive automated delineation – a homogenous stand, with consistent tone and 
texture. The objective of automated segmentation in the short-term is not 
to replace human interpreters, but to aid them - since the interpretation of 
inventory attributes necessitates human expertise. As Leckie et al. (1998) 
advocate, any new tools designed to aid photo interpretation of forests 
must be simple to apply, not require expensive equipment, not substan-
tially alter the production process, nor involve inordinate fine-tuning by 
the interpreter.  
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Table 1. Comparative advantages and disadvantages of manual delineation and 
automated segmentation. 

Method Advantages Disadvantages 
Manual  
delineation 

• Established standard 
• Delineation and at-

tribution can be 
achieved in a single 
step 

 

• Slow 
• Costly  
• Scarcity of skilled interpret-

ers 
• Prone to show inconsisten-

cies between different inter-
preters or even the same in-
terpreter at different times 

• Highly subjective and hence 
no good for monitoring 

Segmentation • Faster 
• Cheaper 
• More consistent 
• Less subjective and 

more repeatable and 
hence better for 
monitoring. 

• Likely to require manual 
correction of some 
arcs/polygons 

• Efficiency rapidly decreas-
ing with the amount of 
manual tweaking required 

• Undesired results in areas 
with low contrast or where 
different appearance does 
not imply different meaning 
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Fig. 6. Automated segmentation of an IKONOS panchromatic image 

Conclusion 

This chapter has demonstrated the utility of image segments to support a  
broad range of forestry and forest monitoring applications. It is our view 
that segmentation can offer a means to augment established forest inven-
tory data sources and processes such as air photos and delineation, and also 
as a tool for integrating new data sources such as digital remotely sensed 
data and LIDAR into existing forest inventory contexts. The conversion 
from pixels to objects serves to provide us with the strengths from remote 
sensing, GIS, and image processing to produce valuable and useful for-
estry information. 
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ABSTRACT: The work presented is part of the OSCaR pilot study (Oil 
Spill Contamination and mapping in Russia) and is co-financed by the In-
ternational Office of the Federal Ministry of Education and Research 
(BMBF) Germany as part of the Core-to-Core activities on “The Symp-
toms of Environmental Change in the Siberian Permafrost Region” with 
the Japan Society of the Promotion of Science (JSPS). This paper presents 
concepts for an object-based mapping and classification system for terres-
trial oil spill pollution in West-Siberia using Quickbird data. An object ori-
ented classification system is created to map contaminated soils and vege-
tation using spectral information, shape and context information. Due to 
the limited spectral resolution of Quickbird data context information is 
used as an additional feature. The distance to industrial land use and infra-
structure objects is utilized to increase the classification accuracy. Valida-
tion of the results is done with field data from the Russian partners at the 
Yugra State University in Khanty-Mansiyskiy. 

1 Introduction 

Research on the application of Earth observation data and image process-
ing methods for oil spill detection concentrated in the past on marine pol-
lution scenarios. For marine and coastal applications various methods and 
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results have been published using SAR data to monitor extent, type and 
drift of oil pollution (e.g. in Pedersen et al. 1996, Wismann et al. 1998, Es-
pedal and Wahl 1999, Jones 2001, Fiscella et al. 2000, Lu 2003, Brekke 
and Solberg 2005). Terrestrial oil spill pollution did not receive very much 
attention. This is due to the regional and small scale character of terrestrial 
oil spill contaminations often also complicated by mixed spectral signa-
tures of recovering vegetation, dead vegetation and contaminated soils. 
Hörig et al. (2001) analysed the spectral properties of oil contaminated 
soils and sands using hyperspectral Hymap data and found specific absorp-
tion features in the SWIR region of the spectrum. Salem and Kafatos 
(2005) investigated the potential of spectral linear unmixing for delineating 
oil contamination types in AVIRIS hyperspectral data.  

With increasing demand on the global markets for crude oil it can be 
expected that the environmental impact for areas with intensive production 
of oil and gas will become a major issue in the near future. Earth observa-
tion can deliver precise information about the state and change of the eco-
system in these regions. 

The presented work of the OSCaR project (Oil Spill Contamination 
mapping in Russia) concentrates on high spatial resolution data to detect 
small scale contaminations and later to precisely date the oil spill events 
with multitemporal data. The methods utilised in this work concentrate on 
object oriented image processing techniques. 

The Khanty-Mansiyskiy area in West Siberia is one of the most impor-
tant territories for the Russian oil and gas production with 58% of the total 
Russian oil production and being on the 3rd place with its national gas pro-
duction (IWACO 2001). The Russian Federation belongs to the top 5 en-
ergy producers with Germany and other European countries being the ma-
jor importers. West Siberia is the oldest oil and gas region mainly 
exploited by Russian privatised companies (LUKoil, Surneftegaz, Yukos, 
Sidanko, Tatneft, Tyumen Oil (TNK)). Large areas are polluted by oil and 
waste water from pipeline leakages with heavy direct impact on under-
ground and surface water quality, ecological conditions and quality of liv-
ing (Fig. 1.). The IWACO Report (from 2001) states that about 700 000 to 
840 000 hectares in West Siberia are oil polluted – a much larger area than 
indicated by the government or oil company statistics. 

The region is largely covered by taiga and tundra forest with sub arctic 
to continental climate and areas of permafrost with annual precipitation be-
tween 400 to 500 mm. The area has low nutrient peat based soils with long 
biological recovery times and includes important habitats for endangered 
fauna. Due to low evaporation and low temperatures, lack of drainage and 
small infiltration rates large wetlands are formed. Thermokarst occurs due 
to melting ground ice (pattern ground) and thaw lakes and thermokarst pits 
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can occur. The geological structure of the West Siberian basin is domi-
nated by lower cretaceous and jurassic sections. The oil and gas resources 
are found in stratigraphic and structural traps that extend into the Kara Sea 
region.  

Population is concentrated in a number of urban and industrial areas, 
which have developed over the last 50 years due to a strong immigration.  

 

Fig. 1. Oil spill polluted tundra in the Samotlor oil field, West Siberia (S. Cejchan, 
BFH Hamburg) 

 
The major environmental and social impacts come from activities like: 

1. pipeline breaks, spills, and pipeline accidents,  
2. deposition of oily mud, drilling and production wastes,  
3. chemical waste disposal and leaking storages,  
4. emissions of hydrocarbons and greenhouse gases from flaring and 

venting of gases and oily waste burning and 
5. inadequate emergency planning and under-developed awareness of 

environmental impact and remediation measures. 

In the Khanty Mansiysk district more than 62000 oil wells have been 
drilled and according to sources from IWACO (2001) 64000 km of pipe-
lines have been constructed. 

The magnitude of the oils spills is very difficult to calculate. Accurate 
and updated data on recent numbers is very hard to obtain. According to 
different sources about 2% of the total oil quantity produced is spilled into 



370      S. Hese, C. Schmullius 

the tundra. The average oil spill loses about 2 tons of oil and covers about 
1000 sqm.  

2. The OSCaR pilot study (Oil Spill Contamination 
Mapping in Russia) 

The OSCaR pilot study project was initiated in 2005 as part of BMBF fi-
nanced permafrost degradation proposal preparation meetings in Russia 
(Challenges of Permafrost Degradation of Siberian Soils to Science and 
Technology) and Core2Core activities with the Japanese JSPS programme 
in 2005.  

The international office of the German Ministry for Education and Sci-
ence co-financed OSCaR with funding for Earth observation data of the 
Khanty Mansiysk area (Landsat and Quickbird data). The main goal of 
OSCaR was to test spatial very high resolution multispectral data for oil 
spill contamination mapping with advanced image processing algorithms. 
The methodological focus is on high spatial resolution data analysis. Ob-
ject oriented image analysis has been carried out to link the spectral char-
acteristics of oil spill objects to secondary contextual image object features 
that have a relation to oil spills (infrastructure, drilling platforms, pipe-
lines, waste water reservoirs or drilling mud reservoirs). Post classification 
analysis of specific objects has to be performed to identify the structural 
identity of oil spills and the related objects. 

In a second stage in OSCaR the development of the region is analysed 
using multi temporal data with lower spatial but with high temporal resolu-
tion. Changes will be mapped starting in the early 80s and with 2-3 year 
steps between the datasets until 2005. The main interests are 1. to identify 
area and position of larger oil spills and 2. to map changes in industrial 
structures and infrastructure (increase of oil wells, construction of new 
pipelines etc.). Identification of oil spills in multitemporal data is impor-
tant for dating of spill events and large oil pipeline leakages. 

3 Data 

For the OSCaR project Quickbird data was selected covering an approxi-
mate 20x16 km subset of a region in the Khanty Mansiysk area north of 
Surgut in West Siberia. A full “Basic Set” Quickbird data take was ordered 
from the archive from 2004 (acquisition date 2004-09-27) including the 
full resolution multispectral information (2.72 m) and a panchromatic data 
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layer with 0.68 m spatial resolution (Table 1, Fig. 2.). The data was im-
ported and georeferenced using the RPCs (Rational Polynomial Coeffi-
cients) provided by Digital Globe without applying ortho correction.  

 

 
Fig. 2. Quickbird data set (Basic Set product, Digital Globe Catalog ID: 
101001000348E202 (27. September 2004), reprojected to UTM43, WGS84 
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Fig. 3. Analogue information (expert identification) about position and extent of 
oil pollution compared with (above) Quickbird data 

 
The data was interpolated to the appropriate spatial resolution with a bi-

linear interpolation to UTM 43 (WGS84) in 16 Bit radiometric resolution 
(nearest neighbour interpolation was not performed as no pixel based 
analysis was planned and smooth object geometry was a priority). 

Landsat ETM+ (Enhanced Thematic Mapper) and Landsat TM5 (The-
matic Mapper) data were ordered for the path/row sets 156/17 and 157/17 
with a temporal coverage for the years 1987, 1988, 1990, 1995, 2000, 2001 
and 2003. Ground information was provided by the Russian partners from 
the Yugra State University in Khanty-Mansiyskiy as digital maps with in-
dicated dates and extents of oil spill events and digitized information about 
infrastructure and the position of oil wells. Comparing the expert interpre-
tation with Quickbird data a mismatch was evident (Fig. 3.). The ground 
information was therefore used as an orientation and not digitized for train-
ing and validation.  

It should be noted that precise ground data is very difficult to obtain for 
intensively managed industrial areas in this region. The companies that are 
active in this region are not directly interested in external validations of the 
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gas- and oil production related soil contamination by non-russian institu-
tions. The limited ground data was provided as a cooperation by the Uni-
versity of Khanty-Mansiyskiy. 

Table 1. Quickbird data 

4 Methods 

The object-based strategy for data classification (Baatz and Schäpe 1999 
and Benz et al. 2004) uses as a first stage a segmentation into different 
scales of image object primitives according to spatial and spectral features. 
The segmentation is a bottom up region merging technique starting with 
one pixel sized objects. In numerous subsequent steps smaller objects are 
merged into bigger objects minimizing the weighted heterogeneity of re-
sulting objects using the size and a parameter of heterogeneity (local opti-
mization procedure) (Benz et al. 2004). This concept has the advantage to 
account for contextual information using image objects instead of the pixel 
based concept used frequently as the basic element in Earth observation 
image analysis. In a second stage rule-based decisions can be used to clas-
sify the image objects. Class based feature definitions (integrating a post 
classification analysis) are possible as well as the inheritance of class de-
scriptions to form a class hierarchy. Image processing tasks can be per-
formed using vector shape and vector characteristics, increasing the flexi-
bility of the image processing concept and integrating GIS-like data 
queries in an attribute database directly into the image processing and 
analysis approach. New attributes like object shape or structural character-
istics, e.g. distance to other objects can be used.  

Various approaches applied object oriented methods to urban applica-
tions (Damm et al. 2005; Grenzdörfer 2005, Argialas and Derzekos 2003), 
biotope type classification (Leser 2002) and forest applications: Mitri and 
Gitas (2002) developed an object oriented classification model for burned 
area mapping. Flanders et al. (2003) tested the object oriented approach for 
forest cut block delineation. Hese et al. (2005) used contextual information 
to classify forest cover change patterns and Chubey et al. (2006) analyzed 

Quickbird data Digital Globe 
Date 2004 09 27 

Cloud Cover 1 % 
Catalog ID 101001000348E202 

Spatial Resolution 0.68 / 2.72 m 
Off-Nadir 19 degrees 
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object oriented procedures for forest inventory parameters from Ikonos 
data.  

Advantages over pixel-based approaches have been published mainly 
using very high spatial resolution airborne or orbital Earth observation 
data. The primary advantage of reducing the spectral variability in very 
high spatial resolution data sets (spatial resolution better 5 m) is however 
only one aspect of object oriented image analysis. 

In this work object oriented image analysis has been carried out to link 
the spectral characteristics of oil spill objects to secondary image object 
features that have a contextual relation to oil spills (e.g. infrastructure ob-
jects, oil well objects, pipeline objects and waste water reservoir objects or 
drilling mud reservoir objects). This is done to overcome the limitations of 
the spectral resolution with Quickbird data. The classification of these sec-
ondary objects is done in different segmentation scales. Post classification 
analysis of specific objects has to be performed to identify the structural 
identity of oil spills and related objects.  

 

 
Fig. 4. Class description for oil contaminated objects using NDVI thresholds and 
class related distance functions to industrial objects and road objects 

 
The dataset was segmented into two different layers (a third layer was 

used experimentally). A hierarchical class description was build that clas-
sified water bodies and vegetation cover types in the finest level and infra-
structure, roads and industrial sites in the coarser segmentation level (Fig. 
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6 and Fig. 7). Road objects and industrial classes were differentiated with 
object shape features and with spectral characteristics. Oil contaminated 
areas were mapped with a thresholding of NDVI calculations into three 
different vegetation sub classes ranging from healthy vegetation to heavily 
polluted vegetation. The correlation between NDVI and oil spills is based 
on the reduced amount of healthy vegetation on oil contaminated soils. 
This is clearly visible in the NIR with a reduced amount of reflectance in 
polluted areas. Water bodies and non-vegetated areas have been masked 
out to avoid the overlap with non-vegetated areas through inverted expres-
sions (Fig. 4.). 

To increase the accuracy of the classification class related feature sets 
were designed that introduce distance in relation to the class infrastructure 
and industrial areas as a characteristic object property of oil spill objects. 
Oil polluted areas are only classified in a specific distance range  of 0 to 
500  m to road network objects, oil production platforms objects or other 
industrial objects. A typical example of oil polluted vegetation in direct 
neighbourhood of oil wells is shown in Fig. 5. The main problem also dis-
cussed in chapter 5 is the changing status of regenerating vegetation and 
soils after the pollution event.  

 

 
Fig. 5. Quickbird multispectral (2.5 m, RGB 4-3-2) and panchromatic (0.6 m) data 
subsets of an oil spill area connected to a drilling platform area and infrastructure 
image objects (West Siberia, Khanty Mansiysk district) 
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Fig. 6. Class hierarchy for the object oriented classification of oil spills using two 
segmentation levels and grouping of classes (groups hierarchy) 

 
Validation of the classification results was done using information from 

expert identifications on analogue topographic maps (compare with Fig. 
3). The analogue maps were scanned and used as Jpeg tiles for a more ac-
curate delineation in the georeferenced Quickbird data. The original expert 
identification was spatially imprecise and was therefore only used as an 
indication for a contaminated object. For the final validation a pixel based 
evaluation scheme was set up in a raster GIS environment. A confusion 
mask was created for all final child classes of the class hierarchy (table 2). 
An evaluation of the classification accuracy using (segmented) objects as 
test areas showed even higher accuracy values compared with the pixel 
based accuracy assessment. The object
fied objects with test objects) however was rejected for this analysis be-
cause the test areas for the evaluation were found not identical with the 
segmented image objects and using image objects introduces artificial 
agreements between ground reference information and mapping results as 
both data layers are based on the primary segmentation.    

 
 
 
 
 
 

-based validation (comparing classi-
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Table 2. Pixel-based validation of classification results 

Validation 
Class 

Pixels Unclas
sified 

Roads Indus
trial 

Tundra Oil 
spilled 

Water  

Roads 8092 0.4 60.0 37.2 0.5 2.0 0.0 
Industrial 34466 0.8 2.2 89.6 0.0 5.7 1.7 

Tundra 37049 0.0 0.0 0.6 99.3 0.1 0.0 
Oilspilled 37285 0.0 0.0 0.3 4.5 94.9 0.2 

Water 17918 0.0 0.0 0.0 0.0 0.0 100 
% Area  1,2 1,35 3,89 61,76 11.37 20,44 
Average:88.76% Kappa: 0.9122 Confidence Level: 95%: 0.912 +/- 

0.00174 
 

 
Fig. 7. The Process Tree information for the primary object definition, the re-
segmentation of objects (object fusion, creation of the secondary segmentation 
level) and for the classification using the class hierarchy (implemented in De-
finiens Developer Software ver 6) 

5 Results and Discussion 

For this study (using only a small subset of the available Quickbird data) a 
high percentage (more than 10 %) of the area was found to be oil spill con-
taminated. Of the 25856 ha of the subset about 1298 are occupied by in-
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dustrial objects, 3120 ha are oil spilled and 6166 ha are open water bodies. 
The amount of water areas indicates that also water bodies are probably af-
fected by oil spill pollution. The detection of water oil spills has been ne-
glected in this work. The developed class hierarchy will be refined and ap-
plied to the complete dataset.  

The classification results were validated with reference information 
from local experts. The classification did not differentiate various regen-
eration stages of the vegetation on contaminated soils. The exact dates of 
the contamination events would have been needed for a more detailed dif-
ferentiation of the spectral signal. In this work a threshold was defined for 
contaminated surface types and the selection of this threshold was domi-
nated by the ground information available. The comparably high accuracy 
in table 2 can be explained with the simple classification hierarchy with 
only five different child classes in the final hierarchical level. Reference 
information for contaminated soils and vegetation surfaces was not sub 
differentiated in age classes. This results in a broad class “Oil spilled”. 
Some classification errors were detected between road objects and indus-
trial objects. This confusion (user- and producer accuracy is reduced) is 
explained with very similar spectral properties. The differentiation was 
done on the basis of object shape features but for the context classification 
(of oil spilled objects) the differentiation into roads and industrial objects 
was not directly needed.  

Ground data is difficult to get for this kind of analysis but information 
from experts from the Yugra State University in Khanty-Mansiyskiy was 
used as reference information in this work. Some of the indicated contami-
nated areas in the analogue reference maps did not fit spatially to the 
Quickbird data. The shape and the position of the proposed areas did not 
correlate with objects in the Quickbird data set. Automatic integration of 
the identified oil spilled areas (from the reference data) into the classifica-
tion/validation system was therefore not possible. The identified areas 
were manually marked on the basis of the reference information using the 
most probable location in the Quickbird data.   

The features that were used in this work are not directly based on the 
spectral properties of hydrocarbons. The classification uses indirect fea-
tures that originate from the destructive pollution event (reduced reflec-
tance in all visible bands, reduced vitality of vegetation with reduced 
NDVI values) or features that include class-related context information 
and class related dependencies. Recent oil contaminations with very low 
NDVI values on unvegetated soils were partly classified as water. The 
OSCaR project identified some methodological gaps that originate from 
this indirect mapping/image analysis approach. Results from this pilot pro-
ject lead to an extended project proposal in 2006 that utilises hyperspectral 
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orbital data sets together with very high spatial resolution sub-meter data 
(the “OILSPILL” proposal).  However - the performed analysis in OSCaR 
is one of the first approaches to set up an automatic oil spill contamination 
mapping system on the basis of very high spatial resolution optical remote 
sensing data that could lead to an operational environmental monitoring 
system for large areas. Improvements are possible with spatially more ac-
curate ground reference information and information about contamination 
event dates. Also knowledge about regeneration stages of vegetation (and 
their related spectral properties) would help to differentiate pollution 
events. 

 
Fig. 8. Results of an object-based classification of oil contaminated objects using 
object shape, spectral information and object context information (class related 
features). Quickbird multispectral data with 2.5 m resolution. Water bodies were 
masked out in this analysis in an earlier step (Fig. 7) 
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6 Summary 

This paper presents results of the BMBF (IB) co-financed OSCaR  (Oil-
Spill Contamination mapping in Russia) project for terrestrial oil spill clas-
sification in West Siberia with very high spatial resolution Quickbird Earth 
observation data and object oriented image processing methods. The de-
veloped class and process hierarchy (developed in Definiens Developer 
Software) for a test area in the Khanty Mansiysk district in West Siberia 
classified oil spills using spectral information, object shape information 
and class related features. The classification procedure used indirect fea-
tures to differentiate contaminated soils and contaminated vegetation ob-
jects from uncontaminated objects. As reference information analogue 
ground truth data from Russian experts was used. Results show that class 
related information can be applied successfully to utilise the structural im-
age object information of oil spilled land surface objects.  

Final conclusions however also identified the need for mapping of spe-
cific spectral characteristics of hydrocarbon substances with very high 
spectral resolution data using calibrated and corrected hyperspectral infor-
mation to complement the spatially very high resolution object oriented 
analysis with spectral signature and absorption feature analysis.  
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ABSTRACT: In this work, an object-oriented image analysis methodo-
logical framework employing edge extraction and image processing tech-
niques was proposed and applied on a LANDSAT-ETM+ image of Ale-
vrada, Greece to derive lineament classes. For the design of the knowledge 
base, the input data layers to the lineament identification system were (1) 
an edge map from the EDISON edge extraction algorithm performed on 
band 5 of the LANDSAT-ETM+ image, (2) the geologic layers derived 
from the geologic map at the pre-processing stage, (3) the initial ETM+ 
image of the study area and its derived thematic products using remote 
sensing methods (such as NDVI, PCA and ISODATA unsupervised classi-
fication) for the discrimination of the land cover classes. Segmentation was 
performed based on the multi-scale hierarchical segmentation algorithm in 
eCognition for the extraction of primitive objects of the input data. Finally, 
intrinsic spectral and geometric attributes, texture, spatial context and as-
sociation were determined for the designed object classes / sub-classes on 
each segmentation level, and fuzzy membership functions and Nearest 
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Neighbor Classification were employed for the assignment of primitive ob-
jects into the desired thematic classes combining all participating levels of 
hierarchy. The output results of the system were classification maps at 
every hierarchy level as well as the final lineament map containing the 
geological lineaments of the study area (possible faults) and the non-
tectonic lineaments.  

1 Introduction 

Geological lineament mapping is important in engineering problem solv-
ing, especially, in site selection for construction (dams, bridges, roads, fa-
cilities, etc.), seismic and landslide risk assessment, mineral exploration, 
hot spring detection, hydrogeological research, etc.  

Photointerpretation of geologic lineaments (e.g. faults, fractures and 
joints) is very subjective and highly dependent on the photointerpreter’s 
skills (Sabins 1997). It is also time-consuming and expensive, as it requires 
well-trained photointerpreters. Therefore, an effort towards automation of 
the lineament interpretation process is well justified.  

Research efforts reported for the semi-automatic or automatic lineament 
detection and extraction can be categorized as following: 

1. Semiautomatic and automatic lineament extraction, such as edge follow-
ing, graph searching (Wang and Howarth 1990), novel edge tracing al-
gorithms (Segment Tracing Algorithm (STA)) (Koike et al. 1995), etc. 

2. Optimal edge detectors (e.g. the algorithms of Canny (1986), Rothwell 
et al. (1994), the EDISON algorithm (Meer and Georgescu 2001), etc.) 
were assessed for lineament extraction and provided quite promising re-
sults in terms of one-pixel thickness, efficient length and pixel connec-
tivity (Argialas and Mavrantza 2004). 

3. The design of a knowledge-based system that could take into account 
the measurable information (length, aspect) of geological lineaments 
(faults and drainage net segments) from a DEM (Morris 1991), the de-
sign of an expert system exploiting the descriptive geologic information 
relative to lineaments, without however interacting with an image (Ma-
suda et al. 1991), as well as the embedding of geological knowledge into 
small autonomous programming routines (Rasco 1999). 
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1.1 Motivation and aim 

For the discrimination of geologic (e.g., possible faults), topographic 
(ridges, drainage segments) and non-geologic lineaments (e.g., manmade 
lineaments and agricultural boundaries) and their automated identification, 
additional geological and geomorphological knowledge is required beyond 
the image information. In this context, semi- or even fully automated pro-
cedures of edge extraction aren’t adequate for discriminating the type of 
the extracted edges and “isolating” in a way the linear features of “non-
interest”. 

Therefore, an integrated knowledge-based methodological framework 
was designed for the identification and classification of geologic linea-
ments. It was based on the concept of low-level to high-level vision and 
processing, including three main processing stages. The designed frame-
work included the following stages: (1) Remote sensing and edge extrac-
tion procedures, (2) Multi scale segmentation, and (3) Object-oriented 
knowledge base design and classification. 

2 Methodology 

2.1 Study area and data used – Image pre-processing 

This work was conducted on a selected part (subset) of Alevrada District, 
in the extended geographic area of Amphilochia, Aitoloakarnania Prefec-
ture, Central Greece. The region of Alevrada is characterized of sedimen-
tary terrain with many faults with horizontal displacement, joints, as well 
as syncline and anticline folds. The study area belongs to the Gavrovo geo-
tectonic zone and consists of Cretaceous and Upper Paleocenic – Eocenic 
successions of limestone, Upper Eocenic – Oligocenic flysch, and Quater-
nary alluvia (I.G.M.E. 1989). From the observation of the structural map 
and the corresponding satellite image it was derived that the majority of 
the faults in the study area of Alevrada lie in the boundaries of change of 
the lithological layers as it is presented in Figure 1(a) and the dominant 
structural directions are the NW-SE and the NE-SW. 

The following initial and derived datasets were employed: 

• The LANDSAT-ETM+ satellite image of the Alevrada District, 
(August, 6, 1999).  

• A lineament map derived from the EDISON edge extraction algorithm, 
containing the lineaments to be classified. 
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• The structural and the lithological layers derived from the pre-
processing phase (Mavrantza and Argialas 2002). These layers 
contained the information of the actual position of the dominant 
geologic lineaments of the scene (faults) and the lithological unit 
boundaries. Lineaments to be identified as faults appeared on the 
borders of the lithological units created by successive sedimentation. 

At the pre-processing stage, the satellite image of the study area was 
geodetically transformed into the Transverse Mercator Projection and the 
Hellenic Geodetic Datum (HGRS87). The geological map of the study area 
of Alevrada with scale 1:50.000 was scanned. The structural (faults, frac-
tures, joints and folds) and the lithological information layers were created 
by on-screen digitizing of the geological map.  

Geometric registration of the LANDSAT-ETM+ satellite image with the 
digital geological map followed. This image was then radiometrically cor-
rected by subtracting the path radiance of the visible bands.  

From the interpretation of all ETM+ bands, it was observed that the 
ETM-4 and the ETM-5 bands provided the best visualization of the linea-
ments. In Figure 1(b), the digitized structural map features (faults and 
joints) as an overlay of a subset of a LANDSAT-ETM+ image with a size 
of 338x518 pixels are shown.  

 

 
(a) 

 
(b) 

Fig. 1. (a) Grayscale representation of the structural and the lithological infor-
mation layer digitized on the geologic map (Courtesy of I.G.M.E., 1989) (left), 
and (b) Digitized structural map features (faults and joints) as an overlay on the 
ETM-5 band – District of Alevrada – Pixel size 338x518 (right) (Mavrantza and 
Argialas 2002) 
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2.2 Image processing: Remote Sensing / Edge extraction 
methods and techniques 

Digital Remote Sensing and edge extraction methods and techniques were 
applied in order to produce proper thematic and edge maps respectively, to 
be employed as input data to the knowledge representation model of the 
Lineament Identification System (LIS). Remote sensing methodology was 
applied for information extraction of the inherent land cover classes on the 
satellite image that surround the geologic lineaments, such as vegetated li-
thological classes (such as limestone, shale, etc.), as well as barren terrain. 

The conceptual framework for the construction of the knowledge-based 
lineament identification system was initially based on the available satel-
lite image and the geological map. The satellite image was processed in 
order to provide adequate spectral information related to vegetation, litho-
logical sub-classes of successive sedimentation in areas containing linea-
ments. In turn, the geological map provided (a) the exact location of 
ground-verified faults and (b) the presentation of extended lithological 
units of diverse geological eras. The aforementioned information was rep-
resented in terms of rules, classes and attributes during the design of the 
object-oriented lineament identification system. The knowledge-based sys-
tem of Alevrada only identified geologic faults and not topographic linea-
ments due to lack of 3D information (e.g., DEM). 

The final purpose of the investigation of applying Remote Sensing and 
edge extraction methods was the identification of the following features: 

• Vegetation covering lithological sub-classes: For the visual (qualita-
tive) identification of the vegetation that covers the surficial lithological 
entities (and their distinction from barren soil), as well as the vegetation 
covering tectonic features, the color composites RGB-432 and RGB-543 
were created from the satellite image (Sabins 1997). These composites 
were introduced into the knowledge-based system for constructing rules 
for extracting the classes of interest using Fuzzy Membership Functions 
(FMFs) related to spectral mean values of classes in the selected spectral 
bands. In addition, the application of the vegetation index NDVI was 
considered as a quantitative measure of vegetation content and vigor. 
The NDVI output was used as input data for the construction of rules 
using FMFs for the accentuation of land cover classes of different vege-
tation content and vigor, as well as for the discrimination among vegeta-
tion, bare sediments and very bright areas (roads). Vegetation is an indi-
cator of certain lithological sub-classes, and is interrelated with water 
penetration and susceptibility to erosion. For example, sedimentary ar-
eas covered by sandstone and shale might be covered by forest species 
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and intense cultivation, but on the other hand, in humid areas, limestone 
(particularly, dolomitic limestone) is less penetrated by water and there-
fore, not covered with vegetation (Lillesand and Kiefer 2000). 

• Lithological sub-classes forming extended lithological units con-
tained on the geological map: The localization of the lithological sub-
classes was performed by creating an RGB-132 color composite of the 
Principal Components that were derived from the PCA method (a gray-
scale representation of the RGB-PCA composite is illustrated in Figure 
2). In this composite, spectral sub-classes were discriminated, which 
correspond to extended lithological units. ISODATA classification led 
to the derivation of the spectral sub-classes, which were recognized by 
photointerpretation of the PCA output and further introduced into the 
knowledge-based lineament identification system (a grayscale represen-
tation of the ISODATA classification output map is presented in Figure 
3). In particular the application of PCA and ISODATA enabled the 
spectral discrimination of additional sub-classes of quaternary shale and 
cretaceous limestones indicated with thick arrows in Figures 2 and 3, 
The output maps of the latter two methods were introduced to the LIS 
for providing additional spectral information (in form of rules) for the 
discrimination of the existing land cover classes. 
 

 
Fig. 2. Grayscale representation of 
the RGB-132 color composite of the 
PC1, PC2 and PC3 for the study 
area of Alevrada 

Fig. 3. Grayscale representation of 
the thematic map of the same area 
derived using the ISODATA unsu-
pervised classification with 16 
spectral classes. It should be noted 
that there is a correspondence in 
the identification of spectral classes 
with those of Fig. 2, presented with 
thick arrows 
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Edge extraction and evaluation was also performed. Various optimal 
edge detectors, such as the algorithms by Canny, Rothwell, the EDISON 
algorithm, etc. were investigated and applied on the satellite image, in or-
der to derive the most suitable edge map. This edge map served as input to 
the designed LIS, as being the basis map containing edges to be classified 
as lineament types. At this stage, the edges cover all possible categories, 
including also non-significant lineaments (e.g. road segments, etc.).  

The evaluation of the applied optimal edge detectors was conducted us-
ing qualitative (visual consistency) and quantitative criteria (use of the 
Abdou and Pratt (1979) and the Kitchen and Rosenfeld (1981) evaluation 
metrics) in combination. 

At this stage, the EDISON edge map was selected in order to be intro-
duced to the LIS because the application of the EDISON algorithm ful-
filled the criteria of good edge extraction (good edge localization, edge 
connectivity and edge response) and sufficient interpretation ability of the 
semantic content (according to the qualitative (visual) and quantitative 
(measurement) criteria set). 

2.3 Multi-scale hierarchical segmentation 

The first stage of the object-oriented approach is image segmentation 
(Baatz and Schäpe 1999). Image segmentation is designed for the extrac-
tion of primitive objects to be classified during the object-oriented fuzzy 
classification process. The selection of the parameters was dependent from 
the type of the data input, so that the extracted segments could be mini-
mum and meaningful. The color criterion had a greater weight than the 
shape criterion in the thematic maps, because the segmentation was based 
mostly on color. A scale parameter of 6 (in a tested range from 3 to 10) 
was adequate for extracting sufficient and meaningful segments in a “rea-
sonable” processing time.  

The conceptualization behind the design of the final structure of the par-
ticipating hierarchical levels for the study area of Alevrada was based on 
data availability. The geologic map was decomposed into two different in-
formation layers, which in turn were used as two separate segmentation le-
vels of tectonics (faults), and lithology (classes containing extended litho-
logical units of different geological periods). The ETM+ image was used 
for the identification of the diverse inherent spectral classes of land cover 
(geological sub-classes and vegetation). The information of lithological 
units was derived from the lithology layer of the geological map. The in-
formation related to the lithological sub-classes was derived from the 
LANDSAT-ETM+ image, while the edge map containing edges to be 
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identified as geological lineaments was derived from the application of the 
EDISON algorithm. The In_region lineaments are lineaments that lie in-
side the lithological sub-classes and were detected by using the EDISON 
edge map and the LANDSAT-ETM+ image in the same segmentation 
layer. On the other hand, the Border_lineaments are those lineaments that 
lie on the borders of the lithological units. The border lineaments were de-
tected by using the EDISON edge map and the lithology layer at the same 
segmentation level. The border lineaments in this study area were verified 
as faults. In Figure 4, the semantic network for the representation of the 
knowledge of the study area is presented.  

 

 

 
Fig. 4. The semantic network for the representation of knowledge for the study 
area of Alevrada 
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The semantic network is an alternative form of class representation, 
which presents in what manner the inherent lithological categories of dif-
ferent geological eras (e.g. limestones (Cretaceous or Upper Paleocene – 
Eocene) are connected with their sub-classes and how lineaments are spa-
tially related to these classes, which under certain conditions indicate fault-
ing. 

Due to the diversity of the information format (raster – vector), the de-
signed level organization for performing segmentation was the result of a 
trial-and-error process (horizontal and vertical parameter combinations).  

2.4 Object-oriented knowledge base design and classification 

After the stage of segmentation of digital geodata layers into object primi-
tives, follows the stage of the creation of the object-oriented knowledge 
base and the classification of the segmented objects into meaningful se-
mantic classes that represent the study area. During the design of the 
knowledge base the following points were taken into consideration: 

• The determination of the appropriate object classes and sub-classes in 
every segmentation level. 

• The determination of class attributes. These attributes were based on the 
spectral and geometric features of each class, and on the spatial relations 
and context of the information. The attributes to be inherited by the sub-
classes followed the logic “from general-to-specific”. In addition, these 
attributes were properly connected with the AND, OR, MEAN relations, 
according to the “weight” of the criterion that assigns each object to a 
specific class. 

• The determination of the use of the Fuzzy Membership Functions (type 
of function and membership values), alone or in combination with the 
Nearest Neighbor Method (NNM). 

The classification was conducted using six classification levels in the 
followed order: 

1. LEVEL 6: At the hierarchy Level 6, based on the segmentation of the 
EDISON map, the objects were assigned into 2 classes, namely the class 
ED-lineaments and the class ED-non-lineaments. The distinction of 
those classes was based on the creation of the FMF of the spectral mean 
value of the participating edge map. 

2. LEVEL 2: At the hierarchy Level 2, based on the segmentation of the 
Tectonic layer, the objects were assigned into 3 classes, namely the 
class Structural Map_non-Faults, the class Structural Map_Faults 
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and the class Structural Map_Joints. The distinction among those 
classes was based on the creation of the FMFs of the spectral mean val-
ues for R, G, B of the participating map and their logical AND linking. 

3. LEVEL 3: At the hierarchy Level 3, based on the segmentation of the 
Lithology layer, the objects were assigned into 8 classes concerning the 
classes of the lithological units from Paleocene to Quaternary (which are 
interrelated with fault localization), namely the classes: Shales - Upper 
Eocene-Oligocene (Flysch of Aitoloakarnania Syncline (L3), Scree 
and Talus cones – Pleistocene (L3), Scree and Talus cones – Holocene 
(L3), Sandstones - Upper Eocene-Oligocene (Flysch of Aitoloakar-
nania Syncline) (L3), Limestones - Upper Paleocene-Oligocene (Gav-
rovo Zone) (L3), Limestones - Cretaceous (Gavrovo Zone) (L3), 
Background (L3) and Alluvial deposits – Holocene (Quaternary) (L3). 
The distinction among those classes was based on the creation of the 
FMFs of the spectral mean values for R, G, B of the participating lithol-
ogy map (grayscale representation of the coloured map) and their logical 
AND linking. 

4. LEVEL 4: At the hierarchy Level 4, the classification into lithological 
sub-classes at the boundaries of the extended lithological units was per-
formed. Lithological sub-classes were identified with the assistance of 
the ISODATA classification output representing the extended lithologi-
cal formations of Level 3. In particular, Level 4 contained the following 
classes: (1) Shale: This class contains 4 sub-classes: shale_1, shale_2, 
shale_3, and shale_4. (2) Scree and talus cones: This class contains 3 
sub-classes: Scree and talus cones_1, Scree and talus cones_2 and 
Scree and talus cones_3. (3) Sandstone: This class contains 4 sub-
classes: Sandstone_shale-like, Sandstone_2, Vegetated Sandstone 
and Sandstone_4. (4) Limestones: This class contains 6 sub-classes: 
fossiliferous limestone (barren), dolomitic limestone (barren), lime-
stone_3, limestone_4, limestone_5 and limestone_6. (5) Background 
and (6) Alluvial deposits. The distinction among those classes was 
based on the creation of the FMFs and the use of the NNM with spectral 
value criteria and relations of existence in different inheritance levels.  

5. LEVEL 5: At the hierarchy Level 5, the interrelation among the edges 
of the edge map and their position (at the borders of lithological units or 
inside the lithological sub-classes) was examined. For the creation of 
Level 5, the image of Level 4 had to be classified into further nominal 
classes inside the lithological sub-class / unit and at the border of the li-
thological units (e.g. in_f.sh_lineaments (L5) and bor-
der_of_f.sh_lineaments (L5)). The distinction among those classes / 
sub-classes was based on the creation of the FMFs using spatial rela-
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tions (neighborhood, distance) and existence relations to other (upper or 
lower) levels of hierarchy.  

6. LEVEL 1: At the hierarchy Level 1 the final assignment of the edges on 
the edge map into faults (faults and Structural_faults (verified)) and 
non-faults, was performed, based on the information of the tectonic 
layer, which was used for verification due to lack of additional informa-
tion (ground-truth data and DEM information). The distinction among 
those classes / sub-classes was based on the creation of the FMFs using 
spatial relations (neighborhood, distance) and existence relations to oth-
er (upper or lower) levels of hierarchy using AND / OR logical rela-
tions. 

Concerning the determination of proper classification order of each 
segmentation level, it should be indicated that the classification order was 
not determined by the segmentation level order, but from the determination 
of the FMFs and the bi-directional (top-down and bottom-up) linking of at-
tributes at different hierarchy levels in order to assign objects to each class. 

In Table 1, object classes / sub-classes, their attributes, the FMFs as well 
as the value range are indicatively presented for Level 2. 
Table 1: Object classes / sub-classes, their attributes, the FMFs and the value 
range for hierarchy Level 2 

CLASS / SUB-
CLASS ATTRIBUTE FMF LEFT 

LIMIT 
RIGHT 
LIMIT 

Mean lineaments-to-
big-plaisio-
mapegsa.img (1) 

 
-1 1 

Mean lineaments-to-
big-plaisio-
mapegsa.img (2) 

 
10 129 

Structural 
Map_Faults 

Mean lineaments-to-
big-plaisio-
mapegsa.img (3) 

 
-1 1 

Structural Map_Faults    Structural 
Map_Joints Structural 

Map_non_Faults 
   

Mean lineaments-to-
big-plaisio-
mapegsa.img (1) 

 
-1 1 Structural 

Map_non_Fa
ults 

Mean lineaments-to-
big-plaisio-  

-1 1 
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mapegsa.img (2) 

Mean lineaments-to-
big-plaisio-
mapegsa.img (3) 

 
-1 1 

3 Results and Discussion 

In this section, indicative derivatives of the knowledge-based system are 
presented, from all stages of processing (Figures 5-6 – grayscale represen-
tation). 
 

 

Fig. 5. Grayscale representation of the Level 5 classification output and the corre-
sponding class hierarchy 
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Fig. 6. Grayscale representation of the Level 1 classification output and the corre-
sponding class hierarchy – Final lineament map, where lineaments correspond to 
faults 

 
In Figure 7 the classification stability map is presented. It should be 

noted that dark gray edges on the stability map, which indicate points of 
minimum stability correspond to common edges on the tectonic map and 
the edge map, and lie on the major tectonic directions of the study area of 
Alevrada, as appeared in Figure 8. 

Finally, for the study area of Alevrada, from the classification stability 
map it was inferred that there was a high coincidence of the results of the 
knowledge-based system and the tectonic map of the area. In all expected 
directions edge pixels have been correctly identified and the classification 
stability map served as an additional, qualitative indicator of adequacy of 
the classification.  
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Fig. 7. Classification stability map 
for Level 1 

Fig. 8. Overlay of the tectonic layer 
(black lines) on the lithology layer 

4 Conclusions 

In the present work, a knowledge-based system was designed for the iden-
tification and classification of geologic lineaments. The output result of the 
system was a classified lineament map containing the geological linea-
ments of the study area (faults) and the lineaments, which were not identi-
fied as faults (non-interest lineaments). 

The designed knowledge-based methodological framework, which 
combines multiple geodata types and techniques in the joint domain of 
Remote Sensing, Computer Vision and Knowledge-based systems enabled 
the derivation of final thematic maps of features of topographic / geologi-
cal interest, by taking into consideration the limitations of the study area, 
the spectral behavior of the satellite geo-data, as well as the production ac-
curacy of the input data, which were created with automated procedures.  

Nevertheless, the designed knowledge base is strongly task and data-
dependent and cannot be “generalized” to cover all geologic cases, but 
generally. However, the generalized methodological approach is transfer-
able. The knowledge base is not transferable because it is totally data-
dependent and also task-dependent, because every geotectonic regime is 
connected with different surficial expression of geologic features, while 
they are also differently originated, and therefore knowledge shall be 
“adapted” to the corresponding geological information. 



An approach for the identification of geologic lineaments      397 

References 

Argialas DP, Mavrantza OD (2004) Comparison of edge detection and Hough 
transform techniques in extraction of geologic features. Proc. XXth ISPRS 
Congress of the International Society of Photogrammetry and Remote Sensing 
Turkey IAPRS-XXXV, pp 790-795. 

Abdou IE, Pratt WK (1979) Quantitative Design and Evaluation of Enhancement / 
Thresholding Edge Detectors. Proc. IEEE 67, pp 753-763. 

Baatz M, Schäpe A (1999) Multiresolution segmentation – an optimization ap-
proach for high quality multi-scale image segmentation. In: Angewandte 
Geographische Informationsverarbeitung, XI. Beiträge zum AGIT-
Symposium, Salzburg, Karlsruhe, pp 12-23.  

Canny JF (1986) A computational approach to edge detection. IEEE Transactions. 
on Pattern Analysis and Machine Intelligence, vol. 8, pp 679-714. 

Institute of Geological and Mineral Exploration (I.G.M.E.) (1989) Geologic Map 
Sheet “Alevrada”, Scale 1: 50.000, Athens, Greece. 

Kitchen L, Rosenfeld A (1981) Edge Evaluation using Local Edge Coherence. 
IEEE Transactions on Systems, Man and Cybernetics, vol. 11, pp 597-605. 

Koike K, Nagano S, Ohmi M (1995) Lineament analysis of satellite images using 
a Segment Tracing Algorithm (STA). Computers & Geosciences, vol. 21, pp 
1091-1104. 

Lillesand TM, Kiefer RW (2000) Remote Sensing and Image Interpretation, 
Fourth Edition, John Wiley & Sons, New York. 

Masuda S, Tokuo T, Ichinose T, Otani K, Uchi T (1991) Expert System for Li-
neament Extraction from Optical Sensor Data. Geoinformatics, vol. 2, Japa-
nese Society of Geoinformatics, pp 195-200. 

Mavrantza OD, Argialas DP (2002) Implementation and evaluation of spatial fil-
tering and edge detection techniques for lineament mapping - Case study: 
Alevrada, Central Greece. Proc. SPIE International Conference on Remote 
Sensing: Remote Sensing for Environmental Monitoring, GIS Applications, 
and Geology II, M. Ehlers (editor), SPIE Press, Bellingham, WA, SPIE-4886, 
pp 417-428. 

Meer P, Georgescu B (2001) Edge detection with embedded confidence. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, PAMI-23, pp 
1351-1365. 

Morris K (1991) Using knowledge-base rules to map the three-dimensional nature 
of geological features. Photogrammetric Engineering and Remote Sensing, 
vol. 57, pp 1209-1216.  

Rasco HP (1999) Multiple Data Set Integration And GIS Techniques Used To In-
vestigate Linear Structure Controls In Southern Powder River Basin, Wyo-
ming. M.Sc. Thesis, Department of Geology and Geography, West Virginia 
University, West Virginia, USA, pp 1-95. 

Rothwell Ch, Mundy J, Hoffman B, Nguyen V (1994) Driving Vision by Topol-
ogy. TR-2444, INRIA, pp 1-29. 



398      O. Mavrantza, D. Argialas 

Sabins FF (1997) Remote Sensing: Principles and Interpretation. W. H. Freeman 
and Company, New York. 

Wang J, Howarth PJ (1990) Use of the Hough transform in automated lineament 
detection. IEEE Transactions on Geoscience and Remote Sensing, vol. 28, pp 
561-566. 



Chapter 4.3 

Classification of linear environmental impacts 
and habitat fragmentation by object-oriented 
analysis of aerial photographs in Corrubedo 
National Park (NW Iberian Peninsula) 
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ABSTRACT: The increase of tourism in coastal protected areas is a po-
tential driver for ecosystem fragmentation, as it frequently involves dam-
ages to their biodiversity values. One of the key issues in the management 
of protected areas is their access regulation in order to avoid negative ef-
fects of trampling on natural and semi-natural habitats. Protection meas-
ures need to be carefully designed to achieve an effective protection of 
biodiversity while minimizing as possible the constraints to tourism devel-
opment. The accurate design and monitoring of performance of such 
measures needs effective methods to evaluate fragmentation. 

In this work, we aimed at the development of a consistent method for 
the automatic recognition of linear environmental impacts (paths and 
tracks) on natural and semi-natural habitats using colour aerial photo-
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graphs. The method is based on a multi-scale segmentation of the images. 
Brightness, shape and connectivity criteria were implemented at several 
scales of analysis by means of a fuzzy knowledge base, allowing the rec-
ognition of linear elements corresponding to networks of trails. We used as 
study case a protected area in the NW coast of the Iberian Peninsula with a 
complex vegetation pattern. The method allowed the general discrimina-
tion of linear artificial features, causing environmental impacts and hu-
man-driven habitat fragmentation, against other linear elements with simi-
lar brightness and shape, but different thematic meaning regarding their 
conservation implications. 

1 Introduction 

Environmental planning in coastal protected areas needs taking into ac-
count the pressure on biodiversity due to the increase of leisure and tour-
ism activities in these locations. In fact, tourism pressure may cause impor-
tant damages to biodiversity values in ecosystems with high vulnerability 
and low resilience. For instance, the effects of trampling on habitats like 
coastal sand dunes may remove and destabilize the vegetation cover and 
cause its fragmentation, particularly when creating linear features like 
footpaths. 

Although several definitions may be found in the literature, habitat 
fragmentation is often regarded as a process in which “a large expanse of 
habitat is transformed into a number of smallest patches of smaller total 
area, isolated from each other by a matrix of habitats unlike the original” 
(Wilcove et al. 1986). Linear infrastructures are acknowledged to be one of 
the main causes of fragmentation of habitats and involving several kinds of 
environmental impacts (Geneletti 2004). The reduction of overall amount 
of habitat and mean patch size, the increase of edges, the decrease of core 
area and the isolation of habitat patches are some of the principal fragmen-
tation effects on landscape structure. Due to their particular ecological re-
quirements, not all the species and ecosystems show the same response to 
such effects, but it is possible to state an overall negative effect of frag-
mentation on biodiversity (Fahrig 2003).  

Tourism pressure and particularly non-regulated circulation of people 
and vehicles, is one of the main reasons of sand dune ecosystem fragmen-
tation in coastal areas. The management of such areas requires establishing 
a control of the public access to avoid irreversible damages to ecosystems 
derived from the unplanned rising and enlargement of footpaths and trails. 
These measures have to be carefully designed in order to constraint as few 
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as possible the tourism development and to contribute efficiently to the 
protection of biodiversity. 

Assuming the existence of a relationship between the landscape pattern 
and processes taking place on it, an accurate characterization of the land-
scape structure contributes significantly to the understanding of ecological 
processes and eventually in the identification of threats on the long term 
maintenance of biodiversity (Turner 1989). Indeed it is necessary to have 
accurate and updated spatial data about the composition and configuration 
of the landscape, in order to evaluate its state and response to perturbations 
and for the eventual design and monitoring of protection measures. Be-
sides, the retrieving of information about past condition of the habitats is 
also necessary for a better understanding of their present state and trends. 

In the current work, we aimed at the development of a consistent 
method for the automatic recognition and mapping of linear environmental 
impacts, namely trails and footpaths, on natural and semi-natural habitats 
in a protected area of the NW of Spain. Due to their informal and in some 
cases even temporal character depending on the tourism affluence, they are 
not included in the official topographic cartography and therefore they 
have to be retrieved from other data sources. 

Remote sensing data and analysis techniques show advantages over tra-
ditional mapping techniques for cost effective generation of environmental 
data, such as the exhaustive and systematic covering of the territory, its pe-
riodical data acquisition or the possibility of automation of analyses. Nev-
ertheless, the availability of remote sensed data sources with enough reso-
lution (temporal, spectral and spatial) may be quite limited to identify 
certain environmental features, particularly when historical data records 
are demanded. In this regard, collections of aerial photographs may be a 
valuable source of information, despite of their frequent shortcomings in 
quality, homogeneity and spectral information. Thus, the basic dataset for 
the study was a mosaic of ortho-rectified aerial photographs with a spatial 
resolution that allows the identification of narrow linear features. In this 
particular case, the target is the classification of roads, trails as well as 
footpaths resulting from tourist impact in a complex coastal sand dune sys-
tem. Since it is foreseen the analysis of historical aerial photographs in fur-
ther work, one of the premises of the research is to develop a methodology 
valid for both colour and black and white images. In view of the limited 
availability of spectral information in the images, the method was designed 
to account as less as possible on spectral information and taking profit of 
other information such as morphology and spatial context of image ob-
jects. 
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2 Material and methods 

2.1 Study area 

The study area is located inside the Natural Park of “Complexo dunar de 
Corrubedo e lagoas de Carrexal e Vixán” located in the NW coast of the 
Iberian Peninsula (Figure 1). The Park comprises a complex mosaic of en-
vironments hosting a great variety of fauna and flora (García-Bobadilla 
Prósper et al. 2003). Its environmental importance has been recognised 
with its declaration as Natural Park, International Importance Wetland 
(Ramsar Wetland), Special Area of Conservation (SAC) of the Natura 
2000 network in the Atlantic region as well as Special Protection Area 
(SPA) for Birds. 

For the purpose of this study a rectangle of 65 ha within the limits of the 
Natural Park was used as test area. Its size results of a compromise be-
tween the computational costs of high resolution images and the need of 
exemplifying the problem of fragmentation in coastal sand dune ecosys-
tems. The study area comprises a complex pattern of ecosystems near the 
shore, including wetlands, sand beaches, white dunes (i.e. no stable with 
bare and loose sand) and grey dunes (more stable, with higher amount of 
organic matter). Other types of vegetation like agricultural fields, grass-
lands, meadows and hedgerows are mainly distributed further in the 
inland. Rocky slopes and different kind of scrublands are distributed 
throughout the area. Finally, the study area has an important presence of 
human-made features such as infrastructures (mainly narrow roads, tracks 
and footpaths) as well as some buildings. 

 

 
Fig. 1. Location of the study area in the European context 
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2.2 Datasets 

We used a subset of an 8-bit orthorectified real colour aerial photograph 
with a spatial resolution 0.20 m, meaning an image size of 3695 by 3536 
pixels. The original photographs were recorded in 2002-2003 with an 
original scale of 1:18000 (FOGGA 2003). We took information about the 
current distribution of habitats and path network by means of fieldwork 
and visual aerial photograph interpretation. Existing habitat maps with a 
scale of 1:5000 (Consellería de Medio Ambiente 2005) were also used as 
ancillary data in the classification process.  

2.3 Classification methods 

For the design of the method, we worked from the basic premise that the 
target elements (i.e. the network of paths and roads) accomplish the fol-
lowing conditions: 

− To show a linear morphology 
− To have high brightness values (i.e. to have low vegetation coverage) 
− To take part in a connected network 

These basic rules usually perform well when typical anthropogenic fea-
tures like roads or paths are the targets, as they are built according to cer-
tain standards and therefore are relatively straightforward to model (Lang 
and Blaschke 2003). However, in the current work, this basic statement is 
likely to present exceptions as some parts of the path network could be 
partially colonized by vegetation (i.e. might show relatively low brightness 
values). Besides, some natural and seminatural habitats might show mor-
phology and brightness values similar to paths and roads, while in other 
cases some sections of the paths might not be connected with the general 
infrastructures network (particularly in the case of temporal unplanned 
footpaths). Therefore the targets of the classification may show an impor-
tant variation in their main characteristics as often being the result of un-
planned human activities and consequently, the difficulty of their model-
ling increases. In order to take into account such variability, we designed a 
flexible system based on a fuzzy logic approach for the recognition of arti-
ficial linear features. Classificatory analyses were done following an ob-
ject-oriented approach, since it shows advantages comparing to pixel-
oriented approach when features such as shape, texture and topology of 
objects are to be used (Blaschke et al. 2001; Giakoumakis et al. 2002). 
Analyses were based on a multi-scale segmentation and subsequently a 
rule-based classification of the resulting image objects by means of a fuzzy 
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knowledge base. The multi-scale approach allowed the recognition of 
complex features resulting from the integration of basic elements (i.e. ob-
jects) at different levels of analysis. 

We used the software eCognition ProfessionalTM V4.0 both for the 
segmentation of the image and for the implementation of the knowledge 
base. In the segmentation process, the image is divided or segmented in a 
number of spatial clusters likely to represent objects belonging to the same 
class. The method is based on  a bottom-up region growing technique that 
starts from the objects with the lowest spatial entity in the image (i.e. indi-
vidual pixels) and iteratively builds spatial clusters meeting a criterion of 
minimum heterogeneity according to certain parameters of spatial scale 
and shape (see Baatz et al. 2004 for further details). We implemented the 
classification knowledge-base by means of decision rules based on spec-
tral, morphological and topological information of the image objects com-
bined via fuzzy logic operators at different levels of analysis. Instead of 
individual information for the RGB channels of the colour photograph, we 
used the overall brightness of the image. This will ease the replication of 
the method for the identification of linear features in other datasets, such as 
historical black and white aerial photographs. We also integrated informa-
tion of shape (linear vs. non-linear morphology of objects) and context by 
mean of topological information (connectivity between certain classes). 

Parameters and function profiles for the fuzzy decision rules were based 
on trial-error procedures using as reference well known elements belong-
ing to the target classes. For almost all rules, we avoided sharp boundaries 
for the membership functions and adopted sigmoid shaped functions so as 
to enhance the advantages of fuzzy operators as allowing certain flexibility 
in the fuzzy decision space (Baatz et al., 2004; Bock et al., 2005). 

A basic level (Level 2) of image objects was derived using segmentation 
parameters that allowed the discrimination of elements likely to belong to 
the trail network (c.f. table 1). Several trials followed by a visual compari-
son of results against known target features on the aerial photograph were 
done until satisfactory image segmentation was achieved. The scale pa-
rameter was adjusted for allowing the discrimination of path stretches 
against other land cover types (even if it meant a certain degree of over-
segmentation). As the classification was not based exclusively on spectral 
features, the shape parameter was set to a relatively high value. Compact-
ness and smoothness parameters were equally weighted. 

Table 1. Parameters for the basic level of the segmentation (Level 2) 

Scale Shape Compactness 
80 0.4 0.5 
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A lower hierarchic level (Level 1) was derived for the purpose of line 
analysis. Each Level 2 object was subdivided in sub-objects that maximize 
the border length to the outer environment which were used for the genera-
tion of shape information about the linear character of their respective su-
per-object (see Baatz et al. 2004 for further details). 

Level 2 objects were classified in several categories according its 
brightness and shape. Overall brightness mean and object asymmetry at 
Level 2 and width and width/length ratio at Level 1 (sub-object) were the 
criteria used in the classification (for a thorough description of these fea-
tures see Baatz et al. 2004). 

At this stage, linear elements with a low vegetation coverage and there-
fore likely to form part of trails were classified. Nevertheless, linear ele-
ments corresponding with natural and seminatural vegetation with inherent 
low vegetation coverage (e.g. long and narrow rocky slopes) were also as-
signed to the former class, even when they did not take part that in the trail 
network. On the other hand, vegetated and linear elements that form part 
of the trail network (e.g. temporal footpaths partially colonised by vegeta-
tion) along with other elements corresponding with hedgerows or narrow 
strips of natural or seminatural vegetation (conceptually very different to 
the trail network) were assigned to the same class. Therefore, additional 
connectivity criteria were introduced in the classification to allow the se-
mantic discrimination between objects belonging to the trail network 
against other elements spectrally and morphologically similar but not 
trails, and vice versa. Criteria had to be implemented for all the classes 
likely to take part of the trail network evaluating the existence of other 
neighbouring elements likely to form part of the same network. To achieve 
this, rules of connectivity were designed at two hierarchical levels: 

Level 1 objects likely to be trails were labelled in two classes according 
their relation with Level 2 elements for its further integration in the deci-
sion rules: 

− “Possible trail” (Level 1), when the objects were contained in any Level 
2 super-object belonging to any of the classes likely to be trails  

− “Near possible trail” (Level 1), when the objects fell within close dis-
tance of an element of the possible trail at Level 1 

Level 2 objects covered by vegetation, with linear shape and contacting 
linear non-vegetated elements were classified as “contacting non-vegetated 
and linear vegetation objects” (see figure 2). 

In the case of absence of this contact, they were classified both as 
“neighbouring possible trail” or “non-neighbouring possible trail” accord-
ing to the distance to elements presumably belonging to the trail network. 
The first class corresponds to linear objects with some vegetation coverage 
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and close to linear unvegetated elements very likely to be trails. The sec-
ond class corresponds to elements at a certain distance to linear unvege-
tated elements or to the previously defined class “contacting non-vegetated 
and linear vegetation objects class”. For the definition of this class, the 
Level 1 categories were used as intermediate step (see figure 2). At this 
point, a circular reference arose, since the classification of one element in 
one of the classes likely to be part of a trail depends on the classification of 
the neighboring and sub-objects as belonging to one of these classes. Ac-
cordingly, the classification of the neighboring objects in one of these 
classes depends on the final assignation of the targeted segment. For solv-
ing this, we applied the option of class-related iterative classification of 
eCognition software. 

Next step in the analysis consisted in the generation of a higher hierar-
chical level (Level 3) based on the Level 2 classification. The main objec-
tive of this level was to identify concatenations of Level 2 objects belong-
ing to classes semantically affine and contiguous in the space (see figure 
3). 

 

 
Fig. 2. Hierarchical classification scheme at Level 1 and 2. Classes likely to form 
part of the trail network are marked with dot rectangles. Curved dot line indicates 
relations used for the definition of connectivity criteria 
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Fig. 3. Level 3 classification based segmentation. In A, an example of level 2 ob-
ject is underlined in white. In B is shown this object assembled with other contact-
ing objects likely to belong to a connected trail network 

 
Thus, a spatial assemblage of the objects considered conceptually more 

likely to be part of the trail networks was done. Besides, a new abstract 
group (“not possible trail”) put together the classes more unlikely to be 
part of the trail networks at Level 3. This abstract group was created in or-
der to facilitate the joint integration of the classes conceptually different to 
trails in the decision rules. 

A new set of decision rules were developed to recognize topological re-
lationships between the elements assigned to classes with different prob-
ability of belonging to the trail networks and eventually, to discriminate 
which of the complex Level 3 objects were real trails (see figure 4). We 
used as connectivity and length of the Level 3 objects as primary decision 
criteria. Long linear segments with a presumed connection with the trail 
network outside the image limits or with a certain degree of vicinity with 
possible paths were classified as trails. Conversely clearly isolated and 
short composed segments were classified as “non vegetated linear”. 
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Fig. 4. Hierarchical classification scheme at Level 2 and Level 3. Dash square 
lines represent the direct correspondence between Level 2 and Level 3 classes. 
Dot square lines indicate the spatial assemblage at Level 3 of classes more likely 
to be trails at Level 2. Dash curved arrows indicate the assemblage at Level 3 of 
the classes more unlikely to be trails. 

 
Final Level 3 classification was re-labeled to a definitive output classifi-

cation scheme of three classes. All elements corresponding with vegetation 
covered ground, were assigned to the output class “vegetation”. Elements 
corresponding with bare ground and not belonging to any kind of classes 
of the trail network were assigned to the output class “no vegetation”, Fi-
nally all the classes semantically belonging to the trail network were la-
beled as “linear impacts”. 

2.4 Accuracy assessment 

We tested the classification accuracy by means of a contrast against inde-
pendent reference data obtained by the visual analysis of aerial photograph 
and ancillary data. In order to ensure the statistical coherence of the valida-
tion, verification points were extracted from the image by means of a sim-
ple random sampling (Congalton, 1991). Sample size was determined ac-
cording the expression for multinomial test and variables (Tortora, 1978) 
for 5 variables (number of classes), probability of Type 1 error of 0.05, 95 
% of precision and for the worst case scenario of class frequency distribu-
tion. A final sample size of 665 verification points was computed, but 
since some of the classes showed low frequencies, a final sample size of 
1000 points was used so as to avoid sub-sampling these classes. 

Confusion matrix and descriptive accuracy indices were computed from 
verification points (Congalton, 1991). Omission and commission errors 
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and conditional kappa were computed at class level. Overall accuracy and 
Kappa index as well as Kappa confidence intervals and Z values were 
computed at overall classification level. 

3 Results and discussion 

Level 2 classification allowed the discrimination of elements according 
their degree of vegetation coverage, quantified by overall brightness for 
the three channels of the RGB photograph, At this stage of the classifica-
tion, the knowledge base allowed the discrimination of terrestrial and 
aquatic vegetation (low brightness values) from bare ground (high bright-
ness values). From the semantic point of view, bare ground can corre-
sponded both to trails or to other elements with low vegetation coverage, 
as some natural and semi-natural habitats, ploughed fields or houses. 
Therefore it was necessary to design rules to discriminate between them. 
First step for this discrimination consisted in splitting between linear ele-
ments, likely to form part of the trail network, and non-linear elements. To 
achieve this, we used lineal shape as classification criteria, quantified by 
the width and ratio length/width. 

Objects classified as “non-vegetated and linear shape” correspond in 
most of the cases with stretches of trails. Nevertheless other vegetation 
types were recorded in this class, as occurred with some objects corre-
sponding to strips of pioneer vegetation on rocky slopes or bare sand. 
Therefore, this class could not be directly matched with a thematic cate-
gory corresponding only with trails, and some refinement of the classifica-
tion was needed. 

On the other hand, in some cases trails can be partially colonized by 
vegetation, showing intermediate to low values of brightness but having 
certain effects in terms of habitat fragmentation. It was therefore necessary 
to identify such elements and label them as part of the trail network. For 
this purpose, vegetation elements were spited up in two sub-groups, dis-
criminating between linear and non-linear vegetation patches. The class of 
vegetation linear elements was again splitted in sub-classes according their 
degree of connectivity with other linear elements likely to take part of the 
trail network. This allowed the distinction of elements with high probabil-
ity of being stretches of the trail network partially colonized by vegetation 
against other linear and vegetated elements like hedgerows or gallery for-
ests semantically different from the class of linear impacts. 

Level 3 classification was used mainly for refinement of the classifica-
tion of linear elements. Here, decision rules aimed at identifying concate-
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nations of stretches forming a theoretical topologically coherent network 
of trails. 

Once re-labeled the Level 3 classification, the final output followed a 
legend of three land cover classes, discriminating between the network of 
trails (identified with linear impacts) vegetation coverage and non-
vegetation coverage (fig 5). Most frequent class was “vegetation”, cover-
ing almost 89 % of the area, corresponding to different types of more or 
less dense vegetated natural and seminatural habitats, artificial grasslands 
and crops (cf. table 2). The class “no vegetation” covers less than 7 % of 
the area, comprising natural and seminatural habitats with an inherent low 
coverage of vegetation (rocky slopes, boulders or sand dunes), along with 
anthropocentric elements such as arable land or recently mowed meadows. 
Finally, less than 5 % of the area was classified as “linear impacts”, corre-
sponding to roads, trails or footpaths. 

Table 2. Class area distribution in ha. and percentages 

Class Area [ha] Area [%] 
Vegetation 58.2 88.6 
No vegetation 4.5 6.8 
Linear impacts 3.0 4.6 

Total 65.7 100.0 
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Fig. 5. Final classification. Grid coordinates in meters, UTM projection Zone 29 T 
North, Datum European 1950 

 
Classification achieved an overall accuracy of 95 % (cf. table 3). Never-

theless, the clear dominance of one of the classes in the map, may have 
caused an overestimation of the accuracy by this index (Fung and LeDrew, 
1988). Estimation of Kappa index is regarded as a more reliable indication 
of the overall accuracy, achieving a value of 0.80, also indicating an al-
most perfect agreement between the classification and reference values ac-
cording the scale of Landis and Koch (1977) or very good agreement ac-
cording Monserud and Leemans (1992). High value of the Kappa Z 
statistic also confirms clearly the statistical difference with a random clas-
sification. 
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Table 3. Overall accuracy indices. Confidence intervals for kappa value were 
computed for 95 % of confidence level. 

Kappa confidence interval Overall accuracy [%]  Kappa Z 
Upper Lower 

96.10 0.80 26.75 0.74 0.86 
 
Per class accuracy indices also showed high values (cf. table 4) with 

Kappa values indicating very good or substantial agreement with reference 
data (Landis and Koch, 1977; Monserud and Leemans, 1992). For the class 
linear impacts, producers accuracy value was lower than users, pointing 
out a potential too narrow definition of the class. Nevertheless for the po-
tential uses of the method in protected areas management and planning, 
certain sub-estimation of the linear impacts may have less social effect 
than an over-estimation, for not inducing unnecessary severe regulations. 
On the other hand, some tuning of the classification parameters may easily 
be implemented in the knowledge base in order to minimize the omission 
errors and ensure a more strict protection of the space. 

Table 4. Per-class accuracy. Contingency matrix with reference data and per-class 
accuracy indices. Reference data in columns, classification data in rows. 

Class 1 2 3 Total Producers 
Accuracy [%] 

Users Accu-
racy [%] Kappa 

1: Vegetation 881 6 10 897 98,66 98,22 0,83 
2: No vegetation 7 51 5 63 80,95 80,95 0,80 
3: Linear impacts 5 6 29 40 65,91 72,50 0,71 

Total 893 63 44 1000    
 
An assessment of the spatial distribution of errors allowed the identifica-

tion of some potential limitations for generalization of the knowledge-base 
classification to other scenarios. As an example, commission errors re-
vealed how a plot of land of recently mowed reed, with a spatial sequence 
alternating linear strips of mowed reed and remains of vegetation, was rec-
ognized as part of the trail network. Although the objects of this plot ful-
filled the requirements for belonging to the class of linear impacts, they 
conceptually corresponded to a single element of partially unvegetated 
land. Most of the remaining errors occurred on transition areas in the mar-
gins of the trail network or in complex patterns of trails and linear shaped 
plots of vegetation. A manual refining of the classification in such areas or 
improvements in the method by including ancillary information are poten-
tial solutions for these misclassifications. 
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4 Conclusions 

The integration in a knowledge base of geometric and contextual data, in 
addition to spectral information, constituted an optimal strategy for the 
identification of linear infrastructures, even when complex arranged land-
scapes are studied (for other examples of successful applications see No-
brega et al. contribution in the book). 

We developed a reliable method for the discrimination of artificial fea-
tures, corresponding with environmental impacts and human-driven habitat 
fragmentation, against other linear elements with similar brightness and 
shape, but with different thematic signification regarding their biodiversity 
conservation implications. These anthropogenic features were classified 
despite of their complexity as they showed an important variation in width, 
shape of the borders and connectivity as a result of an unplanned action. 

Even when the method achieved high accuracy values, some isolated er-
rors were identified, resulting from the occurrence of very complex pat-
terns of interspersed natural and anthropogenic features with linear shape 
occurred. In other cases, the intrinsic characteristics of particular features, 
as happened with strips of mowed reed alternating with strips with some 
remains of vegetation, led to confusion between non-linear elements and 
complex linear elements. 

In spite of the good results for the test area, new experiments are fore-
seen, in order to test potential shortcomings in the generalization of the 
method to other areas. 
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ABSTRACT: Nearly half of the world’s natural wetlands have been de-
stroyed or degraded, and in recent years, there have been significant en-
deavors to restore wetland habitat throughout the world. Detailed mapping 
of restoring wetlands can offer valuable information about changes in 
vegetation and geomorphology, which can inform the restoration process 
and ultimately help to improve chances of successful restoration. We per-
formed an object-based image analysis using color infrared aerial photog-
raphy, which maps specific wetland functions at multiple scales. The com-
bined results of our work highlight important trends and management 
implications for monitoring wetland restoration using remote sensing, and 
will further enable restoration ecologists to use remote sensing for tidal 
marsh monitoring. Restoration objectives, ecosystem function, and scale 
can be integrated into monitoring techniques using remote sensing for im-
proved restoration monitoring. 

1 Introduction 

1.1 Tidal marsh mapping 

Effective tidal marsh restoration necessitates (1) the statement of specific 
restoration goals and objectives; (2) an understanding of how marshes will 
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evolve as they are restored, which can inform the restoration process; and 
(3) monitoring during and after restoration (Williams and Faber 2001). 
Restoration goals and objectives include improvements to the habitat and 
ecosystem services that tidal marshes provide (Baird 2005), which include 
biologically rich and diverse habitat, as measured by vegetation composi-
tion, configuration, and diversity, and the provision of adequate habitat for 
endangered species (Philip Williams & Associates Ltd. and Faber 2004). 

Monitoring changes in ecosystem function after restoration can help 
managers understand how a marsh is evolving, which can inform the resto-
ration process and ultimately improve changes of successful restoration. 
Effective monitoring should be objective, cost-effective, and as automated 
and non-invasive as possible (Andresen et al. 2002). Remote sensing tech-
nologies meet these requirements, and have been used to monitor wetlands 
around the world, allowing for the detailed mapping of restoring wetlands. 
The mapping of tidal marsh vegetation and habitat is a necessary and im-
portant part of wetland restoration monitoring. The heterogeneous land-
scape provides habitat for numerous organisms as well as the productive 
basis for the estuarine food web. Monitoring the pattern of vegetation 
communities over time can help track changes in both the pattern of a wet-
land landscape and the underlying biological processes to which it contrib-
utes, and thus it is important to accurately map vegetation for measurement 
of cover, complexity, and habitat use. 

There are numerous ways to map and delineate continuous and complex 
landscapes using remotely sensed imagery (Blaschke and Hay 2001). The 
traditional mapping process stresses the production of the best single map 
with the highest overall accuracy, but given that ecosystems provide ser-
vices or functions differently at different scales, the scale at which a land-
scape is mapped ideally should depend on the end use or purpose of the 
map (Burnett and Blaschke 2003). For example, mapping habitat for two 
different species across a wetland might require two separate mapping ef-
forts, as a bird utilizes a wetland differently than a mouse. We aim here to 
develop a more flexible, multi-scale approach at wetland mapping that in-
tegrates hierarchical patch relationships across multiple ecosystem func-
tional scales. 

In this chapter, we utilize object-based approaches to map a restoring 
tidal brackish marsh; the method embraces a multi-scalar approach to 
mapping, and is thus more synergistic with our concept of wetland habitat 
functioning. Object-based image analysis (OBIA) has the potential to map 
tidal marsh ecosystems in such a way where objects are extracted at multi-
ple scales from one or more images, and hierarchically linked with each 
other. The objects that are extracted, as well as the hierarchical relation-
ships that are created, depend upon the map purpose (Blaschke and Hay 
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2001), such as a target species, usually endangered or threatened, for 
which the marsh is being restored. We mapped a brackish marsh using 
OBIA with two target ecosystem functions, both operating at different 
scales: (1) song sparrow habitat, and (2) salt marsh harvest mouse habitat.  

1.2 The need for OBIA in wetland mapping 

1.2.1 Past image analysis methods 

Remote sensing is highly effective for analyzing estuaries and coastal sys-
tems (Phinn et al. 2000; Klemas 2001; Yang 2005), and has been used to 
map, monitor, detect and predict change in wetlands (Zhang et al. 1997; 
Jensen 2000). Remote sensing is ideal for monitoring restoring wetlands 
because it is cost-effective, time-efficient, and non-invasive. It allows for a 
high intensity of measurements in relatively inaccessible and sensitive 
sites, without the potential invasiveness that traditional field methods pre-
sent to delicate habitat conditions, bird nesting territories, or endangered 
species habitat (Shuman and Ambrose 2003). It also allows for broad-scale 
estimation of many parameters valuable to ecologists, including land 
cover, vegetation structure, biophysical characteristics, and habitat areas 
(Wulder et al. 2004). 

Visual interpretation, or manual delineation, of remotely sensed imagery 
is still a common method in wetland mapping (Andresen et al. 2002), as it 
allows for the delineation of accurate boundaries around objects and the 
production of maps that are visually appealing. While effective for some, 
visual interpretation can be expensive and time-intensive to achieve de-
tailed classification results since these manual methods are not automated, 
and maps by different interpreters or at different time periods can produce 
variable results that are not comparable across space or time (Blaschke and 
Hay 2001). Automated (computer-assisted) image analysis approaches are 
becoming more common for wetland restoration projects, including those 
that involve pixel-based and object-based methods. Automated pixel-based 
classifiers have been gaining in popularity over the past decade because 
computational power has made them more operational. The use of auto-
mated image classification reduces inconsistencies and error introduced 
through visual photo-interpretation of imagery, and classifications between 
sites and between time periods are more consistent. In addition, automated 
methods have been found to be more cost-effective than visual delineation 
and classification (Thomson et al. 2003). 

Unsupervised classification like Iterative Self-Organizing Data Analysis 
(ISODATA) and K-means clustering are commonly used in wetland map-
ping (Ramsey and Laine 1997; Ramsey et al. 1998; Everitt et al. 1999; Lu-
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netta and Balogh 1999; Everitt et al. 2004), due to their objectivity, re-
duced user input (Thomson et al. 1998), and lower demand for knowledge 
of ground information. However, the lack of analyst input can produce 
clustering of different species within the same class, with less control by 
the analyst to how pixels are assigned a class. Supervised methods afford 
more control to the analyst, because training data are used to correlate the 
ground data in known locations with spectral properties, and then vegeta-
tion classes are extrapolated to the entire image. Several algorithms are 
commonly used in the wetland classification, including Maximum Likeli-
hood Classifier (Scarpace et al. 1981; Jensen et al. 1984; Munyati 2000; 
Thomson et al. 2004; Isacch et al. 2006), Spectral Angle Mapper (Artigas 
and Yang 2005; Belluco et al. 2006), and Spectral Mixture Analysis 
(Underwood et al. 2003; Rosso et al. 2005). However, because wetland 
species are easily spectrally confused and brackish marshes exhibit high 
species diversity in a spatially complex arrangement, supervised classifica-
tions can also potentially result in unsatisfactory results. A hybrid ap-
proach between classification methods is often the most accurate of all the 
pixel-based methods (e.g. Kelly et al. 2004), as it decreases the time and 
amount of data needed with supervised classification because it can sepa-
rate easily distinguishable classes to isolate more spectrally-conflicted 
vegetation types. 

1.2.2 The case for OBIA 

There are several reasons why OBIA holds promise as a method for classi-
fying tidal marsh vegetation with high-resolution (less than one-meter 
pixel size) imagery. First, in contrast to traditional pixel-based methods, 
OBIA allows for the segmentation of one image into segments at multiple 
scales (Schiewe et al. 2001), allowing scales to be linked together, and to 
model the hierarchical nature of complex systems, such as tidal brackish 
marshes. Homogeneous objects are extracted at multiple scales from a sin-
gle image and are linked across scales with rules of inheritance, enabling 
multi-scale hierarchical analyses. Pixels, on the other hand, are uni-scale 
and represent a fixed area on the ground (Benz et al. 2004). While pixel-
based classification methods essentially cluster these pixels into “objects,” 
they are usually non-hierarchical and single-valued. Manual delineation 
methods also “segment” an image, but can depict only the one scale per-
ceived by the image interpreter (Burnett and Blaschke 2003). 

A second reason why OBIA holds promise for tidal marsh mapping is 
because detailed wetland mapping necessitates high-resolution imagery in 
order to capture the small patches that make up the heterogeneous land-
scape. Coarse imagery does not effectively capture the fine-scaled features; 
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for example, Dobson et al (2001) used Landsat to monitor coastal wetland 
in the US, but could only map very broad areas of wetland, and could pro-
vide no within-site detail. Pixel-based image analysis and classification are 
limited with high-resolution data and can render unsatisfactory results. Ob-
ject-based approaches are especially good for high spatial resolution data 
because neighboring pixels more likely belong to same class (Blaschke 
and Hay 2001; Schiewe et al. 2001). Variability between neighboring pix-
els becomes advantageous information because it now defines the internal 
heterogeneity, or texture, of an object, thus expressing texture more explic-
itly than with pixel-based approaches (Blaschke and Hay 2001). Using ob-
jects instead of individual pixels does not produce the “speckled” or “salt-
and-pepper” results that are common in pixel-based classifications (Yu et 
al. 2006; Guo et al. 2007), so no post-classification filtering or smoothing 
is needed. 

Third, ecosystem mapping is more ecologically sound with OBIA be-
cause principles of landscape ecology are maintained. Patches are based on 
homogeneous objects that incorporate the inter-patch variability rather 
than pixels (Andresen et al. 2002), which in turn make up the entire land-
scape in all its heterogeneity. Thus, object-based methods follow ecologi-
cal phenomena more closely than traditional pixel-based methods 
(Blaschke and Strobl 2001), which analyze each pixel independently with-
out taking into account spatial concepts like neighborhood, proximity, and 
homogeneity (Burnett and Blaschke 2003). Likewise, the hierarchical rela-
tionships between objects at multiple scales represent the multi-scale na-
ture of complex ecosystems such as tidal marshes, with patterns and proc-
esses interacting across multiple scales. Therefore, a major goal with 
OBIA is to segment out patches that represent meaningful objects based on 
a specific level of homogeneity. 

In summary, OBIA combines the advantages of visual interpretation and 
pixel-based methods in that patches are delineated into homogeneous areas 
that are both accurate and visually appealing, and the methods are objec-
tive, automated, and repeatable. OBIA allows for more semantic, intuitive, 
and human-conceived object shapes (Blaschke and Strobl 2001; Schiewe 
et al. 2001) that are based on user knowledge (Hay et al. 2003). Shape and 
context are taken into account as well as color or spectral quality of the 
patch (Schiewe et al. 2001). In addition, soft classifications, or fuzzy mod-
eling, that are based on user knowledge can be integrated into the analyses. 
In this way, an object is assigned to multiple classes at varying degrees of 
membership, in order to reflect the ecotonal nature of many systems. 

In the past, representing pattern and processes in this multi-scale manner 
was difficult because hierarchical linking of scales was not well defined 
(Hay et al. 2003). Geographic Information Science (GIS) was often con-
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sidered the closest thing to multi-scale mapping because different scales 
could be analyzed separately, but GIS had some problems representing 
more than one scale at a time. OBIA has the potential to model landscapes 
in a multi-scale manner because a single image represents a variety of 
scales and levels of abstraction (Hay et al. 2003). Object segmentation uses 
the same object boundaries across scales (Hay et al. 2003), so topological 
relationships can be utilized. In this way, OBIA can integrate GIS analyses 
while representing the hierarchical scaling of real-world ecosystems which 
humans can mentally move between easily, but previously could not ade-
quately model in a GIS (Blaschke and Strobl 2001). 

Wetland ecosystems often consist of small isolated wetland patches, 
with complex pattern. The use of high spatial resolution imagery is neces-
sary to capture the detail. There are several studies published using object-
based techniques for mapping wetlands. Some have used OBIA with 
coarse-scale Landsat imagery (Bock 2003; Dorren et al. 2003; Stankiewicz 
et al. 2003; Yoon et al. 2003; Hurd et al. 2006), while others have used it 
with high spatial resolution images, such as CIR aerial photography (0.2 – 
1 m) (Ivits et al. 2002; Burnett et al. 2003), Quickbird satellite imagery (60 
cm – 2.4 m) (Wang et al. 2004a; Hurd et al. 2005), and IKONOS satellite 
imagery (Blaschke and Hay 2001; Hall et al. 2004; Wang et al. 2004a). 

Multiple studies have compared OBIA with pixel-based methods. Wang 
et al (2004b) compared the two methods together and found that object-
based methods were more efficient at differentiating spectrally mixed 
vegetation classes, but over-generalized species diversity in areas where 
spectral differentiation was clear. Therefore, they integrated both methods 
by applying object-based methods only to those classes that were spec-
trally similar, and pixel-based methods to all other classes (Wang et al. 
2004b). Andresen et al. (2002) applied OBIA to IKONOS satellite imagery 
to map aquatic vegetation and found that they could successfully map 
vegetation both for inventory purposes using hierarchical segmentation 
and classification, and for monitoring purposes by measuring incremental 
patch change. Stankiewicz et al (2003) found that while shrub classes 
could be successfully delineated, many wetland patches could not be iden-
tified with coarse-scale Landsat imagery. Hurd et al. (2005) discovered 
that results from the object-based multi-scale methods on Quickbird im-
agery were smoother and reduced errors of commission and omission. 
Harken and Sugumaran (2005) found object-based results from eCognition 
software to be nearly 30% more accurate overall than pixel-based results 
from Spectral Angle Mapper (SAM). Lathrop et al (2006) found that tradi-
tional per-pixel based multi-spectral classification approaches were not as 
effective as object-based approaches, due to the varying image radiometric 
conditions, in part caused by water depth, turbidity, and background bot-
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tom sediment. The majority of applied OBIA studies found used the com-
mercially available software Definiens Professional (formerly known as 
“eCognition”) made by Definiens, Inc. (1995-2006). Using this software, 
studies have implemented multi-scale object-based segmentation and clas-
sification of mires (Burnett et al. 2003). Others have integrated multiple 
data sources (Stankiewicz et al. 2003; Li and Chen 2005), such as eleva-
tion data, to help further discriminate classes. Some have experimented 
with hyperspectral data, such as Greiwe and Ehlers (2005), who found an 
almost 20% accuracy improvement when they used hyperspectral informa-
tion rather than just high spatial resolution data. All of these studies dem-
onstrated an increase in accuracy over pixel-based image analysis, but 
none discuss the multi-scale mapping of ecosystem function. OBIA has the 
ability for powerful mapping, modeling, and visualization across multiple 
scales for many future applications, including restoration. In this chapter, 
we incorporate multi-scale restoration goals into tidal marsh vegetation 
and habitat mapping. 

1.3 Multi-scale nature of brackish marshes 

The multi-scale nature of brackish marshes make them complex systems as 
defined by Hay et al (2001), in that they exhibit multi-scale patterns and 
processes, have many interactive components which are non-linear in na-
ture, and has a high level of spatial heterogeneity (Hall et al. 2004). They 
are the ideal ecosystem in which to apply object-based image analysis, due 
to the multiple and hierarchically-linked scales involved in wetland func-
tioning. 

Brackish marshes have biological and physical components at multiple 
scales, arranged in a hierarchy and interacting in multiple ways. For exam-
ple, fine-scale micro-topography causes highly variable salinity and inun-
dation regimes that produce patches with high levels of plant species di-
versity. These patches are nested in larger patches, forming species 
assemblages, or vegetation community types, which exhibit larger-scale 
landscape heterogeneity. Many organisms inhabit brackish marshes, each 
viewing and using the marsh from a different perspective, or scale. For ex-
ample, the song sparrow (Melospiza melodia) and the salt marsh harvest 
mouse (Reithrodontomys raviventris) have different habitat requirements, 
both defined differently by the composition, configuration, patch size, 
landscape context, and spatial extent of vegetation species (Phinn et al. 
1996). In the next two sections, we give information about the two target 
ecosystem functions in this study, song sparrow habitat and salt marsh 
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harvest mouse habitat, that will be used to determine rule sets used in the 
classification and habitat mapping. 

1.3.1 Song sparrow 

Three subspecies of song sparrow are endemic to the San Francisco Estu-
ary Region (Alameda Song Sparrow, Samuel’s Song Sparrow, and Suisun 
Song Sparrow) and are Species of Special Concern for California due to 
loss of wetland habitat (Nur and Spautz 2002). Restoration efforts are un-
derway to increase the breeding and nest success of all song sparrows sub-
species. Sparrow habitat is related to vegetation diversity, productivity, 
and species composition, and includes areas near channels or levees, espe-
cially areas with high channel density (Nur and Spautz 2002). Sparrows 
are very particular about where they make their nests and need areas where 
they can watch for predators. One major factor is vegetation species, as 
song sparrows prefer to perch and often nest in shrub cover, especially 
gumplant (Grindelia stricta var. stricta) and coyote brush (Baccharis pilu-
laris) (Nur and Spautz 2002), in which they can conceal their nests. Gum-
plant and coyote brush are normally on levees (both natural and human-
made) or other elevated areas in salt and brackish marshes (Traut 2005). 
Song sparrow nest predation also has been linked to proximity of upland 
edge (Stralberg and Chan 2002); however, since the site for this study is an 
island, the upland levee edge is surrounded by water, hindering predation. 
Also, song sparrows have been found to be negatively affected by rushes 
(Juncus spp.) (Nur and Spautz 2002). 

1.3.2 Salt marsh harvest mouse 

The salt marsh harvest mouse is endemic to the salt and brackish marshes 
of San Francisco Estuary. The species was listed as federally endangered 
in 1970 and as state endangered the following year, mainly due to habitat 
loss or modification (Geissel et al. 1988). The salt marsh harvest mouse is 
cover-dependent on pickleweed (Sarcocornia pacifica), a succulent halo-
phyte common to San Francisco Estuary and brackish marshes. Due to its 
high salinity tolerance, pickleweed occurs in areas along channels where 
natural berms have formed from sedimentation and in high marsh plains, 
both of which have saline soils due to high evaporation levels in the sum-
mer months and relatively limited flooding during high tides (Onuf 2006). 
Salt marsh harvest mice prefer dense canopy cover of pickleweed of 30-60 
cm in height (Shellhammer et al. 1982; Bias and Morrison 2006), with 
nearby areas of high elevation where they can move to during high tides, 
but only if those areas are densely covered with low-lying vegetation, 
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similar to pickleweed, such as alkali heath (Frankenia grandifolia) (Shell-
hammer 1989). 

The mice can disperse locally, but only if there are small vegetated dis-
tances of 20m or less between the preferred pickleweed patches (Shell-
hammer et al. 1982; Geissel et al. 1988). Therefore, small patches can 
serve as stepping-stones for species dispersal or recolonization and can 
protect scattered individuals, although larger areas of pickleweed tend to 
host the species in more numbers than small patches (Shellhammer et al. 
1982). While the mice mostly prefer pickleweed habitat, they have been 
known to exist in dense canopy of mixed species, as long as pickleweed is 
a co-dominant species. They avoid pure stands of certain species, includ-
ing salt grass (Distichlis spicata) and alkali bulrush (Bolboschoenus mari-
timus) (Shellhammer et al. 1982). Also, the context of adjacent vegetation 
types, such as upland/levee areas, can allow the salt marsh harvest mice an 
escape from high tides (Shellhammer et al. 1982). 

2 Methods 

2.1 Study site 

Roughly 90-95% of tidal wetlands in the San Francisco Estuary in Califor-
nia, USA, have been lost or altered since European settlement. Bull Island 
on the Napa River in California, USA is an intertidal brackish marsh about 
40 hectares in size, located 16 kilometers upstream from the mouth of the 
Napa River in the San Francisco Estuary, California (Figure 1). The site 
was naturally restored to tidal influence in 1954 when a flood breached the 
levee. Today, it serves as habitat for organisms such as birds, mammals, 
and fish, increased productivity for the Napa River and San Pablo Bay, and 
provides recreation activities for Bay Area residents. The site is completely 
vegetated and surrounding by a levee except for in the southwest corner of 
the site, where the main drainage basin with an extensive channel network 
connects with the Napa River. 

The SF Bay-Delta Region includes a particular habitat structure that is 
supported by complex heterogeneous patterns of diverse vegetation com-
munities common to Pacific Coast brackish tidal marshes (García et al. 
1993; Callaway and Sabraw 1994; Zedler et al. 1999). While salty tidal 
marshes have distinct vegetation zones, brackish and freshwater tidal 
marshes are characterized by diverse species mixtures, usually composed 
of several co-dominant plant species with numerous sub-dominants, and 
configured in a heterogeneous mosaic of vegetation community types with 
sometimes poorly defined boundaries between patch types. Dominant 
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vegetation at Bull Island consists of alkali bulrush (Bolboschoenus mari-
timus), perennial pickleweed (Sarcocornia pacifica), cattail (Typha spp.), 
Common tule/bulrush (Schoenoplectus acutus var. occidentalis and Schoe-
noplectus californicus), and gumplant and coyote brush on the levees. 

 

 
Fig. 1. Map of study site vicinity, Bull Island, Napa County, USA 

2.2 Data 

Color-infrared (CIR) aerial photography was acquired on October 24, 2003 
as part of the Integrated Regional Wetland Monitoring Project (IRWM 
Project 2003). The three-band (near infrared, red, and green) photo was 
scanned at 1,200 dots per inch (dpi) at a scale of 1:9,600, to render a pixel 
size of 0.2m on a side (0.04m2 pixel area) (IRWM Project 2003), fine-
scaled enough for effective mapping of highly diverse patches in a hetero-
geneous pattern. The image was orthorectified using four ground control 
points spread out in different corners of the photo, in order to maximize 
the accuracy of the rectification process. The targets were surveyed hori-
zontally using a sub-meter-accuracy Trimble® GeoXTTM mapping grade 
Global Positioning System (GPS) unit (Trimble Inc. 2005). The images 
were orthorectified, to account for camera tilt, topographic displacement, 
and lens distortion. To account for the local terrain’s effect on image dis-
tortion, digital elevation models (DEMs) were used in the rectification 
process, using publicly available USGS 10m DEMs for the relatively to-
pographically-homogenous sites. The accuracy standards employed for or-
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tho-rectification were such that approximately 90% of all control points on 
the photos are within two meters of their corresponding ground coordi-
nates (which, as stated above, are of sub-meter accuracy—generally within 
0.3-0.75 m of the nominal XY coordinate) determined using the GPS unit 
(IRWM Project 2003). Imagery is freely-available at 
http://www.irwm.org/. 

Because elevation is a strong determinant of vegetation zonation and 
landscape pattern in tidal marshes, fine-scaled topography imagery was in-
tegrated into the object-based classification. Light Detection and Ranging 
(LiDAR) data was acquired for the Napa River Basin in May and October 
2003 by the University of Florida in partnership with UC Berkeley 
(NCALM 2005). The LiDAR data was acquired with an Optech 1233 la-
ser, which collects data at a frequency of 33 kHz. Data density (unfiltered, 
last return) for Bull Island was 1.5 points per square-meter, which was in-
terpolated to a 1-meter LiDAR raster file. The RMSE for the vertical accu-
racy was 0.15 cm. 

2.3 Field data collection 

We collected ground reference data to train the classification of the image 
into vegetation classes and to assess accuracy of the final map. The field 
effort was carried out in two phases. During the first phase, ground data 
were collected for use in choosing sample objects to train the classifica-
tion. We collected data at: (1) points that were randomly-generated in a 
GIS prior to field visits, and (2) points that were chosen during the field 
visit at the discretion of the field samplers, to better train the image classi-
fication. This was necessary since we had little prior knowledge of the 
vegetation that occurred in the sites. During the second field phase, we col-
lected data at randomly-generated points to be used to assess the accuracy 
of the classification. The points were stratified by vegetation classes and 
weighted by the area of the vegetation class so that larger classes consisted 
of more points. 

At all points for both field phases, we recorded absolute percent cover 
of each species within a circular plot with a three-meter radius, and the 
dominant species was used for classification training and accuracy assess-
ment. Percent cover was determined with ocular estimates, using a seven-
category Daubenmire ranking system (1:0-2%; 2:2-5%; 3:5-25%, 4:25-
50%; 5:50-75%; 6:75-95%; and 7:95-100%) (Daubenmire 1959). Two-
hundred twenty-eight point locations were visited; of those, 68 were used 
to train the classification and 160 were used for the accuracy assessment. 
Handheld GPS units with an average recorded location error of five meters 
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were used to navigate to each point. Due to delicate conditions at some of 
the sites, including soft sediments and bird nesting territories, samplers had 
the choice to observe the sample point from a few meters away. This prac-
tice was performed on less than 10% of the data points. 

2.4 Image analysis for vegetation type mapping 

We used a five-step multi-scale segmentation/object relationship modeling 
(MSS/ORM) approach described by Burnett and Blaschke (2003) includ-
ing: (1) GIS building, or the collection of georeferenced geographic infor-
mation to assist in the analyses; (2) segmentation, or the partitioning of the 
imagery into multiple segmentation levels or scales; (3) object relationship 
model building, or the assignment of linkages between the hierarchical 
levels; (4) visualization, or the production of the classified image(s) for a 
specific goal; and (5) quality assessment, or the measurement of accuracy. 
This methodology provides an effective organized structure with which to 
analyze complex systems. Mapping a function is challenging because 
functions operate across multiple scales. However, by combining informa-
tion from different resolutions, the scale can be optimized for each target 
function (Burnett and Blaschke 2003). Based on knowledge about each 
target function (described in Section 1.3), we created rule sets that built the 
object relationship model. 

2.4.1 GIS building 

The CIR aerial photo image and the LiDAR image were the primary data 
used for the analysis. In addition, we created an image with three principle 
component (PC) bands derived from the raw image bands.  The first PC 
band represented the highest variation within the data, while the second 
and third represented most of the remaining variation (ERDAS 1999). We 
found that the second and third PC bands depicted obvious patterns in the 
landscape, representing the vegetation communities important to our target 
functions. We also created a Normalized Difference Vegetation Index 
(NDVI) image to indicate presence of vegetation and as a proxy for pri-
mary production (Jensen 2000). We equalized the histograms for both the 
second and third bands of the principal components image and the NDVI 
image. Many have found that it is very helpful to integrate vegetation indi-
ces and image transformations into the analysis and classification process 
to aid in vegetation mapping (Eastwood et al. 1997; Zhang et al. 1997; 
Thomson et al. 2004), and some studies have used image transformations 
such as Principal Components Analysis (Munyati 2004) with success. All 
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six layers were inputted into Definiens Professional software: the near in-
frared, red, and green bands of the CIR photo, the LiDAR image, and the 
PCA and NDVI images (both with their histogram equalized). 

2.4.2 Segmentation 

Segmentation is critical to multi-scale object relationship modeling (Bur-
nett and Blaschke 2003), and the first step to accurate mapping using 
OBIA. The segmentation used in this study was the result of numerous tri-
als using various segmentation parameters. The final segmentation levels 
we used rendered desirable objects for both the target ecological scales in 
this study: (1) a medium patch, or class level, scale for mapping salt marsh 
harvest mouse habitat (depicted by the second segmentation level), and (2) 
a small patch scale for mapping song sparrow habitat (depicted by the third 
segmentation level). Definiens Professional version 5.0 was used for all 
object-based image analysis in this study. Definiens Professional contains 
two groups of classification tools: nearest neighbor (NN) classifiers and 
knowledge-based rule sets. Our image analysis used both the data-driven 
nearest neighbor classification, as well as the knowledge-driven crisp and 
fuzzy membership functions. 

For this study, multi-scale segmentation was carried out in three major 
steps in a top-down manner. The first segmentation was performed using 
both the second and third PC bands. We used a scale parameter of 100, 
with the following homogeneity parameters: color versus shape (0.2 and 
0.8 respectively), and compactness versus smoothness (0.2 and 0.8 respec-
tively). Weighting shape more than color uses less of the spectral values of 
the pixels and gives more influence to shape (whether that is defined as 
compactness or smoothness). We chose to weight smoothness over com-
pactness to prevent too much complexity in the object boundaries, and to 
render more appropriate habitat patches. Smaller patches were pulled out 
here, which mainly utilized the variable pattern that the second PC band 
depicted. The purpose of this large segmentation level was to delineate the 
large vegetation groups out, mainly differentiated by plant vigor, or level 
of chlorophyll in the leaves, of which the patterns in the PC bands illus-
trated. This top segmentation rendered objects that effectively separated 
water and vegetation, but objects were not small enough to be used for 
mapping vegetation types or targeted functions. As PCA aims to transform 
the data to produce axes of greatest variation, using these bands for seg-
mentation allows for effective partitioning of the variation between ob-
jects, better than with the CIR image. 

Both the second and third segmentations were performed with the three 
CIR bands: the near infrared, red, and green bands. We used a scale pa-
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rameter of 50 for the third (medium patch) segmentation and a scale pa-
rameter of 25 for the fourth (smallest patch) segmentation, and the follow-
ing homogeneity parameters for both: color versus shape (0.9 and 0.1 re-
spectively), and compactness versus smoothness (0.5 and 0.5 respectively). 
The second and third segmentation were used for the habitat mapping of 
the salt marsh harvest mouse and song sparrow, respectively. The LiDAR 
image was not used in segmentation because its pixel size (1 m) was much 
larger than the pixel size of the multispectral image (0.2 m). Instead, the 
LiDAR image was only used in the classification, following recommended 
strategies for segmentation by Definiens (1995-2006). 

2.4.3 Object relationship model building  

In this step, we set the rules that defined the relationships between the mul-
tiple scales in the object hierarchy. The class hierarchy is the first step in 
building object relationships, and represents two ways in which the differ-
ent land cover classes are related: (1) by inheritance, or the way in which 
they possess similar spectral or contextual characteristics, and (2) by se-
mantic group, or the ecologically-meaningful way we want to depict the 
land cover groups at various levels of detail. For example, a patch of bul-
rush and a patch of coyote brush might share similar spectral traits and 
therefore fall under similar inheritance structure, but they belong in two 
different semantic groups (the former in the low marsh and the latter in the 
high marsh). In this study, we used the semantic organization for visualiza-
tion of the marsh functions; therefore, we describe this in the visualization 
step. First, we describe the inherited relationships between the land cover 
classes that are used to build the functional maps. 
The class hierarchy for the vegetation type map was designed with several 
tiers of inheritance in order to optimize separation between classes. At the 
top tier, we differentiated between water and vegetation, by applying two 
rule sets: to NDVI and to LiDAR elevation (Figure 2). At the second tier, 
we further separated vegetation objects into two groups based on low and 
high NDVI values (Figure 2). The reason for this was certain vegetation 
types had low NDVI values at the time of image acquisition (i.e. cattail), 
while others had high NDVI values (i.e. pickleweed), observable in the 
image. The third tier further divided each of the two NDVI groups into 
levee and non-levee groups, based on LiDAR elevation. The fourth tier 
further divided the two levee groups into vegetation types (with the levee 
group having one type and the non-levee group having eight types). At this 
tier, objects were assigned into each individual vegetation types based on 
training samples and standard nearest neighbor classification using object 
means of the NIR, red, and green image layers. 
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Fig. 2. Hierarchical object-based classification methodology. All Standard Nearest 
Neighbor classification algorithm was performed using object means of the NIR, 
red, and green image layers. The gray dashed lines depict each tier of the classifi-
cation 
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In addition to the separations at the four tiers just described, we also 
employed several other rule sets that improved the classification of certain 
vegetation types. The reasons for this were because many objects were still 
confused between two or more vegetation types even at the fourth tier. 
Two classes that often had confusion were “pickleweed” and “common 
tule,” as both these classes share similar NIR reflectance in the CIR image. 
After investigation, we found that the feature describing the average stan-
dard deviation of NDVI separated pickleweed objects from common tule 
objects very well, and assigned a fuzzy positive relationship to the pickle-
weed class (Figure 2). Another spectrally confused pair was “cattail” and 
“pepperweed (near channels).” In order to separate these two classes, we 
used a distance to channel feature to distinguish pepperweed, since it 
nearly always bordered the channels. Therefore, we assigned a crisp nega-
tive relationship of pepperweed to distance to water with a threshold of 6 
meters. A third confused pair were the two main types of cattail: narrow-
leafed cattail and broad-leafed cattail. These two species are so taxonomi-
cally similar that we did not key to species in the field. They also have 
very similar spectral characteristics, but have different reflectance in the 
NIR and red bands, therefore having different NDVI values. The broad-
leafed cattail species were showing up very similar to other vegetation 
types in the southeastern part of the site; therefore a contextual feature was 
added to the classification that forced that cattail in the part of the site that 
was 250 m from the edge of the image to be classified as broad-leafed cat-
tail. Finally, the last knowledge-based rule set applied was for Pacific 
cordgrass, which was getting confused with numerous species and getting 
overestimated throughout the site, even when it only existed at certain ele-
vations and next to channels. Therefore, we assigned a crisp relationship 
that assigned any LiDAR values (with the cordgrass spectral characteris-
tics) that fell within the range of 0.6 and 1.5 m to be classified as 
cordgrass. 

In order to effectively map our two target habitats, we prioritized marsh 
features that described optimal conditions for each. In this section, we de-
scribe features that improve or reduce habitat quality for song sparrows 
and salt marsh harvest mice. Using these features, we created rule sets that 
we used to build the object relationship models for each function. 

Song sparrows prefer gumplant and coyote brush shrub species for nest 
sites, and may also exist in other shrub species where their nests are con-
cealed. In Bull Island, all shrub species occur on or near the levee, or up-
land, areas. Some gumplant and coyote brush plants exist in the areas of 
the perennial pepperweed (Lepidium latifolium) surrounded by pickleweed 
in the areas by the levee where there are large patches of pickleweed and 
other high marsh species. Song sparrow habitat is negatively affected by 
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rushes (Juncus spp.), due to its simple structural complexity, low height, 
and sometimes low density. In addition, Song sparrow habitat is positively 
correlated with distance to water (Stralberg, unpublished data). From char-
acteristics, we created three rule sets that modeled Song sparrow habitat: 

• Patches that are either gumplant or coyote brush; 
• Patches that are levee; and 
• Patches that are not in rush (Juncus spp.) patches.  

The salt marsh harvest mouse is cover-dependent on pickleweed, and 
only moves between patches if there is a narrow band of dense vegetation. 
They have been found to move between patches that are up to 20 meters 
apart. While the mice will exist in areas with saltgrass mixed with pickle-
weed, they do not prefer pure stands of saltgrass (Distichlis spicata), most 
likely due to the low lying nature of saltgrass without a dense canopy. In 
addition, they less frequently inhabit areas near water than away from wa-
ter, preferring to be near levees or some upland area to which they can re-
treat during the highest tides. From these characteristics, we created two 
rule sets that modeled salt marsh harvest mouse habitat: 

• Patches that are pickleweed; and 
• Patches that are not dominantly saltgrass. 

2.4.4 Visualization  

In addition to representing the class hierarchy with inherited relationships, 
Definiens Professional software also allows for the organization of classes 
into semantic groups, which aid in more ecologically meaningful group-
ings. We organized the classes to reflect the rule sets for the functional 
maps. For the salt marsh harvest mouse habitat, we assigned a class 
(“SMHM habitat”) to encompass both the pickleweed habitat near chan-
nels and in the areas near the levee. For the song sparrow habitat, we as-
signed two new classes. One was “Song sparrow habitat” and was placed 
in the non-levee class under the high productivity areas. The other class 
added was rush. Rush was not part of any other mapping purpose due to 
the fact that its patches were too small to be captured in any other segmen-
tation level. Both these classes were assigned to a nearest neighbor classi-
fier using training object samples. The scales are linked explicitly because 
they use the same information from the original image and call on one an-
other for rule sets. 

We performed a classification at the two target functional scales: the 
smallest segmentation level (scale parameter of 25) for the Song sparrow 
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habitat, and the medium segmentation level (scale parameter of 50) for the 
salt marsh harvest mouse habitat. 

2.4.5 Quality assessment  

An accuracy assessment was performed on the vegetation map and on both 
the habitat maps (song sparrow and salt marsh harvest mouse) by compar-
ing mapped class to ground reference vegetation at all ground reference 
points. 

3 Results 

The final vegetation map is depicted in Figure 3, and the multi-scale func-
tional maps are depicted for song sparrow habitat in Figure 4, and for salt 
marsh harvest mouse in Figure 5. The overall accuracy of the final vegeta-
tion map was 85%. The error matrix for the accuracy assessment of the fi-
nal vegetation map is shown in Figure 6. The overall accuracies of the two 
habitat maps were 95% for song sparrow habitat and 94% for salt marsh 
harvest mouse habitat. 

Results show that song sparrow habitat mainly exists along the levees 
where the shrub species, including coyote brush and gumplant, are located. 
Likewise, salt marsh harvest mouse habitat exists along channels and near 
the levees where pickleweed cover exists either alone or in combination 
with other suitable species. 
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Fig. 3. Map of vegetation types at Bull Island, produced at a scale parameter of 25 
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Fig. 4. Map of Song Sparrow habitat at Bull Island, produced at a scale parameter 
of 25. 
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Fig. 5. Map of Salt Marsh Harvest Mouse habitat at Bull Island, produced at a 
scale parameter of 50. 

 

 
Fig. 6. Error matrix for the accuracy assessment for the final vegetation map. 
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4 Discussion 

The results of the multi-scale functional mapping were useful, but have 
limitations in their use. The habitat maps provide means for useful inven-
tory or baseline to monitor change after restoration; however, they do not 
necessarily map habitat suitability or weighted preference across a land-
scape. For example, a higher numbers of salt marsh harvest mice may be 
found in the pickleweed bordering the levee than in the pickleweed near 
the channel, due to their preference for the former. However, both land 
cover classes are important for the mice and need to be mapped. The 
mapped products that resulted from this study are the integration of habitat 
preferences into a vegetation mapping process for the combined approach 
of mapping both land cover and function, which will aid in monitoring and 
management decisions. An added benefit to this approach is that the accu-
racy of habitat maps has the potential of being higher than a detailed vege-
tation map as it was in this study. This is because multiple vegetation type 
classes are often combined in one habitat class, potentially lumping to-
gether vegetation types that might be confused with each other and there-
fore misclassified in the detailed vegetation map. This study was a habitat 
mapping study that integrates monitoring goals into vegetation type map-
ping to aid in restoration management. It is not a suitability modeling 
study, but rather a method for including habitat traits into map making, 
nested in the overall object-oriented approach, for ease of detection of 
change in habitat over time. As we have classified fine scale patches of 
homogeneous vegetation type, and then aggregated them based on the rule 
sets, the accuracy assessment for the functional habitat maps are essen-
tially validating the accuracy of our aggregated fine scale vegetation map. 
Careful thought should go into deciding which layers to use for segmenta-
tion and classification. Some data can be effective at partitioning pixels 
into meaningful objects while being ineffective when used in the classifi-
cation, and vice versa. For example, we did not use the LiDAR layer in the 
segmentation process, because the spatial resolution was coarser than the 
other datasets. However, it was used extensively in the classification proc-
ess for the creation of multiple rule sets. On the other hand, the PCA bands 
were used for segmentation because they highlighted meaningful patterns 
and variability in the landscape, but were not used in the classification, as 
their values were not easily interpretable to spectral, spatial, or contextual 
characteristics. 

The vast majority of image analysis for wetland mapping uses pixel-
based classification for distinguishing between types of land cover. Object-
base image analysis has the ability to improve the mapping of vegetation, 
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habitat, and productivity for restoring wetlands. However, there is still 
much research that needs to be done, as far as investigating which bands 
are useful for classifying natural habitats that exhibit extremely complex 
and ecotonal boundaries between patches. 

In complex systems like tidal marshes, multi-scale mapping is possible, 
but care must be taken to map for each scale, as certain training objects, 
thresholds, and fuzzy relationships are not often transferable across seg-
mentation levels. In addition, segmentation is still an iterative and manual 
approach (Schiewe et al. 2001). While the user must know scales of inter-
est, and OBIA requires exploratory work to define appropriate segmenta-
tion levels (Hay et al. 2003), multi-scale segmentation and classification 
can provide powerful results. 

Finding the appropriate focal level, or segmentation level with the opti-
mal object size and shape for what you are mapping, can be tricky and 
time-consuming. The Definitions Professional User Guide (1995-2006) 
recommends a trial-and-error process, but OBIA application could benefit 
from more studies to find systematic ways of choose segmentation pa-
rameters for specific types of ecosystems. There has, however, been sev-
eral generalizations made that offer effective rules of thumb. For example, 
Blaschke et al (2002) recommend that the scale of image objects to be de-
tected must be significantly bigger than the scale of image noise relative to 
texture. 

Using the Definiens Professional software we were able to integrate 
multiple sources of data: in this case we integrated very high resolution (20 
cm) multispectral data and high resolution (1 m) LiDAR elevation data. 
The software also enables the application of rule sets to the classification 
process incorporating our knowledge of the site and the vegetation, and 
performs fuzzy classification, which allow an object patch to be assigned 
to several classes but with varying membership. 

Bull Island, California was chosen as the site for this study for three rea-
sons. First, it contains all of the target vegetation species needed for Song 
sparrow and harvest mouse habitat. Second, the aerial photography was 
acquired in one tile due to its relative small site compared to the other 
sites. Therefore, effects of brightness gradients and other radiometric is-
sues from airplane tilt were less problematic. Third, the software used in 
this study is limited in its processing speeds of imagery of certain sizes. 
The image for Bull Island was approximately 5000 x 6000 pixels, which 
although large, was manageable for a study of this magnitude.  

OBIA usually requires extensive knowledge of the study site and its re-
lationship to the data that is available for analysis. The determination of 
the most adequate spectral, spatial, and contextual features that tell each 
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class apart requires a high level of familiarity with both the vegetation 
types and the imagery. 

5 Conclusions 

In many ways, estuarine and coastal environments are a “last frontier” in 
remote sensing analysis, primarily because the problem of scale has yet to 
be solved (Cracknell 1999). Most satellite-based imagery does not have the 
spatial resolution required to distinguish small yet ecologically important 
wetlands from other land cover types, nor to distinguish and map the com-
plex vegetation patterning and mixed species typically found within (par-
ticularly Pacific coast) wetlands with adequate accuracy (Cracknell 1999).  
Moreover, temporal resolution has typically been inadequate to capture 
important change in estuarine and coastal land, especially in the time in-
tervals need to monitor ever-increasing human development or small 
changes in a restoring wetland. 

With increases in spatial, temporal, and spectral resolutions produced by 
newer sensors in the past several years, and with even more expected in 
the future, wetland mapping and monitoring is expected to improve if we 
can use the data and imagery effectively and in innovative ways. Object-
based image analysis offers methods to accommodate high spatial, spec-
tral, and temporal resolution data, by reducing small pixels into meaning-
ful objects, accommodating multiple spectral band ratios and relationships, 
and by offering important change detection methods that allow for the un-
derstanding of incremental change in vegetation type, size, shape, and con-
text. Thus OBIA methods can be a benefit to understanding tidal wetlands 
in a restoration context.  
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ABSTRACT: An automatic tool for vineyard mapping and monitoring 
is expected by numbers of managers and winegrower cooperatives in 
winegrowing regions. A frequency analysis using the Fourier Transform 
on aerial images has been developed to meet this need. This results in vine 
plot detection, delineation and characterization with very precise estima-
tion of inter-row width and row orientation. To foster large-scale applica-
tions, tests and validation have been carried out on standard very high spa-
tial resolution remotely sensed data. On the study area, only 8% of vine 
plots have not been detected (corresponding to small plots with only 1.5% 
of the total vineyard surface) and more than 61% have been correctly de-
tected (other mainly concerns partial detection). 

1 Introduction 

The considerable increase in digital technologies enables to automatically 
analyze images but also to understand them by providing high-level infor-
mation on their content. Concurrently, such a considerable increase is ob-
served in the availability of very high spatial resolution (VHSR) remotely-
sensed data. As a consequence, a lot of new potential applications are now 
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made possible since the shape or the spatial structure of observed objects is 
becoming more distinguishable, providing greater possibilities for dis-
crimination and characterization. In the agricultural domain, various types 
of vegetation can thus be distinguished according to their spatial patterns 
(cereal crops, forests, orchards…). In this context, automatic analysis 
methods could be developed to build or update geographical databases for 
land management. However, because they deal with spatial structures or 
shape, these new applications also require new image processing methods. 
Several shape-model based approaches can thus be found in the literature, 
especially for building detection (Garcin et al. 2001; Segl et al. 2003) or 
isolated trees detection (Barbezat et al. 1996). For forest identification, 
various textural approaches based on co-occurrence matrices are proposed 
such as (Franklin et al. 2000) or (Moskal 2002). 
We address the issue of vineyard detection and characterization from 
VHSR images for inventory and management purposes. Indeed accurate 
and up to date digital mapping of vineyards could be used by vinegrower 
cooperatives, e.g. to improve the monitoring of quality compliance in areas 
registered in the list of Controlled Origin Denomination. The management 
of pollution, erosion and flood risks is another field that can take advan-
tage of these maps. Indeed, these risks, depending on culture and soil sur-
face condition, are worsened by mechanization and intensive cropping 
practices. 
Most vineyard related studies based on remotely-sensed data aim to char-
acterize previously delimited plots (training mode (Wassenaar et al. 2002), 
foliar density (Hall et al. 2003)…). They emphasize the relevance of tex-
tural analysis applied to submetric spatial resolution images. Indeed a very 
important feature concerning vineyard is the spatial periodicity of the pat-
tern resulting from the spatial arrangement of plants (often in lines or grid), 
which can be perceptible with a spatial resolution that is at least twice as 
small as the pattern period. Because of this periodic organization, a vine 
pattern can roughly be assimilated to a local planar wave of a given spatial 
frequency and orientation. Therefore, frequency analysis appears as a suit-
able approach for vine detection. The wavelet analysis presented in (Ran-
chin et al. 2001) is applied to 25 cm resolution images for vine/non-vine 
pixel classification. Using a plot based validation, 78 % of plots were ac-
curately classified; but this approach is complex and needs significant user 
intervention. Wassenaar et al. (2002) successfully used a Fourier Trans-
form analysis for vine/non-vine classification and for characterization of 
already delimited plots on 25 cm resolution images. This method also gave 
a very precise estimation of interrow width and row orientation. Delenne et 
al. (accepted for publication) showed the superiority of a frequency analy-
sis on a textural analysis using co-occurrence matrices, concerning vine-
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yard detection (pixel classification) in VHSR images, without any parcel 
plan availability. 

We address here the OBIA problem of vineyard segmentation, using 
this frequency analysis approach. To foster large-scale applications, the 
process has been applied to standard VHSR aerial images in natural colors 
and with a 50cm spatial resolution. In the following part, the theoretical 
aspects of the method are presented. Then results obtained on a 200 ha 
study area, presenting a large set of vineyard types and conditions, are 
given and discussed. 

2 Method 

2.1 Fourier Transform for vineyard detection 

Fourier theory states that almost any signal, including images, can be ex-
pressed as a sum of sinusoidal waves oscillating at different frequencies. 
The Fourier Transform amplitude (or Fourier spectrum) of an image I can 
be represented in the frequency domain as another image, FI. In the con-
ventional representation, this image is symmetric with respect to its center, 
which contains the average of I, i.e. the amplitude of the null frequency 
F0. Each pixel position corresponds to a particular spatial frequency f 
ranging from f = 0 at the center to f = ±0.5. Its value codes the amplitude of 
Fourier spectrum, which depends on the presence of the corresponding 
frequency in the original image I. 

In most of vine-growing regions, two main patterns can be observed on 
aerial images according to the vine training mode used:  

• Grid pattern: about a quarter of the vineyards considered in this study is 
trained in ‘goblet’. This old method of vine training involves no wires or 
other system of support: vine stocks are planted according to a grid pat-
tern (often on a square basis) with approximately 1.5 m x 1.5 m spacing 
in the study area but sometimes up to 3 m spacing in dry regions. 

• Parallel lines pattern: most of the recent vineyards are trained using 
horizontal wires to which the fruiting shoots are tied. The distance be-
tween two wires is larger than between vine stocks guided by the same 
wire (often 1 m x 2.5 m spacing in the study area). More adapted to 
mechanization, this training mode named trellis, is mainly used. 

Since vineyard patterns on aerial images are periodical and oriented, they 
induce very located peaks of amplitude in Fourier spectrum (Fig. 1). 
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Fig. 1. Fourier spectrum of a vineyard area: (a) original image; (b) Fourier spec-
trum on which several peaks can be seen (highest intensity values) 

 
Three characteristics can be deduced from the value and positions of these 
peaks: 

1. Peak value can be seen as an estimation of the vine presence in the 
original image (the higher the peak, the more contrasted the pattern).  

2. The angle formed by (center, peak) vector with the horizontal line, de-
termines the wave direction in a polar coordinate system, which is per-
pendicular to the pattern direction i.e. the vine row orientation.  

3. The distance r between one peak and the spectrum centre, is the fre-
quency f of the corresponding wave (f ∈ [0, 0.5]). This value is directly 
linked to the pattern period T in pixel i.e. the vine interrow width, by f = 
1/T. 

To ensure the presence of a unique vine pattern in the analyzed part of 
the original image, FFT is computed on a small sliding window (included 
in a plot), which size will be discussed in the next section. When this win-
dow contains vineyard, two symmetric peaks are present on the Fourier 
spectrum image and two other peaks at 90° for the grid pattern of a goblet 
vine. On the contrary, only the central peak is present for the non-periodic 
patterns of other land covers (Fig. 2). 

 

(a) (b)
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Fig. 2. Examples of Fourier spectrum (down) for 3 sub-images of size 61x61 pix-
els (up) extracted from a trellis vine (left), a goblet vine (middle), and a non-vine 
(right) 

 
A normalization step can be applied to increase the visibility of these 

peaks. We use here a linear transformation on a sliding window, which 
normalizes the standard deviation mean and ensures that any input image 
will have approximately the same amplitude of luminance variation from 
row to interrow in a vine plot. 

We then use the following method for vine plot detection: 

1. The Fourier Transform is computed on the sliding window. 
2. The Fourier spectrum maximum is searched for in an annular ring corre-

sponding to potential vineyard frequencies (linked to interrow width). 
3. The interrow width and row orientation are deduced from the maximum 

position in the Fourier spectrum. 

Then, three characteristics are affected to the sliding window central 
pixel: the maximum amplitude, the interrow width and the row orientation. 
At the end of this step, 3 pseudo-channels are available, on which a seg-
mentation will be performed. 
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2.2 Segmentation procedure 

Row orientation and interrow width are supposed to be constant within a 
same vine plot. The homogeneity h of these characteristics can thus be 
used with the amplitude of Fourier spectrum to compute a ‘vine index’, V. 
Many combinations - linear or not – of these data have been tested. The 
aim of getting a discriminating vine index, in which most of non-vine pix-
els are null, has been reached with a multiplication of the three pieces of 
data. For each pixel p, V(p) is then defined as: 

( )2)()()()( phphpapV T⋅⋅= θ  (1) 

where a is the maximum of Fourier Transform amplitude in the sliding 
window centered on p; θ and T are respectively the corresponding orienta-
tion and period and the homogeneity h is defined by: 

))(var(1)( pFphF −=      TF ,θ=  (2) 

where var(F) is the normalized variance of F, computed on a sliding win-
dow of size 3x3 centered on p. 

This vine index enables to discriminate vineyard textures from other 
ones that have generally null values. We then use a simple “contour” func-
tion, which create a vector object for each clump. 

Although this function segments vineyards area, many plots that are 
spatially close can be grouped into a unique object. To overcome this is-
sue, the segmentation procedure is reiterated on the vine rows orientation 
and interrow widths “channels” on area identified as vineyard by the first 
segmentation. This corresponds to a colored image segmentation, which 
enables the delineation of each vine plots in a unique object, except for 
those that are spatially close and have the same characteristics, which can 
remain grouped. 

The general scheme of the method is represented in figure 3. At the end 
of the process the Fourier transform is computed again on each segmented 
plot in order to precisely characterize vine row orientation and interrow 
width. 
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Fig. 3. Simplified representation of the whole process 

2.3 Validation method 

The main goal of the presented process is the plot contours delineation. 
Therefore, a plot based validation has been performed, comparing auto-
matic and manual segmentation (considered as reference) according to 
their overlapping rate. Eight different cases have been defined: 

1. Good segmentation: the overlapping surface of reference and automati-
cally segmented plots is higher than 70%.  
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2. Over-segmentation: several plots are automatically segmented in one 
reference plot.  

3. Under-segmentation: one automatically segmented plot includes several 
reference plots.  

4. Partial segmentation: only one part of the plot is detected. 
5. Large segmentation: the automatically segmented plot over-flows onto 

other plots.  
6. Missing segmentation: undetected reference plot. 
7. Extra segmentation: non-vine automatically segmented as a vine plot.  
8. Other cases. 

3 Results 

3.1 Study area and data 

To assess the global detection process, a study area of 200 ha has been 
chosen, which is a subset of the La Peyne watershed (110km²) located in 
the Languedoc-Roussillon region, France (Fig. 4). 

 

 
Fig. 4. Location and subset of the study area 

Data acquisition was carried out during the first week of July 2005, 
when foliar development was such that both vine and soil were visible on 

Paris

Montpellier
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aerial images, providing contrasted periodical patterns. Photographs in 
natural colors were acquired using a digital camera aboard an Ultra Light 
Motorized (ULM) by the company l’Avion Jaune®. They were geometri-
cally corrected, mosaicked and resampled for a 50 cm resolution.  

Since the original image required for FFT computation must be in gray 
levels, the three channels have been tested separately. Best results, pre-
sented thereafter, have been obtained with the red one, since it provides 
higher contrast between vine and soil (even covered by grass). 

For validation purpose, ground-truth information was collected for the 
whole study area the same day as image acquisition. For example: land 
use; crop pattern (e.g. grid or line); soil surface condition; estimation of 
vineyard age or mortality rate. Interrow width and orientation were ob-
tained by precise on-screen measurements. 

3.2 Sensitivity analysis to the window’s size 

The main parameter of the method is the sliding window size. A sensitivity 
of the results to this size has been carried out since accuracy of detection 
and characterization depends on the number of pixels in the window. On 
the one hand, this window must be large enough to take into account the 
repetition of row or grid patterns, so a large window provides more precise 
information when located inside a plot. On the other hand, besides increas-
ing calculation times, a larger window decreases classification results near 
plots boundaries as it can contain several patterns at the same time. Eight 
window sizes have been tested from 5×5 m to 40×40 m. Results become 
acceptable for a 20×20 m window size, for which the good segmentation 
(case 1) rate is the higher. However, the lowest rate of non-detection (case 
6) is reached for 30×30 m. Extending window size up to 40×40 m does not 
improve results while considerably increasing computational time. We do 
prefer a better result in term of non-detection than good segmentation, be-
cause a further step can be developed to improve plot contours. Conse-
quently, the best trade-off for the window size is about 30×30 m, which 
can contain from 12 to 15 vine rows in the study area. 

3.3 Segmentation results 

Quantitative results obtained with a 30×30 m sliding window are given in 
table 1 according to the previous classification and are illustrated in figure 
5. 
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Table 1. Segmentation results with comparison to reference plots 

 Segmentation type Number of reference plots (except for 7) 
 1. Good 54  (47.5%) 
 2. Over 3  (2.5%) 
 3. Under 16  (14%) 
 4. Partial 12  (10.5%) 
 5. Larger 6  (5%) 
 6. Missing 9  (8%) 
 7. Extra 5   
 8. Other 14  (12.5%) 
 Total (except 7) 114  (100%) 

 

Fig. 5. Zoom on the results: (a) pseudo-channel representing vine-row orientation; 
(b) pseudo-channel representing interrow width; (c) pseudo-channel representing 
vine index; (d) segmentation results drawn above image red channel 

 
The most represented types of results are: good segmentation (47.5%), 

under segmentation (14%), partial segmentation (10.5%) and other 
(12.5%). 

The missing plot ratio is relatively weak (8%) and mainly concerns 
small plots. Indeed, eight out of the nine non-detected vines are smaller 

(a) (b)

(d)(c)



A Local Fourier Transform approach for vine plot extraction      453 

than 0.2ha and their surfaces correspond to only 1.15% of the total vine-
yard surface.  

Under-segmentation typically correspond to the grouping of neighbor-
ing plots that have the same row orientation and inter-row width and are 
only separated by a narrow road or a ditch. Some of them are not spatially 
separated and only differ by the soil surface condition between rows or by 
some characteristics undistinguishable in aerial images such as age or 
height (Fig. 6a). This kind of segmentation error can nevertheless be con-
sidered as good detection and is a side effect of a non-sufficient accuracy 
in plot edge definition. This is inherent to any segmentation method rely-
ing on spatial pattern detection: a minimal neighborhood is required to de-
tect patterns, leading to a limited spatial resolution of the segmentation. 

A significant amount of plots are only partially segmented, mainly be-
cause of internal heterogeneities (e.g. Fig. 6b).  

The “other” case often corresponds to plots that are at the same time 
partially and over or under segmented (Fig. 6c). 

 

Fig. 6. Examples of results: (a) partially segmented plot, (b) under-segmented 
plots, (c) under and partially segmented plots (manual segmentation in white, 
automatic one in black) 

 
Finally, four ‘plots’ have been wrongly segmented. One of them is due 

to a high longitudinal gray-level transition, which has generated an ampli-
tude peaks in the search range. The others are located in non-cultivated 
plots, but which have been recently ploughed and therefore present a paral-
lel structure. This last kind of ‘plot’ could probably be eliminated e.g. us-
ing a complementary radiometric analysis. 

(a) (b) (c)
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3.5 Characterization results 

Thanks to the amplitude peak position in the Fourier spectrum, vine row 
orientation and interrow width can be precisely characterized.  

Concerning orientation, on-screen measurement and automatic charac-
terization are nearly identical (Fig. 7), with an absolute average difference 
δ lower than 1°. 

A bigger (but still small) gap between on-screen measurement and auto-
matic characterization can be observed concerning interrow width (Fig. 8), 
with an absolute average difference δ = 3.3cm. 
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Fig. 7. Characterization of vine row orientation 
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Fig. 8. Characterization of interrow width 

Allowing to Wassenaar et al. (2002), a twice-higher resolution (0.25cm) 
enables a twice-better interrow width characterization (δ = 1.6cm), but 
does not improve the precision of orientation estimations.  
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4 Conclusion and discussion 

The proposed approach has proved its efficiency for vineyard detection 
and characterization in many ways. While most of detection studies pro-
vide a pixel classification, the main originality of this method is that it per-
forms both detection and delineation in polygons. Another significant ad-
vantage is that good results are obtained with the red channel, present in 
widely available images in natural colors. And since the appropriate spatial 
resolution is linked to the local pattern period, a coarser one (e.g. issued 
from Ikonos or Quickbird satellites) could be used in many vine-growing 
regions, especially dry ones such as in Spain where inter-row widths are up 
to 3 m (providing that the periodic pattern is still contrasted). 

Moreover, this kind of approach, based on the periodical crop pattern, 
enables a limited risk of commission error compared to spectral analysis. 
Indeed, only crops with the same range of interrow width could lead to 
confusion. Then, orchards, for example, will not be detected as vine.  

In terms of performance, the present study has nevertheless shown some 
limitations concerning plot contours shape and localization accuracy. To 
overcome this issue, we do believe that a further step based on individual 
vine row analysis and adjustment would probably be sufficient (presently 
under development). Moreover, this could for example decrease the rate of 
partially delimited plots and correct some erroneous detection due to high 
longitudinal transitions in the image. 

The cases of missing detection are more problematic as no further im-
provement step can be envisaged. However, as seen above, they mainly 
concern small plots, with very few rows, and this kind of plot tends to dis-
appear with mechanization in most vineyard regions. 
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ABSTRACT: Vegetation mapping using IKONOS data was imple-
mented at a countryside study area in central Japan, where small patches of 
various plant communities are mixed together in a complicated mosaic pat-
tern. Pixel-based and object-based classifications using only spectral fea-
tures were implemented and their accuracies were compared. In addition, 
the object-based classification was also performed on a combination of 
spectral and textural features, with a stepwise regression model used in the 
discriminate analysis to select the most relevant features. Classifications 
were implemented at four levels, the highest of which used seven vegeta-
tion categories. The object-based classification proved more accurate than 
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the pixel-based classification. In addition, the addition of textural features 
generated significant improvements in accuracy. The overall classification 
accuracy and Kappa coefficients at the highest level were 52.8% and 0.373 
for the pixel-based classification; 58.9% and 0.458 for the object-based 
with spectral features only; and 65.0% and 0.542 for the object-based with 
additional features. Some problems with misclassification remained, but 
the overall results demonstrate that object-based classification of very high 
resolution satellite images using additional features is a practical tool for 
vegetation mapping in Japan. 

1 Introduction 

Plant communities all over Japan are changing rapidly due to shifts in land 
management policies, and are also becoming fragmented by urbanization 
and development. Continuously updated vegetation maps, showing the 
current distribution of the various communities, are required for proper 
management and conservation. Representative vegetation maps are those 
produced by the Ministry of the Environment (formerly the Environment 
Agency) since 1973. These maps, however, rely on detailed analysis of ae-
rial photographs coupled with substantial field research, and as such re-
quire great amounts of time and labor. In addition, the accuracy of the 
maps varies with the skill and experience of the researchers. The need for a 
more efficient, less labor-intensive methodology has become even more 
urgent since the Ministry switched from 1/50,000 scale maps to 1/25,000 
scale for the 6th National Survey on the Natural Environment 
(1999~2004). 

New technologies, employing Geographic Information Systems (GIS) 
and remote sensing technology, are being examined as tools for efficient 
vegetation mapping (e.g., Alexander and Millington 2000). The Japanese 
Ministry of the Environment is also considering the use of remote sensing 
in future vegetation mapping projects (Biodiversity Center of Japan 2005). 
To date, however, most remote sensing attempts have employed Landsat 
or SPOT data. In many regions of Japan, small vegetation patches are 
mixed together in a complicated mosaic pattern, and these medium resolu-
tion data are insufficient for vegetation mapping at 1/25,000 or finer scale.  

Recently, however, very high resolution satellite data, such as IKONOS, 
have become widely available, and have increased expectations for en-
hanced discrimination of cover types (Mumby and Edwards 2002; Wang et 
al. 2004). In Japan, remote sensing using very high resolution IKONOS 
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data shows promise as a tool for classifying vegetation elements even in 
areas with exceptionally complicated patterns of vegetation.  

Technical problems, however, such as misinterpretation of shadows and 
variable-shaped individual crown trees, still arise in pixel-based classifica-
tion using very high resolution remote sensing data (Hay et al. 1996; La-
liberte et al. 2007). Recent research (e.g., Wang et al. 2004; Marçal et al. 
2005) has thus focused on object-based classification programs as a means 
of overcoming these problems.  

Very high spatial resolution imagery provides 1 to 4m resolution multi-
spectral data, which is sufficient to estimate forest stand characteristics 
(Tuominen and Pekkarinen 2005). Herold et al. (2003), however, have 
noted that very high resolution satellite data are limited to four multi-
spectral bands, and thus may have limitations with regard to detailed map-
ping. In addition to spectral features, however, IKONOS also provides 1m 
resolution panchromatic images, which enable classification using texture 
patterns. Carleer and Wolff (2006), Puissant et al. (2005) and Laliberte et 
al. (2007), have reported that a gain in classification accuracy can be ob-
tained by using a combination of both spectral and textural features. 

In this research, the practicality of vegetation mapping by object-based 
classification using IKONOS very high resolution remote sensing data was 
examined and compared with two types of conventional pixel-based classi-
fication methods. In addition, the object-based classification was repeated 
using a combination of spectral and textural features. These results were 
then compared to those obtained by using spectral features alone. 

2 Object-based classification in vegetation mapping  

The conventional vegetation mapping process is outlined in Figure 1. To 
begin with, aerial photographs are interpreted, and boundaries of the major 
vegetation classes are mapped out, producing a draft physiognomical vege-
tation map. Next, on site field research is implemented to correct and ver-
ify the boundaries drawn on this draft map. Data on vertical and horizontal 
distribution density of individual species is also collected at this time. 
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Fig. 1. Steps in production of phy-
tosociological vegetation map 
(Suzuki et al. 1985). Remote 
Sensing can contribute to the first 
step, encased in a dotted line. 

 
The field data is then compiled and analyzed to identify precise plant 

communities. Finally, these results, combined with additional fieldwork, 
are used to produce a phytosociological vegetation map based on associa-
tions of particular species (Braun-Blanquet 1932; Suzuki et al. 1985). 

To our knowledge, to date there have been few or no attempts to apply 
remote sensing directly to vegetation mapping. Remote sensing, which is 
limited in its ability to identify understory vegetation, can not be expected 
to generate or update the completed phytosociological vegetation map. 
Classification of remotely-sensed data, however, should have a potential 
for streamlining and standardizing the initial phase of vegetation mapping, 
which involves drafting the physiognomical map. 

To illustrate how remote sensing can contribute to vegetation mapping, 
Figure 2 shows a schematic representation of the differences among man-
ual interpretation using aerial photographs (2a); pixel-based classification 
of remotely sensed data (2b) and object-based classification of remotely 
sensed data (2c). As shown in the figure, the pixel-based classification ap-
proach, which does not consider the relationship of each pixel data with its 
adjacent units, tends to divide the area up into finer divisions than is called 
for. Small gaps or shadows in a relatively homogeneous forest, for exam-
ple, show up as different vegetation categories. In the object-based ap-
proach, on the other hand, the program can be set to filter out these minor 
inconsistencies, producing results very similar to those generated by the 
manual interpretation. Thus object-based classification should have poten-
tial for streamlining and standardizing the initial phase work of vegetation 
mapping. 

 

Draft of Physiognomical Vegetation Map 
from Aerial Photographs 

↓ 
Initial Phase Field Work 

↓ 
Completion of Physiognomical 

Vegetation Map 
↓ 

Compilation of Data 
Extraction of Plant Communities 

↓ 
Second Phase Field Work 

↓ 
Completion of Phytosociological Map 
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     (a)      (b)      (c) 

Fig. 2. Classification of vegetation types (Modified from Kamagata et al. 2006) 
(a): based on visual interpretation 
(b): pixel-based (over classification) 
(c): object-based (results similar to visual interpretation) 

3 Methods 

3.1 Study Area and Data 

This research was implemented on a 2 km by 2 km test area, located in an 
agricultural area of Sosa City, located in eastern Chiba Prefecture, central 
Honshu (Figure 3). The study area consists of narrow, highly-branched al-
luvial valleys, called ‘Yatsu’, which are cut deeply into flat-topped, pla-
teau-like uplands. The height of the uplands is only 30-40 meters, limiting 
the effect of terrain on the analysis. Forest communities in the study area 
consist of deciduous broadleaved woodlands (Quercus, Carpinus); ever-
green broad-leaved woodlands (Castanopsis, Quercus); bamboo groves 
(Phyllostachys) and conifer plantations (Cryptomeria, Chamaecyparis). 
These vegetation types border each other in a complicated patchwork pat-
tern. In addition, some deciduous broadleaved woodlands have been in-
vaded by bamboo or dwarf bamboo (Pleioblastus).  

The research utilized multi-spectral, 4m resolution and panchromatic, 
1m resolution remotely sensed data from IKONOS (Japan Space Imaging), 
obtained on 1 April 2001 with 0% cloud coverage (Figure 4). The five 
spectral bands are 0.45-0.90µm (Panchromatic), 0.45-0.52µm (Blue), 0.52-
0.60µm (Green), 0.63-0.69µm (Red) 0.76-0.90µm (NIR). Also employed 
was the Normalized Difference Vegetation Index (NDVI), calculated as 
follows (Eq.3.1). 
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NDVI = ( NIR – Red ) / ( NIR + Red ) (3.1) 

 

   
Fig. 3. Location of study area  Fig. 4. IKONOS image of study area 
      (2000m x 2000m) 

 
The classification results were compared against a master vegetation 

map, which was prepared based on standards used by the Ministry of the 
Environment in their physiognomical vegetation maps. Only vegetated ar-
eas were considered. The classification scheme employed in this research 
follows that of the Ministry of Environment’s Actual Vegetation Maps. 
The vegetation community categories were: Evergreen broad-leaved for-
est; Deciduous broad-leaved forest; Secondary Grassland; Wetland vegeta-
tion; Coniferous plantation; Other plantation; Bamboo grove. 

3.2 Classification Categories and Classification Levels 

Based on the composition of forests in the study area, classification was 
implemented at four levels (Table 1). At the first, or roughest level, the dif-
ferentiation was only between forest and grassland. At level 2, grasslands 
were divided into secondary and wetland types, and forests into evergreen 
and deciduous. At Level 3, the evergreen forests were divided into wood 
and bamboo; and at the finest level, evergreen forest (wood) were subdi-
vided into evergreen broad-leaved, coniferous plantation, and other planta-
tion. A total of 7 vegetation classes were thus obtained at Level 4. The ul-
timate goal of the research was Level 4, but classifications were 
implemented at all levels to provide examples and to determine the practi-
cal limits of the classification system being tested. 
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Table 1. Vegetation classes used at four levels of classification 

Level 1 Level 2 Level 3 Level 4 
Forest c1 Evergreen 

forest 
c3 Evergreen 

forest 
(wood) 

c7 Evergreen 
broad-leaved 
forest 

c9 

      Coniferous 
plantation 

c10 

      Other planta-
tion 

c11 

    Bamboo 
grove 

c8   

  Deciduous 
broad-leaved 
forest 

c4     

Grassland c2 Secondary 
grassland 

c5     

  Wetland ve-
getation 

c6     

 

3.3 Image Segmentation and Accuracy Assessment 

The object-based classification employed eCognition software (Definiens). 
Initial segmentation was a multi resolution, bottom-up system based on the 
method of Baatz and Schape (2000). In object-based classification, object 
size, shape and other parameters can be adjusted to fit the needs of the re-
search. In this case, the same segmentation parameters were used for clas-
sifications at all levels, with the scale parameter set at the level of the plant 
communities as noted above. Texture and color of the image data were 
used to classify each unit, and integration of areas was accomplished by 
increasing the scale parameters. The study area was divided by segmenta-
tion processing. 

For evaluating the accuracy of the classifications, the master map was 
converted from vector data to 4m resolution raster data, and stratified ran-
dom sampling was employed to choose sampling points from each cate-
gory. A minimum of 50 points were selected for each category, with a total 
of 1000 points for each image. Using the master map as a base, producer 
accuracy, user accuracy and Kappa coefficients were calculated for each 
vegetation category in each of the classification methods. 
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3.4 Comparison of Object-based and Pixel-based Classification 
Methods 

Satellite data for the study area was classified using object-based and 
pixel-based (maximum likelihood and ISODATA) methods. Only spectral 
features (Blue, Green, Red and NIR) were used for this part of the re-
search. Level 4 vegetation maps were generated for each method, and the 
results of the classifications were compared. In the object-based classifica-
tion, Segmentation was implemented using eCognition Version 4 software; 
and classification by minimum distance classifier by the Mahalanobis dis-
tance method using discriminate analysis with SPSS Version 12 software.   

The master vegetation map and aerial photographs were used as training 
data for the image objects generated by segmentation. In many cases, 
vegetation categories showed individual variation in tree crown shapes 
based on age and composition of forest. In particular, evergreen broad-
leaved categories in the study area included mature forests of chinquapin 
(Castanopsis sieboldii), as well as younger forests of chinquapin mixed 
with evergreen oaks (Quercus myrsinaefolia, Q. acuta, etc). Coniferous 
plantations also showed variation in crown density. In these cases, the dif-
ferent age and composition patches were originally classified separately, 
but were consolidated into their main categories (either evergreen broad-
leaved forest or coniferous plantation) in the final analysis. 

The same vegetation categories were employed in the pixel-based 
maximum likelihood and ISODATA classifications, which were imple-
mented for purposes of comparison. The training data used in the object-
based classification were also used in the maximum likelihood classifica-
tion. In the ISODATA classification, the data was divided into 40 clusters 
and labeled. 

3.5 Classification using texture features 

In addition to spectral features, textural and morphological features can be 
effectively employed in vegetation classification. Carleer and Wolff 
(2006), for example, performed classifications utilizing 4 relevant features 
selected from a total of 33 spectral, textural and morphological features. In 
other cases, however, a greater number of relevant features may be prefer-
able. This is especially so in cases, such as the study area in this research, 
where the vegetation pattern includes a mixture of objects with very simi-
lar characteristics.  

Using a stepwise regression in the discriminate analysis is one method 
for choosing the best number of relevant features for a particular classifica-
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tion (von Eye and Schuster, 1998). This method attempts to find the “best” 
regression without examining all possible regressions (Levine et al. 2001), 
and is thus especially well suited for use in Japan, where the vegetation 
categories vary widely from region to region, and where many small 
patches of vegetations types are mixed together in a complicated mosaic 
pattern. 

In this research, a total of 28 spectral and textural features (textural fea-
tures based on Haralick et al. 1973) were established (Table 2), and step-
wise regression, relying on the minimum distance (Mahalanobis distance), 
was employed within the discriminate analysis to select those features that 
were relevant for statistical classification. The features selected were then 
classified by minimum distance classifier (Mahalanobis distance), using 
discriminate analysis with SPSS Version 12 software. The Mahalanobis 
distance between sample i and class j in both the feature selection and clas-
sification stages was calculated as follows (Eq.3.2). 

d 2ij = (xi - µj) tΣj
-1 (xi - µj) (3.2) 

Where x denotes vector of raw data, µ denotes mean vector of population 
and Σ-1 denotes inverse covariance matrix of population. 

When selecting features in the stepwise regression, the F-value was em-
ployed to statistically assess the usefulness of an explanatory feature for 
discriminating class. The F-value was calculated as follows (Eq.3.3). 

F = {bi / SE(bi)}2 (3.3) 

Where SE(bi) denotes standard error of the partial regression coefficient 
(bi). When the critical (F-to-enter) F-value is set at 1.0, a maximum num-
ber of explanatory factors are selected. To prevent over selection, setting 
the critical F-value at 2.0 has been suggested (Haga and Hashimoto 1980, 
Okuno et al. 1981). 

On the other hand, setting the value this high might result in loss of 
some useful features. In this research, the regression and subsequent classi-
fication were thus run at both critical F-value 1.0 and 2.0, and the results 
were compared. In addition, to determine the extent to which the results 
can be applied to actual vegetation mapping, the regressions and classifica-
tions were run at Level 1 through Level 4. 

Table 2. 28 features used in study 

Spectral features Textural features 
Mean of Blue band s1 Homogeneity on NIR band t1 
Mean of Green band s2 Homogeneity on PAN band t2 
Mean of Red band s3 Contrast on NIR band t3 
Mean of NIR band s4 Contrast on PAN band t4 
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Mean of PAN band s5 Dissimilarity on NIR band t5 
Mean of NDVI band s6 Dissimilarity on PAN band t6 
St. Dev. of Blue band s7 Entropy on NIR band t7 
St. Dev. of Green band s8 Entropy on PAN band t8 
St. Dev. of Red band s9 Angular second moment on NIR band t9 
St. Dev. of NIR band s10 Angular second moment on PAN band t10 
St. Dev. of PAN band s11 Mean on NIR band t11 
St. Dev. of NDVI band s12 Mean on PAN band t12 
  St. Dev on NIR band t13 
  St. Dev on PAN band t14 
  Correlation on NIR band t15 
  Correlation on PAN band t16 

Textural features on GLCM (Gray Level Co-occurrence Matrix). 

4 Results and Discussion 

4.1 Comparison of Object-based and Pixel-based Classification 
Methods 

The image results generated by the three classification methods are shown 
in Figure 5; and the classification accuracy of those results are shown re-
spectively in Tables 3. Only spectral features were utilized, and the classi-
fications were performed at the fourth level (seven vegetation classes). 

In terms of overall classification accuracy, the object-based results 
(58.9%) scored higher than both the maximum likelihood (52.8%) and the 
ISODATA (49.3%). In terms of overall Kappa coefficients as well, object-
based (0.458) outscored maximum likelihood (0.373) and ISODATA 
(0.309). 

In the ISODATA results, compared to the master map, the pixels classi-
fied as coniferous plantation are exceedingly high. Some sections are 
shown as completely covered by this category. This result can be attributed 
to clustering of Coniferous plantation and Evergreen broad-leaved forest 
into the same category. There is thus a large difference in the producer and 
user accuracies for these two categories, and the Kappa coefficients is low 
as well. For example, even though the producer accuracy for Coniferous 
plantation is 88%, this figure results from the large number of pixels clas-
sified in this category. Also, this classification method proved unable to 
distinguish Other plantation from different forest types, and simply labeled 
entire sections based on the dominant type found within. 

The maximum likelihood method produced better results, in terms of 
both classification accuracy and Kappa coefficients, than the ISODATA 
method. On the other hand, this method suffered from the same problem of 
being unable to distinguish between Coniferous plantation and Evergreen 
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broad-leaved forest. As a result, large areas are classified as continuous 
Coniferous plantation. Compared to the ISODATA method, the maximum 
likelihood method proved more accurate at extracting Bamboo grove, but 
was unable to distinguish between Secondary grassland and Wetland vege-
tation. This resulted from similarities in the spectral characteristics of the 
plume grass (Miscanthus sinensis) and dwarf bamboo (Pleioblastus chino.) 
in the Secondary grasslands, and the reeds (Phragmites australis) in the 
Wetland vegetation. 

 
       (a)          (b)            (c) 

 Evergreen broad-leaved forest    Deciduous broad-leaved forest 
 Secondary grassland    Wetland vegetation    Coniferous plantation 
 Other plantation    Bamboo grove 

Fig. 5. Results of classification 
(a): Minimum distance classifier: Maharanobis distance (object-based) 
(b): Maximum likelihood classifier (pixel-based) 
(c): ISODATA classifier (pixel-based) 

 

Table 3. Classification accuracy for object-based and pixel-based classification 
methods 

 Object-based Maximum likelihood ISODATA 
 Producer’s 

Accuracy 
User’s 

Accuracy 
Producer’s 
Accuracy 

User’s 
Accuracy 

Producer’s 
Accuracy 

User’s Ac-
curacy 

c9 60.2 44.2 19.9 52.2 19.5 34.8 
c4 44.6 48.7 57.0 33.0 47.1 39.9 
c5 26.7 71.9 10.5 50.0 62.8 44.3 
c6 78.0 75.0 94.0 50.5 20.0 66.7 
c10 73.6 70.5 84.6 59.4 87.9 56.9 
c11 42.6 48.9 13.0 58.3      ---      --- 
c8 44.7 74.5 48.2 69.5 7.1 25.0 
Overall accuracy 58.9%  52.8%  49.3% 
Kappa coefficients 0.458  0.373  0.309 
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In the object-based classification as well, there were some difficulties in 
distinguishing among various forest types. As the classification method 
also takes into consideration the relationships among adjacent units, these 
errors were mitigated, and the classification accuracy and Kappa coeffi-
cients are thus higher than for the two pixel-based classifications. 

Also, in both the maximum likelihood and ISODATA classifications, 
there are a large number of tiny ‘salt and pepper’ units scattered through-
out. These methods proved incapable of producing the distinct boundary 
lines seen on the master map. Comparing the object-based results with the 
master map, however, although there was some mislabeling, the bounda-
ries can be seen to be fairly accurate. As is clear from the above discus-
sions and comparisons, the results of this study show that object-based 
classification is better suited for vegetation mapping than pixel-based clas-
sification. 

4.2 Classification using texture features 

The results of object-based classification using additional features selected 
by stepwise regression for Level 1 through Level 4 are shown in Tables 4, 
5, 6, and 7. The actual features selected by stepwise regression are shown 
at the bottom of the Tables. 

For Level 1, the overall accuracy using only spectral features was 
93.9%, which increased to 95.3 % for both critical F-values. The overall 
Kappa coefficients also increased with use of textural features. These re-
sults showed that for this level some increase in accuracy and Kappa coef-
ficients can be attained by incorporating textural features. 

For Level 2, the increase in overall accuracy was 3.7% for critical F-
value at 2.0, and 4.7% at 1.0. The Kappa coefficients also increased, rising 
0.11 for critical F-value 2.0 and 0.13 for 1.0. At this level, the improve-
ment in performance obtained with the textural features was even greater 
than for Level 1. 

For Level 3, the overall accuracy increased 4.6% when using additional 
features with the critical F-value set at 1.0. Kappa coefficients also in-
creased more than 0.1. These results are more than acceptable for this level 
of classification. 

At Level 4, the level of finest classification, overall accuracy and Kappa 
coefficients decreased substantially when compared to the lower levels. 
Still, the addition of 1.0 critical F-value textural features resulted in an im-
provement of 6% in overall accuracy and 0.1 in Kappa coefficients. 

Overall accuracy ranged from 95.3% for Level 1 to 65.0% for Level 4. 
Overall Kappa coefficients using textural features for the classifications 
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ranged from 0.771 for Level 1 to 0.542 for Level 4. From experience, a 
Kappa coefficient of less than 0.40 is considered indicative of low corre-
spondence, from 0.40 to 0.80 as medium level matching, and over 0.80 as 
high (Landis and Koch 1977). 
 

Table 4. Classification accuracy for Level 1 

 Spectral only 2.0 critical F-value 1.0 critical F-value 
 Producer’s 

Accuracy 
User’s 

Accuracy 
Producer’s 
Accuracy 

User’s 
Accuracy 

Producer’s 
Accuracy 

User’s Ac-
curacy 

c1 98.8 94.4 99.7 95.1 99.8 95.0 
c2 62.5 89.5 67.7 96.8 66.9 97.6 
Overall accuracy 93.9%  95.3%  95.3% 
Kappa coefficients 0.703  0.771  0.769 
selected features (critical F-value=2.0): s1,s7,s8,s11,t4,t5,t6,t13,t16 
selected features (critical F-value=1.0): s1,s7,s8,s11,t4,t5,t6,t11,t13,t16 

 

Table 5.  Classification accuracy for Level 2 

 Spectral only 2.0 critical F-value 1.0 critical F-value 
 Producer’s 

Accuracy 
User’s 

Accuracy 
Producer’s 
Accuracy 

User’s 
Accuracy 

Producer’s 
Accuracy 

User’s 
Accuracy 

c3 94.1 87.3 94.2 90.3 95.4 90.1 
c4 33.9 39.4 48.8 43.7 48.8 52.2 
c5 33.7 65.9 52.3 93.8 60.5 85.3 
c6 78.0 76.5 82.0 97.6 70.0 89.7 
Overall accuracy 80.8%  84.5%  85.5% 
Kappa coefficients 0.503  0.614  0.632 
selected features (critical F-value=2.0): s1,s3,s7,s8,s9,s10,s11,t1,t4,t6,t12,t13,t14 
selected features (critical F-value=1.0): s1,s2,s3,s5,s6,s7,s8,s9,s10,s11  
                                                                t1,t3,t4,t6,t8,t9,t12,t13,t14,t15,t16 

 

Table 6.  Classification accuracy for Level 3 

 Spectral only 2.0 critical F-value 1.0 critical F-value 
 Producer’s 

Accuracy 
User’s 

Accuracy 
Producer’s 
Accuracy 

User’s 
Accuracy 

Producer’s 
Accuracy 

User’s Ac-
curacy 

c7 92.6 81.1 89.7 82.4 93.3 84.1 
c4 33.9 40.2 46.3 43.1 49.6 52.2 
c5 32.6 57.1 54.7 61.8 55.8 73.9 
c6 78.0 76.5 64.0 97.0 68.0 94.4 
c8 41.0 74.5 44.7 84.4 49.4 77.8 
Overall accuracy 75.2%  76.3%  79.8% 
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Kappa coefficients 0.486  0.527  0.591 
selected features (critical F-value=2.0): s1,s2,s4,s5,s6,s7,s8,s10,s11,s12 
                                                                t4,t6,t7,t8,t11,t12,t13,t14,t16 
selected features (critical F-value=1.0): s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12 
                                                                t3,t4,t6,t7,t8,t9,t12,t13,t14,t15,t16 

 

Table 7.  Classification accuracy for Level 4 

 Spectral only 2.0 critical F-value 1.0 critical F-value 
 Producer’s 

Accuracy 
User’s 

Accuracy 
Producer’s 
Accuracy 

User’s 
Accuracy 

Producer’s 
Accuracy 

User’s 
Accuracy 

c9 60.2 44.2 64.3 50.5 68.1 53.6 
c4 44.6 48.7 47.1 53.8 49.6 57.1 
c5 26.7 71.9 52.3 95.8 54.7 79.7 
c6 78.0 75.0 82.0 91.1 68.0 91.9 
c10 73.6 70.5 70.8 68.9 71.9 70.9 
c11 42.6 48.9 51.9 43.1 59.3 52.5 
c8 44.7 74.5 55.3 82.5 61.2 81.3 
Overall accuracy 58.9%  63.0%  65.0% 
Kappa coefficients 0.458  0.515  0.542 
selected features (critical F-value=2.0): s1,s2,s3,s5,s6,s7,s8,s9,s10,s11,s12 
                                                                t3,t4,t5,t6,t13,t14,t16 
selected features (critical F-value=1.0): s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12 
                                                                t1,t3,t4,t5,t6,t7,t8,t9,t11,t12,t13,t14,t15,t16 

 
As can be seen from the above tables, the results of this research agree 

with previous studies, such as those by Carleer and Wolff (2006) and Puis-
sant et al (2005), that report a gain in classification accuracy by using both 
spectral and textural features. 

Still, even using this system, in some cases acceptable results may be 
difficult to obtain. In this study area, for example, secondary or immature 
evergreen broad-leaved forests and irregular coniferous plantations pre-
sented a special challenge. Mature evergreen broad-leaved forests show 
dense canopies, and the chinquapins and evergreen oaks have consistently 
shaped crowns. These patches can usually be extracted successfully. Well 
tended, mature conifer plantations also show good crown consistency, and 
can usually be extracted. Younger evergreen broad-leaved forests, how-
ever, have more open canopies, and the trees show more varied crowns. 
Poorly tended or disrupted coniferous plantations also have open canopies 
and irregular crowns. There is thus very little, in terms of both spectral and 
textural features, to distinguish between immature evergreen broad-leaved 
forests and untended coniferous plantations. 
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In addition, the images were acquired on April 1, when the deciduous 
trees had not yet leafed out. As a result, dwarf bamboo and evergreen 
shrubs in the understory were visible, causing some of these patches to be 
mistakenly classified as coniferous plantation. This problem, however, can 
be eliminated by acquiring images later in the year, when the deciduous 
trees are in leaf. 

5 Conclusions 

The results of this research show that object-based classification using 
very high resolution satellite remote sensing data can be an effective tool 
for improving efficiency and consistency in generating vegetation maps. 
Object-based classification proved better than pixel-based methods at ex-
tracting boundaries among vegetation patches, and at eliminating over 
classification. The results obtained from the object-based classifications 
were much closer to the master maps than those achieved by the pixel-
based. At the coarser levels of classification, spectral features alone pro-
duced excellent results. The highly accurate results produced at these lev-
els can be used for distinguishing between forest and grassland and among 
some basic forest and grassland types. Addition of textural features im-
proved overall accuracy and Kappa coefficients at all levels. The gain in 
accuracy obtained by addition of textural features proved especially vital at 
the finer levels of classification, which are close to the actual level em-
ployed in vegetation mapping. 

In this research, a stepwise regression was used in the discriminate 
analysis to select the most appropriate number of features for the classifi-
cation. A total of 21 features out of a possible 28 were selected for the 
Level 2 classification, and 23 and 26 respectively for Level 3 and Level 4. 
Although in this case the regression selected a high proportion of the 
available features, in other cases, especially when the vegetation patterns 
are simpler or the number of categories smaller, the number of features se-
lected might be considerably fewer. We thus believe that the feature selec-
tion process is an effective tool for improving classification results.  

Some problems remained with misclassification, but object-based classi-
fication using both spectral and textural features proved capable of genera-
tion classification accuracy ranging from 65-95%, even in regions like the 
Japanese countryside, where small patches of different vegetation types are 
distributed in a complex mosaic pattern. 

This research clearly indicates that very high resolution remote sensing 
data has a high potential for practical use in producing and updating the 
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vegetation maps required for proper conservation and management of 
countryside landscapes. In the future, classification accuracy can be im-
proved even further using advanced classification methods such as seg-
mentation optimization and multi-temporal data. 
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ABSTRACT: Savannas are heterogeneous systems characterized by the 
coexistence of grasses and woody trees. Growing recognition of the impor-
tance of the structural component of biodiversity has highlighted the need 
to understand the spatial distribution and temporal dynamics of woody 
plant structural diversity. Advances in LiDAR technology have enabled 
three dimensional information of vegetation to be obtained remotely over 
large areas. Whilst the use of LiDAR has gained considerable momentum 
in forested areas there has been limited application to savanna systems. We 
explore the applicability of LiDAR and object-based image analysis to the 
monitoring of woody structural diversity in a savanna system. We demon-
strate how an object-based approach to image analysis significantly im-
proves the accuracy of woody layer classification form in a heterogeneous 
landscape. Furthermore we illustrate how standard approaches to LiDAR 
derived canopy models suffer from interpolation artifacts in savannas, due 
to the heterogeneity of the woody layer. By integrating LiDAR with high 
resolution aerial photography, through object-based analysis, these arti-
facts can be removed to produce a robust canopy model. The object-based 
integration of LiDAR with aerial imagery holds immense potential for 
structural diversity monitoring in savannas. 
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1 Monitoring structural biodiversity in savanna 
ecosystems 

Savannas are heterogeneous environments driven by a wide range of fac-
tors at multiple scales. A key characteristic of savanna landscapes is the 
co-dominance of two life forms – grasses and woody trees (Scholes and 
Walker 1993). The spatial structure and composition of savannas is con-
trolled primarily at the broad scale by climate and geology, whilst rainfall, 
topography, soil type, fire and herbivory influence structure at a range of 
finer scales (Pickett et al. 2003, Gillson 2004a, Sankaran et al. 2005). In 
addition to being spatially heterogeneous, savannas are highly dynamic 
over time (Gillson 2004b). The variability of these systems presents chal-
lenges to their management and conservation. 

Management of savanna systems has historically taken place under a 
balance of nature/homogeneity paradigm (Rogers 2003). The growing rec-
ognition of savanna heterogeneity has led to changes in the management of 
certain savanna systems. In the Kruger Park (South Africa), for example, 
management has adopted a heterogeneity paradigm that ‘aims to maintain 
biodiversity in all its facets and fluxes’ (Braack 1997). This paradigm shift 
reflects a holistic view of biodiversity which incorporates the composition, 
structure and function of ecological systems at multiple scales (Noss 
1990). Given that heterogeneity is considered to be the ultimate source of 
biodiversity (Pickett et al. 2003), monitoring system heterogeneity should 
be of high management priority within savanna systems. 

1.1 Monitoring savanna heterogeneity remotely 

Monitoring of savanna vegetation has traditionally taken place through ae-
rial photographic analyses and field surveys. Ground based field monitor-
ing can provide detailed information of changes in vegetation structure 
over time, but is very time intensive and can only feasibly be conducted 
over small spatial scales. Fixed point photography can reveal changes in 
the three-dimensional structure of vegetation, but it suffers the same con-
straints as field measurements. Extrapolating results obtained at small spa-
tial scales to larger scales is difficult in heterogeneous systems like savan-
nas. Managers need to be able to monitor large spatial areas to in order to 
encompass system variability. Remote sensing techniques at broader scales 
therefore need to be employed.  

Savannas have historically presented numerous challenges to the field of 
remote sensing. Given their proximity to the tropics, and the regular occur-
rence of thunderstorms in summer months, cloud free days are rarely 
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found during the growing season. Synthetic Aperture Radar (SAR), how-
ever, holds a lot of potential for monitoring vegetation communities in sa-
vanna landscapes as it has the ability to penetrate cloud cover (Menges et 
al. 1999). SAR can therefore provide valuable insight into temporal 
changes in ecosystems by enabling land cover monitoring at all times of 
the year. SAR has also shown potential for broad scale biomass estimation, 
although accuracy has been shown to fall with increasing biomass and leaf 
area index (Waring et al. 1995). Fine scale three-dimensional representa-
tion of vegetation requires the use of Light Detection and Ranging (Li-
DAR).  

In recent years LiDAR has become commercially available and provides 
a robust means of measuring the three-dimensional structure of terrain and 
vegetation surfaces remotely. LiDAR has been utilized extensively in for-
estry applications and has been shown to reliably return ground elevation 
and tree height data in forested systems (Lefsky et al. 2002). LiDAR has 
experienced limited use in savanna landscapes, although Dowling and Ac-
cad (2003) and Lovell et al. (2003) have explored its potential in Austra-
lian savannas.  

Given that savannas are heterogeneous systems at multiple scales, inter-
pretation of remotely sensed data should be conducted in hierarchical 
manner which accounts for spatial variation across the landscape. Object-
based image analysis provides a means for achieving this objective. 

1.2 The object-based approach to image analysis 

Object-based image analysis arose through the realization that image ob-
jects hold more real world value than pixels alone (Blaschke and Strobel 
2001). The software eCognition 4.0, developed by Definiens Imaging, 
adopts an object-based image analysis approach and provides a platform 
for incorporating contextual and ancillary data in image classification. The 
first step in the analysis is the mutiresolutional segmentation of an image 
into areas of homogeneity. Homogeneity criteria are based on both spectral 
and shape properties. A bottom-up region merging technique is employed 
where smaller objects are merged into larger ones based on the criteria set. 
The approach allows for segmentation at different scales, which is used to 
construct a hierarchical network of image objects representing the image 
information in different spatial resolutions simultaneously (Laliberte et al. 
2004). The image objects have relationships to both adjacent objects on the 
same level and objects on different hierarchical levels.  

Classification is then performed on the image objects, not the pixels, at 
the desired scale.  
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In this chapter we demonstrate how object-based image analysis of both 
aerial imagery and LiDAR can aid the structural diversity monitoring 
process in savanna landscapes. Our first example explores the classifica-
tion of black and white aerial photography, which is an important record of 
historical woody cover and is a critical step in temporal change analyses. 
The second example examines the integration of both LiDAR and color ae-
rial photography for representing the three-dimensional structure of sa-
vanna vegetation. The research was conducted in the Shingwedzi Catch-
ment of the northern Kruger Park, South Africa (Figure 1).   

 

 
Fig. 1. Study location – Shingwedzi Catchment, Kruger Park, South Africa 

2 Woody canopy delineation from black and white aerial 
photographs 

Black and white aerial photographic records provide a means of exploring 
vegetation changes over fairly large spatial areas. These records provide 
valuable evidence of changes in woody vegetation cover over time, but ac-
curately extracting the woody layer has proved difficult. Much of the diffi-
culty in extracting woody cover from aerial photographs stems from the 
heterogeneity inherent in savanna landscapes. 
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Fig. 2. a) Aerial photograph of a heterogeneous savanna landscape. b) Pixel-based 
classification of woody vegetation resulting in an overestimate of woody cover 
and 68% accuracy 

 
Figure 2a, for example, depicts an aerial view of the riparian fringe ad-

jacent to the Phugwane river of the Shingwedzi Catchment. The image was 
taken in May 2001. A split between dark basaltic soils (top left-hand cor-
ner) and white alluvial soils (bottom right-hand corner) runs diagonally 
through the image. This variation in soil color presents challenges when 
trying to extract woody cover from the image. The dark basaltic soils are 
of similar brightness to some of the woody vegetation types.  

A traditional pixel based classification of woody cover (Figure 2b) fails 
to extract only the woody plants and overestimates woody coverage im-
mensely. This is primarily the result of some dark soil areas being classi-
fied as woody canopy. 

Four 1km X 1km sites were selected along each of the four rivers of the 
Shingwedzi catchment for classification validation purposes. Field based 
validation was not possible due to the historical nature of the photographs. 
Visual validation was therefore performed whereby 50 woody cover and 
50 bare ground points where digitized onscreen for each of the 16 sites. An 
error matrix was constructed to access woody cover classification accuracy 
at the 800 validation point locations. A maximum likelihood pixel based 
approach only achieved 68% accuracy when compared against the valida-
tion data. This is clearly not acceptable for monitoring purposes. To im-
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prove this classification, multi-scaled object-based image analysis is 
needed. 

2.1 Object-based processing of historical aerial photographs 
for woody canopy extraction 

eCognition 4.0 was used to conduct multi-resolutional segmentation and 
classification on Figure 3a. Prior to segmentation the image was filtered 
with a 3 X 3 low-pass filter to remove excessive variation. Smoothing of 
layers prior to segmentation helps produce fewer, and more homogeneous 
image objects, so that individual trees are represented by fewer polygons 
(Laliberte et al. 2004). A fine level of segmentation was initially chosen to 
ensure that image objects were small enough to represent individual trees 
(Figure 3b). Larger scale segmentation was then conducted to group areas 
of similar vegetation/soil type units together (Figure 3c). The primary aim 
of this broader segmentation is to provide some spatial context for the 
smaller ‘tree’ objects at the lower level. Laliberte et al. (2004) used this 
technique to successfully extract shrubs from aerial photographs of arid 
rangelands in southern New Mexico.  

Although there is little difference in brightness between some of the 
woody trees and the basalt soils in Figure 3a, the difference between the 
mean of image objects in Figure 3b and the larger image objects in Figure 
3c can be used to differentiate trees from soil. During the classification 
process, first level objects were considered woody cover if they had a 
mean brightness value of between 0 and 90, as well as a ratio of between 0 
and 0.95 relative to their super object. The resulting classification (Figure 
3d) was 97% accurate when tested against the validation data. By adopting 
the object-based approach, contextual and ancillary data can be included in 
the classification process to produce more robust results. 
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Fig. 3. a) Aerial photograph of heterogeneous landscape. b) Fine scale segmenta-
tion c) Large scale segmentation d) Object-based classification of woody cover re-
sulting in 97% accuracy. 
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3 Extracting woody vegetation structural attributes from 
LiDAR and high resolution aerial photography  

Aerial photography records are a valuable resource for monitoring changes 
in vegetation cover over time. They are, however, limited in their ability to 
depict three-dimensional changes in woody structure. Managers concerned 
with changes in the vertical structure of trees need to look for alternate 
monitoring techniques. LiDAR, in conjunction with high resolution aerial 
photography, provides a remote sensing solution for monitoring vegetation 
structural diversity in savanna landscapes. The instrument used in this ex-
ample was a first/last pulse ALTM 1225 (Optech Inc., Canada) with a 
pulse frequency of 25kHz. The flight path focused on the four major rivers 
of the Shingwedzi Catchment (Figure 4). 

 

 
Fig. 4. LiDAR coverage of the four major rivers of the Shingwedzi Catchment 

3.1 Normalized vegetation canopy model (nVCM) construction 

A key advantage of using LiDAR, from a vegetation monitoring point of 
view, is the ability to create a normalized vegetation canopy model 
(nVCM). An nVCM is a spatial raster representation of above ground tree 
height. Normalized vegetation canopy models are widely used in forestry 
and can be utilized for monitoring changes in tree height and biomass over 
time. An nVCM is typically constructed from first creating a digital terrain 
model (DTM) from the LiDAR ground returned points and a digital sur-
face model (DSM) from the total LiDAR points. The DTM can then be 
subtracted from the DSM to create a surface of above ground elevation. In 
natural landscapes this generates an nVCM. This system is widely used in 
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forested systems and has been shown to return reliable estimates of above 
ground vegetation height (Maier et al. 2006, Tiede et al. 2006).  
 

 
Fig. 5. a) Subset of a standard nVCM derived from DSM and DTM subtraction. 
b) Regression of field measured woody canopy height against standard nVCM de-
rived from LiDAR. c) nVCM corrected for discontinuous canopy structure 
through object-based analysis. d) Regression of field measured woody canopy 
height against the corrected nVCM. 
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We constructed an nVCM by standard DSM-DTM subtraction tech-
niques for a subset of the Shingwedzi dataset. The resulting model pro-
duces a visually realistic representation of woody canopy height (Figure 
5a). When this subset of the total LiDAR coverage was tested against 200 
ground validated data points, however, it is clear that the model overesti-
mates vegetation height in areas of bare ground and grass cover (Figure 
5b). Ground validation was performed at 200 stratified random points. 
Points were located with a differential GPS and canopy height was meas-
ured with a Vertex III hypsometer. 

This artifact is due to the discontinuous nature of savanna canopy layers. 
In forested systems with continuous canopies, standard nVCM calculations 
are sufficient, but gaps between savanna trees result in interpolation arti-
facts between trees which results in an overestimation of tree height in the 
canopy gaps. In order to address this issue the actual woody canopy cover-
age needs to be extracted from high resolution aerial imagery. We 
achieved this by combining the LiDAR data with high-resolution color ae-
rial photography through object-based image analysis. Building on from 
the black and white photograph workflow, the image was segmented at 
both a fine and broad scale. The fine scale segmentation (scale parameter = 
3, shape factor = 0.2, smoothness = 0.8) delineated individual tree objects 
and the broad scale segmentation (scale parameter = 250, shape factor = 
0.5, smoothness = 0.5) provided context for woody canopy classification.  
Once the woody canopy layer was clearly defined, it was used as a mask 
on the standard nVCM to eliminate artifacts created by the gaps in the ca-
nopy and to produce an nVCM corrected for discontinuous canopies. The 
corrected nVCM (Figure 5c) is more robust when tested against the ground 
validated data (Figure 5d). Interpolation errors between the tree canopies 
are removed through the object-based image analysis workflow that was 
followed (Figure 6). 
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Fig. 6. Workflow model for developing a robust normalized vegetation canopy 
model (nVCM) for landscapes with discontinuous vegetation cover 
 

The cross-sectional profile in Figure 7 runs through both the standard 
nVCM (grey) and the corrected nVCM (black) and highlights the differ-
ences between the two approaches. There is very little difference between 
the standard and corrected nVCM in areas where trees are present, it is in 
the gaps between trees that the standard nVCM overestimates above 
ground canopy height. The cross-section through the standard nVCM re-
turns a mean canopy height of 5.17m with a coefficient of variation equal 
to 78.975. The corrected nVCM, however, returns a mean of 3.74m and a 
coefficient of variation equal to 121.16. This has important implications 
for the monitoring of vegetation structure and diversity. Without applying 
the object-based approach in savannas, managers may greatly overestimate 
the above ground canopy height and standing biomass of the system, and 
underestimate the level of structural diversity. 
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Fig. 7. Cross-section through the standard nVCM (grey) and the nVCM corrected 
through object-based image analysis (black) 

 
This also has important implications for the ground validation process. 

The random approach taken to our ground point selection enforced the 
sampling of both trees and the bare ground between them. If validation 
points had only been collected at locations where trees were present, as is 
often the case, the interpolation artifacts and overestimation errors would 
not have been detected. 

After refining the workflow on the subset of the LiDAR, the technique 
was applied across the entire LiDAR coverage. A stratified random sam-
pling technique was used to select 500 canopy and a 500 inter-canopy 
points across the LiDAR coverage. Points were located with a differential 
GPS and canopy height was measured with a Vertex III hypsometer. The 
resulting nVCM (Figure 8) was validated against 1000 ground control 
points and returned and R-squared value of 0.851 (p < 0.0001). 
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Fig. 8. Corrected normalized vegetation canopy model for the entire study site 
(R2=0.851, p < 0.0001, 1000 ground control points) 

4 Implications for the monitoring of savanna structural 
diversity 

The heterogeneity of complex systems at different scales proves problem-
atic for traditional pixel based classification techniques. The object-based 
approach, however, produces an accurate representation of woody cover 
from both black and white historical aerial photographs and high resolu-
tion color aerial photography. By using a multi-resolutional segmentation 
approach, and grouping homogeneous objects together at different scales, 
contextual and hierarchical information can be incorporated into the classi-
fication process. This procedure returns reliable woody cover classifica-
tions despite the complex heterogeneity of savanna systems. 

Combining elevation data from LiDAR with high resolution digital col-
or imagery through object-based image analysis greatly enhances the struc-
tural description of a landscape by adding the three-dimensional height 
component.  The corrected normalized canopy model provides a more real-
istic representation of vegetation height distribution than standard DSM-
DTM subtraction approaches. This is primarily due to the fact it does not 
assume continuous vegetation cover and accounts for the spatial heteroge-
neity of savanna woody cover.  
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Comparisons of remotely measured tree height with ground validated 
points indicate that structural attributes of woody vegetation can be relia-
bly obtained from fusing LiDAR and imagery through object-based image 
analysis in a savanna system. This holds significant implications for vege-
tation management in savannas by providing a tool for monitoring vegeta-
tion structure remotely. 

Understanding the patterns of spatial and temporal heterogeneity of a 
system is fundamental to its successful management. If we consider the re-
ciprocal relationship between pattern and process in ecological systems 
(Turner 1989), understanding where structural changes occur spatially in 
the landscape can help elucidate the drivers of vegetation change.  The fu-
sion of LiDAR and imagery in an object-based image analysis environ-
ment provides the means for generating this spatio-temporal understand-
ing.  

The multi-scale, contextual approach inherent in object-based image 
analysis provides managers with a powerful tool for monitoring changes in 
vegetation structural diversity across heterogeneous landscapes at different 
scales. 
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ABSTRACT: The availability of up-to-date and reliable land cover 
maps is of great importance for many earth science applications. For the 
generation of operational and transferable land cover products the devel-
opment of semi- and fully-automated classification procedures is essential. 
The aim of this paper is to present a strategy for the generation of basic 
land cover products using both optical and SAR data. The study area is lo-
cated in Northern Thuringia, Germany, with mainly forested regions of the 
eastern part of the Harz mountains and intensively used agricultural areas 
to the south. From April to December 2005 optical and SAR data were ac-
quired continuously to generate a comprehensive time series.  

The main objective of this work was to develop a working flow with 
high potential for automation. The proposed classification procedure is 
composed of three main stages. The first processing step comprises the 
segmentation of the optical EO-data. Next, potential training sites are be-
ing selected automatically by applying a decision tree with flexible, scene-
specific thresholds calculated based on expert knowledge and histogram 
analyses. Finally, as the third step, training samples are being used as input 
to a supervised classification. Here, three classification methods were com-
pared: nearest neighbor, fuzzy logic and a combined pixel-/object-based 
maximum likelihood classification. Best overall performance was achieved 
for the pixel-/object-based approach. In order to improve the product qual-
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ity and accuracy, the classification was performed several times using ran-
domly varying subsets of all potential training samples as input. The clas-
sification accuracy was improved significantly through the integration of 
textural features, especially for urban areas. Further, the advantage of ap-
plying the rarely used grey level dependency matrix is demonstrated. 

1 Introduction 

Remote sensing represents a cost-efficient method for large-area land 
cover mapping which provides spatially consistent and multitemporal in-
formation of the Earth’s surface. The availability of reliable and up-to-date 
land cover information is required for a multitude of applications ranging 
from regional to global scales such as land cover change studies, ecologi-
cal monitoring, map updating, management and planning activities or the 
implementation and control of national and international treaties (Franklin 
and Wulder 2002, Jensen 2000). 

The development of robust, transferable, semi-automated and automated 
approaches is of particular interest for operational applications in order to 
save time and manpower. In regions with frequent cloud cover such as 
Central Europe the number of suitable optical data is often limited. The all-
weather capability is one major advantage of radar systems with respect to 
optical systems. Furthermore, radar sensors provide information that is 
complementary to that of visible to infrared imagery. In the optical range 
of the electromagnetic spectrum the information depends on reflective and 
emissive characteristics of the Earth’s surface, whereas the radar backscat-
ter coefficient is primarily determined by structural and dielectric attributes 
of the surface target. The benefit of combining optical and Synthetic Aper-
ture Radar (SAR) data for improved land cover mapping was demonstrated 
in several studies (Alparone et al. 2004, Amarsaikhan and Douglas 2004, 
Hegarat-Mascle 2000). In general, the data fusion process can be per-
formed on the pixel, feature or decision level (see Ehlers et al. in this book, 
Pohl and Van Genderen 1998). With the availability of multifrequency and 
high-resolution spaceborne SAR data, such as provided by the TerraSAR-
X and ALOS PALSAR missions, an increased interest in tools to exploit 
the full information content of both data types is arising.  

Emphasis of this study was to develop a robust and transferable meth-
odology for the generation of basic land cover products including a limited 
number of optical data, and exploiting the information content of multi-
temporal SAR data. The algorithm was developed in a study area in Thur-
ingia and was successfully applied to data acquired at different seasons and 
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years. The main processing steps were programmed in IDL and the script 
application required no user interaction. Thus, the proposed procedure 
comprises a high potential for automation, which is a necessary prerequi-
site for operational applications. Additionally, minor adaptations to the 
processing chain can be implemented in an easy and straight forward way. 
This is advantageous for the integration of different EO data sources, the 
application to other topics of interest or the transferability to other regions 
in Europe or globally.  

2 Study Area and Experimental Data 

The study site is located in the northern part of Thuringia, Germany (Fig. 
1). It encompasses an area of 31 km x 39 km covered mainly by forest at 
the higher elevations of the Harz mountains in the North and intensively 
used agricultural areas in the “Goldene Aue” plains in the southern part. 
From April to December 2005 Landsat-5 TM and HH/HV-polarized 
ASAR APP data (swath 2) were acquired continuously over the test site to 
generate a consistent time series (Fig. 2). For validation archived EO data 
from 2003 were purchased. 

 

 
Fig. 1. Location of the test site – Landsat-5 TM image acquired on July 10, 2005, 
green channel 
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Fig. 2. EO-data base 

3 Methodology 

The basic land cover maps were generated by applying the object-based 
classification scheme described in this chapter and illustrated in Fig. 3. Be-
fore the classification procedure, all EO data were pre-processed on the ba-
sis of standard techniques. The normalization procedure introduced by 
Stussi et al. (1995) was applied to all SAR data since parts of the test site 
are characterized by rough terrain. The pre-processing of the multi-spectral 
optical images included atmospheric correction and orthorectification us-
ing the C-band SRTM DEM. 

After pre-processing, image objects were delineated in the optical data 
with the eCognition software using its segmentation algorithm with a scale 
parameter of 15. The next processing step consisted of the selection of po-
tential training samples for each land cover class based on the segment fea-
tures in the optical, SAR and texture channels with an object-based deci-
sion tree. This step is implemented in IDL and runs fully automatically. As 
fixed thresholds for the training samples would fail in an operational pro-
cedure, these values have to be adapted to each EO scene separately. To 
collect representative image characteristics for each land cover type the 
available time series were analyzed in a systematic manner. Additionally, 
published information from the literature (e.g. European RAdar-Optical 
Research Assemblage library - ERA-ORA) was explored. By combining 
this expert knowledge about typical target characteristics (e.g. low reflec-
tance of water bodies in the near infrared) and histogram analyses, it was 
possible to produce scene-specific, fixed threshold values. Another proce-
dure to automatically identify optimal image features and the correspond-
ing class thresholds is introduced by Marpu et al. in this book. However, 
the application of this algorithm requires the collection of training samples. 
In the next stage of the proposed classification scheme the identified train-
ing sites were used as input to supervised classification. Three classifica-
tion techniques were compared: nearest neighbor, fuzzy logic and a com-
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bined pixel-/object-based classification. The classification procedures were 
performed using standard software packages. If needed however, the im-
plementation of the classification step in the existing IDL-routine is not a 
complex task. The classification routines were performed several times 
with randomly varying subsets of all training sets to improve product qual-
ity and accuracy. The final land cover class of each image segment was as-
signed by simple majority voting. Finally, postclassification procedures 
were applied involving simple GIS-analysis such as the re-coding of “is-
land segments” within residential areas (these majority filters are also 
known as sieve functions). 

Texture information was included as an additional input layer to the 
training and classification procedures mainly to improve the detection of 
urban areas. To use textural features jointly with spectral and backscatter 
information is a common approach to this problem. The advantages of ap-
plying texture information from medium resolution earth observation data 
was demonstrated by many studies (e.g. Dekker 2003, Dell’ Acqua and 
Gamba 2003, Forsythe and Waters 2006, Ndi Nyoungui et al. 2002).In the 
framework of this study the potential of various texture measures such as 
standard deviation, data range and parameters derived based on the grey-
level co-occurrence matrix (GLCM) were investigated. Additionally, the 
neighborhood grey level dependency matrix (NGLD) was calculated for 
the SAR data (Franke 2006). The NGLD algorithm – which is not avail-
able in standard image processing packages - was implemented using the 
IDL programming language, whereby a short processing time was realized. 
This is of great importance as long processing times often hinder the inte-
gration of textural parameters in the classification process. The NGLD ma-
trix is invariant with respect to texture direction. The measure was calcu-
lated for moving windows of different sizes. For every pixel of the kernel 
the relation to all neighboring pixels at a specified distance d is investi-
gated and the number of pixel pairs satisfying the relation is counted. The 
NGLD matrix is a squared matrix describing the pixel value a in one direc-
tion and the number of pixel pairs fulfilling the given relation nr in the 
other direction. Each element Qd of the matrix describes the number of oc-
currences of every possible combination of a and nr. Analogous to the 
widely used co-occurrence matrix, several texture measures could be ex-
tracted from the NGLD matrix such as entropy, energy, minimal and 
maximal emphasis. The relation used for the computation of the NGLD 
matrix in this study is a difference of 0.1 between neighboring pixels at a 
distance of two pixels. This relation was selected based on statistical 
analyses of various test areas indicating a high proportion of neighboring 
pixels with a difference of at least 0.1 in urban areas (mostly greater than 
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Fig. 3. Processing chain 
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 40%). Special focus was on small villages and low density residential ar-
eas such as districts with single-family houses and gardens since the classi-
fication of these structures is most problematic. Besides a large difference 
in the radar signal between neighboring pixels, urban areas are character-
ized by a high radar backscatter at co-polarized C-band data. To account 
for this behavior, the following parameter, hereinafter called urban area 
texture measure UATM, was calculated based on the NGLD matrix: 
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The potential of the various investigated texture parameters was evalu-
ated using separability analyses including the interpretation of signature 
plots and calculation of the Jeffries-Matusita distance (JM) as well as clas-
sification accuracy assessments. The JM-distance is a widely used measure 
in image processing to determine the statistical distance between two mul-
tivariate, Gaussian distributed signatures. Its values range from 0 to 1414, 
whereas 0 signifies no and 1414 a very high separability (Swain and Davis 
1978, Richards 1999). Few features used in this study are not Gaussian, 
but JM is still considered to be a reasonable tool for assessing the potential 
of second-order measures for urban area mapping (Fukunaga 1990 and Ndi 
Nyoungui et al. 2002). 

Thematic map accuracy of the final land cover map was assessed by 
calculating the confusion matrix and kappa coefficient for one hundred 
randomly distributed reference points per land cover category. The class 
membership of each reference target was determined on high resolution 
optical data (Quickbird satellite scenes and Hymap airborne data), air pho-
tographs, and official land surveying information as GIS layers. To test the 
robustness and stability of the proposed methodology, the classification 
scheme was also applied to EO data acquired two years earlier, in 2003. 

4 Results 

4.1 Texture measures for urban mapping 

Several texture measures were investigated while focusing on synergy ef-
fects of texture in optical and SAR data for urban area mapping. The po-
tential of the investigated texture features was quantified based on separa-
bility analyses and the achieved map accuracies. This chapter focuses on 
texture scenes only to emphasize the suitability and information content of 
each single texture measure for urban applications. Only simple object-
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based decision tree classifications with hard thresholds were applied. The 
channels with spectral reflectances or backscattering information were not 
considered in this context. 

A critical issue for texture extraction is the choice of the kernel size be-
ing used for computation. The impact of the window size on class separa-
bility is illustrated in Figure 4 for the co-occurrence measure entropy de-
rived from HH-polarized SAR data. A significant increase in separability 
arises with increasing kernel size. The same trend was observed for all 
other investigated SAR texture features except the NGLD-matrix approach  

Fig. 4. Separability of low density urban areas as a function of window size - tex-
ture feature co-occurrence entropy 

 
which showed best performance for a window size of 5x5 pixels. For the 
optical data, a kernel size of 11 x 11 pixels was found to be a good choice. 
The obtained relationship between product quality and kernel size was 
confirmed by the corresponding classification results. As an object-based 
classification strategy is followed, the loss of spatial resolution with in-
creasing kernel size is largely compensated. 

Figure 5 illustrates selected texture parameters derived from HH-polar-
ized ASAR APP data acquired on April 22, 2005 and Landsat-5 TM data 
from April 21, 2005. For SAR data, the visual interpretation of the texture 
images as well as the achieved classification results indicated the potential 
of using the standard deviation computed from a 23 x 23 window size and 
the NGLD matrix approach to map urban areas. Misclassifications, how-
ever, between urban and forested areas do appear in regions with rough to-
pography, especially in direct neighborhood to radar shadows and layover. 
Best overall performance was found for the NGLD matrix approach (Table 
1). Applying a SAR speckle filter prior to image texture extraction did not 
improve the achieved classification results significantly, except for the 
NGLD matrix approach. These findings are partly in disagreement with 
those reported by Ndi Nyoungui et al. (2002). The authors observed an en-
hanced map accuracy when using filtered SAR scenes, whereby texture 
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features derived from 2nd- and 3rd-order histograms performed best. 
These conflicting results (effect of speckle suppression, choice of texture 
measures) may be explained in part by the different speckle filters and 
classification algorithms used as well as by differences in the SAR image 
structure with respect to the distribution of land use classes investigated. 
For the optical EO data best performance was achieved using the GLDV 
entropy of the blue channel. Especially bare soils, fields covered by sparse 
and low vegetation or crop residues were misclassified as residential areas. 
The use of the investigated optical texture parameters for urban area map-
ping varies significantly between seasons. None of the textural features in-
vestigated showed a high potential for all Landsat-5 TM scenes available 
and thus cannot be used in automated procedures. For example, the GLDV 
entropy calculated from the blue channel data of the Landsat-5 TM scene 
acquired on October 30, 2005 is not appropriate to distinguish urban and 
agricultural areas which results in a very low user accuracy (Table 1). 

As outlined by Dell’ Acqua and Gamba (2003) and Forsythe and Waters 
(2006), the combination of different texture features improves the quality 
of the urban area map. The use of SAR texture features only is recom-
mended, as the results from optical data or optical and SAR data are less 
stable in time. The investigations demonstrated the suitability of the 
UATM information in conjunction with the standard deviation for the ex-
traction of residential areas (Table 1). Note that only the texture measures 
were used for classification in order to select the parameters with the high-
est potential and information gain for urban area mapping. By incorporat-
ing the spectral and backscattering information in the classification process 
a significant improvement was achieved. When using multitemporal im-
ages the results became more accurate and stable. 

Table 1. Classification accuracies of urban area maps derived based on one single 
texture channel only 

TM   21.04.05 
SAR 22.04.05 

TM   10.07.05 
SAR 10.07.05 

TM   30.10.05 
SAR 23.10.05 

Texture feature 

PAa UAb PA UA PA UA 
C-HH standard deviation  73.6 57.6 78.3 69.5 83.9 59.8 
C-HH UATM 80.0 83.3 82.0 73.2 82.0 58.6 
C-HH standard derivation and
UATM 

80.4 84.1 82.6 79.3 80.4 80.4 

TM ch1 GLCM homogeneity 80.5 53.8 74.2 75.9 71.0 38.0 
TM ch1 GLCM entropy 75.0 50.9 75.9 77.6 73.8 20.9 
TM ch1 standard deviation 70.0 52.0 85.5 60.9 72.0 59.0 
aPA: Producer’s accuracy [%]. 
bUA: User’s accuracy [%]. 
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Fig. 5. Selected texture features derived from Landsat-5 TM (blue band) and HH-
polarized ASAR APP data acquired in April 2005 – top: GLDV entropy for TM 
(left) and SAR (right); bottom: standard derivation (left) and UATM (right), SAR 

4.2 Automatic selection of training samples 

As outlined in chapter 3, the second step in the proposed classification 
chain is the automatic selection of potential training sites based on a deci-
sion tree with scene-specific thresholds. The absolute values at each node 
of the decision tree were estimated stepwise for every input scene by using 
expert knowledge in combination with histogram analyses. In Table 2 the 
characteristic image parameters for each land cover class are listed. As 
stated above, these image features were selected based on literature and an 
EO data library review, separability analyses, and the comparison of clas-
sification performances. The land use class “Agricultural areas” is charac-
terized by a high spectral variability in space and time as it includes bare 
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soil as well as fields covered by crops in different growing stages. The ap-
plication of some classification approaches such as the maximum likeli-
hood classifier used in this study requires a Gaussian distribution of the 
training data. To achieve this requirement, the image segments belonging 
to agricultural areas were subdivided into sub-classes with similar spectral 
characteristics by histogram analysis of all optical input bands. 

As an example, the threshold estimation process is described in detail 
for the land cover class “Coniferous forest”. The analyses of the available 
time series and EO libraries all confirmed that coniferous forest areas are 
generally characterized by a low near (NIR) and middle infrared reflec-
tance (MIR). Firstly, segments probably belonging to the ”Water bodies” 
class were excluded by unselecting all image objects with a reflectance in 
NIR below the threshold for water plus 20 (8-bit data). In the next step, an 
initial threshold for coniferous forest in MIR is defined as the minimum 
histogram value with a segment frequency greater than five plus twenty. 
By this process mainly coniferous forest and - depending on growth stage - 
agricultural crops are selected. Both classes could be separated analyzing 
the corresponding histogram in the NIR channel (Fig. 6). The peak with 
lower reflectances represents coniferous forest segments and the higher re-
flectance values agricultural fields. The threshold was defined as the mean 
between the local maximum and the adjacent local minima considering a 
minimum object frequency of 5 segments and 10 % of the maximum his-
togram value, respectively. Applying the threshold calculated for the NIR 
channel, the final threshold in MIR could be computed by histogram 
analysis. Finally, since sometimes a small number of urban objects were 
selected, the mean NDVI ± 0.05 is computed and used for the selection of 
the final training samples of coniferous forest. 

With this proposed methodology a large number of potential training 
sites were selected (up to 55 % of all image objects). For validation issues 

Table 2. Characteristic image parameters used for the automatic selection of po-
tential training samples from expert knowledge 

Class Image Parameter 
Water bodies NIR 
Coniferous forest NIR, MIR, NDVI  
Decid. / mixed forest - leafoff Green, NDVI, texture – HH-pol. 
Decid. / mixed forest - leafon Green, NIR, MIR, NIR - MIR 
Unvegetated areas Minimum red, HH, HV 
Urban areas NIR, MIR, texture – HH-pol., Min. HV-pol. 
Grassland NDVI, HV-pol. 
Agricultural areas Green, NIR, HV-pol., texture – HH-pol.  
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Fig. 6. Threshold estimation by histogram analysis – example coniferous forest 

 
the algorithm was tested with six Landsat TM/ETM scenes acquired over 
the Thuringian test site in 2003 and 2005. The quality of the training sam-
ples selected was assessed by calculating the confusion matrix based on 
the same reference points used to estimate the classification accuracy of 
the final land cover maps. The user accuracy, i.e. the probability that a 
training sample is in agreement with the reference data, usually exceeds 
95%. However, especially for the classes “Agriculture”, “Grassland” and 
“Unvegetated areas” problems in finding correct training samples arise 
when one optical scene is available only. 

4.3 Classification results 

For classification three different approaches were compared considering 
the training sites and threshold values specified by the methodology de-
scribed in the previous chapter. First, a simple nearest neighbor classifica-
tion was performed using all potential training sites as input data. The sec-
ond classification procedure used the estimated class thresholds to set up 
an object-based fuzzy classification rule. Thereby the membership function 
for all image parameters specified in Table 1 was set to 1 for data values 
within the interval defined from the estimated thresholds. For values out-
side the specified ranges the membership function decreases linearly. The 
upper and lower limit characterized by a membership function equal zero 
was widened stepwise until all image segments were assigned to one land 
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cover class. Finally, a combined pixel-based/object-based approach was 
applied. The potential training sites were used as input samples for a super-
vised pixel-based maximum likelihood classification. The finally assigned 
land cover class of each image object corresponds to the most frequent 
class per image segment. The classification accuracies obtained from the 
two Landsat-5 TM scenes acquired on April 21 and July 10, 2005 as well 
as from the multitemporal SAR data are listed in Table 3. The achieved 
classification accuracies differ significantly, whereby the best overall per-
formance was found for the combined pixel-/object-based classification. 
Further analysis showed that the low classification accuracies for the ob-
ject-based nearest neighbor classification could be partly attributed to a 
stronger effect of ambiguous training samples.  

As outlined in the previous chapter, a large number of training sites is 
selected by the proposed methodology. Regarding the application of dif-
ferent classifiers such as artificial neural networks this is a critical issue 
which can result in an overtraining of the classifier and thus in reduced 
map accuracy (Kavzoglu & Mather 2003). The maximum likelihood clas-
sifier used in this study is based on the class mean vectors and covariance 
matrices estimated from the training samples. With an increasing number 
of training samples the mean values and the standard deviations show less 
variation and converge to those values obtained for all training samples. In 
consequence, the achieved map accuracies remain nearly unchanged by 
enlarging the number of training samples. To demonstrate this, classifica-
tions were performed using randomly selected subsets of all potential 
training data as input. The sample size per land cover category was set to 
10, 20, 30, 50, 80 and 100 segments. For each sample size, 10 classifica-
tion runs were conducted. The average product accuracies achieved for the 
different sample sizes did not exceed those obtained when using all train-
ing samples at once. This confirms that for the maximum likelihood classi-
fier overtraining is not critical. 

However, randomly selected subsets of all training samples were found 
to be useful in order to minimize the classification errors and to generate 
more stable land cover maps. The classification procedure was performed 
20 times with varying training sets and a sample size of 20 segments per 
land cover category. The overall classification accuracy of each single map 
varies between 83.9 % and 91.1 %. For each of the 20 training sample sets 
the most frequent class as well as the corresponding class fraction were 
computed for all image segments. The final land cover class of each object 
was assigned to the most frequent class of the ten training sets character-
ized by the highest class fractions. The overall product accuracy achieved 
accounts for 90.8 %. Especially for urban areas a significant improvement 
of the classification results was found compared to the land cover map 
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generated by simultaneously using all selected potential training sites (Ta-
ble 4). 

Table 3. Achieved classification accuracies using all potential training samples 

Nearest 
neighbor 
classification 

Fuzzy 
classification 
approach 

Combined 
pixel-/object-
based approach 

Class 

PA 
[%] 

UA 
[%] 

PA 
[%] 

UA 
[%] 

PA 
[%] 

UA 
[%] 

Water bodies 96.0 100.0 95.8 100.0 96.0 100.0 
Coniferous forest 87.8 100.0 91.3 100.0 100.0 92.5 
Decid./mixed  forest 96.0 88.9 100.0 89.1 92.0 95.8 
Grassland 60.0 96.8 69.4 85.0 96.0 88.9 
Unvegetated areas 38.0 100.0 48.9 92.0 74.0 97.4 
Urban areas 87.8 76.8 75.0 83.7 84.0 72.4 
Agriculture 100.0 50.5 97.7 53.8 89.6 89.6 
Overall accuracy 80.6  82.5  90.2  
Kappa coefficient 0.774  0.796  0.886  

Table 4. Classification accuracies achieved by the combined pixel-/object-based 
approach using all potential training samples at once (a) or randomly selected 
training data subsets (b) 

Single classification /  
all training samples 

Multiple classification / 
random training data 
subsets 

Class 

PA [%] UA [%] PA [%] UA [%] 
Water bodies 96.0 100.0 92.0 100.0 
Coniferous forest 100.0 92.5 100.0 96.1 
Decid./mixed  forest  92.0 95.8 94.0 92.2 
Grassland 96.0 88.9 88.0 93.2 
Unvegetated areas 74.0 97.4 82.0 89.1 
Urban areas 84.0 72.4 86.0 82.7 
Agriculture 89.6 89.6 93.8 83.3 
Overall accuracy 90.2  90.8  
Kappa coefficient 0.886  0.892  

 
Postclassification procedures include the re-coding of agricultural fields 

misclassified as urban area. These areas are characterized by a multitempo-
ral minimum below -19 dB in HV-polarized C-band SAR data. This pro-
cedure requires at least two cross-polarized radar scenes from the begin-
ning of the growing season in April and shortly after the main harvest 
period (in this test area mid of August). Additionally, image segments (ex-
cept water bodies) completely surrounded by residential areas were reclas-



Fusion of multispectral optical and SAR images      507 

sified. For example small-sized objects in industrial parks were sometimes 
assigned to the land cover class “Unvegetated areas”. 

4.4 Validation 

For validation issues the proposed methodology was tested using different 
sets of input data including images acquired in 2003 (Table 5). The classi-
fication accuracies are listed in Table 6. Here, the obtained land cover 
maps are less accurate than the maps generated from multitemporal optical 
data (see previous chapter). If monotemporal (i.e. single date) optical data 
are available only, increased misclassifications occur between (1) “Unve 
getated areas” and bare fields, (2) “Grassland” and agricultural crops and 
(3) “Grassland” or agricultural crops and “Deciduous/mixed forest”. In 
consequence, the producer and user accuracies of the corresponding land 
use categories decline.  

 
Table 5. Test image data sets used for validation 

 ASAR APP IS2 – HH/HV 
 

Landsat-
TM/ETM Date 1 Date2 Date3 

Set 1 21.04.05 22.04.05 10.07.05 24.08.05 
Set 2 10.07.05 22.04.05 14.08.05 18.09.05 
Set 3 06.08.03 11.06.03 20.08.03 14.09.03 
Set 4 22.04.03 16.07.03 20.08.03 14.09.03 

 
Table 6. Classification accuracies for the four test scenarios – WA: water bodies, 
CF: coniferous forest, D/MF: deciduous/mixed forest, GL: grassland, UA: unvege-
tated areas, UR: urban areas, AG: agriculture 
 Set1  Set2 Set3 Set4  
 PA [%] UA [%] PA [%] UA [%] PA [%] UA [%] PA [%] UA [%] 
WA 96.0 96.0 94.0 100.0 98.0 100.0 96.0 98.0 
CF 100.0 94.2 100.0 94.2 95.9 92.2 95.4 95.4 
D/MF 94.0 97.9 92.0 79.3 92.0 93.9 96.0 92.3 
GL 56.0 93.3 54.0 87.1 92.0 76.7 84.0 63.6 
UA 68.0 94.4 62.0 81.6 72.0 83.7 64.0 94.1 
UR 78.0 86.7 82.0 74.6 80.0 81.6 83.0 78.0 
AG 97.9 54.7 91.7 66.7 81.3 84.8 58.3 63.6 
OAa 84.2  82.1 87.3 82.3  
Kappa 0.81  0.79 0.85 0.80  
aOA: Overall accuracy. 
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5 Discussion 

The objective of this study was to develop a classification procedure for 
the generation of basic land cover maps with a high potential for automa-
tion. In order to achieve this, the necessary training samples, required as 
input for any supervised classification, were selected automatically. How-
ever, a requirement for this approach is the presence of coniferous forest 
stands in the imaged area. Furthermore, the optical data must include a 
channel in the MIR range of the electromagnetic spectrum. Since the 
thresholds of the decision tree used to delineate potential training sites are 
flexible and estimated for each input scene separately, an atmospheric cor-
rection of the optical EO data is not necessarily required. 

The proposed classification procedure combines the complementary in-
formation provided by optical and SAR data. For both steps, the selection 
of potential training samples and as input layer for the supervised classifi-
cation, radar scenes are required. Including the C-band texture and back-
scatter information during supervised classification, the overall accuracy of 
the final land cover map increases by approximately 3 %. A significant 
improvement was specifically achieved for the classes “Urban areas” and 
“Grassland” as well as for forest stands.  

Generally, the quality of the final land cover map significantly depends 
on the available EO data. Stable classification accuracies were only ob-
tained for the land cover classes “Water bodies”, “Deciduous/mixed for-
est”, “Coniferous forest” and “Urban areas”. Regarding the SAR data, best 
acquisition dates for the HH/HV-polarized ASAR APP data are at the early 
beginning of the growing season and after the main harvest and tillage pe-
riod. Bare fields and fields covered by crops in an early growing stage are 
characterized by low radar backscatter values. Thus, using the multitempo-
ral minimum in HV-polarisation will reduce misclassifications between 
agricultural fields/grassland and urban and forested areas, respectively. To 
map “Unvegetated areas” and “Grassland”, multitemporal optical data are 
required. Optimal acquisition dates are the beginning and mid of growing 
season as well as the time span after the main harvest period. The first and 
the last acquisition date is needed to improve grassland mapping, whereas 
optical scenes during full crops development are suitable to map perma-
nently unvegetated areas.  
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6 Conclusions and Outlook 

A combined object-/pixel-based classification scheme for the generation of 
basic land cover maps providing a high potential for automation has been 
presented. Since often multispectral data are not available due to cloudy 
weather conditions, emphasis of this study was to develop a working flow 
including a limited number of optical data only but exploiting the informa-
tion content of multitemporal SAR data. The proposed classification pro-
cedure is divided into three main processing stages. In a first step image 
segments are delineated on base from optical EO data. Then, potential 
training sites will be selected using an object-based decision tree with 
flexible thresholds. The absolute threshold values are calculated for each 
EO scene separately by combining expert knowledge and histogram analy-
ses. The selected training samples were used as input to a supervised, 
pixel-based maximum-likelihood classification. The final land cover class 
of each image segment corresponds to the most frequent class of the pixel-
based classification result. Textural features were incorporated in the clas-
sification procedure in order to improve the mapping accuracy for urban 
areas. The use of SAR textural features is recommended as the results ob-
tained from optical data or combined optical and SAR data are less stable 
in time. This research demonstrated the suitability of the UATM informa-
tion in conjunction with the standard deviation to extract successfully resi-
dential areas. For validation issues the methodology was applied to differ-
ent sets of input data acquired over the Nordhausen test site, Thuringia, in 
2003 and 2005. The proposed processing chain requires the existence of 
coniferous forests in the image area. Regarding the SAR data, the use of at 
least two Envisat ASAR APP scenes in HH/HV-polarization acquired at 
the beginning of the growing season in April and after the main harvest 
and tillage period is recommended. 

The algorithm was developed for a project area in Northern Thuringia 
and successfully tested with EO data acquired in different seasons and 
years. Especially for developing countries and large inaccessible areas an 
urgent need for reliable and up-to-date basic land cover products exists. 
The proposed methodology could be transferred to other regions by an ad-
aptation of the desired land cover classes and the corresponding character-
istic image parameters used for the selection of potential training samples 
(expert knowledge). The implementation of these adaptations is rather un-
problematic as main processing steps were realized in IDL. Furthermore, 
the proposed methodology could be applied to other topics of interest. For 
example, at the Nordhausen test site the mapping of rape seed fields with a 
high accuracy was possible. Other useful adjustments could imply the in-
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tegration of satellite data acquired by different sensors or the application of 
enhanced supervised classification approaches such as artificial neural net-
works or support vector machines (see Tzotsos and Argialas in this book). 

Further improvement is expected for both, the automatic selection of po-
tential training samples as well as the final map accuracy, with the avail-
ability of polarimetric and high-resolution spaceborne X-and L-band SAR 
data as provided by the TerraSAR-X and ALOS PALSAR missions. For 
example, L-band SAR data are known to provide an excellent database for 
forest cover mapping, i.e. the misclassification between forested areas, ag-
ricultural crops and grassland is expected to decrease (see Thiel et al. in 
this book). Regarding urban area mapping several studies emphasized the 
potential of X- und L-band data. Furthermore, due to the very high spatial 
resolution, texture measures extracted from TerraSAR-X and PALSAR 
data will most probably improve the generation of urban area maps.  
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ABSTRACT: The United Kingdom (UK) undertakes regular surveys of 
its countryside which are accompanied by national land cover maps de-
rived from Earth Observation data which have exploited the leading edge 
analysis methods of the day. The Land Cover Map of Great Britain of 
1990 was a relatively simple pixel-based classification while the Land 
Cover Map 2000 adopted an object-based approach. The objects, or land 
parcels, were derived by automated segmentation of the input image data 
and had a minimum mapping unit of 0.5 ha. Both of the above land cover 
products have been extremely successful, with in excess of 300 users. 
There have of course been problems with these products and these are 
mainly associated with the data models which were somewhat abstract 
from reality. Preparations are now underway for a further update of the UK 
national land cover product which will again be object-based, but this time 
it is planned that digital cartography will be adapted to give an object 
structure which more accurately reflect the true structure of the landscape. 
A feasibility study has demonstrated the key processes required to achieve 
the generalisation. The use of such a spatial structure will deliver a world 
leading land cover product which will increase the potential user commu-
nity and possibilities for integration. 
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1 Background 

The United Kingdom (UK) undertakes an assessment of its landscape at 
intervals of 8 to 10 years known as the Countryside Survey (CS) (Haines-
Young et al. 2000). The main component of the CS in 2000 was a field 
survey where approximately 560 1 km squares were visited for detailed 
ground-based measurements. The last two CSs have been accompanied by 
national land cover maps derived from Earth Observation (EO) data. These 
maps have developed over time exploiting leading edge analysis methods 
while maintaining a focus on the operational requirements of a national 
mapping exercise.  

The first of these, the Land Cover Map of Great Britain (LCMGB) in 
1990, was a relatively simple pixel-based classification using Landsat 
Thematic Mapper (TM) data (Fuller et al. 1994). Multi-temporal TM data 
were used to maximise the amount of land cover discrimination that could 
be achieved, as certain land covers change on a seasonal basis. The data 
were classified with a conventional per-pixel implementation of a maxi-
mum likelihood algorithm and low level knowledge-based corrections 
were applied using simple raster masks. 

This chapter reviews the development of object-based approaches to 
land cover mapping associated with the UK land cover products between 
the early 1990s and mid-2000s. In so doing, it reports the key issues, ad-
vances and outputs while referring the reader to the appropriate literature 
for a more in depth analysis. 

2 Object-based land cover mapping 

The LCMGB was extremely successful, but the pixel-based approach im-
posed an arbitrary grid pattern on the product and its depiction of the land-
scape. The landscape is not divided into a grid of square cells equivalent to 
image pixels and thus this sampling scheme failed to address the actual 
landscape structure. The pixel-based approaches also incorporated noise 
and unwanted natural variation into the classification output resulting in a 
product with a speckled, ‘salt and pepper’, appearance and with little if any 
information on the relationships between land cover patches (Fuller et al. 
1998). This situation encouraged the team responsible for the UK national 
land cover maps to develop object-based approaches which analysed the 
EO data in units representative of real world features. 

The Classification of Environment with Vector and Raster-Mapping 
(CLEVER-Mapping) project in the late 1990s developed an object-based 
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classification procedure (Figure 1). The procedure relied on the availability 
of some form of land parcel data set which subdivided the area of interest 
into a series of relatively homogenous land cover units and thus provided a 
landscape structure. The speckled appearance of conventional per-pixel 
approaches was partly caused by mixed pixels at the edge of each land 
cover patch which were often misclassified due to their mixed spectral sig-
natures from adjacent land cover types. The object-based approach avoided 
these mixed pixels by shrinking the land parcel geometry, or boundary, 
and only considering the core pixels for further analysis (Dean and Smith 
2003). The spectral response in each image band was averaged for the core 
pixels only within each object to minimise noise and unwanted natural 
variation. The averaged spectral responses for the objects were then ap-
plied to a standard maximum likelihood algorithm and the resulting classi-
fication attached to the object as a whole. The exclusion of edge pixels and 
the use of average spectral response for the classification was found to in-
crease the confidence of the results (Dean and Smith 2003). 

 

 
Fig. 1. Schematic of the object-based classification approach developed during  
the CLEVER-Mapping project. The land parcel boundary is used to exclude the 
mixed edge pixels by extracting spectral information from the core area only. 

 
By obtaining the land parcel objects from a data source other than the 

EO data used for classification, the area sampling and spatial structure of 
the land parcels were unrelated to the grid pattern and spatial resolution of 
the EO data. The use of an independent object-based structure then al-
lowed different EO data types to be combined and a broad range of non-
EO data to be included as attributes on the land parcels. The later were 
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used to perform complex knowledge-based enhancements (Fuller et al. 
2004). For instance, there is often spectral confusion between coastal 
saltmarsh and upland shrub habitats due to their similar vegetation struc-
ture. Therefore land parcels classified as saltmarsh, but with elevations 
greater than a few metres derived from a digital elevation model could be 
reclassified to upland shrub and visa versa. In the UK there is a require-
ment to subdivide semi-natural grasslands by the substrate on which they 
are found. These distinctions cannot be made reliably from EO data alone 
therefore soil type data sets could be used to refine the semi-natural grass-
land types recorded. The topologically structured objects also allowed ad-
vanced spatial context enhancements to be applied. For example, it is 
likely that small patches of arable completely surrounded urban are incor-
rect and bare ground in a coniferous forest context is more likely to be 
felled forest. By assessing the spatial context of each land parcel these con-
fusions can be corrected. 

2.1 Land Cover Map 2000 

An update of LCMGB was produced between 1998 and 2001, referred to 
as Land cover Map 2000 (LCM2000), which adopted an object-based ap-
proach (Fuller et al. 2002a) and initially it was intended to fully implement 
the above approach. Unfortunately, a suitable object, land parcel, data set 
was not available nationally in the UK at the time of production so image 
segmentation procedures were applied to the EO data to generate a set of 
objects, or segments. The EO data again consisted of multi-date imagery, 
but this time from the Landsat 5 TM, the Landsat 7 Enhanced Thematic 
Mapper and the Indian Research Satellite Linear Imaging Self-Scanner-III. 
The resulting segments, or spectrally-based land parcels, related in the 
main to fields, woods, lakes etc. and had a minimum mapping unit (MMU) 
of 0.5 ha and a minimum feature width (MFW) of 25 m (Figure 2). The 
image segmentation had been particularly challenging in that it had to pro-
vide a reasonably consistent subdivision of the landscape over areas in ex-
cess of 150 km and between EO data sets that could have considerable dif-
ferences (timing of summer winter composites, combinations of sensors). 
The final data set was deemed suitable for the task at hand and contained 
6.6 million objects covering the ~240 000 km2 of the UK (Fuller et al. 
2002b). 
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Fig. 2. A 3.5 by 4.0 km example of the object-based structure of LCM2000 de-
rived from image segmentation compared to a Landsat TM false colour (red: band 
4, green: band 5 & blue: band 3) composite image 

 
The LCM2000 land parcels were classified (Figure 3) using procedures 

similar to those developed during CLEVER-Mapping, except this time 
landscape structure and the spectral information for the thematic classifica-
tion came form the same EO data source. This approach generates rela-
tively homogeneous segments, but the segments only represent aspects of 
landscape structure which can be detected by EO data. The maximum like-
lihood classification and knowledge-based enhancements mapped the 
widespread examples of the UK Biodiversity Action Plan Broad Habitats 
(Jackson, 2000). Each land parcel carried a rich set of parcel-level meta-
data as well as the resulting Broad Habitat label as part of a hierarchical 
land cover class scheme with up to 72 detailed classes (Fuller et al. 2002b; 
Fuller et al. 2005). 
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Fig. 3. A 3.5 by 4.0 km example of the completed LCM2000 map labelled with a 
simplified version of the UK Broad Habitats 

2.2 Issues with previous products 

Both of the land cover products described above have been extremely suc-
cessful, with in excess of 300 user for each one in all sectors from aca-
demic research to commercial consultancy. They have been used in a 
broad range of applications from studies of national carbon budgets and 
the distribution of species to the locating of telecommunications equip-
ment.  

There have of course been problems and criticisms with these products 
considering the broad user community they aimed to address. One of the 
main criticisms was associated with the data models which were somewhat 
abstract from reality.  

The image pixel-based spatial model used in the LCMGB was an arbi-
trary grid and thus unrelated to the actual landscape structure. The seg-
ment-based spectral land parcels of LCM2000, although an improvement 
on the LCMGB, reflected the spectral structure of the landscape rather 
than the presence of true boundary features related to the habitats that were 
to be mapped. For instance, in LCM2000, two adjacent wheat fields could 
be combined into a single object by the segmentation process even though 
they may be owned by different farmers or managed differently in subse-
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quent years. Even if a boundary feature existed between them it would 
need to be spatially and spectrally significant at the spatial resolution of 
the image data to cause the segmentation algorithm to initiate a new object. 
Conversely, single fields may contain natural and acceptable variability 
which causes the segmentation algorithm to erroneously initiate a new ob-
ject, giving multiple objects per field. For instance, a crop may progres-
sively come into flower across a field and over time and the pattern of 
flowering could be captured by the image data and then recorded as spuri-
ous objects. In some instances, even quite major boundaries, such as rivers, 
were not fully recognized by the segmentation algorithm as the presence of 
bridges could cause the resulting segments to bleed into adjacent areas. Fi-
nally, the pixelated nature of the objects was also found to cause problems 
when comparing other data sets which represented linear diagonal bounda-
ries in a more conventional manner. 

The above considerations suggested that a new approach to the creation 
of the objects, land parcels, or spatial framework should be developed 
which avoided the use of image data as far as possible and aimed to cap-
ture the true landscape structure as real world objects. 

2.3 Development of real world object approach 

The real world object approach would derive the majority of its landscape 
structure from the use of existing digital cartography which had been cap-
tured by organization such as national mapping agencies. This approach 
had already been developed partially, as during the CLEVER-Mapping 
project a large scale prototype mapping exercise had been undertaken by 
producing a land cover map for the island of Jersey in 1997 (Smith and 
Fuller, 2001). The island government had digital cartography available for 
an area of approximately 215 km2, but this was too detailed to integrate 
with standard EO data sets with a spatial resolution of around 25 m (Fig-
ure 4) and only formatted as individual lines, with not true land parcels 
present. It was therefore necessary to first generalise the digital cartogra-
phy to a point where the boundaries it contained would represent objects 
mappable from the EO data. For instance, roads were often composed of a 
centre line, two edge lines for the metalled surface and possibly also fur-
ther lines for boundary features such as hedges, ditches, walls or pave-
ments. From this set of near parallel linear features it was only necessary 
to keep the road centerline, but unfortunately such simple rules could not 
be automated and applied across the whole data set as a large number of 
feature combinations could indicate a boundary. Finally, the lines remain-
ing after generalization were built into the required land parcels before the 
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object-based classification could be applied. Unfortunately, at the time, the 
only means creating the land parcels was to perform a generalisation by 
manually editing the line work and using standard polygon building func-
tionality to produce objects from the disconnected lines.  

 

 
Fig. 4. An 800 m by 800 m example of detailed digital cartography (vectors) over-
laid on a 25 m spatial resolution Landsat TM false colour (red: band 4, green: 
band 5 & blue: band 3) composite image 

 
The resulting product (Figure 5) was of exceptional spatial quality com-

pared to pixel-based and segment-based equivalents. The thematic accu-
racy was improved above that of the pixel-based approach (Table 1) with 
an increase correspondence to independent validation data of around 20 % 
(Smith and Fuller 2001). The relationship of the land parcels to existing 
cartography improved the usability and opportunities for integration with 
other data sets and within existing business systems. For instance, it was 
possible to link the land cover data set to the States of Jersey agricultural 
census as each field had a centroid which tied the census information to a 
geographical location. Unfortunately, the process to build the land parcels 
took around 2 person months for 215 km2 and was therefore impractical 
for larger areas such as the UK and thus not a viable solution for the need 
to improve the land parcel structure of the national land cover products. 
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Fig. 5. A 2 km by 2 km section of the 1997 Land Cover Map of Jersey 

 
Table 1. Values of percentage correspondence for the 1997 Land Cover Map of 
Jersey showing the improvement of the CLEVER-Mapping approach and the use 
of knowledge-based enhancements. 
 Classification procedure Percentage cor-

respondence 
Conventional Per-pixel 61 

Per-parcel 79 CLEVER-
Mapping Plus knowledge-based enhancements 85 

 
Preparations are now underway for a further update of the UK national 

land cover product with a target summer of 2007. This product will again 
be object-based, but this time it is hoped that digital cartography can be 
adapted to give an object structure which more accurately reflect the true 
structure of the landscape. The realization of this aim relies on develop-
ments in both digital cartography and spatial analysis technology. 

2.4 LCM2007 feasibility study  

Since the release of LCM2000, the Ordnance Survey (OS) of Great Brit-
ain, the national mapping agency, have produced a digital cartography 
product called MasterMap (MM) (OS, 2007) by topologically structuring 



522      G.M. Smith 

existing digital line work (similar to the data used in Jersey). The structur-
ing of the data produces land parcels / real world objects rather than dis-
connected line work. This dataset is still far too detailed for effective inte-
gration with EO data with a 25 m spatial resolution, but is suited to 
automated generalization. It is therefore proposed to base the spatial struc-
ture of the next UK land cover product on a spatially generalized version 
of MM.  

It was also necessary to develop an automated approach to the generali-
sation, so that large areas could be processed cost effectively and in a 
timely manner. A feasibility study was undertaken with the help of a spa-
tial database technology company, Laser Scan (now called 1Spatial) of 
Cambridge, UK. The study developed and demonstrated the key processes 
required to achieve the generalisation. The specification for the generalised 
MM was based on the LCM2000 spatial specification of 0.5 ha MMU and 
25 m MFW. The first step of the generalisation was to classify the MM ob-
jects by their geometric characteristics (Figure 6) into the following cate-
gories: 

• A) objects are less than the MMU and simple;  
• B) objects are less than the MMU but complex (e.g. fail MFW rules); 
• C) objects are larger than the MMU but complex;  
• D) objects are larger than the MMU and MFW but elongated; and  
• E) objects are larger than the MMU and simple. 

Using this geometric classification scheme as a guide the objects are 
merged and split iteratively until the data set only contains objects that are 
larger than the MMU and with relatively simple shapes which fit the speci-
fication (category E). Figure 7 shows an example of the generalised MM 
data compared to an aerial photograph and Figure 8 shows it compared to a 
25 m spatial resolution satellite image. An assessment of the quality and 
utility of the results was carried out by aerial photograph interpreters who 
digitized test areas of the aerial photography independently and then visu-
ally compared the results. This qualitative assessment confirmed the utility 
of the generalised MM land parcels, particularly as they were to be used 
with 25 m spatial resolution EO data, not aerial photography. There were a 
few minor errors and ambiguities, but these were either to be corrected in 
the next version of the procedure or highlighted for an operator to correct 
manually. In comparison with the satellite image data it can be seen that 
the generalised MM is fully aligned with the needs of an object-based 
analysis procedure. The area of woodland shows where the MM may lack 
some important boundaries and in the arable landscape where farm prac-
tices, rather than actual boundary features dictate the pattern of crops this 
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is also a problem. Finally, in the uplands semi-natural habitat boundaries 
are not always mapped by national mapping agencies. These additional 
boundary features can be obtained from either external digital cartography 
data sets (e.g. forestry maps or agricultural land parcel data sets) or by 
within object segmentation.  
 

 
Fig. 6. A 1 km tile of OS MasterMap objects classified by their geometric charac-
teristics 
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Fig. 7. A 1 km tile of generalised OS MasterMap data (dark lines, compare with 
Figure 8) compared to true colour aerial photography. 

 
Fig. 8. A 1km tile of generalised OS MasterMap data (white lines) compared to a 
25 m spatial resolution Landsat TM false colour (red: band 4, green: band 5 & 
blue: band 3) composite image 

 
The work reported here was undertaken on 400 km2 area centred on the 

town of Ripon in the UK which included semi-natural, rural and urban 
landscapes, but the procedure has since been rolled out to areas in excess 
of 3600 km2. The generalisation approach appears to work well in all land-
scapes and has been tested at other sites across the UK in preparation for 
LCM2007 production. The generalisation has also been assessed in terms 
of its scalability and it can be used in a parallel approach on cluster com-
puter systems by dividing large areas into more manageable chunks. It has 
been established that the approach can be applied to the whole of the UK 
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in an automated fashion and reasonable timescale to provide nationally 
consistent generalised digital cartography to support land cover mapping 
with EO data. 

The results obtained when classifying the generalised MM (Figure 9) 
are very similar to those achieved in Jersey.  Real world objects are clearly 
being mapped and can be interpreted easily in their landscape context and 
against other data sets. When compared to the LCM2000 data for the same 
area the likely improvements in quality and usability are obvious (Figure 
10). Although the LCM2000 is recording the general land cover structure 
of the areas reasonably well, delineation of individual land parcels is poor, 
especially in the small fields in the southern half of this area. The segmen-
tation algorithm has caused real world objects to bleed into each other, 
most noticeably in the north east where the arable fields have bled into the 
woodland.  

 

 
Fig. 9. A 1 km tile of generalised OS MasterMap data classified as Broad Habitats 
(the same scheme as used in LCM2000). 
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Fig. 10. A 1 km tile of generalised OS MasterMap data (white lines) compared to 
LCM2000 data (dark pixilated lines) of the same area 

3 Summary 

This paper described the background to the UK land cover products and 
the developments that have kept them at the leading edge of integrated ob-
ject-based analysis of EO data. Through this work it has been possible to 
develop an approach to land cover mapping which has been flexible and 
adaptable as new datasets and technologies come on line. The object-based 
classification procedure can be summarized into following components: 

• Obtain a suitable set of land parcel objects (by image segmentation 
and / or from digital cartography generalisation). 

• Extract EO data based on the land parcels using a shrunken geometry. 
• Perform a mutli-spectral analysis / classification on the extracted EO 

data. 
• Write results back to the original land parcel. 
• Attach ancillary data sets where necessary. 
• Apply knowledge-based enhancements. 
• Finalise land parcel level results and meta data. 
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This work toward the production of LCM2007 will represent a major 
step forward for object-based land cover mapping. The use of a spatial 
structure based on generalised digital cartography makes a direct relation-
ship to real world objects and breaks the link to the transient and often 
‘fuzzy’ EO data based image segments. These developments will increase 
the potential user community and possibilities for integration of the next 
UK land cover product. 
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ABSTRACT: Informal settlements behave very dynamical over space 
and time and the number of people living in such housing areas is growing 
worldwide. The reasons for this dynamical behavior are manifold and are 
not matter of this article. Nevertheless, informal settlements represent a 
status quo of housing and living conditions which is from a humanitarian 
point of view in the most cases below acceptable levels. Therefore, reliable 
spatial information about informal settlements is vital for any actions of 
improvement of these living conditions. Since remote sensing data is a 
well suited data source for mapping and monitoring we demonstrate a 
methodology to detect informal settlements (favelas) from QuickBird data 
using an object-based approach. On the one hand we therefore use experi-
ences and adapt them which were already made by Hofmann, P. (2001) re-
garding the image segmentation of an IKONOS scene of Cape Town. On 
the other hand we resort to a general ontology of informal settlements 
which we then transfer to a fuzzy-logic rule base which acts as basic clas-
sifier of the generated segments. This basic rule base is than extended in a 
way that features of segregation given by the ontology (namely neighbor-
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hood) are applied to the extraction method as an iterative process (i.e. a 
knowledge based region growing). Finally, we assess the results of the 
simple and iterative method by comparing them with the results of a man-
ual mapping. 

1 Introduction 

Informal settlements are usually a phenomenon which mostly occurs in 
developing and newly industrializing countries. Although different defini-
tions of informal settlement do exist, slum, favella, squatter settlement or 
shanty town are commonly used synonyms for this special type of settle-
ment. Sub-standard sanitary situations and high crime rates are only a few 
of attributes which go aside with the phenomenon informal settlement. 
Nevertheless, the UN (UNSTAT 2005) define informal settlements as: 

„1. areas where groups of housing units have been constructed on land 
that the occupants have no legal claim to, or occupy illegally; 2. un-
planned settlements and areas where housing is not in compliance with 
current planning and building regulations (unauthorized housing).“ 

Both definitions are obviously emphasizing the illegal character of in-
formal settlements. In contrast, the definition of Mason and Fraser (1998) 
takes the environmental, socio-economic and living conditions more into 
account. They describe informal settlements as: 

“... dense settlements comprising communities housed in self-
constructed shelters under conditions of informal or traditional land ten-
ure ... . They are a common feature of developing countries and are typi-
cally the product of an urgent need for shelter by the urban poor. As such 
they are characterised by a dense proliferation of small, makeshift shelters 
built from diverse materials (such as plastic, tin sheeting and wooden 
planks), by degradation of the local ecosystem (for example, erosion and 
poor water quality and sanitation) and by severe social problems.” 

However, there is obviously a strong need to transform informal into 
formal settlements and to gain more control about the actual spatial devel-
opment of informal settlements: According to UN-HABITAT (2006a) the 
number of people living in slums, favellas or shanty towns worldwide will 
grow from approx. 1.0 Billion in 2005 to 1.2 Billion in 2010 and 1.5 Bil-
lion in 2020. From the perspective of an urban or regional planner, as well 
as from the perspective of local or regional authorities, informal settle-
ments might become a more and more challenging problem in the years to 
come. One reason is the rising number of people living in informal settle-
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ments. Another is the threats that go aside with unplanned settlement, such 
as the destruction of nature reserves, contamination of soil or the settle-
ment in areas with a high risk of natural hazards. Programs, such as the 
Global Campaign For Secure Tenure (UN-HABITAT 2006) are empha-
sizing that informal settlements are becoming a challenge.  

In order to face these challenges, obtaining up-to-date spatial informa-
tion about informal settlements is vital for any (re-)actions in terms of ur-
ban or regional planning. But due to their informal character, reliable and 
accurate data about informal settlements and their inhabitants is rarely 
available. Data sources, such as maps, statistics or even GIS data are usu-
ally obsolete, not available, not as accurate as needed or do not hold the in-
formation needed. Obtaining the data needed by surveying is expensive 
and time consuming. Because of the very dynamical spatio-temporal be-
havior of informal settlements the spatial information mapped by survey-
ing might be already obsolete when it is consolidated. Consequently, reli-
able procedures for detecting and monitoring the spatial behavior of 
informal settlements are needed. Methods of remote sensing and image 
analysis can certainly contribute to an enhanced process of information ac-
quisition. 

From a methodological point of view, the challenge of detecting infor-
mal settlements lies in having appropriate methods to detect and monitor 
their spatio-temporal behavior reliably (Lemma et. al. 2005, Mason et al 
1998, Dare and Fraser 2001, Kuffer 2003, Radnaabazar et al. 2004). Re-
garding available data sources, remotely sensed imagery from satellites in 
comparison to other data sources is of advantage, because: 

• Remote sensing data in principle show a true image of the spa-
tial situation on the ground in almost real-time. 

• Satellite images are taken within constant time intervals. The 
length of intervals varies depending on the repetition rate of the 
platform, or other technical specifications (i.e. side-looking-
modes and so on). 

A disadvantage of remote sensing data lies in the complexity of methods 
necessary to extract the spatial information needed, which is directly or in-
directly imaged in the data. In many cases experts in remote sensing, im-
age processing and image analysis are needed to extract this information. 
Hence, in order to benefit from the advantages of remote sensing and to 
obtain the information as needed, adequate methods for analyzing the im-
agery are necessary. In an ideal case, these methods can be applied without 
the need of expert knowledge and human interaction. In practice easiness 
of use and the degree of automation for information extraction from im-
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agery depends on the data used and the phenomena to be extracted from 
the image.  

2 Methods and general methodologies 

Because of the relatively high inner-structural heterogeneity of informal 
settlements their typical pattern in remote sensing data is in many cases 
hard describable. In general, this hampers the generation of an automated 
detection process which is easy to use. Nevertheless, in (Hofmann 2001) 
first results of detecting informal settlements from IKONOS data in Cape 
Town showed the feasibilities by using an object-oriented approach in 
principle. The results were promising but seamed to be very dependent on 
the data used. Especially the relative complex class-hierarchy turned out 
not to be flexible enough for being applied successfully to other scenes. 
Applying the developed extraction methods to the QuickBird-Scene used 
here showed that several adoptions towards the segmentation and class-
descriptions were necessary.  

Since the class-hierarchy described in (Hofmann 2001) is more data 
driven than driven by a model of informal settlements, we decided to com-
pletely redesign the class-hierarchy, which takes more the phenomena and 
their ontologies into account. As a basic difference of both rule bases a no-
ticeably reduced number of classes and sub-classes can be observed. Addi-
tionally in the rule base used here, the use of class descriptions by nearest 
neighbor was completely renounced, which led to classes only described 
by fuzzy membership functions and their combinations. 

Nevertheless, in both cases the basic strategy and the initial segmenta-
tion were similar: starting with eCognition’s multi resolution segmenta-
tion1 as the initial segmentation a classification of the generated image ob-
jects follows and ends in an iterative process of knowledge-based object 
enhancement and (re-) classification (see Fig. 1). 

                                                      
1 as implemented in Version 4.0 
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Fig. 1. Iterative process of (knowledge-based) image segmentation and classifica-
tion 

2.1 The ontology of informal settlements - what are informal 
settlements? 

The methodological approach demonstrated here is mainly taking into ac-
count the ontology of the objects to be detected. In order to have a com-
mon understanding of “what is an ontology”, a short introduction about 
ontologies in general and some possible descriptions of the ontology of in-
formal settlements in special is given. 

Besides the two basic definitions already given in the first chapter of 
this article, to describe what an informal settlement is depends strongly on 
the context respectively the point of view. Without going deep into details 
about theoretical aspects of ontologies, describing “what is an informal set-
tlement” is a special case of describing phenomena of the (real) world. The 

initial image segmentation classification of inital image objects

object manipulation
according to class membership

classification of manipulated image objects
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description of a phenomenon of the (real) world is usually expressed by 
describing its ontology. In general, this is done by describing knowledge 
about the phenomenon from a certain point of view, e.g. as like the two 
definitions stated in the beginning of this article and by using a certain lan-
guage. Hence, the ontological description of “informal settlement” can be 
understood as the representation of knowledge about “informal settlement” 
from a certain point of view using a defined language. Thereby, the lan-
guage has to follow certain rules which are described more detailed for ex-
ample in Guarino (1998). However, there can be as many knowledge rep-
resentations of a phenomenon as points of view (Fonseca 2001). These 
points of view are commonly named domains. In the context of image 
analysis, there are two basic domains - namely image domain and real 
world domain - identifiable. Both are interacting with each other as Fig. 2 
illustrates.  

 

 

Fig. 2. Relationships between objects of the real world domain and the image do-
main. 

 
Descriptions of  a phenomenon from the point of view of the real world 

domain describe its general observable properties, i.e. what is typical or 
even unique for the phenomenon (here: informal settlements) in general. 
From the point of view of the image domain, these properties have to be 
measurable (i.e. detectable) in the image. These properties are commonly 
understood as the signature or pattern of a phenomenon. In the first in-
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stance, the signature or pattern is independent of possible methods of im-
age processing which are to quantify the signature or pattern of the phe-
nomenon. Nevertheless, in order to separate different phenomena by their 
patterns a quantification of their patterns is unavoidable.  

Using a taxonomical description in terms of “informal settlement is a 
special case of settlement” helps to identify unique properties of informal 
settlements and common properties with other types of settlement. De-
scribing the spatial relationships between objects of different classes goes 
beyond the description of patterns but is nevertheless part of the phenom-
ena’s ontologies. I.e. these are descriptions of the phenomena from the 
real_world domain’s point of view. Within the context of informal settle-
ments, such relationships have to take into account the dense structure of 
housing and infrastructure, i.e. the informal character of these sub-
elements as illustrated in Fig. 3 and the effect of segregation (see Fig. 4) 
which leads to distinct and spatially separated types of housing. 

 

 
Fig. 3: General description of settlement area and informal settlement as a special case of it 

 

 
Fig. 4: Description of segregation 

 
When referencing objects of other classes, especially when describing a 

spatial context relation, the ontologies of these other objects have to be de-
scribed as well: analogous to the description of settlement areas and infor-
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mal settlements, the ontologies of the sub-elements must be described suf-
ficiently. I.e. it has to be described what is typical for an informal house, 
informal infrastructure or vegetation in the real world domain and in the 
image domain (see Fig. 5 and Fig. 6). 

 

 
Fig. 5: Ontology description for informal settlement in the image domain 

 

 
 

Fig. 6: Ontology description of road network and house in the real world domain 
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2.2 Image segmentation 

Regarding the ontology of informal settlements, especially the spatial rela-
tionships between (informal) settlement and its sub-objects buildings, road 
network and vegetation, it is obvious that the image segmentation has to 
generate image objects representing settlement areas and the named sub-
objects. Using eCognition with its multi-resolution segmentation method 
for this purpose, means generating two segmentation levels, wherein the 
top level more or less represents settlement areas and other objects of 
comparable size, while the base level holds image objects which coincide 
with small houses, small road segments and small vegetation areas. The 
image objects of both segmentation levels are linked to each other in terms 
of a hierarchical net of objects which is depicted by a tree-structure (see 
Hofmann 2001, Baatz et al 2004, Benz et al 2004). This makes it possible 
in principle to describe later on spatial relationships between settlement 
areas and small houses, small road segments and small vegetation areas as 
well as the described neighborhood relations reflecting aspects of segrega-
tion. 

Regarding the segmentation parameters, according to Baatz et al (2004) 
the image objects created by the initial segmentation should best suit the 
image analysis purposes. I.e. the image segmentation should lead to image 
objects which best suit the ontologies of the desired classes. In practice this 
leads to many trial and error tasks in order to find the best suited segmen-
tation parameters for the initial segmentation. Thereby, usually not all de-
sired objects will be outlined semantically perfect, i.e. some objects are 
over-segmented, while others are under-segmented. Thus, the optimum 
segmentation parameters are those which obviously generate the least 
over- or under-segmentations. In the scenes used here and in Hofmann 
(2001) color contrast in informal settlement areas is relatively low. Thus, 
the segmentation of small houses respectively single shacks succeeded in 
both scenes only partially. However, Hofmann (2001) has already demon-
strated that it is not necessary to identify each individual house to classify 
different types of settlement areas. Moreover, it turned out that most of the 
houses’ shadows as well as roofs with higher contrast to their environment 
(mostly houses with red roofs) could be segmented well enough in order to 
identify different housing structures by the generated segments. These dif-
ferent housing structures were used later on successfully to differentiate in-
formal settlement areas from other areas. For the ontology of informal set-
tlements, from the point of view of the image domain, the spatial 
relationship between (informal) settlement and (small) houses must be ex-
pressed indirectly by these detectable indicators (i.e. roofs and shadows) 
and their respective properties (see Fig. 7). 
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Fig. 7: Relationship between building properties and describing properties of its indicating 
sub-elements 

 
Although the segmentation parameters used in Hofmann (2001) led to 

well usable image objects with the above described restrictions and al-
though there is only little difference between the image properties of the 
scenes (see Table 1), using identical parameters for segmenting the Quick-
Bird-scene did not lead to as useful image objects as in the IKONOS 
scene. In fact the average object size in the IKONOS scene was in the top 
level at approx. 3,165m2 and in the base level at approx. 49m2. Within in-
formal settlements the average object size was at 14,608m2 and 34m2 re-
spectively. In the QuickBird scene using identical segmentation parameters 
the average object size in the top level was at 1,045m2 and at 25m2 in the 
base level. Within informal settlements the respective average object sizes 
were 1,273m2 and 15m2. Regarding the objects’ properties, only slight dif-
ferences of the spectral properties are observable, but properties describing 
the objects’ shape and structure vary (see Table 2). 

While it was not quite clear which differences in the image properties 
finally led to these differences in the object properties, we assumed that 
one key feature is the higher resolution of the QuickBird scene. Hence, we 
decided to multiply the ‘scale parameter’ according to the ratio of the reso-
lutions of both sensors and to segment the QuickBird-scene with ‘scale pa-
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rameters’ of 144 instead of 100 (top-level) and 14 instead of 10 (base-
level). Although this approach follows more heuristic assumptions com-
pared to provable calculations, the objects generated by the adapted seg-
mentation meet the ontological strings better than those generated by a non 
adapted segmentation and are visually more comparable (see Fig. 8). As 
Table 1 demonstrates, especially the shape features area, length, width and 
border length became more comparable by adapting the scale parameter 
according to the ratio of the resolution of the images. 
Tab. 1: Properties of the image data used in Hofmann 2001 and in the research work 
described here 

Scene IKONOS Cape Town QuickBird Rio de Janeiro 

Location Cape Town 
(Nyanga/Crossroads) 

Rio de Janeiro 
(Ilha do Governador) 

Spatial resolution 

pan 1.0m  -  
blue 4.0m 0.69m 
green 4.0m 0.69m 
red 4.0m 0.69m C

ha
nn

el
 

nir 4.0m 0.69m 

Radiometric resolution 

pan 11bit (16bit) 11bit (16bit) 
blue 11bit (16bit) 11bit (16bit) 
green 11bit (16bit) 11bit (16bit) 
red 11bit (16bit) 11bit (16bit) C

ha
nn

el
 

nir 11bit (16bit) 11bit (16bit) 

Band widths 

pan 450-900nm 450-900nm 
blue 450-520nm  450-520nm 
green 510-600nm 520-600nm 
red 630-700nm  630-690nm C

ha
nn

el
 

nir 760-850nm  760-900nm 

pre-processing 
by provider reclassification to 11 classes pan-sharpening 

pre-processing 
by customer pan-sharpening reclassification to 11 classes 
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Tab. 2: Feature-statistics for objects generated with different scale parameters in the 
scenes

 



Detecting informal settlements from QuickBird data in Rio de Janeiro      543 

 
Fig. 8. Different segmentation results in subset areas of the IKONOS (right) and QuickBird 
(middle and left) scene, using identical segmentation parameters (left) and incurred 
parameters (middle). Top: top level, bottom: bottom level 

2.3 From ontology to rule-base – generating an adequate 
knowledge description 

While in Hofmann (2001) the design of the knowledge-base was more or 
less orienting on the data used, which led to a relatively complex class hi-
erarchy with likewise complex class descriptions, the rule base developed 
here is more orienting to the phenomena and their ontologies. Thus, com-
paring both class-hierarchies, the newly generated one is more pruned, fo-
cusing on relevant properties according to the ontology and consequently 
more transparent. Having in mind to apply the class-hierarchy to several 
comparable scenes, the improved transparency simplifies necessary incur-
ring and maintenance tasks. 

Although the complexities of the class-hierarchies are very different, the 
base strategy of beginning with so-called “level super-classes” applies to 
both hierarchies. With these super-classes objects belonging to the base- or 
top-segmentation level are separated semantically by using a crisp mem-
bership function describing the feature Level. Following the spatial rela-
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tionships of sub- and super-objects in the ontology of informal settlements, 
the classes settlement area, formal settlement and informal settlement are 
sub-classes of top level, whereas formal settlement and informal settlement 
are sub-classes of settlement. This way, properties which are typical for 
settlements in general are described in the class settlement and inherited to 
formal settlement and informal settlement, i.e. these properties are com-
mon to both types of settlement. The hierarchical structure reflects the 
“is_a” relations of the ontologies described before.  

The classes red roofs, small shadows/dark objects, bright small 
roofs/objects and vegetation are sub-classes of base level. Simultaneously, 
the classes of the base level are acting as indicators for (informal) settle-
ment as described in the chapter before. Since it was not possible to seg-
ment and identify single houses with informal character the density of the 
indicators red roofs, small shadows/dark objects, bright small 
roofs/objects was used to identify settlements and informal settlements. 
This was done by using and combining membership functions for the fea-
tures Asymmetry and Area of Sub-Objects with the features Rel. area of 
bright small roofs/objects, Rel. area of small shadows/dark objects and 
Rel. area of red roofs. The feature Avrg. mean diff to neighbors of sub-
objects in the nir-channel was used to describe the relatively high spectral 
heterogeneity within settlement areas. Asymmetry was used to differentiate 
settlement areas from other elongated objects like rail roads or roads.  

Informal settlements then could be differentiated from other types of 
settlement by a smaller Area of Sub-Objects, an explicit lower Rel. area of 
red roofs combined with an explicit lower Rel. area of bright small 
roofs/objects, but an explicit higher Rel. area of small shadows/dark ob-
jects. The informal character of the road network within informal settle-
ments was expresses by a relative low value for Asymmetry of sub-objects: 
mean. Since a higher value for this feature indicates more elongated ob-
jects present (e.g. regular road segments), a lower value indicates the op-
posite. The class formal settlement finally is simply described by the 
fuzzy-logical negation (inversion) of informal settlement combined with a 
fuzzy-limiting value for Area of more than 1800-1900m2. Since formal set-
tlement is a sub-class of settlement, it inherits al its feature descriptions and 
is simultaneously the ‘opposite’ of informal settlement, i.e. all settlement 
areas which are not informal (see Fig. 9 and 10). 
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Fig. 9. Class hierarchy used for the detection of (informal) settlements (left) and class 
description of the class informal settlement as a sub-class of settlement (right) 

 
Fig. 10. Description of formal settlement as sub-class of settlement and the inverse class of 
informal settlement (right) and a limiting area of more than 1900m2 (left) 
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Applying this class-hierarchy to the segmented image leads to a classifi-
cation result which holds formal and informal settlement areas, whereas 
only those informal settlement areas are extracted, which fulfill the criteria 
for informal settlement to at least 50%. Due to the structure of the class hi-
erarchy - especially the inheritance relation between settlement, formal set-
tlement and informal settlement – there are some informal settlement areas, 
which are wrongly classified as formal settlement. I.e. settlement areas 
could be extracted relatively well, but to distinguish between formal and 
informal settlement it was necessary to take into account further properties 
of (informal) settlement. Regarding the ontology of (informal) settlement, 
taking aspects of segregation into account, seams to be a sensible ap-
proach. 

 

 
Fig. 11. Classification result without taking aspects of segregation into account, i.e. prior to 
the application of a knowledge-based iterative segmentation 
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2.4 Knowledge based iterative segmentation 

The class descriptions presented until now were mainly focusing on de-
scribing aspects of color, shape, texture and structure, i.e. the physical 
properties of (informal) settlements. As was shown already in this article, 
one typical property of settlement areas – especially in urban areas – is to 
be segregated according to different features which are not all directly de-
tectable from remote sensing data. Nevertheless, regarding spatial 
neighborhood relationships between different types of housing, it is very 
unlikely that formal settlement areas are completely surrounded by struc-
tures of informal settlements. Notably the inverse constellation is very 
likely so that preferably within transition zones from formal to informal 
settlements such mixed areas do occur. However, the classification result 
in the chapter above illustrate some misclassified formal settlement objects 
which are either very close to informal settlement objects or even embed-
ded by such areas. Although the objects fulfill the criteria of settlement, 
they do not for some reason for informal settlement and are thus classified 
as formal settlement (the inverse of informal settlement). These circum-
stances seam to infringe the ‘rules’ of segregation, i.e. it seams to be very 
likely, that these objects are truly misclassified and should be assigned to 
informal settlement. In order to identify formal settlement objects which 
are embedded by informal settlement objects, we used the feature Rel. area 
of [class] neighbor-objects, whereas informal settlement was used for 
[class]. The distance was set to 0.0, which means we are looking for ob-
jects at direct neighborhood. In order to obtain more realistic values for 
measuring embedding, we fused all neighboring objects classified as in-
formal settlement by the so-called ‘classification based segmentation’. This 
way, the higher the Rel. area of informal settlement neighbor-objects is, 
the more it is embedded.  

To realize the measurement after the object fusion, a new class was cre-
ated as a sub-class of formal settlement, but with the additional property 
Rel. area of informal settlement neighbor-objects 0.0 fuzzy-more than 0.3 
– 0.5. This means, all objects classified as formal settlement and whose 
share of area of informal settlement in the direct neighborhood is fuzzy-
more than 30% - 50% are assigned to the new class formal surrounded by 
informal (see Fig. 12). Since we stated before that these objects are actu-
ally misclassified - i.e. they have the physical properties of formal settle-
ment, but should be regarded semantically as informal settlement - the 
class formal surrounded by informal was assigned to the semantic group 
(Baatz et al 2004) informal settlement (see Fig. 12).  
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Fig. 12. Extended class-hierarchy to detect wrongly classified embedded formal settlement 
areas 

 
This semantic assignment in consequence raises the number of informal 

settlement objects and of course the global area of this class. For the for-
mal settlement neighbors of the prior formal surrounded by informal 
neighbors this means: they now have a direct neighborhood to informal 
settlement. If their value for Rel. area of informal settlement neighbor-
objects 0.0 is fuzzy-more than 0.3 – 0.5 they are now embedded by infor-
mal settlement too, i.e. they are now belonging to the class formal sur-
rounded by informal. Now, the fusion and reclassification process can be 
started again until the misclassified “holes” inside informal settlement ar-
eas are merged to contiguous informal settlement objects (see Fig. 13). 

 

 
Fig. 13. Sequence of classification, knowledge-based fusion and re-classification of merged 
image objects. Left: initial classification. Middle: re-classification after merging. Right: 
final result after merging again 

 
Repeating this sequence of reclassification and fusion leads to an itera-

tive process that will stop as soon as there are no further formal settlement 
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objects present which are embedded by informal settlement, or the process 
is aborted by the operator. The former case of course needs some expert 
knowledge about the settlement structures in the scenes of matter. E.g. ob-
jects classified in the last step as formal surrounded by informal are in the 
most cases transition zones between formal and informal settlement areas, 
i.e. they are a mixed type of both forms of settlement. Saving the sequence 
of (re-)classification and fusion in a so-called ‘protocol’ leads to a pro-
gram-like knowledge-based region-growing procedure. In this form it is 
possible to re-apply the procedure or modify it wherever necessary (see 
Fig. 14 and 15).  

 

 
Fig. 14. Sequence of knowledge based iterative process saved as protocol 
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Fig. 15. Final result after applying the iterative process of knowledge-based classification 
and fusion without transition zones 

3 Accuracy Assessment 

To assess the accuracy of the classification process we used the results of a 
manual classification as reference areas (see Fig. 11 and 15). In this man-
ual reference only larger favelas were outlined manually as contiguous ar-
eas. Detecting smaller favelas is even hard when performing it manu-
ally/visually. Thus, we could only assess the accuracy by comparing the 
automatic classifications with the manual reference mapping of larger con-
tiguous favelas. I.e.: we could determine how many pixels of the reference 
mapping were also classified by the automatic classifiers which then lead 



Detecting informal settlements from QuickBird data in Rio de Janeiro      551 

to a percentage of agreement between both classifications and an error of 
omission respectively. As Table 3 demonstrates, for the classification be-
fore applying the iterative approach 47% of the pixels of the reference 
mapping were also detected by the automatic classifier, i.e. the error of 
omission was at 53%. After applying the iterative process the ratio of 
agreement between automatic and manual classification could be raised to 
68%, i.e. the error of omission could be reduced to 32%. Nevertheless, it 
has to be mentioned, that after controlling the automatic results visually – 
especially those of the iterative approach – we discovered, that some of the 
smaller favelas were detected by the automatic classifier probably cor-
rectly, i.e. they were probably omitted by the manual (reference) mapping 
(see Fig. 15). However, only a ground truth could give absolute evidence 
for these assumptions. 

 
Tab. 3: Comparison of manual and automatic classification of favelas expressed by  
agreed and omitted pixels. 

before iterative process after iterative process 
 no. of pixels in % no. of pixels in % 
ommited 1067350 53,13 634836 31,60 

agreed 941534 46,87 1374048 68,40 
sum 2008884 100,00 2008884 100,00 

 
Regarding the measures ‘Best Classification Result’ and ‘Classification 

Stability’ offered by eCognition2 (see Baatz et al 2004, pp. 160 - 163), 
there are also slight enhancements observable, when applying the iterative 
process: The mean values for ‘Best Classification Result’ and ‘Classifica-
tion Stability’ within the reference areas could be raised from 0.92 to 0.94 
after applying the iterative process. These values indicate, that most of the 
detected informal settlement objects are described relatively well by the 
developed class descriptors and that the classifier is relatively well suited 
to distinguish informal settlement from other classes. 

4 Conclusion and outlook 

In the paper present we have demonstrated how informal settlements can 
be extracted from VHR satellite imagery using an object-based approach. 
In contrast to former approaches the image segmentation and knowledge 
description was more driven by the ontologies of the desired objects than 
by the data used. Nevertheless, some data related adaptations of the seg-

                                                      
2 Version 4.0 
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mentation parameters were necessary. However, the class hierarchy and 
the class descriptions could be simplyfied which finaly leads to a more 
transperent and easier maintainable extraction process. Further, by 
formulating and applying image-independent knowledge about the spatial 
behaviour of the desired objects (here: segregation) led to an iterative 
process which produced enhanced objects and classification results with 
higher accuracy. Additionally, we assume that due to the pruned class-
hierarchy, i.e. the more ontology-driven class descriptions the class-
hierarchy is more transferable than the data driven class-hierarchy. One 
hint for this assumption is given by the few necessary adaptions of the 
class-hierarchy and class descriptions we observed while re-applying the 
approach to the Cape-Town-Scene. How to tackle the transferabilty of rule 
bases in object-based image analysis is currently under investigation. 
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ABSTRACT: Monitoring soil sealing in urban environments is of great 
interest as a key indicator of sustainable land use. Many studies have at-
tempted to automatically classify surface impermeability by using satellite 
or aerial imagery. Air photo interpretation (API) has been used as a 
method to verify their accuracy. However, independent accuracy assess-
ments of API have not been widely reported. The aims of this research are, 
firstly, to investigate independent accuracy assessments of API. Secondly, 
to determine whether object-based image analysis could replace manual in-
terpretation for the detection of sealed soil and vegetated surfaces at the 
residential garden plot level. Four study areas, representing the industrial, 
commercial and residential parts of Cambridge, UK were manually digi-
tised and classified by API. The same areas were automatically segmented 
and manually classified with the use of eCognition. The two methods were 
compared and the average overall mapping agreement was estimated to be 
92%. The disagreement was qualitatively analysed and the advantages and 
disadvantages of each method were discussed. The very high agreement 
between the two methods in conjunction with the benefits of the automated 
method led to the conclusion that automated segmentation using eCogni-
tion could replace the manual boundary delineation when true-colour aerial 
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photography is used. Future work will examine automated image classifi-
cation methods, using eCognition, as a replacement for normal image in-
terpretation methods. 

1 Introduction 

Urban development presents the greatest driver of soil loss due to sealing-
over by buildings, pavement and transport infrastructure. Soil sealing is 
recognised as one of the major threats to soil. The ability to monitor the 
rates, types and geo-spatial distribution of soil sealing is crucial to under-
standing the severity of pressure on soils and their impact on European and 
global socio-economic and environmental systems (Wood et al., 2006). 

1.1 Monitoring soil sealing by remote sensing 

There are few internationally recognised definitions of soil sealing 
(Burghardt et al. 2004). The European Union accepts that “soil sealing re-
fers to changing the nature of a soil such that it behaves as an impermeable 
medium and describes the covering or sealing of the soil surface by imper-
vious materials” (EEA glossary 2006). Remotely sensed data cannot di-
rectly measure whether a surface is permeable but it can monitor cover 
types (e.g. concrete or tarmac) and infer permeability. Grenzdörffer (2005) 
categorised sealed areas simply as either built-up or non-built-up areas.  

Arguably, the most detailed mapping of soil sealing was carried by the 
Office for Urban Drainage Systems in Dresden, Germany. They used 
orthorectified aerial photography (1:50,000 scale) and digitized soil sealing 
values for the whole city by air photo interpretation (API). The degree of 
sealing was estimated for each housing plot and given a soil sealing value, 
e.g. roofs were 100% sealed; green roofs, 50%; concrete-asphalt 100%; 
semi-permeable areas (paving stone) 70%; water-absorbing areas like 
gravel, 50% and residual areas, 0% (Meinel and Hering 2005).  

Recently, a variety of projects have been undertaken in Europe to de-
velop more automated methods for detecting soil sealing at European, na-
tional or regional scales such as the SoilSAGE project, the GMES Urban 
Services (GUS) project, the GMES Service Element (GSE) Land monitor-
ing project, the Monitoring Urban Dynamics (MURBANDY) project and 
the Monitoring Land Use/Cover Change Dynamics (MOLAND) project. 
Soil sealing has also been investigated by the Technical Working Groups 
(TWG) of the Soil Thematic Strategy described by Burghardt et al. (2004) 
in two reports.  Most of these projects have used remote sensing image 
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classification techniques based on pixel procedures.  
The argument for using object-based image analysis over pixel-based 

methods will not be repeated here (see Blaschke and Strobl 2001; Caprioli 
and Tarantino 2003; Yuan and Bauer 2006). Suffice it to say that real-
world objects are not characterized by single, square pixels. In the case of 
high and very high resolution imagery, groups of individual pixels are 
more likely to represent what would normally be interpreted as recognis-
able land cover features. Object-based image analysis is based on sensible 
pixel groupings and is, therefore, more representative of the systematic 
process carried out in API.  Delineating image objects by ‘segmentation’ 
in the digital domain is analogous to API boundary delineation.  

Automatic segmentation is not new (Blaschke and Strobl 2001). Exist-
ing algorithms include texture segmentation, watershed information and 
mean shift, but none of them have proved to be a robust, operational ap-
proach (Zhou and Wang, 2006). More recently, with the introduction of 
eCognition software, from Definiens Imaging GmbH, homogeneous image 
object extraction, over a range of image object sizes, is now possible. In 
contrast to pixel approaches, image objects produced using eCognition 
contain spectral, shape and texture information but also a whole network 
of relations which connects image objects and incorporates contextual in-
formation. The objects extracted during the segmentation process are then 
later classified.  

Many studies have attempted to extract urban features and classify ur-
ban land cover and land use by using eCognition, e.g. Hoffman (2001); 
Herold et al. (2003); Wang et al. (2004); Frauman and Wolf (2005); 
Blaschke et al. (2005).  Mittelberg (2002) attempted to analyse the urban 
environment by using aerial photography and very high resolution 
IKONOS data. Hodgson et al. (2003) used aerial photography along with 
elevation data (Lidar) to identify urban imperviousness. The data were 
compared with visual interpretation of aerial photography which was seg-
mented using eCognition. Cothren and Gorham (2005) analysed QuickBird 
images to detect impervious and permeable surfaces. Grenzdorffer (2005) 
used a combination of satellite (Landsat TM and SPOT) images with high 
resolution aerial photographs to identify urban land use change. Yuan and 
Bauer (2006) investigated digital classification techniques (both pixel and 
object-based) for mapping urban impervious surfaces using QuickBird im-
ages. In most cases, the classification results were compared with an air 
photo interpretation of ortho-rectified aerial photography.  

API is considered de facto as the most accurate procedure for mapping 
land cover and none of the studies cited determines the appropriateness of 
using API methods to assess the accuracy of boundary delineation for 
landcover mapping. API is also subjective, time consuming, expensive, la-
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bour intensive, and requires skilled operators.  
This paper aims to evaluate manual classification of aerial photography 

by comparing it with results produced using eCognition. The work specifi-
cally focuses on the segmentation stage of the process, where API will be 
compared with semi-automated object-based procedures. The scope is to 
investigate whether object-based image analysis could replace the tradi-
tional way of manual digitising and visual labelling for the detection of 
sealed soil and vegetated surfaces at the residential garden plot level. 

2 Data and methods 

The study area is the city of Cambridge, UK. The data source acquired for 
the analysis is ortho-rectified aerial photography, taken in June-July 2003 
at 0.125 m spatial resolution and scanned to an 8 bit RGB format. The im-
age provided, was an already geometrically corrected mosaic where the 
stereo pairs were unavailable. Four study areas of 250 by 250 m were se-
lected as representative land covers of the built environment: two types of 
residential, one commercial and an industrial part of Cambridge (Fig. 2.1). 
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i)  ii)  

iii) ii)  
Fig. 2.1 (i) 1960’s semi-detached residential area with large gardens, (ii) Densely 
built Victorian terrace house residential area with small, narrow gardens (iii) City 
centre commercial area with tall buildings, densely built, predominantly sealed, 
(iv) Industrial area mainly sealed with little green space. Cities Revealed® copy-
right by The GeoInformation® Group, 1996 and Crown Copyright© All rights re-
served 

2.1 Aerial Photo Interpretation (API) 

The four study areas were manually segmented by on-screen digitising us-
ing ArcGIS® software (Figs. 2.2i, 2.2ii) at 1:200 scale for two main rea-
sons: (a) a 2 m minimum mapping unit (4m2 area) was deemed to provide 
a good threshold for extracting urban features found in the built environ-
ment of Cambridge, and (b) a larger scale than 1:200 revealed a higher de-
gree of pixelation which was difficult to interpret. Features smaller than 
4 m2 on the ground were ignored even though they could be seen (i.e. 
small individual trees, narrow footpaths in back gardens, or small areas of 
shadow). Vegetated surfaces were equated to unsealed soil, and non-
vegetated surfaces were equated to sealed soils. Only shadow cast on 
ground surfaces were digitised as ‘shadow’; sides of buildings in shadow, 
visible due to relief displacement, were interpreted as ‘sealed’. Seven land 
cover classes were used (Fig. 2.2iii): sealed surfaces, vegetation, trees, 
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shadow, rail tracks, bare soil and temporary features. Shadow was further 
classified as ‘sealed surface in shadow’, ‘grass in shadow’, ‘tree in 
shadow’, and ‘mixed or unclassified shadow’ when it was impossible to 
identify the kind of objects in the shadow. 
 

i) 

 

 ii) 

 

 

iii)  

Residential area
description

1= sealed surfaces
2= vegetation
3= trees
4= shadow
5= rail tracks
6= bare soil  

Fig. 2.2 (i) On-screen manual digitising of the densely built residential study area 
(ii) Delineation of feature detail, (iii) Manual classification. No temporary features 
were identified in this example 

2.2 Semi-automated object-based classification approach  

The four study areas were automatically segmented with the use of eCog-
nition software, Definiens Professional version 5. The multi-resolution 
segmentation, which generates objects resembling ground features very 
closely (Definiens User Guide 2006), was used for this study. As a first 
step, eCognition links pixels to produce image objects by extracting ho-
mogeneous areas. The outcome of the segmentation is dependent on sev-
eral parameters, such as, scale, colour, shape, compactness and image layer 
weights. These parameters are defined manually by the user. The scale pa-
rameter determines the maximum allowable heterogeneity for the resulting 
image objects and, consequently, their size.  

A new feature of eCognition v.5 is the process editor. A single process 
represents an individual operation of an image analysis routine and defines 
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an algorithm which is executed on a specific image object domain. The 
image object domain describes the area of interest where the algorithm will 
be executed in the image hierarchy (Definiens User Guide 2006) and can 
either be the raw data at the pixel level, all of the image objects in a spe-
cific level of the hierarchy, or a specific object class from any level. The 
flexibility of the new version gives the ability to apply rules in a specific 
class domain of the class hierarchy that suits local conditions in an image. 
This affords similar flexibility that an interpreter has during manual API. 

A general rule of thumb for a meaningful segmentation is to create im-
age objects as large as possible and as small as necessary (Definiens User 
Guide 2006). The image must be segmented at such a scale so as to iden-
tify the smallest feature of interest. It is very important to use as many ob-
ject levels, at different scales, as necessary until all image objects explic-
itly represent the classes to be assigned for the classification procedure. 
For a detailed description of image segmentation using eCognition and 
how the parameters affect the image analysis, see Baatz and Schape 
(2000), Benz et al (2003) and Definiens User Guide (2006). 

The first study area examined was the industrial area. After several em-
pirical trials the image was segmented into two levels. At the upper level, 
the best values for each parameter were found to be: scale=225, shape= 
0.3, compactness= 0.7, weight of red band (layer 1) = 2, weight of green 
band (layer 2) = 4 and weight of blue band (layer 3) = 1. Using these pa-
rameters, the image sample was segmented into the coarse classes of 
sealed, unsealed and shadowed areas. Features that were not extracted at 
that scale were identified later when a new level with a smaller scale value 
was applied. High values of compactness along with larger weights in the 
red and green wave bands resulted in a better discrimination between trees 
(highly compacted objects) and other vegetated surfaces. The image was 
then manually classified with the manual editing tool. The manual classifi-
cation followed the same pattern and criteria used with the API. The 
classes identified were: sealed surfaces, vegetation, trees, shadow, rail 
tracks and mixed areas. The ‘mixed areas’ class represents the regions of 
the image which are not satisfactorily segmented and require a lower scale 
parameter in order to create meaningful objects. Consequently, the ‘mixed 
areas’ class was re-segmented with a scale parameter value equal to 40; all 
other parameters remained the same (Fig. 2.3). Every individual neighbour 
polygon assigned to the same class was merged at both segmentation lev-
els. The whole process rule set was saved and used for the image analysis 
of the remaining study areas. The same methodology and identical parame-
ter values (rules) were used in the three other urban areas, in order to de-
termine the transportability of the rules to areas where the urban land cover 
is different. 
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i)  ii)  
Fig. 2.3 (i) Industrial area segmentation at scale 225 and manually classified. (ii) 
The bright areas are the mixed areas which were later re-segmented at scale 40  

2.4 Accuracy assessment 

The results from eCognition were exported to ArcGIS® as smoothed poly-
gons in vector format. The accuracy of the results was quantitatively as-
sessed by comparison with the visual interpretation of the ortho-rectified 
aerial photography by cross-tabulation. The maps were also qualitatively 
analysed in order to understand any differences between the two ap-
proaches. 

3. Results and discussion 

3.1 Quantitative analysis 

Initially, all the maps produced by the two methods were in vector format. 
The data from each method in a study area were merged together by a un-
ion function and the attributes of the new map were exported to a spread-
sheet for the production of confusion matrices. The results showed very 
low agreement between the two methods. All four areas had accuracies be-
tween 28-29% which can be explained by the fact that although the two 
segmentations look very similar at the small scale, the boundaries of each 
polygon do not match perfectly (Fig. 3.1). Many insignificant ‘sliver’ poly-
gons were produced when the maps were combined. This is due to the fact 
that eCognition follows a pixel pattern while the interpreter digitizes with 
smoother lines. The very small sliver polygons carry the same weight in 
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the cross-tabulation as the larger polygons of interest, which introduces 
bias and leads to an artificial underestimate of the overall mapping accu-
racy. 
 

i)  ii)   
Fig. 3.1 (i) The two maps produced by API and eCognition overlaid for compari-
son – the differences are negligible at this scale. (ii) Enlargement of a polygon re-
veals the minor discrepancies  

 
To solve the boundary problem and to eliminate the majority of sliver 
polygons, the vector files were converted to a raster format with a cell size 
of 0.125 m (equivalent to the pixel resolution of the aerial photography). 
The cross-tabulation was repeated. The accuracies obtained for each study 
area were: industrial area 96.3%, commercial area 94%, residential area 
(semi-detached houses) 89% and residential area (dense terrace houses) 
90%. Because the polygons were attributed manually in both methods, the 
high agreement was expected (92% on average). Perhaps of greater interest 
is the 7-8% disagreement. Although this is not significant in the example 
of Cambridge, the causal factors may have greater predominance in other 
urban areas or at different times, and so must be understood.  

3.2 Qualitative analysis 

Close scrutiny of the factors causing the differences between manual de-
lineation and eCognition’s segmentation identified many examples of mis-
classification that were due to human error during digitisation. When the 
manual digitising was compared with the automated segmentation, some 
surface objects greater than the proposed 4 m2 were found to have been 

Opportunities and limitations of object-based image analysis



564     M. Kampouraki, G. A. Wood, T. R. Brewer 

omitted. These same objects were successfully recognized in eCognition.  
The omitted features were predominantly shadow or individual trees, ei-

ther in back gardens or along streets. Sometimes, especially for trees, the 
reason they were not digitised was because they had low contrast with 
neighbouring objects and were not distinct enough to be easily identified. 
At 1:200 scale, it is sometimes difficult for the human eye to distinguish a 
tree when it is next to grass. This depends on the type of tree and the con-
dition of the grass, as they affect the intrinsic contrast between object 
tones. It also depends on the levels of illumination and quality of the pho-
tograph or scan. A smaller scale can help to overcome this, but the delinea-
tion of the boundary is less precise and difficult to digitise. Consequently, 
there is a high probability that such features will be missed by API. eCog-
nition automatically recognised these cased due to subtly different textures 
(internal object tonal variability) in the tree canopies; trees are very com-
pact with a ‘rough’ texture, while grass is more monotone. Again, this may 
vary depending on image quality. 

A big advantage of using eCognition is that the image can be segmented 
at scales larger than 1:200. In many examples, eCognition has extracted 
features that were lost in the API due to this threshold. If automated seg-
mentation is used for boundary delineation, a fixed scale is not necessary 
and the image can be analysed in greater detail compared to API.  

Conversely, there are cases where eCognition has not satisfactorily 
identified or separated features, for example, the fusion of individual trees 
with the shadow next to them and also the misidentification of smooth tex-
tured trees with bushes or grass. But this discrimination was also difficult 
during the API and therefore this misclassification can occur in the manual 
digitising. Examples of these misclassifications are infrequent and can be 
considered less important for mapping sealing, since both these classes are 
indicators of unsealed soil.  

A significant difference between the API and the image segmentation is 
that eCognition identifies image objects, which are not always real world 
objects. A very good example is shown in Figure 3.2. The interpreter has 
the intelligence to identify the two different types of shadow, one produced 
by the building and one by the chimneys, and can ignore the latter by digi-
tising the shadow polygon along the roof edge. But eCognition has created 
one polygon with both shadow types included in it. This may cause prob-
lems during automated classification if different features are classified 
with this type of shadow polygon. 

The automated segmentation has the advantage of being much less time 
consuming, especially if rule sets can be universally applied. Half of the 
amount of time was needed when the boundary delineation was made by 
using eCognition in comparison to manual digitising. Manual classification 
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in eCognition was also faster but the interpreter was familiar with the area 
as the classification was repeated during API. The advantages and disad-
vantages of each method are summarised in Table 1.  
 

 
Fig. 3.2 eCognition’s segmentation of shadows cast by buildings and chimneys  
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Table 1. The advantages and disadvantages of using either API or eCognition to 
delineate real-world objects from remotely sensed imagery 

 
Advantages Disadvantages 

API 

♦ Interpretation of real 
objects 

♦ Identification of com-
plex patterns and com-
plex situations 

♦ Ability to include or 
ignore features intelli-
gently 

♦ Multi-scale representa-
tion  

♦ Use of shape, context, 
neighbourhood rela-
tionships 

♦ Subjective 
♦ Time consuming 
♦ A fixed scale is nec-

essary 
♦ Inconsistency in the 

use of a steady scale 
to the whole image 

♦ Human error 
♦ Imprecise boundary 

delineation 

eCognition 

♦ Objective (the rules 
and chosen parameters 
are subjective but the 
rules are applied to the 
whole image objec-
tively) 

♦ Multi-scale representa-
tion 

♦ Hierarchical connec-
tion between multi-
scales  

♦ Use of shape, context, 
neighbourhood rela-
tionships 

♦ Transferable rules: 
boundaries reproduced 
automatically across 
different data sets 

♦ Quick method 

♦ Identification of im-
age objects, not real 
objects 

♦ Inability to include 
or ignore features in-
telligently 

♦ Fusion of real ob-
jects due to spectral 
confusion 
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4. Conclusions 

In this paper, two approaches for mapping urban land cover (for the pur-
poses of identifying sealed soils) using true colour ortho-rectified aerial 
photography have been presented. The traditional technique of aerial photo 
interpretation (API) has been used to compare against new automated 
methods for boundary delineation, with the use of eCognition software. A 
quantitative analysis showed a very high agreement between the two 
methods across a range of different UK urban land use types: 1960s resi-
dential, Victorian residential, commercial, and industrial.  

Both methods identify features at multi-scales and use shape, context 
and proximity information. The great benefit of eCognition is that once the 
user finds the appropriate parameters for a satisfactory segmentation and 
classification then these can instantly be applied in other areas with similar 
land cover. Consequently, the automated analysis is objective and quick in 
contrary to the subjective and very time consuming API.  

eCognition’s main disadvantage is that it cannot interpret an image as 
intelligently as a manual interpreter would, mainly because it does not rec-
ognise real objects, but identifies image objects, which can be spectrally 
confused. This can be overcome to an extent by applying fuzzy rules dur-
ing the classification stage.  

The ability to work flexibly on specific parts of the image, allows the 
user to analyse the image in a way that replicates API. The benefits of the 
automated approach in conjunction with the high agreement that the quan-
titative analysis showed, led to the conclusion that eCognition can replace 
the manual method of on-screen digitisation of aerial photography.  

This research study will continue by exploring eCognition’s automated 
classification using the ‘membership function’ approach. This will prove 
whether API can be replaced by a completely automated method. In the fu-
ture automated classification, shadow will be reclassified and assigned to a 
specific land cover class. This procedure has already been done manually 
during API but has not been used as only segmentation (and not classifica-
tion) was compared in this paper. If the work was to be repeated again, the 
most complicated sample area should be used first in order to find the ap-
propriate values of the segmentation’s parameters. In this way, fewer 
‘mixed areas’ will need to be manually classified in order to run the seg-
mentation again in a smaller level by using object domains (applicable in 
eCognition Professional v5). 

Opportunities and limitations of object-based image analysis
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ABSTRACT: Brazil, like many other developing countries is demand-
ing modern IT tools that would allow to monitor, to analyze and to inter-
vene in the city planning process. Urban areas, especially metropolitan re-
gions like Belo Horizonte (Minas Gerais State Capital, Brazil) are highly 
complex and its’ diagnosis is quite difficult. With the advent of high-
resolution satellite systems, such as QuickBird, object-based image classi-
fication techniques became efficient procedures for the analysis and map-
ping of land use/land cover. This new image classification paradigm uses 
context relations, hierarchy and fuzzy logic. A multi-temporal analysis, 
considering also ancillary data, allows spatial inferences generating infor-
mation to subsidize urban planning. In this study, spatial inferences were 
made for two quarters of Belo Horizonte using QuickBird ORStandard 
scenes from 2002 and 2004, working with object-based image classifica-
tion techniques and considering geological, geotechnical and urban legisla-
tion data on a GIS. At both scenes ortho-rectification was done using a 
rigorous model. Following information were generated considering the 
growth of two quarters (Belvedere and Buritis) in the timeframe consid-
ered: a land use/land cover map, detection of irregular land occupation, of 
areas with risks for slope slipping/erosion as well as an analysis of poten-
tial damage to population and property. 
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1 Introduction and problem setting  

Remote Sensing and GIS (Geographic Information System) due to its 
cost/benefit ratio and to its advanced technology, are being increasingly 
used to generate relevant information to support decision-taking for a wide 
range of urban applications. QuickBird is one of the new high resolution 
satellites, whose data have quality and precision for urban applications 
(Yang 2003). In order to use the full potential of orbital images with high 
and very high spatial resolution, an adequate mathematical model or a tri-
dimensional interpolation function, based on the sensor geometry and ori-
entation, is necessary (Büyüksalih et al. 2004). According to Toutin 
(2004), images without geometric correction, contain a large and signifi-
cant amount of distortions that would not allow a direct superposition to 
cartographic data in a GIS. Considering the requirement of geometric cor-
rection, an ortho-rectification procedure (Cheng et al. 2003 and Digital 
Globe 2004) was used for the two satellite scenes analyzed. Considering 
the RMSE found after the ortho-rectification (1,05 and 0,86 m respectively 
for the scene of 2002 and 2004), the scale of work of this study is 1:5,000, 
and these results are in accordance with the requirements established by 
the Brazilian Cartographic Society, referring to the Cartographic Exactness 
Standard (PEC-A) for this scale (Brasil, 1984). 

To explore the richness of data delivered by high resolution sensors, a 
“bridge” is necessary between those approaches already established for vis-
ual interpretation that join the hierarchic relations of the interpretation from 
basic image elements with digital image processing (Herold et al. 2003). Ob-
ject-oriented approaches, based on multi-resolution segmentation, hierarchi-
cal nets, fuzzy membership functions, as well as cognition elements, showed 
high efficiency to discriminate a large amount of targets represented in high-
resolution images. The use of the “Object” concept is essential in such an 
approach of image analysis, because one assumes that the semantic informa-
tion needed for the interpretation of an image is not present in the pixel, but 
rather in the image objects and its’ interrelations (Definiens, 2004). Being 
so, the contextual information can be described and used mainly in two 
forms: (1) in a spatial context where the neighbor entities are described in a 
tree with horizontal or vertical direction, and (2) in a semantic context which 
allows to group those classes which have similar semantic characteristics 
(Hofmann and Reinhardt 2000; Thomas et al. 2003). 

The main characteristic of segmentation based on multiple resolutions, 
is the option to segment the same image at different scales related to each 
other, forming a hierarchical net which is the knowledge basis for the ob-
ject classifications (Baatz and Schäpe 2000; Benz et al. 2004). The object-
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based classification allows the user to define complex rules based on spec-
tral characteristics and in inherited spatial relations. Objects can be defined 
and classified by the structure and behavior of similar objects (Blaschke et 
al. 2000; Definiens 2004; Kux and Araújo 2006). The classification based 
on fuzzy functions transforms the values of attributes from an arbitrary in-
terval to a defined interval between 0 and 1, indicating the membership of 
an object to a specific class. So each object can have a fuzzy membership 
to more than one class, expressed by its degree of adequateness to the de-
scriptors of these classes (Blaschke et al. 2000, Definiens 2004). The ma-
jor advantage of this approach is the expression of uncertainness of mem-
bership and knowledge (Bock et al. 2005). 

As a contribution to urban planning and to sustainable development, the 
objective of this study is to evaluate (1) the performance and characteris-
tics of object-based image classifications, using two QuickBird OR Stan-
dard scenes of two quarters from Belo Horizonte (Belvedere and Buritis), 
(2) spatial inferences based on the integration of these classifications and 
other data within a GIS.  

2 Brief description of test sites 

Taking into account that both scenes available for the study are from recent 
dates within a short timeframe (2002 and 2004), the choice of quarters Bel-
vedere and Buritis was done mainly because both suffered very strong 
changes in this period. Besides that, these places have a high occupation 
density and a net of streets which are unable to allow good traffic conditions 
due to the rising number of vehicles. In both quarters there is an increase of 
soil imperviousness as a consequence of constructions growth in parallel to 
the reduction of green areas, changing the original landscape. These prob-
lems indicate the need of a constant monitoring as well as an analysis on the 
evolution of the occupation from these quarters, considering both technical 
and legal aspects of relevance for urban planning. 

Concerning the geological/geotechnical and relief aspects, both quarters 
are located on a succession of meta-sedimentary rocks (phyllites, schists) 
with general NE-SW strike and 45° SE dip (Silva et al. 1995). At the 
slopes dipping to SE, the geotechnical conditions are poor, especially for 
shallow foundations of constructions. Referring to earth cuts, there is a 
great probability of earth slipping along the schistosity plan. Due to these 
reasons, those slopes which coincide with the direction, and dip or schis-
tosity angle of the geological layers, present a lower stability, especially in 
areas of phyllite outcrops. At Buritis these issues are aggravated due to 
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strong relief and high altimetric amplitude, favoring earth slipping. Silva et 
al. (1995) recommend a preferential settlement model at slopes turned to 
NW, and buildings interspaced with large empty spaces. Nevertheless, 
these recommendations have not been followed and one verifies presently 
a high population density with very close buildings. 

3 Object-based image classifications 

After the geometric correction and fusing, images were cut and imported to 
the classification software used (eCognition). An urban cadastre was also 
imported and used as an auxiliary thematic layer. The following procedures 
were considered: correction/adjustment of images and cartographic data 
used as a base, definition of land cover classes, image segmentation, deter-
mination of class hierarchy, definition of membership rules and evaluation 
of classification results.  

The definition of land cover classes started with the visual interpretation 
of the satellite images and aerial ortho-photos available. Interpretation 
keys were elaborated from the elements color, texture, shape, size, shadow, 
height, pattern and localization. The classes defined for mapping and its’ 
main characteristics are at Table 1. 

Table 1. Classes defined for the study 

CLASSES DESCRIPTIVE CHARACTERISTICS 
Asphalt Possibility to be mapped with the urban cadastre. 
White Highly bright. Constituting materials not discernible. Various forms. 

Gray Cover Impervious. Covers of high buildings. Many variations in tone and 
brightness. 

Flare Quantization level close to 2048. 

Swimming pools High response in the blue channel, sometimes in the green, regular 
geometric forms. 

Ceramic tile Linear borders. Pattern according to legislation. Variable Geometry. 
Response in the red channel. Large tonal variation. 

Bare soil Modified terrain (earth works). No vegetation. Response in the red 
channel. Irregular forms. Tonal Variations. 

Shadow Low brightness. Closeness to high buildings and arboreal vegetation. 

Arboreal vegeta-
tion 

High response in near infrared. Texture caused by shadow of different 
height of trees. Variable forms. Sometimes covering streets.  

Grass vegetation High response in near infrared. Uniform texture. Response in the red 
channel due to bare soil presence. Variable forms. 
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The analysis of characteristics from each class and the respective inter-
pretation keys indicate initially the attributes to be used in the classifica-
tion by fuzzy membership rules.  

3.1 Segmentation 

The segmentation is the first step for the classification, and the objects are 
created from it. The first segmentation, afterwards called “Level 2”, sepa-
rated different objects of interest from the urban environment, specifically 
buildings. Here color and smoothness were prioritized in detriment of form 
and compactness. So objects with smoother linear borders, such as houses 
and buildings were considered. The results of this segmentation were con-
sidered to perform the classification that was used in the following proce-
dures (spatial inferences). It is recommended to create the level in which to 
perform the classification first and those levels used to help the classification 
afterwards. This is important to avoid the risk of having the most important 
object level negatively influenced by sub- or super-objects (Definiens, 
2004). 

At the second segmentation, later designed as “Level 3”, parameters 
which prioritize the form were used, and large objects were searched, like 
those of the polygons of the thematic data from the urban cadastre. At 
Level 1, the third segmentation performed, the scale threshold was reduced 
in order to obtain smaller objects than those of interest, which allowed the 
creation of descriptors based on texture. Levels 1 and 3 were established to 
help on the definition of these rules and class limits, allowing that the ob-
jects of interest recognize its’ super-objects (Level 3) and its’ under-
objects (Level 1). After the classification, the objects of these auxiliary 
levels were used for the definition of classes of interest. 

3.2 Hierarchical net 

The hierarchical net allows the relation between classes and its groups. So a 
net was developed where those objects which are more easily distinguished 
have got a higher position than those presenting higher confusion. Figure 1 
shows the generic hierarchical net, where one can find the classes of interest 
as gray rectangles. Other classes were introduced in the process as support to 
the generation of membership rules. The objects were divided, a priori, as 
belonging or not to the classes of higher separability. Doing so, the creation 
of rules was facilitated and the characteristics of just one class were investi-
gated. The hierarchy was developed as a consequence of non-association of 
objects to higher classes. This was done so that classes presenting higher 
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confusion remain at the lowest levels of hierarchy, reducing the classifica-
tion error and evidencing the limitation of the process. 

One of the most significant advantages of the hierarchical net is the fact 
that it can be used in other classifications or similar studies. This saves a 
lot of time and allows to focus in the membership rules (Item 3.3 – Table 
2) that usually are different for each project. In this study, for instance, the 
hierarchical net developed for the first classification was used at the other 
classifications with just a few changes. 
 

 
Fig. 1. Generic hierarchical net applied. 

3.3 Membership rules 

The definition of membership rules has a high weight at the performance 
of a classification, because here the attributes used by the classifier are de-
fined. Initially the behavior of objects was visualized, and related to a cer-
tain spatial attribute by means of a gray level image generated with the 
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eCognition package. This spatial viewing was done for several attributes, 
and so it was possible to identify which of these attributes could be used 
for the separation of classes. After this investigation and in order to iden-
tify the limits of separation among the classes with higher accuracy for 
each membership rule considered, samples from each class were collected. 
Histograms from these samples were used to limit the curve of each attrib-
ute for the classes represented and to separate them with this attribute. We 
attributed the least possible number of rules for each class in order to avoid 
the increase of confusion for the classifier using the most efficient rule ca-
pable to discriminate this class. Table 2 presents the description of the 
rules defined for the classes of interest at Level 2 (Fig. 1) for the classifica-
tion of quarter Belvedere at the 2004 image. Further more detailed infor-
mation about the rules and the hierarchical net of other classifications are 
found in Araújo (2006). 

Table 2. Membership rules used for the classification of the 2004 image, quarter 
Belvedere. 

CLASSES RULES APPLIED 

Arboreal vegetation VEGETATION; Brightness, Vegetation index; Texture: average 
of sub-objects at band 4. 

Grass vegetation VEGETATION; Brightness; Vegetation index; Texture: average of 
sub-objects at band 4; Inexistence of “Asphalt” as neighbor objects. 

Asphalt NON-VEGETATION; Brightness; existence of super-objects 
“Streets” (from cadastre). 

Shadow NON-VEGETATION; Brightness; Nonexistence of super-objects 
“out of area”. 

White roofs NON-SHADOW; HIGH BRIGHTNESS; Brightness. 
Flare NON-SHADOW; HIGH BRIGHTNESS; Brightness. 

Ceramic tile NO HIGH BRIGHTNESS; RED; Vegetation Index; It is not “As-
phalt”; Area relationship with sub-objects “Ceramic tile n1” (*) 

Bare soil NO HIGH BRIGHTNESS; RED; It is not a tile; Bright; It is not 
Asphalt; Ratio of band 3 by all others; Vegetation Index. 

Gray Cover 
NOT RED; BLUE; Bright; Vegetation Index; Relation of area 
with sub-objects “blue (n1)”; It is not Asphalt; It is not a Swim-
ming pool. 

Swimming pool NOT RED; BLUE; Bright; It is not Asphalt; NDVI; Ratio of bands 
3 and 1 by all others; Area relation of sub-objects “blue (n1)”. 

(*) Objects classified as Ceramic tile in “Level 1”. 
 
The detached classes (HIGH CASE) at Table 2 were introduced in the 

process to compose a hierarchy (Fig. 1) that contains some rules inherited 
from hierarchically lower classes. So the lower classes have two sets of 
rules: those developed specifically for that class and those inherited from 
upper classes. Furthermore Table 2 shows the importance of previous visual 
interpretation keys. As mentioned before, it was this analysis that gave us 
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the knowledge and direction for further procedures: spatial viewing of at-
tributes and definition of the membership rules and its curve limits. It is im-
portant to mention that although the hierarchy used was almost the same for 
all classifications, the membership rules had to be adapted or edited in order 
to optimize the results for the classification of each image. Different off-
nadir angles, acquisition dates or atmospheric conditions change the charac-
teristics and the Digital Numbers (DN) of the image, also for scenes of the 
same area. In that case, the fuzzy interval used in the rules also changes and 
significant modifications have to be made in the attributes of classes. 

3.4 Classifications 

In this section the most significant results obtained with the object-based 
classification, as well as its’ peculiarities, challenges and perspectives are 
emphasized. To evaluate the classification quality, the Kappa index was 
used. For this analysis, 30 samples per class were collected and considered 
as ground truth. Only class “Flare” had a reduced number of test samples 
due its low representation. Besides that, aiming to determine the uncer-
tainness of classification, a map of stability was generated, considering the 
difference among the highest and the second highest level of membership 
of an object. It must be emphasized that an object that was classified with a 
high level of ambiguity does not mean that its’ classification is erroneous, 
but that it does not belong specifically to a certain class.  

The first classification was done from quarter Belvedere, using the 2004 
image, which became the base for all further image classifications. Due to 
that, and aiming to evaluate the possibilities of automation of the process, 
many procedures of this classification were repeated in the following ones. 
Major difficulties were found for the discrimination between Arboreal and 
Grass vegetation and between Ceramic tile and Bare soil. In order to re-
duce the confusion between the two classes at the first case, a rule was in-
troduced which differentiates both classes with the number of sub-objects 
included in the targets (objects) of interest (Fig.2). It is referred here to a 
texture attribute of possible implementation due to the introduction of a 
lower level as that one of interest. Frequently arboreal vegetation has a 
higher number of sub-objects by the presence of shadow between the 
leaves, allowing for more texture. Figure 2 illustrates visually, at the indi-
cated spots, the progress of separation among arboreal and grass vegeta-
tion, using the texture rule. 
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Fig. 2. Example of classification improvement  by adding a texture rule showing 
the  Panchromatic image (A), Classification without the rule of texture (B) and the 
classification with texture rule (C) 

 
The use of texture, as shown in the example above, is an important step 

to separate arboreal from grass vegetation, particularly in tropical countries 
like Brazil, where vegetation grows very fast.  

As for the discrimination between classes “Bare Soil” and “Ceramic 
tile” it is noteworthy that both are constituted by clay materials with very 
similar spectral responses as those in the visible part of the spectrum. Dur-
ing the analysis of these classes, we found out that in average, the samples 
of class “Ceramic tile” presented higher vegetation index values (ratio of 
band 4 by 3) than those of class “Bare soil”. This can be due to a small 
musk-like vegetation on the older tiles. Taking into account that a large 
amount of the houses with this type of cover is older than a few years, it is 
quite probable that this type of vegetation installed itself there. Further-
more, the satellite scenes used are from the rainy period, which contributes 
to the proliferation of this tiny vegetation type. Since the bare soil of this 
region is a product of earth works, all vegetation was eliminated for the 
construction of buildings. Then a rule was set up that limited the response 
of the objects, referring to the vegetation index, which reduces the confu-
sion among the two classes.  

The results of the Kappa values per class for all four classifications are 
presented at Table 3. According to Table 3, the results obtained are very 
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good. The values of Kappa total index for the four classifications vary be-
tween “Very Good” and “Excellent”, in accordance with the reference ta-
ble developed by Landis & Koch (1977). 

Table 3. Results of total and per class Kappa indices for the classifications of both 
quarters  

 Belvedere 2004 image classification 
Kappa Asphalt White Gray Flare S. pool Ceramics Soil Shadow Arboreal Grass 
Class 1 1 0,96 0,60 0,93 1 0,78 0,89 0,53 0,77 
Total 0,86 

Belvedere 2002 image classification 
Kappa Asphalt White Gray Flare S. pool Ceramics Soil Shadow Arboreal Grass 
Class 1 1 0,60 0 0,78 0,93 0,56 0,96 0,42 0,61 
Total 0,75 

Buritis 2004 image classification 
Kappa Asphalt White Gray Flare S. pool Ceramics Soil Shadow Arboreal Grass 
Class 0,95 0,98 0,89 1 0,63 0,49 0,93 1 0,84 0,84 
Total 0,84 

Buritis 2002 image classification 
Kappa Asphalt White Gray Flare S. pool Ceramics Soil Shadow Arboreal Grass 
Class 1 0,82 0,92 1 0,60 0,52 0,70 1 0,63 0,77 
Total 0,77 

 
At the Belvedere 2004 classification, the Kappa values per class are very 

high, except for classes “Arboreal vegetation”, “Grass vegetation” and 
“Flare”. As for “Grass vegetation” and “Arboreal vegetation” the low result 
is due to the confusion among these classes, although it became smaller with 
the addition of the texture rule mentioned. Referring to class “Flare”, a tenu-
ous difference was verified among some objects with high brightness and 
other saturated ones. This occurs because in the neighborhood of saturated 
pixels (Flare) there were always high brightness pixels, influenced by them, 
making its separation more difficult. It is important to notice that class “As-
phalt” got 100% correctness due to the shared information about the urban 
cadastre contained at Level 3. If no ancillary data (urban cadastre) and/or no 
geometric correction would be available, the results for “Asphalt” would be 
significantly worse because it is difficult to separate this class from dark ce-
ment and asbestos. Referring to the analysis of uncertainness, the map on 
stability of classified objects indicated that the less stable objects are those 
related to vegetation classes (“Arboreal” and “Grass”). This was already ex-
pected because of the great confusion among these classes. 

At the Belvedere mapping with the 2002 image, Table 3 indicates that the 
individual and total values, even though very good, are smaller than those 
obtained with the 2004 image. This occurred mainly among those classes 
with higher confusion, namely at “Ceramic tile” and “Bare soil”. Only class 
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“Asphalt” maintained the same value. Other results probably would have 
been obtained if other thresholds and attributes were tested to increase the 
class separation. It is noteworthy that class “Flare” presented result zero at 
the individual Kappa index. Besides the factors mentioned at the analysis of 
this class at the 2004 image, here it is possible that there are no objects with 
the same characteristics like those mapped at the 2004 scene. The analysis of 
classification stability of this image came close to the 2004 one, with a larger 
amount of non-classified objects. It indicates once more the need to test spe-
cific fuzzy functions intervals for each classification. 

The classification evaluation of the 2004 image from the Buritis quarter 
showed a better discrimination of the vegetation classes when compared to 
the results obtained for Belvedere, due to the inclusion of a new attribute (ra-
tio of band 4 by 3) for the distinction between arboreal and grass vegetation. 
One observes also a decrease of values at class “Swimming pool”, probably 
because this class is not strongly represented in this quarter. The stability 
map presented a lower number of ambiguous objects when compared to the 
results of the Belvedere images. This occurred because here the membership 
rules defined more clearly the objects “arboreal” and “grass”. 

The analysis of classification results from the 2002 Buritis image shows 
a lower performance when compared to 2004, similarly to Belvedere. This 
result indicates that those rules elaborated for an image of a certain date do 
not apply necessarily to other images. The stability map for this classifica-
tion confirms that the uncertainness of vegetation classes was reduced with 
the addition of a further rule to discriminate them in relation to the Belve-
dere scenes. As for the other classes, it is noteworthy that although the ex-
actness is a little lower than at the 2004 image, the stability of its objects 
had no significant change. 

As a general observation of the image classification procedure, we veri-
fied that the hierarchical net developed for the 2004 image of Belvedere, 
can be used at further classifications with small changes. Nevertheless the 
membership rules have to be adapted or even modified. This shows that 
the interferences from the radiation arriving at the sensor as well as cli-
matic factors (rainy season) and the off-nadir incidence angle must be con-
sidered, especially in multi-temporal studies like this one. 

4 Spatial inferences 

From the information available related to local Geology/Geo-Techniques, 
Geological risks and Legislation, together with the land cover mapping 
presented earlier in this study, some spatial inferences were made for both 
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quarters under study. The objective of these inferences is to point out im-
portant questions of interest to local population, and to contribute to urban 
planning of these quarters and others with similar problems. 

4.1 Urban expansion for the timeframe 2002-2004 

This analysis was done to quantify the increase of soil imperviousness, in 
square meters for the timeframe 2002-2004 (Table 4), using the classifica-
tions of both dates. Those classes corresponding to impervious areas were 
calculated for 2004 and the result subtracted from those of 2002. Similarly 
the green areas were calculated. 

Table 4. Areas of land cover classes obtained from 2002 and 2004 image classifi-
cations from Belvedere and Buritis 

 Areas of land cover classes – m2 
Classes Buritis 2002 Buritis 2004 Belvedere 2002 Belvedere 2004 

Asphalt 122242,68 134768,53 169990,93 166739,05 
White roof 45323,28 52157,16 52663,32 30020,40 
Gray Cover 412826,79 444673,83 203189,77 274347,02 
Flare 2331,36 631,80 93,60 611.64 
Swimming pool 471,60 626,76 2994,12 4590,00 
Shadow 58006,08 92256,48 42384,60 52450,56 
Bare soil 125866,09 88027,56 242991,73 182394,73 
Ceramic tile 9463,32 4576,32 87817,32 99083,88 
Arboreal vegetation 430268,43 501247,48 199428,85 179812,81 
Grass  551191,36 437422,71 165793,33 181056,25 
Total 1757990,99 1756388,63 1170494,70 1167347,57 
2004 – 2002 1602,36 -3147,13 
Total impervious  589856,07 636175,84 513661,34 570190,35 
2004 – 2002 46319,77 56529,01 
Total Vegetation 981459,79 938670,19 365222,18 360869,06 
2004 – 2002 -42789,60 -4353,12 

 
Analyzing Table 4, one verifies that there is a difference of the totals of 

classes. This is due to the non-classified objects which vary at each image. 
The amount of non-classified objects is an important issue due its relation-
ship with the membership rules. It is more likely to have greater non-
classified objects when there are several attributes used to discriminate a 
class. The object has to adequate itself to each rule in order to belong to a 
certain class.   
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Referring to the increase of imperviousness of urban soil, demonstrated 
by the difference between the 2002 and 2004 classes “Asphalt”, “White 
roofs”, “Cover” and “Ceramics tile”, the results are a proof of densification 
from these quarters in the timeframe under analysis. It is important to note 
that the 2004 image presents a larger area of Shadow apparently due to the 
following reasons: 1) the 2002 image was obtained with a lateral viewing 
angle so that part of the shadow is covered by the distorted object geome-
try, 2) there was an increase on the number of high buildings identified in 
the more recent image. This fact could also explain the reduction of class 
“Asphalt” in 2004 at Belvedere. Shadow is a factor that changes consid-
erably the results, and it is an element to be considered in urban analysis 
with remote sensing data. 

A process of substitution of one-family houses by vertical buildings 
(whose cover is normally made of metal, asbestos or cement) due to the high 
cost of the lot can explain the reduction of the area from “Ceramics tile” at 
Buritis. Another possibility is that the membership rules created to discrimi-
nate classes “Ceramic tile” and “Bare soil” did not reduce the confusion 
among them. The reduction of the green area and the increase of impervious 
covers are clear evidences that these quarters are growing disregarding qual-
ity of life for the population. This reinforces the need to decision taking by 
the authorities at the planning agency to reduce the urban densification. 

4.2 Irregular occupation 

This analysis aimed to verify which constructions were built on inadequate 
places according to the municipal legislation and to the variable slope 
steepness. In order to perform this task, the maps of land cover and slope 
steepness, as well as the information of the present legislation for the city 
of Belo Horizonte (Law on Parceling, Land Use and Occupation, Belo 
Horizonte 1996 and 2000) were put together in a Boolean operator using a 
program developed in SPRING software package (INPE, 2005). Those 
buildings located in areas with slope steepness above 47% and/or which 
were positioned within a ZPAM (Zone for Environmental Protection), 
were pointed out in the inference. Using this fast forward procedure of data 
integration in a GIS, it is possible to identify built-up areas which disagree 
with any legal restriction.  

4.3 Risks of slope slipping 

For this analysis data from geology, slope orientation and steepness were in-
cluded in a GIS. The last two datasets were derived from a digital terrain 
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model. A geological map (Silva et al. 2005) and geotechnical descriptions 
were used to identify the most important characteristics from these themes at 
both test sites. A Boolean operation was defined and its result detached those 
areas with slopes directed to SE with high steepness (Figure 3), since ac-
cording to Silva et al. (1995) these areas are most prone to slope slipping. 
 

 
Fig. 3. Map of risks of slope slipping at Belvedere and Buritis quarters 

 
Comparing these maps one verifies that Buritis has got a higher prob-

ability to slope slipping due to the predominance of relief characterized by 
steep slopes and high altimetry amplitudes. This is an important alert for 
future actions referring to the land use/occupation of such environmentally 
sensitive areas. 

4.4 Hazards to population 

In this analysis a large amount of variables and procedures was put together. 
Four categories of data were incorporated in an analytic-hierarchic process 
(AHP): critical areas, land use classification, specific legislation and slope 
steepness. Major importance was given to the category containing the criti-
cal areas because, from its information, the hazards to population and prop-
erty were derived. The Map of Critical Areas is based on 3 maps obtained at 
PRODABEL (Belo Horizonte City Planning Agency), which contain areas 
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of geological risks related to excavations, slope slippery and erosion. This 
information was grouped in just one map with places subject simultaneously 
to one, two or three geological risks mentioned. 

Each one of the four categories incorporated to the AHP process was 
compared to the others, establishing a hierarchy and using a decision support 
tool, to attribute weights to each information source. After defining a hierar-
chy among the categories, a program in LEGAL (a general spatial computer 
language used in SPRING software package – INPE, 2005) was generated 
and edited with the values of the weights from each of the classes proposed. 
After edited and executed, the program produced a weighted numeric map. 
From this numeric grid an image was generated, afterwards associated to a 
variation in gray levels, which represent those places with low (black) and 
high (white) susceptibility of hazards to population (Fig. 4). 
 

 
Fig. 4. Map of environmental vulnerability for population and property 

The places of interest in this inference are those represented by gray 
levels at the fourth quartile of the gradation bar (Fig.4). Since these areas 
have a less restrictive legislation (which is an incentive to construct high 
buildings), unfavorable geotechnical characteristics and high slope steep-
ness, there is an increase of risks to the population. The “Geological risk” 
here is considered as an association of several activities which allow the 
occurrence of events that would cause damage to population and property, 
caused or not by human interference (Silva et al. 1995). Nevertheless this 
risk is subject to events such as strong rainfall. At Figure 4, one observes 
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that Buritis has a major number of risk areas than Belvedere, due to its 
geotechnical conditions and to a less restrictive legislation. Areas with 
high slope steepness and geological risks are included in a zoning of pref-
erential densification. This is an alert for urban planners, in order to 
change or create limitations to urban expansion in high risk areas. 

5 Conclusions and Perspectives 

From the results found we conclude that: 

• The evaluation of classifications indicated the possibility to use the land 
cover map in the following steps of the study, especially for the spatial 
inferences; 

• The study showed the possibility to map areas with tendencies of growth 
and risk, besides being a reliable information source for urban planning; 

• The object-based image analysis methodology is a valid approach for 
the classification of such large datasets as the QuickBird images used in 
this study. It is advisable to improve this approach by all means, so it 
becomes an operational tool for e.g. urban planning agencies, as indi-
cated in previous application examples.  
To improve this methodology specifically for urban applications, we   
strongly recommend the following further studies: 

• Use a DSM (Digital Surface Model) for the ortho-rectification of objects 
and buildings. One should investigate the influence and use of DSM in 
areas of occlusion due to the satellite incidence angle; 

• Evaluate the application of high-resolution images, obtained at several 
incidence angles. Use preferentially complementary angles, so it is pos-
sible to generate stereoscopy to obtain information of land/soil cover in 
occlusion areas; 

• Test the efficiency on the use of the DSM for the distinction of bare 
soils and ceramic tiles; 

• Investigate descriptors that are able to discriminate classes of gray cover 
like asbestos, metallic roofs and cement, quite frequent in Brazil; 

• Map objects of several classes which are in the shadow. 

Last but not least, it is absolutely necessary to improve the OBIA ap-
proach, considering the “flood” of data which will become available from 
the large number of high-resolution satellite systems to be launched in the 
next few years (Ehlers, 2007). 



Object-based Image Analysis using QuickBird satellite images and GIS data    587 

References  

Araújo EHG (2006) Análise multi-temporal de cenas do satélite Quickbird usando 
um novo paradigma de classificação de imagens e inferências espaciais: 
estudo de caso Belo Horizonte (MG). 159 pp., Dissertação (Mestrado em Sen-
soriamento Remoto) – INPE 2006. (INPE-13956-TDI/1062) available at: 
http://mtc-m13.sid.inpe.br/col/sid.inpe.br/MTC-
m13@80/2006/07.24.19.43/doc/paginadeacesso.html  

Baatz M, Schäpe A (2000) Multiresolution segmentation – an optimization ap-
proach for high quality multi-scale image segmentation. In: STROBL, J. & 
BLASCHKE, T. (Eds.): Angewandte Geographische Informationsverarbei-
tung XII. Beiträge zum AGIT-Symposium Salzburg 2000. Karlsruhe. (Herbert 
Wichmann Verlag), pp 12-23 

Belo Horizonte (2000). Lei Nº 8137/00. Available at: 
www.pbh.gov.br/mapas/leiuso/lei-8137.htm 

Belo Horizonte (1996). Lei Nº 7165/96. Available at: 
http://pbh.gov.br/siga/procuradoria/pgmlegis.htm 

Benz UC, Hofmann P, Willhauck G, Lingenfelder I, Heynen M (2004) Multi-
resolution, object-oriented fuzzy analysis of remote sensing data for GIS-
ready information. ISPRS Journal of Photogrammetry & Remote Sensing, vol. 
58, n.3-4, pp 239-258 

Blaschke T, Lang S, Lorup E, Strobl J, Zeil P (2000) Object-oriented image proc-
essing in an integrated GIS/Remote Sensing environment and perspectives for 
environmental applications. vol. 2, pp 555-570, Environmental Information 
for Planning  

Bock M, Xofis P, Mitchley J, Rossner G, Wissen M (2005) Object-oriented meth-
ods for habitat mapping at multiple scales – case studies from Northern Ger-
many and Wye Downs, UK, Journal for Nature Conservation, vol. 13 (Nr. 2-
3), pp 75-89 

Brasil.(1984) Decreto Nº 89.817/84 Regulating Instructions of Technical Stan-
dards for National Cartography. Available at: 
http://www.concar.ibge.gov.br/index7a0.html?q=node/41 

Büyüksalih G, Murat O, Jacobsen, K, (2004) Precise georeferencing of rectified 
high-resolution space images. In:XXth ISPRS Congress. Proceedings Istanbul: 
International Society for Photogrammetry and Remote Sensing vol. 35, pp 184-
188. 

Cheng P, Toutin T, Zhang,Y, Wood M (2003) QuickBird - geometric correction, 
path and block processing and data fusion. EOM, vol. 12, nr. 3 pp 24-30 

Definiens (2004) E-Cognition: User Guide 4. Germany pp 486 
 

DigitalGlobe Inc (2004) QuickBird imagery products: product guide. Longmont, 
Colorado 

Ehlers, M (2007) Sensoriamento Remoto para Usuários de SIG –Sistemas e 
Métodos: entre as Exigências do Usuário e a Realidade. In: Blaschke, T. & 



588      H. J. H. Kux, E. H. G. Araújo 

Kux, H. (eds) Sensoriamento Remoto e SIG avançados, 2nd edition. Oficina de 
Textos Ltda, São Paulo, pp 19-38  

Herold M, Liu X, Clarke KC (2003): Spatial Metric and Image texture for map-
ping urban land use. Photogrammetric Engineering & Remote Sensing, 69, pp 
999-1001. 

Hofmann P, Reinhardt W (2000) The extraction of GIS features from high resolu-
tion imagery using advanced methods base don additional contextual informa-
tion – first experiences. Proceedings, vol. XXXIII, pp. 51-58, Amsterdam In-
ternational Archives of Photogrammetry and Remote Sensing 

Instituto Nacional de Pesquisas Espaciais (INPE) (2005) SPRING: Sistema de 
Processamento de Informações Georreferenciadas. São José dos Campos, 
Available at: http://www.dpi.inpe.br/spring/portugues/download.html. 

Kux HJH, Araújo EHG (2006) Multi-temporal object-oriented classifications and 
analysis of QuickBird scenes at a metropolitan area in Brazil (Belo Horizonte, 
Minas Gerais State), 1st International Conference on Object-based Image 
Analysis (OBIA, 2006), Conference Proceedings [CD], vol. Nr. XXXVI – 
4/C42, Salzburg/Austria 

Landis JR, Koch GG (1977) The measurement of observer agreement for cate-
gorial data. Biometrics, vol. 33 n.1, pp. 159-174 

Silva AB, Carvalho ET, Fantinel LM, Romano AW, Viana CS (1995) Estudos 
geológicos, hidrogeológicos, geotécnicos e geoambientais integrados no mu-
nicípio de Belo Horizonte. Belo Horizonte, MG, Secretaria Municipal de 
Planejamento 

Silva AB, Carvalho ET, Fantinel LM, Romano AW, Viana CS (1995) Mapa 
Geológico de Belo Horizonte. Belo Horizonte, MG, PMBH, (Escala 
1:25.000). 

Thomas N, Hendrix C, Congalton RG (2003) A comparison of urban mapping 
methods using high-resolution digital imagery. Photogrammetric Engineering 
& Remote Sensing, vol 69 (9), pp 963-972 

Toutin T (2004) Review article: Geometric processing of remote sensing images: 
models, algorithms and methods. International Journal of Remote Sensing, vol 
25 n. 10 pp 1893-1924 

Yang X (2003) Remote Sensing and GIS for urban analysis: an introduction. Pho-
togrammetric Engineering and Remote Sensing, vol 69, nr 9, pp 937-939 



Chapter 6.4 

An object-based approach to detect road features 
for informal settlements near Sao Paulo, Brazil  

R. A. A. Nobrega1,2, C. G. O’Hara1, J. A. Quintanilha2 

1 GeoResearch Institute, Mississippi State University, Starkville-MS, USA.  

2 Polytechnic School of Engineering, University of Sao Paulo, Sao Paulo, 
Brazil. rodrigo.nobrega@poli.usp.br 

KEYWORDS: remote sensing, classification, urban, sprawl, high resolu-
tion image, linear correspondence analysis 

ABSTRACT: Continuous mapping efforts have been required to moni-
tor intense urbanization processes of large cities of developing countries. 
The uncontrolled sprawl occurring in the vicinity of Sao Paulo, Brazil 
since the 70’s illustrates this scenario. Considering that urban sprawl 
causes changes to road networks, monitoring new roads as well as the 
changes along existing roads can provide significant information for urban 
management. Due to the lack of coverage in historical and accurate aerial 
image and map products, existing or even outdated image data are unavail-
able for planning urban land use with substantial relevance. The recent 
availability of high resolution satellite images, beginning with the 
IKONOS II in 1999, has enabled urban applications of Remote Sensing. 
Unfortunately, traditional techniques employed to detect land cover infor-
mation based on per-pixel analysis have yielded unsatisfactory results in 
urban application of high resolution satellite images. In this sense, en-
hanced capabilities and successful applications of object-based classifica-
tion have stimulated research to develop new methodologies to provide 
geoinformation. To this end, road extraction research has been formulated 
to segment object-primitives from images and to use the resultant informa-
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tion to devise enhancements to improve the road detection and classifica-
tion process.  

This chapter reports the use of object-based image classification applied 
to road detection in informal settlements areas. An 11-bit IKONOS image 
was employed as the primary remote sensing data for classification. Prin-
cipal components and semi-homogeneous segmented area products (seg-
mentation products) were computed and used to define custom features. 
Auxiliary data were calculated from spectral information in combination 
with geometric information extracted from segments. Contextual informa-
tion was also employed to support the implementation of a classification 
rule base. The classification rule base eliminated vegetated areas and then 
considered impervious surface and bare soil areas, as well as the width, 
length, asymmetry and the neighborhood relationship for the objects to de-
tect road features. Comparisons between the automatic approach results 
and manually extracted road feature areas delivered insight regarding 
omission and commission error by area counting as well as metrics em-
ployed to determine completeness and correctness of extracted road fea-
tures by linear correspondence analysis attest to the efficiency of the meth-
odology. Results indicate that the methodology produces significant 
information and offers improvements over traditional pixel-based methods 
of road extraction and classification.  

1 Introduction 

Investigations delivering insight as to changes in the urban landscape are 
of extreme importance for land planning and land management. The un-
controlled sprawl that has occurred in large cities of developing countries 
presents an obstacle to urban management. (Nobrega 2007). Currently, the 
Sao Paulo metropolitan region has a population estimated in excess of 17 
million people (Barros 2004). The intense urbanization process experi-
enced since the 70’s has caused major problems in regional land use. Tra-
ditional mapping efforts utilizing aerial imagery and periodic updates 
could potentially provide the best technical solution, however these ap-
proaches carry with them very high effective cost due to the continuous 
map updates necessitated by the emergence of buildings, roads as well as 
new settlements surrounding these cities. However, the recent develop-
ments in satellite remote sensing and sensors provide data products that de-
liver frequent revisits as well as improvements in spatial, spectral and ra-
diometric resolution; thereby stimulating the formulation of new 
methodologies for land cover and land use classification which employ 



An object-based approach to detect road features for informal settlements      591 

these satellite-delivered data products. Coupled with improved classifica-
tion methodologies, this next generation of commercial satellite image data 
products, the promise of precise monitoring and mapping locations of ur-
ban development on Earth’s surface can be achieved, including the map-
ping of new settlements surrounding large cities.  

According to Quintanilha & Silva (2005), the large amount of details 
present at high spatial resolution imagery has created many possibilities to 
deliver needed geoinformation. On the other hand, the high internal vari-
ance of these images becomes a problem for traditional per-pixel classifi-
ers. Considering that information present in a remote sensing scene are 
fractal in nature (Blaschke & Strobl 2001), the more characteristics -
geometric, spectral and topologic- for these objects, the more realistic the 
classification can be. The extraction of the object-primitives based on 
segmentation has supported the best results of classification for high reso-
lution images. The object-primitives provide a wide range of information 
to discriminate different land cover types that greatly exceed information 
available through the consideration of pixel attributes by themselves. 

Comparisons between traditional pixel-based and object-based method-
ologies have demonstrated the effectiveness of the new technology. Re-
garding spectral analyses, the separability of urban features remains a chal-
lenge due to the large diversity their spectral patterns. Unknown spectral 
patterns, as well as the high heterogeneity of the urban environment re-
quires the combination of pixel and object information to effectively clas-
sify land cover as well as land use (Shackelford & Davis 2003 ; Hofmann 
2001 ; Tso & Mather 2001). 

This chapter presents research and results describing the development of 
strategies for detecting and classifying roads in informal settlements by us-
ing object information extracted from high resolution satellite images. In 
these strategies, it is proposed that general classification rules may be cre-
ated, but it is also clear that these rule-bases must be adapted to the geo-
graphic locale due to potential differences in image characteristics as well 
as particularities of the land cover and land use. Regardless of how easily 
roads may be visualized from high resolution images, their automatic de-
tection remains a challenge task. Irregular building materials and patterns, 
occlusions by overhanging objects and shadows, differences in width and 
length, discontinuities and the high degree of spatial heterogeneity in terms 
of artificial and natural land cover all contribute to the considerable chal-
lenges to automating the process. These difficulties still exist for object-
based classification, however, more information and tools are likewise 
available in object-based classification to address these issues. 

Indeed, the results obtained indicate a large potential to provide infor-
mation about the unplanned urban sprawl from multi-spectral high resolu-
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tion images. Considering the current demand for urban planning, these 
roads can be used as a layer of information on GIS efforts. 

2 Study area, data and tools 

The research presented was conducted near the urbanized extend of Sao 
Paulo, in the southeast region of Brazil, close to the latitude 230 27’ S and 
longitude 460 41’ W. The area is characterized by recent and unplanned 
occupation, where dense urbanization is found intermixed with preserved 
natural areas. These areas of preserved nature comprise dense tropical for-
est and moderated to rugged terrain (see Fig. 1) provide excellent condi-
tions for groundwater recharge and conserving the environmental balance, 
and are being threatened due to excessive deforestation and uncontrolled 
land use.  

The study area is located on the north part of Sao Paulo, where informal 
settlements have removed the natural coverage and significantly aggravat-
ing environmental conditions leading to increased erosion, flooding, and 
water quality problems. Due to adverse human and environmental condi-
tions in such areas, there is an urgent need to update land use/cover infor-
mation, conduct environmental impact assessments and map road networks 
as reported in Repaka et al (2004).  

 

 
Fig. 1. Overview of north part of Sao Paulo city and the study area. Details show 
the dense occupation among the remaining natural areas and the rugged terrain 

 
An 11-bit IKONOS image, recorded in 2002 over the north region of the 

town was used on this research. It is a CARTERRA Ortho Precision prod-
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uct compiled from a digital terrain model (DTM) provided by a local 
agency for mapping. Also, resolution merging of the multi-spectral bands 
of Ortho Precision products with the panchromatic band resulted in a 
sharpened one meter resolution multi-spectral image, processed by Space 
Imaging Corporate. 

The technologies and methodologies employed in this research utilized 
three significant remote sensing and GIS software tools which follow:   

• Erdas Imagine, to subset areas of interest and computing the prin-
cipal components; 

• Definiens eCognition, for the segmentation and object-based clas-
sification;  

• Esri ArcGIS, for mapping as well as comparative analysis. 

As for the linear correspondence analysis, Matlab and L-CAT were em-
ployed.  

3 Methodology 

With the objective of detecting roads among many other urban features, 
the development of this research required sequential steps of image proc-
essing including data matching, Principal Components Analysis (PCA), 
image segmentation, and class definition. With the classes, their strategies 
of use as well as the classification rules were customized. In short, feature 
information was mined from segments providing characteristics that in-
cluded shape, context and spectral characteristics and these characteristics 
were employed to develop rule bases that were applied in the classification 
process (Fig.2). 
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Fig. 2. Generalized workflow scheme used to extract and classify (detect) road 
features 

3.1 Preprocessing 

The first steps included stacking layers comprising the multi-spectral 
bands of individual images and mosaicking the adjacent IKONOS images 
to provide continuous coverage of the entire study area. Next, the multi-
spectral mosaic was subset and reprojected to Corrego Alegre datum. 
These procedures are fully reported on Nobrega (2007). 

Creating image products from the multi-spectral data included process-
ing of principal components for including these results in the image seg-
mentation and subsequent object-based classification. As a mathematical 
technique to reduce the redundancy of the spectral bands through axis-
rotation and translation on the feature space, results of principal compo-
nents analysis (PCA) have been extensively used in remote sensing to en-
able the best use of multi-spectral images. In practice, the content of in-
formation decreases according to the order of the PC layers. In this work, 
the first three layers were computed by Erdas Imagine and employed in the 
classification rules. Note that the PC layers correspond to index images, 
the range of which is normally greater than the 2048 levels of original 11-
bit image. 

When conducting object-based image classification, the segmentation 
process requires special attention. The segmentation process results in ho-
mogeneous segments of area which are treated as bounded objects. Con-



An object-based approach to detect road features for informal settlements      595 

sidering roads and related urban features as objects of interest, several trial 
segmentations were performed to deliver an ideal fit between the derived 
segments and the targeted urban features. The segmentation used all multi-
spectral bands with the same weight. Emphasizing shape more than color 
characteristics, as described by Pinho (2005), and using a scale parameter 
of 30 produced objects that generally corresponded to the narrow streets 
(around 4-6 meters width), typical found in informal settlement areas. 

Table 1. Parameter adjusted to segment the images in eCognition. 

Band Scale parameter Color/Shape Compactness/Smoothness 
R, G, B and NIR 30 0.1  /  0.9 0.1  /  0.9 

 

3.2 Classes definition 

With the systematic classification of a road system being the overall goal 
of the classification, significant challenges arise to accurately detect and 
classify these target features among many other urban features, especially 
over informal settlement areas. The lack of standardized spatial distribu-
tion of roads and buildings, as well as the presence of many different mate-
rials covering the land causes enormous spectral confusion during the im-
age classification, even for visual inspection. 

To minimize mistakes, the solution employed several classes. Some 
classes were used to mask out areas not in consideration, reducing the 
amount of remaining information, other classes were used during the con-
textual analysis to further define areas of interest. In short, the main auxil-
iary classes are: VEGETATION; SHADOW; BARE SOIL; UNPAVED 
ROAD; IMPERVIOUS and PAVED ROAD. Additional classes which 
contributed to improve the accuracy of the classification were defined for 
CERAMIC ROOF and METALIC ROOF classes, which used shape in-
formation and relative border to shadow. Finally, GAP and TRACK 
classes were defined using shape information to assist in deriving continu-
ous road features.  

3.3 Computing auxiliary layers 

The capability for each derived segment to compute and employ object in-
formation extracted from the original pixel-based data as well as other lay-
ers (such as PCA products or elevation data) is one of the most important 
concepts related to object-based image analysis. Therefore, using the im-
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age data and each object segment, the mean Digital Number (DN) was 
automatically computed for each original band as well as the PC layers. 
These new data support the extraction of auxiliary layers as well as the 
definition of custom features such as vegetation indices.  

Due to the difficulty of detecting road features, a first step is suggested 
that identifies general impervious and bare soil areas to provide candidate 
areas that may be further classified to extract actual roads. In this way, a 
masking strategy was implemented that step-by-step decreased the amount 
of information that was considered for road classification from the full 
scene.  

Initially, vegetated areas were detected though a custom NDVI feature. 
After masking out the vegetation, shadowed areas were also detected using 
a custom feature in eCognition. Removing both vegetation and shadow en-
abled the detection of bare soil areas with high accuracy, as presented by 
Nobrega et al (2006b). On the other hand, the urbanized areas were esti-
mated by the PC-2 that indicated most part of the impervious surfaces in 
the study area. In short, impervious areas and bare soil areas were used as 
reference to detect paved roads and unpaved road, respectively. Table 2 
summarizes the customized functions. The auxiliary layers used during the 
contextual analysis (bare soil and impervious) are shown on Fig. 3. 

 

Table 2. eCognition´s customized functions to detected the auxiliary layers. 

Description Customized Function Bands/Layers Threshold 

NDVI 
 

NIR, Red up to 0.18 

Shadow General Indicator 
 

Blue, PC-1 -450 to -400 
 

Bare Soil General Indicator 
 

PC-3, Blue 0.8 to 1.5 
 

Imprevious areas  PC-2 -350 to -320 
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Fig. 3. IKONOS image illustrating the study area (left); bare soil areas in white 
(middle); and impervious areas in black (right) 

3.4 Strategies used on mining roads from images 

Considering that almost all features present in the urban landscape are 
man-made features, information generated from their geometry can be 
used in the classification process. Since the bare-soil-layer includes the 
unpaved roads and the impervious layer includes the paved roads, the ex-
traction of road features requires further classification of these parent 
classes (bare soils and impervious areas) and appropriate use of informa-
tion mined from the shape of the segments.  

Parameters such as area, width, length and asymmetry, plus relative 
border to other objects where employed, as illustrated on Fig 4. Table 3 
presents a combination of shape and contextual parameters used to develop 
the classification rules. 
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Fig. 4. Parameters extracted from object-shape used on the classification scheme 

Table 3. Features used to detect road features. 

Class   Parameter       Function    Threshold 
  Border length  140 to 150 m 
  length  25 to 50 m 
  length/width  2 to 3 
  asymmetry  0.8 to 1 

PAVED ROAD 

similarity to IMPERVIOUS 
  length/width  2 to 3 
  asymmetry  0.8 to 1 UNPAVED ROAD 

similarity to BARE SOIL 
  area  100 m2   or  more 

  rectangular fit  0.6 to 1 
  asymmetry  0.7 to 1 

similarity to BARE SOIL 
TRACK 

relative border to VEGETATION                50% or  more 
  border length  140 to 150 m 
  length/width  1 to 2 
  asymmetry  0.7 to 1 

similarity to IMPERVIOUS 
GAP 

relative border to IMPERVIOUS                  50% or  more 
 
Fig. 5 illustrates the general flowchart of the methodology. The classifi-

cation process required sequential steps to detect and mask out unwanted 
information. Similarity and non-similarity criteria were used in combina-
tion with geometric, spectral and contextual information. The order of the 
classification reveals the strategy created.  
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Fig. 5. General  classification scheme 

4 Results 

At first, the results were refined and analyzed by visual inspection to de-
termine the general similarity of classified and observed roads, observed in 
IKONOS data during the classification stage. When the detected roads and 
observed roads presented a good matching, the results were exported to a 
shape file. The extracted results were complemented by manually extracted 
referent polygons and lines which were analyzed to determine agreement 
in a GIS program.  The detected roads are illustrated in Fig. 6. 
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Fig. 6. The resultant road system, formed by paved and unpaved streets 

 
In a general view, the road system detected in this work presented a 

considerable high agreement of match with the actual road system. By 
draping the detected roads over the very high resolution orthophotos, the 
agreement was checked through visual inspection for the whole study area. 
Esri ArcScene was used. This procedure was used as basis for the qualita-
tive analysis of results. 

 

 
Fig. 7. Detected roads draped over an orthophoto during the qualitative analysis. 
In detail, the detection of narrow and unstandardized streets formed over the hills 
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5 Quantitative Analyses 

Although the observed results suggest good quality, the quantitative accu-
racy of the process must be computed so that qualified comparisons may 
be drawn between the results of this procedure and other procedures as 
well as to measure improvements that may be obtained by further meth-
odological enhancements. To quantify the accuracy of results, area-based 
analyses were conducted utilizing feature polygon-comparisons of the de-
tected manually extracted reference roads. The overall accuracy affirmed 
the expectations but produced significant commission error. To overcome 
this shortcoming, linear comparative analyses were employed, producing 
parameters that included completeness and correctness. 

5.1 Accuracy, omission and commission errors 

In Nobrega et al (2006a) the detected roads were compared with reference 
ones. Accuracy, omission and commission errors were calculated through 
GIS logic operations such as intersect and erase (Fig. 8). The overall accu-
racy of 64.5% was considered satisfactory due the complexity of the sce-
nario. Omission error explained the 35.5% of roads not detected possibly 
due to such factors as occluded roads, dirty pavement, trees and cars. The 
statistical indices used are presented in the equations below. 

 

 
Fig. 8. Spatial logic operations used to compute the accuracy of the extraction. 
Adapted from Nobrega (2007) 
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                                                           = 64.5% 

 

 
 
 

 (1) 

                                                                   = 35.5% (2) 

 

                                                                             = 76.5% 
 
 

 (3) 

 
Unfortunately, misclassified features contributed to large commission 

error (76.5%). Disregarding the fact that some of the commission error in-
clude features like buildings and parking lots, the largest part of the false-
positive roads (commission areas) were found to be sidewalks and overrun 
features (such as road shoulders) which surround the roads.  

5.2 Linear correspondence analyses 

Despite the substantially accurate result, the large commission error indi-
cates that area-based methods such as pixel-counting are not an appropri-
ate metric for fully quantifying the accuracy of object-based road classifi-
cation. To overcome this shortcoming we introduced the linear 
comparative analysis as presented in Wiedemann (2003) and Seo & 
O’Hara (2004). The linear comparative analysis is a process to find corre-
spondence between linear features in one data set (as reference) and linear 
features in the other data set (as extracted). This method typically employs 
a buffering criterion to establish maximum distance for considering objects 
that may correspond.  

Two main accuracy parameters are produced: completeness and correct-
ness. Completeness is a metric to measure the quality of extraction based 
on its coverage of extraction over the reference data. Correctness is the 
percentage of parts of extracted features which are considered as correct in 
the sense that those parts correspond to the reference feature within a given 
tolerance (Seo & O’Hara 2004). Fig. 9 (on top) shows the coverage of a 
reference feature by a buffered region around an extracted feature, used to 
compute the completeness ; and (on bottom) shows the coverage of an ex-
tracted feature by a buffer generated around a reference feature, as used to 
compute the correctness. 
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Fig. 9. Precision metrics used to compute the linear comparative analysis. Adapted 
from Seo and O’Hara (2004) 

 
In this study, the detected roads were converted in lines before comput-

ing the linear comparative analysis. Then, the roads resultants from image 
classification were exported to an image file and imported into MatLab. 
Since the image presents basically the roads and background, some noise 
was removed and roads were thinned in an interactive process using math-
ematic morphology tools present on MatLab’s image processing toolbox. 
Fig. 10 illustrates some roads detected over an informal settlement area 
and their respective thinned centerlines. 
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Fig. 10. Roads resultant from the classification process (black) and their respec-
tive thinned linear features. Comparing lines prevented excessive commission er-
ror caused by differences in width of the real and the detected road 

 
Also, a reference linear database was manually extracted from the  

orthophotos as road centerlines, due to the lack of up to dated official da-
tabase for the study area. So, considering the roads centerlines as reference 
lines and the thinned roads as extracted lines, the linear correspondence 
analysis was conducted using the Linear Correspondence Analysis Toolkit 
– LCAT (Seo & O’Hara 2004). 

Because the analysis uses buffers, different combinations of buffers 
were computed ranging from 2 meters as minimum road width to 24 me-
ters as maximum one.  

Considering that the average road width is 9 metes in the study area, 
buffers were adjusted to 9 meters either. Using these 9-meters buffers, lin-
ear correspondence analysis computed completeness equals to 67.86% and 
the correctness equals to 64.48%. Also, the comparative analysis provided 
another parameter: the gap statistic, which corresponds to percentage of 
reference roads without correspondence matching. The resultant gap statis-
tics pointed to 36.8 % but was computed under a conservative way, con-
sidering 8 meters buffers width due to limitation of the software. 
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6 Conclusions 

The study area presents enormous heterogeneity in terms of spatial and 
spectral distribution of urban features over the informal settlement areas, 
as reported in Quintanilha & Silva (2005). Schiewe & Tufte (2005) em-
phasize the difficulties that arise with increasing internal classes’ variabil-
ity due to increases in the spatial resolution of remote sensing images. 
With increased spatial resolution images, actual heterogeneities that exist 
on the surfaces and along edges of objects are no longer “averaged out” 
due to course resolution pixels. In multi-spectral remote sensing images, 
increases in the spatial resolution of the image (smaller pixel size or re-
duced ground space distance) are accompanied by increases in the within-
object variability of spectral data for a given feature. Not only are spectral 
values within the object prone to increased variability, but also along the 
borders of features of interest significant variability of spectral response 
occurs due to such complexities as shadow effects, mixed pixels, or stair-
step patterns along what should be a distinct border. These increases in 
variability of the spectral response of a given feature complicate the task of 
separating desired feature classes. The hierarchic classification methods 
available in object-based classification technologies allow consideration of 
feature characteristics that exceed those available through considering 
spectral characteristics alone. Therefore, an object-based approach was se-
lected to develop the road detection in this work. 

Despite some difficulties, the final result demonstrated high agreement 
between the extracted and the actual roads observed for the study area. 
Two distinct approaches were used to compute the quantitative analysis: 1) 
commission and omission errors; and 2) linear comparative analysis. Re-
sults produced from both methods are similar in terms of precision of the 
detected roads (64.5% and 64.48% respectively).  Both methods used to 
quantify classification accuracy produced metrics that closely agreed when 
considering omission errors for areas where the procedure failed to detect 
actual roads. Per pixel omission errors were computed to be 35.5 percent 
by area while linear correspondence produced a 36.8 percent gap statistic 
both showing a good indication and high agreement for areas where the 
classification methodology failed to classify complete road systems.  

In closing, the expansion of urban roads with no planning toward the 
limits of urbanized areas illustrates real human problems in sprawl that are 
ongoing, especially in large-size cities of developing countries. Monitoring 
this expansion using high resolution images requires automatic approaches 
due to the amount of data. The methodology reported herein provides sig-
nificant results in terms of road detection and cost-benefit that may be 
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achieved in comparison to a manual approach. The results are encouraging 
and offer a pathway to methods that may be enhanced and further refined 
in future research. Refinements may possibly be achieved through refine-
ments in custom features and classifiers as well as the use of supplemental 
data such as LIDAR or IFSAR terrain data (or other remote sensing raster 
data sets that may be used in object-based analysis) to add additional in-
formation enabling improved ability to classify roads and separate them 
from surrounding features.   
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ABSTRACT: In this chapter, object-oriented image analysis, on the ba-
sis of eCognition, is used to classify an IKONOS-2 image together with 
data derived from an aerial laser scanner. After the initial classification of 
different land cover types, a subset containing only buildings was inte-
grated with zoning as well as population data. Zoning data was used to as-
sign the classified buildings to different land use types, thus allowing the 
identification of buildings designated for residential use. On these were 
mapped population data, available on a 250 m grid basis while taking into 
account the height of each building, allowing a differentiated presentation 
of where people live within in each grid cell. Comparison with reference 
data suggest a high potential not only for further dasymetric mapping ap-
plications, but other applications as well. 

1 Introduction 

The classification of optical images has always been hampered by the 
missing third dimension. With the increased availability of LiDAR (Light 
Detection And Ranging) data classification can be significantly improved 
both in terms of accuracy as well as automation. Object-oriented classifica-
tion is an obvious choice as a tool for an analysis with its ability of inte-
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grating and processing data with very different properties. In the first part 
of this paper an IKONOS-2 image will be analysed together with a nor-
malised Digital Surface Model (nDSM) and a difference model between 
first- and last pulses (∆HFL) derived from airborne laser scanner data. The 
second part looks at an application that can now be performed due to the 
superior quality of the classification and the available height information. 
This application examines an improved dasymetric mapping method for 
disaggregating population data to houses based on building volume. 
Dasymetric mapping may be defined as a kind of areal interpolation that 
uses ancillary data to support an areal interpolation process (Mennis, 
2003). Zoning information is used to identify those buildings belonging to 
residential areas, making a move from land cover to land use. This is fol-
lowed by an outlook examining how the integration of different data bases 
can support the creation of further improved land use maps.  

LiDAR data in combination with optical remote sensing images have al-
ready been used for classification in urban/suburban area in a number of 
studies. Zeng, et al. (2002) use a maximum likelihood classifier (MLC) af-
ter creating three different datasets for high, low and shadow areas. Haala 
and Walter (1999) use a maximum likelihood classification to separate 
buildings, trees, roads and grassland from a colour aerial image with a 
nDSM as an additional band. The classification result could be considera-
bly improved by this method. Syed et al. (2005) compare MLC to object-
oriented classification. MLC resulted in a "salt and pepper" and limits in 
successfully classifying shadows, a problem not encountered with object-
oriented classification. Hofmann (2001) examined the detection of build-
ings and roads from an IKONOS-2 image and height data, using object ori-
ented classification, confirming its suitability for the data used. 

Linking remote sensing with demographic data from the census has 
been subject of a number of studies. Harvey (2002) estimated populations 
from Landsat TM imagery in Australia using a recursive algorithm to re-
calculate population from the census zone according to a pixel’s spectral 
vector. The correlation between census dwelling data and residential densi-
ties derived from remote sensing were analysed in Chen (2002) combining 
classified image data and population from census tracts. Spatial disaggre-
gation of population based on housing densities on a regional scale was 
discussed in Steinnocher et al. (2006). The relationship between population 
density and vegetation cover in urban areas was investigated in Pozzi & 
Small (2005) in order to improve differentiation of urban land use classes. 
Liu et al (2006) compared population density with texture measures from 
IKONOS images. All these analyses have in common that they link popu-
lation with (1) spectral or textural image features, (2) index images such as 
NDVI or (3) thematic classes such as residential areas or housing densities. 
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In the present paper mapping will be taken one step further, not only going 
on a building or building block level but by including height information 
as well. 

2 Data and Study Area 

The study area lies in the province of Upper Austria, in the north of the 
City of Linz, covering approximately 3.7 x 3.5 km (see Fig. 1). It features 
mixed land cover/land use with large parts being covered by fields and 
forest. Residential areas comprise both single houses as well as large 
building blocks. In addition some commercial districts and a motorway are 
situated in the south and a university complex in the east.  

 

 
Fig. 1. Study area 

 
Two remote sensing data sets were used for the study (see Fig. 2). One 

is subset of an IKONOS-2 scene, recorded on 15th June, 2002. It is a fusion 
product of the four multispectral bands (4 m spatial resolution) and the 
panchromatic band (1 m spatial resolution), resulting in four multispectral 
band with 1 m spatial resolution. The multispectral bands cover blue, 
green, red and part of the near-infrared of the electromagnetic spectrum. 

The second data set is from an airborne laser scanner (ALS), acquired 
on 24th March, 2003, at a flying height above ground of 1,000 m and an 
average point density of 1 point/m². From this two different models were 
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generated. One is a normalised digital surface model (nDSM), containing 
height information above ground (see Fig. 3, right - lighter tones represent-
ing greater heights). Buildings and forests can be clearly seen in this image 
while flat areas such as water bodies, roads, meadows, and so forth cannot 
be separated. The other is a difference model between first and last pulses 
(∆HFL), which has a height of zero for sealed areas and a height similar to 
that of the nDSM in forested areas, thus aiding the identification of trees.  

 

 
0 250 500 Me

 
Fig. 2.  False-colour-infrared IKONOS-2 image (left) and normalised digital sur-
face model (right) of study area 

 
For the integration of ancillary data, two data sets were available (see 

Fig. 3). One is the generalized zoning plan, as defined by the upper Aus-
trian Land Use Planning law. The generalized zoning plan covers 5 classes 
(residential areas, mixed use, industrial areas, commercial areas, green ar-
eas), aggregated from its original 15 classes.  

The other data set contains population data collected by the Statistik 
Austria1, the leading provider of statistical information in Austria. The data 
are from the census 2001, aggregated to a raster with a cell size of 
250 x 250 m. Its advantage to the original representation on the level of 
census tracts is that the cell size is fixed and does not change over time. In 
addition these cells are generally smaller than census tracts, especially out-
side core urban areas. In the future an improved version will be available 
with a cell size of 125 x 125 m. 

                                                      
1 http://www.statistik.at/  
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It can be seen that some of the squares show population outside of those 
areas designated as buildings zones, especially in the Northeast. This is 
mainly due to individual farms that are not part of the zoning plan. 

 

Residential Light industry

Mixed useGreen area Commercial
0 250 500 Meters

 11-100

1-10

251-500

101-250
0 250 500 Meters

501-1000

> 1000  
Fig. 3.  Aggregated zoning data (left) and population data on 250 m grid (right) of 
study area 

3 Methodology 

For the classification of the satellite image and the ALS data an object-
oriented approach as implemented in eCognition 4.02 was used. For the 
analysis two processing steps can be distinguished. One is the segmenta-
tion of the data into homogenous segments; the other is the assignment of 
these segments to discrete classes. These steps can also be used alternately, 
i.e. the classification results of one processing step can be input for a sub-
sequent segmentation. In the following sections, image segmentation and 
classification will be examined followed by the integration of ancillary 
data. 

3.1 Image Segmentation 

Aim of this processing step is to identify homogenous image segments. 
Depending on the data and goal of the analysis, different degrees of homo-
geneity can be desirable. Segmentation is controlled by the parameters 

                                                      
2 www.definiens-imaging.com  
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scale, colour and shape, selected by the user (Baatz and Schäpe, 2000). 
Scale controls the maximum allowed heterogeneity per segment. Leaving 
all other parameters constant a larger scale will result in larger segments. 
The parameters colour and shape sum to one and determine how much 
colour and shape information is used for the segmentation process. The 
shape parameter is further divided into compactness and smoothness. A 
high value for compactness leads to smaller and very compact segments, 
more suitable for manmade objects, while a high value for smoothness 
leads to segments optimised to have smooth borders, more suitable for 
natural objects. 

Different data sets such as laser and satellite images can be segmented 
simultaneously and their influence to the segmentation process can be ad-
justed by weights. Nevertheless, a stepwise approach was chosen here due 
to the very different information content as well as different scaling of the 
data, allowing more control over the segmentation process. An initial seg-
mentation was carried out on the basis of the satellite image as its informa-
tion content is larger than that of the laser image. Discrimination of differ-
ent land cover types, especially of vegetation and built-up areas can be 
done very easily using these data. A second segmentation was performed 
one level below the initial segmentation and here only the laser informa-
tion was used. This allows a separation of both built-up areas and vegeta-
tion on the basis of height, improving both the identification of roads as 
well as that of shrubs and grassland. In a third segmentation level between 
level 1 and 2 a segmentation was performed based only the absolute height 
difference while at the same time staying within the boundaries defined by 
the original segmentation of the satellite image.  

3.2 Image Classification 

For each segment, identified in the previous processing steps, a large num-
ber of features is available for the classification. In order to combine the 
relevant information and establish the necessary classification rules, a class 
hierarchy has been set up. At this stage eight classes were identified (wa-
ter, shadow, meadow, shrub, tree, soil, road and buildings). In addition a 
class for unclassified segments was introduced. Four types of features were 
used for the classification: mean, ratio, brightness and normalised differ-
ence vegetation index (NDVI). Mean refers to the mean value of all pixels 
present in a segment, e.g. mean nDSM is the mean height of all pixels 
within a segment. Ratio refers to the mean spectral values of one band di-
vided by the sum of all spectral values, e.g. ratio blue is the ratio of the 
IKONOS blue band to the sum of all other IKONOS bands. Brightness is 
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the mean of all spectral bands and the NDVI is an index calculated from 
the red and the near-infrared bands, giving an indication as to the vegeta-
tion intensity (Lillesand and Kiefer, 1994).  

Each class was described by one or more of these features. Thresholds 
for each feature are given in the form of fuzzy functions. Classification is 
performed in a hierarchical manner, examining each segment whether its 
membership is high enough for a classification or not. If it is, then the 
segment is assigned to the appropriate class, all remaining segments are 
examined for the next class until all segments are classified. Table 1 shows 
an overview of the features used for each class. A combination of spectral 
as well as height information was used to successfully assign the different 
classes.  

Table 1. Features used for classification 

Class Features used 
Water Mean nDSM 

Ratio infrared 
Not water Not water 
    Shadow Brightness 
    Not shadow Not shadow 
        Vegetation NDVI 

Brightness 
Ratio blue 

                Meadow Mean nDSM 
                Shrub Not shrub 

Mean nDSM 
                Tree Not meadow  

Not shrub 
Mean ∆HFL 

        Not vegetation Not vegetation 
            Sealed-flat Mean nDSM 
                Soil NDVI 
                Veg_flat NDVI 
                Road Not soil 

Not road_veg 
            Not Sealed-flat Not sealed-flat 
                Building Ratio blue 

 Unclassified    Not building 
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3.3 Integration with Ancillary Data 

Of the classification result only the identified building objects are used for 
the integration with ancillary data. In a first step the buildings are inter-
sected with the zoning data, making a first move from land cover to land 
use, assigning each building to one of the five zoning classes. These were 
then edited to further separate buildings with public use and those that be-
long to allotments (typically in a green zone).  

With this added information the next step, the integration of the popula-
tion data, can be greatly improved. Population data from statistical sources, 
whether on a raster or on a census tract basis, does not provide information 
on a building block level. This can be approximated by disaggregating the 
population data only on those buildings designated as residential or mixed 
use based on the area covered by them. An even better approximation can 
be derived by considering building height as well. In order to perform this 
dasymetric mapping approach, the volume of each building is calculated. 
Based on this volume the population of each grid cell is mapped onto the 
buildings belonging to that cell. If a building occupies more than one grid 
cell then the population is averaged, arriving at one population value for 
the whole building. This is necessary as the whole population of a building 
is always assigned to only one grid cell in the census data.  

4 Results 

4.1 Segmentation and Classification 

Before a classification can be performed the data must be segmented. The 
initial segmentation was carried out using only the IKONOS-2 scene 
(scale: 20, color/shape: 0.5, smoothness/compactness 0.5). A second layer 
was created based on a spectral difference of 40. The result is the separa-
tion of spectrally distinct land cover types. Before the next segmentation 
can be carried out, the first layer must be deleted. Below the remaining 
layer a new segmentation is performed only on the basis of nDSM data 
(scale 3, colour 1). Here no shape information is used for the segmentation. 
The borders of the segments, derived in the segmentation of the satellite 
image limit how much a segment may grow. From this follows that spec-
trally similar image objects can be separated on the basis of height (e.g. 
roof and road) but objects of similar height will not be combined if spec-
trally different (e.g. a tree next to a house). The final segmentation level is 
created between level one and two, again only based on nDSM data and 
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using a spectral difference value of 1, again within the boundaries defined 
by the segmentation of the satellite image. 

 

 
Fig. 4. Final segmentation 

 
The result of the segmentation (see Fig. 4 for a subset) is basically a 

product of two separate segmentation procedures, where the first limits the 
extent as how far a segment may grow in the later segmentation. This as-
sumes that basic land cover types can be separated successfully in the first 
segmentation stage and only need refining, based on the LiDAR data 
within each land cover type. Examples are sealed areas, which in most 
cases can be separated very well from non-sealed areas. A differentiation 
of different types of sealing is much more difficult and often impossible 
using only optical data. Here LiDAR gives us the opportunity to identify 
land cover types such as roads and building with a high degree of accu-
racy.  

Classification is performed on the final segmentation level using the fea-
tures defined in Table 1. Seven land cover classes were differentiated plus 
shadow and one for unclassified segments (see Fig. 5).  
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Water

Meadow Tree
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ShadowBuilding

Road Unclassified
0 400 Meters

N  
Fig. 5. Classification result 

 
Vegetation and sealed areas were differentiated relying only on spectral 

information derived from IKONOS-2. Vegetation was further separated 
using nDSM information for meadow (light green) and shrub (green). 
Trees were identified both on the basis of height as well as first-last pulse 
information (dark green). Sealed areas were divided into roads (grey) and 
buildings (red). Here the nDSM information greatly improves their differ-
entiation, the quality being mainly dependent on the resolution of the data 
but not on any ambiguity within the data. The only time where a manual 
editing was necessary was in the case of road bridges, which were classi-
fied as buildings during the initial classification (sealed areas with high 
nDSM ). With the use of a road network this problem could certainly be 
overcome to a large extent, if the degree of automation were to be in-
creased. 

4.2 Integration 

For the data integration, only the identified buildings or building blocks 
were used. The first involves the integration with zoning data. This allows 
the separation of buildings based on the use allowed in a particular zone. 
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This is an important step to facilitate the following integration of the popu-
lation data, as then the data can be projected only on those buildings 
which, according to the zoning plans, are actually residential areas. The 
buildings were assigned to one of five classes. Light industry (magenta), 
residential (red) and mixed use (orange) were taken directly from the zon-
ing data. Public use (cyan) such as schools and university buildings was 
manually assigned based on local knowledge, although in the future, 
automation for this step can be foreseen as well. Allotments were defined 
as houses built in green zones (see Fig. 6).  

For each building or building block a mean height is available, allowing 
the calculation of volume. This assumes that all buildings have a flat roof, 
which is accepted for reasons of simplification. The population of each 
grid cell can then be disaggregated to the single buildings, weighted either 
by area or the building’s volume (see Fig. 7). Buildings assigned light in-
dustry or public use are excluded from the disaggregation, as they are not 
likely to be used for residential purposes. 

 

Allotment

Light industry Residential

Public Mixed use
0 250 500 Meters

 
Fig. 6. Buildings classified according to zoning plan 
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Fig. 7. Population data mapped onto residential and mixed use buildings 

 
Reference data, i.e. population per building, is not available publicly due 

to data privacy. However, the results of the disaggregation were evaluated 
by Statistik Austria internally and evaluation results provided anony-
mously in terms of error measures. For a sample of 1712 buildings the rms 
error equalled 18,4 for the areal approach and to 13,7 for the volume based 
approach. Average deviations came up to 5,8 and 3,7 respectively. It is ob-
vious that the volume based approach improves the results significantly 
compared to the areal approach.  

The remaining error might be due to time difference of the data sets 
(census from 2001, IKONOS-2 from 2002 and from LiDAR in 2003) and 
to the limitation of the zoning plan in terms of single building use. Also the 
assignment of the population of a building to one grid cell of the popula-
tion data, irrespective of how many cells the building spans, is critical. 
This could be improved by using addresses points as spatial reference for 
buildings as they represent a clear link to corresponding grid cells. 
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5 Conclusion and Outlook 

In this paper object-oriented classification of LiDAR (nDSM and ∆HFL) 
and multispectral IKONOS-2 data (pansharpened to 1 m spatial resolution) 
was examined. The use of both data sets allowed an easy separation of the 
basic land cover types present in the study area. LiDAR data are especially 
beneficial for the separation of flat sealed areas from buildings, while opti-
cal data allow a good separation of vegetation and sealed areas. Manual 
editing of the land cover classification could be limited to correcting road 
bridges, which were classified as buildings.  

The next step was the integration of the classification results with statis-
tical data and the information provided by LiDAR. Aim was the mapping 
of population data, available on a 250 m grid basis, not only on the basis of 
areas covered by the buildings but also on the height of these buildings. As 
not all buildings are residential they building mask was first intersected 
with a zoning map of the area. This allowed the identification of those 
buildings which are not used for residential purposes. Using local knowl-
edge this was further improved by manually identifying those buildings 
which lie in mixed use areas but are not used as residential buildings (e.g. 
churches, university, etc.). On the remaining buildings the population data 
was mapped, allowing a more detailed view of how many people live in 
each building. Comparison with reference data proved that with this 
method population disaggregation leads to higher accuracies compared to 
when only the area of a building is considered for dasymetric mapping.  

With the integration of the zoning data a fist step had been made from 
land cover to land use. The next will be the linking of the identified build-
ing blocks to address data, thus allowing a mapping of any kind of data, 
indexed by address. This way the identification of different uses of a build-
ing can be further improved. Depending on the accuracy of the address 
data and the various data bases used, very detailed land use maps could be 
created.  
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ABSTRACT: Forest structure is a key element to determine the capac-
ity of mountain forests to protect people and their assets against natural 
hazards. LiDAR (Light Detection And Ranging) offers new ways for de-
scribing forest structure in 3D. However, mountain forest structures are 
complex and creative methods are therefore needed to extract reliable 
structural information from LiDAR. The objective of this study was to in-
vestigate if the application of landscape metrics to a normalised canopy 
model (nCM) allows an automatic characterisation of forest structure. We 
used a generic automated approach that created height class patches based 
on a segmented nCM. Two multi-resolution segmentations were carried 
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out: level 1 objects represented tree crowns and collectives of tree crowns, 
level 2 objects represented forest stands. Level 1 objects were classified 
into four height classes and subsequently overlaid with level 2 stands in 
order to calculate the metrics 1) canopy density and vertical layering of the 
forest, 2) forest gap distribution and 3) canopy roughness using the Divi-
sion Index (DIVI). Canopy density values of each height class allowed the 
classification of the vertical layering. Distinguishing between single- and 
multi-layered stands, 82% of all the sample plots were correctly classified. 
The DIVI calculated on gaps proved to be sufficient to describe the spatial 
arrangement of patches and distinguish between stands with many small 
gaps from stands with only a few but larger gaps. Canopy roughness could 
not satisfactorily be described using the DIVI based on the validation 
plots. With the approach presented, resource and natural hazard managers 
can assess the structure of forest stands and as such more easily take into 
account the protective effect of forests.  

1 Introduction 

“Mountain forests provide the most effective, the least expensive and the 
most aesthetic protection against natural hazards” recalls the first para-
graph of the Mountain Forest Protocol of the Alpine Convention. Without 
mountain forests, the costs of building and maintaining technical protec-
tive constructions against rapid mass movements in the Alps would be un-
affordable. Forest structure is a key element that determines the protective 
capacity of mountain forests (Dorren et al. 2004). It can be characterised 
by the horizontal distribution of trees, the vertical layering and the tree 
species mixture.  

Structures of mountain forests differ greatly from those in the lowlands. 
Mountain forests contain relatively few species, tend to be quite open and 
consist of a mosaic of tree clusters and gaps (Schönenberger 2001). In 
mountain forests, particularly, structure is closely related to stand stability, 
i.e. resistance against and resilience after disturbances such as storm and 
snow loads (Brang 2001). Other characteristics that determine structure are 
crown closure and tree density. These directly influence release probability 
of forest avalanches and the capacity to stop falling rocks (Dorren et al. 
2005). Consequently, assessing forest structure enables forest managers 
and natural risk engineers to evaluate if a forest can fulfil its protective 
function or not. Reliable and area-extensive data on forest structure is thus 
a prerequisite for effective resource and risk management in mountainous 
regions.  
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Traditional methods for assessing forest structure comprise field inven-
tories (Herold and Ulmer 2001) and aerial photo interpretation (Bebi 
1999). The drawback of inventories is that they cannot provide spatially 
continuous information over a large area. The usefulness of photo interpre-
tation im mountainous terrain is hampered by different illumination and 
shading effects. Small footprint airborne LiDAR, however, allows deriving 
detailed digital terrain (DTM) and surface (DSM) models. Subtracting 
these two models of a forested area results in a so-called normalised can-
opy model (nCM), which is spatially continuous and not hampered by 
shading effects - typical for optical remote sensing data. This facilitates as-
sessing forest structure in 2.5D. Various studies show that it is possible to 
derive a variety of single structural attributes such as tree height, basal 
area, crown size and above-ground biomass from LiDAR data (Hyyppä et 
al. 2006, Hall et al. 2005, Naesset 2004, Maltamo et al. 2004, Tiede et al. 
2004, Lim et al. 2003). Some studies focus on tree height variance as an 
indicator of vertical forest structure (Blaschke et al. 2004, Zimble et al. 
2003). Until now, little attention, however, has been paid to the application 
of landscape metrics to LiDAR-based canopy surface models.  

Landscape metrics, representing a view “from above”, allow quantifying 
the link between landscape structure and function. Usually, they are de-
rived for the following three levels: 1) the patch level which corresponds 
to individual objects, 2) the class level, i.e., characteristics of all patches of 
the same type and 3) landscape level which integrates all patch types or 
classes across the extent of the data. For some applications a fourth level, 
the region level, is introduced. This level indicates a sub-area of the land-
scape. If we translate the landscape metrics nomenclature into the forest 
structure context of this study, landscape refers to the whole forest, region 
refers to stand, class to tree height class and patch to tree height patch. The 
use of landscape metrics within forests mainly focuses on forest fragmen-
tation and biodiversity, and their changes over time (Traub & Klein 1996, 
Venema et al. 2005).  

In this study, landscape metrics are used for another purpose, namely to 
describe fragmentation of the canopy surface height in terms of variability 
or structuring. Landscape metrics are expected to link forest structure with 
the protective capacity of a mountain forest. The general idea is that the 
use of landscape metrics leads to more objective, transparent and repeat-
able results compared to visual interpretation by a human interpreter. Our 
overall goal is to derive stand structure information as a basis for protec-
tion forest planning, management and monitoring. Therefore, the objective 
of this study was to investigate if the application of landscape metrics to a 
nCM allows an automatic characterisation of forest structure.  
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2 Study area and data  

2.1 Study area  

The study area covers 120 ha of spruce-dominated protection forest on a 
west facing slope near the Austrian village of Gaschurn in the Montafon 
valley (see Fig. 1). This forest provides essential protection against natural 
hazards such as landslides, avalanches and rockfall. The study area ranges 
from 1000 m altitude in the valley floor up to 1800 m at the tree line. The 
study area is dominated by steep rugged terrain with rock faces, gullies and 
torrents. Old-growth forests with different structure types dominate. The 
structural differences are due to various factors. Multi-layered structures 
with short-distance height variation in the canopy, so called fine-grained 
canopy patterns, grow on shallow soils that cover glacially eroded bed-
rock. 

 

 
Fig. 1. Location (left) and DTM of the study area viewed from Southwest (right) 

 
Homogenous pole stands occur in areas that used to be meadows in the 

lower parts of the slope. Open structures caused by windthrow are found 
below the rock faces in the southeastern part of the study area. Another 
type of open structures is found close to the tree line. These, however, con-
sist of tree clusters (collectives), which are typical for high altitude forests. 
Along the avalanche tracks, tree regeneration and young stands can be 
found. The presence of all these different structure types makes this area 
well-suited for this study. 
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2.2 Data 

The ALS data used in this study were acquired on the 10th of December 
2002 under leaf-off canopy conditions. The instrument applied was a 
first/last pulse Airborne Laser Terrain Mapper (ALTM 1225) produced by 
Optech Inc. (Canada). The pulse repetition frequency of the ALTM is 25 
kHz that resulted in a point density of 0.9 points m-2 at an average flight 
height of 1000 m above ground level. With a laser beam divergence of 0.3 
mrad, the theoretical footprint on the ground was about 0.30 m. The aver-
age ground swath width was about 725 m, the maximum scanning angle 
20º (Wagner et al. 2004). 

The data obtained by the ALTM have been processed and interpolated 
by the TU Vienna using the hierarchical robust filtering approach within 
the SCOP++ software package (Kraus and Pfeifer 1998). As a result a 
DTM and a DSM, both with a resolution of 1 m × 1 m, were created. By 
subtracting the DTM from the DSM we obtained a nCM which describes 
an estimate of the forest height. 

Thirty-three circular inventory plots of 314 m² served for validation. 
Within these plots, we recorded for each tree: diameter at breast height (1.3 
m), position (azimuth and distance), height and species. In addition, we de-
termined the vertical layering and the stand type following Maier (2007a). 

3 Methodology and Implementation  

3.1 Segmentation and height classification 

Our method combines object-based multi-resolution segmentation and 
classification with GIS analyses. The rule sets for segmentation and classi-
fication are developed using CNL (Cognition Network Language), a 
modular programming environment available in the Definiens Developer 
environment. Segmentation is done using a region-based, local mutual best 
fitting segmentation approach. It is a pair-wise clustering process, starting 
with randomly selected one-cell objects. In an iterative process these ob-
jects are merged into larger ones. This segmentation process is determined 
by three parameters which can be set by the user. The first one is scale 
which is a stop criterion for the object growing process and thus defines 
the maximum segment, or object size. The other two parameters shape (vs. 
colour) and compactness (vs. smoothness) define the weights for the al-
lowed heterogeneity of image values (here: height values) and shape com-
plexity (Baatz and Schäpe 2002, Benz et al. 2004). 
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Segmentation was used to create two object levels which corresponded 
to 1) single and clustered tree crowns and to 2) forest stands. To delineate 
single and clustered (collectives) tree crowns the nCM was segmented into 
objects using a scale parameter of 5. The ancillary parameters shape and 
compactness were both set to 0.5. Since single tree crowns comprise dif-
ferent height classes, a small scale parameter led to onion-like concentric 
objects only representing parts of a tree crown. A big scale parameter, 
however, levelled out the different tree heights and resulted in a loss of 
structural complexity. Segmentation tests with known trees showed that a 
scale parameter of 5 was a good compromise. The resulting objects in this 
level represent homogenous tree height patches. These canopy objects 
were then classified according to their mean height using the height classi-
fication schema presented in Fig. 2. 

 

 
Fig. 2. Tree height classification schema 

 
The height classification schema follows the different forest develop-

ment stages that are defined in the Manual for the Aerial Photo Interpreta-
tion of the Swiss Forest Inventory (Ginzler et al. 2005). Four height classes 
(HC) are introduced: HC 0 comprises all segments with a mean vegetation 
height below 3 m. Those are regarded as unstocked as the differentiation 
accuracy of the laser allows no distinction between surface roughness (ly-
ing dead wood, rocks, stumps or low vegetation) and young trees. HC 1 (3-
8 m) corresponds to young trees and HC 2 covers the range from 8-20 m. 
This class contains mainly pole forests and timber forest. HC 3 consists of 
tree crowns higher than 20 m, which are usually thicker trees, or old 
growth forest. The classified objects were subsequently dissolved into ho-
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mogenous height class patches and exported into a GIS readable vector 
format (Polygon Shape file). 

 

 
Fig. 3. Flow diagram of study methodology 

 
To delineate forest stands, input rasters were segmented into objects us-

ing a scale parameter of 100, as well as a shape and compactness parame-
ter of 0.3 and 0.4 respectively. Because terrain features strongly influence 
forest growth and development in relief-rich mountainous terrain, the input 
rasters consisted of the nCM, but also the mean slope gradient, and the as-
pect. We assumed that forest stands are largely homogenous in terms of 
age, species distribution and developmental stage and that they reflect 
similar physiographical conditions. The segmentation weights of the three 
input rasters nCM, slope and aspect were set to 1, 0.5 and 0.5 respectively. 
The setting of the above mentioned parameters provided the forest stand 
map that respected best existing stand borders observed in the field and on 
CIR orthophotos. 

Following the segmentation and classification, a GIS was used to char-
acterise the patch-structure (level 1) within each stand object (level 2) us-
ing landscape metrics for canopy density, vertical layering, gap distribu-
tion and canopy roughness of a forest stand. All metrics were calculated 
with the V-late extension for ArcGIS (Lang and Tiede 2003). Fig. 3 sum-
marises the complete method flow of this study. 



632      B. Maier, D. Tiede, L. Dorren 

3.2 Landscape metrics calculation 

The structural characteristics considered relevant for this study were: can-
opy density and vertical layering of the forest, forest gap distribution and 
canopy roughness. In the following paragraphs their calculation using 
landscape metrics will be explained in detail.  

3.2.1 Canopy density and vertical layering of the forest 

Canopy density (CD) is defined as the percentage of the area which is oc-
cupied by the horizontal projection of tree crowns. Multiple coverage in 
super-imposed tree layers (height classes) is not taken into account (Keller 
2005). The landscape metric we used for describing CD is called CDtotal 
and corresponds to the total area of all stocked height patches of HC 1, 2 
and 3, in percent of the total stand area. Maier (2007b) shows that there is 
a good correspondence (R² = 0.7) between canopy density measured in the 
field by mapping crown radius and the canopy density derived from Li-
DAR-based canopy models. 
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Pi = proportion [%] of the stand (without gaps) occupied by height class 

i  
aij = area [m²] of patch ij 
A = stand area [m²] without gaps (HC 0) 
 
Vertical layering or stratification can be referred to as the vertical distri-

bution of foliage (Parker and Brown 2000). When calculating CD for the 
three different HC (eq. 1, see McGarigal and Marks 1995), the vertical 
layering of the forest can be assessed. It is important to note that super-
imposed tree layers cannot be detected using a 2.5D nCM. Therefore, the 
layering assessment is restricted to the different height levels which can be 
seen from above. According to the Austrian Forest Inventory (AFI), a sin-
gle-layered stand has only one distinct canopy layer. Two-layered struc-
tures have in addition to the dominant canopy layer a second layer, which 
exhibits considerable growth potential. Here, a separate forest layer needs 
to have a total CD of at least 30% (Schieler and Hauk 2001). According to 
the Swiss National Forest Inventory, single layered stands consist of one 
layer that covers more than 80%. Our rules for assessing the vertical layer-
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ing were principally based on these guidelines, but adapted for an nCM-
based analysis (Table 1).  

Table 1. Rule set for vertical layering according to canopy density (CD) per 
height class (HC) 

single-layered one HC with CD > 60%, no other HC > 35% 
two-layered two HC with CD > 30% or one HC > 50% and one HC >20% 
multi-layered three HC with CD > 20% 

 
For validation, we compared the vertical layering classification with the 

vertical structures recorded in the 33 field plots. 

3.2.2 Forest gap distribution  

Gaps are unstocked patches in a forest matrix. They can be formed by har-
vesting trees (silvicultural intervention), by natural succession or distur-
bances. When trees die, they create gaps that allow the sunlight reaching 
the ground, which could initiate forest regeneration. Windthrow, snow 
break and subsequent bark beetle infestations belong to the natural gap-
making processes and disturbances. Small gaps are distinct and common 
features of mountain forests, and do not pose problems to the protective 
function of the forest against natural hazards. Large openings in the forest 
cover, however, do. They are potential avalanche release areas or can ac-
celerate rockfall. 

Therefore, the size and spatial distribution of gaps influence the protec-
tive capacity of a forest. The bigger and longer a gap is in the slope direc-
tion, the more likely forest avalanche release or falling rocks acceleration 
is. Gap length can be calculated by defining the longest flow path in slope 
direction. These values can then be compared with existing protection for-
est management guidelines (e.g. Frehner et al. 2005) in order to assess the 
need for silvicultural intervention or tending. 
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where  ai = area [m²] of gap patch i 
  A = here: total area [m²] of gaps in one stand (HC 0) 
 
In order to assess the spatial distribution of gaps, we calculated the Di-

vision Index (DIVI, see eq. 2). The DIVI is defined as the probability that 
two randomly selected locations do not occur within the same patch in the 
forest (Jaeger 2000). Although this index originates from ecology where it 
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refers to the likeliness that two organisms will meet within the same patch, 
it can also refer to the degree of gap fragmentation, or “gappiness” of a 
forest stand. In other words, it expresses if gaps occur as single big un-
stocked areas or highly fragmented small gaps throughout the stand. 

3.2.3 Canopy roughness 

Finally, we tried to quantify the graininess or roughness of the forest can-
opy by measuring the overall fragmentation of all height classes and inter-
pret it as a degree of structuring. This is done by calculating the Division 
Index on all height classes on a stand level (eq. 3). This measure of frag-
mentation describes if the canopy is vertically homogenous or heterogene-
ously structured, following McGarigal and Marks (1995), who used this 
index to differentiate between coarse- and fine-grained landscape struc-
tures. Within the conventional repertoire of forest inventory parameters, 
the parameter StandType (Schieler and Hauk 2001) which defines uniform, 
irregular and single tree structures (see Table 2) appeared the only one to 
represent canopy roughness (CR) as a structural parameter. 
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where   ai = area [m²] of patch i 
  A = here: total area [m²] of stand  

Table 2. Definition of stand type according to the Austrian Forest Inventory 
(Schieler and Hauk 2001) 

Uniform Homogenous, more or less closed canopy with uniformly distrib-
uted trees or tree groups 

Irregluar Stands consisting of tree groups of similar height with a distinct 
green mantle forming inner forest edges 

Single 
trees 

Dissolved stand structure with single trees and a canopy density 
below 30%; trees loosely distributed over the whole area 
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4 Results  

4.1 Canopy density and vertical layering  

Canopy density results are given in Fig. 4. The stands with prevailing open 
or light canopy density dominate in the uppermost parts close to the tree 
line as well as near the valley floor (stands with CDtotal < 60%).  

 

 
Fig. 4. Canopy density (CDtotal) and division index (DIVI) of gaps 

The latter represent the mixed and broadleaved stands which appear 
open due to the lack of crown reflection in the leaf-off season. The forests 
in the central part of the study area exhibit light structures due to the nu-
merous rock fall channels just below the massive rock faces in that area. 
The open structures indicated in the upper parts correspond to a mosaic 
with gaps typical for high altitude forests. 

Results of the layering assessment show that the homogenous pole 
stands in the lower part of the study area are classified as single and two-
layered forests. Multi-layered structures, however, can be found in spo-
radic stands mainly along and in between the avalanche tracks. A compari-
son of the automatic layering-classification with the assessment carried out 
in the field results in 73% correct detections. This number increases to 
82% if two- and multi-layered structures are put together into one cate-
gory. Most mismatches can be found in the high-altitude forests with tree 
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clusters. Whilst they appear multi-layered in the field, their vertical varia-
tion falls within one height class during automatic classification. Half of 
the false detected sample plots are characterised by low CD values. Fig. 6 
shows six examples of validation plots with layering assessments and dif-
ferent CDtotal. 

4.2 Gap distribution  

The Division Index (DIVI) calculated on gaps (HC 0) quantifies the distri-
bution of gaps within a stand. In order to get an idea of the total size of the 
unstocked area, it is necessary to combine the DIVI with the total canopy 
density (CDtotal). As shown in Fig. 4 this combination very well distin-
guishes stands with many small gaps from others with a few large open-
ings. In the central part of the study area a stand with a large windthrow 
opening is characterised by a low CDtotal and a DIVI below 75, indicating 
low fragmentation. The forest stands in the northwestern part exhibit 
DIVI-values above 75 describing a high degree of fragmentation meaning 
that the unstocked area is divided into numerous small gaps.  

 
CD Single-layered Two-layered Multi-layered 

 
  

CDtotal (valid.) 100% (correct) 87% (correct) 87% (false) 

 
  

CDtotal (valid.) 48% (false) 49% (false) 27% (false) 

Fig. 5 Selected field validation plots (radius = 10 m) with layering and CDtotal 

 
The DIVI-threshold of 75 is deduced from a series of gap fragmentation 
patterns shown in Fig. 6. These DIVI-values are calculated on a basic gap 
share of 30% with increasing fragmentation. 
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0 12.7 33.4 49.1 

    
69.1 75.6 85.8 95.8 

Fig. 6 Series of gap fragmentation patterns indicating the range of the Division In-
dex (DIVI) 

4.3 Canopy roughness  

We regard the overall fragmentation of the height class patch mosaic as a 
measure for structural variability, including both the vertical as well as the 
horizontal structural view. Fig. 7 presents the distribution of DIVI values 
among the StandType attributes. According to a mean comparison Scheffé 
test (Bahrenberg et al. 1992) categories “uniform” and “irregular” are sig-
nificantly different from each other (p=0.05). The category “single trees” 
does not significantly differ from the other two categories which may be 
due to the low number of samples in that class (see Fig. 7).  

 
 

 
Fig. 7. Distribution of DIVI values among StandType categories 
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According to Fig. 7 we define the threshold between uniform and ir-
regular stands at a DIVI value of 65. Using this threshold, only the open 
structured stands close to the tree line and the stands near the valley floor 
can be classified as uniform. All together only 1.5% of all stands can be 
classified uniform, the rest is irregularly structured. 

5 Discussion 

The objective of this study was to investigate if the use of landscape met-
rics on height class patches of the nCM allows an automatic characterisa-
tion of forest structure. For that purpose we segmented and classified the 
nCM and transformed it from a continuous raster surface into a polygon 
mosaic of vegetation height patches. This segmentation was done at the 
level of tree crowns and tree groups (level 1) and proved to be a straight-
forward way to simplify the complex canopy surface. Attempts to incorpo-
rate different morphometric derivatives such as slope and curvature of the 
nCM in the segmentation process did not improve the results. Thus the 
nCM served as the only input for that segmentation. 

The segmentation of forest stands (level 2) turned out to be more diffi-
cult. It was difficult to balance the three segmentation parameters in a way 
that the size and shape of the resulting stand objects correlated to natural 
stand borders which might have appeared obvious to an expert when visu-
ally inspecting the nCM. Many stand borders looked fissured or indented, 
but as soon as the compactness factor was increased, narrow elongated 
stands (e.g. regeneration along the avalanche tracks) were dissected. Due 
to the iterative process the eventual parameter setting of stand segmenta-
tion must be regarded as a specific adaptation for the study area. Therefore 
this segmentation setting cannot be transferred to other areas. 

The study showed that the automatic detection of the vertical layering 
corresponded fairly well with assessments in the field. If distinguishing be-
tween single- and multi-layered stands only, 82% of all the sample plots 
were correctly classified. Zimble et al. (2003) reached 97% correspon-
dence between field- and LiDAR-based classification. This might be due 
to the fact, that they used a method based on tree-height variability and ap-
plied it to forests with canopy closures less than 60%. 

As we worked with an already interpolated canopy surface model 
(2.5D), it was not possible to detect a forest layer which is completely cov-
ered by an dominant crown level. But because of the distinct structural 
characteristics of mountain forests, this restriction did not really hamper 
vertical layering assessment. Usually, mountain forests exhibit a relatively 
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open canopy and have almost no regeneration below dense layers (Ott et 
al. 1997). Furthermore, mountain forests are layered in tree groups, e.g. a 
mixture of groups with large trees and gaps filled by smaller trees. These 
characteristics of subalpine forersts together with the high resolution of the 
nCM allowed the use of already interpolated surfaces to quantify the verti-
cal layering.  

Since the perception of layering strongly depends on the scale of con-
sideration (Parker and Brown 2000), we used forest stands as the level for 
detecting the vertical layering. This study showed that assessing the layer-
ing on plots with 10 m radius is possible but becomes problematic as soon 
as CD is very low. It turned out that the layering typology used in field in-
ventories cannot directly be adopted to a LiDAR-nCM. The high resolu-
tion nCM we used made all the small gaps visible, which generally could 
not be distinguished so clearly in the field. This is why we used lower CD 
thresholds in our rule set for the vertical layering than suggested for field 
inventories. 

Layering assessment very much depends on the height classification 
schema applied. We applied a discrete schema following the Manual for 
the Aerial Photo Interpretation within the Swiss Forest Inventory because 
it is suitable for remote-sensing based datasets and is related to practical 
forest management. The basic threshold of 3 m e.g. corresponds to a tree 
height, above which trees are regarded more stable against natural hazards 
and ungulate browsing. As an alternative, a height classification schema 
based on relative height limits for the lower, middle and upper storeys 
could be used. In such a schema each of the three height storeys referred to 
one third of the top height of a stand. By applying such a classification 
schema we would be able to accomodate different site and growth condi-
tions, but at the same time it would make comparisons between stands 
much more complex and difficult to interpret.  

The results of the study showed that forest gaps could easily be detected 
by means of a segmented nCM. The DIVI calculated on patches with HC 0 
proved to be sufficient to describe the spatial arrangement of gaps. It was 
highly correlated with the distribution of gaps and helped to distinguish be-
tween stands with many small gaps and stands with only a few but larger 
gaps. Gap structure and distribution changes during the transition from ma-
ture to old-growth stands (Lertzmann et al. 1996). Old-growth forests are 
usually dominated by many small gaps and mature forests by fewer larger 
gaps. Generally, this developmental gap-sequence also occurs in mountain 
forests but is enforced by natural disturbances and the altitudinal gradient. 
Windthrow is the main gap-forming disturbance in mature and old-growth 
forests. Snowbreak mainly occurs in young pole stands. Generally, wind-
throw forms larger openings and snowbreak smaller gaps Gaps from both 
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disturbances were correctly detected in the study area. Whereas in low-
altitude forests gaps occur as holes in a matrix of forest, this phenomenon 
reverses in high-altitude forests, where forest patches become islands in a 
matrix of gaps. This was also reflected in our results given in Fig. 4. 

Enhancing structural diversity in mountain forests is widely recognised 
as a general objective of silvicultural interventions aiming at higher resis-
tance and resilience to natural disturbances (Ott et al. 1997). In order to 
quantify this structural diversity or canopy roughness we used the overall 
DIVI on all height classes to describe if the canopy is vertically homoge-
nous or heterogeneously structured. Whereas the concept of forest frag-
mentation usually implies the breakup of contiguous forest habitats by the 
development of settlements, roads and clearings, we were interested in the 
fragmentation of the nCM in terms of height variability or structuring. 
Within the validation plots the DIVI yielded statistically significant dis-
tinctions between uniform and irregular canopy structures. But using this 
threshold to distinguish between uniform and irregular types on the stand 
level led to almost exclusively irregular stands which did not reflect the 
structural reality. This might be due to the fact that the validation plots are 
too small to derive a suitable DIVI-threshold for stands that are on average 
50 times larger than the validation plots. One would need much larger 
validation plots to overcome this problem.  

6 Conclusions 

Our object-based image analysis approach for assessing mountain forest 
structure confirmed the capacity of landscape metrics applied on a nCM to 
quantify forest structure. The selected metrics offered useful assessments 
of the canopy density and vertical layering as well as gap distribution and 
isolation. Canopy roughness could not satisfactorily be described using the 
DIVI based on the validation plots.  

The advantage of structure assessment using landscape metrics is that it 
can be carried out in a transparent and easily repeatable way. But the met-
rics need to be calibrated with field assessments in order to link their val-
ues with local situations. Generally, this approach works particularly well 
in spruce-dominated mountain forests, as conifers possess well-shaped 
crowns and the forests are usually open and the top layer of trees is not 
closed. Automated structure assessment can be used in the course of pro-
tection forest planning, management and monitoring. Such an approach 
will and should not replace detailed field investigations, but it will help to 
assess structure in an area-extensive and efficient manner. 
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Future research will have to focus on testing different static and dy-
namic height classification schema. Furthermore, it might be helpful to in-
clude local maxima detection to explicitly consider tree clusters as struc-
ture types and stability features. In order to quantitatively assess the 
performance of such an approach, further calibration with existing struc-
ture assessments on a larger scale should be conducted. To assess scale de-
pendency of the various metrics, corresponding sensitivity tests should be 
conducted prior to further application. 

With this approach, resource and natural hazard managers can easily as-
sess the structure of different forests or the same forest at different times or 
under different management alternatives. In the light of increasing pressure 
to pay attention to the protective effect of forests in natural hazard man-
agement, this forest structure assessment approach can be considered a 
highly valuable contribution. 
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ABSTRACT: In recent years object-based image analysis of digital 
elevation models acquired by airborne laser scanning gained in impor-
tance. Various applications for land cover classification (e.g. building and 
tree detection) already show promising results. Additionally to elevation 
rasters the original airborne laser scanning point cloud contains highly de-
tailed 3D information. This paper introduces an integrative approach com-
bining object-based image analysis and object-based point cloud analysis. 
This integrative concept is applied to building detection in the raster do-
main followed by a 3D roof facet delineation and classification in the point 
cloud. The building detection algorithm consists of a segmentation task, 
which is based on a fill sinks algorithm applied to the inverted digital sur-
face model, and a rule-based classification task. The 340 buildings of the 
test site could be derived with 85% user’s accuracy and 92% producer’s 
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accuracy. For each building object the original laser points are further in-
vestigated by a 3D segmentation (region growing) searching for planar 
roof patches. The finally delineated roof facets and their descriptive attrib-
utes (e.g. slope, 3D area) represent a useful input for a multitude of appli-
cations, such as positioning of solar-thermal panels and photovoltaics or 
snow load capacity modeling.  

1 Introduction 

High-resolution imaging in satellite and airborne remote sensing led to the 
development of Object-Based Image Analysis (OBIA), in order to over-
come problems of noise and misclassification, which occur in classifica-
tion results if conventional pixel-based approaches are applied. Concerning 
Airborne Laser Scanning (ALS) data, OBIA has mainly been restricted to 
approaches using rasterized ALS data, often in combination with multi-
spectral data. First and last echo Digital Surface Models (DSM) and Digi-
tal Terrain Models (DTM), Digital Intensity Models (DIM), as well as 
their derivatives from ALS, provide important additional information, such 
as surface geometry, topography and surface reflectance, which open new 
possibilities in land cover classification (e.g. Brennan and Webster 2006). 

ALS systems in operational use measure X, Y, Z coordinates and inten-
sity values for several reflections stored as 3D point cloud with intensity 
attribute. While the platform position is recorded with the Global Position-
ing System (GPS), deviations in position and angular attitude between 
linearly connected GPS positions are determined with the records of the 
Internal Measurement Unit (IMU). The point coordinates on the reflecting 
surface are measured taking into consideration all flight parameters and the 
travel time of the laser beam (Wehr and Lohr 1999). 

For common applications, the ALS point cloud (raw data) is converted 
into regular cells so that common image analysis algorithms as well as ob-
ject-based image analysis workflows can be applied. The rasterization of 
data can be seen as a first abstraction in the sense of the multi-resolution 
representation of objects. The degree of abstraction depends on the relation 
between point density and raster resolution (see Fig. 1). Additionally, the 
method of aggregation (e.g. minimum point height) and interpolation ap-
plied in the rasterization step are essential for the resulting raster. Further-
more, raster data can model only 2.5D surfaces, but not 3D objects, such as 
a bridge. The rasterization of the point cloud is an irreversible processing 
step and is therefore accompanied by a loss of information. The fact that 
the DSM and the DTM as well as the raw data point cloud are often deliv-
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ered to the customer, and the fact that there are several efficient algorithms 
to classify rasterized data, lead to the development of an integrative analy-
sis approach, combining the advantages of OBIA and Object-Based Point 
Cloud Analysis (OBPA) handling the high level of detail in the ALS raw 
data point cloud. 

 

 
Fig. 1. Comparison of level of detail for (a) 2.5D DSM (1 m cell size) and (b) 3D 
raw data point cloud (ca. 8 shots/m²) 

 
In Sect. 2 related work will be presented and Sect. 3 explains the meth-

odology for the integrated OBIA-OBPA approach. The concept of the in-
tegrated approach of OBIA and OBPA is applied to 3D roof classification 
(Sect. 4), which has several applications. The results can be used to deter-
mine potential areas for solar-thermal panels and photovoltaics (Vögtle et 
al. 2005). The roof type of a building defined by the extracted roof seg-
ments can be used for the reconstruction of buildings in 3D city modeling 
(Brenner 2005). In natural hazard research the roof type is one input for es-
timating the snow load capacity of buildings in damage potential calcula-
tions. On the one hand, the snow load capacity depends on the building 
construction, roof area and slope; and on the other hand on the snow pack-
properties and meteorological conditions. 

2 Related work 

2.1 Object-based image analysis on airborne laser scanning 
data 

Several authors show the advantage of using ALS data in addition to other 
rasterized remote sensing images in order to classify the data applying an 
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OBIA approach. Most studies from different research areas use the multi-
resolution segmentation and fuzzy classification approach, implemented in 
the commercial software eCognition (Benz et al. 2004). 

Asselen and Seijmonsbergen (2006) use this OBIA approach to classify 
geomorphologic landforms such as alluvial fan, fluvial terrace, talus slope, 
incised channel, rock cliff and glacial landform. The segmentation is based 
on a slope map derived from a rasterized DTM. The rule-base is built by 
statistical values such as mean, standard deviation, minimum and maxi-
mum elevation derived from the DTM for geomorphologic units in a train-
ing dataset. 

Hollaus et al. (2005) combine a normalized Digital Surface Model 
(nDSM) from ALS with a Normalized Difference Vegetation Index 
(NDVI) from a high resolution Composite Infrared (CIR) image to define 
different land cover classes, which are then used to apply hydrological 
roughness values for hydrological flood modeling.  

Maier et al. (2006) classify forest units according to their height by 
segmenting single tree crowns and forest stands respectively. The inputs 
are an nDSM and an aspect and slope map derived from a DTM represent-
ing the varying forest growth conditions. They derive different landscape 
metric indices in order to describe forest structure and stability. 

Tóvári and Vögtle (2004) present a method to classify buildings and 
high vegetation. An nDSM calculated from ALS data is segmented. The 
segmentation starts at a seed point and includes all objects defined by a 
certain minimum object height threshold. Subsequently for these segments 
the features first-/last echo difference, area, shape index, height texture, 
gradients on segment borders and intensity are calculated for each object. 
Then they compare a fuzzy rule-base, and a maximum likelihood classifi-
cation. 

Further applications of OBIA using ALS data with focus on natural haz-
ard management are described in Rutzinger et al. (2006b). 

2.2 Segmentation and classification of 3D point clouds 

Concepts to segment and classify 3D point clouds collected by either Ter-
restrial Laser Scanning (TLS) or ALS follow the idea of an object-based 
analysis workflow. For each field of application only the most recent ref-
erences are cited. 

Tóvári and Pfeifer (2005) present a segmentation-based method to sepa-
rate high object points from terrain points in order to generate a DTM. The 
method works partly in 3D (point cloud segmentation) and in 2.5D 
(ground surface interpolation). The points are first grouped by a region 
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growing segmentation using random seed points. Then a surface is interpo-
lated for all points. The single segments are weighted by the mean least 
square distance from the interpolated surface. Then a new surface is calcu-
lated in several iterations, taking into account, that segments with a low 
weight contribute less to the surface calculation, and are therefore high ob-
jects. 

Sithole (2005) presents different algorithms to segment and classify 
ALS data. In the sense of a multi-resolution approach, he distinguishes be-
tween micro (local surface roughness) and macro objects (predominant 
landscape objects) and classifies man-made (buildings, bridges) and natu-
ral objects (vegetation and bare Earth). 

Filin and Pfeifer (2006) present a segmentation algorithm based on a 
clustering approach, taking into account features calculated on the basis of 
an adaptive neighborhood. The neighborhood parameters depend on point 
density, measurement accuracy, and horizontal and vertical point distribu-
tion. The features used are the point coordinates and the surface normal 
vector in each point, estimated from the neighboring points. The segmenta-
tion distinguishes noisy points representing vegetation and plane areas like 
vertical walls, bare Earth and roof facets. 

Vosselman et al. (2005) show the possibilities for 3D mapping using 
ALS data. The software eCognition is used to segment and classify build-
ings with a rasterized DSM and nDSM for change detection analysis. The 
classified buildings are compared to a vector ground-plan in order to detect 
newly constructed, demolished and unchanged buildings. Furthermore a 
3D city model is derived using ground-plan information to select the point 
cloud and to extract the roof surface type. The final model contains build-
ings, trees, and streets with the corresponding height from the ALS point 
cloud. 

Reitberger et al. (2006) classify tree species using full-waveform ALS 
data. Full-waveform systems detect not only the first and last reflection of 
a laser shot, but record the whole backscattering cross-section. This gives 
insight into the inner structure of vegetation, as well as additional informa-
tion to derive features for the classification of 3D objects. The working 
steps are the segmentation of individual tree crowns, the derivation of de-
scribing features, and the final classification of tree species. 

An application of OBPA for glacier surface classification is described 
by Höfle et al. (2007). After a region growing segmentation in the 3D 
point cloud based on corrected intensity values the segment outlines are 
modeled using alpha shapes. The classes snow, firn, ice, and surface ir-
regularities (mainly crevasses) are assigned to the segments using a super-
vised rule-based classification. 
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3 Methodology 

3.1 Airborne laser scanning point cloud data management 

3.1.1 LISA system 

ALS delivers a dense 3D point cloud of the scanned surface (typically >1 
pt/m²). For large areas (e.g. country-wide acquisition campaigns) a high 
amount of single point measurements arises. The LISA (LIdar Surface 
Analysis) system incorporates the strength of a GIS and the strength of an 
external data model, developed specifically for ALS data, implemented in 
an external spatial database (Höfle et al. 2006). Exclusively Open Source 
components are in use, which is enabled as many sophisticated free avail-
able programs with well-defined interfaces and open data formats already 
exist. LISA integrates management, processing and visualization of large 
ALS datasets. 

3.1.2 Point cloud data model 

Each area-wide ALS flight campaign typically consists of many single 
flight strips. Each flight strip holds the corresponding single point meas-
urements, which are described by a timestamp, 3D coordinates (X, Y, Z) 
and a measure for the strength of the received signal (signal intensity). The 
developed data model accounts for this structure of ALS data. Additionally 
the data model supports unlimited multi echoes (reflections) per laser shot, 
as well as the storage of the air plane trajectory, which can be linked to 
each measurement. This allows the reconstruction of the scan geometry, 
which is, for example, required for the correction of signal intensities 
(Höfle and Pfeifer 2007). 

Data management is designed to provide a fast and simple retrieval of 
data subsets. For large data volumes, performance is guaranteed by spatial 
indexing of the single flight strips (i.e. data partitioning by flight strip), as 
well as the spatial indexing of the laser points belonging to a strip (Bar-
tunov and Sigaev 2007). Consequently, query performance mainly de-
pends on the data volume, which is requested/selected, and only to a small 
portion on the total size of the database. 

3.1.3 System components and implementation 

The LISA framework consists of two main components: i) the geographi-
cal information system GRASS (GRASS Developer Team 2007) and ii) 
the object-relational database management system (DBMS) PostgreSQL 
(PostgreSQL Global Development Group 2007) with its spatial add-on 
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PostGIS (Refractions Research Inc. 2007). Workflows, i.e. processing and 
analysis algorithms, are written in the scripting language Python (Python 
Software Foundation 2007), which offers a great variety of scientific li-
braries (Jones et al. 2001) and database connectors (Cain 2007). The single 
programs are provided as GRASS GIS commands. The integration of all 
commands into GRASS GIS offers i) a good usability, ii) full access to the 
standard functionality of GRASS and iii) many interfaces, such as GDAL 
(Warmerdam 2007), to common spatial data formats. 

As described above, the laser scanning point cloud is managed using 
PostGIS, but can be easily accessed from the GRASS GIS client side. The 
DBMS offers a client-server-architecture; therefore the large datasets are 
stored only once. The laser scanning data can be either retrieved directly, 
i.e. as 3D vector points, or indirectly by prior rasterization of the point 
cloud. 

3.2 Concept of an integrative approach 

The requirement to use the synergy of vector and raster algorithms, as well 
as the different level of detail in the point cloud and the additional infor-
mation of the rasterized ALS derivatives, lead to the demand of an object-
based analysis approach, which can handle both raster cells and vector 
points. Due to the complexity (e.g. definition of neighborhood; cf. Filin 
and Pfeifer 2005) and computational effort (e.g. neighbor searching, fea-
ture derivation) of area wide point cloud analysis, the combination of 
raster and vector analysis is the method of choice. In the sense of a “classi-
fication-based segmentation” the target class is derived in the raster do-
main, while the OBPA, offering higher resolution, is done only for those 
selected objects. The workflow presented here consists of a modular archi-
tecture for segmentation, feature calculation and error assessment running 
iteratively until an acceptable classification result is reached. 

3.2.1 Workflow 

The object-based analysis workflow comprises two main traces. The first 
one is the raster-based object derivation in 2.5D and the second one is the 
point-based object derivation using the planimetrically defined objects to 
derive 3D objects in higher detail (see Fig. 2). However, both follow the 
same basic processing chain of segmentation, feature calculation and clas-
sification. The specific selection of the parameters and features for the sin-
gle processing steps is described in Sect. 4.2. 
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Fig. 2. Integrated object-based analysis workflow for raster and point cloud 

 
The first derivatives from the point cloud are digital elevation models 

such as first echo and last echo DSMs. A first/last echo difference model 
(FLDM), which is an additional input in the raster segmentation, is calcu-
lated per laser shot (not per cell) using the possibility to reconstruct the 
flight geometry in the DBMS. The segmentation returns either polygon or 
line segments, depending on the segmentation method. For these segments 
topological, shape, raster or point cloud based features are calculated. The 
selected features are the input for the object classification. The classifica-
tion can be done either supervised or unsupervised with the built-in classi-
fiers of GRASS GIS or rule-based. For the latter value ranges are applied 
to a set of object features to define the target class. All segments within the 
value ranges are labeled with a weight. In the end the weights for each 
segment are summed up in order to get a quality measurement specifying 
the degree of membership of a segment to the target class. Additionally, a 
tool for object comparison and similarity is used either to compare multi-
temporal datasets or to apply error assessment using ancillary data. The 
comparison of classified objects considers changes in spatial distribution, 
shape, and topology. Ancillary data or digitized objects in a training area 
are used to optimize the parameters of the raster-based workflow (Pfeifer 
et al. 2007). 
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The objects derived from the raster models are primary results, which 
can be used in further applications (e.g. building polygons in urban plan-
ning or line objects for semi-automatic mapping) (Rutzinger et al. 2006b). 

In the integrative approach the objects derived in the raster domain are 
used to individually extract the original laser points for each object (i.e. 
building) from the spatial database. Then these points are grouped into 
segments. Each set of points generated in the segmentation is considered 
as one object primitive. Based on this, 3D point set features like slope, as-
pect, area, etc. are computed. These features are more accurate than fea-
tures computed on the basis of rasterized images, because mixed pixels 
along the boundary deteriorate the results. With typical pixel sizes of 1 m, 
the number of boundary pixels makes a significant contribution. Another 
advantage is that the influence of the method of aggregation (i.e. taking the 
highest, lowest, etc. point per grid cell) does not influence the result. From 
the segmented points the outline of the 3D polygons is constructed and the 
final objects are classified by their 3D features. 

3.2.2 Segmentation and classification in the raster domain 

The raster-based segmentation is carried out independently for every target 
class and thus differs for specific applications. Due to the different object 
properties, individual segmentation approaches are used for the object of 
interest. 

In the case of building classification, the best segmentation and classifi-
cation settings are estimated for a representative training area with refer-
ence data. The parameters are estimated in a brute-force manner within 
user-defined intervals. Then these estimated parameters are used to seg-
ment and classify the whole data set. It is crucial that the reference data set 
is complete and equivalent to the object representation in the ALS data set. 
In case of buildings it is advisable to use manual digitized areas rather than 
polygons of a Digital Cadastral Map (DCM) as training data because of the 
fact that buildings derived from ALS contain roof overhangs, which are 
not present in a DCM (cf. Pfeifer et al. 2007). In an ideal case digitized 
training areas and an independent reference data set with the same object 
representation are used for parameter estimation and error assessment re-
spectively. The segmentation method used for building detection is based 
on a hydrological approach implemented in GRASS GIS (Arge et al. 2003, 
Rutzinger et al. 2006a). In a first step high vegetation is masked out using 
the information on first/last echo difference. Then a fill sink algorithm is 
applied to the inverted DSM in order to segment the remaining high ob-
jects. The final segment outline is defined by a height threshold 
(segHeight), which suppresses low non-building objects. Furthermore the 
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segment shape is adapted by morphological opening (segOpening, radius 
of the structure element) and finally very small segments considered as 
noise are erased by a minimum area criterion (segArea). 

The user selected features (standard deviation of height, shape index, 
area, mean first/last echo difference, etc.) are first derived for the training 
data set to estimate the classification rules. Then the rules are adjusted 
automatically in order to keep errors between training and classified poly-
gons as small as possible. A quality map is generated from the applied 
weights to each feature layer. Only those objects reaching a particular, de-
fined quality criterion are used for the final, crisp classification. The other 
areas could be used in a second classification with adjusted settings in the 
next iteration. Finally, the classified objects are used to select the corre-
sponding points in the spatial database. 

3.2.3 Object generation in 3D 

Point cloud segmentation 
Segmentation is a process to aggregate information originating in digital 
image processing. Here, it is applied to point sets, which require that con-
cepts applicable to images are transferred to point clouds (Haralick and 
Shapiro 1992). 

The purpose of segmentation is to split a set of spatially distributed 
measurement icons (originally pixels) into disjoint sets. The union of the 
generated sets is the original. Grouping of the original measurements is 
done on the basis of a homogeneity criterion (e.g. gray value for pixels, or 
belonging to the same plane for points, etc.) requiring that such a set is 
spatially connected. Additionally, there is a constraint that joining two 
neighboring sets will violate the homogeneity criterion. This requires that 
neighborhood is defined, which is trivial for images using the 4- or 8-
neighborhood. For point clouds it can be the set of fixed distance 
neighbors or the k nearest neighbors. A detailed discussion on neighbor-
hoods in point clouds of airborne laser scanning can be found in Filin and 
Pfeifer (2005). The definition above normally requires the additional defi-
nition of a rejection set, i.e., a set of points, which do not belong to any 
other segment. Of course, the points in that set are spatially not connected. 

The segmentation method applied is based on region growing and uses 
the neighborhood definition of k nearest neighbors for each point. We 
chose the latter because it adapts to variations in point density and for rea-
sons of computational efficiency. These neighbors are used in the first pre-
processing step to estimate the normal vector for each point. This is done 
by least squares fitting of a plane (regression) to each point and its 
neighbors, which can be interpreted as estimating the tangent plane of that 
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surface point. This plane's normal is the normal vector to each point. 
Therefore the inputs to the region growing are the points and their normal 
vectors. 

The region growing randomly picks a seed point and then examines the 
k nearest neighboring points, termed the candidate points. Random seed 
point selection is justified because it can be assumed that all points belong 
to the same target class due to the pre-processing and selection of the 
OBIA approach (see Sect. 3.2.2). Furthermore the parameters are updated 
during region growing (see below). A number of criteria are checked. Dur-
ing region growing an adjusting plane is also estimated for the points of a 
segment. This is basically the same estimation process as before, however 
now each point that is accepted as belonging to the segment is used to re-
new the estimated normal vector. Plane estimation can only be initiated af-
ter a segment has grown to at least three points, so first the plane is instan-
tiated by the seed point and its normal vector. If a candidate point is 
accepted as belonging to the segment, its k nearest neighbors become new 
candidate points. 

Candidate points will be connected to the segment if they fulfill three 
criteria: 

• similarity of normal vectors (a) 
• distance of candidate point to the adjusting plane (r) 
• distance between current point and candidate point (d) 

The first criterion (similarity of the normal vectors) determines that the 
angle difference between the segment normal and the point normal should 
be under a predefined threshold (e.g. 10°). The second criterion, the dis-
tance of the candidate point to the segment plane, must also fall below a 
threshold (e.g. 15 cm). Finally, each point and the candidate points must 
not be further apart than a defined distance, measured in 3D. Growing con-
tinues until no further points, which fulfill the criteria, can be found. 

This means that segments will constitute planar patches. They are spa-
tially connected (distance d), and points on rounded edges are excluded 
because of the normal vector similarity requirement. 

This process is governed by four parameters: k, a, r, and d. The density 
and noise of the data can be considered by setting the number of neighbors 
and the maximum distance for accepting points. 

Points in the vegetation, on cars, traffic signs, overhead cables, chim-
neys, etc. typically form one point segments and are put in the rejection 
set. Of course, this is also a question of point density, and the above holds 
for point sets with approximately one point per square meter. 
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Triangulation 
The corresponding points of each segment are triangulated separately in it-
erations over all segments. A triangulation of a point set results in a con-
vex hull and therefore information about the segment shape is lost. A 
shape adjustment is applied to every segment by removing the longest 
edges of the triangulated segment. As shown in Fig. 3a, the minimum 
length of the triangle edge to be removed must be larger than the average 
point distance. If it is smaller, holes within the segment appear. If the cho-
sen value for the minimum length is too high, the segment area is overes-
timated and the shape at concave outline sections is not well defined. After 
the shape adjustment, the remaining triangles are merged to the final seg-
ment (see Fig. 3b). The triangulation is done only in 2D, but the vertices of 
the final segment outline are 3D points. 

 

 
Fig. 3. (a) Object outline determined by the minimum triangle edge length (dark 
gray – convex hull, medium gray – 5m, light gray 1m), (b) final segments from 
merged triangles 
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The features for the classification are calculated on the basis of the 3D 
point cloud used in the triangulation. These are the average point distance 
to the estimated plane, slope and aspect, and area in 3D (projected on the 
segment plane) and 2D respectively. 

4 Application: Classification of roof facets 

4.1 Test site 

The tested data is a subset of the ALS acquisition campaign of the city of 
Innsbruck (Tyrol/Austria), which was carried out with an ALTM 3100 Op-
tech scanner in 2005. An area of 269.6 km² is covered by 110 flight strips 
with an average point density of 4 shots/m². From the raw data point cloud, 
which is stored in the LISA system, a last echo DSM and a FLDM, both in 
1 m resolution, are used as input elevation models in further processing. 

4.2 Parameter settings 

The parameters for the detection of building footprints (see Sect. 3.2.2) are 
estimated for a test area where a DCM is available (segHeight 0.5 m, se-
gArea 50 m², segOpening 2). For these building footprints, the last echoes 
are selected from the spatial database in order to segment the point cloud 
by region growing. The chosen parameters for the roof segmentation (k 70, 
a 20°, r 2 m, d 7 m) are explained in Sect. 3.2.3. Additionally, the features 
slope, aspect, noise, 3D and 2D area are calculated for every point seg-
ment. The optimal shape representation of the roof facets is produced with 
a minimum triangle edge length of 5 m. Finally, the roof facets are classi-
fied by their slope into five classes (from 0 to 40° in 10° steps and one 
class for more than 40°). 

4.3 Results 

Figure 4 and 5 show the results of the integrative approach for two selected 
samples. Figure 4c shows that the shape adjustment also works for extreme 
concave objects such as the X-shaped building on the lower left site. The 
comparison of the DCM (Fig. 4a) and the detected building outlines (Fig. 
4b) show that it is possible to use the OBIA approach on ALS data for map 
updating. The W-shaped building on the upper left could be detected, even 
though it was not included in the DCM. The different object representation 
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of buildings in the DCM and in ALS data becomes apparent at the left roof 
edge of the largest building. The single 3D roof facets from the OBPA on 
the basis of the OBIA are seen in Fig. 4c and 4d. 

 

 
Fig. 4. (a) DCM, (b) buildings from OBIA, (c) roof facets from OBPA, (d) 3D 
view of roof facets 

 
For a test site containing 340 buildings located in the city of Innsbruck 

(see Sect. 4.1) error assessment was calculated. A subsample is shown in 
Fig. 5. Compairing the total building areas between reference data (DCM) 
and buildings derived by the OBIA approach (see Sect. 3.2.2) a user’s ac-
curacy of 84.89% and a producer’s accuracy of 91.87% could be reached. 
These error values still suffer from uncertainties caused by the different 
object representation in ALS data and DCM (e.g. roof overhangs or miss-
ing reference buildings). The 3D roof facets and the derived slope classes 
look very promising but could not be evaluated because of lacking refer-
ence data. 
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Fig. 5. (a) last echo DSM, (b) DCM, (c) buildings from OBIA, (d) roof facets 
from OBPA classified by slope 

5 Conclusion 

This paper demonstrates the demand to extend the OBIA approach to 3D 
data sources like ALS data. The OBIA approach must not be limited to 
'image' analysis, but must also handle irregular distributed point clouds 
(OBPA). The combination of image analysis tools and GIS lead to new in-
novative solutions in handling high resolution data, and in classifying and 
determining objects in 3D. This enables the use of highly accurate prod-
ucts in several applications. The point cloud segmentation by region grow-
ing is already showing convincing results, although its application and set-
tings are still subject to further research. 
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The core function of the integrative approach is the iterative access to 
the original point cloud, making this approach a flexible solution. 

Vosselman et al. (2005) state “the future's information society will re-
quire up-to-date object-oriented three-dimensional geo-information.” ALS, 
as well as TLS, with different data structures, demands a development in 
the concept of OBIA in order to provide methods for irregular distributed 
point data handling and 3D object classification. 

New sensors in the field of laser scanning, such as full-waveform analy-
sis, require new innovative concepts where integrative approaches can 
contribute to design efficient strategies for full- and semi-automatic object 
analysis. 
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ABSTRACT: The Support Vector Machine is a theoretically superior 
machine learning methodology with great results in pattern recognition. 
Especially for supervised classification of high-dimensional datasets and 
has been found competitive with the best machine learning algorithms. In 
the past, SVMs were tested and evaluated only as pixel-based image clas-
sifiers. During recent years, advances in Remote Sensing occurred in the 
field of Object-Based Image Analysis (OBIA) with combination of low 
level and high level computer vision techniques. Moving from pixel-based 
techniques towards object-based representation, the dimensions of remote 
sensing imagery feature space increases significantly. This results to in-
creased complexity of the classification process, and causes problems to 
traditional classification schemes. The objective of this study was to evalu-
ate SVMs for their effectiveness and prospects for object-based image 
analysis as a modern computational intelligence method. Here, an SVM 
approach for multi-class classification was followed, based on primitive 
image objects provided by a multi-resolution segmentation algorithm. 
Then, a feature selection step took place in order to provide the features for 
classification which involved spectral, texture and shape information. Af-
ter the feature selection step, a module that integrated an SVM classifier 
and the segmentation algorithm was developed in C++. For training the 
SVM, sample image objects derived from the segmentation procedure 
were used. The proposed classification procedure followed, resulting in the 
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final object classification. The classification results were compared to the 
Nearest Neighbor object-based classifier results, and were found satisfac-
tory. The SVM methodology seems very promising for Object-Based Im-
age Analysis and future work will focus on integrating SVM classifiers 
with rule-based classifiers.  

1 Introduction 

1.1 Knowledge-based image classification and Object Oriented 
Image Analysis 

In recent years, research has progressed in computer vision methods ap-
plied to remotely sensed images such as segmentation, object oriented and 
knowledge-based methods for classification of high-resolution imagery 
(Argialas and Harlow 1990, Kanellopoulos et al. 1997). In Computer Vi-
sion, image analysis is considered in three levels: low, medium and high. 
Such approaches were usually implemented in separate software environ-
ments since low and medium level algorithms are procedural in nature, 
while high level is inferential and thus for the first procedural languages 
are best suitable while for the second an expert system environment is 
more appropriate. 

New approaches were proposed, during recent years in the field of Re-
mote Sensing. Some of them were based on knowledge-based techniques 
in order to take advantage of the expert knowledge derived from human 
photo-interpreters (Argialas and Goudoula 2003, Yooa et al 2005). Espe-
cially within an Expert System environment, the classification step can be 
implemented through logic rules and heuristics, operating on classes and 
features, which are implemented by the user through an object-oriented 
representation (Moller-Jensen 1997, De Moraes 2004).  

Very recently a new methodology called Object Oriented Image Analy-
sis was introduced, integrating low-level, knowledge-free segmentation 
with high-level, knowledge-based fuzzy classification methods. This new 
methodology was implemented through commercial software, eCognition, 
which included an object-oriented environment for the classification of sat-
ellite imagery (Baatz and Shape 2000, Benz et al. 2004). 

1.2 Computational Intelligence methods in Remote Sensing 

Other fields of Artificial Intelligence have been developed and applied re-
cently. Computers became more capable of performing calculations and 
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thus, a new field of A.I. called Computational Intelligence and Machine 
Learning evolved. In this field, techniques like Neural Networks, Fuzzy 
Systems, Genetic Algorithms, Intelligent Agents and Support Vector Ma-
chines (Negnevitsky 2005) are included. Machine learning is an integral 
part of Pattern Recognition, and its applications such as classification 
(Theodoridis and Koutroumbas 2003). Digital remote sensing used in the 
past pattern recognition techniques for pixel classification purposes, while 
recently modern machine learning techniques have been implemented to 
achieve superior classification results (Brown et al 2000, Fang and Liang 
2003, Huang et al 2002, Theodoridis and Koutroumbas 2003, Foody and 
Mathur 2004). 

The Support Vector Machine (SVM) is a theoretically superior machine 
learning methodology with great results in classification of high-
dimensional datasets and has been found competitive with the best ma-
chine learning algorithms (Huang et al 2002, Foody and Mathur 2004). In 
the past, SVMs were tested and evaluated only as pixel based image classi-
fiers with very good results (Brown et al 2000, Huang et al 2002, Foody 
and Mathur 2004, Melgani and Bruzzone 2004). 

Furthermore, for remote sensing data, it has been shown that Support 
Vector Machines have great potential, especially for hyperspectral data, 
due to their high-dimensionality (Mercier and Lennon 2003, Melgani and  
Bruzzone 2004). In recent studies, Support Vector Machines were com-
pared to other classification methods, such as Neural Networks, Nearest 
Neighbor, Maximum Likelihood and Decision Tree classifiers for remote 
sensing imagery and have surpassed all of them in robustness and accuracy 
(Huang et al 2002, Foody and Mathur 2004). 

1.3 Research objectives 

The objective of this study was to evaluate the effectiveness and prospects 
of SVMs for object-based image analysis, as a modern computational in-
telligence method.  

A secondary objective was to evaluate the accuracy of SVMs compared 
to a simpler and widely used classification technique in object-based im-
age analysis such as the Nearest Neighbor. Also, the computational effi-
ciency and training size requirements of SVMs were addressed. 
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2 Methodology 

2.1 Multi-scale segmentation 

Image segmentation is an integral part of Object-Based Image Analysis 
methodology (Benz et al 2004). The digital image is no longer considered 
as a grid of pixels, but as a group of primitive and homogeneous regions, 
called image objects. The object oriented representation provides the clas-
sification process with context and shape information that could not be de-
rived from single pixels. These are very important factors to photo-
interpretation and image understanding (Biederman 1985, Lillesand and 
Kiefer 1987, Sonka et al 1998). Objects can be more intelligent than pix-
els, in a sense of knowing their “neighbours” and the spatial or spectral re-
lations with and among them (Baatz and Shape 2000).  
In order to perform object-based classification, a segmentation algorithm is 
needed to provide knowledge-free primitive image objects. For this re-
search effort the MSEG multi-scale segmentation algorithm was used 
(Tzotsos and Argialas 2006, Tzotsos et al. 2007). The main reason for this 
choice was that it has an open architecture to implement new features in 
C++. For evaluation purposes, the Multiresolution Segmentation algorithm 
from eCognition was also used (Baatz and Shape 2000). 

2.2 Support Vector Machines 

Recently, particular attention has been dedicated to Support Vector Ma-
chines as a classification method. The SVM approach seeks to find the op-
timal separating hyperplane between classes by focusing on the training 
cases that are placed at the edge of the class descriptors (Fig. 1). These 
training cases are called support vectors. Training cases other than support 
vectors are discarded. This way, not only an optimal hyperplane is fitted, 
but also less training samples are effectively used; thus high classification 
accuracy is achieved with small training sets (Mercier and Lennon 2003). 
This feature is very advantageous, especially for remote sensing datasets 
and more specifically for Object-based Image Analysis, where object sam-
ples tend to be less in number than in pixel based approaches. 

A complete formulation of Support Vector Machines can be found in a 
number of publications (Cortes and Vapnik 1995, Vapnik 1995, 1998, 
Theodoridis and Koutroumbas 2003). Here, the basic principles will be 
presented and then their implementation and application to Object-Based 
Image Analysis will be evaluated. 
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Let us consider a supervised binary classification problem. If the train-
ing data are represented by {xi, yi}, i = 1, 2, …, N, and yi ∈  {-1, +1}, 
where N is the number of training samples, yi=+1 for class ω1 and yi=-1 for 
class ω2. Suppose the two classes are linearly separable. This means that it 
is possible to find at least one hyperplane defined by a vector w with a bias 
w0, which can separate the classes without error: 

0)( 0 =+⋅= wxwxf  (1) 

To find such a hyperplane, w and w0 should be estimated in a way 
that 1)( 0 +≥+⋅ wxwy ii  for yi = + 1 (class ω1) and 1)( 0 −≤+⋅ wxwy ii  
for yi = - 1 (class ω2). These two, can be combined to provide equation 2: 

01)( 0 ≥−+⋅ wxwy ii  (2) 

Many hyperplanes could be fitted to separate the two classes but there is 
only one optimal hyperplane that is expected to generalize better than other 
hyperplanes (Fig.1). The goal is to search for the hyperplane that leaves 
the maximum margin between classes. To be able to find the optimal hy-
perplane, the support vectors must be defined. The support vectors lie on 
two hyperplanes which are parallel to the optimal and are given by: 

10 ±=+⋅ wxw i  (3) 

If a simple rescale of the hyperplane parameters w and w0 takes place, 

the margin can be expressed as 
w
2

. The optimal hyperplane can be found 

by solving the following optimization problem: 

                        Minimize 
2

2
1 w      

     Subject to 01)( 0 ≥−+⋅ wxwy ii  i = 0, 1, … N 

(4) 

Using a Lagrangian formulation, the optimal hyperplane discriminant 
function becomes: 

∑
∈

+=
Si

iii wxxyxf 0)()( λ  (5) 

where iλ  are the Lagrange multipliers and S is a subset of training samples 
that correspond to non-zero Lagrange multipliers. These training samples 
are called support vectors. 
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In most cases, classes are not linearly separable, and the constrain of 
equation 2 cannot be satisfied. In order to handle such cases, a cost func-
tion can be formulated to combine maximization of margin and minimiza-
tion of error criteria, using a set of variables called slack variables ξ (Fig. 
1). To generalize the above method to non-linear discriminant functions, 
the Support Vector Machine maps the input vector x into a high-
dimensional feature space and then constructs the optimal separating hy-
perplane in that space. One would consider that mapping into a high di-
mensional feature space would add extra complexity to the problem. But, 
according to the Mercer’s theorem (Vapnik 1998, Theodoridis and 
Koutroumbas 2003), the inner product of the vectors in the mapping space, 
can be expressed as a function of the inner products of the corresponding 
vectors in the original space. 

The inner product operation has an equivalent representation: 

),()()( zxzx Κ=ΦΦ  (6) 

where K(x,z)  is called a kernel function. If a kernel function K can be 
found, this function can be used for training without knowing the explicit 
form ofΦ .  
 

 
Fig. 1. Left: The case of linear separable classes. Right: The case of non linear 
separable classes. ξ measures the error of the hyperplane fitting 

2.3 SVM Multi-class Classification 

The SVM method was designed to be applied only for two class problems. 
For applying SVM to multi-class classifications, two main approaches 
have been suggested. The basic idea is to reduce the multi-class to a set of 
binary problems so that the SVM approach can be used. 

The first approach is called “one against all”. In this approach, a set of 
binary classifiers is trained to be able to separate each class from all others. 



Support Vector Machine Classification for Object-Based Image Analysis      669 

Then each data object is classified to the class for which the largest deci-
sion value was determined (Hsu and Lin 2002). This method trains N 
SVMs (where N is the number of classes) and there are N decision func-
tions. Although it is a fast method, it suffers from errors caused by margin-
ally imbalanced training sets. 

The second approach is called “one against one”. In this, a series of 
classifiers is applied to each pair of classes, with the most commonly com-
puted class kept for each object. Then a max-win operator is used to de-
termine to which class the object will be finally assigned. The application 
of this method requires N(N-1)/2 machines to be applied. Even if this 
method is more computationally demanding than the “one against all” 
method, it has been shown that can be more suitable for multi-class classi-
fication problems (Hsu and Lin 2002), thus it was selected for SVM ob-
ject-based image classification. 

2.4 Implementation 

In order to apply the SVM methodology for Object-Based Image Analysis, 
it was necessary to perform a segmentation task. The MSEG algorithm 
was selected to perform segmentation at multiple scales (Tzotsos and Ar-
gialas 2006, Tzotsos et al. 2007) and to produce primitive image objects to 
be used for SVM classification.  

For the primitive objects to be usable by a classification algorithm there 
was a need to implement an interface between image objects and the clas-
sifier. An extra module was implemented into the MSEG core library to 
add the functionality of selecting sample objects. Because a comparison 
was to be made with the Nearest Neighbor classifier used in eCognition, a 
TTA Mask (eCognition user guide 2005) import module was also imple-
mented, so that the training object selection process would be as transpar-
ent and objective as possible. For the object feature representation, XML 
was selected, so that open standards are followed.  

A widely used SVM library called LIBSVM (Chang and Lin 2001) was 
then modified to be able to handle XML files as well as training samples 
from the MSEG algorithm. A classifier module was then implemented as a 
modified version of LIBSVM. 

The proposed Object-based Image Analysis system worked as follow-
ing. A segmentation procedure was carried out with parameters like scale, 
color and shape. The properties of the primitive objects were then com-
puted and exported to XML. A TTA Mask file along with its attribute table 
was imported to the system and training object samples were defined. A 
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training set of feature vectors was exported from the MSEG algorithm and 
was used for training the SVM module. 
The SVM module is capable to use 4 types of kernels for training and clas-
sification: Linear, Polynomial, Radial Basis Function and Sigmoid. All the 
above kernels follow Mercer’s theorem and can be used for mapping the 
feature space into a higher dimensional space to find an optimal separating 
hyperplane. In literature, there have been many comparison studies be-
tween the most common kernels (Huang et al 2002, Mercier and Lennon 
2003). For pixel-based classification of remotely sensed data, it has been 
shown that local kernels such as RBF can be very effective and accurate. 
Also, the linear kernel is a special case of the RBF kernel, under specific 
parameters (Hsu and Lin 2002). Based on the above, for the current study 
only RBF kernels were used.  

For the training of the SVM classifier, an error parameter C and a kernel 
parameter γ had to be obtained. In order to find the optimal parameters for 
the RBF kernel function a cross-validation procedure was followed. First 
the training set was scaled to the range of [-1, +1] to avoid features in 
greater numerical ranges dominating those in smaller ranges (Negnevitsky 
2005). Then, the training set was divided to many smaller sets of equal 
size. Sequentially each subset was tested using the classifier trained by the 
remaining subsets. This way each image object was predicted once during 
the above process. The overall accuracy of the cross-validation was the 
percentage of correctly classified image objects. 

After the cross-validation delivered the optimal parameters for the SVM 
classifier, the training set was used to train the SVM. Then the classifier 
was provided with all image primitive objects so to derive the final object- 
based classification. The output of the above procedure was a classification 
map as well as an updated XML representation of the segmentation level. 

3 Discussion of Results 

For the evaluation of the above methodology, initially a Landsat TM im-
age was used. For comparison purposes, an object-based classification of 
the same image was performed in eCognition. The training samples in both 
cases were the same (a TTA mask file) and were obtained by the eCogni-
tion user guide (2005) for objective evaluation. The original Landsat TM 
image and the training samples are presented in Figure 2. A reference data-
set was also derived from photo-interpretation and was used to compute 
confusion matrices. 
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First, the training samples were applied to small primitive objects that 
were derived by eCognition with scale parameter 10 and by MSEG with 
scale parameter 100. Scale parameters are implementation dependent 
(Tzotsos and Argialas 2006). For the export of training samples, the mini-
mum overlap for sample object was set to 50% (eCognition User Guide 
2005). The overall accuracy of the Nearest Neighbor (NN) method, based 
on the reference dataset was 85.6%. The overall accuracy of the object-
based SVM classification was 90.6% (Figure 3, Tables 1 and 2). 

 

 
 

 
Fig. 2. Left: the original Landsat TM image (source: eCognition User Guide 
2005). Right: The training set of class samples 

 
Then, in order to test the generalization ability of both classifiers, an er-

ror was introduced into the training samples, in the form of not using a 
minimum overlap restriction for sample object selection. This way, more 
training objects were selected with errors derived from the segmentation 
procedures. An interesting observation was that the SVM behaved better 
than the NN at the second training set and provided better classification re-
sults (Tables 3 and 4) giving an overall accuracy of 86.0% against 84.1% 
for the NN. Both classification results are presented in Figure 4. 

The evaluation of the methodology also included testing on very high 
resolution data (Toposys GmbH). An aerial scanner image with resolution 
of 0.5m was used for classification purposes. This image was selected be-
cause outperforms in resolution all commercial satellite data available to-
day. Again, the SVM classification method was compared to the Nearest 
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Neighbour classifier of eCognition software. In both cases 4 basic land 
cover classes were selected and the same samples were used to train the 
classifiers. In Figure 5, the original dataset is presented. A reference data-
set was also created through photo-interpretation in order to compute con-
fusion matrices (Figure 5). 

 

 

 
Fig. 3. Left: eCognition classification result with Nearest Neighbor. Right: MSEG 
classification result with SVM. 

 

 
Fig. 4. Left: eCognition classification result with Nearest Neighbor. Right: MSEG 
classification result with SVM. In both classification results, errors have been in-
troduced to the training sets for generalization evaluation. (Legend as in Fig3) 
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Table 1. Nearest Neighbor confusion matrix. The overall accuracy was 85.6% 

 Woodland Grassland Impervious Water 
Woodland 17922 3381 280 0 
Grassland 2578 12854 195 0 
Impervious 139 770 8539 0 
Water 80 0 0 4740 
    85.6% 

Table 2. SVM confusion matrix. The overall accuracy was 90.6% 

 Woodland Grassland Impervious Water 
Woodland 17846 2088 45 740 
Grassland 767 15937 210 91 
Impervious 231 215 8305 263 
Water 180 13 10 4537 
    90.6% 

Table 3. Nearest Neighbor confusion matrix. The overall accuracy was 84.1% 

 Woodland Grassland Impervious Water 
Woodland 16080 1470 0 0 
Grassland 2195 13891 195 0 
Impervious 899 314 8605 0 
Water 1545 1330 214 4740 
    84.1% 

Table 4. SVM confusion matrix. The overall accuracy was 86.0% 

 Woodland Grassland Impervious Water 
Woodland 16816 3458 207 238 
Grassland 1262 15506 178 59 
Impervious 249 325 8315 125 
Water 349 755 1 3635 
    86.0% 
 
The eCognition software provided primitive objects through the seg-

mentation algorithm with scale parameter 15. Then the sample data were 
imported to the NN classifier and the classification took place. The mini-
mum overlap between samples and primitive objects was set to 50%. The 
classification result is presented in Figure 6. After the classification step, a 
confusion matrix was computed (Table 5) and the overall accuracy was 
87.4%. 
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Fig. 5. Left: the original aerial scanner image (source: Toposys GmbH). Right: 
The ground-truth dataset used to evaluate results 

 

 

 
Fig. 6. Left: eCognition classification result with Nearest Neighbor. Right: MSEG 
classification result with SVM. Training sample overlap with objects set to 50% 

 
The MSEG algorithm provided primitive objects for testing the object-

based SVM classifier. The scale parameter was set to 300. The sample data 
were given as input to the SVM classifier and a cross validation procedure 
was followed to provide the best C and γ parameters for the SVM classi-
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fier. After the classification step, a confusion matrix was computed (Table 
6) The overall accuracy of the object-based SVM classification was 
87.6%. 

Although Table 5 and 6 overall accuracies seem to imply similar classi-
fication results, Figure 6 shows that there is not great similarity. A closer 
look at the confusion matrices reveals that both classifiers include classifi-
cation errors, but in different class combinations. This behaviour is caused 
by the fact that object-based NN is treating internally each sample as a 
separate class to calculate distances, while SVM uses only the objects that 
form the support vectors for learning. 

Table 5. Nearest Neighbor confusion matrix. The overall accuracy was 87.4% 

 Veg. Tile R. Bright R. Asphalt  
Vegetation 15708 1528 0 887 
Tile Roofs 0 2672 0 238 
Bright Roofs 0 12 8408 387 
Asphalt Like 2078 1706 2019 34847 
    87.4% 

Table 6. SVM confusion matrix. The overall accuracy was 87.6% 

 Veg. Tile R. Bright R. Asphalt 
Vegetation 14760 39 0 2987 
Tile Roofs 36 4229 480 1173 
Bright Roofs 0 18 8377 2032 
Asphalt Like 45 1493 421 34400 
    87.6% 

4 Conclusions  

Overall, the SVM classification methodology was found very promising 
for Object-Based Image Analysis. It has been shown that it can produce 
better results than the Nearest Neighbor for supervised classification. 

The computational efficiency of SVM was great, with only a few sec-
onds of runtime necessary for training. This was theoretically expected but 
also, the implementation in C++ is extremely fast. This performance result 
occurred on test images up to 1000x1000 pixels size. However, very large 
remote sensing datasets were not tested. 
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A very good feature of the SVM is that only a small sample set is 
needed to provide very good results, because only the support vectors are 
of importance during training. 
Future work will include comparison of many SVM kernels for object ori-
ented image classification. Also, an integration of SVM classifiers with 
rule-based classifiers will be implemented for context-based classification. 
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ABSTRACT: This work presents a method for the automatic adaptation 
of segmentation parameters based on Genetic Algorithms. An intuitive and 
computationally simple fitness function, which expresses the similarity be-
tween the segmentation result and a reference provided by the user, is pro-
posed. The method searches the solution space for a set of parameter val-
ues that minimizes the fitness function. A prototype including an 
implementation of a widely used segmentation algorithm was developed to 
assess the performance of the method. A set of experiments with medium 
and high spatial resolution remote sensing image data was carried out and 
the method was able to come close to the ideal solutions.   
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1 Introduction 

The key step in object-based image interpretation is the segmentation of 
the image (Blaschke and Strobl 2001). In fact, the performance of the 
whole interpretation strongly depends on the segmentation quality. There-
fore, proper segmentation parameters must be chosen before starting the 
classification process. The relation between the parameter values and the 
corresponding segmentation outcome, however, is in most cases far from 
being obvious, and the definition of suitable parameter values is usually 
done through a troublesome and time consuming trial and error process. 

Many semiautomatic approaches have been proposed to reduce the bur-
den of parameter adaptation, starting from simple graphic support tools 
(e.g. Schneider et al. 1997), going through interactive systems (e.g. 
Matsuyama 1993) in which the user is asked to rate the result after each 
adaptation iteration (Crevier and Lepage 1997), up to nearly automatic 
solutions that require a minimum of human intervention.  

The automatic adaptation of segmentation parameters involves two main 
issues: the selection of an objective function that expresses adequately the 
quality of the segmentation (Bhanu et al. 1995); and the choice of the op-
timization method for the search of parameter values that maximize the ob-
jective function. In supervised methods the quality measure reflects the 
similarity among the segmentation output and reference segments usually 
produced manually by a photo-interpreter (Zhang 1996). Unsupervised 
methods, on the contrary, use no references and do not consider human in-
duced subjectivity or application particularities (Espindola et al. 2006).  

Generally the relationship among the segmentation parameter values 
and the quality measure can not be formulated analytically. In such cases 
calculus based optimization methods cannot be used. Genetic Algorithms 
(GAs) do not require any explicit model of the underlying process (Davis 
1990) and can work with virtually any objective function (Bhanu et al. 
1991; Bhanu and Lee 1994; Everingham et al. 2002).  

The present work addresses these topics and proposes an automatic GA-
based adaptation method. The method uses an intuitive and computation-
ally uncomplicated fitness function that expresses the agreement between a 
set of user defined segment samples and the automatic segmentation out-
come.  

A software prototype of the automatic adaptation method was built for 
performance assessment. Although the method can be easily applied to a 
variety of segmentation algorithms the experiments described here were 
limited to the algorithm proposed by Baatz and Schäpe (2000) and used in 
the eCognition software package (Definiens 2004).  
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2 Genetic Algorithms 

2.1 Basic concepts and terminology 

Genetic Algorithms are a computational search technique to find approxi-
mate solutions to optimization problems. They are based in the biological 
evolution of species as presented by Charles Darwin (Darwin 1859). The 
main principle of the Darwin’s Theory of Evolution is that individual char-
acteristics are transmitted from parents to children over generations, and 
individuals more adapted to the environment have greater chances to sur-
vive and pass on particular characteristics to their offspring. 

In evolutionary computing terms an individual represents a potential so-
lution for a given problem, and its relevant characteristics with respect to 
the problem are called genes. 

A population is a set of individuals in a particular generation, and indi-
viduals in a population are graded as to their capacity to solve the problem. 
That capacity is determined by a fitness function, which indicates numeri-
cally how good an individual is as a solution to the problem (Michalewicz 
1994). 
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Fig. 1. Basic GA processes 

 
GAs propose an evolutionary process to search for solutions that maxi-

mize or minimize a fitness function. This search is performed iteratively 
over generations of individuals. For each generation the less fitted indi-
viduals are discarded and new individuals are generated by the reproduc-
tion of the fittest. The creation of the new individuals is done by the use of 
genetic operators. 
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2.2 Genetic operators 

A genetic operator represents a rule for the generation of new individuals. 
The classical genetic operators are crossover and mutation. Mutation 
change gene values in a random fashion, respecting the genes’ search 
spaces. Mutation is important to introduce a random component in the 
search of a solution in order to avoid convergence to local minima. 

Crossover operators act by mixing genes between two individuals to 
create new ones that inherit characteristics of the original individuals. The 
general idea is that an individual’s fitness is a function of its characteris-
tics, and the exchange of good genes may produce better fitted individuals 
depending on the genes inherited from their parents. Although less fitted 
individuals can also be generated by this process, they will have a lower 
chance of being selected for reproduction.  

Other genetic operators can be found in the literature (Michalewicz 
1994). Most of them are variants of crossover and mutation, adapted for 
specific types of problems. 

3 Adaptation of segmentation parameters using a genetic 
algorithm  

3.1 Processing scheme 

In the devised GA each individual consists of a set of segmentation pa-
rameter values; each parameter is represented by a gene. The fitness of 
each solution (individual) is calculated by comparing the segmentation 
produced by the solution with a reference segmentation (Fig. 2).  

The parameter values (genes) of the initial set of solutions (initial popu-
lation) are generated randomly. As the evolutionary process advances, the 
best solutions (fittest individuals) are selected and new solutions (genera-
tions) are created from them (reproduction).  

The selection of individuals for reproduction takes the fitness values 
into consideration, so that the fittest individuals have a larger probability 
of being selected. Furthermore, the best individuals from one generation 
are kept in the next generation. The evolutionary process stops after a fixed 
number of generations, and the gene values of the fittest individual are 
taken as the final (adapted) segmentation parameter values.  

For computational efficiency, segmentation may be restricted to a small 
window around each target segment. This considerably reduces the proc-
essing time in comparison to segmenting the whole image at each fitness 
evaluation. 
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Fig. 2. Fitness evaluation 

3.2 Reproduction procedure 

As stated before, the initial population is created by setting random values 
for the genes of each individual. After fitness evaluation a new population 
is created by replacing the M worst individuals of the prior population, be-
ing M a positive integer value smaller than the population size. 

The new individuals are created by genetic operations over selected in-
dividuals of the prior population. The selection of individuals is done by a 
roulette mechanism, which takes into consideration normalized fitness val-
ues (Davis 1990). 

The following genetic operators were used (Davis 1990; Michalewicz 
1994). One point crossover: two individuals exchange genes; arithmetic 
crossover: a linear combination of a set of genes of two individuals is per-
formed; mutation: the value of a gene is substituted by a random value; 
two types of creep mutation: gene values are adjusted (added or sub-
tracted) by a small or large randomly generated value. 

The selection of the reproduction operation is also done by a roulette 
mechanism, considering a predefined probability value for each operator. 
To help preventing convergence to local minima, the operators’ applica-
tion probabilities are interpolated during the evolution process (Davis 
1990), decreasing crossover probability while increasing mutation and 
creep probabilities. 
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3.3 Fitness evaluation 

The fitness of an individual should indicate how good the segmentation re-
sult in relation to the reference segmentation is. In mathematical terms, 
given a set of reference segments S and a parameter vector P, a fitness 
function F(S, P) that appropriately expresses the goodness of a segmenta-
tion outcome must be defined. Once the fitness function F is chosen, the 
task of the GA consists in searching for the parameter vector Popt, for 
which the value of F is minimum: 

( )[ ]( )P,SFminargP Popt =  (1) 

The fitness function devised in this work is defined as follows. Let Si 
denote the set of pixels belonging to the ith segment of the set S, and Oi(P) 
the set of pixels belonging to the segment with the largest intersection with 
Si among the segments produced by using P as parameter values of the 
segmentation algorithm. The fitness function is then given by the equation 
below, in which ‘-’ represents the set difference operator; ‘#( )’ is the car-
dinality function; and n is the number of segments in the set S.  
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Figure 3 shows graphically the components of the proposed fitness func-
tion. The region enclosed by the solid contour represents a reference seg-
ment Si and its area corresponds to the denominator in Eq. 2. The region 
with the dashed contour represents Oi(P). The shadowed area corresponds 
to the numerator in Eq. 2. Notice that F=0 indicates a perfect match be-
tween the reference and the output segmentation. 

It is important to point out that S does not need to represent a complete 
segmentation of the input image, such that every pixel of the image would 
belong to a segment in S. In fact, in the experiments presented here, S con-
tains only 5 to 10 segments. 
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Fig. 3. Graphical representation of the fitness function 

4 Segmentation procedure 

The segmentation procedure used in this work is based on the region grow-
ing algorithm proposed in (Baatz and Schäpe 2000). The algorithm is a 
stepwise local optimization procedure that minimizes the average hetero-
geneity of the image segments.  

Segments grow from single pixels, merging to neighbouring segments. 
In each processing step a segment can be merged to the neighbour that 
provides for the smallest growth of global heterogeneity. The merging de-
cision is based on minimizing the resulting segment’s weighted heteroge-
neity, an arbitrary measure of heterogeneity weighted by segment size. 

The heterogeneity measure has a spectral and a spatial component. 
Spectral heterogeneity is defined over the spectral values of the pixels be-
longing to the segment, it is proportional to the standard deviation of the 
pixels’ spectral values weighted by arbitrary spectral band weights.  

The spatial heterogeneity component is based on the deviation of the 
segment’s shape from a compact and a smooth shape. Compactness is de-
fined as the ratio of the perimeter of the segment and the square root of its 
area. Smoothness is defined as the ratio of the segment’s perimeter and the 
length of its bounding box (parallel to the image borders). 

To simulate the parallel growth of the segments, they are selected for 
merging only once in each iteration, in an evenly distributed fashion.  

The merging decision mechanism is of key importance to this work, as 
it is where the external parameters of the segmentation procedure are em-
ployed. A fusion factor is calculated for each neighbour of the selected 
segment. The neighbour for which this factor is minimum will be merged, 
but only if the fusion factor is smaller than a certain threshold defined as 
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the square of the so called scale parameter. The procedure stops when no 
more segments can be merged. 

As shown in Eq. 3 the fusion factor f contains a spectral heterogeneity 
component hcolor and a spatial heterogeneity component hshape. The relative 
importance of each type of heterogeneity is set by the color weight wcolor. 

( ) shapecolorcolorcolor hw1hwf ⋅−+⋅=  (3) 

The spatial component of the fusion factor has again two components 
(Eq. 4), a compactness component hcmpct and a smoothness component 
hsmooth. The relative importance of each component is set by the weight 
wcmpct.  

( ) smoothcmpctcmpctcmpctshape hw1hwh ⋅−+⋅=  (4) 

Throughout the segmentation procedure segments grow based on an ad-
justable criterion for heterogeneity. This adjustment can be made by set-
ting the values of the scale parameter (s), the spectral band weights (wc), 
the color weight (wcolor) and the compactness weight (wcmpct). 

Adjusting the scale parameter influences the overall object size: the lar-
ger its value, the bigger the resulting segments. Additionally, the influence 
of each spectral channel, the influence of shape against color, and of com-
pactness against smoothness in shapes can be set. 

Given a particular image’s spectral and spatial characteristics and the 
land use/land cover characteristics of the investigated site, the values of 
those parameters can change considerably. And finding a good set of pa-
rameter values for each case is by no means a trivial task.     

5 Experiments 

In order to evaluate the performance of the proposed method a software 
prototype was developed in C++. The prototype includes the implementa-
tion of the algorithm described by Baatz and Schäpe (2000).  

In the proposed method a human interpreter delimits manually a set of 
polygons, which represents his expectation regarding the result of the 
automatic segmentation. These polygons are used as the reference segmen-
tation for fitness evaluation, and should capture the subjectivity of the in-
terpreter in the evaluation process. 

The cognitive processes applied by the human interpreter is very com-
plex and cannot be fully represented in the segmentation algorithm as they 
lie almost totally below our threshold of consciousness (Crevier and 
Lepage 1997). Therefore, there is no guaranty that a set of parameter val-
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ues that produces a perfect match with the reference exists. That consid-
ered, the eventual GA incapacity to converge to a satisfactory solution can 
result from the limitations of the segmentation procedure or from an eccen-
tric choice of reference segments by the interpreter. 

Two sets of experiments were devised in order to investigate the issues 
just mentioned. In the first experiments, subjective factors were eliminated 
from the analysis, so that only the capacity of the method to converge to 
optimal solutions could be tested. In the second set of experiments the ca-
pacity of the method to capture the interpreter’s subjective perception 
about the quality of the segmentation was evaluated. 

5.1 Convergence analysis 

The purpose of this series of experiments was to test the capacity of the 
GA to converge to a solution that minimizes the fitness function. The op-
timal solution is known beforehand and achievable by the segmentation 
algorithm.  

Image data of two different sources were used: pan-sharpened ETM 
Landsat and IKONOS scenes covering areas of the City of Rio de Janeiro, 
taken respectively in 2001 and 2002. From each scene two 256 by 256 
pixel image subsets, over sites with different land cover characteristics, 
were produced. The input images for the experiments are identified in this 
section as follows: image 1 – subset of the Landsat scene over a dense 
urban area; image 2 – subset of the Landsat scene over a forest; image 3 – 
subset of the IKONOS scene over a sparse residential area; image 4 – 
subset of the IKONOS scene over a dense urban area. 

For each experiment the input images were segmented using predefined 
values for the parameters. Sample segments were selected manually from 
the resulting segmentation to be used as the input reference segmentation 
for fitness evaluation (see Fig. 2). The basic criterion for the selection of 
samples was to end up with a evenly spatially distributed set of segments 
that did not intercept the borders of the images. For each experiment be-
tween 5 and 10 segments were selected. 

In these experiments, therefore, the optimal solution is known a priory 
and it is expected that the GA converges to the predefined parameters, 
producing exactly the same reference segments 

All the results reported in this work were produced by the GA operating 
with the following configuration: population size of 50 individuals; 40 
generations; 90% of the individuals changed from one generation to the 
next. The GA performed well with this configuration throughout our ex-
periments for all images of our data set. This is an evidence for the robust-
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ness of the method, i.e., that the GA parameters does not need to be 
adapted for each application. 

Table 1. Parameters and results of the first set of experiments 

exp image s wcolor wcmpct w1 w2 w3 fitness 
30.0 0.80 0.50 0.6 0.3 0.1 1 1 27.7 0.65 0.33 0.6 0.3 0.1 0.09 

30.0 0.80 0.50 0.3 0.1 0.6 2 1 25.4 0.69 0.32 0.3 0.1 0.6 0.00 

60.0 0.80 0.50 0.6 0.3 0.1 3 1 44.2 0.82 0.57 0.6 0.3 0.1 0.02 

60.0 0.80 0.50 0.3 0.1 0.6 4 1 44.2 0.71 0.32 0.3 0.1 0.6 0.01 

30.0 0.80 0.50 0.6 0.3 0.1 5 2 27.8 0.76 0.38 0.6 0.3 0.1 0.01 

30.0 0.80 0.50 0.3 0.1 0.6 6 2 29.0 0.70 0.35 0.3 0.1 0.6 0.02 

60.0 0.80 0.50 0.6 0.3 0.1 7 2 41.6 0.56 0.14 0.6 0.3 0.1 0.06 

60.0 0.80 0.50 0.3 0.1 0.6 8 2 53.7 0.79 0.47 0.3 0.1 0.6 0.00 

30.0 0.80 0.50 0.1 0.3 0.6 9 3 29.7 0.77 0.42 0.1 0.4 0.5 0.00 

30.0 0.80 0.50 0.3 0.6 0.1 10 3 30.2 0.81 0.50 0.3 0.6 0.1 0.01 

60.0 0.80 0.50 0.1 0.3 0.6 11 3 58.8 0.80 0.51 0.3 0.2 0.5 0.02 

60.0 0.80 0.50 0.1 0.3 0.6 12 3 57.6 0.74 0.28 0.1 0.2 0.7 0.11 

30.0 0.80 0.50 0.1 0.3 0.6 13 4 26.2 0.62 0.25 0.1 0.3 0.6 0.03 

30.0 0.80 0.50 0.3 0.6 0.1 14 4 26.8 0.70 0.24 0.3 0.6 0.1 0.01 

60.0 0.80 0.50 0.3 0.6 0.1 15 4 44.5 0.65 0.24 0.3 0.6 0.1 0.21 

60.0 0.80 0.50 0.1 0.3 0.6 16 4 53.4 0.79 0.57 0.1 0.3 0.6 0.26 

 
The experiment results are stated in Table 1. For each experiment it 

shows two lines with parameter values. On the top line, in italic, the pa-
rameter values used to create the reference segmentation are shown. They 
represent the optimal solution. The values of the fittest individuals found 
by the GA in five runs of each experiment are shown in bold style on the 
bottom line. The column fitness shows the fitness value of that individual.  
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The fitness value achieved for the Landsat images (images 1 and 2) 
were all very close to zero, the ideal value. For the IKONOS images (im-
ages 3 and 4), slightly worse results were obtained in the experiments 15 
and 16. Those results may be explained by the greater complexity of the 
shapes of the sample segments used in those experiments, related to the 
particular choice of band weights. 

It is interesting to notice the slight deviations from the parameter values 
used in the reference segmentation. The largest deviation for the compact-
ness weight can be explained by the high color weight value (0.8) chosen 
for the reference segmentation. As the relative importance of shape charac-
teristics in the region growing process is small, variations of the compact-
ness weight have little influence on the output of the segmentation. 

In experiments 2, 8 and 9, the segments generated with the adapted pa-
rameter values are identical to the references. However, the parameters 
values found by the GA were not exactly the same as the ones used to pro-
duce the reference segments. This indicates that the segmentation algo-
rithm used here can produce similar results from (moderately) different 
sets of parameter values. Other experimental results, not showed in Table 
1, have demonstrated that the GA is able in these cases to find more than 
one optimal solution (with fitness value equal to zero). 

5.2 Manually defined references 

The second series of experiments had two objectives. The first was to in-
vestigate the capacity of the method to find solutions from which meaning-
ful objects can be produced. Unlike the previous set of experiments, the 
polygons that represent the reference segments were drawn manually by a 
photo-interpreter. In this case there is, in principle, no ideal solution (that 
can generate segments identical to the reference). 

The first objective of this set of experiments was, in other words, to ver-
ify if the achieved solution, although not optimal, is good enough consider-
ing the subjective interpreter’s point of view. The second objective was to 
investigate if the desired segmentation output, for all objects of interest in 
the image, can be achieved by using a small set of segment samples. 

The images used in this set of experiments (Figure 4) were produced 
from different sensors, over areas with different land covers. Image 1 was 
extracted from an aerial photograph taken over a residential area in the 
City of Rio de Janeiro. The other two images were obtained from public 
resources on the Internet. Image 2 shows the parking area of a bus 
company, also situated in Rio de Janeiro, and image 3 shows storage tanks 
of an industrial plant in the City of Duque de Caxias, in Rio de Janeiro 
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State. The three images have 400 by 400 pixels, RGB format with 24 bits 
(8 per band).  

 
 Fig. 4. Input images: image 1 (left); image 2 (center); image 3 (right) 

 
The experiments were organized as follows. Over each of the three im-

ages the photo-interpreter has drawn segments delimiting different image 
objects: roof tops of ceramic material; buses; and storage tanks. For each 
image the delimited segments were organized in three groups (A, B and 
C), each group containing approximately the same number of segments. 
The segments were assigned to the groups randomly. 

Segments representing only one class of objects (roofs, busses, tanks) 
were considered in each experiment. One of the segment groups was se-
lected to serve as the reference for the parameter evolution. The selected 
group was regarded as the training set. The solution obtained by using the 
training set as reference segments was then applied to the whole image, 
and the fitness evaluation was performed using as reference the segments 
of the other two groups, the validation set. Three experiments were per-
formed for each image, using different groups of segments for the training 
and validation sets. 

Table 2 shows the best results obtained for the three executions of the 
GA for each input image. The column image indicates the image used in 
the experiment. The column training group identifies the group used as the 
training set. These groups are represented with different gray levels in fig-
ure 5 (group A: black; group B: dark gray; group C: light gray). The col-
umns wcolor, wcmpct, w1, w2 and w3 show the values of the parameters found 
by the GA. The last two columns contain the fitness values calculated for 
the fittest individual using the training set and the validation set as refer-
ences. 
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Table 2. Results of the second set of experiments 
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1 1 A 13.8 0.15 0.70 0.4 0.2 0.4 0.21 0.45 
2 1 B 16.6 0.48 0.57 0.5 0.4 0.1 0.28 0.33 
3 1 C 14.6 0.24 0.64 0.5 0.1 0.4 0.19 0.33 
4 2 A 64.4 0.41 0.59 0.1 0.2 0.7 0.48 0.68 
5 2 B 66.3 0.51 0.50 0.1 0.7 0.2 0.51 0.56 
6 2 C 75.3 0.44 0.66 0.4 0.6 0.0 0.45 0.76 
7 3 A 58.1 0.63 0.66 0.0 0.1 0.9 0.38 0.65 
8 3 B 36.6 0.56 0.63 0.5 0.1 0.4 0.26 0.49 
9 3 C 41.1 0.37 0.63 0.1 0.7 0.2 0.39 0.83 
 
The analysis of the fitness values indicates that the GA reached consis-

tent solutions in all the experiments. As expected, the fitness values are 
higher than those obtained in the previous set of experiments since, as dis-
cussed earlier, it is not likely that the segmentation procedure can generate 
segments identical to the ones drawn manually. 

Figures 5 to 7 permit a visual inspection of the method’s performance. 
Figure 5 shows the segments drawn by the interpreter. Figures 6 and 7 
show the segments generated from the solutions found by the GA. These 
images were produced from the complete segmentation of the image, but 
contain only the segments with largest intersection with the ones defined 
by the interpreter. Figure 6 shows the worst results (respectively experi-
ments 2, 5 and 9), while figure 7 shows the best results (respectively ex-
periments 3, 4 and 8). 

A large similarity can be perceived among the manually drawn seg-
ments and those produced by the segmentation procedure with the parame-
ter values found by the GA. Even for the first image, in which the refer-
ence segments are more heterogeneous, the results are visually consistent. 

It should be noted that the results obtained were achieved with 40 gen-
erations of 50 individuals. A better output could be obtained if the GA 
worked for more generation cycles or with a larger population size. There 
is, however, no guaranty that this investment in processing time would 
bring a correspondent improvement in the final result. This uncertainty is 
typical of stochastic optimization methods such as GA.   
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Fig. 5. Segments drawn over: image 1 (left); image 2 (center); image 3 (right) 

 

 

Fig. 6. Worst results for: image 1 (left); image 2 (center); image 3 (right) 

 

 

Fig. 7. Best results for: image 1 (left); image 2 (center); image 3 (right) 

 
It is important to mention that the performance of the GA was compared 

to random search. The same number of solutions (individuals) generated in 
the evolution process was created using random values for the segmenta-
tion parameters. The fitness values of the best individuals created during 
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the random search were always higher (worse in our case) than the fitness 
values of the solutions found by the GA. 

6 Conclusions and future work 

We have presented a method for the automatic adaptation of segmentation 
parameter values based on Genetic Algorithms. In the proposed method 
segmentation parameters are coded into genes of the individuals of a GA, 
and fitness evaluation is a measure of the similarity between a user defined 
set of segment and the segmentation result. Two groups of experiments 
were implemented to evaluate the performance of the method. 

In the experiments where the optimal solution was known a priori, the 
GA converged to optimal or near optimal solutions. In some cases the GA 
was able to find more than one solution that delivers segments identical or 
nearly identical to the reference. The performance was similar for images 
of different sensors, over areas with different land covers, what indicates 
the robustness of the method. It should also be noted that the parameters of 
the GA were the same in all experiments, and that the solutions produced 
were always superior to those found by random search.  

The results of the second set of experiments indicate that the method is 
able to express numerically, therefore in an objective way, the subjective 
perception of the human interpreter about the segmentation quality. 
Through a small set of manually drawn segments the interpreter could in-
dicate the expected output of the segmentation procedure, and in all ex-
periments the adaptation method was able to produce visually consistent 
solutions for different types of image objects. 

Alternatives to increase computational performance of the developed 
prototype are being considered. Currently, with a standard Pentium 4 proc-
essor, each experiment was executed in approximately 3.5 hours. Parallel 
processing of the individuals of a generation is a possibility. Improvements 
in the architecture of the optimization procedure can also help, as the utili-
zation of concepts such as cultural algorithms (Becerra and Coello 2005) 
and co-evolution (Davis 1990). In any case it is certain that the progress of 
the hardware and software technology will also contribute for the reduc-
tion of processing time. 

The software prototype implemented for this work is available upon re-
quest to the corresponding author. 
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ABSTRACT: Full autonomic image interpretation methods require a 
detailed description on the predictable behaviour of image objects. This 
standard behaviour allows to make a shift from scene depending properties 
towards object depending attributes. Those standard features must be put 
under scrutiny by peer experts. In this paper a sequential architectural 
process design for a full autonomic image analysis is presented in it’s ini-
tial stage. Also the introduction of predictable behaviour of edge objects is 
clearified. Not the existence of edge objects, but their predictable behav-
iour is presented as a new contribution to OBIA. A test case is shown and 
can be tried by expert user. The aim is to reach maturity for standardized 
architectural process-design. Due to their predictable behaviour, edge ob-
jects can function as a start for full automatic image interpretation. Image 
objects do not need to be spectral homogeneous to be predictable. Also a 
spectral mean of a class is not an absolute necessary attribute for class pre-
dictability. Both conditions: spectral homogenity and spectral mean of a 
class in feature space where core assumptions in traditional remote sensing 
but lose their importance in OBIA.  
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Introduction 

Typical in OBIA is the large variety of spectral and spatial attributes for 
image objects after segmentation. This makes it possible to start image 
analysis without defining a spectral mean and standard deviation of a class. 
This implies that image sampling by visual interpretation becomes obso-
lete. Instead, histogram extremes of a selection of classes now come into 
focus. The predictability of certain classes in the extremes of their histo-
grams allows for automatic establishment of a sample population. Those 
samples from the histogramm extremes form the basis for spectral calibra-
tion of the rest of the representative object-class population. This is not 
completely new as in standard remote sensing, for example vegetation 
coverage, could always be expected in the upper part of an NDVI band. 
Now we take such principles to their extreme. 

The initial understanding of the imagery started from local pixel popula-
tions or object primitives that should show normal distribution in feature 
space and are spectral homogeneous. This was the underlying concept in 
the pioneer work on ECHO of Kettig & Landgrebe (1976). However, this 
still does not show the complete picture. An important source of object-
primitives with spectral variability in OBIA analysis are edge objects that 
do not behave as homogeneous spectral image objects and should be 
treated separately. The explicit registration and classification of edge ob-
jects offers new opportunities. Due to a sequential process architecture, as 
offered in a new approach in definiens developer, a tailor made sequence 
of processes can be constructed for the classes within the legend. The se-
quences can be discussed with fellow experts and in this way maturity can 
be reached for a standardized process flow for standardized classes. Ex-
tending the knowledge on class behavior is a necessity. Not only in the 
spectral domain of the feature space but moreover the increment of knowl-
edge on behavior in spatial relationships, which are often unique, stable 
and transferable. This makes full autonomy in the process of image analy-
sis possible.  

Homogeneous versus non-homogeneous objects 

Pioneer work on automatic image classification was focused on the appar-
ent spectral similarity of neighbouring pixels in optical remote sensing sat-
ellite data (after Kettig & Landgrebe, 1976). With increasing spatial reso-
lution, many neighbouring pixels in an earth observation satellite image 
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are registered over the identical class of land cover type. This is apparent 
in a per parcel classification (Janssen, 1994)  

Here many neighbouring pixels were inside an agricultural field under 
homogeneous treatment. These pixels are registered above crops with al-
most identical vegetation development stage as well as biomass, moisture 
conditions and chlorophyll activity. Because parcels often exist inside a 
cadastral administration, the shape of a group of training pixels or object 
primitive inside a parcel have low priority. This is still the case for agricul-
tural image objects. The shape of image objects primitives, which are sub-
sets inside this agricultural parcel, does not add information to the system 
when its neighbours are nearly identical spectral objects. The shape does 
not reveal if this object is a maize or a rice field. Only the spectral proper-
ties of this object-primitive might reveal this information. 

Edge objects 

Many pixels from image objects cannot be appointed to a homogeneous 
spectral class but rather to a spatial class. Those pixels that respond to edge 
detection filters cannot be used to extract mean spectral values with rele-
vance for spectral classes. Here the shape of a population of such pixels in 
the image domain reveals more about their object class.  

 
 

 
Fig. 1. A Pure edge detection result from high resolution data (image courtesy 
CSIR, SA) 
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Shape characteristics are most often stable and transferable. The infor-
mation content of pure edge imagery (see Fig. 1) is sufficient for a visual 
interpretor. This edge image reduces the normal complexity of 8 or 11 Bit 
data in an almost zero-to-one image (edge, non-edge). At the same time, 
edge imagery implicitly preserves existing details derived from original 
scenes. To stress the strenght of the human vision, remark that figure 1 
contains sufficient data for a visual interpreter to digitize buildings, road-
network and high-vegetation. Very few image interpretation software 
however are capable to assign a correct label to an image object such as 
“edge of a large building” only using figure 1 as input. The grey value of 
figure 1 has no meaning, it can be a 0;1 image or 0;255 or even a 0;65536 
value range. This means, sampling the grey values in feature space does 
provide almost no information on the image content.  

Although edge imagery is a classical result of standard remote sensing 
software, the classification of edges seems to be still an undiscovered terri-
tory. Because the human eye and the way the visual interpretation can 
work so easily with edge imagery alone, it would offer itself to computer 
analysis to reduce image interpretation first to a correct classification of an 
edge image and mimic exactly the human interpreter. A first test on the 
quality of the image interpretation software should be a standard test on 
the results of classifying only edges. Above all, the relative insensitivity of 
edge information on differences of acquisition date and sun angle as well 
as atmospheric conditions (except clouds) not to mention their stability and 
transferability over scale and sensor type make them unique image objects. 
Note that all black/dark areas it is non-edge-areas in figure 1 can be con-
sidered to represent homogeneous pixel populations with a Gaussian dis-
tribution. For those areas, traditional remote sensing methods do function 
efficiently as well as image-object analysis for so called “homogeneous 
pixels” and homogeneous image-objects which are the core of image 
analysis as developed by Landgrebe (Kettig & Landgrebe, 1976). 

Sequential classification 

The latest development in object-oriented classification is the construction 
of a workflow according to a sequence of processes. The original design of 
the hierarchical architecture of a class-tree now subordinates the design of 
a ‘process-tree’. The sequential process flow changes the treatment of im-
age objects in the scene, most notably in operations that previously used to 
be image-based operations. These image operations now have become part 
of object-based operations such as segmenting only a single object-class or 
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calculating a principle component for one class of objects only and not for 
a set of spectral bands using a whole image stack, a standard practice in 
hyperspectral image analysis. Hierarchical classification is now taken to 
the extreme allowing automatic sampling processes as well as develop-
ments towards standardizations. Hierarchical classification is not a new 
phenomenon in remote sensing. The traditional output of such a classifica-
tion is a stratification of the thematic layers focused on (legend) classes. In 
the sequential process approach, such as applied in Definiens developer, 
the output goes beyond the stratification of thematic layers alone. 

The traditional stratification contains per layer one or a few element(s) 
of the legend. Moreover, the various classes are initiated using comparable 
(statistical) procedures and the classes themselves were organized in a de-
cision tree. When switching from the traditional hierarchy of classes to the 
hierarchy of processes, there is a need to develop a tailor made design for 
each of the individual classes. Although initializing the class itself remains 
important, the main focus stays with a correct transferability of the overall 
architecture of the process design. This is something very different than 
the architecture of a class tree design. A class previously used to incorpo-
rate its decision rules and the initialization of the class was not done step 
by step but instanteniously. Iterative processes such as isodata clustering 
still are considered intanteniously in the sense that a statistical process is 
chosen and applied to all classes while conditions are not set according to 
each class separatively between the iterations. The correct sequence of 
classification now becomes a crucial factor to allow further autonomy of 
the classification process. This is a new phenomenon in remote sensing 
with also new consequences. The consequences of using the correct proc-
ess sequence makes it difficult to mix various classification methods or 
maintain mixing class hierarchies incorporating (fuzzy-) rule sets together 
with process hierarchies. The total procedure should have a logical internal 
flow as well as reaching maturity after discussion by fellow experts. This 
could imply that a compromise on class accuracy is acceptable in a trade 
off for an enormous gain in speed and quantity of imagery to be processed. 
The meaning of this can be clearified with the availability of a single proc-
ess architecture used for all IKONOS and QuickBird imagery over Europe 
using a single classification process-protocol. Such a process-protocol 
might be less accurate than a visual sampling for each scene but it requires 
no further operator interventions for many thousend images. Meanwhile 
expecting processes becoming mature and reach or surpass the accuracy of 
traditional hierarchical classification schemes.  
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Representative populations 

The large variety of process operations now make pure statistical methods 
like cluster analysis or minimum distance to mean algorithms redundant. 
These statistical methods function very well for spectral classes with a 
predictable mean value in feature space but not for all object classes within 
a VHR satellite image frame. In statistically dominated analysis, the initia-
tion of the thematic layer is achieved using a mean and standard deviation 
of the samples. Traditionally, the operator had to select the correct pixels 
or objects in the image domain. In the new approach, the operator must 
now explicitly formulate expert knowledge into the expert process without 
the need for sampling in the image domain. The knowledge on the object 
class (predictable) behavior in feature space has to be considerable. The 
operator has to differentiate classes with an easy statistical description 
(water) from classes, which are easy to discriminate using spatial attributes 
(buildings). The end-user might continue ‘Click & Classify’, but to initiate 
the class of interest, the ‘Click’ operation should not be focused on a class 
inside the image domain returning co-ordinates, but instead, the end-user 
should simply click inside the legend.  

Peer review will be the referee on the discussion over the conditions, 
which are deciding factors being crucial for representative populations. 
Because much of these standard features are encountered from empirical 
data and few can be predicted from theory on image understanding alone. 
The latter procedure is of course preferable as empirical definitions are 
merely a rule of thumb and should be backed up by sound theoretical 
knowledge on the cause of predictable behavior of image objects. A typi-
cal example is the low standard deviation of the Red band over forest areas 
(in SPOT/Landsat data type). The shadow component as well as crown ac-
tivity both reduces Red band albedo values over forest. However, aging 
forest stands seems to be reducing in the variability of the Red band more 
than young forests. A theoretical explanation on the bio-physical proper-
ties of aging forest stands and the theoretical reason for the relationship be-
tween forest age and low standard deviation values in the Red band are 
more valueable than the simple statement, ‘use low standard deviations in 
red’ to classify a forest mask. 

Template matching 

The strategy of predefining features in sequential processing is not un-
common and resembles in its assumptions the traditional template match-
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ing technique. In template matching, no sampling is required. The tradi-
tional template functions within the image domain. The process-template 
however does not function inside the image domain but in the feature 
space domain. The decision on the population that is regarded representa-
tive for a class thus no longer lies solely with the visual interpreter of the 
image. The selection of a sample population is initiated from a number of 
rules that describe the predictable behaviour of the sample set which is to 
be regarded representative. Therefore the sample selection is not left to 
chance by the operator to encounter a set of samples in the image which 
‘seems’ to be a good start but to follow explicit rules about the must have 
conditions for samples to be ensigned candidates for the representative 
population. As in traditional template matching, there is a strict expecta-
tion towards the object population within its domain. The success lies in 
the correct treatment of histogram extremes for the crucial classes. This is 
possible because certain crucial classes behave predictable within the his-
togram extremes of a selected group of features. The template in tradi-
tional techniques with a fixed description in pixel/vector size and shape is 
virtually similar to a standardized set of process-rules in the process-tree 
(see Fig. 3).  

Categorization 

Categorization can precede class construction. The categorization is using 
feature based category descriptions preceding final class-names from the 
legend. As an example, a category name “high textured, high NDVI value 
objects containing shadow-sub objects” is used instead of the legend class 
name ‘broadleaved forest’. The categories behave differently towards ac-
curacy assessment compared to the legend classes. The final classes in the 
legend must compromise in accuracy due to generalization issues, where 
mere categories simply follow process decision rules and should always be 
correct. 

Self-adapting 

The processes can be made self adapting towards the changes of the spec-
tral values in each varying image scene of the same mosaic due to the abil-
ity to let the process measure a spectral and/or spatial value on a selected 
(anchor-) object population and assign the measurement to a process vari-
able. The variable changes with each image scene because the anchor ob-
ject values which are absolute histogram values change. The relative posi-
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tion of the anchor object within their histogram however does not change. 
Thus traditional template matching works in the image domain in cases 
where the image domain is predictable. Hence the new process approach 
works in feature space because the histogram shape is predictable. By 
completing the list between crucial classes and those features which are 
predictable, robotic vision becomes apparent. 

Central role of edges 

Edges are a ‘must have’ condition. Basically people separate nature from 
their dominion by explicitly constructing a physical edge and a connecting 
infrastructure (wall, fence, city and road) or by their treatment of nature 
(agricultural parcel, forest-stands) with of course exceptions like the 
Scythian burial mount (Kurgan), which cast almost no shadows. Despite 
the very rare exceptions, physical edge construction is assumed here to be 
a standard phenomena in populated environments and crucial to any class 
description containing anthropomorphic features and the basis for topog-
raphic maps. The pixels registered on the edges of real world objects are 
responsible for much of the spectral confusion within an image. The pure 
spectral mean of an edge has therefore little importance. Separating the 
edges from other more homogeneous surfaces and using spectral image 
analysis for non-edge objects alone is preferable. While the object-
population of contrasting edges is a must-have condition for anthropogenic 
objects, they contain unique as well as non-unique features. Their behavior 
towards the standard deviation in the Red band is unique. Their NDVI val-
ues are not unique. They share similar NDVI mean values (not NDVI 
standard deviation values!) to all other non-vegetative areas. Although it 
has been stated that the pure spectral mean of an edge object has little im-
portance as there is no predictable mean value in feature space of the class 
‘edges’ in the NIR or Red band, the Ratio value such as the NDVI, still 
contains meaningful spectral information. 

Anchor objects 

The contrasting edges can be defined as a candidate for an anchor objects. 
Be aware that such edges are only one of many potential anchor objects. A 
famous candidate for anchor objects are the ‘High NDVI value objects’ 
which are normally reserved for vegetation classes. But there are many 
more. The anchor objects should be automatically detectable and repre-
senting a much larger class of image objects. The extreme contrasting 
edges with high standard deviation of the red band will always belong to 
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non-vegetative areas, if available in the scene. After automatically measur-
ing their NDVI mean value in each scene, they can be used as automati-
cally detected samples and applied for mapping all other objects without 
vegetation. The contrasting edges are just one example of a set of crucial 
objects each with their transferable attributes. A list of crucial objects per 
class would suffice to indicate its class potential to be fully automatically 
mapped. The main aim becomes now to define standard rules, which are 
used for crucial classes to establish a population of anchor objects within 
the scene. The initiation of these anchor objects allows measuring spectral 
characteristics of this particular scene and assigning these measured values 
to a process variable. These values from the process variables are applied 
to detect the thresholds where a critical class separates itself from all other 
classes. If such as unique separation can be found, the mean and standard 
deviation of the class is not a decisive factor anymore, because overlap in 
feature space can be expected to be negligible. 

VHSR analysis 

The casestudie shows a universal set-up for VHSR imagery such as 
IKONOS and QuickBird scenes. A pre-processing step is essential, where 
a ‘texture image’ splits all objects in high and low textured areas. Texture 
image derivatives are known for their large variability as well as their re-
dundancy. From experiences with Haralick textural features (Schleicher et 
al., 2003) our research has moved towards a texture map based upon edge 
detection filters. Due to the redundancy, this texture derivative is very 
similar to the Haralick homogeneity feature (known as IDM in Steinno-
cher, 1997; compare also Fig. 2A and Fig. 2B). Now the texture analysis 
on panchromatic images has evolved from texture calculations in a fixed 
window size towards texture analysis per object (Schleicher et al. 2003; 
Wezyk et al., 2004). Continuing with the advantage of the texture analysis 
applications in image analysis over the years, a new variance on IDM has 
been developed using the central cause of an important element of the tex-
ture map namely the mixed pixels that share various spectral distributions 
of its neighbouring surfaces and can be found exactly at the edge of two 
different distributions, preferably only 1 pixel thick. The pre-advantage of 
this texture map is the ability to calculate the object feature “contrasting 
edge”. This texture map is produced by dividing an intensity image by the 
edge image(s). Here the Pan band was used for intensity.  
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Fig. 2. a) Homogeneity or IDM per object in accordance with Steinnocher IDM 
analysis (1997). Calculated for the panchromatic band (here QuickBbird, image 
data from Wezyk et al. 2005); b) The Pan band divided by the sum of two edge 
detection filter images Border and Frame. Border and Frame are images derived 
from the Lee-Sigma difference filter (Wezyk et al. 2005) 

 
This textural/edge image used to produce Fig. 2B in combination with 

the Pan intensity is the sum of Border and Frame (Wezyk & de Kok,  
2005), which are edges created by the difference of the original Pan band 
minus the Lee-Sigma filter result. Pixels on edges are dominantly respon-
sible for low IDM values, as they do not belong to a single Gaussian dis-
tribution in the image domain. This visualization approaches IDM results 
(Steinnocher, 1997) as shown in Fig. 2A. This textural image can be calcu-
lated with much less computation time than Fig. 2A while containing al-
most similar information on texture. 
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A process tree 

 

 
Fig. 3. The process tree in 11 steps for initial VHR analysis  

 
Eleven standard steps: Like any O.O. process we start with initial 

segmentation with scale factor 35, using Pan with weight=5 and Border 
Frame weight=3. (See Fig. 3, step 1). In step 2, we measure the lowest 50 
Quantile of the texture Histogram. In step 3 - this 50 Quantile is classified 
as Low-Pan_BF. These objects have a low value for the textured image 
which means low grey values for Panchromatic band divided by the sum 
of Border and Frame (Wezyk & de Kok, 2005). This category with alias 
name Low-PAN_BF always contains artificial areas and forests in any 
European and North American VHSR imagery. The Fig. 2B visualize this 
features representing artificial areas and forests in black/dark-grey tones 
similar to IDM or “Homogeneity” from Haralick Grey-Level-Co-
Occurrence matrix analysis. The opposite category, Smooth with the more 



708      R. de Kok, P. Wezyk 

than 75 Quantile values of Pan-BF (steps: 4 and 5) always contains mainly 
agricultural areas and water. In step 6, the highly textured category includ-
ing forest is measured for their lower value of the Ratio of Red and thus 
classified (step 7). Here Red is divided by Blue+Green+Red+NIR+PAN. 
This makes a better Ratio than the NDVI, as we can incorporate the effects 
of the high resolution of the Pan band. Where normally the NDVI is bright, 
the Ratio of Red has low values and vice versa. Remember that in step 7 
the vegetation part is changed into VEG_1, therefore Low-Pan_BF con-
tains after step 7 mainly artificial areas. The agricultural areas within the 
category Smooth are generalized in step 8 - to reduce the total amount of 
objects. In step 9, after reduction of the amount of objects, we are able to 
increase again the total amount of a more interesting object group by ap-
plying a re-segmentation with a lower scale factor of 15 only for both the 
categories: artificial areas and the remaining unclassified regions. Note 
that the larger objects of the category Smooth are left untouched. Step 9 
has become possible in the new process approach and was not part of pre-
vious Definiens developer versions (eCognition), where always an image 
layer was segmented. The smaller objects in the category artificial areas al-
low to measure (in step 10) the highest values for the small edges around 
build up areas which are above the 75 Quantile for the standard deviation 
of the red band normalized for size (here StDev_Red/(Area^(0,5)) and af-
ter that classified (step 11). With these 11 steps we have now automatically 
derived training areas in 11 steps for the categories Build up Areas, Forests 
as well as Agricultural areas. 

Standardization and outlook 

Sampling by a single operator for the purpose of establishing a mean and a 
standard deviation for a class is a subjective task. Discussing the sample 
selection with fellow experts is useful for an individual scene but not ap-
plicable for all other scenes. The sequential process workflow however al-
lows a discussion of each step within the process with fellow experts. A 
good example is the case study. Here each of the 11 steps can be meticu-
lously debated by fellow experts and transformed in a standard set for 
splitting any IKONOS or QuickBird image into a texture class as a stan-
dard protocol for extracting automatic samples for any land cover classifi-
cation. This discussion would lead to objective process-protocols. If the 
evaluation is positive, the line (set) will reach maturity and allows for 
standardization of the process (lines). They will become applicable for 
standard classes of each sensor type. This opens the way to full robotic 
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land cover classification or full robotic counting as part of an automatic 
feature detection such as counting: ships, cars, trees etc., which, in this ini-
tial stage, can already be demonstrated (de Kok & Wezyk, 2006) 

The quest for image understanding  

The step-by-step approach of the processes allows task sharing between 
expert groups. One being responsible for the automatic cloud detector, an-
other for the forest-type mask or settlement masks. Standard libraries for 
automatic image analysis have the potential to evolve in similar structures 
like libraries for numerical recipes. Hence reviving the old dream of signal 
separability of classes that was underlying the ECHO concept (‘The Ex-
traction and Classification of Homogeneous Objects’) by Kettig and 
Landgrebe 30 years ago. This would imply a continuous effort for a 
‘Broader, more fundamentally based research on understanding the signal 
response’ of material under laboratory conditions as well as in the field 
(after Landgrebe, 1997). Following Landgrebes advice we continue ex-
panding the signal response research. This ongoing work has shown inter-
mediary success. 
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ABSTRACT: Driven by vegetation and environmental changes caused 
by global warming and an ongoing loss of biodiversity, there is an increas-
ing demand for updated image data in a high time rate. These require-
ments, as well as economic reasons, ask for automated image analysis 
techniques. This article presents a synthesis of two complementary, pre-
ceding studies (Preiner et al., 2006; Weinke and Lang, 2006) on semi-
automated habitat delineation. The work has been carried out in two 
neighboring study sites, which are situated in the Berchtesgaden National 
Park, in the Alpine region of south-eastern Germany. Both test sites repre-
sent a mountainous area, characterized by a high bio- and habitat diversity 
and a cliffy relief. The NPB has been involved in the European Interreg-
IIIb project HABITALP (Alpine Habitat Diversity), which came up with 
harmonized methods for trans-Alpine monitoring of habitat diversity and 
environmental changes by standardized, comparative habitat interpretation 
on color infrared (CIR) aerial photographs. The work presented evaluates 
the potential of object-based image analysis (OBIA) for partly automising 
this process. In both studies we used pan-sharpened data from the same 
QuickBird scene. First, two different approaches, i.e. iterative one-level 
representation (OLR) strategy and multi-scale segmentation/object rela-
tionship modeling (MSS/ORM), are described. Both are meant for dealing 
with high spectral and spatial variability. They are discussed in the light of 
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specific settings: whereas iterative OLR was used for delineating homoge-
neous, but differently scaled single habitat types, MSS/ORM proved suit-
able for classifying hierarchically structured patches of mountain pine 
(Pinus mugo). Second, based on the results from iterative OLR, a spatial 
overlay method (‘virtual overlay’, cf. Schöpfer and Lang, 2006) is applied 
to characterize habitat fate. The aim is to tell ‘real’ object changes from 
differences originating from different ways of delineation, i.e. visual inter-
pretation in the year 2003 vs. automated delineation in 2005. The results 
showed that both strategies in combination with object-oriented image 
analysis software are suited to delineate habitats similar to the habitats as 
addressed by the HABITALP project.  

1 Introduction 

The Berchtesgaden National Park (NPB) is one of eleven protected areas 
within the Alps which were participating in the Interreg IIIb project 
HABITALP (Alpine Habitat Diversity1). One aim of this four-year project 
was to monitor habitats and long-term environmental changes on the basis 
of color-infrared (CIR) aerial photographs. In the HABITALP project, 
based on previous experiences with CIR photos, a standardized habitat in-
terpretation key (HIK) has been developed for land use types in protected 
alpine areas. The HIK-key is designed to be transferred to other high 
mountain landscapes outside the Alps in the future (HABITALP 2003). 
NPB has been using CIR photographs since 1980, for carrying out manual 
delineations and habitat mapping, approximately in an interval of five 
years. Whereas CIR-aerial photographs are widely used for a variety of 
natural resource mapping, there is a pronounced demand for using high 
spatial resolution satellite imagery for this purpose (Neubert and Meinel, 
2002; Lang and Langanke, 2006). Besides this general trend more specifi-
cally we try to meet reporting obligations as prescribed from legal frame-
works such as the Natura-2000. There is an increasing demand on fre-
quently updated image data for monitoring the conservation status of 
habitats (Langanke et al., 2004).  Satellite systems of the new generation 
with very high spatial resolution (VHSR) of around 1m ground sample dis-
tance (GSD) open new perspectives, but likewise challenges (Lang and 
Langanke, 2006). Data originating from the QuickBird sensor launched in 
2001 with a repetition rate of one to three days, depending on the latitude 
(DigitalGlobe 2006), provide a very high spatial resolution of 0.61 m in 

                                                      
1 www.habitalp.org (2003-2006) 
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the panchromatic spectral range. The four multispectral bands have a reso-
lution of approximately 2.4 m, resolved radiometrically with 11 bit. By 
applying resolution merge, the spatial resolution of this type of imagery is 
close to the resolution of operationally used (i.e. downsampled) air-photos. 
Therefore, for particular tasks, satellite-based data are even more qualified 
as an alternative to aerial-based data (Lang and Langanke 2006). 

Among the numerous image analysis procedures developed in recent 
years, the conventional per-pixel approaches has limitations when working 
with VHSR data. In comparison object-based classification schemes have 
been largely utilized in remote sensing applications in recent years, espe-
cially with VHSR data. The object-based classification approach is divided 
into two major steps: 1) image segmentation and 2) image classification 
(Kim and Madden 2006). Whereas these steps seem to be distinct, they are 
in fact mutually interlinked in an altogether cyclic process (Lang, this vol-
ume). According to Gorte (1998), the segmentation process is an important 
step for image analysis forming the conceptual link to human perception 
and is considered essential for image understanding (Lang and Langanke 
2006). Image segmentation subdivides an image into spatially coherent 
and spectrally homogeneous regions with the aim of a reduction and ag-
gregation of data by distilling its inherent information. Through this proc-
ess an image is subdivided into its constituent parts and these parts of in-
terest (objects) are extracted (Zhang 1996) and classified. But furthermore, 
segmentation can be used to obtain scaled sets of image primitives as rep-
resentatives landscape objects (Lang and Langanke, 2006; Burnett and 
Blaschke 2003). A range of segmentation strategies exists, including histo-
gram-, edge- and region-based segmentation approaches. In the domain of 
landscape analysis the group of region-based approaches is promising and 
well established (Lang et al., submitted). Image objects which originate 
from region-based segmentation techniques can be assessed according to 
their spatial characteristics as being meaningful. In other words, generated 
objects exhibit a specific shape which can be considered adequate or not 
(Blaschke and Strobl 2001). Multiscale approaches try to mimic human 
perception capacity by hierarchical scalable segmentation and object char-
acterization by semantic knowledge (Lang, this volume). A critical issue of 
these approaches is that the applied ‘scale’, i.e. the average size of objects 
may directly influence the quality of classification (Kim and Madden 
2006). 

The software Definiens (formerly eCognition) follows a multi-scale ap-
proach and provides hierarchical levels with image objects in different 
scales obtained by multi-resolution region-based segmentation (Baatz and 
Schäpe 2000). 
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 In this study the potential of two strategies, based on the use of the image 
analysis software Definiens, for representing alpine habitats in two differ-
ent settings is evaluated. Definiens, or eCognition respectively, was used 
because its evaluation in previous works (e.g. Meinel and Neubert 2004) 
showed high qualitative segmentation results and only limited over-
segmentation as compared to other software products. We applied two dif-
ferent strategies in this work which were developed especially for this 
software product and which were declared as suitable to segment scenes of 
high spatial and spectral variability by Lang and Langanke (2006). The 
first one, called iterative one-level representation (iterative OLR, Weinke 
and Lang 2006) was used to extract a given set of habitat types in specific 
scales. The second strategy, multi-scale segmentation/object relationship 
modeling (MSS/ORM, Burnett and Blaschke 2003) has been used for ex-
tracting patches with varying percentages of mountain pine (Pinus mugo). 
Whereas the first study mainly aims at an optimized delineation of certain 
target habitats, the latter study involves delineating, modeling and classifi-
cation of a specific habitat type, i.e. mountain pine. The first set of habitat 
geometries, originating from iterative OLR, was compared with visually 
delineated outlines by a human interpreter; both representing geometries at 
a different time and derived by different technique (cf. Schöpfer et al., this 
volume). These two geometries have non-congruent object outlines, as 
manual interpretation extracts image objects, according to the very scale 
being set, in a generalized manner. Contrarily, the image analysis software 
being used utilizes a scale parameter for object delineation, yet not gener-
alized (cf. Lang, this volume). 

2 Geographical Settings 

The two different strategies were applied in two partly overlapping test 
sites (see Figure 1), situated in the Berchtesgaden National Park, which 
lies in the Alpine region of South Eastern Germany (47°36'N, 13°00'E). 
The first study site A (Klausbachtal) comprised an area of about 16 km², 
situated in the south-western Klausbachtal. The highest point is located on 
the western mountain flank of the Hochkalter massif with an elevation of 
2460 m a.s.l, whereas the north-easternmost point of the Klausbach river 
represents the lowest elevation of about 825 m a.s.l. The second test site B 
(Hochkalter) is a 29 km² sized area the peak of the Hochkalter massif, ris-
ing up to 2607 m a.s.l. Both sites represent a typical Alpine mountainous 
area, characterized by high biodiversity and habitat diversity and a steep 
and rough terrain.  
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The entire NPB has been mapped for fine-scaled biotope and land-use 
types using eight out of the main HIK categories, each divided in several 
subclasses. The first test site comprises the following five main HIK types: 
(1) agricultural land and perennial forb communities, (2) immature soil 
sites and dwarf-shrub plant community, (3) trees, field trees or shrubs and 
groups of shrubs, (4) forest and (5) settlement and traffic. Exemplary habi-
tats of these five main types were analyzed in the first study. The second 
study focused on mountain pines (Pinus mugo), which is of European 
community interest and belongs to HIK type 4 (forest).  

Most of the NPB area obviously belongs to the core zone in which natu-
ral processes and dynamics are hardly influenced by human interference. 
The core zone is surrounded by a permanent and temporary transition zone 
with anthropogenic use or at least influence. Here, managed forests of 
former times (like saline-spruce forests) are being transformed into nature-
orientated mixed forests (Berchtesgaden National Park 2005). In the first 
test site the permanent and temporary transition zone together makes up 
about 49%. Accordingly, the management of the national park is interested 
in an automated habitat monitoring procedure of this area due to its high 
changes in habitat dynamic. Instead, most of the second study site is lo-
cated in the core zone. But still there is high interest from the management 
as the mountain pine is priority habitat type within the Natura-2000 net-
work and, moreover, highly sensitive to climate changes. 
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Fig. 1. Study sites at the Berchtesgaden National Park 

3 Data and Data pre-processing 

VHSR data from a QuickBird (QB) scene was used, recorded on August 
2005. The QB-scene was ordered as a standard ortho-ready bundle-product 
including panchromatic and multispectral dataset (see table 1). Data were 
pre-projected in UTM-33 (WGS-84), with a low geo-location accuracy of 
+/- 23 m (Eurimage 2007). Therefore it was necessary to post-orthorectify 
this QB-product. Because the multispectral and the panchromatic sensor 
are offset from each other on the QB-focal plane, the same point on the 
ground is imaged at a slightly different view angles (Hitachi Software En-
gineering 2004). Accordingly both datasets were separately orthorectified 
using the rational polynomial coefficients (RPC) orthorectification model. 
To derive an orthorectified image based on this model, several components 
were required: a) each of the datasets, b) their rational polynomial coeffi-
cients, and c) a digital elevation model (DEM) of 10 m spatial resolution. 

 
QuickBird Satellite Image 

Study site A 

Study site B 

                    Test sites at the 
Berchtesgaden National Park 

Assembled by E. Weinke & M. Preiner (2006)

Legend 
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The orthorectification process of data representing rough terrain can be 
improved by specifying accurate, well-distributed ground control points 
(GCPs) (Smith 2005). The entire study site consists to a lesser degree of 
anthropogenic objects like streets, larger buildings or rectangular squares. 
We therefore focused on rooftops of huts, crossroads of paths and some 
larger singular rocks, which all have a high recognizability and stability 
(Weinke and Lang 2006). To combine multispectral information with the 
higher spatial resolution provided by the panchromatic band, we per-
formed two different resolution merge operations, according to the re-
quirements of the two studies. For the Klausbachtal study a pan-
sharpening-method after Liu (2000) was used. This process results in a 
multispectral dataset ground-resolution of 0.6 m. The pan-sharpening pro-
cedure is optimized to maintain the original spectral values to a large ex-
tent (> 90%), in comparison to methods based on principal component 
analysis (ibid.). The Hochkalter study used a resolution merge-technique 
based on principal component analysis to obtain a better differentiation 
among the vegetation coverage. 

Table 1 Spectral, Spatial and Radiometric Resolution of QuickBird Satellite Im-
agery 

Band Wavelength Region  
             [ym] 

Spatial Resolution 
            [m] 

Radiometric Resolution 
                 [bit] 

     1 0.45 - 0.52 (blue)            2.44                   11 
     2 0.52 - 0.60 (green)            2.44                   11 
     3 0.63 - 0.69 (red)            2.44                   11 

   4 0.76 - 0.89 (NIR)            2.44                   11 
PAN 0.45 - 0.90 (PAN)            0.61                   11 

4 Methods 

With regard to object-based analysis of VHSR scenes representing natural 
environment settings two segmentation strategies (i.e. one-level represen-
tation, OLR vs. multi-scale segmentation / object-relationship modeling, 
MSS/ORM) have been contrasted by Lang and Langanke (2006). We ap-
plied both strategies accordingly for identifying Alpine habitats of differ-
ent scales and composition (see 4.1 and 4.2). For the image analysis proc-
ess we used the software eCognition 4.0 with its implemented region-
based local mutual best fitting algorithm (Baatz and Schäpe 2000). The re-
sulting image objects are controllable by parameterization of color and 
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shape homogeneity. To identify changes we applied habitat fate analysis in 
study site A as described in section 4.3. 

4.1 Iterative one-level representation (test site A, Klausbachtal) 

The test site A entails boundary delineation of a given set of habitat types 
via iterative OLR (see figure 2). In this case, OLR means that through it-
erative segmentation entire habitats are delineated at one single target level 
which reflects the appropriate scale domain (Lang 2002). In a strict hierar-
chical multiscale segmentation approach (see Lang, this volume) an image 
is subdivided in non-overlapping regions so that image objects on coarser 
levels topologically coincide with objects in finer sub-levels. Applying 
OLR in test site A, several subsets were selected and single habitats were 
segmented on specific target levels. The term target level describes the 
level at which one single habitat like e.g. meadow or mountain pine is 
completely segmented with specific parameters within a specific subset. 
Therefore each target level may consist of several (temporary) sublevels 
(Lang and Langanke, 2006, see also Figure 2). The quality of the seg-
mented objects is compared with reference habitat boundaries from a vis-
ual interpretation of CIR air photos, using overlay approach as described in 
chapter 4.3. Then the specific target levels of single habitats were trans-
ferred to the entire test site. By this, at some levels, habitats were identified 
in the test site as a result of the same iteration steps and parameters. A 
user-defined number of target levels can be extracted from the entire test 
scene via iterative OLR. Habitat geometries of neighboring target levels 
should not be disregarded during the process (Weinke and Lang 2006). At 
last the single levels are reassembled on one super level (Preiner et al. 
2006). 
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Fig. 2. Scheme of iterative OLR in combination with the virtual-overlay approach 
(see chapter 4.3, Weinke and Lang 2006, modified by E. Weinke 2007) 

4.2 Multi-scale segmentation/object relationship modeling (test 
site B, Hochkalter) 

In test site B, Hochkalter, we applied the MSS/ORM approach (Burnett 
and Blaschke 2003). In contrast to the OLR strategy image objects are rep-
resented in at least two scale-levels and relationships are built among them 
(see Figure 3). Hierarchically arranged levels of image objects are gener-
ated by strict hierarchical segmentation (multiscale segmentation, MSS). 
By this, besides spectral and form related features of the generated image 
objects also their horizontal and vertical spatial relations are known. The 
generated image objects are the basis for the subsequent object relationship 
modeling (ORM). For realizing ORM first the decisive features of the gen-
erated image object are analyzed according to the study purpose. As a sec-
ond step a hierarchy of classified objects is constructed with a set of se-
mantic rules utilizing fuzzy-based membership functions. Finally, this 
process leads to user-demanded objects, aggregated from the former build-
ing block-like image objects. Since usually this process is not a linear one, 
recent literature uses the term ‘class modeling’ to indicate its cyclic char-
acter (Tiede et al. 2006, Lang, this volume, Tiede et al., this volume) 
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The main target class of the Hochkalter case study was mountain pine 
shrubbery, a subtype of the FFH2 habitat type Bushes with Pinus mugo and 
Rhododendron hirsutum (Mugo-Rhododendretum hirsuti).  

Within this test site, areas covered by pinus mugo are characterized by a 
heterogeneous arrangement (Preiner et al. 2006). Thus they were repre-
sented on up to five different scale levels and addressed by a rather com-
plex class modeling process. Several sub-classes were discerned, such as 
Pure mountain pine stand, Mountain pine with single trees; Mountain pine 
with trees: Mountain pine with rock, debris or pebbles; Mountain pine 
with alpine meadow and/or rock, debris or pebbles; Forest with mountain 
pine, Alpine meadow with mountain pine; Rock, debris or pebbles with 
mountain pine. For the internal differentiation of the classes a number of 
additional auxiliary classes (Forest; Alpine meadow; Rock, debris or peb-
bles; Firn- or Snowfield,…) were introduced. 

To reach the objectives of a spatially exhaustive classification the single 
objects (e.g. tree, bush, single rock …) and small components (e.g. shaded 
trees sunlit trees) were defined according to their spectral and form fea-
tures on the finest segmentation level (near pixel level). Afterwards and 
contrary to this, the heterogeneous composite objects of the higher scale 
levels (e.g. Mountain pine with single trees; Alpine meadows with moun-
tain pine) were identified using additional semantic information and topo-
logical object relations, such as ‘number of trees-objects on a lower seg-
mentation level’. 

A special refinement, with an extra process cycle was applied, only con-
cerning the mixed areas and transition zones between mountain pine and 
wood, alpine grassland or rocks, which were extracted not satisfyingly. To 
this end, all mixed classes (e.g. Alpine meadow with mountain pine; Moun-
tain pine with single trees; Forest with mountain pine,…) were merged 
into one single class, exported to ArcGIS and re-imported as a thematic 
layer, which was then exclusively segmented and classified without affect-
ing the already established classes (Forest; Alpine meadow; Pure moun-
tain pine stand; Rock, debris or pebbles; Firn- or Snowfield,…).  

                                                      
2 Flora-Fauna-Habitat Directive (92/43/EEC)  
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Fig. 3. Scheme of MSS/ORM (Lang and Langanke 2006, modified by E. Weinke 
2007) 

4.3 Change assessment: habitat fate 

Change assessment was examined in the study site A (Klausbachtal). After 
the extraction of single habitat geometries via OLR, the segmented geome-
tries of the QB scene 2005 were compared with visually delineated and 
manually digitized geometries on CIR orthofotos from the year 2003. The 
approach (‘virtual overlay’, Schöpfer and Lang, 2006) investigates spatial 
relationships among corresponding objects (see Schöpfer et al, this vol-
ume, for further discussion). Object correspondence can be seen as a prod-
uct of spatial object change over time or as a result of different object de-
lineations (ibid.). In this study, two different geometries with non-
congruent object outlines have been introduced by two different systems, 
even if working in the same scale domain. Those systems were: (1) the 
visual human-perceptive system and (2) the digital image analyses system. 
In addition, virtual overlay has also been used to compare habitat outlines 
of two different time slots and to perform spatial change assessment. Im-
plemented in a tool called LIST (Landscape Interpretation Support Tool, 
Lang et al. in press), an extension for ESRI’s ArcGIS 9,  two vector layers 
are analyzed in terms of their specific object fate (ibid.) through time. In 
this case the analyzed objects correspond to habitats; thus we consequently 
use the term ‘habitat fate’ (Weinke and Lang 2006). Habitat fate of two 
comparable geometries was examined by setting a threshold value for 
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‘spatial overlay strictness (SOS)’ to cope with overlaps of corresponding, 
but not fully congruent boundaries. By the threshold value a specific buffer 
zone is introduced. The buffer size controls the allowed spatial difference 
of two habitat geometries under consideration; the SOS-threshold reflects 
the degree of overlaps, expressed by a percentage value. Using virtual 
overlay altering geometries can be analyzed over time without modifying 
geometries (Schöpfer and Lang 2006). Habitat fate is investigated by over-
laying geometries from habitat fate time t0 and t1. In our case, the respec-
tive status at t0 is taken as reference habitat reflecting the visual delineation 
on orthophotos. Instead, habitat fate time t1 represents the segmented out-
lines provided by eCognition 4.0. A habitat at t0 can change over time; 
consequently, the same habitat at t1 can be characterized by the following 
four expressions: (1) ‘good habitat’: t1-habitat is completely within the 
buffered outline of a t0-habitat; (2) ‘expanding habitat’: t1-habitat is ex-
ceeding the buffered outline of a t0-habitat but its centroid is within the de-
lineated outline of habitat t0; (3) ‘invading habitat’: t1-habitat has its cen-
troid outside the origin or buffered t0-object, therefore usually this object 
type in not directly related to object t0 (Lang et al. in press). Finally (4) 
’emerged habitat’: t1-habitat which is completely within the original out-
line of a t0-habitat (see figure 4). A special case of habitat fate occurs when 
habitat t1 behaves like an expanding habitat but represents an area which is 
completely new developed (such as a clear-cut forest). In this case LIST 
will identify this habitat as an expanding habitat. In our study we only cal-
culated habitat fate types 1, 2 and 4, because we determined the geometries 
of one habitat at two different times (t1 and t0). That means the analyzed 
habitats either can be a good, expanding or emerged (Weinke and Lang 
2006). Note that the concept of object relationships has been further ex-
tended by Schöpfer et al. (this volume). 
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Fig. 4. ’Habitat fate’ categories implemented in LIST (Schöpfer and Lang 2006, 
modified by Weinke and Lang 2006) 

5 Results 

5.1 Test site A 

5.1.1 Iterative OLR 

Using OLR, habitats were segmented at single representation levels which 
produced habitat boundaries similar to the delineations of the human inter-
preter. The quality of the habitats introduced at different target levels de-
pends upon the defined iteration steps and parameters used in eCognition 
4.0. 

Altogether, forty-four single habitats (see Figure 5) were extracted at 
eight target levels. At each representation level a specific number of habi-
tats with different textural features, different habitat type (see table 2) and 
size were identified. These results need to consider the high number of 
heterogeneously composed habitats and the high variation of habitat size in 
the entire test site. Although after Gonzales and Woods (2002) and Sonka  
et al. (1999) a formal definition of texture hardly exists, texture comprises 
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instinctive characteristics like smoothness, coarseness, graininess and 
regularity in a general understanding. Obviously, also habitats represented 
on a satellite imagery can exhibit these characteristics. A meadow for ex-
ample has a homogeneous smooth texture, in comparison to forest habitat, 
the texture of which is heterogeneous. The extracted habitats represent five 
of the eight main habitat types of the standardized HIK. Although different 
habitat types were segmented at each target level, some target levels are 
more suitable to extract a specific habitat type (HABITALP Interpretation 
key 2003). As an example, in target level 4 most of the extracted habitats 
are of type immature soil site (HIK: 5000) which is made up by a combi-
nation of coniferous and debris areas. To reach this target level at the first 
iteration steps we selected a very high color and compactness factor (see 
table 3). Only in the last iteration step ’shape’ was weighted higher. These 
results show that by applying the iterative OLR segmentation strategy it is 
possible to obtain one specific habitat or more single habitats at a specific 
target level, which have a similar texture and represent a specific main 
HABITALP-mapping unit.  

Table 2 Number of segmented superior HABITALP-mapping units per each tar-
get level (Weinke and Lang 2006) 

target levels HIK 
4000a 

HIK 
5000b 

HIK 
6000c 

HIK 
7000d 

 HIK  
9000e 

num. of habitats/ 
     target level f 

1. target level     3       1     5             9 
2. target level     5     1      7             13 
3. target level     2     1     2       1     5            11 
4. target level     1     4      1              6 
5. target level     1     1                2 
6. target level        1              1 
7. target level        1              1 
8. target level        1              1 
     noH g            44 
aHIK 4000: agricultural land, perennial forb communities. 
bHIK 5000: immature soil sites, dwarf-shrub plant community. 
cHIK 6000: trees, field trees or shrubs, groups of shrubs. 
dHIK 7000: forest. 
eHIK 9000: settlement, traffic. 
fnum. of habitats/ target level: number of habitats per each target level. 
gnoH: number of habitats 
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Table 3 Color- and Compactnessparameters of each hierarchical segmentation 
level on target level 4 

Parameters SL1 a SL 2 a SL 3a SL 4 a 
Scale 30 90 180 300 
Color / Shape 1 / 0 0.9 / 0.1 0.9 / 0.1 0.6 / 0.4 
Compactness / 
Smoothness 

 
0.5 / 0.5 

 
0.9 / 0.1 

 
0.9 / 0.1 

 
0.9 / 0.1 

aSL 1,2,3,4: Hierarchical Segmentation levels which are needed to extract habitats 
on target level 4 . 

 

 
Fig.5. Extracted habitats originated from the iterative OLR segmentation strategy 
in the test site Klausbachtal 
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5.1.2 Habitat boundary coincidence and change assessment 

As stated before, due to the fact that two different systems were used for 
producing habitat outlines, we are dealing with non-congruent object out-
lines. In table 4, one example for each of the main HABITALP-mapping 
units with non-congruent habitat outlines is shown. Applying the virtual-
overlay approach, habitat fate of each habitat is identified. The habitat of 
the first example shows an instance of the main HIK category ‘agricultural 
land, perennial forb communities’ with rather homogeneous texture and no 
changes between 2003 and 2005. As a consequence a small SOS-factor of 
5% was used to identify this habitat as a good (i.e. stable) habitat (refer to 
chapter 4.3. to recall the how SOS-factor and habitat fate are related). The 
second example consists of a heterogeneous texture of debris and conifer-
ous areas and is an instance of the main HIK category ‘immature soil sites 
and dwarf-shrub plant community’. A SOS-factor of 9.4% was used to 
identify good ‘habitat fate’ of this habitat. In this case the high buffer dis-
tance is justified because the interpreter perceptually included single fea-
tures (like trees) in an otherwise homogeneous debris habitat matrix, 
whereas the software strictly segments the homogeneous debris area. In the 
sixth example an SOS-factor of 4% was applied to ensure good habitat 
fate. This case shows that the software extracts the entire house, which be-
long to the main HIK category ‘settlement and traffic’, because it works 
along pixels, whereas a human interpreter will generalize. The habitat in 
the third example has a high SOS-factor of 14.2% and is an expanding 
habitat. The software apparently cannot differentiate between tree crown 
and tree shadow. Consequently the expanding tree crown in the south-
eastern part of the habitat could not be identified. The habitat in the fourth 
example also shows an expanding habitat with a high SOS-factor of 15%. 
This habitat is truly expanding because spectral changes could be identi-
fied in the south-east of this habitat. About half of the test site is situated in 
the temporary and permanent transition zone of the national park. Thus 
many habitats as the habitat in the fifth example could be identified. This 
represents a clear-cut forest, as an example for the main HIK category 
‘special sub mapping unit of forest’ and an emerged habitat (Weinke and 
Lang 2006). 
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Table 4 Examples for each main HABITALP-mapping unit which can be found in 
the Klausbachtal (Weinke and Lang 2006, modified by E. Weinke 2007) 

1)  
Agricultural land, 
perennial forb 
communities  
(HIK:4000) 

 

Characteristics of  segmented  
habitats with eCognition 4.0: 

 
  Target level: 1 
  Size: ~2100m² 

      Habitat fate: good 
SOS-factor: 5% 

  Texture: homogeneous 

2) 
 Immature soil sites,  
 dwarf-shrub plant  
 community  
 (HIK: 5000)  

Characteristics of  segmented  
habitats with eCognition 4.0: 

 
           Target level: 5 

    Size: ~3800m² 
 Habitat fate: good  
 SOS-factor: 9,4% 

    Texture:  heterogeneous             

HIK-boundary overlays 
CIR-orthophoto 2003  

 

      change assessment  
 (QuickBird-imagery 2005) 

 
 

HIK-boundary overlays CIR-
orthophoto 2003  

 

 

     change assessment  
(QuickBird-imagery 2005) 
 

 
 

3)  
  Trees, field trees  
  or shrubs, groups   
  of shrubs  
  (HIK: 6000) 

Characteristics of  segmented  
habitats with eCognition 4.0: 

 
        Target level: 3 

 Size: ~6800m² 
    Habitat fate: expanding  

SOS-factor: 14,2% 
    Texture: heterogeneous 

4) 
 Forest (HIK: 7000)  

 

Characteristics of  segmented  
habitats with eCognition 4.0: 

 
             Target level: 7 

     Size: ~13300m² 
     Habitat fate: expanding 

  SOS-factor: 15% 
     Texture: heterogeneous 
 

HIK-boundary overlays 
CIR-orthophoto 2003  

    

      change assessment  
(QuickBird-imagery 2005) 

 

HIK-boundary overlays CIR- 
 orthophoto 2003 

 

       change assessment  
(QuickBird-imagery 2005) 

5) 
Special sub   
mapping unit of 
Forest 
(HIK:7000)  
 

Characteristics of  segmented  
habitats with eCognition 4.0: 

 
         Target level: 2 

  Size: ~3900m² 
    Habitat fate: emerged  

SOS-factor: 0% 
   Texture: heterogeneous 

 

6) 
 Settlement,  
 traffic  (HIK: 9000)  

 

Characteristics of  segmented  
habitats with eCognition 4.0: 

 
             Target level: 1 

       Size: ~258m² 
   Habitat fate: good  
     SOS-factor: 4% 

     Texture: heterogeneous 

 
HIK-boundary overlays 
CIR-orthophoto 2003 

      change assessment  
(QuickBird-imagery 2005) 

HIK-boundary overlays CIR- 
 orthophoto 2003 

  

         change assessment  
   (QuickBird-imagery 2005) 

   
 

        Legend: 
 

                
 
Buffer zone 
 

             
 Habitat border 

which results of a segmen-
tation process 

 
Visual border 

delineation of CIR-aerial 
photographs 
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5.2 Test site B- MSS/ORM 

According to the objectives of the Hochkalter study mountain pine areas 
were identified and classified. Especially the mixed classes, the ecologi-
cally relevant transition zones between wood and mountain pines as well 
as mountain pines and alpine grassland or rock were well recognized (see 
figure 6). Problems due to topographic illumination effects (shadowed ob-
jects, similarities of different classes, spectral differences within one class) 
have been eliminated mostly satisfyingly by using semantic rules and topo-
logical relations.  

Processing times increased substantially while processing the entire sub-
set size of 29 km2 (Preiner et al. 2006). 

 
  (a)        (b) 

 Apparent classes: 
                                A) Pure mountain pine stand 
                                B) Mountain pine with alpine meadow and/or rock, debris or pebbles                                                                                      
                                C) Mountain pine with trees 
                                D) Mountain pine with single trees 
                                E) Forest with mountain pine 
                                F) Heterogeneous class with mountain pine 

 
Fig. 6. Extracting process of qualitative sub-classes of mountain pine vegetation 
within the transition zone. (a) Initially segmented image object composition (b) 
Final classification result with user-defined modified useful image objects (Preiner 
et al. 2006) 
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6 Discussion 

In this article we showed that very high spatial resolution (VHSR) Quick-
Bird imagery are well suited for automated habitat delineation. QB satellite 
data, as compared to CIR aerial photographs, also provide a blue channel 
and a separate panchromatic dataset. Using a suitable resolution merge 
technique, the spatial resolution of the multispectral dataset can be com-
bined with the high spatial resolution of the panchromatic dataset, main-
taining most of the high radiometric resolution of the multispectral bands. 
Approximately, pan-sharpened QB-data have similar spatial resolution as 
CIR-aerial orthophotos, so segmentation results are usually more appropri-
ate on a merged dataset. Leaving technical limits aside, we assume that 
satellite data providing multispectral bands with sub-meter resolution will 
improve segmentation results even more. Further advantages are the tem-
poral resolution and revision periods of satellite sensors for scanning the 
same region of the earth at similar illumination conditions. If looking at the 
cost side, habitat mapping using QuickBird imagery, with standard pre-
processing steps and semi-automated analysis will be altogether more cost-
efficient than mere visual interpretation (Lang and Langanke 2006).   

In this work we evaluated the potential of OBIA using the software eC-
ognition 4.0 for habitat mapping, partly automating this process. Since the 
last years a large number of tools for analyzing remote sensing data ap-
peared. Meinel and Neubert (2004) and Neubert et al. (2006) evaluated 
some of these tools focusing on the quality of the results of the segmenta-
tion process, which maybe considered the crucial and basic step of OBIA. 
Visual inspection and a qualitative assessment of these results showed that 
beside eCognition also SegSAR 1.0, SEGEN and SPRING 4.0 provide sat-
isfying results. Further work will therefore focus on investigating the po-
tential of such alternatives for habitat delineation. However, in terms of 
operational use eCognition provides a user-friendly graphical user inter-
face, integrates both segmentation and classification, and supports efficient 
data interchange. 

The results of the two studies show the considerable potential of the 
multi-resolution region-based segmentation in combination with the itera-
tive OLR and MSS/ORM-strategy for automated habitat delineation and 
classification. These results have important implication for habitat moni-
toring and management, particularly in areas that are undergoing signifi-
cant land use/land cover change. Depending on thematic aims and further 
planned applications either of the strategies being discussed can provide 
the desired benefits for extracting (alpine) habitats. Change assessment 
was evaluated for the segmented habitats resulting from iterative OLR. 
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This method can be used for assessing or updating respective data layers 
from previous dates, even if being derived by a different method. This is 
important since as it has happened in the past, techniques for delineation 
may change even further. Still, telling apart slight modifications from real 
changes, is a challenge. Appropriate representation in a geodata model is 
another challenge. One possibility to address this problem would be to 
connect a certain segmentation algorithm with a database to perform 
automated segmentation using habitat specific parameters, which can be 
applied and adapted to identify changes.  

Further applications, in particular for further assessment of complex tar-
get classes (like the Pinus mugo transition zones), could be done via land-
scape metrics as implemented in the V-LATE tool (Lang and Tiede 2003). 
The spatial characterization and quantitative description concerning the 
very arrangement and composition of the aggregates may be linked to 
some crucial ecological parameters of the respective habitats. 
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ABSTRACT: The new generation of satellite and aircraft sensors pro-
vides image data of very and ultra high resolution which challenge conven-
tional aerial photography. The high-resolution information, however, is 
acquired only in a panchromatic mode whereas the multispectral images 
are of lower spatial resolution. The ratios between high resolution pan-
chromatic and low resolution multispectral images vary between 1:2 and 
1:8 (or even higher if different sensors are involved). Consequently, ap-
propriate techniques have been developed to merge the high resolution 
panchromatic information into the multispectral datasets. These techniques 
are usually referred to as pansharpening or data fusion. The methods can 
be classified into three levels: pixel level (iconic) fusion, feature level 
(symbolic) fusion and decision level fusion. Much research has concen-
trated on the iconic fusion because there exists a wealth of theory behind 
it. With the advent of object or segment oriented image processing tech-
niques, however, feature based and decision based fusion techniques are 
becoming more important despite the fact that these approaches are more 
application oriented and heuristic. Within this context, the integration of 
GIS based information can easily be accomplished. The features can come 
from a specific segmentation algorithm or from an existing GIS database. 
Within the context of feature and decision based fusion, we present two 
exemplary case studies to prove the potential of decision and feature based 
fusion. The examples include: 
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• Decision based integration of panchromatic high resolution data 
with multispectral images for the identification of settlement areas;  

• Rapid image enhancement merging GIS and multispectral satellite 
data; and 

• NDVI based segmentation. 

1 Introduction 

The availability of remote sensing data that are needed for global, regional 
and local monitoring has greatly increased over the recent years. While the 
increase in spatial resolution for digital images has been hailed as a signifi-
cant progress, methods for their automated analyses (i.e. land cover map-
ping, change analysis, GIS integration) are still in the process of being de-
veloped. Object (or segment) based preprocessing techniques seem to be 
an adequate methodology because inter-class variances can be minimized 
and the image interpretation techniques of the human eye be mimicked. 
However, the question of appropriate data fusion techniques within this 
context has hardly been addressed. 

Over the last years, image fusion techniques have gained a renewed in-
terest within the remote sensing community. The reason for this is that in 
most cases the new generation of remote sensors with very high spatial 
resolution records image datasets in two separate modes: the highest spa-
tial resolution is obtained for panchromatic images whereas multispectral 
information is associated with lower spatial resolution. The ratios between 
panchromatic and multispectral imaging modes of one sensor vary be-
tween 1:2 and 1:8. For multisensor fusion, ratios can exceed 1:20 (e.g.  
Ikonos and SPOT merge). Consequently, for analyses that require both, 
high spatial and spectral information, fusion techniques have to be devel-
oped to extract ‘the best of both worlds’. The term fusion is used by the 
image community to address the problem of sensor fusion, where images 
from different sensors are combined. The term is also used by the database 
community for parts of the interoperability problem. Generally, fusion ex-
ists in different forms in different scientific communities (see, for example, 
Edwards and Jeansouline 2004). 

Usually, the imaging community uses it to address the problem of sen-
sor fusion, where images from different sensors (or different modes of one 
sensor) are combined. They can be classified into three levels: pixel level 
(iconic), feature level (symbolic) and knowledge or decision level (Pohl 
and van Genderen 1998). 
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Until now, of highest relevance for remote sensing data processing and 
analysis have been techniques for iconic image fusion for which many dif-
ferent methods have been developed and a rich theory exists. Unfortu-
nately, for many fusion techniques we experience more or less significant 
color shifts which, in most cases, impede a subsequent automated analysis 
(Ehlers & Klonus 2004, Ehlers et al. 2007). Even with a fusion technique 
that preserves the original spectral characteristics, automated techniques 
often do not produce the desired results because of the high spatial resolu-
tion of the fused datasets (Tomowski et al. 2006).  

For this purpose, feature based or decision based fusion techniques are 
employed that are usually based on empirical or heuristic rules. Because a 
general theory is lacking, these fusion algorithms are usually developed for 
certain applications and datasets. To discuss the advantages and disadvan-
tages on segment based image fusion techniques, we introduce three ex-
amples for segment based fusion methods in this paper (decision based 
data fusion, GIS information integration, and ‘NDVI cookie cutter‘ fu-
sion). 

2 Decision based fusion 

As a basis for the decision based fusion process, we selected high and me-
dium spatial resolution satellites data to develop, implement, and test a 
method for the automated detection of settlement areas. The high resolu-
tion satellite datasets were comprised of panchromatic images from SPOT-
5 (Fig. 1) with 5 m GSD and KOMPSAT-1 with 6.6 m GSD (Fig. 2). Me-
dium resolution multispectral data were obtained from Landsat ETM and 
Aster datasets with 30 m and 15 m resolution, respectively. Our method 
was applied to two randomly selected test areas (25 km2 each), using pan-
chromatic and multispectral satellite data. For the first area, data from 
SPOT (recording date 16 March 2003) and Landsat (recording date 26 
June 2001) were used, and for the second, KOMPSAT-1 (recording date 
20 May 2004) and Aster data (recording date 3 August 2003). 
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Fig. 1. Panchromatic SPOT-5 image (5 m pixel size) 

 

 
 

Fig. 2. Panchromatic KOMPSAT-1 image (6.6 m pixel size) 

 
The aim was to produce a binary mask with the classes ‘settlement’ and 

‘non-settlement’. Settlement is understood as a sum of real estates, traffic 
surfaces, commercial areas, sport and recreation facilities as well as parks 
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and cemeteries (Apel & Henckel, 1995). The images were rectified to 
ground coordinates but otherwise left in their original format. Parameters 
such as texture and shape were extracted from the high resolution pan-
chromatic data, vegetation information from the multispectral images (Fig. 
3). 

 

 
Fig. 3. Decision based data fusion process 

 
Using an adaptive threshold procedure, the information from the image 

datasets was fused and formed a binary mask for the areas ‘settlements 
candidates’ and ‘definitely no settlements’. This process was repeated at a 
hierarchy of differently sized segments with a set of different threshold pa-
rameters at each level. The hierarchical network of segments consisted of 
three levels (Fig. 4). 

The size of the segments decreases from level 3 (coarse) to level 1 
(fine). The segmentation in eCognition was applied solely to the panchro-
matic data. The classification algorithm starts at the third level. For each 
segment of the newly generated class ‘settlement’, texture and form pa-
rameters as well as an average normalized difference vegetation index 
(NDVI) are calculated (Jensen 2005). The ‘gray level co-occurence’ 
(GLC) matrices that examine the spectral as well as the spatial distribution 
of gray values in the image form the basis for the texture calculation 
(Haralick et al. 1973). The method is described in detail in Tomowski et al. 
(2005).  
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A GLC matrix describes the likelihood of the transition of the gray 
value i to the gray value j of two neighboring pixels. For the differentiation 
of ‘settlement’ and ‘not-settlement’ we use the inverse distance moment 
(IDM) derivative from the GLC matrix. With the application of the IDM, it 
is possible to distinguish between heterogeneous and partially homogene-
ous non-settlement areas (Steinnocher 1997). 

 

 
Fig. 4. Hierarchical network of segments for the decision based fusion 

 
The next step of the method starts at segmentation level 2, in which the 

threshold values for the classification characteristics (texture, form and 
NDVI) are increased. Additionally, the classification characteristics are 
only calculated for the settlement areas (so-called filial segments) that are 
part of a non-excluding area at the third level (Ehlers et al. 2006). At the 
finest segmentation level 1, the classification rules are again applied but 
with highest restriction parameters. Finally, the settlement segments are 
merged and cleaned by automated filter procedures to eliminate small re-
maining agriculture segments and to include urban parks and lakes in the 
settlement areas. The result is a binary mask containing the classes ‘settle-
ment’ and ‘non-settlement’ (endlevel). More details on this algorithm can 
be found in Ehlers et al. (2006) and Tomowski et al. (2006). 

Despite the differences between the used datasets, the results are very 
similar (see Fig. 5 and 6). Contiguous settlement areas (conurbation areas) 
are detected with a high accuracy. For both test areas the borders between 
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‘settlement’ (red) and ‘non settlement’ (no color) are represented with a 
low level of generalization (borders are not smooth). 

It is evident that only a few vegetated areas such as playgrounds or 
parks are missing and small houses or farms outside the kernel settlements 
are not completely included. To analyze the final accuracy, settlement ar-
eas were manually digitized and compared to the results of the hierarchical 
processing at each level (Table 1). For both combinations, results are al-
most identical and exceed 95% user accuracy at the final level.  

 

 
Fig. 5. Binary mask for the SPOT 5 study site (settlement in red) 

 
Table 1: Users’ accuracy for the detection of settlement areas.  

 
Hierarchical Level SPOT-5 & Landsat ETM KOMPSAT 1 & Aster 

3 13.6% 45.3% 

2 70.0% 84.2% 

1 86.9% 95.0% 

Final 96.3% 97.3% 
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Fig. 6. Binary mask for the KOMPSAT 1 study site (settlement in red) 

3 GIS and NDVI based image enhancement 

Image enhancement techniques are usually applied to remote sensing data 
to improve the appearance of an image for human visual analysis. En-
hancement methods range from simple contrast stretch techniques to filter-
ing and image transforms. Image enhancement techniques, although nor-
mally not required for automated analysis techniques, have regained a 
significant interest in recent years. Applications such as virtual environ-
ments or battlefield simulations require specific enhancement techniques to 
create ‘real life’ environments or to process images in near real time.  

Problems with standard fast enhancement techniques such as contrast 
stretch or histogram equalization are that they are usually optimized for 
whole images and might not prove appropriate for selected features. This 
affects especially coastal areas that contain land, water and beach classes. 
Using global image enhancement techniques, the image will be trans-
formed in a way that would produce a compromise for the different 
classes. Water is usually dark (especially in CIR display), beach will be 
very bright with little discernible structure (similar for urban classes), and 
other land classes (e.g. vegetation) will not make use of the full possible 
range of spectral values. Also, different features might require different 
band combinations for optimum display. This cannot be done using con-
ventional enhancement and display strategies. Water, for example, may re-
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veal more information in a true color display whereas vegetation requires a 
false color infrared approach. The indicated problems will only get worse 
with the availability of hyperspectral data where possible combinations of 
narrow bandwidth spectral bands can differ for land and water features.  

The proposed methods make use of existing GIS information, if avail-
able, and/or image preprocessing such as NDVI calculations. Using this 
approach, it is possible to design a procedure for completely automated 
image enhancement that works in an optimized way for the selected fea-
tures. 

The study site is located southeast of Jacksonville, North Carolina, 
USA. It presents one of the largest US Marines sites for which an exten-
sive amount of ground truth, GIS, and remote sensing data is available. 
The datasets consisted of Landsat, SPOT, IKONOS and Qickbird images 
as well as GIS landuse/landcover data in shape format (Ehlers et al. 2004, 
Fig. 7). 

 

 
Fig. 7. IKONOS multispectral image (2048 x 2048 subset) of the Camp Lejeune 
study site overlaid with vector GIS information 

3.1 Methodology 

Selected stretching especially for regions of low contrast is nothing new in 
the analysis of remotely sensed data. Usually, this is done interactively by 
the analyst either by selecting a box or digitizing a certain area of interest 
in the image. This area is then enhanced using standard image processing 
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techniques (e.g., histogram equalization or linear contrast stretch). The 
subset is then displayed separately to highlight certain features that would 
have been impossible to discern in a global enhancement mode.  

The goal of this study was to develop automated procedures for feature 
based image enhancement techniques for rapid display purposes, espe-
cially of high resolution remote sensing images (Ehlers 2004). Feature 
based enhancement means that different feature classes in the image re-
quire different procedures for optimum display. The procedures do not 
only encompass locally varying enhancement techniques such as histo-
gram equalization or contrast stretch but also the selection of different 
spectral bands. The image class water, for example, may be best displayed 
in a true color mode whereas for the feature class vegetation a false color 
infrared display is more appropriate. It is envisioned that this technique 
could be implemented in a near–realtime environment making use of a pri-
ori information.  

There are two main sources for this kind of information: (a) storage of a 
priori knowledge in a GIS, and (b) context based image information that 
can be extracted through a segmentation process. Both techniques can also 
be applied for optimum feature class selection. For many areas in the 
world, there exists a wealth of a priori information in existing spatial data-
bases, digital maps or previous analyses of remotely sensed data. Usually, 
this type of information is stored in a raster or vector based GIS. With the 
progress in the integration of remote sensing and GIS software, many 
commercial systems allow the simultaneous display and use of GIS and 
image layers. Usually, GIS vector layers have to be converted to raster 
data for a joint GIS/image analysis. 

The case study for our research was conducted in an integrated  
ArcGIS/ERDAS environment. The developed procedure, however, is sys-
tem independent and can work in any integrated GIS/remote sensing envi-
ronment. The procedure consists of five steps involving either GIS based 
or image context based masking (Fig. 8). Despite the fact that no general 
theory for segment based fusion exists the procedure outlined in Fig. 8 can 
be viewed as a general principle, the appropriate segmentation and GIS 
laxer selection as well as the enhancement procedures have to be chosen in 
accordance with the actual application. 
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Fig. 8. General concept for GIS and context based image enhancement 

3.2 GIS based enhancement 

First, all image and GIS layers have to be registered to a common coordi-
nate system, e.g., UTM. GIS layers should be displayed as polygons or 
raster boundaries overlaid on the remotely sensed image to check for inac-
curacies or geometric and semantic inconsistencies of the data sources. In a 
second step, GIS information to be used as feature masks for local en-
hancement is analyzed and merged into meaningful classes. If, for exam-
ple, vegetation classes are to be evaluated, all non-vegetation classes can 
be recoded into one mask. Other GIS masks that can be used for local im-
age enhancement may separate water from land or built-up areas from 
open fields. The GIS layers can be overlaid on the image data for visual in-
spection. With this, editing can be performed if required (Fig. 9).  

The third step is the creation of separate image layers that are based on 
the selected feature classes. After recoding, the GIS layers form 0/1 input 
masks (0 = area outside the feature class, 1 = area inside the feature class) 
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to segment the image into independent layers (Fig. 10). Each spectral band 
of the image is multiplied with the individual GIS masks to form separate 
multispectral image layers with have the original nonzero pixel values only 
inside the selected GIS masks. The last image to be created contains the 
complement mask to all selected feature classes. Using this procedure, it is 
assured that for each pixel location only one of the image layers contains 
the original image value. All the others will have a zero value at this loca-
tion. Using the ‘union’ operator, a simple overlay of all separate image 
layers recreates the original image. 

 

 
Fig. 9. Selected and recoded GIS classes for ‘Water/Ocean’, ‘Water/River’, 
‘Beach’, and ‘Open Field/Roads/Built-Up’ overlaid on multispectral Ikonos data 

 
In a fourth step, each layer is processed separately. This step does in-

clude the selection of an appropriate enhancement algorithm and the 
choice of suitable bands for display or printing purposes. In our study, we 
worked with 4-band remote sensing data. This step, however, will become 
more important if it involves hyperspectral images. For example, water in-
formation is usually displayed with a higher lever of detail if the blue band 
is included. Narrow band widths will make it possible to select spectral 
bands that depict physical phenomena such as turbidity or sediment con-
tent. Vegetation, on the other hand, is displayed best in standard false color 
infrared band combination due to the high reflectance in the near infrared 
domain.  

The user can interactively be involved in this process or can leave the 
display and contrast enhancement to the default options. The default dis-
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play options are established based on user experience and standard image 
processing literature. For water classes, the standard bands to be displayed 
are near infrared, green and blue (or for Ikonos and Quickbird bands 4, 2, 
1). For all other areas, the standard display is near infrared, red, green (or 
bands 4, 3, 2, respectively). For image enhancement, we selected a contrast 
stretch based on +2.5σ. This means that the digital numbers (DNs) for each 
band are stretched so that the values [μ - 2.5σ, μ + 2.5σ] are mapped to 
[0,255] (μ being the mean value of the input image band). Values outside 
the selected range are mapped to 0 and 255, respectively. This contrast 
stretch usually produces better visual results than the histogram equaliza-
tion process with often too saturated areas of less discernible level of de-
tail. 

 

 
Fig. 10. Separate image layers for the selected GIS classes ‘Water/Ocean’ (top 
left), ‘Beach’ (top center), ‘Water/River’ (top right), ‘Open Field’ (bottom left) 
and the complement class (mostly vegetation) (bottom center) 

 
The last step involves merging of the separate image layers into a single 

image file using standard GIS overlay procedures. As the image masks do 
not overlap, the procedure is based on a simple union process. Fig. 11 
shows the result of the GIS based local image enhancement process com-
pared to the standard full image enhancement option. The GIS layers se-
lected from the database were ‘Water/Ocean’, ‘Water/River’, ‘Beach’, 
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‘Open Field/Roads/Built-Up’, and ‘Vegetation’. The GIS based enhanced 
image shows more detail in all parts of the study area. There are almost no 
areas that are too bright or too dark to convey any information as is the 
case in the globally enhanced image which represents a compromise over 
the different spectral reflectance distribution for the image (see Fig. 12 for 
a close-up).  

 

 
Fig. 11. GIS based enhancement of the Ikonos image.  

 
The process can be modeled in a flow chart or script language environ-

ment and thus be applied to other images and geographic regions. It has to 
be noted that the choice of suitable feature classes is still an interactive 
process and has to be performed by the user. 
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Fig. 12. The subset of the GIS enhanced image (left) shows a higher level of de-
tail compared to the globally enhanced image (right) (contrast stretch with +2.5σ) 

3.3 NDVI based enhancement 

Often, there is not enough a priori information for a GIS based feature se-
lection process or the information is not accurate and/or outdated. In this 
case, the information contained in the image itself is the most reliable 
source for feature based enhancement. The image has to be segmented into 
meaningful features classes which are again mutually exclusive and can be 
used as masks to create independent image layers. When vegetation is pre-
sent in the images, we can make use of indices that are sensitive to the 
near-infrared band of the image sensor. We selected the NDVI as a means 
for segmentation. Using this index, the difference between vegetation and 
non-vegetation is emphasized. Reflectance values for vegetation have their 
maximum in the near infrared and a minimum in the red spectral domain. 
High values of the NDVI indicate lush vegetation, values around 0 non-
vegetated land areas and negative values are usually associated with water. 
Fig. 13 and 14 show the NDVI as gray value display and the NDVI histo-
gram for the study site. For this investigation, we used a Quickbird image 
of the same area.  
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Fig. 13. NDVI for the Quickbird image of the study site. Bright values indicate 
high level of vegetation, intermediate values open fields, and dark values water 

 

 
Fig. 14. Histogram of the NDVI image. The separations between potential classes 
(local minima) are clearly visible 

 
The only interaction that is still required is the NDVI threshold selection 

for the required feature classes. Although some procedures exist to develop 
automated threshold selection based on local minima detection, we decided 
to use an interactive process so that the user can immediately see the se-
lected classes on top of the image data. Mistakes and erroneous thresholds 
can be interactively corrected. Once the selected NDVI classes have been 
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verified by visual analysis, the image is separated into independent layers 
and processed similar to the previous process based on the GIS input.  

Table 2 presents the NDVI thresholds and the respected feature classes. 
Fig. 15 shows the NDVI masks and Fig. 16 the result of the feature based 
enhancement process. The steps are the same as with the GIS based en-
hancement. It should be noted that for the water areas, another band com-
bination (3, 2, 1) was employed for better feature separation.  

 
Table 2: Selected enhancement classes with NDVI values.  

 
Class NDVI Value 
Water NDVI < -0.12 
Open/Beach -0.12 < NDVI < 0.00 
Open/Inland/Built-up 0.00 < NDVI < 0.19 
Vegetation 0.19 < NDVI 

 
 

 
Fig. 15. Selected NDVI classes (pseudo color coded). 

 
For a better comparison, Fig. 17 presents the same subset as shown in 

Fig. 12. Again, the level of detail demonstrates the superiority of the local 
enhancement procedure.  
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Fig. 16. NDVI enhanced Quickbird image 

 

 
Fig. 17. The subset of the NDVI enhanced image (left) shows a higher level of de-
tail compared to the globally enhanced image (right) 

 
The result of the NDVI based enhancement seems almost better than the 

one that is based on GIS information. The reason is that the selected con-
trast enhancement is based on the underlying image information. At large 
magnifications, however, discontinuities in the selected classes become 
visible. In contrast to GIS feature classes, NDVI classes are not contiguous 
and may contain single pixels and small pixel groups that are differently 
enhanced than their neighbors. This can result in image noise in certain ar-
eas. Image processing such as filtering or blow and shrink operations may 
be employed to create more contiguous image masks. At standard resolu-
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tions, however, this method shows results that prove the validity of the 
presented approach. 

4 Conclusion 

Several aspects of image fusion and GIS/remote sensing integration were 
investigated in this paper. All presented fusion techniques use the benefits 
of a combination of high spatial and high spectral resolution remote sens-
ing. For the detection of settlement areas, we employed a decision based 
fusion technique for a set of panchromatic high-resolution and multispec-
tral low resolution images. Through a hierarchical segment based approach 
it was possible to improve the classification results at each level. Further-
more, this procedure works equally well with different multisensor satellite 
data without altering the procedure or the employed parameters steps.  

Information stored in GIS databases can be used for rapid image en-
hancement with real-time potential. GIS selected image classes were sepa-
rately enhanced and fused at the final steps. If no GIS information is avail-
able, use can be made of segments such as those that are produced by 
NDVI values. Both procedures work well for the display of multispectral 
images. As individual band selection can be incorporated in this enhance-
ment process, the extension to rapid hyperspectral image display is possi-
ble. Known optimum band selections can be combined with spectral en-
hancement in this procedure. The method can also be automated to a large 
degree using a flow chart environment or scripting language. With more 
investigations in the future, some of the interactive steps can be replaced 
by default values.  

In comparison to pixel based classification procedures (like the maxi-
mum likelihood method) it is evident that the introduced feature (‘cookie 
cutter’) and decision based fusion techniques are significant improvements 
for the design of future automated processing modules. Through the adop-
tion of object-based image processing methods and data fusion techniques 
it is possible to avoid the salt-and-pepper effect of pixel based analyses 
and to enhance the classification accuracies. In our opinion, a feature 
and/or decision based fusion seems to be the most promising technique for 
the improvements of classification accuracy.  
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ABSTRACT: This contribution concentrates on the determination of 
thematic uncertainty after the classification process. It is shown that in this 
context –particularly when evaluating remotely sensed scenes showing 
high spatial resolution – severe problems arise due to indeterminate 
boundaries in both reference data and classification results. This effect 
mainly occurs between natural objects or are due to blurred or overlapping 
definitions of classes or related attributes in a given classification scheme. 
Based on some approaches in the literature and unsatisfactory tools in ex-
isting software packages, we propose the introduction of a new characteris-
tic value, the Fuzzy Certainty Measure (FCM), that is able to model and 
quantify uncertainty as indeterminate boundaries in reference data and 
classification results. 

1 Introduction 

Remotely sensed scenes have a steadily increasing impact on the descrip-
tion, modelling and simulation of landscape structures and processes. 
Nowadays, new applications or classical applications at larger scales can 
be addressed due to technical developments of the sensing systems con-
cerning their spatial, spectral and radiometric resolutions. In reaction to the 



756      J. Schiewe, M. Gähler 

new properties of the data, appropriate processing methods have been de-
veloped and are widely applied – in particular region-based methods, i.e. 
segmentations, as well as follow-up object-based and eventually fuzzy 
classification approaches. 

With this increased potential, a stronger integration of the derived geo 
data in binding planning and decision processes takes place. In this con-
text, users need reliable information about the thematic and geometric un-
certainty of the results that have been derived by interpreting the remotely 
sensed scenes. In the area of research and development, measures of the 
classification accuracy are also mandatory, for instance, for the evaluation 
of the potential of (new) sensing systems or processing methods. 

Concentrating on a post classification accuracy assessment, generally 
well known standard methods are applied. Those compare reference data 
(“ground truth”) and the classification result from which error matrices and 
related measures like overall accuracy or Kappa coefficient can be derived. 
By doing this, one assumes discrete boundaries between regions of a scene 
for which one and only one topographical object is attached and which is 
not subject to temporal changes. Furthermore, the reference data are as-
sumed to be error-free, which is obviously not the case with most applica-
tions. Instead, we have to deal with some effects of fuzziness, i.e. indeter-
minate boundaries between neighbouring objects. These effects are even 
amplified with the use of spatial high resolution data like those from the 
above mentioned new digital airborne or satellite systems.  

Section 2 will elaborate on the just indicated problems in uncertainty, 
determination from which the motivation arises to introduce an integrated 
and fuzzy uncertainty measure. Section 3 gives an overview of such meas-
ures from the literature, but also looks at the available tools within the 
software package Definiens Enterprise Image Intelligence™ Suite (for-
merly:  eCognition). From this survey it can be concluded that the existing 
characteristic values do not fulfil all demands with respect to uncertainties 
in reference data as well as to fuzziness in both reference and classification 
results. Hence, our goal is to develop and to test a more profound method-
ology to determine the classification uncertainty. The resulting integrated 
and fuzzy measure is presented in section 4. Section 5 summarizes these 
results and presents recommendations for further developments. 

2 Problems in uncertainty determination 

When accuracy is known objectively then it can be expressed as error. 
Where it is not, the term uncertainty applies (Hunter and Goodchild 1993). 
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Thus, uncertainty covers a broader range of doubt or inconsistency and in-
cludes errors. In the following we concentrate on thematic uncertainty 
which shall be determined after the classification process. The correspond-
ing evaluation, which assesses the quality of the input data and the classifi-
cation process as such, seems to be a standard task. Quantitative methods 
compare reference data (“ground truth”) and the classification result from 
which error matrices and related measures like overall, producer’s and 
user’s accuracy or Kappa coefficient can be derived. However, in the case 
of using spatial high resolution data, some of the general problems related 
to this procedure are even amplified and need even more attention com-
pared with the use of lower resolution data. The underlying reasons, which 
will be briefly discussed in the following, can be grouped into geometric 
and semantic aspects. 

From a geometric point of view, the smaller pixel sizes lead to the fact 
that a suitable reference with appropriate positional accuracy as well as lit-
tle model and cartographic generalisation is more difficult to find. Fur-
thermore, an adoption of the number and size of sample units has to take 
place. In particular, the conventional acquisition on a per pixel basis is not 
suitable anymore due to excessively small elements and neglect of the 
neighbourhood. In analogy to the object-based interpretation approach, a 
per-object sampling seems to be necessary in order to define training and 
test elements. However, due to missing methodology, such an approach is 
hardly applied in practise.  

It is also well known that we have to handle indeterminate boundaries or 
spatial transition zones between mostly natural objects (e.g., between dif-
ferent forest types, or forest and meadow), which are in some cases also a 
function of time (e.g., the boundary between beach and water). On the 
other hand, we have also to consider blurred or overlapping definitions of 
classes or related attributes in a given classification scheme. Taking now 
high resolution data into account, the absolute number of pixels describing 
spatial transition zones – and with that the effect of fuzziness – increases. 

From a semantic point of view, high resolution data allow for the ex-
traction of more thematic details and object classes. With that a more com-
plex classification scheme becomes necessary, which on the other hand in-
herits a greater chance of overlapping definitions of attribute value ranges. 
As a consequence, this may lead to errors or ambiguous assignments dur-
ing the visual or automatic interpretation process. The greater number of 
possible classes also makes more sampling units necessary. Like with 
geometric properties, it is also difficult to find a suitable reference with 
appropriate thematic details and semantic accuracy. It has to be kept in 
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mind that very often a reference data set is nothing other than another clas-
sification result based on another, eventually lower resolution data set. 

Finally, the spatial variance within regions representing a topographical 
object is increased in high resolution imagery which leads to more objects, 
more mixed objects (e.g., forest consists of trees, bare soil and others) and 
more boundaries. With the latter, the number of indeterminate boundaries, 
in other words the effect of fuzziness, is again increased. 

Therefore due to the increasing importance of remotely sensed data with 
high spatial resolution on one hand, and the above described problems on 
the other hand, there is a significant necessity to develop uncertainty 
measures that consider uncertainties in reference data as well as indetermi-
nate boundaries in both reference data and classification results. 

3 Previous work 

3.1 Consideration of reference accuracy 

It is obvious that with the improved information content and better geo-
metrical accuracies of new high resolution remote sensing systems, the 
demands for the reference data increase. Very often, however, appropriate 
data that match the respective criteria (e.g., Lunetta et al. 2001, Plourde 
and Congalton 2003, or Stehman 2004) are not available. As an example, 
investigations of Lunetta et al. (2001) demonstrate the huge variation of 
results during a visual interpretation of aerial images which are often used 
as a reference. The authors determine the repetition accuracy (of different 
operators) which is furthermore a function of the object classes under in-
vestigation. The authors conclude that “absolute ground reference is an il-
lusive goal that is difficult (if not impossible) to achieve”. Vice versa, this 
demonstrates the necessity for considering the inherent uncertainty in the 
reference data by using an integrated approach, particularly when using 
high resolution data. 

3.2 Consideration of fuzzy boundaries 

An approach for describing uncertainty in classification results based on 
probability theory is meaningful if random variations in the class categori-
zation occur. This theoretical basis is missing if the classification shows 
vague effects (Zhang and Goodchild 2002), which can be due to several 
effects: 
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• Blurred boundaries between classes (e.g., along the forest border) make 
an unique allocation subjective if not impossible. Chrisman (1982) 
showed in an empirical study that 18% of the test area belonged to such 
regions. 

• The categorization into discrete classes depends strongly on the underly-
ing object model (classification scheme) which varies with different ap-
plications and is rather subjective (Zhang and Goodchild 2002). As a 
consequence, vague categories (such as “urban” vs. “suburban”) exist. 
Using new sensors a stronger thematic depth can and shall be achieved 
so that this effect of vagueness is even strengthened.  

• Because of the use of high resolution systems the spectral variance 
within single objects is increased, as is the number of mixed elements  
and non unique class categorizations (e.g., forest has to be characterized 
as a mixture of trees, bare ground, etc.). Wang (1990) shows that the in-
troduction of additional mixed classes can not solve this problem. 

While for the application of conventional, statistically founded methods 
a variety of papers exist (e.g., Thomas et al. 2003; Foody 2004), ap-
proaches for the determination of fuzziness have been considered rather 
rarely. One approach for modelling transition zones is to introduce the so 
called ε–bands, as defined by Blakemore (1994; cited after Ehlers and Shi 
1997). Here, the different chances of a point-in-polygon-relation are de-
scribed by five qualitative measures (“definitively in”, etc.). Ehlers and Shi 
(1997) propose to use a probabilistic model in order to give a quantitative 
description which also allows for the combination with values of thematic 
uncertainty. They apply the so called S-band model of positional and the-
matic uncertainty values are linked by using the product rule. Other op-
tions to handle indeterminate boundaries (e.g., least squares polynomial 
fitting, corridor techniques, etc.) are treated by Edwards and Lowell 
(1996). 

The application of fuzzy set theory for the determination of classifica-
tion accuracy has been demonstrated by Fisher (2000). Wang (1990) also 
proposes the derivation of a fuzzy partition matrix which contains the 
membership of a pixel to each of the classes under consideration. Gopal 
and Woodcock (1994) added certainty values on a linguistic scale (“abso-
lutely safe”, etc.) to their visually classified elements. Those linguistic val-
ues can be combined using fuzzy logic theory for a better understanding of 
the resulting map. Similar approaches are reported by Wang and Hall 
(1996), Townsend (2000) or Lowell et al. (2005).  

Edwards and Lowell (1996) concentrate on the definition of a member-
ship function which in their case describes spatial uncertainties. For this 
purpose they introduce fuzzy transition zones whose widths are defined for 
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all pairs of object classes (“twains”). In this case, the corresponding zone 
width values had been derived from the mean deviations resulting from 
multiple digitizations in aerial images. The authors also found that not only 
the thematic class memberships, but also the area sizes of the polygons un-
der consideration, have a significant influence on the width of the transi-
tion zone (the smaller the area, the larger the fuzziness). Similar ap-
proaches for combined thematic and geometric uncertainties are treated, 
for example, by Wang and Hall (1996), Binaghi et al. (1999), or Townsend 
(2000).  

3.3 Implementation under Definiens Enterprise Image 
Intelligence™ Suite 

It is not surprising that due to the relatively sparse theoretical basis for us-
ing fuzzy logic methods for the determination of classification accuracy, 
only limited implementations in commercial software products can be ob-
served. As an example, the software package Definiens Enterprise Image 
Intelligence™ Suite (formerly: eCognition, Definiens 2006) offers conven-
tional methods for the determination of classification accuracy by using 
reference data and the classification result (here called „error matrix based 
on TTA mask“, or “error matrix based on samples”). Besides that we also 
find the option for an evaluation of classification results based on fuzzy set 
methods. The concept of the „advanced classification evaluation based on 
fuzzy classification“ assumes that the larger the deviation of all member-
ship values (for all classes, for one pixel or segment), the more uncertain 
the classification is. With that, uncertainties in the classification scheme 
(and indirectly also measurement errors) can be addressed. Meanwhile the 
acquisition and processing methods themselves cannot be assessed, be-
cause uncertainties of the reference data are not considered.  

In this context, the following characteristic values, which are only de-
rived from the classification result (and the corresponding membership 
values), can be taken into account with that system: 

• „Classification stability“: For each pixel the difference between the 
largest and second largest membership values is computed and summed 
for the entire class (or even the entire scene) – in the literature also 
known as ambiguity. 

•  „Best classification result“: This gives the visual representation of the 
corresponding largest membership value for each pixel. The mean value 
of all membership values can be interpreted as an indicator of the total 
uncertainty. 
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• For each pixel one can determine the standard deviation of the member-
ship values which again can be summed for the entire scene. 

4 Fuzzy certainty measure  

Based on the above outlined problems and the current state of implementa-
tions as presented in the previous section, our goal is to develop and to test 
a more profound methodology to determine the a posteriori classification 
accuracy considering uncertainty in reference data as well as indeterminate 
boundaries in the reference and the classification result. We will end up 
with the new, so called Fuzzy Certainty Measure (FCM).  

In order to focus on the above mentioned aspects, our approach starts 
with the – theoretical – assumptions that the classification schemes be-
tween reference and classification are identical and that no discrepancies 
occur due to different pixel sizes or temporal changes. Furthermore, we as-
sume that an appropriate sampling procedure has been taken into account. 

In order to demonstrate the overall process as described above, we have 
applied our proposed method to a data set of the digital airborne camera 
system HRSC-AX which delivers image and elevation data in very high 
spatial resolution (in our case ground pixel size equals to 15 cm). The 
HRSC image data consist of a panchromatic nadir channel and four multi-
spectral bands (blue, green, red, near infrared), each at a radiometric reso-
lution of 8 bits. For further information about the camera system refer to 
Ehlers et al. (2006). Figure 1 also shows the reference data and the classi-
fication result. 
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Fig. 1. Top: Given digital air photo (HRSC-AX, 15 cm ground pixel size), bottom 
left: reference from field survey, bottom right: image classification result (Ehlers 
et al. 2006). Note: Class descriptions (and with that colours) are not of importance 
at this stage, just the diversity of classes 

 
In order to model the inherent fuzziness, transition zones are now in-

troduced. Those are defined a posteriori using a buffering zone along a 
given boundary between two topographical objects. Based on the investi-
gations by Edwards and Lowell (1996) the width of this zone depends on 
the combination of objects (e.g., the transition zone between forest and 
meadow is obviously larger than those between building and road) as well 
as on the size of the object areas (figure 2). Within these zones a member-
ship function (in our case presently a linear function) is applied perpen-
dicular to the boundary for each class c. This procedure is performed for 
both the classification result (leading to membership values µCLASS(c)) and 
the reference data (µREF(c)). Figure 3 demonstrates the important additional 
value of the fuzzy approach: While a crisp method would have evaluated 
the classification result as clearly wrong, now the realistic chance of a cor-
rect categorization is no longer neglected. 

 

air photo

classificationreference
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Fig. 2. Principle of building transition zones and applying membership functions 
to a pair of neighbored topographical objects 

 

 
Fig. 3. Principle of deriving Fuzzy Certainty Measure FCM: Building transition 
zones (dashed lines) in reference (left) and classification result (right), determin-
ing membership values of a selected location to shaded class in reference (µREF) 
and classification (µCLASS) 

 
In order to derive one or more characteristic values, our approach consults 
the respective membership values for the same spatial elements (i.e., pixels 
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or regions) in the reference as well as in the classification result. Those are 
compared separately for each topographical class and for those elements 
for which a possibility of existence (or membership values larger than 0, 
respectively) is present in reference and classification. The resulting Fuzzy 
Certainty Measure FCM(c) per class c is determined as follows: 

 

 
 

(1) 

where:  
µREF(c): membership value of a pixel or region for class c in reference data 
µCLASS(c): membership value of a pixel or region for class c in classification 
result 
n: number of pixels or regions under consideration 

The FCM(c) values vary between 0 and 1 – the larger the coincidence 
between reference and classification is, the larger the FCM(c) value be-
comes. Figure 4 visualizes the derivation of the FCM for a selected class 
within our test data set. 

Fig. 4. Visualization of derived FMC values for class KPS (tidal creek / tideland) 
(compare to figure 1) – the darker the area, the higher the respective value 
(white = 0) 

 
For a more thorough description of the classification uncertainty, the 

confusion between different classes (in the following named A and B) also 
is of interest. When introducing fuzzy membership values, the major dif-
ference to a conventional confusion matrix based on crisp boundaries is 
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that the membership areas (i.e., those regions for which the membership 
values are larger than 0) can overlap each other so that their class-specific 
values generally sum up to a value larger than 100%. And while for the 
computation of off-diagonal elements for conventional confusion matrices 
the number of misclassified elements is counted, in the fuzzy case it makes 
no sense just to compare the membership values for class A in the refer-
ence and class B in the classification results because the resulting differ-
ence might be correct in reality. Instead of that we consider the change in 
ambiguity between classes A and B in the reference compared to that in 
the classification as follows: 

 

(2) 

 

Also for this confusion measure (with values ranging from 0 to 1), it 
holds that the larger the confusion is, the larger the FCM(cAB) value be-
comes. Table 1 summarizes the certainty measures for the given example 
(diagonal elements represent FMC(c) values, off-diagonal elements 
FCM(cAB) values).  

Table 1. Fuzzy Certainty Measures for object classes under consideration (class 
names according to specific object catalogue, Ehlers et al. 2006). 

Reference   
Classes KPS BAT FWR FZT WWT 

Tidal Creek / 
Tideland 

KPS 0.90 0.05 0.09 0.05 0.06 

Shrubs 
(Salix) 

BAT  0.80 0.12 0.04 0.30 

Reed 
(Phragmites) 

FWR   0.81 0.07 0.23 

Tidal River 
 

FZT    0.93 0.05 

 
 
 

Classi-
fication 

Willow 
Forest, Salix 

WWT     0.66 

 
So far, with FCM(c) and FCM(cAB), respectively, the certainty of all 

elements belonging to a certain class in a given scene is computed at once. 
However, from this the uncertainty of individual objects, as well as varia-
tions or outliers among different objects of the same class cannot be evalu-
ated. Hence, an object-specific value is desired. There exist already some 
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definitions by Zhang et al. (2005) for per-object measures (like: thematic, 
location, or shape similarity) based on crisp boundaries. On the other hand, 
it is no problem to transfer the above introduced FCM to an object-
specific FCM (OFCM). If the data model does not support a distinction of 
such individual objects, the necessary separation is performed either by in-
troducing α-cuts or by applying a spatial segmentation (i.e., summing up 
membership values µ only as long as there is a N8-neighbour with µ>0). 

5 Summary and future work 

Various basic research work (e.g., Hunter and Goodchild 1993, 1995; 
Ehlers and Shi 1997; Congalton and Green 1999) has pointed out that it is 
not possible to define a generally valid or optimal model for determining 
the classification accuracy based on remotely sensed scenes. In fact, a va-
riety of parameters such as available data sources, systems or processes 
which shall be described, user demands, etc., have to be taken into account 
for every specific case. 

In this overall context, our contribution concentrates on thematic uncer-
tainty which shall be determined after the classification process. Here, we 
addressed the problems of indeterminate boundaries in both reference and 
classification results, which occur between mostly natural objects or are 
due to blurred or overlapping definitions of classes or related attributes in a 
given classification scheme. These problems are even amplified with the 
use of remotely sensed data showing high spatial resolution as given with 
the new digital airborne or spaceborne systems. 

We propose the introduction of a new characteristic value, the Fuzzy 
Certainty Measure (FCM) which considers the influence of the reference 
data and gives an indication of the quality of the classification procedure 
as such. With that, comparisons between different classifications (with re-
spect to different methods, time stamps etc.) can be evaluated more relia-
bly. The procedure can be characterized as flexible and quite simple to ap-
ply. In summary, it can be expected that further developing and applying 
these methods a more complete and thorough modeling of uncertainty can 
be accomplished. 

Our future work is concerned with a sensitivity analysis of the parame-
ters (in particular with the width of transition zones based on object class 
combination and area sizes). Furthermore, empirical investigations will be 
performed for the combination of fuzzy with additional probabilistic 
measures. Finally, the extension towards a change analysis will be taken 
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into consideration by introducing thresholds for FCM values for the classi-
fications of different time stamps. 
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ABSTRACT: Image segmentation is a crucial step within the remote 
sensing information retrieval chain. As a step prior classification the qual-
ity of the segmentation result is of fundamental significance. This contri-
bution gives an overview of existing methods for the evaluation of image 
segmentation quality. Furthermore, seven recent programs for remote sens-
ing imagery are introduced and their results based on very high resolution 
IKONOS data are evaluated using an empirical discrepancy method. 

1 Introduction and related work 

The qualitative and quantitative assessment of segmentation results is very 
important for further image analysis as well as for choosing the appropriate 
approach for a given segmentation task. Since segmentation is a processing 
step prior classification, the accuracy of the recognition and classification 
process of image objects is significantly affected. Thus, this research is 
also related to the topic of object essment (see Radoux 
and Defourny, chapter 2.8, and Schöpfer et al., chapter 8.4). 

Evaluation studies either intend to compare various segmentation ap-
proaches (e.g. Estrada and Jepson 2005) or different parameterisations of 
one algorithm (e.g. Palus and Kotyczka 2001). Only very few studies em-
ploy their evaluation on remote sensing data, e.g. Carleer et al. (2005), 

-based accuracy ass
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Karantzalos and Argialas (2003). Mostly natural colour images or artifi-
cially generated images are used. 

Similar to the segmentation theory itself, there is no established standard 
procedure for the evaluation of its results. In literature there exists a multi-
tude of very different approaches. A general classification of evaluation 
methods has been proposed by Zhang (1996), categorising three variants: 
analytic methods, empirical goodness methods, and empirical discrepancy 
methods. In recent studies, empirical goodness methods are also referred to 
as unsupervised evaluation methods, empirical discrepancy methods are 
denoted as supervised or stand-alone evaluation methods (e.g. Zhang et al. 
2005). While most existing approaches are supervised methods using dis-
crepancy measures between a reference and the segmentation, recently 
much effort is put into the development of empirical goodness methods, 
which do not require any reference (a priori knowledge). However, when 
comparing different approaches, these methods immanently show a strong 
bias towards a particular algorithm (Everingham et al. 2002). For this rea-
son an empirical discrepancy method using the relative ultimate measure-
ment accuracy (Zhang 1996) has been applied in this evaluation. 

2 Evaluated segmentation software 

2.1 Overview 

There is a large variety of implemented segmentation algorithms using 
very different concepts. They are distributed commercially, are freely 
available for scientific use or are in-house developments of research or-
ganisations. For this evaluation only approaches were considered that are 
able to perform a full (so-called multi-region) image segmentation in an 
operational way. Furthermore, the choice of approaches was based on the 
suitability to segment remote sensing imagery. Programs which only per-
form selective image segmentation are not considered in this study. 

In addition to the results presented in Meinel and Neubert (2004) and 
Neubert et al. (2006), the following new algorithms and programs or new 
releases of previously tested software respectively were included in the 
comparison: EDISON (Edge Detection and Image Segmentation system), 
EWS 1.0 (Extended WaterShed), Definiens Developer 7.0, HalconSEG 
1.1, InfoPACK 2.0, RHSEG 1.30 (Recursive Hierarchical Segmentation) 
and SCRM (Size-Constrained Region Merging) (see table 1 for details). 
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Table 1. Outline of evaluated segmentation software 
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Table 1. (cont.) 
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2.2 Optimised segmentation algorithm HalconSEG 

While all algorithms were tested in their implemented version, the pro-
posed HalconSEG was developed on the basis of the segmentation ap-
proach described in Lanser (1993). The algorithm is a combination of an 
edge-detection and a region-growing procedure. It was originally designed 
for the research on segmenting natural images on mobile devices. This ap-
proach was adapted and optimised in order to handle and process high 
resolution remote sensing data by adding various parameterisation oppor-
tunities (e.g. for the edge detection filters and the morphological opera-
tors), a region-merging algorithm, a hierarchical extension and a GIS-
interface proposed in Herold (2005). 

A further extension allows importing various manually generated seg-
ments. The algorithm automatically optimises the parameterisation to fit 
the result best to the reference (internal evaluation). It is a contribution to 
minimise the time consuming process to find optimal segmentation pa-
rameter settings. Furthermore, it is a step towards a model-based segmen-
tation. An extension visualises the so-called uncertainty of segmentation 
(the Boundary Stability Index) which is proposed in Lucieer (2004). 

3 Evaluation methods 

3.1 Approaches to quantitative segmentation evaluation 

As stated before, there is a variety of additional concepts and methods for 
evaluating image segmentation results. Here, a brief introduction to some 
prevailing algorithms is presented. The vast majority of the quantitative 
approaches are basically empirical discrepancy methods, analysing the 
number of misclassified pixels in relation to reference segmentations. In 
contrast, other algorithms directly address over- and under-segmentation 
by considering the number of segments, e.g. the Fragmentation Index 
FRAG (Strasters and Gerbrands 1991), the Area-Fit-Index AFI (Lucieer 
2004) and the Precision/Recall Measure (Estrada and Jepson 2005). 

Similar to the evaluation employed in this paper Yang et al. (1995) used 
shape features to quantify the differences between segmentations and ref-
erence regions. Mezaris et al. (2003) presented a distance weighted error 
measure for misclassified pixels. A Hausdorf-distance-based evaluation 
method for arc-segmentation algorithms is proposed by Liu et al. (2001). A 
map-algebra-based evaluation approach is introduced in Hirschmugl 
(2002). An intersection image of the segmentation result and the morpho-
logically dilated binary reference segmentation is used to quantify the 
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number of misclassified pixels. A combined vector-raster-based procedure 
for assessing the precision of cadastral data using fractal box dimension is 
introduced by Schukraft and Lenz (2003). Assuming a given full cover 
reference segmentation, an adapted version of this algorithm is a promising 
approach to evaluate segmentation quality. 

Other evaluation approaches are designed to minimise or exclude the a 
priori knowledge and the subjective (human) bias added to the evaluation 
by manually created references. Instead of using reference segmentations 
various objective evaluation criteria such as the intra-regional uniformity 
of segments are introduced (unsupervised evaluation methods). Cavallaro 
et al. (2002) present a perceptual spatio-temporal quality measure which 
allows an automated and objective evaluation by considering human per-
ception criteria. However, it only applies to video sequence segmentation. 
Borsotti et al. (1998) presented an evaluation function which uses the col-
our uniformity within the segmented regions as criterion. Zhang et al. 
(2004) introduced a new entropy based evaluation approach, which leads 
to a very stable assessment measure using different segmentations.  

An approach that comprises both analytical and empirical criteria is pre-
sented in Everingham et al. (2002) by defining a multidimensional fitness-
cost-space instead of a single discrepancy-parameter-space. A promising 
co-evaluation framework which combines the results of various evaluation 
approaches using a machine learning approach is proposed in Zhang et al. 
(2005). 

Further and partially older approaches to quantitative evaluation of 
segmentation results can be found in Yasnoff (1977), Levine and Nazif 
(1985), Haberäcker (1995), Yang et al. (1995), Schouten and Klein Geb-
binck (1995), Zhang (1996), and Letournel et al. (2002). Table 2 provides 
an overview of recently proposed quantitative evaluation methods within 
the classification framework given in Zhang (1996). 

3.2 Applied evaluation method 

All segmentations as well as the delineation of reference objects were per-
formed based on pan-sharpened multi-spectral IKONOS data (4 channels, 
16 bit, 1 m ground resolution, principle component algorithm) of two test 
areas. Each test area has a size of about 2,000 by 2,000 pixels, representing 
an urban and a rural landscape. The procedure was aimed at the extraction 
of relevant land cover/use object boundaries. 
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Table 2. Approaches to quantitative evaluation of segmentation results 
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According to the procedure proposed and applied in Neubert and Meinel 
(2003) firstly all results came under an overall visual survey. General crite-
rions, like the delineation of varying land cover types (e. g. meadow/forest, 
agriculture/meadow, etc.), the segmentation of linear objects, the occur-
rence of faulty segmentations and a description of the overall segmentation 
quality were in the focus of this first step. 
Furthermore, a detailed comparison based on visual delineated and clearly 
separable reference areas each representing a single land cover type was 
carried out. Therefore 20 different areas (varying in location, form, area, 
texture, contrast, land cover type etc.) were selected and each was visually 
and geometrically compared with the segmented pendants. The geometri-
cal comparison as a combination of morphological features (area Ai, pe-
rimeter Pi, and Shape Index SIi, see table 2, Eq. 3) is performed using an 
automated GIS procedure. The Shape Index comes from Landscape Ecol-
ogy and addresses the polygon form. For all features the variances to the 
reference values were calculated. Contrary to previous studies the maxi-
mum variances have been capped at 100 % to avoid an overvaluation of 
single object variances. As partial segments all polygons with at least 50 % 
area within a reference object were counted. The number of partial seg-
ments addresses the over-segmentation. However, this issue can be treated 
as only conditionally prejudicial, since a further visual interpretation, seg-
mentation level or automated classification can tackle the object fragments 
by dissolving or merging them. The much more critical problem is under-
segmentation. Thus, for the evaluation process the partial segments be-
come merged. Additionally, the quality of segmentation was visually rated 
(0 poor, 1 medium, 2 good). A good segmentation quality is reached, when 
the overall differences of all criteria between the segmentation results and 
the associated reference objects are as low as possible. 

4 Results and discussion 

4.1 Visual quality assessment and software specifics 

4.1.1 EDISON 

The mean shift based segmentation algorithm of EDISON produces well 
delineated representations of the image objects (figure 1). This is repre-
sented by the low area and perimeter deviations between the result and the 
according reference objects. A drawback is the extensive over-
segmentation especially of forested and urban areas which leads to a minor 
visual quality rating. 
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Fig. 1. Subsets of the segmentation results of EDISON (left) and EWS (right) 

4.1.2 EWS 1.0 

The results of EWS fit most of the object classes well, especially in the ur-
ban scene (figure 1). The algorithm tends to form more compact objects, 
what leads to some under-segmentation, even in the case of high object 
contrast (e.g. representation of linear objects or at field and forest bounda-
ries). At the moment the software works only on Chinese operating sys-
tems and has a Chinese GUI only. Difficulties using projected imagery 
may occur. 

4.1.3 Definiens Developer 7.0 

In comparison to earlier evaluations (Neubert and Meinel 2003) the results 
obtained by Developer 7.0 using the same parameters are almost identical 
to version 3.0 (figure 2). Only at the image borders some minor differences 
occur. The results still contain some irregular or ragged delineated seg-
ments, especially at seam-forming boundaries and in forest areas. In areas 
of low contrast the occurrence of faulty segmentations is possible. Large 
homogenous image objects are divided arbitrarily sometimes. Since release 
3.0 and some minor adjustments in version 5.0 Definiens uses an algorithm 
which enables a reproducible result not depending on image size. This is 
an important improvement because often parameters are tested on small 
subsets. By exporting the results into a vector output, they can be smooth-
ened. Altogether Definiens has a high potential due to its multi-scale seg-
mentation and the fuzzy logic based image classification capabilities. Be-
cause of the various interfaces to other GIS and remote sensing software 
systems important user requirements are complied. 
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Fig. 2. Subsets of the segmentation results of Definiens Developer (left) and  
HalconSeg (right) 

4.1.4 HalconSeg 1.1 

The proposed adapted segmentation algorithm for the image processing 
software HALCON offers satisfying results (figure 2). As observed with 
all approaches the result is highly depending on the parameter settings. A 
significant influence to the segmentation quality could be seen for the 
parameterisations of the applied edge detection filter and the morphologi-
cal operators. Linear structures are represented very well in the segmenta-
tion result, while it tends to forming compact objects some areas. 

4.1.5 InfoPACK 2.0 

The result of InfoPACK 2.0 does not reach the release 1.0 quality (fig-
ure 3). Nevertheless, it shows a good delineation for most of the objects, 
but strongly tends to over-segmentation. Homogeneous areas are thereof 
less affected and are adequately represented. In particular especially for-
ested and built-up areas were much partitioned. At land cover transitions 
often interfering seam-forming segments were created. Generally low con-
trasted boundaries were segmented correctly. For processing scenes of any 
size the software uses an implemented tiling algorithm. Indeed, this leads 
to additional segment boundaries at the tile transitions. Furthermore, mar-
gin effects can yield to different results on both sides of the tile boundary. 
Like Definiens the software contains additional classification tools. Thus, a 
merging of similar classified and neighbouring segments is possible and 
this reduces the number of elements significantly. It must be pointed out, 
that InfoPACK has been developed to analyse very noisy radar data. 
Hence, the segmentation of optical data could be suboptimal. 
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Fig. 3. Subsets of the segmentation results of InfoPACK (left) and RHSEG (right) 

4.1.6 RHSEG 1.30 

The RHSEG software produces a set of segmentations as a result of differ-
ent hierarchy and resolution levels (figure 3). Additionally it allows the 
most extensive parameter settings of all programs beside InfoPACK. The 
results show both over- and under-segmentation within the same segmen-
tation. Well-contrasted boundaries between main land cover classes were 
correctly represented. Areas of low contrast were often not reproduced 
properly. Due to the multitude of parameter settings there is still a need for 
optimisation regarding the usability. 

4.1.7 SCRM 

The segmentation result of SCRM yields to a good overall quality and a 
mostly good representation of the main object outlines (figure 4). Pre-
dominantly compact objects are delineated. Thus, some effects of under-
segmentation occur, mainly by segmenting linear objects. 

 

 
Fig. 4. Subset of the segmentation result of SCRM 



780      M. Neubert, H. Herold, G. Meinel 

Furthermore, homogeneous regions are often over-segmented (e.g. riv-
ers, forests, meadows). The resulting delineation does not correspond with 
the pixel outlines due to an internal smoothing procedure. Like RHSEG 
the SCRM algorithm has the ability to run from batch files. 

4.2 Comparison based on reference areas 

In addition to the visual assessment, all segmentations were quantitatively 
(objectively) evaluated by means of 20 reference areas. The overall results 
are cumulated and compared in table 3. It can be recognised that the values 
of the tested algorithms are almost in the same range. The highest confor-
mity concerning the average area is achieved by EDISON, Definiens as 
well as InfoPACK. A high average perimeter and region shape congruency 
(low Shape Index differences) is reached by EDISON, EWS, Definiens 
and HalconSEG. The low perimeter deviations of HalconSEG are the re-
sult of smoothed segment boundaries due to the application of a morpho-
logical image processing. The segmentations of Definiens, EWS and 
SCRM yield to a minor over-segmentation. Definiens and SCRM show the 
visual best results. The objective quantitative measures correspond with 
the subjective visual rating. 

 

Table 3. Cumulated results of all 20 reference areas 

Segmentation 
program 

EDI-
SON 

EWS 
1.0 

Defi-
niens 
Dev. 
7.0 

Hal-
con-
SEG 
1.1 

Info-
PACK 

2.0 

RH-
SEG 
1.30 

SCRM 

Av. diff. of area 
[%] 

11,5 24,6 15,9 21,0 17,0 19,0 22,1 

Av. diff. of pe-
rimeter [%] 

13,8 18,1 17,2 16,6 29,6 21,6 20,0 

Av. diff. of 
Shape Index [%] 

12,4 15,4 16,2 14,9 46,0 23,5 19,0 

Av. no. of par-
tial segments 

13,4 3,8 1,8 8,2 21,4 41,3 5,1 

Av. quality, vis-
ual rated [0…2]a 

0,8 0,7 0,9 0,7 0,6 0,6 0,9 

a 0 - poor, 1 - medium, 2 - good. 
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5 Conclusions 

This contribution has presented an overview and some theoretical back-
ground on image segmentation quality assessment. It has been shown that 
there is no established standard evaluation method. However, there exist 
various ad hoc approaches. For this study an empirical discrepancy method 
was used to compare recently available segmentation programs. Due to the 
diversity of implemented algorithms the segmentation results are varying 
remarkably. The appropriateness of each program is still highly depending 
on the specific segmentation task. Beside a suboptimal segmentation qual-
ity some of the implemented algorithms still face technical issues such as a 
lack of process stability and robust import routines concerning image size 
and format, radiometric resolution, data structure and projection parame-
ters. For this reason, almost all algorithms are still under development. 
Another optimisation aspect is the minimisation of segmentation parame-
ters. As it could have been noticed, the algorithms are very sensitive to 
slightly differing parameterisations. Their number should be diminished in 
order to reduce the effort needed to obtain an optimal segmentation 
(mostly by trial-and-error). Implemented evaluation methods (like pro-
posed in HalconSEG) could iteratively support the user to reach the opti-
mal scene-depending settings (see also Costa et al., chapter 7.5). For the 
extraction of geo-information from segmentation results, integrated seg-
ment-based classification methods are desirable. Referring to this most of 
the programs tested offer simple to high-end resources. 

Despite suboptimal results, segmentation offers an important approach 
to semi-automated image analysis. Particularly in combination with pre-
sented evaluation methods and existing GIS-data image segmentation al-
gorithms already are indispensable resources to retrieve geo-information 
from remote sensing imagery. 

In combination with the previous studies, in total 21 segmentation pro-
grams or its releases have been evaluated. The results of all segmentations 
are displayed at the website www.ioer.de/segmentation-evaluation. Is has 
been shown, that there is more than one interesting approach in this dy-
namic field of research. The evaluation will be continued, e.g. using new 
algorithms like Feature Analyst 4.1, SAGA GIS 2.0 and other implementa-
tions. Furthermore, it is planned to extend the quality assessment proce-
dure itself by some of the presented evaluation methods as well as by spa-
tially explicit outline delineation quality measures. The evaluation is open 
to further algorithms. 
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ABSTRACT: In the near future several new highest resolution, next 
generation satellites will be launched with panchromatic half-meter resolu-
tion imagery, e.g. WorldView 1 and 2. The ever increasing supply of high-
resolution imagery seeks for adequate, i.e. more effective, more automated 
and reliable methods for image processing and interpretation. At the inter-
face of geographic information science and remote sensing, object-based 
image analysis methodologies provide a solid basis for exploiting imagery 
more intelligently. Working with image objects enables (1) single feature, 
specific information extraction, (2) performing complex classifications and 
multi-scale representations and (3) spatial analysis and modeling. How-
ever, deriving image objects from various sources and in different scales 
implies the problem of generating inconsistent boundaries. To specifically 
address this challenge, a tool called LIST (landscape interpretation sup-
port tool) is used, which, based on a straight-forward principle, analyses 
the spatial relationships of image objects, i.e. their correspondence and 
their changes over time. The chapter presents a methodological discussion 
and preliminary results from an ongoing study on ‘object fate analysis’ 
(OFA). OFA means the investigation of object transition (change over 
time) or object correspondence (different delineations or representations). 
The concept and the application of OFA are illustrated by two case-studies 
representing both aspects. The first one carried out in medium scale uses 
Landsat TM and ETM imagery and shows an example of performing 
change assessment as well as object-based accuracy assessment. The sec-
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ond fine-scale study is based on SPOT 5 scenes and demonstrates how ob-
ject correspondence can be assessed on two different object representa-
tions, machine-based segmentation and manual delineation. 

Introduction 

Landscape changes through time 

With increasing awareness of sustainable usage of land, the preservation of 
cultural landscapes and the protection of the environment, both detecting 
and assessing changes become ever more important. European landscapes, 
shaped and managed over time, reveal a complex mosaic of land uses from 
cultivated to natural lands over a large geographic area. Changes in these 
landscapes are driven by inter-annual climate variability or long-term cli-
matic trends, vegetation succession, natural disturbances, and of course, 
human land use (Schöpfer, 2005). In many areas of the world, socioeco-
nomic and political factors induce and influence prevailing land use and 
land cover structures (Croissant, 2004). On satellite imagery, resulting 
changes are often acute and recognizable, though sometimes subtle and 
difficult to tell from noise. Analyses of changes in the landscape patterns 
are based on where the changes occur, the type of changes, and the degree 
and rates of these (Southworth et al., 2004). To this end, change detection 
maps are important at first, but the understanding of temporal and spatial 
dynamics of the landscape is likewise crucial (Turner, 1990).  

A way to characterize landscape patterns is to quantify their composi-
tion (i.e. percentage of classes) and configuration (i.e. spatial arrangement 
of patches) (Turner et al., 2001). So called landscape metrics have been 
successfully introduced as quantitative structural measures for monitoring 
landscape patterns and relating ecological meanings to these structures 
(Wickham et al., 1997; Petit and Lambin, 2002; Hudak et al., 2004; Naru-
malani et al., 2004; Corry and Nassauer, 2005; Lang and Blaschke, 2007). 
Landscape metrics are also used as structural indicators to highlight pat-
tern-related changes in the landscape, which are considered to cause a sub-
stantial shift of underlying processes (e.g. a bog falling dry due to water 
subtraction, cf. Langanke and Lang, 2004). 

Spatial change detection 

Numerous techniques have been developed for detecting changes on im-
ages or other raster representations of the landscape. It was shown that dif-
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ferent types of landscapes to be represented require respective methods 
(e.g. pre- versus post-classification change detection techniques, Coppin et 
al., 2003). For simplicity, though, most change detection studies focus on 
spatial implicit measures like the percentage of changes. The latter is a ba-
sic indicator and may reveal a general trend, but fine-scaled applications 
such as the distribution of urban green or presence of sensitive habitats in 
mountainous areas, the spatial pattern formed by landscape elements and 
the change of this very arrangement is essential (Lang and Blaschke, 
2007). Thus, methods need to be capable of assessing spatial-explicit 
changes within the arrangement of landscape units (or image objects, re-
spectively). But tools which handle object-specific change detection in 
terms of a specific ‘fate’ of an object are rare (Lang et al., in press). Com-
mon ways of performing change assessment, i.e. map-to-map comparisons 
using raster overlay techniques, are site-, but not object-specific (i.e. they 
refer to pixels). Their aggregate is spatial implicit. Contrarily, vector over-
lay operations such as intersection, identity and union, are spatial explicit, 
but usually produce complex geometry with sliver polygons. Finally, vis-
ual comparisons, though maybe more accurate or appropriate than those 
made by a machine, rely on subjective interpretation and are rather time-
consuming. 

In geographical information science (GIScience), sets of spatial rela-
tionships are used to characterize how objects are related to each other in 
space. These topological relationships allow for performing complex spa-
tial modeling and analysis. This class of spatial relationships is based on 
principles like adjacency (what adjoins what), containment (what encloses 
what), and proximity (how close something is to something else). Spatial 
relations in general have been discussed within GIScience since several 
decades. Profound theoretical papers have been presented by Mark (1999) 
or Hornsby and Egenhofer (2000). However, within the remote sensing 
community, very few attempts have been made to utilize spatial relation-
ships for change assessment. Attempts to characterizing changes through 
topological relationships between corresponding patches were used by e.g. 
Raza and Kainz (2001) and the idea was conceptually presented by 
Blaschke (2005).  

A simple typology for changes of object geometries may be based on 
four categories, namely existence-related, size and shape-related and loca-
tion-related changes (Schöpfer and Lang, 2006). Whereas in theory these 
categories sound quite distinct, in reality a combination of all of these ba-
sic types of geometric changes needs to be tackled. In this context, it needs 
to be highlighted that this article (in continuation of preceding publications 
of the authors) is built upon the notion that object-based change assess-
ment is not limited to temporal changes only. In an abstracted way, 
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‘changes’ may also refer to different object representations. In this sense, 
‘object fate’ (Lang et al., in press) may be attributed to both the change of 
an object over time and the specific way of how it has been delineated. In 
this general understanding, the object-fate approach being used through-
out, t0 and t1 either indicate time slot 1 and time slot 2 or they stand for any 
given representation A and representation B. 

Test sites and data preprocessing 

The research took place in two study sites in Europe (see figure 1). Site se-
lection was performed by focusing on high structural dynamic areas. The 
first area under investigation (AUI_1) is situated within the border zone of 
the former Iron Curtain between Austria and Hungary. The landscape is 
characterized by a unique pattern along the border before the fall of the 
Iron curtain. Recently the transition zone became increasingly homoge-
nized, i.e. extensive changes in land ownership and fragmentation of agri-
cultural fields due to land reforms (Csaki, 2000). Land use and land cover 
change is dominated by land abandonment at unprecedented rates, and the 
conversion of farm land to grassland and forests (Kuemmerle et al., 2006).  

Landsat TM (August 17, 1985) and Landsat ETM+ (August 2, 2000) 
were co-registered to a ground sample distance (GSD) of 30 meter in UTM 
zone 33N (WGS-84) by using a second degree polynomial transformation 
and nearest neighbor resampling with an RMS error of 0.47. Three repre-
sentative sub-sites of 5000 m by 5000 m along the border were selected to 
perform the studies on changes in the land use pattern bearing typical 
cross-border characteristics. Image segmentation was performed to extract 
field boundaries for both time slots. For both images the same average ob-
ject size (scale parameter) has been used, optimized to capturing the large 
fields in 1985 and the small heterogeneous parcels in 2000.  

The second study area (AUI_2) is located in southern Germany in the 
region of Stuttgart, federal state of Baden-Wurttemberg. The test site, 
cropped for this purpose, comprises an area of 25.87 km² which includes 
three representative areas (22 ha, 34 ha, 117 ha) to perform object corre-
spondence analysis. The area is characterized by intensive agricultural use 
on the one hand, and high settlement growth on the other hand. The use of 
high resolution satellite data is of critical importance to analyze the fine-
scaled dynamics of the landscape (Schumacher et al., 2007). Land use 
changes in such areas are – besides the expansions of human settlements – 
mainly related to crop rotation, crop type changes, or crop density/maturity 
differences between the two dates. 



Object-fate analysis - assessment of object transition and correspondence      789 

 

 
Fig. 1. Study areas situated along the border between Austria and Hungary (AUI_1) and in 

southern Germany (AUI_2). 

 
In this study pan-sharpened SPOT imagery with a ground sample dis-

tance (GSD) of 5 m, co-registered (UTM-33) to an existing orthophoto 
mosaic (0.25 m GSD) and orthorectified using parameterized orbital 
pushbroom model, have been used (Tiede et al., submitted). Data were 
segmented using an adaptive per-parcel approach (ibid.). Digital cadastre 
data were used as pre-defined boundaries to perform parcel-based segmen-
tation. Within heterogeneous objects, region-based, local mutual best fit-
ting segmentation (Baatz and Schäpe, 2000) was used to split the respec-
tive objects into homogenous units (ibid.). For performing object 
correspondence analysis, results from a visual interpretation were used car-
ried out on the orthophoto mosaic.  

Object-fate analysis 

Studies on imagery with high spatial variability should pay more attention 
on the spatial arrangements rather than merely on (spatial implicit) re-
cordings of changes in discerned classes (Crews-Meyer, 2004). We present 
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and discuss a method for analyzing object-specific changes by investigat-
ing spatial relationships among corresponding objects. As outlined earlier, 
this can be seen both as a product of object transition (change over time) or 
as an outcome of different object representations or delineations. The latter 
allows for transferring the concept to object-based accuracy assessment 
(Schöpfer and Lang, 2006). Since spatial relations are usually a combina-
tion of basic relationship types, there is a demand for ready-to-use solu-
tions which are able to categorize these. 

The concept of object fate analysis is implemented in a tool called LIST 
(Landscape Interpretation Support Tool). LIST is developed and pro-
grammed as an extension for ESRI’s ArcView 3 and ArcGIS 9 (Lang et al. 
(in press); Schöpfer and Lang, 2006; Weinke et al., chapter 8.5). The tool 
provides object quantification, complements visual interpretation and in-
cludes a method for object-based change analysis and object-based accu-
racy assessment. Following the concept of parent and child relationships 
between layers two vector themes are used to represent the specific ‘fate’ 
of corresponding objects (Lang et al., in press). ‘Object fate’ may reflect 
different data captured at various points of time (change analysis) or dif-
ferent methods for object generation (i.e. different segmentation algo-
rithms, heterogeneous data material, visual vs. machine-based interpreta-
tion, reference data sets from other sources, etc.). Thus the comparison of 
two data sets can also be utilized for object-based accuracy assessment, as 
generated objects can be compared with manually delineated ones. When 
comparing two automatically segmented images, the corresponding 
boundaries of delineated image objects do not necessarily coincide due to 
differences in data material or segmentation algorithms (Schöpfer & Lang, 
2006.). Although change may not have occurred, spatial boundaries may 
not be fully congruent. LIST utilizes a virtual overlay for investigating 
spatial relationships. To overcome the fact of spatial uncertainty in image 
object generation (spatial overlay strictness, SOS), an uncertainty measure 
in form of buffer, is introduced. The size of the buffer, either specified by 
the user or dynamically according to object size, controls the allowed spa-
tial difference of spatially coinciding and corresponding objects. SOS also 
controls the degree of overlap of child-objects (t1) between neighboring 
parent-objects (t0), expressed by percentage values. 

LIST investigates spatial relationships for three generalized states of 
transition (see figure 2).  
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Fig. 2. Types of object-fate implemented in LIST. A buffer zone (spatial overlay 
strictness, SOS) is introduced (dashed line) in order to take into account inconsis-
tent boundaries due to various sources and in different scales 

 
It is assumed that t0 (before / A-representation) objects are larger than t1 

(after / B-representation). The spatial relationships are divided into object 
categories by two decision steps. The first one decides if the t1 object is 
more associated with the interior or the exterior of the t0 object. This divi-
sion is adopted in an analogy to an approach of object comparison (Straub 
and Heipke 2004) that groups the spatial relations into the clusters ‘similar 
to disjoint’ (C1) and ‘similar to equal’ (C2). The decision criterion divides 
the relations by the placement of the t1 object’s centroid within or outside 
of the t0 object. The second decision specifies the spatial overlay strictness 
SOS and determines whether a t1 object only touches the boundary, which 
has been softened by the SOS, or if it interferes both with the interior and 
the exterior of the t0 object. Based on these decision rules object fate can 
be expressed by three special types of object transition: 

(1) ‘good I’ objects inside a t0 object and ‘good II’ objects covering the 
buffered outline of a t0 object; A special case of ‘good’ objects occurs, 
when only one ‘good’ object is recorded, i.e. the t0-object remains stable; 

(2) ‘expanding’ objects exceeding the original boundary to a certain de-
gree;  

(3) ‘invading’ objects where the object’s centroid lays outside of t0-
boundary, but a certain part of the object which can be specified in percent, 
lays within the t0-object. 
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This concept allows both to characterize the development of a t0-object 
and to categorize objects being produced in t1. Finally the category (4) ‘not 
interfering’ was introduced to complete the status of transition. Again, two 
sub-categories are used to consider the buffer zone. 

Within the concept there are complementing categories which are dis-
played in figure 3. The ‘good’ objects are in relationship to ‘not interfer-
ing’ whereas ‘expanding’ objects are completing ‘invading’ objects. 

 

 
Fig. 3. Complementing categories within the LIST concept 

 
The overall concept is a straight-forward solution to characterizing the 

development of each t0-object (‘parent object’) and additionally enables 
unique categorization of every ‘child object’. To characterize overall ob-
ject stability two object-specific measures were introduced by Schöpfer 
and Lang, 2006. The first index, ‘offspring loyalty’ (OL), is calculated by: 

expnn
n

OL
good

good

+
=
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where  ngood = number of good objects  
 nexp = number of expanding objects  

A value of 1 indicates that no expanding objects are among the t0 object. 
The second index, ‘interference’ (I) is defined by: 

all

inv

n
n
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(2) 

where  ninv = number of invading objects  
 nall = number of all intersecting t1 objects  
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The smaller the value, the smaller the number of invading objects that 
interfere with the t0 object. Both indices OL and I can be aggregated on 
landscape level (Schöpfer and Lang, 2006). 

In the context of the two studies (AUI_1 and AUI_2), the following 
steps were performed in particular. In AUI_1 a dynamic buffer was created 
and 10% overlap for the definition of invading objects was used. This 
means, in case a t1 object overlaps less than 10% with the t0 object, it will 
be neglected. Usually, the overall number of expanding and good objects 
will be equal to the number of child objects. However, if working with 
stairs-like boundaries induced by the Landsat pixels, some centroids may 
fall exactly onto the field boundary between two neighboring fields. Cen-
troid ambiguity applies if the sum of the numbers of t1-objects in each 
category exceeds the actual number of t1-objects (ibid.). 

In AUI_2, in order to overcome stepped vector lines the to-theme and t1-
theme were generalized, by using ‘smooth’ and ‘simplify’ commands, im-
plemented in the Data Management Tools in ArcGIS 9.2. Afterwards the 
lines were converted back to a polygon theme. The buffer was defined 
manually for each of the three sub study sites. 

Results and discussion 

Assessment of object transition  

Object fate analysis has been performed in the AUI_1 study area by using 
both offspring loyalty (OL) and interference (I) (see figure 4). OL ranges 
between 0 and 1 in all three study sites. Taking into account the t0 objects 
with at least one good child object, the respective number of child objects 
are shown in three specific ranges of OL (< 0.6, 0.6-0.8 and >0.8) (see fig-
ure 5). The other measure, I, ranges from 0 to 1 as well, but with a major-
ity of values between 0 and 0.6. Thus, we consider Interference moderate 
for all three study sites with high occurrences in the range >0-0.6 in sub-
sites 1 and 3 as opposed to sub-site 2.  
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Fig. 4. Spatial distribution of two measures calculated for each object t0 in study 
area 1. Left: Offspring loyalty (OL). Values of -99 indicate cases with neither good 
nor expanding objects; values higher than 1 indicate centroid ambiguity. Right: In-
terference (I) 
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Fig. 5. Histogram of offspring loyalty in three ranges (< 0.6, 0.6 - 0.8 and > 0.8) 
for the three study sites 

Object correspondence 

Object correspondence was analyzed in the test site AUI_2 on vector lay-
ers provided by manual interpretation and automated image segmentation. 
Table 1 shows the number of different categories of t1 objects for the cor-
responding t0 object. 
 

Table 1. Assessment of object correspondence on two different object representa-
tions (machine-based segmentation and manual delineation) in the test site AUI_2;  
SOS-2 refers to the buffer around the object (meter) whereas SOS-3 regulates the 
percentage of the area covered by an invading object. 

Id Data status n_all n_good n_exp n_inv stable SOS-2 SOS-3 
13 Original 7 1 0 0 yes 9 1 
13 Generalized 5 1 0 0 yes 8 1 
4 Original 16 7 0 0 no 4 3 
4 Generalized 14 7 0 0 no 3.5 3 
3 Original 9 1 2 4 no 11 1 
3 Generalized 9 1 2 4 no 4.5 1 
5 Original 9 1 1 2 no 11 1 
5 Generalized 9 1 1 2 no 4.5 1 
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 For each investigated t0 object a version with generalized outlines was 
also compared. Due to the generalization some of the t1 objects do not in-
terfere with the corresponding t0 object any more. So, for the t0 objects 
with the ID 13 and ID 4 the number of n_all is lower for the comparison of 
the generalized data than for that of the original data. Fig. 6 shows two 
‘Not Interfering I‘-objects that changed their category through generaliza-
tion. For all the investigated objects the generalization allowed to use a 
smaller buffer size (SOS-2) which is very significant for the t0 objects with 
the ID 3 and Id 5 (see table 1 and figure 8). The t0 object with the ID 13 is 
a stable object because it has only one ’Good‘ t1 object and no invading or 
expanding objects (see figure 6). The t0 object with the ID 4 has several 
’Good‘ t1 objects that can be assigned directly (see figure 7). The t0 object 
with the ID 3 has invading and expanding objects as well as good II ob-
jects that, in the t0 object with the Id 5, belong to the complementing object 
category. 

 
Fig. 6. T0 object ID 13; original data (left) and generalized data (right). 
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Fig. 7. T0 object ID 4; original data (left) and generalized data (right). 

 

 
Fig. 8. T0 object ID 3 (above) and ID 5 (below); original data (left) and generalized data 

(right). 

Conclusions 

In order to fulfill the requirements for new approaches to tackle with tem-
poral and spatial complexities, the authors further developed their method 
on object fate analysis. The initial set of three different spatial relation-
ships of object transition has been extended to four types: ‘good’, ‘expand-
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ing’, ‘invading’ and ‘interfering’ objects There is a demand to come up 
with a ready-to-use solution that generalizes and categorizes the variety of 
spatial relations, which appear in different combinations over time. In gen-
eral, the integration of GIS concepts of representing relationships as dis-
cussed by Langran (1992), Egenhofer (1994), Mark (1999) and Hornsby 
and Egenhofer (2000) is challenging to be adapted to change detection ap-
plications. Remote sensing methods need to integrate spatial concepts 
(Lang & Blaschke, 2006). Whereas the pixel-based neighborhood concept 
is limited to immediate or fixed neighborhood, and again depending on ab-
solute pixel size, the object-based spatial relationship concept is based on 
polygons and thus suitable for adaptive spatial analysis. 

Object fate analysis relies on a straightforward and easily operable con-
cept of spatial relationships among corresponding image objects. These 
objects can be obtained from any two different sources, such as automati-
cally segmented images, manually digitized ones, corresponding, but time 
wise differing ones, etc. Our experience shows that the exact comparison 
of such data sets, different in scale and representation, is not trivial. A 
scale-dependent SOS concept, i.e. a buffer, has been introduced to con-
sider uncertainty in delineation. The parameterization of SOS is important 
for distinguishing real changes from data-induced one. Still, limitations 
occur, because a buffer is usually calculated with a fixed size for the entire 
object. If there are small outcrops along an object, the buffer needs to be 
increased, respectively (see Weinke et al., chapter 8.5). Thus this analysis 
approach depends on the quality of the generated objects, which in turn 
depends on the specific data material and segmentation algorithms. Ongo-
ing studies attempt to assess particularly by looking at each vertex of an 
object’s outline, at which portion of the object either changes have oc-
curred or the delineation is different.  

In general, the integration of GIS concepts representing spatial relation-
ships offers a new dimension of change interpretation for land use/land 
cover related studies. The spatial explicit comparison of objects may over-
come the limitations of a mere comparison of classification results based 
upon pixel classification.  

The presented object-fate analysis can also be used for object-based ac-
curacy assessment as discussed by Schöpfer and Lang (2006). Next to a 
point-based collection of correctly classified features, the very delineation 
of any given object may be even more important for validating the overall 
accuracy of the classification. This especially applies for high resolution 
imagery. Spatial explicit change analysis considers the high spatial vari-
ability of nature. How the pattern specifically changes, may be additionally 
characterized by spatial measures from the toolbox of landscape metrics. 
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By this, and with complementary in situ measure, we can not only assess, 
but also evaluate these changes. 
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mapping accuracy  253 
marker-controlled watershed 

transform  127 
Markov random fields  226 
MAUP  (see ‘modifiable areal 

unit problem’)   
maximum autocorrelation  

factor  192 
maximum likelihood  466, 

468 
- likelihood classification  

517 
- likelihood classifier  505, 

612 
median absolute deviation  

121 
- filtering  124 

membership function  210, 
316, 567 
- rules  211, 576 
- value  760, 762 

merging  747 
minimum mapping unit  288, 

516, 559 
- -distance clustering  182 

misclassification  564 
modifiable areal unit problem  

45, 81 
monitoring  5, 416, 436 

Index 
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Moran’s I  296 
morphological feature  466 

- operator  773 
morphology  404 
mosaicing  211 
MOSS (see ‘multiscale object-

specific segmentation’)   
mountain forest  626 
MSEG  226, 228, 230, 232, 

234, 666 
MSS/ORM  (see ‘multi-scale 

segmentation / object rela-
tionship modeling’)  

multidate classification  333 
multi-layered structure  635 

- -level wavelet decomposi-
tion  251 

- -resolution segmentation  
139 

- -resolution wavelet  242 
- -scale  86 
- -scale analysis  51 
- -scale approach  46 
- -scale framework  95, 103 
- -scale functional mapping  

436 
- -scale modelling  137 

multiscale object-specific 
segmentation  238 

multi-scale segmentation  719 
- segmentation  221, 777 
- segmentation / object-

relationship modeling  
426, 714, 717, 719, 729 

multi-temporal objects  190 
Multivariate Alteration 

Detection  191 
 

national land cover  520 
Natura-2000  275, 277 
natural disturbance  640 

-landscape  484 
nCM  (see ‘normalised crown 

model’)   
nCM  (see ‘normalised can-

opy model’)   
nDSM  (see ‘normalised digi-

tal surface model’) 
NDVI  138, 375, 383, 387, 

426, 463, 503, 616, 698, 
704, 708 
- -based enhancement  749, 

752 
- cookie cutter  737 
- threshold  750 

nearest neighbor  496, 534 
- classification  427 
- classifier  427, 669 
- resampling  788 

Negelkerke value  319 
neighborhood  16, 798 
nested objects  103 
neural network  157, 253 

- network classification  
250 

NGLD matrix  497, 500 
NIR  208 
normal distribution  698 
normalised canopy model  

489, 627 
normalised crown model  136, 

138, 629, 638 
normalised digital surface 

model  612, 614, 649 
normalization  496 
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Normalized post segmentation 
standard deviation  259, 
263, 269 

NPSS (see ‘normalized post 
segmentation standard de-
viation’) 

normalized vegetation canopy 
model  484 

nuclear site  194 
nVCM (see ‘normalized vege-

tation canopy model’)   
  
OBIA  104 
object assessment  18 

- change detection  190 
- comparison  652 
- correspondence  795 
- correspondence analysis  

789 
- delineation  714 
- domain  32 
- evaluation  21 
- extraction  187 
- fate  721, 788 
- fate analysis  790, 793 
- feature-space  170 
- fusion  316, 547 
- geometry  787 
- hierarchy  117 
- primitive  391 
- primitives  37 
- quantification  790 
- recognition  116, 155, 160 
- relationship  722 
- representation  19 
- transition  790 
- -based accuracy assess-

ment  20, 790, 798 

- -based CA model  44 
- -based change assessment  

787 
- -based classification  93, 

106 
- -Based Point Cloud 

Analysis  647 
- -based road classification  

602 
- -based SVM classifier  

674 
- -based tree detection  35 
- -fate analysis  798 
- -hierarchy  116 
- -oriented image analysis  

31, 33 
- -oriented programming  

105 
- -recognition process  155 
- -specific accuracy assess-

ment  148 
- -specific change  790 
- -specific change detection  

787 
objects of interest  154 
observational scale  103 
OGC (see ‘open geospatial 

oonsortium’)   
oil pollution  368 

- spill  368 
- spill contamination map-

ping  379 
OLR  (see ‘one-level repre-

sentation’)   
one-level representation  133, 

714, 717, 718, 729,  
on-screen measurement  454 
ontology  108, 535, 539, 546 

Index 
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Open Geospatial Consortium  
85 

Open GIS  87 
Open-source software  223 
optimal scale  293 
optimization problem  681 
optimum feature  170 
orchard problem  22, 287 
orientation  454 
orographic correction  207 
orthofoto  721 
overall accuracy  601, 671 

- heterogeneity  244 
overlay  790 
over-segmentation  96, 107, 

298, 773, 776 
  
pairwise clustering  243 
pan-sharpening  189, 623, 

717, 774 
parent class  597 
partonomy  101 
patch  55, 627, 655 

- size  400 
PCA (see ‘principal compo-

nents analysis’)  
per parcel classification  699 

- approach  789 
pixel  13 
PMA  (see ‘potential mapping 

accuracy’)  
point-in-polygon-relation  759 
population data  618 
post-classification  497 

- accuracy assessment  756 
- analysis  374 
- change detection  328 

post-classifying  187 

PostGIS  651 
PostgreSQL  650 
potential mapping accuracy  

245, 253 
precision/recall measure  773 
Prewitt filter  209 
primitive object  232, 674 

- objects  115, 173 
principal components analysis  

383, 427, 593 
probability theory  758 
procedural knowledge  15 
proximity  787 
purity index  245 
Python  651 
  
QuickBird  188, 194, 204, 

258, 261, 277, 313, 316, 
322, 356, 370, 377, 499, 
534, 540, 573, 712, 716, 
729 

 
radiometric normalization  

189 
rationing  186 
ray-tracing  241 
real world object  525 

- domain  537 
re-classification  548 
recognition  108 
region growing  655 

- merging algorithm  226 
regionalization  9, 11 
region-based segmentation  

22, 713 
- -growing  773 
- -specific multi-scale mod-

eling  12 
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remote sensing  14 
- process chain  14 

resolution  7 
- merge  717, 729 

RHSEG  770, 779 
RMSE  425 
road  591 

- network  592 
robustness  688 
roof facet  658 
rule base  534 
  
salt-and-pepper effect  258, 

514 
sample population  698 
SAR  (see ‘synthetic aperture 

radar’)  
- texture feature  500 

savanna  478 
SAVI  208 
scale  84 

- dependency  45, 47, 49, 
65 

- of localization  126 
- parameter  138, 181, 244, 

389, 404, 427, 540, 560, 
630, 631, 671 

- sensitivity  65 
- sensitivity analysis  50 
- -specific  14 

scatter plot  251 
Scheffé test  637 
SCRM (see ‘size-constrained 

region merging’)  
seed point  655 
SEGEN  729 

segmentation  33, 244, 314, 
356, 594, 638, 652, 654, 
657 

segmentation algorithm  96, 
684, 770 
- evaluation  128 
- level  427, 437, 539, 618, 

619 
- parameter  465, 540, 680, 

773 
- quality  251, 774, 776, 

781 
- scale  287, 292, 299 
- strategy  713 

segregation  546 
SegSAR  729 
semantic class  391 

- information  720 
- network  391 
- rule  719, 728 

sensitivity analysis  451 
separability  499 

- analysis  499 
- measure  170 

sequential processing  702 
settlement  547 
shape heterogeneity  244 
shape index  776 
signal-to-noise ratio  192, 197 
silvicultural map  283 
similarity  598, 693 
simulation  57 
single tree delineation  139 
size-constrained region merg-

ing  348, 358, 770, 779 
sliver polygon  563, 787 
slope gradient  631 
Sobel gradient  177 

Index 
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- gradient operator  121 
soil imperviousness  582 

- sealing  556 
spatial analysis  7, 798 

- autocorrelation  298, 299 
- class  699 
- complexity  797 
- context  356 
- dynamics  786 
- indexing  650 
- modeling  787 
- neighborhood relationship  

547 
- object  20 
- object change  721 
- overlay  61 
- overlay strictness  722, 

790 
- pattern  49 
- quality  520 
- relation  719 
- relationship  20, 539, 721, 

787, 790, 791 
- resolution  6, 46, 103, 107 
- scale  44 
- structure  478 
- uncertainty  790 
- variability  798 

spatio-temporal dynamics  48 
Spectra  205 
spectral class  699 

- difference  619 
- discrimination  314 
- signatures  95 

SPOT  789 
SPOT-5  737 
SPRING software  583, 729 
SRTM DEM  496 

stand  627 
- delineation  237, 238, 245 
- purity index  247 
- type  629 

stepwise local optimization  
685 

stratification  632, 701 
structural diversity  480 

- element  210 
- feature  247 
- indicator  786 
- knowledge  15 
- measure  786 
- signature  95 

structure assessment  640 
sub-object  14, 578 
super-class  543 
super-object  33 
support vector machine  665, 

669 
surface normal vector  649 

- roughness  630 
SVM  (see ‘support vector 

machine’)  
SWIR  368 
synthetic aperture radar  328, 

329, 368, 479, 494, 500 
 
taiga  368 
target class  16, 730 

- level  718 
tasseled cap transformation  

350 
taxonomy  101 
template matching  703 
temporal change  189, 787 

- dynamics  786 
- resolution  438 
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terrain feature  631 
TerraSAR-X  494 
textural analysis  444 

- feature  473, 723 
texture  118, 125, 222, 226, 

499, 579, 723, 739 
- analysis  705 
- band  496 
- boundary magnitude  123 
- feature  223, 226 
- gradient image  126 
- gradients  119 
- map  705 
- measure  227, 497 
- parameter  228 
- similarity measure  227 
- -based MSEG  221 

thematic accuracy  257 
- uncertainty  766 

thermokarst  368 
tidal marsh  423 

- marsh restoration  415 
- marsh vegetation  416 
- marshes  437 

timber volume calculation  
238 

topological relationship  787 
trail  405 
training  670 

- instance  157 
- object  671 
- sample  509 
- set  155, 690 
- site  502 

transferability  701 
transition function  53 

- rule  48 

- zone  715, 720, 726, 762, 
788 

transportability  561 
tree growing  40 

- isolation  238 
- line  628 
- species  238, 626 

triangulation  656 
tundra forest  368 
  
uncertainty  757 

- of segmentation  773 
under-segmentation  96, 269, 

298, 453, 773 
unitary  95 
unsupervised approach  199 
urban landscape  597 

- planning  573 
  
vagueness  102 
validation  143 
VecGCA (see ‘vector-based 

geographic CA model’) 
vector-based geographic CA 

model  44, 58 
vegetation map  432, 436, 474 

- mapping  460 
- structure  417 
- type  423, 436 

vertical forest structure  627 
VHR imagery (see ‘VHSR 

imagery’)  
VHR satellite image  (see 

‘VHSR imagery’)  
VHSR imagery  92, 186, 204, 

211, 276, 292, 310, 443, 
551, 702, 705, 712, 729 

vineyard  444, 455 

Index 
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virtual overlay  721 
visual attention  116 

- interpretation  143, 562, 
577 

V-LATE  631, 730 
  
Water Framework Directive  

10 
wavelet  222, 241 

- analysis  237, 444 
- approximation  245 
- -based segmentation  242, 

247, 249 
- decomposition  243 
- transformation  189 

wetland  416, 438 
- mapping  417, 436 

  
Zone for Environmental Pro-

tection  583 
zoning  612 

- data  618 




