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Preface

This volume contains the lessons delivered during the “Training School on
qualitative theory of dynamical systems, tools and applications” held at the
University of Urbino (Italy) from 17 September to 19 September 2015 in the
framework of the European COST Action “The EU in the new complex geography
of economic systems: models, tools and policy evaluation” (Gecomplexity).
Gecomplexity is a European research network, inspired by the New Economic
Geography approach, initiated by P. Krugman in the early 1990s, which describes
economic systems as multilayered and interconnected spatial structures. At each
layer, different types of decisions and interactions are considered: interactions
between international or regional trading partners at the macrolevel; the functioning
of (financial, labour, goods) markets as social network structures at mesolevel; and
finally, the location choices of single firms at the microlevel. Within these struc-
tures, spatial inequalities are evolving through time following complex patterns
determined by economic, geographical, institutional and social factors. In order to
study these structures, the Action aims to build an interdisciplinary approach to
develop advanced mathematical and computational methods and tools for analysing
complex nonlinear systems, ranging from social networks to game theoretical
models, with the formalism of the qualitative theory of dynamical systems and the
related concepts of attractors, stability, basins of attraction, local and global
bifurcations.

Following the same spirit, this book should provide an introduction to the study
of dynamic models in economics and social sciences, both in discrete and in
continuous time, by the methods of the qualitative theory of dynamical systems. At
the same time, the students should also practice (and, hopefully, appreciate) the
interdisciplinary “art of mathematical modelling” of real-world systems and
time-evolving processes. Indeed, the set-up of a dynamic model of a real evolving
system (physical, biological, social, economic, etc.) starts from a rigorous and
critical analysis of the system, its main features and basic principles. Measurable
quantities (i.e. quantities that can be expressed by numbers) that characterize its
state and its behaviour must be identified in order to describe the system
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mathematically. This leads to a schematic description of the system, generally a
simplified representation, expressed by words, diagrams and symbols. This task is,
commonly, carried out by specialists of the real system, such as economists and
social scientists. The following stage consists in the translation of the schematic
model into a mathematical model, expressed by mathematical symbols and oper-
ators. This leads us to the mathematical study of the model by using mathematical
tools, theorems, proofs, mathematical expressions and/or numerical methods. Then,
these mathematical results must be translated into the natural language and terms
typical of the system described, that is economic or biologic or physical terms, in
order to obtain laws or statements useful for the application considered. This closes
the path of mathematical modelling, but often it is not the end of the modelization
process. In fact, if the results obtained are not satisfactory, in the sense that they do
not agree with the observations or experimental data, then one needs to re-examine
the model, by adding some details or by changing some basic assumptions, and start
again the whole procedure. The chapters of this volume are mainly devoted to the
mathematical methods for the analysis of dynamical models by using the qualitative
theory of dynamical systems, developed through a continuous and fruitful inter-
action among analytical, geometric and numerical methods. However, several
examples of model building are given as well, because this is the most creative
stage, leading from reality to its formalization in the form of a mathematical model.
This requires competence and fantasy, the reason why we used the expression
“art of mathematical modelling”.

The simulation of the time evolution of economic systems by using the language
and the formalism of dynamical systems (i.e. differential or difference equations
according to the assumption of continuous or discrete time) dates back to the early
steps of the mathematical formalization of models in economics and social sciences,
mainly in the nineteenth century. However, in the last decades, the importance of
dynamic modelling increased because of the parallel trends in mathematics on one
side and economics and social sciences on the other side. The two developments are
not independent, as new issues in mathematics favoured the enhancement of
understanding of economic systems, and the needs of more and more complex
mathematical models in economics and social studies stimulated the creation of new
branches in mathematics and the development of existing ones. Indeed, in recent
mathematical research, a flourishing literature in the field of qualitative theory of
nonlinear dynamical systems, with the related concepts of attractors, bifurcations,
dynamic complexity, deterministic chaos, has attracted the attention of many
scholars of different fields, from physics to biology, from chemistry to economics
and sociology, etc. These mathematical topics become more and more popular even
outside the restricted set of academic specialists. Concepts such as bifurcations (also
called catastrophes in the Eighties), fractals and chaos entered and deeply modified
several research fields.

On the other side, during the last decades, also economic modelling has been
witnessing a paradigm shift in methodology. Indeed, despite its notable achieve-
ments, the standard approach based on the paradigm of the rational and represen-
tative agent (endowed with unlimited computational ability and perfect
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information) as well as the underlying assumption of efficient markets failed to
explain many important features of economic systems and has been criticized on a
number of grounds. At the same time, a growing interest has emerged in alternative
approaches to economic agents’ decision-making, which allow for factors such as
bounded rationality and heterogeneity of agents, social interaction and learning,
where agents’ behaviour is governed by simpler “rules of thumb” (or “heuristics”)
or “trial and error” or even “imitations mechanisms”. Adaptive system, governed by
local (or myopic) decision rules of boundedly rational and heterogeneous agents,
may converge in the long run to a rational equilibrium, i.e. the same equilibrium
forecasted (and instantaneously reached) under the assumption of full rationality
and full information of all economic agents. This may be seen as an evolutionary
interpretation of a rational equilibrium, and some authors say that in this case, the
boundedly rational agents are able to learn, in the long run, what rational agents
already know under very pretentious rationality assumptions. However, it may
happen that under different starting conditions, or as a consequence of exogenous
perturbations, the same adaptive process leads to non-rational equilibria as well, i.e.
equilibrium situations which are different from the ones forecasted under the
assumption of full rationality, as well as to dynamic attractors characterized by
endless asymptotic fluctuations that never settle to a steady state. The coexistence of
several attracting sets, each with its own basin of attraction, gives rise to path
dependence, irreversibility, hysteresis and other nonlinear and complex phenomena
commonly observed in real systems in economics, finance and social sciences, as
well as in laboratory experiments.

From the description given above, it is evident that the analysis of adaptive
systems can be formulated in the framework of the theory of dynamical systems, i.e.
systems of ordinary differential equations (continuous time) or difference equations
(discrete time); the qualitative theory of nonlinear dynamical systems, with the
related concepts of stability, bifurcations, attractors and basins of attraction, is a
major tool for the analysis of their long-run (or asymptotic) properties. Not only in
economics and social sciences, but also in physics, biology and chemical sciences,
such models are a privileged instrument for the description of systems that change
over time, often described as “nonlinear evolving systems”, and their long-run
aggregate outcomes can be interpreted as “emerging properties”, sometimes diffi-
cult to be forecasted on the basis of the local (or step by step) laws of motion. As we
will see in this book, a very important role in this theory is played by graphical
analysis, and a fruitful trade-off between analytic, geometric and numerical meth-
ods. However, these methods built up a solid mathematical theory based on general
theorems that can be found in the textbooks indicated in the references.

Chapter 1, by Gian Italo Bischi, Fabio Lamantia and Davide Radi, is the largest
one, as it contains the basic lessons delivered during the Training School. It
introduces some general concepts, notations and a minimal vocabulary about the
mathematical theory of dynamical systems both in continuous time and in discrete
time, as well as optimal control.
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Chapter 2, by Anastasiia Panchuk, points out several aspects related to global
analysis of discrete time dynamical systems, covering homoclinic bifurcations as
well as inner and boundary crises of attracting sets.

Chapter 3, by Anna Agliari, Nicolò Pecora and Alina Szuz, describes some
properties of the nonlinear dynamics emerging from two oligopoly models in
discrete time. The target of this chapter is the investigation of some local and global
bifurcations which are responsible for the changes in the qualitative behaviours
of the trajectories of discrete dynamical systems. Two different kinds of oligopoly
models are considered: the first one deals with the presence of differentiated goods
and gradient adjustment mechanism, while the second considers the demand
function of the producers to be dependent on advertising expenditures and adaptive
adjustment of the moves. In both models, the standard local stability analysis of the
Cournot-Nash equilibrium points is performed, as well as the global bifurcations of
both attractors and (their) basins of attraction are investigated.

Chapter 4, by Ingrid Kubin, Pasquale Commendatore and Iryna Sushko,
acquaints the reader with the use of dynamic models in regional economics. The
focus is on the New Economic Geography (NEG) approach. This chapter briefly
compares NEG with other economic approaches to investigation of regional
inequalities. The analytic structure of a general multiregional model is described,
and some simple examples are presented where the number of regions assumed to
be small to obtain more easily analytic and numerical results. Tools from the
mathematical theory of dynamical systems are drawn to study the qualitative
properties of such multiregional model.

In Chap. 5, Fabio Lamantia, Davide Radi and Lucia Sbragia review some
fundamental models related to the exploitation of a renewable resource, an
important topic when dealing with regional economics. The chapter starts by
considering the growth models of an unexploited population and then introduces
commercial harvesting. Still maintaining a dynamic perspective, an analysis of
equilibrium situations is proposed for a natural resource under various market
structures (monopoly, oligopoly and open access). The essential dynamic properties
of these models are explained, as well as their main economic insights. Moreover,
some key assumptions and tools of intertemporal optimal harvesting are recalled,
thus providing an interesting application of the theory of optimal growth.

In Chap. 6, Fabio Tramontana considers the qualitative theory of discrete time
dynamical systems to describe the time evolution of financial markets populated by
heterogeneous and boundedly rational traders. By using these assumptions, he is
able to show some well-known stylized facts observed in financial markets that can
be replicated even by using small-scale models.

Finally, in Chap. 7, Ugo Merlone and Paul van Geert consider some dynamical
systems which are quite important in psychological research. They show how to
implement a dynamical model of proximal development using a spreadsheet, sta-
tistical software such as R or programming languages such as C++. They discuss
strengths and weaknesses of each tool. Using a spreadsheet or a subject-oriented
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statistical software is rather easy to start, hence being likely palatable for people
with background in both economics and psychology. On the other hand, employing
C++ provides better efficiency at the cost of requiring some more competencies.
All the approaches proposed in this chapter use free and open-source software.

Urbino Gian Italo Bischi
Kiev Anastasiia Panchuk
Castellanza Davide Radi
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Chapter 1
Qualitative Methods in Continuous
and Discrete Dynamical Systems

Gian Italo Bischi, Fabio Lamantia and Davide Radi

Abstract This chapter gives a general and friendly overview to the qualitative theory
of continuous and discrete dynamical systems, as well as some applications to simple
dynamic economic models, and is concluded by a section on basic principles and
results of optimal control in continuous time, with some simple applications. The
chapter aims to introduce some general concepts, notations and aminimal vocabulary
concerning the study of themathematical theory of dynamical systems that are used in
the other chapters of the book. In particular, concepts like stability, bifurcations (local
and global), basins of attraction, chaotic dynamics, noninvertible maps and critical
sets are defined, and their applications are presented in the following sections both in
continuous time and discrete time, as well as a brief introduction to optimal control
together with some connections to the qualitative theory of dynamical systems and
applications in economics.
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2 G.I. Bischi et al.

1.1 Some General Definitions

In this section we introduce some general concepts, notations and a minimal
vocabulary about the mathematical theory of dynamical systems. A dynamical sys-
tem is a mathematical model, i.e., a formal, mathematical description, of a system
evolving as time goes on. This includes, as a particular case, systems whose state
remains constant, that will be denoted as systems at equilibrium.

The first step to describe such systems in mathematical terms is the
characterization of their “state” by a finite number, say n, of measurable quanti-
ties, denoted as “state variables”, expressed by real numbers xi ∈ R, i = 1, . . . , n.
For example in an economic system these numbers may be the prices of n commodi-
ties in a market, or the respective quantities, or they can represent other measurable
indicators, like level of occupation, or salaries, or inflation. In an ecologic system
these n numbers used to characterize its state may be the numbers (or densities)
of individuals of each species, or concentration of inorganic nutrients or chemicals
in the environment. In a physical system1 the state variables may be the positions
and velocities of the particles, or generalized coordinates and related momenta of a
mechanical system, or temperature, pressure etc. in a thermodynamic system.

This ordered set of real numbers can be seen as a vector x = (x1, . . . , xn) ∈ R
n,

i.e., a “point” in an n-dimensional space, and this allows us to introduce a “geometric
language”, in the sense that a 1-dimensional dynamical system is represented by point
along a line, a 2-dimensional one by a point in a Cartesian plane and so on.

Sometimes only the values of the state variables included in a subset of Rn are
suitable to represent the real system. For example only non-negative values of xi
are meaningful if xi represents a price in an economic system or the density of a
species in an ecologic one, or it can be that in the equations that define the system a
state variable xi is the argument of a mathematical function that is defined in a given
domain, like a logarithm, a square root or a rational function. As a consequence,
only the points in a subset of Rn are admissible states for the dynamical system
considered, and this leads to the following definition.

Definition 1.1 The state space (or phase space) M ⊆ R
n is the set of admissible

values of the state variables.

As a dynamical system is assumed to evolve with time, these numbers are not
fixed but are functions of time xi = xi(t), i = 1, . . . , n, where t may be a real number
(continuous time) or a natural number (discrete time). The latter assumption may
sound quite strange, whereas it represents a common assumption in systems where
changes of the state variables are only observed as a consequence of events occur-
ring at given time steps (event-driven time). For example, it is quite common in
economic and social sciences where in many systems the state variables can change
as a consequence of human decisions that cannot be continuously revised, e.g., after

1Physics is the discipline where the formalism of dynamical system has been first introduced, since
17th century, even if the modern approach, often denoted as qualitative theory of dynamics systems,
has been introduced in the early years of the 20th century.



1 Qualitative Methods in Continuous and Discrete Dynamical Systems 3

production periods (the typical example is output of agricultural products) or after
the meetings of an administration council or after the conclusions of contracts etc.
(decision-driven time).

So, in the following we will distinguish these two cases, according to the domain
of the state functions: xi : R → R or xi : N → R, i.e., the continuous or discrete
nature of time. In any case, the purpose of dynamical systems is the following: given
the state of the system at a certain time t0, compute the state of the system at time
t �= t0. This is equivalent to the knowledge of an operator

x(t) = G (t, x(t0)) , (1.1)

where boldface symbols represent vectors, i.e., x(t) = (x1(t), . . . , xn(t)) ∈ M ⊆ R
n

and G (·) = (G1(·), . . . ,Gn(·)) : M → M. If one knows the evolution operator G
then from the knowledge of the initial condition (or initial state) x(t0) the state of
the system at any future time t > t0 can be computed, as well as at any time of the
past t < t0. Generally we are interested in the forecasting of future states, especially
in the asymptotic (or long-run) evolution of the system as t → +∞, i.e., the fate, or
the destiny of the system. However, even the flashback may be useful in some cases,
like in detective stories when the investigators from the knowledge of the present
state want to know what happened in the past.

The vector function x(t), i.e., the set of n functions xi(t), i = 1, . . . , n obtained by
(1.1), represents the parametric equations of a trajectory, as t varies. In the case of
continuous time t ∈ R the trajectory is a curve in the spaceRn, that can be represented
in the n + 1-dimensional space (Rn, t), and denoted as integral curve, or in the state
space (also denoted as “phase space”)Rn, see Fig. 1.1. In the latter case the direction
of increasing time is represented by arrows, and the curve is denoted as phase curve.

In the case of discrete time a trajectory is a sequence (i.e., a countable set) of
points, and the time evolution of the system jumps from one point to the successive
one in the sequence. Sometimes line segments can be used to join graphically the
points, moving in the direction of increasing time, thus getting an ideal piecewise
smooth curve by which the time evolution of the system is graphically represented.

Fig. 1.1 Solution curve and
its projection in the phase
space



4 G.I. Bischi et al.

An equilibrium (stationary state or fixed point) x∗ = (x∗
1, . . . , x

∗
n

)
is a particular

trajectory such that all the state variables are constant

x(t) = G
(
t, x∗) = x∗ for each t > t0 .

An equilibrium is a trapping point, i.e., any trajectory through it remains in it for
each successive time: x(t0) = x∗ implies x(t) = x∗ for t ≥ t0. This definition can be
extended to any subset of the phase space:

Definition 1.2 A set A ⊆ M is trapping if x(t0) ∈ A implies x(t) = G (t, x(t0)) ∈ A
for each t > t0.

This can also be expressed by the notation G (t,A) ⊆ A, where

G (t,A) = {x(t) ∈ M : ∃t ≥ t0 and x(t0) ∈ A so that x(t)= G (t, x(t0))} .

So, any trajectory starting inside a trapping set cannot escape from it. We now
define a stronger property, in the sense that it concerns particular kinds of trapping
sets.

Definition 1.3 A closed set A ⊆ M is invariant if G (t,A) = A, i.e., each subset
A′ ⊂ A is not trapping.

In other words, any trajectory starting inside an invariant set remains there, and all
the points of the invariant set can be reached by a trajectory starting inside it. Notice
that an equilibrium point is a particular kind of invariant set (let’s say the simplest).
However, we will see many other kinds of invariant sets, where interesting cases of
nonconstant trajectories are included.

We now wonder what happens if we start a trajectory from an initial condition
close to an invariant set, i.e., in a neighborhood of it. The trajectory may enter the
invariant set (and then it remains trapped inside it) or it may move around it or it may
go elsewhere, far from it. This leads us to the concept of stability of an invariant set
(Fig. 1.2).

Definition 1.4 (Lyapunov stability) An invariant set A is stable if for each neigh-
borhoodU of A there exists another neighborhood V of Awith V ⊆ U such that any
trajectory starting from V remains inside U.

In other words, Lyapunov stability means that all the trajectories starting from
initial conditions outside A and sufficiently close to it remain around it. Instability is
the negation of stability, i.e., an invariant set A is unstable if a neighborhood U ⊃ A

Fig. 1.2 Analogies with the
gravity field
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exists such that initial conditions taken arbitrarily close to A exist that generate
trajectories that exit U. The following definition is stronger.

Definition 1.5 (Asymptotic stability) An invariant setA is asymptotically stable (and
it is often called attractor) if:

(i) A is stable (according to the definition given above);
(ii) limt→+∞ G (t, x) ∈ A for each initial condition x ∈V .

In other words, asymptotic stabilitymeans that the trajectories starting from initial
conditions outside A and sufficiently close to it not only remain around it, but tend
to it in the long run (i.e., asymptotically), see the schematic pictures in Fig. 1.3. At
a first sight, the condition (ii) in the definition of asymptotic stability seems to be
stronger than (i), hence (i) seems to be superfluous. However it may happen that a
neighborhood U ⊃ A exists such that initial conditions taken arbitrarily close to A
generate trajectories that exit U and then go back to A in the long run (see the last
picture in Fig. 1.3).

Of course, all these definitions expressed in termsof neighborhoods canbe restated
by using a norm (and consequently a distance) inRn, for example the euclidean norm

‖x‖ =
√∑n

i=1 x
2
i from which the distance between two points x = (x1, . . . , xn) and

Fig. 1.3 Qualitative examples of stable, asymptotically stable and unstable equilibria
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y = (y1, . . . , yn) can be defined as ‖x − y‖ = √∑n
i=1(xi − yi)2. As an example we

can restate the definitions given above for the particular case of an equilibrium point.
Let x(t) = G(t, x(t0)), t ≥ 0, a trajectory starting from the initial condition

x(t0) = G(t0, x(t0)) and x∗ an equilibrium point x∗ = G(t, x∗) for t ≥ 0. The equi-
librium x∗ is stable if for each ε > 0 there exists δε > 0 such that ‖x(t0)−x∗‖ < δε

=⇒ ‖x(t)−x∗‖ < ε for t ≥ 0. If in addition limt→∞ ‖x(t)−x∗‖ = 0 then x∗ is
asymptotically stable. Instead, if an ε > 0 exists such that for each δ > 0 we have
‖x(t)−x∗‖ > ε for some t > 0 even if ‖x(t0)−x∗‖ < δ, then x∗ is unstable.

These definitions are local, i.e., concern the future behavior of a dynamical system
when its initial state is in an arbitrarily small neighborhood of an invariant set. So,
they can be used to characterize the behavior of the system under the influence of
small perturbation from an equilibrium or another invariant set. In other words, they
give an answer to the question: given a system at equilibrium, what happens when
small exogenous perturbation move its state slightly outside the equilibrium state?
However, in the study of real systems we are also interested in their global behavior,
i.e., far from equilibria (or more generally from invariant sets) in order to consider the
effect of finite perturbations and to answer questions like: how far can an exogenous
perturbation shift the state of a system from an equilibrium remaining sure that it will
spontaneously go back to the originary equilibrium? This kind of questions leads to
the concept of basin of attraction.

Definition 1.6 (Basin of attraction) The basin of attraction of an attractor A is the
set of all points x ∈ M such that limt→+∞ G(t, x) ∈ A, i.e.,

B(A) =
{
x ∈ M such that lim

t→+∞G(t, x) ∈ A

}
.

IfB(A) = M thenA is called global attractor. Generally the extension of the basin
of a given attractor gives a measure of its robustness with respect to the action of
exogenous perturbations. However this is a quite rough argument, because a greater
extension of the basin of an attractor may does not imply greater robustness if the
attractor is close to a basin boundary.Moreover, when basins are considered, one real-
izes that in some cases stable equilibria may be even more vulnerable than unstable
ones (see Fig. 1.4).

Other important indicators should be critically considered. For example, how fast
is the convergence towards an attractor? Even if an invariant set is asymptotically sta-
ble and it has a large basin, an important question concerns the speed of convergence,
i.e., the amount of time which is necessary to reduce the extent of a perturbation.
In some cases this time interval may be too much for any practical purpose. These
arguments lead us to the necessity of a deep understanding of the global behavior
of a dynamical system in order to give useful indications about the performance of
the real system modeled. The main problem is that, generally, the operator G that
allows to get an explicit representation of the trajectories of the dynamical system
for any initial condition in the phase space, is not known, or cannot be expressed in
terms of elementary functions, or its expression is so complicated that it cannot be
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Fig. 1.4 Stability and vulnerability

used for any practical purpose. In general a dynamical system is expressed in terms
of local evolution equations, also denoted as dynamic equations or laws of motion,
that state how the dynamical system changes as a consequence of small time steps.
In the case of continuous time the evolution equations are expressed by the following
set of ordinary differential equations (ODE) involving the time derivative, i.e., the
speeds of change, of each state variable

dxi(t)

dt
= fi(x1(t), . . . , xn(t);α) , i = 1, . . . , n ,

xi(t0) = xi , (1.2)

where the time derivative at the left hand side represents, as usual, the speed of change
of the state variable xi(t)with respect to time variations, the functional relations give
information about the influence of the same state variable xi (self-control) and of
the other state variables xj, j �= i (cross-control) on such rate of change, and α =
(α1, . . . αm), αi ∈ R, represents m real parameters, fixed along a trajectory, which
can assume different numerical values in order to represent exogenous influences on
the dynamical systems, e.g., different policies or effects of the outside environment.
The modifications induced in the model after a variation of some parameters αi are
called structural modifications, as such changes modify the shape of the functions
fi, and consequently the properties of the trajectory.

The set of equations (1.2) are “differential equations” because their “unknowns”
are functions xi(t) and they involve not only xi(t) but also their derivatives. In the
theory of dynamical systems it is usual to replace the Leibniz notation dx

dt of the
derivative with the more compact “dot” notation ẋ introduced by Newton. With this
notation, the dynamical system (1.2) is indicated as

ẋi = fi(x1, . . . , xn;α), i = 1, . . . , n , (1.3)
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Differential equations of order greater than one, i.e., involving derivatives of higher
order, can be easily reduced to systems of differential equations of order one in
the form (1.2) by introducing auxiliary variables. For example the second order
differential equation (involving the second derivative ẍ = d2x

dt2 )

ẍ (t) + aẋ (t) + bx (t) = 0 (1.4)

with initial conditions x(0) = x0 and ẋ (0) = v0 can be reduced to the form (1.3)
by defining x1(t) = x(t) and x2(t) = ẋ (t), so that the equivalent system of two first
order differential equations becomes

ẋ1 = x2 ,

ẋ2 = −bx1 − ax2

with x1(0) = x0, x2(0) = v0. If along a trajectory the parameters explicitly vary with
respect to time, i.e., some αi = αi(t) are functions of time, then the model is called
nonautonomous. Also a nonautonomous model can be reduced to an equivalent
autonomous one in the normal form (1.2) of dimension n + 1 by introducing the
dynamic variable xn+1 = t whose time evolution is governed by the added first order
differential equation ẋn+1 = 1.

In the case of discrete time, the evolution equations are expressed by the following
set of difference equations that inductively define the time evolution as a sequence
of discrete points starting from a given initial condition

xi(t + 1) = fi(x1(t), . . . , xn(t);α), i = 1, . . . , n ,

xi(0) = xi (1.5)

Also in this case a higher order difference equation, as well as a nonautonomous
difference equation, can be reduced to an expanded system of first order difference
equations. For example, the second order difference equations

x(t + 1) + ax(t) + bx(t − 1) = 0

starting from the initial conditions x(−1) = x0, x(0) = x1 can be equivalently
rewritten as

x(t + 1) = −ax(t) − by(t) ,

y(t + 1) = x(t) ,

where y(t) = x(t − 1), with initial conditions being x(0) = x1, y(0) = x0.
Analogously, a nonautonomous difference equation

x(t + 1) = f (x(t), t)
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becomes

x(t + 1) = f (x(t), y(t)),

y(t + 1) = y(t) + 1,

where y(t) = t.
So, the study of (1.2) and (1.5) constitutes a quite general approach to dynamical

systems in continuous and discrete time respectively. They are local representations
of the evolution of systems that change with time. Their qualitative analysis consists
in the study of existence and main properties of attracting sets, their basins, and their
qualitative changes as the control parameters are let to vary. We refer the reader to
standard textbooks and the huge literature about difference and differential equations
in order to study their general properties and methods of solutions. The aim of this
lecture note is just to give a general overview of the basic elements for a qualita-
tive understanding of the long run behavior of some dynamic models. We will first
consider the case of continuous time, then the case of discrete time by stressing the
analogies and differences between these two time scales, and finally we shall give
some concepts and results about optimal control analysis.

1.2 Continuous-Time Dynamical Systems

In this section we consider dynamic equations in the form (1.2), starting from prob-
lemswith n = 1, i.e., 1-dimensionalmodels where the state of the system is identified
by a single dynamical variable, then we move to n = 2 and finally some comments
on n > 2. For each case, we will first consider linear models, for which an explicit
expression of the solution can be obtained, and then we move to nonlinear mod-
els for which we will only give a qualitative description of the equilibrium points,
their stability properties and the long-run (or asymptotic) properties of the solutions
without giving their explicit expression. We will see that such qualitative study (also
denoted as qualitative or topological theory of dynamical systems, a modern point of
view developed in the 20th century) essentially reduces to the solution of algebraic
equations and inequalities, without the necessity to use advancedmethods for solving
integrals. We start with a sufficiently general (for the goals of these lecture notes)
theorem of existence and uniqueness of solutions of ordinary differential equations.

Theorem 1.1 (Existence and Uniqueness) If the functions fi have continuous partial
derivatives inM and x(t0) ∈ M, then there exists a unique solution xi(t), i = 1, . . . , n,
of the system (1.2) such that x(t0) = x, and each xi(t) is a continuous function.

Indeed, the assumptions of this theoremmay be weakened, by asking for bounded
variations of the functions fi in the equations of motion (1.2), such as the so called
Lipschitz conditions. However the assumptions of the previous Theorem are suitable
for our purposes. Moreover, other general theorems are usually stated to define the
conditions under which the solutions of the differential equations have a regular
behavior. We refer the interested reader to more rigorous books, see the bibliography
for details.
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1.2.1 One-Dimensional Dynamical Systems
in Continuous Time

1.2.1.1 The Simplest One: A Linear Dynamical System

Let us consider the following dynamic equation

ẋ = αx with initial condition x(t0) = x0 . (1.6)

It states that the rate of growth of the dynamic variable x(t) is proportional to itself,
with proportionality constant α (a parameter). If α > 0 then whenever x is positive
it will increase (positive derivative means increasing). Moreover, as x increases also
the derivative increases, so it increases faster and so on. This is what, even in the
common language, is called “exponential growth”, i.e., “the more we are, the more
we increase”. Instead, whenever x is negative it will decrease (negative derivative)
so it will become even more negative and so on. This is a typical unstable behavior.

On the contrary, if α < 0 then whenever x is positive it will decrease (and will
tend to zero) whereas when x is negative the derivative is positive, so that x will
increase (and tend to zero). A stabilizing behavior.

In this case an explicit solution can be easily obtained to confirm these arguments.
In fact, it is well known, from elementary calculus, that the only function whose
derivative is proportional to the function itself is the exponential, so x(t)will be in the
general form x(t) = keαt , where k is an arbitrary constant that can be determined by
imposing the initial condition x(t0) = xo, hence keαt0 = x0, from which k = x0e−αt0 .
After replacing k in the general form we finally get the (unique) solution

x(t) = x0e
α(t−t0) . (1.7)

The same solution can be obtained by amore standard integrationmethod, denoted
as separation of the variables: from dx

dt = αx we get dx
x = αdt and then, integrating

both terms we get

x(t)∫

x0

dx

x
=

t∫

t0

dx

x
=⇒ ln x(t) − ln x0 = α(t − t0) =⇒ ln

x(t)

x0
= α(t − t0) ,

fromwhich (1.7) is obtained by taking exponential of bothmembers. Some graphical
representations of (1.7), with different values of the parameter α and different initial
conditions, are shown in Fig. 1.5 in the form of integral curves, with time t repre-
sented along the horizontal axis and the state variable along the vertical one. Among
all the possible solutions there is also an equilibrium solution, corresponding to the
case of vanishing time derivative ẋ = 0 (equilibrium condition). In fact, from (1.6)
we can see that the equilibrium condition corresponds to the equation αx = 0 which,
for α �= 0, gives the unique solution x∗ = 0. Indeed, the trajectory starting from the
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Fig. 1.5 Integral curves and phase portraits of ẋ = αx

initial condition x0 = 0 is given by x(t) = 0 for each t, i.e., starting from x0 = 0
the system remains there forever. However, as shown in Fig. 1.5, different behav-
iors of the system can be observed if the initial condition is slightly shifted from
the equilibrium point, according to the sign of the parameter α. In fact if α > 0
(left panel) then the system amplifies this slight perturbation and exponentially
departs from the equilibrium (unstable, or repelling, equilibrium) whereas if α < 0
(right panel) then the system recovers from the perturbation going back to the equi-
librium after a given return time (asymptotically stable, or attracting, equilibrium).

This qualitative analysis of existence and stability of the equilibrium can be
obtained even without any computation of the explicit analytic solution (1.7), by
solving the equilibrium equation αx = 0 and by a simple algebraic study of the sign
of the right hand side of the dynamic equation (1.6) around the equilibrium, as shown
in Fig. 1.6. This method simply states that if the right hand side of the dynamic equa-
tion (hence ẋ) is positive then the state variable increases (arrow towards positive
direction of the axis), if ẋ < 0 then x decreases (arrow towards negative direction).

This 1-dimensional representation (i.e., along the line) is the so called phase
diagram of the dynamical system, where the invariant sets are represented (the equi-
librium in this case) together with the arrows that denote tendencies associated with
any point of the phase space (and consequently stability properties). Of course,
the knowledge of the explicit analytic solution gives more information, for exam-
ple the time required to move from one point to another. For example, in the case
α < 0, corresponding to stability of the equilibrium x∗ = 0, we can state that after a

Fig. 1.6 Graphic of the the line y = αx and the corresponding one-dimensional phase diagram
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displacement of the initial condition at distance d = ‖x0 − x∗‖ from the equilibrium,
the time required to reduce such a perturbation at the fraction d/e (where e is the
Neper constant e � 2.7) is Tr = −1/a, an important stability indicator known as
return time. As it can be seen, as the parameter α goes to 0 the return time tends to
infinity. In fact, ifα = 0 all the points are equilibrium points, i.e., any initial condition
generates a constant trajectory that remains in the same position forever.

As an example, let us consider the dynamic equation that describes the growth
of a natural population. If x(t) represents the number of individuals in a population
(of insects, or bacteria, or fishes or humans), n > 0 represents the natality (or birth)
rate and m > 0 represents the mortality (or death) rate then a basic balance equation
used in any population model states that

ẋ = nx − mx = (n − m) x

which is of the form (1.6) with α = n − m. Of course in this case, due to the meaning
of the model, only non-negative values of the state variable x are admissible. The
qualitative analysis of this model states that if natality is greater than mortality then
the population exponentially increases, if the two rates are identical the population
remains constant and if mortality exceeds natality the population exponentially goes
to extinction.Aquite reasonable result.Wenow introduce amodification in the simple
population growth model by introducing a constant immigration (emigration) term
b > 0 (< 0)

ẋ = αx + b . (1.8)

Now the equilibrium condition ẋ = 0 becomes αx + b = 0 from which the equi-
librium is x∗ = −b/a. If α < 0 and b > 0 (endogenously decreasing population
with constant immigration) then the equilibrium is positive and stable (as ẋ < 0 for
x > x∗ and ẋ > 0 for x < x∗). Instead, forα > 0 and b < 0 (endogenously increasing
population with constant emigration) the equilibrium is positive and unstable. We
conclude by noticing that the dynamic model (1.8) is called linear nonhomogeneous
(or affine) and can be reduced into the form (1.6) by a change of variable (a trans-
lation). In fact, let us define the new dynamic variable X = x − x∗ = x + b/a. This
change of variable corresponds to a translation that brings the new zero coordinate
into the equilibriumpoint. If we replace x = X − b/a into (1.8)we get Ẋ = αX. Then
we have the linear model (1.6) in the dynamic variable X(t), with initial condition
X(t0) = x0 + b/a, whose solution is X(t) = X(t0)eα(t−t0). Going back to the original
variable, by using the transformation X = x + b/a, we obtain

x(t) =
(
x0 + b

α

)
e

α(t−t0) − b

α
.

This is a first example of conjugate dynamical systems, as the models (1.6) and (1.8)
can be transformed one into the other by an invertible change of coordinates. We
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will give a more formal definition of conjugate (or qualitative equivalent) dynamic
models in the following chapters.

As an example, let us now consider a dynamic formalization of a partial mar-
ket of a single commodity, under the Walrasian assumption that the price of the
good increases (decreases) if the demand is higher (lower) than supply. The simplest
dynamic equation to represent this assumption is given by

ṗ = f (p) = k
[
D(p) − S(p)

]
, (1.9)

where q = D(p) represents the demand function, i.e., the quantity demanded by
consumers when the price of the good considered is p, q = S(p) represents the
supply function, i.e., the quantity of the good that producers send to the market when
the price is p, k > 0 is a constant that gives the speed by which the price reacts to a
disequilibrium between supply and demand. The standard occurrence is that supply
function S(p) is increasing and demand function is decreasing, as shown in Fig. 1.7.
The equilibrium point p∗ is located at the intersection of demand and supply curves,
and it is stable because the derivative of p is positive on the left and negative on the
right of p∗, so that p∗ is always reached in the long run even if the initial price p(0)
is not an equilibrium one (or equivalently if the price has been displaced from the
equilibrium price). An analytic solution of the dynamic equations can be obtained
under the assumption that demand and supply functions are linear

D(p) = a − bp , S(p) = a1 + b1p ,

where all the parameters a, b, a1, b1 are positive. In fact, in this case the dynamic
equation is a linear differential equation with constant coefficients

ṗ = −k (b + b1) p + k (a − a1)

which is in the form (1.8) and has equilibrium point p∗ = (a − a1)/(b + b1). As we
will see in the next sections, a similar analysis, based on the linearization of themodel
around the equilibrium point, is possible by computing the slopes of the functions
(i.e., their derivatives) at the equilibrium point.

Fig. 1.7 Qualitative graphical analysis of price dynamics with standard demand and supply func-
tions
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Fig. 1.8 Qualitative analysis
of (1.9) with bimodal
demand function

Let us now consider a different demand curve, obtained by assuming that con-
sumers exhibit a nonstandard behavior for intermediate prices. In the situation shown
in Fig. 1.8, even if demanded quantity is high for low prices and low for high prices,
like in the standard case, we assume that for intermediate prices consumers prefer
to buy the good at higher price because they use price as a quality indicator. Such
assumption leads to a“bimodal” shape of the demand function (i.e., with two inver-
sion points, a relative minimum and relative maximum) that may intersect the supply
curve in three points, like in Fig. 1.8, and consequently three coexisting equilibrium
prices, say p∗

1 < p∗
2 < p∗

3. By using the qualitative analysis, we can see that the time
derivative of the price p(t) is positive whenever p < p∗

1 or p
∗
2 < p < p∗

3, i.e., where
D(p) > S(p). This leads to a situation of bistability as both the lowest equilibrium
price p∗

1 and the highest one p∗
3 are asymptotically stable, each with its own basin

of attraction, whereas the intermediate unstable equilibrium price p∗
2 separates the

basins, i.e., it acts as a watershed located on the boundary between the two basins.

1.2.1.2 Qualitative Analysis and Linearization Procedure
for the Logistic Model

The population model described in the Sect. 1.2.1.1 is quite unrealistic as it admits
unbounded population growth, which is impossible in a finite world. As already
noticed by Malthus [27], when the population density becomes too high, scarcity of
food or space (overcrowding effect) causes mortality, proportional to the population
density. So an extra mortality term, say sx, should be added to the natural mortality
m, and thus the model becomes

ẋ = f (x) = nx − (m + sx)x = αx − sx2 (1.10)

which is a nonlinear dynamic model. Also in this case, after separation of the vari-
ables, an analytic solution can be found by integrating a rational function. In fact,
after some algebraic transformations of the rational function the following solution
is obtained

x(t) = αx0eαt

α + sx0 (eαt − 1)
, (1.11)

whose graph (for different initial conditions) is shown in Fig. 1.9.
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Fig. 1.9 Graph of function
(1.11) with three different
initial conditions x(0) K

As it can be seen from the graph of x(t) in (1.11), all solutions starting from
a positive initial condition asymptotically converge to the attracting equilibrium
K = α/s (usually called carrying capacity in the language of ecology) represented
by the horizontal asymptote. Another equilibriumpoint exists, given by the extinction
equilibrium Q = 0, which is repelling.

However, the possibility to find an analytic solution by integrating a nonlinear
differential equation is a rare event, so we now try to infer the same conclusions
without finding the explicit solution, i.e., by using qualitative methods. As usual, the
first step is the localization of the equilibrium points, solutions of the equilibrium
condition ẋ = 0, i.e., f (x) = x(α − sx) = 0, from which the two solutions x∗

0 = 0
and x∗

1 = α/s are easily computed. In order to determine their local stability prop-
erties, it is sufficient to notice that the graph of the right hand side of (1.10), see
Fig. 1.10, has negative slope around the equilibrium x∗

1 , so that ẋ is positive on the
left and negative on the right, and vice versa at the equilibrium x∗

0 , as indicated by
the arrows along the x axis (the 1-dimensional state space of the system). This can
be analytically determined even without the knowledge of the whole graph of the
function, as it is sufficient to compute the sign of the x-derivative of the right hand
side at each equilibrium point. In fact, it is well known that the derivative computed
in a given point of the graph represents the slope of the graph (i.e., of the line tangent
to the graph) at that point. So, the local behavior of the dynamical system in a neigh-
borhood of an equilibrium point, hence its local stability as well, is generally the
same as the one of the linear approximation (i.e., the tangent). This rough argument
will be explained more formally in the next sections. In the particular case of the
logistic model (1.10) the derivative is df

dx = f ′(x) = α − 2sx, and computed at the
two equilibrium points becomes f ′(0) = α > 0, f ′(α/s) = −α < 0, hence Q = 0 is

Fig. 1.10 Qualitative
dynamic analysis of logistic
equation (1.10)
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unstable, K = α/s is stable. Moreover the parameter α can be seen as an indicator of
how fast the system will go back to the stable equilibrium after a small displacement,
as the return time for the linear approximation is Tr = 1/α.

Before ending this part, we notice that the equilibrium points x∗
0 = 0 and x∗

1 = α/s
are two (constant) solutions of (1.10), whose graphs in the plane (t, x) are horizontal
lines. Thus, by the theorem of existence and uniqueness of a solution stated above,
any other (nonconstant) solution x(t) of (1.10) cannot cross these twohorizontal lines.
From (1.10) by a simple second-degree inequality, it is easy to see that ẋ > 0 occurs
whenever x ∈ (0, α/s). Moreover, being d2x

dt2 = dẋ
dt = αẋ − 2sxẋ = ẋ (α − 2sx), we

deduce that x(t) is strictly decreasing and concave whenever x(0) ∈ (−∞, 0) and
that x(t) is strictly decreasing and convexwhenever x(0) ∈ (α/s,+∞). Finally,when
x(0) ∈ (0, α/s), x(t) is strictly increasing and from convex becomes concave when
x(t) = α/(2s), see again Fig. 1.9.

1.2.1.3 Qualitative Analysis of One-Dimensional Nonlinear
Models in Continuous Time

The qualitative method used to understand the dynamic properties of the logistic
equation can be generalized to any one-dimensional dynamic equation in continuous
time

ẋ = f (x) (1.12)

It consists, first of all, in the localization of the equilibrium points according to
the equilibrium condition ẋ = 0, i.e., the solutions of the equation f (x) = 0. As
a consequence of the Theorem of uniqueness, oscillations are not possible for a
1-dimensional dynamical system in continuous time, hence for a system starting
from any initial condition which is not an equilibrium, only increasing or decreasing
solutions can be obtained. Hence just four different phase portraits characterize the
dynamic behavior of the 1-dimensional system around an equilibrium, as shown in
Fig. 1.11.

Of course, if an initial condition coincides with an equilibrium point, i.e., x(0) =
x∗ and f (x∗) = 0, then the unique solution is x(t) = x∗ for t ≥ 0. In other words,
starting from an equilibrium point, the system remains there forever. The natural
question arising iswhat happens if the initial condition is taken close to an equilibrium
point, i.e., if the system is slightly perturbed from the equilibrium considered. Will
the distance from the equilibrium increase or will the perturbation be reduced so that
the system spontaneously goes back to the originary equilibrium? An answer to this
question is easy in the case of hyperbolic equilibria, defined as equilibrium points
with nonvanishing derivative, i.e., f ′(x∗) �= 0. In fact, if x∗ is one of such solutions

Fig. 1.11 The four different phase diagrams around an equilibrium point
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and f ′(x∗) �= 0, then the right hand side of (1.12) can be approximated by the first
order Taylor expansion (linear approximation)

f (x) = f (x∗) + f ′(x∗)(x − x∗) + o(x − x∗) = f ′(x∗)(x − x∗) + o(x − x∗)

being f (x∗) = 0. So, if f ′(x∗) �= 0 and we neglect the higher order terms then we
obtain a linear approximation of the dynamical system (1.12). In fact, if we translate
the origin of the x coordinate into the equilibrium point by the change of variable
X = x − x∗, that represents the displacement between x(t) and the equilibrium points
x∗, then (1.12) becomes

Ẋ = αX

with α = f ′(x∗), i.e., a linear differential equation in the form (1.6), that governs
the time evolution of the system in a neighborhood of the equilibrium point x∗. Of
course, this linear differential equation constitutes only a local approximation, i.e.,
for initial conditions taken in a sufficiently small neighborhood of the equilibrium
point considered. This leads to the following result:

Proposition 1.1 (1D Local Asymptotic Stability in Continuous Time) Let x∗ be
an equilibrium point of (1.12), i.e., f (x∗) = 0. If f ′(x∗) < 0, then x∗ is a locally
asymptotically stable equilibrium; if f ′(x∗) > 0, then x∗ is unstable.

This gives a simple method to classify the stability of a hyperbolic equilibrium.
Instead, for a nonhyperbolic equilibrium, i.e., a point x∗ such that f (x∗) = 0 and
f ′(x∗) = 0, nothing can be said about the stability of x∗, and further investigations
are necessary, involving higher order derivatives or, equivalently, the knowledge of
the shape of the function f (x) around x∗. In Fig. 1.12 we can see, through four simple
examples, that all possible phase portraits can be obtained around a nonhyperbolic
equilibrium.

These situations characterized by a nonhyperbolic equilibrium point have been
denoted as structurally unstable, in the sense that a slight (i.e., arbitrarily small)
modification of the shape of the function f (x) generally leads to a modification
in the stability property as well as in the number of equilibrium points. Such a
modification may be caused by the presence of parameters that may be used as
devices (or policies) to modify the shape of the function f . Such slight modifications
leading to qualitatively different dynamic scenarios are denoted as bifurcations, and
are described in Sect. 1.2.1.4. To end this sectionwe stress that the notion of structural
stability should not be confused with that of dynamic stability: The latter deals
with the effect on the trajectories of a small displacement of the initial condition
(i.e., of the phase point), whereas the former deals with the effect, on the phase
portrait (i.e., the dynamic scenario) of a slight modification of the function f due to
a slight change of the value of a parameter.

Before giving a complete classifications of the bifurcations, we give some exam-
ples. Let us consider the case of a fishery with constant harvesting, i.e., a fish popula-
tion x(t) characterized by a logistic growth equation, which is exploited for commer-
cial purposes. Let us assume that in each time period a constant quota h is harvested.
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Fig. 1.12 Four examples of
different phase portraits
around the nonhyperbolic
equlibrium x∗ = 0 such that
f (x∗) = 0 and f ′(x∗) = 0

This leads to the following dynamic model

ẋ = x(α − sx) − h (1.13)

where the quota h is a parameter that indicates the policy imposed by an authority to
regulate the fishing activity. The right hand side of the dynamic equation is a vertically
translated parabola, and the equilibrium points, determined by imposing the equilib-

rium condition x(α − sx) − h = 0, are given by x∗
0 =

(
α − √

α2 − 4hs
)

/(2s) and

x∗
1 =

(
α + √

α2 − 4hs
)

/(2s) provided that h < α2/(4s). The qualitative analysis

shows that the higher equilibrium x∗
1 is stable, and gives the equilibrium value at

which the harvested population settles, whereas the lower is unstable, and consti-
tutes the boundary that separates the basin of attraction of x∗

1 and the set of initial
conditions leading to extinction. A sort of “survival threshold”: If, due to some acci-
dent, the initial condition falls below x∗

0 then the dynamics of the system will lead
it to extinction. Moreover, if the harvesting quota exceeds the value α2/(4s), then
the two equilibrium points merge and then disappear. This occurs when the graph
of the right hand side of (1.13) is tangent to the horizontal axis: the two equilibria
merge into a unique (nonhyperbolic) equilibrium. This is a bifurcation, after which
no equilibrium exists and the only possible evolution is a decrease of population
towards extinction. This sequence of dynamic situations can be summarized by a
bifurcation diagram, see Fig. 1.13, where in the horizontal axis is represented the
bifurcation parameter h and in the vertical axis are reported the equilibrium values,
represented by a continuous line when stable and by a dashed line when unstable.
As it can be seen, as far as h < α2/(4s) we observe only quantitative modifications,
i.e., the stable equilibrium decreases and the unstable one increases (thus causing the
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Fig. 1.13 Bifurcation
diagram of the harvesting
model (1.13) with constant
harvesting h as bifurcation
parameter

shrinking of the basin of attraction), whereas at the bifurcation value an important
qualitative change occurs, leading to the disappearance of the two equilibrium points
and consequently to a completely different dynamic scenario. This is the essence of
the concept of bifurcation, related to slight modifications of a parameter leading to
a qualitatively different phase diagram. It is worth noting that in this case the bifur-
cation occurring for increasing values of the “policy parameter” h is characterized
by irreversibility (or hysteresis effect). In fact, if the harvesting quota h is gradually
increased until it crosses the bifurcation point, then the fish population will decrease,
see point A in Fig. 1.13. At this stage, even if the parameter h is decreased to reach
a pre-bifurcation value h < α2/(4s), it may be not sufficient to bring the system
back to the stable equilibrium, because the phase point is trapped below the survival
threshold x∗

0 .

1.2.1.4 Local Bifurcations in One-Dimensional Nonlinear Models
in Continuous Time

Two one-dimensional dynamical systems ẋ = f (x) and ẋ = g(x) are qualitatively
equivalent if they have the same number of equilibrium points that orderly have,
along the phase line, the same stability properties. This equivalence relation defines
classes of equivalent dynamical systems on the line, see, e.g., the sketch represented
in Fig. 1.14. One of these dynamical systems is structurally stable if after a slight
modification of the graph of the function at the right hand side, for example a small
variation of a parameter, it remains in the same equivalence class. In other words,
such small variation only causes quantitative modifications of the equilibrium points.
Instead if an arbitrarily small modification causes a qualitative change in the num-
ber and/or in the stability properties of the equilibria, so that the system enters a
different equivalence class, then a bifurcation occurs at the boundary between two
equivalence classes, and the system is said structurally unstable when it is along the
boundary. These bifurcation situations, i.e., these situations of structural instability,
are characterized by the presence of one or more nonhyperbolic equilibrium points.

The kinds of bifurcations through which such qualitative changes occur can be
classified into a quite limited number of categories.
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Fig. 1.14 Equivalence
classes of dynamical systems
of the line

Fold BifurcationThis bifurcation is characterized by the creation of two equilibrium
points, one stable and one unstable, as a parameter varies. Of course, if the same
parameter varies in the opposite direction, at the bifurcation point two equilibrium
points, one stable and one unstable,merge and then disappear. A canonical example is
given by the dynamical system ẋ = f (x) = μ − x2 as the parameterμ varies through
the bifurcation value μ0 = 0 (see Fig. 1.15, where the bifurcation diagram is shown
as well). Notice that two equilibrium points x∗

1,2 = ±√
μ only exist for μ ≥ 0, and

they are coincident x∗
1,2 = 0 for μ = 0 and nonhyperbolic, as f ′(x) = −2x vanishes

for x = 0. Instead, for μ > 0 the two equilibrium points are one stable and one
unstable being f ′(x∗

1) = f ′(−√
μ) = 2

√
μ > 0 and f ′(x∗

2) = f ′(√μ) = −2
√

μ < 0.
Of course, if we start our analysis from a positive value of the parameter μ and
decrease it until it reaches and crosses the bifurcation value μ = 0, we observe two
equilibrium points, one stable and one unstable that join atμ = 0 and then disappear.
It is worth noticing that the unstable equilibrium represents the boundary of the basin
of attraction of the stable one, so we may describe this bifurcation by saying that a
stable equilibrium collides with the boundary of its basin and then disappears.

Transcritical (or Stability Exchange) Bifurcation This bifurcation is character-
ized by the existence of two equilibrium points, one stable and one unstable, that
merge at the bifurcation point and after the bifurcation they still exist but both with
opposite stability property, i.e., the once stable becomes unstable whereas the once
unstable becomes stable. A canonical example is given by the dynamical system
ẋ = f (x) = μx − x2 as the parameter μ varies through the bifurcation value μ0 = 0
(see Fig. 1.16, where the bifurcation diagram is shown as well). Notice that two
equilibrium points x∗

1 = 0 and x∗
2 = μ always exist: they are coincident x∗

1,2 = 0
for μ = 0 and nonhyperbolic, as f ′(x) = μ − 2x vanishes for μ = 0 and x = 0. As
f ′(x∗

1) = f ′(0) = μ and f ′(x∗
2) = f ′(μ) = −μ, x∗

1 = 0 is stable for μ < 0 and unsta-
ble for μ > 0 whereas x∗

2 = μ is unstable for μ < 0 and stable for μ > 0. So we can
say that they merge at the bifurcation point and exchange their stability.
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Fig. 1.15 Fold bifurcation

Fig. 1.16 Transcritical
bifurcation

Pitchfork Bifurcation This bifurcation is characterized by a transition from a single
equilibrium point to three equilibria: the one already existing changes its stability
property as the bifurcation parameter crosses the bifurcation point, and this leads to
the simultaneous creation of two further equilibria. Of course, if the same parameter
varies in the opposite direction, at the bifurcation point two equilibrium points merge
and disappear and only the central one survives, even if it changes its stability prop-
erty. A canonical example is given by the dynamical system ẋ = f (x) = μx − x3 as
the parameter μ varies through the bifurcation value μ0 = 0 (see Fig. 1.17, where
the bifurcation diagram is shown as well). Notice that the equilibrium points x∗

0 = 0
always exists, and two further ones, x∗

1,2 = ±√
μ for μ ≥ 0. All three are coinci-

dent x∗
0 = x∗

1,2 = 0 for μ = 0, thus giving a unique nonhyperbolic equilibrium at
the bifurcation point. In fact, from f ′(x) = μ − 3x2 follows that f ′(0) = μ, hence
x∗
0 is stable for μ < 0 and unstable for μ > 0. Instead, for μ > 0 the two newly
born equilibrium points x∗

1,2 are both stable being f ′(±√
μ) = −μ < 0. Of course,

if we start our analysis from a positive value of the parameter μ and decrease it until
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Fig. 1.17 Pitchfork bifurcation

it reaches and crosses the bifurcation value μ = 0, we observe three equilibrium
points, the one in the middle unstable and two stable at opposite sides, that join at
μ = 0 and then disappear while the central one becomes stable. It is worth noticing
that for μ > 0, when three equilibrium points exist, a situation of two coexisting
stable equilibria, each with its own basin of attraction, occurs. Moreover, the central
(unstable) equilibrium represents the boundary that separates the two basins of attrac-
tion in this situation of bistability.

This kind of bifurcation is called supercritical pitchfork bifurcation in order to
distinguish it from the subcritical one, represented in the samepicture,where a unique
unstable equilibrium becomes stable at the bifurcation value with the simultaneous
creation of two unstable equilibrium points located at opposite sides, and constitutes
the upper and lower boundary of the basin of attraction of the central stable one. The
canonical dynamical system that gives rise to a subcritical pitchfork bifurcation is
ẋ = f (x) = x3 − μx, as the parameter μ is increased through the bifurcation value
μ0 = 0.

1.2.2 Two-Dimensional Dynamical Systems in Continuous
Time

We now consider dynamic models of systems whose state is described by two vari-
ables, say x1(t) and x2(t), which are interdependent, i.e., the time evolution of x1(t),
expressed by its time derivative ẋ1, can be influenced by itself and by x2(t), and the
same holds for ẋ2:

ẋ1 = f1(x1(t), x2(t)) ,

ẋ2 = f2(x1(t), x2(t)) .
(1.14)
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A general method to get a qualitative global view of the phase portrait of a model
in the form (1.14) is obtained by a representation, in the phase space (x1, x2), of the
two curves of equation f1(x1, x2) = 0 and f2(x1, x2) = 0, usually called nullclines.
The points of intersection of these curves are the equilibrium points, solutions of the
following system of two equations with two unknowns

f1(x1, x2) = 0 ,

f2(x1, x2) = 0 .
(1.15)

Moreover, the two curves subdivide the phase plane into zones characterized by
different signs of the time derivatives (ẋ1, ẋ2). The resulting directions (obtained by
the usual graphical rule of vector sum) give a qualitative idea of the dynamics of
the model in each region of the phase plane. As an example of this method, let us
consider the prey-predator model, also known as Lotka-Volterra model

ẋ1
ẋ2

=
=

αx1 − sx21 − bx1x2 = x1(α − sx1 − bx2)
−dx2 + cx1x2 = x2(cx1 − d)

(1.16)

where x1 = x1(t) represents the numerosity (or the density) in a given region of a
species (the prey) that feeds from the environment, and x2 = x2(t) represents the
numerosity (or density) of predators that can only take nourishment from the prey
population x1. In the absence of predators (x2 = 0) the prey population evolves
according to the usual logistic growth function, whereas in the absence of preys
(x1 = 0) predators exhibit an exponential decay at rate d (mortality for starvation).
The interaction term, proportional to the product xy under the assumption of random
motion of prey and predators in the region considered (like in gas kinetics) has a
negative effect on preys and positive on predators. This simple ecological model
was proposed by the Italian mathematician Vito Volterra to explain the endogenous
mechanism leading to oscillations in the fish harvesting observed in the Adriatic Sea.

Let us first consider the simpler case obtained by assuming s = 0 (like in the first
model proposed by Volterra). In this case, the nullcline ẋ1 = 0 is given by x1 = 0,
i.e., the vertical axis, or the horizontal line x2 = α/b, and the nullcline ẋ2 = 0 is given
by x2 = 0, i.e., the horizontal axis, or the vertical line x1 = d/c (see Fig. 1.18). The
coordinate axes are trapping sets, i.e., any trajectory starting from an initial condition

Fig. 1.18 Phase plane
analysis of the
Lotka-Volterra model (1.16)
with s = 0



24 G.I. Bischi et al.

taken on the vertical axis x1 = 0 remains there (as the rate of change of x1 is ẋ1 = 0
on it) and the corresponding trajectory goes to 0, the exponential decline of predators
in the absence of preys. Instead along the trapping horizontal axis x2 = 0 the prey
population increases without any bound, as the term of overcrowding is neglected
being in this case s = 0. In order to understand what happens starting from initial
conditions interior to the positive quadrant, i.e., from initial situations of coexistence
of preys and predators, we represent the horizontal and vertical arrows with orienta-
tions according to the signs of ẋ1 and ẋ2 (see Fig. 1.18). The directions of the phase
vectors (also called phasors) clearly indicate a counterclockwise cyclic motion. This
represents an oscillatory motion of both x1(t) and x2(t), hence endogenous or self-
sustained oscillations. This is an important result, because it states that a dynamic
system can exhibit autonomous oscillations, without any oscillatory forcing term.
In other words a system with interacting components can oscillate even if nobody
shakes it from outside.

An intuitive explanation of this dynamic behavior can be easily provided in the
case of the prey-predator system modeled by Volterra. In fact, let us assume that
at the initial time a few preys and a lot of predators are present, i.e., a small x1
value and a large x2 value, an initial state located in the upper-left quadrant of the
phase space. In this case predators suffer for scarcity of food, and their number will
decline. After this decline a few predators remain and preys will increase because
of low predatory pressure. After this preys’ population increase predators will have
plenty of available food and consequently their population will increase, and this
will lead to severe predatory pressure and thus a decay in preys’ population. So, we
again find the system in a situation with a few preys and a lot of predators, and the
same process will be repeated, thus giving the cyclic time evolution.

Some trajectories starting from different initial conditions are shown in the left
panel of Fig. 1.19, whereas the versus time representation of a typical trajectory
can be seen in the right panel. Of course, the trajectory starting from the positive
equilibrium point E = (d/c, α/b), located at the intersection of two nullclines, will
remain there forever. However, if a perturbation causes a shift of the phase point
from E then endless oscillations will start, with greater amplitude according to the
distance of the initial condition (i.e., the entity of the shift) from the equilibrium

Fig. 1.19 Phase portrait (left) and versus time (right) representation of the trajectories of the model
(1.16) with s = 0
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Fig. 1.20 Phase portrait and versus time representation of the trajectories of the model (1.16) with
s > 0

point. Of course also O = (0, 0) is an equilibrium point, located at the intersections
of the nullclines that coincide with the coordinate axes. A classification of these
equilibrium points will be proposed in Sect. 1.2.2.1.

One may wonder what happens if the overcrowding parameter s > 0, i.e., the
prey population alone follows a logistic growth. In this case the prey nullcline has
equation α − sx1 − bx2 = 0, i.e., it is a tilted line with negative slope (see Fig. 1.20).
It is not easy to understand how the trajectories change by the qualitative method of
nullclines and phasors. A numerical representation of a typical trajectory in the phase
plane as well as the corresponding time paths x1(t) and x2(t) are shown in Fig. 1.20;
however a more detailed analysis will be possible with the methods described in the
next sections.

We end this section by stressing the fact that endogenous oscillations are a well
known phenomenon in a capitalistic economy, where up and down patterns have
been (and currently are) observed in the main macroeconomic indicators. As we will
see in more details later in these lecture notes, the same dynamic equations proposed
by Volterra to describe the time evolution of preys’ and predators’ populations have
been used (with founded motivations) by the economist Richard Goodwin in [14] to
represent endogenous business cycles, by using salaries and occupation as dynamic
variables. This is an example of how dynamic models can be usefully applied in
different fields.

1.2.2.1 Linear Systems

Following the same path as for the one-dimensional case, let us first of all consider a
linear homogeneous system of two differential equations of first order (i.e., involving
only the first derivative of the dynamic variables) with constant coefficients in the
(normal) form:

{
ẋ1 = a11x1 (t) + a12x2 (t) ,

ẋ2 = a21x1 (t) + a22x2 (t) .
(1.17)
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This linear system can be written in matrix form

ẋ = Ax , (1.18)

where

A =
(
a11 a12
a21 a22

)
, x(t)=

(
x1(t)
x2(t)

)
, ẋ(t)=

(
ẋ1(t)
ẋ2(t)

)
.

The aim of this section is to show a procedure to find the solutions of this system that
reduces to a very simple algebraic method that essentially consists in the solution of
a second degree algebraic equation (in the field of complex numbers).

However, before stating this result, we outline the arguments at the basis of the
proof.

An important general property of a linear system of ordinary differential equations
is that given two solutions, say

ϕ(t) =
(

ϕ1(t)
ϕ2(t)

)
and ψ(t) =

(
ψ1(t)
ψ2(t)

)

any linear combination of them

y(t) = αϕ(t) + βψ(t) with α, β ∈ R (1.19)

is a solution of (1.17) as well. In fact, assuming that both ϕ(t) andψ(t) satisfy (1.18)
being then solutions, we obtain

ẏ = αϕ̇ + βψ̇ = αAϕ + βAψ = A (αϕ + βψ) = Ay ,

so that also y(t) is a solution. Thismeans that the set of all the solutions, obtainedwith
different “weights” α and β in the linear combination, is a vector space. Moreover,
it is possible to prove that it has dimension 2, i.e., all the solutions can be generated
as linear combinations of just two independent solutions, that form a base of the
vector space. The definition of independent solutions is the usual one: given two
solutions, say again ϕ(t) and ψ(t), they are independent if αϕ(t) + βψ(t) = 0 ∀t
implies α = β = 0. In order to check such independence it is possible to use the
Wronskian determinant

W (t) = Det

(
ϕ1(t) ψ1(t)
ϕ2(t) ψ2(t)

)
= ϕ1(t)ψ2(t) − ψ1(t)ϕ2(t) .

IfW (t) �= 0 for at least a t value, then the two solutionsϕ(t) andψ(t) are independent.
In fact, it is possible to prove that only one of the following is true: W (t) = 0 ∀t or
W (t) �= 0 ∀t. Hence it is sufficient to check it for just one value of t, for example
W (0) �= 0.



1 Qualitative Methods in Continuous and Discrete Dynamical Systems 27

So, in order to find the general solution (i.e., all the possible solutions) of (1.17)
it is sufficient to find just two of them which are independent. Then the general
solution will be in the form (1.19) and, by imposing an initial conditions x1(0), x2(0)
the two constants α and β can be uniquely determined by solving the following linear
algebraic system

α

(
ϕ1(0)
ϕ2(0)

)
+ β

(
ψ1(0)
ψ2(0)

)
=
(

ϕ1(0) ψ1(0)
ϕ2(0) ψ2(0)

)(
α

β

)
=
(
x1(0)
x2(0)

)
,

which is a linear system whose coefficient matrix is nonsingular, being W (0) �= 0
its determinant.

In the following we show a direct method to find two independent solutions.
Following again the same arguments as in the one-dimensional case, let us propose
a “trial solution” in exponential form, i.e.,

xi (t) = vie
λt , i = 1, 2 . (1.20)

As ẋ1 (t) = λv1eλt and ẋ2 (t) = λv2eλt , after replacing this trial solution into (1.17)
we get {

λv1eλt = a11v1eλt + a12v2eλt

λv2eλt = a21v1eλt + a22v2eλt

and after simplification of all the identical exponential it becomes

{
(a11 − λ)v1 + a12v2 = 0
a21v1 + (a22 − λ)v2 = 0

or (A − λI) v = 0 (1.21)

an algebraic linear homogeneous system with unknowns v1 and v2 and parameter λ.
This homogeneous systems has nontrivial solutions (i.e., solutions different from
(0, 0)) provided that

Det

([
a11 − λ a12
a21 a22 − λ

])
= 0 or Det (A − λI) = 0

This condition can be expressed in the form of the “characteristic equation”

λ2 − Tr(A)λ + Det(A) = 0 , (1.22)

where Tr(A) = a11 + a22 (the sum of diagonal elements of the matrix A) and
Det(A) = a11a22 − a12a21 (the determinant of the matrix A).

This is a standard problem of linear algebra, known as eigenvalue problem. In
fact, in matrix form it can be expressed as

Av = λv with v �= 0 and λ ∈ C ,



28 G.I. Bischi et al.

Fig. 1.21 Some phase
diagrams of a linear system
of the plane with real
eigenvalues

i.e., the linear operator A, applied to the vector v, gives a vector λv proportional to
it, let’s say in the same direction. The real number λ is called eigenvalue and the
solution vector v eigenvector.

To sum up, veλt is a solution of (1.17) if and only if [A − λI] v = 0, i.e., λ is
an eigenvalue of A with corresponding eigenvector v �= 0, i.e., Det [A − λI] = 0
or, equivalently, if λ satisfies the characteristic equation (1.22). This reduces the
problem of finding two independent solutions of (1.17) to the computation of two
solutions of the second degree algebraic equation (1.22). According to the sign of
the discriminant of the characteristic equation, Tr(A)2 − 4Det(A), we can have two
real distinct, two real coincident or two complex conjugate eigenvalues. This will
give rise to different kinds of phase portraits, as explained below.

1. If we have two real, distinct and negative eigenvalues λ2 < λ1 < 0, i.e., Tr (A)2 −
4Det (A) > 0with Tr(A) < 0 andDet(A) > 0, then the two independent solutions
are v1eλ1t and v2eλ2t , both decreasing to 0 as t → ∞. The general solution is

x(t) = c1v1eλ1t + c2v2eλ2t , (1.23)
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where the two constants c1 and c2 are uniquely determined according to the ini-
tial condition x(0) = (x1(0), x2(0)). The corresponding phase diagram is repre-
sented in Fig. 1.21 and the asymptotically stable equilibrium is called stable node
(or sink).

2. If we have two real, distinct and positive eigenvalues λ1 > λ2 > 0, i.e., Tr (A)2 −
4Det (A) > 0withTr(A) > 0 andDet > 0, then the two independent solutions are
v1eλ1t and v2eλ2t , both increasing to ∞ as t → ∞. The general solution is again
of the form (1.23), the corresponding phase diagram is represented in Fig. 1.21
and the unstable equilibrium (0, 0) is called unstable node (or source).

3. If we have two real distinct eigenvalues of opposite sign, λ2 < 0 < λ1, i.e.,
Tr (A)2 − 4Det (A) > 0 with Det < 0, then the two independent solutions v1eλ1t

and v2eλ2t are one increasing to ∞ and one decreasing to 0 as t → ∞. The corre-
sponding phase diagram is represented in Fig. 1.21 and the unstable equilibrium
(0, 0) is called saddle. Notice that an invariant line exists, called stable manifold
(along the direction indicated by the eigenvector v2 associated with the negative
eigenvalue, whereas the line along the eigenvector v1, associated to the positive
eigenvalue, is referred to as the unstable manifold), on which the dynamics is
asymptotically convergent to the equilibrium (0, 0). Nevertheless the equilib-
rium is unstable, and the kind of notion around it may even be misleading, as
the generic trajectory first moves towards it (so that it may look as a convergent
trajectory) whereas it then turns away from the equilibrium.

4. If we have two coincident and negative eigenvalues λ1 = λ2 = λ < 0 (and con-
sequently v1 = v2 = v), i.e., Tr (A)2 − 4Det (A) = 0 with Tr < 0, then two inde-
pendent solutions are veλt and vteλt , both converging to 0 as t → ∞, and the
general solution becomes

x(t) = c1veλt + c2vteλt . (1.24)

The corresponding phase diagram is represented in Fig. 1.21 and the stable equi-
librium (0, 0) is called stable improper node (or stable star node in particular
symmetric situations).

5. If we have two coincident and positive eigenvalues λ1 = λ2 = λ > 0 (and con-
sequently v1 = v2 = v), i.e., Tr (A)2 − 4Det (A) = 0 with Tr > 0, then we have
the same general solution and the corresponding phase diagram is obtained from
the previous one just reversing the arrows and is called unstable improper node
(or unstable star node in particular symmetric situations).

6. If Tr (A)2 − 4Det (A) < 0 we have two complex conjugate eigenvalues λ1 = a +
ib andλ2 = a − ib, where a = Re(λ) = Tr(A)/2 is the real part and b = Im (λ) =√
4Det(A) − Tr(A)2/2 is the imaginary part. Again two independent solutions

are ϕ(t) = v1eλ1t and ϕ̄(t) = v2eλ2t , with both the eigenvalues as well as the
corresponding eigenvectors complex. However, ϕ̄(t) is the complex conjugate of
ϕ(t), and we can write them in trigonometric form

ϕ(t) = v1eat (cos(bt) + ı sin(bt)) and ϕ̄(t) = v̄1eat (cos(bt) − ı sin(bt)) .
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As any linear combination of two solutions is again a solution of (1.17) we can
obtain two independent real solutions in the form

1

2
(ϕ(t) + ϕ̄(t)) = Re ϕ(t) = (Re v1)eat cos(bt)

1

2i
(ϕ(t) − ϕ̄(t)) = Im ϕ(t) = (Im v1)eat sin(bt)

So, the general solution can be written in the form

x(t) = eat [c1(Re v1) cos(bt) + c2(Im v1) sin(bt)] (1.25)

from which we can see that the part inside square brackets causes oscillations
around the equilibrium (0, 0) whereas the exponential term outside the square
brackets determines the expanding or contracting nature of the oscillations: if
a < 0, i.e., Tr(A) < 0, then the oscillations exhibit decreasing amplitude and
converge to the equilibrium (0, 0), if a > 0, i.e., Tr(A) > 0, then the oscillations
increase in amplitude and diverge. Finally, if a = 0, i.e., Tr(A) = 0, then the
oscillations are of constant amplitude. The corresponding phase diagram are rep-
resented in Fig. 1.22, and the corresponding phase diagrams are denoted as stable

Fig. 1.22 Some phase
portraits of a linear system of
the plane with complex
eigenvalues
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Fig. 1.23 The
trace-determinant plane for a
linear two-dimensional
continuous time system

focus (or stable spiral), unstable focus (or unstable spiral) and center respectively.
Notice that the case of complex eigenvalues is the first one giving oscillations, and
the imaginary part of the eigenvalues b = 0.5

√
4Det(A) − Tr(A)2 determines the

time required to complete a whole oscillation, given by T = 2π/b.

To summarize all these cases it is useful to represent the trace Tr(A) and the deter-
minant Det(A) on the coordinate axes of a Cartesian plane (see Fig. 1.23), together
with the curve of equationTr(A)2 − 4Det(A) = 0 (a parabolawith vertex in the origin
of the axes). Above the parabola we have Tr(A)2 − 4Det(A) < 0, hence oscillatory
behavior, below it we have Tr(A)2 − 4Det(A) > 0, so we have nodes and saddles
according to the sign of Det(A).

Remark 1.1 It is worth noting that asymptotic stability of the unique equilibrium
occurs only in the quadrant with Tr(A) < 0 and Det(A) > 0. Moreover, in this case
of linear dynamicmodels the local asymptotic stability is equivalent to global asymp-
totic stability, i.e., if the equilibrium is stable it attracts all the initial conditions
(x1(0), x2(0)) ∈ R

2. Instead, when the equilibrium is unstable, then all the initial
conditions starting outside the equilibrium generate diverging trajectories.

Some other particular cases can be noticed. For example, if Det(A) �= 0 then the
linear homogeneous algebraic system to obtain the equilibrium points Ax = 0 has
the unique solution (0, 0), whereas if Det(A) = 0 then infinitely many equilibrium
points exist, located along a line through the origin. These equilibria are nonhy-
perbolic being one of the eigenvalues equal to zero. Even in the case of Tr(A) = 0
and Det(A) > 0 the equilibrium point is denoted as nonhyperbolic as the real part
of the eigenvalues vanishes. These will identify the bifurcation cases when dealing
with 2-dimensional nonlinear dynamic models (in continuous time) that depend on
a bifurcation parameter.
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1.2.2.2 Nonlinear Dynamic Models in Two Dimensions

Let us consider a nonlinear model in the form (1.14) and let E = (x∗
1, x

∗
2

)
be an

equilibrium point, solution of the system (1.15). Differently from the linear models,
in the nonlinear case several equilibrium points can coexist. However, what we have
seen for a linear system can be used to understand the local behavior of a nonlinear
system around a single equilibrium, i.e., locally, in a neighborhood of the equilibrium
point. We recall that a neighborhood of a point of x∗ ∈ R

n is a set Nr(x∗) defined as

Nr(x∗) = {x ∈Rn| ∥∥x − x∗∥∥ < r
}
for some r > 0

where ‖·‖ is a norm, such as the Euclidean norm ‖x‖ =
√∑n

i=1 x
2
i . Hence in R

n a
neighborhood is an open disk of radius r and center x∗. In the following we will
characterize the local phase portrait in a neighborhood of an equilibrium point E =(
x∗
1, x

∗
2

)
by using the linear approximation of the nonlinear system obtained by the

first order Taylor expansion

f1 (x1, x2) = f1
(
x∗
1, x

∗
2

)+ ∂f1
∂x1

∣∣∣∣
E

(
x1 − x∗

1

)+ ∂f1
∂x2

∣∣∣∣
E

(
x2 − x∗

2

)+ o(
∥∥x − x∗∥∥) ,

f2 (x1, x2) = f2
(
x∗
1, x

∗
2

)+ ∂f2
∂x1

∣∣∣∣
E

(
x1 − x∗

1

)+ ∂f2
∂x2

∣∣∣∣
E

(
x2 − x∗

2

)+ o(
∥∥x − x∗∥∥) ,

where the symbol o (·) represents higher order infinitesimal terms as x → x∗. Being
E an equilibrium, fi

(
x∗
1, x

∗
2

) = 0, i = 1, 2, so if we define the Jacobian matrix as the
matrix that collects the four partial derivatives

J (x1, x2) =
[

∂f1
∂x1

(x1, x2)
∂f1
∂x2

(x1, x2)
∂f2
∂x1

(x1, x2)
∂f2
∂x2

(x1, x2)

]

and we substitute the Taylor expansion, then (1.14) can be written as

[
Ẋ1

Ẋ2

]
= J

(
x∗
1, x

∗
2

) [X1

X2

]
+ o ‖X‖ ,

where X1 = x1 − x∗
1, X2 = x2 − x∗

2 are coordinates centered in E, i.e., that measure
the displacement from the equilibrium. Under suitable conditions we can use the
linear approximation around x∗ to classify the local phase portrait according to the
following result.

Theorem 1.2 (LinearizationTheorem)Let the nonlinear system (1.14) have an equi-
librium x∗ such that all the eigenvalues of J (x∗) have nonvanishing real part. Then
in a neighborhood of x∗ the local phase portrait of (1.14) is qualitatively equivalent
to that of the linear approximation.
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This is a quite informal and intuitive version of a more general theorem known
as Hartman-Grobman Theorem. Here below we give a more rigorous version of it,
extended to n dimensions, where the definition of qualitative (or topological) equiv-
alence is included as well.

Theorem 1.3 (Hartman-Grobman [15, 18])Given a nonlinear system of differential
equations ẋ = f (x), x ∈ R

n, let x∗ ∈ R
n be an equilibrium point, i.e., f (x∗) = 0. If

x∗ is hyperbolic, i.e., all the eigenvalues of the Jacobian matrix J (x∗) have nonvan-
ishing real part, then the general solution y(t) ∈ R

n of the linear system ẏ = J (x∗) y
is such that a neighborhoodU of x∗ exists and homeomorphism y = h (x) exists, with
h defined in U and with values in a neighborhood of the equilibrium 0 of the linear
system, such that y (t) = h (x (t)) ∀t ∈ R with x (t) ∈ U solution of ẋ = f (x).

We recall that a homeomorphism is a continuous and invertible function.
The Hartman-Grobman theorem essentially states that the trajectories of a nonlin-

ear dynamic model in a neighborhood of a hyperbolic equilibrium are similar to the
ones of its linear approximation whose matrix of coefficients is given by the Jacobian
matrix computed at the equilibrium. This implies that any hyperbolic equilibrium
point of a nonlinear dynamical system can be classified as a stable (unstable) node,
or a saddle, or a stable (unstable) focus as for the corresponding linear approxima-
tion. The corresponding phase portraits may be in some way distorted (stretched,
rotated etc.) however they are topologically equivalent. In particular the stable and
unstable invariant manifold of saddles still exist, even if they are no longer lines but
smooth curves tangent to the eigenvectors of the corresponding linear approximation.

A corollary of the Hartman-Grobman Theorem is given by the following propo-
sition about local asymptotic stability of an equilibrium.

Theorem 1.4 (Local Asymptotic Stability) Let x∗ be an equilibrium point of ẋ =
f (x), x ∈ R

n. If all the eigenvalues of J (x∗) have negative real part then x∗ is a
locally asymptotically stable equilibrium. If at least one eigenvalue of the Jacobian
matrix J (x∗) has positive real part then x∗ is unstable.

To sumup, given an equilibriumpointwe can analyze the local qualitative behavior
in a neighborhood of an hyperbolic equilibrium (i.e., the qualitative structure of
the phase portrait around it) just studying the eigenvalues of the Jacobian matrix
computed in it, that follows immediately from the computation of the trace and the
determinant according to the classification listed for linear systems. However this
procedure only gives information about the local behavior around the equilibrium
points, and nothing about the global behavior, even if this is usually a good starting
point to have a global view as well.

We also stress that theHartman-GrobmanTheoremprovides no information about
the behavior of the dynamical system around nonhyperbolic equilibria, i.e., when the
determinant or the trace of the Jacobian matrix vanish. Such nongeneric situations
are often characterized by structural instability, and in the presence of a parameter
they may give rise to bifurcations, as will be discussed in the next section.
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A Simple Example Let us consider the system of nonlinear differential equations

{
ẋ1
ẋ2

=
=

2x1 − x21 − 2x1x2
2x2 − x22 − 2x1x2

(1.26)

with a generic initial condition (x1(0), x1(0)) ∈ R
2.

The equilibrium points are the solutions of

x1 (2 − x1 − 2x2) = 0
x2 (2 − x2 − 2x1) = 0

given by O = (0, 0), A = (2, 0), C = (0, 2), E = (2/3, 2/3). Given the Jacobian
matrix

J (x1, x2)=
[
2 − 2x1 − 2x2 −2x1

−2x2 2 − 2x1 − 2x2

]

a classification of the equilibrium points is easily obtained by the method of linear
approximation based on the computation of the Jacobian in each of them.

J (O)=
[
2 0
0 2

]

is a diagonal matrix, hence the eigenvalues are readily computed being them the
diagonal entries2: λ1 = λ2 = 2 > 0. Hence the equilibrium is a repelling node, and
due to the particular symmetric structure of the model, the equilibrium point of the
corresponding linear approximation is a star node.

J (A)=
[−2 0
−4 −2

]

is a triangular matrix, so even in this case the eigenvalues are given by the diagonal
entries: λ1 = λ2 = −2, and we have a stable improper node. Analogously for the
equilibrium B. Finally,

J (E) =
[− 2

3 − 4
3− 4

3 − 2
3

]

from which we can see that Tr(E) = −4/3 < 0 and Det(E) = −4/3 < 0. Hence, E
is a saddle. It is easy to verify that the eigenvalues are λ1 = −2 with corresponding
eigenvalue v1 = (1, 1) (tangent to the stable manifold) and are λ2 = 2/3 with corre-
sponding eigenvalue v2 = (1,−1) (tangent to the unstable manifold), see Fig. 1.24.
Notice that, due to the symmetric form of (1.26), in this case the line along the direc-
tion indicated by v1 = (1, 1) is the invariant stable manifold. Moreover, as usual,

2The property that the diagonal entries coincide with the eigenvalues of the matrix holds for all
triangular matrices.
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Fig. 1.24 Phase portrait for
the competition model (1.26)

such stable manifold constitutes the boundary that separates the basins of the two
stable equilibrium points A and B.

The restriction of the system (1.26) to the positive quadrant R2+ = {(x1, x2) ∈
R

2|x1 ≥ 0; x2 ≥ 0}, is an example of Volterra model of competition between two
species {

ẋ1
ẋ2

=
=

α1x1 − s1x21 − b1x1x2 ,

α2x2 − s2x22 − b2x1x2 ,
(1.27)

where each species alone grows according to a logistic law of motion, and the inter-
action has a negative effect on both, as each of them is assumed to subtract food
from the other one. The study of this model led to the mathematical formulation of
the principle of competitive exclusion: if two species need the same vital resources,
then only one will survive. Which species will survive depends on the parameters
that characterize each species behavior as well as on the initial advantage (i.e., the
initial condition). This principle can be extended to the case of n species, and may
have several applications even in social and economic systems. A good exercise is
to generalize the results obtained in the particular case considered above to the more
general model (1.27) in order to understand the role of each parameter on existence
and stability of equilibria.

Another Ecological Example: the Prey-Predator Lotka-Volterra Model The
prey-predator Lotka-Volterra model has been already described at the beginning
of this section. Let us consider again the model (1.16) and compute its equilibrium
points, solutions of the algebraic system

x1(α − sx1 − bx2) = 0 ,

x2(cx1 − d) = 0 ,
(1.28)

given by

O = (0, 0) ; A =
(α

s
, 0
)

; E =
(
d

c
,
αc − sd

bc

)
. (1.29)
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The equilibrium O represents the extinction of both species, so its stability indicates
that there are no viability conditions for both species, at least for initial conditions in
its basin of attraction; if the equilibrium A is stable, then the ecological conditions
are not suitable to allow predators’ survival. Only the stability of the equilibrium E
can ensure the coexistence of the two species, provided it is positive, i.e., αc > sd,
and for initial conditions in its basin. In order to study the local stability of the three
equilibrium points, let us consider, as usual, the Jacobian matrix

J (x1, x2)=
[
α − 2sx1 − bx2 −bx1

cx2 cx1 − d

]

and compute it in each equilibrium point. At the equilibrium

J (0, 0) =
[
α 0
0 −d

]

we have a diagonal matrix with eigenvalues λ1 = α > 0 and λ2 = −d < 0, so that
the equilibriumO is a saddle. It is easy to check that, as usual with a diagonal matrix,
the eigenvector associated with the first eigenvalue (the positive one in this case) is
v1 = [1, 0], hence the unstable manifold is along the horizontal axis. Instead, the
eigenvector associated with the second eigenvalue (the negative one in this case) is
v2 = [0, 1], so the stable manifold of the saddle is along the vertical axis. Notice
that both the coordinate axes are invariant lines. In fact, x1 = 0 implies ẋ1 = 0, so a
trajectory starting from an initial condition on the vertical axis, i.e., (0, x2(0)) with
x2(0) > 0, is trapped inside it and is governed by the one dimensional restriction
ẋ2 = −dx2, hence exhibits an exponential decay (the decay of predator population
in the absence of preys). The same holds for the horizontal axis x2 = 0, and the
dynamics on that trapping line is given by the logistic growth of preys’ population in
the absence of predators. As shown in Sect. 1.2.1.2, such dynamics converge to the
equilibrium A. This is confirmed by the analysis of

J (A)=
[−α −b α

s
0 c α

s − d

]
,

which is a triangular matrix, hence the eigenvalues are given, again, by the diagonal
entries, λ1 = −α < 0 and λ2 = cα/s − d < 0, negative for αc < sd and positive
otherwise. Hence the equilibrium A is a stable node if αc < sd, whereas it is a
saddle if αc > sd. Notice that the latter is also the condition for the positivity of the
equilibrium E, thus confirming that stability of A is equivalent to the extinction of
predators’ population. When αc = sd, equilibrium A is nonhyperbolic and merges
with E, being in this case also d/c = α/s which implies E = A. This is typical
example of a transcritical bifurcation. Notice that v1 = [1, 0], hence the equilibrium
A is always stable in the horizontal direction, whereas the eigenvector associated to
λ2, given by v2 = [1, (sd − αc − αs) /(ab)], is transverse to the horizontal axis, and
is tangent to the unstable manifold when A is a saddle.
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The stability of the equilibrium of coexistence E is obtained through

J (E)=
[ − sd

c
−bd
c

αc−sd
b 0

]
,

from which Tr (J) = −sd/c ≤ 0 and Det (J) = d (αc − sd) /c > 0 whenever the
equilibrium E has positive coordinates. If s > 0 then the equilibrium E is locally
asymptotically stable whenever it is positive. Moreover, being Tr (J)2 − 4Det (J) =
d2s (s + 4) /c2 − 4dα < 0, if α > ds(s + 4)/

(
4c2
)

then E is a stable
focus (see Fig. 1.20). A particular case occurs if s = 0, as Tr(J) = 0 and conse-
quently we have pure imaginary eigenvalues (i.e., eigenvalues with real part equal
to zero). This implies that E is nonhyperbolic, hence the Hartman-Grobman Theo-
rem cannot be applied. However, it can be shown that in this very particular case the
trajectories are given by closed curves around E, which is marginally stable. This
has been proved by Volterra in [34] and can be confirmed numerically as shown in
Fig. 1.19.

We now propose another modification of the prey-predator model by introducing
an effect of satiation of predators’ appetite, i.e., we assume that predators cannot eat
more than a given upper limit. This is expressed by the following model proposed
in [30]

ẋ1
ẋ2

=
=

αx1 − sx21 − b x1x2
h+x1

,

−dx2 + c x1x2
h+x1

,
(1.30)

where the function g(x1) = x1/(h + x1) is a typical “saturation function” with the
following properties: g(0) = 0 (no eating without preys), g′(x1) > 0, i.e., it increases
with x1 (more preys implies more food to eat) but saturates, i.e., g(x1) → 1 as x1 →
∞ (toomany preys lead to appetite saturation). The constant h, called “half saturation
constant”, gives a measure of how fast is appetite satiation, as g(h) = 1/2. The
dynamic behavior of this model is characterized by the presence of an invariant
closed orbit on which trajectories move periodically, like in the classical Lotka-
Volterra model. However, in this case the closed orbit is unique and attracts the
trajectories around it. Such orbit is called limit cycle (Fig. 1.25).

1.2.2.3 Periodic Solutions and Limit Cycles

From the examples shown in the previous sections we have seen that with 2-
dimensional dynamical systems in continuous time, differently from what happens
for 1-dimensional systems, the invariant sets are not only given by equilibriumpoints.
In fact, we can also have invariant closed orbits on which periodic trajectories exist,
defined as solutions x(t) = ϕ(t) for which there is a T > 0 such that ϕ(t + T) = ϕ(t)
and for each |t1 − t2| < T we have ϕ(t1) �= ϕ(t2). T is called period of the periodic
trajectory. As usual for an invariant set, the question of stability arises (see Sect. 1.1):
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Fig. 1.25 Phase portrait for the prey-predator model with saturation of predators’ appetite (1.30)

Fig. 1.26 Limit cycles

if a trajectory starts from an initial condition belonging to the invariant closed orbit
Γ , then it remains trapped inside Γ by definition, but what about trajectories starting
around it, i.e., from a neighborhood of Γ ? Do they approach Γ asymptotically for
t → ∞? or, do they move away from it? or, do they remain distinct from Γ and
close to it? These are the cases shown in Fig. 1.26, where a new kind of attractor
or repellor existing in 2-dimensional dynamical systems is shown: the limit cycle.
These kinds of solutions are very interesting in economic modeling, as they represent
self-sustained cyclic behaviors, that every time go back to an already “visited” state,
repeating the same path periodically.

Some general theorems and methods exist, for continuous time 2-dimensional
dynamical systems, to detect the presence of limit cycles, as well as some results on
bifurcations that create them, as we will see in the following.

First of all, inR2 the Jordan curve lemma states that any closed orbitΓ divides the
plane into two connected and disjoint regions, one inside and one outside the closed
curve, such that two points taken one in the inside region and one outside can only
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Fig. 1.27 Qualitative
illustration of
Poincaré-Bendixson
Theorem

be connected by a trajectory crossing Γ . This implies that if a smooth3 dynamical
system of the plane has a closed invariant curve, then any trajectory starting from
an initial condition inside it remains inside forever, and the same must hold for a
trajectory starting outside. In other words, both regions are trapping. This is due to
the fact that two trajectory cannot cross in an ordinary point due to the Theorem of
uniqueness, hence a trajectory starting inside Γ cannot exit it because this cannot
occur without crossing the orbit Γ . This lemma, which is quite intuitive for a system
of the plane, is no longer true inmore than two dimensions, as it is possible to connect
any points without crossing the closed curve Γ if the third dimension is available.
And the same holds with discrete time even in two dimensions as the trajectories in
discrete time can jump from a point to another. So, the following Theorem, which
is a consequence of the Jordan curve lemma, only holds for continuous-time two-
dimensional dynamical systems.

Theorem 1.5 (Poincaré-Bendixson Theorem) Let ẋ = f (x) be a set of two ordinary
differential equations defined in an open set G ⊆ R

2, and let D ⊂ G be a compact
(i.e., closed and bounded) trapping set that does not contain any equilibrium point.
Then D must contain at least one closed invariant orbit of the dynamical system.

Figure1.27 illustrates the meaning of the theorem.
A corollary of this theorem states that if K ⊆ G is a nonempty compact and

trapping set then it must contain an equilibrium point or a closed invariant orbit.
Moreover, if Γ is a closed orbit such that its interior region is entirely included into
G (the set where the dynamical system is defined) then Γ must include at least one
equilibrium point.

The Poincaré-Bendixson gives an existence result, that is it can be used to detect
the presence of limit cycles, but gives no information about their stability or cre-
ation/destruction as a consequence of bifurcations as some parameters are varied.

1.2.2.4 Bifurcations of Two-Dimensional Dynamical Systems

In Sect. 1.2.2.1 we have seen that a topological classification of the unique equi-
librium point of a 2-dimensional linear dynamical system is reduced to a simple

3By the term smoothwemean a C(1) dynamical system, i.e., expressed by equations of motion with
continuous derivatives, so that the Theorem of existence and uniqueness apply.
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inspection of the sign of the trace and the determinant of the matrix of coefficients.
In particular, the equilibrium is asymptotically stable whenever the trace is negative
and the determinant is positive. If the coefficients depend on some parameters it may
happen that, starting from a configuration with a stable equilibrium, a continuous
variation of a parameter leads to a change in sign of the trace or of the determinant,
so that the equilibrium loses stability. In a linear system this implies that a dynamic
scenario of global asymptotic convergence to the equilibrium is transformed into a
situation of global divergence, i.e., any initial condition outside the equilibrium leads
to an explosive trajectory going infinitely far from the equilibrium point. In other
words, in a linear system the local behavior and the global behavior coincide.

According to the Hartman-Grobman Theorem, the topological classification of
an (hyperbolic) equilibrium point of a nonlinear system can be obtained by the same
procedure, provided that the matrix of coefficient of the linear approximation is
obtained from the Jacobianmatrix computed at the equilibrium considered. However,
this equivalence is only local, i.e., it holds in a neighborhood (no information on
the size) of the equilibrium point considered. So, in general nothing guarantees
that such local classification can be extended globally, to the whole phase space.
Moreover, a nonlinear system may have several equilibrium points (and even other
invariant sets, such as the closed invariant orbits discussed in the previous section)
so the global phase portrait may be quite complicated and cannot be, in general,
deduced by a simple union of local phase portraits obtained around the hyperbolic
equilibria. But the differences between linear and nonlinear models are not limited
to these local/global considerations, as remarkable differences are related to the
study of structural stability, i.e., what happens when, due to slight variations of some
parameters, one or more equilibrium points change their stability properties, i.e., the
trace and/or the determinant of a Jacobian matrix computed at an equilibrium point
show a sign change. Indeed, in general such transitions of an equilibrium point from
stable to unstable do not just imply a transition from stability to instability, but are
associated with the creation/destruction of other equilibrium points around them or
even to the creation/destruction of invariant closed orbits. The former occurrence
will be described in terms of fold, transcritical or pitchfork bifurcations, as already
seen in the case of one-dimensional dynamical systems, whereas the latter case will
be described by a new kind of bifurcation, that has no one-dimensional analogue,
denoted as Andronov-Hopf bifurcation. It will be characterized by the presence of
complex conjugate eigenvalues crossing the imaginary axis, i.e., changing the sign of
their real part, or equivalently situationswith positive determinant and vanishing trace
in the Jacobian matrix. All phenomena related to the presence of oscillatory behavior
(due to focus, or spiral, equilibriumpoints) hence only occurring in dimension greater
than one.

Therefore, while for linear systems a loss of stability leads to uninteresting
dynamic scenarios, as loss of stability implies global divergence, in the case of
nonlinear models the bifurcations leading to the loss of stability of an equilibrium
may open new interesting dynamic scenarios, characterized by new equilibria and
even new kinds of attracting sets. This means that the regions of the space of parame-
ters characterized by instability of one or more equilibrium points may indicate the
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outcome of more interesting and even intriguing global phase portraits, character-
ized by coexistence of several attracting sets each with its own basin of attraction
separated by basin boundaries on which unstable equilibria are located. In the fol-
lowing part of this section we recall in a more formal way some definitions and local
bifurcations already described in an intuitive (mainly graphical) way in Sect. 1.2.1.4,
and then we will introduce the Andronov-Hopf bifurcation.

As already intuitively stated, the notion of structural stability is strictly related to
the definition of topological equivalence between two dynamical systems.

Definition 1.7 A dynamical system ẋ = f (x), x ∈ R
n, is topologically equivalent

(or conjugate) to the dynamical system ẏ = g (y), y ∈ R
n, if a homeomorphism

h : Rn → R
n, y = h(x), exists that transforms the phase portrait (i.e., all the orbits)

of the x of the former into the phase portrait in the y space of the latter, preserving
the direction of time.

We recall that a homeomorphism is an invertible function h such that both h and
h−1 are continuous.

Given a dynamical system that depends on a parameter

ẋ(t) = f (x(t), μ) , x(t) ∈ R
n, μ ∈ R ,

let us consider its phase diagram. Of course it will depend on μ, in the sense that
different values of the parameter μ will cause modifications (let’s say deformations,
distortions etc.) of the phase lines. Such variations of the global phase portrait may
be only quantitative (displacements or continuous deformations that are topologi-
cally equivalent) or qualitative (an arbitrarily small variation of μ leads to a phase
portrait which is not equivalent, due to a local stability change and/or to the cre-
ation/destruction of invariant sets, such as equilibrium points or closed orbits). This
leads to the following definition

Definition 1.8 The transition between two non-equivalent phase diagrams due to
the variation of a parameter is called bifurcation.

In other words, a bifurcation is a qualitative modification of the phase diagram of
a dynamical system when a parameter crosses a critical (or threshold) value, called
bifurcation value. It is worth noticing that the kinds of bifurcations can be classified
according to a quite limited number of cases. Without entering the details of a more
general topological view of this phenomenon, we just mention that the existence of a
limited set of possible bifurcations is related to a general theory on structural stability
of vector fields depending on parameters, known as singularity theory or theory of
catastrophes, see, e.g., [33].

If a real eigenvalue, say λ1(μ), changes its sign at the bifurcation value μ0, i.e.,
it crosses through the origin of the complex plane moving along the real axis as
the parameter μ is varied through μ0, then along the invariant manifold associ-
ated to λ1 we have one of the one-dimensional bifurcations already described for
one-dimensional system, namely a fold (or tangent) bifurcation, also denoted as
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Fig. 1.28 Pitchfork
bifurcation in a
two-dimensional dynamical
system with bifurcation
parameter μ

saddle-node bifurcation in dimension greater than 1, or a transcritical bifurcation or
a pitchfork bifurcation. This bifurcation only affects the qualitative dynamic behavior
along the one-dimensional invariant manifold associated to λ1. In this case, at each
value of the parameter μ a planar phase portrait is associated around the bifurcating
equilibrium, hence a three-dimensional bifurcation diagram is required to represent
the bifurcation, with a coordinate axis on which the parameter μ is measured and
the 2-dimensional phase plane where the corresponding invariant sets are graphically
represented, see, e.g., Fig. 1.28, where the case of a supercritical pitchfork bifurcation
is qualitatively shown.

In other words, these bifurcations are caused by a single real eigenvalue that
changes the sign, associated to an eigenvalue that vanishes, i.e., a change of sign of
the determinant of the Jacobian matrix, can be described in terms of the correspond-
ing bifurcations of the one-dimensional restriction of the 2-dimensional dynamical
system along the invariant manifold associated with the eigenvalue vanishing at the
bifurcation value of the parameter.

In order to give a classification, in the following we generalize and make more
precise the classification of such bifurcations. If we denote by

ẋ = f (x, μ) , x ∈ R , μ ∈ R ,

the one-dimensional restriction of the 2-dimensional dynamical system along the
invariant manifold along which the bifurcation occurs, such that f is smooth and
x∗(μ) is the equilibrium such that for μ = 0 we have x∗(0) = 0 with associated
eigenvalue λ(0) = fx (0, 0) = 0, we have the following classification:

• If fxx (0, 0) �= 0 and fμ (0, 0) �= 0 then the restriction is topologically equivalent
to the normal forms:

ẏ = μ ± y2 ,

i.e., the normal forms of the fold bifurcation.
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• If ∂f (x,μ)

∂x = 0 (vanishing eigenvalue), ∂3f (x,μ)

∂x3 �= 0 and ∂2f (x,μ)

∂μ∂x �= 0, then the restric-
tion is topologically equivalent to the normal form

ẏ = μy − y3 ,

and according to the sign of ∂3f (x,μ)

∂x3 and ∂2f (x,μ)

∂μ∂x we have a supercritical or a
subcritical pitchfork bifurcation.

• If ∂f (x,μ)

∂x = 0 (vanishing eigenvalue), ∂2f (x,μ)

∂x2 �= 0, ∂2f (x,μ)

∂μ∂x �= 0. then the restriction
is topologically equivalent to the normal form

ẏ = μy − y2,

and we have a transcritical (or stability exchange) bifurcation.

It is worth stressing that in all these cases the equilibrium points involved are
nodes and saddles that become nonhyperbolic at the bifurcation. Instead, in the
case of spiral (or focus) equilibria that change stability due to a couple of complex
conjugate eigenvalues that cross the imaginary axis, i.e., λ1,2 = ±iω0, hence, due
to a positive determinant of the Jacobian matrix and a trace that changes its sign.
The corresponding bifurcation is known as Hopf (or Andronov-Hopf) bifurcation
(see, e.g., [12, 16]).

Theorem 1.6 (Andronov [4]; Hopf [20]) Let us consider the 2-dimensional dynam-
ical system

ẋ = f (x, μ) , x ∈ R
2 , μ ∈ R ,

with f formed by two smooth functions, and let x∗(μ) be an isolated equilibriumpoint,
i.e., f (x∗, μ) = 0. Let us assume that the eigenvalues λ1,2 (μ) = α (μ) ± iω (μ) are
complex for μ in a neighborhood of μ0 and that for μ = μ0 they are purely imagi-

nary, i.e., the real part vanishes: α(μ0) = 0, ω (μ0) = ω0 > 0. If ∂ Re λ1,2

∂μ

∣∣∣
μ=μ0

> 0

(transversality condition) holds then x∗ is a stable focus for μ < μ0 and an unstable
focus for μ > μ0, and at μ = μ0 a closed invariant orbit Γ is created around x∗
such that one of the following holds:

(i) Γ exists for μ > μo and is a stable limit cycle (supercritical case);
(ii) Γ exists for μ < μo and is an unstable limit cycle (subcritical case);
(iii) infinitely many closed invariant curves exist for μ = μo which are neutrally

stable (center case).

The period of the trajectories moving around is T(μ) = 2π/ω0 + o(|μ − μ0|)
and in cases (i) and (ii) the amplitude of Γ increases as the bifurcation parameter
moves away from the bifurcation value proportionally to

√|μ − μ0|.
To sum up, this bifurcation is a device to create limit cycles (see Fig. 1.29).
In the supercritical case, when the equilibrium from stable focus is transformed

into an unstable focus, a small stable limit cycle is created around it, which attracts
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Fig. 1.29 Hopf bifurcation:
supercritical (upper panel)
and subcritical (lower panel)
case

the trajectories starting inside the cycle, close to (but different from) the equilibrium,
as well as those starting outside it. So, the loss of stability is denoted as “soft” in the
sense that trajectories issuing from a neighborhood of the equilibrium remain close
to it even if they oscillate around it without converging. Instead, in the subcritical
case an unstable closed orbit surrounds the stable equilibrium and constitutes the
boundary that delimits its basin of attraction.As the bifurcation parameter approaches
its bifurcation value, the basin shrinks because the unstable orbit collapses to the
equilibrium point, and then disappears. Hence after the bifurcation the orbits issuing
from the unstable equilibrium are not confined and move towards another attracting
set, that may be a different equilibrium or some other closed orbit of large amplitude
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Fig. 1.30 Center case

already existing towards infinity (i.e., diverging trajectories). This situation is also
denoted as “hard stability loss”.

It is worth noticing that in the case of a supercritical Hopf bifurcation, at the bifur-
cation value the nonhyperbolic equilibrium is stable,whereas in the case of subcritical
bifurcation at the bifurcation value the nonhyperbolic equilibrium is unstable.

Let us also notice that the case (iii) is similar to what happens in a linear system
when the trace of the matrix of coefficients changes its sign while the determinant
is positive so that a pair of complex conjugate eigenvalues cross the imaginary axis,
see the bifurcation diagram shown in Fig. 1.30.

As an example, let us consider the following “normal form”

{
ẋ1 = μx1 − x2 − x1

(
x21 + x22

)
,

ẋ2 = x1 + μx2 − x2
(
x21 + x22

)
.

(1.31)

The unique equilibrium is x∗ = (0, 0) where the Jacobian matrix is

J
(
x∗) =

[
μ −1
1 μ

]
,

whose eigenvalues are λ1,2 = μ ± i, hence, it is immediate to see that for μ = 0 an
Andronov-Hopf bifurcation occurs as the two complex conjugate eigenvalues cross
the imaginary axis at μ = 0 going from left to right for increasing μ. Analytic meth-
ods to distinguish super/subcritical cases exist, based on higher order derivatives,
however, we can try to see numerically if a stable limit cycle exists for μ > 0 or an
unstable one (bounding the basin of x∗) exists for μ < 0.
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However in this case, due to the particular structure of the dynamical system, the
model can be written in a simpler form by using polar coordinates r (distance from
the equilibrium) and θ (angle of rotation):

x1(t) = r(t) cos θ(t) ,

x2(t) = r(t) sin θ(t) ,

from which

ẋ1 = ṙ cos (θ) − r sin (θ) θ̇ ,

ẋ2 = ṙ sin (θ) + r cos (θ) θ̇ .

Replacing x1, x2, ẋ1, ẋ2 in (1.31) the model becomes

{
ṙ = r

(
μ − r2

)
,

θ̇ = 1 .

The second equation indicates a constant rotation speed, the first the presence of an
equilibrium r = 0,which is stable forμ ≤ 0 (even if it is not hyperbolic atμ = 0), and
a further equilibrium r = √

μ (r can only assume positive values), that coincideswith
r = 0 for μ = 0 and departs from it for μ > 0. This newborn equilibrium is stable
and represents a limit cycle of radius r(μ) = √

μ around the unstable equilibrium
r = 0 for μ > 0. So, the bifurcation occurring at μ = 0 represents a supercritical
Andronov-Hopf bifurcation.

As an exercise it can be proved that the following model exhibits a subcritical
Andronov-Hopf bifurcation at μ = 0

{
ẋ1 = μx1 − x2 + x1

(
x21 + x22

)
,

ẋ2 = x1 + μx2 + x2
(
x21 + x22

)
.

It can be noticed that at the bifurcation value μ = 0 the equilibrium (0, 0), corre-
sponding to r = 0 in polar coordinates, is stable in the supercritical case and unstable
in the subcritical case. If we consider only the linear part (identical in both the systems
proposed) given by {

ṙ = μr ,

θ̇ = 1 ,

we can notice that the equilibrium r = 0 is asymptotically stable for μ < 0 and
unstable for μ > 0, but differently from the nonlinear case, at μ = 0 it is a center
with infinitely many limit cycles around it. In fact, for μ = 0 we have ṙ = 0, hence
any r > 0 is an equilibrium. However, all these closed invariant circles disappear for
μ > 0.
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An Economic Example: The Kaldor Business Cycle Model (1940)
This is a two-dimensional nonlinear dynamical system to model the endogenous
oscillations of an economic system, see [21]. Let Y(t) be the national income
(or output) and K(t) the capital stock at time t. The model can be expressed as

{
Ẏ = α (I (Y ,K) − S (Y ,K)) ,

K̇ = I (Y ,K) − δK ,
(1.32)

where the rate of change Ẏ of the output is proportional to the difference between
investment I (Y ,K) and savings S (Y ,K), the positive proportionality constant α is
the measure of the speed of reaction of the national income to such difference.

Kaldor assumes that investments I (Y ,K) are positively influenced by income
Y , i.e., ∂I

∂Y := IY > 0, and investments decrease if the capital stock increases, i.e.,
∂I
∂K := IK < 0. The latter assumption is related to the fact that if the capital level
is very high entrepreneurs are not motivated to invest to increase production. For
sake of simplicity Kaldor assumes that saving S is an increasing function of Y with4

0 < SY < 1, and also an increasing function of the capital stock, i.e., SK ≥ 0. The fact
that the level of economic activities, measured by Y , increases proportionally to the
demand excess I (Y ,K) − S (Y ,K) is in agreement with the short-period dynamics
assumed in Keynesian models.

Also the second dynamic equation is quite standard, as it states that the rate of
growth of the capital stockK is given by the level of investments I (Y ,K) and reduced
by a depreciation (or capital decay) rate δ.

Following these general assumptions, let us consider, for sake of simplicity, a
linear saving function depending on Y only, and a nonlinear investment function
with “saturation effects” for small and large values of Y as well:

S (Y) = σY with 0 ≤ σ ≤ 1

I (Y ,K) = σμ + γ
(σμ

δ
− K

)
+ arctan (Y − μ) ,

so, the following “Kaldorian” model is obtained:

{
Ẏ = α

(
σμ + γ

(
σμ

δ
− K

)+ arctan (Y − μ) − σY
)

,

K̇ = σμ + γ
(

σμ

δ
− K

)+ arctan (Y − μ) − δK .

From the equilibrium conditions Ẏ = 0 and K̇ = 0 we get

σμ + γ
(

σμ

δ
− K

)+ arctan (Y − μ) − σY = 0 ,

σμ + γ
(

σμ

δ
− K

)− δK = − arctan (Y − μ) .

4The condition SY < 1 states the principle of Keynesian multiplier, being SY the reciprocal of the
Keynesian multiplier 1/(1 − CY ) where CY is the consumption propensity given by CY = 1 − SY .
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hence
K = σ

δ
Y

σ
(
1 + γ

δ

)
(Y − μ) = arctan (Y − μ)

The point P = (μ, σμ/δ) is always an equilibrium of the model (1.32), however,
two further equilibrium points may be created as further intersections, symmetric
with respect to Y = μ, between the line z = σ (1 + γ /δ) (Y − μ) and the sigmoid
curve z = arctan (Y − μ), as the slope of the line is varied. The Jacobian matrix

J (Y ,K) =
[
α
(

1
1+(Y−μ)2

− σ
)

−αγ
1

1+(Y−μ)2
−γ − δ

]

at the equilibrium P becomes

J (P) =
[
α (1 − σ) −αγ

1 −γ − δ

]
,

hence,

Tr (J (P)) = α (1 − σ) − γ − δ ,

Det (J (P)) = −α (1 − σ) (γ + δ) + αγ ,

and from the stability conditions Tr (J (P)) < 0, Det (J (P)) > 0 we obtain

Tr (J (P)) < 0 ⇒ α <
γ + δ

(1 − σ)
or σ >

α − γ − δ

α
,

Det (J (P)) > 0 ⇒ σ >
δ

γ + δ
.

These two stability conditions define a region of stability in the space of the
parameters. For example, if we consider the parameters’ plane (α, σ ) the stabil-
ity region is bounded by the curve (branch of an equilateral hyperbola) σ = σh =
(α − (γ + δ)) /α that represents a Hopf bifurcation curve, and the horizontal line
σ = σp = δ/(γ + δ) that represents a pitchfork bifurcation curve. In Fig. 1.31 the
stability region in the parameters’ plane (α, σ ) is represented by the gray-shaded
region. If, starting from the stability region with α > δ + γ , the propensity to save
is decreased below the Hopf bifurcation value σh = δ/(γ + δ), then a supercritical
Hopf bifurcation occurs after which a stable limit cycle is created, on which periodic
oscillations occur. The same occurs for σ > δ/(γ + δ) and speed of adjustment α

increasing beyond the bifurcation value αh = (δ + γ ) /(1 − σ). In these cases the
model is suitable to describe endogenously generated oscillations. However, if start-
ing from a set of parameters inside the stability region the propensity to save σ is
decreased below σp, then a pitchfork bifurcation occurs at which two stable nodes are
created, one below and one above the central equilibrium, which becomes a saddle
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Fig. 1.31 Stability region of
the equilibrium point P for
the Kaldor model (1.32)

at the bifurcation. After the bifurcation, bistability is observed with two equilibrium
points characterized by a smaller and larger value of national income Y , each with its
own basin of attraction separated by the stable set of the saddle: a poverty trap and a
richness trap. These two different situations may be both present in the lower-right
region of the plane, i.e., with sufficiently large values of α and small values of σ ,
with dynamic scenarios given by three equilibria (two stable spirals with a saddle
in the middle whose spiraling stable set separates the basins) surrounded by a large
stable limit cycle.

So, this version of the Kaldor model exhibits many different dynamic scenarios,
some expected on the basis of the local stability analysis, but other situations can only
be revealed through a global numerical explorationswith different sets of parameters.

1.2.3 Multi-dimensional Dynamical Systems in Continuous
Time

Many of the results about linear systems, linearization of nonlinear ones around
equilibrium points, their stability and related bifurcations can be extended to n-
dimensional dynamical systems with n > 2, i.e., with more than two dynamic vari-
ables. However, as we will see, some important differences are worth being empha-
sized, first of all, the possibility of chaotic trajectories and chaotic attractors for
n ≥ 3.

1.2.3.1 Linear Systems

For a linear system ẋ = Ax, x ∈Rn, withA n × nmatrix of constant coefficients, we
again have solutions given by linear combinations of functions like:
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veλt , vteλt , vt2eλt , . . . , veRe (λ)t cos (Im (λ) t) , veRe (λ)t sin (Im (λ) t) ,

vteRe (λ)t cos (Im (λ) t) , vteRe (λ)t sin (Im (λ) t) , . . .

whereλ is a (real or complex) solutionof the characteristic equationDet (A−λI)= 0,
expressed by an algebraic equation of degree n

P(λ) = λn + a1λ
n−1 + a2λ

n−2 + · · · + an−1λ + an = 0 , (1.33)

where again a1 = Tr(A) = a11 + a22 + · · · + ann, ak , k = 2, . . . , n − 1, given by a
sum of nminors of order k, an = Det(A). Let v ∈Rn be a corresponding eigenvector,
solution of the homogenous linear system of order n: (A − λI) v = 0. The condition
for the asymptotic stability of the unique equilibrium 0 is that all the eigenvalues5

have negative real part, i.e., Re (λ) < 0 for each eigenvalue. This can be equivalently
stated as Re (λ1) < 0 where λ1 is the dominant eigenvalue, defined as the one with
maximum real part in the set of all eigenvalues (i.e., the rightmost one in the complex
plane). Of course, we can have a single real dominant eigenvalue or a couple of
complex conjugate dominant eigenvalues.

If the dominant eigenvalue λ1 is real and negative, then the long run dynamics
towards the equilibrium is monotonic as all the possible oscillatory modes associated
with complex eigenvalues vanish in the long run faster than the solution associated
to λ1. The return time is estimated as Tr = −1/λ1.

If the dominant eigenvalue is a couple of complex conjugate ones, hence with
the same real part Re (λ1), then an oscillatory convergence is observed in the long
run with characteristic return time Tr = −1/Re (λ1) and rotation period Trot =
2π/ Im (λ1).

A necessary condition for all the eigenvalues (i.e., the solutions of the character-
istic equation (1.33)) to have negative real parts is ak > 0 for k = 1, . . . , n.

A necessary and sufficient condition for the same property is formulated through
the Routh-Hurwitz criterion, which is expressed in terms of the coefficients ak , k =
1, . . . , n, of (1.33) as follows.

Theorem 1.7 (Routh-Hurwitz criterion) Let us consider the matrix formed by coef-
ficient of (1.33) arranged in the following matrix

⎡

⎢⎢⎢⎢
⎣

a1 1 0 0 0 . . . 0
a3 a2 a1 1 0 . . . 0
a5 a4 a3 a2 a1 . . . 0
. . . . . .

0 0 0 0 0 . . . an

⎤

⎥⎥⎥⎥
⎦

(1.34)

5According to the Fundamental Theorem of Algebra a polynomial P(λ) of degree n always has n
complex solutions (counted with proper multiplicity in the case of coincident ones). Moreover, if
the coefficients ak of the polynomial are real numbers, like in our case, for each complex root with
Im(λ) �= 0 the complex conjugate is a root as well.
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Then all the solutions of (1.33) have negative real parts if and only if the leading
principal minors of the matrix (1.34) are positive.

For example, for n = 2 we have

a1 > 0 and Det

[
a1 1
0 a2

]
> 0 ,

i.e., a1a2 > 0, equivalent to the already stated stability conditions a1 > 0 and a2 > 0,
i.e., Tr(A) < 0 and Det(A) > 0.

For n = 3 the criterion gives

a1 > 0, Det

[
a1 1
a3 a2

]
> 0 and Det

⎡

⎣
a1 1 0
a3 a2 a1
0 0 a3

⎤

⎦ > 0 ,

equivalent to a1 > 0, a3 > 0 and a1a2 > a3.
For n = 4,

a1 > 0 , Det

[
a1 1
a3 a2

]
> 0 , Det

⎡

⎣
a1 1 0
a3 a2 a1
0 a4 a3

⎤

⎦ > 0 and Det

⎡

⎢
⎢
⎣

a1 1 0 0
a3 a2 a1 1
0 a4 a3 a2
0 0 0 a4

⎤

⎥
⎥
⎦ > 0 ,

equivalent to a1 > 0, a2 > 0, a3 > 0, a4 > 0 and a1a2a3 − a23 − a4a21 > 0.
And so on for higher n.
As an example, let us consider the fourth degree equation z4 + 5z3 + 13z2 + 9z +

10 = 0. We are not able to solve it, however as the coefficients are all positive and
5 · 13 · 9 − 92 − 10 · 52 = 254 > 0 we can deduce that all its 4 roots have negative
real part (they may be all real, or two real and two complex conjugate, or two pairs
of complex conjugate).

So, again, the problem of stability of the equilibrium of a linear dynamical system
is reduced to a set of algebraic conditions, even if these conditions are, of course,
more an more complicated as the dimension of the dynamical system increases.
If the coefficients of the dynamical system, and consequently of the characteristic
equation, depend on one or more parameters, the stability conditions can be used to
detect changes of stability as the parameters are varied. In the case of linear systems
a transition from stability to instability means a transition from global asymptotic
stability to divergent trajectories.

Another interesting result about localization of eigenvalues in the complex plane
is expressed by the following.

Theorem 1.8 (Gerschgorin Circle Theorem) Let A = [aij
]
be a square matrix with

complex entries aij ∈ C. Let
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Fig. 1.32 Two applications of Gershgorin Circle Theorem. The matrix A and its transpose on the
left, a matrix with negative diagonal dominance on the right

Dk =
⎧
⎨

⎩
z ∈ C such that |z − akk| ≤

n∑

j=1,j �=k

∣∣akj
∣∣

⎫
⎬

⎭
, k = 1, . . . , n,

be the set of n disks with center in the kth diagonal entry and radius given by the
sum of the absolute values of the non-diagonal entries of the same row. Then all the
eigenvalues of A must be contained in the union of the n disks.

Corollary 1.1 As the eigenvalues of a matrix and its transpose are the same, the
disks may be defined with reference to columns

D′
k =

⎧
⎨

⎩
z ∈ C such that |z − akk| ≤

n∑

j=1,j �=k

∣∣ajk
∣∣

⎫
⎬

⎭
, k = 1, . . . , n,

hence, the region of the complex plane allowed to eigenvalues is given by the inter-
section of the two unions, i.e.,

(
n⋃

k=1

Dk

)

∩
(

n⋃

k=1

D′
k

)

.

Figure1.32 gives an example of the application of the Gerschgorin Theorem.
The Gerschgorin Theorem provides useful application to the study of stability in

the case of negative diagonal dominant matrices.

Definition 1.9 A matrix is diagonal dominant if for each row (or each column) the
following inequality holds

|akk| >

n∑

j=1,j �=k

∣∣akj
∣∣

⎛

⎝|akk| >

n∑

j=1,j �=k

∣∣ajk
∣∣

⎞

⎠

Moreover, if akk < 0 for each k then the matrix is called negative diagonal dominant.
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An immediate corollary of the Gerschgorin Theorem is the following.

Corollary 1.2 If a matrix is negative diagonal dominant then all its eigenvalues
have negative real part.

From the point of view of dynamical systems, this stability statement can be
expressed by saying that if self-control (i.e., the inhibitory effect that a dynamic
variable exerts on itself) is stronger than joint influence of all other variables, then
the system is stable. As an example, let us consider the following linear dynamical
system

ẋ1 = −3x1 + x2 + x3 ,

ẋ2 = 2x1 − 5x2 + 2x3 ,

ẋ3 = x1 + 2x2 − 4x3 ,

whose Gerschgorin disks are shown in right panel of Fig. 1.32.

1.2.3.2 Nonlinear Systems

Let us consider an n-dimensional dynamical system in the form

ẋ = f(x;μ), x ∈Rn, μ ∈ R , (1.35)

and let x∗(μ) be an equilibrium point, implicitly defined as a solution of the nonlin-
ear system f(x;μ) = 0 of n equations with n unknowns. In order to study the local
stability and to have an idea of the kind of local phase portrait in a neighborhood of
each equilibrium point, the linear approximation Ẋ = J(x∗(μ))X can be considered,

where J(x∗(μ)) =
[

∂fi
∂xi

|x∗
]
is the n × n Jacobian matrix computed at the equilibrium

point considered, and X = x − x∗ is the displacement from the equilibrium. If the
equilibrium point is hyperbolic, i.e., all the eigenvalues of J(x∗) have nonvanishing
real part, then the study of the local stability of the equilibrium is reduced to the study
of the stability of the linear approximation, and even the local qualitative behavior
of the dynamical system can be deduced from the study of the linear approximation,
according to the Hartman-Grobman Theorem. In particular, we have the result that
if all the eigenvalues have negative real part, then the equilibrium is locally asymp-
totically stable. Moreover, the dominant eigenvalue (or dominant couple, in the case
of complex conjugate dominant eigenvalues) provides information about the kind of
equilibrium we are dealing with and the speed of convergence to the equilibrium.

In analogy with what we have seen for the two-dimensional nonlinear dynamical
systems, if the dominant eigenvalue (or couple of dominant eigenvalues) moves from
negative to positive real part (i.e., cross the imaginary axis) as some parameter is
varied, i.e., if some of the Routh-Hurwitz conditions change sign, then a bifurcation
occurs at which the equilibrium considered becomes unstable. This is generally
associated with some other change in phase portrait, such as creation/destruction of
equilibrium points or closed invariant curves, or merging of equilibria with stability
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Fig. 1.33 Qualitative
representations of
saddle-focus equilibrium
points in R

3

exchange. In particular, if the eigenvalue crossing the imaginary axis is real, then we
have the usual one-dimensional bifurcations along the invariant direction tangent to
the corresponding eigenvector (i.e., fold, or saddle-node, or pitchfork or transcritical),
whereas if a couple of complex conjugate eigenvalues crosses the imaginary axis
with imaginary part different from zero, then an Andronov-Hopf bifurcation occurs
leading to the creation of a closed invariant curve in the plane of the two independent
real eigenvectors associated (also called center manifold). These bifurcations lead
to scenarios similar to the ones already seen for two-dimensional systems, but with
a richer variety related to the presence of other dimensions, see, e.g., the qualitative
sketches in three dimensions shown in Fig. 1.33.

As it can be noticed, the Jordan curve lemma no longer holds, as trajectories can
jump from inside to outside a closed invariant curve in the center manifold bymoving
outside their plane. This allows the formation ofmore complicated attractors that can-
not exist in two dimensions, which are sometimes called “strange attractors” along
which aperiodic motions can be observed with some features that opened a remark-
able field of studies under the name of “deterministic chaos”, an apparent oxymoron.
In fact, the two words “deterministic” and “chaos” express two quite counterposed
meanings. Deterministic means without uncertainty, predictable, regular, where any
cause implies clear effects or consequences. Chaos is generally referred to confusing,
unpredictable, irregular systems, where consequences of a given cause are not clear.
Indeed, what we are considering is deterministic, because, given an initial condition
and the knowledge of the dynamic equations, a unique time evolution (i.e., a trajec-
tory) of the dynamical system is obtained. This allows one to compute the future state
of the system for any time without any uncertainty, as it was expresses by the French
mathematician Pierre Simon Laplace in 1776 in the following famous statement:

We may regard the present state of the universe as the effect of its past and the cause of
its future. An intellect which at a certain moment would know all forces that set nature in
motion, and all positions of all items of which nature is composed, if this intellect were
also vast enough to submit these data to analysis, it would embrace in a single formula the
movements of the greatest bodies of the universe and those of the tiniest atom; for such an
intellect nothing would be uncertain and the future just like the past would be present before
its eyes (see [23]).



1 Qualitative Methods in Continuous and Discrete Dynamical Systems 55

This statement, that was mainly motivated by the usage of dynamical systems to
describe themotion of rigid bodies (included astronomical motions) is now known as
the Laplacian determinism, and the intellect which is assumed to know the equations
of motion of the Universe and the its exact state at a given time is sometimes called
Laplace’s demon.

The concept of deterministic chaos6 in the theory of dynamical systems was first
glimpsed by Henri Poincaré during his attempt to find the trajectories of a three-
body system in the presence of the gravitational force. In this work Poincaré started
the study of dynamical systems by using topological methods or qualitative theory.
Even without the possibility to visualize numerical computations of the trajectories,
Poincaré described the extreme irregularity of time paths obtained, and the intricacy
of highly intermingled trajectories (“I can imagine them in my mind but I cannot
describe how complicated they are”). His description of the phenomenon of sensitive
dependence on initial conditions is one of the most famous pages of mathematical
literature (from [28]):

If we knew exactly the laws of nature and the situation of the universe at the initial moment,
we could predict exactly the situation of that same universe at a succeeding moment. But
even if it were the case that the natural laws had no longer any secret for us, we could still only
know the initial situation approximately. If that enabled us to predict the succeeding situation
with the same approximation, that is all we require, and we should say that the phenomenon
had been predicted, that it is governed by laws. But it is not always so; it may happen that
small differences in the initial conditions produce very great ones in the final phenomena. A
small error in the former will produce an enormous error in the latter. Prediction becomes
impossible, and we have an apparently fortuitous phenomenon.

In this sense systems that are deterministic exhibit a behavior so irregular that
appear to be similar to chaotic motions, governed by stochastic influences. The
discovery of such irregularities, and related difficulties to make reliable predictions
in some nonlinear dynamical systems, initially had not a strong impact. The question
was stressed, and became quite popular and pervasive in the Sixties of 20th century,
after the work of the American mathematician and meteorologist Edward Lorenz,
who noticed this difficulties in making predictions in some dynamic models used in
weather forecasting. The dynamic equations used by Lorenz are quite simple, even
if they are not linear. They can be expressed by the following three-dimensional
dynamical system ⎧

⎨

⎩

ẋ1 = σ (x2 − x1) ,

ẋ2 = ρx1 − x2 − x1x3 ,

ẋ3 = x1x2 − βx3 ,

(1.36)

where the dynamic variables xi(t), i = 1, 2, 3, as well as the parameters, repre-
sent quantities used to describe weather conditions. For a given set of parameters,
namely σ = 10, β = 2.666, ρ = 20, and initial conditions x1(0) = 10, x2(0) = 10,
x3(0) = 10, Fig. 1.34 shows x1(t) obtained by a numerical simulation of (1.36).

6However the term “chaos” in this context was first introduced in the paper “Period three implies
chaos” by Li and Yorke, see [24].
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Fig. 1.34 Versus time representation of x1(t) along a trajectory of the Lorenzmodel (1.36) obtained
with parameters σ = 10, β = 2.666, ρ = 28 and initial conditions x1(0) = 10, x2(0) = 10, x3(0) =
10 (upper panel); x1(0) = 10, x2(0) = 10, x3(0) = 9.99999 (lower panel)

It is quite evident how irregular the trajectory is. However, the most striking phe-
nomenon lies in the fact that a modification of the initial condition x3(0) of a very
negligible quantity, e.g., subtracting 10−6 so that we start the numerical simulation
from x3(0) = 9.99999 instead of x3(0) = 10, a time series for x3(0) becomes very
different from the previous one as time goes on (even if at the early time steps they
were quite similar). This phenomenon of sensitivity to initial conditions, already
described by Poincaré in 1903, became widely known after the paper by E. Lorenz,
see [25], and is now popularly known as the “butterfly effect”, so called because of
the title of a paper given by Edward Lorenz in [26] to the American Association for
the Advancement of Science in Washington, D.C., entitled “Predictability: Does the
Flap of a Butterfly’s Wings in Brazil set off a Tornado in Texas?” The flapping wing
represents a small change in the initial condition of the system, which causes a chain
of events leading to large-scale phenomena. Had the butterfly not flapped its wings,
the trajectory of the system might have been vastly different.

The phenomenon of sensitive dependence on initial conditions (or butterfly effect)
evidenced how difficult may be tomake forecasting even if a dynamic phenomenon is
represented by deterministic equations (when they are even slightly nonlinear). Small
differences in initial conditions (such as those due to rounding errors in numerical
computation) yield widely diverging outcomes for such dynamical systems, ren-
dering long-term prediction impossible in general. This happens even though these
systems are deterministic, meaning that their future behavior is fully determined by
their initial conditions, with no random elements involved. This was summarized by
Edward Lorenz by the sentence: “When the present determines the future, but the
approximate present does not approximately determine the future”.

So, the statement “if one knows the equations of motion, then one can reliably
forecast the future states of a system starting from the knowledge of its state at a given
time”, is not true in general. This had a strong impact in economics as well. In fact,
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the paradigm of the rational agent in economics, on which is based the mainstream
economic theory after the Sixties of the 20th century, is based on the assumption
that economic agents have correct expectations about future states of the economy
because they know the equations of motion of the economic systems. The existence
of deterministic chaos in economic models based on rational expectations leads to
an evident contradiction.

Of course, the same nonlinear model can behave regularly (converging to an
equilibrium or to a periodic orbit) for some sets of parameters and exhibit chaotic
dynamics for different parameters’ values, and a goal of the qualitative study of
a continuous time nonlinear dynamical system of dimension greater than two is
the detection of the parameters’ changes leading to such irregular behavior. The
discovery (or, better, the re-discovery after the clear statement of Poincaré in 1903)
of this kind of trajectories in deterministicmodels opened in the Sixties and Seventies
of 20th century a huge stream of literature in the field of the theory of dynamical
systems, and this caused a sort of revolution in several disciplines, including physics,
chemistry, sociology, engineering, economics, biology. The so called “chaos theory”
even entered fiction, cinema and philosophical debates, see, e.g., the popularization
book [13].

However, even in the presence of chaotic behavior some regularities can be
detected. For example, if the trajectories are represented in the phase space one
can see that the shape of the attracting set where the chaotic trajectories are con-
fined may be characterized by interesting topological properties. For example, if a
chaotic trajectory of the Lorenz model is represented in the phase space (x1, x2, x3)
a structure like the one shown in Fig. 1.35 is obtained. If a trajectory starts from
an initial condition inside that set, then it remains there and covers any point of it
as time goes on, i.e., it is an invariant set. Moreover, if a trajectory starts outside it
(not too far), then it moves towards the set, where it exhibits irregular (i.e., non-
periodic) time paths and sensitive dependence on initial conditions. For this reason
such invariant set is denoted as “chaotic attractor” or “strange attractor”. The shape
and extension of this attracting compact set may give useful information about the
long-run dynamics of the dynamical system, even if it exhibits deterministic chaos.

Fig. 1.35 Lorenz attractor
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In fact, one can obtain upper and lower bounds (ceiling and floor) for the dynamics
of each dynamic variable, even if its time series is quite irregular.

So, even if from one side the discovery of deterministic chaos weakens the pre-
dictive capacity of nonlinear dynamical systems, it gives some hope that apparently
random phenomena may be generated by a deterministic model (even with a few
dynamic variables and with a simple mathematical expression).

We do not enter into more details about deterministic chaos, and in particular we
avoid to give here a more rigorous definition of it, because we prefer to postpone
such a discussion when dealing with discrete-time dynamical systems, for which
deterministic chaos can even be obtained with one-dimensional dynamic models
and with very mild nonlinearities.

1.3 Discrete-Time Dynamical Systems

Dynamical systems (1.5) with discrete time t ∈ N naturally arise in economic and
social modeling, where changes in the state of a system occur as a consequence of
decisions that cannot be continuously revised (event-driven time). Given a charac-
teristic time interval Δt, taken as a unit of time advancement Δt = 1, if x(t) ∈ R

n

represents the state of the system at a given time t, then the state at the next time
t + 1 is obtained by the application of a map, i.e., a transformation or a function
T : M → M defined in the phase space M ⊆ R

n into itself

x(t + 1) = T(x(t)). (1.37)

So, a single application of the transformation T represents a “unit time advancement”
of the state of the dynamical system and the repeated application (or iteration) induc-
tively defines a trajectory (Fig. 1.36).

In other terms, a trajectory is obtained by the composition of a map with itself

x(1) = T(x(0)); x(2) = T(x(1)) = T(T(x(0)) = T2(x(0); . . . ; x(n) = Tn(x(0))

or, more briefly, it can be written as the sequence

τ(x(0)) = {x(t) ∈ M: x(t) = Tn(x(0)), . . . t ∈ N} .

Fig. 1.36 Schematic representation of a discrete trajectory
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Discrete-time dynamical systems can be obtained through a discretization of conti-
nuous-time dynamical system by replacing time derivative with the corresponding
incremental ratio, that is, from ẋi = fi(x) with ẋi = dxi

dt ≈ xi(t+Δt)−xi(t)
Δt and Δt = 1

we get
xi(t + 1) = xi(t) + fi(x(t)) = Ti(x(t))

However many economic dynamic models are directly obtained under a discrete
time framework. For example let us consider the well known Cobweb Model. A
given good is sold in the market at a unit price p(t). The quantity demanded by
consumers is a function of the price Qd(t) = D(p(t)) denoted as demand function,
usually a continuous and decreasing function (hence invertible). The supply function
expresses the output decided by producers as a function of the priceQs(t) = S(pe(t)),
where pe(t) represents the price expected by producers at time t on the basis of
the information they have when deciding about the quantity to be produced. Let
Δt = 1 be the amount of time necessary to realize the production process (i.e.,
the production lag from production decision to product realization, e.g., maturation
period for agricultural products or production time for an industrial process). Then
the economic equilibrium condition Qd(t) = Qs(t) becomes

D(p(t)) = S(pe(t)). (1.38)

Under the assumption of naïve expectations pe(t) = p(t − 1), i.e., without reliable
information the producers expect that the price at the end of production will be the
same prevailing at the beginning, the model becomes

D(p(t)) = S(p(t − 1)) ,

and by applying the inverse of demand function p = D−1(q) and after a simple time
translation it assumes the standard explicit form

p(t + 1) = D−1(S(p(t))) = T(p(t)) . (1.39)

For example, with linear demand and linear supply functions D(p) = a − bp and
S(p) = −c + dp the model becomes

p(t + 1) = T(p(t)) = −d

b
p(t) + a + c

b
. (1.40)

This dynamic model is known as the “cobweb model”.
Another example is the Cournot duopoly model (see, e.g., [6]), where two firms

produce at time t the quantities q1(t) and q2(t) of the same good (or homogeneous
goods) and sell it in the same market characterized by an inverse demand function
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p = D−1(Q), where Q = q1 + q2 is the total quantity produced. If Ci(qi), i = 1, 2,
are the respective cost functions, then the profits of the two firms are given by

Π1(q1, q2) = pq1 − C1(q1) = D−1(q1 + q2)q1 − C1(q1) ,

Π2(q1, q2) = pq2 − C2(q2) = D−1(q1 + q2)q2 − C2(q1) ,

hence, the profit function of each firm also depends on the production of the other
one, the source of interdependence being the demand function. At each time t each
firm decides its next period production qi(t + 1) (to be realized after the production
lag Δt = 1) in order to maximize its own profit. However, at time t each firm does
not know the production decision of the other firm, so an expected value must be
considered in the maximization problems

qi(t + 1) = arg max
qi(t+1)

Πi (t + 1) = argmax
qi

[D−1
(
qi + qe−i (t + 1)

)
qi − Ci (qi)] .

(1.41)
For example, if we consider linear demand and linear cost functions, p = a − b(q1 +
q2) and Ci(qi) = ciqi, then producer 1 faces the optimization problem

max
qi(t+1)

Πi (t + 1) = max
q1

[(a − c1)q1 − bq1q
e
2(t + 1) − bq21] .

From the first order condition (necessary condition for a maximum) ∂Π1
∂q1

= 0, we get
(a − c1) − bqe2(t + 1) − 2bq1 = 0 from which it is q1(t + 1) = −1/2qe2(t + 1) +
(a − c1)/(2b). The second order condition

∂2Π1

∂q21
= −2b < 0 ensures that it is indeed

a maximum. If we solve the same problem for the second firm and we assume naïve
expectations, i.e., that qej (t + 1) = qj(t), we obtain the following two-dimensional
linear discrete time dynamical system

⎧
⎨

⎩

q1(t + 1) = B1(q2(t)) = − 1
2q2(t) + a−c1

2b

q2(t + 1) = B2(q1(t)) = − 1
2q1(t) + a−c2

2b

(1.42)

Instead, if the (inverse) demand function is assumed to be isoelastic (in particular
with unitary elasticity) with the form p = 1/Q, then the same arguments lead to the
following nonlinear discrete dynamical system

⎧
⎨

⎩

q1(t + 1) = R1(q2(t)) = √
q2(t)/c1 − q2(t)

q2(t + 1) = R2(q1(t)) = √
q1(t)/c2 − q1(t)

(1.43)
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1.3.1 One-Dimensional Discrete Dynamical Systems

1.3.1.1 The Simplest One: Linear Homogeneous

The simplest discrete time recurrence is the linear homogeneous iterated map

x(t + 1) = ax(t) (1.44)

with initial condition x(0) = x0. The general solution of (1.44) can be obtained
inductively, being x(1) = ax0, x(2) = ax(1) = a2x0, x(3) = ax(2) = a3x0, …,

x(t) = x0a
t, t ∈ N . (1.45)

The sequence (1.45) converges to the unique asymptotic equilibrium x∗ = 0 if |a| <

1, i.e.,−1 < a < 1. In this casewe say that (1.44) is a contractionmapping, as at each
iteration the distance of x(t) from x∗ = 0 is reduced of the factor |a|. For example,
if a = 1/2 then x(1) = x0/2, x(2) = x0/4 etc. The same holds for a = −1/2, even
if this occurs through oscillations of decreasing amplitude: x(1) = −x0/2, x(2) =
x0/4, x(3) = −x0/8 etc. So, for negative values of a the sequence (1.45) oscillates
around x∗ = 0, as it assumes the same sign of x0 at even iterations and opposite
sign at odd iterations. It is worth stressing that oscillations can be obtained with
a one-dimensional discrete-time dynamical system, whereas this was impossible
in the case of one-dimensional smooth systems in continuous time. Of course this
is due to the fact that the points generated by (1.44) can jump between different
points without touching the intermediate points. Diverging sequences are obtained
for |a| > 1, monotonically diverging if a > 1, diverging through oscillations if a <

−1. For example a = 2 gives x(1) = 2x0, x(2) = 4x0 etc., whereas a = −2 gives
x(1) = −2x0, x(2) = 4x0, x(3) = −8x0 etc. Finally, for a = 1 the identity map is
obtained,whose iteration gives a constant sequence x(t) = x0 for each t ∈ N, whereas
a = −1 gives the oscillating sequence x(t) = (−1)t x0.

We can see the map x′ = ax as a transformation of the real line into itself, i.e.,
a function that transforms each point x ∈ R into its unique image x′ ∈ R. If we
consider a segment AB, i.e., the closed interval AB = {x ∈ R, A ≤ x ≤ B}, and we
apply the transformation x′ = ax to all the points of the segment, then the length of
a new segment A′B′ is A′B′ = |a|AB, i.e., it is contracted of the factor a if |a| < 1,
expanded if |a| > 1, and with the same length if |a| = 1. Moreover, its orientation
remains the same, i.e., A < B implies A′ < B′, if a > 0, whereas its orientation is
reversed, i.e., A < B implies A′ > B′, whenever a < 0.

From the general solution (1.45) of the linear recurrence (1.44), the solution of
nonhomogeneous linear map can be easily obtained. In fact, given

x(t + 1) = ax(t) + b (1.46)
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it can be noticed that if it converges, then it converges to the unique steady state (or
fixed point) x∗ characterized by the condition x(t + 1) = x(t). Thus, x∗ is the solution
of the equation x = ax + b, i.e., it is x∗ = b/(1 − a), provided that a �= 1. The change
of coordinates X(t) = x(t) − x∗ = x(t) − b/(1 − a) that translates the fixed point
into the origin, transforms the affine (or linear nonhomogeneous) recurrence into a
linear homogeneous one. In fact, by replacing x(t) = X(t) + b/(1 − a) into (1.46)we
get X(t + 1) = aX(t), i.e., in the form (1.44), and consequently the general solution
is X(t) = X(0)at , from which going back to the originary variable

x(t) =
(
x0 − b

1 − a

)
at + b

1 − a.
(1.47)

Such solution converges to x∗ = b/(1 − a) for |a| < 1, oscillates between −x0 and
x0 for a = −1; finally, in the particular case a = 1, (1.46) becomes the arithmetic
sequence x(t + 1) = x(t) + b, whose solution is x(t) = x0 + bt, which is increasing
or decreasing according to the sign of b.

This completely solves, for example, the linear cobwebmodel with naïve expecta-
tions (1.40) whose equilibrium is p∗ = (a + c) /(b + d), located at the intersection
of the demand and supply curves, and the solution starting from the initial price
p(0) = p0 is

p(t) =
(
p0 − a + c

b + d

)(
−d

b

)t

+ a + c

b + d
. (1.48)

The corresponding time series exhibit oscillatory behavior, being −d/b < 0: they
are convergent to p∗ when b > d, i.e., the decreasing demand function is steeper than
the increasing supply, diverging otherwise.

1.3.1.2 Qualitative Analysis of One-Dimensional Nonlinear Models
in Discrete Time

Let us consider now a general discrete-time dynamical system with one dynamic
variable

x(t + 1) = f (x(t)) (1.49)

with initial condition x(0) = x0. The equilibrium points (or fixed points) are defined
by the equilibrium condition x(t + 1)) = x(t), i.e., are the solutions of the equation

f (x) = x . (1.50)

Let x∗ be a solution of (1.50). Then a linear approximation of (1.49) in a neigh-
borhood of x∗ can be obtained as f (x) = f (x∗) + f ′(x∗) (x − x∗) + o(x − x∗) =
x∗ + f ′(x∗) (x − x∗) + o(x − x∗), leading to the linear approximation

x(t + 1) = x∗ + f ′(x∗)
(
x − x∗)
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that reduces to the linear homogeneous case X(t + 1) = aX(t) after the translation
X(t) = x(t) − x∗ that measures the displacement from the equilibrium point. From
the discussion about the linear case of the previous section the following result
immediately follows:

Proposition 1.2 (1D Local Asymptotic Stability in Discrete Time) Let x∗ be an
equilibrium point of (1.49), i.e., f (x∗) = x∗. If

∣∣f ′(x∗)
∣∣ < 1, then x∗ is a locally

asymptotically stable equilibrium; if
∣∣f ′(x∗)

∣∣ > 1, then x∗ is unstable.

Indeed, if x∗ is hyperbolic, which in the case of discrete dynamical systems (DDS)
means that |f ′(x∗)| �= 1, the Hartman-Grobman theorem (1959–1960) can be stated
as follows:

Theorem 1.9 (Hartman-Grobman for DDS) Let x∗ be a hyperbolic fixed point of
(1.49), with f being differentiable. Then there exists a neighborhood of x∗ where map
(1.49) is topologically conjugate to its linear approximation.

Notice that in the case of discrete time the stability condition −1 < f ′(x∗) < 1
includes both an upper and a lower threshold for the slope of the function f at the
equilibrium point, and the two limiting values −1 and +1 constitute two different
conditions of nonhyperbolicity of the equilibrium point. The condition of nonhyper-
bolicity f ′(x∗) = 1 corresponds to the analogous condition f ′(x∗) = 0 for continuous
time one-dimensional models. We will see in the following that if such condition is
crossed as a parameter varies then the bifurcations that occur are similar to those
detected in continuous-time models. Instead, the other nonhyperbolicity condition
f ′(x∗) = −1 has no analogue in continuous time models, as it is characterized by
oscillatory behavior. Indeed, the presence of negative derivative is often related to
phenomena of overshooting (or over-reaction). This means that even if we have a
decreasing map around x∗, i.e., f (x) > x∗ in a left neighborhood of x∗ and f (x) < x∗
in a right neighborhood of x∗, so that x(t + 1) > x(t) if x(t) is on the left of x∗ and
x(t + 1) < x(t) if x(t) is on the right of x∗, a trajectory starting from a neighborhood
of x∗ will jump fromone side to another of x∗; thus, either convergence does not occur
or, if convergence is obtained, being −1 < f ′(x∗) < 0, then it takes place through
oscillations.

Before discussing the possible bifurcations of 1-dimensional nonlinear models,
we describe a useful graphicalmethod that iswidely used to obtain the trajectories of a
one-dimensional discrete dynamical system (1.49), even in a nonlinear case, without
any analytic computation. This method is based on the knowledge of the graph of the
function y = f (x). It consists in drawing such graph on a cartesian plane togetherwith
the diagonal y = x. Starting from the initial condition x0 on the horizontal axis, the
successive value of the recurrence x(1) is obtained bymoving upward up to the graph
and then to the left, on the vertical axis (the codomain) where the values (images)
are represented. Then, in order to continue the iteration of the function, this value
must be brought back to the horizontal axis, i.e., from the codomain to the domain,
in order to apply the function again. This can be done by using the diagonal, locus
of point such that y = x: the point x(1) is moved horizontally towards the diagonal
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Fig. 1.37 Staircase diagram

Fig. 1.38 Staircase diagram and versus time representation for recurrence xt+1 = √
xt

and then vertically towards the horizontal axis (see Fig. 1.37). Then the process is
repeated again to get x(2) etc.

Notice that some portions of the horizontal and vertical movements have been
traveled back and forth, so that they can be deleted and the movements reduced to
the following: starting from x0 on the diagonal, vertical to the graph, horizontal to
the diagonal where x(1) = f (x0) is placed, then vertical to the graph, horizontal to
the diagonal where x(2) = f (x(1)) is placed and so on. This graphical construction,
called staircase diagram allows us to get the whole trajectory as a set of points
along the diagonal. See the other examples in Fig. 1.37, in particular the oscillatory
trajectory shown in the right panel, obtained with a decreasing map.

In Fig. 1.38 this method is applied to the map f (x) = √
x, whose iteration can be

simply obtained by a pocket calculator, starting from any initial condition x(0) >

0 and repeatedly pressing the square-root key. It is easily realized that it always
converges to the globally stable fixed point x∗ = 1.

From these preliminary arguments it is evident that in the case of decreasing one-
dimensional discrete time dynamical systems, whose trajectories are obtained by
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Fig. 1.39 Staircase diagram and versus time representation for recurrence xt+1 = x2t − a

iteratedmaps, oscillations and even periodic cycles are obtained. Consider, for exam-
ple, the map f (x) = 1/x, i.e., the recurrence x(t + 1) = 1/x(t) that leads to a cycle
of period two (x0, 1/x0) for each initial condition x0 �= 0. Or the map f (x) = x2 − 1
that, starting from x0 = 0 gives the cycle x(1) = −1, x(2) = 0, x(3) = −1. More-
over, starting from another initial condition such as x0 = 3/2, it generates x(1) =
5/4 = 1.25, x(2) = 0.5625, x(3) = −0.6836, x(4) = −0.5327, x(5) = −0.7162,
x(6) = −0.4870, x(7) = −0.7628, x(8) = −0.4181, and then slowly approaches
the 2-cycle (−1, 0).

In other words, not only periodic sequences exist where after a given number
of iterations the same value is reached and then the same set of numbers repeats
indefinitely, but also there are sequences that approach asymptotically such periodic
sets. Several situations of this kind are obtained with the iterated quadratic7 map

f (x) = x2 − α (1.51)

with parameter’s values in the range α ∈ (0, 2). This map can be iterated very easily
even with a pocket calculator and many different situations, from convergence to
a fixed point to convergence to a periodic sequence or even aperiodic and very
irregular sequences are obtained. Try, for example with α = 1.3 and with α = 2,
starting, e.g., from x(0) = 0.5. Some staircase diagrams of this quadratic map are
shown in Figs. 1.39 and 1.40.

7Quadratic means polynomial of degree two.
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Fig. 1.40 A chaotic trajectory for the quadratic map (1.51)

We end this section by giving a definition of a periodic cycle as well as the
conditions for its stability.

A periodic cycle of period k is a set of points Ck = {c1, c2, . . . , ck} such that
ci �= c1, i = 2, . . . , k, f (ci) = ci+1, i = 1, . . . , k − 1, and f (ck) = c1. So, the periodic
points can be obtained as Ck = {c1, f (c1), f 2(c1) . . . , f k−1(c1)

}
with f k(c1) = c1.

This last equality states that c1 is a fixed point of the composite function f k(x).
Indeed, as the initial periodic point of the cycle is arbitrary, any periodic point of
a k cycle is a fixed point of f k , i.e., f k(ci) = ci for each i = 1, . . . , k. This is quite
intuitive, because, after k iterations of f , all the points of the k-cycle are obtained and
the initial point is reached again. In other words, if the map f is applied iteratively
starting from a k-periodic point and we look at the result at intervals of k iterations,
then we see always the same point.

Notice that every periodic point ci of a k-cycle Ck is a fixed point of f k(x) but it
is not a fixed point of any f j(x) with j < k. Indeed, a fixed point x∗ of f (x) is also
a fixed point of any composite function f j(x) for any j > 1, as f (x∗) = x∗ implies
f 2(x∗) = f (f (x∗)) = f (x∗) = x∗ and so on. So, the k-periodic points are all and the
only fixed points of f k(x) which are not fixed points of f j(x) for any j < k.

The stability of a k-cycle Ck can be determined by the study of the stability of one

of its periodic points ci as a fixed point of f k(x), i.e., by the condition
∣∣
∣ df

k

dx (ci)
∣∣
∣ < 1.

By using the chain rule for the derivation of composite functions, the derivative of
the composite function f k(x) can be reduced to the product of the derivatives of the
simpler function f (x) along the k-periodic points

df k

dx
(ci) = f ′(c1) · f ′(c2) · · · · · f ′(ck) =

k∏

i=1

f ′(ci)

This can be easily proved inductively. In fact, for k = 2 from f (c1) = c2 and f (c2) =
c1 we obtain df 2

dx (c1) = f ′(f (c1))f ′(c1) = f ′(c2)f ′(c1) and analogously for df 2

dx (c2).
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So, if df k−1

dx (c1) =
k−1∏

i=1

f ′(ci) then for the derivative in c1 of f k(x) = f (f k−1(x)) we get

f ′(f k−1(c1))
df k−1

dx (c1) = f ′(ck)
k−1∏

i=1

f ′(ci) =
k∏

i=1

f ′(ci).

1.3.1.3 Local Bifurcations of One-Dimensional Discrete Dynamical
Systems

Let us consider a one-dimensional discrete dynamical system whose structure
depends on a parameter α ∈ R

x(t + 1) = f (x(t);α)

and let x∗(α) be a fixed point defined implicitly by the equilibrium equation f (x;α) =
x. The stability condition

∣∣f ′(x∗(α))
∣∣ < 1 indicates that as the parameter α varies

the fixed point can lose stability through two bifurcation conditions, at which the
fixed point is nonhyperbolic, f ′(x∗(α)) = +1 and f ′(x∗(α)) = −1. As one of these
two bifurcation conditions is crossed a local bifurcation occurs at which the fixed
point changes its stability property and something else happens, as shown in the
pictures here below where some canonical maps are given, as well as their graphs
and bifurcation diagrams. Notice that the three local bifurcations occurring with
multiplier f ′(x∗(α)) = +1 are essentially the same as those occurring in dynamical
system in continuous time, the only difference being that in this case the tangency
occurs along the diagonal, where the fixed points are located, and consequently
involve slope 1. However, differently from the linear case where the oscillatory
expansion has no limits, leading to oscillatory divergence, in the nonlinear case a
creation of a 2-periodic cycle occurs at the bifurcation value. This 2-periodic cycle
may be stable if it is created around the unstable fixed point (supercritical case) thus
attracting the trajectories escaping from a neighborhood of x∗, or unstable if it exists
around the stable fixed point (subcritical case) thus bounding its basin of attraction
(Figs. 1.41, 1.42 and 1.43).

What is new is the bifurcation occurring with multiplier f ′(x∗(α)) = −1, denoted
as flip bifurcation, at which the fixed point changes its oscillatory stability (i.e., con-
vergence through damped oscillations) into oscillatory instability (i.e., trajectories
starting very close to x∗ exhibit oscillatory expansion) (Fig. 1.44).

It is worth noticing that this bifurcation, leading to the creation of two peri-
odic points of a 2-cycle, causes the creation of two new fixed points of the map
f 2(x) = f (f (x)), besides the previously existing x∗ as any fixed point of f (x) is also a
fixed point of f 2(x). So, the flip bifurcation of f is associated with a pitchfork bifurca-
tion of f 2(x). Indeed, if f ′(x∗) = −1 then df 2

dx (x∗) = f ′(f (x∗))f ′(x∗) = f ′(x∗)f ′(x∗) =
(−1)(−1) = +1, a bifurcation condition of f 2 corresponding to a pitchfork bifurca-
tion.
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Fig. 1.41 Fold bifurcation
for discrete time mappings

Fig. 1.42 Transcritical
bifurcation for discrete time
mappings

All the local bifurcations described above can be observed in periodic cycles as
well. In fact, when a periodic cycle Ck = {c1, c2, . . . , ck} with associated multiplier
λ(Ck) =∏k

i=1f
′(ci) changes its stability properties due to a variation of a parameter,

if the multiplier exits the stability range −1 < λ(Ck) < 1 through the value +1 then
a bifurcation of the cycle is observed, that may be of fold type (a couple of k-cycle,
one stable and one unstable, are created or destroyed through their merging) of
transcritical type (two k-periodic cycles of opposite stability merge and exchange
their stability) or of pitchfork type (two further k-periodic cycles are created at
the bifurcation). Instead if the multiplier exits the stability range −1 < λ(Ck) < 1
through the value −1 then a flip bifurcation of the k-cycle is observed at which a
cycle of double period 2k is created.
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Fig. 1.43 Pitchfork
bifurcation for discrete time
mappings

Fig. 1.44 Flip (or period
doubling) bifurcation, only
exists for discrete time
mappings

1.3.1.4 The Logistic Map

In this section we consider the quadratic map (see, e.g., [11])

x(t + 1) = μx(t)(1 − x(t)), μ > 0 , (1.52)

whose graph is represented by a concave parabola that intersects the diagonal in the
two fixed points

x∗
0 = 0 and x∗

1 = 1 − 1

μ
. (1.53)
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Its expression is quite similar to the logistic model in continuous time (1.10),
hence it has been called logistic map. Indeed, it can be obtained by a discretization
of (1.10) that gives

x(t + 1) = (1 + α) x(t) − sx(t)2 , (1.54)

which is topologically conjugate (hence dynamically equivalent) to (1.52). In
fact, by the linear (hence invertible) change of variable y = sx/(1 + α), i.e., by
replacing x(t) = (1 + α)y(t)/s and x(t + 1) = (1 + α) y(t + 1)/s in (1.54), we get
y(t + 1) = (1 + α)y(t) − (1 + α)y(t), identical to (1.52) with μ = 1 + α.

The map (1.54) is indeed used to model the time evolution of a population repro-
ducing at non-overlapping breeding seasons. The same map (1.54) can be obtained
from the equation of composite interests M(t + 1) = (1 + r)M(t) if we imagine to
impose a tax proportional to the square of the money

M(t + 1) = (1 + r)M(t) − sM(t)2 . (1.55)

Let us notice that, in this case, if we ask, given an initial capital M(0) = C0, what
will be the accumulated future value after n years according to (1.55), it is quite
difficult to give an answer by an analytic expression that gives M(n) as a function
of C0. In fact, we have M(1) = (1 + r)C0 − sC2

0 , M(2) = (1 + r)M(1) − sM(1)2

= (1 + r)
[
(1 + r)C0 − sC2

0

]− s
[
(1 + r)C0 − sC2

0

]2
, i.e., a 4th degree polynomial,

M(3) = (1 + r)M(2) − sM(2)2 is a 8th degree polynomial in C0 and so on.M(10)
is a complete polynomial in C0 of degree 210 = 1024, a computation impossible for
any practical purpose. This is just to show that, even if the analytic computation of
the solution of a difference equation is always possible in principle by composing the
iterate map with itself, this is practically impossible when it is nonlinear. Moreover,
the sequences generated by the recurrence (1.52) may become quite complicated, as
we will see in the following. We stress that the same holds for any quadratic map,
as all second degree polynomials are topologically conjugate. For example, (1.52)
is conjugate to the map (1.51) through the coordinate change y = −x/μ + 1/2 with
α = μ2/4 − μ/2.

What makes famous the logistic map (1.52) is the article “Simple mathematical
models with very complicated dynamics”, published in 1976 by Robert M. May in
Nature, from which many other papers followed where the same model was used in
several fields, included economics and finance. The paper of May ends with:

evangelical plea for the introduction of these difference equations into elementary mathe-
matics courses, so that students’ intuition may be enriched by seeing the wild things that
simple nonlinear equations can do. [...] The elegant body of mathematical theory pertaining
to linear systems, and its successful application to many fundamentally linear problems in
the physical sciences, tends to dominate even moderately advanced University courses in
mathematics and theoretical physics. The mathematical intuition so developed ill equips
the student to confront the bizarre behavior exhibited by the simplest of discrete nonlinear
systems, such as equation (1.52). Yet such nonlinear systems are surely the rule, not the
exception, outside the physical sciences. Simple mathematical models with very compli-
cated dynamics. I would therefore urge that people be introduced to, say, equation (1.52)
early in their mathematical education. This equation can be studied phenomenologically by
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iterating it on a calculator, or even by hand. Its study does not involve as much conceptual
sophistication as does elementary calculus. Such study would greatly enrich the student’s
intuition about nonlinear systems. Not only in research, but also in the everydayworld of pol-
itics and economics, we would all be better off if more people realized that simple nonlinear
systems do not necessarily possess simple dynamical properties.

We now followMay’s invitation and propose a qualitative study of someproperties
of the map (1.52), and this study will lead us to encounter the phenomenon of
deterministic chaos in amuch simpler model than the one we have seen when dealing
with systems of at least three ordinary differential equations.

The stability of the two fixed points (1.53) is readily determined through the
computation of the derivative f ′(x) = μ(1 − 2x) at the fixed points, f ′(x∗

0) = μ and
f ′(x∗

1) = 2 − μ. From the stability conditions
∣∣f ′(x∗

i )
∣∣ < 1, i = 0, 1, we have that

x∗
0 = 0 is locally asymptotically stable for μ < 1 and x∗

1(μ) = 1 − 1/μ is locally
asymptotically stable for 1 < μ < 3. At μ = 1 a transcritical bifurcation occurs at
which the two fixed points merge and exchange their stability properties: in fact
x∗
1(μ) < 0 and is unstable for 0 < μ < 1, whereas x∗

1(μ) > 0 and is stable as μ

increases across the bifurcation value μ = 1 at which x∗
0 = x∗

1 = 0. Notice that at
μ = 2 f ′(x∗

1) = 0 (x∗
1 is said to be superstable) and then the slope f ′(x∗

1) of the
tangent at x∗

1 becomes negative for μ > 2 (hence we have oscillatory convergence,
see Fig. 1.45, left panel). At μ = 3 a flip bifurcation of x∗

1 occurs at which a stable
cycle of period two, say C2 = {α, β}, is created around the unstable fixed point
(see Fig. 1.45, right panel).

The periodic points α and β can be computed as fixed points of F(x) =
f 2(x) = f (μx(1 − x)) given by the fourth degree map F(x) = μ(μx(1 − x)(1 −
μx(1 − x)). Its fixed points, solutions of F(x) = x, are solutions of the equation
x
[
μ2(1 − x)(1 − μx(1 − x)) − 1

] = 0. We already know that x∗
0 = 0 and x∗

1 =
(μ − 1) /μ are fixed points of F(x). Hence the equation can be factorized as
x (x − (μ − 1) /μ)

[
x2 + ((μ − 1) /μ) x + ((μ + 1) /μ2

)] = 0 from which the two
fixed points of F(x) that are not fixed points of f (x), i.e., the 2-periodic points α and

Fig. 1.45 Left panelStaircase diagramof a trajectory obtainedwithμ = 2.7.Right panelTrajectory
obtained with μ = 3.2
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Fig. 1.46 Flip bifurcation for the logistic map

β, are
(
μ + 1 ± √

(μ − 3) (μ + 1)
)
/2μ, existing for μ ≥ 3 (at μ = 3 they coincide

with the bifurcating equilibrium x∗
1). As shown in Fig. 1.46, at μ = 3 a pitchfork

bifurcation for F(x) occurs, leading to the creation of two new stable fixed points of
F(x) corresponding to the periodic points of a stable cycle of period 2.

The stability of this cycle can be checked by the computation of the derivative of
F(x) in one of them, given by F ′(α) = F ′(β) = f ′(α)f ′(β). Just after the bifurcation
this derivative is slightly less than 1, then it decreases asμ increases beyond the bifur-
cation value μ = 3 until it becomes −1 at μ = 1 + √

6 � 3.449. This corresponds
to a second flip bifurcation, this time of F(x), at which the cycle C2 loses stability
and a stable cycle of period 4 of f (x) is created. If μ is further increased then also
the cycle of period 4 becomes unstable and a stable cycle of period 8 is created, and
so on. Indeed, infinitely many stable cycles of period 2n are created, which become
unstable as μ is increased. All this sequence of period doubling bifurcations (also
called period doubling cascade) occurs in a finite range of the parameter μ. In fact,
if we denote by μ1 = 3 the first bifurcation value, μ2 = 1 + √

6 the second one
and so on, the distance between two successive bifurcation points Δn = μn+1 − μn

decreases and tends to 0, i.e., as μ increases the bifurcations become more and more
frequent and accumulate at the limit point μ∞ = 3.56994571869 . . ..

After this limit point all cycles of period 2n, n ∈ N have been created and have
become unstable, periodic trajectories of any period can appear as well as aperiodic
trajectories, i.e., bounded trajectories generated by the infinite iteration of (1.52)
and that never hit an already visited point. Such trajectories are called chaotic, their
points fill an invariant interval (or set of intervals) in which the following properties
hold (used sometimes as a definition of existence of deterministic chaos).

(1) infinitely many unstable periodic points exist, which are dense in the invariant
set;

(2) an aperiodic trajectory exists that is dense in the set.

An invariant set for which these two properties hold is said to be chaotic (Fig. 1.47).
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Fig. 1.47 Schematic picture
of early steps of period
doubling sequence

As a consequence of the these two conditions we have that the sensitivity with
respect to the initial conditions (or butterfly effect) also exists, that is often added as
the third (and most famous) property:

(3) Sensitivity to initial conditions.Two trajectories starting from different, although
arbitrarily close, initial conditions remain bounded but their reciprocal distance
exponentially increases and, in a finite time, becomes as large as the state vari-
ables.

The first property, about the existence of dense and repelling periodic points
inside the invariant set where chaotic dynamics occur, is the key to understand the
“microscopic reason” for the occurrence of chaotic dynamics. In fact, it is quite
intuitive that the motion inside a trapping bounded set where infinitely many and
dense repellors are nested, will be quite irregular. The second property, also called
“mixing” property, states that a trajectory exists that moves erratically inside the
invariant set filling it completely, see Fig. 1.48 where the initial portion of a trajectory
is shown by a staircase diagram that, if continued, will cover completely the interval[
f (c), c

]
where c is the maximum value (vertex of the parabola). Trajectories starting

Fig. 1.48 A chaotic
trajectory for the logistic
map
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outside this interval will enter it and never escape (hence it is an attractor) and will
cover completely all the points of it in the long run. In fact, as the dense trajectory
is aperiodic, according to property 2, it will never reach an already visited point
(say after k iterations) after which the countable set of k points will be repeated
periodically. This means that in the long run (after infinitely many iterations) it
densely fills all the space available for the motion inside the invariant set.

Finally, the third property, which is a consequence of the other two, is given by
the extreme sensitivity of trajectories with respect to small, even negligible, changes
of the initial condition. This is illustrated in Fig. 1.49, where two trajectories, say
x(t) and y(t), are shown both generated forμ = 4 but starting from initial conditions
that differ by 10−6, namely x(0) = 0.1 and y(0) = 0.100001. As it can be seen (by a
direct comparison of the two time series or by looking at versus-time representation
of the distance between their points |x(t) − y(t)|), the difference between the two
time series remains negligible during the early iterations, then this difference grows
up until the distance between the two trajectories becomes of the same order of
magnitude as the single values, i.e., an error of 100% is obtained by this negligible
difference in the initial conditions. Of course, the property of sensitive dependence
on initial conditionsmakes any long-term prediction quitemeaningless, even if based
on the knowledge of the deterministic law of motion that governs the time evolution

(a)

(b)

(c)

Fig. 1.49 Two trajectories obtained formμ = 4 are represented versus time: x(t), obtained starting
from initial condition x0 = 0.1 (panel a) and y(t) starting from y0 = 0.100001 (panel b). In panel
(c) the difference |x(t) − y(t)| is represented
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of the system. Remember the clear description of this phenomenon given by Poincaré
at the beginning of 20th century.

One the other side, the discovery of the phenomenon of deterministic chaos may
be used to give the hope that at the basis of time evolutions that appear to be quite
irregular (erratic, random) a deterministic law of motion exists, of course nonlin-
ear and in a condition of deterministic chaos. In other words, even at the basis of
very irregular and disordered phenomena it may be worth looking for (even simple)
deterministic law of motion.

A sign of regularity in the realm of chaos is worth noticing. In fact, let us remark
that, as stressed while looking at Fig. 1.48, the trapping interval inside which periodic
or aperiodic dynamics occur has an obvious upper bound, given by the maximum
value c, and a lower bound given by its image c1 = f (c). So, even if the motion
inside this trapping interval may be chaotic, in any case upper and lower bounds can
be given. This may give useful information, for example, when a model that shows
deterministic chaos is used to simulate the irregular paths of prices in a stock market.
Natural upper and lower bounds may be a useful information. The same holds in the
case of model for weather forecastings, as these models cannot be used to obtain
daily weather forecastings in the long run, however the boundaries of the invariant
attracting set inside which asymptotic dynamics are bounded can give information
on the long-run evolution of climate.

Moreover, the knowledge of maximum and minimum values (i.e., the foldings of
the graph of the iterated function) as well as their images, may show more complex
structures of allowed and forbidden regions for asymptotic dynamics, as shown in
Fig. 1.50, where the vertex of the parabola c and its images ci = f i(c), i = 1, . . . , 3
bound a trapping region with a hole inside (i.e., the union of two disjoint intervals).
And even if the dynamics is chaotic, no iterated points are allowed to enter the hole
between the two intervals. This important property, that will be stressed even in the
case of higher dimensional discrete dynamical systems, is related to the shape of
chaotic attractors (see, e.g., the Lorenz attractor in continuous time) and can put
some order in the topological properties of chaotic systems.

Fig. 1.50 Attracting invariant intervals bounded by critical points (maximum and its images) for
μ = 3.61
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Fig. 1.51 Bifurcation diagram for the logistic map

A kind of “summary” of the different dynamic scenarios, obtained as the bifur-
cation parameter μ is increased, is given by the bifurcation diagram (see Fig. 1.51)
obtained measuring the different values of μ in the horizontal axis while along the
vertical axis the points of a trajectory are reported (after a given transient portion has
been discarded). This means that, starting from a given initial condition, the attractor
reached by the trajectory is represented for each value ofμ. The complete bifurcation
diagram for μ ∈ [0, 4] is given in Fig. 1.51, where the period doubling sequence, the
transition to chaos, as well as the cyclic chaotic intervals (or chaotic bands) bounded
by the critical point and its images are visible.

Another evident feature that can be seen in the bifurcation diagram is the presence,
for certain ranges of the bifurcation parameter, of white strips where chaos seems to
disappear for a while and the overall dynamics are captured by an attracting periodic
cycle. These strips are called “periodic windows”. Quite evident is the periodic
window of a 3-cycle obtained for values of μ around 3.85. Indeed, enlargements of
the bifurcation diagram show that such periodic windows are infinitely many, for
example a stable cycle of period 5 is visible in a narrow white strip around μ = 3.74
etc. A periodic window of period k is created through a fold bifurcation of f k(x),
see for example in Fig. 1.52 the graph of f 3(x) leading to the sudden creation of
three couples of fixed points (each couple formed by one stable and one unstable
fixed point) due to a tangency between the graph of f 3(x) and the diagonal. Notice
that the number of relative maximum and minimum points of f k(x) increases as k
increases, and the simultaneous tangencies are k. Each couple of fixed points, created
at the fold bifurcation, corresponds to a couple of periodic points of f , one stable
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Fig. 1.52 Periodic windows in the bifurcation diagram of the logistic map and their explanation in
terms of fold bifurcation

and one unstable, belonging to a stable and unstable k-cycle respectively. As μ is
further increased then each fold behaves as a small quadratic map characterized
by one maximum or one minimum (called a unimodal map) hence the stable cycle
will loose stability via a flip bifurcation followed by the period doubling cascade.
So, from each periodic point inside a periodic window a small bifurcation diagram
with the same structure of the whole bifurcation diagram can be observed (see the
enlargement in Fig. 1.52), thus giving rise to an inner self-similarity structure typical
of fractal structures.

We end this section by giving a geometric interpretation of the observed phenom-
ena. First of all, let us notice that the logistic map is a noninvertible map. In fact, the
map x′ = f (x) = μx(1 − x) is such that a unique image x′ is associated with each
x in the function domain, whereas given a value x′ in the codomain we obtain two
preimages, computed as

x1 = f −1
1 (x′) = 1

2
−

√
μ (μ − 4x′)

2μ
; x2 = f −1

2 (x′) = 1

2
+

√
μ (μ − 4x′)

2μ
. (1.56)

Of course, if x′ > μ/4, i.e., taking x′ above the maximum value, no real preimages
are obtained. We say that the logistic map is a Z0 − Z2 noninvertible map, and the
critical point c = μ/4 separates the real line into the two subsets: Z0 = (c,+∞),
where no inverses are defined, and Z2 = (−∞, c), whose points have two rank-1
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Fig. 1.53 Folding action of the logistic map

Fig. 1.54 Unfolding action of the two inverses of the logistic map

preimages (see Fig. 1.53). If x′ ∈ Z2, its two rank-1 preimages (1.56) are located
symmetrically with respect to the point c−1 = 1/2 = f −1

1 (μ/4) = f −1
2 (μ/4). Hence,

c−1 is the point where the two merging preimages of c are located. As the logistic
map is differentiable, at c−1 the first derivative vanishes. Geometrically, the action of
a noninvertible map can be expressed by saying that it “folds and pleats” its domain,
so that distinct points are mapped into the same point. This is equivalently stated by
saying that several inverses are defined, and these inverses “unfold” S (see Fig. 1.54).

It can be noticed that, as themap is partially increasing (for x < c−1 where f ′(x) >

0) and partially decreasing (for x > c−1 where f ′(x) < 0), it is orientation preserving
for x < c−1 and orientation reversing for x > c−1. So, a nonlinear map with a relative
maximum or minimum, will “fold” any segment that includes c−1. In fact, as it can
be seen in Fig. 1.53, as the point x in the domain varies from 0 to 1 the corresponding
imagemoves up and down and the sum of the two segments is greater than 1. This can
be expressed by saying that the map folds and stretches. So, the repeated application
of the map consists in the repeated geometric application of stretching and folding
actions (see, e.g., the action of f 2(x) = f (f (x)) in Fig. 1.53). This implies that a small
initial segments (i.e., a set of points initially very close) after many applications of
stretching and folding actions will be quite dispersed. This is another way to state
sensitivity dependence on initial conditions.



1 Qualitative Methods in Continuous and Discrete Dynamical Systems 79

1.3.1.5 Basins of Attraction in One-Dimensional Discrete Dynamical
Systems

Given the discrete dynamical system x(t + 1) = T(x(t)), x ∈ R, let us consider an
invariant attracting set A ⊂ R. The Basin of attraction of A is the set of all the points
that generate trajectories converging to A

B (A) = {x|Tn(x) → A as n → +∞} . (1.57)

Starting from the definition of attracting set, let U(A) be a neighborhood of A whose
points converge to A. Of course U(A) ⊆ B (A), but note that also the points of the
phase space which are mapped inside U after a finite number of iterations belong to
B (A). Hence, the total basin of A (or briefly the basin of A) is given by

B (A) =
∞⋃

n=0

T−n(U(A)), (1.58)

where T−1(x) represents the preimages of x (remember that the preimages of x may
not exist or may be more than one if the map T is noninvertible, i.e., if it has several
distinct inverses) and T−n(x) represents the set of points that are mapped into x
after n iterations of the map T . Let us first consider one-dimensional, continuous
and invertible maps. If f : I → I is a continuous and increasing function, then the
only possible invariant sets are the fixed points. When many fixed points exist, say
x∗
1 < x∗

2 < · · · < x∗
k , they are alternatingly stable and unstable: the unstable fixed

points are the boundaries that separate the basins of the stable ones. Starting from
an initial condition where the graph of f is above the diagonal, i.e., f (x0) > x0, the
generated trajectory is an increasing sequence converging to the stable fixed point
on the right, or it is diverging to +∞. On the other hand, starting from an initial
condition such that f (x0) < x0, the trajectory is a decreasing sequence converging
to the fixed point on the left, or it is diverging to −∞ (see Fig. 1.55, where p∗ is a
stable fixed point, and its basin is bounded by two unstable fixed points q∗ and r∗).

An example is shown in Fig. 1.56 where the increasing function f (x) = μ ·
arctan(x − 1) is considered for increasing values of μ. For μ < 1 a unique fixed
point exists which is globally asymptotically stable. At μ = 1 a fold bifurcation
occurs at which a pair of fixed points is created, one stable and one unstable, lead-
ing to a situation of bistability where the unstable equilibrium is the boundary that
separates the two basins of attraction.

If f : I → I is a continuous and decreasing map, the only possible invariant sets
are one fixed point (unique) and cycles of period 2. In fact, if f (x) is a decreasing map
then f 2(x) is increasing, hence it can only have fixed points one of which, say x∗, is
the (unique) fixed point of f (x) and the other ones (if any) always appear in pairs at
opposite sides with respect to x∗ and represent couples of periodic points of cycles
of period 2. Such periodic points of the cycles of period 2 are alternatingly stable
and unstable, the unstable ones being boundaries of the basins of the stable ones (see
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Fig. 1.55 Basin of attraction for an increasing map

Fig. 1.56 An example of basins of attraction for an increasing map which undergoes a fold bifur-
cation

Fig. 1.57, where the basin of the unique fixed point x∗ of the map f (x) = 1 − ax3 is
bounded by the periodic points α1, α2 of an unstable cycle of period 2). When x∗
becomes unstable through a flip bifurcation as the parameter a increases, a stable2-
cycle {β1, β2} is created around it, whose basin is still bounded by the unstable cycle
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Fig. 1.57 Example of a decreasing map with basin’s delimitation by a repelling cycle of period 2

Fig. 1.58 Final bifurcation for the attractor at finite distance of the logistic map

{α1, α2}. Initial conditions outside the interval (α1, α2) diverge, i.e., belong to the
“basin of infinity”.

In general, in the case of one-dimensional invertible maps the only kinds of attrac-
tors are fixed points and cycles of period two. In the first case, the basin is an open
interval which includes the fixed point, and in the second case, the basin is the union
of two open intervals, each one including an attracting periodic point.

If the map is invertible, then the basins of the attracting sets are always intervals
that include the attractors. Thismay be no longer true if themap is noninvertible, as in
this case nonconnected portions of the basins may exist that are far from the attractor
to which their points converge. This is due to the “unfolding action” of the inverses
that may create preimages of a neighborhood of an attractor far from the related
attractor. As a first example, let us consider the logistic map (1.52) whose graph is
represented again in Fig. 1.58. As far as μ < 4, every initial condition x0 ∈ (0, 1)
generates bounded sequences, converging to a unique attractor A (which may be the
fixed point x∗

1 = (μ − 1)/μ or a more complex attractor, periodic or chaotic). Initial
conditions out of the interval [0, 1] generate sequences diverging to −∞.



82 G.I. Bischi et al.

Fig. 1.59 Qualitative picture to represent a global (or contact) bifurcation leading to a nonconnected
basin of attraction

The boundary that separates the basin of attractionB (A) of the attractor A, from
the basinB (∞) is formed by the unstable fixed point x∗

0 = 0 and its rank-1 preimage
(different from itself), 0−1 = 1. Observe that, of course, a fixed point is always
preimage of itself, but in this case also another preimage exists because x∗

0 ∈ Z2. If
μ < 4, as in the left panel of Fig. 1.58, then the maximum value (vertex) c = μ/4 <

0−1 = 1, where c is the critical point (maximum) that separates Z0 and Z2. Hence the
basin’s boundary 0−1 = 1 ∈ Z0.Whenwe increaseμ, atμ = 4we have 0−1 = c = 1,
i.e., a contact between the critical point and the basin boundary occurs. This is a global
bifurcation, which changes the structure of the basin (really it destroys the basin). In
fact, for μ > 4 (right panel of Fig. 1.58) we have 0−1 < c, and the portion (0−1, c)
of B (∞) enters Z2. This implies that new preimages of that portion are created,
which belong toB (∞) according to (1.58). Now almost every point belongs to the
basin of divergent trajectories, the only points which are left on the interval I are the
points belonging to a chaotic invariant set Λ, a subset of zero measure on which the
restriction of the map is still chaotic, a chaotic repellor.

A similar situation occurs for a unimodal Z0 − Z2 map where the attractor at
infinity is replaced by an attracting fixed point, as the one shown in the left panel
of Fig. 1.59. As in the previous example, we have an attractor A, which may be
the fixed point p (or some other invariant set around it) with a simply connected
basin bounded by the unstable fixed point q and its rank-1 preimage q−1. This
example differs with respect to the previous one because in this case initial con-
ditions taken in the complementary set generate trajectories converging to the sta-
ble fixed point r. This means that the basin B (r) is formed by the union of two
nonconnected portions: B0 = (−∞, q) ⊂ Z2, which contains r (called immediate
basin, the largest connected component of the basin which contains the attractor)
and B1 = (q−1,+∞) = f −1 (B0) ⊂ Z0. In the figure the two nonconnected portions
of the basinB (r) are marked by green bold lines. A global basin bifurcation occurs,
if a parameter variation causes an increase of the critical point c (maximum value)
until it crosses the basin boundary q∗−1. If this happens, the interval (q−1, c), which
is part of B1, enters Z2, and infinitely many nonconnected portions ofB (r) emerge,
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nested inside the interval (q, q−1). After this bifurcation the total basin can still be
expressed as the union of all the preimages of any rank of the immediate basin B0.

Another interesting situation is obtained if we change the right branch of the
map by folding it upwards such that another critical point, a minimum, is created.
Such a situation is shown in the central panel of Fig. 1.59. This is a noninvertible
Z1 − Z3 − Z1 map, where Z3 is the portion of the codomain bounded by the relative
minimum value cmin and relative maximum value cmax. In the situation shown in
the central panel we have three attractors: the fixed point r, with B (r) = (−∞, q)
represented by green color along the diagonal, the attractor A, around p, with basin
B (A) = (q, z), represented by orange color, bounded by two unstable fixed points,
and +∞ (i.e., positively diverging trajectories) with basin B (+∞) = (z,+∞). In
this case all the basins are immediate basins, each being given by an open interval
that includes the attractor. In the situation shown in the central panel, both basin
boundaries q and z are in Z1, so they have only themselves as unique preimages
(like for an invertiblemap).However, the situation drastically changes if, for example,
some parameter variation causes the minimum value cmin to move downward, until
it goes below q (as in the right panel). After the contact cmin = q that marks the
occurrence of a global bifurcation, the portion (cmin, q) enters Z3, so new preimages
f −k (cmin, q) appear. These preimages constitute nonconnected portions of B (r)
nested inside B (A) and are represented by the thick green portions of the diagonal
intermingled with orange portions that belong to B (A).

1.3.1.6 An Economic Example: Nonlinear Cobweb with Adaptive
Expectations

Let us consider again the cobweb model (1.38), D(p(t)) = S(pae(t)), that with naïve
expectations and linear demand and supply functions gives the linear discrete-time
model (1.40) showing oscillatory convergence to p∗ = (a + c)/(b + d) when b > d
and divergence otherwise (see Fig. 1.60, where the shape of the staircase diagram
justifies the name of the model).

Following [19], we now introduce a nonlinear supply function that represents a
production saturation effect

S(p) = arctan (λ(p − 1))

where λ represents the slope of the supply at the reference price p = 1.
With the same linear demand function, the cobwebmodel with naïve expectations

D(p(t)) = S(p(t − 1)) gives rise to the following nonlinear discrete dynamic model

p(t) = f (p(t − 1)) = 1

b

[
a − arctan (λ(p(t − 1) − 1)

]
.

Themap f (x) is decreasing, and by using the supply slopeλ as a bifurcation parameter
the equilibrium price p∗ (located at the intersection between demand and supply, see
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Fig. 1.60 The two possible dynamic scenarios for a linear cobweb model: oscillatory convergence
(on the left) and oscillatory divergence (on the right)

Fig. 1.61 Nonlinear supply
function with saturation

Fig. 1.61) undergoes a flip bifurcation for increasing values of λ as shown in the
bifurcation diagram of Fig. 1.62, where two staircase diagrams, before and after the
bifurcation, are shown. So, differently from the linearmodel, after the stability loss of
the equilibrium price a bounded oscillatory dynamics is obtained, which converges
to a cycle of period 2.
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Fig. 1.62 Possible dynamic scenarios for the nonlinear cobwebmodel: instability of the equilibrium
price without divergence

A further modification of themodel consists in the introduction of adaptive expec-
tations (see again [19])

pe(t + 1) = pe(t) + α(p(t) − pe(t)) 0 ≤ α ≤ 1 (1.59)

in the model

p(t) = f (pe(t)) = 1

b

[
a − arctan (λ(pe(t) − 1)

]
(1.60)

The equation of price expectations dynamics (1.59) can be described as follows. At
any time t producers observe the discrepancy between the realized price p(t) and the
expected price for the same period (p(t) − pe(t)) and according to such observed
“estimation error” correct the previous price estimate pe(t) in order to obtain the
next one: if the expected price was underestimated, i.e., pe(t) reveals to be less than
the observed one p(t), then they increase the current estimation in order to form
the next expected price pe(t + 1); if the expected price pe(t) was overestimated,
i.e., it reveals to be greater than the one observed by producers, then they decrease
it to form the next expected price. The value of the parameter α modulates the
entity of the correction: notice that for α = 1 adaptive expectations (1.59) reduce to
naïve expectations pe(t + 1) = p(t). In this sense (1.59) is a generalization of naïve
expectations as these are included as a particular case. Instead in the other limiting
caseα = 0we obtain a complete inertia pe(t + 1) = pe(t), as producers never change
their initial guess pe(0) on the basis of observed prices.

By inserting p(t) = f (pe) into (1.59) we get a law of motion in the space of
expected prices

pe(t + 1) = F (pe(t)) = pe(t) + α(f (pe) − pe(t)) = (1 − α) pe(t) + αf (pe)
(1.61)

From the dynamics of expected prices (1.61) the corresponding dynamics of realized
prices (i.e., prices really observed in the market) is obtained by the transformation
p(t) = f (pe(t)) in (1.60), a transformation from beliefs to realizations.

In order to analyze the dynamic behaviour of (1.61) let us notice that the function
F(p) is a convex combination (i.e., a weighted average) of the identity function
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Fig. 1.63 Cobweb model with adaptive expectations

(whose graph is the diagonal) and the decreasing function f , so its graph is placed
between the two graphs (see the left panel of Fig. 1.63), being closer to the diagonal
as α → 0 and closer to the graph of f as α → 1.

From the derivative F ′(p)=1 − α + αf ′(p)=1 − α − αλ/(b
(
1+λ2 (p − 1)2

)
)

we can see that for α > b/(b + λ) it vanishes at two points, relative minimum and
maximum (see Fig. 1.63). Moreover, it is always stable for sufficiently small values
of α, whereas for a certain value of α the equilibrium becomes unstable through a
flip bifurcation for increasing values of λ. Differently from the model with naïve
expectations, where the decreasing map (even if nonlinear) could not have attractors
more complex than a cycle of period 2, in this case, being the map noninvertible
(i.e., characterized by the presence of turning points, relative maximum and min-
imum in this case) the first period doubling bifurcation is followed by a sequence
of successive period doublings (the period doubling route to chaos) as shown in the
bifurcation diagram of Fig. 1.63.

1.3.2 Two-Dimensional Discrete Dynamical Systems

A discrete dynamical system (1.37) with two dynamic variables, say x1(t) and x2(t)
with t ∈ N, assumes the form

x1(t + 1) = T1(x1(t), x2(t)) (1.62)

x2(t + 1) = T2(x1(t), x2(t))

and needs an initial condition (x1(0) , x2(0)) in order to generate a trajectory in the
two-dimensional phase space. The equilibrium points of the dynamical system (1.62)
are the fixed points of the map T : R2 → R

2, defined by the system of two equations
with two unknowns {

T1(x1, x2) = x1
T2(x1, x2) = x2

(1.63)
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Periodic cycles can be defined as in the case of one-dimensional iterated maps,
just replacing x′ = f (x) with x′ = T(x) with x ∈R2 and T(x) = (T1(x),T2(x)). The
stability of fixed points as well as the stability of k-periodic cycles (each periodic
point being a fixed point of Tk), as well as the kind of motion in a neighborhood of
the fixed point or the periodic cycle, can be determined through the linearization of
the map T in a neighborhood of the fixed point (or of any periodic point of the cycle).
So, let us first analyze the dynamic properties of iterated linear maps.

1.3.2.1 Linear Systems

Let us consider the following linear (homogeneous) system of two difference equa-
tions in the (normal) form:

{
x1(t + 1) = a11x1 (t) + a12x2 (t)
x2(t + 1) = a21x1 (t) + a22x2 (t)

(1.64)

that can be written in the matrix form

x(t + 1) = Ax(t) (1.65)

where A =
(
a11 a12
a21 a22

)
; x(t)=

(
x1(t)
x2(t)

)
.

Like in the case of linear dynamical systems in continuous time, the general
solution, i.e., set of all the solutions of (1.64), is obtained from the linear combination
of two independent solutions. Moreover, also in this case, these two solutions are
searched by proposing a “trial solution” in the same form as the one obtained for the
one-dimensional linear difference equation, i.e.,

xi(t) = viλ
t , i = 1, 2 (1.66)

After replacing this trial solution into (1.64) we get

{
λt+1v1 = a11λtv1 + a12λtv2
λt+1v2 = a21λtv1 + a22λtv2

and dividing for λt we get the usual eigenvalue problem

{
(a11 − λ)v1 + a12v2 = 0
a21v1 + (a22 − λ)v2 = 0

that has nontrivial solutions if λ is a solution of the “characteristic equation”

P(λ) = λ2 − Tr(A)λ + Det(A) = 0 ,

where Tr(A) = a11 + a22 and Det(A) = a11a22 − a12a21.
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So again, like in the case of linear dynamical systems in continuous time, the
problem of finding the solutions is reduced to a problem of linear algebra, the only
difference being that the solutions are now in the form (1.66) instead of (1.20). In
particular, if we denote by Δ = Tr (A)2 − 4Det (A) we have that

• If Δ > 0 then we have two real and distinct eigenvalues and the general solution
has the form

x(t) = c1v1λt
1 + c2v2λt

2,

where v1 and v2 are the corresponding eigenvectors and c1, c2 are real constants that
are uniquely determined by imposing the initial conditions xi(0) = xi0, i = 1, 2.

• IfΔ = 0 thenwehave real and coincident eigenvaluesλ1 = λ2 = λ and the general
solution has the form

x(t) = c1vλt + c2vtλt .

• If Δ < 0 then we have two complex conjugate eigenvalues λ1,2 = −Tr(A)/2 ±
i
√−Δ/2 = |λ| (cos θ ± i sin θ) where |λ| =

√
Re (λ)2 + Im (λ)2 = √

Det(A)

and θ = arctan (Im (λ)/Re (λ))or equivalently cos θ = −Tr(A)/(2
√
Det(A)). The

general real solution is obtained as

x(t) = |λ|t [(c1v1 − c2v2) sin (θ t) + (c1v1 + c2v2) cos (θ t)]

where v = v1 + iv2 is a complex eigenvector associated with λ1 ∈ C.

In any case, we can see that the general solution converges asymptotically to
the equilibrium x = 0 if and only if |λi| < 1, i = 1, 2, i.e., both the eigenvalues
are inside the unit circle of the complex plane defined by Re (λ)2 + Im (λ)2 < 1.
The phase portraits associated with the different positions of the eigenvalues in the
complex plane with respect to the unit circle are shown in the Fig. 1.64. The phase
line represented in this qualitative picture looks quite similar to those shown for the
phase portraits of linear dynamical systems in continuous time. Of course, the phase
point along trajectories moves at discrete time pulses, i.e., it jumps from one point
to another. However such discrete motion occurs along phase curves quite similar to
those of continuous time dynamical systems, see Fig. 1.65.

The stability criterion, i.e., the necessary and sufficient conditions to have all the
eigenvalues less than 1 in modulus, are given by

P(1) = 1 − Tr(A) + Det(A) > 0 ,

P(−1) = 1 + Tr(A) + Det(A) > 0 , (1.67)

Det(A) < 1 .

In the plane (Tr(A),Det(A)) these three conditions define the interior of a trian-
gle (known as stability triangle, see Fig. 1.66) bounded by the three straight lines
whose equations are given by P(1) = 0, P(−1) = 0 and Det(A) = 1. When the
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Fig. 1.64 Linear discrete dynamical systems of the plane: classification of the phase portraits for
the unique fixed point

Fig. 1.65 Examples of relations between iterated points and phase curves

point (Tr(A),Det(A)) is inside the triangle then the fixed point x = 0 is globally
asymptotically stable, whereas when the point (Tr(A),Det(A)) is outside the trian-
gle, the equilibrium x = 0 is unstable and the trajectories diverge. Along the tri-
angle we have non-generic (structurally unstable) situations of marginal stability.
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Fig. 1.66 The “stability
triangle” in the
trace-determinant plane

If the point (Tr(A),Det(A)) exits the stability triangle along the side of equation
P(1) = 1 − Tr(A) + Det(A) = 0 then an eigenvalue exits the unit circle along the
real axis in the point λ = 1; if the point (Tr(A),Det(A)) exits the stability trian-
gle along the side of equation P(−1) = 1 + Tr(A) + Det(A) = 0 then an eigenvalue
exits the unit circle along the real axis in thepointλ = −1; if the point (Tr(A),Det(A))

exits the stability triangle along the side of equation Det = 1 then a pair of complex
conjugate eigenvalues exit the unit circle of the complex plane. In the case of lin-
ear approximation of a nonlinear system in a neighborhood of a fixed point, such
situations will represent bifurcations leading to the contact of fixed points and the
creation of new kind of attractors, as we will see in the next section.

1.3.2.2 Nonlinear Discrete Dynamical Systems in 2 Dimensions

Let us consider a nonlinear discrete dynamical system in two dimensions (1.62) and
let x∗ = (x∗

1, x
∗
2

)
be a fixed point, solution of (1.63). The linear approximation around

the fixed point is given by

x(t + 1) − x∗ = JT (x∗)(x(t) − x∗)

where JT is the jacobian matrix

JT (x) = [Jij
] =

[
∂T1/∂x1 ∂T1/∂x2
∂T2/∂x1 ∂T2/∂x2

]
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The necessary and sufficient conditions for asymptotic stability of 2-dimensional
linear systems in (1.67) can be used as sufficient conditions for local asymptotic
stability of an equilibrium point x∗ of a 2-dimensional nonlinear discrete dynamical
system by using the Jacobian matrix evaluated at the fixed point JT (x∗) as coefficient
matrix.

When all the eigenvalues are less than one in absolute values (i.e., inside the unit
circle of the complex plane) then the fixed point is locally attracting. When at least
one eigenvalue is greater than one in absolute value then the fixed point is unstable.

If the structure of the discrete dynamical system (1.62) depends on a parameter,
say μ ∈ R, and consequently any fixed point x∗ = x∗(μ) as well as JT (x∗) depend
on μ, then as μ varies a real eigenvalue, say λ1(μ) may exit the unit circle, or a pair
of complex conjugate eigenvalues, say λ1,2(μ), with λ2(μ) = λ̄1(μ), may exit the
unit circle. In the former case, i.e., for real eigenvalues, we have properties similar to
those already described in the one-dimensional case. That is, when one eigenvalue
crosses through λ = −1 (hence the “stability triangle” of Fig. 1.66 is crossed through
the left side 1 + Tr + Det = 1) then a flip bifurcation may occur, while when one
eigenvalue λ crosses through λ = +1 (hence the “stability triangle” of Fig. 1.66 is
crossed through the right side 1 − Tr + Det = 1) then we may have a saddle-node
or a transcritical or a pitchfork bifurcation. However, as in the analogue situation for
continuous-time dynamical systems of dimension greater than one, in the case of
complex conjugate eigenvalues that exit the unit circle of the complex plane (i.e., the
“stability triangle” of Fig. 1.66 is crossed through the upper side Det = 1) a bifurca-
tion occurs which is the discrete-time analogue of the Hopf bifurcation for dynamical
systems in continuous time. In the case of discrete time it is called Neimark-Sacker
bifurcation. Also in this case the presence of complex eigenvalues implies oscillatory
dynamics along spiralling phase curves, hence oscillations around the equilibrium,
and at the Neimark-Sacker bifurcation a closed invariant curve around the fixed point
is created (or around the periodic point of a cycle, because as usual any k-periodic
point of a map T corresponds to a fixed point of the map Tk). Here we give a sim-
plified description of the Neimark-Sacker bifurcation theorem, see more specialized
books for a more rigorous statement.

Theorem 1.10 (Neimark-Sacker Bifurcation) Let T(x, μ) : R2 → R
2 be a one-

parameter family of 2-dimensional maps which has a family of fixed points x∗(μ)

at which the eigenvalues are complex conjugate, say λ(μ), λ(μ). Assume that for
μ = μ0 :

1. |λ(μ0)| = 1, but λj(μ0) �= 1 for j = 1, 2, 3, 4;
2. d|λ(μ)|

dμ
(μ0) = d �= 0 (transversality condition).

Then in a neighborhood of x∗(μ0) the map T is topologically conjugate to the map
given by (in polar coordinates) Te(r, θ) = (r(1 + d(μ − μ0) + ar2), θ + c + br2)+
higher-order terms. If, in addition,

3. a �= 0,

then there is a simple closed invariant curve in a neighborhood of x∗(μ0).
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Fig. 1.67 Neimark-Sacker bifurcation

The signs of the coefficients d and a determine the direction and stability of
the bifurcating orbits. The Neimark-Sacker bifurcation is called supercritical (when
a < 0) or subcritical (when a > 0) (Fig. 1.67). We remark that numerically one can
deduce the type of the bifurcation just from the stability of the fixed point at the
bifurcation value: If the fixed point is locally attracting (resp., repelling), then the
Neimark-Sacker bifurcation is supercritical (resp. subcritical). Let us notice that
for linear maps the condition a �= 0 is never satisfied, not only at the fixed point,
but in the whole region of definition of the map. And, indeed, considering a linear
map, say with complex conjugate eigenvalues λ(μ),λ(μ), if |λ(μ0)| = 1 then the
fixed point is a center, so that the trajectory of any point different from the fixed
point belongs to a different invariant ellipse and the motion is either periodic or
quasi-periodic, depending on the parameters. For μ �= μ0 the fixed point is either
a globally attracting focus or a repelling focus (in which case the trajectories go
to infinity). Thus the bifurcation which occurs in a linear map, when its complex-
conjugate eigenvalues cross the unit circle, is also called center bifurcation. A similar
bifurcation can be observed in nonlinear maps with a = 0 as well.

The coefficients c and b give information on the rotation of the jumping phase
point along the bifurcating closed invariant curve. In fact, the discrete time motion of
the phase point along the closed invariant curve may be such that the jumping point
completely fills the closed curve by a nonperiodic trajectory (which is denoted as
quasi-periodic trajectory because it oscillates with a given period and amplitude but
never hits an already visited point) or after n iterations (and m revolutions along the
closed curve) it may hit an already visited point and consequently it enters a n-cycle
(a phenomenon called frequency locking).

As an example, let us consider the map

x(t + 1) = y(t) ,

y(t + 1) = y(t) − αx(t) + x(t)2 .
(1.68)

It has two fixed points: O = (0, 0) and P = (α, α). The Jacobian matrix

J(x, y) =
[

0 1
2x − α 1

]
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Fig. 1.68 Closed invariant curves of increasing amplitude generated by a Neimark-Sacker bifur-
cation of the map (1.68), until the invariant curve becomes a chaotic attractor

computed at the fixed pointO is such that Tr(J(O)) = 1 andDet(J(O)) = α. Accord-
ing to the stability conditions in (1.67), O is a stable fixed point for 0 < α < 1: at
α = 0 a transcritical bifurcation occurs at whichO takes the stability ofP; at α = 1/4
the eigenvalues become complex conjugate, so that O is transformed from a stable
node to a stable focus (but this is not a bifurcation as the phase portrait of a stable
node is topologically conjugate to that of a stable focus). Then at α = 1, O loses
stability and for α > 1 it becomes an unstable focus, with a stable invariant curve
around it (supercritical Neimark-Sacker bifurcation). As α is further increased the
stable closed orbit enlarges and the motion is quasi-periodic on it (see Fig. 1.68,
where the development of the asymptotic trajectories is shown for increasing values
of α). Just after the bifurcation the stable invariant curve is completely filled by the
trajectories, and the amplitude increases as α is increased. For α = 1.4 a frequency
locking occurs and the trajectories converge to a periodic cycle of period 7 with
periodic points located along the invariant curve. Then for higher values of α the
closed invariant curve is broken and a more complex attracting set can be observed
(see in Fig. 1.68 the enlarged portion of the attractor obtained for α = 1.505) whose
shape depends on the nonlinearities of the map prevailing far from the fixed point.

This is even more evident in Fig. 1.69, obtained for α = 1.54, where the points of
the trajectories starting from initial conditions in the white region around the fixed
pointO asymptotically form the chaotic attractor clearly visible in the left panel. The
trajectories starting from the grey region diverge, and the boundary that separates the
two basins of attraction is the stable set of the saddle point P. The right panel of the
picture shows the points x(t) and y(t) versus time, joined by segments (just a visual
trick to give more emphasis to the chaotic oscillatory pattern).
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Fig. 1.69 Again the map (1.68) with α = 1.54

1.3.2.3 Some Economic Examples

A Duopoly Game with Linear Demand and Gradient Dynamics Let us consider
a Cournot duopoly, i.e., an industry consisting of two quantity-setting firms, labelled
by i = 1, 2, producing the same good for sale on the market. Production decisions of
both firms occur at discrete time periods t = 0, 1, 2, . . . Let qi(t) represent the output
of the ith firm during period t, at a production cost Ci(qi). The price prevailing in
period t is determined by the total supply Q(t) = q1(t) + q2(t) through a demand
function

p = f (Q) (1.69)

from which the single-period profit of the ith firm is given by

Πi(q1, q2) = qif (Q) − Ci(qi) . (1.70)

Following [10], we assume that each duopolist does not have a complete knowledge
of the demand function, and tries to infer how the market will respond to its produc-
tion changes by an empirical estimate of the marginal profit. This estimate may be
obtained by a market research or by brief experiments of small (or local) production
or price variations performed at the beginning of period t, and we assume that even
if the firms are quite ignorant about the market demand, they are able to obtain a

correct empirical estimate of the marginal profits
(

∂Πi
∂qi

)(e) = ∂Πi
∂qi

(q1, q2) i = 1, 2 .

This local estimate of expected marginal profits is much easier to obtain than a global
knowledge of the demand function (involving values of Q that may be very different
from the current ones). With this kind of information the producers behave as local
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profit maximizers, the local adjustment process being one where a firm increases its
output if it perceives a positive marginal profit and decreases its production if it is
negative:

qi(t + 1) = qi(t) + αi(qi)
∂Πi

∂qi
(q1, q2) ; i = 1, 2 (1.71)

where αi(qi) is a positive function which gives the extent of production variation of
firm i following a given profit signal. An adjustment mechanism similar to (1.71) has
been proposed by some authors with constant αi. Instead we assume αi proportional
to qi,αi(qi) = viqi; i = 1, 2,where vi is a positive constantwhichwill be called speed
of adjustment, equivalent to the assumption that the “relative production change” is
proportional to the estimated marginal profit:

qi(t + 1) − qi(t)

qi(t)
= vi

∂Πi

∂qi
(q1, q2).

Let us consider a linear demand function f (Q) = a − bQ, with a, b positive con-
stants, and linear cost functionsCi(qi) = ciqi ; i = 1, 2 ,where the positive constants
ci are the marginal costs. With these assumptions

Πi(q1, q2) = qi
[
a − b(q1 + q2) − ci

]
, i = 1, 2 , (1.72)

and the marginal profit for firm i is

∂Πi

∂qi
= a − ci − 2bqi − bqj, i, j = 1, 2, j �= i. (1.73)

With the above assumptions, the dynamic model is expressed by the iteration of the
following two-dimensional nonlinear map T (q1, q2) → (

q′
1, q

′
2

)
defined as

T :
⎧
⎨

⎩

q′
1 = (1 + v1(a − c1))q1 − 2bv1q21 − bv1q1q2

q′
2 = (1 + v2(a − c2))q2 − 2bv2q22 − bv2q1q2

(1.74)

where ′ denotes the unit-time advancement operator, that is, if the right-hand side
variables are productions of period t then the left-hand ones represent productions
of period (t + 1).

The fixed points of the map (1.74) are the solutions of the algebraic system

{
q1(a − c1 − 2bq1 − bq2) = 0 ,

q2(a − c2 − bq1 − 2bq2) = 0 ,

obtained by setting q′
i = qi , i = 1, 2, in (1.74).We can have atmost four fixed points:

E0 = (0, 0), E1 = ((a − c1)/(2b), 0) if c1 < a, E2 = (0, (a − c2)/(2b)) if c2 < a ,
which will be called boundary equilibria, and the fixed point E∗ = (q∗

1, q
∗
2), with
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q∗
1 = a + c2 − 2c1

3b
, q∗

2 = a + c1 − 2c2
3b

, (1.75)

which is positive (i.e., it belongs to the strategy space of the duopolymodel) provided
that {

2c1 − c2 < a ,

2c2 − c1 < a .
(1.76)

The equilibrium point E∗, when it exists, is the unique Nash equilibrium, located
at the intersection of the two reaction curves given by the two straight lines which
represent the locus of points of vanishing marginal profits (1.73). The study of the
local stability of the fixed points is based on the localization, on the complex plane,
of the eigenvalues of the Jacobian matrix of (1.74)

J(q1, q2) =
[
1 + v1(a − c1 − 4bq1 − bq2) −v1bq1

−v2bq2 1 + v2(a − c2 − bq1 − 4bq2)

]

(1.77)
It is easy to prove that whenever the equilibrium E∗ exists (i.e., (1.76) are satisfied),
the boundary fixed points Ei , i = 0, 1, 2, are unstable. In fact at E0 the Jacobian
matrix becomes a diagonal matrix

J(0, 0) =
[
1 + v1(a − c1) 0

0 1 + v2(a − c2)

]
(1.78)

whose eigenvalues, given by the diagonal entries, are greater than 1 if c1 < a and
c2 < a. Thus E0 is a repelling node with eigendirections along the coordinate axes.
At E1 the Jacobian matrix becomes a triangular matrix

J
(
a − c1
2b

, 0

)
=
[
1 − v1(a − c1) − v1

2 (a − c1)
0 1 + v2

2 (a − 2c2 + c1)

]
(1.79)

whose eigenvalues, given by the diagonal entries, are λ1 = 1 − v1(a − c1), with
eigenvector r(1)

1 = (1, 0) along the q1 axis, and λ2 = 1 + v2/2(a − 2c2 + c1), with
eigenvector r(2)

1 = (1, 21−v1(a−c1)
v1(a−c1)

). When (1.76) are satisfied E1 is a saddle point,

with local stable manifold along q1 axis and the unstable one tangent to r(2)
1 , if

v1 <
2

a − c1
, (1.80)

otherwise E1 is an unstable node. The bifurcation occurring at v1 = 2/(a − c1) is a
flip bifurcation at which E1 from attracting becomes repelling along the q1 axis, on
which a saddle cycle of period 2 appears. The same arguments hold for the other
boundary fixed point E2. It is a saddle, with local stable manifold along the q2 axis
and the unstable one tangent to r(2)

2 = (1, 21−v2(a−c2)
v2(a−c2)

), if
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v2 <
2

a − c2
, (1.81)

otherwise it is an unstable node. Also in this case the bifurcation that transforms the
saddle into the repelling node is a flip bifurcation creating a 2-cycle saddle on the q2
axis.

To study the local stability of the Nash equilibrium we consider the Jacobian
matrix at E∗

J(q∗
1, q

∗
2) =

[
1 − 2v1bq∗

1 −v1bq∗
1−v2bq∗

2 1 − 2v2bq∗
2

]
. (1.82)

Its eigenvalues are real because the characteristic equation λ2 − Trλ + Det = 0,
where Tr represents the trace and Det the determinant of (1.82), has positive dis-
criminant

Tr2 − 4Det = 4b2
[(
v1q

∗
1 − v2q

∗
2

)2 + v1v2q
∗
1q

∗
2

]
> 0.

It is easy to realize that λi < 1, i = 1, 2 , since 1 − Tr + Det > 0 when (1.76) hold,
thus a sufficient condition for the local asymptotic stability ofE∗ is 1 + Tr + Det > 0,
which ensures λi > −1, i = 1, 2. This condition, which becomes

3b2q∗
1q

∗
2v1v2 − 4bq∗

1v1 − 4bq∗
2v2 + 4 < 0 , (1.83)

defines a region of stability in the plane of the speeds of adjustment (v1, v2) whose
shape is like the shaded area of Fig. 1.70. This stability region is bounded by the
portion of hyperbola,with positive v1 and v2,whose equation is given by the vanishing
of the left hand side of (1.83). For values of (v1, v2) inside the stability region the
Nash equilibriumE∗ is a stable node, and the hyperbola represents a bifurcation curve
at which E∗ loses its stability through a period doubling (or flip) bifurcation. This

Fig. 1.70 The shaded area
represents, in the plane of
speeds of adjustment
(v1, v2), the region of local
asymptotic stability of the
Nash equilibrium. The values
of the other parameters are
c1 = 3, c2 = 5, a = 10
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bifurcation curve intersects the axes v1 and v2 in the points A1 and A2 respectively,
whose coordinates are given by

A1 =
(

3

a + c2 − 2c1
, 0

)
and A2 =

(
0,

3

a + c1 − 2c2

)
. (1.84)

From these results we can obtain information on the effects of themodel’s parame-
ters on the local stability of E∗. For example, an increase of the speeds of adjustment,
with the other parameters held fixed, has a destabilizing effect. In fact, an increase
of v1 and/or v2, starting from a set of parameters which ensures the local stability of
the Nash equilibrium, can bring the point (v1, v2) out of the stability region, crossing
the flip bifurcation curve. Similar arguments apply if the parameters v1, v2, c1, c2 are
fixed and the parameter a, which represents the maximum price of the good pro-
duced, is increased. In this case the stability region becomes smaller, as can be easily
deduced from (1.84), and this can cause a loss of stability of E∗ when the moving
boundary is crossed by the point (v1, v2). An increase of the marginal cost c1, with c2
held fixed, causes a displacement of the point A1 to the right and of A2 downwards.
Instead, an increase of c2, with c1 held fixed, causes a displacement of A1 to the left
and of A2 upwards. In both cases the effect on the local stability of E∗ depends on
the position of the point (v1, v2). In fact, if v1 < v2, i.e., the point (v1, v2) is above
the diagonal v1 = v2, an increase of c1 can destabilize E∗, whereas an increase of c2
reinforces its stability. The situation is reversed if v1 > v2. From these arguments the
combined effects due to simultaneous changes of several parameters can be deduced.
For example if E∗ becomes unstable because of a price increase (due to a shift of the
demand curve), its stability can be regained by a reduction of the speeds of reaction,
whereas an increase of a marginal cost ci can be compensated by a decrease of the
corresponding vi: in the presence of a high marginal cost, stability is favored by a
more prudent behavior (i.e., lower reactivity to profit signals).

A Duopoly Game with Isoelastic Demand and Gradient Dynamics Following
[8], we consider now the same duopoly model (1.71) but with a different demand
function (often used in economics as an alternative of linear demand) called isoelastic

p = 1

Q
(1.85)

In this case the one-period profit of firm i is given by

Πi(q1, q2) = qi
q1 + q2

− ciqi; i = 1, 2 . (1.86)

Hence the estimated marginal profits are

∂Π1

∂q1
= q2

(q1 + q2)
2 − c1 and

∂Π2

∂q2
= q1

(q1 + q2)
2 − c2 .
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With these assumptions, model (1.71) becomes

T :

⎧
⎪⎪⎨

⎪⎪⎩

q′
1 = q1

(
1 − c1v1 + v1

q2
(q1+q2)

2

)

q′
2 = q2

(
1 − c2v2 + v2

q1
(q1+q2)

2

) (1.87)

The fixed points of (1.87) are defined as the non-negative solutions of the algebraic
system ⎧

⎨

⎩

q1
(

q2
(q1+q2)

2 − c1
)

= 0

q2
(

q1
(q1+q2)

2 − c2
)

= 0

obtained by setting q′
i = qi , i = 1, 2, in (1.87). As the map (1.87) is not defined in

(0, 0), the unique equilibrium point is

E∗ = (q∗
1, q

∗
2) =

(
c2

(c1 + c2)
2 ,

c1
(c1 + c2)

2

)
(1.88)

which is also the unique Nash equilibrium of the classical Cournot duopoly game, as
E∗ is located at the intersection of the two reaction curves ∂Πi

∂qi
= 0, i = 1, 2, (first

order conditions) and also the second order sufficient conditions are satisfied at E∗,
since ∂2Πi

∂q2i
(E∗) = −2(c1 + c2)ci < 0, i = 1, 2. At E∗ the optimal profits of the two

firms are
Π∗

1 = c2 and Π∗
2 = c1. (1.89)

The study of the local stability of the Nash equilibrium is based on the localization,
on the complex plane, of the eigenvalues of the Jacobian matrix of (1.87)

J(q1, q2) =
[
1 − v1c1 + v1

q2(q2−q1)
(q1+q2)3

v1
q1(q1−q2)
(q1+q2)3

v2
q2(q2−q1)
(q1+q2)3

1 − v2c2 + v2
q1(q1−q2)
(q1+q2)3

]

computed at E∗

J∗ =
⎡

⎣
1 + v1c1

(
c1−c2
c1+c2

− 1
)

v1c2
c2−c1
c1+c2

v2c1
c1−c2
c1+c2

1 + v2c2
(
c2−c1
c1+c2

− 1
)

⎤

⎦

The characteristic equation λ2 − Tr(J∗) λ + Det(J∗) = 0, where

Tr(J∗) = 2

(
1 − (v1 + v2)

c1c2
c1 + c2

)
and

Det(J∗) = 1 + v1v2c1c2 − 2(v1 + v2)
c1c2

c1 + c2



100 G.I. Bischi et al.

has complex conjugate roots if

(c2v2 − c1v1) (c1v2 − c2v1) < 0 . (1.90)

This condition can be easily visualized in the space V = {v1, v2 | v1 ≥ 0, v2 ≥ 0} of
the speeds of adjustment shown in Fig. 1.71, where (1.90) is satisfied in the region,
which we call region F , between the two lines of equation

v2 = c1
c2
v1 and v2 = c2

c1
v1 . (1.91)

The Nash equilibrium E∗ is locally asymptotically stable if the usual stability con-
ditions hold

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − Tr(J∗) + Det(J∗) = v1v2c1c2 > 0

1 + Tr(J∗) + Det(J∗) = c1c2v1v2 − 4 c1c2
c1+c2

(v1 + v2) + 4 > 0

Det(J∗) − 1 = c1c2v1v2 − 2 c1c2
c1+c2

(v1 + v2) < 0

(1.92)

The first of (1.92) is always satisfied, which means that loss of stability through
the critical value λ = 1 cannot occur (in fact a unique equilibrium always exists,
and neither fold nor transcritical nor pitchfork bifurcation can be obtained with a
unique equilibrium). The other two conditions define a bounded region of stability
in the parameters’ space, that can be represented in the plane V of the speeds of
adjustment by the regionS = OB1A1A2B2, shaded in Fig. 1.71. This region, which
is symmetricwith respect to the diagonal v1 = v2, is bounded by the positive branches
of two equilateral hyperbolae whose equations are obtained from the second and the
third of (1.92) taken as equalities. From these equations the coordinates of the points
Ai and Bi, i = 1, 2 , can be easily obtained

A1 =
(
2

c1
,
2

c2

)
A2 =

(
2

c2
,
2

c1

)
B1 =

(
c1 + c2
c1c2

, 0

)
B2 =

(
0,

c1 + c2
c1c2

)
.

(1.93)

If the marginal costs c1 and c2 are fixed the shape of the stability regionS remains
the same, and by increasing v1 and/or v2 the point P = (v1, v2) can move out of it.
If P crosses the boundary of S along the arc A1A2 (belonging to the hyperbola of
equation Det(J∗) = 1) then the fixed point E∗ changes from a stable focus to an
unstable focus via a Neimark-Sacker bifurcation. If P exits the regionS by crossing
one of the arcs B1A1 or B2A2 (both belonging to the other hyperbola, of equation
1 + Tr(J∗) + Det(J∗) = 0) the fixed point E∗ changes from an attracting node to a
saddle point through a period doubling (or flip) bifurcation.

Similar arguments apply if the marginal costs (c1, c2) are varied. For example,
if c1 and c2 are increased the stability region S becomes smaller, as can be easily
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Fig. 1.71 Stability region for the model (1.87) in the (v1, v2)-parameter plane

deduced from (1.93), and this can cause the exit of P from S even if the speeds of
adjustment v1 and v2 are held constant. Also in this case the loss of stability can occur
via a Neimark-Sacker or a flip bifurcation depending on the boundary arc which is
crossed by the point P.

We observe that if c1 > c2 the positions of the vertices A1 and A2 are swapped,
and if c1 = c2 these vertices merge, and the region S becomes a square, like in the
central panel of Fig. 1.71, bounded by the branches of a degenerate hyperbola. In
this particular case the region F disappears, and the possibility of Neimark-Sacker
bifurcations is lost. On the contrary, if the difference between the marginal costs of
the two firms is increased, the regionF enlarges and the arc A1A2, representing the
curve where Neimark-Sacker bifurcations occur, becomes larger (see right panel of
Fig. 1.71).

The fact that an increase of the speeds of adjustment has a destabilizing role in an
oligopoly dynamic model is a typical result, well known in the literature. However
this stability analysis reveals a new phenomenon: starting from a set of parameters
for which the Nash equilibrium E∗ is unstable, stability of E∗ can be obtained by
increasing one (or both) vi. This happens when the point P = (v1, v2) belongs to one
of the regions denoted byR1 orR2 in the left panel of Fig. 1.71. Furthermore, if the
parameters of the model are varied in such a way that the point P moves from region
R1(or R2) to the region Fu by increasing v1 (or v2) we obtain two bifurcations,
which cause a transition from two instability situations separated by a “window” of
stability.

This particular bifurcation sequence is characterized by two different local bifur-
cations: a period halving (or backward flip) bifurcation followed by a supercritical
Neimark-Sacker bifurcation.

A rich variety of other dynamic scenarios can be numerically shown, see, e.g., the
sequences of pictures in the Fig. 1.72. In the first picture (upper left panel) v1 = 0.61,
v2 = 0.443, c1 = 3, c2 = 5. At this stage the motion along the stable closed invariant
curve is locked at the periodic cycle of period 7 whose periodic points are shown in
the upper-left panel. Then, starting from this situation, the speed of adjustment v1
is increased and the 7-cycle undergoes a period-doubling bifurcation leading to an



102 G.I. Bischi et al.

Fig. 1.72 Numerical representation of attractors and basins of the map (1.87)

attracting 14-cycle, then a 7-pieces (or 7-cyclic) chaotic attractor and finally a unique
large annular chaotic attractor.

It is worth noticing that in the sequences of dynamic scenarios shown above, lead-
ing to the creation of chaotic attractors starting from sequences of local bifurcations,
an attractor is eventually obtained whose points are very close to the boundary of
its own basin, like in the last picture. Indeed, when a chaotic attractor has a contact
with its basin’s boundary it is destroyed, at a global (or contact) bifurcation denoted
as “final bifurcation” or “boundary crisis”. After this contact the generic initial con-
dition in the basin of the"died attractor” belong to the basin that was “on the other
side” of the basin boundary where the contact occurred. However, the skeleton of
the former attractor, formed by the dense set on infinitely many repelling periodic
points that where nested inside it, still exists. It is called the “ghost” of the “just died”
chaotic attractor, and it implies that many trajectories spend a long number of steps
(i.e., a long transients) in the region occupied by the former attractor before converg-
ing to the other attractor (that may be an attractor at finite distance or at infinity, i.e.,
with trajectories that diverge).
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1.3.3 Discrete Dynamical System Represented
by Noninvertible Maps

As we have seen through the examples of nonlinear dynamical systems discussed in
the previous sections, an analysis of their global properties is necessary to understand
the structure of the attractors and their basins of attraction, as well as their qualitative
changes. Global properties and bifurcations are such that they cannot be deduced
from the linearization procedure, based on the study of eigenvalues and eigenvectors
of the Jacobian matrix.

In the case of discrete-time dynamical systems, the two kinds of complexities
observed in the previous sections, given by the complex structures of the attracting
sets and the complex structures of the basins of attraction, can be often characterized
by the global folding properties of maps whose iteration inductively define the tra-
jectories. In particular, as we have already discussed in the Sects. 1.3.1.4 and 1.3.1.5,
a delimitation of the trapping sets (including chaotic sets) as well as a study of the
complex topological structure of basins of attraction (including the case of non-
connected basins), can be characterized through the analysis of noninvertible maps
and their properties. The definition of critical sets, that are generalizations of local
maximum and minimum values of one-dimensional maps to maps defined in higher
dimensional spaces, will give us a very useful tool to detect the global (or contact)
bifurcations giving rise to qualitative changes of the invariant sets and their basins.
We refer the reader to [1, 3, 29].

1.3.3.1 Critical Sets: Definitions and Simple Examples

A map T : S → S, S ⊆ R
n, defined by x′ = T (x), transforms a point x ∈ S into a

unique point x′ ∈ S. The point x′ is called the rank-1 image of x, and a point x such
that T(x) = x′ is a rank-1 preimage of x′.

If x �= y implies T(x) �= T (y) for each x, y in S, then T is an invertible map in S,
because the inverse mapping x = T−1

(
x′) is uniquely defined; otherwise T is a said

to be a noninvertible map, because points x exist that have several rank-1 preimages,
i.e., the inverse relation x = T−1

(
x′) is multivalued. So, noninvertible means “many-

to-one”, that is, distinct points x �= y may have the same image, T(x) = T (y) = x′.
A one-dimensional example has been given by the logistic map (1.52) where

points symmetric with respect to its symmetry axis x = 1/2 have the same image
(see Fig. 1.53). The corresponding two inverses have been computed in (1.56).

To give an example in two dimensions, let us again consider a quadratic map
T : (x, y) → (

x′, y′) defined by

T :
{
x′ = ax + y
y′ = x2 + b

(1.94)



104 G.I. Bischi et al.

Fig. 1.73 Left panel Action of the map T given in (1.94). Right panel Action of the two inverses
T−1
1 and T−1

2 defined in (1.95)

It canmapdistinct points into the samepoint. For example ifwe consider themapwith
parameters a = 1/2 and b = −2, then the two points P1 = (−2, 2) and P2 = (2, 0)
are mapped into the same point P = (1, 2). This means that at least two inverses
must be defined in P, one mapping it into the rank-q preimage P1 and the other one
into the other preimage P2 (see Fig. 1.73). Indeed, like in the case of the logistic map,
also for this two-dimensional map we can explicitly compute the two inverses: given
x′ and y′, if we solve the algebraic system (1.94) with respect to the unknowns x and
y we get two solutions, given by

T−1
1 :

{
x = −√y′ − b
y = x′ + a

√
y′ − b

; T−1
2 :

{
x = √y′ − b
y = x′ − a

√
y′ − b

(1.95)

Geometrically, the action of a noninvertible map can be expressed by saying that
it “folds and pleats” the space S, so that distinct points are mapped into the same
point. This is equivalently stated by saying that several inverses are defined in some
points of S, and these inverses “unfold” S.

For a noninvertible map, S can be subdivided into regions Zk , k ≥ 0, whose points
have k distinct rank-1 preimages. Generally, for a continuous map, as the point x′
varies inRn, pairs of preimages appear or disappear as it crosses the boundaries sep-
arating different regions. Hence, such boundaries are characterized by the presence
of at least two coincident (merging) preimages. This leads us to the definition of the
critical sets, one of the distinguishing features of noninvertible maps.

Definition 1.10 (Gumowski and Mira [17]) The critical set CS of a continuous map
T is defined as the locus of points having at least two coincident rank − 1 preimages,
located on a set CS−1, called set of merging preimages.

The critical set CS is generally formed by (n − 1)-dimensional hypersurfaces
of Rn, and portions of CS separate regions Zk of the phase space characterized by
a different number of rank − 1 preimages, for example Zk and Zk+2 (this is the
standard occurrence for continuous maps). The critical set CS is the n-dimensional
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generalization of the notion of local minimum or local maximum value of a one-
dimensional map, and of the notion of critical curve LC of a noninvertible two-
dimensional map.8 The set CS−1 is the generalization of local extremum point of a
one-dimensional map, and of the fold curve LC−1 of a two-dimensional noninvertible
map. In a differentiable one-dimensional map the critical points c−1 can be searched
among the points where the derivative vanishes, as we have seen for the logistic map.

However, we remark that in general the condition of vanishing derivative is not
sufficient to define the critical points of rank-0 since such condition may be also sat-
isfied by points which are not local extrema (e.g., the inflection points with horizontal
tangent). Moreover, for continuous and piecewise differentiable maps, as well as for
discontinuous maps, the condition of vanishing derivative is not necessary as well,
because such maps may have the property that the images of points where the map
is not differentiable are critical points, according to the definition given above. This
occurs whenever such kink points are local maxima or minima. Even in the case of
piecewise continuous maps, a point of discontinuity may behave as a critical point
of T , even if the definition in terms of merging preimages cannot be applied. The
difference with respect to the case of a continuous map is that now the number of
distinct rank-1 preimages through a critical point differs generally by one (instead
of two), that is, a critical value c (in general the critical set CS) separates regions Zk
and Zk+1.

In order to explain the geometric action of a critical point in a continuous map,
let us consider, again, the logistic map, and as already stressed in Sect. 1.3.1.4 let us
notice that as x moves from 0 to 1 the corresponding image f (x) spans the interval
[0, c] twice, the critical point c being the turning point (see again Figs. 1.53 and
1.54). In other words, if we consider how the segment γ = [0, 1] is transformed by
the map f , we can say that it is folded and pleated to obtain the image γ ′ = [0, c].
Such folding gives a geometric reason why two distinct points of γ , say x1 and x2,
located symmetrically with respect to the point c−1 = 1/2, are mapped into the same
point x′ ∈ γ ′ due to the folding action of f . The same arguments can be explained by
looking at the two inverse mappings f −1

1 and f −1
2 defined in (−∞, μ/4] according

to (1.56). We can consider the range of the map f formed by the superposition of
two half-lines (−∞, μ/4], joined at the critical point c = μ/4, and on each of these
half-lines a different inverse is defined. In other words, instead of saying that two
distinct maps are defined on the same half-line we say that the range is formed by
two distinct half lines on each of which a unique inverse map is defined. This point
of view gives a geometric visualization of the critical point c as the point in which
two distinct inverses merge. The action of the inverses, say f −1 = f −1

1 ∪ f −1
2 , causes

an unfolding of the range by mapping c into c−1 and by opening the two half-lines
one on the right and one on the left of c−1, so that the whole real line R is covered.
So, the map f folds the real line, the two inverses unfold it.

8The terminology and notation originate from the notion of critical point as it is used in the classical
works of Julia and Fatou.
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Another interpretation of the folding action of a critical point is the following.
Since f (x) is increasing for x ∈ [0, 1/2) and decreasing for x ∈ (1/2, 1], its applica-
tion to a segment γ1 ⊂ [0, 1/2) is orientation preserving, whereas its application to
a segment γ2 ⊂ (1/2, 1] is orientation reversing. This suggests that an application of
f to a segment γ3 = [a, b] including the point c−1 = 1/2 preserves the orientation
of the portion [a, c−1], i.e., f ([a, c−1]) = [f (a), c], whereas it reverses the portion
[c−1, b], i.e., f ([c−1, b]) = [f (b), c], so that γ ′

3 = f (γ3) is folded, the folding point
being the critical point c.

Let us now consider the case of a continuous two-dimensional map T : S → S,
S ⊆ R

2, defined by

T :
{
x′
1 = T1(x1, x2)
x′
2 = T2(x1, x2) ,

(1.96)

If we solve the system of the two equations (1.96) with respect to the unknowns x1
and x2, then, for a given

(
x′
1, x

′
2

)
, we may have several solutions, representing rank-1

preimages (or backward iterates) of
(
x′
1, x

′
2

)
, say (x1, x2) = T−1

(
x′
1, x

′
2

)
, where T−1

is in general a multivalued relation. In this case we say that T is noninvertible, and
the critical set (formed by critical curves, denoted by LC from the French “Ligne
Critique”) constitutes the set of boundaries that separate regions of the plane char-
acterized by a different number of rank-1 preimages. According to the definition,
along LC at least two inverses give merging preimages, located on LC−1.

For a continuous and (at least piecewise) differentiable noninvertible map of the
plane, the set LC−1 is included in the set where Det J(x1, x2) changes sign, since T is
locally an orientation preserving map near points (x1, x2) such that Det J(x1, x2) > 0
and orientation reversing if Det J(x1, x2) < 0. In order to explain this point, let us
recall that when an affine transformation x′ = Ax + b, where A = {aij

}
is a 2 × 2

matrix and b ∈R2, is applied to a plane figure, then the area of the transformed figure
grows, or shrinks, by a factor ρ = |DetA|, and if DetA > 0 then the orientation of
the figure is preserved, whereas if DetA < 0 then the orientation is reversed. This
property also holds for the linear approximation of (1.96) in a neighborhood of a
point p = (x1, x2), given by an affine map with A = J, J being the Jacobian matrix
evaluated at the point p

J (p) =
[

∂T1/∂x1 ∂T1/∂x2
∂T2/∂x1 ∂T2/∂x2

]
(1.97)

A qualitative visualization is given in Fig. 1.74. Of course, if the map is continuously
differentiable then the change of the sign of J occurs along points where J vanishes,
thus giving the characterization of the fold line LC−1 as the locus where the jacobian
vanishes.
In order to give a geometrical interpretation of the action of a multi-valued inverse
relation T−1, it is useful to consider a region Zk as the superposition of k sheets,
each associated with a different inverse. Such a representation is known as Riemann
foliation of the plane. Different sheets are connected by folds joining two sheets,
and the projections of such folds on the phase plane are arcs of LC. This is shown in
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Fig. 1.74 Folding and unfolding action of a two-dimensional noninvertible map

the qualitative sketch of Fig. 1.74, where the case of a Z0 − Z2 noninvertible map is
considered. This graphical representation of the unfolding action of the inverses also
gives an intuitive idea of the mechanism which causes the creation of nonconnected
basins for noninvertible maps of the plane.

Let us consider again the map (1.94) as a canonical example of a two-dimensional
noninvertible map. Given a point

(
x′, y′), according to (1.95) it has two rank-

one preimages if y′ ≥ b, and no preimages if y′ < b. So, (1.94) is a Z0 − Z2
noninvertible map, where Z0 (region whose points have no preimages) is the
half plane Z0 = {(x, y) |y < b} and Z2 (region whose points have two distinct
rank-1 preimages) is the half plane Z2 = {(x, y) |y > b}. The line y = b, which
separates these two regions, is LC, i.e., the locus of points having two merg-
ing rank-1 preimages, located on the line x = 0, that represents LC−1. Being
(1.94) a continuously differentiable map, the points of LC−1 necessarily belong
to the set of points at which the Jacobian determinant vanishes, i.e., LC−1 ⊆ J0,
where J0 = {(x, y) |DetJ(x, y) = −2x = 0}. In this case LC−1 coincides with J0
(the vertical axis x = 0) and the critical curve LC is the image by T of LC−1, i.e.,
LC = T(LC−1) = T ({x = 0}) = {(x, y) |y = b}.

In order to show the folding action related to the presence of the critical lines
fact, we consider a plane figure (a circle) U divided by LC−1 into two portions,
say U1 ∈ R1 and U2 ∈ R2 (Fig. 1.75, left panel) and we apply the map (1.94) to the
points of U. The image T(U1) ∩ T(U2) is a nonempty set included in the region
Z2, which is the region whose points p′ have rank-1 preimages p1 = T−1

1

(
p′) ∈ U1

and p2 = T−1
2

(
p′) ∈ U2. This means that two points p1 ∈ U1 and p2 ∈ U2, located

at opposite sides with respect to LC−1, are mapped in the same side with respect to
LC, in the region Z2. This is also expressed by saying that the ball U is “folded” by
T along LC on the side with more preimages (see Fig. 1.75, left panel). The same
concept can be equivalently expressed by stressing the “unfolding” action of T−1,
obtained by the application of the two distinct inverses in Z2 which merge along LC.
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Fig. 1.75 Folding and unfolding action of the map (1.94)

Indeed, if we consider a ball V ⊂ Z0, then the set of its rank − 1 preimages T−1
1 (V )

and T−1
2 (V ) is made up of two balls T−1

1 (V ) ∈ R1 and T
−1
2 (V ) ∈ R2. These balls are

disjoint if V ∩ LC = ∅ (Fig. 1.75, right panel).
Many of the considerations made above, for 1-dimensional and 2-dimensional

noninvertible maps, can be generalized to n-dimensional ones, even if their visu-
alization becomes more difficult. First of all, from the definition of critical set it
is clear that the relation CS = T(CS−1) holds in any case. Moreover, the points of
CS−1 where the map is continuously differentiable are necessarily points where the
Jacobian determinant vanishes:

CS−1 ⊆ J0 = {p ∈ R
n | Det J(p) = 0} (1.98)

In fact, in any neighborhood of a point of CS−1 there are at least two distinct points
which are mapped by T in the same point. Accordingly, the map is not locally
invertible in points of CS−1, and (1.98) follows from the implicit function theorem.
This property provides an easy method to compute the critical set for continuously
differentiable maps: from the expression of the jacobian determinant one computes
the locus of points at which it vanishes, then the set obtained after an application of
the map to these points is the critical set CS.

A problem that often arises in the study of nonlinear dynamical systems concerns
the existence of several attracting sets, each with its own basin of attraction. In
this case the dynamic process becomes path-dependent, i.e., which kind of long
run dynamics characterizes the system depends on the starting condition. Another
important problems in the study of applied dynamical systems is the delimitation of a
bounded region of the state space where the system dynamics are ultimately trapped,
despite of the complexity of the long-run time patterns. This is an useful information,
even more useful than a detailed description of step by step time evolution.

Both these questions require an analysis of the global dynamical properties of the
dynamical system, that is, an analysis which is not based on the linear approximation
of the map. When the map T is noninvertible, its global dynamical properties can
be characterized by using the formalism of critical sets, by which the folding action
associated with the application of the map, as well as the “unfolding” associated
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with the action of the inverses, can be described. Loosely speaking, the repeated
application of a noninvertible map repeatedly folds the state space along the critical
sets and their images, and often this allows one to define a bounded region where
asymptotic dynamics are trapped. As some parameter is varied, global bifurcations
that cause sudden qualitative changes in the properties of the attracting sets can be
detected by observing contacts of critical curves with invariant sets. Instead, the
repeated application of the inverses “repeatedly unfold” the state space, so that a
neighborhood of an attractor may have preimages far from it, thus giving rise to
complicated topological structures of the basins, that may be formed by the union of
several (even infinitely many) nonconnected portions.

1.3.3.2 Critical Sets and the Delimitation of Trapping Regions

Portions of the critical set CS and its images CSk = Tk(CS) can be used to obtain the
boundaries of trapping regions where the asymptotic dynamics of the iterated points
of a noninvertible map are confined. This has already been explained for the logistic
map in Sect. 1.3.1.4, where we have shown that, for 3 < μ < 4, starting from an
initial condition inside the interval [c1, c], with c1 = f (c), no images can be obtained
out of this interval, i.e., the interval formed by the critical point c and its rank-1 image
c1 is trapping. Moreover, any trajectory generated from an initial condition in (0, 1),
enters [c1, c] after a finite number of iterations. This is expressed by saying that the
interval [c1, c] is absorbing. Examples have been shown in Figs. 1.48 and 1.50.

In general, for an n-dimensional map, an absorbing region A (intervals in R,
areas in R2, volumes in R3, . . .) is defined as a bounded set whose boundary is given
by portions of the critical set CS and its images of increasing order CSk = Tk (CS),
such that a neighborhood U ⊃ A exists whose point enter A after a finite number
of iterations and then never escape it, since T(A ) ⊆ A , i.e.,A is trapping. Loosely
speaking, we can say that the iterated application of a noninvertible map, folding
and folding again the space, defines trapping regions bounded by critical sets of
increasing order.

Sometimes, smaller absorbing regions are nested inside a larger one, as it was
illustrated for the logistic map (1.52), as shown in Fig. 1.50, where inside the absorb-
ing interval [c1, c] a trapping subset is obtained by higher rank images of the critical
point, given by A = [c1, c3] ∪ [c2, c].

Inside an absorbing region one or more attractors may exist. However, if a chaotic
attractor exists which fills up a whole absorbing region then the boundary of the
chaotic attractor is formed by portions of critical sets. To better illustrate this point,we
also give a two-dimensional example, obtained by using themap (1.94). In Fig. 1.76a,
a chaotic trajectory is shown, and in Fig. 1.76b its outer boundary is obtained by the
union of a segment of LC and three iterates LCi = Ti(LC), i = 1, 2, 3.

A practical procedure can be outlined in order to obtain the boundary of an absorb-
ing area (although it is difficult to give a general method). Starting from a portion of
LC−1, approximately taken in the region occupied by the area of interest, its images
by T of increasing rank are computed until a closed region is obtained. When such
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Fig. 1.76 Delimitation of a chaotic area of themap (1.94) by portions of critical curves of increasing
rank

a region is mapped into itself, then it is an absorbing area A . The length of the ini-
tial segment is to be taken, in general, by a trial and error method, although several
suggestions are given in the books in the bibliography. Once an absorbing area A
is found, in order to see if it is invariant or not the same procedure must be repeated
by taking only the portion

γ = A ∩ LC−1 (1.99)

as the starting segment. Then one of the following two cases occurs:
(case I) the union of m iterates of γ (for a suitable m) covers the whole boundary

of A ; in which case A is an invariant absorbing area, and

∂A ⊂
m⋃

k=1

Tk(γ ) (1.100)
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(case II) no natural m exists such that
⋃m

i=1 T
i(γ ) covers the whole boundary of

A ; in which case A is not invariant but strictly mapped into itself. An invariant
absorbing area is obtained by ∩n>0Tn(A ) (and may be obtained by a finite number
of images of A ).

The application of this procedure to the problem of the delimitation of the chaotic
area of Fig. 1.76a by portions of critical curves suggests us, on the basis of Fig. 1.76b,
to take a smaller segment γ and to take an larger number of iterates in order to obtain
also the inner boundary. The result is shown in Fig. 1.76c, where by four iterates we
get the outer boundary. By a few more iterates also the inner boundary of the chaotic
area is get, as shown in Fig. 1.76d. As it can be clearly seen, and as clearly expressed
by the strict inclusion in (1.100), the union of the images also include several arcs
internal to the invariant area A . Indeed, the images of the critical arcs which are
mapped inside the area play a particular role, because these curves represent the
”foldings” of the plane under forward iterations of themap, and this is the reasonwhy
these inner curves often denote the portions of the region which are more frequently
visited by a generic trajectory inside it (compare Fig. 1.76a, d). This is due to the
fact that points close to a critical arc LCi, i ≥ 0, are more frequently visited, because
there are several distinct parts of the invariant area which are mapped in the same
region (close to LCi).

1.3.3.3 Critical Sets and the Creation of Nonconnected Basins

In the case of noninvertible maps, the multiplicity of preimages may lead to basins
with complex structures, such asmultiply connectedor nonconnected sets, sometimes
formedby infinitelymanynonconnectedportions.As already stressed inSect. 1.3.1.5,
in the context of noninvertible maps it is useful to define the immediate basinB0(A),
of an attracting set A, as the widest connected component of the basin which contains
A. Then the total basin can be expressed as

B (A) =
∞⋃

n=0

T−n(B0(A))

where T−n(x) represents the set of all the rank-n preimages of x, i.e., the set of points
which are mapped in x after n iterations of the map T . The backward iteration of
a noninvertible map repeatedly unfolds the phase space, and this implies that the
basins may be nonconnected, i.e., formed by several disjoint portions.

Also in this case, we have already given an example of this property for by using
a one-dimensional map, where in Fig. 1.59 the graph of a Z1 − Z3 − Z1 noninvertible
map is shown, Z3 being the portion of the codomain bounded by the relative mini-
mum value cmin and relative maximum value cmax. In the situation shown in Fig. 1.59
there are three attractors, and after the global bifurcation where cmin = q, the portion
(cmin, q) enters Z3, so new preimages f −k (cmin, q) appear with k ≥ 1. These preim-
ages constitute an infinite (countable) set of nonconnected portions of B (r) nested
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insideB (A), represented by the thick portions of the diagonal in Fig. 1.59, bounded
by the infinitely many preimages of any rank, say q−k , k ∈ N, of q, that accumulate
in a left neighborhood of the fixed point z. In fact, as z is a repelling fixed point for
the forward iteration of f , it is an attracting fixed point for the backward iteration of
the same map. So, the contact between the critical point cmin and the basin bound-
ary q marks the transition from simple connected to nonconnected basins. Similar
global bifurcations, due to contacts between critical sets and basin boundaries, also
occur in higher dimensional maps. In fact, if a parameter variation causes a crossing
between a basin boundary and a critical set which separates different regions Zk so
that a portion of a basin enters a region where a larger number of inverses is defined,
then new components of the basin may suddenly appear at the contact. However,
for maps of dimension greater than 1, such kinds of bifurcations can be very rarely
studied by analytical methods, since the analytical equations of such singularities are
not known in general. Hence such studies are mainly performed by geometric and
numerical methods.

1.3.3.4 Some Economic Examples

In this section we show how the global properties of noninvertible two-dimensional
maps can be used in the study of discrete dynamic models in economics. In particular
we will see the practical usage of critical curves to detect global bifurcations that
change the qualitative structure of the basins of attraction and how critical curves and
their images are employed to bound trapping regions where asymptotic dynamics
are confined.

Global Properties of the Cournot Duopoly Model with Linear Demand and
Gradient Dynamics We re-consider the duopoly model described in Sect. 1.3.2.3,
and we perform a deeper analysis of its global dynamic properties (see, e.g., [10]).
The map (1.74) is a noninvertible map of the plane, that is, starting from some non-
negative initial production strategy (q10, q20) the iteration of (1.74) uniquely defines
the trajectory (q1(t), q2(t)) = Tt(q10, q20), t = 1, 2, . . ., whereas the backward iter-
ation of (1.74) is not uniquely defined. In fact a point

(
q′
1, q

′
2

)
of the plane may have

several preimages, obtained by solving the fourth degree algebraic system (1.74)with
respect to q1 and q2. In order to understand the structure of the critical curves LC
and consequently the subdivision of the phase plane into zones Zk with k preimages,
we start from LC−1, that for a differentiable map like (1.74), according to (1.98),
is given by the locus of points where the Jacobian determinant vanishes. From the
expression of J given in (1.77), the condition DetJ = 0 becomes

q21 + q22 + 4q1q2 − α1q1 − α2q2 + β = 0

where

αi = 4(1 + vj(a − cj)bvi) + 1 + vi(a − ci)bvj
4b2v1v2

; i = 1, 2 ; j �= i



1 Qualitative Methods in Continuous and Discrete Dynamical Systems 113

and

β = (1 + v1(a − c1)bv1)(1 + v2(a − c2)bv2)

4b2v1v2
.

This is an hyperbola in the plane (q1, q2) with symmetry centre in the point

((2α2 − α1)/3, (2α1 − α2)/3) and asymptotes of angular coefficients
(
−2 ± √

3
)
.

Thus LC−1 is formed by two branches, denoted by LC(a)
−1 and LC

(b)
−1 in Fig. 1.77. This

implies that also LC is the union of two branches, denoted by LC(a) = T(LC(a)
−1) and

LC(b) = T(LC(b)
−1). Each branch of the critical curve LC separates the phase plane

of T into regions whose points possess the same number of distinct rank-1 preim-
ages. In the case of the map (1.74) LC(b) separates the region Z0, whose points have
no preimages, from the region Z2, whose points have two distinct rank-1 preim-
ages, and LC(a) separates the region Z2 from Z4, whose points have four distinct
preimages. In fact, it is possible to show (see below) that the point

(
q′
1, q

′
2

) = (0, 0)
has four preimages obtained by solving the algebraic system (1.74) with respect to
the unknowns (q1, q2), hence (0, 0) ∈ Z4. The other zones are classified by remem-
bering that any branch of LC is characterized by the merging (and disappearance)
of two preimages.

In order to study the action of the multivalued inverse relation T−1 it is useful
to consider a region Zk of the phase plane as the superposition of k sheets, each
associated with a different inverse. Such a representation is known as foliation of the
plane. Different sheets are connected by folds joining two sheets, and the projections
of such folds on the phase plane are arcs of LC. The foliation associated with the

Fig. 1.77 Riemann foliation for the map (1.74)
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map (1.74) is qualitatively represented in Fig. 1.77. It can be noticed that the cusp
point of LC is characterized by three merging preimages at the junction of two folds.

An important property of the map (1.74) is that each coordinate axis qi = 0, i =
1, 2, is trapping, that is, mapped into itself, since qi = 0 gives q′

i = 0 in (1.74). This
means that starting from an initial condition on a coordinate axis (monopoly case)
the dynamics is confined in the same axis for each t, governed by the restriction of
the map T to that axis. Such a restriction is given by the following one-dimensional
map, obtained from (1.74) with qi = 0

qj = (1 + vj(a − cj))qj − 2bvjq
2
j j �= i . (1.101)

This map is conjugate to the standard logistic map x′ = μx (1 − x) through the linear
transformation

qj = 1 + vj(a − cj)

2bvj
x (1.102)

from which we obtain the relation

μ = 1 + vj(a − cj) . (1.103)

This means that the dynamics of (1.101) can be obtained from the well known
dynamics of (1.52).

Another important feature of themap (1.74) is that it can generate unbounded (i.e.,
divergent) trajectories (this can be also expressed by saying that (1.74) has an attract-
ing set at infinite distance). In fact, unbounded (and negative) trajectories are obtained
if the initial condition is taken sufficiently far from the origin, i.e., in a suitable neigh-
borhoodof infinity, since ifqi0 > (1 + a − ci) /(bvi), i = 1, 2, then thefirst iterate of
(1.74) gives negative values q′

i < 0, i = 1, 2, so that the successive iterates give neg-
ative and decreasing values because q′

i = qi + viqi
(
a − ci − 2bqi − bqj

)
< qi being

(a − ci) > 0 if (1.76) hold. This implies that any attractor at finite distance cannot
be globally attracting in R

2+, since its basin of attraction cannot extend out of the
rectangle [0, (1 + a − c1) /(bv1)] × [0, (1 + a − c2) / (bv2)].

In the following we call attractor at finite distance, denoted by A , a bounded
attracting sets (whichmay be the Nash equilibriumE∗, a periodic cycle or somemore
complex attractor around E∗) in order to distinguish it from the limit sets at infinite
distance, i.e., the unbounded trajectories, which represent exploding (or collapsing)
evolutions of the duopoly system. We denote by B(A ) the basin of attraction of
an attractor A , defined as the open set of points (q1, q2) of the phase plane whose
trajectories Tt(q1, q2) have limit sets belonging to A as t → +∞. We also denote
byB (∞) the basin of infinity, defined as the set of points which generate unbounded
trajectories. LetF be the boundary (or frontier) separatingB (A ) fromB (∞). An
exact determination ofF is the main goal of this section. Indeed, this boundary may
be rather complex, as evidenced by the numerical results shown in Fig. 1.78.
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Fig. 1.78 Numerical representation of the basins of attraction for the duopoly map. The two figures
are obtained by taking a grid of initial conditions (q10, q20) and generating, for each of them a
numerically computed trajectory. If the trajectory is diverging then a grey dot is painted in the point
corresponding to the initial condition, otherwise awhite dot is painted. a Thewhite region represents
the basin of attraction of the Nash equilibrium, which is the only attractor at finite distance for that
set of parameters; b the attractor is a chaotic attractor surrounding the unstable Nash equilibrium

In Fig. 1.78a the attractor at finite distance is the Nash equilibriumE∗, and its basin of
attraction is represented by the white area, whereas the grey-shaded area represents
the basin of infinity. In the situation shown in Fig. 1.78a the boundary separating
B(A ) fromB(∞) has a fractal structure, as will be explained below. In Fig. 1.78b
the bounded attractor A is a chaotic set, with a multiply connected (or connected
with holes) basin of attraction. The same property can be expressed by saying that
B(∞) is a nonconnected set, with nonconnected regions given by the holes inside
B(A ). In this situation there is a great uncertainty about the long-run behavior of
a given adjustment process, since a small change in the initial strategy of the game
may cause a crossing of F .

The frontierF = ∂ B(A ) = ∂ B(∞) behaves as a repelling line for the points
near it, since it acts as a watershed for the trajectories of the map T . Points belonging
to F are mapped into F both under forward and backward iteration of T, that is,
the frontier is invariant for application of T and T−1. More exactly T (F ) ⊆ F ,
T−1 (F ) = F . This implies that if a saddle-point, or a saddle-cycle, belongs toF ,
then F must also contain all the preimages of such singularities, and it must also
contain the whole stable manifold Ws. In order to understand how complex basin
boundaries, like those shown in Fig. 1.78, are obtained, we start from a situation
in which F has a simple shape, and then we study the sequence of bifurcations
that cause the main qualitative changes in the structure of the basin boundaries as
some parameter is varied. Such bifurcations, typical of noninvertible maps, can be
characterized by contacts of the basin boundaries with the critical curves.
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Fig. 1.79 With c1 = 3,
c2 = 5, a = 10, b = 0.5,
v1 = 0.24, v2 = 0.48, the
boundary of the basin of
attraction of the Nash
equilibrium E∗ is formed by
the invariant axes, denoted
by ω1 and ω2, and their
rank-1 preimages ω−1

1 and
ω−1
2

Indeed, for the parameters’ values used to obtain Fig. 1.79, an exact determination
of the boundaries separating the basin of E∗ from that of infinity can be obtained. In
fact the saddle fixed points (or the saddle-cycles, if (1.80) or (1.81) no longer hold)
located on the coordinate axes belong toF , and also the invariant coordinate axesω1

and ω2, which form the local stable manifold (or inset) of the saddles, are part ofF .
These axes behave as repelling lines because the unstable manifolds (or outsets) of
the saddles are transverse to the axes, each of them having a branch pointing toward
E∗ and the opposite branch going to infinity (see Fig. 1.79). The other parts ofF can
be obtained by taking all the preimages of these invariant axes, in order to obtain the
whole stable sets of the saddles

F = (∪∞
n=0T

−n (ω1)
)⋃(∪∞

n=0T
−n (ω2)

)
(1.104)

The map T , defined in (1.74), is a noninvertible map. In fact, if we consider a
generic point P = (0, p) of the q2 axis, its preimages are the real solutions of the
algebraic system obtained from (1.74) with (q′

1, q
′
2) = (0, p):

⎧
⎨

⎩

q1
[
1 + v1(a − c1) − 2bv1q1 − bv1q2

] = 0 ,

(1 + v2(a − c2)) q2 − 2bv2q22 − bv2q1q2 = p .

(1.105)

From the first of (1.105) we obtain q1 = 0 or

1 + v1(a − c1) − 2bv1q1 − bv1q2 = 0 (1.106)
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whichmeans that if the pointP has preimages, then theymust be located either on the
same invariant axis or on the line of equation (1.106).Withq1 = 0 the second equation
becomes a second degree algebraic equation which has two distinct, coincident or
no real solutions if the discriminant

(1 + v2 (a − c2))
2 − 8bv2p (1.107)

is positive, zero or negative respectively. A similar conclusion holds if (1.106) is used
to eliminate a state variable in the first equation of (1.105). From this we can deduce
that the generic point P of the q2 axis can have no preimages or two preimages on
the same axis (which are the same obtained by the restriction (1.101) of T to the axis
q2) or four preimages, two on the same axis and two on the line of equation (1.106).
This implies that the set of the rank-one preimages of the q2 axis belongs to the same
axis and to the line (1.106). Following the same arguments we can state that the other
invariant axis, q1, has preimages on itself and on the line of equation

1 + v2(a − c2) − bv2q1 − 2bv2q2 = 0 . (1.108)

It is straightforward to see that the originO = (0, 0) has always 4 preimages, located
at the intersection of the lines (1.106) and (1.108) (see Fig. 1.79). In the situation,
shown in Fig. 1.79, the lines (1.106) and (1.108), labelled by ω−1

2 and ω−1
1 respec-

tively, together with the coordinate axes, labelled byω2 andω1, delimitate a bounded
region of the strategy space (q1, q2) which is exactly the basin of attraction of E∗.

These four sides, givenby the segmentsOO(1)
−1 andOO

(2)
−1 of the coordinate axes and

their rank-one preimages, constitute the whole boundary F because no preimages
of higher rank exist, since ω1−1 and ω2−1 belong to the region Z0 of the plane whose
points

(
q′
1, q

′
2

)
have no preimages, i.e., the fourth degree algebraic system has no

real solutions. This fact can be characterized through the study of the critical curves
of the noninvertible map (1.74). As we have seen, since the map T is continuously
differentiable, the critical curve LC−1 is the locus of points in which the determinant
of J(q1, q2), given in (1.77), vanishes, and the critical curve LC, locus of points
having two coincident rank-one preimages, can be obtained as the image, under T ,
of LC−1. For the map (1.74) LC−1 is formed by the two branches of an hyperbola,
denoted by LC(a)

−1 and LC(b)
−1 in Fig. 1.80, thus also LC = T(LC−1) consists of two

branches,LC(a) = T(LC(a)
−1) andLC

(b) = T(LC(b)
−1), represented by the thicker curves

of Fig. 1.80a. These two branches of LC separate the phase plane into 3 regions,
denoted by Z0, Z2 and Z4, whose points have 0, 2 and 4 distinct rank-1 preimages
respectively. It can be noticed that, as already stressed above, the origin always
belongs to the region Z4. It can also be noticed that the line LC−1 intersects the axis
qj, j = 1, 2, in correspondence to the critical point c−1 of the restriction (1.101) of
T to that axis.

The simple shape that the frontier F assumes for values of the parameters like
those used in Fig. 1.80a, where the basin of attraction of E∗ is a simply connected
set, is due to the fact that the preimages of the invariant axes, denoted in Fig. 1.80a
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Fig. 1.80 Graphical representation of the basin of attraction of the Nash equilibrium (white region)
and the basin B (∞) of unbounded trajectories (grey region) together with the basic critical curve
LC−1 and of critical curve LC (represented by heavy lines). The values of parameters c1, c2, a, b
are the same as in Fig. 1.78, with a v1 = 0.24 and v2 = 0.55 ; b v1 = 0.24 and v2 = 0.596 (just
after the contact of LC with ω−1

1 )

by ω−1
i , i = 1, 2, are entirely included inside the region Z0, so that no preimages of

higher rank exist. The situation is different when the values of the parameters are
such that some portions of these lines belong to the regions Z2 or Z4. In this case
preimages of higher order of the invariant coordinate axes are obtained, which form
new arcs of the frontier F , so that its shape becomes more complex. The switch
between these two qualitatively different situations can be obtained by a continuous
variation of some parameters of the model, and determines a global (or contact)
bifurcation. The occurrence of these global bifurcations can be revealed by the study
of critical curves. In order to illustrate this, in the following of this section we fix
the marginal costs and the parameters of the demand function at the parameters’
values c1 = 3, c2 = 5, a = 10, b = 1/2, and we vary the values of the speeds of
adjustment v1 and v2. If, starting from the parameters’ values used to obtain the
simple basin structure of Fig. 1.80a, the parameter v2 is increased, the two branches
of the critical curve LCmove upwards. The first global bifurcation of the basin occurs
when the branch of LC which separates the regions Z0 and Z2 becomes tangent to
F , that is, to one of the lines (1.108) or (1.106). In Fig. 1.80b it can be seen that just
after the bifurcation value of v2, at which LC(b) is tangent to the line ω−1

1 of equation
(1.108), a portion ofB (∞), say H0 (bounded by the segment h of ω−1

1 and LC) that
before the bifurcation was in region Z0, enters inside Z2. The points belonging to H0

have two distinct preimages, located at opposite sides with respect to the line LC−1,
with the exception of the points of the curve LC(b) inside B (∞) whose preimages,
according to the definition of LC, merge on LC(b)

−1. Since H0 is part of B (∞) also
its preimages belong to B (∞). The locus of the rank-1 preimages of H0, bounded
by the two preimages of h, is composed by two areas joining along LC−1 and forms
a hole (or lake) of B (∞) nested inside B (E∗). This is the largest hole appearing
in Fig. 1.80b, and is called the main hole. It lies entirely inside region Z2, hence it
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has 2 preimages, which are smaller holes bounded by preimages of rank 3 of the
q1 axis. Even these are both inside Z2. So each of them has two further preimages
inside Z2, and so on. Now the boundaryF is given by the union of an external part,
formed by the coordinate axes and their rank-1 preimages (1.108) and (1.106), and
the boundaries of the holes, which are sets of preimages of higher rank of the q1
axis. Thus the global bifurcation just described transforms a simply connected basin
into a multiply connected one, with a countable infinity of holes, called arborescent
sequence of holes, inside it.

As v2 is further increased LC continues to move upwards and the holes become
larger. This fact causes a sort of predictability loss, since a greater uncertainty is
obtained with respect to the destiny of games starting from an initial strategy falling
in zone of the holes. If v2 is further increased a second global bifurcation occurs
when LC crosses the q2 axis at O(2)

−1. This happens when v2 = 3/(a − c2), as in
Fig. 1.81a. After this bifurcation all the holes reach the coordinate axis q2, and the
infinite contact zones are the intervals of divergence of the restriction (1.101), which
are located around the critical point and all its preimages under (1.101) (compare
Fig. 1.81a with Fig. 1.58). After this bifurcation the basin B (E∗) becomes simply
connected again, but its boundary F has now a fractal structure, since its shape,
formed by infinitely many peninsulas, has the self-similarity property.

The sequence of pictures shown in Fig. 1.81 is obtained with v1 = 0.24 (as in
Fig. 1.80) and increasing values of v2. Along this sequence the point (v1, v2) reaches,
in the plane of adjustment speeds, the line of flip bifurcations. When this line is
crossed the Nash equilibrium E∗ becomes a repelling saddle point, and an attracting
cycle of period 2, say C2, is created near it (as in Fig. 1.81b). The flip bifurcation
opens a cascade of period doublings, which creates a sequence of attracting cycles of

Fig. 1.81 Numerical simulations of the duopoly map, obtained with fixed parameters c1 = 3,
c2 = 5, a = 10, b = 0.5, v1 = 0.24, and increasing values of v2
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period 2n followed by the creation of chaotic attractors, which may be cyclic chaotic
areas.
It is worth noting that in general there are no relations between the bifurcations
which change the qualitative properties of the basins and those which change the
qualitative properties of the attractor at finite distance. In other words, we may have
a simple attractor, like a fixed point or a cycle, with a very complex basin structure,
or a complex attractor with a simple basin. Both these sequences of bifurcations,
obtained by increasing the speeds of adjustment vi, cause a loss of predictability.
After the local bifurcations the myopic duopoly game no longer converges to the
global optimal strategy, represented by the Nash equilibrium E∗, and even if the
game starts from an initial strategy very close to E∗ the duopoly system goes towards
a different attractor, which may be periodic or aperiodic. These bifurcations cause in
general a loss of predictability about the asymptotic behavior of the duopoly system:
for example, in the sequence shown in Fig. 1.81 the situation of convergence to the
unique Nash equilibrium, like in the static Cournot game, is replaced by asymptotic
convergence to a periodic cycle with predictable output levels, and then by a cyclic
behavior with output levels which are not well predictable since they fall inside cyclic
chaotic areas, and, finally, by a situation of erratic behavior, inside a large area of
the strategy space, with no apparent periodicity. Instead, the global bifurcations of
the basin boundaries cause an increasing uncertainty with respect to the destiny of a
duopoly game starting from a given initial strategy since a small change in the initial
condition of the duopoly, or a small exogenous shock during the adjustment process,
may cause a great modification about the long-run behavior of the system. Similar
bifurcation sequences can also be obtained by increasing the parameter v1 with a
fixed value of v2. In this case a contact between LC and ω−1

2 , rank-one preimage of
the q2 axis, gives the first bifurcation that transforms the basinB (A ) from a simply
connected into a multiply connected set, with holes near the q1 axis. Situations
with values of v1 and v2 both near the critical values vi = 3/(a − ci), i = 1, 2, can
give complex basin boundaries near both the coordinate axes, with two arborescent
sequences of holes, generated by contacts of LC with the lines (1.106) and (1.108).
In any case, the computation of the preimages of the coordinate axes allows us to
obtain, according to (1.104), the exact delimitation of the basin boundary also in these
complex situations. For example, in Fig. 1.82 the preimages of the q1 axis, up to rank-
six, are represented for the same set of parameters as that used in Fig. 1.78b. It can
be noticed that some preimages of rank five and six bound holes that enter the region
Z4, thus giving a faster exponential growth of the number of higher order preimages.
This is the cause for the greater complexity of the basin boundary which is clearly
visible in Fig. 1.78b.

A Duopoly Game with Multiple Nash Equilibria Games played by rational play-
ers with complete information sets are typically one-shot games: each player knows
the complete payoffs’ structure of the game and that other players are rational as
well so that, having complete information, each player is able to forecast the choices
of other players. Thus, the game is studied identifying the so-called “solution con-
cepts”, such as Nash equilibria. In fact, if each player is assumed to have all such
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Fig. 1.82 Preimages of the q1 axis, up to rank 6, obtained with the same set of parameters as those
used in Fig. 1.78b

information and computational skills to solve the optimization problem obtained
by means of the rationality assumption (expressed as maximization of individual
utility) then everybody will choose a Nash equilibrium. However, agents are some-
times neither so astute nor informed, and they behave following adaptive methods,
such as learning-by-doing or trial-and-error practices. Sometimes agents do not opti-
mize at all, just following rough rules of thumb. This leads players to replace one-shot
optimal decisions with repeated myopic or adaptive decisions, in other words to a
dynamic process that may or may not converge to a Nash equilibrium, provided it is
an equilibrium point of the dynamical system as well. Moreover, when a game has
several Nash equilibrium points represented by equilibrium points of the dynamical
system, then the step-by-step dynamic process may act as a selection device, i.e., the
stability of the equilibria suggests which of them will prevail in the long-run. And if
several equilibrium points are stable, then the study of their basins of attraction will
give information about the path dependence, i.e., how the convergence will depend
on historical accidents (represented by exogenous shifts of initial conditions).

As an example let us consider a case where the reaction curves are second degree
functions, in the form of standard logistic maps Ri(qj) = μiqj

(
1 − qj

)
. They can be

obtained by assuming a linear demand p = a − b(q1 + q2) and cost functions with
externalities: Ci = Ci(qi, qj) = d + aqi − b(1 + 2μ)qiqj + 2bμqiq2j (see [22])
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Fig. 1.83 Attractors (black
dots) and basins (represented
by different colors) for the
duopoly model (1.109) with
λ1 = λ2 = 1, i.e., the case of
best reply with Näive
expectations

The adaptive adjustment with inertia becomes:

q1(t + 1) = (1 − λ1) q1(t) + λ1μ1q2(t) (1 − q2(t))

q2(t + 1) = (1 − λ2) q2(t) + λ2μ2q1(t) (1 − q1(t)) (1.109)

As noticed above, this model reduces to the repeated game with best reply and
naïve expectations if λ1 = λ2 = 1. Several coexisting stable Nash equilibria can be
obtained for certain sets of parameters, as well as other more complicated coexisting
attractors, such as stable cycles or chaotic attractors. An exemplary case is shown in
Fig. 1.83, where two stable Nash equilibria coexist with a stable cycle of period 2,
each with its own basin of attraction. The basins are multiply connected, i.e., besides
the immediate basin several (really infinitely many) nonconnected portions exist that
accumulate along the outer boundary of the phase space (see [9]). As stressed in
Sect. 1.3.3, such a situation can only occur in the case of noninvertible maps.

In order to reduce the number of parameters in our model, we will assume
that μ1 = μ2 = μ. Under this assumption the fixed points can be analytically
computed as follows. Two fixed points always exist, given by O = (0, 0) and
S = (1 − 1/μ, 1 − 1/μ). Forμ > 1, S represents a Nash equilibrium of the duopoly
game, atwhich the twofirmsproduce the samequantities.Moreover, two furtherNash
equilibria, given by

E1 =
(

μ + 1 + √
(μ + 1) (μ − 3)

2μ
,
μ + 1 − √

(μ + 1) (μ − 3)

2μ

)
(1.110)
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and

E2 =
(

μ + 1 − √
(μ + 1) (μ − 3)

2μ
,
μ + 1 + √

(μ + 1) (μ − 3)

2μ

)
, (1.111)

are created at μ = 3, and for μ > 3 they are located in symmetric positions with
respect to the diagonal Δ of equation q1 = q2. Each of them represents a Nash equi-
librium, characterized by different quantities produced by two firms. In the presence
ofmultipleNash equilibria the problemof equilibrium selection arises. The following
result holds (see also Fig. 1.84).

Proposition 1.3 (Local Stability and Bifurcations, Homogeneous Players [7]) Let
μ1 = μ2 = μ and λ1 = λ2 = λ. Then

(i) For 0 < μ < 1 the fixed point O = (0, 0) is a stable node, for 1 < μ < 2/λ − 1
it is a saddle point, with unstable set alongΔ and local stable set which crosses
through O perpendicular to Δ, and for μ > 2/λ − 1 it is an unstable node;

(ii) For 1 < μ < 3 the fixed point S = (1 − 1/μ, 1 − 1/μ) is a stable node, for
3 < μ < 1 + 2/λ it is a saddle point, with local stable set alongΔ and unstable
set which crosses through S perpendicular to Δ, and for μ > 1 + 2/λ it is an
unstable node;

(iii) The fixed points Ei, i = 1, 2, given in (1.110) and (1.111), are created at μ = 3
through a pitchfork bifurcation of S, and are stable nodes for 3 < μ < 1 + √

5,
stable foci for 1 + √

5 < μ < 1 + √
4 + 2/λ and at μ = 1 + √

4 + 2/λ they
become unstable foci through a Neimark-Sacker bifurcation.

Proof The Jacobian matrix of (1.109) is

J (q1, q2;μ, λ) =
[

1 − λ λμ (1 − 2q2)
λμ (1 − 2q1) 1 − λ

]
. (1.112)

In the points of the diagonal Δ of equation q1 = q2 on which both O and S are
located, the matrix (1.112) assumes the structure

DT (x, x; λ,μ) =
[

1 − λ λμ (1 − 2x)
λμ (1 − 2x) 1 − λ

]
. (1.113)

Such a matrix has real eigenvalues. In particular, in O the eigenvalues are:

z‖ (O) = 1 + λ (μ − 1) with eigenvector r‖ = (1, 1) along Δ (1.114)

and

z⊥(O) = 1 − λ (μ + 1) with eigenvector r⊥ = (1,−1) perpendicular to Δ .

(1.115)
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In the fixed point S we have

z‖ (S) = 1 + λ (1 − μ) and z⊥(S) = 1 + λ (μ − 3) .

So, the fixed point O is locally asymptotically stable (a stable node) in the region

Ω2(O) = {(μ, λ) ∈ Ω2 | μ < 1} . (1.116)

Analogously, since z‖ (S) ∈ (−1, 1) for 0 < λ (μ − 1) < 2 and z⊥ (S) ∈ (−1, 1) for
−2 < λ (μ − 3) < 0, the fixed point S is locally asymptotically stable (a stable node)
in the region

Ω2(S) = {(μ, λ) ∈ Ω2 | 1 < μ < 3} . (1.117)

At μ = 1, O ≡ S and a transcritical (or stability exchange) bifurcation occurs at
which the two fixed points exchange their stability property along Δ: for μ < 1, just
before the bifurcation,O is a stable node and S is a saddle, with local stable set along
Δ, and for μ > 1, just after the bifurcation, O is a saddle, with unstable set along Δ,
and S is a stable node.

At λ (μ + 1) = 2 a period doubling (or flip) bifurcation ofO occurs which creates
a cycle of period 2 along the invariant manifold associated with z⊥(O). For λ ∈ (0, 1)
this bifurcation occurs forμ > 1, i.e., whenO is a saddle, hence at the flip bifurcation
O becomes an unstable node and a saddle cycle of period two is created, with stable
set along the direction associated with z⊥(O).

At μ = 3 a pitchfork bifurcation occurs at which the fixed point S becomes a
saddle point with unstable set in the direction transverse to Δ, and the fixed points
E1 and E2 are created. At λ (μ − 1) = 2 a flip bifurcation along Δ occurs at which
S becomes a repelling node and a saddle cycle of period 2 is created along Δ, with
stable set along Δ and unstable set transverse to it.

The Jacobian matrix (1.112) computed at the two fixed points E1 and E2 which
exist for μ > 3, respectively, assume the forms

J (E1; λ,μ) =
[

1 − λ −λ(1 − √
(μ + 1) (μ − 3))

−λ(1 + √
(μ + 1) (μ − 3)) 1 − λ

]
,

J (E2; λ,μ) =
[

1 − λ −λ(1 + √
(μ + 1) (μ − 3))

−λ(1 − √
(μ + 1) (μ − 3)) 1 − λ

]
.

Hence, E1 and E2 have the same characteristic equation with Tr = 2 (1 − λ) and
Det = (1 − λ)2 − λ2

(
4 + 2μ − μ2

)
. Being Tr2 − 4Det = 4λ2

(
4 + 2μ − μ2

)
, the

eigenvalues are real for μ ≤ 1 + √
5 and are given by

z1 = 1 − λ − λ
√
4 + 2μ − μ2 and z2 = 1 − λ + λ

√
4 + 2μ − μ2 .
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Fig. 1.84 Stability regions and bifurcation curves in the parameters’ plane (μ.λ) for the model
(1.109) in the homogenous case

For μ > 1 + √
5 the eigenvalues are complex and are given by

z1 = 1 − λ − iλ
√

μ2 − 2μ − 4 and z2 = 1 − λ + iλ
√

μ2 − 2μ − 4 .

In the parameters space Ω2 the region of stability of Ei is

Ω2(Ei) = {(μ, λ) ∈ Ω2|μ > 3 and λ
(
μ2 − 2μ − 3

)
< 2
}

(1.118)

At λ
(
μ2 − 2μ − 3

) = 2 the eigenvalues exit the unit circle, so that the fixed points
are transformed from stable to unstable foci through a supercritical Neimark-
Sacker bifurcation at which two stable closed orbits are created around the two
Nash equilibria E1 and E2. The rigorous proof of the occurrence of a supercrit-
ical Hopf bifurcation requires the evaluation of some long expressions involving
derivatives of the map up to order three. We claim numerical evidence for the
existence of a stable closed orbit around the unstable focus after the bifurcation
(see Fig. 1.85). �

In Fig. 1.84, the red line of equation λ = /(μ + 1) represents a global bifurcation
curve at which the basins change their topological structure from simply to mul-
tiply connected, i.e., connected with holes, according to the following proposition
(that we give without a proof).

Proposition 1.4 (Global Bifurcation of the Basins, Homogeneous Players) If μ1 =
μ2 = μ, λ1 = λ2 = λ and (μ, λ) ∈ Ω̃2(Ei), the bounded trajectories of (1.109) con-
verge to one of the stable Nash equilibria E1 or E2, given by (1.110) and (1.111),
respectively, and the common boundary which separates the basin B (E1) from the
basinB (E2) is given by the stable set Ws(S) of the saddle point S. If λ (μ + 1) < 1,
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Fig. 1.85 Basins of attraction represented with different colors, and attractors of the model (1.109).
Left Just after the Neimark-Sacker bifurcation. Right Just after the global bifurcation

Fig. 1.86 Basins of attraction of the two stable and symmetric Nash equilibria

then the two basins are simply connected sets; if λ (μ + 1) > 1, then the two basins
are nonconnected sets, formed by infinitely many simply connected components.

We would like to emphasize that the bifurcation occurring at λ (μ + 1) = 1 is a
global bifurcation, i.e., it cannot be revealed by a study of the linear approximation of
the dynamical system. The occurrence of such a bifurcation has been characterized
by a contact between the stable set of S and a critical curve LC, i.e., a contact
(or global) bifurcation (Fig. 1.86).

The occurrence of the bifurcation, which transforms the basins from simply con-
nected to nonconnected, causes a loss of predictability about the long-run evolution
of this Cournot game starting from given initial quantities of the two players. In fact,
in contrast to what happens in the case of simply connected basins, when the basins
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are no longer simply connected, the adjustment dynamic starting with q1(0) > q2(0)
may lead to convergence to either of the Nash equilibria. Furthermore, if the initial
quantities are sufficiently far away from a Nash equilibrium, for example near the
boundary ∂B of B, then the presence of the infinitely many components of both
basins causes a sort of sensitivity with respect to these initial conditions. Even a very
small perturbation of the starting point of the Cournot game may lead to a crossing
of the boundary that separates the two basins, with consequent convergence to a
different Nash equilibrium.

We now turn to the case of heterogeneous behavior, and assume that λ1 �= λ2

holds. Although we get the same Nash equilibria since the fixed points do not depend
on the speeds of adjustment, the eigenvalues of the Jacobian matrix of the map
(1.109) depend on both of the parameters λ1 and λ2. Furthermore, note that the
diagonal Δ is no longer trapping. The following proposition defines the stability
regions for each Nash equilibrium in the three-dimensional parameters space Ω3 ={
(μ, λ1, λ2) ∈ R

3|μ > 0, 0 ≤ λ1 ≤ 1, 0 ≤ λ2 ≤ 1
}
.

Proposition 1.5 (Local Stability, Heterogeneous Behavior [7])
Let μ1 = μ2. Then

(i) The fixed point O = (0, 0) is

• a stable node for 0 < μ < 1;
• a saddle point for 1 < μ <

√
1 + (4 − 2 (λ1 + λ2)) /(λ1λ2);

• an unstable node for μ >
√
1 + (4 − 2 (λ1 + λ2)) /(λ1λ2).

(ii) The fixed point S = (1 − 1/μ, 1 − 1/μ) is

• a stable node for 1 < μ < 3;
• a saddle point for 3 < μ < 2 + √

1 + (4 − 2 (λ1 + λ2)) /(λ1λ2);
• an unstable node for μ > 2 + √

1 + (4 − 2 (λ1 + λ2)) /(λ1λ2).

(iii) The fixed points Ei, i = 1, 2, given in (1.110) and (1.111) are created at μ = 3
through a pitchfork bifurcation of S and

• for 3 < μ < 1 + √
9/2 + λ1/(4λ2) + λ2/(4λ1) are stable nodes;

• for 1 + √
9/2 + λ1/(4λ2) + λ2/(4λ1) < μ < 1 + √

4 + 1/λ1 + 1/λ2 are
stable foci;

• at μ = 1 + √
4 + 1/λ1 + 1/λ2 become unstable foci through a Neimark-

Sacker bifurcation.

Proof The analysis of the local stability of a fixed point is obtained through the
localization of the eigenvalues of the Jacobian matrix in the complex plane, where
the Jacobian

(q1, q2) =
[
1 − λ1 λ1μ (1 − 2q2)
λ2μ (1 − 2q1) 1 − λ2

]

computed at the corresponding fixed point has to be considered. The stability con-
ditions
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P(1) = 1 − Tr + Det > 0 , P(−1) = 1 + Tr + Det > 0 , 1 − Det > 0

at the fixed point O = (0, 0) become

Tr2 − 4Det = (λ1 − λ2)
2 + 4λ1λ2μ

2 > 0 ∀ (μ, λ) ∈ Ω3 ,

P(1) = λ1λ2 (1 + μ) (1 − μ) > 0 for μ < 1 ,

P (−1) = 4 − 2 (λ1 + λ2) + λ1λ2

(
1 − μ2

)
> 0 for μ <

√

1 + 2
2 − (λ1 + λ2)

λ1λ2
.

At the fixed point S = (1 − 1/μ, 1 − 1/μ) we have

Tr2 − 4Det = λ2
1 + λ2

2 + 14λ1λ2 + 4λ1λ2μ (μ − 4) ≥ (λ1 − λ2)
2 ≥ 0 ,

being μ (μ − 4) ≥ −4. So, the eigenvalues are always real at the fixed point S, and
the stability conditions reduce to

P(1) = λ1λ2
(−μ2 + 4μ − 3

)
> 0 for 1 < μ < 3 ,

P (−1) = λ1λ2μ
2 − 4λ1λ2μ + 3λ1λ2 + 2 (λ1 + λ2) − 4 > 0

for μ < 2 +
√

1 + 2
2 − (λ1 + λ2)

λ1λ2
.

Hence, O is locally asymptotically stable (a stable node) in the region

Ω3(O) = {(μ, λ1, λ2) ∈ Ω3|μ < 1} ,

and S is locally asymptotically stable (a stable node) in the region

Ω3(S) = {(μ, λ1, λ2) ∈ Ω3|1 < μ < 3} .

At μ = 1 a transcritical bifurcation occurs at which O and S exchange stability, at
μ = 3 a pitchfork bifurcation of S occurs at which the fixed points E1 and E2 are
created. The main difference with respect to the homogeneous case lies in the fact
that the eigendirections associated with the fixed points are no longer parallel and
perpendicular to Δ, and Δ is no longer invariant.

At μ = √
1 + 2(2 − (λ1 + λ2))/(λ1λ2) > 1 a flip bifurcation of O occurs at

which O is transformed from saddle to unstable node, and a saddle cycle of period 2
is created with stable set through O.
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At μ = 2 + √
1 + 2(2 − (λ1 + λ2))/(λ1λ2) > 3 a flip bifurcation of S occurs at

which S is transformed from saddle to unstable node, and a saddle cycle of period 2
is created with stable set through S.

The Jacobian matrix computed at the two fixed points E1 and E2 assumes, respec-
tively, the forms

J (E1;μ, λ1, λ2) =
[

1 − λ1 −λ1
(
1 − √

(μ + 1) (μ − 3)
)

−λ2
(
1 + √

(μ + 1) (μ − 3)
)

1 − λ2

]

and

J (E2; μ, λ1, λ2) =
[

1 − λ1 −λ1
(
1 + √

(μ + 1) (μ − 3)
)

−λ2
(
1 − √

(μ + 1) (μ − 3)
)

1 − λ2

]
.

It is easy to see that, like in the homogeneous case, E1 and E2 have the same char-
acteristic equation, with Tr = 2 − λ1 − λ2 and Det = 1 − λ1 − λ2 + λ1λ2 (μ + 1)
(μ − 3).

The fixed points Ei are transformed from stable nodes into stable foci when

Tr2 − 4Det = −4λ1λ2μ
2 + 8λ1λ2μ + 14λ1λ2 + λ2

1 + λ2
2 = 0 ,

i.e., at μ = 1 +
√

9
2 + λ1

4λ2
+ λ2

4λ1
.

Since
P(1) = λ1λ2 (μ + 1) (μ − 3) > 0 for μ > 3 ,

P (−1) = 4 − 2 (λ1 + λ2) + λ1λ2 (μ + 1) (μ − 3) > 0 for μ > 3 ,

the stability conditions for Ei, i = 1, 2, reduce to

Det − 1 = λ1λ2μ
2 − 2λ1λ2μ − 3λ1λ2 − λ1 − λ2 < 0 .

Hence, in the parameters space Ω3 the region of stability of Ei is

Ω3(Ei) =
{

(μ, λ1, λ2) ∈ Ω3 | μ > 3 and μ < 1 +
√

4 + λ1 + λ2

λ1λ2

}

.

The equation μ = 1 + √
4 + (λ1 + λ2)/(λ1λ2) defines a bifurcation surface in Ω3

through related to a supercritical Neimark-Sacker bifurcation occurs, at which the
fixed pointsE1 andE2 are transformed from stable to unstable foci and a stable closed
invariant curve is created around them. �

From a comparison of the two propositions on local stability given above, it
appears that the influence of heterogeneous behavior on the stability of the Nash
equilibria is not too strong. However, in the case of coexisting stable Nash equilibria,
an important question concerns the delimitation of their basins of attraction and
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Fig. 1.87 Basins of attraction in the case of heterogeneous players

the global bifurcations that cause qualitative modifications of their boundaries. In
fact, due to the heterogeneous behavior of the two competing firms, the symmetry
properties of the dynamical system which allowed us to obtain a simple analytical
expression of the global bifurcation given in the proposition stated above no longer
hold. Hence, the occurrence of contact bifurcations can only be revealed numerically.
This is illustrated in Fig. 1.87, where in the left panel a contact between the boundary
of the basin ofE1 (formed by the stable set of the saddle point S) and the critical curve
LC that separates Z2 from Z4 is shown. The portion of the basin of E1 that enters Z4
after the contact generates newpreimages that give rise to a sequence of nonconnected
portion of the basin, as shown in the central panel of Fig. 1.87. However, as the
equation of the boundary is not known in this case, an analytic computation of the
values of the parameters at which the contact occurs is not possible. This is an usual
occurrence, as the analytical expressions of the stable sets (that bound the basins) as
well as the analytic expressions of the critical curves, are very rarely known.

1.4 An Introduction to Optimal Control
in Continuous Time

Here we provide a very brief introduction to optimal control problems in continuous
time. The following part does not aim at giving a complete nor mathematically
detailed analysis of the topic, but just a non-rigorous discussion on the theory of
optimal control, some connections to the qualitative theory of dynamical systems
and an overview on some applications in economics. We refer the reader to a more
complete treatment in the bibliography.

In many economic application, it is necessary to solve a problem of constrained
maximization, i.e., finding the values of variables such that a given function is
assumes its maximum value given some constrains, generally expressed in terms
of equations to be satisfied. However, it is often useful to consider maximization
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of a given functional that depends on dynamic variables constrained to follow the
trajectories of a given dynamical system. In the more standard case, this problem
assumes the form:

max
u(t)∈A(t)

T∫

0

f (x(t), u(t), t)dt + F(x(T),T) (1.119)

such that:
{
ẋ = g(x(t), u(t), t)

x(0) = x0

and with one of the following terminal conditions: (1.120)

(a) x(T) free (b) x(T) = xT (c) x(T) ≥ xT (1.121)

where:

• 0 is the initial time;
• T ∈ (0,+∞] is the terminal time;
• x(t) is the state variable of the system, whose dynamics is determined by the
following differential equation:

• ẋ = g(x(t), u(t), t) is called the state equation or the dynamics;
• u(t) is the control, to be determined to maximize the previous integral;
• f (x(t), u(t), t) is the instantaneous payoff ;
• A(t) is the constraint set on the control, specifying that at each time t the control
u(t) must belong to the set A(t);

• F(x(T),T) is the terminal payoff (or scrap value or salvage value).

When T = +∞, no condition is usually imposed on the state x(t). In some cases,
however, it is required that

lim
t→+∞x(t) ≥ x

Functions f (., ., .), g(., ., .) and F(., .) are assumed continuously differentiable.
Often in economic applications, in the problem (1.119) it is f (x(t), u(t), t) =

f (x(t), u(t)) and g(x(t), u(t)), i.e., the performance criterion and the differential
equations do not depend directly on time.9 In this case, the optimal control problem
(1.119) is called autonomous. In many economic application it is also T = +∞ so
that no scrap value is included in the problem, i.e., F(x(T),T) = 0. We will briefly

9More precisely, in economic applications usually the performance criterion is given in the form
f (x(t), u(t), t) = e−δth(x(t), u(t)), i.e., it depends directly on time but only through a discount term.
This point is more extensively discussed below.
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review some other formulations of the basic problem, such as the formulation of the
problem with discount, which is of primary importance in economics.

The control u(t) represents a choice variable that the agent can set continuously
as long it is in the constraint set A(t). Often this constraint on the control is imposed
for reasons of feasibility. For instance, if the control u(t) represents the consumption
of a good, this can not be negative, so that u(t) ≥ 0 for all t. In addition, some upper
bound of consumption can be given, for instance through a budget constraint at time
t; denoting by B(t) the total budget of the agent, the constraint set A(t) becomes
0 ≤ u(t) ≤ B(t), ∀t ∈ [0,T ].

Any function u(t), with u(t) ∈ A(t) for all t ∈ [0,T ], such that u(t) is (piece-
wise) continuous represents an admissible control. Consider that we fix a particular
admissible control, for instance u(t) = u(t). Then, for this choice of the control,
ẋ = g(x(t), u(t), t) is a (first order) differential equation that, together with the ini-
tial condition x(0) = x0, determines entirely the trajectory of the state, i.e., the value
of x(t) for all t ∈ [0,T ], which is called an admissible path provided that the con-
straints on the final state are met (e.g., x(T) = xT or x(T) ≥ xT ). Thus, with this
choice of u(t), the state and, consequently, the value of the performance criterion
f (x(t), u(t), t) is univocally determined. Since we are interested in maximizing the
definite integral of the performance criterion over the interval [0,T ], the optimal con-
trol problem (1.119) consists in selecting, among all admissible controls u(t) ∈ A(t),
the control u∗(t) that maximizes the value of this definite integral plus, if present,
the terminal payoff. Such an admissible control is called an ‘optimal control’. The
corresponding state x∗(t) obtained as the solution of theCauchy problem (differential
equation with an initial condition)

{
ẋ = g(x(t), u∗(t), t)
x(0) = x0

is called an optimal trajectory or optimal path.
Here we state the main results to find a candidate solution to the optimal con-

trol problem (1.119), i.e., an optimal control and the corresponding optimal path.
The most important necessary conditions are Bellman’s Optimality principle (or
Dynamic Programming principle) and Pontryagin’s maximum principle. In the fol-
lowing Section we provide a simplified derivation of these results.

For definingBellman’s optimality principle, define the following functionV (x, t) :
R × R → R

V (x, t) = max
u(t)∈A(t)

T∫

t

f (x(s), u(s), s)ds + F(x(T),T) (1.122)

called the value function. V (x, t) represents the maximum (more precisely the sup)
possible value attainable starting at time t with initial state x, as also explained below.
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Proposition 1.6 (Bellman’s Optimality Principle) If V (x, t) is differentiable in t
and x, then it solves the following (Partial) Differential Equation

−∂V

∂t
= max

u(t)∈A(t)

[
f (x(t), u(t), t) + ∂V

∂x
g(x(t), u(t), t)

]

with terminal condition V (x(T),T) = F(x(T),T).

For stating Pontryagin’s maximum principle, define the Hamiltonian function

H := H(x, u, λ, t) = f (x, u, t) + λg(x, u, t) , (1.123)

where λ = λ(t) is called the costate variable.

Proposition 1.7 (Pontryagin’sMaximumPrinciple) If u∗(t) = u∗ is an optimal con-
trol and x∗(t) = x∗ is the corresponding optimal path for the problem (1.119), then
there exists a costate variable λ∗(t) = λ∗ such that x∗, λ∗, u∗ are the solution in
[0,T ] of the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = g(x∗, u∗, t) = Hλ (state equation)
λ̇ = − [fx(x∗, u∗, t) + λgx(x∗, u∗, t)

] = −Hx (costate equation)
u∗ = argmaxH(x∗, u, λ∗, t)( maximum principle)

x∗(0) = x0 (initial condition)
(a) λ∗(T) = ∂

∂x F(xT ,T) (transversality condition when x(T) free)
or

(b) λ∗(T) ≥ ∂
∂x F(xT ,T) (transversality condition when x(T) ≥ xT )

Notice that when x(T) = xT no transversality condition is imposed. Moreover,
when F(xT ,T) = 0, i.e., without scrap value, the transversality condition when x(T)

is free reduces to λ∗(T) = 0. Analogously, when F(xT ,T) = 0 and x(T) ≥ xT , the
transversality condition is λ∗(T) ≥ 0. Before closing this section, we would like to
provide some important remarks.

The first remark concerns admissible controls. In particular, notice that continuity
of the control u(t) is not assumed, as we defined an admissible control as a piecewise
continuous function that belongs to the constraint set A(t) for all t. In some cases,
such as when the Hamiltonian is linear in the control, it turns out that the optimal
control can be (jump) discontinuous. The times at which a jump in the control occurs
are called switching points. Whenever this happens, the state equation ẋ may have a
different RHS (right hand side), and, consequently, the state can have a kink point.
Nevertheless, the Maximum Principle continues to hold for all the points where the
control u(t) is continuous and the costate equation holds whenever the control is
continuous. It can be shown that the Hamiltonian is continuous even at the switching
points. Also in dynamic programming, an admissible control is a function with a
finite number of jump discontinuities. We provide some examples below.
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The second remark is related to the formulation of the problem we presented. In
some cases, the terminal time T is unspecified, but it is a variable of the problem.
A typical example is the so-called time-optimal control, for which one wants to find
the smallest time such that the state of the system reaches a given point starting from
a given initial condition. This problem can be written in standard form and analyzed
with the principles that we described above.

Another remark concerns the possible constraints that can be part of the problem.
Themost common kinds are themixed inequality constraints, where it is required that
for each t ∈ [0,T ] inequalities of the form q(x(t), u(t), t) ≥ 0 or the more involved
“pure-state” constraints of the form s(x(t), t) ≥ 0 hold. The maximum principle can
be reformulated to deal with these cases. Given the introductory aim of this section,
we do not enter the details here but we refer to [31] for a comprehensive overview.

In the next two Sections, which can be skipped for the first reading, we provide a
justification for these results.

1.4.1 Bellman’s Optimality Principle:
The Hamilton-Jacobi-Bellman Equation

The main tools at hand for solving an optimal control problem are Bellman’s opti-
mality principle and Pontryagin’s maximum principle.

Let us first try to find a necessary condition for an optimal control. In other words,
we try to answer the following questions: How does an optimal control look like?
What are the main properties that an optimal control should possess?

A very clear answer is given in the famous optimality principle, which Bellman
himself describes with these words in his book [5]:

An optimal policy has the property that whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal policy with regard to the state resulting from
the first decision.10

For an everyday life example, suppose that a marathon runner has to run 42km.
If the marathon runner divided into two (not necessarily equals) parts the run and
used her energies to take the first part of the race at full speed, then she would no
longer have necessary energy for the second part of the run. Clearly it does not make
sense to divide the entire path into two parts and maximize over the first part: the
final outcome would not be the optimal one and she probably would not finish the
race. However, if the runner divided the way into two parts, then she would run the
second part of the journey at best, given the energy left over from the first part of the
route. In other words, the second part of an optimal path must be optimal.

Now let us try to describe the optimality principle in mathematical terms, without
providing rigorous proofs. Suppose that an optimal control exists and it is used in
solving (1.119). Then the objective in (1.119) becomes a number, since it is the sum

10The word “policy” is nowadays substituted with the most common “control”.
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of the definite integral (an area) in (1.119) and the terminal payoff. Let us denote this
number by V (x0, 0), emphasizing that the value of the definite integral in (1.119)
plus the scrap value depends only on the initial state of the system x (0) = x0, and
not on the control if it has been chosen to be an optimal one. Assume that the value
function (1.122) is well definite (e.g., the integral converges). The value function
(1.122) returns the value of the integral plus the terminal payoff, for a generic initial
time t and initial state x in the optimal path, i.e., x = x∗(t). The optimality principle
implies that the value function must satisfy the following condition: if at time t the
state is x∗(t) (a point of the optimal path) and the interval [t,T ] is split in two parts,
say [t, t + Δt] and [t + Δt,T ], then the optimal control must maximize the integral
of the instantaneous payoff in the period [t, t + Δt] and then, from t + Δt onwards to
T , it must hold that the value function gives the maximum attainable starting at time
t + Δt with the updated state x + Δx, reached through the optimal control during
the interval [t, t + Δt]. In practice, the value function solves a functional equation
of the form:

V (x, t) = max
u(s)∈A(s)

⎡

⎣
t+Δt∫

t

f (x(s), u(s), s)ds + V (x + Δx, t + Δt)

⎤

⎦ , (1.124)

where V (x + Δx, t + Δt) is the value of the “second part” of the optimal path that
must be optimal. The functional equation (1.124) can be written as a differential
equation, as follows.

By the fundamental theorem of the integral calculus, for a ‘small’ Δt increment
it is

t+Δt∫

t

f (x(s), u(s), s)ds ≈ f (x(t), u(t), t)Δt . (1.125)

If the value function V (x, t) is continuously differentiable, we can approximate it
through a Taylor expansion about the point (x, t)

V (x + Δx, t + Δt) ≈ V (x, t) + ∂V

∂x
Δx + ∂V

∂t
Δt . (1.126)

By substituting (1.125) and (1.126) into (1.124), we get

V (x, t) ≈ max
u(t)∈A(t)

[
f (x(t), u(t), t)Δt + V (x, t) + ∂V

∂x
Δx + ∂V

∂t
Δt

]
,

which can be written as

0 ≈ max
u(t)∈A(t)

[
f (x(t), u(t), t)Δt + ∂V

∂x
Δx + ∂V

∂t
Δt

]
,
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since V (x, t) does not depend on u(t) and the V (x, t) terms on the LHS and on the
RHS cancel out.

Now if we divide both terms of the last expression by Δt we get

0 ≈ max
u(t)∈A(t)

[
f (x(t), u(t), t) + ∂V

∂x

Δx

Δt
+ ∂V

∂t

]

which, taking the limit as Δt → 0, becomes

0 = max
u(t)∈A(t)

[
f (x(t), u(t), t) + ∂V

∂x
g(x(t), u(t), t) + ∂V

∂t

]
, (1.127)

where we use the fact that limΔt→0
Δx
Δt = ẋ, which is the state equation. Moreover,

for (1.127) it must hold the boundary condition that

V (x(T),T) = F(x(T),T) . (1.128)

In other words, if the problem starts at the terminal time, then the integral in (1.122)
is zero and the value function coincides with the scrap value. Since in (1.127) ∂V

∂t =
∂V (x,t)

∂t does not depend on u(t), we can rewrite (1.127) as

− ∂V

∂t
= max

u(t)∈A(t)

[
f (x(t), u(t), t) + ∂V

∂x
g(x(t), u(t), t)

]
. (1.129)

Technically, (1.127) known as the Hamilton-Jacobi-Bellman (HJB) equation, is a
(first order) Partial Differential Equation for the value function. This problem, in
general, is very difficult to tackle. In the following, we will provide some examples
for which the HJB equation can be written as an ODE or for which the value function
can be found starting from some trial functions.

1.4.2 From HJB to Pontryagin’s Maximum Principle

Consider the derivative ∂V
∂x in (1.127), where x = x∗(t). Define the costate variable

λ(t) as follows

λ(t) := ∂V

∂x
= ∂V (x∗, t)

∂x
= ∂V (x∗(t), t)

∂x
. (1.130)

Notice that λ(t) represents the derivative of the value function with respect to the
state variable at each time.

From (1.129) and the definition of costate variable, it follows that an optimal
control maximizes the Hamiltonian function H in (1.123) with respect to u. This
important fact is referred to as the “Maximum principle”. Observe that (1.127) can
be written in terms of the Hamiltonian function (1.123) as follows
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0 = max
u(t)∈A

[
H(x, u, λ, t) + ∂V

∂t

]
= H(x∗, u∗,

∂V (x∗, t)
∂x

, t) + ∂V (x∗, t)
∂t

. (1.131)

Note that in the RHS of (1.131) the max disappears since we are considering optimal
control and optimal state.

Now imagine that the control remains u∗ but the state is “perturbed”: instead of
the optimal state x∗ consider the “perturbed” state

x = x∗ + hv ,

where v = v(t) is an arbitrary function, which we assume continuous and h ∈ R.
Obviously, for h = 0, the perturbed state coincides with the optimal state. For any
fixed t ∈ [0,T ] and a fixed v(t), define the function R(h)

R(h) = H(x, u∗,
∂V (x, t)

∂x
, t) + ∂V (x, t)

∂t
.

Notice that R(h) is a differentiable function of one variable (v is fixed as well as u∗)
and it has a maximum point at h = 0, being from (1.131)

R(0) = H(x∗, u∗, ∂V (x∗, t)
∂x

, t) + ∂V (x∗, t)
∂t

≥ H(x, u∗, ∂V (x, t)

∂x
, t) + ∂V (x, t)

∂t
= R(h) .

Since R(h) is differentiable, it must be that R′(0) = 0. By the chain rule:

R′(h) = d

dh

[
H(x, u∗,

∂V (x, t)

∂x
, t) + ∂V (x, t)

∂t

]
(1.132)

= d

dh

[
f (x, u∗, t) + Vx(x, t)g(x, u

∗, t) + ∂V (x, t)

∂t

]

= fx(x, u
∗, t)v + Vx(x, t)gx(x, u

∗, t)v + Vxx(x, t)g(x, u
∗, t)v + Vtx(x, t)v

= [fx(x, u∗, t) + Vx(x, t)gx(x, u
∗, t) + Vxx(x, t)g(x, u

∗, t) + Vtx(x, t)
]
v

from which

R′(0) = [fx(x∗, u∗, t) + Vx(x
∗, t)gx(x∗, u∗, t) + Vxx(x

∗, t)g(x∗, u∗, t) + Vtx(x
∗, t)

]
v = 0 .

(1.133)
Since v is an arbitrary function, in (1.133) the term in square brackets must be zero.
Now derive ∂V (x∗(t),t)

∂x in (1.130) with respect to t. Using again the chain rule one
obtains

dVx

dt
= Vxx

(
x∗(t), t

)
ẋ + Vxt

(
x∗(t), t

) = Vxx
(
x∗, t

)
g(x∗, u∗, t) + Vtx

(
x∗, t

)
.

(1.134)
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Substitute (1.134) in the square bracket term in (1.133) to obtain

fx(x
∗, u∗, t) + Vx(x

∗, t)gx(x∗, u∗, t) + dVx

dt
= 0

which, recalling the definitions of costate in (1.130) and Hamiltonian in (1.123), can
be rewritten as

λ̇ = −∂H

∂x
. (1.135)

Now consider the terminal condition on the costate, which is referred to as the
transversality condition. In the simplest case, there is no constraint on the value
that the optimal state must assume in T , i.e., x(T) is free. In this case, the scrap
value F(x(T),T) in (1.119) is independent on x(T) so that ∂

∂x F(x(T),T) = 0. From
(1.128) and from the definition of (1.130) it is

0 = ∂

∂x
F(x(T),T) = ∂

∂x
V (x(T),T) = λ(T) .

More generally, if x(T) = xT is given, then from the same reasoning we obtain the
transversality condition

λ(T) = ∂

∂x
F(xT ,T) .

Summing up, we obtain the Maximum principle already recalled.
The differential equations for the state and costate variables, together with the

boundary conditions x∗(0) andλ∗(T), constitute a two-point boundaryvalue problem,
where it is specified the initial value of the state and the final value of the costate.

Necessary conditions are important to select possible candidates for the optimal
control. In addition, the following sufficient conditions are useful to confirm that
a solution candidate is indeed an optimum. We recall below the most important
sufficient conditions.

Proposition 1.8 (Mangasarian sufficient condition) Consider a candidate solution
of the optimal control problem (1.119), i.e., an admissible control u∗, the correspond-
ing admissible path x∗ and the costate variable λ∗, obtained through Pontryagin’s
maximum principle.

• If the Hamiltonian H in (1.123) is concave in x and u for all t ∈ [0,T ] then u∗ is
an optimal control and x∗ is an optimal path;

• If the Hamiltonian H in (1.123) is strictly concave in x and u for all t ∈ [0,T ] then
u∗ is the unique optimal control and x∗ is the unique optimal path.

An immediate corollary of the previous proposition is the following.
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Corollary 1.3 (Mangasarian sufficient condition) Consider a candidate solution of
the optimal control problem (1.119), i.e., an admissible control u∗, the correspond-
ing admissible path x∗ and the costate variable λ∗, obtained through Pontryagin’s
maximum principle. Assume that the instantaneous payoff f (x, u, t) is concave in x
and u for all t ∈ [0,T ] and that one of the following conditions holds:

• for all t ∈ [0,T ], g(x, u, t) is concave in x and u and λ∗ ≥ 0;
• for all t ∈ [0,T ], g(x, u, t) is convex in x and u and λ∗ ≤ 0;
• g(x, u, t) is linear in x and u.

Then u∗ is an optimal control and x∗ is an optimal path.

Another useful sufficient condition is based on the concavity of the maximized
Hamiltonian HM , defined as

HM(x, λ, t) = max
u

H(x, u, λ, t) = max
u

[
f (x, u, t) + λg(x, u, t)

]
. (1.136)

Proposition 1.9 (Arrow sufficient condition) Consider a candidate solution of the
optimal control problem (1.119), i.e., an admissible control u∗, the corresponding
admissible path x∗ and the costate variable λ∗, obtained through Pontryagin’s max-
imum principle. If the maximized Hamiltonian HM in (1.136) is concave in x for all
t ∈ [0,T ] then u∗ is an optimal control and x∗ is an optimal path.

These sufficient conditions are employed in the examples below.

1.4.3 Some Basic Examples

Example (Basic)
Consider the problem

max
u

2∫

0

(
x − 2u2

)
dt such that:

{
ẋ = 3 + u
x(0) = 5

(1.137)

The Hamiltonian function is

H = x − 2u2 + λ (3 + u) .

Notice that the Hamiltonian is concave in state x and control u, so the necessary
conditions are also sufficient. We apply the maximum principle to find the optimal
control. In this particular case, being the Hamiltonian strictly concave in u and since
no constraints on u are imposed, the maximizer can be found through the first order
condition:

∂H

∂u
= −4u + λ = 0 → u∗ = λ

4
. (1.138)
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The costate equation is

λ̇ = −∂H

∂x
= −1 → λ(t) = −t + c , (1.139)

where c is a constant to be determined through the transversality condition, i.e., the
value of the costate at terminal time T = 2.

Since the final state x(2) is free, the transversality condition becomes λ(2) = 0.
Therefore, the costate is λ(t) = −t + 2, and the optimal control is u∗(t) = λ(t)/4 =
−t/4 + 1/2. Now, the optimal state path can be obtained by integrating the state
equation with the obtained optimal control:

ẋ = 3 + u∗ = − t

4
+ 7

2
→ x(t) = − t2

8
+ 7

2
t + 5 .

The constant (5) in the optimal path has been obtained by the initial condition on the
state, see (1.137).

Let us slightly modify problem (1.137) by including a scrap value, for instance
consider the objective

max
u

2∫

0

(
x − 2u2

)
dt + 4x(2) such that

{
ẋ = 3 + u
x(0) = 5

Clearly, the Hamiltonian is unchanged as well as conditions (1.138) and (1.139).
Now the right transversality condition is λ(T) = λ(2) = d(4x)

dx = 4. Through anal-
ogous calculations as before we obtain, λ∗(t) = −t + 6, u∗(t) = −t/4 + 3/2 and
x∗(t) = −t2/8 + 9/2t + 5.

Let us now try to solve problem (1.137) by dynamic programming. HJB equation
for problem (1.137) implies that V (x, t) must solve

Vt + max
u

[
x − 2u2 + Vx (3 + u)

] = 0 ,

Vt + x + 3Vx + max
u

[−2u2 + uVx
] = 0.

Maximizing −2u2 + uVx with respect to u by setting
∂(−2u2+uVx)

∂u = 0, we get that
the optimal control satisfies u = Vx/4. The HJB equation then becomes

Vt + x + 3Vx + 1

8
(Vx)

2 = 0 (1.140)

Usually, it is extremely hard if not impossible to solve in closed form the HJB
equation. In this case, we try to obtain a solution starting by a trial function. Consider
a function of the form
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V (x, t) = ax + bxt + ct3 + dt2 + et + f ,

where a, b, c, d, e, f are constant to be determined. Inserting the trial solution in
(1.140) it is

V (x, t) = (b + 1)x + t2
(
b2

8
+ 3c

)
+ t

(
ab

4
+ 3b + 2d

)
+ a2

8
+ 3a + e .

Moreover, the transversality condition V (x, 2) = 0 implies that (a + 2b) x + 8c +
4d + 2e + f = 0. At this point, the HJB equation is satisfied for all x and t if and
only if the following system of equations is satisfied

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

b + 1 = 0 ,
b2

8 + 3c = 0 ,
ab
4 + 3b + 2d = 0 ,
a2

8 + 3a + e = 0 ,

8c + 4d + 2e + f = 0 ,

a + 2b = 0 ,

(1.141)

which gives the solution

a = 2, b = −1, c = − 1

24
, d = 7

4
, e = −13

2
, f = 19

3

that determines the value function

V (x, t) = 2x − xt − 1

24
t3 + 7

4
t2 − 13

2
t + 19

3
.

Notice that u∗(t) = Vx/4 = (2 − t)/4 coincides with the solution previously
obtained through the maximum principle.

In the case of scrap value, the transversality condition requires that V (x, 2) = 4x.
In that case, the last equation of system (1.141) is replaced by a + 2b − 4 = 0. We
left to the reader to verify that the value function in this case has coefficients

a = 6, b = −1, c = − 1

24
, d = 9

4
, e = −45

2
, f = 109

3
.

Example (Bang-bang control) Consider the problem

min
u∈[−1,1]

2∫

0

x2dt such that:

{
ẋ = u ,

x(0) = −2 .
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Since the integrand x2 is the quadrate of the distance between a point x and the
origin, the problem can be interpreted as follows: start from x(0) = −2 and try to
steer x as near to zero as possible. To write the problem as a maximization one, we
rewrite the objective as

max
u∈[−1,1]

2∫

0

− x2dt .

The Hamiltonian function is

H = −x2 + λu ,

so that, applying the Maximum Principle, we obtain
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ = u (state equation) ,

λ̇ = −Hx = 2x (costate equation) ,

u∗ = argmax
u∈[−1,1]

H (maximum principle) ,

x∗(0) = −2 (initial condition) ,

λ∗(2) = 0 (transversality condition when x(T) is free) .

Notice that Mangasarian’s sufficient condition holds, as the instantaneous payoff is
strictly concave and the state equation is linear.

H is linear in u, so we must adopt a control of the type

u∗ =
⎧
⎨

⎩

1 if λ > 0 ,

? if λ = 0 ,

−1 if λ < 0 .

(1.142)

In our example, since x∗(0) = −2 < 0, it is clear that, in order to steer the system
towards zero, we must select u = 1. The state-costate system becomes

{
ẋ = 1 ,

λ̇ = 2x

with the previously reminded initial conditions. Integrating the first equation with
the initial condition x∗(0) = −2 we get x(t) = t − 2, which then gives the following
equation for the costate

λ̇ = 2x = 2t − 4

λ(t) = t2 − 4t + 4 = (t − 2)2 .

Notice that λ(t) > 0 for all t ∈ [0, 2), confirming that the initial choice of u = 1 was
correct. This control is called bang-bang, since, of all the possible values of u in the



1 Qualitative Methods in Continuous and Discrete Dynamical Systems 143

interval [−1, 1], we were only interested in the terminal points, see (1.142), at least
for λ �= 0. Next example clarifies the presence of the “?” in (1.142).
Example (Singular control) Consider the problem

max
u∈[−1,1]

3∫

0

− x2dt such that:

{
ẋ = u ,

x(0) = −2 .

The problem is formally identical to the previous one, with the exception that
the terminal time is now T = 3. Employing the same principle as before, it is clear
that it is optimal to steer the system towards the origin. Thus we get that in the
interval [0, 2] the optimal trajectory is x(t) = t − 2 and λ(t) = (t − 2)2. At T = 2, it
is x(2) = 0 and also λ(2) = 0. In (1.142) we observed that when λ = 0 the control is
undefined. In this example, it is obvious that in the interval (2, 3] the control must be
u = 0: at t = 2 the system has reached the value x = 0 and any other control u �= 0
would bring the state away from the origin (remember that the interpretation of the
problem is that of minimizing an area). Since in the interval (2, 3] it is ẋ = 0 it is
also λ̇ = 2x = 0, so that λ(t) is constant in (2, 3]. In order to guarantee that λ(3) = 0
it must be λ(t) = 0, for all (2, 3], with also x(t) = 0, for all (2, 3]. We have thus
established that the “?” in (1.142) is indeed u = 0. This is a typical example of a
singular control, since there exists an interval where the Hamiltonian is independent
on the control u.

1.4.4 Current Value Formulations

In economics, the typical problem of optimal control assumes the following form

max
u(t)∈A

T∫

0

e−δt f (x(t), u(t))dt + F(x(T),T) (1.143)

such that:
⎧
⎪⎪⎨

⎪⎪⎩

ẋ = g(x(t), u(t))
x(0) = x0

and with one of the following terminal conditions:
(a) x(T) free (b) x(T) = xT (c) x(T) ≥ xT

where δ > 0 is the discount factor. Remember that in most economic applications
it is T = +∞ and, clearly F(x(t), t) = 0. In the following, we reformulate the HJB
equation and the maximum principle for this specific problem.
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First consider the HJB equation in (1.129) for problem (1.143)

−∂V

∂t
= max

u(t)∈A(t)

[
e−δt f (x(t), u(t)) + ∂V

∂x
g(x(t), u(t))

]

and assume that the value function can be written as the product of a function in x
times e−δt :

V (x, t) = J(x)e−δt

from which it is ∂V
∂t = −δJ(x)e−δt and ∂V

∂x = J ′(x)e−δt . Thus, the HJB equation
becomes

δJ(x)e−δt = max
u(t)∈A(t)

[
e−δt f (x(t), u(t)) + J ′(x)e−δtg(x(t), u(t))

]
.

Multiplying both sides by eδt , we obtain the following ODE in the unknown function
J(x):

δJ(x) = max
u(t)∈A(t)

[
f (x(t), u(t)) + J ′(x)g(x(t), u(t))

]
. (1.144)

It is easily verifiable that the transversality condition F(x(T),T) = V (x(T),T)

now becomes
J(x(T)) = eδTF(x(T),T) .

Now we restate the maximum principle for problem (1.143). Consider the corre-
sponding Hamiltonian in (1.123)

H(x, u, λ, t) = e−δt f (x, u) + λg(x, u)

and multiply it by eδt to obtain the so-called Current-value Hamiltonian Hc:

Hc(x, u, μ, t) = f (x, u) + μg(x, u) , (1.145)

where μ = μ(t) = λ(t)eδt . From λ(t) = μ(t)e−δt we obtain that

λ̇ = μ̇e−δt − δμe−δt ,

and thus,
λ̇eδt = μ̇ − δμ (1.146)

Since the current value Hamiltonian is given by the Hamiltonian times a con-
stant, the optimal control u∗ maximizes the current-value Hamiltonian as well as the
Hamiltonian; moreoverHc

μ = Hλ so that the state equation can be written as ẋ = Hc
μ.

Now consider the costate equation
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λ̇ = −Hx = − [fx(x∗, u∗) + λgx(x
∗, u∗)

]
(1.147)

= − [e−δt fx(x
∗, u∗) + λgx(x

∗, u∗)
]

= − [e−δt fx(x
∗, u∗) + μe−δtgx(x

∗, u∗)
]

. (1.148)

Multiply (1.147) by eδt and, considering (1.146), we can write

μ̇ − δμ = − [fx(x∗, u∗) + μgx(x
∗, u∗)

] = −Hc
x .

It is now possible to restate Pontryagin’s maximum principle for problem (1.143).

Proposition 1.10 (Maximum Principle with current-value formulation) If u∗ is an
optimal control and x∗ is the corresponding optimal path for the problem (1.143),
then there exists a costate variable μ∗ such that x∗, μ∗, u∗ are the solution in [0,T ]
of the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = g(x∗, u∗) = Hc
μ (state equation)

μ̇ = − [fx(x∗, u∗) + μ∗gx(x∗, u∗)
]+ δμ = −Hc

x + δμ (costate equation)
u∗ = argmaxHc(x∗, u, μ∗) (maximum principle)

x∗(0) = x0 (initial condition)
(a) μ∗(T) = ∂

∂x F(xT , T) (transversality condition when x(T) free)
or

(b) μ∗(T) ≥ ∂
∂x F(xT , T) ((transversality condition when x(T) ≥ xT )

Obviously, when the scrap value is zero, in the transversality conditions it is
∂
∂x F(xT ,T) = 0.When T = +∞, the following transversality condition is necessary

lim
t→+∞e−δtHc(x∗, u∗, μ∗)

= lim
t→+∞e−δt f (x∗, u∗) + e−δtμ∗g(x∗, u∗) = 0. (1.149)

In economic applications, the following “simplified” transversality condition is
often employed:

lim
t→+∞μ∗e−δt = 0. (1.150)

Notice that condition (1.150) is not necessary, as it can be shown by coun-
terexamples, see [32]. Clearly, if in the considered optimal control problem with
infinite time horizon the optimal state converges to an equilibrium value (x∗, u∗),
then limt→+∞e−δt f (x∗, u∗) = 0 and limt→+∞g(x∗, u∗) = 0 so that (1.150) implies
(1.149). We refer to [2] for details on this point.

We conclude by recalling that Mangasarian as well as Arrow sufficient conditions
hold. These conditions can be applied, respectively, to the current-value Hamiltonian
and to the current-valuemaximizedHamiltonianHc

M . In the following example, these
two theorems are useful to provide sufficient conditions for optimality.
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1.4.5 Economic Examples

Example (Optimal use of a machine). Suppose that you possess a machine whose
value at time t is denoted by x(t). For each unit of capital invested in the machine,
you obtain a unit of a good, which is then sold in the market at constant price p. The
machine depreciates over time at the rate η, but it is possible to reduce depreciation
by investing in maintenance. Denote by u = u(t) the instantaneous maintenance
activity (or repair effort), which is our control variable. The cost of maintenance
is c(u) = γ u2. Instantaneous profit is then px − γ u2 (revenues less costs). Assume
that the total life of the machine is T > 0. Indicating by δ the discount factor, the
objective is

max
u≥0

T∫

0

e−δt
[
px − γ u2

]
dt such that:

⎧
⎨

⎩

ẋ = −ηx + u ,

x(0) = x0 ,

x(T) free .

(1.151)

The current-value Hamiltonian is

Hc = px − γ u2 + μ (−ηx + u) .

The functionHc is concave in x and u, so by the Mangasarian theorem the necessary
conditions are also sufficient for an optimal control. Moreover, since Hc is strictly
concave in u, we can deduce that, under the assumption that the optimal control is
strictly positive, i.e., u∗ > 0 (see below), the optimal control must satisfy the usual
necessary condition for a max: ∂Hc

∂u = −2γ u∗ + μ = 0. Thus, Hc is maximized at

u∗ = μ

2γ
. (1.152)

The costate equation is

μ̇ = −∂Hc

∂x
+ μδ = −p + μ (η + δ) (1.153)

with terminal condition (transversality) μ(T) = 0. Equation (1.153) is a linear ODE
with constant coefficients, whose general solution can be easily calculated:

μ(t) = Ke(η+δ)t + p

η + δ
.

Imposing the boundary condition μ(T) = 0, we specify the value of the constant K .
The required solution is μ(t) = −pe(η+δ)(t−T)/(η + δ) + p/(η + δ).
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Fig. 1.88 Optimal use of a machine—time evolution of the optimal path x∗(t) (dashed) and optimal
control u∗(t) (black) and costate μ(t) (dotted) with parameters δ = 0.8; η = 0.8; p = 1; γ = 0.9;
T = 5; x0 = 1. a without scrap value; b with scrap value S(x) = x/2

By (1.152), the optimal control is therefore

u∗(t) = 1

2γ

[
−p

e(η+δ)(t−T)

η + δ
+ p

η + δ

]
. (1.154)

Observe from (1.154) that, being t < T it is u∗(t) > 0 as conjectured above.
Finally, the ODE ẋ = −ηx + u∗ is linear (but with nonconstant coefficients) and can
be solved. Figure1.88a shows the time evolution of the optimal path x∗(t) (dashed),
optimal control u∗(t) (black) and costate μ(t) (dotted) with parameters δ = 0.8;
η = 0.8; p = 1; γ = 0.9; T = 5; x0 = 1.

In Fig. 1.89, typical solutions of the state-costate ODE system are depicted, in the
(x, μ) plane: {

ẋ = −ηx + μ

2γ ,

μ̇ = −p + μ (η + δ) .
(1.155)

The nullclines are the red lines (obviously μ̇ = 0 is the horizontal line). Observe that
the equilibrium of the system, obtained by solving the system ẋ = μ̇ = 0:

(
x∗, μ∗) =

(
p

2γ η(δ + η)
,

p

δ + η

)

is a saddle point, as the Jacobian J =
[−η 1/(2γ )

0 η + δ

]
hasTr(J) = δ > 0 andDet(J) =

−η (η + δ) < 0. Below the nullcline μ̇ = 0, the optimal combination of state and
control is a blue trajectory with the property that it ends exactly in the x-axis at time
T . Above the nullcline μ̇ = 0, the generic trajectory diverges and can not satisfy the
transversality condition μ(T) = 0.

Before ending the example, let us modify it slightly and suppose that at time T
the machine has a scrap value, i.e., it can be sold in a second-hand market at price
S(x) = ax. The problem can be stated as
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Fig. 1.89 Optimal use of a
machine—phase portrait of
the optimal state-costate
ODEs

max
u≥0

⎡

⎣
T∫

0

e−δt
[
px − γ u2

]
dt + e−δtax(T)

⎤

⎦

In this case, the ODE (1.155) remains unchanged, whereas only the transversality
condition changes and becomes μ(T) = ∂S(x)

∂x = a. Figure1.88b shows the relevant
quantities with the parameters as in Fig. 1.88a and with scrap value S(x) = x/2.

Example (Linear-Quadratic optimal control). Suppose that we want to solve the
following problem

min
u=u(t)

+∞∫

0

e−δt
[
ax2 + bu2

]
dt such that:

{
ẋ = u ,

x(0) = x0 ,
(1.156)

where a, b > 0. No constraints on the control are imposed. Being the integrand a
quadratic function of state and control and the state equation linear in control, such
a problem is often referred to as a linear-quadratic (LQ) optimal control problem.

Notice that, since we want to minimize the integral, we can restate the problem
in equivalent form by considering the following objective:

max
u

+∞∫

0

− e−δt
[
ax2 + bu2

]
dt .
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Let us start the analysis by characterizing the solution through the maximum
principle. The current-value Hamiltonian is given by

Hc(x, u, μ) = −ax2 − bu2 + μu .

Clearly Mangasarian’s sufficient conditions are verified. Moreover, beingHc strictly
concave in u, we can find the optimal control u∗ = u by solving the equation of the
first order condition

∂Hc

∂u
= −2bu + μ = 0 → u∗ = μ

2b
.

Now consider the costate equation

μ̇ = −Hc
x + δμ = 2ax + δμ .

Summing up, a solution of the problem is given by x∗, u∗, μ∗ that solve the following
system of linear differential equations

{
ẋ = μ

2b ,

μ̇ = 2ax + δμ
(1.157)

with initial condition on the state x(0) = x0 and such that the following transversality
condition holds:

lim
t→+∞e−δtHc(x∗, u∗, μ∗) = lim

t→+∞ − e−δt

[

a
(
x∗)2 + b

(
μ∗

2b

)2
]

+ e−δt (μ
∗)2

2b
= 0.

(1.158)
One particular solution of (1.157) is the fixed point, obtained by solving the system

ẋ = μ̇ = 0. Being a 2 × 2 system of linear equations with nonzero determinant, this
solution is unique and it is the equilibrium (x, μ) = (0, 0). The Jacobian matrix is
given by

J =
[
0 1

2b
2a δ

]

whose eigenvalues are

z1,2 = δ ± √
δ2 + 4ab

2
.

Since it is z1 = (δ − √
δ2 + 4ab)/2 < 0 < (δ + √

δ2 + 4ab)/2 = z2, the origin
(0, 0) is a saddle point. The equilibrium solution satisfies the transversality condition
(1.158) because there μ∗ is constant. Thus, when x(0) = 0 it is optimal to set u = 0
for all t. This is elementary considering again the meaning of problem (1.156).
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The interesting question is then the following: what happens when x(0) �= 0?
To answer the question, one has to find out how the optimal path looks like in
general. Deriving the maximum principle condition with respect to t, we obtain that
the following relationship must hold: u̇ = μ̇/(2b). Deriving ẋ with respect to t, and
using the state equation ẋ = u, we obtain the following second-order differential
equation in x:

ẍ = u̇ = μ̇

2b
= 2ax + δμ

2b
= 2ax + 2bδu

2b

= a

b
x + δẋ.

The general solution of this equation is

x(t) = c1e
r1t + c2e

r2t (1.159)

where r1 = (δ −√δ2 + 4a/b)/2 and r2 = (δ +√δ2 + 4a/b)/2. The constants c1
and c2 can be determined through the boundary conditions, i.e., the initial condition
on the state x(0) = x0 and the transversality condition on the costate. From the latter
we get that condition (1.158) can be satisfied only if limt→+∞μ(t)e−δt = 0. Thus,
the transversality condition requires that

0 = lim
t→+∞μ(t)e−δt = lim

t→+∞2bu(t)e−δt = lim
t→+∞2bẋ(t)e−δt = c2∞

which tells us that the trasversality condition can be satisfied only for c2 = 0. Thus,
from (1.159) the optimal path is

x∗(t) = x0e
t δ−

√
δ2+4a/b
2 (1.160)

with corresponding optimal control

u∗ = ẋ∗ = x0
δ −√δ2 + 4a/b

2
et

δ−
√

δ2+4a/b
2 . (1.161)

Consider now the same problem with Dynamic Programming. Maximizing the
right hand side of the HJB in (1.144), the optimal control must satisfy the condition

u∗ = argmax
[−ax2 − bu2 + J ′(x)u

]

from which it is u∗ = J ′(x)/(2b), which coincides, if one recall the definition of the
costate variable, with the optimal control obtained through Pontryagin’s principle.
The HJB equation (1.144) thus becomes



1 Qualitative Methods in Continuous and Discrete Dynamical Systems 151

δJ(x) = −ax2 − b

(
J ′(x)
2b

)2

+
[
J ′(x)

]2

2b

= −ax2 +
[
J ′(x)

]2

4b
(1.162)

which is a nonlinear ODE in the unknown function J(x). In this case, a way to tackle
the problem is to “guess” a possible value function. For instance, consider a quadratic
“trial” function of the form

J(x) = Ax2 ,

where A is a constant to be determined. With this choice of J(x), the HJB equation
(1.162) becomes

δAx2 = −ax2 + A2x2

b
,

which is equivalent to (
A2

b
− δA − a

)
x2 = 0 .

Thus, the trial solution works if the quantity in parenthesis is zero, i.e., if A solves
the quadratic equation A2/b − δA − a = 0. The required values of A are

A =
bδ ±

√
b
(
4a + bδ2

)

2
.

At this point we have two possible values of A that do the trick. However, notice
that the integrand function is negative, as it is the sum of two quadratic terms multi-
plied by −1. Thus, the value function, which gives the maximum value of this inte-
gral, can only assume nonpositive values. Thus, only the negative solution (A < 0)
is meaningful for our problem. In this way, the following value function has been
found:

J(x) =
bδ −

√
b
(
4a + bδ2

)

2
x2 .

Now consider the optimal control, which is, as shown before,

u∗ = J ′(x)
2b

= 1

2

(

δ −
√
4a

b
+ δ2

)

x . (1.163)

Now from condition ẋ = u we have that x solves the ODE

ẋ = 1

2

(

δ −
√
4a

b
+ δ2

)

x ,
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whose solution coincides with (1.160). The optimal control as a function of time
is obviously (1.161). Notice that, although both (1.161) and (1.163) represent the
optimal control, this control is given in (1.161) as a function of time of the form
u∗ = u(t, x0) (open-loop control), whereas in (1.163) the optimal control is a function
of the current state u∗ = u(t, x(t)) (closed-loop or feedback control).

Following similar steps, one can study a more general linear-quadratic problem
of the form:

max
u(t)

+∞∫

0

− e−δt
[
ax2 + bu2

]
dt such that:

{
ẋ = cx + du ,

x(0) = x0 .
(1.164)

Example (A simplified Capital Accumulation Model). Consider now the optimal
control problem

max
0<u(t)≤xα

+∞∫

0

e−δt log u(t)dt such that:

{
ẋ = xα − γ x − u ,

x(0) = x0 ,
(1.165)

where x = x(t) ≥ 0 can be interpreted as a physical capital that naturally grows
through the technological coefficientα ∈ (0, 1], depreciates itself by an obsolescence
factor γ > 0 and is reduced by current consumption u. Capital x is the state variable
and consumptionu is the control variable. The objective of the problem is tomaximize
the discounted stream of utility of consumption, assumed logarithmic. The constraint
on the consumption is introduced on the one hand to impose some consumption
(u > 0) and on the other hand to avoid that the capital is consumed (u(t) ≤ xα).

The current value Hamiltonian is

Hc = log u + μ
[
xα − γ x − u

]

which is maximized, from condition ∂Hc

∂u = 0, at u = 1/μ. The current-value Hamil-
tonian (1.145) is Hc

x = μ
[
αxα−1 − γ

]
. Through these quantities, the state-costate

system of ODE that a candidate to be an optimal solution solves becomes

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = xα − γ x − 1
μ

μ̇ = μ
[
(γ + δ) − αxα−1

]

x(0) = x0
lim

t→+∞e−δt
[
log u + μ (xα − γ x − u)

] = 0

Notice that Mangasarian’s sufficient conditions are satisfied, so the necessary con-
ditions are also sufficient.11

11This can be verified by Sylvester’s criterion, being Hc
xx < 0 and

∣∣
∣
∣
Hc
xx Hc

xu
Hc
ux Hc

uu

∣∣
∣
∣ > 0.
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Instead of considering the previous system of ODE, it is instructive to translate it
in a ODE system in the state-control variables. First, derive the maximum condition
u = 1/μ with respect to time:

u̇ = − μ̇

μ2
= αxα−1 − (γ + δ)

μ
= u

[
αxα−1 − (γ + δ)

]

so that the previous system in the state-control space is translated as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = xα − γ x − u
u̇ = u

[
αxα−1 − (γ + δ)

]

x(0) = x0
lim

t→+∞e−δt
[
log u + μ (xα − γ x − u)

] = 0

(1.166)

Let us study the nullclines of system (1.166). Obviously, ẋ = 0 ⇔ u = f (x) =
xα − γ x. In the plane (x, u), f (x) is a strictly concave function. Observe that below
this curve, it is ẋ > 0. Now consider u̇ = 0 ⇔ u

[
αxα−1 − (γ + δ)

] = 0 i.e., when

u = 0 or x = x = ((γ + δ)/α)
1

α−1 : in the plane (x, u) the set of points such that
u̇ = 0 are the x-axis and the vertical line x = x. Moreover, on the left of x = x it
is u̇ > 0. The positive quadrant of the plane (x, u) can thus be subdivided into four
regions according to the signs of the regions between nullclines, as represented in
Fig. 1.90, where we depicted the locus of points such that ẋ > 0 and u̇ > 0 (light
yellow region), ẋ > 0 and u̇ < 0 (white region), ẋ < 0 and u̇ > 0 (gray region),
ẋ < 0 and u̇ < 0 (light gray region).

Fig. 1.90 Capital
accumulation model—signs
of the vector field of the
optimal state-costate ODEs
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System (1.166) admits three equilibrium points (x, u), obtained as points where
ẋ = u̇ = 0: (0, 0), (γ

1
α−1 , 0) and (x, u) = (x, xα − γ x). By the constraint on the con-

trol (u > 0), we disregard the first two equilibrium points, as they involve zero con-
sumption. The analysis with the nullclines suggests that (x, xα − γ x) is a saddle
point. The same conclusions can be drawn by studying the linearization of the sys-
tem about this fixed point. We perform this stability analysis in the next example in
a more general setting.

The point (x, u) is the optimal equilibrium. In fact, it is a solution of (1.166), being
the simplified transversality condition limt→+∞e−δt/u = 0 trivially satisfied, as u is
constant. When x(0) = x, it is optimal to use the control u for all t to stay at x.

What happens when the initial condition on the capital is out-of-equilibrium, i.e.,
if x(0) �= x? As (x, u) is a saddle, every trajectory starting in the gray or in the white
regions departs from (x, u). For a given initial state, it can not be optimal to take a
control such that the trajectory belongs to these regions, as the trajectory would not
satisfy the transversality condition in (1.166).

Thus, given an initial condition x(0) < x [x(0) > x], the control should be chosen
in the light yellow region [light gray region] such that the path belongs to the stable
manifold of the saddle point, in order to guarantee the convergence to the optimal
equilibrium (x, u). If we express the optimal control as a function of the state, u =
u(x) such that the trajectory of the system belongs to the stable manifold of the saddle
point (x, u), then u(x) is the feedback optimal control for problem (1.165).

We briefly study thismodel with the dynamic programming approach. To simplify
the problem, consider the case α = 1, so that the state equation becomes

ẋ = θx − u ,

where θ = (1 − γ ). The HJB equation assumes the form

δJ(x) = max
u

[
log u + J ′(x)(θx − u)

]
, (1.167)

where J(x) is an unknown function. The RHS of (1.167) is maximized for u =
1/J ′(x) > 0, so that (1.167) can be written as

δJ(x) = − log J ′(x) + θxJ ′(x) − 1 .

Given the logarithmic form of utility, we search for a solution candidate of the form
J(x) = A

[
log(x) + B

]
, where A and B are constant to be determined. Substituting

this trial function in the HJB and simplifying, we obtain the equation

1 − Aθ + ABδ + logA + log x (Aδ − 1) = 0
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which leads to the system

{
Aδ − 1 = 0 ,

1 − Aθ + ABδ + logA = 0 ,

so that A = 1/δ and B = α/δ − 1 + log δ. It is easy to check that function J(x) =
1/δ

[
log(x + δ) + α/δ − 1

]
satisfies (1.167). The optimal control is then u∗ =

1/J ′(x) = δx, which gives the optimal quantity to consume as a function of the
current stock of capital (feedback control).

Example (A more general Capital Accumulation Model). Consider a general-
ization of the previous example. The production function Y depends on total capital
X and on total labour force L, i.e., Y = Y(X,L). Define per-capita production and
capital as follows: y = Y/L and x = X/L. Assume that Y = Y(X,L) is linear homo-
geneous of degree 1, i.e.,

Y = Y(X,L) = Y(Lx,L) = LY(x, 1)

from which the individual production function is y = f (x) = Y(x, 1). The function
f (x) is assumed twice differentiable with f ′(x) > 0 and f ′′(x) < 0 and such that it
satisfies the so-called Inada conditions:

lim
x→0+

f ′(x) = +∞ and lim
x→+∞f ′(x) = 0+ (1.168)

Total production is split between total consumptions C and total investments I ,
i.e., Y = C + I . The variation of the capital stock in time is

Ẋ = I − ρX = Y − C − ρX ,

whereρ > 0 indicates capital depreciation over time. In per-capita terms the variation
of capital stock is

Ẋ

L
= y − c − ρx ,

where c = C/L denotes individual consumption, i.e., the consumption of a repre-
sentative agent in the economy.

On the other hand, the derivative of capital X is

Ẋ = d

dt
(Lx) = L̇x + Lẋ

that gives Ẋ/L = L̇/Lx + ẋ. Denoting the growth rate of labour force L̇/L = n
(assumed constant) and recalling that y = f (x), we obtain the equation of capital
growth:

ẋ = f (x) − c − (n + ρ) x .
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The utility of a representative agent in the economy is denoted by u(c), which
is assumed three times differentiable with u′(c) > 0 and u′′(c) < 0 and such that it
satisfies the Inada conditions (1.168).

Assume that a social planner aims atmaximizing the discounted value of the utility
of consumers weighted by labour force over an infinite time horizon. Denoting by
β > 0, the discount factor, the problem of the social planner is

+∞∫

0

e−βtu (c) Ldt = L0

+∞∫

0

e(n−β)tu (c) dt

where it is assumed that the population grows exponentially, with L = L(t) = L0ent

and with initial population L(0) = L0. Without loss of generality, one can normalize
the initial population to 1, i.e., L0 = 1. The objective of the social planner becomes

max
0≤u≤f (x)

+∞∫

0

e−δtu (c) dt such that:

{
ẋ = f (x) − γ x − c
x(0) = x0

(1.169)

where δ = β − n > 0 (by assumption) and γ = n + ρ. Notice that the previous
example in (1.165) is a particular case of the one considered here.

Let us study the model with the maximum principle. The current-value Hamil-
tonian is

Hc = u (c) + μ
[
f (x) − c − γ x

]

which is maximized at ∂Hc

∂u = u′(c) − μ = 0, i.e., for μ = u′(c). The state-costate
system of ODE that a candidate optimal solution must satisfy is

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = f (x) − c − γ x
μ̇ = −μ

[
f ′(x) − (γ + δ)

]

x(0) = x0
lim

t→+∞e−δt
[
u (c) + μ(f (x) − c − γ x)

] = 0

(1.170)

where also the control c appear. Notice again thatMangasarian’s sufficient conditions
are satisfied, so that the necessary conditions are also sufficient.12 To get rid of the
costate variable, we transform system (1.170) in an ODE system in the state-control
space. Deriving the maximization condition μ = u′(c) with respect to t we get

μ̇ = d

dt
u′(c(t)) = u′′(c)ċ ,

12It can be verified by Sylvester’s criterion, being Hc
xx = μf ′′(x) = u′(c)f ′′(x) < 0 and∣∣

∣
∣
Hc
xx Hc

xu
Hc
ux Hc

uu

∣∣
∣
∣ = u′(c)u′′(c)f ′′(x) > 0.
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so that from the second differential equation in (1.170) we get

ċ = − u′(c)
u′′(c)

[
f ′(x) − (γ + δ)

]
(1.171)

with the transversality condition

lim
t→+∞e−δt

[
u (c) + u′(c)(f (x) − c − γ x)

] = 0. (1.172)

Notice that by assumption it is u′′(c) �= 0 and −u′(c)/u′′(c) > 0. Thus, the null-
cline ċ = 0 is the locus of points x such that

f ′(x) = (γ + δ) (1.173)

From the Inada conditions, for any fixed (γ + δ) > 0 there exists a unique root x to
equation (1.173). Equation (1.173) is often referred to as the Modified Golden rule
in capital accumulation models. This nullcline is a vertical line in the (x, c) plane.

By (1.171), ċ > 0 for f ′(x) > (γ + δ), which occurs, being f ′(x) decreasing, for
x < x.

Now consider the nullcline ẋ = 0, which represents the set of points such that
c = f (x) − γ x. Consider the function

c(x) = f (x) − γ x .

It is c(0) = 0 for x = 0 and for c(̃x) = 0 such that f (̃x) − γ x̃ = 0. Moreover, c(x)
has a maximum point at the point x̂ (golden rule state) such that c′(̂x) = 0, i.e., such
that f ′(̂x) = γ . In other words, the nullcline ẋ = 0 is, in the plane (x, c) an unimodal
function. It is interesting to observe that x̂ > x, see discussion below.

Moreover, ẋ > 0 for c < f (x) − γ x i.e., below the curve c(x). Through the con-
dition ẋ = ċ = 0 we identify the equilibrium of the following system of ODE:

E = (x, c) = (x, c(x)) = (x, f (x) − γ x) . (1.174)

By graphical analysis, this equilibrium is a saddle point. The qualitative graph
of the nullclines is identical to the one presented in the previous example. Notice
that at the equilibrium (x, c(x)) the transversality condition is satisfied, since c(x) is
constant and condition limt→+∞u′(c(x))e−δt = 0 implies (1.172).
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The stability analysis of equilibrium (1.174) can be carried out as always consid-
ering the eigenvalues of the Jacobian matrix at equilibrium. It is

J(E) =
[

∂ ẋ
∂x

∂ ẋ
∂c

∂ ċ
∂x

∂ ċ
∂c

]
=
[

f ′(x) − γ −1

− u′(c)
u′′(c) f

′′(x) − [u′′(c)]2−u′′′(c)u′(c)
[u′′(c)]2

[
f ′(x) − (γ + δ)

]

]

=
[

δ −1
− u′(c)

u′′(c) f
′′(x) 0

]

By (1.173), the element J11 = δ and J22 = 0. Clearly, Tr (J) = δ > 0 and Det (J) =
−u′(c)/u′′(c)f ′′(x) < 0 so that E is indeed a saddle point. The eigenvalues are solu-
tions of the characteristic equation in the unknown λ:

λ2 − δλ − u′(c)
u′′(c)

f ′′(x) = 0 ,

i.e.,

λ1,2 =
δ ±

√
δ2 + 4 u′(c)

u′′(c) f
′′(x)

2
.

As for the previous example, any trajectory belonging to the stable manifold of E
ensures the convergence to the optimal long-run stationary equilibrium E in (1.174).

In the economic literature, an equilibrium such asE is often called a turnpike and is
obtained through the modified golden rule (1.173). Why modified? The reason is the
following. In general the turnpike is different from the equilibrium thatmaximizes the
integrand function (see (1.169)). In fact, from the state equation ẋ = f (x) − c − γ x
we know that an equilibrium must satisfy condition ẋ = 0, i.e., c = f (x) − γ x. If we
substitute this c in the integrand in (1.169) we get u (f (x) − γ x), which is maximized
at the x̂ such that u′ (f (̂x) − γ x̂)

(
f ′(̂x) − γ

) = 0, i.e., for the x̂ such that f ′(̂x) = γ .
State x̂ is called golden rule. Notice that the golden rule coincides with the modified
golden rule in (1.173) only for δ = 0.
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Chapter 2
Some Aspects on Global Analysis of Discrete
Time Dynamical Systems

Anastasiia Panchuk

Abstract Dynamical systems theory distinguishes two types of bifurcations: those
which can be studied in a small neighborhood of an invariant set (local) and those
which cannot (global). In contrast to local bifurcations, global ones cannot be investi-
gated by a Taylor expansion, neither they are detected by purely performing stability
analysis of periodic points. Global bifurcations often occur when larger invariant sets
of the system collide with each other or with other fixed points/cycles. This chapter
focuses on several aspects of global bifurcation analysis of discrete time dynamical
systems, covering homoclinic bifurcations as well as inner and boundary crises of
attracting sets.

2.1 Introduction

Dynamical systems theory is mainly interested in asymptotic behavior of orbits
depending on the initial state and how this behaviormay changewhen varying system
parameters. The important phenomenon is a bifurcation when the changes occurring
in the state space cannot be obtained via a smooth transformations (the orbits before
and after the bifurcation are not topologically conjugated). Two types of structural
changes are distinguished: local and global ones. Local bifurcations are those which
can be examined locally via an approximation of the map in a small neighborhood of
some fixed point or cycle. Global bifurcations often occur when larger invariant sets
of the system collide with each other or with other fixed points/cycles. Such a global
bifurcation cannot be investigated by a Taylor expansion and cannot be detected by
purely performing stability analysis of a periodic point. To understand what happens
with orbits of the system in this case, one has to take into account global properties
of the map (see [17, 27, 34] to cite a few).
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Among common examples of global phenomena, one may list contact bifurca-
tions, homoclinic bifurcations, and crises. Contact bifurcations are characterized by
structural changes of basin and its boundary (for example, when a connected basin
transforms to a nonconnected one or basin boundary becomes fractal). These bifur-
cations are only possible in noninvertible maps and occur due to tangencies between
basin boundaries and critical curves (for more detail see, e.g., [5, 12, 25] and refer-
ences therein).

Homoclinic bifurcations entail changing shape of invariant sets and are associated
with appearance of homoclinic points (and, consequently, orbits) when the stable and
unstable sets of a periodic point have a contact (see, for instance, [6, 8, 10]). This
often allows to show strictly existence of an invariant set on which dynamics is
chaotic. It can also happen, that the stable set of one periodic point intersects with
the unstable set of another periodic point in which case the intersection point (and
its orbit) is called heteroclinic. Homoclinic/heteroclinic orbits may also appear in
a sequence of bifurcations leading to creation of closed invariant curves (see, e.g.,
[1, 2]).

Bifurcations called crises are related to sudden transformations of chaotic attrac-
tors and encountered in both invertible and noninvertible maps alike homoclinic
bifurcations. Such swift changes occur due to a contact between a chaotic attractor
and an unstable periodic orbit (or, equivalently, its stable set). Starting from [16],
three types of crisis are usually distinguished: a boundary crisis at which the attrac-
tor is destroyed, an interior crisis accompanied with abrupt increase in size of the
attractor, and merging crisis where several chaotic attractors collide simultaneously
with an orbit on the separating basin boundary.

In the current chapter we point out several aspects related to global analysis of
discrete time dynamical systems, covering homoclinic bifurcations as well as interior
and boundary crises.

2.2 Preliminaries

In this section we introduce general concepts and notations used throughout the
chapter.

Let us consider a smooth (or piecewise smooth) function T : X → X , X ⊆ R
n ,

T = (T1, . . . , Tn), which can be invertible or noninvertible. Here n ∈ Z
+ with Z

+
denoting the set of all positive integer numbers. Recall that:

• For an arbitrary point x ∈ X the value T (x) is called a rank-1 image of x or simply
an image of x.

• From definition of T it follows that T (x) ∈ X . Hence, we may define T (T (x)),
T (T (T (x))), and so on. For shortness, the composition of t consecutive applica-
tions of the function T to the vector x is abbreviated as T t (x), i.e.,

T (T (. . . T︸ ︷︷ ︸
t

(x) . . .)) ≡ T ◦ T . . . ◦ T︸ ︷︷ ︸
t

(x)
de f= T t (x).
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• For any x ∈ X the value T t (x), t ∈ Z
+, is called a rank-t image of x.

• For an arbitrary x ∈ X the value y ∈ X such that T t (y) = x, t ∈ Z
+, is called a

rank-t preimage of x. The set of all rank-t preimages is denoted as T−t (x). For
shortness, we refer to a rank-1 preimage of x simply as a preimage of x.

It is important to mention, that for an arbitrary x ∈ X its rank-t image, t ∈ Z
+, exists

and is unique. This is not necessarily true for preimages of x that may be multiple
(T−t (x) has more than one element) or missing (T−t (x) = ∅), in case where T is
noninvertible.

For avoiding confusion we emphasize that whenever the symbol T−1(x) is used,
it is meant to denote the set of all preimages of a certain point x. However, writing
simply T−1 (without x) we have in mind an inverse function of T . In case where T
is a bijection (a one-to-one and onto), each x ∈ X has exactly one (rank-1) preimage
(the set T−1(x) consists of a single point). Then, the function T is called invertible
and the inverse function T−1 can be uniquely defined. On the other hand, if T is
not bijective, then it is noninvertible and the set T−1(x) may consist of more than
one value or be empty depending on x (hence, the inverse function T−1 is either not
defined uniquely or not defined for some x ∈ X ).

Example 2.1 Consider the function Tμ = μ
√
x , 0 < μ ≤ 1, with X = [0, 1]. It is

clear that Tμ(X) = [0, μ]. Consequently, for μ < 1 the points x̄ > μ do not have
preimages, that is, T−1

μ (x̄) = ∅ and the inverse function T−1
μ is only defined for

x ∈ [0, μ]. Nevertheless, the dynamical system related to Tμ do not produce complex
behavior since Tμ is monotonically increasing.

Example 2.2 Consider the function T = 4x(1 − x)with X = [0, 1]. The image of X
is T (X) = [0, 1] = X , but every x ∈ X , except for x̄ = 1, has two preimages yL <

0.5 and yR > 0.5. The inverse function T−1 can not be uniquely defined, though one
may define two distinct inverse functions of T . That is, T−1

L : [0, 1] → [0, 0.5] and
T−1
R : [0, 1] → [0.5, 1] with obvious equality T−1

L (1) = T−1
R (1) = 0.5.

Let us consider now a discrete (or discrete time) dynamical system (DDS for
short) represented by the iterative relation

xt+1 = T (xt ) t ∈ Z
∗, (2.1)

where Z
∗ = Z

+ ∪ {0} is a set of all non-negative integers, or, in equivalent notation,

x′ = T (x), (2.1′)

where x′ denotes the next iterate under T (image of x). Having in mind the evo-
lutionary process (2.1) the function T is often referred to as a map or a map-
ping. The set X then serves as the state space, while an n-dimensional real vector
x = (x1, . . . , xn) ∈ X is the state variable.
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For every initial state x0 ∈ X of the system (2.1) or (2.1′) at the time t = 0, the
sequence of successive images of x0 constitutes a discrete trajectory or an orbit:

O(x0) = {
T t (x0)

}∞
t=0 = {x0, x1, . . . , xt , . . .}. (2.2)

Here T 0 denotes the identity function (map), namely, T 0(x) = x for any x ∈ X .
Themain task in studying a dynamical system (2.1) is to understand the asymptotic

behavior of its orbits depending on the initial condition x0 and how this develops
with changing parameters. For instance, an orbit can “stuck” at some invariant set
or diverge to infinity, and this behavior may be different depending on x0. It may
also happen that an orbit diverges from some invariant set, but then comes back to it
again due to existence of a homoclinic orbit.

Recall that a set A ⊂ X is called invariant under T or T -invariant if it is mapped
onto itself T (A) = A. The two simplest kinds of invariant sets (and, hence, the
simplest asymptotic behavior of orbits of (2.1)) are

• a fixed point x∗ such that T (x∗) = x∗, and
• a k-cycle, Ck = {x∗

1, . . . , x
∗
k } such that x∗

i+1 = T (x∗
i ), x

∗
1 = T (x∗

k ).

However, the structure of an invariant set A may be much more complex than just a
point or a finite set of points, and this fact led to introducing such terms as strange
attractor [15, 29] and chaotic attractor [9, 21]. There exist many possible definitions
of chaos in dynamical systems theory, some of them being stronger than the others.
Here we follow the definition given by Devaney [7].

Definition 2.1 Consider a map T : X → X and let a set A ⊂ X be invariant under
T . The restriction T |A : A → A is called chaotic on A if

(i) there exist infinitely many periodic orbits dense in A,
(ii) T |A is topologically transitive, that is, for any pair of open setsU, V ⊂ A there

exists t ∈ Z
+ such that T t (U ) ∩ V �= ∅.

The set A is also often said to be chaotic.

To be precise, in his definition Devaney also includes the third property that T |A has
sensitive dependence on initial conditions,1 although this property can be derived
from the other two (see, e.g., [4]). The chaos of the described type is also called
topological chaos, that is having positive topological entropy.

It is worth to mention that condition (ii) is often replaced by

(ii′) there exists an aperiodic orbit dense in A.

Conditions (ii′) and (ii) are not connected in general, though under additional require-
ments on A they become equivalent. Namely, if A has no isolated points then (ii′)

1The map T : X → X is said to have sensitive dependence on initial conditions if there exists
δ > 0 such that for any x ∈ X and any neighborhoodU (x) there exist y ∈ U (x) and t ≥ 0 such that
|T t (x) − T t (y)| > δ.
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implies (ii). The opposite is true if A contains a countable dense subset and is of
second category2 (see, e.g., [32]).

One might expect that chaotic behavior is more natural for DDS with dimension
n ≥ 2, however, already one-dimensional noninvertiblemaps can show non-regular
dynamics of this kind. One of the most known examples is a family of quadratic
maps such as logistic map [31] or conjugated to it Myrberg map [26].

In the next sections we describe a couple of phenomena due to which a chaotic
attractor may appear or be reshaped. For that we first introduce such important
concepts as stable and unstable sets of a fixed point or a cycle.

2.3 Stable and Unstable Sets

The stable and the unstable set of a fixed point or a cycle are important concepts for
studying behavior of a dynamical system globally. They are related to boundaries of
basins of attraction, saddle-connections and birth of closed invariant curves, homo-
clinic tangles, appearance and modification of chaotic attractors. Classically, these
notions are defined for maps of dimension greater than one, which are characterized
by possibility of both expansion and contraction in the same invariant set. However,
an extension of the idea to a class of one-dimensional noninvertible maps was given
already in 1969 by Sharkovsky [30] and then developed in [22, 25] among the others.

2.3.1 Stable Manifold Theorem

Let consider a DDS (2.1) and denote

DT (x) =

⎛

⎜⎜⎜
⎝

∂T1(x)
∂x1

. . .
∂T1(x)
∂xn

. . . . . . . . .
∂Tn(x)
∂x1

. . .
∂Tn(x)
∂xn

⎞

⎟⎟⎟
⎠

the Jacobian matrix of the map T at the point x. And let λi = λi (x), 1 ≤ i ≤ n, be
the eigenvalues of DT (x).

Definition 2.2 A fixed point x∗ of the map T is called hyperbolic if DT (x∗) has no
eigenvalues on the unit circle, that is, |λi (x∗)| �= 1, 1 ≤ i ≤ n.

For sake of shortness, we drop the symbol (x∗) in notation of eigenvalues whenever
it is clear which point is meant. If all λi , 1 ≤ i ≤ n, of DT (x∗) are inside the unit

2A subset A of a topological space X is said to be of second category in X if A cannot be written
as the countable union of subsets which are nowhere dense in X .
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circle (|λi | < 1), then x∗ is attracting (more precisely, asymptotically stable), while
in case when all |λi | > 1, the point x∗ is called expanding. In the intermediate case,
when some of eigenvalues of x∗ are inside the unit circle and others are outside it,
the point x∗ is referred to as saddle or unstable.3 Clearly, for a one-dimensional map
the concepts of expanding and unstable fixed points are equivalent.

Let rearrange the eigenvalues of DT (x∗) so that |λi | < 1 for 1 ≤ i ≤ i0 and |λi | >

1 for i0 < i ≤ n and consider the sets of related eigenvectors. Let Es(x∗) denote a
subspace of dimension i0 spanned on the eigenvectors {v1, . . . , vi0} corresponding to
eigenvalues being inside the unit circle. Then Es(x∗) is called a stable eigenspace of
x∗. Similarly, the eigenvectors {vi0+1, . . . , vn} corresponding to eigenvalues outside
the unit circle define an unstable eigenspace Eu(x∗) (whose dimension is clearly
n − i0).

Example 2.3 Let consider a linear mapping Tlin : R
2 → R

2,

Tlin :
{
x ′
1 = 2x1 + x2,
x ′
2 = x1 + x2.

It obviously has a fixed point x∗ = (0, 0) with Jacobian

DTlin(0, 0) =
(
2 1
1 1

)
. (2.3)

The eigenvalues of DTlin(0, 0) are λ1 = (3 − √
5)/2, λ2 = (3 + √

5)/2 with the
corresponding eigenvectors vi = (1/(λi − 2), 1), i = 1, 2. Since λ1 < 1, the stable
eigenspace is

Es(0, 0) = {αv1 | α ∈ R}, (2.4)

that is, the line defined by the vector v1. Similarly, the vector v2 gives the unstable
eigenspace

Eu(0, 0) = {αv2 | α ∈ R}, (2.5)

being the line orthogonal to Es(0, 0) (see Fig. 2.1).

Now, we directly come to introducing the notions of stable and unstable sets. First,
the classical case is considered where the mapping T is a diffeomorphism, that is,
a smooth bijective function. Then, modified versions of the definitions are given so
that to cover the case of noninvertible and/or piecewise smooth maps.

3Some authors use also the term repelling in this case, though it might be confusing since there is
more strict definition of a repelling set.
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Fig. 2.1 Stable Es and
unstable Eu eigenspaces of
the saddle fixed point x∗

2.3.1.1 Diffeomorphsms: Stable and Unstable Manifolds

Definition 2.3 Let the mapping T be a diffeomorphism, and let x∗ be a hyperbolic
fixed point of the system (2.1). The sets

Ws(x∗) = {
y ∈ X : limt→∞ T t (y) = x∗} , (2.6)

Wu(x∗) = {
y ∈ X : limt→∞ T−t (y) = x∗} (2.7)

are called the stable and the unstable set of x∗, respectively.

Note that if x∗ is an expanding fixed point, then its stable set is empty, while its
unstable set is some n-dimensional area (the shape of this area depends on presence
of other invariant sets of the system). On the contrary, if x∗ is an asymptotically
stable fixed point, then its unstable set is empty, while its stable set is just its basin
of attraction.

The Stable Manifold Theorem (see, e.g., [3, 34]) guarantees that Ws(x∗) and
Wu(x∗) exist and are manifolds of the same smoothness as T .

Theorem 2.1 (Stable Manifold Theorem) Let T be a diffeomorphism and x∗ be a
hyperbolic fixed point of the DDS (2.1). Then Ws(x∗) is as smooth as T manifold
and the stable eigenspace Es(x∗) is tangent to Ws(x∗) at the point x∗.

Applying Theorem 2.1 to the inverse T−1, the same can be stated about the unstable
set Wu(x∗), that is, Wu(x∗) is as smooth as T manifold and Eu(x∗) is its tangent
space at x∗. For sake of shortness, we drop the symbol (x∗) in notation of eigenspaces
and stable/unstable manifolds whenever it is clear which point is meant.

Example 2.4 In case of linear mapping T (such as the one in Example 2.3), the
stable/unstable manifold Ws /Wu of the fixed point x∗ = (0, 0) coincides with the
stable/unstable eigenspace Es /Eu . We demonstrate this for the stable manifold,
and the unstable one is treated likewise. First, we show that Es is invariant under
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T . Let x ∈ Es which means that x = αv1 with a certain α ∈ R. Then T (x) =
T (αv1) = αλ1v1 and, hence, T (x) ∈ Es . And vice verse: consider T (x) ∈ Es , that
is, T (x) = αv1, which is equivalent to T (λ1x/α) = λ1v1. The latter clearly implies
x = αv1/λ1 ∈ Es .

It remains to verify that for any y ∈ Es there holds limt→∞ T t (y) = x∗. Indeed,
T t (y) = αλt

1v1, α ∈ R. Obviously, limt→∞ ‖T t (y)‖ = 0 since |λ1| < 1.

2.3.1.2 Noninvertible Maps: Stable and Unstable Sets

Now, we consider the more general case where T is not a diffeomorphism, namely,
T may be noninvertible and/or piecewise smooth. The definition (2.6) for the stable
set Ws(x∗) remains unchanged, but the expression (2.7) for the unstable set Wu(x∗)
has to be modified with taking into account that the points can have more than one
preimage.

Definition 2.4 Let T be a continuous piecewise smooth map and consider a hyper-
bolic fixed point x∗ of the DDS (2.1). The locus of points having a sequence of
preimages that tends towards x∗, that is,

Wu(x∗) =
{
y ∈ X : ∃ {zt }∞t=0, z0 = y, T (zt+1) = zt such that lim

t→∞ zt = x∗
}

,

(2.8)

is called the unstable set of x∗.

Note that in this definition not all preimages of y tend towards x∗, but there exists
an infinite sequence of preimages of y having x∗ as a limit point. Moreover, in case
of a noninvertible T , the stable set of an expanding fixed point may be nonempty (in
contrast to invertible maps). More precisely, it consists of all preimages of this fixed
point. Similarly, the unstable set of an asymptotically stable fixed point x∗ may be
nonempty.

Clearly, in case of noninvertible or non-smooth T , the Stable Manifold Theorem
(Theorem 2.1) cannot be applied directly.We additionally require that (i) the point x∗
is not degenerate, that is, det DT (x∗) �= 0 (the Jacobian have no zero eigenvalues),
and (ii) T is smooth at x∗. If these two conditions are satisfied there exists a neighbor-
hood U (x∗) such that T |U (x∗) is a diffeomorphism. Hence, Theorem 2.1 guarantees
existence of local stable Ws

loc(x
∗) ⊂ U (x∗) and local unstable Wu

loc(x
∗) ⊂ U (x∗)

manifolds, which are tangent at x∗ to the stable and unstable eigenspaces Es(x∗)
and Eu(x∗), respectively. Then the global stable and global unstable sets can be
alternatively defined as

Ws(x∗) = ∪∞
t=0T

−t (Ws
loc(x

∗)), (2.9)

Wu(x∗) = ∪∞
t=0T

t (Wu
loc(x

∗)). (2.10)
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Example 2.5 Let consider a nonlinear function Tnlin : R
2 → R

2,

Tnlin :
{
x ′
1 = 2x1 + x2,
x ′
2 = x1 − x21 + x2,

which is clearly noninvertible. It has a fixed point x∗ = (0, 0) with the same
Jacobian (2.3) as in Example 2.3. Consequently, the stable Es and unstable Eu

eigenspaces of x∗ are given by (2.4) and (2.5), respectively. The stable Ws and
unstable Wu sets of x∗ cannot be derived in analytic form, but one may approximate
them numerically. In Fig. 2.2 the setsWs andWu together with Es and Eu are shown.

In general, stable and unstable sets of a fixed point x∗ have the following properties
(see, e.g., [25]):

1. Ws is backward invariant, but not necessarily (forward) invariant (mapped only
into itself), that is,

T−1(Ws) = Ws,

T (Ws) ⊆ Ws .

2. Wu is invariant, but not necessarily backward invariant:

T (Wu) = Wu,

T−1(Wu) ⊇ Wu .

3. Both Ws and Wu are not necessarily manifolds and may have self intersections.
4. When T is continuous, the setWu is connected, whileWs may consist of disjoint

connected components.

The notions of stable and unstable sets can be generalized for a k-cycle Ck =
{x∗

1, . . . , x
∗
k } by considering T k , for which every point x∗

i is a fixed point. Then under

Fig. 2.2 Stable Ws and
unstable Wu sets of the
saddle fixed point x∗ together
with related eigenspaces
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the stable (unstable) set ofCk one mean the union of all stable (unstable) setsWs(x∗
i )

(Wu(x∗
i )).

As one can see, the stable and unstable sets are not defined only in a neighborhood
of a fixed point (or a cycle), but in the larger area of the state space and may even
extend to infinity. Due to this reason, they often play an important role when studying
global properties of the map T . In particular,

1. stable sets of saddle points or cyclesmay define boundaries of basins of attraction;
2. stable sets of saddle cycles may establish saddle-connections (homoclinic/hete-

roclinic loops) inducing creation of closed invariant curves.
3. stable and unstable sets may attain a very complex configuration generating a

homoclinic tangle, which causes then appearance of an invariant chaotic set;
4. contact of the stable set of a saddle periodic point with another invariant set may

lead to a crisis bifurcation.

The situation (1) is briefly explained immediately below by using a simple exam-
ple. The phenomenon (3) is described in detail in Sect. 2.4. Interior and boundary
crises (4) are considered in Sect. 2.5. The item (2) is beyond the scopes of the current
chapter, and the reader is referred to [1, 2] and references therein.

2.3.2 Stable Sets of Saddle Points and Basins

Let us consider a two-parametric family Ha,b : R
2 → R

2 such that

Ha,b :
(
x
y

)
→

(
a − by − x2

x

)
. (2.11)

The map (2.11) is called Hénon map4 (see, e.g., [7, 18]). Note that Ha,b has only
one nonlinear term, so that, it is indeed one of the simplest nonlinear maps in higher
dimensions.

It is easy to calculate the Jacobi matrix of Ha,b:

DHa,b =
(−2x −b

1 0

)
,

whose determinant is det DHa,b = b. Clearly, if b �= 0, then the mapping (2.11) is
invertible, and its inverse is given as

H−1
a,b :

(
x
y

)
→

⎛

⎝
x

−a

b
− y

b
+ x2

b

⎞

⎠ . (2.12)

4In the original paper of M. Hénon this map is written in slightly different form, namely,
H̃a,b: (x, y) → (1 + y − ax2, bx), but topological conjugacy between H̃a,b and Ha,b can be easily
shown.
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Fig. 2.3 Phase space of the
Hénon map Ha,b with a = 1,
b = 0.3. The basin of the
attracting fixed point p+ is
confined by the stable set of
the saddle p+ (namely, it is
the area between the two
parabola-shaped curves).
Orbits starting in the
dark-gray region diverge to
infinity

It can be shown that for any a ∈ R, b ∈ R\{0} themap Ha,b is topologically conjugate
to H−1

A,B with A = −a/b2, B = −1/b. Hence, it is enough to consider |b| ≤ 1.
Note that in caseb = 0, the function Ha,0 is noninvertible andmaps the entire plane

onto a parabola P = {(x, y) : x = a − y2}, which implies topological conjugacy
between the restriction Ha,0|P and the Myrberg map [26].

We set a = 1, b = 0.3, for which H1,0.3 has two fixed points: a saddle p− =
(x−, x−) and a sink p+ = (x+, x+). In Fig. 2.3 a part of the phase space is shown.
The basin of attraction B(p+) of the sink p+ is confined by the stable set Ws(p−)

(a part of this stable set appears in Fig. 2.3 as two parabola-shaped curves). The orbits
starting ‘outside’ B(p+) (in the dark-gray region) diverge to infinity. Since p+ is
attracting, its stable set is simply its basinB(p+), and one branch ofWu(p−) clearly
tends to p+ with t → ∞ (the other branch diverges to infinity). The unstable set is
Wu(p+) = ∅, because Ha,b is invertible.

2.4 Homoclinic Bifurcations

In this section we explain such notions as a homoclinic orbit and a homoclinic
bifurcation. A homoclinic orbit is often a basic tool for rigorously showing existence
of chaotic dynamics [10, 33]. In spaceswith dimension greater than one, a homoclinic
bifurcation is related to a homoclinic tangle. The latter represents a structure where
stable and unstable sets of a saddle fixed point twist and interlace in a very complex
manner. Whenever this intersection is transverse, there exists an invariant set on
which the restriction of the map is chaotic.

As for a one-dimensional DDS, there is no concept of a saddle point. However, if
the map is noninvertible, the stable set of a repelling fixed point may be nonempty
(as was mentioned above). Then, homoclinic bifurcations are also possible but the



172 A. Panchuk

scenario is slightly different from the one involving a saddle point. Namely, the
homoclinic orbit has to be mapped directly to a repelling fixed point after a finite
number of iterates. Moreover, homoclinic orbits of this kind also appear in nonin-
vertible higher-dimensional maps. As was proved byMarotto [22], a non-degenerate
homoclinic orbit of an expanding fixed point (a snap-back repeller) is associated with
an invariant set on which the map is chaotic.

2.4.1 The Notion of a Homoclinic Orbit

In simple words, a homoclinic orbit is the one that tends to the same invariant set in
both the forward and the backward processes. Whenever the stable and unstable sets
of a fixed point intersect, this induces such a homoclinic orbit. We give all definitions
for fixed points and remark that to get similar definitions for k-cycles it is enough to
consider the k-th iterate of the map T k .

Definition 2.5 Let x∗ be a hyperbolic fixed point of a map T . Any point y ∈
Ws(x∗) ∩ Wu(x∗)\{x∗} is called homoclinic.

If a homoclinic point exists, then infinitely many homoclinic points must also exist,
accumulating in a neighborhood of x∗. Intuitively, this can be understood by observ-
ing that the images of y and its suitable preimages are also homoclinic points, which
converge to x∗.

Definition 2.6 A sequence of images and suitable preimages of a homoclinic point
y, which converge to x∗, is called a homoclinic orbit of x∗.

In other words, a homoclinic orbit is an infinite set of points

Oh(x∗) = {. . . , y−t , . . . , y−1, y0, y1, . . . , yt , . . .} (2.13)

such that T t (y−t ) = y0 and yt = T t (y0) with

lim
t→∞ y−t = x∗, lim

t→∞ yt = x∗.

It is sometimes important to distinguish between critical and noncritical homoclinic
orbits. A homoclinic orbit is called critical if it contains a critical point, that is, a
point at which the map T is not locally invertible. Otherwise, a homoclinic orbit is
noncritical (see, e.g., [13]). For instance, in case of a unimodal map a homoclinic
orbit including the local extremum point is critical.
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2.4.2 Homoclinic Orbits for One-Dimensional Maps

By analyzing a simple example we explain how homoclinic orbits appear in scalar
maps and what is a homoclinic bifurcation in this case. Consider a famous logistic
map Tμ(x) = μx(1 − x), Tμ : [0, 1] → [0, 1]. In Fig. 2.4a the bifurcation diagram
of Tμ is plotted, where the dashed curve indicates the fixed point x∗ = 1 − 1/μwhen
it becomes unstable, while the black vertical line corresponds to the parameter value
μ = μ∗ ≈ 3.6786, at which a homoclinic bifurcation occurs. The graphs of Tμ with
μ < μ∗, μ = μ∗, and μ > μ∗ appear in Fig. 2.4b, c and d, respectively. A few steps
of the forward orbit of the extremum point xe = 1/2 are also plotted.

(a) (b)

(c) (d)

Fig. 2.4 Logistic map: A bifurcation diagram in (a); and the map dynamics (b) before, c at, and
d after the first homoclinic bifurcation of the fixed point x∗
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As can be noticed in Fig. 2.4b, typical asymptotic orbits of Tμ (see the shown
staircase diagram) never exit intervals J1 ∪ J2 which are bounded by the first four
images of the extremum point xe. Note that T 3

μ(xe) is greater than x∗. As for the fixed
point x∗, the set of all its preimages can be divided into two sequences. The first (left)
sequence approaches zero with increasing rank. The second (right) sequence consists
of points which do not have preimages. This implies that x∗ cannot have homoclinic
orbits.

In Fig. 2.4c the point xe is clearly homoclinic. On one hand, in three steps xe is
mapped into x∗, that is, T 3(xe) = x∗. On the other hand, there exists an appropriate
backward orbit of xe that tends to x∗, since the fixed point is repelling. This moment
corresponds to thefirst homoclinic bifurcation of x∗. Due to the equality T 3(xe) = x∗,
the two intervals J1 and J2 merge at x∗ creating a single invariant interval J , which
persists after the bifurcation.

Forμ > μ∗ (see Fig. 2.4d) the image T 3
μ(xe) is less than x∗ (in contrast to the case

before the bifurcation where it was greater than x∗). Then, there exists a sequence of
preimages of x∗ that tends to x∗ with increasing rank, thus, constituting a homoclinic
orbit of x∗ (dotted line). This implies that there exists a subset Λ ⊂ J such that the
restriction Tμ|Λ is chaotic in sense of Devaney.

The mechanism of homoclinic bifurcation described above is common for a class
of unimodal maps with a local maximum or minimum. We formulate the following
theorem for maps with a local maximum, which can be easily modified to get similar
statement for maps with local minimum.

Theorem 2.2 Let T : I → I be a unimodal continuous map of the interval I ⊂ R

into itself and denote the point of maximum of T as xe. Suppose that

1. T is smooth in I\{xe};
2. T has a unique unstable fixed point x∗;
3. there exists a sequence of preimages of xe approaching x∗.

Then when T 3(xe) = x∗, there occurs a (critical) homoclinic orbit of the fixed
point x∗. Furthermore, for T 3(xe) < x∗ there exists a closed invariant set Λ ⊆
[T 2(xe), T (xe)] ⊆ I such that the restriction T |Λ is chaotic in sense of Devaney.

A similar result can be clearly obtained for a k-cycle Ck = {x∗
1, . . . , x

∗
k } by apply-

ing Theorem 2.2 to x∗
j as fixed points of T k on suitable intervals I j . The latter

correspond to cyclical intervals of T , that is T (I j ) = I j+1, j < k, T (Ik) = I1.
Theorem 2.2 can be also used when studying models with “backward dynam-

ics”. That is, the models where the iterative relation is given as xt = T (xt+1), but
one is still interested in the behavior of the forward values of the state variable
(xt , xt+1, xt+2, . . .) [11]. Among economic examples there may be mentioned the
overlapping generations (OLG) model [14] and the cash-in-advance model [23].
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2.4.3 Homoclinic Tangles

In this section we turn to saddle points in dynamical systems of dimension greater
than one and their homoclinic orbits. A homoclinic orbit causes the stable and unsta-
ble sets of a saddle point x∗ fold, twist and intersect in a rather complex way. Due
to its complexity, this structure is referred to as a homoclinic tangle (see, e.g., [1,
17]) and often the mechanism of its appearance is as follows. First, a homoclinic tan-
gency between stableWs(x∗) and unstableWu(x∗) sets occurs. Then tangency turns
to transverse crossing that persists for a certain parameter range. Finally, the homo-
clinic tangle is destroyed through the second tangency between the same branches
of Ws(x∗) and Wu(x∗) (see Fig. 2.5a–c). Moreover, whenever Ws(x∗) and Wu(x∗)
intersect transversely, there exists an invariant set Λ such that the restriction of the
map to Λ is chaotic (see, e.g., [17, 34]).

Note that asymptotic behavior of the related branches of Ws(x∗) and Wu(x∗)
differ before and after the homoclinic tangle. Namely, if before the first tangency the
suitable branch ofWs(x∗) tends towards some invariant set A1, then after the second
tangency this branch must tend towards another invariant set A2. The same is true for
Wu(x∗), i.e., it must come from different invariant sets B1 and B2 before and after
the tangle. Knowing this, one can discover existence of a homoclinic tangle studying
asymptotic behavior of stable and unstable sets of a fixed point.

The phenomena described above can be clearly generalized to a saddle k-cycle
Ck = {x∗

1, . . . , x
∗
k } by considering k-th iterate T k . However, since there are k saddle

fixed points for T k , there are two situations possible. The first situation is complete
analogue of what happens for a single fixed point when the stable and unstable sets
of the same point of the cycle intersect. Namely,Ws(x∗

i ) ∩ Wu(x∗
i ) �= ∅, 1 ≤ i ≤ k.

The second situation is when the stable set of each x∗
i intersects the unstable set of the

next point x∗
i+1 (we assume i + 1 = 1 for i = k), that is, Ws(x∗

i ) ∩ Wu(x∗
i+1) �= ∅.

In this case, it is sometimes said that there exist heteroclinic orbits for points x∗
i ,

1 ≤ i ≤ k, and the structure of their stable and unstable sets is referred to as a
heteroclinic tangle.

Fig. 2.5 A homoclinic tangle: a the first homoclinic tangency; b transverse intersection of the
stable and unstable manifolds; c the second homoclinic tangency
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2.4.4 Homoclinic Orbits in 2D: Smale Horseshoe

In two-dimensional systems, a prototypical example for chaotic behavior related to
homoclinic orbits of saddle points is a Smale horseshoe. Thorough understanding
of asymptotic behavior related to this structure is essential for understanding certain
aspects of global dynamics of specific real systems. The map possessing the Smale
horseshoe was introduced by Smale [33] while studying dynamics of orbits of the
van der Pohl oscillator. The action of the map is defined geometrically by squeezing
the square, then stretching the result into a long strip, and, finally, folding the strip
into the shape of a horseshoe as shown in Fig. 2.6 (see also [3, 7, 34]).

More formally, let us consider a regionΔ consisting of three components: a central
square Q with side length 1 and two semidisks D1 and D2 at either end (that is, Δ
is shaped like a “stadium”). The horseshoe map F takes Δ inside itself according
to the following prescription. First, F linearly contracts Q in the vertical direction
by a factor δ < 1/2, while the regions D1 and D2 are contracted so as to remain
semidisks attached to the resulting rectangle. Then, F expands Q in the horizontal
direction by a factor 1/δ so that it is long and thin (D1 and D2 remain unchanged).
Finally, F puts Q back inside Δ in a horseshoe-shaped figure. The regions D1 and
D2 are then mapped into D1. We remark that F(Δ) ⊂ Δ and that F is one-to-one,
however, since F is not onto, the inverse F−1 is not globally defined. In particular,
only the points belonging to the two horizontal stripes shaded in Fig. 2.6 has rank-1
preimages in the square Q.

Figure2.7 serve to clarify this point, where only the region Q is shown for com-
pactness. The two stripes which has rank-1 preimages are denoted H0 and H1 and
both has height δ. The preimages of H0 and H1 constitute two vertical stripes V0 and
V1 (both of the width δ) also shown in Fig. 2.7a. For sake of simplicity, we assume
that V0 and V1 are mapped linearly onto H0 and H1. This assumption implies that
F preserves horizontal and vertical lines in Q. For later use we note the following
property of F .

LP Let �h ⊂ Q be a horizontal line segment of length a, such that F(�h) ⊂ Q.
Then, F(�h) is also a horizontal line segment whose length is a/δ. Similarly, let
�v ⊂ Q, F(�v) ⊂ Q, be a vertical line segment of length b, then, F(�v) is also a
vertical line segment whose length is bδ.

Fig. 2.6 Schematic (geometric) representation of one iterate of a horseshoe map
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(b) (c)(a)

Fig. 2.7 Consecutive construction of images of the square Q under action of the Smale horseshoe
map F . a The first image F(Q) ∩ Q consists of two horizontal stripes H0 and H1 of height δ. b The
second image F2(Q) ∩ Q is represented by four stripes of height δ2. c The third image F3(Q) ∩ Q
is eight δ3-height stripes

In other words, F preserves vertical and horizontal line segments belonging to Q if
they are mapped into Q.

Now, we turn to describing asymptotic dynamics of orbits of F . First, note that
F is a contraction in D1, hence, there is a unique attracting fixed point p ∈ D1, that
is, limt→∞ Ft (y) = p for any y ∈ D1. Since F(D2) ⊂ D1, all forward orbits in D2

behave likewise. Similarly, if y ∈ Q but Ft (y) /∈ Q for some t > 0, then we must
have Ft (y) ∈ D1 ∪ D2, so that the orbit O(y) also converges to p. Consequently, to
understand the forward orbits of F , it suffices to consider the set of points whose
forward orbits lie for all time in Q, that is,

Λ = {y ∈ Q : Ft (y) ∈ Q, t ≥ 0} = ∩∞
t=−∞Ft (Q). (2.14)

It can be shown, that most points eventually leave the square Q under the action of
F , and the remaining invariant set Λ is a Cantor set. Recall that a Cantor set is an
uncountable set with no connected subsets (except individual points). In a space of
dimension greater than one such a set is sometimes referred to as a Cantor dust.

Construction of the invariant set Λ is an inductive process, and it is convenient
to construct separately those parts corresponding to forward iterates and backward
iterates, taking further their intersection to obtain Λ. As it has been already said,
Q1 = Q ∩ F(Q) = H0 ∪ H1. Since only points belonging toV0 ∪ V1 stay inQ under
F , only the points belonging to the intersection of H0, H1 and V0, V1 are mapped into
Q under next iteration of F . In Fig. 2.7a these four squares aremarked by symbols 00,
01, 10, and 11. The image Q2 = F(Q1) ∩ Q = F2(Q) ∩ F(Q) ∩ Q (of the squares
00, 01, 10, and 11) is made up of four horizontal stripes as in Fig. 2.7b (each stripe is
of height δ2). Similarly, only the points belonging to the intersection of Q2 and V0,
V1 are mapped into Q under F generating Q3 = F(Q2) ∩ Q = F3(Q) ∩ F2(Q) ∩
F(Q) ∩ Q,which is constituted by eighthorizontal stripes of height δ3 (seeFig. 2.7c).
Inductively, the set Qt = ∩t

j=0F
j (Q), F0(Q) = Q, consists of 2t horizontal stripes
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each having width δt . Thus, the part of Λ corresponding to forward iterates of F
denoted

Λ+ = ∩∞
t=0F

t (Q)

is the product of a Cantor set with a horizontal interval.
By similar arguments it is easy to check that the rank-t preimage of Q which is

contained in Q consists of 2t vertical stripes of the width δt . Hence, the part of Λ

corresponding to backward iterates

Λ− = ∩0
t=−∞Ft (Q)

is the product of a Cantor set with a vertical interval. This implies that the invariant
set Λ = Λ+ ∩ Λ− is also a Cantor set (a two-dimensional Cantor dust). In Fig. 2.8
the first three approximations of Λ are shown.

It is possible to show further, that this invariant Cantor set Λ is in one-to-one
correspondence with the set 	2 of bi-infinite binary sequences. Recall that 	2 is
defined as

	2 = {(s) = (. . . s−2s−1 · s0s1s2 . . .) : s j = 0 or 1}

with the metric d((s), (t)) = ∑∞
i=−∞ 2−|i ||si − ti |. Introduce also the shiftmap σ as

σ(. . . s−2s−1 · s0s1s2 . . .) = (. . . s−2s−1s0 · s1s2 . . .),

which is known to be chaotic. It can be proved that the restriction F |Λ is topologically
conjugate to σ , which proves that F |Λ : Λ → Λ is chaotic as well (see, e.g., [7]).

What has that got to do with homoclinic orbits? one may ask. Indeed, above
we have mentioned only one fixed point p ∈ D1 which is attracting, and hence any
point in Q which eventually leaves Q belongs to the stable set of p. However, the
map F has two more fixed points belonging to Λ which are saddles (their existence
can be proved by using symbolic sequences of zeros and ones, for more detail see

(a) (b) (c)

Fig. 2.8 First three approximations of the invariant Cantor set Λ
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Fig. 2.9 Transverse
homoclinic intersection of
the stable Ws and unstable
Wu sets of a saddle fixed
point q for a horseshoe map

[7, 34]). The stable and unstable sets of these points have much more complex
structure. For example, consider a fixed point q ∈ V0 ∩ H0 ⊂ Q. Figure2.9 shows q
together withWs(q) andWu(q), which clearly mimic the “fold-and-pleat” behavior
of F . Any point that lies on the vertical segment �v through q belongs to Ws(q).
Indeed, since at each iteration of F the segment �v is squeezed by factor δ, the
points from �v constantly approach q. Clearly, all preimages F−t (�v), t ≥ 1, belong
to Ws(q) as well. Due to property LP these preimages constitute a set of vertical
segments of length 1.More precisely, F−t (�v) consists of 2t such segments. Similarly,
the horizontal segment �h through q belongs to Wu(q), as well as all its forward
images Ft (�h). It can be checked, that Ft (�h) ⊂ Δ is a “snake-like” curve that cuts
across Q exactly 2t times. This inevitably implies that Ws(q) ∩ Wu(q) �= ∅, and,
hence, there exists infinite number of points which are homoclinic to q.

Let us show that as soon as for an invertible map T there exists a transverse
homoclinic orbit (that is, the stable and the unstable sets intersect transversally),
then there also exists a related horseshoe-like structure. We start with a rectangle
R containing a fixed point x∗ of the map T . Successive iterates of T stretch R out
along the unstable set Wu(x∗). Under iterates of T−1, it is stretched out along the
stable setWs(x∗). In particular, there exist numbers l and k such that T−l(R) extends
along the stable set to include some homoclinic point y, and T k(R) extends along the
unstable set to include y as well (see Fig. 2.10). Thus T k+l is a horseshoe map with
the “square” domain Q = T−l(R) and its image T k(R). This can be summarized as

Theorem 2.3 [33] Let T be a diffeomorphism of the plane, and let x∗ be a saddle
fixed point. If the stable and unstable manifolds of x∗ cross transversally, then there
is a hyperbolic horseshoe for some iterate of T .

Note that in order to have exactly the dynamics of the ideal horseshoe, there must
be uniform stretching and contraction at points in the invariant set, which is unlikely
to happen in a real system. Thus, the domains which are squares and rectangles for
the pure horseshoe map in real systems are somewhat deformed (though being still
topologically conjugate to “ideal” shapes).



180 A. Panchuk

x∗

Ws

W u

T−l(R)

T k(R)

R

Fig. 2.10 A horseshoe generated from a homoclinic orbit. The domain T−l (R) corresponds to the
square Q, while the domain T k(R) is its horseshoe-shape image. The iterate T k+l is a horseshoe
map

Example 2.6 Theorem 2.3 guarantees that presence of a transverse homoclinic point
implies chaotic orbits (although we cannot say anything about whether they are
attracting or not). Let us illustrate this by an example. We consider the Hénon map
Ha,b defined in (2.11) with a = 2.1, b = 0.3. Figure2.11a (cf. Fig. 2.10) shows the
stable and the unstable sets of the saddle point p+ = (x+, x+) which is marked by
a circle. The initial area R̃ is not a rectangle but a parallelepiped snapped onto the
related eigenvectors. The rank-4 image R4 = H 4

a,b(R̃) of R̃ and its rank-2 preimage
R−2 = H−2

a,b (R̃) are also shown. Figure2.11b is a zoomed window marked by letter
‘b’ in Fig. 2.11a, in which one can clearly see that the intersection R4 ∩ R−2 �= ∅.
Hence, H 6

a,b is topologically conjugate to the Smale horseshoe.

Fig. 2.11 Horseshoe structure in the Hénon map. Plot b is a zoom of the rectanglemarked ‘b’ in a
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2.5 Crises

In this section we describe bifurcations which concern transformation or disappear-
ance of chaotic attractors. Chaotic attractors are unlike fixed points or cycles not
only because they are infinite sets. A periodic point can not abruptly change its peri-
odicity or location while existent. With varying parameters it can only change its
stability characteristics or disappear through the related bifurcation. On the contrary,
a chaotic attractor may undergo sudden dramatic transformation under small varia-
tions of the map parameters. Such sharp changes are called crises and can include
sudden appearance or disappearance of the attractor or a discontinuous variation in
its size or shape [3, 16, 27]. Very commonly, these transformations occur when a
chaotic attractor has a contact with some unstable invariant set (e.g., the stable set of
a saddle periodic point).

2.5.1 Interior Crisis

Interior crisis is a bifurcation due to which a chaotic attractor Q experiences a
sudden change in size and shape. In simple words, this phenomenon can be explained
as follows. Let x∗ be an unstable periodic point with nonempty stable Ws(x∗) and
unstableWu(x∗) sets, which belongs to the interior of the basin ofQ. At some critical
(bifurcation) parameter value the attractorQ has a contact with x∗ (or, equivalently,
with Ws(x∗)). After the bifurcation the point x∗ joins Q which implies the whole
unstable set Wu(x∗) to be “swallowed up” by Q as well. This clearly leads to swift
transformation of Q.

To explain this in more detail, we analyze a simple example. Let consider Ikeda
map family g : R

2 → R
2 given by

g :
(
x
y

)
�→

(
A + bx cos(m) − by sin(m)

by cos(m) + bx sin(m)

)
(2.15)

with

m = φ − q

1 + x2 + y2
. (2.16)

The system having more general form was proposed first by Ikeda [19] as a model
of light going around across a nonlinear optical resonator. In [20] the original map
was reduced to the simplified form given above.

We fix all the parameters except q. Figure2.12a, b show the chaotic attractorQq

of g for two different parameter values: before (q = 7.1) and after (q = 7.3) the
crisis. There are two different attractors here: (i) the sink fixed point p whose basin
is the shaded area and (ii) the chaotic attractorQq whose basin is shown white. The
two basins are separated by the stable set of the saddle fixed point q.
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Fig. 2.12 State space of the Ikeda map with A = 0.84, b = 0.9, φ = 0.4 and a q = 7.1 < qc,
b q = 7.3 > qc. The basins of the stable fixed point p and the chaotic attractor Qq are separated
by the stable set of the saddle point q

Simple numerical experiments for intermediate values of q (between 7.1 and 7.3)
show that the shape of Qq varies only slightly from that shown in Fig. 2.12a for
7.1 < q ≤ qc ≈ 7.24. For q > qc, however, the attractor in this region of the plane
suddenly becomes much larger. So that, the attractor does not continuously increase
in size as q passes qc, as it happens in local bifurcations for periodic points.

Let us discover what happens at a crisis value qc. It appears that for all q being
close to qc there exist a saddle 5-cycle C5 in the vicinity of Qq (in fact, there exist
several 5-cycles, but only one is relevant to the phenomenon investigated). For q < qc
the cycle C5 does not belong to the attractor Qq . As q approaches qc from below,
the distance betweenQq and C5 (equivalently, Ws(C5)) goes to zero. At q = qc the
attractor Qq and the cycle C5 (Ws(C5)) collide. Then, after the crisis the chaotic
attractor Qq absorbs C5 together with its unstable set Wu(C5). The result of such
crossing between chaotic attractor and the stable set of some periodic point can be
formalized as follows (see, e.g., [3]).

Lemma 2.1 (Lambda or Inclination Lemma) Let T be a diffeomorphism of the
plane, and let x∗ be a hyperbolic saddle fixed point of T . Suppose that a curve L
crosses the stable manifold Ws(x∗) transversally. Then each point in the unstable
manifold Wu(x∗) is a limit point of ∪t>0T t (L).

The proof of Lemma 2.1 can be found, e.g., in [28].
In other words, if a curve L crosses the stable manifoldWs(x∗) transversally, then

forward iterates of L limit on the entire unstable manifold Wu(x∗) (see Fig. 2.13).
Specifically, it means that for each point y ∈ Wu(x∗) and for any ε-neighborhood
Uε(y), there exists t > 0 such that T t (L) ∩Uε(y) �= ∅. Similar property is known
to be true also for noninvertible maps, but there is no rigorous proof for general case.

Using Lemma 2.1, we can interpret the crisis in the Ikeda example above.
Figure2.14a shows that as a parameter q comes close to a critical value qc, the
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x∗
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T (L)
T 2(L)

T 3(L)

Fig. 2.13 Whenever a curve L crosses the stable set of a saddle x∗ transversally, forward iterates
of L approach the unstable set of x∗
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Fig. 2.14 Interior crisis for the chaotic attractorQq of the Ikeda map. a Before the crisis, q = 7.1;
b at the crisis value q = qc ≈ 7.24; c zoom of box outlined light-blue in (b); d after the crisis
q = 7.3. Green points mark the saddle 5-cycle C5, whose stable and unstable sets are shown by
blue and red lines, respectively. The other parameters are A = 0.84, b = 0.9, φ = 0.4
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attractorQq approaches the stable setWs(C5). At qc the outer edge ofQqc is tangent
to this stable set, as shown in Fig. 2.14b (see also Fig. 2.14c which is a zoom of the
rectangle indicated in Fig. 2.14b). Finally, for q > qc the attractor has crossed the sta-
ble setWs(C5) (Fig. 2.14d). Once there is a crossing, Lemma 2.1 tells us that forward
iterates of portions ofQq limit on the entire unstable set Wu(C5). Consequently, for
q > qc the attractorQq containsWu(C5). In simple words, having a contact with the
stable set of the saddle cycle C5, the chaotic attractor Qq absorbs this cycle, but it
inevitably follows thatQq also absorbs the unstable set of this cycle. It is important
thatWu(C5) is contained in the basin of attraction ofQq for q near qc. In this case it
is said that there is an interior crisis at q = qc, and sudden increase of the attractor
size is a specific feature of such crises.

Note that the structure of the “smaller” attractor (which is relevant for q < qc) is
still apparent in Fig. 2.14d for q > qc. It appears darker since orbits spend a larger
percentage of iterates in this region. The closer q > qc is to the crisis parameter value
qc, the longer orbits typically stay on the “former” attractor before following the new
larger structure (cf. Fig. 2.12b).

2.5.2 Boundary Crises

We have considered above the situation when a chaotic attractorQ contacts the sta-
ble set of a saddle periodic point belonging to the interior of the basin B(Q). It
may, however, happen that a saddle point x∗ is on the boundary of B(Q) before
the bifurcation (recall that in invertible maps basin boundaries are often consisted of
stable sets of saddle points). Then, it is said that at the moment of contact between
Q andWs(x∗) there occurs a boundary crisis. In this case there are points inWu(x∗)
which go to another attractor (perhaps infinity). Then for the parameter value greater
than the critical value, the chaotic attractorQ (as well as its basin) no longer exists.
However, if a parameter exceeds the critical value only slightly, typical orbits spend
many iterates on the “former” chaotic attractor before escaping from its neighbor-
hood. This behavior is called transient chaos, and the transient structure itself is
called a “ghost” of the chaotic attractorQ.

We illustrate this again by using the Ikeda map family (2.15) with b = 0.9, φ =
0.4, q = 6 and changing A through Ac ≈ 1. For A < Ac, the stable set of the saddle
fixed point q forms the boundary between the basins of the sink fixed point p and
the chaotic attractorQA. In Fig. 2.15a it can be seen that one branch of Wu(q) goes
to QA, and the other branch goes to p. For A = Ac the attractor QAc collides with
the boundary of its basin (that is,Ws(q)), and for A > Ac it no longer exists (and all
points from the former basin of QA approach p). However, as shown in Fig. 2.15b,
some orbits spend many iterates on what was the structure ofQA before crossing the
stable set Ws(q) and converging to p.
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Fig. 2.15 Boundary crisis for the chaotic attractor QA of the Ikeda map. a Before the crisis, A =
0.95, the stable set of the saddle fixed point q separates the two basins, B(QA) and B(p). b After
the crisis, A = 1.003, there is a “ghost” attractor. Other parameters are b = 0.9, φ = 0.4, q = 6

2.6 Conclusions

Dynamical systems theory distinguishes two types of bifurcations: those which can
be studied in a small neighborhood of an invariant set (local) and those which cannot
(global). In this chapter we focused on several aspects of global bifurcation analysis
of discrete time dynamical systems, such as homoclinic bifurcations and crises. There
are also other global phenomena being important when investigating a dynamical
system. Among them there are bifurcations related to appearance of closed invariant
curves and those which cause qualitative changes in the basin structure (for example,
when a connected basin becomes nonconnected). For further reading and deeper
understanding of all these aspects, wemay suggest [1, 24, 25] and references therein.
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Chapter 3
Dynamical Analysis of Cournot Oligopoly
Models: Neimark-Sacker Bifurcation
and Related Mechanisms

Anna Agliari, Nicolò Pecora and Alina Szuz

Abstract This chapter describes some properties of the nonlinear dynamics emerg-
ing from two oligopoly models in discrete time. The target of this chapter is the
investigation of some local and global bifurcations which are responsible for the
changes in the qualitative behaviors of the trajectories of discrete dynamical systems.
Two different kinds of oligopoly models are considered: the first one deals with the
presence of differentiated goods and gradient adjustment mechanism, while the sec-
ond considers the demand function of the producers to be dependent on advertising
expenditures and adaptive adjustment of themoves. In bothmodels the standard local
stability analysis of the Cournot-Nash equilibrium points is performed, as well as the
global bifurcations of both attractors and (their) basins of attraction are investigated.

3.1 Introduction

The object of the present chapter is to describe some properties of nonlinear dynam-
ics emerging from oligopoly models in discrete time. The target of our analysis is
the investigation of some bifurcations which are responsible for the changes in the
qualitative behaviors of the trajectories of the iterative process.

We consider two different kinds of oligopoly models: the first one deals with
the presence of differentiated goods and gradient adjustment mechanism, while the
second considers the demand function of the producers to be dependent on advertising
expenditures and adaptive adjustment of the moves. In both models, we perform the
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local stability analysis of the Cournot-Nash equilibrium point as well as a global
analysis of dynamics to study bifurcations of both attractors and basins of attraction.

Being the dynamics of such models described by maps of the family T : X → X ,
X ⊂ R

2, we will see that a particular kind of bifurcation may occur, related to a
pair of complex conjugated eigenvalues which crosses the unit circle, namely the
Neimark-Sacker bifurcation (NS henceforth). The NS bifurcation is associated with
the existence of closed invariant curves around the bifurcating fixed point.

In the nonlinear map describing the Cournotian competition with differentiated
products and gradient adjustment mechanism the steady state may be destabilized
via supercritical NS bifurcation. Such a bifurcation gives rise to an attracting closed
curve around the unstable equilibrium and, through global analysis, we shall also
show that different multistability situations (i.e., coexistence of attractors) may arise.

On the other hand, the oligopolymodel with advertising costs allows us to analyze
the effects of the occurrence of a subcritical NS bifurcation in which the destabi-
lization of the equilibrium point is due to its merging with a repelling closed curve
existing when the point is still stable. The occurrence of a subcritical NS bifurcation
has important implications in economic models since it can be associated with cor-
ridor stability, due to the bounded basin of attraction of the stable equilibrium (its
boundary being the repelling closed curve), and to catastrophic effects, since after
the bifurcation the trajectories may either jump to a different attractor far from the
equilibrium or diverge. Moreover, the map describing this second oligopoly setting
is piecewise smooth (PW henceforth), and we shall show that even border collision
bifurcations (BCB henceforth) may cause multistability phenomena as well. We
recall that BCB are typical occurrences in PW map and are related to invariant sets,
such as attractors or manifolds, having a contact with the border of a region where
the map changes its definition. Such a contact can cause abrupt changes either in the
structure or in the stability property of the colliding invariant set. Seminal papers on
such topic are by Nusse et al. [16] and Nusse and Yorke [17, 18].

3.2 Some Remarks on Neimark-Sacker Bifurcations

The aim of this section is to briefly illustrate some theoretical aspects associated
with the occurrence of NS bifurcation and the appearance/disappearance of closed
invariant curves, that will be the objects of the analysis developed in the following
parts.

To this extent, we first recall that generally a steady state loses stability through a
NS bifurcation when its Jacobian matrix has two complex eigenvalues lying on the
unit circle. Two kind of NS bifurcations can be distinguished:

• supercritical when, immediately after the bifurcation, the unstable steady state
is surrounded by an attracting closed curve corresponding to periodic or quasi-
periodic dynamics;
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• subcritical when, immediately before the bifurcation, the stable equilibrium is
surrounded by a repelling closed curvewhich shrinks and at the bifurcationmerges
with the fixed point leaving a repelling focus.

A typical way of investigating the occurrence of a NS bifurcation is to start
from the analysis of a two-dimensional bifurcation diagram.1 In so doing we can
detect the kind of the occurring NS bifurcation and, sometimes, to find the so-called
Chenciner points. These points correspond to the degeneracy of the NS bifurcation,
they belong to the bifurcation curve and separate cases in which either a subcritical
or a supercritical bifurcation occurs. Moreover, a typical and well-known structure
of the bifurcation diagram, in a two-dimensional parameter plane, is given by the so-
calledArnold’s tongues issuing from aNS bifurcation curve (on this we refer to some
classical texts, e.g. [10, 15], and other works like [1, 6, 8], to cite a few). Inside any
tongue at least 2 cycles exist, one stable and a saddle, and a closed invariant curve
exists, made up by the unstable set of the saddle cycle that connects the periodic
points of the stable cycle. These periodicity regions follow the Farey summation
rule, which is also known in the literature as “adding rule” [9]. This implies that
the tongues are organized so that between any two periodicity regions related to the
rotation numbers, say m1/n1 and m2/n2, there exists a periodicity region related to
the rotation number (m1 + m2)/(n1 + n2). The rational rotation is not generic only
for parameter values taken exactly on the NS bifurcation curve, while soon after
the bifurcation the rational rotation becomes generic: infinitely many periodicity
regions fill the parameter plane densely [9]. Generally, inside any tongue we have
an attracting set formed by a saddle-node connection, that is, the unstable set of the
saddle n-cycle reaches the node n-cycle thus forming a closed attracting curve. The
boundaries of a m/n tongue are saddle-node bifurcation curves in the case of smooth
maps and BCB curve if we are dealing with PW maps.

Let us recall that the stable and unstable sets of a saddle S∗ are defined as

W s(S∗) =
{

x : lim
n→+∞ T n(x) = S∗

}
,

W u(S∗) =
{

x : lim
n→+∞ T −n

jn (x) = S∗
}

,

respectively, where T −n
jn means a suitable sequence of inverses.

In the subcritical case, the periodicity regions exist when the fixed point is still sta-
ble, implying multistability situations, but generally immediately after their appear-
ance no saddle-node connection exists. The repelling closed curve involved with the
subcritical NS bifurcation appears at the crossing of a (global) bifurcation curve γ

together with an attracting one (Chenciner bifurcation). The curve γ originates from
a Chenciner point and enters the region in which the fixed point is stable, crossing
the periodicity regions. The global bifurcations occurring at the crossing of γ are an
interesting and challenging field of research.

1Obviously the map has to depend on at least two parameters.
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In particular, in the case of smooth maps, the appearance/disappearance of closed
invariant curves is associated with a saddle-connection. This particular configuration
is defined as a closed invariant curve formed by the merging of a branch of the stable
set of a periodic point of a saddle cycle with the unstable branch of another periodic
point of the same saddle, thus forming a closed connection among the periodic points
of the saddle. We shall call such a situation homoclinic loop that can also involve a
saddle cycle of period k, being related to the forward iterate map T k , but in this case
we can also obtain a heteroclinic loop: indeed, the map T k exhibits k saddles points
and a branch of the stable set of a saddle maymerge with a branch of another periodic
point of the saddle cycle. Stated in other words, if Si , i = 1, . . . , k, are the periodic
points of the saddle cycle and α1,1 ∪ α2,i (ω1,i ∪ ω2,i ) are the unstable (stable) sets
of Si , then a heteroclinic loop is given by the merging, for example, of the unstable
branch α1,i of Si with the stable branch ω1, j of a different periodic point Sj (see
Fig. 3.1). Then each periodic point of the saddle cycle is connected with another
one, and an invariant closed curve is so created connecting the periodic points of the
saddle cycle.

Dealing with discrete maps homoclinic and heteroclinic loops are frequently
replaced by homoclinic tangles. This means that a tangency between an unstable
branch W u

1 (S∗) = ∪α1,i with a stable one W s
1 (S) = ∪ω1,i occurs, followed by trans-

verse crossings of the two sets, followed by another tangency of the same sets, but
on opposite side. For major details see [1, 7, 12].

For PW maps only a few works devoted their attention to the investigation on
how invariant curves appear/disappear in these peculiar contexts. Below we shall
show that not only homoclinic bifurcations are involved, but also border collision
bifurcations may occur at the crossing of the curve γ .

3.3 A Cournot Duopoly Model with Differentiated
Products: Supercritical NS Bifurcation

In the first oligopoly model we analyze, we consider a Cournotian game with dif-
ferentiated goods in which boundedly rational firms apply a gradient adjustment
mechanism to update the quantity produced in each period (see [2] for a complete
investigation).

The demand functions of the two players are derived from an underlying CES
utility function

U (q1, q2) = qα
1 + qα

2 , 0 < α ≤ 1, (3.1)

which is maximized subject to the budget constraint

p1q1 + p2q2 = 1, (3.2)
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(a) (b)

(c) (d)

Fig. 3.1 The bifurcation mechanism associated with appearance of two closed invariant curves.
a Stable/unstable sets before the bifurcation. b Two closed curves appear. c Heteroclinic loop.
d Homoclinic tangle

where α gives the degree of substitutability/differentiation among the commodities,
p1 and p2 are the prices of good 1 and 2 respectively and we assume the consumer’s
exogenous income equal to 1.

Maximizing (3.1) subject to (3.2) results in the inverse demand functions

p1 = qα−1
1

qα
1 + qα

2

, p2 = qα−1
2

qα
1 + qα

2

(3.3)

for goods 1 and 2 respectively.2 From the inverse demand functions, we observe
that if α = 1 the commodities are indistinguishable and, accordingly, the consumers
regard them as identical; lower values of α makes the commodities conceived as
interchangeable but not quite identical. Decreasing the exponent parameter α makes

2We refer to [5] (Appendix A) for the mathematical computations that lead to the demand functions
represented by (3.3).
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the goods less close substitutes and as α → 0 the commodities become independent
(see also [14]). Further, we assume linear cost functions given by

ci (qi ) = ci qi , i = 1, 2, (3.4)

where ci are constant marginal costs.
Then the profit of the i-th firm becomes

Πi
(
qi , q j

) = pi
(
qi , q j

)
qi − ci qi , i, j = 1, 2, i �= j. (3.5)

From the profit maximization we are able to compute the Nash equilibrium, which
is unique and it is given by

E∗ =
(

αcα−1
1 cα

2

(cα
1 + cα

2 )
2
,

αcα
1 cα−1

2

(cα
1 + cα

2 )
2

)

.

Boundedly rational players update their quantities by an adjustmentmechanismbased
on a local estimate of the marginal profit

Φi
(
qi , q j

) = ∂Πi

∂qi
.

A firm increases (decreases) its quantity if it perceives positive (negative) marginal
profit, according to

qi (t + 1) = qi (t) + kiΦi
(
qi , q j

)
, (3.6)

where ki > 0, i = 1, 2, is a coefficient that “tunes” the speed of adjustment of firm
i’s quantity at time t + 1 with respect to a marginal change in profits when qi varies
at time t .

Therefore, under the above assumptions, the two-dimensional system that charac-
terizes the dynamics of the differentiated Cournot duopoly can be written as follows:

T =

⎧
⎪⎪⎨

⎪⎪⎩

q
′
1 = q1 + k1

(
αqα−1

1 qα
2 −c1(qα

1 +qα
2 )

2

(qα
1 +qα

2 )
2

)
,

q
′
2 = q2 + k2

(
αqα−1

2 qα
1 −c2(qα

1 +qα
2 )

2

(qα
1 +qα

2 )
2

)
,

(3.7)

where ′ denotes the unit-time advancement operator, i.e., if qi is quantity produced
at time t then q

′
i is production at time t + 1.

Due to the presence of the denominator, it is obvious that T is defined only at
points such that (q1, q2) �= (0, 0); furthermore from an economic point of view we
are only interested in the study of positive trajectories, i.e. with points belonging to
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the positive quadrant of the plane R2. Indeed we will consider the feasible region as
the set of points in the plane defined by

F = {(q1, q2) : q1 > 0, q2 > 0}. (3.8)

3.3.1 Local Stability Analysis

In order to study the local stability of the unique Nash equilibrium we localize the
eigenvalues of the Jacobian matrix of T evaluated at E∗. Making use of the Jury’s
conditions, we can state that the Nash equilibrium is locally asymptotically stable if

{
−A3k1k2 + D1Bk2 + D2Ck1 > 0,

A4k1k2 − 2D1Bk2 − 2D2Ck1 + D1D2 > 0,
(3.9)

where A = cα
1 + cα

2 , B = [cα
2 (α − 1) − cα

1 (α + 1)], C = [cα
2 (1 + α) + cα

1 (1 − α)],
D1 = αcα−2

1 cα
2 and D2 = αcα−2

2 cα
1 . The two conditions (3.9) define a region in the

plane of the speeds of adjustment (k1, k2) whose shape is like the shaded area in
Fig. 3.2.3 This region is bounded by the two branches of hyperbola, whose equation
is given by the vanishing of the left hand side of

−A3k1k2 + D1Bk2 + D2Ck1 > 0,

and the curve represented by the vanishing of the left hand side of

A4k1k2 − 2D1Bk2 − 2D2Ck1 + D1D2 > 0.

For values of (k1, k2) inside the stability region the Nash equilibrium E∗ is a stable
steady state. The boundaries given by two branches of hyperbola on the left and on
the right represent bifurcation curves at which E∗ loses its stability through a period
doubling (or flip) bifurcation. The hyperbola in the central portion represents the
bifurcation curve at which the Nash equilibrium is destabilized via NS bifurcation.
The lines O I1 and O I2 of Fig. 3.2 represent pairs of (k1, k2) for which T r2 J −
4det J = 0 and separate real and complex eigenvalues regions.4 From the stability
conditions we can obtain direct information on the effects of the speed of adjustment,
k1 and k2, on the local stability of E∗. In particular, an increase of the parameters ki ,
with the other parameters fixed, may turn the Nash equilibrium unstable through a
flip or a NS bifurcation.

3We computed the stability region for c1 = 0.1 and c2 = 0.9 to better visualize the NS bifurcation
curve. With different values of marginal costs, the structure of the stability region does not change
and only the stable focus region becomes smaller and smaller.
4When c1 = c2 = c, such a condition reduces to (16c4 (k2 − k1)2)/α2 < 0 which is never satisfied.
Hence no NS bifurcation can occur in the case of symmetric game.
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Fig. 3.2 Stability region of the Nash equilibrium. The shaded gray area represents the region of
local asymptotic stability of the Nash equilibrium in the parameter plane of speeds of adjustment
(k1, k2). It is noteworthy that if c1 = c2, the two intersection points I1 and I2 coincides

Fig. 3.3 2D bifurcation
diagram of the map T in the
(k1, k2) parameter plane. The
different colors are
associated with cycles of
different period. White points
correspond to cycles of large
period, quasi-periodic
trajectories (when close to
the NS bifurcation curve) or
to complex dynamics. Gray
points correspond to
unfeasible trajectories

Numerical simulations allow us to find out that the NS bifurcation is of supercrit-
ical type and it gives rise to an attractive closed invariant curve around the unstable
equilibrium, which is a focus. In the 2D bifurcation diagram of Fig. 3.3 the so-called
Arnold’s tongues issue from the NS bifurcation curve, as we said in Sect. 3.2.
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Fig. 3.4 Enlargement of the
bifurcation diagram around
the co-dimension 2
bifurcation point R1 : 2. The
dots on the arrow correspond
to the sequence of Fig. 3.5

3.3.2 Co-dimension 2 Bifurcation

As the 2D bifurcation diagram of Fig. 3.3 shows, many periodicity regions exist,
which are organized following the Farey structure. In order to show some dynamic
features that take place in this Cournot setting with differentiated goods, we analyze
two portions of the 2D bifurcation diagram, highlighted through squares in Fig. 3.3.
In particular we first analyze the dynamics around the intersection point I1 between
the NS and the flip bifurcation curves (see Fig. 3.2). In so doing, we study the global
bifurcations occurring around the co-dimension 2 bifurcation, the strong resonance
R1 : 2 (see [13]), where the eigenvalues are λ1,2 = −1 (an enlargement is reported
in Fig. 3.4).

In region 1, the Nash equilibrium E∗ is a saddle and coexists with a stable cycle
C of period 2 (created at the crossing of the curve Fl1). Its stable set separates the
basins of attraction of the two stable fixed points of the second iterate of the map.
Following the path indicated by the arrow in Fig. 3.4, the crossing of the curve Fl2
causes a second flip bifurcation of the equilibrium point E∗, that becomes an unstable
node, and a saddle cycle C̃ of period 2 appears. In Fig. 3.5a, the Nash equilibrium E∗
is turned into an unstable focus. The attractor of the map is still the 2-cycle C , and
the two fixed points of T 2 (second iterate of T ) have basins of attraction separated
by the stable set of C̃ . The unstable set of C̃ , which is depicted in gray, gives rise to
a saddle-node connection: in particular, in Fig. 3.5a, the branch α1(C̃2) converges to
C1 while the branch α2(C̃2) converges to C2 and the two branches of α(C̃1) behave
analogously. We also observe that a branch of the unstable set of the saddle 2-cycle
issuing from the point C̃2, i.e. α1(C̃2), approaches the point C̃1 before converging
to C1, signaling that a global bifurcation is likely to occur. In fact, as the parameter
k2 slightly increases, we observe the coexistence of the stable 2-cycle C with an
attractive closed invariant curve (see Fig. 3.5b). The appearance of such a curve may
be due to a saddle-connection: the unstable set issuing from the point C̃1 (previously
converging toC2) reaches the periodic point C̃2 (becoming one of its stable branches)
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(a) (b)

(c) (d)

Fig. 3.5 Global bifurcation leading to the appearance of an attracting closed curve. The basins of
attraction of the second iterate of the map are represented in order to show the invariant sets of the
saddles. a Saddle node connection made up by the unstable set of C̃ . b An attracting closed curve
coexists with the stable 2-cycle C . c A qualitative sketch of the saddle connection associated with
the appearance of the curve. dNew fractal portions of the basin of attraction suggesting the possible
occurrence of a homoclinic tangle

and, vice versa, the unstable set issuing from the point C̃2 (previously converging to
C1) reaches the periodic point C̃1 (becoming one of its stable branches) leading to a
closed curve (this is shown qualitatively in Fig. 3.5c). As a confirm, one can notice
that before the bifurcation the basin of attraction (for the map T 2) of the point C1

(and similarly for C2) includes the stable sets of both C̃1 and C̃2 while, after the
bifurcation, for the second iterate of the map the basin of each attracting node is
bounded by the stable set of only one saddle fixed point. Moving towards the NS
bifurcation curve denoted by N S in Fig. 3.4, the cycles C and C̃ merge and disappear
in a saddle-node bifurcation. The closed invariant curve remains the unique attractor



3 Dynamical Analysis of Cournot Oligopoly Models … 197

and becomes smaller and smaller. Finally, at the crossing of the N S curve, a reverse
supercritical NS bifurcations occurs and it leaves the Nash equilibrium E∗ as the
unique attractor.

Before concluding, we observe that the bifurcation mechanism sketched in
Fig. 3.5c is simply a schematic representation. Indeed we are dealing with a dis-
crete model and thus it is possible that a homoclinic tangle occurs, that is in a certain
parameter range the contact between the stable and unstable set is opened by their
quadratic tangency, at which homoclinic orbits appear (and related complex dynam-
ics), followed by transverse intersection and closed by a second quadratic tangency
at the opposite side which destroys all the homoclinic orbits. Figure3.5d seems to
suggest this occurrence: the basins of attraction may have a fractal structure close to

(a) (b)

(c) (d)

Fig. 3.6 A route to chaotic dynamics. The parameter values are chosen close to the periodicity
region of the 5-cycle. The green circles denote the period 5 saddle cycle. a 5 cyclical attracting
closed curves due to NS bifurcation. b 40-piece chaotic attractor due to a period doubling sequence.
c Cyclical attractor made up of 5 weakly chaotic rings. d A unique annular chaotic attractor
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the saddles and to their preimages. These particular basins’ regions are similar to the
ones that can be already observed in Fig. 3.5a, but they appear only in the portions of
the phase-space that will become the basin of attraction of the closed curve (compare
Fig. 3.5b, d).

3.3.3 A Route to Chaos

We now analyze the dynamics of the model when the parameters are chosen close to
the tongue associatedwith a 2/5 attracting cycle, as highlighted through the red square
in Fig. 3.3. This allows us to show that besides the period doubling sequence, the
model exhibits also a different route to chaotic dynamics. In such a periodicity region,
a stable 5-cycle exists as well as a saddle cycle of the same period. Keeping the value
of k1 fixed at 16.2, we increase the value of k2 and at the crossing of the boundary
of the periodicity region indicated by an arrow in Fig. 3.3 we observe the occurrence
of a supercritical NS bifurcation of the period 5 stable cycle. Then, immediately
after such a crossing, 5 cyclical attracting closed curves exist in the phase space,
as shown in Fig. 3.6a. If the parameter k2 further increases, different phase locking
situations take place and one of them (associated with 5 saddle-node connections
of two cycles of period 8) undergoes a period doubling sequence that gives rise
to the 40 pieces chaotic attractor shown in Fig. 3.6b with its enlargement. Then a
homoclinic bifurcation of the 5 saddle cycle of period 8 causes the appearance of
the cyclical attractor shown in Fig. 3.6c; the enlargement of one piece of the attractor
allows us to appreciate that each closed curve exhibits loops and self-intersections.
This means that the cyclical attractor is made up of 5 weakly chaotic rings (see
[15]) that merge in a unique annular chaotic attractor when k2 is further increased
and a homoclinic bifurcation of the saddle cycle of period 5 occurs, as shown in

Fig. 3.7 1D bifurcation
diagram with respect to k2.
As the parameter k2
increases, different
bifurcations occur which
finally give rise to a unique
annular chaotic attractor
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Fig. 3.6d. The bifurcation diagram in Fig. 3.7 shows the latter bifurcation path and
summarizes the sequence of bifurcations leading to the appearance of the annular
chaotic attractor.

3.4 An Advertising Cournot Model: Subcritical NS
Bifurcation

The second examplewe propose is a particular case of a Cournot triopolywhere firms
face markets in several countries. The basic features of this model are the unimodal
reaction functions, obtained with the assumptions of isoelastic demand function,
constant marginal costs, and an adaptive adjustment of the strategic variable.

The model is based on the following assumptions:

(i) there are three firms on the market that produce perfect substitute goods; they
produce the commodity quantities qi and distribute their products in several
countries making use of xi quantities of advertising (i = 1, 2, 3);

(ii) xi is the strategic variable, to focus on the marketing issue; we disregard the
production costs and ci is the cost per unit of advertisement;

(iii) two of the competing firms produce the same commodity, equally behave in
production and marketing policy, (i.e., q1 = q3 and x1 = x3) and have equal
advertisement cost.

Further, we assume that the exponents of the Cobb-Douglas utility functions
depend on advertising expenditures by the competitors, more precisely that the expo-
nents are the shares of each firm in total advertising expenditures of all competitors.
Then the consumers’ demand is:

U = q
x1

x1+X1
1 q

x2
x2+X2
2 q

x3
x3+X3
3 , (3.10)

where Xi , i = 1, 2, 3, denotes the advertising expenditure of competitors of firm i .
Therefore, utility maximizing consumer disposing of one monetary unit in the

budget spends

pi qi = xi

xi + Xi
(3.11)

on each commodity. From the producer point of view, (3.11) represents the revenue
of the firm. In this way, we can consider both the situation when the producers set
prices or quantities, as this will not affect the results.

Finally, the optimization of profit of producer i leads to the reaction functions
depending on the expected productions of competitors (X (e)

i ):

ri (X (e)
i ) =

√
X (e)

i

ci
− X (e)

i . (3.12)
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From the economic point of view (3.12) only makes sense as long as 0 ≤ X (e)
i ≤

1/ci , otherwise reaction and profit become negative and the producer can decide
either to withdraw or to modify his strategy.

To close themodel, we assume that competitors movemaking use of the “adaptive
expectation” mechanism. They give a weight θ ∈ [0, 1] to the best calculated reply
for their competitors (3.12) and (1 − θ) to their own previous move xi . Thus any
competitor moves according

x ′
i =

{
θ

(√
Xi
ci

− Xi

)
+ (1 − θ) xi , 0 ≤ Xi ≤ 1

ci
,

(1 − θ) xi , Xi > 1
ci
,

(3.13)

with i = 1, 2, 3.
Now, considering assumption (i i i) the model (3.13) becomes a 2D map with

X1 = x1 + x2, X2 = 2x1. Then the object of our study is the 2D nonlinear map:

T :
{

x
′ = T1(x, y),

y
′ = T2(x, y),

(3.14)

where

T1(x, y) =
{

θ
(√

x+y
c1

− (x + y)
)

+ (1 − θ)x, 0 ≤ x + y ≤ 1
c1

,

(1 − θ)x, x + y > 1
c1

,
(3.15)

and

T2(x, y) =
{

θ
(√

2x
c2 − 2x

)
+ (1 − θ)y, 0 ≤ x ≤ 1

2c2
,

(1 − θ)y, x > 1
2c2

.
(3.16)

For a sake of simplicity in (3.14) we have denoted with x and y the phase variables
x1 and x2.

To have meaningful trajectories from the economic point of view, we restrict the
analysis of T to the positive orthant of R2 (feasible region).

The map T in (3.14) depends on three parameters, the two marginal costs, c1 > 0
and c2 > 0, and the “adaptive” coefficient θ ∈ [0; 1]. However a simple change of
coordinates5 allows us to show that only two parameters, (c2/c1; θ ), are essential to
study the dynamics of T . Then in the following, without loss of generality, we shall
consider the map T with c1 = 1 and the parameter c2 has to be interpreted as the
ratio of the marginal costs.

5The coordinate change is Ψ (x, y) = (c1x, c1y).
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Fig. 3.8 The PW smoothmap T . The different branches of the map T and related definition regions

The map T is a continuous piecewise map, then there exist four regions in which
T assume a different definition. They are

R11 =
{
(x1, x2) : 0 ≤ x1 ≤ 1

2c2
, 0 ≤ x1 + x2 ≤ 1

}
, (3.17)

R12 =
{
(x1, x2) : x1 >

1

2c2
, 0 ≤ x1 + x2 ≤ 1

}
, (3.18)

R21 =
{
(x1, x2) : 0 ≤ x1 ≤ 1

2c2
, x1 + x2 > 1

}
, (3.19)

R22 =
{
(x1, x2) : x1 >

1

2c2
, x1 + x2 > 1

}
(3.20)

and are illustrated in Fig. 3.8.

3.4.1 Local Stability Analysis

To look at the fixed points of the map M in (3.13) we consider separately the four
regions Ri j (i, j = 1, 2) defined in (3.20). We shall denote with Mi j the map defined
in Ri j .

The maps M22 and M21 admit a unique fixed point O = (0, 0) ∈ R11, then they
have a “virtual” steady state; moreover the eigenvalues of the Jacobian matrix are
λ1 = λ2 = 1 − θ . This means that any trajectory either in R22 or R21 leaves the
regions in a finite number of steps.
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In region R12, besides the origin O , the map M12 admits the fixed point P∗ =
(1/4, 0), alwayswith eigenvaluesλ1 = λ2 = 1 − θ . Thenwhen c2 > 2, P∗ is a stable
equilibrium of M and when c2 = 2 it has a border collision, entering R11. This means
that when c2 < 2 the trajectories in R12 enter R11 in a finite number of steps and,
from an economic point of view, are unfeasible since y < 0.

Finally, we consider the region R11. The not trivial equilibrium of M11 is the
Cournot equilibrium point (intersection of the two reaction curves (3.12)) given by
E∗ = (

2c2/(2 + c2)
2, 2 (2 − c2)/(2 + c2)

2
)
. The fixed point E∗ is feasible only if

c2 ≤ 2 and, when feasible, belongs to R11, since the constraint x1 + x2 < 1 is always
satisfied by E∗. While, when c2 = 2, E∗ belongs to the constraint x1 = 1/2c2 and
to x2 = 0, and if c2 increases the Cournot equilibrium enters the region R12 and
becomes unfeasible.

The analysis just performed allows us to conclude that the map M admits a unique
not trivial equilibrium:

1. The Cournot equilibrium E∗ if c2 < 2;
2. P∗ if c2 > 2, which is always stable.

When c2 = 2 the two fixed points merge and belong to the border line separating
regions R11 and R12.

Henceforth,we restrict our analysis to the case c2 < 2 toonly consider the dynamic
behaviors associated with the Cournot equilibrium point. The localization of the
eigenvalues of the Jacobian matrix J (E∗) of T evaluated at E∗ allows us to state the
following

Proposition 3.1 Let (θ, c2) ∈ Ω = [0, 1] × (0, 2). The fixed point

E∗ =
(

2c2
(c2 + 2)2

,
2(2 − c2)

(c2 + 2)2

)

is locally stable if

θ < θns := 2c2(10 − c2)

(c2 + 2)2
.

Proof See [3]. �

Moreover, it is possible to obtain that the eigenvalues of J (E∗) are complex

conjugated in Ω̃ =
{
(θ, c2) : 0 < θ < 1 ∧ 0 < c2 < 13 − 3

√
17

}
. Following [11]

(Theorem 3.5.2) it is possible to prove the following

Proposition 3.2 If

1. (θ, c2) ∈ Ω̃ with c2 /∈
{
10 − 4

√
6, c̄2

}
, where

c̄2 = 16

3
+ 16

√
7

3
cos

arctan (ψ) + 2π

3
with ψ = 27

√
47

563
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2. and P6 (c2) < 0, where P6 (c2) = 5c62 + 120c52 − 1372c42 + 4224c32 − 4752c22 +
2176c2 − 320,

then at

θ = θns = 2c2(10 − c2)

(c2 + 2)2
(3.21)

the fixed point E∗ undergoes a subcritical Neimark-Sacker bifurcation.

Proof Proposition 3.1 states that if θ < θns the fixed point is a stable focus (the two
eigenvalues forming a complex conjugated pair) and it becomes an unstable focus
when θ exceeds θns . Then the complex eigenvalues of J (E∗) havemodulus onewhen

(3.21) holds.Moreover, it is possible to verify that if c2 /∈
{
10 − 4

√
6, c̄2

}
then λn �=

1, n = 1, 2, 3, 4. Thus strong resonance cases are excluded. Finally, computing the
coefficients d and a of Theorem 3.5.2 in [11, p. 162], we obtain d = (10 − c2)/8 > 0
and a > 0 if P6(c2) < 0.6 This proves that a subcritical NS bifurcation takes place
at θ = θns . �

From Proposition 3.2, we also obtain that the parameter value (θns (c̄2) , c̄2) ∈ Ω̃

corresponds to a 1 : 3 resonant case and
(
θns

(
10 − 4

√
6
)

, 10 − 4
√
6
)

∈ Ω̃ to a

1 : 4 resonant case. This means that at these parameter values the closed invariant
curve might appear in a very peculiar way, or there might be several invariant curves
bifurcating from the fixed point.

Numerical investigation allows us to find out that condition (b) holds if c2 <

ĉch , with ĉch ≈ 0.2769. The parameter values Ĉ = (
θns

(
ĉch

)
, ĉch

)
correspond to a

Chenciner point. This means that in the parameter space Ω̃ a (global) bifurcation
curve γ originates from Ĉ and enters the region in which E∗ is stable. The crossing of
such a curve causes the appearance of two invariant closed curves, one attracting and
one repelling, the latter being involved in the occurring NS bifurcation. The study of
the global bifurcations occurring along the curve γ is our present aim.

As in Sect. 3.3, we start our analysis looking at a 2D-bifurcation diagram, shown
in Fig. 3.9. In such a figure we can observe that the Arnold’s tongues have a particular
“sausage” shape, typical of PW maps. Indeed, the boundaries of these periodicity
regions are given by BCB’s and their “narrowed” portions correspond to the crossing
of one periodic point through a boundary of a region Ri j , associated with a border
collision which preserves the existing attractor.

Comparing Fig. 3.9 with Fig. 3.3 a second peculiarity emerges: in the former
figure the Arnold tongues appear when the fixed point is still stable and intersect
the θns bifurcation curve. As we said in Sect. 3.2, this is due to the Neimark-Sacker
bifurcation (NS) of subcritical type, as we proved, and indicates that a pair of cycles
must appear in the phase-space and coexists with the stable fixed point E∗ (see
also [4]).

6For major details see [3].
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Fig. 3.9 2D bifurcation
diagram. The Arnold’s
tongues of the PW map T
have the “sausage” structure

To investigate the bifurcation mechanisms leading to the appearance of the invari-
ant closed curves, at the crossing of the curve γ , we follow the bifurcation paths
indicated with an arrow in Fig. 3.9, since simple cycles of period 5 will be involved.

3.4.2 Appearance of Curves Due to Homoclinic Bifurcation

We start considering the bifurcation path bp1 in which c2 = 0.1306. At the crossing
of the boundary of the region P5 a pair of cycles of period 5 appears, a saddle cycle
S and an attracting one C . As shown in Fig. 3.10a, at their appearance the two cycles
are very close to each other and close to the line separating region R11 from region
R21. This suggests that the appearance of the cycles may be due to a “saddle-node”
BCB.

The basins of attraction of the two coexisting attractors are separated by the
stable set W s(S) = ω1 ∪ ω2 of the saddle cycle S and no invariant curve exists
immediately after the occurrence of the BCB. Indeed, the branch α1 of the unstable
set W u(S) = α1 ∪ α2 of S goes to E∗ while α2 converges to the cycle C . Increasing
the parameter θ the stable branch ω1 approaches the unstable branch α1, as we can
observe in Fig. 3.10b. More precisely, if we consider separately the periodic points
Ss , with s = 1, . . . , 5, of the saddle cycle S andωi = ⋃5

s=1 ωi,s , αi = ⋃5
s=1 αi,s with

i = 1, 2, we have thatω1,s is closer and closer to α1,s+1 (s = 1, . . . , 5 and α1,6=α1,1 ).
This means that a heteroclinic connection (or “heteroclinic loop”) between the peri-
odic points of the saddle cycle may be near to occur. This seems exactly the same
situation described in Sect. 3.2. Indeed, if we slightly increase θ as in Fig. 3.10c
(passing from 0.5635 to 0.5636), we observe that two invariant closed curves appear,
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(a) (b)

(c)

Fig. 3.10 Appearance of two invariant closed curves. Along the bifurcation path bp1 a homoclinic
bifurcation occurs. a θ = 0.562683. The cycle of period 5 appears via BCB. b θ = 0.5635. No
closed curves exist. c θ = 0.5636. Two invariant closed curves appear

one stable made up by the unstable set W u(S) which connects the periodic points of
C and one unstable which bounds the basin of attraction of E∗. This means that the
curve γ associated with the Chenciner point has been crossed.
To confirm that a homoclinic bifurcation occurs, we propose two further figures.

Figure3.11 represents the phase-plane immediately before the bifurcation: no invari-
ant closed curve exists but we can observe that both stable and unstable set are wan-
dering and quite tangent (see the enlargements in Fig. 3.11b). Then a homoclinic
tangle start to develop and transverse crossing between the two invariant sets arise
in a small parameter range. At the closure of the homoclinic tangle, the branches
α1 and ω1 are again tangent, but at the opposite side, as Fig. 3.12 shows, and two
invariant curves appear. To sum up, we remark that along the bifurcation curve bp1
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(a) (b)

Fig. 3.11 Homoclinic tangle. The first tangential contact between the stable and unstable sets of
the saddle cycle S. a θ = 0.56357725. The branches α1 and ω1 exhibit many oscillation and are
quite tangent. b Enlargement of stable and unstable sets

(a) (b)

Fig. 3.12 Homoclinic tangle. The second tangential contact between the stable and unstable sets
of the saddle cycle S. a θ = 0.56357729. The branches α1 and ω1 have exchanged their mutual
position and two invariant closed curves exist, very close each other. b Enlargement of the stable
and unstable sets
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(a) (b)

Fig. 3.13 Appearance of two invariant closed curves. Along the bifurcation path bp2 a BCB
causes the appearance of two invariant closed curves. a θ = 0.5825. Three coexisting attractors.
b θ = 0.5795. Appearance of the closed invariant curves

the crossing of the curve γ (that is, the appearance of two invariant closed curves)
occurs when a homoclinic bifurcation takes place.

3.4.3 Appearance of Curves Due to BCB

A different bifurcation mechanism arises along the bifurcation path bp2 where c2 =
0.135. Indeed, as shown in Fig. 3.13a, when the two cycles of period 5 appear, at
θ = 0.5825, the two curves Γ and Γ u already exist. The bifurcation leading to the
appearance of C and S seems again a “saddle-node” BCB and after its occurrence
we have the coexistence of three attractors: the period 5 cycle C whose basin of
attraction is bounded by the stable set of the saddle cycle S, the attracting closed
curve Γ and the Cournot equilibrium E∗. A repelling closed curve Γ u separates the
basins of attraction of these two last attractors. This means that the bifurcation curve
γ do not intersect the periodicity region P5 along bp2.

To investigate when the two invariant closed curves appear we decrease the para-
meter θ and we find that at θ = 0.5795 the two curves are quite indistinguishable
(see Fig. 3.13b) and the attracting one appears quite tangent to the border separat-
ing region R11 from region R21. This suggests that a BCB can be the cause of the
appearance of Γ and Γ u .

To show that this is really the casewe consider themap M11, since in the parameter
plane under scrutiny the Cournot equilibrium point is a fixed point of it.

The global analysis of the map M11 allows us to show that when being stable the
fixed point E∗ has a basin of attraction which contains all the feasible trajectories.
If we consider θ = 0.579, very closed to the value previously identified, the basin
of attraction of E∗ is bounded by a repelling closed curve Γ u (see Fig. 3.14a) an its
very small portion (denoted with a white arrow) belongs to region R21. This implies
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(a) (b)

Fig. 3.14 The map M11. A repelling closed curve bounds the set of feasible trajectories. a θ =
0.579. The basin of attraction of E∗. b θ = 0.5795. Border collision of an invariant closed curve

(a) (b)

Fig. 3.15 After the occurrence of the Neimark-Sacker bifurcation. At θ = 0.5895 only two attrac-
tors survive. Their basins of attraction are separated by the stable set of S. a The attracting closed
curve coexists with the period 5 cycle C . b The unstable and stable sets of the saddle cycle S

that when we consider the map M such portion will be iterated with the map M21 and
consequently all the unfeasible points disappear from the phase space of map M .

Coming back to the map M11, when θ increases this portion becomes smaller and
smaller and finally, at θ = 0.5795 it disappears (see Fig. 3.14b). When the portion
disappears, the boundary of the set of feasible trajectories of M11 becomes tangent to
the border line x1 + x2 = 1. This means that Γ u is an invariant set of M11 belonging
to the region R11 and then is an invariant set also of the map M . Moreover the points
of region R21, all unfeasible for M11, have a different behavior when iterated by M ,
that is a further attractor has to be appear. This is exactly what we have observed
in Fig. 3.13b. Then we can conclude that along the bifurcation path bp2 a different
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bifurcation mechanism occurs when the curve γ is crossed, since a BCB has caused
the appearance of two invariant closed curves.

Nevertheless, a homoclinic bifurcation occurs even along bp2. Increasing the
parameter θ , firstly we observe the occurrence of the subcritical NS bifurcation. Then
E∗ becomes an unstable focus and only two attractors survive, the period 5 cycle C
and the closed curve Γ , as in Fig. 3.15a. The basins of attraction are still separated by
the stable set W s(S) of the saddle S. But, as we can observe in Fig. 3.15b, the branch
ω1 of W s(S) exhibits some fluctuations before converging to S and it is very close
to the branch α1 of W u(S). As we have seen above, this is exactly the prelude of the
occurrence of a homoclinic bifurcation. Indeed, if we slightly increase the parameter
θ the branches ω1 and α1 change their reciprocal position and, in particular, ω1 now
come from E∗ (see Fig. 3.16). Then a homoclinic bifurcation has occurred and it has

(a) (b)

(c)

Fig. 3.16 The 5-cycle C is the unique attractor. A homoclinic bifurcation has caused the disap-
pearance of the attracting closed curve Γ . a θ = 58995. The closed curve Γ has disappeared.
b θ = 0.5898. The basins of attraction of the 5 fixed points of the map M5 are strongly mixed.
c θ = 58995. The complex structure of the basins of attraction does not exist
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caused the disappearance of the attracting closed curve Γ . To illustrate the effect
of the occurring homoclinic bifurcation we consider the 5th iterate of the map M .
The map M5 undergoes five simultaneous homoclinic bifurcations, as proved by the
fractal structure of the basins of attraction of its stable fixed points Cs , s = 1, . . . , 5,
due to the presence of a chaotic repellor (see Fig. 3.16b). This particular structure of
the basins immediately disappears when the second tangential contact between ω1

and α1 occurs, as shown in Fig. 3.16.

3.5 Conclusions

Several studies have been devoted to the NS bifurcations of fixed points in two-
dimensional maps describing oligopoly models. In this paper we focused on the
problem related to the mechanism giving rise to the appearance/disappearance of
invariant closed curves, attracting and/or repelling. Considering duopoly models in
which the Cournot equilibrium is destabilized through a supercritical or a subcriti-
cal NS bifurcation, we have shown that such bifurcations may give rise to different
dynamic behavior, depending on the type of map we are dealing with. The first
model deals with a smooth map and, through global analysis, we have shown differ-
ent multistability situations and the occurrence of global bifurcations associated with
the appearance of invariant closed curves and chaotic dynamics. The second model,
instead, is described by a PW map where the Cournot equilibrium point coexists
with an attracting closed curve and it is destabilized through a subcritical NS bifur-
cation. We have shown that the mechanism related to the appearance/disappearance
of invariant closed curves is related to homoclinic and border collision bifurcations.

A final remark is about the economic implication of the global bifurcations: given
the attention paid in the economic literature to the onset of endogenous and long-run
fluctuations, the bifurcation scenario we have detected may find important applica-
tions. Indeed, it implies multistability situations and may deserve to explain phe-
nomena like hysteresis loops and catastrophic transitions.

Acknowledgments Authors thank Ahmad Naimzada and Tönu Puu for their many valuable sug-
gestions and remarks about the two oligopoly settings.
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Chapter 4
Some Dynamical Models in Regional
Economics: Economic Structure
and Analytic Tools

Ingrid Kubin, Pasquale Commendatore and Iryna Sushko

Abstract This chapter aquaints the reader with the use of dynamic models in
regional economics. The focus is on theNewEconomicGeography (NEG) approach.
A brief comparison is provided between NEG and other economic approaches to
investigate regional inequalities. The analytic structure of a general multi-regional
model is described, and some simple examples are presented, where the number of
regions is assumed to be small to obtain more easily analytic and numerical results.
Tools from the mathematical theory of dynamical systems are drawn to study the
qualitative properties of such multi-regional model.

4.1 Introduction

In the following, we introduce the reader to the use of dynamic models in regional
economics. The focus will be on the New Economic Geography (NEG) approach
initiated by Krugman in his seminal contribution, [23].

Section4.1 sketches the basic mechanism inherent in NEG models and briefly
compares it to other economic approaches to regional inequality; Sect. 4.2 develops
the analytic structure of a general multi-regional NEG model and presents some
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examples with a small number of regions (3 or 4); finally, Sect. 4.3 applies methods
and tools from the dynamic systems theory to this model.

The central question in NEG is how the spatial distribution of economic activity
looks like in the long-run. Will economic activity be equally distributed among
regions, agglomerated in a few regions, or unevenly distributed over many regions.
For illustrative purposes, Fig. 4.1 shows the gross domestic product per inhabitant

Fig. 4.1 Gross domestic product per inhabitant, in purchasing power standards by NUTS 2 regions
2011 (Source Eurostat)
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for the European NUTS1 2 regions in 2011. It reveals quite distinct patterns with a
high income level in the central regions and a low income level in the eastern and
southern periphery. The NEG aims at providing explanations for the emergence of
such regional core-periphery patterns.

Before going specifically to theNEGmodels,we sketch two othermacroeconomic
explanation patters also widely used in regional economics, namely a Solow growth
model adapted for a multi-region setting and the Heckscher-Ohlin model applied to
interregional trade.

The Solow growth model assumes that regions are endowed with a growing
amount of productive factors (e.g., capital, labor and technical knowledge or human
capital) that are used to produce one homogenous commodity. Markets are assumed
to be perfectly competitive. Typically, even in a multi-regions setting, region are not
much interrelated: Sometimes technological spillovers are accounted for; but in most
cases the models do not allow for commodity trade or factor mobility. Regions may
be different, because of specific growth rates of population and technical knowledge,
because of specific “accumulation or saving rates” for physical and human capital,
and because of specific distances to the respective steady state. Thus, the regional
GDPs may grow at different rates and questions of regional convergence or diver-
gence can be studied; many empirical studies are based on this theoretical framework
(for further reading see, e.g., [1, 6, 25]).

In contrast, neoclassical models (in particular the Ricardian and Heckscher-Ohlin
model) of international and interregional trade assume that regions are endowed with
a given amount of productive factors (e.g., labor, capital, technical knowledge), but
differentiate between several sectors (e.g., agriculture and manufacturing) that vary
wrt productivity (Ricardian model) or factor intensity in production (Heckscher-
Ohlin model). Again, all markets are assumed to be perfectly competitive. Regions
are connected by commodity trade but not by factor mobility and regions differ wrt
the technical knowledge (Ricardian model) or wrt the (relative) factor endowment
(Heckscher-Ohlin model). In consequence of deeper trade integration, the model
predicts that regions will specialize their production in a subset of the possible
sectors—thus, regionally differentiated patterns of economic activity emerge (for
further reading see, e.g., [21]).

Finally, most models of the New Economic Geography also assume that regions
are endowed with a given amount of productive factors (e.g., labor of various skill
levels) and differentiate between several sectors (e.g., agriculture and manufactur-
ing). However, in contrast to the approaches presented above and crucial for the NEG
models, not all markets are perfectly competitive, but some of them are monopolis-
tically competitive (as a rationale for this market structure, a technology with fixed
inputs is assumed for the sectors under consideration). In a NEG perspective, regions
are not only connected by commodity trade, but also by factor mobility. Regions are
assumed to be initially identical, in particular productive factors are equally distrib-
uted between regions. The main achievement of the New Economic Geography is to

1The Nomenclature of Territorial Units for Statistics.
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show that even with initially identical regions deeper trade integration may trigger
a self reinforcing process, which leads to agglomeration of economic activities in
some of the regions (in most of the cases this process works via factor mobility).
This approach, thus, provides an endogenous explanation for an uneven distribution
of economic activity over space (while the approaches presented above have to recur
to exogenously given differences).

Since the seminal contribution by Krugman [23] an entire family of models were
developed, mainly differentiated according to which factor is assumed to mobile
between the regions (for an overview see [5]). In the core-peripherymodel (originally
developed in [23]), workers (and their consumption expenditures) are assumed to be
mobile; in the footloose capitalmodel (originally developed in [26]), firms and capital
move simultaneously, but the capital owners (and their expenditures) do not move;
finally, in the footloose entrepreneur model (originally developed in [22]) firms,
capital and capital owners (the entrepreneurs and their expenditures) move between
regions.

All NEG models share a similar mechanism for explaining agglomeration
processes; in the following we provide a more detailed account of this process. We
try to be fairly general; however, in some instances we have to base our exposition
on one particular approach. We choose the footloose entrepreneur (FE) model, in
which the productive factors are low and high qualified labor, the latter being the
entrepreneurs who are mobile between regions. This choice is primarily driven by
the fact that the FE model allows analytic solutions to a larger extent than other
NEG models. Note in passing, that the assumed mobility pattern—higher mobil-
ity for firms, entrepreneurs and high qualified workers, and lower mobility for less
qualified workers—also corresponds to stylized facts in the European Union.

What are themain ingredients in Krugman’s cookbook for explaining endogenous
agglomeration processes?

First, most NEG models assume that the manufacturing sector is characterized
by Dixit Stiglitz monopolistic competition with iso-elastic demand functions. With
this market form, profits are higher in the bigger market, or—to be more precise—in
the market with higher expenditures for commodities; and prices are set as constant
mark-ups on marginal costs (including transport cost). Typically, marginal costs are
assumed to be constant. Second, NEG models explicitly specify several (at least
two) locations and shipping commodities to another region involves transport costs
(typically assumed to be of the iceberg type). Thus, the location of a firm matters:
Although firms are selling to all markets, factor remunerations (profits) are higher
if the local market (served without transport costs) is bigger. Third, NEG models
assume that factors are mobile and move to a location where the remuneration is
higher, or more precisely where the indirect utility is higher. The dynamic equation
governing the factor mobility is at the core of every NEG model.

How can these three elements explain self reinforcing agglomeration processes?
Agglomeration is a situation in which all mobile factors have moved to one region
in the search of higher factor remuneration. The size of the local market for a single
firm is pivotal; it depends on, first, the overall market size in the region, and second,
on the share for a single firms and, thus, on number of other firms in the region.



4 Some Dynamical Models in Regional Economics … 217

Following Krugman’s [23] well-known thought experiment, let us assume that
one entrepreneur/firm moves from region two to region one. This relocation has two
effects: Since the entrepreneur moves with her expenditure, the overall size of the
market in region one increases, which leads to higher nominal profits and more firms
are attracted to the region under consideration—this is the so-called market size
effect that fosters agglomeration. At the same time, the number of firms in region
one increases as well, which reduces the market share for a single firm and which,
thus, tends to lower nominal profits, and fewer firms are attracted to the region under
consideration—this is the so-called competition effect that fosters an equal regional
factor distribution.

However, mobility of entrepreneurs is not driven by nominal, but by real profits,
and thus, the price index has to be taken into consideration as well. With more
firms having moved into one region, more variants are available locally, i.e., without
transport costs—the price index is lower and more entrepreneurs/firms are attracted
to the region under consideration. This is the so-called price index effect that works
in same direction as the market size effect; it fosters agglomeration.

Krugman [23] introduced the so-called “Tomahawk” diagram (see Fig. 4.2) that
summarizes for a two-region model how the spatial distribution of economic activity
looks like in the long-run and how it depends upon trade integration. The abscissa
shows trade freeness φ, an index that is zero for prohibitively high trade costs and one
for zero trade cost permitting free trade (see Sect. 4.2 for an algebraic definition); the
ordinate shows the share of firms locating in region one with a share of 0.5 indicating
equal distribution and a share of one (zero) agglomeration in region one (two); dashed
(solid) lines indicate unstable (stable) long-run equilibria. In many NEGmodels, the

Fig. 4.2 Tomahawk diagram typically used in the NEG approach to identify the long-run equilibria
and their local stability properties. It corresponds to a pitchfork bifurcation in the dynamic system
theory of 1D nonlinear maps
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symmetric equilibrium proofs to be stable (unstable) for low (high) values of trade
freeness; with the opposite holding for the core-periphery equilibria that involve
agglomeration in one region.

Three equilibria exist for the whole range of the trade freeness; however, the
stability properties change in a remarkable way. Let us start in a situation with a
low trade freeness and with an equal distribution of economic activity; intensify-
ing interregional trade (which increases the trade freeness index) may trigger an
agglomeration process that leads away from the symmetric equilibrium to one of the
core-periphery equilibria—asymmetric patterns may emerge endogenously, once the
agglomeration forces are stronger than the dispersion forces. This happens suddenly,
in a “catastrophic” way, once the threshold of φbreak is trespassed. It is interesting
to note that for a value φ above the break value, both core-periphery equilibria are
(locally) stable; in which region the agglomeration will be actually found in the
long-run depends upon initial conditions: if the initial industry share of region one
is slightly above (below) 0.5, the endogenous agglomeration process will lead to an
industrial core in region one (two). In this sense, history matters for the long run
spatial distribution of economic activity. The last remarkable feature found for many
NEG models is that for a value of φ between the so-called sustain and the so-called
break value actually five equilibria coexist, three of which are (locally) stable. This
introduces an element of irreversibility and hysteresis into agglomeration processes.
Once φbreak is crossed, the symmetric equilibrium becomes (locally) unstable and the
dynamic process leads to agglomeration in one of the regions. Reducing again the
trade freeness, agglomeration persists until φsustain is crossed—thus, agglomeration
processes are not exactly reversible and exhibit some degree of spatial hysteresis.

We finish this section by elaborating explicitly the relation between concepts from
the NEG and the theory of dynamic systems.

First, where are dynamic processes involved? The market equilibria are instanta-
neously established; producing and shipping of commodities to other locations does
not take time. However, factor mobility is assumed to evolve gradually over time—
and the analytical core of NEG models is a dynamic equation for factor mobility.

Second, it is remarkable that the multiplicity of (core-periphery and interior)
equilibria play a central role in the NEG paradigm (whereas elsewhere in economics
unique equilibria are in the focus and multiplicity is something to be avoided).

Third, in NEG stories history matters, agglomeration processes happen in a
catastrophic way and are at least to some extent irreversible. From a dynamic sys-
tem’s perspective this is the case, because multiple and (locally) stable equilibria
coexist, each with a basin of attraction—in these circumstances, (historically given)
initial conditions determine which of the coexisting equilibria will be attained in the
long-run. It is interesting to note that in NEG models also unstable fixed points and
boundary fixed points are important (in contrast to other economic approaches that
often focus exclusively on stable interior fixed points). Therefore, a careful spec-
ification of boundary conditions is necessary (that may lead to piecewise defined
models).



4 Some Dynamical Models in Regional Economics … 219

Fourth, note that the tomahawk diagram introduced above corresponds to a bifur-
cation diagram in dynamic system’s theory.

Finally, we add a brief discussion on the temporal framework, i.e., whether the
dynamic equation is specified in continuous or discrete time—a decision that matters
because of differences in the implied dynamic phenomena. In contrast to themajority
of NEGmodels, we set our models in discrete time on basis of the following observa-
tions: Economic processes, such as production and factor mobility typically involve
lags that are not captured by a continuous time modeling, but easily captured in a
discrete specification. Arguably, the “best” modeling might be a differential delay
equation; however, that specification involves considerable analytic complexity. Sim-
plifying to a pure differential equation loses dynamic aspects, whereas simplifying to
a difference equation retains many of the dynamic phenomena. Therefore, we choose
the latter approach.

The resulting analytic structure typically involves piecewise defined nonlinear dif-
ference equations; andwe study cyclical and complex attractors, coexisting attractors
and the (complex) structure of the basins of attraction.

4.2 A General Multi-regional Model

4.2.1 General Framework

We consider an economy composed of R regions (region r goes from 1 to R). There
are two sectors, Agriculture A andManufacturingM. While in the agricultural sector
a homogeneous good is produced, manufacturing involves the production of N dif-
ferentiated varieties (variety i goes from 1 to N). Finally, two types of agents exist:
skilled workers (or entrepreneurs) E and unskilled workers (or simply workers) L,
which are endowed with human capital and labor, respectively. Workers are immo-
bile (but reallocation across sectors is possible), whereas entrepreneurs can move
across regions. Regions could be grouped together into countries or trade blocs. We
assume that there is no entrepreneurial migration across countries/trade blocs.

4.2.2 Consumers’ Preferences

As in the standard footloose entrepreneur (FE) model, we assign Cobb-Douglas
preferences over the choice between consumption of the agricultural good CA and
consumption of a composite of manufactured varieties CM as

U = Cμ

MC
1−μ

A
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and CES preferences across the manufactured varieties

CM =
(

N∑

i=1

c
σ−1
σ

i

) σ
σ−1

,

where ci represents the consumptionof the variety i,with i = 1, . . . ,N ;σ the constant
elasticity of substitution, with σ > 1 (the closer σ to 1, the lower is the degree of
substitutability between varieties/the greater is the consumer’s taste for variety); and
μ and 1 − μ the income shares devoted to the manufactured varieties and to the
homogeneous agricultural good, respectively, with 0 < μ < 1.

The budget constraint of an individual (entrepreneur or worker) residing in region
r is

N∑

i=1

p̃ici + pACA = y ,

where pA is the price of the agricultural good and p̃i is the price of the manufactured
variety i at destination (inclusive of transport costs).

4.2.3 Production

The A sector is characterized by constant returns to scale and perfect competition.
The production of 1 unit of output requires only 1 unit of L as input. The M sector,
instead, is (Dixit-Stiglitz) monopolistically competitive involving increasing returns.
It is modeled according to a few basic characteristics: firms with symmetric behavior
produce differentiated varieties with the same production technology involving a
fixed component, one entrepreneur, and a variable component, workers, with 1 unit
of L required for each unit of the differentiated good (the assumption of a skilled
labor input coefficient equal to 1 does not imply any loss of generality). Total cost
for a firm i is

TC(qi) = πi + wqi ,

where qi is the output of firm i andw thewage rate andwhere the fixed cost component
πi represents the operating profit and the remuneration of the entrepreneur:

πi = piqi − wqi ,

where pi is the mill price or price at the origin (that disregards trade costs) fixed by
firm i (see below). Given consumer’s preference for variety and increasing returns,
each firm will always produce a variety different from those produced by the other
firms. Moreover, since one entrepreneur is required for each manufacturing firm (in
the absence of economies of scope), the total number of firms/varieties, N , is always
equal to the total number of entrepreneurs, E = N (this is why we used the same
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subscript i for both). Denoting by λr,t the share of entrepreneurs located in region r,
the number of regional varieties produced in that period is

nr,t = λr,tN = λr,tE .

4.2.4 Trade Costs

Trade between regions can be inhibited by transportation and/or tariffs (or non tariffs)
barriers and/or other types of impediments/frictions. We use a broad definition of
trade costs for manufactured commodities based on Samuelson’s iceberg principle:
denoting by Trs the trade costs between region r and region s, with Trs ≥ 0, if one
unit ships from r to s, then only 1/Trs units arrive at destination.We also use the usual
parameter transformation that introduces the concept of “trade freeness”:φrs =T 1−σ

rs ,
with 0 < φrs ≤ 1, where φrs = 1 implies no trade costs and φrs = 0 impossibility
or simply absence of trade. Moreover, we assume that no trade costs are incurred
within each region, i.e., Trr = 1. With R regions, we can construct the R × R trade
cost matrix where for the entry Trs, r represents the region of origin and s the region
of destination of the commodity:

T =

⎡

⎢⎢
⎢
⎣

1 T12 . . . T1R
T21 1 · · · T2R
...

TR1 TR2 · · · 1

⎤

⎥⎥
⎥
⎦

.

By applying the transformation of iceberg trade costs into trade freeness, we can
write

� =

⎡

⎢⎢
⎢
⎣

1 φ12 . . . φ1R

φ21 1 · · · φ2R
...

...
. . .

...

φR1 φR2 · · · 1

⎤

⎥⎥
⎥
⎦

.

In the examples we give below, we assume symmetric trade costs, that is, they
are the same in both directions Trs = Tsr and φrs = φsr . This implies also symmetric
trade costs and trade freeness matrices.

Finally,we assume that no trade costs are incurred in theA-sector, implying perfect
trade freeness for the agricultural product.

4.2.5 Short-Run General Equilibrium

A short-run general equilibrium (SRGE) is instantaneously realized within time t
and it is defined for a given spatial distribution of entrepreneurs across the regions.
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Considering the SRGE, we fix for time t the regional shares of entrepreneurs
(λ1,t, λ2,t, . . . , λR,t) and add the time subscript also in the definitions given above
where necessary. In a SRGE all markets are cleared: supply equals demand for the
agricultural good and each manufacturer meets the demand for its variety; and by
Walras’s law simultaneous equilibrium in the product markets implies equilibrium
in the regional labor markets. With no trade costs, the price of the agricultural good
is the same across regions; we set it equal to 1, representing the numéraire. From the
agricultural market clearing condition, it follows w = pA = 1.

Following profit maximization, firm i sets at the origin a price pi on the basis of a
perceived demand elasticity of −σ . Dropping the subscript i, under the assumption
of symmetric firm behavior, we have

p = σ

σ − 1
. (4.1)

The overall demand for each variety (where we consider that the price of a variety
produced in region r and sold in region s is p̃ = pTrs) corresponds to

dr,t =
(

R∑

s=1

μYs,tP
σ−1
s,t T 1−σ

rs

)

p−σ = μY

pE

(
R∑

s=1

Ys,t
Δs,t

φrs

)

, (4.2)

where

Pr,t =
[

R∑

s=1

(
ns,tps,tTrs

)1−σ

] 1
1−σ

= Δ
1

1−σ

r,t E
1

1−σ p

is the price index that consumers face in region r;

Yr,t = Lr + nr,tπr,t (4.3)

represents income and expenditure in region r; with Lr representing the (given) labor
endowment of region r. Moreover we have defined

Δr,t = λ1,tφr1 + λ2,tφr2 + · · · + λR,tφrR =
R∑

s=1

λs,tφrs .

The entrepreneur remuneration in region r corresponds to

πr,t = pqr,t − qr,t = pqr,t
σ

,

where we obtain the latter term by using (4.1).
Since in equilibrium dr,t = qr,t , taking into account (4.2), the entrepreneur remu-

neration in region r can be expressed as follows:
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πr,t = μ

σE

(
R∑

s=1

Ys,t
Δs,t

φrs

)

.

After plugging (4.3) into the above expression and considering that nr,t = λr,tE,
we can write

πr,t = μ

σE

(
R∑

s=1

Ls + λr,tEπr,t

Δs,t
φrs

)

. (4.4)

Letting r = 1, . . . ,R, a system of R linear equations is generated from expression
(4.4):

π1,t = μ

σE

(
R∑

s=1

Ls + λ1,tEπ1,t

Δs,t
φ1s

)

, (4.5)

π2,t = μ

σE

(
R∑

s=1

Ls + λ2,tEπ2,t

Δs,t
φ2s

)

,

...

πR,t = μ

σE

(
R∑

s=1

Ls + λR,tEπR,t

Δs,t
φRs

)

.

This system can be expressed in matrix form as

πt = μ

σE
�Ct (L + EGtπt) , (4.6)

where

Ct =

⎛

⎜⎜
⎜⎜
⎝

1
Δ1,t

0 · · · 0

0 1
Δ2,t

· · · 0
...

...
. . .

...

0 0 · · · 1
ΔR,t

⎞

⎟⎟
⎟⎟
⎠

, Gt =

⎛

⎜⎜
⎜
⎝

λ1,t 0 · · · 0
0 λ2,t · · · 0
...

...
. . .

...

0 0 · · · λR,t

⎞

⎟⎟
⎟
⎠

, L =

⎛

⎜⎜
⎜
⎝

L1
L2
...

LR

⎞

⎟⎟
⎟
⎠

.

The matrixC shows how the interaction of enterprise location and trade costs affects
the regional price index; the matrix G gives the distribution of entrepreneurs across
the R regions; and the vector L represents the regional labor endowments.

The solutions are

π∗
t =

⎛

⎜⎜⎜
⎝

π∗
1,t

π∗
2,t
...

π∗
R,t

⎞

⎟⎟⎟
⎠

=
(
I−μ

σ
�CtGt

)−1 μ

σE
(�CtL) . (4.7)
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Finally Vr,t = πr,t/P
μ
r,t is the real profit income perceived by an entrepreneur

located in region r. As we shall see below, it represents a crucial variable in the
entrepreneurial migration dynamics. Taking into account the above expressions, it
can be formulated as a function of the entrepreneurial shares given in a SRGE:
Vr,t = Vr,t(λ1,t, λ2,t, . . . , λR,t).

4.2.6 From the Short-Run to the Long-Run

A shift from a short-run equilibrium t to the following t + 1 occurs allowing for
entrepreneurial migration based on an economic incentive. Specifically, our migra-
tion hypothesis involves a discrete time process centered on a comparison between
the indirect utility obtained in region r and a weighted average of indirect utilities in
all regions—a mechanism resembling the replicator dynamics:

Mr,t+1 − λr,t

λr,t
= γrk

(
Vr,t − ∑R

s=1 λs,tVs,t
∑R

s=1 λs,tVs,t

)

, (4.8)

where Mr,t+1 denotes the share of entrepreneurs in region r disregarding boundary
conditions; γrs is the speed of migration from region r to region k; γrk ≥ 0, r, k =
1, 2, . . . ,R and r �= k; when γrk = 0 there is no migration from r to k. Moreover,
we assume the same migration speed from region r to region k and from region k
to region r, i.e., γrk = γkr . Finally, the boundary conditions on shares must hold:
0 ≤ λr,t ≤ 1 and λ1,t + λ2,t + · · · + λR,t = 1.

Letting r = 1, . . .R, (4.8) generates an R-dimensional discrete time dynamic sys-
tem. A long-run interior equilibrium fixed point of this system is defined by a vector
(λ∗

1, λ
∗
2, . . . , λ

∗
R) such that

Vr(λ
∗
1, λ

∗
2, . . . , λ

∗
R) =

R∑

s=1

λ∗
s Vs(λ

∗
1, λ

∗
2, . . . , λ

∗
R)

for each r. Assuming regions with same labor endowments, i.e., letting L1 = L2 =
· · · = LR = L, a fully symmetric equilibrium exists, corresponding to a uniform
distribution of the economic activity across the regions:

λ∗
1 = λ∗

2 = · · · = λ∗
R = 1

R
.

When L1 = L2 = · · · = LR = L, asymmetric equilibria—where the economic
activity takes place in all the regions but is unevenly distributed—could also emerge
that still enjoy some degree of symmetry; in the examples that we give below these
equilibria exists in pairs and are positioned at the same distance from an invariant
line.
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Other stationary equilibria could emerge, taking into account the boundary condi-
tions: when for at least one region r it holds λr = 0 (nomanufacturing in that region),
and for no region s it holds λs = 1, with r �= s and r, s = 1, 2, . . . ,R; we are in the
presence of a border fixed point. The number of borders depending on the number
of 0s in the vector of the stationary values: for example, (λ∗

1, . . . , 0, . . . , λ
∗
R) rep-

resents an equilibrium with one border, (λ∗
1, . . . , 0, . . . , 0, . . . , λ

∗
R) an equilibrium

with two borders, and so on. Again, letting L1 = L2 = · · · = LR, border symmetric
equilibria may exist in correspondence of which the non-zero λ∗s are all equal to
1/(R − b), where b represents the number of borders. Asymmetric border equilibria
also exist keeping some degree of symmetry: they exist in pairs and are positioned
symmetrically with respect to an invariant line.

Core-periphery (CP) equilibria are stationary fixed points where for a region r
it holds λr = 1, and for every other region s it holds λs = 0. In a CP equilibrium
all the economic activity is agglomerated in one region. With no impediments to
entrepreneurial migration, the number of existing CP equilibria corresponds to the
number of regions, R.

Finally, when entrepreneurial migration between countries or trade blocs is not
allowed, agglomeration-within-a-country could occur: that is, within a country (or
within more than one) all the manufacture agglomerates only in one region. In this
case border fixedpoints emerge inwhich, after a suitable renormalization of variables,
also 1s appear in the vector of the stationary equilibrium solutions (see below).

We will not study here the local and global stability properties of the general
system which includes (4.8) and the boundary conditions. We limit ourselves to the
exploration of a few examples of models with a small number regions (3 or 4). In
what follows, we introduce those models and in Sect. 4.3 we study their dynamic
properties.

4.2.7 Example 1: A Model of a Custom Union
in the Presence of an Outside Region

In [17, 18] we aimed to study the joint effect of regional integration and international
liberalization. In those papers we put forward a model representing a three-region
economy composed of a trade bloc (named the Union) and an outside region. In this
model, the symmetric regions 1 and 2 are part of the Union, while region 3 is the
outside trade partner. The mobile factor, entrepreneurs, moves only between regions
1 and 2, whereas the number of entrepreneurs located in region 3 is fixed. Denoting
by ñ the share of entrepreneurs located in the trade block 1–2, 1 − ñ representing the
share of entrepreneurs located in the outside region 3. Thismodel can be derived from
the more general one presented above by setting R = 3 and by changing suitably the
main state variables. That is, we set

λ1,t = xt̃n , λ2,t = (1 − xt )̃n , λ3,t = 1 − ñ,
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where xt and 1 − xt represent the shares of entrepreneurs of the Union located in
region 1 and in region 2, respectively. xt is also the state variable of a one-dimensional
dynamic model governing entrepreneurial mobility between regions 1 and 2 (see
below). The boundary conditions become 0 ≤ λ1,t ≤ ñ and λ1,t + λ2,t = ñ or, equiv-
alently, 0 ≤ xt ≤ 1. In [17] , in order to derive some analytic results, we considered
the special case ñ = 1, that is, in region 3 only the agricultural good is produced.

Trade costs take into account the stronger integration between 1 and 2. Moreover,
in [17, 18] it is assumed that the trade distance between regions 1 and 3 and regions
2 and 3 is the same. Therefore, we set T12 = TS , T13 = T23 = TL and TS < TL. The
trade cost and trade freeness matrices become

T =
⎡

⎣
1 TS TL
TS 1 TL
TL TL 1

⎤

⎦ , � =
⎡

⎣
1 φS φL

φS 1 φL

φL φL 1

⎤

⎦ . (4.9)

Another crucial difference between regions 1 and 2 and region 3 is the size differ-
ence: denoting by L the overall endowment of the three-region economy and with 2θ
the share of workers living in the Union, we have: L1 = L2 = θL and L3 = 1 − 2θL.

For the case ñ < 1, in order to find the solutions of the system (4.5), we have
to substitute into (4.6) the trade freeness matrix reported in (4.9) and the following
expressions:

Ct =
⎛

⎜
⎝

1
Δ1,t

0 0

0 1
Δ2,t

0

0 0 1
Δ3,t

⎞

⎟
⎠ , Gt =

⎛

⎝
xt̃n 0 0
0 (1 − xt )̃n 0
0 0 1 − ñ

⎞

⎠ , L =
⎛

⎝
θL
θL

1 − 2θL

⎞

⎠ ,

where

Δ1,t = xt̃n + (1 − xt )̃nφS + (1 − ñ) φL ,

Δ2,t = xt̃nφS + (1 − xt )̃n + (1 − ñ) φL ,

Δ3 = ñφL + 1 − ñ .

For the case ñ = 1, no profits are generated in region 3 and the vector of the
solutions π∗

t only involves two entries.
Entrepreneurs only migrate between region 1 and region 2. After imposingR = 3,

γ12 = γ and γ13 = γ23 = 0, the migration process (4.8)—driven by entrepreneurial
regional profitability—is reduced to a one-dimensional discrete time equation gov-
erned by the state variable xt corresponding to

xut+1 − xt
xt

= γ

(
V1,t −

[
xtV1,t + (1 − xt) V2,t

]

xtV1,t + (1 − xt) V2,t

)

,
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where γ is the migration speed between regions 1 and 2 (after dropping subscripts).
Expressing xut+1 as a function of xt , say xut+1 = Z(xt), one gets the unconstrained
share of entrepreneurs of the Union located in region 1. Taking into account the
constraints, 0 ≤ xt ≤ 1, the full dynamic model corresponds to the map

xt+1 = f (xt) =
⎧
⎨

⎩

0 if Z(xt) < 0 ,

Z(xt) if 0 ≤ Z(xt) ≤ 1 ,

1 if Z(xt) > 1 .

(4.10)

Notice that, as long as ñ < 1, agglomeration of the industrial sector can only occur
within the Union. The size of the industry located in region 3 does not vary. We study
the fixed points of the map (4.10) and its local and global dynamics in Sect. 4.3.3.

4.2.8 Example 2: A Two-Country Four-Region Model

4.2.8.1 The Case of Symmetric Regions

The focus of themodel put forward in [16] are the dynamicprocesses governing a two-
country four-region economy. In that paper, we introduced a specific geographical
set-up: there are two countries/trade blocs, each of them composed of two regions;
regions 1 and 2 are part of the first bloc (home, h) and regions 3 and 4 are part of the
second bloc (foreign, f ). The four regions are aligned from 1 to 4: thus, regions 2 and
3, which share a common border, enjoy a central position, whereas the position of
regions 1 and 4 is marginal. One of the aims of the paper is indeed to study the issue
of centrality vis-à-vis marginality, taking into account that central regions access
larger markets whereas marginal regions are sheltered from competition. The border
inhibits entrepreneurial migration; thus, mobility is allowed only within trade blocs
between regions 1 and 2 and regions 3 and 4. The two blocs have the same endowment
of entrepreneurs. Letting E the overall endowment of this factor of production, E/2
is located in each bloc. Moreover, each region has the same number of workers
implying the same local market size. Letting L, the overall endowment of labor,
L/4 is located in each region. As before, this model can be derived from the more
general one presented above by setting R = 4 and by changing suitably the main
state variables. That is, we set

λ1,t = 1 − xt
2

, λ2,t = xt
2

, λ3,t = yt
2

, λ4,t = 1 − yt
2

,

where xt and 1 − xt are the shares of home entrepreneurs located in region 1 and
region 2, respectively; and yt and 1 − yt are the shares of foreign entrepreneurs
located in region 3 and region 4, respectively. xt and yt are also the state variables of a
two-dimensional discrete time dynamic system governing entrepreneurial migration
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within home and foreign (see below). The boundary conditions become: 0 ≤ λ1,t ≤
1/2, λ1,t + λ2,t = 1/2, 0 ≤ λ3,t ≤ 1/2 and λ3,t + λ4,t = 1/2 or, equivalently, 0 ≤
xt ≤ 1 and 0 ≤ yt ≤ 1. Notice that the one we have chosen is not the only possible
choice of variables, xt and yt are related to the shares of entrepreneurs located in
regions 2 and 3 to better stress the symmetric properties of the map (4.12). Other
choices are possible serving a different purpose (see Sect. 4.2.8.2).

In [16] only direct trade is possible, that is, only contiguous regions can trade with
each other. Therefore, taking also into account the specific geographical features of
the economy, we set T12 = T34 = T and T23 = TE , where T represents domestic
trade costs and TE external trade costs. Given the absence of indirect trade—which
implies infinite trade costs between noncontiguos regions,—we are able to fill the
trade freeness matrix by setting φ = T 1−σ , φE = T 1−σ

E and φ13 = φ14 = φ24 = 0:

� =

⎡

⎢⎢
⎣

1 φ 0 0
φ 1 φE 0
0 φE 1 φ

0 0 φ 1

⎤

⎥⎥
⎦ . (4.11)

Given the above variables change and the assumptions on factor endowments and
trade costs, in order to find the solutions of the system (4.5), we have to substitute
into (4.6) the trade freeness matrix reported in (4.11) and the following expressions2:

Ct =

⎛

⎜
⎜⎜
⎝

1
Δ1,t

0 0 0

0 1
Δ2,t

0 0

0 0 1
Δ3,t

0

0 0 0 1
Δ4,t

⎞

⎟
⎟⎟
⎠

, Gt = 1

2

⎛

⎜
⎜
⎝

1−xt
2 0 0 0
0 xt

2 0 0
0 0 yt

2 0
0 0 0 1−yt

2

⎞

⎟
⎟
⎠ , L = L

4

⎛

⎜
⎜
⎝

1
1
1
1

⎞

⎟
⎟
⎠ ,

where

Δ1,t = 1 − xt
2

+ xt
2

φ , Δ2,t = 1 − xt
2

φ + xt
2

+ yt
2

φE ,

Δ3,t = xt
2

φE + yt
2

+ 1 − yt
2

φ , Δ4,t = yt
2

φ + 1 − yt
2

.

In this model entrepreneurs are allowed to move within both trade blocs, between
regions 1 and 2 and regions 3 and 4. However, they cannot move between the two
trade blocs (home and foreign); for example, migration cannot occur from 1 to 3 or in
the opposite direction. After setting R = 4, γ12 = γ34 = γ and γ23 = γ13 = γ13 = 0,
the migration process (4.8) is reduced to a two-dimensional discrete time dynamic
system, governed by the state variables xt and yt :

2We do not explicit the solutions of the models presented here. For these solutions, the interested
reader can refer to the corresponding papers.
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xut+1 − xt
xt

= γ

(
V1,t −

[
xtV1,t + (1 − xt) V2,t

]

xtV1,t + (1 − xt) V2,t

)

,

yut+1 − yt
yt

= γ

(
V1,t −

[
xtV1,t + (1 − xt) V2,t

]

xtV1,t + (1 − xt) V2,t

)

,

where xut+1 = Zh(xt, yt) is the unconstrained share of home entrepreneurs located
in region 2, yut+1 = Zf (xt, yt) is the unconstrained share of foreign entrepreneurs
located in region 3 and γ is the migration speed. Taking into account the constraints,
0 ≤ xt ≤ 1 and 0 ≤ yt ≤ 1, the full dynamic system corresponds to themapZ defined
as follows:

xt+1 =
⎧
⎨

⎩

0 if Zh(xt, yt) < 0 ,

Zh(xt, yt) if 0 ≤ Zh(xt, yt) ≤ 1 ,

1 if Zh(xt, yt) > 1 ,

yt+1 =
⎧
⎨

⎩

0 if Zf (xt, yt) < 0 ,

Zf (xt, yt) if 0 ≤ Zf (xt, yt) ≤ 1 ,

1 if Zf (xt, yt) > 1 .

(4.12)

Here it is worthwhile to notice that since the overall size of the industry in country
h (or in country f ) does not vary by assumption, agglomeration can only occur in
one of the two regions within each country/trade bloc. No CP equilibria can emerge
characterized by full agglomeration in one of the four regions and absence of industry
in the other three. Similarly, as we shall see below, border fixed points may exist
involving agglomeration in one country and spreading of manufacturing in the other
one.

Finally, notice that due to the assumption of symmetric regions, the map (4.12)
enjoys some degree of symmetry. Specifically, as we shall see below when we deal
with its dynamic properties, it is symmetric with respect to some invariant line. Due
to the assumed geography, according to which regions are positioned at different
distances from each other, the symmetry is not full. Therefore, for example, the
interior equilibrium that involves the condition x∗ = y∗ is only partially symmetric:
x∗ �= 1/4.

4.2.8.2 The Case of Asymmetric Regions

In [15] we put forward another four-region model with two important differences
compared to the previous one: (i) we allow for indirect trade; (ii) the four regions have
different labor endowments. As before, the paper has some focus on the dynamic
processes governing a two-country (trade bloc) four-region economy. The geograph-
ical set-up is identical to that assumed in [16]: the four regions are aligned from 1 to
4; regions 1 and 2 are part of a trade bloc and regions 3 and 4 are part of another trade
bloc. Regions 2 and 3 share a common border and enjoy a more central position.
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Regions 1 and 4 are more difficult to reach, however, allowing for indirect trade,
the manufactured good can be shipped from and to any region. Trade costs are not
prohibitive but depend on distance. The other crucial difference compared to [16],
i.e., unequal labor endowments, implies different local market sizes.3

We assume that regions 1 and 3 are smaller, in terms of market size, than regions
2 and 4. Supposing, for simplicity that region 1 is equal to region 3 and that region 2
is equal to region 4, it follows: L1 = L3 = LS , L2 = L4 = LB and LS < LB. The aim
of [15] is broader compared to [16], wanting to compare not only the importance of
centrality vis-à-vis marginality—regions 2 and 3 are central and regions 1 and 4 are
at the fringes—but also centrality vis-à-vis regional size—regions 2 and 4 are big
and regions 1 and 3 are small. Moreover, by allowing for indirect trade we touched
upon the issue of transit traffic through the central regions induced by commodity
transportation. In [15] we changed the main state variables as follows:

λ1,t = xt
2

, λ2,t = 1 − xt
2

, λ3,t = yt
2

, λ4,t = 1 − yt
2

,

where xt and 1 − xt are the shares of entrepreneurs of the first trade bloc located in
the small region 1 and in the big region 2, respectively; and yt and 1 − yt are the
share of entrepreneurs of the second trade bloc located in the small region 3 and in
the large region 4, respectively. This specific choice allowed us to focus more on the
two small regions. There are no substantial changes in the boundary conditions that,
expressed in terms of the changed variables, are: 0 ≤ xt ≤ 1 and 0 ≤ yt ≤ 1.

Given the geographical set-up and taking into account that indirect trade is possible
and trade costs are proportional to distance, we set the direct trade costs as T12 =
T34 = TC , T23 = TD, and derived the indirect trade costs: T13 = T24 = TCTD, T14 =
T 2
CTD. Thus, we are able to fill both the trade cost and the trade freeness matrices:

T =

⎡

⎢⎢
⎣

1 TC TCTD T 2
CTD

TC 1 TD TCTD
TCTD TD 1 TC
T 2
CTD TCTD TC 1

⎤

⎥⎥
⎦ , � =

⎡

⎢⎢
⎣

1 φC φCφD φ2
CφD

φC 1 φD φCφD

φCφD φD 1 φC

φ2
CφD φCφD φC 1

⎤

⎥⎥
⎦ . (4.13)

Given the above variables change and the assumptions on factor endowments and
trade costs, the solutions of the system (4.6) are found by substituting into (4.7) the
trade freeness matrix in (4.13) and the following expressions:

Ct =

⎛

⎜
⎜⎜
⎝

1
Δ1,t

0 0 0

0 1
Δ2,t

0 0

0 0 1
Δ3,t

0

0 0 0 1
Δ4,t

⎞

⎟
⎟⎟
⎠

, Gt = 1

2

⎛

⎜⎜
⎝

xt
2 0 0 0
0 1−xt

2 0 0
0 0 yt

2 0
0 0 0 1−yt

2

⎞

⎟⎟
⎠ , L =

⎛

⎜⎜
⎝

LS
LB
LS
LB

⎞

⎟⎟
⎠ ,

3Given the unitary wage rate, the number of immobile regional workers coincides with that part of
local expenditure that does not change through time.
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where

Δ1,t = xt
2

+ 1 − xt
2

φC + yt
2

φCφD + 1 − yt
2

φ2
CφD ,

Δ2,t = xt
2

φC + 1 − xt
2

+ yt
2

φD + 1 − yt
2

φCφD ,

Δ3,t = xt
2

φCφD + 1 − xt
2

φD + yt
2

+ 1 − yt
2

φC ,

Δ4,t = xt
2

φ2
CφD + 1 − xt

2
φCφD + yt

2
φC + 1 − yt

2
.

The migration process driving the dynamics, after the due substitutions, coin-
cides to that presented in (4.12), taking also into account that xt and 1 − xt are
now attached to the shares of entrepreneurs of region 1 and region 2. As before,
agglomeration-within-a-country can occur. As we shall see in the discussion below,
a crucial difference of this four-region model compared to the previous one is that
for LS �= LB, the map (4.12) is not symmetric. One of the consequences is that no
(partial) symmetric equilibrium exists: x∗ �= y∗.

4.3 Dynamic Analysis of NEG Models

This section is based on the results presented in [15–18], related to analysis of local
and global dynamics of several maps associated with the NEG models described
in Sect. 4.2. Below we discuss peculiarities of such maps, itemize possible kinds of
fixed points and their bifurcations, present examples of various attractors and their
basins of attraction. Typical bifurcation scenarios observed in the NEG maps under
variation of trade freeness parameters are also discussed.

As we have mentioned, in the considered NEG models the migration process of
entrepreneurs resembles the evolutionary replicator dynamics. For the NEG models
defined by 1Dmaps (as, e.g., in [17, 18]) this leads to the following function defining
the map:

Z(x) = x

[
1 + γ (1 − x)

Ω(x) − 1

1 + x(Ω(x) − 1)

]
,

where

Ω(x) = V1(x)

V2(x)

is the ratio between real profits in region 1 and in region 2. The full dynamic model
corresponds to the 1D piecewise smooth map f defined in (4.10). We present some
results associated with dynamics of this map in Sect. 4.3.3.
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For the NEG models defined by 2D maps (as, e.g., in [15, 16]), the evolutionary
replicator dynamics is defined by the following functions:

Zh(x, y) = x

[
1 + γ (1 − x)

Ωh(x, y) − 1

1 + x(Ωh(x, y) − 1)

]
,

Zf (x, y) = y

[
1 + γ (1 − y)

Ωf (x, y) − 1

1 + x(Ωf (x, y) − 1)

]
,

where

Ωh(x, y) = V1(x, y)

V2(x, y)
, Ωf (x, y) = V3(x, y)

V4(x, y)

are the ratio between real profits in region 1 and in region 2, and the ratio between
real profits in region 3 and in region 4, respectively. The full dynamic model corre-
sponds to the 2D piecewise smooth map Z defined in (4.12). We recall some results
related to dynamics of map (4.12) in Sect. 4.3.4 (symmetric case) and Sect. 4.3.5
(nonsymmetric case).

4.3.1 Peculiarities of NEG Maps

As a first peculiarity of NEG maps we mention quite complicated expressions of
the functions defining these maps, that allow to obtain only a few analytic results.
Additionally to nonsmoothness, these maps are noninvertible for quite an essential
part of the parameter space (see, e.g., [28], where properties of 2D noninvertible
maps are studied). Therefore, various numerical tools and methods become of great
help in the study of the dynamic properties of such maps. For example, a NEG
map, besides attracting fixed points, can have other attractors, such as cycles of any
period or chaotic attractors. Some of these attractors can coexist, so that varying one
or several parameters different bifurcation scenarios can be observed depending on
initial conditions, which we study with the help of 1D and 2D bifurcation diagrams
(see, e.g., [24, 29] for a general bifurcation theory of nonlinear dynamic systems).

An important property of the NEGmaps (4.10) and (4.12) is that besides standard
attractors such maps can have attractors in Milnor sense (see [27]), which are caused
by the ‘flat’ branches of the functions defining these maps. Let us first recall two
different definitions of an attractor.

Definition 4.1 An attracting set A of a map F is a closed invariant set for which a
neighborhood U(A) exists such that F(U(A)) ⊂ U(A) and Fn(x) → A as n → ∞
for any x ∈ U(A). An attractor A is an attracting set with a dense orbit.

Definition 4.2 A Milnor attractor is a closed invariant set A ⊂ J such that the set
ρ(A), consisting of all the points x ∈ J for which ω-limit set ω(x) ⊂ A, has strictly
positive measure, and there is no strictly smaller closed subset A′ of A such that ρ(A′)
coincides with ρ(A) up to a set of measure zero.
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Comparing these two definitions, one can note that according to theDefinition 4.1,
an attractor is a closed invariant set with a dense orbit, which has a neighborhood each
point of which is attracted to the attractor, while an attractor inMilnor sense does not
require the existence of such a neighborhood, but only a positivemeasure set of points
attracted to the attractor. In fact, Definition 4.2 of an attractor obviously includes
also attractors with an attracting neighborhood, as in Definition 4.1. For short, we
say that a set is M-attractor if it is attracting in Milnor sense, but not in a sense of
the Definition 4.1. In such a way, a M-attractor has no attracting neighborhood, but
it has a basin of attraction of positive measure. For example, a fixed point which is
locally repelling can be an M-attractor, with quite a large basin of attraction.

One more peculiarity of maps (4.10) and (4.12) is related to the fact that they have
upper and lower borders at which the system function is not differentiable. Thus,
rigorously speaking one can discuss only one-side (local) attractivity of invariant
sets located at these borders. In the neighborhoods related to the flat branches of the
system functions these invariant sets are obviously always locally superstable. For
convenience, to make it shorter, we consider that the notion of stability of these sets
refer to their local stability in the neighborhoods related to nonflat branches.

Next, as shown in [17, 18], an important property of the map (4.10) is related to
its symmetry with respect to x = 0.5. Thus, any invariant set A of the map f (such as
fixed points, cycles, chaotic attractors, basins of attraction, etc.) is either symmetric
to itself with respect to x = 0.5, or there exists one more invariant set A′ which is
symmetric to A. The map (4.12) studied in [16] is symmetric with respect to the main
diagonal of the phase plane, so that any invariant set A of Z is either symmetric with
respect to this diagonal, or there exists one more invariant set A′ symmetric to A. The
map (4.12) studied in [15] is symmetric only for particular parameter values.

4.3.2 Fixed Points and Their Stability

As we already mentioned in Sect. 4.2, due to the specific analytic representation of
maps (4.10) and (4.12) they always have so-called Core-periphery (CP) fixed points,
which are

CP0 : x = 0 , CP1 : x = 1 ,

for the map (4.10) and

CP00 : (x, y) = (0, 0) , CP11 : (x, y) = (1, 1) ,

CP01 : (x, y) = (0, 1) , CP10 : (x, y) = (1, 0) ,

for the map (4.12).
Besides CP fixed points theNEGmaps can have interior fixed points. In particular,

in the symmetric case, the map (4.10) always has an interior symmetric fixed point

S : x = 0.5
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and, depending on parameters, it can also have interior asymmetric fixed points, that
necessarily exist in pairs:

ASa : x = a , AS′
a : x = 1 − a ,

(with a �= 0, a �= 0.5). When symmetric, the map (4.12) can have an interior sym-
metric fixed point

Saa : (x, y) = (a, a) ,

(with a �= 0, a �= 1) and interior asymmetric fixed points (necessarily existing in
pairs):

ASab : (x, y) = (a, b) , ASba : (x, y) = (b, a) ,

(with a, b �= 0, a, b �= 1). In the asymmetric case, an interior fixed point of the map
(4.12) is denoted as

IPab : (x, y) = (a, b) ,

with a, b �= 0, a, b �= 1.
The map (4.12) can also have border fixed points, which in the symmetric case

exist in pairs

BP0a : (x, y) = (0, a) , BPa0 : (x, y) = (a, 0) ,

and
BP1a : (x, y) = (1, a) ; , BPa1 : (x, y) = (a, 1) ,

(with a �= 0, a �= 1), while in the asymmetric case the existence of a border fixed
point does not depend on the existence of other border fixed points.

Note that the unit square I2 = [0, 1] × [0, 1] of the phase plane of the map (4.12)
is invariant under this map, as well as each of the borders of I2, which we denote as
follows:

Ix0 = {(x, y) : y = 0} , Ix1 = {(x, y) : y = 1} ,

I0y = {(x, y) : x = 0} , I1y = {(x, y) : x = 1} .

On each of these borders, the 2D map Z is reduced to the corresponding 1D map.
These maps are helpful to understand the overall dynamics of Z .

It appears that any interior fixed point of the map (4.12)—when it exists—is an
intersection point of the curves

Ωh = {
(x, y) ∈ I2 : Ωh(x, y) = 1

}
, (4.14)

and
Ωf = {

(x, y) ∈ I2 : Ωf (x, y) = 1
}

. (4.15)
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On the other hand, for border fixed points, the following conditions hold:

BP0a ∈ {
Ωf ∩ I0y

}
, BP1a ∈ {

Ωf ∩ I1y
}
,

BPa0 ∈ {Ωh ∩ Ix0} , BPa1 ∈ {Ωh ∩ Ix1} .

This information about fixed points helps to visualize their locations in the phase
plane. Note that we allow for the existence of several fixed points of the same kind.

Stability conditions for the CP fixed points are easy to get:

CP0 : Ω(0) < 1 , CP1 : Ω(1) > 1 ,

CP00 : {
Ωh(0, 0) < 1 , Ωf (0, 0) < 1

}
, (4.16)

CP11 : {
Ωh(1, 1) > 1 , Ωf (1, 1) > 1

}
, (4.17)

CP01 : {
Ωh(0, 1) < 1 , Ωf (0, 1) > 1

}
, (4.18)

CP10 : {
Ωh(1, 0) > 1 , Ωf (1, 0) < 1

}
. (4.19)

As we recall in the following sections, in the NEG models any CP fixed point
changes its stability due to a border-transcritical (BT) bifurcation.4 For the map
(4.10) in a generic case this bifurcation results in the appearance/disappearance of
an interior asymmetric fixed point, while interior symmetric fixed point can undergo
either pitchfork bifurcation (sub- or supercritical), or flip bifurcation. For the map
(4.12) a BT bifurcation of a CP fixed point in a generic case leads to the appearance/
disappearance of a border fixed point, which in turn may undergo a flip bifurcation
leading to a 2-cycle belonging to the related border, a fold bifurcation—in which
case the border fixed point disappears in a pair with another border fixed point,—or
a BT bifurcation leading to an interior fixed point. Below we present examples of
such bifurcations.

4.3.3 A 1D Symmetric NEG Map

Wediscuss here the dynamic properties of the 1D symmetricNEGmap (4.10) derived
by the model put forward in [17, 18] and presented in Sect. 4.2.7. Let us recall first
some results related to the dynamics of this 1D symmetric NEG map following [18]
(see also [17]). The map (4.10), the explicit expression of which can be found in
[18], depends on 7 parameters, namely, ñ, σ, μ, γ, θ, φL and φS . In Fig. 4.3 this map

4In short, a border-transcritical bifurcation of a fixed point of a piecewise smooth continuous map
occurs when at the moment of the bifurcation this fixed point belongs to a border at which the
system function is not differentiable, its one-side multiplier is equal to 1 and it merges with another
fixed point. After the bifurcation, one fixed point disappears, while another one changes its stability.
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Fig. 4.3 The map f for
σ = 6, μ = 0.45, γ = 10,
θ = 0.25, φL = 0.1, ñ = 0.8
and φS = 0.11, 0.2, 0.3, 0.4,
0.5 and 0.7 (the direction
indicated by an arrow
corresponds to increasing
φS)

is shown for different values of the trade freeness parameter φS fixing the values of
the other parameters.

The most important result is that the symmetric fixed point may lose stability
not only through a subcritical pitchfork bifurcation, but also through a supercritical
one. In [18] this result is proved analytically for the limiting case ñ = 1; however,
by continuity, a similar result must hold also for 0 < ñ < 1, and this conjecture is
confirmed by numerical investigations.

Let first ñ = 1. In Fig. 4.4 we show 1D bifurcation diagrams that illustrate for
specific parameter values the possible scenarios; red circles mark pitchfork bifurca-
tions, and green circles indicate BT bifurcations. Panel (b) represents the subcritical

Fig. 4.4 1D bifurcation diagram for σ = 2, μ = 0.45, γ = 20, ñ = 1 and θ = 0.25, φS ∈
[0.01, 0.1] in (a), θ = 0.4, φS ∈ [0.08, 0.12] in (b), θ = 0.32, φS ∈ [0.13, 0.19] in (c). These dia-
grams are related to parameter paths indicated in Fig. 4.5 by horizontal lineswith arrows. Degenerate
pitchfork bifurcation (which cannot occur in the map f ) is shown schematically in (d)
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pitchfork bifurcation that leads to catastrophic agglomeration and that is found in
many standardNEGmodels: In that case, the pitchfork bifurcation gives rise to asym-
metric fixed points that are unstable. They delimit the basins of attraction for the CP
fixed points and the symmetric fixed point, all of which are (locally) stable between
the break and sustain point values of the trade freeness parameter. Thus, stable fixed
points coexist and the long-run pattern of regional industry location depends on para-
meters, as well as on the basin of attraction to which an initial condition belongs.

Instead, panel (a) depicts a supercritical pitchfork bifurcation that leads to smooth
agglomeration: asymmetric stable fixed points are born after the bifurcation—the
model, which is entirely based on standard NEG assumptions, is thus able to generate
endogenously interior asymmetric outcomes (in which economic activity is neither
symmetrically distributed between the two regions nor fully agglomerated in one of
the regions).

What happens at the moment when the pitchfork bifurcation of the fixed point
S and the transcritical bifurcation of the fixed point CP0 and CP1 occur simultane-
ously? One could expect a 1D bifurcation diagram like the one sketched in Fig. 4.4d.
However, such a diagram is impossible because it would mean that a degenerate
pitchfork bifurcation occurs, with f (x) ≡ x in the complete interval [0, 1]. In fact,
the true transition is as shown in Fig. 4.4c where fold bifurcations (marked with black
circles) give rise to two stable asymmetric fixed points ASa, AS′

a and two unstable
asymmetric fixed points ASb, AS′

b. Panel (c), thus, shows that also for asymmetric
stable equilibria coexistence with the CP equilibria is possible (and the related basins
of attraction are delimited by additional asymmetric equilibria that are unstable).

In Fig. 4.5 a 2D bifurcation diagram is presented in the (φS, θ)-parameter plane
for σ = 2, μ = 0.45, γ = 20, ñ = 1. Here different colors are related to different
attracting cycles, namely, the red region S to the symmetric fixed point; the pink
region AS to coexisting asymmetric fixed points ASa and AS′

a; the blue region CP to

Fig. 4.5 2D bifurcation
diagram in the
(φS, θ)-parameter plane for
σ = 2, μ = 0.45, γ = 20,
ñ = 1. 1D bifurcation
diagrams related to the
horizontal lines marked (a),
(b) and (c) are shown in
Fig. 4.4a–c, respectively.
Inset presents an
enlargement of the indicated
window
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the fixed points CP0 and CP1; the region marked as S + CP to coexisting attracting
symmetric and CP fixed points; the gray region shown also in an inset (bounded by
the fold bifurcation curve θ = θf that can be obtained only numerically) is related
to coexisting attracting fixed points CP0, CP1 and ASa, AS′

a; the blue region CPM to
the fixed points CP0 and CP1 which are M-attractors; the green region to 2-cycles;
the other colors correspond to cycles of periods k ≤ 30 and white region is related
to higher periodicity or to chaotic attractors.

In the limiting case ñ = 1 the bifurcation curves of the fixed points S, CP0 and
CP1 can be obtained analytically, in particular, the flip bifurcation boundary θ =
θfl, the pitchfork bifurcation boundary θ = θpf and the BT bifurcation boundary
θ = θtr (see [18] for the explicit expressions of these boundaries). These curves
are shown in Fig. 4.5, in particular, one can see that the curves θ = θpf and θ = θtr
intersect each other, and if (φS, θ)-parameter point moves through the intersection
point according to the direction marked (c) one observes the 1D bifurcation diagram
shown in Fig. 4.4c (similar transition can be observed also for any parameter path
entering the gray region), while the directions marked (a) and (b) are related to
Fig. 4.4a and b, respectively.

Let now assume ñ < 1. Figure4.6, left panel, represents a 2D bifurcation diagram
in the (φS, θ)-parameter plane for σ = 6, μ = 0.45, γ = 10, φL = 0.1 and ñ =
0.8. As it can be seen, the impact on the long-term behavior of x—the distribution
of industrial activities within the trade bloc composed of regions 1 and 2 labeled
Union—of changes in φS and θ is qualitatively similar to the case ñ = 1 (as shown
in Fig. 4.5). The upper boundary of region S is related to the flip bifurcation of the
symmetric fixed point, while its lower boundary is the pitchfork bifurcation curve.
Moreover, 1D bifurcation diagrams shown in Fig. 4.6, right panel, related to the
paths labeled (a), (b) and (c) in Fig. 4.6, left panel, are quite similar to those shown
in Fig. 4.4 and corroborate our conjecture that our previous results can be extended
to the case ñ < 1.

Next, in Fig. 4.7 we show the bifurcation structure in the (φS, ñ)-parameter plane
in (a), and in the (φL, ñ)-parameter plane in (b). To comment the bifurcation scenario
which is observed if the parameter point crosses the flip bifurcation boundary of the
parameter region S we consider the 1D bifurcation diagram related to the cross-
section indicated in Fig. 4.7a by the arrow. It is shown in Fig. 4.8 together with an
enlargement.

One can see in Fig. 4.8a that for decreasing φS the fixed point S undergoes a
supercritical flip bifurcation (at the point marked by a black circle) leading to an
attracting 2-cycle g2 = {x0, x1}, whose points are symmetric with respect to S. Then
g2 undergoes a supercritical pitchfork bifurcation (at the point marked by a red
circle), due to which two new attracting 2-cycles q2 and q′

2 are born, points of which
are symmetric to each other with respect to S. If we continue to decrease φS each
of the 2-cycles q2 and q′

2 undergoes a sequence of bifurcations following the well-
known logistic bifurcation scenario starting with a cascade of flip bifurcations up to
a homoclinic bifurcation (marked by blue points) of 2-cycle g2 (see Fig. 4.8b). Thus,
we see that the map f can have coexisting attracting cycles and chaotic attractors.



4 Some Dynamical Models in Regional Economics … 239

Fig. 4.6 Left panel 2D bifurcation diagram in the (φS, θ)-parameter plane for φL = 0.1, ñ = 0.8,
σ = 6, μ = 0.45, γ = 10.Right panel 1D bifurcation diagrams related to parameter pathsmarked
a, b and c, respectively, in the 2D diagram on the left

Fig. 4.7 2D bifurcation diagrams in (φS, ñ)- and (φL, ñ)-parameter plane for σ = 6, μ = 0.45,
γ = 10, θ = 0.25 and φL = 0.01 in (a), φS = 0.15 in (b)
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Fig. 4.8 In a 1D bifurcation diagram of the map f for σ = 6, μ = 0.45, γ = 10, θ = 0.25, φL =
0.01, ñ = 0.8 related to cross-section indicated in Fig. 4.7 by a black arrow. In b An enlargement
of the window indicated in (a)

Let us comment now a bifurcation marked in Fig. 4.8a by brown circles. It is a
contact bifurcation of a one-piece chaotic attractor, bounded by the critical points
of the map f denoted c and c′, with its basin confined by the fixed point CP0 and
CP1. Such a contact occurs if a parameter point crosses the boundary of the region
CPM (see Fig. 4.7). In Fig. 4.9a the map f is shown at the moment of such a contact
defined by the condition c = 0 or c′ = 1. After this bifurcation the locally repelling
fixed points CP0 and CP1 become M-attractors.

For example, one can see in Fig. 4.9b that the points of the green intervals are
mapped into CP1 and the points of the red intervals are mapped into CP0. In fact,

Fig. 4.9 Themap f at the moment (a) in and (b) after the contact bifurcation of the chaotic attractor
A = [

c, c′]with its basin confined by the fixed pointsCP0 andCP1.Here σ = 6, μ = 0.45, γ = 10,
θ = 0.25, φL = 0.01, ñ = 0.8 and φS = 0.187626 (the related point is indicated in Fig. 4.8a by a
brown circle) in (a), φS = 0.18 in (b)
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the interval J1 related to the left flat branch of f and all its preimages, a few of
which are shown in Fig. 4.9b, constitute the stable set of the fixed point CP1. There
is a sequence of preimages of J1 accumulating at CP0, and there is also a sequence
of preimages of J1 accumulating at CP1. The same can be said about sequences
of preimages of J2 related to the second flat branch of f . Thus, in any (one-side)
neighborhood of CP0 or CP1 there is a positive measure set of points which first
escape from this neighborhood and then eventually are mapped to CP0, as well a
symmetric positive measure set of points mapped to CP1. Clearly, not all the point
of I are mapped to CP0 or CP1: a chaotic repellor, separating the basins of the CP
fixed points, remains in I, which is a Cantor set formed by all the repelling cycles
and their preimages, as well as uncountably many aperiodic orbits.

4.3.4 2D Symmetric NEG Map

Now let us consider the 2D symmetric NEGmap (4.12) presented in Sect. 4.2.8.1 and
studied in [16]. This map depends on 7 parameters. In all the numerical simulations
we fix E = 100, L = 400, μ = 0.5 and study how the dynamics depends on the
parameters γ, σ, φ, and φE .

The map is symmetric with respect to the main diagonal Ld = {(x, y) : x = y},
thus, this diagonal is invariant under themap Z . So, one can consider a 1Dmapwhich
is a restriction of map Z to Ld :

zd : x →
⎧
⎨

⎩

0 if zd(x) < 0 ,

zd(x) if 0 ≤ zd(x) ≤ 1 ,

1 if zd(x) > 1 ,

where an explicit expression of zd(x) can be found in [16]. In a similar way 1D
maps z(0) and z(1) associated with the invariant borders Ix0 and I1y can be obtained
(due to the symmetry of Z an analogous reduction holds on the border I0y and Ix1,
respectively).

To give an example of dynamics generated by the 1Dmap zd we show in Fig. 4.10a
a 1D bifurcation diagram of zd for γ = 5, σ = 2, φE = 0.1, 0 < φ < 1, while
Fig. 4.10b, c present examples of the map zd for various values of φ. In Fig. 4.10a
a fold bifurcation can be recognized leading (for decreasing φ) to attracting and
repelling fixed points denoted Sa and Sb, shown by solid and dashed lines, respec-
tively, which in terms of the map Z are associated with the symmetric interior fixed
points Saa and Sbb. If we continue to decrease φ, the repelling fixed point Sb merges
quite soon with the fixed pointCP1 due to the BT bifurcation (this bifurcation occurs
for φ ≈ 0.135), then the fixed point Sa undergoes a flip bifurcation. The other two
BT bifurcations indicated in Fig. 4.10a occur for the fixed point CP0 for increasing
φ (these bifurcations occur at φ ≈ 0.1891 and φ ≈ 0.9472).
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Fig. 4.10 a 1D bifurcation diagram of the map zd for γ = 5, σ = 2, φE = 0.1, 0 < φ < 1; the
map zd for φ = 0.01, 0.1, 0.15 is shown in (b) and for φ = 0.2, 0.4, 0.8 in (c)

Fig. 4.11 1D bifurcation diagrams of the map zd for γ = 5, φE = 0.1, 0 < φ < 1 and σ = 3 in
(a), σ = 8 in (b)

Figure4.11 shows twomore 1D bifurcation diagrams of themap zd , for σ = 3 and
σ = 8, where one observes for decreasing φ the logistic bifurcation scenario up to
the contact of a chaotic attractor with its basin boundary defined by the fixed point
CP1 and its preimage. This bifurcation (called also final bifurcation) is caused by the
homoclinic bifurcation of the fixed point Sa, after which the fixed pointCP1 becomes
anM-attractor, while the chaotic attractor is transformed into a chaotic repellor.

Figures4.12 and 4.13 illustrate how we can use the 1D maps zd, z(0) and z(1) to
describe the dynamics of the map Z . For the considered parameter values Z has four
attracting fixed points, namely, CP11, Saa, BPc1 and BP1c. Their basins of attraction
shown in Fig. 4.12 are separated by the stable sets of the saddle fixed points denoted
ASef , ASfe, BP1d and BPd1. In this figure as well as in the others, attracting, repelling
and saddle fixed points are marked by black, white and gray circles, respectively.
The curves Ωh and Ωf given in (4.14) and (4.15) are also drawn. In Fig. 4.13 the
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Fig. 4.12 Basins of attraction of fixed points Saa, BP1c, BPc1 and CP11 of the map Z for γ = 5,
σ = 2, φE = 0.1, φ = 0.15

Fig. 4.13 The map z(0) in (a), z(1) in (b) and zd in (c) for γ = 5, σ = 2, φE = 0.1, φ = 0.15

corresponding maps zd, z(0) and z(1) are shown. One can deduce that an initial point
(x0, y0) ∈ I0y (see themap z(0)) is attracted to the saddle fixed pointCP01 (similarly, an
initial point (x0, y0) ∈ Ix0 is attracted toCP10),while an initial point (x0, y0) ∈ Ix1 (see
the map z(1)) with 0 < x0 < d is attracted to BPc1, and an initial point (x0, y0) ∈ Ix1
with d < x0 < 1 is attracted to CP11 (analogous conclusions hold for an initial point
(x0, y0) ∈ I1y). Finally, an initial point (x0, y0) ∈ Ld (see the map zd) with 0 < x0 < b
is attracted to Saa, and with b < x0 < 1 is attracted to CP11.

Figures4.14 and 4.15 illustrate one more example. As can be seen in Fig. 4.14,
the map Z has an attracting 2-cycle located on the main diagonal (compare with the
map zd in Fig. 4.15c) with a basin of attraction shown in red, and two M-attracting
fixed points,BPc1 ∈ Ix1 andBP1c ∈ I1y (compare with themap z(1) in Fig. 4.15b) with
green and blue basins, respectively. Boundaries of these basins are proper segments
of I0y, Ix1, Ix0, I1y and their preimages. An initial point (x0, y0) ∈ Ix1 is attracted to
BPc1, an initial point (x0, y0) ∈ I1y is attracted to BP1c, while the dynamics on Ix0
and I0y are more complicated: as it follows from the dynamics of the map z(0) (see
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Fig. 4.14 An attracting 2-cycle (yellow circles) and its basin shown in red, andM-attracting fixed
points BPc1 and BP1c with green and blue basins, respectively, for γ = 5, σ = 2, φE = 0.1, φ =
0.01

Fig. 4.15 The 1D maps z(0) in (a), z(1) in (b) and zd in (c) for γ = 5, σ = 2, φE = 0.1, φ = 0.01

in Fig. 4.15a), an initial point (x0, y0) ∈ I0y belonging to the segment shown green
(related to the flat branch of z(0)) or to its preimages is mapped intoCP01, while other
initial points of I0y (except for the preimages of the fixed point BP0g) are attracted
to a 2-cycle. Similarly, an initial point (x0, y0) ∈ Ix0 belonging to the blue segment
or its preimages is mapped to CP10 while other initial points of Ix0 (except for the
preimages of the fixed point BPg0) are attracted to a 2-cycle belonging to Ix0.

Figure4.16 presents a 2D bifurcation diagram and its enlargement in the (φ, γ )-
parameter plane, together with the bifurcation curves BTd0, BTd1, BT(0)1 and BT(1)0

(their explicit expressions can be found in [16]). The horizontal lines with double
arrows indicate stability regions of the related CP fixed points. In particular, it can
be seen that the blue region bounded by BTd0 and BT(1)0 is associated with four
coexisting attractingCP fixed points. The dark gray regionmarkedCPM corresponds
to CP fixed points which are M-attractors. The region shown in yellow is related to
attracting border fixed points BPx1, BP1x. The red region marked S is associated
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Fig. 4.16 2D bifurcation diagram in (a) and its enlargement in (b) in the (φ, γ )-parameter plane
for σ = 2, φE = 0.1

with attracting symmetric interior fixed point Sxx. It can be seen that this fixed point
undergoes a flip bifurcation leading to an attracting 2-cycle (its stability region is
shown in green). Then, when decreasing φ, a region related to an attracting 4-cycle
is recognizable (it is shown in magenta), as well as other periodicity regions. Here,
a white region is related to either higher periodicity or chaotic attractors. Given
that the 2D bifurcation diagram in Fig. 4.16 is obtained for only one initial point,
(x0, y0) = (0.5, 0.51), coexistence of attractors other than theCP fixed points cannot
be seen in this figure. In order to study such a coexistence, we consider below a 1D
bifurcation diagram related to the cross-section of the 2Ddiagram for γ = 5 indicated
by the thick arrow.

First in Fig. 4.17a we present a 1D bifurcation diagram (x, y) versus φ for γ = 5,
σ = 2, φE = 0.1 and 0 < φ < 1, where only fixed points are shown, namely, the
branches related to the border fixed points BPx0, BPx1, BP0y, BP1y are shown in

Fig. 4.17 In a Fixed points of the map Z in the (x, y, φ)-space for 0 < φ < 1. In b 1D bifurcation
diagram (x, y)versusφ for 0 < φ < 0.17.Theother parameters are fixed asγ = 5, σ = 2, φE = 0.1
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Fig. 4.18 Projection of the 1D bifurcation diagram shown in Fig. 4.17b to the (x, φ)-plane. Here
γ = 5, σ = 2, φE = 0.1 and 0 < φ < 0.17 in (a), 0 < φ < 0.03 in (b)

green, blue, magenta and light blue, respectively, while the branches of interior
asymmetric and symmetric fixed points ASxy and Sxx are shown in red and brown,
respectively. Border-transcritical and pitchfork bifurcations that these fixed points
undergo, are indicated by black and red circles. Next, in Fig. 4.17b a complete 1D
bifurcation diagram (x, y) versus φ is presented for 0 < φ < 0.17. Its projection
on the (x, φ)-plane is shown in Fig. 4.18. In these figures dashed lines are related to
repelling or saddle fixed points, while attracting fixed points are shown by solid lines.
Besides border-transcritical and pitchfork bifurcations, fold and flip bifurcations are
also indicated.

Let us comment now on the bifurcation sequence observed for decreasing φ at
fixed σ = 2, φE = 0.1, γ = 5 (see the thick arrow in Fig. 4.16), and how basins
of attraction of coexisting attractors change due to these bifurcations. We begin
with the value φ = 0.4 at which the map Z has four coexisting attracting CP fixed
points. Their basins of attraction shown in Fig. 4.19a are separated by the stable sets
of the border saddle fixed points BP0b, BPb0, BPc1 and BP1c. When φ decreases,
the basins of CP00, CP10 and CP01 decrease while the basin of CP11 increases (see
Fig. 4.19bwhere φ = 0.25). If the parameter point crosses the bifurcation curveBTd0
(at φ ≈ 0.1891), the fixed point CP00 loses stability, so that between the curves BTd0
and BT(1)0, the map Z has three coexisting attracting fixed points, CP11, CP10 and
CP01. Then crossing BT(1)0 (at φ ≈ 0.1655), the fixed points CP10 and CP01 become
saddles so that between the curves BT(1)0 and BTd1 only CP11 is attracting among
the CP fixed points. However, in this parameter range other fixed points appear.

In fact, at φ ≈ 0.1613 (the parameter point enters the yellow region in Fig. 4.16)
a fold bifurcation occurs in the map z(1) (see the bifurcation marked 1 in Fig. 4.18a)
leading to one attracting and one repelling fixed points which in terms of the map
Z are associated with two pairs of border asymmetric fixed points, namely, two
attracting fixed points, BPc1, BP1c, and two saddle fixed points, BPd1, BP1d . Thus,
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Fig. 4.19 Basins of attraction ofCP fixed pointsCP00,CP11,CP01 andCP10 for σ = 2, φE = 0.1,
γ = 5 and φ = 0.4 in (a), φ = 0.25 in (b)

Fig. 4.20 Basins of attraction of fixed points CP11, BPc1 and BP1c for σ = 2, φE = 0.1, γ = 5
and φ = 0.16 in (a), φ = 0.155 in (b)

after this bifurcation, the map Z has three coexisting attracting fixed points, CP11,

BPc1 and BP1c. An example of their basins is shown in Fig. 4.20a where φ = 0.16.
If we continue to decrease φ, a fold bifurcation in the map zd occurs at φ ≈

0.1565 (see the bifurcation marked 2 in Fig. 4.18a) leading to a pair of symmetric
interior fixed points, a saddle fixed point Saa and a repelling fixed point Sbb. An
example of the phase portrait soon after this bifurcation is shown in Fig. 4.20b where
φ = 0.155. Next bifurcation is the subcritical pitchfork bifurcation of Saa occurring
at φ ≈ 0.1529 (the parameter point enters the red region in Fig. 4.16; see also the
bifurcation marked 3 in Fig. 4.18a) after which this fixed point becomes attracting
and two asymmetric interior saddle fixed points are born, denoted ASef and ASfe. An
example of the basins of attraction of coexisting fixed points CP11, BPc1, BP1c and
Saa is shown in Fig. 4.12 where φ = 0.15.

Next bifurcation occurs when the parameter point crosses the curve BTd1 (at φ ≈
0.135) so that CP11 loses stability merging simultaneously with the fixed points Sbb,
BPd1 and BP1d due to a BT bifurcation (see the bifurcation marked 4 in Fig. 4.18a).
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After this bifurcation the map Z has three coexisting fixed points, Saa, BPc1 and
BP1c (see Fig. 4.21a where φ = 0.134) until one more BT bifurcation occurs (see
the bifurcation marked 5 in Fig. 4.18a) as BPc1 and BP1c lose stability merging
with ASef and ASfe, respectively. After this bifurcation the unique attractor is the
fixed point Saa. At φ ≈ 0.0256, it undergoes a flip bifurcation (see the bifurcation
marked 8 in Fig. 4.18b). The 2-cycle born due to this bifurcation belongs to the
main diagonal Ld . See, e.g., Fig. 4.14, where φ = 0.01,which shows an attracting 2-
cycle coexisting withM-attracting fixed points BPc1 and BP1c (the reason for which
these fixed points are attracting again is explained below). At φ ≈ 0.005, the 2-cycle
undergoes a supercritical pitchfork bifurcation (see the bifurcation marked 10 in
Fig. 4.18a) leading to two asymmetric interior 2-cycles which are symmetric to each
otherwith respect toLd (seeFig. 4.21bwhereφ = 0.004). Then eachof these 2-cycles
undergoes a Neimark-Sacker bifurcation leading to closed invariant attracting curves
which after destruction lead to chaotic attractors. The pitchfork and Neimark-Sacker
bifurcation curves can be seen in Fig. 4.22b which shows 2D bifurcation diagrams

Fig. 4.21 a Basins of attraction of fixed points Saa, BPc1 and BP1c for φ = 0.134; b Basins of
two attracting 2-cycles (yellow and blue circles) and M-attracting fixed points BPc1 and BP1c for
φ = 0.004

Fig. 4.22 2D bifurcation diagram in (a) and its enlargement in (b) in the (φ, φE)-parameter plane
for γ = 5, σ = 2



4 Some Dynamical Models in Regional Economics … 249

in the (φ, φE)-parameter plane for γ = 5, σ = 2. In the meantime, at φ ≈ 0.0936,
the map z(0) undergoes a fold bifurcation (see the bifurcation marked 6 in Fig. 4.18a)
leading to attracting and repelling fixed points, ASg and ASh, respectively, which
in terms of the map Z are associated with two pairs of border asymmetric fixed
points, saddles BP0g, BPg0, and repellors BP0h, BPh0. Soon after, at φ ≈ 0.0911 (the
parameter point crosses BT(0)1) the fixed points BP0h and BPh0 merge with CP01

and CP10, respectively, due to a BT bifurcation (see the bifurcation marked 7 in
Fig. 4.18a), so that saddles CP01 and CP10 become repelling fixed points. Then the
fixed point ASg of the map z(0) undergoes a cascade of flip bifurcations (two of which
are marked 9 and 11 in Fig. 4.18b) following the logistic bifurcation scenario up to
the homoclinic bifurcation of ASg (see the bifurcation marked 12 in Fig. 4.18b). In
the meantime at φ ≈ 0.0515 (when the fixed point ASg is still stable) the flat branch
with x = 1 appears in the definition of the map z(0) inside the interval [0, 1], so that
its fixed pointCP1 becomes anM-attractor (see, e.g., Fig. 4.15a). In terms of the map
Z this leads to the stabilization of fixed points BPc1 and BP1c which also become
M-attractors (see, e.g., Fig. 4.14 or Fig. 4.21b). So, for φ � 0.0515 all the mentioned
above attractors coexist with the M-attracting fixed points BPc1 and BP1c.

To see how the described above scenario changes if other parameters are varied,
we show in Fig. 4.22 a 2D bifurcation diagram in the (φ, φE)-parameter plane for
γ = 5, σ = 2. As before, the arrow indicates a cross-section for φE = 0.1 along
which the bifurcation sequence described above is observed. In this parameter plane
the pitchfork bifurcation curve of the 2-cycle leading to two coexisting 2-cycles is
shown. One can also see the Neimark-Sacker bifurcation curve and a 1 : 3 resonance
region which is associated with two coexisting 6-cycles. Basins of two attracting
6-cycles and M-attracting fixed points BPc1 and BP1c are shown in Fig. 4.23, where
φ = 0.003, φE = 0.2.

Fig. 4.23 Basins of two
attracting 6-cycles (shown in
light blue and magenta) and
M-attracting fixed points
BPc1 and BP1c (shown in
green and dark blue,
respectively) for γ = 5,
σ = 2, φ = 0.003, φE = 0.2
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4.3.5 2D Nonsymmetric NEG Map

Now we consider the asymmetric map (4.12) presented in Sect. 4.2.8.2 and studied
in [15] representing an economy with four regions characterized by different labor
endowments. This map depends on 8 parameters: the values of the parameters μ,

σ, E, γ and LB are fixed as μ = 0.7, σ = 3, E = 100, γ = 20, LB = 400, the
parameter LS can take the values 200, 300, and 0 < φC, φD < 1 are parameters to
be varied.

First, in Fig. 4.24 we show the stability regions of the CP fixed points bounded
by the BT bifurcation curves for LS = 200. In the curves of Fig. 4.24a ‘vs’ refers
to ‘vertical stability’ associated with multiplier λv(x, y) = 1, ‘hs’ means ’horizon-
tal stability’ associated with multiplier λh(x, y) = 1, and the numbers indicate the
related CP fixed point. For example, the curve marked ‘vs00’ corresponds to the
condition λv(0, 0) = 1 that holds for Ωf (0, 0) = 1. A CP fixed point is stable if
the parameter point is located on the right-hand side of both bifurcation curves, vs
and hs, where the stability conditions (4.16)–(4.19) are satisfied. For the considered
parameter values there are four regions corresponding to different combinations of
the stable CP fixed points. Namely, in the light-blue area all four CP fixed points
are stable; in the dark-gray area, the fixed points CP00, CP01 and CP10 are stable;
in the light-grey area CP00 and CP01 are stable; and, finally, in the green and the
yellow areas, only one CP fixed point, CP01 or CP00 respectively, is stable. The 1D
bifurcation diagram φD versus (x, y) shown in Fig. 4.24b corresponds to the para-
meter path for φC = 0.8, 0.1 < φD < 0.8, indicated by a red arrow in Fig. 4.24a. In
Fig. 4.24b, numbered red points indicate BT bifurcations, tick solid lines stable fixed
points, while dashed and dotted lines correspond to saddle and repelling fixed points,
respectively.

Fig. 4.24 In a stability regions of the CP fixed points in the (φC, φD)-parameter plane; In b 1D
bifurcation diagram φD versus (x, y) for φC = 0.8 related to the parameter path indicated in (a) by
a red arrow. Here Ls = 200
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Fig. 4.25 In a basins of four coexisting attracting CP fixed points for φC = 0.8, φD = 0.1; in b
1D maps defined on the invariant borders of I2. Here Ls = 200

An example of the basins of four coexisting attracting CP fixed points is shown in
Fig. 4.25a, where LS = 200, φC = 0.8, φD = 0.1. These basins are separated by the
stable invariant sets of the saddle border fixed points BP0a, BP1b, BPc0 and BPd1,
whose origin is the repelling interior fixed point IPef . In Fig. 4.25b, we show the
1D maps zx0, zx1, z0y and z1y to which map Z is reduced to on the related invariant
borders of I2.

When increasing φD, the fixed pointCP11 loses stability and becomes a saddle via
a BT bifurcation (the point BPx1 merges with CP11 and at the bifurcation λh(1, 1) =
1, see the point (1) in Fig. 4.24). After this bifurcation three attracting CP fixed
points coexist, CP00, CP01 and CP10. If φD keeps on increasing, the fixed point IPxy

undergoes a BT bifurcation merging with the border point BP1y (at this bifurcation
Ωf ∩ Ωh = IPxy = BP1y and λh(1, y) = 1), and then a BT bifurcation occurs for
point BPx0; at the same time the fixed point CP10 becomes a saddle (see the point
(2) in Fig. 4.24). After this bifurcation only two attracting CP fixed points coexist,
CP00 and CP01. Then, the point CP00 loses stability and becomes a saddle via a BT
bifurcation of the fixed point BP0y (see point (3) in Fig. 4.24), after which only one
attracting fixed point is left, namely, CP01.

Let us investigate now the complete bifurcation structure of the (φC, φD)-
parameter plane. The parameter region which is left uncolored in Fig. 4.24a is associ-
ated with more complex dynamics. In Fig. 4.26a we present 2D bifurcation diagram
in the (φC, φD)-parameter planewhere regions related to attracting cycles of different
periods n ≤ 23 are shown by different colors (periods of the largest regions are indi-
cated by numbers), white region is associated either with cycles of higher periods,
or with chaotic attractors, pink and red regions correspond to attracting border and
interior fixed points, respectively, and dark gray region is related toM-attracting CP
fixed points denotedCPM . To clarify which bifurcations occur at the transitions from
one area to another we show in Fig. 4.26b a 1D bifurcation diagram φC versus (x, y)
(note that values of φC are shown decreasing) for fixed φD = 0.1, which corresponds
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Fig. 4.26 In a 2D bifurcation diagram in the (φC, φD)-parameter plane; In b bifurcation diagram
φC versus (x, y) for φD = 0.1 related to the parameter path indicated in (a) by a long black arrow.
Note that values of φC are shown decreasing. Here Ls = 300

to the parameter path indicated by the horizontal arrow in Fig. 4.26a. Given that only
one initial point is used to produce Fig. 4.26a, coexisting attractors cannot be seen
in this figures. To clarify this issue we show below several examples of basins of
coexisting attractors.

Let us first comment on the bifurcations occurring for parameter values indicated
by numbers (1)–(6) in Fig. 4.26. For decreasing φC first, at φC ≈ 0.2295, a BT
bifurcation of the saddle fixed point CP10 occurs in the vertical direction (the related
parameter point is indicated by (1)) at which CP10 becomes repelling merging with a
repelling border fixed point BP1y which is born a bit before, at φC ≈ 0.2389, due to a
fold bifurcation (see the black circle in Fig. 4.26b) in a pair with a saddle border fixed
point BP′

1y. Then at φC ≈ 0.1962 the attracting fixed point CP00 becomes locally a
saddle via a BT bifurcation in the vertical direction (in Fig. 4.26 this bifurcation
is marked by (2)) that leads to the appearance of an attracting border fixed point
BP0y. If we continue to decrease φC, at φC ≈ 0.173 the saddle fixed point CP01

undergoes a BT bifurcation in the horizontal direction (see the point (3) in Fig. 4.26)
and becomes repelling leading to the appearance of a saddle border fixed point
BPx1. Then at φC ≈ 0.1659 the attracting border fixed point BT0y undergoes a BT
bifurcation in the horizontal direction (see the point (4)) leading to an attracting
interior fixed point IPxy. A BT bifurcation of CP00 in horizontal direction occurring
at φC ≈ 0.1534 (see the point (5)) transforms the saddle fixed point CP00 into a
repelling one and gives birth to a saddle border fixed pointBPx0.First period-doubling
bifurcations of the border and interior fixed points are indicated in Fig. 4.26 by
gray circles. Period-doubling bifurcation of the interior fixed point occurs at φC ≈
0.1481. Each border 2-cycle undergoes a cascade of period-doubling bifurcations
leading to chaos, while an interior 2-cycle undergoes a Neimark-Sacker bifurcation
resulting in appearance of 2-cyclic attracting closed invariant curves (we show below
an example of such an attractor). Orange circles in Fig. 4.26 indicate homoclinic
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Fig. 4.27 In a coexisting attracting fixed point BP0a (with blue basin) andM-attracting fixed point
CP00 (with red basin) for φC = 0.196, φD = 0.1; in b 1D maps defined on the invariant borders of
I2. Here Ls = 300

bifurcations leading to disappearance of chaotic attractors on the related borders of
I2, as well as disappearance of an interior chaotic attractor.

Let us clarify the described above bifurcation sequence presenting several exam-
ples of basins of coexisting attractors.

For 0.1962 � φC � 0.2295 (see the range of φC between the points (2) and (1)
in Fig. 4.26) map Z has a unique attractor which is fixed point CP00, while for
0.1659 � φC � 0.1962 (see the range between the point (4) and (2)) map Z has
coexisting attracting fixed point BP0a and M-attracting fixed point CP00: Fig. 4.27a
shows basins of attraction of these fixed points at φC = 0.196, and in Fig. 4.27b
the 1D maps defined on the related borders of I2 are presented. It becomes clear
why fixed point CP00 is an M-attractor if one looks at the graph of map z0y defined
on border I0y: even if locally the fixed point y = 0 is already repelling and initial
points from its right neighborhood are attracted to fixed point y = a, it has quite a
large basin of attraction shown in Fig. 4.27b in red. Indeed, any point of the interval
associated with the flat branch of z0y, as well as any its preimage, is mapped into
y = 0 in a finite number of steps. Respectively, initial points belonging to the red
islands Fig. 4.27a are mapped into CP00 in a finite number of steps (in particular,
points from the largest red island are mapped into CP00 in one step).

For 0.1534 � φC � 0.1659 (see the range between the point (5) and (4) in
Fig. 4.26) map Z has coexisting attracting fixed point IPef and two M-attracting
fixed points,CP00 and BP0a.An example of their basins is shown in Fig. 4.28a where
φC = 0.159.

For 0.1481 � φC � 0.1534 (see the range between the point (6) and (5) in
Fig. 4.26) the map Z has one coexisting attracting fixed point IPef and three
M-attracting fixed points, CP00, BP0a and BPc0. An example of their basins is shown
in Fig. 4.28b where φC = 0.15.

As already mentioned, for decreasing φC the fixed point IPef undergoes a period-
doubling bifurcation leading to an interior 2-cycle which then undergoes a Neimark-
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Fig. 4.28 In a coexisting attracting fixed point IPef (with orange basin),M-attracting fixed points
CP00 and BP0a (with red and blue basins, respectively) for φC = 0.159, φD = 0.1; In b coexisting
M-attracting fixed points CP00, BP0a and BPc0 (with red, blue and dark-green basins, respectively)
and attracting fixed point IPef (with orange basin) for φC = 0.15

Fig. 4.29 In a an enlarged part of the phase planewith coexistingM-attracting fixed pointsCP00 and
BPc0 (with red and dark-green basins, respectively), M-attracting 2-cycle

{
C0a1 ,C0a2

}
(with blue

basin) and 2-cyclic closed invariant curves (with orange basin) for φC = 0.1398. In b An enlarged
part of the phase plane with coexisting M-attracting fixed points CP00 and BPc0, M-attracting
2-cycle

{
C0a1 ,C0a2

}
and 2-cyclic chaotic attractor for φC = 0.1375. Here Ls = 300

Sacker bifurcation. As a result of this bifurcation 2-cyclic attracting closed invariant
curves are born. Figure4.29a presents an enlarged part of the basin of such an attractor
forφC = 0.1398, as well as basins of coexistingM-attracting fixed pointsCP00,BPc0

and M-attracting 2-cycle
{
C0a1 ,C0a2

}
belonging to the border I0y. If we continue to

decrease φC 2-cyclic closed invariant curves are transformed in a chaotic attractor.
An example of 2-cyclic chaotic attractor is shown in Fig. 4.29b for φC = 0.1375,
which is near its final bifurcation occurring due to a contact of the attractor with its
basin boundary.
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4.4 Conclusion and Further Research Topics

In this contribution, we presented the basic ideas of the New Economic Geography
approach and a general multi-regional model. We showed how methods of dynamic
system’s theory can be applied to analyze thesemodels. Thus, this contribution is also
an introduction into a broader field of research thatwepursuedwith several coauthors:
In a two-region framework, we reformulated various NEG models in discrete time
and studied how the dynamic properties change (see [7, 8, 20]); we analyzed the
implication for regional dynamics of various policy options, such as tax policy (see
[13, 14]) and productive public expenditures (see [9–11]); and we introduced first
nature asymmetries between the regions and more specific expectation formation
hypotheses for the firm relocation decision (see [2–4]). Most recently, we studied
multi-regional NEGmodels and their dynamic properties (for an overview see: [12];
for specific analyses see [15–19]) and addressed questions of regional integration
and international globalization.
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Chapter 5
Dynamic Modeling in Renewable
Resource Exploitation

Fabio Lamantia, Davide Radi and Lucia Sbragia

Abstract This chapter reviews some fundamental models related to the exploitation
of a renewable resource, an important topic when dealing with regional economics.
The chapter starts by considering the growth models of an unexploited population
and then introduces commercial harvesting. Still maintaining a dynamic perspective,
an analysis of equilibrium situations is proposed for a natural resource under various
market structures (monopoly, oligopoly and open access). The essential dynamic
properties of these models are explained, as well as their main economic insights.
Moreover, some key assumptions and tools of intertemporal optimal harvesting are
recalled, thus providing an interesting application of the theory of optimal growth.

5.1 Introduction

In this chapter we review some fundamental models about the exploitation of a
single-species renewable resource.

We start by considering the growth models of an unexploited population, and then
we introduce a commercial harvesting. Still maintaining a dynamic perspective, we
first comment on the steady state levels of the natural resource under various market
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structures (monopoly, oligopoly and open access). We explain the essential dynamic
properties of these models as well as the main economic insights. We then review
the key models of intertemporal optimal harvesting, which constitute an interesting
application of the theory of optimal growth. In this case, a single agent has the
exclusive right to harvest the resource and has to conceive an optimal extraction
plan over an infinite planning period. We also consider the situation where many
agents have at the same time the right to harvest from the same common stock of the
resource, model led by dynamic optimization problems with strategic interactions,
i.e., dynamic games. Starting from the 70s the game theoretic approach has been
applied to study the exploitation of the fisheries and, more generally, of renewable
resources. This is possible because the use of this common pool natural resource
by many harvesters gives rise to numerous externalities, namely, resource stock
externalities, crowding externalities and mesh externalities, just to cite some. We
review in this chapter two well-known examples of dynamic games in fisheries.
Finally, we end the chapter by showing how to build up an evolutionary fishery
model with different time scales. The example in this chapter deals with labeling
to promote the adoption of “environmentally-friendly” technologies versus standard
technologies in the fishing industry.

For expositional purposes, we only consider one resource and disregard multi-
species models. We simplified the treatment to provide a quick overview on the
modeling of renewable resources, to show different mathematical tools at work and
to suggest an accessible set of examples to a general readership. Since there are
many specialized books on mathematical bioeconomics with an in-depth review of
the subject, we refer the reader to these books for a more extensive analysis of the
topic. Here we suggest [11] as an excellent example.

5.2 Basic Models

A general dynamic model to describe the time evolution of the stock of a renewable
natural resource subject to harvesting is given, in continuous time, by the differential
equation

ẋ(t) := dx(t)

dt
= f (x(t)) − h(t), (5.1)

where x(t) represents the amount of fish available in a given region at a certain time t,
f (x (t)) is the instantaneous growth rate of the resource and h(t) is the instantaneous
harvesting rate. Discretizing equation (5.1), i.e., replacing the time derivative dx/dt
with the difference quotient (x(t + Δt) − x(t))/Δt and further measuring time such
that Δt = 1, one obtains the discrete version of equation (5.1)1:

x′ := x(t + 1) = x(t) + f (x(t)) − h(t). (5.2)

1In this chapter ′ denotes the unit-time advancement operator, that is x′ = x (t + 1).
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In this case, time is punctuated at discrete intervals (or periods) whose duration
is determined by the characteristics of the system considered (days, months, sea-
sons, years) and f (x(t)) is the growth of the resource in a unit of time. Notice that
f (x(t))/x(t) represents the specific growth rate of the resource in unit time; h(t)
denotes the amount of resource removed in unit time (in the case of fish resources,
it represents the landings made through fishing).

The function f (.), which represents the law of evolution of the unexploited
resource (the “natural growth”), allows to calculate, on the basis of the amount of
this resource at time t, the amount which will be present in the successive instant of
time (continuous time) or in the following period t + 1 (discrete time). The function
f (.) takes into account the biological characteristics of the species and of the natural
environment. The laws of motion (5.1) or (5.2) incorporate harvesting through a
function h(t). Harvesting decisions are usually made on the basis of social and/or
economic considerations (profit maximization; conservation of the resource) within
the constraints imposed by the current legislation.

In continuous, as well as in discrete time, according to equation (5.1) or (5.2),
respectively, the resource is in a steady state (or equilibrium) when the values of x(t)
are such that f (x(t)) = h(t). This equation, known as equilibrium condition, states
that the population level remains constant over time if and only if the net growth in
the unit time is equal to the amount of the resource removed per unit time. Obviously,
if at time t it is f (x(t)) > h(t) [<] then the population will grow [decrease] at the
current time or in the following period, depending on whether time is continuous or
discrete.

5.2.1 Unexploited Population Dynamics

If h(t) = 0, i.e., in the absence of harvesting, equations (5.1) or (5.2) describe the
dynamics of the natural resource, which essentially depends on the biological proper-
ties of the population considered and the characteristics of the environment in which
it lives. The simplest model assumes that in a population x(t), αx(t) individuals are
born and mx(t) die at each unit of time, so that in a time interval of length Δt, the
natural growth is given by

x(t + Δt) = x(t) + rx(t)Δt, (5.3)

where r = α − m is the intrinsic growth rate. From (5.3), one obtains the continuous
dynamics

dx

dt
= rx(t) (5.4)

by letting Δt → 0 and the discrete dynamics

x(t + 1) = x(t) (1 + r) (5.5)

by replacing Δt = 1 in (5.3).
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Equations (5.4) and (5.5) are clearly linear in x. If r < 0, then the resource con-
verges to the extinction in the long run at exponential speed. If r = 0, then the popu-
lation is maintained at a constant value, equal to the initial population level. Finally,
if r > 0, then (5.4) or (5.5) provide for an exponential growth of the population.
This constitutes one of the basic principles of ecology, according to which a pop-
ulation, in an environment characterized by virtually unlimited quantities of vital
resources and space, reproduces at a rate directly proportional to the actual number
of individuals.

If the environment is characterized by finite available living resources, then (5.4)
and (5.5) can be regarded as an approximation of the law of population growth
in the initial stage, when the population size is small relatively to space and food
availability.

When the natural environment can only offer a finite amount of living resources
the death ratem is not constant, but it increases with the population size, for example
m = βx(t). This can be seen as the result of overcrowding, which causes shortages
of food and living space.

In this case, the specific growth rate becomes r = α − βx(t). The point at which
r = 0 is given by K = α/β, which represents a point of balance, since it is charac-
terized by zero growth, and it is called carrying capacity.

As a consequence, models (5.4) or (5.5) are nonlinear and represent the well-
known equations of a logistic growth, introduced for the first time in [29]. In con-
tinuous time and in discrete time the system assumes, respectively, the following
forms

dx

dt
= αx(t) − β (x(t))2 (5.6)

and
x(t + 1) = x(t) + αx(t) − β (x(t))2 . (5.7)

Equations (5.6) and (5.7) have steady states at x0 = 0 and xK = K which correspond,
respectively, to the extinction (or nonexistence) of the species and to natural carrying
capacity (see Fig. 5.1a).

From the definition of equilibrium, it follows that if the system is located, at a
certain instant, in one of these points, there it remains also in subsequent periods.
However, if we perturb the two equilibria they show different behaviors: in the case
of x0 = 0, a small increase in the resource will be amplified, and then the subsequent
values x(t) move away from that equilibrium; in the case of the equilibrium xK = K ,
endogenous forces of the system will tend to dampen any small displacements, and
bring back the value of x(t) to its original equilibrium K , being f (x) > x on the left
of xK = K and f (x) < x on the right. This explains why the carrying-capacity is
considered “natural” equilibrium value of a species in its habitat.2

2New dynamic phenomena can be observed when the species has a unimodal growth function,
i.e., it has maximum growth at an intermediate value of the population. In fishery models, this
typically occurs when the population has the tendency to decrease when its level drops below a
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Fig. 5.1 aDynamics of fishwithout harvesting; bDynamics of fishwith constant harvesting h = h;
c Dynamics of fish with harvesting h (x) = qEx; d Dynamics of fish with harvesting hO (x) =
ax/(2

[
x + γ

]
), h′

O (0) > f ′ (0) and hO (α/(2β)) > α2/(4β); e Dynamics of fish with harvesting
hO (x) = ax/(2

[
x + γ

]
), h′

O (0) > f ′ (0) and hO (α/(2β)) < α2/(4β); f Dynamics of fish with
harvesting hO (x) = ax/(2

[
x + γ

]
) and h′

O (0) < f ′ (0)

The instability of the extinction equilibrium entails that, if for any reason the
population was reduced to a few units, its reproductive capacity would allow, after a
certain number of periods, to return to the natural equilibrium, i.e., to the carrying-
capacity level K .

In biology there are many growth functions that describe the behavior of different
types of species. However, we can say that the extinction and the carrying capacity
are steady states for most of them.3

5.2.2 Basic Harvesting Modeling

Consider again (5.1) or (5.2) with h(t) > 0. Function h(t) can take many forms
according to the socio-economic assumptions that one can make.

(Footnote 2 continued)
certain threshold, known as the critical depensation level. We do not deepen further this point here
for the sake of time.
3For instance this happens underGompertz growth, considered later on in an example of this chapter.
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The simplest harvesting rule consists in imposing a fixed harvesting quota at each
unit of time. This can be modeled by fixing h(t) equal to a constant value, say h > 0
in (5.1) or (5.2).4

The logistic growth function adjusted for the harvesting becomes the parabola

g(x) = −βx2 + αx − h

and by solving the equation g(x) = 0, which provides the equilibria of the dynamical
system (see Fig. 5.1b), we get

xh = α −
√

α2 − 4βh

2β
and xK = α +

√
α2 − 4βh

2β
,

that are real and positive if h < α2/(4β). Intuitively, if the share taken h is not too
high, two equilibria are present: xh, unstable, and xK , stable. The unstable equilibrium
xh is of particular interest: if in a certain period t the stock level x is such that x > xh
[x < xh], then g(x) is positive [negative] and, in the subsequent period, the resource
will move further away from xh. The unstable equilibrium xh represents a threshold
value, such that if the value of the stock x becomes lower than xh at a certain time
(for example due to an unauthorized harvesting or a higher mortality), the dynamics
of the system will lead to negative values, i.e., towards the extinction in a finite time;
analogously, if an external shock keeps the resource above the value xh, then the
system will evolve spontaneously towards the stable equilibrium xK . For this reason,
the unstable equilibrium xh is also said “survival threshold”.

Notice that xK < K , where K = α/β is the carrying capacity of the unexploited
population. Both equilibrium values xh and xK depend on the size of h, and as h
increases xh increases and xK decreases. This means that, the equilibrium value
of the species decreases and the survival threshold decreases as well, making the
system more vulnerable. When the parameter h reaches the value h = α2/(4β) the
two equilibrium points merge into each other and the parabola g(x) becomes there
tangent to the abscissa axis. A further increase in h leads to the disappearance of
any equilibrium. So, if the harvesting exceeds α2/(4β), which is a (fold) bifurcation
value, the only possible evolution is the one that leads to extinction.

We turn now to the case where a constant effort is imposed, as suggested in [25].
By “fishing effort” wemean a parameter that represents the number of fishing vessels
sent in the water, the number of hours or days spent fishing, the number of hooks
employed in long-line fishing and so on. Under constant effort, harvesting is assumed
to be proportional to the current stock of fish present in the water basin considered,
i.e.,

h = qEx, (5.8)

4To simplify notation, unless otherwise stated, in the following we write x(t) = x and h(t) = h.
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whereE denotes the fishing effort. This functional form leads to the so calledGordon-
Schaefer fishery model, see [17, 25]. The additional parameter q is referred to as the
catchability coefficient, and it models the degree of sophistication of the harvesting
technology. Obviously, the higher is q, the more productive the harvesting is. With
this type of harvesting, the growth function becomes:

gE(x) = −βx2 + x (α − qE) .

The function gE(x) is, again, a parabola that passes through the origin of the axes
and it reaches its maximum value at the resource level given by x = (α − qE)/(2β).
By solving equation gE(x) = 0, which provides the equilibria of the dynamical sys-
tem, we get the following steady states

x0 = 0 and xE = α − qE

β
. (5.9)

Let us start from an unexploited population, so that the stable equilibrium is the
carrying capacity K = α/β (see Fig. 5.1c). Suppose that a gradual increment in fish-
ing effort occurs. If qE < α, the equilibrium xE is positive and stable, while the
extinction equilibrium x0 = 0 is unstable. However, with an increase in the fishing
effort, the equilibrium level xE decreases. If the fishing effort E and/or the level of
technology used q are increased to the value qE = α, the two equilibria coincide;
further increases of these parameters will cause a (stability-exchange) bifurcation in
which the equilibrium xE becomes unstable and negative, and the extinction equilib-
rium x0 becomes stable. This means that if qE exceeds the parameter α, which is the
birth rate of the species considered, the only possible evolution in the long run leads
to the extinction of the resource.

Under constant effort harvesting, the long-term harvesting (the “sustainable
yield”), given by Y = qExE , can be written as

Y =
{

αqE−q2E2

β
if 0 < qE < α,

0 if qE ≥ α.

Notice that the maximum production Y is obtained for an effort level EMSY =
α/(2q), at which it corresponds to the production

YMSY = α2

4β
(5.10)

known as the Maximum Sustainable Yield (MSY). Usually, an effort level such that
E > EMSY corresponds to a situation of “overfishing”, whereas the less common case
with E < EMSY is referred to as “underfishing”.
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If we assume that the price of landed fish is constant5 and equal to p and that the
average and marginal cost of effort is constant at c, the profit for a representative
fisherman in terms of effort E is given by

π = pqEx − cE. (5.11)

If only one fisherman has the right to harvest the resource, then the sustainable profit
(5.11) becomes

πE = pqExE − cE = −pE2q2 + αpqE

β
− cE,

which is maximized if the fisherman exerts the Maximum Economic Yield (MEY)
effort level

EMEY = α

2q
− cβ

2pq2
.

Since the MEY effort EMEY is lower than the MSY effort EMSY, the single owner is
willing to harvest below the MSY, that is, the single owner will always underfish.
However, [17] observes that if the harvesting rights do not belong exclusively to a
single owner but the resource is open access, then new vessels will enter the fishery
until it remains profitable, that is, until the aggregate effort is such that π = 0. This
condition defines the so called bionomic equilibrium

xBE = c

qp
. (5.12)

By equating xBE to xE in (5.9), the bionomic equilibrium effort level is obtained:

EBE = α

q
− cβ

pq2
.

Hence, when the resource is characterized by open access, overfishing occurs when
p > 2cβ/(qα), that is, provided that the selling price of the resource is sufficiently
high. Note that under open access the total fishing effort is twice the level exerted by
a single owner, EBE = 2EMEY.

5.3 Commercial Harvesting

Assume that total landings are sold in a market with a linear inverse demand function
of the form

5As fish is considered a staple food for the large majority of consumers, in fisheries models price
is often assumed to be constant, see, e.g. [11, 13].
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p = a − h, (5.13)

where p is the maximum selling price and a is the choke-off price. Harvesting cost
takes the form (see [11, 28])

C (x, h) = γ
h2

x
. (5.14)

This cost function can be obtained from a harvesting function of a Cobb-Douglas
type with effort and resource stock as inputs, and with total factor productivity ρ

h(x,E) = ρxλEμ, (5.15)

fromwhich E = ρ−1/μx−α/μh1/μ. Moreover, by assuming that the “production func-
tion” h(x,E) is homogeneous of degree one with λ = μ = 1

2 and that total cost of
fishing is proportional to exerted effort, i.e., C = δE, then we obtain6

C = δρ−2x−1h2 = γ
h2

x
.

Without loss of generality, we assume that ρ = 1, so that γ can be interpreted as a
measure of the inefficiency of the harvesting activity.

If a single exploiter maximizes his current profit

π = h

[
p − γ

h

x

]

we get the harvesting function

h = hO(x) = ax

2
[
x + γ

] with x ≥ 0, (5.16)

which depends on the current stock level x. Thus, a dynamical system in continuous
or discrete time is obtained by substituting (5.16) in (5.1) or (5.2), respectively.

When γ = 0, i.e., when the cost for harvesting is negligible, harvesting reduces
to h = h = a/2. In this case, the model with constant harvesting is retrieved, for
which we have already commented the main properties. When γ > 0, hO(x) is
strictly increasing and strictly concave with hO(0) = 0 and limx→∞hO(x) = a

2 . A
qualitative analysis of the model shows that the main (nondegenerate) cases are (see
Fig. 5.1d,e,f):

6A production function (or harvesting function) of Cobb-Douglas type with fishing effort and fish
biomass as production inputs and λ = μ = 1/2, is used by several authors, see, e.g., [11, 13, 28],
as it captures two fundamental aspects of fishing activity such as gear saturation and congestion.
In particular, gear saturation is expressed by decreasing marginal return to fishing effort while
congestion is expressed by decreasing marginal return to stock (or fish biomass).
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1. h′
O(0) > f ′(0) and hO (α/(2β)) > α2/(4β): no positive equilibrium exists. In this
case, the selling price is too high and the myopic optimization of profits π leads
to the convergence to the extinction equilibrium x0 = 0;

2. h′
O(0) > f ′(0) and hO (α/(2β)) < α2/(4β): two positive equilibria exist,
denoted by xh and xK , with xh < xK . The smaller fixed point, xh, is unstable and
represents a survival threshold for the resource; on the other hand, xK is stable
and represents the carrying capacity modified for harvesting;

3. h′
O(0) < f ′(0): one positive equilibrium exists for all parameter values. In this
case, the system ismore robust, as extinction of the resource is unlikely to happen.

This model can be extended to include N identical agents. The profit of fisherman
i becomes

πi = hi

[
p − γ

hi
x

]
= hi

⎡

⎣a − hi −
N∑

j=1;j �=i

hj − γ
hi
x

⎤

⎦ .

Since profits are strictly concave in harvesting, the first order condition ensures the
existence of a profit maximizing harvesting level:

hO(x) = max
hi

πi.

In addition, as all agents are assumed to be identical, we can write the harvesting of
a single exploiter as follows

h = hO(x) = ax

(N + 1) x + 2γ
with x ≥ 0.

The time evolution of a fish stock harvested by a number of fishing vessels that
changes over time is studied in [27].We refer the reader to this paper for themodeling
approach and the analysis of the entry of new vessels in the competition, which [27]
assumes to be proportional to the profits gained by the fishing activity.

Another important contribution to the oligopolistic models of a fishery is the
one in [24]. The novelty of this paper consists in the introduction of an imperfectly
competitive international commercial fishing market which means that the model to
solve is a duopoly with two demand functions. In the model the fish stock evolves in
continuous time following the logistic equation

ẋ = αx(1 − βx).

The natural resource is harvested by two countries in an open-access sea and sold
in two markets: home and foreign. The inverse demand functions for fish in the two
countries are linear and decreasing and given by

p1 = a1 − b1(h11 + h21), p2 = a2 − b2(h12 + h22),
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where hij represents the amount of fish harvested by country i and sold in country
j (i, j = 1, 2) and ai and bi are positive constants for i = 1, 2. The harvesting costs
are similar to (5.14), that is

Ci = γi
(hii + hij)2

x
+ ci,

where γi and ci are positive constants with i = 1, 2, which represent, respectively, a
measure of country’s i inefficiency to harvest and its fixed costs of harvesting. The
profit of country i is then given by

πi = pihii + pjhij − Ci.

If the two countries behave asCournot duopolists, by solving the first order conditions
it is possible to compute the best response functions7 as

a1 − 2b1h11 − b1h21 − 2γ1
(h11 + h12)

x
= 0,

a2 − 2b2h12 − b2h22 − 2γ1
(h11 + h12)

x
= 0,

a1 − b1h11 − 2b1h21 − 2γ2
(h21 + h22)

x
= 0,

a2 − b2h12 − 2b2h22 − 2γ2
(h21 + h22)

x
= 0.

The solution of the system of the four best response functions gives the Nash equi-
librium harvesting strategies from which it is possible to derive the equilibrium total
harvest of country 1 as

H1NE = h11NE + h12NE

and the equilibrium total harvest of country 2 as

H2NE = h21NE + h22NE.

Finally, the equilibrium total harvest of the two countries corresponds to

H = H1NE + H2NE = (Dx + E) x

Ax2 + Bx + C

with

7Here, the best response function (also known as reaction function) gives the optimal output for a
country given the output of another country.
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A = 3b21b
2
2, B = 4b1b2(b1 + b2)(γ1 + γ2), C = 4γ1γ2(b1 + b2)

2,

D = 2b1b2(a1b1 + a2b2), E = 2 (b1 + b2) (a1b1 + a2b2)(γ1 + γ2).

The differential equation governing the change of the fish stock in the presence of
commercial fishing is thus given by

ẋ = αx(1 − βx) − (Dx + E) x

Ax2 + Bx + C
,

and the study of its long run evolution shows that the natural resource has always
one steady state that corresponds to its extinction and then one or two positive steady
states depending on the values of the parameters. If two positive steady states exist,
then extinction can be reached only from a certain set of initial stock levels (and
from the remaining ones the natural resource will reach a positive level), otherwise
it is the only possible outcome. In order to avoid this the government can only affect
the technical parameter for the fishing firms, i.e., their cost functions. The reader can
consult [24] for details on the analysis.

5.4 Intertemporal Optimal Harvesting

5.4.1 Single Exploiter and Constant Prices

The simplest and most renown fishery model that employs the intertemporal opti-
mization technique has been proposed in [12] and can be stated as follows

max
h≥0

+∞∫

0

e−δtR(h, x)dt s.t.

{
ẋ = f (x) − h,
x(0) = x0,

(5.17)

where R(h, x) is the instantaneous profit from selling h units of fish in the market,
δ is the discount factor and x is the stock available at time t.8 If one considers the
logistic growth function f (x) = αx − βx2, then the state ODE in (5.17) becomes

ẋ = f (x) − h = αx − βx2 + γ x − γ x − h = (α + γ ) x − βx2 − γ x − h.

8Notice that (5.17) can be regarded as an optimal growth model. However, two important features
present in the optimal fishery model differentiate it from a standard growth model. First, the type
of resource suggests a “production” function that does not satisfy the Inada conditions. Second,
the profit function depends, in general, not only on the harvesting h, but also on the level of the
resource x.
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If R(h, x) = R(h) the profit does not depend on the level of the biomass and the
model (5.17) has the same formulation as a capital accumulation model.9

In the fishery model the “utility” (profit) does not depend only on consumption
(harvesting) but also on the level of the stock. A simple motivation for the profit R
to depend both on h and x is related to the cost of harvesting: if the fish stock is
abundant, then harvesting should be cheap and vice versa when the fish stock is low.
For instance, assume that the instantaneous profit is given by

R(h, x) = [
p − c (x)

]
h, (5.18)

where p is the (constant) selling price of fish, c(x) is the marginal cost of harvesting,
which depends on the level of the resource, and h is the harvesting.We assume that the
harvesting h is given by the Gordon-Schaefer equation (5.8) where q is normalized
to one without loss of generality: h = Ex. If the average cost of effort is constant and
equal to θ , then the total cost of fishing is

θE = θ
h

x
,

i.e., in (5.18) we have c (x) = θ/x. Since it is realistic to assume that fishing effort is
non-negative and below an upper bound (due to capacity constraints of the fleets), the
control E must be chosen such that 0 ≤ E ≤ Emax. Summing up, the optimal fishery
model with a constant price and stock-dependent marginal costs can be formulated
as follows

max
0≤E≤Emax

+∞∫

0

e−δtEx (p − c (x)) dt s.t.

{
ẋ = f (x) − Ex,
x(0) = x0,

(5.19)

where Ex (p − c (x)) represents the instantaneous profit.
The current-value Hamiltonian for problem (5.19) is given by

Hc = Ex (p − c (x)) + μ (f (x) − Ex) = Ex (p − c (x) − μ) + μf (x). (5.20)

Notice that (5.20) is linear in the control variable E: to maximize the current-value
Hamiltonian (5.20) one requires to set E = 0 whenever p − c (x) − μ < 0 and E =
Emax whenever p − c (x) − μ > 0. If we call s(x) = p − c (x) − μ the switching
function, the optimal control then looks like this

E =
{
0 if s(x) < 0,
Emax if s(x) > 0.

(5.21)

9As remarked in the previous note, the fishery “production” function f (x) = (α + γ ) x − βx2 does
not satisfy the Inada conditions, in particular, limx→0+ f ′(x) �= +∞ and limx→+∞f ′(x) �= 0+.
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When s(x) = 0 we obtain μ = p − c (x), and we can compute the time derivative of
μ which gives

μ̇ = −c′ (x) ẋ = −c′ (x) (f (x) − Ex) .

Moreover, an optimal μ has to satisfy also the equation of motion of the costate
variable, which is given by

μ̇ = −∂Hc

∂x
+ μδ = −E

⎡

⎣p − c (x) − μ
︸ ︷︷ ︸

=0

⎤

⎦ + Exc′(x) − μf ′(x) + μδ

= Exc′(x) − μ
(
f ′(x) − δ

) = Exc′(x) − (p − c (x))
(
f ′(x) − δ

)
,

where the last line follows from p − c (x) − μ = 0 in the interval. By equating the
two expressions for μ̇

−c′ (x) (f (x) − Ex) = Exc′(x) − (p − c (x))
(
f ′(x) − δ

)
,

we obtain

f ′(x∗) − c′(x∗)f (x∗)
p − c(x∗)

= δ. (5.22)

Equation (5.22) is called the Modified Golden Rule of the fishery (with constant
price). The particular level of resource x∗ which solves (5.22) is called singular solu-
tion. Being x∗ constant, it follows that ẋ = f (x∗) − Ex∗ = 0, from which we get that
the optimal effort, when s(x) = 0, is E∗ = f (x∗)/x∗ and called the singular control.
The optimal controls constitute the so-calledMost Rapid Approach harvesting: when
the resource is abundant (i.e., x > x∗), then it is optimal to harvest as much as pos-
sible (i.e., E = Emax) until the resource converges to x∗ and then apply always the
singular control. Analogously, when the resource is scarce (i.e., x < x∗), then it is
optimal not to harvest (i.e., E = 0) until the resource grows to the level x∗, to which
there remains to employ the singular control. Thus, if we want to express the optimal
control E∗ as a function of the state of the system (stock of resource), we can write
it in feedback form as follows

E∗ =
⎧
⎨

⎩

0 if x < x∗,
f (x∗)
x∗ if x = x∗,

Emax if x > x∗.

5.4.2 Single Exploiter and Nonconstant Prices

We now revisit the previous example and allow for nonconstant prices, along the
lines of [11]. The problem can be stated as follows
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max
h≥0

+∞∫

0

e−δth
[
p(h) − c (x)

]
dt s.t.

{
ẋ = f (x) − h,
x(0) = x0,

(5.23)

where h is the control variable,10 p(h) is the inverse demand function that depends on
the harvest and π(h) = h (p(h) − c (x)) is the instantaneous profit. The current-value
Hamiltonian for this problem is

Hc = h (p(h) − c (x)) + μ (f (x) − h) . (5.24)

With positive harvesting h > 0, the optimal control must satisfy the condition

∂Hc

∂h
= p(h) + hp′(h) − c(x) − μ = 0,

from which it follows

μ = p(h) + hp′(h) − c(x) = π ′(h). (5.25)

The costate equation is given by

μ̇ = −∂Hc

∂x
+ μδ = hc′(x) + μ

(
δ − f ′(x)

)
. (5.26)

Differentiating (5.25) with respect to time, one gets μ̇ = π ′′(h)ḣ that equated to
(5.26) gives

hc′(x) + μ
(
δ − f ′(x)

) = π ′′(h)ḣ,

so that, by using again (5.25), the dynamics of the optimal harvesting must satisfy
the condition

ḣ = hc′(x) + π ′(h)
(
δ − f ′(x)

)

π ′′(h)
. (5.27)

This last ODE, the stock dynamics ẋ = f (x) − h and the proper transversality condi-
tion constitute the necessary conditions that the optimal solution couple (harvesting
and resource dynamics) must satisfy. From the conditions ḣ = ẋ = 0, it is possible
to obtain a steady state of the system x∗, which satisfies the “modified golden rule”
condition

f (x∗)c′(x∗) + π ′(f (x∗))
(
δ − g′(x∗)

)

π ′′(f (x∗))
= 0,

that can be rewritten as

10In the previous example we have h = Ex. Here we reason directly in terms of harvesting h for the
sake of simplicity.
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f ′(x∗) − c′(x∗)f (x∗)
π ′(f (x∗))

= δ, (5.28)

which is the analogous of (5.22) with nonconstant price.
For instance, if we assume that the price of fish follows the linear inverse demand

function
p(h) = a − bh,

that the cost of harvesting is independent on the stock (c(x) = c), and the fish stock
grows following a logistic function

f (x) = x (α − βx) , (5.29)

then the optimal control problem (5.23) becomes

max
h≥0

+∞∫

0

e−δt
[
mh − bh2

]
dt s.t.

{
ẋ = x (α − βx) − h,
x(0) = x0,

where m = a − c represents the unitary markup and π(h) = mh − bh2 is the instan-
taneous profit. The correspondent current-value Hamiltonian is thus given by

Hc = mh − bh2 + μ (x (α − βx) − h) ,

and by applying the above stated FOCs we obtain the following nonlinear system of
ODEs that the solution candidate must satisfy:

{
ẋ = x (α − βx) − h,

ḣ = π ′(h)(δ−f ′(x))
π ′′(h) = − (m−2bh)(δ−α+2βx)

2b .
(5.30)

Notice, in particular, that Hc is concave with respect to x and h. In the (x, h) plane,
the nullcline ẋ = 0 is represented by the parabola f (x) in (5.29); the nullcline ḣ = 0
is represented by two lines: one horizontal line of equation h = m/(2b), which max-
imizes instantaneous profits being there π ′(h) = 0, and one vertical line of equation
x = (α − δ)/(2β), which corresponds to the modified golden rule stock, since in
this case (5.28) reduces to f ′(x∗) = δ being c′(x) = 0. Equilibria of the ODE system
(5.30) are obtained by solving ẋ = ḣ = 0 with respect to x and h. Hereafter, for the
sake of simplicity we set b = 1

2 .
When x = (α − δ)/(2β) (vertical nullcline ḣ = 0), a unique equilibrium exists

E1 = (x1, h1) =
(

α − δ

2β
,
(α − δ) (α + δ)

4β

)
,
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which is meaningful provided that α ≥ δ. As already observed, x1 in E1 is the (mod-
ified) golden rule level (5.28).

When h = m/(2b) = m (horizontal nullcline ḣ = 0), from the first equation in
(5.30) we get the following two equilibrium values (x, h):

E2 =
(

α − √
α2 − 4mβ

2β
,m

)

, E3 =
(

α + √
α2 − 4mβ

2β
,m

)

.

The first coordinate in E2 and E3 are real numbers provided that α2 − 4mβ ≥ 0.
When α2 − 4mβ < 0, i.e., when

m >
α2

4β
, (5.31)

E2 and E3 are not meaningful. From an economic point of view, the harvesting that
would maximize the instantaneous profits (h = m) is “out-of-reach”, as it is greater
than the maximum value that the parabola (5.29) can take, f (α/(2β)) = α2/(4β),
which is the maximum sustainable yield (MSY ) already considered in (5.10).11 Thus,
themodel has different number of equilibria and different dynamic properties accord-
ing to the sign of α2 − 4mβ.

If α2 − 4mβ < 0, i.e., if condition (5.31) holds, then the unique equilibrium of
the ODE (5.30) is E1. The Jacobian matrix of (5.30) is

J =
[

∂ ẋ
∂x

∂
·
x

∂h
∂ ḣ
∂x

∂
·
h

∂h

]

=
[

α − 2βx −1
2β (h − m) −α + 2βx + δ

]
,

from which we calculate

J(E1) =
[

δ −1
α2−4mβ−δ2

2 0

]
.

Clearly Tr(J) = δ > 0 and Det(J) = (α2 − 4mβ − δ2)/2. Notice that Det(J) < 0 is
equivalent to m > (α2 − δ2)/(4β). Because of (5.31), we can conclude that when
system (5.30) admits the unique equilibrium E1, then E1 is a saddle point.12 For any
initial condition x(0) �= (α − δ)/(2β), the optimal trajectory belongs to the stable
manifold of the saddle point E1, to which the solution converges in the long run.
Notice also that in this case, the optimal time path is analogous to the one with

11Notice that α/(2β) is indeed the golden rule level of the stock. To be more precise, from ẋ =
0, we get that at equilibrium there is h = x (α − βx), so that instantaneous profit is π = mh −
bh

2 = m [x (α − βx)] − b [x (α − βx)]2. Instantaneous profit π(x) is maximized by x = α/(2β) if
m > α2/(4β), since π ′ (α/(2β)) = 0 and π ′′ (α/(2β)) < 0. However, for m < α2/(4β), π(x) has
minimum at x = α/(2β), whereas π(x) is maximized by the “golden rule” levels given by the state
values in E2 and E3, namely, by x = α ± √

α2 − 4mβ/(2β).
12This equilibrium is a solution of system (5.30) and, being constant, satisfies a transversality
condition of the form limt→+∞π ′(h1)e−δt = 0, which implies limt→+∞Hce−δt = 0.
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constant prices. However, with constant prices the optimal control is a combination
of bang-bang controls with the singular control, whereas with nonconstant prices the
optimal control moves along the stable manifold of the saddle point.

Figure5.2 shows this case, where the red curves are the nullclines. Different colors
correspond to different signs of the vector field (5.30), namely, ẋ > 0 and ḣ > 0 (pink
region), ẋ > 0 and ḣ < 0 (blue region), ẋ < 0 and ḣ < 0 (yellow region), ẋ < 0 and
ḣ > 0 (white region). The equilibrium E1, which is given by the intersection between
the parabola and the vertical line, is a saddle point.

If α2 − 4mβ > 0, then all three equilibria exist. After E2 and E3 are created,
through a fold bifurcation for (5.30) at m = α2/(4β) (see Fig. 5.3a), E1 remains a
saddle point as long as m > (α2 − δ2)/(4β).

At E2, the Jacobian matrix is given by

J(E2) =
[√

α2 − 4mβ −1
0 −√

α2 − 4mβ + δ

]

Fig. 5.2 Typical phase portrait of dynamical system (5.30) when α2 − 4mβ < 0. Red curves are
the nullclines, which separate regions where the vector field has different signs: ẋ > 0 and ḣ > 0
(pink region), ẋ > 0 and ḣ < 0 (blue region), ẋ < 0 and ḣ < 0 (yellow region), ẋ < 0 and ḣ > 0
(white region)
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Fig. 5.3 Phase portraits of dynamical system (5.30) with α2 − 4mβ ≥ 0. a α2 − 4mβ = 0, at
the fold bifurcation with the creation of equilibria E2 and E3; b m ∈ (

(α2 − δ2)/(4β), α2/(4β)
)
;

c m ∈ (
0, (α2 − δ2)/(4β)

)
. Again, red curves are the nullclines, which separate regions where the

vector field has different signs: ẋ > 0 and ḣ > 0 (pink region), ẋ > 0 and ḣ < 0 (blue region), ẋ < 0
and ḣ < 0 (yellow region), ẋ < 0 and ḣ > 0 (white region)

and the eigenvalues are the entries along the diagonal. We note that−√
α2 − 4mβ +

δ > 0 for m ∈ (
(α2 − δ2)/(4β), α2/(4β)

)
, hence, for m ∈ (

(α2 − δ2)/(4β),

α2/(4β)
)
, E2 is an unstable node and E1 is a saddle point (see Fig. 5.3b). When m ∈(

0, (α2 − δ2)/(4β)
)
, E2 is a saddle point and E1 is an unstable node (Fig. 5.3c). At

m = (α2 − δ2)/(4β) a transcritical bifurcation occurs at which E2 and E1 exchange
their stability properties.

At E3, the Jacobian matrix is given by

J(E3) =
[−√

α2 − 4mβ −1
0

√
α2 − 4mβ + δ

]

with eigenvalues, again, on the diagonal. Since
√

α2 − 4mβ + δ > 0 for all m ∈(
0, α2/(4β)

)
, we conclude that E3, when exists, is a saddle point.

Summing up, for m ∈ (
α2/(4β),+∞)

, with α > δ , the only equilibrium is the
saddle point E1. This equilibrium constitutes the optimal equilibrium of the system
and the stable manifold of the equilibrium is the optimal combination of state and
control to maximize profits, i.e., it provides the feedback control (see Fig. 5.2).

Whenm ∈ (
(α2 − δ2)/(4β), α2/(4β)

)
the saddle pointE1 coexistswith the unsta-

ble nodeE2 and the saddle pointE3. Depending on the initial conditions of the system,
the optimal trajectory is either along the stable manifold of the saddle point E1 or
along the stable manifold of the saddle point E3 (see Fig. 5.3b).

When m ∈ (
0, (α2 − δ2)/(4β)

)
, the saddle point E2 coexists with the unstable

node E1 and the saddle point E3: when x(0) > (α − δ)/(2β) it is optimal to harvest
h = m in perpetuity and the system converge to E3; when x(0) < (α − δ)/(2β), then
it is convenient to stay along the stable manifold of the saddle point E2 and to let the
resource grow until it is sustainable to harvest h = m in perpetuity (see Fig. 5.3c).
Notice that in this scenario, the modified golden rule does not identify the optimal
biomass level since it is optimal to harvest according to the golden rule.
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5.5 Intertemporal Optimal Harvesting
with More Exploiters

When an open access fishery is used by many fishermen, its common use generates
what Hardin [18] called “the tragedy of the commons”. This case can be modeled, in
terms of a game, as a Prisoner’s Dilemma problem where the two prisoners are the
fishermen, the two strategies are a moderate exploitation of the resource (cooperate)
and a severe exploitation of the resource (defect), and the payoffmatrix is the standard
Prisoner’s Dilemma matrix. In this case of the “Fisherman’s Dilemma Game”, both
fishermen have as a dominant strategy a severe exploitation of the resource, and
these are played in the Nash equilibrium with negative consequences on the fish
population.

Here we present two main contributions to the application of a game-theoretic
approach with dynamic optimization to the fisheries. The first one is the difference
game proposed in [23]. This model focuses on what the authors call the dynamic
externality, which is the bioeconomic loss that arises when a single dynamic popu-
lation is exploited by a finite number of fishers. The second model is the differential
game considered in [14]. This model extends the Gordon-Schaefer fishery model by
introducing a market externality, that is, the price of landed fish is no more constant,
but it depends on the quantity harvested by all fishermen, so that interactions in the
marketplace do matter.

In [23], the resource stock develops over (discrete) time according to the biological
growth rule given by

x′ = xα, 0 < α < 1,

with carrying capacity normalized to 1 if no exploitation of the fishery occurs.
The resource is harvested by two countries denoted by i = 1, 2. Each country

receives a utility from the present consumption of fish hi in the form

Ui(hi) = log (hi) .

The objective of each player is to maximize the sum of his own discounted utilities
over an infinite horizon.

Three different equilibrium concepts, namely, the Cournot-Nash equilibrium, the
cooperative equilibrium and the Stackelberg equilibrium are applied to compute the
equilibrium harvest of the two countries and then study their impact on the evolution
of the resource.

When each country acts as a Cournot duopolist in a dynamic framework, it takes
the policy of the other participant as given while trying to maximize the sum of his
own discounted utilities. To solve the problem, discrete-time dynamic programming
is used as a maximization technique. The Cournot-Nash polices are first computed
for a finite horizon, then, by letting the horizon tend to infinity, the infinite horizon
Cournot-Nash polices are obtained and, consequently, the corresponding size of the
fish population.
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If there is only one future period, country 1’smaximization problem can bewritten
as

max
0≤h1≤x−h2

(
log h1 + r log

(
1

2
(x − h1 − h2)

α

))
,

where r is country 1’s discount factor and there is an underlying assumption that
if there were no future periods, each country would get an equal share of all the
remaining fish.

By solving the first order condition, country 1’s reaction function is computed as

h1 = x − h2
rα + 1

, (5.32)

and by repeating a similar procedure for country 2 its reaction function is given by

h2 = x − h1
dα + 1

, (5.33)

where d is country 2’s discount factor.
By solving the system of (5.32) and (5.33), the Cournot-Nash equilibrium is

obtained as

h11NE = αd

αd + αr + α2dr
x,

h12NE = αr

αd + αr + α2dr
x

with a remaining stock given by

x − h11NE − h12NE = α2dr

αd + αr + α2dr
x.

The problem can be extended to consider a two-period horizon under the assumption
that country 1 reacts to the second country in the present supposing that in the
future the one-period horizon Cournot-Nash solution, given above, will prevail. By
computing the best response functions for both countries and by solving their system,
the Cournot-Nash equilibrium for the two-period horizon case can be found. The
process can be repeated for an n-period horizon, and then by taking the limit to
infinity, the equilibria for the infinite horizon problem are derived as

h1NE = dα (1 − dα) x

1 − (1 − dα) (1 − rα)
,

h2NE = rα (1 − rα) x

1 − (1 − dα) (1 − rα)
,

x − h1NE − h2NE = α2drx

αd + αr − drα2
.
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Now the long run evolution of the fish stock can be studied by computing its steady
state, that is,

xNE =
[

α2dr

αd + αr − drα2

] α
1−α

.

If countries are symmetric, that is, they have the same rate of timepreferences (d = r),
the Nash equilibrium over an infinite horizon for identical players is given by

h1NE = h2NE = 1 − αr

2 − αr
x

and the correspondent steady state of the resource is

xNESym =
(

αr

2 − rα

) α
1−α

,

which is smaller than the natural steady state.
In the cooperative case, countries combine their harvest so as to maximize the

discounted sum of both countries’ utilities. The identical rate of time preference
serves as the common discounting factor and the problem to solve becomes

max
h

∞∑

t=0

rt(2 log h) s.t. x′ = (x − 2h)α .

In the case of a cooperative resource management, the equilibrium consumption of
the resource over an infinite horizon is

hC = 1 − αr

2
x

and the corresponding steady state of the resource is given by

xC = (αr)
α

(1−α) .

Finally, if we assume that country 1 ismore sophisticated than country 2, he acts as
a leader and country 2 as a follower. Similarly to the Cournot case, a leader-follower
game is played with one, two and n future periods, and then by taking the limit to
infinity, the equilibrium consumptions for the infinite horizon problem are obtained
as

h1S = (1 − αd)x,

h2S = αd(1 − αr)x
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with the remaining stock given by

x − h1S − h2S = (αr) (αd) x.

The long run steady state of the resource corresponds to

xS = [(αd) (αr)]
α

(1−α) .

Two are the main results that need to be highlighted. Firstly,

hNEsym < hC,

which means that in the cooperative case

the two countries will consume, for each level of population of fish, smaller quantities of fish,
but will be able to achieve a higher “permanent” catch. Hence, the conflict implicit in the
duopoly problem leads both countries to overconsume, with less left for future generations
([23, p. 253]).

Secondly, the resource steady states can be ranked in the following order

xC > xNESym > xSSym .

Turning to the game proposed in [14], the natural evolution of the fish stock is
described by the Gompertz growth function

ẋ = x(α − ρ ln x),

and the economic sub-model assumes that there are two players denoted by i = 1, 2,
who harvest by using a constant fishing effort function, that is, the harvesting rate of
player i is given by the Gordon-Schaefer equation (5.8). The marginal (and average)
cost of effort for player i is constant and given by ci, and each country has a different
time preference described by the discount rate ri. The inverse demand function of
the landed fish is assumed to be hyperbolic (isoelastic) of the form

p(h1 + h2) = 1

h1 + h2
⇔ p(E1x + E2x) = 1

(E1 + E2)x
with qi = 1.

After transforming the state equation by using the state transformation: z = ln x, the
problem for country i can be written as

max
Ei>0

{
Ji =

∫ ∞

0

[
1

h1 + h2
− ci

]
Eie

−ritdt

}
(5.34)

s.t.

{
ż = α − ρz − E1 − E2,

z(0) = ln x0.
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This dynamic game can be easily solved as a static game because in state-separable
games the determination of Nash optimal controls can be done separately from the
determination of the state variables, see [16] for details on this point and, in general,
on differential games.

We solve the model for a Nash and a Stackelberg solutions. For the Nash solution,
player 1 solves the static problem

max
E1>0

{
J1 =

[
E1

E1 + E2
− c1E1

]}
.

By computing the first order condition, we derive the best response function

E2 − c1 (E1 + E2)
2 = 0. (5.35)

Player 2 solves a similar problem and reacts to player 1 by using

E1 − c2 (E1 + E2)
2 = 0. (5.36)

The equilibrium of the game is obtained by solving the system of the two best
response functions (5.35) and (5.36), which gives

E1NE = c2
(c1 + c2)

2 , E2NE = c1
(c1 + c2)

2 . (5.37)

For the Stackelberg solution, player 1 is assumed to be the leader and player 2 acts
as a follower. Player 2 reaction function E2 (E1) is used by player 1 in his profit
maximization problem:

max
E1>0

{
J1 =

[
E1

E1 + E2 (E1)
− c1E1

]}
⇔ max

E1>0

{
J1 = [

E0.5
1 c0.52 − c1E1

]}
,

which solves for

E1S = c2
4c21

, E2S = 2c1 − c2
4c21

. (5.38)

By replacing the equilibrium efforts of both players (5.37) and (5.38) in (5.34) and by
solving the integral, it is possible to compute the equilibrium payoffs for all players
under the two cases.13

A comparison of the above results shows that

1. In both the Nash and the Stackelberg cases, the player with the smaller average
cost is able to choose higher catch rates than his opponent.

2. In both the Nash and the Stackelberg cases, with equal discount rates, the player
with the smaller unit cost is able to gain a higher payoff than his opponent. This

13They can also be computed when countries have equal discount factors: r1 = r2 = r.
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means that a more efficient technology eliminates any information disadvantage
in the sense of Stackelberg followership.

3. If the follower has a cost advantage over the leader, in the Stackelberg solution
the total catch is smaller, the price is higher, as well as the profits, than in the
correspondent Nash solution.

Given the equilibrium solutions (5.37) and (5.38), it is also interesting to study
what happens to the long run evolution of the resource under the two different infor-
mation scenarios. If countries act simultaneously, the evolution of the fish stock is
described by

ẋ = x (α − ρ ln x) − 1

c1 + c2
x

with steady states given by

x∗ = 0 and x∗ = exp

(
α − 1

c1+c2

ρ

)

.

If country 1 becomes a leader and country 2 is a follower, the dynamics of the fisheries
is given by

ẋ = x (α − ρ ln x) − 1

2c1
x

with steady states corresponding to

x∗ = 0 and x∗ = exp

(
α − 1

2c1

ρ

)

.

Note that in both cases the positive steady state is stable, since dẋ
dx (x

∗) = −ρ <

0. Moreover, if the leader has a cost disadvantage (c1 > c2), then the Stackelberg
solution has to be preferred to the Nash solution in terms of the long run evolution
of the fish stock.

5.6 Evolutionary Adoption of Harvesting Technology

In this section, we briefly consider some evolutionary fishery models recently pro-
posed in the specialized literature. These models can be considered as an extension
of the evolutionary oligopoly models, see [1, 8, 15, 21] for some examples. In gen-
eral, in environmental economics, evolutionary models have been employed to study
cooperative versus noncooperative behaviors in the exploitation of a fishery (see [3]),
the establishment of protected areas (see [4, 9]) and related issues.
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Here we recall a model recently proposed in [22] to describe a fishery where
two different harvesting technologies can be employed: a standard one and one that
is more environmentally friendly, that is, less intensive. In this model the resource
is assumed to be common-pool, that is, N harvesters have the right to exploit the
resource, but new exploiters can not enter the fishery. These exploiters are assumed
to select one of the two harvesting technologies that are available according to a
profit-driven adaptive mechanism based on the evolutionary selection rule, known as
replicator dynamics.14 In particular, fishermen can decide to employ a less efficient
but more “environmentally-friendly” fishing technology if the loss in efficiency is
counterbalanced by a higher price that consumers might be willing to pay for the
green product. In practice, the use of the green technology is indicated by an eco-
label of the product, such as the dolphin-safe labeling. The choice between the two
types of technology depends only on agents’ assessment of the expected profits and
not on ethical or environmental concerns, as agents are assumed to be selfish profit
maximizers. Exploiters have to make two choices over time: the technology to adopt
and, given that, the quantity to harvest.

As before, let us assume that the resource follows a logistic growth such as (5.6)
or (5.7) and is subjected to harvesting. Mathematically, the dynamics of the resource
can be modeled as

ẋ = x(α − βx) − h (x) (5.39)

in continuous time or as

x(t + 1) = x(t) + αx(t) − β (x(t))2 − h(x(t)) (5.40)

in discrete time. Function h (x) in (5.39) and in (5.40) represents the total harvest,
which is instantaneous in (5.39) and at regular interval of time in (5.40). Total har-
vesting represents the aggregate landings by the N agents who have access to the
common pool. In the following we obtain h(x), which has the same functional form
in continuous or in discrete time, by game-theoretic considerations.

The two available technologies are denoted, respectively, by s for the standard one
and by c for the more environmental friendly. Technology s is more efficient than
technology c and these different in efficiency is reflected in the different catchability
coefficients qs and qc with qs > qc. At any time period, the N harvesters can be split
in two groups according to the technology they use, with nc denoting the “clean”
agents and ns = N − nc representing the “standard” agents.

Finally, we assume that fishermen adopt a Cobb-Douglas harvesting functionwith
CRS (constant returns to scale) of the form

hi (x) = √
qiEix, (5.41)

14Differently from the modeling where harvesting efforts are controlled, here the regulator does not
enforce any restraint.
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where Ei denotes his/her current harvesting effort and i = s, c. The total cost of
fishing for a type i agent, denoted by Ci, is proportional to the effort plus a fixed cost,
i.e., Ci = ci + γEi. In terms of harvested quantity, the total cost can be written as

Ci(h (x)) = ci + γ
(h (x))2

qix
, i ∈ {s, c} .

Note that, given the previous assumptions, the marginal cost for “clean” harvesting
is higher than for standard harvesting.

We assume that the landed harvest is sold at a constant price ai with i = s, c and
that ac > as, as consumers might be willing to pay more for the product obtained
through a more environmentally-friendly technology.15

We assume that fishermen maximize just their profit at any instant of time if
harvesting can take place continuously, or they maximize their expected one-period
profit if they can harvest only at discrete instants of time. The profit of a representative
fisherman employing technology i ∈ {s, c} is given by

πi (x) = aihi (x) − ci − γ
(hi (x))2

qix
. (5.42)

By solving the optimality conditions16 and employing symmetry among all players
adopting the same technology, the Nash equilibrium harvesting strategy for a type i
agent can be written as follows:

hNEi (x) = aiqi
2γ

x, i ∈ {s, c} , (5.43)

with hNEi (x) ≥ 0 whenever x ≥ 0. Profits (5.42) computed at the Nash equilibrium
(5.43) are non-negative and given by π∗

i (x) = a2i qi/(4γ )x > 0.
In what follows we introduce a dynamic mechanism that allows agents to move

from the adoption of one technology to the other one. In particular, agents tend to
switch from one strategy to the other if they expect this change to be profitable for
them, according to the paradigms of the evolutionary game theory. By following [26],
we assume that, at any time, agents harvest the Nash equilibrium quantity (5.43) and
the corresponding profits (5.42), evaluated at the Nash equilibrium and denoted by
π∗
i (x), i ∈ {s, c}, are taken as fitness measures for the adoption of one of the two

technologies. We first develop the model with a continuous-time switching, then
we consider a discrete-time switching. Lastly, we relax the assumption that agents
are able to change their technology continuously, and we introduce a time lag after

15This assumption of perfectly elastic demand for the resource is particularlywell justifiedwhenever
the resource is a staple food for the consumers or several substitutes to the resource are traded in
the market, see also [11] on this point.
16More precisely, by solving the first order condition ∂πi/∂hi = 0, which is also sufficient for being
∂2πi/∂h2i = −2γ /(qix) < 0.
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which agents can switch to the other technology, thus, obtaining a hybrid system
(with continuous-time growth and discrete-time harvesting).

5.6.1 The Case of Instantaneous Switching

First, consider the case in which agents can revise their strategy (i.e., the employed
technology) continuously and instantaneously. The most common evolutionary
model, on which [22] focuses the analysis, is the replicator dynamics in continuous-
time. Let us denote by r(t) = r = ns/N the fraction of agents using the “standard”
technology (and 1 − r the complementary fraction of agents using the “clean” tech-
nology). The replicator equation is one possible way to model that from π∗

s (x) >

π∗
c (x) it follows that ṙ > 0 and vice versa (see [20, 30] for further details on the

foundation of the evolutionary model). Mathematically, the dynamical system with
resource and replicator dynamics is given by the following system of ODEs

{
ẋ = x(α − βx) − N(rhNEs (x) + (1 − r)hNEc (x)),
ṙ = r(1 − r)

[
π∗
s (x) − π∗

c (x)
]
.

(5.44)

By using (5.43), the total harvesting becomes

h (x) = N

[
r
asqs
2γ

x + (1 − r)
acqc
2γ

x

]
, (5.45)

and Δπ , that is the difference between profits at the equilibrium harvestings, is

Δπ := π∗
s (x) − π∗

c (x) = a2s qs − a2cqc
4γ

x + ξ . (5.46)

By (5.45) and (5.46), (5.44) can be written as follows:

⎧
⎨

⎩

ẋ = x(α − βx) − N
[
r asqs2γ x + (1 − r) acqc2γ x

]
,

ṙ = r(1 − r)
[
a2s qs−a2c qc

4γ x + ξ
]
,

(5.47)

where ξ = cc − cs can be regarded as a policy parameter, since it includes taxes
imposed in order to obtain the predominance of one technology over the other. In the
following we consider ξ < 0, assuming that the fixed costs for the more intensive
harvesting method are higher, due to a more sophisticated technology and higher
taxes, or equivalently due to government subsidies for agents adopting the more
ecological fishing methods.

The steady states of (5.47) are given by

E0,0 = (0, 0) and E0,1 = (0, 1) .
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The point E0,0 is the outcome where the natural resource is extinct and all fishermen
employ the standard technology. This steady state always exists. The local stability
analysis shows that E0,0 is either stable if acqc > 2γα/N or unstable (saddle point)
if acqc < 2γα/N . The point E0,1 represents the outcome where the natural resource
is extinct and all fishermen employ the clean technology. This equilibrium is always
unstable.

Other steady states of (5.47) entail that the natural resource reaches a modified
carrying capacity level and the employment of only one of the two available tech-
nologies:

Ê̂x,0 = (̂x, 0) =
(

α

β
− Nacqc

2βγ
, 0

)
and Ex,1 = (x, 1) =

(
α

β
− Nasqs

2βγ
, 1

)
.

(5.48)

Notice that Ê̂x,0 is feasible, in the sense that biomass is positive, whenever acqc <

2αγ /N , i.e., if and only if E0,0 is unstable along the r axis. Similarly, Ex,1 is feasible
provided that asqs < 2αγ /N , i.e., if and only if E0,1 is unstable along the invariant
line r = 1.

Interestingly, Ê̂x,0 and Ex,1 can be both feasible; this occurs for parameters such
that 2αγ /N > max {acqc, asqs}. Moreover, Ê̂x,0 is a stable node for ξ < ξ̂ or a saddle
point for ξ > ξ̂ , whereas Ex,1 is a stable node for ξ > ξ or a saddle point for ξ < ξ ,
where

ξ̂ =
(
a2cqc − a2s qs

)
(2αγ − Nacqc)

8βγ 2
and ξ =

(
a2cqc − a2s qs

)
(2αγ − Nasqs)

8βγ 2
.

This means that these two boundary equilibria can coexist and they can be both
stable. This occurs when the difference in the fixed costs of the two technologies
ξ = cc − cs is such that ξ < ξ < ξ̂ . If the system is in this state, by subsidizing the
clean technology or taxing the traditional technology, it is possible for the clean
technology to prevail without reducing the stock size of the target resource. This
occurs by reducing the difference in the fixed costs between the two technologies so
that ξ < ξ < ξ̂ . Hence, the two boundary fixed points do not change their position
in the state space (their values do not depend on ξ ), but the equilibrium Ex,1 is now
unstable, and Ê̂x,0 is stable and is the only attractor, as shown below.

In addition to the previous fixed points, there also exists a unique equilibrium that
involves the employment of both technologies:

E∗ = (x∗,r∗)=

⎛

⎝ 4ξγ

a2cqc − a2s qs
,
acqcN − 2αγ + 8ξβγ 2

a2cqc−a2s qs

N(acqc − asqs)

⎞

⎠ .

In [22] it is shown that E∗ is always a stable point (either spiral or node) when
acqc ≥ asqs or when acqc < asqs with a2cqc < a2s qs provided that

ξ̂ < ξ < ξ . (5.49)
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In the case acqc < asqs with a2cqc > a2s qs, E
∗ is a saddle point when

ξ < ξ < ξ̂ . (5.50)

When conditions (5.49) or (5.50) do not hold, i.e., when the difference in the fixed
costs of the two technologies ξ is sufficiently large, E∗ is not meaningful. For further
details on the dynamics and economic considerations, we refer the reader to [22].

5.6.2 The Case of Discrete Switching and the Hybrid Model

In a discrete time scale, the natural resource grows in non-overlapping generations
according to the discrete-time logistic equation (5.40) where h(x) is given in (5.45).
The fraction r of agents employing the standard technology at time t evolves with the
same time scale. For technical reasons, [2] adopts an exponential replicator dynamics
(see, e.g., [10, 19]) of the form

r′ = reβπ∗
s (x)

reβπ∗
s (x) + (1 − r)eβπ∗

c (x)
= r

r + (1 − r)e−βΔπ
, (5.51)

where β ∈ [0,+∞) is the so called intensity of choice parameter which measures
the reactiveness of agents to adopt the more profitable strategy, and Δπ is given in
(5.46). The monotone transformation π∗

i (x) → eθπ∗
i (x) is employed to obtain fitness

measures with strictly positive values (see [19, 30] for details).
All in all, the dynamic model can be written in the form of an iterated map of the

plane T : (x, r) → (
x′, r′) with

T :
⎧
⎨

⎩

x′ = x + αx − βx2 − N
[
r asqs2γ x + (1 − r) acqc2γ x

]
,

r′ = r

r+(1−r) exp
[
β
(

a2c qc−a2s qs
4γ x−ξ

)] ,
(5.52)

where the dynamic variables represent feasible states of the system if x ≥ 0 and
0 ≤ r ≤ 1. In [2] the analysis of (5.52) is started by considering its dynamics along
the following invariant sets: x = 0, characterized by resource extinction, and the two
lines of pure strategies, r = 0 (all agents use the clean fishing technology) and r = 1
(all agents use the standard fishing technology). Being invariant sets, whenever the
initial condition of the system is on each of these lines, the dynamics never leave
that line. In this way, it is possible to characterize the behavior of the system in
simpler yet useful cases. The existence of these invariant lines, that bound the two-
dimensional phase space of the dynamical system is important in order to characterize
its global dynamical properties. Moreover, the knowledge of the kind of dynamic
motion occurring along the two lines where a single pure strategy exists, tells us
what will happen in the long run when one of the two strategies becomes dominant
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in terms of profits, so that it will prevail due to evolutionary pressures. The latter
problem may be equivalently stated by asking when the one-dimensional attractors
of the restrictions along the invariant lines r = 0 and r = 1 are also attractors of the
two-dimensional dynamical system. This depends on the transverse stability as well
as on the existence of attractors internal to the phase space, i.e., characterized by
r ∈ (0, 1). These are the questions examined, analytically and numerically, in [2].

With respect to the dynamical properties of the bidimensional map (5.52), it is
worth noticing here that its fixed points must satisfy exactly the same conditions
considered for the model in continuous time (5.47). Hence, the fixed points of (5.52)
are the same as ofmodel (5.47). However, discrete time dynamics determine different
stability properties of these fixed points under different time scales. We refer the
reader to [2] for the details.

If the natural resource growswith non-overlapping generations, themost appropri-
ateway ofmodeling the resource dynamics is in continuous time.However, dynamics
in continuous time cannot describe properly the fishermen behavior. Therefore, [22]
reformulates the model as a hybrid system, where both discrete and continuous time
scales are present.17

In detail, [22] assumes that there exists a minimum time interval Δl after which
switching technology may take place. The time interval Δl can be interpreted as the
time of a single fishing operation. Thus, at the end of each time period of length
Δl, a representative agent employing technology i ∈ {s, c} measures π∗

i (x(t)), the
net performance of his/her current harvesting strategy, as the exponentially decaying
weighted average of historical profits over a time interval [t − Δt, t], i.e.,

π∗
i (x(t)) = δ

1 − e−δΔt

t∫

t−l

e−δ(t−τ)πNE
i (x(τ )) dτ, i ∈ {s, c} , (5.53)

where time delayΔt ∈ (0,∞) represents the profits history used to calculate the aver-
age past profits of the two harvesting strategies, and δ > 0 is a decay rate, assumed
equal for all agents. For sake of simplicity, [22] considers the case Δt = Δl. The
magnitude of π∗

i (x(t)) represents a fitness measure of playing strategy i (see [30]).
Again letting r(t) = ns/N , the replicator dynamics can be expressed by a continuous-
time growth equation for the biomass and a discrete (or pulse) strategy switching
(a discrete decision-driven time). Under a synchronous updating for the adopted
technologies, the model can be written as

⎧
⎪⎨

⎪⎩

ẋ (t) = x(t) (α − βx(t)) − N
(
r(t)hNEs (x(t)) + (1 − r(t))hNEc (x(t))

)
,

r(t) =
{

r(t−Δl)eβπ∗
s (x(t))

r(t−Δl)eβπ∗
s (x(t))+(1−r(t−Δl))eβπ∗

c (x(t)) if t
Δl = ⌊

t
Δl

⌋
,

r
(⌊

t
Δl

⌋
Δl

)
otherwise,

(5.54)

17Relatedmodelswithmultispecies interactions are analyzed in [5, 6],while [7] studies themodeling
of a fishery with different time scales and hybrid modeling as well.
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where �x� is the largest integer not greater than x (i.e., the floor of x), and hNEi (x(t)),
π∗

i (x(t)), i = 1, 2, are given, respectively, in (5.43) and (5.53).
The dynamical model in (5.54) is a hybrid system because it combines the popula-

tion growthmodel (5.39) in continuous-time together with the discrete time evolution
of the fraction of agents adopting the clean technology.We refer the interested reader
to [22] for analysis and simulations of the model (5.54).
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Chapter 6
Dynamic Models of Financial Markets
with Heterogeneous Agents

Fabio Tramontana

Abstract In this Chapter the qualitative theory of discrete time dynamical systems
is applied to financial markets populated by heterogeneous and boundedly rational
traders. It is shown as by using these assumptions some well known stylized facts of
financial markets can be replicated even by using small scale models.

6.1 Introduction

Among the numerous applied contexts in which the qualitative theory of dynamical
systems is used, financialmarkets represent oneof themost impressive examples of its
utility. Asset price dynamics is typically characterized by some phenomena that can
hardly be explainedby themainstream theory (namely, the so-calledEfficientMarkets
Hypothesis, EMHhenceforth, see [3, 5]).According to this theory, asset prices should
move in time in a manner that can be attributed to a random walk, that is a discrete
stochastic process [4]. In other words, there should be no place for deterministic
processes in explaining price movements in the stock market. Nevertheless, actual
asset prices do not always behave as a random walk, and a huge amount of attempts
to connect these movements to a more complicate stochastic process seem to fail in
explaining a lot of stylized facts.

One of these stylized facts of financial markets is represented by the occurrence
of long periods of time where an asset price increases without any connection with
the right value of the represented asset (also called fundamental value). This is what
is popularly known as a financial bubble. Typically, this bubble grows for a long
period and then suddenly explodes, leading back the price to its fundamental value
(or even lower than it) in a short time. The understanding of such a phenomenon
is extremely important because financial bubbles are not so rare, and the may have

F. Tramontana (B)
Department of Mathematical Sciences, Mathematical Finance
and Econometrics, Catholic University, 9 Via Necchi, 20123 Milan, MI, Italy
e-mail: fabio.tramontana@unicatt.it

© Springer International Publishing Switzerland 2016
G.I. Bischi et al. (eds.), Qualitative Theory of Dynamical Systems, Tools
and Applications for Economic Modelling, Springer Proceedings in Complexity,
DOI 10.1007/978-3-319-33276-5_6

291



292 F. Tramontana

important consequences, amongwhich they can originate a recession for one or more
countries, as it occurred for the recent real estate financial bubble.

Other relevant stylized facts of financial markets are the alternation of period of
low volatility of asset prices with periods of high turbulence (something known
in the literature as volatility clusters, that technically speaking means that the
autocorrelation of the returns in absolute value is significantly positive for long
delays) or the not temporary misalignments between the fundamental value and the
asset price detected by the researchers working in the field of behavioral finance.1

Indeed, from behavioral finance comes one of the possible explanations of such
puzzles. By relaxing the hypothesis of perfect rationality of the agents, it is possible
to build financial market models where price dynamics is closer to real one than to a
random walk. They start from the experimental observation of the decisional mech-
anisms adopted by professional traders, who are subject to biases as a consequence
of the heuristics used to decide which asset to buy and which to sell.

As a first approximation, investors can be subdivided into two groups, accord-
ing to the kind of behavioral rule they adopt (see [6, 7], for some survey studies).
On the one hand there are the so-called fundamentalists, who tend to correct any
mispricing between the current price and the fundamental. This kind of investor is
similar to arbitrageurs of the EMH with the difference that now this behavior is no
more necessarily a rational one, because also other groups of investors may operate
in the market. In fact, on the other hand there is the second group of traders, called
chartists, who look at the time-series of prices in order to detect some regularity
or trend permitting to foresee the future price movements. The coexistence of these
groups of traders may cause a shift from a purely stochastic explanation of price
movements, to a (at least partially) deterministic one because now future prices are
determined by past prices, that influence the behavior of (at least some) agents.

In such models, nonlinearities easily arise from behavioral rules or some other
mechanism, and as a consequence deterministic chaos may characterize the dynam-
ics of prices. It turns out that in some cases the chaotic motion of price is qualitatively
similar to real motion and some of the stylized facts previously mentioned are repli-
cated.

In this chapter we will see how to introduce nonlinearities in dynamical systems
explaining the asset price motion, and how the output of such simple models can
give a possible explanation to long standing financial markets puzzles.

6.2 A Linear Model with Heterogeneous Traders

In this section we will show how heterogeneity by itself is not enough to qualitatively
replicate stylized facts of financial markets, even if it could be a good starting point.

Let us consider a market of only one asset. What are the forces behind the move-
ments of the asset price? The price will raise if the amount of assets the traders want
to buy exceeds the amount other traders want to sell. The opposite if the amount

1From a survey of the empirical studies that contradict the EMH see, among the others, [1].
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traders want to sell is higher than the amount other traders aim at buying. This is the
classical economic law of supply and demand. So wewill use a variable called excess
demand (denoted by D) denoting the difference between the demand and the supply
for the considered asset. Howmuch does the asset pricemove as a consequence of the
non-negativity of the excess demand? There is not a simple answer to this question,
a typical assumption is to consider the presence of an agent, called market maker,
who observes the excess demand and then regulates the asset price with a rule like
the following one:

Pt+1 = Pt + αDt , (6.1)

where the price movement is assumed to be proportional to the excess demand and α

is the constant of proportionality (without loss of generality we will assume it equal
to one).

Now, we need to build the excess demand by considering two kinds of traders:
fundamentalists and chartists. So, at each time period the excess demand is made up
by two components, as follows:

Dt = D f
t + Dc

t , (6.2)

where D f
t and Dc

t denotes the excess demands of fundamentalists and chartists,
respectively.

Starting with fundamentalists, they buy the asset when its price is undervalued
(i.e. lower than the fundamental value), while they sell it when it is overvalued (i.e.
priced over the fundamental value). In other words, they bet on a fast correction of
the misalignment. By assuming that the fundamental value F is fixed, exogenously
given and known by everyone, and by using a linear trading rule, we can characterize
the excess demand of fundamentalists as follows:

D f
t = f (F − Pt ), (6.3)

where the positive parameter f measures the reactivity of fundamentalists to the
misalignment, and it is called speed of reaction.2

Chartists interpret the gap between price and fundamental value exactly at the
opposite. When the price is high (i.e. over the fundamental value) they believe that
optimism is characterizing such a market and they bet on a further increasing in the
asset price, at least in the short-run. As a consequence they buy it today to sell it
tomorrow at a higher price. The opposite occurs when the price is low (i.e. lower
than the fundamental value) and pessimism prevails in themarket. Their linear excess
demand can be obtained by

Dc
t = c(Pt − F), (6.4)

where c > 0 as the same interpretation as f .

2Actually f can also be interpreted as a measure of the numerosity of the fundamentalists. By
considering that the more they are, the more they buy/sell, then the two interpretations become
interchangeable.
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By inserting (6.3), (6.4) into (6.2) and then in (6.1), we get a first order linear
difference equation regulating the asset price dynamics

Pt+1 = h(Pt ) = Pt + f (F − Pt ) + c(Pt − F) = Pt (1 + c − f ) + F( f − c).
(6.5)

This map has a unique equilibrium point, given by

P∗ = F (6.6)

that corresponds to the correct price according to the EMH. Concerning its stabil-
ity properties, in order to be globally stable the following condition, obtained by
imposing

∣∣h′(P∗)
∣∣ < 1, must hold:

f − 2 < c < f. (6.7)

The interpretation of the global stability condition (6.7) is straightforward: the
price will converge to the fundamental value provided that chartists are not more
reactive (or numerous) than fundamentalists (c < f ) but also provided that fun-
damentalists are not excessively reactive (or numerous) with respect to chartists
( f < c + 2). While the first part of the interpretation is easy to understand, in fact,
chartists typically play a destabilizing role in the market by betting against the fore-
sight of the EMH, a little bit more complicated is the second part. It is required
that fundamentalists, who apparently play the role of stabilizing force, do not loom
excessively before chartists. That is because when they prevail the price moves in
the direction of the fundamental value but it can go beyond it, at a value even more
misaligned than before. This phenomenon is called overshooting.

This simple linear model permits to make two interesting conclusions:

1. In order to have an asset price correctly evaluated by the market, both kinds of
investors are necessary, in the right proportion;

2. When the price does not converge to the fundamental value, it diverges to infinity.

While the first conclusion is a realistic one, the second is not good for our purposes.
It is clearly a consequence of the linearity of the model that must be removed in order
to obtain more realistic price movements.

6.3 A Nonlinear Model with Heterogeneous Traders

It is not so complicated to insert some meaningful nonlinearities in the price forma-
tion mechanism. Without introducing some more advanced assumptions (such as a
switching mechanism between one trading strategy and a different one) we may just
assume a nonlinear trading rule of one or both kinds of investors.

Chartists, for instance, can be assumed to be more prudent or cautious when the
misalignment between price and fundamental value becomes larger. This behavior
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Fig. 6.1 Prudent chartists

can be captured by using a nonlinear trading rule like the following:

Dc
t = arctan(Pt − F), (6.8)

where the arctangent permits to obtain an excess demand like the one represented
in Fig. 6.1, where the slope of the functions becomes lower and lower as the price
deviates more and more from the fundamental value. This assumptions may lead to
interesting price dynamics, but we would lose the opportunity to study analytically
the local bifurcations that originate such price movements.

Another way of introducing a nonlinearity in the model consists in assuming,
following [2], that fundamentalists becomemore and more aggressive (or numerous)
as the price reaches values distant from the fundamental one. The explosion of such
a bubble (or the end of such a pessimistic period) is perceived as extremely near,
and they bet stronger on it. To obtain such an effect we can adopt the following
formalization of the fundamentalists’ trading rule:

D f
t = f (F − Pt )

3, (6.9)

where the cubic power makes more relevant high misalignments.
If we use (6.9) and (6.4) into (6.2) and then in (6.1) we get the following nonlin-

ear map:
Pt+1 = Pt + f (F − Pt )

3 + c(Pt − F),

that can be rewritten by using the auxiliary variable xt ≡ Pt − F as

x ′ = g(x) = x(1 + c) − f x3, (6.10)

where ′ denotes the unit-time advancement operator.
Differently from the linear map (6.5) now the model is characterized by three

equilibria:

x∗
0 = 0, x∗

1,2 = ±
√

c

f
. (6.11)
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Fig. 6.2 A supercritical
pitchfork bifurcation

While the equilibrium x∗
0 (corresponding to the price equal to its fundamental value)

always exists, the other two equilibria only exist for non-negative values of both
speeds of reaction.3 Equilibrium x∗

1 characterizes a scenario where the asset price
remains fixed at a value higher than the fundamental value, while in x∗

2 the price is
fixed at value lower than F .

In order to study the local stability of the three equilibria, we must compute the
first derivative of g(x):

g′(x) = 1 + c − 3 f x2 (6.12)

and calculate it in correspondence of their values:

g′(x∗
0 ) = 1 + c, g′(x∗

1,2) = 1 − 2c. (6.13)

By applying the local stability condition
∣∣g′(x∗)

∣∣ < 1 we obtain that the fundamental
equilibrium is always unstable because of assumption that c is positive. The other
two equilibria are locally stable provided that c < 1.

At the moment we can say that if we keep fixed the fundamentalists’ speed of
adjustment at a positive value, at c = 0 the equilibrium x∗

0 undergoes a supercritical
pitchfork bifurcation. In particular, at the bifurcation value the point x∗

0 is nonhyper-
bolic and two new equilibria are generated. For 0 < c < 1 the two new equilibria
are separated from (and symmetric to) the fundamental equilibrium and are both
locally stable, while x∗

0 is unstable and separates the basins of attraction of x∗
1 and

x∗
2 . Figure6.2 shows geometrically the emergence of the two new equilibria.
At c = 1 a simultaneous flip bifurcation of both x∗

1 and x∗
2 occurs, and by further

increasing the value of the parameter, a typical period-doubling bifurcation cascade
leads to chaotic motion, as illustrated by the bifurcation diagram in Fig. 6.3. For
a certain range of values of the parameter c, two attractors coexist: one located
above the fundamental value (the so-called bull region), the other located below the
fundamental value (the bear region). According to the initial condition, trajectories
will converge to a fixed point (for 0 < c < 1), to a periodic cycle or to a chaotic

3Mathematically they would also exist for negative values of both speeds of reaction, but they would
lose any interpretability.



6 Dynamic Models of Financial Markets with Heterogeneous Agents 297

Fig. 6.3 Bifurcation
diagram

attractor. In the green (rightmost) region of the bifurcation diagram, for large values
of c, the two attractors merge forming a unique attractor (mostly chaotic but with
the typical periodic windows) covering both bull and bear regions. This is the most
interesting part of the diagram, where more realistic dynamics occur. One example is
provided by the timeplot in Fig. 6.3. In this case the asset price alternate periods in the
bull region and periods in the bear one, and the evidence of something qualitatively
similar to those phenomena known as financial bubbles are clearly present.

6.4 From the Cause to the Consequences

Once we find some possible cause for the stylized facts we wanted to understand,
then we can deepen the investigation to try explaining further phenomena. Doing so,
we have found that the coexistence of a heterogeneity of investors using different
trading strategies may be at the origin of phenomena like the emergence and the
explosion of financial bubbles and more in general may cause fluctuations of the
asset price that is not necessarily equal (or at least close) to its fundamental value,
as predicted by the EMH.

By using the theoretical framework introduced in the previous section, we can
investigate other issues. The one that we will deepen in this section is the following:
what happens if asset markets where the EMH works become connected with other
markets where turbulence and bubbles characterize it? Which one will infect the
other? These are important questions especially nowadays when the globalization of
financial markets has been realized.

To give an answer to these questions we present the works of [8, 9]. They consider
three financial markets. Two of them characterize the market for an asset in different
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countries, called home (H) and abroad (A). The third market is the foreign exchange
market, used by traders from one country to operate in the other one, but also by
traders who want to speculate on the movements of the exchange rate.

6.4.1 Three One-Dimensional Maps

Let us start by considering the simplified case where it is not possible for traders from
one country to operate in the other one. So, the three markets are isolated and in the
foreign exchange market (forex) only traders who want to speculate on the exchange
rate are active. Moreover, we assume that only in the forex market both kinds of
traders (fundamentalists and chartists) are present, while in the two countries only
fundamentalists operate.

Starting by the asset of country H, the market maker moves the asset price (PH)
as follows:

PH
t+1 = PH

t + aH
(
DHH

t

)
, (6.14)

where aH > 0 is the constant of proportionality of price movements and DHH
t is the

excess demand of fundamentalists, given by

DHH
t = bH(FH − PH

t ). (6.15)

As usual, parameter bH > 0 is the constant of proportionality of price movements
and FH denotes the fundamental value of the asset traded in country H. So, the
one-dimensional linear map regulating the dynamic of the asset price in country H
is obtained by substituting (6.15) into (6.14):

PH
t+1 = PH

t + aHbH(FH − PH
t ). (6.16)

The unique equilibrium (PH∗ = FH) is globally stable provided that

aHbH < 2. (6.17)

Similarly, for country A, where the market maker equation is the following:

PA
t+1 = PA

t + aA
(
DAA

t

)
(6.18)

with aA > 0 being reactivity of the market maker and the excess demand DAA
t being

a linear function of the mispricing between current price and the fundamental one
(FA), defined (according to the fundamentalists trading rule) as follows:

DAA
t = bA(FA − PA

t ), (6.19)
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where bA > 0 is the speed of adjustment.
By using (6.19) into (6.18), we get

PA
t+1 = PA

t + aAbA(FA − PA
t ) (6.20)

that regulates the dynamics of the asset traded in country A. Here, the unique equi-
librium (PA∗ = FA) is globally stable provided that:

aHbH < 2. (6.21)

Finally, in the stock exchange market, the market maker adjusts the exchange rate
(S) by summing up the excess demands of both fundamentalists (DS

F ) and chartists
(DS

C ) according to the rule

St+1 = St + d
(
DS

F,t + DS
C,t

)
, (6.22)

where d > 0 is the constant of proportionality of exchange rate movements.
If FS is the exogenous fundamental value of the exchange rate, then the linear

trading rule of chartists is the following:

DS
C,t = e

(
St − FS

)
(6.23)

with e > 0 being their reactivity.
For fundamentalists, we use the nonlinear (cubic) trading rule seen in Sect. 6.3:

DS
F,t = f

(
FS − St

)3
(6.24)

with the reactivity measured by f > 0 (cf. (6.9)).
By inserting (6.23) and (6.24) into (6.22),weobtain the nonlinear one-dimensional

difference equation

St+1 = St + de
(
St − FS

) + d f
(
FS − St

)3
. (6.25)

By using the auxiliary variable z = S − FS , we can rewrite the map as follows:

z′ = m(z) = z(1 + de) − d f z3, (6.26)

that is topologically equivalent to the cubic map (6.10). Thus, we expect to find
qualitatively the same bifurcation structure.

By using the fixed point condition z′ = z = z∗, we get the three equilibria. The
fundamental one

z∗
0 = 0 (6.27)
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and the two symmetric nonfundamental equilibria

z∗
1,2 = ±

√
e

f
(6.28)

that exist only for positive values of e and f, according to our assumptions.
To study the local stability properties of the equilibria we need the derivative

m ′(z) = 1 + de − 3d f z2, (6.29)

that confirms the instability of the fundamental equilibrium (in fact, m ′(z∗
0) = 1 +

de > 1), while the other two equilibria are locally stable iff

de < 2. (6.30)

At de = 2 the equilibria undergo a simultaneous flip bifurcation and by further
increasing e (or d) a cascade of period doubling bifurcations followed by chaotic
motion similar to the one displayed in the bifurcation diagram in Fig. 6.3 can be
obtained.

Next, we connect the three markets to understand what happens to the dynamic
of the three asset prices.

6.4.2 A Three-Dimensional Map

If we admit fundamentalists from country H to trade the asset of country A and vice
versa, then the model changes.

First of all, we must add a new component to the excess demands of the two
assets, namely DHA and DAH, denoting the excess demands of fundamentalists from
country A who operate in country H and the opposite, respectively. They are given
by

DHA
t = cH

[(
FH − PH

t

) + γ H
(
FS − St

)]
(6.31)

and

DAH
t = cA

[(
FA − PA

t

) + γ A

(
1

FS
− 1

St

)]
. (6.32)

The two equations above can be explained by considering that foreign fundamen-
talists may benefit from exchange rate movements, so, in their excess demand there
is a term γ H

(
FS − St

)
and γ A

(
1/FS − 1/St

)
that is dependent on the mispricing

in the foreign exchange market.4

4Note that traders from H to A consider the reciprocal values of the exchange rate and the funda-
mental value.



6 Dynamic Models of Financial Markets with Heterogeneous Agents 301

Moreover, in the dynamic equation regulating the exchange rate movements, now
two more components must be added to the excess demand, namely,

PH
t DHA

t , (6.33)

representing the demand for currency H generated by the orders from A to H, from
which we must subtract the demand for currency A that are necessary for trading
from H to A:

PA
t

St
DAH

t , (6.34)

where the reciprocal of the exchange rate permits to convert it into an amount in
currency H.

By adding (6.31) and (6.32) to the excess demand in (6.16) and (6.20) and by
updating the demand for currency, we get the following three-dimensional nonlinear
dynamical system:

T :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ′ = x − aH
[(
bH + cH

)
x + cHγ Hz

]
,

y′ = y − aA
[(
bA + cA

)
y − cAγ A z

FS(z+FS)

]
,

z′ = z − d
[
cH

(
x + FH

) (
x + γ Hz

)
,

+ cA y+FA

z+FS

(
γ A z

FS(z+FS)
− y

)
− ez + f z3

]
.

(6.35)

Equilibrium points of the map (6.35) cannot be found analytically and, as a conse-
quence, neither their stability properties. Nevertheless, numerical tools can be used
to say something about the 3D map of interconnected markets. In particular, we
can look at the following bifurcation diagrams in Figs. 6.4, 6.5 and 6.6, obtained by
keeping fixed all parameters but the speed of reaction of chartists in the exchange
rate market (e), that we know has a destabilizing role if it is increased.5 This is con-
firmed by the bifurcation diagrams but even more interesting are the new findings
with respect to the three separate markets:

• The flip bifurcations of the two nonfundamental equilibria are no more simultane-
ous. Even if it is not easy to see from the picture, the bifurcation of one equilibrium
occurs at a lower value of the bifurcation parameter with respect to the loss of sta-
bility of the other one;

• Not only the exchange rate starts to oscillate periodically or chaotically when e
is large enough, but also the prices of the asset traded in countries H and A. The
timeplots in Figs. 6.4, 6.5 and 6.6 show the alternation of bubbles and crushes
also in these markets and it was not possible before the markets were connected.
So it proves that it can be sufficient, in a globalized and interconnected financial

5In particular, aH = 0.41, bH = 0.11, cH = 0.83, γH = 0.3, aA = 0.43, bA = 0.21, cA = 0.9,
γH = 0.36, d = 0.35, f = 0.7 and FS = 6.07.
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Fig. 6.4 a Bifurcation diagram where e varies between 0 and 5 and the asymptotic value of x is
on the vertical axis. The two different colors (tonalities) denote two different initial conditions. b
A timeplot obtained at e = 4.86

Fig. 6.5 a Bifurcation diagram where e varies between 0 and 5 and the asymptotic value of y is
on the vertical axis. The two different colors (tonalities) denote two different initial conditions. b
A timeplot obtained at e = 4.86

Fig. 6.6 a Bifurcation diagram where e varies between 0 and 5 and the asymptotic value of z is on
the vertical axis. The two different colors (tonalities) denote two different initial conditions. b A
timeplot obtained at e = 4.86
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world, that one market which is unstable also infects other markets. This is a quite
interesting result obtained by using a simple low-dimensional dynamical system
characterized by nonlinearities.

6.5 An Alternative with Discontinuity

Results similar to those that can be obtained by introducing a nonlinearity in a
financial market model, can also be obtained without renouncing to adopt linear
trading rules for both kinds of traders. It is realistic to assume that the reactivity
of traders when the asset is overvalued is not the same as the reactivity when it is
undervalued.

So, we can specify the excess demand of fundamentalists as follows:

D f
t =

{
f1(F − P) + f2 if P ≥ F,

f3(F − P) + f4 if P < F.
(6.36)

Similarly, for chartists we have the following trading rule:

Dc
t =

{
c1(P − F) + c2 if P ≥ F,

c3(P − F) + c4 if P < F.
(6.37)

The terms f1 , f3, c1 and c3 are the different (but all positive) reactivity parameters,
while f2, f4, c2 and c4 are fixed components of the excess demand and can be positive
or negative.

By using (6.36) and (6.37) into (6.1), we obtain a piecewise linear discontinuous
map explaining the dynamics of the asset price

P ′ =
{
P + [c1(P − F) + f1(F − P) + f2 + c2] if P ≥ F,

P + [c3(P − F) + f3(F − P) + f4 + c4] if P < F,
(6.38)

and in term of deviation from the fundamental value

x ′ =
{
x (1 + c1 − f1) + f2 + c2 if x ≥ 0,
x(1 + c3 − f3) + f4 + c4 if x < 0.

(6.39)

Discontinuous maps are characterized by bifurcations called “border-collision
bifurcations” and may lead to chaotic motion also when the map is piecewise linear.
A numerical proof is obtained by using the following combination of parameters
(c1 = 0.1, c2 = 0.5, c3 = 0.4, c4 = 0, f1 = 2.3, f2 = 0.5, f3 = 3.4 and f4 = −0.5)
that permits to obtain the timeplot represented in Fig. 6.7.We can see also in this case
bubbles and crushes phenomena similar to those obtained with a nonlinear map.
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Fig. 6.7 Timeplot

6.6 Conclusions

We have shown how low-dimensional discrete time dynamical systems can be used
to qualitatively replicate important stylized facts of financial markets such as the
occurrence of bubbles and crushes and excess volatility. Behavioral assumptions
permit to introduce in the deterministic system some nonlinearity (or discontinuity)
that can be at the origin of the complexmotion of actual asset prices. Amix of analytic
and numerical tools is necessary to study these systems, explaining the passage from
the convergence to the fundamental value, as predicted by the EMH, to complex and
unpredictable motion.
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Chapter 7
A Dynamical Model of Proximal
Development: Multiple Implementations

Ugo Merlone and Paul van Geert

Abstract Dynamical systems are quite important in psychological research as vir-
tually all psychological processes occur in time. In this chapter we show how to
implement a dynamical model of proximal development using a spreadsheet, R and
C++. We discuss strengths and weakness of each approach. Using a spreadsheet or a
statistical software such as R make these approaches palatable both for people with
background in economics and psychology; on the other hand, using C++ provides
better efficiency at the cost of requiring some more competencies. Last but not least,
all the approaches we propose use free and open source software.

7.1 Introduction

There is a strong tradition in using dynamical systems in psychology. Starting from
the seminal contribution [1] by Newell and Simon, in which a model of adaptive
behavior and learning is analyzed as a system of differential equations and simula-
tion in psychology is discussed, several other authors have used dynamical systems
both descriptively and analytically. In fact, comparing the following two quotes—
“[t]he observation that psychological processes occur in time is trite” [2, p. 231]
and “anything that evolves over time can be thought of as a dynamical system”
[3, p. 1]—the importance of dynamical systems in psychology is evident. Several
books provide evidence of this interest: the reader may refer to [4] for an introduc-
tion to dynamical systems; to [5] for applications to social psychology; to [6] for an
introduction to nonlinear dynamics in psychology; to [7] for an application to organi-
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zational psychology; to [8] for applications to system analysis; to [9] for application
to development psychology; and to [10] for a psychoanalytic theory application.

In this chapter we consider a well known model of educational dynamics and
show how to implement it using different tools. The model we consider is a ver-
sion of the model of proximal development presented in [9, 11, 12]. The multiple
implementation technique we show can be applied to any model.

The chapter is organized as follows. In Sect. 7.2 we introduce the model. In
Sect. 7.3 we discuss how multiple implementations can be useful when study-
ing complex systems. In Sects. 7.4–7.6 we show how the proposed model can be
implemented by using a spreadsheet, R and C++ respectively. Finally, in the last
section, some suggestions about using multiple implementations in order to exploit
the benefits of different simulation tools to study dynamical systems are provided.

7.2 The Mathematical Formalization

In order to arrive at a mathematical model of educational dynamics, we start from
the assumption that

1. there exists an educational goal,
2. there is a person to be educated—for instance a child,
3. there is an educator who will actively pursue the process of education in the form

of child-directed educational activity.

Education also requires active participation of the educated person, the child. Let
us refer to this active participation by means of the term “learning”, and use it as a
general and overarching term for a wide variety of processes ranging from simple
imitation to complex internal construction.

The educational goal can be conceived of as a stock of information, skills, cogni-
tive complexity or whatever. This stock of information and skills may be vast but it is
always limited. It can be characterized by a particular magnitude, K , and for reasons
of simplicity, we set K to a dimensionless magnitude, represented by the number 1.
Note that this is just a “form of” simplification because any other numerical repre-
sentation will do. However, educational goals are not only characterized by a purely
quantitative measure (how much is there to be learned), but also by a qualitative
dimension. That is, the information, skills or whatever constitutes the content of the
educational goal differ in terms of complexity or conditionality. That is to say, some
things are easier to learn than others, or some things constitute elements that serve as
building blocks for more complex elements and so forth. This means that the content
of a particular educational goal stock can be ordered in terms of its “learnability”
(some things must be learned before other things, or some things are much more
easily learned than other things).

In a similar vein, the child can also be conceived of as a stock of information,
skills, etc. In principle, this stock is virtually empty at the beginning. Take for instance
the teaching and learning of arithmetic as an example. The educational goal is to
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teach arithmetic to the child, and what arithmetic means may be represented in the
form of an informal or a formal curriculum, such as the primary school arithmetic
curriculum. As the child enters primary school, his knowledge of arithmetic is highly
elementary. This may vary from very simple number concepts to some form of
emergent numeracy that the child has picked up spontaneously. Anyway, whatever
the knowledge that is present at the beginning, there is still a very considerable
distance between this initial state and the goal state. Let us call the current level
of the child’s stock of knowledge or skills the child’s actual level of development,
represented by A (t).

Formally speaking, learning—in whatever form it occurs—can be defined as a
flow from the educational goal stock to the stock representing an individual learner.
Note that this is indeed a purely formal definition. It has no bearing on the nature
of the processes that take place during learning or knowledge acquisition, in that
these processes should not be equated with straightforward transmission of content
from an educator to a child. That is, whatever the nature of the learning process,
it can be formally defined as a flow from a limited goal stock to another limited
stock, namely, the learning person. Thus, at any point in time, the system consist-
ing of the educator and the educated person can be represented by two variables,
namely, the child’s actual level A (t) characterizing the learner stock and K − A (t)
characterizing whatever needs to be appropriated by the child from the goal stock.

The simplest mathematical formalization of the learning process is that it amounts
to a flow ΔA from the goal stock to the individual stock, and that this flow depends
on

1. a flow parameter,
2. the current content of the goal stock,
3. the current content of the individual stock (the child’s actual developmental level).

The flow parameter is in fact the rate of learning, rate of acquisition, rate of assimi-
lation of the content to be learned, etc., and can be represented by the parameter r .
Put differently, learning depends on what you already know (the actual level, i.e.,
the learner stock), on what you still have to learn (the goal stock) and on the rate
of learning. This model can be represented in the form of a simple equation which
is nothing else than the classical logistic equation first coined by the 19th century
Belgian mathematician François Ferdinand Verhulst:

ΔA = R · A · (K − A) .

The effect of the distance between K and A can also be represented in proportional
terms, leading to the following form of the logistic equation

ΔA = R · A · (1 − A/K ) .

Thus, in order to learn, the learner must have access to the goal stock. In educa-
tional settings, the learner’s access to the goal stock is guided by or organized by the
educator. This can happen in the form of the educator giving examples, of the educa-
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tor demonstrating a model of the goal behavior to be imitated, of giving assignments
to the learner, giving instructions, and whatever else belongs to the myriad forms of
interaction that count as education and teaching. In short, the educator is actively
presenting the educated person with the goal stock in order to allow the educated
person to learn, that is to say, in order to allow the flow from goal stock to individual
stock to happen (recall that this notion of flow is only a formal way to represent the
process of learning).

Vygotsky’s great insight, which is basically the intuitive insight of all good edu-
cators, was that you cannot just present the learner with the goal stock as it is. What
educators need to do to keep the flow going is to present the learner with a reduced
and selective portion of the goal stock, namely, that portion that lies within a range of
accessibility that depends on the learner’s current state of learning, i.e., that depends
on what the learner has already learned. Vygotsky defined this range of accessibil-
ity by what a learner can accomplish in terms of new knowledge, new skills, new
insights, if that learner is given appropriate help. This range between the already
consolidated things that the learner can do without help, and the new, not yet con-
solidated things that the learner can do if appropriate help is given, is Vygotsky’s
famous zone of proximal development. Given this help, the learner is capable of
appropriating the new knowledge, skills or insights, that is to say, of making them
his own. This process of appropriation is formally defined as a flow, slowly depleting
the goal stock.

Defined in terms of our flow model, the flow will only happen if the goal stock K
is presented in the form of a much reduced goal stock, more particularly, a reduced
version that is close to the current individual stock, A. How“close” itmust be depends
on the learner. If it is too close, the learner will get bored and will not learn anything
or only very slowly, if it is not close enough, the learner will get overwhelmed
and confused and will not learn anything either. The optimum distance will differ
between individual learners, and thus constitutes a typical person-specific parameter
in the model. So, the educator’s task is to present the learner with a goal stock that is
sufficiently close to the learner’s stock to make learning possible, i.e., to enable the
flow from the goal stock to the individual stock. We shall call this reduced, adapted
and learner-directed goal stock P , referring to the concept of proximal development.
This reduced goal stock will now serve as the learner’s attractor state. Given all this,
we need to rewrite the equation for the learning process as follows:

ΔA = Ra · A · (P − A)

or, alternatively,
ΔA = Ra · A · (1 − A/P) .

An essential aspect of the concept of the zone of proximal development is that the
rate of learning will be maximal (all other things being equal) if the distance between
the current, individual stock level A and the current goal stock level P is optimal,
that is to say, if the difference between P and A is equal to an optimal distance,
represented by Oa .
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As a consequence of presenting P to the learner, there will be a flow from P to
A, and P will be used up until the point where A = P , after which no learning will
take place anymore (the P stock is entirely depleted). Since the educator wants the
learner to achieve the final goal state, i.e., to appropriate the content represented by
K , P must be updated as the learner progresses, and this updating must be in the
direction of the goal stock K . That is to say, the educator is monitoring a process
that goes from an initial P , that is close to the learner’s initial level A (t0), and in that
sense quite far away from the ultimate goal state K , to the final state that is ideally
similar to the goal state, K .

In order to model this process of adaptation in the educator’s learner-directed
activity,we canuse the same logic aswedid for the process of learning.The educator’s
process of updating the learner-directed educational content depends on

1. an update rate,
2. the current level of the learner’s proximal development P ,
3. the content of the current goal stock, which is K − P .

Hence, the equation for the updating function of the educational content is

ΔP = Rp · P · (K − P)

or, alternatively,

ΔP = Rp · P · (1 − P/K ).

We just stated that the rate of learning will be maximal if the distance between
the level of proximal development, presented in the learner-directed activities of the
educator, and the level of the learner’s actual development is optimal. This distance
can best be represented in proportional terms, that is to say, in function of the level
already attained by the learner. In that case, there is some optimal proportion of P
(potential development, i.e., the level expressed in the learner-directed educational
activities of the educator) over A

O = P/A.

Hence, the rate of learning, Ra , is maximal, that is to say, equal to some learner-
specific maximum rate of learning ra , if P/A − O = 0. This means that we can
express the education-dependent rate of learning Ra as follows:

Ra = ra − |P/A − O| · b

for b being a learner-specific parameter that moderates or dampens the effect of the
distance between P/A and O . Since learning depends on the distance between P/A
and O , we must use the absolute difference between P/A and O in our equation.
That is to say, the more P moves away from the optimal P/A proportion, the slower
the learning process (i.e., the slower the growth of A). Finally, we may assume that
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the effect of the distance between P and A also depends on the distance between the
current level of development and the final goal level. The developmental level can
be represented either by P (potential level) or by A (the actual level). The closer P
or A approach the final goal level, the less will be the effect of the distance between
P and A on the rate of learning.

Hence, the equation for updating the rate of learning R can be written either as

Ra = ra − |P/A − Oa| · ba · (1 − P/K ) ,

or as

Ra = ra − |P/A − Oa| · ba · (1 − A/K ) .

(The second equation counts as the more preferable alternative, since the learner is
primarily characterized by the actual level A).

A comparable line of reasoning applies to the change in the potential level, which
is the level governed by the educator’s learner-directed activities. The change in
P should be so that the proportion P/A is always as close as possible to what
the educator conceives to be the optimal proportional distance between P and A,
expressed by Op. The optimal distance preferred by the educator may be different
from the real optimal distance Oa , as it functions for the learner. It is clear that the
most optimal process of learning and educating is one in which the distance between
the learner’s and the educator’s optimal P/A proportion is arbitrarily small. If the
P/A proportion lies above the optimum Op the rate of change of P must slow down
and eventually become negative until P/A is close enough to Op.

If the P/A proportion lies below the optimum Op, the change in P must speed
up to reach a point where P/A is arbitrarily close to Op. Hence, the rate of change
of P , as expressed in the form of the educator’s learner-directed activities, is at its
maximum if the difference between P/A and Op approaches zero, namely,

Rp = rp − (
P/A − Op

) · bp

for bp a damping parameter. Finally, the effect of the difference between P/A and
Op can bemoderated by the distance between P and the final goal level K as follows:

Rp = rp − (
P/A − Op

) · bp · (1 − P/K ) .

We can now combine all the equations to arrive at a complete mathematical model
of Vygotsky’s model of actual and potential development in the interaction between
a learner and an educator/teacher in the form of four coupled equations:

⎧
⎪⎪⎨

⎪⎪⎩

ΔA = Ra · A · (1 − A/P)

ΔP = Rp · P · (1 − P/K )

Ra = ra − |P/A − Oa| · ba · (1 − A/K )

Rp = rp − (
P/A − Op

) · bp · (1 − P/K ) .

(7.1)
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In order to study the dynamics, we rewrite (7.1) as

⎧
⎪⎪⎨

⎪⎪⎩

A (t + 1) = A (t)
[
1 + Ra (t)

(
1 − A(t)

P(t)

)]

P (t + 1) = P (t)
[
1 + Rp (t)

(
1 − P(t)

K

)]
,

(7.2)

where
⎧
⎪⎪⎨

⎪⎪⎩

Ra (t) = ra −
∣∣∣ P(t)
A(t) − Oa

∣∣∣ ba
(
1 − A(t)

K

)

Rp (t) = rp −
(

P(t)
A(t) − Op

)
bp

(
1 − P(t)

K

) (7.3)

and

• ra and rp: constant growth rates,
• Oa and Op: optimality parameters,
• ba = d and bp = e: damping parameters,
• K is a constant, fixed to 1.

7.3 Multiple Implementation

Becker [13] claims:

As applications become more complex, their resource management requirements become
more complex, and despite our best efforts, our designs often have holes in them, or we
apply our designs incorrectly, or we make coding errors [13].

This applies also when modeling complex systems with Agent Based Modeling
or even with numerical simulation. For example, [14] illustrates how, even in simple
computations, floating point errors may cause serious discrepancies.

One possible way to avoid, or at least to be aware of, these problems may be
to use different simulating environments to model the same complex phenomena
as illustrated in [15]. Besides helping to detect coding errors, this approach can be
helpful when dealing with complex systems which are sensitive to initial conditions
and, therefore, tend to be extremely sensitive to implementation details.

For these reasons we will show how the model we consider can be implemented
using three different simulation environments; namely, a spreadsheet, R and C++.
After illustrating how themodel is implemented, we will discuss strengths and weak-
nesses of each of the considered approaches.
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7.4 Spreadsheet

As illustrated in [9], even absolute novicesmay start using a spreadsheet to implement
dynamical systems. Furthermore, spreadsheets are available on every computer and
even on mobile devices. In particular, we will use LibreOffice Calc which produces
documents compatible toMicrosoft Excel. For a first introduction to LibreOffice, the
reader may refer to [16].

The model is implemented step by step; for each step we provide a picture illus-
trating the result. The final document is available at the link [17].

Let us start from an empty spreadsheet as the one we find when we start Libre-
office Calc, illustrated in Fig. 7.1. The next step is to prepare some cells for the map
parameters as illustrated in Fig. 7.2. Parameter names are placed in the first row cells
and their values in the cells below.

In row 3 we prepare some columns for time and state variables, and in row 4
we put initial conditions as illustrated in Fig. 7.3. We do not fill values for Ra(0)
and Rp(0) as they are computed by (7.3). In fact, in cell D4, Ra(0) is computed
by = B$2 − ABS(C4/B4 − C$2) ∗ D$2 ∗ (1 − B4/$A$2) as illustrated in Fig. 7.3,
and in cell E4, Rp(0) is computed by = E$2 − (C4/B4 − F$2) ∗ G$2 ∗ (1 − C4/
$A$2) as illustrated in Fig. 7.4.

In cell A5we update time with formula= A4 + 1 as illustrated in Fig. 7.5. Now it
is turn to code each of the difference equations of the map (7.2). Difference equation

A (t + 1) = A (t)

[
1 + Ra (t)

(
1 − A (t)

P (t)

)]

Fig. 7.1 An empty spreadsheet
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Fig. 7.2 The map parameters

Fig. 7.3 Ra(0) as defined in (7.3)

is coded as= B4 ∗ (1 + D4 ∗ (1 − B4/C4)) in cellB5 as illustrated in Fig. 7.6. Then,

P (t + 1) = P (t)

[
1 + Rp (t)

(
1 − P (t)

K

)]

is coded = C4 ∗ (1 + E4 ∗ (1 − C4/$A$2)) in cell C5 as illustrated in Fig. 7.7.
Finally, in cell D5 and E5 we update Ra (1) and Rp (1) copying and pasting the

formulas from the respective cells above as illustrated in Fig. 7.8.
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Fig. 7.4 Rp(0) as defined in (7.3)

Fig. 7.5 Coding t + 1

To have the whole trajectory, or at least the trajectory as long as we are interested
in, we copy row 5 as many times as we want as illustrated in Fig. 7.9.

Now we are able to modify either the values of the parameters or the initial con-
ditions or both to assess how the dynamics changes. Let us discuss the strengths and
weaknesses of using a spreadsheet to model a dynamical system. This approach can
be used almost on any computer as spreadsheets are common and can be used on dif-
ferent platforms; almost all computers have spreadsheets and there are even free and
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Fig. 7.6 Coding A (t + 1) = A (t) [1 + Ra (t) (1 − A (t)/P (t))]

Fig. 7.7 Coding P (t + 1) = P (t)
[
1 + Rp (t) (1 − P (t)/K )

]

open source software such as the one we used. Finally, using spreadsheets involves
almost no programming and is relatively fast. When considering weaknesses, equa-
tions become difficult to read, the graphical representation may be a little cumber-
some, at least for those unfamiliar with making graphs with spreadsheets; finally,
spreadsheets allow limited analysis only.
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Fig. 7.8 Ra (1) and Rp (1) are obtained by coping and pasting the cells in the row above

Fig. 7.9 The complete spreadsheet

7.5 R

R is a powerful and free statistical software and is rapidly becoming the standard
setting for quantitative analysis and graphics. Although there are several guides to
use R, see for instance [18], and books devoted to special applications, to the best of
our knowledge there are no books explaining how to use R for analyzing dynamical
systems. Nevertheless, the reader may find useful some blogs and other online mate-
rial such as [19, 20]. Finally, there is a package (deSolve) implementing some
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functions to solve initial value problems of a system of first-order ordinary differen-
tial equations, of partial differential equations, differential algebraic equations and
of delay differential equations [21, 22].

In this sectionwewill not rely on thismaterial, ratherwewill use basic instructions
in R. In Listing 7.1 we provide some R code for computing a trajectory.

1 rm(list=ls())
2
3 N<- 4000 # number of iterations
4
5 # preparing variables
6 time <- c(1:N)
7 A <- rep(0, length(t))
8 P <- rep(0, length(t))
9 rA <- rep(0, length(t))
10 rP <- rep(0, length(t))
11
12 # parameters
13 K <- 1.000000
14 r_A <- 0.120000
15 o_A <- 0.150000
16 b_A <- 0.100000
17 r_P <- 0.100000
18 o_P <- 0.000000
19 b_P <- 0.100000
20
21
22 # Initial condition
23 A0 <- 0.010000
24 P0 <- 0.011000
25 rA0 <- r_A-abs(P0/A0 -o_A)*b_A*(1.0-A0/K)
26 rP0 <- r_P-(P0/A0 -o_P)*b_P*(1.0-P0/K)
27
28
29 # first Iteration
30 A[1] <- A0*(1.0+ rA0*(1.0-A0/P0))
31 P[1] <- P0*(1.0+ rP0*(1.0-P0/K))
32 rA[1] <- r_A-abs(P[1]/A[1]-o_A)*b_A*(1.0-A[1]/K)
33 rP[1] <- r_P-(P[1]/A[1]-o_P)*b_P*(1.0-P[1]/K)
34
35 # remaining iterations
36 for(i in 1:(N -1)){
37 A[i+1] <- A[i]*(1.0+ rA[i]*(1.0-A[i]/P[i]))
38 P[i+1] <- P[i]*(1.0+ rP[i]*(1.0-P[i]/K))
39 rA[i+1] <- r_A-abs(P[i+1]/A[i+1]-o_A)*b_A*(1.0-A[i+1]/K)
40 rP[i+1] <- r_P-(P[i+1]/A[i+1]-o_P)*b_P*(1.0-P[i+1]/K)
41 }
42
43 # a glimpse of trajectory
44 A[1:100]
45 P[1:100]

Listing 7.1 R code for computing a trajectory

The code is commented; inR the sign # comments the rest of the line.Nevertheless,
some clarifications will help the reader following the code. In line 1 we remove all
the variables from the workspace, i.e., we start from a “clean state”. In line 3 we set
the number of iterations equal to 4000. In lines 6–10 we prepare some variables to
store values. Parameters are defined in lines 13–19, and initial condition is selected in
lines 23–24. In lines 25–26, we compute Ra(0) and Rp(0) following (7.3). Then, in
lines 30–33 the first iteration is computed; finally, with a for cycle all the remaining
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iterations are computed in lines 36–41. Lines 30–33 are the analogous of Figs. 7.6,
7.7 and 7.8. Lines 36–41 are analogous of copying the spreadsheet lines. Finally, we
obtain the trajectory with lines 44–45.

Using ggplot2, which is a powerful data visualization package for R, we can
display some trajectories. We do not discuss the details here; we just mention that,
with line 46 in Listing 7.2, the trajectory is coded as a dataframe that is a com-
mon object for data analysis in R. Line 49 loads package ggplot2; besides the
online material [23] the reader may consult [24] to have further information about
ggplot2.

46 df <- data.frame(x=rep(time ,2), y=c(A, P), level=c(rep("A", length(time)),

rep("P", length(time ))))

47

48

49 library(ggplot2)

50

51 PatternA <- ggplot(df , aes(x=x, y=y, color=level)) + geom_point ()+ xlab("t") +

ylab("level") + geom_line() + geom_point( size=4, shape=21, fill="white") +

52 theme(legend.text=element_text(size =30), legend.position="none")

53

54 PatternA

Listing 7.2 R code for graphical representation of a trajectory

Following [9], we consider different parameters and initial conditions constel-
lations. Figures7.10 illustrate different behaviors of the system; they replicate
some of examples reported in [9, p.268]. For example, Fig. 7.10a shows a sud-
den jump in both the help and the actual developmental level; parameter val-
ues are ra = 0.120, Oa = 0.150, ba = 0.100, rp = 0.100, Op = 0.000, bp = 0.100
and initial condition is A(0) = 0.010, P(0) = 0.011. Figure7.10b is obtained by
parameter values ra = 0.000, Oa = 0.010, ba = 0.100, rp = 0.000, Op = 0.010,
bp = 0.100, initial condition A(0) = P(0) = 0.010 and represents a process where
both help and actual developmental level reach a maximum being far below the
potential maximum, which is 1. Figure7.10c shows another process where both help
and actual developmental level reach a maximum being far below the potential max-
imum. In this case parameters values are rA = ba = rp = op = bp = 0.100, oA =
0.010115 and initial condition is A(0) = 0.010, P(0) = 0.0101. Finally, Fig. 7.10d
represents a process in which both help and actual developmental level drop to zero.
For this case parameters values are ra = Oa = ba = rp = bp = 0.100, Op = 0.120
and initial condition is A(0) = 0.010, P(0) = 0.0101.

When comparing strengths and weakness of using R for studying dynamical
systems, some of them boil down to those of R itself. First of all, R is free and open
source software, allowing anyone to use and, importantly, to modify it. In fact, R
is licensed under the GNU General Public License, with copyright held by The R
Foundation for Statistical Computing. R is cross-platform: it runs on many operating
systems and different hardware. It is popularly used on GNU/Linux, Macintosh,
and Microsoft Windows, running on both 32 and 64 bit processors. Furthermore,
the equations can be coded in a form close to the actual formulae. The graphical
capabilities of R are outstanding and can also produce graphics output in PDF, JPG,
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Fig. 7.10 Qualitatively different growth curves—A (t) in red and P (t) in blue—resulting from
parameters configurations similar to those reported in [9]

PNG, and SVG formats, and table output for LATEX and HTML. Finally, R plays
well with many other tools, importing data, for example, from CSV files, or directly
from Microsoft Excel among the others.

In terms of weaknesses, R has a steep learning curve and it does take a while to
get used to the power of R. Furthermore, installing R can be tricky, at least for those
unfamiliar with installing software on their computer.

Finally, script must be run and many R commands give little thought to memory
management; therefore it may be unfeasible to perform long simulations.

For a thorough discussion about R advantages and disadvantages when doing
statistical analysis and data mining the reader may refer to [25].

7.6 C++

C++ is a general-purpose programming language. In the preface of the first edition
of his guide, C++ creator states:

The key concept in C++ is class. A class is a user-defined type. Classes provide data hiding,
guaranteed initialization of data, implicit type conversion for user-defined types, dynamic
typing, user-controlled memory management, and mechanisms for overloading operators
[26, p. xiii].
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Furthermore, C++ language supports object-oriented programming and provides
facilities for organizing programs into well-defined parts which can be developed
separately.

The latter is an important feature. In fact, according to [26, p. 389]:

any realistic programconsists of a number of separate parts.…The logical ideal ismodularity,
that is, to keep separate things separate and to allow access to a ‘module’ only through a
well-specified interface.

Specifically, when modeling dynamical systems, this feature allows to keep a com-
mon structure and use different maps as separate modules.

As it concerns object-oriented programming, in C++ a class is used to specify the
form of an object and it combines data representation and methods for manipulating
that data. When modeling dynamical systems, a map is modeled as a class where
data are parameters and methods implement the functions that determine the dynam-
ical system. In our case we initialize the class with a constructor and guarantee its
cleanup by a destructor; for details about constructors and destructors the reader
may refer to [26, Chap.17]. In Listing 7.3 we can find the declarations for class
constructors, destructor and methods together with accessors and parameters. In line
7 we find the declaration for the methods implementing the functions that determine
the dynamical system, namely (7.2). Also in lines 10–26 we find an example of the
accessor functions, i.e., the part of code which allows us to examine and change the
parameter values (see [26, p. 541]).

1 class Map {
2 public:
3 Map();
4 Map(double _k,double _r_A ,double _o_A ,double _b_A ,
5 double _r_P ,double _o_P ,double _b_P);
6 ~Map();
7
8 void Iteration(long double *_x); // find x(t+1)
9
10 // ///////////////////////////////////
11 // variables setter and getter
12 // ///////////////////////////////////
13 char* Name()
14 {
15 return name;
16 }
17
18 // map parameters
19 double K()
20 {
21 return k;
22 }
23 void SetK(double newK)
24 {
25 k=newK;
26 }
27 protected:
28 private:
29 // name of the map
30 char* name;
31 // parameters
32 double k;
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33 double r_A;
34 double o_A;
35 double b_A; // b_a
36 double r_P;
37 double o_P;
38 double b_P; // b_p
39 };

Listing 7.3 Header file for class Map

Listing 7.4 shows the.cpp file of the classMap, that is the file which is compiled.
In particular, lines 34 and 35 compute Ra (t) and Rp (t) according to (7.3), while
lines 36 and 37 compute A (t + 1) and P (t + 1) according to (7.2). To pass state
variable values we use pointers as Ra (t), Rp (t), A (t) and P (t) are stored in an
array; for details see [26, Chap.7].

1 // Constructor performs initialization
2 Map::Map() :
3 name("Vygotsky"),
4 k(1),
5 r_A(0.1),
6 o_A(0.1),
7 b_A(0.1),
8 r_P(0.1),
9 o_P(0.1),

10 b_P (0.1)
11 {
12 }
13 //
14 // Overloaded Constructors
15 //
16 Map::Map(double _k,double _r_A ,double _o_A ,double _b_A ,
17 double _r_P ,double _o_P ,double _b_P) :
18 name("Vygotsky"),
19 k(_k),
20 r_A(_r_A),
21 o_A(_o_A),
22 b_A(_b_A),
23 r_P(_r_P),
24 o_P(_o_P),
25 b_P(_b_P)
26 {
27 }
28 // Destructor performs cleanup.
29 Map::~Map()
30 {
31 }
32 void Map:: Iteration(long double *x){ // find x(t+1)
33 double newx [4]; // new value: A_t+1, P_t+1, R_A_t+1, R_P_t+1
34 // compute x[2] and x[3]
35 x[2]=r_A -fabsl(x[1]/x[0]-o_A)*b_A*(1.0-x[0]/k); // R_A_t
36 x[3]=r_P -(x[1]/x[0]-o_P)*b_P*(1.0-x[1]/k); // R_P_t
37 newx [0]=x[0]*(1.0+x[2]*(1.0 -x[0]/x[1])); // A_t+1
38 newx [1]=x[1]*(1.0+x[3]*(1.0 -x[1]/k)); // P_t+1
39 newx [2]=r_A -fabsl(x[1]/x[0]-o_A)*b_A*(1.0-x[0]/k); // R_A_t+1
40 newx [3]=r_P -(x[1]/x[0]-o_P)*b_P*(1.0-x[1]/k); // R_P_t+1
41 // update values to pass back
42 x[0]= newx [0];
43 x[1]= newx [1];
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44 x[2]= newx [2];
45 x[3]= newx [3];
46 };

Listing 7.4 Class Map .cpp file

The strengths of using C++ for simulating dynamical systems’ dynamics are
that C++ is flexible, cross-platform and, finally, really fast. On the other hand, C++
presents a steep learning curve, code needs to be compiled, graphical output is not
immediate and also the programmers may need to be familiarized with a rapid appli-
cation development framework in order to write and compile their code.

7.7 Conclusions

The three approaches we have presented in this chapter have both strengths and
weaknesses; therefore there is no perfect approach.

Although C++ can become the preferred choice when speed is a requirement, the
need for effective graphic representation calls for using other approaches or at least
integrating several approaches. One option is to combine the different approaches in
order to exploit their relative strengths. For example, it can be possible to perform the
calculations in C++ and use R for representing graphics. To this purpose it is useful
to use a format such as Comma-Separated Values (CSV) files, as data exchange for
moving data between programs. Although [27] proposes a specification for the CSV
format, and this is the definition commonly used, there is not a single, well-defined
format for CSV files. Nevertheless, it is easy to exchange data using CSV like files,
as proposed in Fig. 7.11. Besides this aspect, probably the main benefit of using
multiple implementation is given by debugging and controlling numerical artifacts.
Concerning the first benefit, the fact that equations coded with a spreadsheet are
rather distant from the coding C++ and R call for, makes using spreadsheets a good
way to check for mistakes. As it concerns the second aspect, this is quite important
when studying chaotic dynamical systems, as one of the ingredient of a chaotic map

Fig. 7.11 Moving data
between spreadsheet, R and
C++ using CSV files
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we have sensitive dependency on initial conditions [28] and, therefore, numerical
approximations can play an important role.
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